

Autorità di Sistema Portuale del Mar Adriatico Centro Settentrionale

APPROFONDIMENTO CANALI CANDIANO E BAIONA, ADEGUAMENTO BANCHINE OPERATIVE ESISTENTI, NUOVO TERMINAL IN PENISOLA TRATTATOLI E RIUTILIZZO DEL MATERIALE ESTRATTO IN ATTUAZIONE AL P.R.P. VIGENTE 2007 I FASE

PROGETTO DEFINITIVO

OGGETTO

BANCHINA TRATTAROLI SUD

(Relazione dei calcoli geotecnici e strutturali)

FILE

1114.STR.08.A - Relazione dei calcoli geotecnici e strutturali

CODICE

1114.STR.08.A

SCALA

Rev.	Data	Causale
0	Set. 2014	Emissione
1	Set. 2017	Revisione generale
2		
3		

AUTORITÀ DI SISTEMA PORTUALE DEL MARE ADRIATICO CENTRO SETTENTRIONALE

IL RESPONSABILE DEL PROCEDIMENTO IL DIRETTORE TECNICO

IL DIRETTORE TECNICO
(Ing. Fabio Maletti)

MINISTERO INFRASTRUTTURE E DEI TRASPORTI PROVVEDITORATO INTERREGIONALE PER LE OPERE PUBBLICHE PER LA LOMBARDIA E L'EMILIA ROMAGNA

IL RESPONSABILE DELLA REVISIONE DELLA PROGETTAZIONE

(Ing. Francesco Caldani)

PRESTAZIONI SPECIALISTICHE Geotecnica

Direttore Tecnico : Ing. Paolo Rugge

Direttore Tecnico : Ing. Marco Tartaglini

re recinco : ing. Marco Tartagn

Marittima

Direttore Tecnico: Ing. Lucio Abbadessa

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

INDICE

1 2 3 4 5	NOI DO PRE	emessa DRME DI RIFERIMENTO DCUMENTI DI RIFERIMENTO ESTAZIONI RICHIESTE AL BANCHINAMENTO RATTERISTICHE DEI MATERIALI	4 4 5
J		Acciaio palancole esistenti	
	5.2	Acciaio tiranti esistenti	7
	5.3	Acciaio nuovi tiranti	7
	5.4	Calcestruzzo nuove strutture	8
	5.5	Acciaio per cemento armato nuove strutture	9
6		TUAZIONE ATTUALE DELLA BANCHINA	
	6.1	Stato di consistenza dell'opera	10
	6.1.1		
	6.1.2		
	6.1.3	1 6	15
	6.1.4 6.1.5	1	
		Analisi delle carenze della struttura attuale in relazione alle	
7		TERVENTO DI ADEGUAMENTO PREVISTO	=
8		LAZIONE GEOTECNICA E DI CALCOLO	
O		INQUADRAMENTO GEOLOGICO/STRATIGRAFICO D	
		MODELLO STRATIGRAFICO DI RIFERIMENTO	
		FECNICHE DEI TERRENI	
	8.3	SICUREZZA DELL'OPERA	33
	8.3.1		
		3.3.1.1 Verifiche agli stati limite ultimi (SLU e SLV)	
	8.	3.3.1.2 Approcci e combinazioni utilizzate	
	8.	3.3.1.3 Verifiche delle prestazioni (SLE e SLD)	35
	8.3.2		
		3.3.2.1 Sovraccarico di banchina	
	8.	3.3.2.2 Tiro alla bitta	36
	8.	3.3.2.3 Gru di banchina	
		3.3.2.4 Azioni sismiche	
		3.3.2.5 Azione idrodinamica (Westergaard)	
	8.3.3		
	8.3.4		
		ANALISI NUMERICHE DELLE OPERE IN PROGETTO	
	8.4.1	.1 Il modello costitutivo Hardening Soil Model: caratteristi	che principali44

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

DIREZIO	NC	ΕT	ECI	NICA
Pag.	:	2	di	104

	8.4.2 Mo	dello geotecnico della banchina	46
		ultati delle analisi	
	8.4.3.1	Risultati delle analisi di sicurezza (SLU/SLV)	
	8.4.3.2	Risultati delle analisi di funzionalità (SLE/SLD)	
	8.4.3.3	Analisi per azioni eccezionali: urto	60
	8.4.3.4	Analisi di stabilità globale	61
	8.4.4 Ver 8.4.4.1	rifica dei pali del solettone ai carichi verticali Verifica dei pali della FILA 1	
	8.4.4.2	Verifica dei pali della FILA 2	67
	8.4.4.3	Verifica dei pali della FILA 3	69
	8.4.4.4	Prove di verifica dei pali	71
	8.4.4.5	Controllo dell'integrità dei pali	71
	8.4.4.6 palo	Valutazione della rigidezza verticale del vincolo elastico sommitale che s 71	simula il
	8.4.5 Ver	rifica dei tiranti di ancoraggio a bulbo iniettato	72
	8.4.5.1	Posizione della fondazione dell'ancoraggio	
	8.4.5.2	Ancoraggi T1 – Tiranti esistenti a 7 trefoli	74
	8.4.5.3	Ancoraggi T2 – nuovi ancoraggi armati con barra tipo Dywidag	78
	8.4.5.4	Definizione del CAMPO PROVA per gli ancoraggi preliminari di prova	83
	8.4.5.5	Prove di verifica e modalità di tesatura	83
	8.4.5.6	Protezione degli ancoraggi	83
		HE STRUTTURALI	
9.1		olato esistente	
9.2		di ancoraggio esistenti	
9.3	3 Tiranti	di ancoraggio integrativi	92
9.4	4 Soletto	ne	93
	9.4.1 Ver 9.4.1.1	ifiche agli stati limiteSoletta di nuova realizzazione	
	9.4.1.2	Collegamento trave coronamento-soletta di nuova realizzazione	100
9.5	5 Pali		103
10	CONTRO	LLI IN CORSO D'OPERA E MONITORAGGIO	104

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

1 Premessa

Nell'ambito della progettazione definitiva del complesso intervento denominato "Hub portuale di Ravenna – Approfondimento canali Candiano e Baiona, adeguamento banchine operative esistenti, nuovo terminal in penisola Trattaroli e utilizzo materiale estratto in attuazione al P.R.P. vigente 2007", il presente documento affronta le verifiche geotecniche e strutturali relative all'intervento di adeguamento previsto per la banchina **Trattaroli SUD**, un tratto di banchina ultimato nel 1999 sulla base di un progetto esecutivo del 1993, modificato con Perizie di Variante in corso d'opera.

L'intervento di adeguamento si rende necessario per rendere compatibile il banchinamento alle prestazioni previste dal piano regolatore vigente che prevedono, in particolare, un fondale operativo a -14,50 m da livello medio mare.

Il progetto di intervento sul banchinamento, agendo su una struttura completamente realizzata e introducendo significative variazioni delle sollecitazioni, va inquadrato nell'ambito degli interventi di adeguamento di strutture esistenti, ai sensi delle previsioni del capitolo 8 "Costruzioni esistenti" delle Norme vigenti (DM 14 gennaio 2008).

Secondo quanto previsto è dunque necessario individuare il livello di conoscenza delle opere realizzate ed eseguire una valutazione completa della sicurezza nei riguardi delle azioni di progetto stabilite per le nuove costruzioni, con deroga nei riguardi delle sole prescrizioni sui dettagli costruttivi purché siano garantite le prestazioni in termini di resistenza, duttilità e deformabilità prescritte per i vari stati limite.

La presente relazione viene sviluppata con l'esame dei seguenti specifici aspetti:

- descrizione dell'opera esistente e della soluzione di adeguamento;
- definizione del quadro geotecnico di riferimento;
- descrizione dei criteri di analisi e verifica sulla base del quadro normativo vigente;
- definizione delle azioni sulle opere;
- analisi della sicurezza delle opere in condizioni di esercizio e limite;
- analisi della sicurezza delle opere in relazione a possibili fenomeni di collasso globale dell'insieme terreno-struttura.

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

2 NORME DI RIFERIMENTO

- Legge 5 novembre 1971, n.1086 "Norme per la disciplina delle opere in conglomerato cementizio armato, normale e precompresso e da struttura metallica";
- Legge 2 febbraio 1974, n.64 "Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche";
- D.M. Infrastrutture 14 gennaio 2008 "Approvazione delle nuove norme tecniche per le costruzioni" (Suppl. Ord. alla G.U. 4-02-2008, n.29);
- Circolare 2 febbraio 2009 n.617 C.S.LL.PP "Istruzioni per l'applicazione delle «Nuove norme tecniche per le costruzioni» di cui al decreto ministeriale 14 gennaio 2008";
- EN 1993-5:2007 Eurocode 3. Design of steel structures. Piling
- Ancoraggi nei Terreni e nelle Rocce Raccomandazioni Edizioni AGI Giugno 2012;
- Decreto n. 12391 del 22 dicembre 2011 del Consiglio Superiore dei Lavori Pubblici "Linea Guida per il rilascio della certificazione di idoneità tecnica all'impiego di tiranti per uso geotecnico di tipo attivo".

3 DOCUMENTI DI RIFERIMENTO

- RELAZIONE GEOLOGICA (codice GEO.A) relativa alla progettazione del "Hub portuale di Ravenna – Approfondimento canali Candiano e Baiona, adeguamento banchine operative esistenti, nuovo terminal in penisola Trattaroli e utilizzo materiale estratto in attuazione al P.R.P. vigente 2007", a firma del dott. geol. Maria Bruno – Geostudi S.r.l.;
- RELAZIONE GEOTECNICA GENERALE (codice GEO.G) relativa alla caratterizzazione geotecnica dei terreni;
- RELAZIONE GENERALE DI PROGETTO ORIGINALE relativa alla "Nuova perizia di variante planimetrica con adeguamento linea e tipo di difesa del tratto "Trattaroli" – senza aumento di spesa- con parziale impiego delle somme a disposizione" del 1992 (a firma dell'ing. Antonio Carletti);
- RELAZIONE GEOTECNICA DI PROGETTO ORIGINALE relativa alla "Nuova perizia di variante planimetrica con adeguamento linea e tipo di difesa del tratto "Trattaroli" – senza aumento di spesa- con parziale impiego delle somme a disposizione" del 1992 (a firma dell'ing. Antonio Carletti);
- RELAZIONE DI CALCOLO DI PROGETTO ORIGINALE relativa alla "Nuova perizia di variante planimetrica con adeguamento linea e tipo di difesa del tratto "Trattaroli" – senza aumento di spesa- con parziale impiego delle somme a disposizione" del 1992 (a firma dell'ing. Antonio Carletti);
- RELAZIONE GENERALE DI PERIZIA ORIGINALE relativa alla "Nuova perizia di variante planimetrica con adeguamento linea e tipo di difesa del tratto "Trattaroli" – senza aumento di spesa- con parziale impiego delle somme a disposizione" del 1992 (a firma dell'ing. Antonio Carletti);

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

- RELAZIONE GEOTECNICA DI PERIZIA CON ALLEGATE INDAGINI GEOGNOSTICHE E PROVE DI LABORATORIO relativa alla "Nuova perizia di variante planimetrica con adeguamento linea e tipo di difesa del tratto "Trattaroli" – senza aumento di spesa- con parziale impiego delle somme a disposizione" del 1995 (a firma del geo. Walter Travagli);
- RELAZIONE DI CALCOLO DI PERIZIA relativa alla "Nuova perizia di variante planimetrica con adeguamento linea e tipo di difesa del tratto "Trattaroli" senza aumento di spesa- con parziale impiego delle somme a disposizione" del 1995 (a firma dell'ing. Antonio Carletti);
- RELAZIONE DI CALCOLO DI PERIZIA AGGIUNTIVA relativa alla "Nuova perizia di variante planimetrica con adeguamento linea e tipo di difesa del tratto "Trattaroli" – senza aumento di spesa- con parziale impiego delle somme a disposizione" del 1997 (a firma dell'ing. Antonio Carletti);
- prossima emanazione, per quanto possibile si tiene conto di quanto indicato dalla: Bozza di revisione delle Norme Tecniche per le Costruzioni di cui al parere del Consiglio Superiore dei Lavori Pubblici n.53/2012, espresso nell'Adunanza dell'Assemblea Generale del 14 novembre 2014.

4 PRESTAZIONI RICHIESTE AL BANCHINAMENTO

Per la banchina in questione sono richieste le seguenti prestazioni:

- fondale operativo -14,50 m da l.m.m.;

fondale di calcolo
 -15,00 m da l.m.m.;

quota piazzali +2,50 m su l.m.m.;

sovraccarico di banchina
 kPa;

- utilizzo di gru semoventi (le caratteristiche specifiche sono indicate al paragrafo delle azioni);
- bitte da 1000 kN ad interasse 25 m
- azione sismica valutata per Classe d'uso III, Vita nominale 50 anni
- coefficiente di compartecipazione dei carichi in condizioni sismiche $\Psi_{2,i}$ =0,8
- nave di progetto da 100.000 t (*molto grande* ai sensi della definizione delle NTC2008).

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

CARATTERISTICHE DEI MATERIALI

5.1 Acciaio palancole esistenti

Il banchinamento esistente è realizzato con il palancolato combinato HZ 975 C sol. 14/11 – ZH 9,5 della ProfilARBED in acciaio Fe510, le cui caratteristiche di resistenza sono le seguenti:

- Per spessore nominale dell'elemento $t \le 40 \text{ mm}$:
 - $\begin{array}{l} \circ \quad \text{Tensione caratteristica di snervamento: } f_{yk} = 355 \ \text{N/mm}^2 \\ \circ \quad \text{Tensione caratteristica di rottura: } f_{tk} = 510 \ \text{N/mm}^2 \\ \end{array}$
- Per spessore nominale dell'elemento t > 40 mm:
 - Tensione caratteristica di snervamento: $f_{yk} = 355 \text{ N/mm}^2$
 - Tensione caratteristica di rottura: $f_{tk} = 470 \text{ N/mm}^2$

Sui pali principali (HZ 975 C) è stato eseguito il prelievo di un fazzoletto di palancola metallica per la valutazione della qualità dell'acciaio attraverso l'esecuzione di una prova di trazione. I risultati della prova sono sinteticamente riportati nel seguito:

> $\begin{aligned} f_y &= 412 \ N/mm^2 \\ f_t &= 548 \ N/mm^2 \end{aligned}$ Tensione di snervamento: Tensione di rottura: Allungamento: $A_{gt} = 26\%$

Come si vede, i valori delle tensioni di snervamento e di rottura ottenuti dalla prova di trazione eseguita superano ampiamente quelli minimi caratteristici del materiale dichiarato dal produttore:

> Variazione tensione di snervamento: $\Delta(f_{v}/f_{vk}) = 1,16$ $\Delta(f_t/f_{tk}) = 1.07$ O Variazione tensione di rottura:

confermando, pertanto, quelle che sono le ipotesi progettuali di calcolo.

A vantaggio della sicurezza, ai fini delle verifiche, si farà pertanto riferimento ai valori teorici delle caratteristiche dell'acciaio tipo Fe510 utilizzando i coefficienti di sicurezza di normativa.

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

5.2 Acciaio tiranti esistenti

I tiranti esistenti sono realizzati con tiranti di ancoraggio a bulbo iniettato tipo IRS, armati con 7 trefoli da 0,6" (area complessiva di 1.987 mm²) con 21 m di parte libera, 20 m di fondazione, inclinati alternativamente a 15° e 20° sull'orizzontale con interasse di 1,80 m.

Le caratteristiche di resistenza degli acciai in trefoli ricavate dalla relazione di calcolo del progetto sono le seguenti:

- tensione caratteristica di rottura: $f_{ptk} \ge 1.770 \text{ N/mm}^2$
- tensione caratteristica di rottura all'1% di deformazione totale: $f_{p(1)k} \ge 1.570 \; N/mm^2$

5.3 Acciaio nuovi tiranti

Le nuove strutture di ancoraggio sono realizzate con tiranti a barre tipo DYWIDAG di diametro nominale Φ 47 (A = 1.735 mm²), lunghezza 35,5 m, inclinazione 18° sull'orizzontale, con 17 m di parte libera e 18 m di fondazione, poste ad interasse di 3,60 m.

Le barre sono in acciaio da precompressione DYWIDAG Y1050H aventi le seguenti proprietà meccaniche dichiarate dal produttore:

- tensione caratteristica di rottura: $f_{pk} = 1.050 \text{ N/mm}^2$
- tensione caratteristica di snervamento: $f_{pyk} = 950 \text{ N/mm}^2$

Ai fini della valutazione della resistenza di calcolo si è fatto riferimento alle caratteristiche di resistenza minime degli acciai dei tiranti in barre ricavate dalla Tabella 11.3.VII del D.M. 14/01/2008 che fornisce le proprietà meccaniche minime che devono essere garantite dal produttore:

- tensione caratteristica di rottura: $f_{pk} = 1.000 \text{ N/mm}^2$
- tensione caratteristica di snervamento: $f_{pyk} = 800 \text{ N/mm}^2$

Le barre sono protette nei confronti di perdite di spessore dovute ai fenomeni di corrosione con guaine.

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

5.4 Calcestruzzo nuove strutture

Le opere di c.a. sono realizzate con calcestruzzo di classe di resistenza C35/45, classe di esposizione XS3, classe di consistenza S4 e diametro massimo dell'aggregato 32 mm. Le principali caratteristiche meccaniche del calcestruzzo sono riportate nel prospetto seguente:

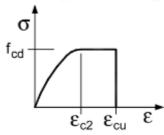
- Resistenza di calcolo a compressione del calcestruzzo:

$$\begin{array}{ll} R_{ck} = 45 \; MPa \\ f_{ck} = 0.83 \times R_{ck} = & 37.35 \; MPa \\ f_{cm} = f_{ck} + 8 = & 45.35 \; MPa \\ f_{cd} = \alpha_{cc} \; f_{ck} \, / \, \gamma_c = & 21.17 \; MPa \end{array}$$

- Resistenza di calcolo a trazione del calcestruzzo:

$$f_{ctm} = 0.30 \times f_{ck}^{2/3} = 3.35 \text{ MPa}$$

 $f_{ctk} = 0.7 \times f_{ctm} = 2.35 \text{ MPa}$
 $f_{ctd} = f_{ctk} / \gamma_c = 1.56 \text{ MPa}$


- Tensione tangenziale di aderenza acciaio-calcestruzzo:

$$\begin{array}{ll} f_{bk} &= 2.25{\times}\eta{\times}f_{ctk} = & 5.29 \ MPa \\ f_{bd} &= f_{bk} \ / \ \gamma_c = & 3.53 \ MPa \end{array}$$

- Caratteristiche meccaniche:

$$\begin{split} E_{cm} &= 22000 \times [f_{cm}/10]^{0.3} = & 34625 \ MPa \\ \nu_{cls \ fess.} &= 0 \\ \nu_{cls \ non \ fess.} &= 0.2 \\ \alpha &= 10 \times 10^{-6} \ ^{\circ}C^{-1} \end{split}$$

Per il diagramma tensione-deformazione del calcestruzzo è stato adottato il modello σ - ϵ parabola rettangolo illustrato nella figura seguente con $\epsilon_{c2} = 0.20\%$ e $\epsilon_{cu} = 0.35\%$

 $Figura\ 1-Diagramma\ tensione-deformazione\ del\ calcestruzzo$

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

5.5 Acciaio per cemento armato nuove strutture

L'acciaio impiegato per la realizzazione delle opere di c.a. è del tipo B450C ed è caratterizzato dai seguenti valori nominali delle tensioni caratteristiche di snervamento e rottura da utilizzare nei calcoli:

- $f_{y \text{ nom}} = 450 \text{ N/mm}^2$
- $f_{t,nom} = 540 \text{ N/mm}^2$

La resistenza di calcolo dell'acciaio (f_{yd}) è riferita alla tensione caratteristica di snervamento dell'acciaio ed è ottenuta dividendo quest'ultima per un coefficiente parziale di sicurezza relativo all'acciaio (γ_s) pari a 1.15:

$$f_{yd} = 391 \text{ N/mm}^2$$

Per il diagramma tensione-deformazione dell'acciaio è stato adottato un modello σ - ϵ elastico perfettamente plastico indefinito illustrato nella figura seguente.

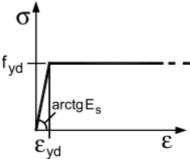


Figura 2 – Diagramma tensione-deformazione dell'acciaio

Per il modulo elastico dell'acciaio si è fatto riferimento al seguente valore:

$$E_s = 210000 \text{ N/mm}^2$$

da cui si ricava il seguente valore della deformazione di snervamento dell'acciaio da utilizzare nei calcoli:

$$\varepsilon_{\rm vd} = 0.20\%$$

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

6 SITUAZIONE ATTUALE DELLA BANCHINA

La banchina Trattaroli Sud oggetto della presente relazione fa parte del bacino di evoluzione del canale Candiano in corrispondenza di largo Trattaroli, in sponda Nord, per uno sviluppo di circa 840 m, antistante alla ditta ITALCEMENTI (Figura 3). Il progetto esecutivo è stato approvato dal consiglio superiore dei lavori pubblici (con voto n. 139 del 23 giugno 1993) e successivamente modificato con due perizie di variante in corso d'opera (la seconda perizia è stata approvata con voto n. 440 del 19 settembre 1998).

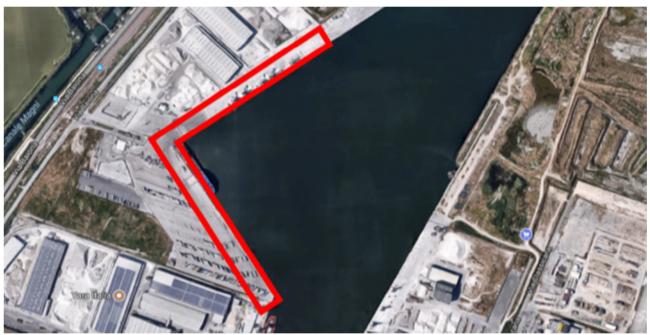


Figura 3 – Vista aerea dell'area in esame (da Google maps)

La banchina realizzata presenta le seguenti caratteristiche geometriche e prestazionali:

piano di banchina +2,50 m da l.m.m.
 fondale operativo -11,50 m da l.m.m.
 fondale di progetto -12,00 m da l.m.m.

sovraccarico di banchina 60 kPa

6.1 Stato di consistenza dell'opera

In accordo al capitolo 8 delle Norme vigenti, per procedere ad un intervento di adeguamento della banchina è necessario eseguire una valutazione conoscitiva dell'opera e del suo stato di conservazione. Dato che le situazioni concretamente riscontrabili sono le più diverse, la normativa traccia solo le linee generali per la redazione dei progetti e lascia al Progettista la definizione delle modalità di valutazione della sicurezza. In generale si prevedono i seguenti passi logici in sequenza:

- analisi storico-critica dell'opera;
- rilievo geometrico-strutturale;

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

- caratterizzazione meccanica dei materiali;
- definizione dei livelli di conoscenza dei diversi parametri coinvolti nel modello (geometria, dettagli costruttivi e materiali) e dei correlati fattori di confidenza da utilizzare come ulteriori coefficienti parziali di sicurezza che tengono conto delle carenze nella definizione del modello.

Operativamente i fattori di confidenza operano riducendo i valori medi delle resistenze dei materiali strutturali, come indicato nella circolare esplicative della Norma, al paragrafo C8.2:

"È per questo che viene introdotta un'altra categoria di fattori, i "fattori di confidenza", strettamente legati al livello di conoscenza conseguito nelle indagini conoscitive, e che vanno preliminarmente a ridurre i valori medi di resistenza dei materiali della struttura esistente, per ricavare i valori da adottare, nel progetto o nella verifica, e da ulteriormente ridurre, quando previsto, mediante i coefficienti parziali di sicurezza".

Essendo l'area collocata in zona sismica è inoltre necessario considerare anche l'adeguamento dell'opera alle azioni sismiche in base alla classificazione sismica del territorio nazionale.

6.1.1 Analisi storico-critica dell'opera

In Figura 4 è mostrata una fotografia aerea dell'area di Largo Trattaroli ripresa dal volo IGMI-GAI del 1954 e sovrapposta alla Carta Tecnica Regionale. Si osserva che il canale Candiano aveva ancora una modesta larghezza e che l'area di largo Trattaroli ricadeva tutta a terra.

Figura 4 - Foto aerea dell'area di Largo Trattaroli del 1954 (volo IGMI-GAI - da Regione Emilia Romagna)

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

In Figura 5 è presentata una foto aerea dell'area nel 1988, ripresa dal Geoportale Nazionale. Si osserva che l'escavo di Largo Trattaroli era stato eseguito, ma ancora non erano state realizzate le banchine. Si nota a Sud la banchina IFA già presente all'epoca.

Figura 5 – Foto aerea dell'area di Largo Trattaroli del 1988 (da Geoportale Nazionale)

Nel 1992 è stata redatto il progetto esecutivo e successivamente approvato dal Consiglio Superiore dei Lavori Pubblici con voto n. 139 del 23/06/1993. L'intervento aveva l'obiettivo di realizzare una difesa spondale con palancolato metallico tale da consentire la successiva trasformazione in banchinamento operativo con fondale di -11,50 m da l.m.m., coronamento a +2,50 m e sovraccarico di 6 t/m². La sezione di progetto indica che il palancolato sarebbe stato infisso sulla linea di battigia, anche se l'atto di collaudo segnala che gli allineamenti di infissione risultavano interamente in acqua su un fondale medio di 4 m. A tergo del palancolato i progettisti avevano previsto il riempimento con terreno sabbioso completato dalla realizzazione di una terra rinforzata a tergo della trave di banchina.

A causa della progressiva erosione operata sulle sponde dal moto ondoso e dall'approvazione del Piano Unitario n.2, è stata redatta la prima Perizia di variante, approvata dal C.S. LL. PP. con voto n. 180 del 19/06/1997. In tale Perizia sono state apportate variazioni ai profilati metallici adottando un palancolato con un sistema di tirantatura più robusti rispetto al progetto esecutivo. Inoltre il filo banchina risultante dalla Perizia di Variante (Figura 6) ha subito un ulteriore spostamento verso il canale.

Successivamente è stata redatta una 2° Perizia di variante e suppletiva per adeguare i lavori alla necessità del comune di Ravenna di realizzare un canale di scolo per il convogliamento di acque reflue che interferiva con il tracciato di banchina.

In fase di ultimazione dei lavori è stata redatta una 3° Perizia di Variante per adeguare il peso dei profilati metallici ai verbali di pesatura.

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

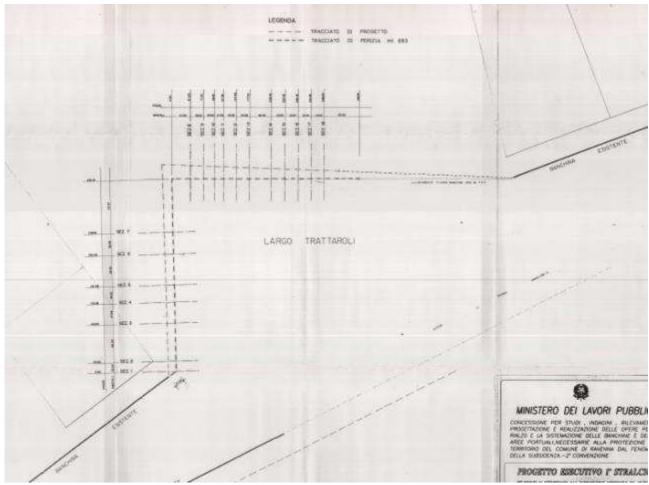


Figura 6 – Planimetria dell'area con il tracciato di banchina previsto dalla Perizia del 1995

6.1.2 Documentazione del progetto originale

Dell'opera in esame è stato reperito il progetto esecutivo, i particolati costruttivi di Perizia e l'Atto Unico di Collaudo.

In Figura 7 è rappresentata una sezione tipo del banchinamento per come risulta dagli elaborati originali del progetto dell'ultima perizia di variante (a cui si rimanda per ulteriori dettagli). In Figura 8 è indicato uno stralcio della planimetria di progetto da cui risulta che l'interasse tra i tiranti è pari a 1,80 m ed è presente una terra rinforzata subito dietro la trave di banchina.

La struttura è costituita da palancole principali ad H tipo HZ975C intercalati da elementi secondari ZH9.5, secondo la combinazione 14/11.

La palancola principale è estesa fino a -24,00 m su l.m.m. mentre la palancola secondaria fino a -16,00 m da l.m.m.

Al di sopra della paratia e ad essa opportunamente collegata corre una rigida trave di coronamento in c.a. con sezione rettangolare $1,60\times3,00$ avente l'estradosso a +2,50 m su l.m.m. Da tale trave dipartono, debitamente ancorati, i tiranti a bulbo iniettato posti ad interasse di 1,80 m ed inclinati alternativamente di 15° e 20° sull'orizzontale. I tiranti sono armati con n.7 trefoli di acciaio armonico da 0,6°.

È presente, infine, una struttura in terra rinforzata in sostituzione del terreno di riporto da -0,50 a +1,90m da l.m.m. che si estende per circa 5,0 m a monte del palancolato metallico.

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

Il calcolo dell'opera è stato sviluppato con un modello di trave elastica su suolo alla Winkler, considerando una prima fase di funzionamento a sbalzo con fondale di 6 m ed una seconda fase in cui gli ancoraggi divengono operativi ed il fondale viene portato a -11,50 m da l.m.m. Il momento flettente massimo sul palancolato risultava pari a 2.368 kNm. Il massimo tiro sugli ancoraggi era pari a 105 t.

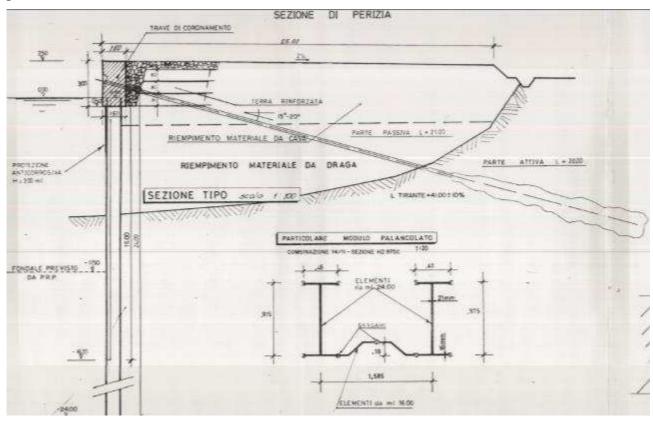


Figura 7 - Sezione dello stato attuale della banchina Trattaroli Sud

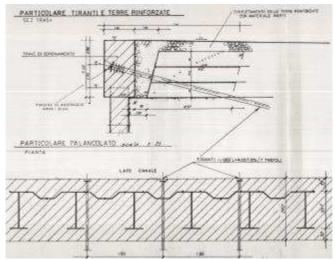


Figura 8 – Stralcio planimetrico del banchinamento e particolare terre armate.

Relativamente al tirante di ancoraggio, come risulta dalla Figura 9, si è adottato un sistema a doppia protezione per l'intera lunghezza del tirante.

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

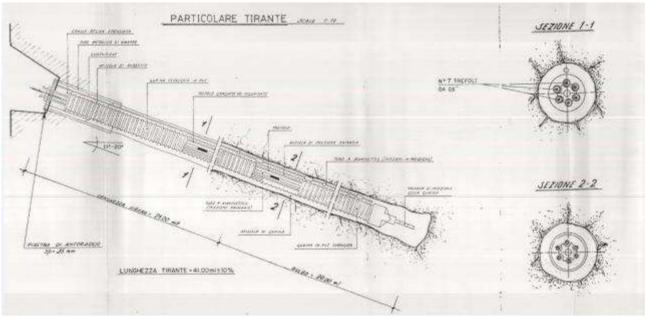


Figura 9 - Particolare costruttivo del tirante di ancoraggio adottato in sede di Perizia.

Dalla relazione di calcolo di perizia risultano le seguenti caratteristiche dei materiali impiegati:

- Palancole Acciaio tipo Fe 510 (f_y=355MPa; f_t=510MPa)

- calcestruzzo trave coronamento $R_{ck} > 30 \text{ MPa}$

- trefoli tiranti $f_{p(1\%)k} = 1.570 \text{ MPa}$

6.1.3 Normative di riferimento indicati nel progetto realizzato

La progettazione della banchina Trattaroli Sud è stata eseguita con riferimento al D.M. marzo 1988, al D.M. 14/02/1992, alla circolare ministeriale dei LL.PP. del 31/10/1986, alle Raccomandazioni AGI 1977 sulle indagini geotecniche e alle Raccomandazioni AICAP 1983 sugli ancoraggi.

6.1.4 Prove di controllo sulla qualità dei materiali presenti

Per definire la qualità dei materiali presenti e lo stato di conservazione dell'opera è stata realizzata una campagna di indagine costituita da:

- prelievo di 4 carote di calcestruzzo dalla trave di banchina (da due siti diversi, 2 prelievi per sito) da sottoporre a prove di compressione;
- prelievo di bue barre d'armatura dalla trave di banchina (2 barre ø20) da sottoporre a prove di trazione;
- apertura di 2 nicchie delle testate di ancoraggio per verifica visiva dello stato di conservazione e prova di isolamento elettrico del tirante (ERM II, da EN 1537:2002);
- escavo a tergo della trave per ispezione del tirante e prelievo di un trefolo per prove di trazione;

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

- prelievo di un fazzoletto di palancola metallica per valutazione della qualità dell'acciaio con prova di trazione;
- misura dello spessore del palancolato metallico con tecniche ultrasoniche.

I risultati analitici sono presenti nelle relative relazioni di indagine.

In sintesi risulta che:

- la resistenza a compressione delle carote di calcestruzzo prelevate dalla trave di banchina è risultata pari a 16,87 - 31,21 - 34,60 - 28,93 MPa;
- le prove di trazione sulle due barre ø20 hanno fornito rispettivamente:

o $f_v = 537.8 \text{ MPa}$

 $f_t = 620,4 \text{ MPa}$ $A_5 = 15,16\%$

o $f_v = 552,1 \text{ MPa}$ $f_t = 627 \text{ MPa}$ $A_5 = 14,71\%$

- le testate degli ancoraggi apparivano in buone condizioni (ruggine superficiale, piastra leggermente ossidata) come mostrato in Figura 10; la resistenza elettrica misurata in accordo al metodo ERMII è risultata generalmente maggiore di 100 k Ω , anche se alcuni valori inferiori a tale soglia sono stati misurati, lasciando qualche perplessità sull'effettivo isolamento elettrico dei tiranti;
- l'escavo del tirante a tergo della trave mostra la presenza della doppia protezione con una guaina corrugata che raccoglie le singole guaine della parte libera dei trefoli (Figura 11). Il trefolo ha un'area della sezione di 140,84 mm² con una resistenza a rottura di 237 kN pari a 1.685 MPa;
- la prova di trazione sull'acciaio del palancolato indica un carico di snervamento di $f_v = 412$ MPa, un carico di rottura $f_t = 548$ MPa ed un allungamento a rottura del 26%;
- lo stato di corrosione della palancola indica perdite di spessori inferiori ad 1 mm in circa 20 anni di esposizione (vedi Tabella 1).

Tabella 1. Misura ultrasonica dello spessore dei palancolati metallici HZ

			Inominale	Anno di	Anni di esposizione all'ambiente	Misura ultrasonica spessori acciaio dei palancolati					
						Spessore (mm)					
BANCHINA INDAGATA		Palancola HZ				Misura su fazzoletto	Profondità (da l.m.m.)				
							-0,50	-2,50	-4,50	-6,50	-8,50
PALANCOLE Trattoroli sud	Punto 10	HZ975C	21	1996/1999	18-21	20,0	20,5	21,3	20,8	21,0	21,0
(Sez. 21)	Punto 9	1123730	21	1330/1333	10-21	1	21,6	21,6	21,8	21,8	21,8

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

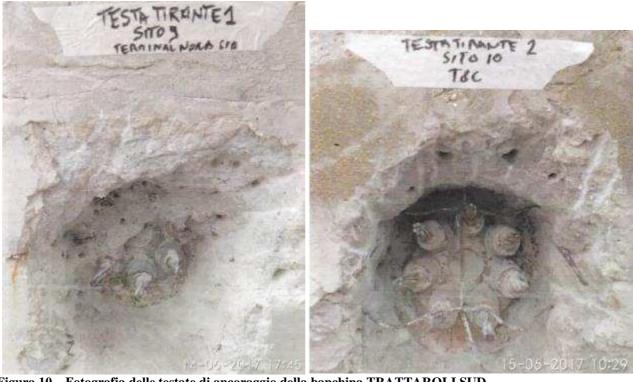


Figura 10 – Fotografia delle testate di ancoraggio della banchina TRATTAROLI SUD

Figura 11 – Fotografia del tirante di ancoraggio a tergo della trave

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

6.1.5 Valutazione del livello di conoscenza e dei fattori di confidenza

In conclusione risulta che la struttura esistente è piuttosto robusta ed i materiali risultano conformi ai documenti progettuali.

In ogni caso la qualità dei calcestruzzi della trave di banchina, per quanto in linea con quanto previsto dal progetto (Rck > 30 MPa), risulta inferiore a quanto richiesto oggi per un'opera esposta all'ambiente marino.

Il livello di protezione dei trefoli dei tiranti di ancoraggio è analoga a quanto richiesto dalle normative vigenti (doppia protezione) anche se alcune misure di isolamento elettrico non sono positive.

Il palancolato metallico risulta in buono stato di conservazione e la qualità dell'acciaio misurata su un campione corrisponde alle caratteristiche nominali indicate in progetto, per cui è possibile fare affidamento sulle sue risorse resistenti.

L'appendice A al capitolo 8 della Circolare applicativa delle Norme vigenti fornisce una guida alla stima dei fattori di confidenza da utilizzare in relazione al livello di conoscenza raggiunto. Anche se riferita principalmente agli edifici, la Circolare applicativa fornisce comunque un riferimento anche per il caso in esame. La Tabella 2 ripresa dalla Circolare stessa suggerisce, per le costruzioni in calcestruzzo armato ed acciaio, i seguenti fattori di confidenza da adottare in relazione a tre livelli di conoscenza: conoscenza limitata (LC1), conoscenza adeguata (LC2), conoscenza accurata (LC3).

Tabella 2. Livelli di conoscenza e fattori di confidenza per edifici in calcestruzzo armato ed acciaio (da Appendice C8A alla Circolare applicativa delle NTC2008)

Livello di Conoscenza	Geometria (carpenterie)	Dettagli strutturali	Proprietà dei materiali	Metodi di analisi	FC
LC1		Progetto simulato in accordo alle norme dell'epoca e limitate verifiche in- situ	Valori usuali per la pratica costruttiva dell'epoca e limitate prove in-situ	Analisi lineare statica o dinamica	1.35
LC2	Da disegni di carpenteria originali con rilievo visivo a campione oppure rilievo ex-novo	Disegni costruttivi incompleti con limitate verifiche in situ oppure estese verifiche in-situ	Dalle specifiche originali di progetto o dai certificati di prova originali con limitate prove in-situ oppure estese prove in-situ	Tutti	1.20
LC3	completo	Disegni costruttivi completi con limitate verifiche in situ oppure esaustive verifiche in-situ	Dai certificati di prova originali o dalle specifiche originali di progetto con estese prove in situ oppure esaustive prove in-situ	Tutti	1.00

Per il caso della banchina TRATTAROLI SUD si ritiene che il livello di conoscenza con i dati reperiti e le prove effettuate sia tale da poter assumere i valori di resistenza dei materiali riportati nel capitolo "Caratteristiche dei Materiali".

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

6.2 Analisi delle carenze della struttura attuale in relazione alle nuove esigenze di utilizzo

L'analisi della struttura attuale in relazione alle nuove prestazioni richieste indica che:

- il palancolato di banchina non ha risorse resistenti sufficienti a fronteggiare il momento flettente risultante dalle nuove prestazioni richieste per l'opera;
- il sistema di ancoraggio sommitale è insufficiente a fronteggiare i tiri di progetto risultanti dai nuovi carichi:
- la lunghezza del palancolato principale di banchina, esteso fino a -24,00 m da l.m.m., non supera lo strato di limi argillosi scadenti e compressibili e pertanto la lunghezza del palancolato è insufficiente a garantire la stabilità generale del sistema.

Lo stato di conoscenze attuale e le più importanti prestazioni oggi richieste al banchinamento (ad es. fondale di calcolo a -15,00 m da l.m.m.) portano a preferire soluzioni che minimizzino le incertezze, la cui efficacia possa essere controllata con sicurezza.

Tenendo inoltre conto che il palancolato esistente ha buone caratteristiche di resistenza, la soluzione di adeguamento può opportunamente fare affidamento anche sul tale elemento strutturale.

Anche i tiranti di ancoraggio, grazie alla presenza della doppia protezione, possono essere utilmente considerati.

7 INTERVENTO DI ADEGUAMENTO PREVISTO

La soluzione strutturale per l'adeguamento dell'opera è stata studiata facendo parziale affidamento sulle strutture esistenti che sono state considerate adeguate.

Si è quindi optato per la costruzione di una piattaforma di scarico su pali, ancorata a tiranti di ancoraggio a bulbo iniettato. Tale soluzione permette di limitare l'impegno delle strutture esistenti (palancolato di banchina e tiranti di ancoraggio) trasferendo i carichi di superficie in profondità ed incrementando le capacità resistenti del sistema ai carichi orizzontali. Considerando inoltre che i terreni superficiali dell'area in esame sono piuttosto scadenti ed in accordo con gli ottimi risultati ottenuti nell'area di Largo Trattaroli realizzando la fondazione degli ancoraggi con la tecnica del jet-grouting, si prevede che i nuovi ancoraggi vengano realizzati con tale tecnologia.

In Figura 12 è mostrata la sezione tipologica della banchina adeguata. Le nuove opere comprendono:

- tre allineamenti di pali ø1000 estesi fino a -35 m da l.m.m. (da +1,25 a -35 m da l.m.m.), alla distanza di 1,9, 7,9 e 13,90 m dall'asse del palancolato metallico e ad interasse di 3,60 m tra le file (in direzione longitudinale);
- solettone di ripartizione in calcestruzzo armato, al di sopra dei pali (tra +1,25 e +2,25 m su l.m.m.), di larghezza pari a 14,20 m a tergo della trave sommitale esistente ed altezza pari a 1,00 m;
- ancoraggio integrativo lato terra, a partire dalla terza fila di pali lato terra, di lunghezza 35,5 m, inclinazione 18° sull'orizzontale, con 18,5 m di parte libera e 17 m di fondazione, armato con barra Dywidag ø47 ed interasse 3,60 m; il bulbo di fondazione realizzato con un trattamento coassiale in jet grouting;

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

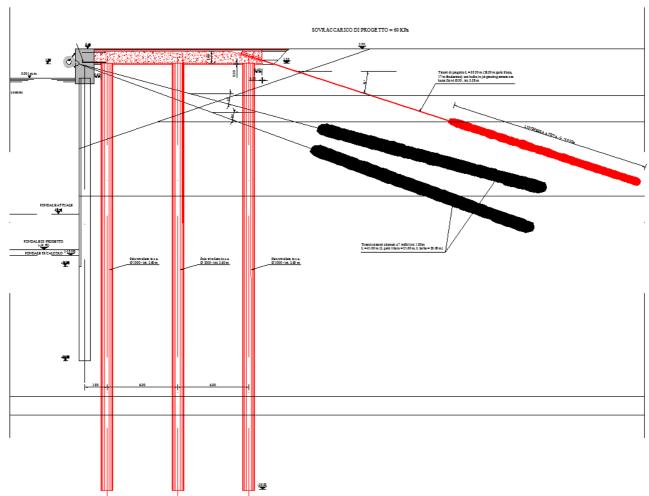


Figura 12 – Sezione adeguata della banchina Trattaroli Sud

L'intervento prevede il riutilizzo dei tiranti esistenti, grazie alle prove di controllo che hanno dato esito globalmente positivo. In ogni caso, considerata l'importanza che il vincolo sommitale riveste sulla staticità dell'opera si prevede l'esecuzione di una prova speciale di controllo sul 10% degli ancoraggi (circa 40 ancoraggi). Tale prova, la cui esecuzione può essere fatta con una certa facilità solo in fase di costruzione, consiste nella:

- misura del tiro presente sugli ancoraggi;
- verifica dell'integrità dei trefoli della zona sotto piastra;
- verifica della capacità dei cunei di bloccaggio di sostenere in sicurezza i trefoli.

Per compiere questo tipo di verifica si prevede indicativamente di attenersi alla seguente procedura:

- scavare il tirante a tergo della trave;
- scoprire i trefoli;
- installare sistemi di misura degli accorciamenti sui trefoli;
- procedere al taglio dei trefoli;
- aprire la nicchia di testata;
- sfilare i trefoli (uno ad uno) comprensivi del sistema di bloccaggio boccola-cuneo;
- inviare i trefoli comprensivi del sistema di bloccaggio) ad un laboratorio in grado di fare una prova di trazione per verificare lo sfilamento del trefolo dal sistema di bloccaggio.

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

In corrispondenza dello spigolo centrale del banchinamento sono presenti dei collettori di scarico a mare che richiedono di adeguare l'intervento alla situazione specifica. In Figura 13 è rappresentata la soluzione adottata, con lo spostamento di alcuni pali, l'irrobustimento del solettone al di sopra dei collettori e la sistemazione di alcuni ancoraggi d'angolo.

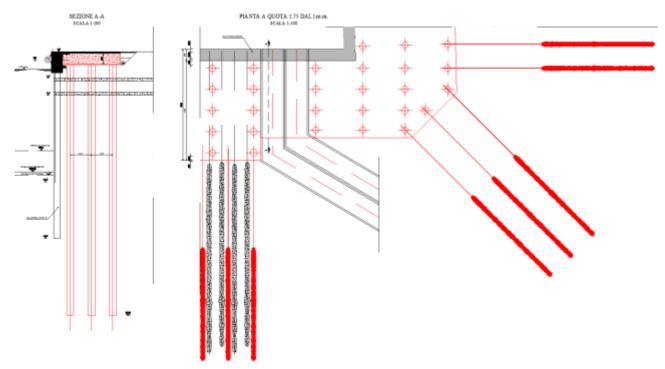


Figura 13 - Particolare della soluzione di adeguamento allo spigolo, in corrispondenza dei collettori di scarico

Le principali fasi realizzative dell'opera possono indicativamente essere sintetizzate come:

- rimozione dei piazzali a tergo della paratia, compresi alcuni livelli di terra rinforzata realizzati subito a tergo della trave di banchina;
- realizzazione dei nuovi pali trivellati;
- realizzazione del solettone sommitale;
- realizzazione dei nuovi tiranti di ancoraggio.

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

8 RELAZIONE GEOTECNICA E DI CALCOLO

8.1 INQUADRAMENTO GEOLOGICO/STRATIGRAFICO DELL'AREA

Dal punto di vista geologico, l'area della piana costiera romagnola appartiene al bacino di avanfossa di età plio-quaternaria racchiuso a Nord dalle Alpi e ad Ovest dalla Catena Appenninica, poi riempito in età olocenica durante un ciclo trasgressivo-regressivo.

I depositi di pianura e costieri risalgono al Pleistocene e al Medio-Olocene e sono attribuibili al "Subsintema di Ravenna", un'unità relativamente superficiale, costituita da depositi fluviali intravallivi e di piana alluvionale, con intercalazioni di sabbie litorali e, nel settore a mare, da sabbie di prodelta e transizione alla piattaforma, il cui spessore aumenta, procedendo progressivamente dal margine appenninico verso il mare, fino a 20-28 metri.

L'attuale assetto stratigrafico dei depositi costieri è strettamente legato alle fasi che hanno caratterizzato la dinamica evolutiva del delta del fiume Po:

- **18000 anni fa** l'ultima glaciazione del Quaternario provoca la regressione marina che porta all'avanzamento della piana alluvionale del Po fino all'altezza di Pescara.
- 10000 anni fa trasgressione marina avvenuta in tempi molto rapidi cosicché il delta del Po arretra fino quasi alla posizione attuale. Durante le fasi di trasgressione l'estesa pianura di stazionamento basso venne rapidamente allagata data anche la sua modesta inclinazione, per cui tutti i sedimenti precedentemente deposti e sommersi, vennero rimaneggiati e deposti nuovamente lungo le neoformate linee di costa man mano che esse arretravano verso nord ovest.
- **6000 anni fa** massimo arretramento della linea di costa fino a raggiungere l'entroterra di Ravenna. In corrispondenza dell'attuale fascia costiera la deposizione avviene in condizioni di mare basso (ambiente di prodelta).
- da 6000 anni fa ad oggi stabilizzazione del livello del mare, progressivo accrescimento e spostamento verso mare della linea di costa ad opera dell'apporto fluviale fino al raggiungimento dell'attuale configurazione delle aree emerse con la formazione delle zone lagunari della Pialassa del Piombone.

Tale breve ricostruzione della geologia recente fornisce un'efficace chiave di lettura della sequenza stratigrafica sintetizzata nella sezione proposta da Amorosi *et al.* (1999) e mostrata in Figura 14; nell'immagine si riconoscono le associazioni di facies ed il codice di riconoscimento delle singole litofacies che caratterizzano il Subsintema di Ravenna (CARG – Foglio 223 Ravenna).

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

Pag.: 23 di 104

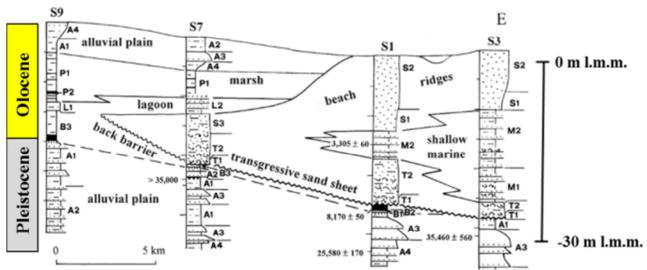


Figura 14 – Stratigrafia del Subsintema di Ravenna ricostruita lungo l'allineamento (W-E) Villanova – Borgo Anime – Porto (CARG – Foglio 223 Ravenna); l'area oggetto di studio si colloca fra i sondaggi S1 ed S3

Nella successione stratigrafica si individua l'arrivo della trasgressione Olocenica in corrispondenza di depositi sabbiosi di retro barriera (facies B) e degli strati sabbiosi trasgressivi sovrastanti (facies T, 8000-9000 anni fa) posti ad una profondità di 30 m lungo la linea di costa che tende a diminuire verso ovest. Sopra i depositi sabbiosi si trovano i sedimenti fini di prodelta (depositi di mare basso, facies M) che mostrano una geometria a cuneo con diminuzione di spessore verso ovest. L'evoluzione successiva è controllata dalla deposizione degli spessi depositi sabbiosi attribuibili a cordoni litorali e dunali (facies S). Nelle zone più interne, sopra i depositi sabbiosi, si osservano sedimenti recenti legati all'evoluzione dei sistemi fluviali più importanti. Fra le verticali dei sondaggi S1 ed S3 si rinvengono depositi di palude salmastra (facies P) appartenenti agli ambienti palustri della Pialassa.

Al di sotto del Subsintema di Ravenna sono riconoscibili i **depositi di piana alluvionale** (facies A) del tardo-pleistocene (circa 15.000 anni fa).

I profili penetrometrici risultanti lungo tutto il canale si correlano bene con la ricostruzione presentata, schematizzata nella sezione geologica dei sedimenti recenti del Ravennate di Figura 15 (da Carta Geologica d'Italia, foglio 223). Sulla stessa figura sono infatti sovrapposti i profili di resistenza alla punta di 3 CPT realizzate lungo il canale, di cui la CPTu3/2014 realizzata presso la Darsena San Vitale, la CPT8/1978 realizzata a Largo Trattaroli, la CPTu21/2014 realizzata a Porto Corsini: si osserva un'ottima correlazione tra le resistenze alla punta delle prove penetrometriche e la variabilità delle quattro unità litologiche individuate nell'area portuale.

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

DIREZIONE TECNICA Pag.: 24 di 104

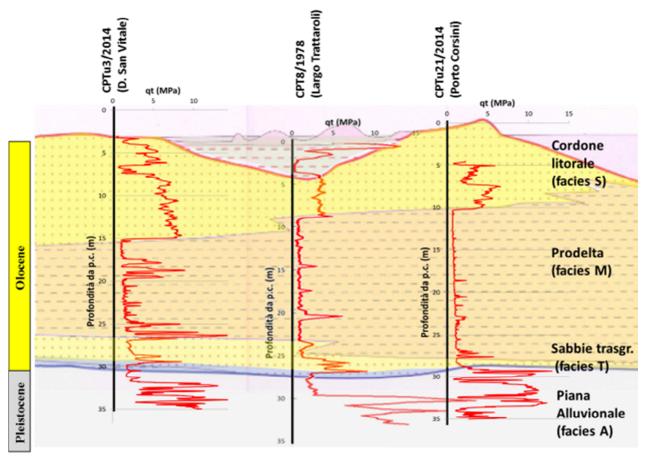


Figura 15 - Sovrapposizione fra la resistenza penetrometrica corretta misurata nelle verticali CPTu3/2014, CPT8/1978, CPTu21/2014 e la corrispondente sezione geologica dei sedimenti recenti del Ravennate (da Carta Gelogica d'Italia, foglio 223)

In sostanza risulta concettualmente utile suddividere l'area portuale in 3 settori, sulla base dell'andamento del tetto del cordone litorale di facies S (Figura 16):

- Settore EST: rappresentativo di Marina di Ravenna e Porto Corsini è caratterizzato dal Cordone litorale S affiorante ma di limitato spessore (s = 7-8 m) ed un deposito di Prodelta di grande potenza (s > 15 m) e con solo sporadici livelli permeabili;
- Settore CENTRALE: rappresentativo di Largo Trattaroli è caratterizzato dalla presenza dei depositi di palude salmastra nei primi metri da piano campagna e da uno spessore delle sabbie di cordone litorale ridotto a pochi metri (s < 5-6 m);
- Settore OVEST: rappresentativo della Darsena San Vitale è caratterizzato da una elevata potenza delle sabbie di Cordone litorale S, che raggiungono spessori dell'ordine dei 15 m e da un ridotto spessore del Deposito di Prodelta (s < 10 m) che si presenta anche intercalato da numerosi livelli e lenti sabbiose.

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

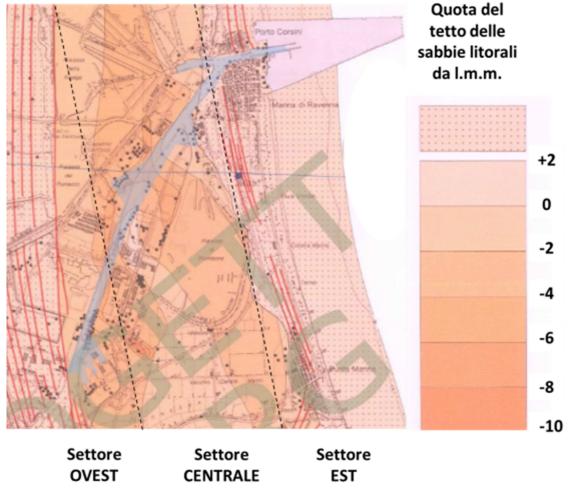


Figura 16 – Profondità del tetto delle sabbie litorali e suddivisione in settori omogenei

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

8.2 MODELLO STRATIGRAFICO DI RIFERIMENTO E CARATTERISTICHE GEOTECNICHE DEI TERRENI

Per la definizione della successione stratigrafica di dettaglio relativa alla banchina in questione è possibile far riferimento alla campagna di indagine eseguita nel 1995 (campagna di indagine redatta per la perizia di variante nella banchina Trattaroli, Figura 17).

Nella definizione del modello stratigrafico di riferimento è necessario considerare anche i riempimenti eseguiti a tergo della paratia con materiale proveniente sia dai dragaggi sia da cava..

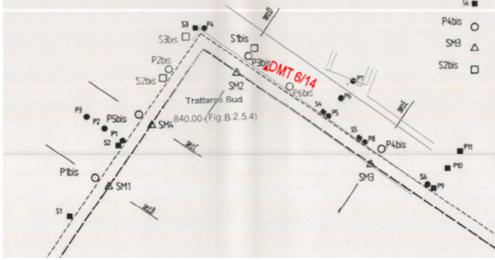


Figura 17 – planimetria piano di indagine del 1995 e DMT6 eseguita nel 2014.

In Figura 18 si riporta una sezione di riferimento in cui si mette in evidenza la presenza del terreno riportato a tergo della paratia.

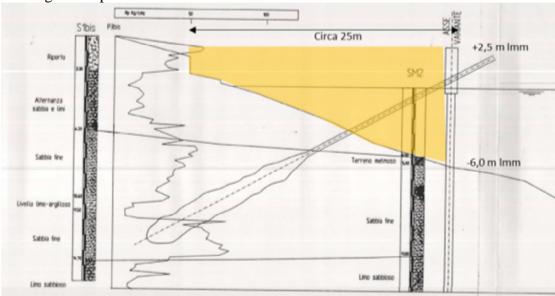


Figura 18 – Sezione D-D del progetto di variante. Il retino arancione indica la porzione di riempimento.

Per quanto riguarda la definizione delle altre unità principali di sottosuolo si fa riferimento al profilo delle unità geotecniche mostrato in Figura 19.

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

Pag.: 27 di 104

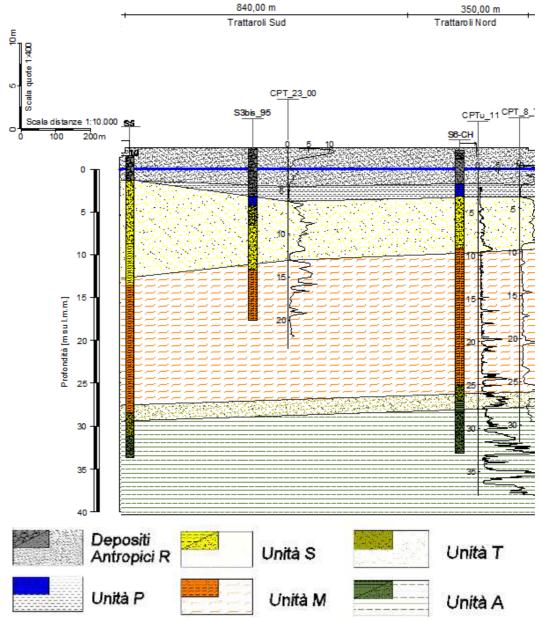


Figura 19 - Profilo delle unità geotecniche nel tratto di interesse

Per la scelta delle caratteristiche meccaniche dei terreni presenti si fa riferimento al quadro sinottico generale dei parametri geotecnici (Tabella 3) ottenuti dall'elaborazione del complesso delle indagini disponibili al porto di Ravenna, i cui dettagli possono essere trovati nella relazione geotecnica generale.

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

DIREZIONE TECNICA Pag.: 28 di 104

_			Litotipo	Litotipo	Litotipo	Litotipo A		
				SeŤ	P '	M	porzione fine	porzione granulare
				Depositi S (sabbie fini di cordone litorale) Depositi T (strati sabbiosi trasgressivi)	Deposito P di palude	Deposito M preval coesivo di prodelta	Deposi di piana all	to A
Peso di volume	7 [kN/m³]			17,5-19,5	17,0-18,0	17,5-19,5	18,5-2	0,5
Peso specifico dei	γ. [kŊ/m²]			27,40	n.d.	27,70	26,5	n.d.
Contenuto d'acqua	w [%]			22-30	40	25-40	22-33	n.d.
Limite liquido	LL [%]			-	n.d.	30-55	32-57	n.d.
Indice di plasticità	IP [%]			-	n.d.	10-30	12-33	n.d.
Coeff. di spinta a riposo	k ₀ [-]			-	n.d.	0,4-0,6	0,5-0,6	n.d.
Grado di sovraconsolidazione	OCR			-	1	1	1 - :	2
Densità relativa	DR [%]	CPTu		30-50	-	-	-	20-40
	٠ •	T.D	L.I. L.S.	0 30 0 38	nd	0 30	0 28	•
Parametri di resistenza in	[kP.a] [°]	CD-	L.I. L.S.	0 34 0 39	n.d.	0 28 0 32	0 28	•
tensioni efficaci	•' [°]	DMT		34-36	-	-	-	n.d.
	11	CPTu		35-38	n.d.	25-30	-	32-35
	cu [kPa]	υυ		•	n.d.	20-60	60-110	1
Parametri di resistenza in		DMT	L.I. L.S.	•	5-30	0,15ơ _v 0,22ơ _v	0,15ơ',	•
tensioni totali		CPTu	L.I. L.S.	-	10-20	0,12ơ', 0,26ơ',	0,30σ′.,	-
		DH		27-63	nd	47-100	110-1	95
		СН		45	25	35-60	75-90	
Modulo di taglio a piccole deformazioni	G ₀ [MPa]	Re.Mi.		40-100	n.d.	80-160	90-1	60
derormazioni		Colonn Risona	_	65-95	n.d.	70-140	120	-
		CPTu		40-80	nd	25-70	-	-
Moduli elastici operativi	E, [MPa]	CPTu		20-50	nd	n.d.	n.d.	50-70
	M [MPa]	σ' _v :100	-100kPa 200kPa 400kPa	•	n.d.	1,8-4,0 2,0-7,0 3,0-11,0	6,0 - 9,0 9,0 - 15,0	,
Moduli edometrici	M _{DTM} [MPa]	DMT		20-45	1-4	2-6	-	-
	M [MPa]	CPTu		-	1-3	2-6	5-10	-
Coeff. di compressibilità	Cc [-]			-	nd	0,17-0,36	0,20 - 0,30	-
Coeff, di rigonfiamento	Cs [-]			-	n.d.	0,02-0,05	0,02 - 0,06	-
Coeff. di consolidazione verticale	c _v [m ² /s]			-	n.d.	2-10 ⁻⁸ 7-10 ⁻⁷	n.d.	-

Per valutare le caratteristiche meccaniche del materiale di riempimento a tergo del palancolato si fa riferimento ai sondaggi eseguiti a mare (serie SM) nel '95; presumendo che le sabbie limose presenti fino a circa -11 m da l.m.m. siano state dragate e riversate a tergo del palancolato metallico. Il campione preso come riferimento per la caratterizzazione è il C1 prelevato nel sondaggio SM3 alla quota tra 8,5 m e 9,0 m, riferito con tutta probabilità ad un orizzonte limoso. In Figura 20 sono riportati i risultati dei limiti di Atterberg. Il limite liquido è circa il 40 e l'indice di plasticità Ip è pari al 18%. In Figura 21 sono riportati i risultati della prova edometrica; il modulo edometrico varia da da 800 a 4200 kPa.

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

Autorità di Sistema Portuale

del Mar Adriatico Centro Settentrionale

Pag.: 29 di 104

LIMITI DI ATTERBERG Committenter Cantiere: Datas 21.3.95 Sondaggio 3 Campione 1 Profond. (m) dà 8.5 9 Lim. Líquido Lim. Plastico Umidita Nº CONTENITORE NUMERO COLPI PESO UMIDO + TARA PESO SECCO + TARA ACQUA CONTENUTA 5 11.3 6.75 2.55 5.4 TARA PESO SECCO CONTENUTO D'ACQUA 39.08% 42.15% 38.89% LP = Nn = IP = Ic = 40.52% 22.22% 38.89% Limite Liquido Limite Plastico Umidità Naturale Indice Plastico Indice di Consistenza B.A CONTENUES

Figura 20 – limiti di Atterberg campione C1 del sondaggio SM3

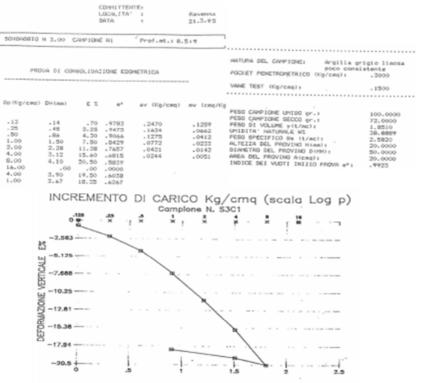


Figura 21 - Prova edometrica campione C1 del sondaggio SM3

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

Le caratteristiche meccaniche del terreno possono essere stimate sulla base delle proprietà indice grazie alla carta di Kenney (Figura 22). Si ottiene un angolo di attrito critico pari a circa 30°, valore che appare ragionevole per una miscela sabbioso-limosa.

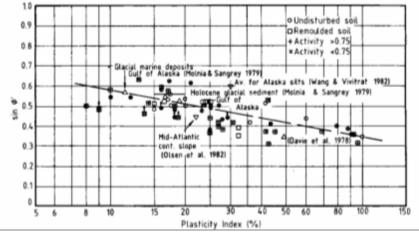


Figura 22 – Relazione tra angolo di attrito e indice di plasticità (Kenney, 1959)

Per la scelta dei valori più appropriati dei parametri geotecnici per gli terreni naturali presenti nel volume significativo dell'opera in esame si fa riferimento ai risultati della prova DMT6_2014 (Figura 23) e la prova CPT23_00 (Figura 24 e Figura 25).

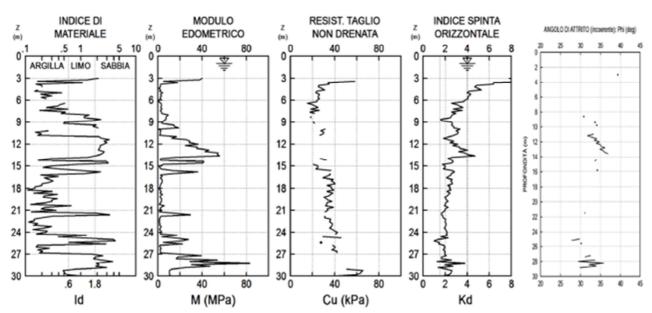


Figura 23 – Risultati della prova DMT6_2014

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

DIREZIONE TECNICA
Pag.: 31 di 104

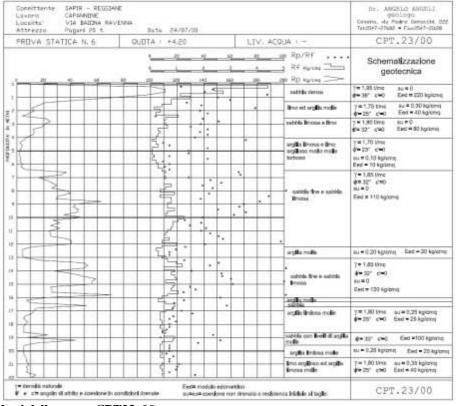


Figura 24 – Risultati della prova CPT23_00

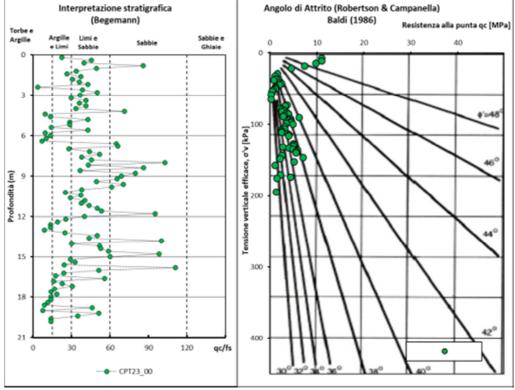


Figura 25 – interpretazione stratigrafica e caratterista di resistenza della prova CPT23_00

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

Pag.: 32 di 104

In definitiva i parametri geotecnici scelti per ogni unità geotecnica presente sono indicati in Tabella 4. In Figura 26 si riporta la sezione di riferimento per le analisi numeriche.

Per le alluvioni profonde, considerando l'alternanza tra livelli coesivi e granulari, si sceglie cautelativamente una caratterizzazione da deposito coesivo.

Tabella 4. Parametri geotecnici scelti per le unità geotecniche presenti

		•	E ₅₀ ′	ν	Ck'	φ _k ′
		(kN/m³)	(kN/m²)	(-)	(kPa)	(°)
(Ri)	Riempimento	17,50	3.000	0,25	-	30
(R)	Depositi antropici	18,00	15.000	0,25	-	32
(P)	Depositi di Palude	17,50	3.000	0,25	-	26
(S)	Sabbie Dunali	18,00	15.000	0,25	-	35
(M)	Limi Argillosi	18,00	4.000	0,25	-	28
(T)	Sabbie profonde	18,50	25.000	0,25	-	33
(A)	Alluvioni profonde	19,00	20.000	0,25	-	28

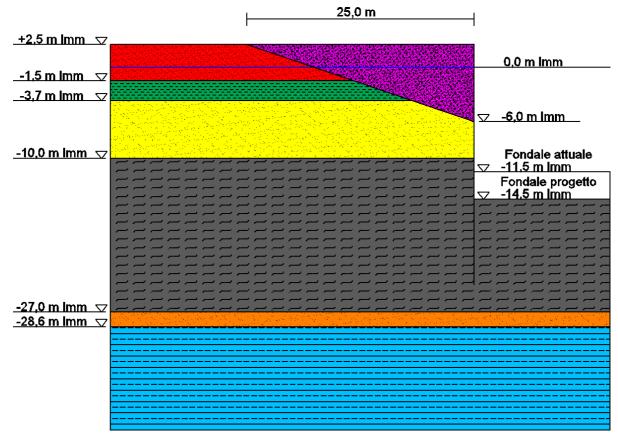


Figura 26 - Sezione di progetto

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

8.3 SICUREZZA DELL'OPERA

8.3.1 Quadro normativo

Il presente documento è redatto in conformità alle prescrizioni del Decreto Ministeriale Infrastrutture del 14 gennaio 2008 (**DM Infrastrutture 14 gennaio 2008**, nel seguito indicato come DM 2008) e della relativa circolare applicativa (**Circolare 2 febbraio 2009 n.617/C.S.LL.PP.**).

Le verifiche di sicurezza sono svolte secondo il metodo semi-probabilistico con l'applicazione dei coefficienti di sicurezza parziali. In base a tale metodo, ogni singola causa di incertezza, sulle sollecitazioni, sui materiali, sulle resistenze, sugli schemi di calcolo etc... viene pesata con un apposito coefficiente, detto appunto di sicurezza parziale, che è proporzionato all'influenza ed al grado di incertezza di norma attribuibili al parametro considerato.

I dimensionamenti delle opere tengono conto dei possibili Stati Limite Ultimi (**SLU**) e di esercizio (**SLE**) per le condizioni statiche e dello Stato Limite di Salvaguardia della Vita (**SLV**) e di danno (**SLD**) per le condizioni sismiche.

8.3.1.1 Verifiche agli stati limite ultimi (SLU e SLV)

Per ogni stato limite ultimo è stato verificato il rispetto della condizione:

$$E_d \leq R_d$$

dove E_d è il valore della azione (o dell'effetto dell'azione) di progetto e R_d è il valore di progetto della resistenza del sistema geotecnico.

Gli effetti delle azioni di progetto possono essere calcolati applicando il coefficiente di sicurezza parziale, o direttamente sulle azioni o sull'effetto finale:

$$\begin{split} E_d &= E(\gamma_F \, F_k, \, X_k / \gamma_M, \, a_d), \\ E_d &= \gamma_E E(F_k, \, X_k / \gamma_M, \, a_d). \end{split}$$

E_d effetti delle azioni di progetto, azioni di progetto

F_k azioni di progetto caratteristiche

X_k parametri caratteristici dei materiali (parametri caratteristici dei terreni)

a_d geometria di progetto

γ_F coefficienti parziali per le azioni

γ_E coefficienti parziali per gli effetti delle azioni

 $\gamma_{\rm M}$ coefficiente parziali per i materiali

Il Decreto del 2008 fornisce un solo gruppo di valori numerici, valido sia per γ_F che per γ_E .

Le azioni di progetto E_d , possono essere calcolate in modi distinti che si differenziano per come agisce il coefficiente di sicurezza parziale: sulle azioni, sull'effetto delle azioni o su entrambe.

L'entità delle azioni influenza anche i valori delle resistenze geotecniche di progetto, per le quali la fattorizzazione può avvenire, a sua volta, agendo sui parametri del terreno, sulle resistenze calcolate o su entrambe.

Le resistenze R_d , possono essere calcolate in modi distinti che si differenziano per come agisce il coefficiente di sicurezza parziale: sulle azioni, sull'effetto delle azioni o su entrambe. L'entità delle azioni influenza infatti anche i valori delle resistenze geotecniche:

$$R_d = R(\gamma_F F_k, X_k/\gamma_M, a_d)/\gamma_R$$

R_d resistenza di progetto

F_k azioni di progetto caratteristiche

X_k parametri caratteristici dei materiali (parametri caratteristici dei terreni)

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

a_d geometria di progetto

γ_F coefficienti parziali per le azioni

γ_M coefficienti parziali per i materiali (parametri geotecnici deli terreni)

γ_R coefficienti parziali per le resistenze

Il Decreto 2008 propone per alcune opere geotecniche approcci alternativi (Approccio 1 e Approccio 2), per altre un solo approccio; fornisce inoltre per ciascuna combinazione prevista i coefficienti parziali definiti per le azioni (A1 e A2), per i parametri geotecnici (M1 e M2) e per le resistenze (R1, R2 e R3).

Tabella 5. Coefficienti parziali sulle azioni caratteristiche (o sull'effetto delle azioni caratteristiche): γ_F (o γ_E).

Carichi	Effetto	Coefficiente parziale	A1	A2
Permanenti	Sfav.	% 1	1.3	1.0
	Fav.	% 1	1.0	1.0
Permanenti non strutturali	Sfav.	γ _{G2}	1.5	1.3
	Fav.	$\gamma_{\!$	0	0
Variabili	Sfav.	χρi	1.5	1.3
	Fav.	%і	0	0

Tabella 6. Coefficienti parziali sui parametri caratteristici del terreno: $\gamma_{\rm M}$

Parametro	Grandezza alla quale applicare il coeff. parziale	Coefficiente parziale	M1	M2
Tangente della resistenza a taglio	φ'	γ _φ .	1	1.25
Coesione efficace	c'	γ _c ,	1	1.25
Resistenza non drenata	C _u	γ _{cu}	1	1.4
Peso dell'unità di volume	γ	γ_{ν}	1	1

Tabella 7. Coefficienti parziali sulle resistenze caratteristiche degli ancoraggi

Resistenza	Simbolo	R2
temporanei	$\gamma_{\mathrm{Ra,t}}$	1.1
permanenti	γ _{Ra,p}	1.2

Tabella 8. Coefficienti parziali sulle resistenze caratteristiche per opere di materiali sciolti e fronti di scavo

	Resistenza	Simbolo	R2	
I		$\gamma_{\rm R}$	1.1	

Tabella 9. Coefficienti parziali sulle resistenze caratteristiche per pali di fondazione: γ_R

Resistenza	Simbolo γ _R	R1	R2	R3	R1	R2	R3	
		infissi	infissi			trivellati		
Base	$\gamma_{\rm b}$	1	1.45	1.15	1.0	1.7	1.35	
Laterale in compressione	$\gamma_{\rm s}$	1	1.45	1.15	1.0	1.45	1.15	
Laterale in trazione	$\gamma_{ m st}$	1	1.60	1.25	1.0	1.60	1.25	

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

Tabella 10. Fattori di correlazione per la determinazione della resistenza caratteristica degli ancoraggi in funzione del numero di verticali indagate

Numero di verticali indagate	1	2	3	4	≥5
ξ_3	1.8	1.75	1.70	1.65	1.60
ξ_4	1.8	1.70	1.65	1.60	1.55

8.3.1.2 Approcci e combinazioni utilizzate

Nel presente progetto si sono utilizzati:

- per la verifica delle opere di sostegno: Approccio 1. Per le strutture di sostegno flessibili l'Approccio 1 (con le due combinazioni: A1+M1+R1 e A2+M2+R1) è l'unico approccio progettuale previsto dalla norma;
- per la verifica dei pali di fondazione A1+M1+R3;
- per la verifica allo stato limite di sfilamento dei tiranti di ancoraggio: la combinazione A1+M1+R3;
- per la verifica della stabilità globale delle opere: A2+M2+R2.

Nell'ambito delle verifiche in condizioni sismiche si ricorda che le azioni vengono combinate senza amplificare i carichi permanenti ed utilizzando il coefficiente di combinazione per gli eventuali carichi variabili, come previsto al § 3.2.4 della DM 14.1.08.

8.3.1.3 Verifiche delle prestazioni (SLE e SLD)

E' stato verificato che il valore di progetto dell'effetto delle azioni E_d risultasse minore del valore di progetto limite dell'effetto delle azioni C_d ; in particolare sono stati valutati gli spostamenti corrispondenti agli stati limite d servizio in condizioni statiche (SLE) e sismiche (SLD) per confrontarli con le prescrizioni relative agli spostamenti compatibili.

Per ciascun stato limite di esercizio in condizioni statiche e per lo stato limite di danno in condizioni sismiche deve infatti essere rispettata la condizione:

$$E_d \leq C_d$$

dove E_d è il valore di progetto dell'effetto delle azioni e C_d è il prescritto valore limite dell'effetto delle azioni.

Per opere portuali il livello di danno può essere stimato secondo le raccomandazioni del PIANC (Permanent International Association for Navigation Congresses), riassunte in Tabella 11 in sostanza per un palancolato ancorato i limiti di operatività (Degree I) fanno riferimento all'accumulo di deformazioni residue permanenti pari all'1,5% dell'altezza dell'opera al di sopra del fondale o, alternativamente, 30 cm. I limiti di danno, salvaguardia della vita e collasso (rispettivamente Degree II, III, IV) fanno riferimento alla risposta tenso-deformativa dei diversi elementi strutturali (limite elastico, plasticizzazioni concentrate, rotture).

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

Pag.: 36 di 104

Tabella 11. Criteri di danno per opere portuali flessibili (PIANC, 2001)

Level of damage		18 J. 2014 A.C.	Degree I	Degree II	Degree III	Degree IV	
Residual displacements	Sheet pile wall	Normalized residual horizontal displacement (d/H)*	Less than 1.5%**	N/A	N/A	N/A	
		Residual tilting towards the sea	Less than 3°	N/A	N/A	N/A	
	Apron	Differential settlement on apron	Less than 0.03~0.1 m	N/A	N/A	N/A	
		Differential settlement between apron and non-apron areas	Less than 0.3~0.7 m	N/A	N/A	N/A	
		Residual tilting towards the sea	Less than 2~3°	N/A	N/A	N/A	
Peak response astresses/ strains	Sheet pile wall	Above mudline	Elastic	Plastic (less than the ductility factor/strain limit above mudline)	Plastic (less than the ductility factor/ strain limit above mudline)	Plastic (beyond the ductility factor/strain limit above mudline)	
		Below mudline	Elastic	Elastic	Plastic (less than the ductility factor/ tstrain limit below mudline)	Plastic (beyond the ductility factor/strain limit below mudline)	
	Tie-rod		Elastic	Elastic	Plastic (less than the ductility factor/ strain limit for tie-rod)	Plastic (beyond the ductility factor/strain limit for tie-rod)	
	Anchor		Elastic	Elastic	Plastic (less than the ductility factor/ strain limit for anchor)	Plastic (beyond the ductility factor/strain limit for anchor)	

^{*}d: residual horizontal displacement at the top of the wall; H: height of sheet pile wall from mudline.

8.3.2 Azioni sulle opere

Per le opere in progetto è necessario considerare le azioni dovute al peso proprio del terreno, ai sovraccarichi, alla gru di banchina, all'acqua, al tiro alla bitta e al sisma.

8.3.2.1 Sovraccarico di banchina

Trattandosi di una banchina portuale operativa, come richiesto dalla committenza, si assume un valore caratteristico \mathbf{q} delle azioni variabili unitarie (pressione) di:

$$q = 60 \text{ kPa}$$

8.3.2.2 Tiro alla bitta

Il tiro alla bitta risulta pari a 1.000 kN, da intendersi come valore caratteristico. Le bitte sono poste ad una distanza di 25m. Pertanto, nel modello 2D il carico della bitta può essere inserito come un carico di linea di intensità pari a:

b = 40 kN/m

^{**}Alternative criterion is proposed with respect to differential horizontal displacement less than 30 cm.

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

8.3.2.3 Gru di banchina

Il banchinamento in questione deve essere idoneo all'operatività di gru semoventi. La committenza ha indicato quale gru di riferimento già operante nel porto di Ravenna la LHM 400 della Liebherr attualmente operante presso la banchina Marcegaglia.

Si premette che le gru semoventi sono generalmente adattabili a diverse condizioni d'uso con la modifica delle dimensioni degli stabilizzatori o con l'applicazione di contrappesi, per cui la semplice indicazione del modello non è sufficiente a definire compiutamente i carichi. Per questo nel seguito, sulla base dei dati disponibili, si farà riferimento a specifiche condizioni di carico che dovranno essere opportunamente considerate dai terminalisti per la scelta dei mezzi meccanici e dei dispositivi ausiliari utilizzabili sul banchinamento.

Dalla scheda fornita dal committente (vedi Relazione Generale) si ricavano e si assumono i seguenti valori di progetto per la gru LHM 400:

- azione massima sullo stabilizzatore $F_k = 2400 \text{ kN}$
- dimensioni dello stabilizzatore: 1,80 m × 5,50 m

Qualora condizioni operative richiedano il superamento di tale valore occorrerà prevedere opportuni accorgimenti tecnologici per permetterne l'utilizzo sulle banchine in questione (ad es. stabilizzatori di dimensioni maggiori).

8.3.2.4 Azioni sismiche

La Norma Nazionale prescrive che sotto l'effetto delle azioni sismiche di progetto deve essere garantito il rispetto degli stati limite ultimi e degli stati limite di esercizio individuati riferendosi alle prestazioni della costruzione nel suo complesso. In particolare il rispetto dei vari stati limite si considera conseguito (§7.1 NTC2008):

- nei confronti di tutti gli stati limite di esercizio, qualora siano rispettate le verifiche relative allo Stato Limite di Danno (**SLD**);
- nei confronti di tutti gli stati limite ultimi, qualora siano soddisfatte le verifiche relative allo Stato Limite di Salvaguardia della Vita (**SLV**).

Al riguardo, la Norma non considera necessario eseguire le verifiche di sicurezza dei manufatti nei confronti dello Stato Limite di Collasso (SLC), riservate alle sole costruzioni provviste di isolamento sismico, come espressamente richiamato al §C7.1 della Circolare applicativa della Norma ed esplicitato nella Tabella C.7.1.I della medesima Circolare. In particolare, la Tabella C.7.1.I individua lo stato limite SLV come unico Stato Limite Ultimo da considerare per l'analisi in condizioni sismiche di muri di sostegno, paratie, ancoraggi, rilevati e scavi, fondazioni.

Pertanto, con riferimento agli stati limite pertinenti, la norma fornisce le seguenti definizioni:

Stato Limite di Danno (SLD): a seguito del terremoto la costruzione nel suo complesso, includendo gli elementi strutturali, quelli non strutturali, le apparecchiature rilevanti alla sua funzione, subisce danni tali da non mettere a rischio gli utenti e da non compromettere significativamente la capacità di resistenza e di rigidezza nei confronti delle azioni verticali ed orizzontali, mantenendosi immediatamente utilizzabile pur nell'interruzione d'uso di parte delle apparecchiature.

Stato Limite di salvaguardia della Vita (SLV): a seguito del terremoto la costruzione subisce rotture e crolli dei componenti non strutturali ed impiantistici e significativi danni dei componenti strutturali cui si associa una perdita significativa di rigidezza nei confronti delle azioni orizzontali;

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

la costruzione conserva invece una parte della resistenza e rigidezza per azioni verticali e un margine di sicurezza nei confronti del collasso per azioni sismiche orizzontali.

Le azioni sismiche di progetto, in base alle quali valutare il rispetto dei diversi stati limite considerati, si definiscono a partire dalla pericolosità sismica di base del sito di costruzione.

La pericolosità sismica è definita in termini di accelerazione orizzontale massima a_g in condizioni di campo libero su sito di riferimento rigido con superficie topografica orizzontale (categoria di suolo A), con riferimento a prefissate probabilità di eccedenza P_{VR} nel periodo di riferimento V_R . In alternativa è ammesso l'uso di accelerogrammi, purché correttamente commisurati alla pericolosità sismica del sito.

Per la banchina in progetto, come concordato con la Committente si considerano le seguenti prescrizioni per le strutture:

vita nominale: 50 anni;

- classe d'uso: III (coefficiente d'uso 1,5);

Il periodo di riferimento da considerare (V_R) è quindi pari a 75 anni.

In base allo Stato Limite considerato l'azione sismica sarà dunque valutata (Tab.3.2.I, delle NTC2008):

- per una probabilità di superamento del 63% nel periodo di riferimento definito (75 anni) allo Stato Limite di Danno;
- per una probabilità di superamento del 10% nel periodo di riferimento definito (75 anni) allo Stato Limite di Salvaguardia della Vita.

In sostanza le ipotesi fatte sul periodo di riferimento portano, in termini di strategia di progettazione, a considerare un evento sismico con un tempo di ritorno pari a T_R =75 anni per lo SLD e T_R =712 anni per lo SLV.

In Figura 27 sono indicate le coordinate geografiche della banchina in esame.

Figura 27 – Coordinate geografiche della banchina in esame (da Google maps)

Tenendo conto del periodo di riferimento e della localizzazione geografica della banchina si ottengono i seguenti valori dell'accelerazione orizzontale di riferimento su suolo rigido:

SLD
$$a_g = 0.063g$$
 SLV $a_g = 0.171g$

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

Applicando quindi i coefficienti di amplificazione stratigrafica (S_s) per la categoria di sottosuolo D, e di amplificazione topografica (S_T) si ottiene l'accelerazione massima attesa al sito (a_{max}) di Ravenna:

	a_{g}	F_0	S_{s}	S_{T}	a _{max} /g
SLD	0,063	2,502	1,800	1,00	0,113
SLV	0,171	2,552	1,745	1,00	0,298

Quando si utilizzano metodi di analisi di tipo pseudostatico l'azione sismica viene definita mediante un'accelerazione equivalente costante nello spazio e nel tempo. I coefficienti sismici orizzontali e verticali devono essere pertanto valutati in funzione delle proprietà del moto sismico atteso nel volume significativo per l'opera e della capacità del sistema di subire spostamenti senza significative riduzioni di resistenza (Figura 28).

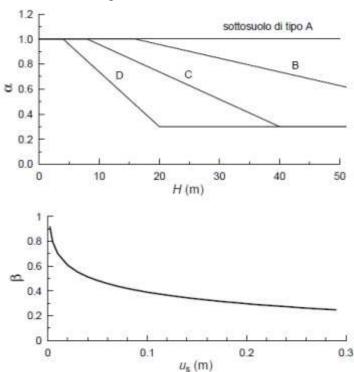


Figura 28 – Utilizzo di metodi pseudostatici per il calcolo delle paratie: valutazione del coefficiente di deformabilità α (in alto) e di spostamento β (in basso)

Per la banchina in progetto possono essere utilizzati i seguenti valori:

- **Banchina - SLV:** $k_h = \alpha \cdot \beta \cdot (a_{max}/g) = 0.2 \cdot 0.298 = 0.060$

 $k_{y} = 0$

- **Banchina - SLD:** $k_h = \alpha \cdot \beta \cdot (a_{max}/g) = 0.3 \cdot 1.0 \cdot 0.113 = 0.034$

 $k_v = 0$

Tali valori sono stati scelti in base alle seguenti considerazioni:

In SLV un palancolato di altezza H = 26 m su suolo di tipo D permette di assumere $\alpha = 0.3$; il valore di β coerente con uno spostamento plastico permanente di 5 cm è pari a 0.55. Essendo il

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

prodotto dei due coefficienti pari a 0.165 < 0.2, si deve assumere 0.2. In ogni caso il valore di β assunto per le verifiche SLV è relativo a valori di spostamento largamente inferiori allo 0.5% H.

In SLD si valuta il comportamento dell'opera assumendo β =1, cioè senza ammettere spostamenti permanenti.

Per le analisi delle condizioni di stabilità generale dell'opera con metodi pseudostatici è possibile valutare il coefficiente sismico orizzontale riducendo l'accelerazione massima attesa al sito per un coefficiente di riduzione β_s (Tabella 12).

Tabella 12. Coefficienti di riduzione dell'accelerazione massima attesa al sito

	Categoria di sottosuolo		
	A	B, C, D, E	
	β_s	β_s	
$0.2 \le a_{\rm g}(g) \le 0.4$	0,30	0,28	
$0.1 \le a_g(g) \le 0.2$	0,27	0,24	
$a_g(g) \le 0.1$	0.20	0.20	

Quindi, le analisi di stabilità generale con metodi pseudostatici possono essere eseguiti con i seguenti valori dei coefficienti sismici:

- SLV:
$$k_h = \beta_s \cdot (a_{max}/g) = 0.24 \cdot 0.298 = 0.072$$
 $k_v = \pm 0.5 \ k_h = \pm 0.036$

Il valore di $\beta_s = 0.24$ tiene conto della categoria di sottosuolo e del campo di accelerazione attesa.

8.3.2.5 Azione idrodinamica (Westergaard)

La presenza dell'acqua libera gioca un importante ruolo nel determinare il carico in condizioni simiche sulle opere portuali. Quando il fronte della superficie di sostegno è impermeabile, la pressione totale dell'acqua che agisce sull'opera di sostegno può essere divisa in due componenti: la pressione idrostatica che cresce linearmente con la profondità e agisce sul muro prima, durante e dopo lo scuotimento sismico, e la pressione idrodinamica, che risulta dall'interazione tra la struttura e l'acqua.

Tale pressione idrodinamica è usualmente stimata con la soluzione di Westergaard (1931) come indicato in Figura 29.

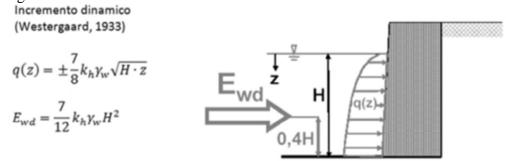


Figura 29 - Valutazione della pressione idrodinamica indotta da azione sismica (Westergaard)

La pressione idrodinamica agisce sia in una direzione che nell'altra, cioè si manifesta come incremento o decremento della pressione idrostatica agente sull'opera.

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

L'azione idrodinamica di Westergaard, applicata tra il livello medio mare e la profondità di 15,0 m da l.m.m., ha la distribuzione indicata nel grafico di Figura 30, tenendo conto delle accelerazioni sismiche definite in precedenza.

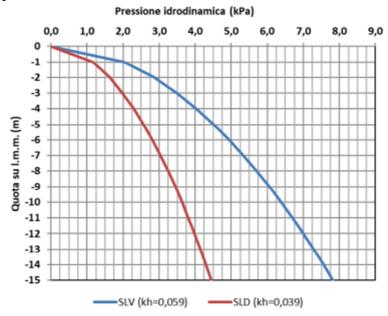


Figura 30 - Azioni idrodinamiche di Westergaard utilizzate in SLV e SLD

8.3.3 Azioni eccezionali: urto delle imbarcazioni

La committenza ha richiesto di tener conto dell'eventualità dell'urto di una imbarcazione di grandi dimensioni sulla banchina (100000 t di massa a pieno carico). L'Urto delle imbarcazioni, ai sensi del §3.6 delle NTC2008 va inquadrato tra le Azioni Eccezionali da combinare con le altre azioni secondo la previsione del §2.5.3 delle stesse norme tecniche. In Tabella 13 sono indicate le forze statiche equivalenti da considerare per l'urto di imbarcazioni.

Tabella 13. Forze statiche equivalenti agli urti di imbarcazioni (da NTC2008)

Classe imbarcazione	Lunghezza [m]	Massa a pieno carico [t]	Forza F _d ,x [kN]
Piccola	50	3000	30000
Media	100	10000	80000
Grande	200	40000	240000
Molto grande	300	100000	460000

Tenendo conto che nei porti le forze di collisione possono essere ridotte del 50% e che la larghezza del canale Candiano permette l'urto solo ortogonalmente alla direzione del moto dell'imbarcazione, la forza statica equivalente da considerare agente sulla banchina Trattaroli Nord ($F_{\rm Ecc.}$) è pari a:

 $F_{Ecc.} = 460.000 \times 0.5 \times 0.5 = 115.000 \text{kN}$

L'area di impatto da considerare, detta L la lunghezza dell'imbarcazione, è di 0,05L in verticale e 0,10L in orizzontale. Pertanto, con le dimensioni di una nave molto grande, l'area d'impatto risulta

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

di 15 m in verticale e 30 m in orizzontale. La pressione uniforme su tale area di impatto è pari a 255 kPa.

8.3.4 Combinazione delle azioni

Le combinazioni delle azioni da utilizzare nelle verifiche agli stati limite sono definite al paragrafo 2.5.3 delle NTC2008. Le azioni variabili sono state combinate come indicato nella Tabella 14.

Tabella 14. Coefficienti di combinazione delle azioni variabili

	Sovrac	Sovraccarico		
SLU1.1		1	Ψ01	1
SLU1.2		1	ψ_{01}	1
SLV	Ψ21	0,8	Ψ22	0
SLE (rara, sovracc.+bitta)		1	Ψ01	1
SLD	Ψ21	0,8	Ψ22	0
ECC	Ψ21	0	Ψ22	0

Si sottolinea che il tiro alla bitta viene assimilato al carico del vento. Pertanto in presenza dell'azione sismica il tiro alla bitta viene considerato nullo.

Il sovraccarico variabile di banchina, considerando la destinazione d'uso dell'opera, è stato cautelativamente equiparato alla categoria E (Biblioteche, archivi, magazzini e ambienti ad uso industriale). In ogni caso, in via cautelativa, in combinazione rara si assume un coefficiente di combinazione unitario.

Le analisi relative all'urto di una imbarcazione di grandi dimensioni, presentate separatamente in un apposito paragrafo, sono state cautelativamente eseguite ipotizzando un sovraccarico di banchina nullo.

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

8.4 ANALISI NUMERICHE DELLE OPERE IN PROGETTO

Nel caso in esame, tutte le analisi in condizioni statiche (Stato Limite Ultimo e Stato Limite di Servizio) e sismiche (effettuate utilizzando il metodo pseudostatico) sono state condotte con l'impiego di software dedicati alla risoluzione di problemi di tipo geotecnico quali **Plaxis 2D.**

Il codice di calcolo **Plaxis 2D** utilizza il metodo degli elementi finiti (F.E.M.); si basa su una discretizzazione del mezzo (definizione della mesh) con l'ipotesi che gli elementi si scambiano le azioni solo attraverso i punti nodali; in tali punti nel rispetto dell'equilibrio e della congruenza, attraverso la definizione dei legami costitutivi, si ottengono delle equazioni le cui soluzioni determinano gli spostamenti nodali. Una volta noti gli spostamenti ai nodi attraverso la definizione delle cosiddette funzioni di forma si ottengono le deformazioni e quindi gli spostamenti di tutti i punti costituenti l'elemento, dai quali, passando di nuovo per i legami costitutivi, si può risalire allo stato tensionale.

Le principali proprietà del programma sono:

<u>Automatic mesh generation</u>: per la definizione della mesh Plaxis utilizza elementi triangolari che vengono generati in maniera completamente automatica, con la possibilità di raffittire gli stessi in corrispondenza di punti di interesse;

Interfaces: sono utilizzate per simulare l'interazione tra le strutture e il terreno; è quindi possibile definire per uno strato sottile a contatto con la struttura dei valori di attrito e adesione che non sono necessariamente gli stessi del terreno circostante;

<u>Advanced soil model</u>, è possibile utilizzare per il terreno modelli più avanzati rispetto a quello di Mohr-Coulomb, come l'Hardening Soil Model che è stato utilizzato per i depositi più significativi;

<u>Staged construction</u>: è possibile simulare processi di costruzione e di scavo per fasi successive permettendo quindi una valutazione più realistica dello stato tensionale iniziale e della sua variazione al progredire dell'intervento.

<u>Phi-c reduction</u>: per la valutazione delle condizioni di stabilità globale sono state condotte analisi tipo phi-c reduction. Con tale analisi vengono ridotte progressivamente le caratteristiche di resistenza del terreno (tan φ' e c') fino al completo sviluppo del meccanismo di rottura.

Il fattore di riduzione così definito:

$$SF = \frac{resistenza\ disponibile}{resistenza\ a\ rottura} = \frac{\tan\varphi'_{input}}{\tan\varphi'_{reduced}} = \frac{c'_{input}}{c'_{reduced}}$$

può essere inteso come il margine di sicurezza rispetto ad un fenomeno di instabilità globale.

Il pedice **input** si riferisce alla caratteristica di resistenza adottata per l'analisi in esame, mentre il pedice **reduced** si riferisce alla caratteristica di resistenza per la quale si sviluppa il primo cinematismo di rottura.

Se l'analisi <u>Phi-c reduction</u> viene lanciata a valle di una fase SLE (con parametri caratteristici) il valore di SF può essere assimilato ad un coefficiente di sicurezza globale; se viene lanciata a valle di uno SLU (con parametri ridotti), SF può essere assimilato al margine di sicurezza sulle resistenze: γ_R .

Secondo quanto imposto dalle NT2008 deve essere verificata la seguente disuguaglianza:

$$E_d \leq R_d$$

e quindi anche

$$E_d \leq \frac{R(\gamma_{M2})}{\gamma_{R2}}$$

dove E_d è il valore della azione (o dell'effetto dell'azione) di progetto e R_d è il valore di progetto della resistenza del sistema geotecnico, che può essere valutato come rapporto tra la resistenza calcolata con i parametri ridotti del terreno, $R(\gamma_{M2})$ e il fattore parziale $\gamma_{R2} = 1,1$.

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

Il software utilizzato è stato validato.

Per i terreni presenti si sono utilizzati due distinti modelli costitutivi:

- per le sabbie (S) e per i limi argillosi (M), i due strati più significativi nel determinare l'interazione terreno-struttura a Ravenna, si è utilizzato un modello elasto-plastico ad incrudimento isotropico e deviatorico (Hardening Soil Model);
- per tutti gli altri terreni si è utilizzato un modello elasto-plastico perfetto con criterio di rottura alla Mohr-Coulomb.

8.4.1 Il modello costitutivo Hardening Soil Model: caratteristiche principali

Al fine di modellare con migliore precisione l'interazione struttura-terreno, per i terreni più significativi della stratigrafia di Ravenna, la sabbia (S) e i limi argillosi (M), è stato utilizzato il legame costitutivo 'Hardening Soil Model' (HSM). In tale modello l'evoluzione della superficie di snervamento è legata sia a deformazioni volumetriche che di taglio. L'Hardening Soil si basa sull'ipotesi alla base del noto modello iperbolico di Duncan & Chang (1970), secondo la quale in condizioni di compressione triassiale drenata, la relazione fra sforzo deviatorico q e deformazione assiale ϵ_a può essere ben approssimata da un'iperbole. Il modello di Duncan però, non prevede l'esistenza di una soglia plastica ed il comportamento risulta elastico, reversibile, mentre l'Hardening Soil Model considera una soglia plastica.

Le caratteristiche principali del modello sono:

- soglia plastica basata sul criterio di rottura di Mohr Coulomb;
- dilatanza del terreno;
- incrudimento deviatorico;
- incrudimento volumetrico;
- tre moduli di rigidezza indipendenti (deviatorico, edometrico e scarico-ricarico);
- dipendenza della rigidezza dallo stato tensionale;
- possibilità di considerare la storia di carico (pre-consolidazione).

L'idea base nella formulazione dell'Hardening Soil Model è che la curva sforzo – deformazione di un campione di terreno sottoposto ad una prova triassiale consolidata drenata sia descrivibile dalla seguente equazione:

$$-\varepsilon_1 = \varepsilon_{50} \frac{q}{q_a - q} = \frac{q_a}{2E_{50}} \frac{q}{q_a - q}$$

dove q è l'invariante deviatorico ($q = \sigma_1 - \sigma_3$), q_a è il valore limite asintotico della tensione deviatorica, E_{50} è il modulo elastico al 50% della tensione massima deviatorica e ϵ_{50} è la corrispondente deformazione principale (Figura 31).

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

Autorità di Sistema Portuale

del Mar Adriatico Centro Settentrionale

Pag.: 45 di 104

deviatoric stress

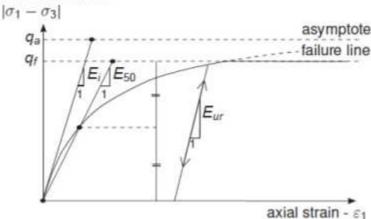


Figura 31 - Parametri principali del modello HSM relativi ad una prova triassiale consolidata drenata

La tensione deviatorica a rottura (q_f) e la tensione limite asintotica (q_a) sono legate dal cosiddetto "failure Ratio" Rf:

$$q_a = \frac{q_f}{R_f}$$

e, considerando il criterio di rottura di Mohr-Coulomb, si ha che:

$$q_f = (c \cot \varphi - \sigma'_3) \frac{2 \operatorname{sen} \varphi}{1 - \operatorname{sen} \varphi}$$

In Plaxis $R_f = 0.9$ è assunto come parametro di default.

Per considerare il comportamento anelastico del terreno, con sviluppo di deformazioni irreversibili, l'Hardening Soil Model adotta una formulazione della rigidezza del terreno con tre valori di rigidezza in funzione del percorso di carico considerato:

$$\begin{split} E_{50} &= E_{50}^{ref} \Biggl(\frac{c \cdot \cos \varphi - \sigma_{3}^{\prime} \cdot \sin \varphi}{c \cdot \cos \varphi + p^{ref} \cdot \sin \varphi} \Biggr)^{m} \\ E_{oed} &= E_{oed}^{ref} \Biggl(\frac{\sigma_{1}^{\prime} + c \cdot \cot \varphi}{p_{ref} + c \cdot \cot \varphi} \Biggr)^{m} \\ E_{ur} &= E_{ur}^{ref} \Biggl(\frac{c \cdot \cos \varphi - \sigma_{3}^{\prime} \cdot \sin \varphi}{c \cdot \cos \varphi + p^{ref} \cdot \sin \varphi} \Biggr)^{m} \end{split}$$

dove E_{50}^{ref} , E_{oed}^{ref} e E_{ur}^{ref} sono i valori che assumono le rigidezze in corrispondenza di una pressione di riferimento $p_{ref} = 100 kPa$, ed m è un parametro di forma. Il modulo elastico di carico (E_{50}) e di scarico-ricarico (E_{ur}) sono legati alle tensioni principale minima (σ'_3), mentre il modulo edometrico (E_{oed}) è legato alla tensione principale massima (σ'_1). Il coefficiente m regola l'evoluzione del modulo e, se non calibrato su prove reali, può essere assunto pari a 0,5 per le sabbie e 0,8 per le argille.

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

In Figura 32 sono mostrati, nel piano degli invarianti di tensione p' e q, le diverse regioni descritte dai parametri considerati.

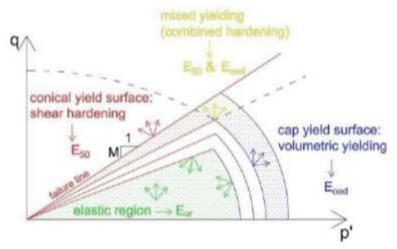


Figura 32 – Delimitazione delle regioni elastica e plastica e dei parametri associati alle superfici di snervamento che ne regolano l'evoluzione nel piano degli invarianti di tensione p' e q.

8.4.2 Modello geotecnico della banchina

La soluzione tecnica scelta per la realizzazione della banchina è stata descritta in precedenza. In questo paragrafo si descrivono le caratteristiche dello schema geotecnico utilizzato per impostare il modello numerico per le analisi dell'opera.

Il sistema opera-terreno viene modellato agli elementi finiti in condizioni di deformazione piana.

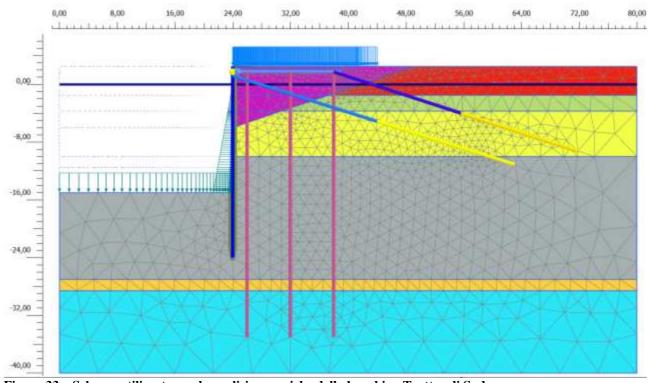
Il palancolato esistente della banchina viene modellato con un elemento piastra (*plate*), di rigidezza equivalente a quella dei profilati in acciaio presenti.

I tiranti di ancoraggio sono modellati tramite elementi elastici (*node to node anchor*) per la parte libera e con elementi geogriglia (*geogrid*) per la parte di fondazione.

La trave sommitale non viene esplicitamente modellata.

I pali a tergo della paratia sono modellati con elementi innovativi, definiti *embedded beam row*, che vengono sovrapposti alla mesh di analisi senza determinarne l'interruzione ed interagendo con la stessa solo attraverso delle molle ai nodi. La rigidezza di tali molle di connessione è funzione dell'interasse tra i pali, così da lasciare la possibilità alla mesh di "attraversare" la palificata.

Il solettone in calcestruzzo armato al di sopra dei pali viene modellato con un elemento piastra (*plate*). La connessione tra il palancolato di banchina ed il solettone viene, in via cautelativa, modellato con una cerniera.


In Figura 33 è presentato lo schema utilizzato per le analisi numeriche.

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

Pag.: 47 di 104

 $Figura\ 33-Schema\ utilizzato\ per\ le\ analisi\ numeriche\ della\ banchina\ Trattaroli\ Sud$

Le caratteristiche salienti degli elementi strutturali presenti nel modello di calcolo sono:

- profondità del fondale di calcolo -15,00 m da l.m.m.;

profondità del fondale attuale
 -11,50 m da l.m.m.;

- quota molo +2,50 m da l.m.m;

- sovraccarico su molo 60 kPa;

tiro alla bitta40 kN/m;

palancolato esistente tipo HZ975C-14/ZH9.5
 spinto fino a quota -24,00 m da l.m.m.

- tiranti di ancoraggio a bulbo iniettato esistenti in sommità alla paratia (7 trefoli, interasse 1,80 m, 21 m tratto libero, 20 m tratto vincolato, inclinazione alternata 15° 20°);
- solettone sommitale in c.a, spessore di 1,0 m e larghezza pari a 14,20m
- pali di appoggio del solettone in c.a. ø1000, estesi fino a -35,0 m da l.m.m., interasse 3,60 m.
- tiranti di ancoraggio a bulbo iniettato nuovi sulla via di corsa lato terra L=35,5 m (18,5 m parte libera, 17 m fondazione, i = 18°), realizzato con iniezione jet-grouting coassiale alla fondazione ed armato con barra Dywidag ø47, interasse 3,60m;

Per i terreni presenti nel volume significativo dell'opera sono stati adottati i parametri geotecnici indicati nella seguente tabella:

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

DIREZIONE TECNICA Pag.: 48 di 104

		Dep. antropici	Depositi di Palude	Riemp.	Sabbie	Limi argillosi	Sabbie profonde	Alluvioni profonde
Param.	U.M.	(R)	(P)	(Ri)	(S)	(M)	(T)	(A)
Model.	[-]	MC	MC	MC	HSM	HSM	MC	MC
Quota	[m su l.m.m.]	+2,5 / -1,5	-1,5 / -3,7	+2,5/ - 6,0	-3,7 / -10	-10,0/ -27,0	-27,0 / -28,6	-28,6 / -40,0
γ	[kN/m³]	18,00	17,50	18,00	18,00	18,00	18,50	19,00
E ₅₀ ^{ref}	[kN/m²]	15.000	3.000	3.000	15.000	4.000	25.000	20.000
E _{ed} ^{ref}	[kN/m²]	-		-	15.000	4.000	-	-
E _{ur} ref	[kN/m²]	-	-	-	45.000	12.000	-	-
m	-	-	-	-	0,5	0,8	-	-
ν	-	0,25	0,25	0,25	0,25	0,25	0,25	0,25
c'	[-]	nulla	nulla	nulla	nulla	nulla	nulla	nulla
φ'	[°]	32	26	30	35	28	33	28
$\frac{\varphi_k'}{\gamma_{M(A2)}}$	[°]	26,6	21,3	24,8	29,2	23,0	27,5	23,0

MC: Mohr-Coulomb; HSM: Hardening Soil Model

Peso di volume

modulo elastico alla deformazione corrispondente al 50% del carico di rottura

E_{so} ref: modulo elastico alla delormazione scarico in HSM fattare di forma per HSM modulo di Poisson c'; φ': parametri di resistenza

Gli elementi strutturali tipo piastra (plate) sono stati inseriti nel modello con le seguenti caratteristiche di rigidezza assiale e flessionale:

ELEMENTI STRUTTURALI - PLATE

No.	Identification	EA	EI	ν
		[kN/m]	$[kNm^2/m]$	[-]
1	Palancolato HZ975C-14/ZH9.5	5.972.744	1.074.114	0,15
2	Solettone s=1,0m	35.000.000	2.905.000	0,20

I pali ø1000 di appoggio del solettone sono stati modellati con elementi strutturali tipo embedded beam row con le seguenti caratteristiche meccaniche:

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

ELEMENTI STRUTTURALI – EMBEDDED BEAM ROW

No.	Identification	E [kN/m ²]	γ [kN/m ³]	Туре	Lspacing [m]	Axial skin resistance	Interface stiffness factor
1	Palo ø1000/3,60m	35.000.000	25,0	Massive circular pile	3,60	Layer dependent	Default values

La tabella seguente mostra le caratteristiche dell'elemento ANCHOR utilizzato per la parte libera dei tiranti di ancoraggio.

TIRANTE DI ANCORAGGIO (PARTE LIBERA) - ANCHOR

No.	Identification	EA	L spacing
		[kN]	[m]
1	Tirante (7trefoli i=1,8m)	111.611	1
2	Dywidag ø47/3,60m	111.810	1

Per la fondazione del tirante di ancoraggio si utilizza l'elemento GEOGRID. La tabella seguente mostra le proprietà elastiche dell'elemento ottenute sommando il contributo dell'armatura e della malta di iniezione.

TIRANTE DI ANCORAGGIO (FONDAZIONE) – GEOGRID

No.	Identification	EA
		[kN/m]
1	bulbo D=(16×1,5)cm + 7tr/1,80	850.194
2	bulbo D=(20×1,5) cm + Dywidag ø47/3,60	687.223

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

Nell'analisi numerica si è fatto riferimento alle seguenti fasi realizzative dell'opera:

	Fase	Fase di provenienza:	Descrizione
	0	N/A	Generazione dello stato tensionale metodo k0
	1	0	Escavo fino a -6,00m da l.m.m.
Stato attuale della	2	1	Inserimento paratia esistente HZ975C-14-ZH9.5
banchina	3	2	Rinterro fino a +2,50 m l.m.m.
	4	3	Inserimento tiranti esistenti - pretensione 350 kN (194 kN/m)
	5	4	Escavo fino a -11,50m da l.m.m.
	6	5	Ribasso del terreno a tergo della paratia a +1,75 m su l.m.m.
Lavorazioni progetto	7	6	Inserimento nuovi ancoraggi (Dywidag ø47/3,60m), pali a tergo e solettone in calcestruzzo armato
attuale	8	7	Rinterro fino a +2,50 m l.m.m.
	9	8	Escavo fino a -15,00m da l.m.m.
	10	9	SLU11 (parametri geotecnici caratteristici, sovraccarico 1,5/1,3 q=69kPa, tiro bitta1,5/1,3 b=46kN/m) – SOLLECITAZIONI RISULTANTI DA AMPLIFICARE per 1,3
	11	9	Sovraccarico 1,3 q=78kPa, tiro bitta 1,3 b=52kN/m
	12	11	SLU12 (parametri geotecnici ridotti, sovraccarico 1,3q=78kPa, tiro bitta 1,3 b=52kN/m)
	13	9	SLV (sisma k_h =0,06, Westergaard, parametri geotecnici caratteristici, sovraccarico 0,8q=48kPa, bitta assente)
Verifiche di sicurezza e funzionalità della	14	9	SLE (parametri geotecnici caratteristici, sovraccarico q=60kPa, tiro b=40kN/m)
nuova configurazione della banchina	15	9	SLD (sisma k _h =0,034, Westergaard, sovraccarico 0,8 q=48kPa, bitta assente, parametri geotecnici caratteristici)
	16	12	Estensione a monte del sovraccarico
	17	16	Phi-c reduction SLU
	18	9	sisma k_h =0,072, kv =-0.036, k_h =0,072, sovraccarico 0,8q=48 k Pa, bitta assente, parametri geotecnici ridotti)
	19	18	Phi-c reduction SLV

Nel seguito sono presentati i risultati ottenuti mentre in allegato sono contenuti i report relativi alle caratteristiche di sollecitazione per i vari elementi strutturali ed i grafici con i rispettivi andamenti.

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

8.4.3 Risultati delle analisi

In base alle condizioni di carico considerate, si presentano:

- le sollecitazioni allo stato limite ultimo (SLU) e di salvaguardia della vita (SLV);
- le sollecitazioni e gli spostamenti allo stato limite di esercizio (SLE) e allo stato limite di danno (SLD);
- la verifica di stabilità globale del complesso opera-terreno.

8.4.3.1 Risultati delle analisi di sicurezza (SLU/SLV)

In Tabella 15 si presentano i risultati delle analisi in condizioni SLU/SLV.

Tabella 15. Risultati delle analisi SLU/SLV

		Statica	a (SLU)	Sismica (SLV)
		SLU11	SLU12	Pseu.statica + Westergaard
		1,3 (perman.) 1,5Q (sovrac.) 1,5Q (bitta) φk	1,0 (perman.) 1,3Q (sovrac.) 1,3Q (bitta) φd,rid	0,8Q (sovrac.) No bitta φk
PARATIA	M (kNm/m)	1871	1638	1963
ESISTENTE HZ975C- ZH9,5	T (kN/m)	315	260	305
	N (kN/m)	367	329	210
Solettone	M (kNm/m)	739	702	383
	M (kNm)	1000	1145	1689
Pali ø1000 FILA1	T (kN)	235	263	378
	N (kN)	3063	2493	2593
	M (kNm)	634	771	1340
Pali ø1000 FILA2	T (kN)	148	151	245
	N (kN)	3166	2603	2485
	M (kNm)	552	695	1189
Pali ø1000 FILA3	T (kN)	191	240	233
	N (kN)	3328	2751	2483
Tiro su tiranti esistenti - 7tr/1,80m	(kN)	842	751	744
Tiro su nuova barra GEWI (i=3,6m)	(kN)	592	578	820

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

Per lo stato limite all' SLV, si presentano alcuni dettagli dei risultati dell'analisi. In Figura 34 è presentato il campo di spostamenti orizzontali prodotto dalla combinazione di carico considerata. Si osserva il campo di influenza dello scavo nonché il volume di terreno coinvolto dalle fondazioni degli ancoraggi.



Figura 34 - Analisi SLV: campo degli spostamenti orizzontali.

In Figura 35 sono riportate le caratteristiche di sollecitazione sul palancolato metallico nelle combinazioni di carico SLU e SLV. Si osserva che il valore massimo del momento flettente si colloca all'incirca alla quota di -12 m da l.m.m., poco al di sopra del fondo scavo. Il valore massimo dell'azione tagliante viene invece raggiunto in corrispondenza del tirante di ancoraggio, alla sommità della paratia. La distribuzione dello sforzo normale è crescente in corrispondenza del cuneo attivo (il terreno trascina la paratia verso il basso), mentre diminuisce dalla quota di -18 m da l.m.m. dove prevale l'azione resistente del terreno in zona passiva.

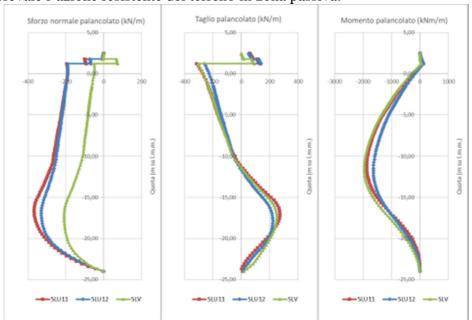


Figura 35 - Analisi SLU-SLV: diagramma dello sforzo normale, taglio e momento flettente agente sul palancolato

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

In Figura 36 sono indicate le caratteristiche di sollecitazione allo stato limite ultimo che interessano ogni palo della FILA 1 a tergo della paratia. Si osserva come la vicinanza agli scavi determini una partecipazione degli elementi strutturali al sostegno del terrapieno, come si ricava dalla somiglianza del momento flettente del palo a quello della paratia.

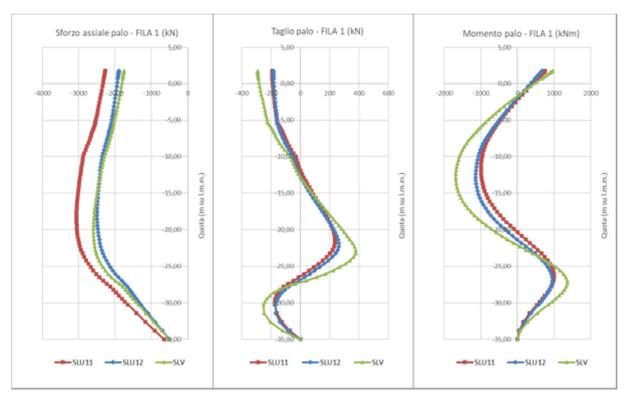


Figura 36 - Analisi SLU-SLV: diagramma dello sforzo normale, taglio e momento flettente agente sui pali di FILA1

In Figura 37 e Figura 38 sono indicate le caratteristiche di sollecitazione allo stato limite ultimo che interessano ogni palo della FILA 2 e della FILA 3 a tergo della paratia. Si osserva come allontanandosi dalla paratia il momento flettente in condizioni statiche diminuisca, mentre si mantiene significativo il momento flettente in condizioni sismiche SLV. L'analisi numerica mostra inoltre che il carico assiale sui tre allineamenti di pali è simile. In particolare non appare più caricato il palo centrale, come si sarebbe atteso. Tale fatto è probabilmente in parte attribuibile a motivi reali (i pali di fila 1 subiscono il trascinamento del cuneo attivo, ad esempio), in parte a motivi di modellazione numerica (i pali nella mesh 2D risultano piuttosto deformabili, cosicché il solettone sommitale tende a ripartire il carico). Per questo il carico di progetto sui pali verrà valutato anche con un modello strutturale del solo solettone.

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

Pag.: 54 di 104

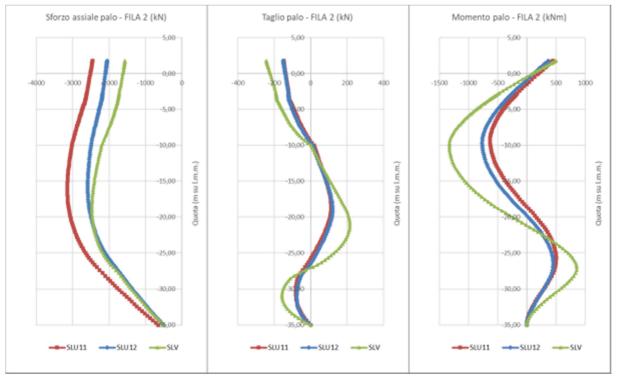


Figura 37 - Analisi SLU-SLV: diagramma dello sforzo normale, taglio e momento flettente agente sui pali di FILA2

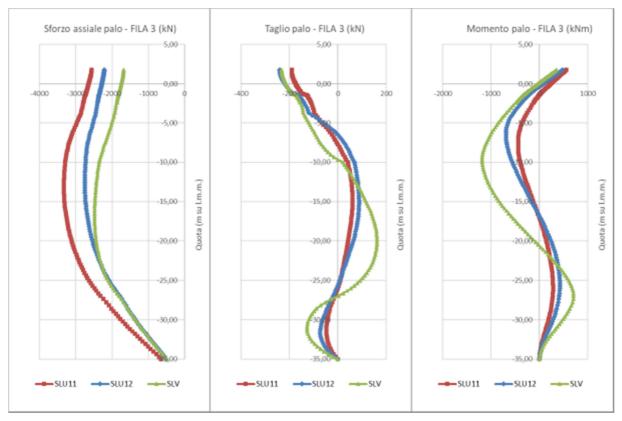


Figura 38 - Analisi SLU-SLV: diagramma dello sforzo normale, taglio e momento flettente agente sui pali di FILA3

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

In Figura 39 è presentato il diagramma del momento flettente (per metro di sviluppo) agente sul solettone sommitale che deriva dal modello 2D di analisi.

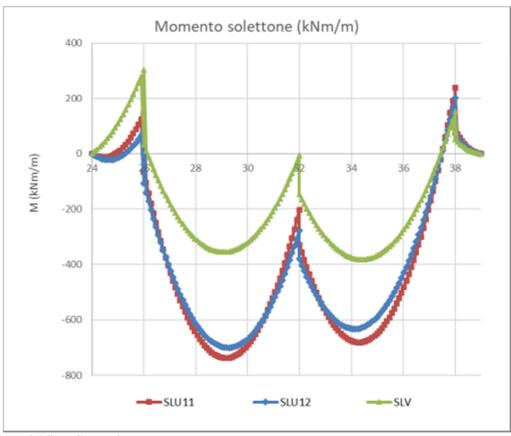


Figura 39 - Analisi SLU-SLV: diagramma

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

8.4.3.2 Risultati delle analisi di funzionalità (SLE/SLD)

In Tabella 16 si forniscono i risultati delle analisi di funzionalità.

Tabella 16. Risultati delle analisi SLE/SLD

		SLE	SLD					
			Pseu.statica + Westergaard					
		1,0 (perman.) 1,0Q (sovrac.) 1,0Q (bitta) φk	0,8Q (sovrac.) No bitta φk					
	M (kNm/m)	1417	1671					
PARATIA ESISTENTE HZ975C- ZH9,5	T (kN/m)	239	268					
219,5	N (kN/m)	269	226					
Solettone	M (kNm/m)	527	417					
	M (kNm)	730	1135					
Pali ø1000 FILA1	T (kN)	170	246					
	N (kN)	2227	2324					
	M (kNm)	444	830					
Pali ø1000 FILA2	T (kN)	107	180					
	N (kN)	2275	2285					
	M (kNm)	365	654					
Pali ø1000 FILA3	T (kN)	125	175					
	N (kN)	2370	2311					
Tiro su tiranti esistenti - 7tr/1,80m	(kN)	623	661					
Tiro su nuova barra GEWI (i=3,6m)	(kN)	421	599					
	+2.50m	13	22,1					
Spostam. paratia lato mare (cm)	MAX	18,9	27,7					
	-24,00m	4,2	8,7					

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

Lo spostamento del palancolato indicato in tabella è quello complessivo, maturato dall'inizio della costruzione dell'opera.

Nella Figura 40 e Figura 41 sono mostrati gli spostamenti orizzontali del sistema nelle condizioni di esercizio SLE e SLD. Si osserva che lo spostamento massimo è concentrato in pancia alla paratia.

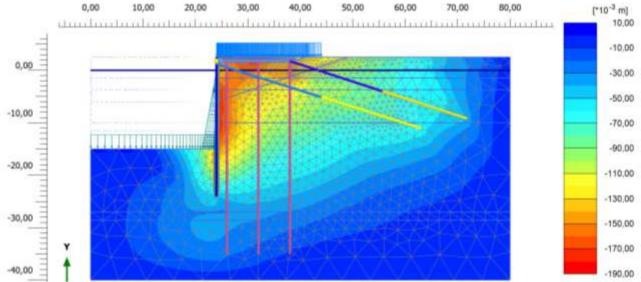


Figura 40 - Analisi SLE - RARA: campo degli spostamenti orizzontali

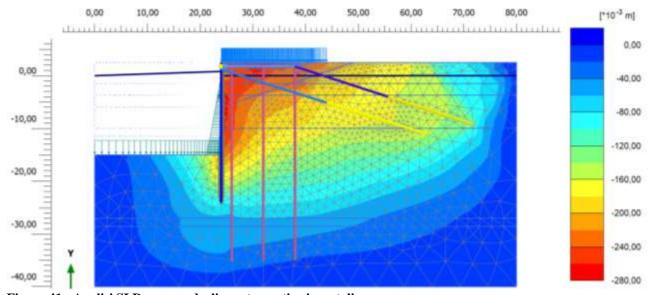


Figura 41 - Analisi SLD: campo degli spostamenti orizzontali

In Figura 42 sono riportati i diagrammi dello sforzo normale, del taglio e del momento flettente agenti sul palancolato agli stati limite di esercizio considerati (SLE-SLD)

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

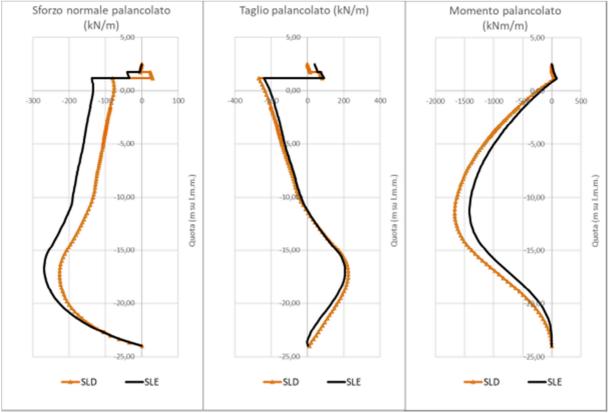


Figura 42 - Analisi SLE-SLD: diagramma dello sforzo normale, taglio e momento flettente agente sul palancolato

In Figura 43 sono mostrati gli spostamenti complessivi maturati dal palancolato metallico agli stati limite di servizio analizzati.

Si osserva uno spostamento massimo di circa 19 cm in pancia del palancolato in condizione SLErara. Tale valore tiene conto di uno spostamento complessivo della paratia nel modello numerico di circa 4 cm. Ciò significa un'inflessione massima della paratia di 15 cm, valore che appare compatibile con la funzionalità di un'opera portuale di grandi dimensioni.

Allo Stato Limite di Danno si osserva una traslazione significativa dell'intera opera, fenomeno legato all'applicazione di un'accelerazione di tipo pseudostatico all'intero modello numerico. In termini di inflessione del palancolato metallico si hanno circa 19 cm, con una componente di spostamento in sommità coerente con l'aumento di tiro osservato sugli ancoraggi sommitali.

Uno spostamento calcolato di 19 cm in condizioni sismiche SLD rientra ampiamente nel campo degli spostamenti previsti per le opere portuali dalle raccomandazioni PIANC anche per l'operatività dell'infrastruttura (livello di danno 1).

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

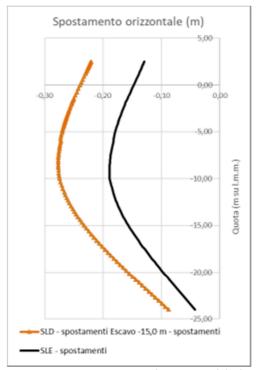


Figura 43 - Confronto delle deformate della palancola nelle diverse analisi di stato limite di esercizio

In Figura 44 è riportato l'incremento di spostamento orizzontale esibito dal palancolato a seguito dell'esecuzione dell'escavo necessario a portare il fondale attuale (-11,50 m da l.m.m.) al fondale di calcolo (-15,00 m da l.m.m.). Si osserva uno spostamento massimo di 6,0 cm che, depurato dello spostamento al piede di 1,2 (causato da una componente elastica non realistica del modello FEM), risulta pari a circa 4,8 cm.

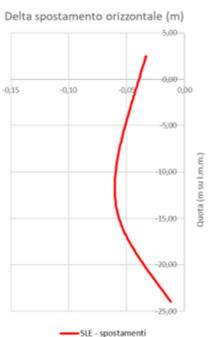


Figura 44 – Incremento degli spostamenti orizzontali sul palancolato per escavo tra lo stato attuale (-11,50 m da l.m.m.) e il fondale di progetto (-15,00m da l.m.m.)

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

8.4.3.3 Analisi per azioni eccezionali: urto

Le azioni eccezionali sono quelle che si presentano in occasione di eventi quali incendi, esplosioni ed urti. Primo obiettivo della verifica delle opere riguardo questa classe di azioni è di controllare che la struttura non risulti danneggiata in misura sproporzionata rispetto alla causa.

Per l'urto di una nave di grandi dimensioni, come definito in precedenza, si ha una pressione pseudostatica di 255 kPa che agisce su un'altezza di 15 m, tra +2,50 e -12,50 m da l.m.m.

In Figura 45 è visualizzato il campo di spostamenti orizzontali indotto dalla pressione di impatto così definita sul banchinamento. Si rileva uno spostamento massimo di 40 cm. Tale spostamento è correlabile ad un livello di danneggiamento certamente accettabile per la struttura.

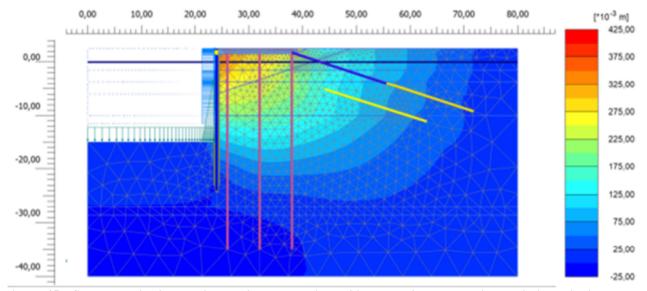


Figura 45 – Spostamenti orizzontali causati dalla pressione di impatto di una nave di grandi dimensioni

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

8.4.3.4 Analisi di stabilità globale

Le analisi di stabilità generale del sistema geotecnico sono state effettuate con il codice FEM Plaxis con la tecnica della riduzione dei parametri (c-φ reduction method).

La verifica in condizioni statiche viene eseguita con i coefficienti A2 sui sovraccarichi ed M2 sui terreni. Secondo la Norma la verifica è soddisfatta quando il rapporto tra la resistenza calcolata con i parametri geotecnici di progetto (R), cioè ridotti dai previsti coefficienti parziali, e gli effetti delle azioni di progetto (E), risulta maggiore del valore prescritto per il coefficiente parziale sulle resistenze calcolate $\gamma_R = 1,1$.

La Figura 46 mostra il quadro degli spostamenti orizzontali e dei punti di plasticizzazione dell'analisi in condizione statica mentre in Figura 47 quelle in condizioni sismiche in $k_h=0.072$ $k_v=-0.036$.

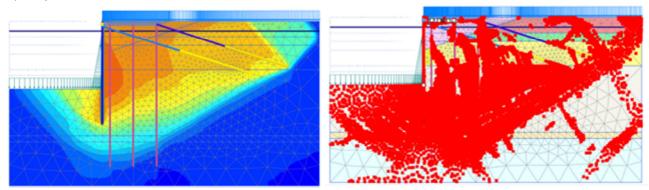


Figura 46 - Analisi di stabilità globale: condizioni statiche SLU

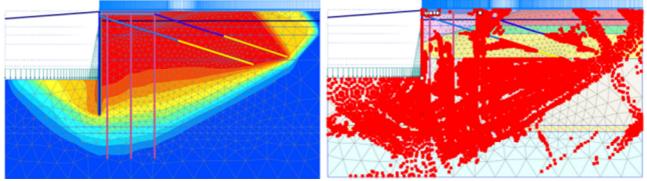


Figura 47 - Analisi di stabilità globale: condizioni sismiche SLV

Come si può osservare in Tabella 17 le condizioni di sicurezza rispetto alla stabilità globale nelle condizioni SLU e SLV sono garantite con i margini prescritti dalla Norma Nazionale.

Tabella 17. Risultati delle analisi di stabilità globale della banchina in SLU

Opera analizzata	$R(\gamma_N$	₁₂) / E _d
Opera ananzzata	Condizioni statiche	Condizioni sismiche
Banchina Trattaroli Sud	1,44	1,17

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

8.4.4 Verifica dei pali del solettone ai carichi verticali

La stabilità ai carichi verticali viene verificata per i pali di fondazione di fondazione del solettone a tergo della palancola. Si distinguono tre allineamenti di pali di fondazione (Figura 49):

- FILA 1: allineamento lato mare, a tergo della paratia metallica, ø1000, interasse 3,60 m, estesi fino a -35 m da l.m.m.;
- FILA 2: allineamento intermedio, a 8,00 m da asse palancola, ø1000, interasse 3,60 m, estesi fino a -35 m da l.m.m.;
- FILA 3: allineamento lato terra, a 14,00 m da asse palancola, ø1000, interasse 3,60 m, estesi fino a -35 m da l.m.m..

Nei successivi paragrafi si mostreranno le verifiche relative ai tre allineamenti considerati.

I carichi agenti derivano da un modello geotecnico agli elementi finiti e da un modello strutturale dell'impalcato appoggiato su vincoli elastici. Il carico di progetto, è stato determinato dall'azione più gravosa derivante dai due modelli considerati. In Tabella 18 sono riportate le azioni assiali massime del modello geotecnico, comprensive del peso proprio del palo, e le reazioni vincolari massime agli appoggi del modello strutturale (a cui va sommato il peso del palo).

Tabella 18. Valore delle azioni assiali sui pali

	Me	odello geotecn	ico	Modello	Strutturale
	SLU11 [kN]	SLU12 [kN]	SLV [kN]	SLE [kN]	SLU-STR/SLU11 [kN]
FILA 1 – palo lato mare (palo ø1000/3,60 m)	3.063	2.493	2.593	1.708	2.423
FILA 2 – palo intermedio (palo ø1000/3,60 m)	3.166	2.603	2.485	2.054	2.944
FILA 3 – palo lato terra (palo ø1000/3,60 m)	3.328	2.751	2.483	1.786	2.549

La resistenza di un palo di fondazione si compone di due aliquote: la resistenza alla punta e la resistenza laterale. Una serie ormai molto ampia di osservazioni presenti in letteratura su pali in vera grandezza di grande diametro mostra che la resistenza laterale di un palo raggiunge il suo valore limite in corrispondenza di cedimenti relativamente ridotti, dell'ordine di 1 cm, mentre la resistenza alla punta, al contrario, si mobilita per spostamenti più ampi, proporzionali al diametro del palo e dell'ordine del 25% per i pali trivellati. La progettazione di pali di grande diametro richiede quindi, in buona sostanza, un approccio prestazionale.

Questo criterio progettuale viene tradizionalmente tradotto nella limitazione della resistenza alla punta attraverso l'uso di valori di soglia limite per la stima della resistenza unitaria alla punta del palo (Wright e Reese, 1979, Figura 48, a sx) o nell'uso di un fattore di stabilità Nq* ridotto corrispondente all'insorgenza delle prime deformazioni plastiche alla punta che si manifestano per cedimenti del 6-10% del diametro del palo (Berezantzev 1965, Figura 48, a dx).

Pertanto nei terreni granulari la resistenza unitaria alla punta viene valutata come:

$$q_p = Nq * \sigma'_v$$

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

Pag.: 63 di 104

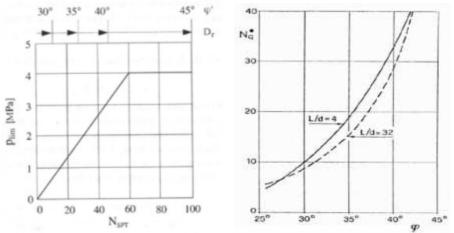


Figura 48 – Pali di grande diametro: a sx) valori limite mobilitati per un cedimento del 5% del palo; a dx) valori del coefficiente di stabilità Nq* ridotto secondo Berezantzev, 1965

Quando i terreni sono decisamente argillosi la resistenza alla punta viene invece usualmente calcolata con un modello di resistenza in tensioni totali. Seguendo tale metodo, la portata unitaria (q_p) può essere determinata con:

$$q_p = 9 Cu + \sigma_v$$

dove Cu è la coesione non drenata e σ_v la tensione verticale totale agente alla profondità della punta del palo.

Dunque la portata complessiva alla punta vale:

$$Qp = Ap q_p$$

dove con Ap si è indicata l'area della sezione del palo.

La portata laterale viene calcolata sempre in condizioni drenate (metodo beta), considerando il modesto spessore di terreno coinvolto per mobilitare l'attrito sul fusto del palo. Nel metodo beta la resistenza laterale unitaria (qs) risulta pari a:

$$qs = k \mu \sigma'_{vz}$$

dove σ'_{vz} è la tensione verticale efficace agente alla profondità di calcolo della relativa portata laterale e k e μ sono due coefficienti dipendenti dal tipo di palo e di terreno (Tabella 19).

Tabella 19. Valori dei coefficienti k e µ

Tipo di palo		k per stato samento denso	Valori di μ
Battuto: Profilato d'acciaio Tubo d'acciaio chiuso	0,7 1,0	1,0 2,0	tg20° = 0,36
Calcestruzzo prefabbricato	1,0	2,0	tg (3φ/4)
Calcestruzzo gettato in opera	1,0	3,0	tg φ
Trivellato	0,5	0,4	tgφ
Trivellato-pressato con elica continua	0,7	0,9	tg φ

La portata laterale complessiva si ottiene quindi integrando la portata unitaria sulla superficie laterale del palo:

$$Qs = \int_0^L \pi \cdot D \cdot q_s(z) \cdot dz$$

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

Determinata quindi la portata complessiva del palo alla punta (Qp) e laterale (Qs), si possono determinare i valori caratteristici delle resistenze alla punta (R_{bk}) e laterale (R_{sk}) dividendo le portate prima determinate per il coefficiente di correlazione ξ , e i valori di progetto, alla punta (R_{bd}) e laterale (R_{sd}), dividendo quelli caratteristici per il rispettivo coefficiente di sicurezza γ . Le tabelle presentate nei seguenti paragrafi applicano il procedimento fin qui esposto.

Nel caso specifico la vicinanza dello scavo fa ritenere prudente non considerare l'intera resistenza laterale del palo, trascurando le risorse resistenti nella porzione sommitale, come indicato in Figura 49

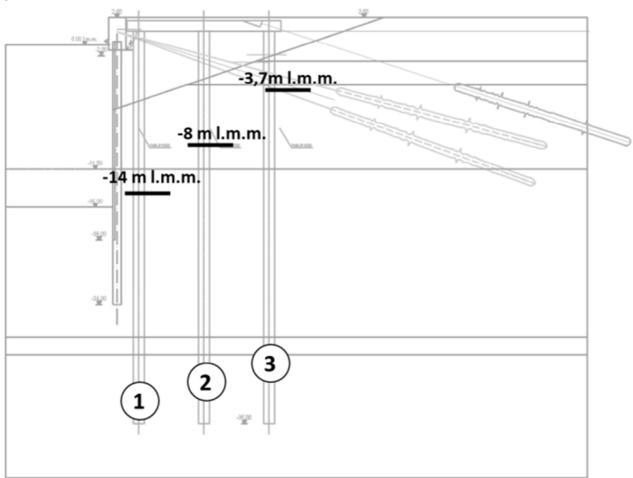


Figura 49 – Sezione tipologica con l'indicazione degli allineamenti dei pali del solettone e indicazione della profondità dalla quale si è considerata efficace la resistenza laterale dei pali

Per le alluvioni profonde è stato assunto un valore caratteristico di coesione non drenata, cu, pari 100 kPa per il calcolo della resistenza alla punta.

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

8.4.4.1 Verifica dei pali della FILA 1

In Figura 50 sono indicate la portata laterale unitaria, la portata alla punta unitaria e le conseguenti portate limite per il palo di FILA 1. In Tabella 20 indicato il calcolo analitico svolto.

Si rileva che assumendo un coefficiente di correlazione ξ_3 = 1,4 il palo $\emptyset1000$ esteso fino a -35 m da l.m.m., ha una portata utile di progetto pari a 3.471 kN. Pertanto:

$$Ed = 3.063 \text{ kN} < 3.471 \text{ kN} = Rd$$

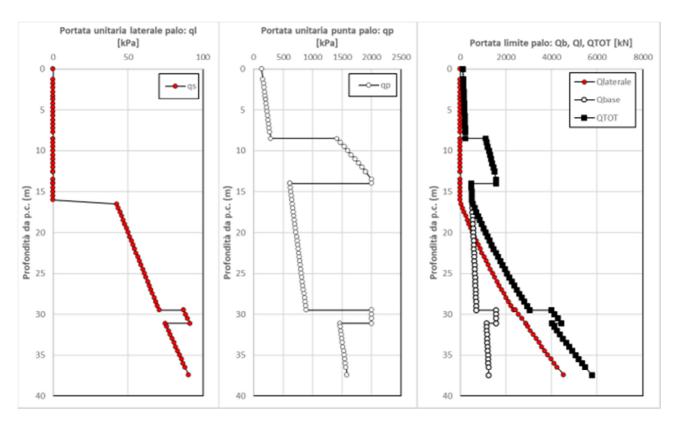


Figura 50 - Palo FILA 1: portata laterale ed alla punta unitaria e portata limite.

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

DIREZIONE TECNICA Pag.: 66 di 104

	Autorità di Sistema Portuale del Mar Adriatico Centro Settentrionale
--	---

	D (m)	γcls kN/m³	Ab (m²)	γ'cls kN/m 3	falda da p.c. (m)																				
	1,00	25,00	0,7854	15,00	2,50																				
	ξ ₃	γs 1,15	γb 1,35								qp _{max} = Nq*=	2000 15													
		LCOLO		PORTA	ANZA	Parametri cond.DRENATE				Par. cond. NON		Portanza drenata		Portanza NON drenata		tanza					VALOR ATTERI		VALOR	di PRO	GETTO
Terreno	z (m)	γ kN/m³	σν kN/m²	u kN/m²	σ'v kN/m²	c' kWm²	φ' (°)	μ		Cu kN/m²	qs kN/m²	qp (kN/m²)	qs kN/m²	qp (kN/m²)	qs (kN/m ²)	qp (kN/m²)	QI (kN)	Qp (kN)	Q tot (kN)	Rsk (kN)	Rbk (kN)	Rk tot(kN)	Rsd (kN)	Rbd (kN)	Rd tot(kN)
Riemp.	da p.c. 0,0	18,0	0	0	0	0	30			15	0	0	0	135	0	135	0	106	106	0	76	76	0	56	56
Riemp.	1,3 1,8	18,0 18,0	23 32	0		0	30			15 15	0	338 473	0	158 167	0	158 167	0	124	124 131	0	88 93	88 93	0	65 69	65 69
Riemp.	2,3 2,8	18,0 18,0	41 50	0 2		0	30			15 15	0	608 706	0	176 185	0	176	0	138	138 145	0	98 104	98 104	0	73 77	73
Riemp.	3,3	18,0	59	7	51	0	30			15	0	767	0	194	0	194	0	152	152	0	109	109	0	80	80
Riemp.	3,7 3,7	18,0 18,0	67 67	12 12	55	0	30			15 15	0		0	202 202	0	202	0	158	158 158	0	113 113	113 113	0	84 84	84 84
Riemp.	4,2 4,7	18,0 18,0	76 85	17 22	_	0	30			15 15	0	884 945	0	211 220	0	211 220	0		165 172	0	118 123	118 123	0	88 91	88 91
Riemp.	5,2 5,7	18,0 18,0	94 103	26 31		0	30			15 15	0	1007 1068	0	229 238	0	229 238	0		180 187	0	128 133	128 133	0	95 99	95 99
Riemp.	6,2 6,7	18,0 18,0	112 121	36 41		0	30 30			15 15	0	1130 1191	0	247 256	0	247 256	0		194 201	0	138 143	138 143	0	102 106	102 106
Riemp.	7,2	18,0 18,0	130	46 51	83	0	30			15	0	1252	0	265 274	0	265 274	0	208	208 215	0	148	148 153	0	110	110
Riemp.	8,5	18,0	153	59	94	0	30			15	0	1412	0	288	0	288	0	226	226	0	162	162	0	120	120
Sabbia Sabbia	8,5 9,0	18,0 18,0	153 162	59 64	98	0	35 35				0	1412 1474	0		0	1412 1474	0	1157	1109 1157	0	792 827	792 827	0	587 612	587 612
Sabbia Sabbia	9,5 10,0	18,0 18,0	171 180	69 74		0	35 35				0	1535 1596	0		0	1535 1596	0		1206 1254	0	861 896	861 896	0	638 663	638 663
Sabbia Sabbia	10,5 11,0	18,0 18,0	189 198	78 83		0	35 35				0	1658 1719	0		0	1658 1719	0		1302 1350	0	930 964	930 964	0	689 714	689 714
Sabbia Sabbia	11,5 12,0	18,0 18,0	207 216	88 93		0	35 35				0	1781 1842	0		0		0		1399 1447	0	999 1033	999 1033	0	740 765	740 765
Sabbia Limi Arg.	12,5	18,0	225 225	98	127	0	35 28			40	0	1904	0	585	0		0	1495	1495 1495	0	1068	1068	0	791 791	791 791
Limi Arg.	13,5	18,0	243	108	135	0	28			40	0	2000	0	603	0	2000	0	1571	1571	0	1122	1122	0	831	831
Limi Arg.	14,0 14,0	18,0 18,0	252 252	113 113	139	0	28			40	0	2000	0	612 612	0	612	0	481	1571 481	0	1122 343	1122 343	0	831 254	831 254
Limi Arg. Limi Arg.	14,0 14,5	18,0 18,0	252 261	113 118	143	0	28 28			40 40	0	2000 2000	0	612 621	0	612 621	0	488	481 488	0	343 348	343 348	0	254 258	254 258
Limi Arg. Limi Arg.	15,0 15,5	18,0 18,0	270 279	123 128	_	0	28 28			40	0	2000 2000	0	630 639	0	630 639	0		495 502	0	353 358	353 358	0	262 266	262 266
Limi Arg. Limi Arg.	16,0 16,5	18,0 18,0	288 297	132 137		0	28 28	0,53 0	5	40	0 42	2000	0	648 657	0 42	648 657	33		509 549	0 24	364 369	364 392	0 21	269 273	269 294
Limi Arg. Limi Arg.	17,0 17,5	18,0 18,0	306 315	142 147	164 168	0	28 28	0,53 0 0,53 0		40 40	44 45	2000 2000	0	666 675	44 45	666 675	101 170	523 530	624 700	72 121	374 379	446 500	63 106	277 280	339 386
Limi Arg. Limi Arg.	18,0 18,5	18,0 18,0	324 333	152 157	172 176	0	28 28	0,53 0 0,53 0	5	40 40	46 47	2000	0	684 693	46 47	684 693	241 314	537 544	778 858	172 224	384 389	556 613	150 195	284 288	434 483
Limi Arg.	19,0 19,5	18,0 18,0	342 351	162 167	180	0	28	0,53 0 0,53 0	5	40	48	2000	0	702 711	48	702 711	388 464		939 1022	277	394 399	671 730	241 288	292 295	533 584
Limi Arg.	20,0	18,0	360	172	188	0	28	0,53 0	5	40	50 51	2000	0	720	50	720	542	565	1107	387	404	791	336	299	636
Limi Arg.	20,5	18,0 18,0	369 378	177 181	197	0	28	0,53 0	5	40	52	2000	0	729 738	51 52	729 738	621 702		1194 1282	502	409 414	853 916	386 436	303 307	689 743
Limi Arg.	21,5 22,0	18,0 18,0	387 396	186 191	205	0	28 28	0,53 0 0,53 0	5	40	53 54	2000	0	747 756	53 54	747 756	785 870	594	1372 1464	561 621	419 424	980 1045	488 540	310 314	798 854
Limi Arg. Limi Arg.	22,5 23,0	18,0 18,0	405 414	196 201	209 213	0	28 28	0,53 0 0,53 0		40	56 57	2000	0	765 774	56 57	765 774	956 1044	601 608	1557 1652	683 746	429 434	1112 1180	594 648	318 322	912 970
Limi Arg. Limi Arg.	23,5 24,0	18,0 18,0	423 432	206 211	217 221	0	28 28	0,53 0 0,53 0		40	58 59	2000	0	783 792	58 59	783 792	1134 1225	615 622	1749 1847	810 875	439 444	1249 1319	704 761	325 329	1030 1090
Limi Arg.	24,5 25,0	18,0 18,0	441 450	216 221		0	28 28	0,53 0 0,53 0	5	40 40	60 61	2000	0	801 810	60 61	801 810	1318 1413		1947 2049	942	449 454	1391 1464	819 878	333 337	1152 1214
Limi Arg.	25,5 26,0	18,0 18,0	459 468	226		0	28	0,53 0 0,53 0	5	40	62	2000	0	819 828	62	819 828	1510 1608	643	2153 2258	1078	459 465	1538 1613	938 999	340 344	1278 1343
Limi Arg.	26,5 27,0	18,0 18,0	477 486	235	242	0	28	0,53 0 0,53 0	5	40	64 65	2000	0	837 846	64 65	837	1708 1810	657	2365 2474	1220 1293	470 475	1690 1767	1061 1124	348 352	1409
Limi Arg.	27,5	18,0	495	245	250	0	28	0,53 0	5	40	66	2000	0	855	66	855	1913	672	2585	1366	480	1846	1188	355	1544
Limi Arg.	28,0 28,5	18,0 18,0	504 513		258	0	28	0,53 0	5	40	67 69	2000	0	864 873	67 69	873	2018 2125	686	2697 2811	1442 1518	485 490	1926 2008	1254 1320	359 363	
Limi Arg. Limi Arg.	29,0 29,5	18,0 18,0	522 531	260 265	266	0	28 28	0,53 0 0,53 0	5	40	70 71	2000	0	882 891	70 71	891	2233 2344	700	2926 3043	1595 1674	495 500	2174	1387 1456	367 370	1754 1826
Sabbie pro	29,5	18,5 18,5	533 542	265 270	_	0	33 33	0,65 0 0,65 0			87 88	2000	0		87 88	2000 2000	2420 2557	1571 1571	3991 4128	1728 1827	1122 1122	2850 2949	1503 1588	831 831	2334 2419
Sabbie pro	30,5 31,1	18,5 18,5	551 562	275 281	276	0	33 33	0,65 0 0,65 0	5		90 91	2000	0		90 91	2000	2697 2868	1571	4268 4438	1926 2048	1122 1122	3048	1675 1781	831 831	2506 2612
All. profon.	31,1 31,5	19,0 19,0	562 570	281	282		28 28	0,53 0 0,53 0	5	100	75 76	2000 2000	0	1462 1470	75 76	1462	2868 2962	1148	4016 4117	2048 2116	820 824	2869	1781 1840	608	2389 2451
All. profon.	32,0	19,0	579	289	290	0	28	0,53 0	5	100	77	2000	0	1479	77	1479	3082	1162	4244	2202	830	3031	1914	615	2529
All. profon.	32,5 33,0	19,0 19,0	589 598	294 299	299	0	28 28	0,53 0 0,53 0	5	100	78 79		0	1489 1498	78 79	1498	3204 3328	1177	4373 4505	2289 2377	835 840	3124 3218	1990 2067	619 623	2609 2690
All. profon. All. profon.	33,5 34,0	19,0 19,0	608 617	304 309	_	0	28 28	0,53 0 0,53 0		100	81 82	2000 2000	0	1508 1517	81 82	1508 1517	3454 3582		4638 4773	2467 2558	846 851	3313 3409	2145 2225	627 630	2772 2855
All. profon.	34,5 35,0	19,0 19,0	627 636	314 319		0	28 28	0,53 0 0,53 0		100 100	83 84	2000 2000	0	1527 1536	83 84		3711 3843		4910 5049	2651 2745	856 862	3507 3607	2305 2387	634 638	2939 3025
All. profon.	35,5 36,0	19,0 19,0	646 655	324 329	322	0	28 28	0,53 0 0,53 0	5	100	86 87	2000	0	1546	86 87	1546	3976 4111	1214	5190 5333	2840 2937	867 872	3707	2470 2554	642 646	3112 3200
All. profon. All. profon.	36,5	19,0	665 684	334	331	0	28	0,53 0 0,53 0	5	100	88	2000	0	1565	88	1565	4249 4529	1229	5478	3035 3235	878 888	3913	2639 2813	650 658	3289
Aii. Proion.	37,5	19,0	004	343	340	U	20	0,00 0	J	100	90	2000	U	1304	90	1004	4529	1244	3//3	3233	008	4123	2013	008	34/1

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

8.4.4.2 Verifica dei pali della FILA 2

In Figura 51 sono indicate la portata laterale unitaria, la portata alla punta unitaria e le conseguenti portate limite per il palo di FILA 2. In Tabella 21 è indicato il calcolo analitico svolto.

Si rileva che assumendo un coefficiente di correlazione ξ_3 = 1,4 il palo ø1000 esteso fino a -35 m da l.m.m., ha una portata utile di progetto pari a 3.916 kN. Pertanto:

Ed = 3.166 kN < 3.916 kN = Rd

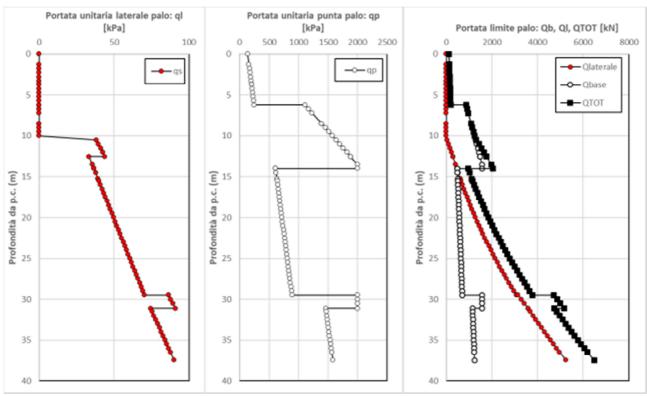


Figura 51 - Palo FILA 2: portata laterale ed alla punta unitaria e portata limite

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

DIREZIONE TECNICAPag.: 68 di 104

Tabella 21. Calcolo della portata limite, caratteristica e di progetto del palo di FILA 2

	D (m)	γcls	Ab	γ'cls kN/m	falda da									•			-		ILA 2						
	1,00	kN/m ³ 25,00	(m²) 0,7854	3	p.c. (m)																				
	ξ ₃	γs	γb								qp _{max} =														
	1,4 CAI	1,15 -COLO	1,35 DELLA	PORT	ANZA		Param ond.DRI		N	cond. ION enate	Nq*= 15 Portanza drenata		Portanza NON drenata		N Portanza scelta					VALORI CARATTERISTICI			VALOR	di PRO	GETTO
Terreno	z (m)	γ kN/m³	σν kN/m²	u kN/m²	σ'v kN/m²	c' kN/m²	φ' (°)	μk	α	Cu kN/m²	qs kN/m²	qp (kN/m²)	qs kN/m²	qp (kN/m²)	qs (kN/m ²)	qp (kN/m²)	QI (kN)	Qp (kN)	Q tot (kN)	Rsk (kN)	Rbk (kN)	Rk tot(kN)	Rsd (kN)	Rbd (kN)	Rd tot(kN)
Riemp.	da p.c. 0,0	18,0	0	0	0	0	30			15	0	0	0	135	0	135	0	106	106	0	76	76	0	56	56
Riemp.	1,3 1,8	18,0 18,0	23			_	30			15 15	0	338 473	0	158	0		0	124	124 131	0	88	88	0	65 69	65
Riemp.	2,3	18,0 18,0	41 50	0	41		30			15	0	608 706	0	176	0	176	0	138	138 145	0	98	98	0	73 77	73
Riemp.	2,8 3,3	18,0	59	7	51	0	30			15	0	767	0	194	0	194	0	152	152	0	109	109	0	80	80
dep palude dep palude	3,7	17,5 17,5	66 66			0	30			15 15	0	819 819	0	201 201	0	201 201	0		158 158	0		113 113	0	84 84	
dep palude	4,2 4,7	17,5 17,5	75 84	17	58		30 30			15 15	0	877 934	0	210 219	0	210 219	0	165	165 172	0	118	118 123	0	87 91	87 91
dep palude	5,2	17,5	93	26	66	0	30			15	0	992	0	228	0	228	0	179	179	0	128	128	0	95	95
dep palude dep palude	5,7 6,2	17,5 17,5	101 110				30			15 15	0	1050 1107	0	236 245	0	236 245	0		186 193	0		133 138	0	98 102	98
Sabbia	6,2	18,0 18,0	110 119	36	74	0	35				0	1107 1169	0		0	1107	0	870	870 918	0	621	621 656	0	460 486	460 486
Sabbia Sabbia	6,7 7,2	18,0	128	46	82	0	35 35				0	1230	0		0	1169 1230	0	966	966	0	690	690	0	511	511
Sabbia Sabbia	8,5 8,5	18,0 18,0	152 152	59 59		0	35 35		-		0	1390 1390	0		0	1390 1390	0		1092 1092	0		780 780	0	578 578	578 578
Sabbia Sabbia	9,0 9,5	18,0 18,0	161 170	64	97	0	35 35				0	1451 1513	0		0	1451 1513	0	1140	1140 1188	0	814	814 849	0	603 629	603 629
Sabbia	10,0	18,0	179	74	105	0	35				0	1574	0		0	1574	0	1236	1236	0	883	883	0	654	654
Sabbia Sabbia	10,5 11,0	18,0 18,0	188 197	78 83		0	35 35	0,70 0,5			38 40	1636 1697	0		38 40	1636 1697	30 91		1315 1424	21 65		939	19 57	680 705	698 762
Sabbia Sabbia	11,5 12,0	18,0 18,0	206 215			0	35 35	0,70 0,5			41 42	1759 1820	0		41 42	1759 1820	154 220	1381 1429	1535 1649	110 157	987 1021	1097 1178	96 137	731 756	827 893
Sabbia	12,5	18,0	224	98	125	0	35	0,70 0,5	5		44	1881	0		44	1881	288	1478	1765	206	1055	1261	179	782	961
Limi Arg. Limi Arg.	12,5 13,5	18,0 18,0	224 242			0	28 28	0,53 0,5		40	33 36	1881 2000	0		33 36	1881 2000	288 412	1478 1571	1765 1983	206 295	1055 1122	1261 1417	179 256	782 831	961
Limi Arg.	14,0	18,0	251	113	138	0	28	0,53 0,5	5	40	37	2000	0	611	37	2000	469	1571	2040	335	1122	1457	291	831	1122
Limi Arg. Limi Arg.	14,0 14,0	18,0 18,0	251 251	113 113	138	0	28 28	0,53 0,5 0,53 0,5		40	37 37	2000	0		37 37	611 611	469 469	480	949 949	335 335	343 343	678 678	291 291	254 254	545 545
Limi Arg. Limi Arg.	14,5 15,3	18,0 18,0	260 273	118 125		0	28 28	0,53 0,5	_	40	38 39	2000	0	620 633	38	620 633	527 618	487 497	1014 1115	377 442	348 355	724 797	328 384	257 263	585 647
Limi Arg.	15,5	18,0	278	128	150	0	28	0,53 0,5	5	40	40	2000	0	638	40	638	649	501	1150 1220	464	358	821	403	265	668
Limi Arg. Limi Arg.	16,0 16,5	18,0 18,0	287 296	132 137	158	0	28 28	0,53 0,5 0,53 0,5	5	40	42	2000	0		41	647 656	713 778	515	1293	509 556	368	872 923	483	269 272	711 756
Limi Arg. Limi Arg.	17,0 17,5	18,0 18,0	305 314			0	28 28	0,53 0,5		40	43 44	2000	0	665 674	43 44	665 674	845 913		1367 1442	603 652	373 378		525 567	276 280	801 847
Limi Arg.	18,0	18,0 18,0	323 332	152	170	0	28 28	0,53 0,5	5	40 40	45 46	2000	0	683	45 46	683 692	984 1056	536 543	1520 1599	703 754	383	1085 1142	611 656	284 287	895 943
Limi Arg. Limi Arg.	18,5 19,0	18,0	341	162	179	0	28	0,53 0,5 0,53 0,5	5	40	47	2000	0	701	47	701	1129	550	1680	807	393	1200	701	291	993
Limi Arg. Limi Arg.	19,5 20,0	18,0 18,0	350 359	167 172	183 187	0	28 28	0,53 0,5		40	49 50	2000	0	710 719	49 50	710 719	1205 1282	557 564	1762 1846	861 916	398 403	1259 1319	748 796	295 299	1043 1095
Limi Arg. Limi Arg.	20,5 21,0	18,0 18,0	368 377	177 181	191 195	0	28 28	0,53 0,5 0,53 0,5	_	40 40	51 52	2000	0	728 737	51 52	728 737	1361 1441	571 578	1932 2020	972 1029	408 413	1380 1443	845 895	302 306	1147 1201
Limi Arg.	21,5	18,0	386	186	199	0	28	0,53 0,5	5	40	53	2000	0	746	53	746	1524	586	2109	1088	418	1506	946	310	1256
Limi Arg. Limi Arg.	22,0 22,5	18,0 18,0	395 404	191 196	203	0	28 28	0,53 0,5 0,53 0,5		40	54 55	2000	0	755 764	54 55	755 764	1608 1693	593 600	2200 2293	1148 1209	423 428	1572 1638	998 1052	314 317	1312 1369
Limi Arg.	23,0 23,5	18,0 18,0	413 422	201 206		0	28 28	0,53 0,5 0,53 0,5		40 40	56 57	2000	0	773 782	56 57	773 782	1781 1870	607 614	2387 2483	1272 1335	433 438	1705 1774	1106 1161	321 325	1427 1486
Limi Arg.	24,0	18,0	431	211	220	0	28	0,53 0,5	5	40	58	2000	0	791	58	791	1960	621	2581	1400	443	1844	1218	329	1546
Limi Arg. Limi Arg.	24,5 25,0	18,0 18,0	440 449				28 28	0,53 0,5 0,53 0,5	5	40 40	59 61	2000	0	800 809	59 61	800 809	2053 2147		2681 2782	1466 1534			1275 1334	332 336	
Limi Arg. Limi Arg.	25,5 26,0	18,0 18,0	458 467				28 28	0,53 0,5 0,53 0,5		40 40	62 63	2000	0		62 63		2243 2341		2885 2990	1602 1672	459 464		1393 1454	340 343	
Limi Arg.	26,5	18,0	476	235	240	0	28	0,53 0,5	5	40	64	2000	0	836	64	836	2440	656	3096	1743	469	2212	1516	347	1863
Limi Arg. Limi Arg.	27,0 27,5	18,0 18,0	485 494	245	248	0	28 28	0,53 0,5 0,53 0,5	5	40	65 66	2000	0	854	65 66	854	2644	670	3205 3314	1815 1889	479	2367	1578 1642	351 355	
Limi Arg. Limi Arg.	28,0 28,5	18,0 18,0	503 512				28 28	0,53 0,5		40 40	67 68	2000	0		67 68	863 872	2748 2855		3426 3539	1963 2039			1707 1773	358 362	
Limi Arg.	29,0	18,0	521	260	261	0	28	0,53 0,5	5	40	69	2000	0	881	69	881	2963	692	3654	2116	494	2610	1840	366	2206
Limi Arg. Sabbie pro	29,5 29,5	18,0 18,5	530 531	265	266	0	28 33	0,53 0,5 0,65 0,5	5	40	70 86	2000	0		70 86	2000	3072 3148	1571	3771 4719	2194 2248	1122	3370	1908 1955	370 831	2786
Sabbie pro	30,0	18,5 18,5	540 550			0	33 33	0,65 0,5 0,65 0,5			88 89	2000	0		88 89	2000 2000	3285 3424		4855 4994	2346 2445			2040 2126	831 831	2871 2958
Sabbie pro	31,1	18,5	561	281	280	0	33	0,65 0,5	5	4	91	2000	0		91	2000	3593	1571	5164	2567	1122	3689	2232	831	3063
All. profon All. profon	31,1 31,5	19,0 19,0	561 568			0	28 28	0,53 0,5 0,53 0,5		100	74 75	2000	0		74 75		3593 3687	1147 1153	4741 4841	2567 2634	819 824	3386 3458	2232 2290	607 610	2839 2900
All. profon	32,0 32,5	19,0 19,0	578 587	289 294	_		28 28	0,53 0,5 0,53 0,5		100 100	77 78	2000	0		77 78	1478 1487	3807 3928	1161 1168	4967 5096	2719 2806		3548 3640	2365 2440	614 618	2979 3058
All. profon	33,0	19,0	597	299	298	0	28	0,53 0,5	5	100	79	2000	0	1497	79	1497	4051	1176	5227	2894	840	3734	2516	622	3138
All. profon All. profon	33,5	19,0 19,0	606 616			0	28 28	0,53 0,5 0,53 0,5		100	80 82	2000	0		80 82		4177 4304	1183 1190	5360 5494	2983 3074	845 850		2594 2673	626 630	
All. profon	34,5 35,0	19,0 19,0	625 635		_		28 28	0,53 0,5 0,53 0,5		100 100	83 84	2000	0		83 84		4433 4563		5631 5769	3166 3260	_	4022 4121	2753 2834	634 638	
All. profon	35,5	19,0	644	324	320	0	28	0,53 0,5	5	100	85	2000	0	1544	85	1544	4696	1213	5909	3354	866	4221	2917	642	3559
All. profon All. profon	36,0	19,0 19,0	654 663			0	28 28	0,53 0,5 0,53 0,5		100	86 88	2000	0		86 88		4831 4968	1220 1228	6051 6195	3451 3548	872 877		3001 3086	646 650	
All. profon		19,0	682	343	339		28	0,53 0,5		100	90	2000	0		90		5247	1243	6489	3748	888	4635	3259	658	

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

8.4.4.3 Verifica dei pali della FILA 3

In Figura 52 sono indicate la portata laterale unitaria, la portata alla punta unitaria e le conseguenti portate limite per il palo di FILA 3. In Tabella 22 è indicato il calcolo analitico svolto.

Si rileva che assumendo un coefficiente di correlazione $\xi_3 = 1,4$ il palo $\emptyset 1000$ esteso fino a -35 m da l.m.m., ha una portata utile di progetto pari a 4.164 kN. Pertanto:

$$Ed = 3.328 \text{ kN} < 4.164 \text{ kN} = Rd$$

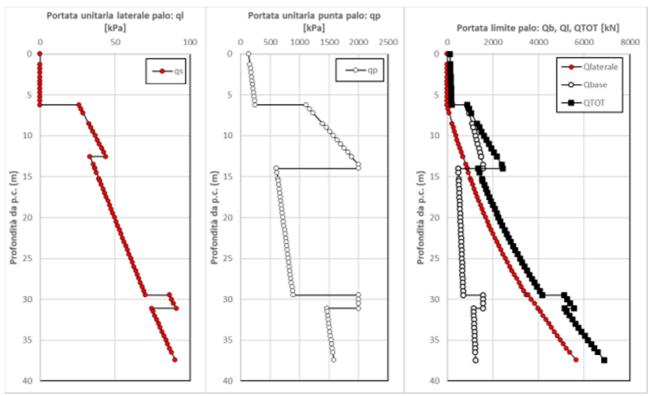


Figura 52 - Palo FILA 3: portata laterale ed alla punta unitaria e portata limite

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

DIREZIONE TECNICAPag.: 70 di 104

Tabella 22. Calcolo della portata limite, caratteristica e di progetto del palo di FILA 3

rabei	la 44	2. Cż	ncoi	o ae	ша р	ort	ala	шш	e, c	ага	ıteri	Suca	ı e a	ı pro	gei	to a	ei pai	o ai r	TLA 3	•					
	D (m)	γcls	Ab	γ'cls kN/m	falda da																				
	D (III)	kN/m³	(m²)	3	p.c. (m)																				
	1,00	25,00	0,7854	15,00	2,50																				
	ξ₃	γs	γb								qp _{max} =	2000													
	1,4	1,15	1,35						Par.	cond.	Nq*=	15									V41.00				
	CAI	COLO	DELLA	PORT	ANZA		Param ond.DR			NON drenate		Portanza drenata				Portanza scelta			VALORI CARATTERISTICI			VALORI	di PROC	3ETTO	
Ŧ	- ()	γ	σv	u	σ'v	c' φ' ,, k				Cu as		qp	qp qs		qp qs qp		01.410	0(140)	0	Rsk	Rbk	Rk	Rk Rsd Rb		Rd
Terreno	z (m)	kN/m³	kN/m²	kN/m²	kN/m²	kWm²	(°)	$\mu \mid k$	α	kN/m²	kN/m²	(kN/m²)	kN/m²	(k N/m ²)	(kN/m ²)	(kN/m²)	QI (kN)	Qp (KN)	Q tot (kN)	(kN)	(kN)	tot(kN)	(kN)	(kN)	tot(kN)
Division	da p.c.	40.0				_	00			45				405	_	405		400	400		70	70		- 50	- 50
Riemp.	0,0 1,3	18,0 18,0	23			0	30			15 15	0	338	0	135 158	0	135 158	0		106 124	0	76 88	76 88	0	56 65	56 65
Riemp.	1,8 2,3	18,0 18,0	32 41	0			30			15 15	0	473 608	0	167 176	0	167 176	0		131 138	0	93 98	93 98	0	69 73	69 73
Riemp.	2,8	18,0	50		47	0	30			15	0	706	0	185	0	185	0	145	145	0	104	104	0	77	77
Riemp. dep palude	3,3 3,7	18,0 17,5	59 66	12	51 55	0	30			15 15	0	767 819	0	194 201	0		0		152 158	0	109 113	109 113	0	80 84	80 84
dep palude	3,7 4,2	17,5 17,5	66 75	12 17		0	30			15 15	0	819 877	0	201 210	0		0		158 165	0	113 118	113 118	0	84 87	84 87
dep palude	4,7	17,5	84	22	62	0	30			15	0	934	0	219	0	219	0	172	172	0	123	123	0	91	91
dep palude dep palude	5,2 5,7	17,5 17,5	93	26 31		0	30			15 15	0	992 1050	0	228 236	0	228 236	0		179 186	0	128 133	128 133	0	95 98	95 98
dep palude	6,2	17,5	110	36	74	0	30	0.70.0		15	0	1107	0	245	0	245	0	193	193	0	138	138	0	102	102
Sabbia Sabbia	6,2 6,7	18,0 18,0	110 119	36 41		0	35 35	0,70 0,	_		26 27	1107 1169	0		26 27	1107 1169	42		870 960	30	621 656	621 685	0 26	460 486	460 512
Sabbia Sabbia	7,2 8,5	18,0 18,0	128 152	46 59		0	35	0,70 0,5 0,70 0,5			29 32	1230 1390	0		29 32	1230 1390	86 210		1052 1302	61 150	690 780	751 930	53 131	511	564 708
Sabbia	8,5	18,0	152	59	93		35 35	0,70 0,			32	1390	0		32	1390	210	1092	1302	150	780	930	131	578 578	708
Sabbia Sabbia	9,0 9,5	18,0 18,0	161 170	64 69		0	35 35	0,70 0,			34 35	1451 1513	0		34 35	1451 1513	262 317	1140	1402 1505	187 226	814 849	1002 1075	163 197	603 629	766 825
Sabbia	10,0	18,0	179	74	105	0	35	0,70 0,	5		37	1574	0		37	1574	373	1236	1610	267	883	1150	232	654	886
Sabbia Sabbia	10,5 11,0	18,0 18,0	188 197	78 83		0	35 35	0,70 0,			38 40	1636 1697	0		38 40	1636 1697	432 493	1285 1333	1717 1826	309 352	918 952	1226 1304	268 306	680 705	948 1011
Sabbia Sabbia	11,5 12,0	18,0 18,0	206 215	88 93		0	35 35	0,70 0,			41 42	1759 1820	0		41 42	1759 1820	556 622		1937 2051	397 444	987 1021	1384 1465	345 386	731 756	1076 1142
Sabbia	12,5	18,0	224	98	125	0	35	0,70 0,	5		44	1881	0		44	1881	690	1478	2167	493	1055	1548	428	782	1210
Limi Arg. Limi Arg.	12,5 13,5	18,0 18,0	224 242	98 108		0	28 28	0,53 0,		40	33 36	1881 2000	0	584 602	33 36	1881 2000	690 814	1478 1571	2167 2385	493 582	1055 1122	1548 1704	428 506	782 831	1210 1337
Limi Arg.	14,0	18,0	251	113	138	0	28	0,53 0,	5	40	37	2000	0	611	37	2000	871	1571	2442	622	1122	1744	541	831	1372
Limi Arg. Limi Arg.	14,0 14,0	18,0 18,0	251 251	113 113	138 138	0	28 28	0,53 0,		40	37 37	2000	0	611 611	37 37	611 611	871 871	480 480	1350 1350	622 622	343 343	964 964	541 541	254 254	795 795
Limi Arg. Limi Arg.	14,5 15,3	18,0 18,0	260 273	118 125		0	28 28	0,53 0,		40 40	38 39	2000	0	620 633	38 39	620 633	929 1020	487 497	1416 1517	664 728	348 355	1011 1083	577 633	257 263	834 896
Limi Arg.	15,5	18,0	278	128	150	0	28	0,53 0,	5	40	40	2000	0	638	40	638	1051	501	1551	751	358	1108	653	265	918
Limi Arg. Limi Arg.	16,0 16,5	18,0 18,0	287 296	132	154 158	0	28 28	0,53 0,		40	41 42	2000	0	647 656	41 42	647 656	1114 1179		1622 1694	796 842	363 368	1159 1210	692 733	269 272	961 1005
Limi Arg.	17,0	18,0	305	142	162	0	28	0,53 0,	5	40	43	2000	0	665	43	665	1246	522	1768	890	373	1263	774	276	1050
Limi Arg. Limi Arg.	17,5 18,0	18,0 18,0	314 323	147 152	166 170	0	28 28	0,53 0,		40	44 45	2000	0	674 683	44 45	674 683	1315 1385	529 536	1844 1921	939 989	378 383	1317 1372	817 860	280 284	1096 1144
Limi Arg. Limi Arg.	18,5 19,0	18,0 18,0	332 341	157 162	175 179	0	28 28	0,53 0,		40	46 47	2000	0	692 701	46 47	692 701	1457 1531	543 550	2000 2081	1041 1093	388 393	1429 1486	905 951	287 291	1192 1242
Limi Arg.	19,5	18,0	350	167	183	0	28	0,53 0,	5	40	49	2000	0	710	49	710	1606	557	2163	1147	398	1545	998	295	1292
Limi Arg. Limi Arg.	20,0	18,0 18,0	359 368	172 177	187 191	0	28 28	0,53 0,		40	50 51	2000	0	719 728	50 51	719 728	1683 1762	564 571	2247 2333	1202 1258	403 408	1605 1667	1045 1094	299 302	1344 1397
Limi Arg.	21,0 21,5	18,0 18,0	377 386	181 186	195 199	0	28 28	0,53 0,5 0,53 0,5		40 40	52 53	2000	0	737 746	52 53	737 746	1842 1925	578 586	2421 2510	1316 1375	413 418	1729 1793	1144 1195	306 310	1450 1505
Limi Arg.	22,0	18,0	395	191	203	0	28	0,53 0,		40	53 54	2000	0	746 755	54	755	2009		2601	1435	423	1858	1248	314	1561
Limi Arg. Limi Arg.	22,5	18,0 18,0	404 413	196 201	207 211	0	28 28	0,53 0,	_	40	55 56	2000	0	764 773	55 56	764 773	2094 2181	600	2694 2788	1496 1558	428 433	1924 1992	1301 1355	317 321	1618 1676
Limi Arg.	23,5	18,0	422	206	216	0	28	0,53 0,	5	40	57	2000	0	782	57	782	2271	614	2884	1622	438	2060	1410	325	1735
Limi Arg. Limi Arg.	24,0 24,5	18,0 18,0	431 440	211 216	220 224	0	28 28	0,53 0,		40	58 59	2000	0	791 800	58 59	791 800	2361 2454	621 628	2982 3082	1687 1753	443 449	2130 2201	1467 1524	329 332	1795 1856
Limi Arg. Limi Arg.	25,0 25,5	18,0 18,0	449 458	221 226	228 232		28 28	0,53 0,5 0,53 0,5		40 40	61 62	2000	0	809 818	61 62	809 818	2548 2644		3183 3286	1820 1888	454 459	2274 2347	1583 1642	336 340	1919 1982
Limi Arg.	26,0	18,0	467	231			28	0,53 0,	5	40	63	2000	0	827	63		2741	649	3391	1958	464	2422	1703	343	2046
Limi Arg. Limi Arg.	26,5 27,0	18,0 18,0	476 485	235 240			28 28	0,53 0,		40	64 65	2000	0	836 845	64 65		2841 2942		3497 3605	2029 2101	469 474	2498 2575	1764 1827	347 351	2112 2178
Limi Arg.	27,5	18,0	494	245	248	0	28	0,53 0,	5	40	66	2000	0	854	66	854	3044	670	3715	2175	479	2653	1891	355	2246
Limi Arg. Limi Arg.	28,0 28,5	18,0 18,0	503 512	250 255			28 28	0,53 0,		40	67 68	2000	0		67 68		3149 3255		3826 3939	2249 2325	484 489	2733 2814	1956 2022	358 362	2314 2384
Limi Arg. Limi Arg.	29,0 29,5	18,0 18,0	521 530	260 265			28 28	0,53 0,		40 40	69 70	2000	0		69 70		3363 3472		4054 4171	2402 2480	494 499		2089 2157	366 370	2455 2526
Sabbie pro	29,5	18,5	531	265	266	0	33	0,65 0,		40	86	2000	0		86	2000	3548		5119	2534	1122	3656	2204	831	3035
Sabbie pro	30,0	18,5 18,5	540 550	270 275	_		33	0,65 0,			88 89	2000	0		88 89		3685 3824		5255 5394	2632 2731	1122 1122	3754 3853	2289 2375	831 831	3120 3206
Sabbie pro	31,1	18,5	561	281	280	0	33	0,65 0,	5		91	2000	0		91	2000	3993	1571	5564	2852	1122	3974	2480	831	3311
All. profon.All. profon.	31,1 31,5	19,0 19,0	561 568	281 284			28 28	0,53 0,		100	74 75	2000	0	1461 1468	74 75	1461 1468	3993 4087	1147 1153	5140 5240	2852 2919	819 824	3672 3743	2480 2539	607 610	3087 3149
All. profon.	32,0	19,0	578	289	288	0	28	0,53 0,	5	100	77	2000	0	1478	77	1478	4207	1161	5367	3005	829	3834	2613	614	3227
All. profon.All. profon.	32,5 33,0	19,0 19,0	587 597	294 299			28 28	0,53 0,		100	78 79	2000	0	1487 1497	78 79		4328 4451		5496 5626	3091 3179	834 840	3926 4019	2688 2765	618 622	3306 3387
All. profon. All. profon.	33,5 34,0	19,0 19,0	606 616		302	0	28 28	0,53 0,	5	100 100	80 81	2000	0		80 81	1506	4576 4703	1183	5759 5893	3269 3359	845 850	4114 4210	2842 2921	626 630	3468 3551
All. profon.	34,5	19,0	625	314	311	0	28	0,53 0,5 0,53 0,5	5	100	83	2000	0	1525	83	1525	4832	1198	6030	3451	856	4307	3001	634	3635
All. profon. All. profon.	35,0 35,5	19,0 19,0	635 644	319 324			28 28	0,53 0,		100	84 85	2000	0	1535 1544	84 85		4963 5095			3545 3640	861 866	4406 4506	3082 3165	638 642	3720 3807
All. profon.	36,0	19,0	654	329	325	0	28	0,53 0,	5	100	86	2000	0	1554	86	1554	5230	1220	6450	3736	872	4607	3248	646	3894
All. profon. All. profon.	36,5 37,5	19,0 19,0	663 682	334 343			28 28	0,53 0,		100	88 90	2000	0		88 90		5367 5646	1228 1243		3833 4033	877 888	4710 4920	3333 3507	650 658	3983 4164

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

8.4.4.4 Prove di verifica dei pali

In ottemperanza alle previsioni delle NTC 2008 sui pali di fondazione devono essere eseguite prove di carico statiche di verifica della corretta esecuzione e del comportamento sotto azioni di progetto. Tali prove devono essere spinte ad un carico assiale pari a 1,5 volte l'azione di progetto utilizzata per le verifiche SLE. In presenza di pali strumentati il valore di prova può essere ridotto a 1,2 volte l'azione SLE.

Il numero e l'ubicazione delle prove di verifica devono essere stabilite dal Collaudatore ed in ogni caso, non possono essere inferiori a quanto indicato al §6.4.3.7.2 delle NTC2008.

8.4.4.5 Controllo dell'integrità dei pali

Ai sensi delle NTC2008 è necessario eseguire controlli di integrità su almeno il 5% dei pali della fondazione, con un minimo di 2 pali.

8.4.4.6 Valutazione della rigidezza verticale del vincolo elastico sommitale che simula il palo

Per modellare con migliore accuratezza il comportamento del solettone sommitale è possibile modellare il vincolo di appoggio offerto dal palo tramite una molla verticale di opportuna rigidezza. La rigidezza di tale molla può essere stimata considerando che l'intera resistenza laterale del palo si mobilita per abbassamenti compresi tra 5 e 10 mm.

Pertanto, considerando che i pali in questione hanno una resistenza laterale di circa 5.000 kN, si ottiene una rigidezza della corrispondente molla pari a:

Kpalo,max = 5.000 / 0,005 = 1.000.000 kN/m Kpalo,min = 5.000 / 0,01 = 500.000 kN/m

Con ragionamento analogo è stata valutata la rigidezza verticale di una molla che simula il palancolato (per unità di sviluppo longitudinale del palancolato):

Kpalancolato, medio = 46.500 kN/m/m

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

8.4.5 Verifica dei tiranti di ancoraggio a bulbo iniettato

Il vincolo orizzontale in sommità dell'opera è costituito da (Figura 53):

- T1) tiranti di ancoraggio a bulbo iniettato tipo IRS, armati con 7 trefoli da 0,6", con 21 m di parte libera, 20 m di fondazione, inclinati alternativamente a 15 e 20° sull'orizzontale con interasse di 1,80 m.
- T2) ancoraggio integrativo lato terra, a partire dalla terza fila di pali lato terra, di lunghezza 35,5 m, inclinazione 18° sull'orizzontale, con 18,5 m di parte libera e 17 m di fondazione, armato con barra Dywidag ø47 ed interasse 3,60 m; il bulbo di fondazione realizzato con un trattamento coassiale in jet grouting;

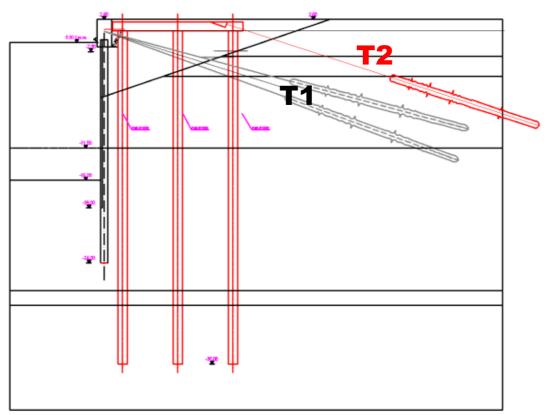


Figura 53 - Sezione tipo intervento di adeguamento con indicazione dei tiranti di ancoraggio

In Tabella 23 sono indicati i risultati del tiro nelle varie combinazioni di carico considerate per le verifiche di funzionalità (SLE/SLD) e sicurezza (SLU/SLV).

Tabella 23. Sollecitazioni di progetto sugli ancoraggi

		SLE	SLD	SLU11	SLU12	SLV
T1 (trefoli)	[kN]	623	661	842	751	744
T2 (Dywidag)	[kN]	421	599	592	578	820

In conclusione i tiri di progetto da considerare nelle verifiche degli ancoraggi sono indicati in Tabella 24.

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

Tabella 24. Sollecitazione massima di progetto su ogni ancoraggio

			max (SLU11-SLU12-SLV)
T1	Ancoraggio a 7tr/1,80m	[kN]	842
T2	Ancoraggio Dywidag ø47/3,60m	[kN]	820

8.4.5.1 Posizione della fondazione dell'ancoraggio

Per poter contare sulla piena capacità degli ancoraggi a tergo delle opere di sostegno si deve verificare che la fondazione dell'ancoraggio sia esterna al cuneo di spinta attiva dell'opera di sostegno. Tale verifica deve tenere conto anche del fatto che in condizioni sismiche la potenziale superficie di scorrimento dei cunei di spinta presenta un'inclinazione sull'orizzontale minore di quella relativa al caso statico. Le NTC2008 definiscono la lunghezza libera in condizioni sismiche (L_e) pari a:

$$L_e = L_s \left(1 + 1.5 \cdot \frac{a_{max}}{q} \right)$$

dove, oltre ai simboli noti, L_s rappresenta la lunghezza libera dell'ancoraggio in condizioni statiche. Con i valori di accelerazione di progetto per il sito di Ravenna si ha:

$$L_e = L_s(1 + 1.5 \cdot 0.298) = 1.45L_s$$

In Figura 54 è presentata la costruzione di Peck per la determinazione della lunghezza libera dei tiranti a tergo di una paratia e l'applicazione al caso della banchina in esame dove, oltre al cuneo attivo, si considera l'ulteriore lunghezza di rispetto prevista dalle NTC2008 per le condizioni sismiche.

La posizione dei bulbi di fondazione, come si vede in figura, risulta sostanzialmente esterna al volume di terreno potenzialmente instabile in condizioni sismiche.

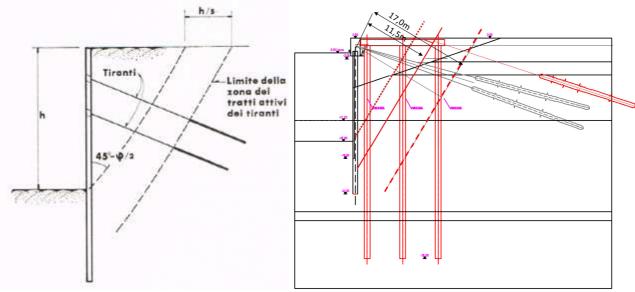


Figura 54 – a sx) definizione della lunghezza libera degli ancoraggi a tergo di una paratia secondo Peck; a dx) determinazione della lunghezza libera degli ancoraggi in condizioni sismiche secondo NTC2008

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

8.4.5.2 Ancoraggi T1 – Tiranti esistenti a 7 trefoli

La verifica deve essere eseguita sia rispetto alla fondazione dell'ancoraggio (verifica geotecnica) che nei riguardi dell'armatura metallica (verifica lato acciaio). E' necessario verificare che la resistenza di progetto dell'ancoraggio, lato fondazione (R_{ad}) e lato armatura, (R_{td}) sia sempre superiore all'azione di progetto (E_{d}).

La valutazione della resistenza ultima della fondazione degli ancoraggi può essere fatta con riferimento a formulazioni teoriche o empiriche che tengono conto del diametro finale del bulbo, delle caratteristiche di resistenza all'interfaccia e delle modalità realizzative. La capacità previsionale è comunque limitata e per questo la Norma Nazionale prevede che la valutazione del carico limite possa essere effettuata solo "in prima approssimazione" con tale metodo e che è sempre necessario confermare la congruità delle assunzioni fatte attraverso prove di trazione in sito. Per il porto di Ravenna sono però disponibili numerosi campi prova realizzati negli anni scorsi ed è quindi possibile riferirsi ai risultati di tali sperimentazioni in vera grandezza per valutare con migliore approssimazione la effettiva resistenza limite dei bulbi di fondazione. In ogni caso sarà necessario prevedere l'esecuzione di un opportuno campo prova per valutare che i tiranti effettivamente realizzati raggiungano le prestazioni richieste.

8.4.5.2.1 Sperimentazione su tiranti di prova tipo IRS

Proprio in corrispondenza della banchina Trattaroli Sud sono disponibili i risultati del collaudo dei tiranti di prova (Allegato A- Relazione Tecnica sulle risultanze del campo prove per i tiranti definitivi) In Figura 55 si riporta il grafico tiro-allungamento dei tre tiranti sottoposti a collaudo. Si tratta di tiranti armati con 7 trefoli da 0,6" con tratto libero lungo 21 m, tratto attivo lungo 20 m e diametro di perforazione pari a 160 mm. Due tiranti sono stati caricati fino a 129 t, uno fino a 168 t, senza raggiungere lo sfilamento. La forma del grafico carico-allungamento del tirante 1, mancante di una chiara curvatura, indica una resistenza allo sfilamento dell'ordine delle 200 t.

In ogni caso, considerando molto cautelativamente il tiro massimo di prova (168 t) come tiro al limite a sfilamento, tenendo conto della tecnologia IRS e di un coefficiente di guadagno in diametro alfa pari a 1,5 si ha una tensione tangenziale di circa 110 kPa. Tale risultato è in accordo con il valore della tensione tangenziale limite ottenibile dal grafico di Bustamante e Doix per terreni granulari moderatamente addensati (Figura 56).

In definitiva per le calcolazioni successive si assumerà una resistenza tangenziale limite di 110 kPa.

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

Pag.: 75 di 104

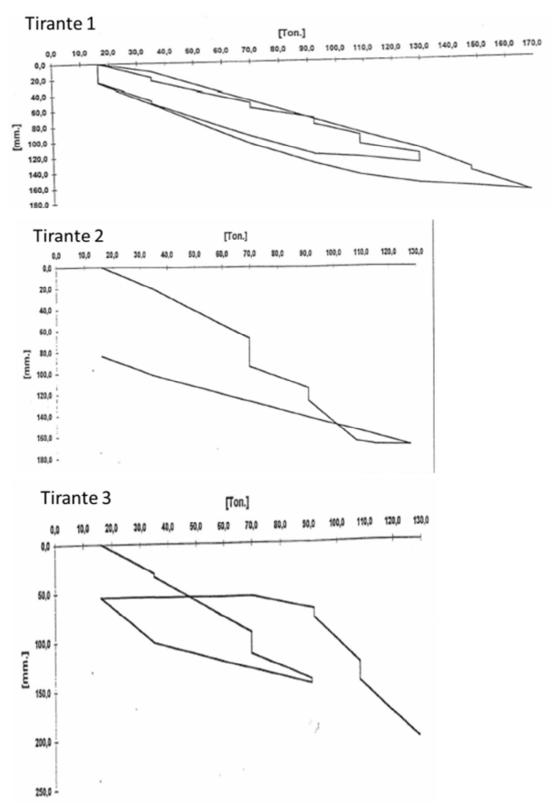


Figura 55 – Risultati del collaudo dei tiranti di prova della banchina Trattaroli Sud (Allegato A- Relazione Tecnica sulle risultanze del campo prove per i tiranti definitivi).

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

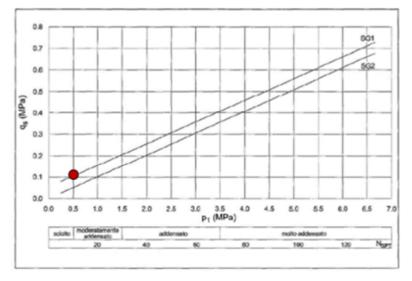


Figura 56 – Valore della resistenza unitaria limite stimata per i tiranti di prova collocati nell'abaco di Bustamante e Doix (1985) per terreni incoerenti

8.4.5.2.2 Verifica allo sfilamento della fondazione

Per il dimensionamento geotecnico deve risultare rispettata la condizione di stato limite ultimo di sfilamento della fondazione dell'ancoraggio. La verifica di tale condizione deve essere effettuata con riferimento alla combinazione A1+M1+R3.

In Figura 57 è presentato uno stralcio del progetto della banchina Trattaroli Sud relativo ai tiranti di ancoraggio effettivamente realizzati.

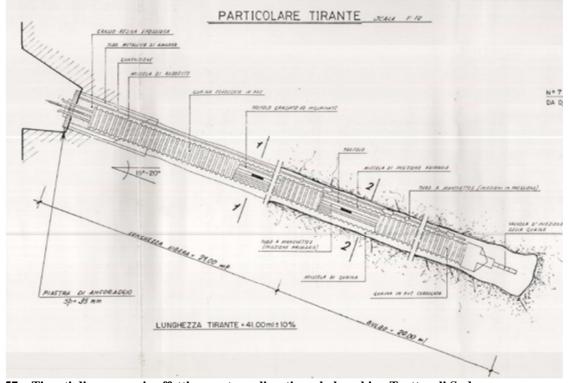


Figura 57 – Tiranti di ancoraggio effettivamente realizzati per la banchina Trattaroli Sud Dalle formule empiriche è possibile stimare una resistenza allo sfilamento pari a

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

 $R_{ac} = \pi D_s \alpha q_s L_s = 1.659 \text{ kN}$

con:

D_s è il diametro nominale del foro

160 mm;

α è il coefficiente di guadagno in diametro (vedi Tabella 25)

1,5;

q_s è la resistenza unitaria all'interfaccia bulbo di fondazione-terreno

110 kPa;

L_s è la lunghezza del tratto vincolato (lunghezza attiva)

20 m.

Tabella 25. Valori del coefficiente di guadagno in diametro (α) e quantità minima di miscela di iniezione consigliata

TERRENO	Valor	idiα	Quantità minima di	Quantità minima di miscela consigliata		
	IRS	IGU	IRS	IGU		
Ghiaia	1.8	1.3 - 1.4	1.5 Vs	1.5 Vs		
Ghiaia sabbiosa	1.6 - 1.8	1.2 - 1.4	1.5 Vs	1.5 Vs		
sabbia ghiaiosa	1.5 - 1.6	1.2 - 1.3	1.5 Vs	1.5 Vs		
Sabbia grossa	1.4 - 1.5	1.1 - 1.2	1.5 Vs	1.5 Vs		
Sabbia media	1.4 - 1.5	1.1 - 1.2	1.5 Vs	1.5 Vs		
Sabbia fine	1.4 - 1.5	1.1 -1.2	1.5 Vs	1.5 Vs		
Sabbia limosa	1.4 - 1.5	1.1 - 1.2	(1.5 - 2) Vs	1.5 Vs		
Limo	1.4 - 1.6	1.1 - 1.2	2 Vs	1.5 Vs		
Argilla	1.8 - 2.0	1.2	(2.5 - 3) Vs	(1.5 - 2) Vs		
Marne	1.8	1.1 - 1.2	(1.5 - 2) Vs per	strati compatti		
Calcari marnosi	1.8	1.1 - 1.2	A comment of the comm	CA PAGE AND A STATE OF THE STAT		
Calcari alterati o fratturati	1.8	1.1 - 1.2	(2 - 6) Vs a più p	er strati fratturati		
Roccia alterata e/o fratturata	1.2	1.1	(1.1 - 1.5) Vs per st Vs o più per :	rati poco fratturati; 2 strati fratturati		

Nota la resistenza limite a sfilamento (R_{ac}), la resistenza caratteristica viene determinata assumendo un coefficiente di correlazione $\xi_{a3} = 1,6$ (stratigrafia ben nota) come:

$$R_{ak} = R_{ac} / \xi_{a3} = 1.037 \text{ kN}$$

In conclusione la resistenza di progetto (R_{ad}) viene determinata dividendo la resistenza caratteristica per il coefficiente di sicurezza $\gamma_R = 1,2$ (tiranti permanenti).

$$R_{ad} = R_{ak} / \gamma_R = 864 \text{ kN}$$

In Tabella 26 si riporta la sintesi delle calcolazioni svolte e la verifica di sicurezza dei bulbi di ancoraggio T1.

Tabella 26. Verifica di sicurezza lato fondazione degli ancoraggi T1

	R _{ac} [kN]	R _{ak} [kN]	R _{ad} [kN]	E _d [kN]	$R_d \ge E_d$
T1 (7 trefoli)	1.659	1.037	864	842	✓

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

DIREZIONE TECNICAPag.: 78 di 104

Autorità di Sistema Portuale del Mar Adriatico Centro Settentrionale

8.4.5.3 Ancoraggi T2 – nuovi ancoraggi armati con barra tipo Dywidag

La verifica deve essere eseguita sia rispetto alla fondazione dell'ancoraggio (verifica geotecnica) che nei riguardi dell'armatura metallica (verifica lato acciaio). E' necessario verificare che la resistenza di progetto dell'ancoraggio, lato fondazione (R_{ad}) e lato armatura, (R_{td}) sia sempre superiore all'azione di progetto (E_{d}).

La valutazione della resistenza ultima della fondazione degli ancoraggi può essere fatta con riferimento a formulazioni teoriche o empiriche che tengono conto del diametro finale del bulbo, delle caratteristiche di resistenza all'interfaccia e delle modalità realizzative. La capacità previsionale è comunque limitata e per questo la Norma Nazionale prevede che la valutazione del carico limite possa essere effettuata solo "in prima approssimazione" con tale metodo e che è sempre necessario confermare la congruità delle assunzioni fatte attraverso prove di trazione in sito. Per il porto di Ravenna sono però disponibili numerosi campi prova realizzati negli anni scorsi ed è quindi possibile riferirsi ai risultati di tali sperimentazioni in vera grandezza per valutare con migliore approssimazione la effettiva resistenza limite dei bulbi di fondazione. In ogni caso sarà necessario prevedere l'esecuzione di un opportuno campo prova per valutare che i tiranti effettivamente realizzati raggiungano le prestazioni richieste.

8.4.5.3.1 Sperimentazione su tiranti di prova in jet-grouting al porto di Ravenna

Nel 2008, per la costruzione del banchinamento vicino (Trattaroli Nord), sono stati realizzati dei tiranti preliminari di prova con bulbo in jet-grouting. La scelta di utilizzare una tecnologia speciale per i bulbi di fondazione era dettata dalla presenza di una stratigrafia sfavorevole, con pochi metri di sabbie su cui poter fare sicuro affidamento.

La geometria dei tiranti di prova è indicata in Figura 58. Sono stati sottoposti a prova di trazione 7 tiranti, di cui 3 con bulbo di minore lunghezza per prove di sfilamento (tiranti tipo A) e 4 con geometria identica a quella dei tiranti definitivi ed armatura maggiorata (tiranti tipo B).

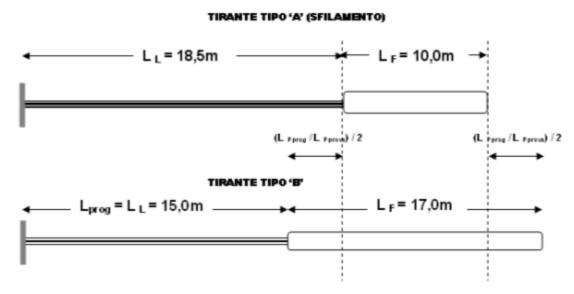


Figura 58 – Geometria dei tiranti di progetto realizzati nel 2008

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

Tabella 27 sono riassunte le principali caratteristiche realizzative dei tiranti di progetto.

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

Pag.: 80 di 104

Tabella 27. Caratteristiche realizzative dei tiranti di progetto del 2008

			TABELLA	A REALIZ	ZAZIONE	TIRANTI	DI PROC	GETTO EUR	ODOCKS			
		PERF. T	TRANTE		ACCIAIO				NIEZIONI		RAPP.	ACQUA-
TIPO	CODICE	Diametro	Lungh.	Lunghe	zza (m)	N. Trefoli	INCL.	JETTI	NG	SECON.	CEMI	ENTO
		(mm)	(m)	Libera	Bulbo	IV. ITEIOII		DATA	kg cem.	kg cem.	Jett.	second.
Α	T2-F1	160	28,5	18,5	10,0	8	15°	03/04/2008	4000	800	1:1	1:2
В	T3-F1	160	32,0	15,0	17,0	8	15°	03/04/2008	6800	1400	1:1	1:2
В	T1-F2	160	32,0	15,0	17,0	8	15°	25/09/2008	6500	1900	1:1	1:1,6
Α	T2-F2	160	28,5	18,5	10,0	8	15°	25/09/2008	4100	1200	1:1	1 : 1,6
В	T3-F2	160	32,0	15,0	17,0	8	15°	23/09/2008	6500	2100	1:1	1 : 1,6
В	T4-F2	160	32,0	15,0	17,0	8	15°	23/09/2008	6600	1600	1:1	1 : 1,6
Α	T5-F2	160	28,5	18,5	10,0	8	15°	23/09/2008	4200	1300	1:1	1 : 1,6

In Figura 59 sono mostrate le curve carico-allungamento ottenute dalle prove svolte i cui risultati salienti sono riassunti in

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

Tabella 28.

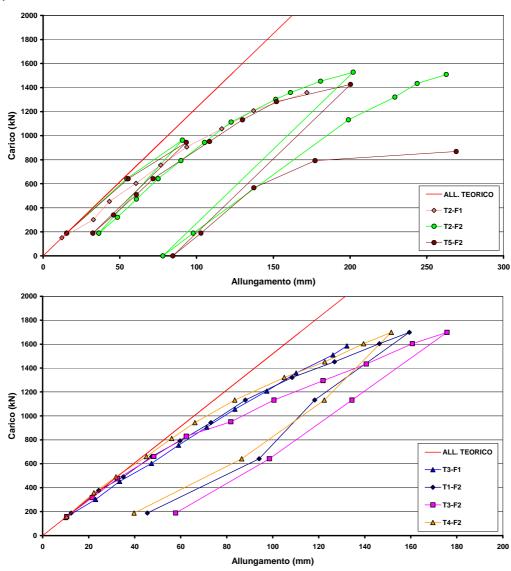


Figura 59 – Curve carico-allungamento per i tiranti tipo A (in alto) e B (in basso)

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

Pag.: 82 di 104

Tabella 28. Risultati delle prove di carico sui tiranti di progetto del 2008

TIPO	CODICE	PERF. T Diametro (mm)	IRANTE Lungh. (m)		ACCIAIO zza (m) Bulbo	N. Trefoli	INCL.	Stima volume bulbo Jett. (m³)	Stima diametro bulbo (m)	Carico max sollecitante (kN)	Condizioni Finali prova
	T0 F4	,						, ,	0.00	1208	NO ROTTURA
A	T2-F1	160	28,5	18,5	10,0	8	15°	5,33	0,82	1359	SFILAMENTO
В	T3-F1	160	32,0	15,0	17,0	8	15°	9,07	0,82	1585	NO ROTTURA
В	T1-F2	160	32,0	15,0	17,0	8	15°	8,67	0,81	1698	NO ROTTURA
Α	T2-F2	160	28,5	18,5	10,0	8	15°	5,47	0,83	1453	NO ROTTURA
_ ^	12-F2	160	20,5	10,5	10,0	0	15	5,47	0,03	1528	SFILAMENTO
В	T3-F2	160	32,0	15,0	17,0	8	15°	8,67	0,81	1698	NO ROTTURA
В	T4-F2	160	32,0	15,0	17,0	8	15°	8,80	0,81	1698	NO ROTTURA
Α	T5-F2	160	28,5	18,5	10,0	8	15°	5,60	0,84	1283	NO ROTTURA
	13-12	100	20,0	10,5	10,0	٥	20	3,60	0,04	1427	SFILAMENTO

Si osserva che tutti i tiranti di tipo A sono stati portati a sfilamento. Il carico massimo raggiunto, normalizzato alla lunghezza del bulbo risulta:

 $\begin{array}{ll} \text{T2-F1} & q = 1359 \: / \: 10 = 136 \: kN/m \\ \text{T2-F2} & q = 1528 \: / \: 10 = 153 \: kN/m \\ \text{T5-F2} & q = 1427 \: / \: 10 = 143 \: kN/m \end{array}$

I risultati indicato un'ottima uniformità di comportamento ed una resistenza unitaria che può essere cautelativamente assunta pari a 130 kN/m. Si tratta di un valore molto elevato tenuto conto dei terreni presenti. Se si assume un valore limite della tensione tangenziale compreso tra 80 e 100 kPa, significherebbe che il bulbo ottenuto con il trattamento in jet grouting ha un diametro compreso tra 45 e 55 cm.

Sulla base delle prove a sfilamento la resistenza del tirante con bulbo di L = 17 m risulterebbe:

$$R_{ac.1} = 130 \times 17 = 2.210 \text{ kN}$$

Sulla base dei risultati delle prove di idoneità si sono raggiunti i 1700 kN senza raggiungere lo sfilamento. Sulla base della forma delle curve carico-cedimento ed in via cautelativa si assume un valore massimo di resistenza allo sfilamento cautelativamente pari a:

$$R_{ac.2} = 2.100 \text{ kN}$$

8.4.5.3.2 Verifica allo sfilamento della fondazione

Per il dimensionamento geotecnico deve risultare rispettata la condizione di stato limite ultimo di sfilamento della fondazione dell'ancoraggio. La verifica di tale condizione deve essere effettuata con riferimento alla combinazione A1+M1+R3.

Il progetto prevede che i nuovi ancoraggi siano realizzati in maniera analoga agli esistenti, con medesima tecnologia realizzativa (in particolare bulbo di fondazione con pre-trattamento in jet-grouting) e medesima geometria. Pertanto la resistenza ultima a sfilamento può essere assunta pari a quella misurata sui tiranti di prova del 2008, prima descritti.

Nota la resistenza limite a sfilamento (R_{ac}), la resistenza caratteristica viene determinata assumendo un coefficiente di correlazione $\xi_{a3} = 1,6$ (stratigrafia ben nota) come:

$$R_{ak} = R_{ac} / \xi_{a3} = 1.312 \text{ kN}$$

Quindi la resistenza di progetto della fondazione (R_{ad}) viene determinata dividendo la resistenza caratteristica per il coefficiente di sicurezza $\gamma_R = 1,2$ (tiranti permanenti).

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

$$R_{ad} = R_{ak} / \gamma_R = 1.094 \text{ kN}$$

In Tabella 29 si riporta la sintesi delle calcolazioni svolte e la verifica di sicurezza dei bulbi di ancoraggio T2.

Tabella 29. Verifica di sicurezza lato fondazione dei nuovi ancoraggi T2

	R _{ac} [kN]	R _{ak} [kN]	R _{ad} [kN]	E _d [kN]	$R_d \ge E_d$
T2 (nuovi ancoraggi)	2.100	1.312	1.094	820	✓

8.4.5.4 Definizione del CAMPO PROVA per gli ancoraggi preliminari di prova

In accordo alle NTC2008 la realizzazione degli ancoraggi definitivi sarà preceduta dall'esecuzione di ancoraggi preliminari di prova idonei ad accertarne le prestazioni previste. L'esecuzione delle prove su tali ancoraggi dovrà essere eseguita in conformità alla Raccomandazioni AGI-AICAP "Ancoraggi nei Terreni e nelle Rocce" – Giugno 2012.

8.4.5.5 Prove di verifica e modalità di tesatura

Ai sensi del paragrafo 6.6.4 delle NTC 2008 le prove di verifica devono essere eseguite su tutti gli ancoraggi e consistono in un ciclo semplice di carico e scarico; in questo ciclo il tirante viene sottoposto ad una forza pari a 1,2 volte quella massima prevista in esercizio, verificando che gli allungamenti misurati siano nei limiti previsti in progetto o compatibili con le misure sugli ancoraggi preliminari di prova. Lo svolgimento di tali prove dovrà essere conforme alle Raccomandazioni AGI-AICAP "Ancoraggi nei Terreni e nelle Rocce" – Giugno 2012.

8.4.5.6 Protezione degli ancoraggi

I tiranti di ancoraggio a bulbo iniettato risultano particolarmente sensibili alla corrosione. Infatti la presenza di acciai ad elevata resistenza unita all'ambiente di installazione aggressivo (ambiente marino) rende necessario adottare dei provvedimenti specifici per garantire la durabilità in condizioni di piena efficienza dell'ancoraggio. Gli ancoraggi utilizzati saranno certificati ai sensi del decreto del Consiglio Superiore dei Lavori Pubblici n. 12391 del 22 dicembre 2011 "Linea Guida per il rilascio della certificazione di idoneità tecnica all'impiego di tiranti per uso geotecnico di tipo attivo".

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

9 VERIFICHE STRUTTURALI

Nel seguito sono riportate le verifiche agli stati limite ultimi (SLU) e di esercizio (SLE) degli elementi strutturali costituenti la nuova banchina.

Le sollecitazioni agenti sui singoli elementi strutturali per le combinazioni di carico definite in condizioni statiche e sismiche sono state ricavate dai risultati dei calcoli geotecnici eseguiti nei precedenti paragrafi ed ai quali si rimanda per maggiori dettagli.

9.1 Palancolato esistente

La paratia esistente è realizzata con palancole metalliche tipo HZ 975 C sol. 14/11 – ZH 9,5 della ProfilARBED in acciaio tipo Fe510. Le caratteristiche del palancolato combinato, dei pali principali HZ e delle palancole intermedie ZH sono state ricavate dal catalogo del produttore del quale si riportano nelle figure seguenti alcuni estratti.

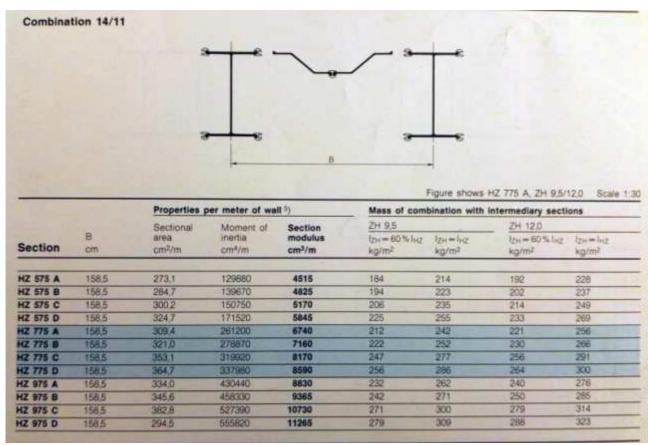


Figura 60 - HZ 975 C sol. 14/11 - ZH 9,5

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

Pag.: 85 di 104

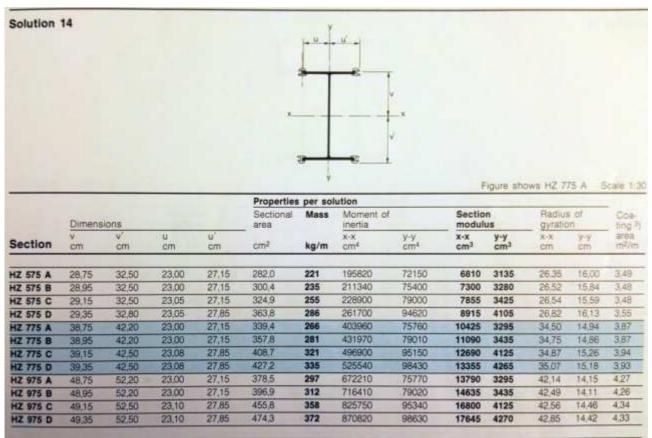


Figura 61 - HZ 975 C sol. 14

Sol. 11	*	1110.4	_	-	Sol. 13		4		1110-1		1.
	Sol.								Figure shows 2	ZH 9,5	Scale 1:30
ZH 9,5 1)	-	65,3	51	-			_		_	1,22	
ZH 9,5 3	11	150,9	118	10160	-	945	_	_	-	2.55	10,74
	11	150,9	118	10040	-	910	_	-	-	2.55	11,05
	13	191,7	150	14720		1405	-	-	-	2.84	8,53
	13	191,7	150	14740		1405	_	-	_	2.84	8,52
	13	201,9	158	15410		1380	_	-	-	2.87	7,84
	13	201,9	158	15420	-	1380	-	-		2,87	7,84
ZH 12,0 1)	-	79,1	62	-	-	-		-	-	1,22	-
ZH 12,0 3	11	178,6	140	11850	-	1095		-		2.55	10.80
	11	178.6	140	11750	-	1065		-	-	2.55	11,05
	13	219,4	172	16400	-	1545	-	-		2.84	8.89
	13	219,4	172	16420	-	1545	-	-	-	2.84	8,89
	13	229,6	180	17130	-	1530	-	- Control	-	2,87	8,30
	13	229,6	180	17150	_	1530	-	_		2.87	8.30

Figura 62 – Sol. 11 ZH 9,5

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

Pag.: 86 di 104

Nel prospetto seguente sono sintetizzate le caratteristiche del palancolato combinato, dei pali principali HZ e delle palancole intermedie ZH.

	Area	Momento di inerzia	Modulo elastico
HZ975C-14/11-ZH 9,5	$cm^2/m 382,8$	cm ⁴ /m 527.390	$cm^3/m 10.730$
HZ975C-14	cm ² 455,8	cm ⁴ 825.750	cm ³ 16.800
Sol. 11 ZH 9,5	cm ² 150,9	cm ⁴ 10.160	cm ³ 946

La capacità resistente delle sezioni è determinata con il metodo elastico (E) assumendo un comportamento elastico lineare del materiale, sino al raggiungimento della condizione di snervamento. L'analisi globale della struttura (modellazione geotecnica) è stata eseguita con il metodo elastico (E), valutando gli effetti delle azioni nell'ipotesi che il legame tensionedeformazione del materiale sia indefinitamente lineare.

Le verifiche strutturali delle sezioni sono state eseguite tenendo conto dei fenomeni di corrosione che inducono una perdita di spessore dei singoli elementi con conseguente diminuzione delle loro caratteristiche di resistenza.

A tal proposito, si è fatto riferimento al D.M. 31 luglio 2012, "Approvazione delle Appendici nazionali recanti i parametri tecnici per l'applicazione degli Eurocodici", con cui sono stati adottati i valori di corrosione raccomandati nelle tabelle 4-1 e 4-2 della UNI EN 1993-5:2007 "Eurocodice 3 - Progettazione delle strutture di acciaio - Parte 5" e riportate per semplicità di lettura nel seguito.

Table 4-1: Recommended value for the loss of thickness [mm] due to corrosion for piles and sheet piles in soils, with or without groundwater

Required design working life	5 years	25 years	50 years	75 years	100 years
Undisturbed natural soils (sand, silt, clay, schist,)	0,00	0,30	0,60	0,90	1,20
Polluted natural soils and industrial sites	0,15	0,75	1,50	2,25	3,00
Aggressive natural soils (swamp, marsh, peat,)	0,20	1,00	1,75	2,50	3,25
Non-compacted and non-aggressive fills (clay, schist, sand, silt,)	0,18	0,70	1,20	1,70	2,20
Non-compacted and aggressive fills (ashes, slag,)	0,50	2,00	3,25	4,50	5,75

Notes:

- Corrosion rates in compacted fills are lower than those in non-compacted ones. In compacted fills the figures in the table should be divided by two.
- The values given for 5 and 25 years are based on measurements, whereas the other values are extrapolated.

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

Pag.: 87 di 104

Table 4-2: Recommended value for the loss of thickness [mm] due to corrosion for piles and sheet piles in fresh water or in sea water

Required design working life	5 years	25 years	50 years	75 years	100 years
Common fresh water (river, ship canal,) in the zone of high attack (water line)	0,15	0,55	0,90	1,15	1,40
Very polluted fresh water (sewage, industrial effluent,) in the zone of high attack (water line)	0,30	1,30	2,30	3,30	4,30
Sea water in temperate climate in the zone of high attack (low water and splash zones)	0,55	1,90	3,75	5,60	7,50
Sea water in temperate climate in the zone of permanent immersion or in the intertidal zone	0,25	0,90	1,75	2,60	3,50

Notes:

- The highest corrosion rate is usually found in the splash zone or at the low water level in tidal waters.
 However, in most cases, the highest bending stresses occur in the permanent immersion zone, see Figure 4-1.
- 2) The values given for 5 and 25 years are based on measurements, whereas the other values are extrapolated.

Come emerge anche dalle tabelle, i tassi di corrosione a cui il palancolato è soggetto variano a seconda delle condizioni al contorno (ad es. ambiente marino zona immersa e/o *splash zone*, tipo di terreno a tergo, etc.).

I valori teorici raccomandati di corrosione dopo circa 20 anni sono pertanto i seguenti:

- Lato terra (terreno naturale indisturbato): $\Delta t_{20} = 0.24$ mm
- Lato mare (acqua del mare in clima temperato nella zona di permanente immersione o nella zona intertidale): $\Delta t_{20} = 0.70$ mm
- Perdita di spessore totale: $\Delta t_{20} = 0.94$ mm

Le misure ultrasoniche degli spessori degli acciai dei palancolati esistenti hanno invece rilevato lungo entrambe le linee di misura (punti 9 e 10) valori degli spessori confrontabili o maggiori di quelli nominali:

- "Punto 9": $t_{\text{medio}} = 21.7 \text{ mm} (t_{\text{min}} = 21.6 \text{ mm} t_{\text{max}} = 21.8 \text{ mm}) > 21 \text{ mm}$
- "Punto 10": $t_{\text{medio}} = 20.8 \text{ mm} \ (\Delta t_{\text{min}} = 20.0 \text{ mm} \Delta t_{\text{max}} = 21.3 \text{ mm}) \sim 21 \text{ mm}$

e comunque entro i limiti delle tolleranze dichiarate dal produttore (si veda Figura 63).

Puntualmente il valore minimo di 20 mm misurato sul campione prelevato è coerente con la corrosione teorica pari a circa 0,94 mm.

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

Tolerances	HZ	ZH	RH
Weight ¹¹		± 4 %	
Length	± 200 mm	± 50 mm	± 100 mm ³)
Thickness	e ≤ 12,5 mm: + 2,0 mm/- 1,0 mm e > 12,5 mm; + 2,5 mm/- 1,5 mm		
Height	± 5,0 m	m	-
Width s.pile	± 2 %	37	
Width interlocked elements	±3%		-
Straightness	0.2 %		-
Ends out of square?)	2 %		-

Figura 63 – Tolleranze

Per tale motivo, a vantaggio di sicurezza, ai fini delle verifiche si assumono i tassi di corrosione teorici a 70 anni:

- Lato terra (terreno naturale indisturbato): 0,84 mm
- Lato mare (acqua del mare in clima temperato nella zona di permanente immersione o nella zona intertidale): 2,45 mm.

Le caratteristiche di resistenza dei pali principali HZ e dei pali intermedi ZH, applicando i valori di corrosione di cui sopra, sono state ricavate con l'ausilio del programma AutoCAD della Autodesk. Nel prospetto seguente sono riportate le caratteristiche di resistenza delle sezioni corrose.

	Area	Momento di inerzia	Modulo elastico
HZ975C-14	$cm^2 370,9$	cm ⁴ 647.660	cm ³ 12.552
Sol. 11 ZH 9,5	cm ² 98,7	cm ⁴ 7.116	cm ³ 641

Si osserva inoltre che la diminuzione delle caratteristiche resistenti delle sezioni comporta una ridistribuzione dello stato sollecitativo della struttura che essendo complessivamente meno rigida è quindi soggetta da un lato a minori sollecitazioni e dall'altro a maggiori deformazioni.

Nel seguito si riportano le verifiche di resistenza delle membrature a taglio e flessione considerando le caratteristiche di resistenza delle sezioni corrose. A vantaggio di sicurezza le verifiche sono state eseguite utilizzando i valori ottenuti dal modello con le rigidezze degli elementi non corrosi.

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

Taglio

L'area resistente a taglio (A_v) per profili ad I caricati nel piano dell'anima, nell'ipotesi che il taglio sia portato solo dal profilo HZ975C-14, si può assumere pari a (cfr. §4.2.4.1.2 del D.M. 14/01/2008):

$$A_v = A - 2 \times b \times t_f + (t_w + 2r) \times t_f = 21.898 \text{ mm}^2$$

dove:

- $A = 37.090 \text{ mm}^2 \text{ è l'area della sezione};$
- b = 457,1 mm è la larghezza delle ali;
- $t_f = 17.7 \text{ mm}$ è lo spessore delle ali;
- $t_w = 14,3 \text{ mm } \text{è lo spessore dell'anima};$
- r = 20.8 mm è il raggio del raccordo tra l'anima e le ali.

La resistenza di calcolo a taglio (V_{c,Rd}), in assenza di torsione, vale pertanto:

$$V_{c,Rd} = A_v \times f_{vk} / (\sqrt{3} \times \gamma_{M0}) = 4.275 \text{ kN}$$

dove:

- $A_v = 21.898 \text{ mm}^2 \text{ è l'area resistente a taglio della sezione};$
- $f_{vk} = 355 \text{ N/mm}^2$ è la resistenza caratteristica a snervamento (acciaio S355GP);
- γ_{M0} = 1,05 è il coefficiente di sicurezza per la resistenza delle sezioni di classe 1-2-3-4 (cfr. Tabella 4.2.V del D.M. 14/01/2008).

Il valore di calcolo massimo dell'azione tagliante (V_{Ed}) si ha nella combinazione statica SLU11:

$$V_{Ed} = 315 \times 1,585 = 499 \text{ kN}$$

La verifica di resistenza delle membrature a taglio è pertanto soddisfatta:

$$\eta = V_{c,Rd} / V_{Ed} = 8,57 \ge 1,00$$

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

Flessione

Essendo il taglio massimo di calcolo (V_{Ed}) inferiore alla metà della resistenza di calcolo a taglio $(V_{c,Rd})$:

$$V_{Ed,max} = 499 \text{ kN} \le 0.5 \times V_{c,Rd} = 2.137.5 \text{ kN}$$

si trascura l'influenza del taglio sulla resistenza a flessione.

La resistenza di calcolo a flessione del palo principale HZ (M_{el,Rd}) vale pertanto:

$$M_{el,Rd}(HZ975C-14) = W_{el,min} \times f_{vk} / \gamma_{M0} = 4.244 \text{ kNm}$$

dove:

- $W_{el.min} = 12.552 \text{ cm}^3 \text{ è il modulo elastico della sezione};$
- $f_{vk} = 355 \text{ N/mm}^2$ è la resistenza caratteristica a snervamento (acciaio S355GP);
- γ_{M0} = 1,05 è il coefficiente di sicurezza per la resistenza delle sezioni di classe 1-2-3-4 (cfr. Tabella 4.2.V del D.M. 14/01/2008).

La resistenza di calcolo a flessione della palancola intermedia ZH (Mel,Rd) vale invece:

$$M_{el,Rd}(ZH9,5) = W_{el,min} \times f_{yk} / \gamma_{M0} = 217 \text{ kNm}$$

dove:

- $W_{el,min} = 641 \text{ cm}^3 \text{ è il modulo elastico della sezione};$
- $f_{vk} = 270 \text{ N/mm}^2$ è la resistenza caratteristica a snervamento (acciaio S270GP);
- γ_{M0} = 1,05 è il coefficiente di sicurezza per la resistenza delle sezioni di classe 1-2-3-4 (cfr. Tabella 4.2.V del D.M. 14/01/2008).

Il momento flettente di calcolo (M_{Ed}) si ha nella combinazione sismica SLV:

$$M_{Ed} = 1.963 \times 1,585 = 3.111 \text{ kNm (SLV)}$$

Il momento flettente di calcolo agente sul palo principale HZ vale:

$$M_{Ed}(HZ975C\text{-}14) = M_{Ed} \times I_H/(I_H + I_Z) = 3.080 \ kNm$$

mentre quello agente sulla palancola intermedia AZ vale:

$$M_{Ed}(ZH9,5) = M_{Ed} \times I_Z / (I_H + I_Z) = 31 \text{ kNm}$$

dove:

- $I_H = 647.660 \text{ cm}^4 \text{ è}$ il momento di inerzia del palo principale HZ;
- $I_Z = 7.116 \text{ cm}^4 \text{ è il momento di inerzia del palo intermedio AZ}$.

La verifica di resistenza delle membrature a flessione è pertanto soddisfatta con i seguenti coefficienti di sicurezza:

$$\begin{split} \eta(HZ975C\text{-}14) &= M_{el,Rd} \: / \: M_{Ed} = 1{,}38 \ge 1{,}00 \\ \eta(ZH9{,}5) &= M_{el,Rd} \: / \: M_{Ed} = 7{,}00 \ge 1{,}00 \end{split}$$

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

9.2 Tiranti di ancoraggio esistenti

I tiranti esistenti sono realizzati con tiranti di ancoraggio a bulbo iniettato tipo IRS, armati con 7 trefoli da 0,6" (area complessiva di 1.987 mm²) con 21 m di parte libera, 20 m di fondazione, inclinati alternativamente a 15° e 20° sull'orizzontale con interasse di 1,80 m.

Le caratteristiche di resistenza degli acciai in trefoli sono le seguenti:

- tensione caratteristica di rottura: $f_{ptk} \ge 1.770 \text{ N/mm}^2$
- tensione caratteristica di rottura all'1% di deformazione totale: $f_{p(1)k} \ge 1.570 \text{ N/mm}^2$

La resistenza di calcolo a trazione dei tiranti è valutata come:

$$N_{Rd} = A \times f_{p(1)k} / \gamma_S = 2.713 \text{ kN}$$

dove:

- $A = 1.987 \text{ mm}^2 \text{ è l'rea complessiva dei trefoli;}$
- $f_{p(1)k} = 1.570 \text{ N/mm}^2$ è la tensione caratteristica di rottura all'1% di deformazione totale;
- $\gamma_S = 1,15$ è il coefficiente parziale di sicurezza relativo all'acciaio.

La massima sollecitazione agente sui tiranti, ottenuta dal modello geotecnico, si verifica nella combinazione di carico SLU11 ed è pari a:

$$N_{Ed} = 842 \text{ kN}$$

La verifica di resistenza a trazione è pertanto soddisfatta con i seguenti coefficienti di sicurezza:

$$\eta = N_{Rd} / N_{Ed} = 3,22 \ge 1,00$$

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

9.3 Tiranti di ancoraggio integrativi

Le nuove strutture di ancoraggio sono realizzate con tiranti a barre tipo DYWIDAG di diametro nominale Φ 47 (A = 1.735 mm²), lunghezza 35,5 m, inclinazione 18° sull'orizzontale, con 17 m di parte libera e 18 m di fondazione, poste ad interasse di 3,60 m.

Le barre sono in acciaio da precompressione DYWIDAG Y1050H aventi le seguenti proprietà meccaniche dichiarate dal produttore:

- tensione caratteristica di rottura: $f_{pk} = 1.050 \text{ N/mm}^2$
- tensione caratteristica di snervamento: $f_{pvk} = 950 \text{ N/mm}^2$

Ai fini della valutazione della resistenza di calcolo si è fatto riferimento alle caratteristiche di resistenza minime degli acciai dei tiranti in barre ricavate dalla Tabella 11.3.VII del D.M. 14/01/2008 che fornisce le proprietà meccaniche minime che devono essere garantite dal produttore:

- tensione caratteristica di rottura: $f_{pk} = 1.000 \text{ N/mm}^2$
- tensione caratteristica di snervamento: $f_{pyk} = 800 \text{ N/mm}^2$

Le barre sono protette nei confronti di perdite di spessore dovute ai fenomeni di corrosione con guaine.

La resistenza di calcolo a trazione dei tiranti è valutata come:

$$N_{Rd} = A \times f_{pvk} / \gamma_S = 1.207 \text{ kN}$$

dove:

- $A = 1.735 \text{ mm}^2$ è l'area della sezione trasversale;
- $f_{pyk} = 800 \text{ N/mm}^2$ è la tensione caratteristica di snervamento;
- $\gamma_S = 1,15$ è il coefficiente parziale di sicurezza relativo all'acciaio.

La massima sollecitazione agente sui tiranti, ottenuta dal modello geotecnico, si verifica nella combinazione di carico sismica SLV ed è pari a:

$$N_{Ed} = 820 \text{ kN}$$

La verifica di resistenza a trazione è pertanto soddisfatta con i seguenti coefficienti di sicurezza:

$$\eta = N_{Rd} / N_{Ed} = 1,47 \ge 1,00$$

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

9.4 Solettone

Il solettone di c.a. è stato modellato con l'ausilio del codice di calcolo agli elementi finiti SAP2000 v.19 come una piastra rettangolare di lunghezza pari a 35,80 m e di larghezza pari a 15,80 m, comprensiva della larghezza della trave esistente di coronamento del palancolato di 1,60 m e della larghezza della soletta di c.a. di nuova realizzazione di 14,20 m.

La piastra è stata vincolata in corrispondenza dei pali con molle elastiche verticali di rigidezza pari a $k_1 = 750.000 \; kN/m$ ed in corrispondenza del palancolato con molle elastiche verticali di rigidezza $k_2 = 20.625 \; kN/m$ disposte ad interasse di 0,4475 m coerentemente con la discretizzazione della mesh.

Sulla piastra sono stati applicati i seguenti carichi:

- carico permanente strutturale dovuto alla nuova soletta di c.a.: $g_{1k} = 25 \text{ kPa}$
- carico permanente strutturale dovuto alla trave di coronamento esistente di c.a.: $g_{1k} = 75 \text{ kPa}$
- carico permanente portato agente solo sulla nuova soletta di c.a. (sp. 0,25 m): $g_{2k} = 6,25$ kPa
- sovraccarico variabile di progetto uniformemente distribuito: $q_{1k} = 60 \text{ kPa}$;
- carico trasmesso dagli stabilizzatori della gru semovente di progetto su impronta di dimensioni rettangolari pari a 1,80 m \times 5,50 m (q_{2k} = 2400 kN).

Il carico trasmesso dagli stabilizzatori è stato applicato ipotizzando quattro possibili linee di carico longitudinali lungo le quali gli stabilizzatori possono stazionare. Il carico è considerato alternativo a quello variabile uniformemente distribuito.

I carichi sono stati combinati agli stati limite ultimi (SLU) di tipo strutturale (STR) utilizzando i coefficienti parziali sui carichi e sui materiali della combinazione A1+M1 ed agli stati limite di esercizio (SLE) di tipo raro (RAR).

Le massime sollecitazioni agenti sulla nuova soletta di c.a. si hanno in corrispondenza degli allineamenti trasversali e longitudinali dei pali individuando nelle due direzioni delle fasce trave che sono state pertanto armate come tali.

I valori massimi delle caratteristiche delle sollecitazioni per le combinazioni agli stati limite ultimi (SLU) di tipo strutturale (STR) risultanti dal modello di calcolo sono i seguenti:

- in direzione trasversale:

 ${M_{11}}^{min} = -850 \text{ kNm/m} \ {M_{11}}^{max} = 759 \text{ kNm/m} \ {V_{13}}^{min} = -1.483 \text{ kN/m} \ {V_{13}}^{max} = 1.486 \text{ kN/m}$

- in direzione longitudinale:

 $M_{22}^{min} = -866 \text{ kNm/m}$ $M_{22}^{max} = 536 \text{ kNm/m}$ $V_{23}^{min} = -1.536 \text{ kN/m}$ $V_{23}^{max} = 1.536 \text{ kN/m}$

I valori massimi delle caratteristiche delle sollecitazioni per le combinazioni agli stati limite di esercizio (SLE) di tipo raro (RAR) risultanti dal modello di calcolo sono i seguenti:

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

- in direzione trasversale:

 $M_{11}^{min} = -599 \text{ kNm/m}$ $M_{11}^{max} = 512 \text{ kNm/m}$ $V_{13}^{min} = -1.035 \text{ kN/m}$ $V_{13}^{max} = 1.037 \text{ kN/m}$

- in direzione longitudinale:

 $M_{22}^{min} = -604 \text{ kNm/m}$ $M_{22}^{max} = 360 \text{ kNm/m}$ $V_{23}^{min} = -1.072 \text{ kN/m}$ $V_{23}^{max} = 1.072 \text{ kN/m}$

Lungo la sezione di collegamento tra la trave esistente di coronamento del palancolato e la soletta di nuova realizzazione i valori massimi delle caratteristiche delle sollecitazioni per le combinazioni agli stati limite ultimi (SLU) di tipo strutturale (STR) risultanti dal modello di calcolo sono i seguenti:

- in direzione trasversale:

 ${M_{11}}^{min} = -651 \text{ kNm/m} \ {M_{11}}^{max} = 380 \text{ kNm/m} \ {V_{13}}^{min} = -233 \text{ kN/m} \ {V_{13}}^{max} = 570 \text{ kN/m}$

- in direzione longitudinale:

 $\begin{aligned} &{M_{22}}^{min} = -122 \ kNm/m \\ &{M_{22}}^{max} = 123 \ kNm/m \\ &{V_{23}}^{min} = -228 \ kN/m \\ &{V_{23}}^{max} = 235 \ kN/m \end{aligned}$

I valori massimi delle caratteristiche delle sollecitazioni per le combinazioni agli stati limite di esercizio (SLE) di tipo raro (RAR) risultanti dal modello di calcolo sono invece i seguenti:

- in direzione trasversale:

 ${M_{11}}^{min} = -449 \text{ kNm/m} \ {M_{11}}^{max} = 254 \text{ kNm/m} \ {V_{13}}^{min} = -152 \text{ kN/m} \ {V_{13}}^{max} = 395 \text{ kN/m}$

- in direzione longitudinale:

 $M_{22}^{min} = -84 \text{ kNm/m}$ $M_{22}^{max} = 82 \text{ kNm/m}$ $V_{23}^{min} = -156 \text{ kN/m}$ $V_{23}^{max} = 160 \text{ kN/m}$

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

Le reazioni vincolari massime sono le seguenti:

- palancolato esistente:

 $\begin{aligned} R_{SLU}^{max} &= 209 \ kN/m \\ R_{SLE}^{max} &= 146 \ kN/m \end{aligned}$

- pali 1° fila:

 $\begin{aligned} R_{SLU}^{max} &= 2.423 \text{ kN} \\ R_{SLE}^{max} &= 1.708 \text{ kN} \end{aligned}$

- pali 2° fila:

 $\begin{aligned} R_{SLU}^{max} &= 2.944 \ kN \\ R_{SLE}^{max} &= 2.054 \ kN \end{aligned}$

- pali 3° fila:

 $\begin{aligned} R_{SLU}^{max} &= 2.590 \ kN \\ R_{SLE}^{max} &= 1.786 \ kN \end{aligned}$

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

9.4.1 Verifiche agli stati limite

9.4.1.1 Soletta di nuova realizzazione

Caratteristiche di resistenza delle sezioni

Nel seguito sono riportate le verifiche agli stati limite della soletta di nuova realizzazione per le combinazioni di carico più gravose. Le massime sollecitazioni agenti si hanno in corrispondenza degli allineamenti trasversali e longitudinali dei pali individuando nelle due direzioni delle fasce trave che sono state pertanto armate come tali.

Le caratteristiche di resistenza delle sezioni utilizzate ai fini della verifica sono le seguenti:

- Larghezza: B = 1,00 m

- Altezza: H = 1,00 m

- Ricoprimento longitudinale: c = 0.040 m

- Ricoprimento trasversale: c = 0.064 m

- Armatura superiore in entrambe le direzioni: $A_{sup} = 45.2 \text{ cm}^2 (10\Phi 24)$

- Armatura inferiore in entrambe le direzioni: $A_{inf} = 45.2 \text{ cm}^2 (10\Phi 24)$

- Staffe a 4 braccia: St. Φ12/20

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

Verifiche di resistenza agli stati limite ultimi

Nelle tabelle seguenti sono riportati i risultati delle verifiche di resistenza della soletta di nuova realizzazione nei confronti delle sollecitazioni flettenti e taglianti. Le verifiche agli stati limite ultimi (SLU) sono soddisfatte rispetto ai seguenti limiti normativi:

$$\eta = R_d/E_d \ge 1,00$$

Tabella 30 – Verifiche di resistenza agli stati limite ultimi: flessione

SOLETTA	В	Н	с	Armatura superiore		Λn			Δp _{sup} Armatura inferiore		Δp_{inf}	M_{Ed}	$\mathbf{M}_{\mathbf{Rd}}$	M _{Rd} /M _{Ed}
	mm	mm	mm	Co	orrenti		mm	Correnti		m	kNm	kNm	-	
${\mathbf M_{11}}^{\mathrm{min}}$	1000	1000	64	10	Φ	24	100	10	Φ	24	100	-850	1560,27	1,84
M ₁₁ ^{max}	1000	1000	64	10	Φ	24	100	10	Φ	24	100	+759	1560,27	2,06
${ m M_{22}}^{ m min}$	1000	1000	40	10	Φ	24	100	10	Φ	24	100	-866	1613,92	1,86
${\bf M_{22}}^{ m max}$	1000	1000	40	10	Φ	24	100	10	Φ	24	100	+536	1613,92	3,01

Tabella 31 – Verifiche di resistenza agli stati limite ultimi: taglio

SOLETTA	$\mathbf{b}_{\mathbf{w}}$	h	c	Φ_{st}	$\Phi_{\rm sw}$	n _b	s	α	V_{Rd}	V_{Ed}	η
•	mm	mm	mm	mm	mm	-	mm	0	kN	kN	-
V_{13}^{min}	1000	1000	64	24	12	4,00	200	90	1838,56	-1483	1,24
V_{13}^{max}	1000	1000	64	24	12	4,00	200	90	1838,56	1486	1,24
V_{23}^{\min}	1000	1000	40	24	12	4,00	200	90	1886,31	-1536	1,23
V ₂₃ ^{max}	1000	1000	40	24	12	4,00	200	90	1886,31	1536	1,23

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

Verifiche agli stati limite di esercizio

Nella tabella seguente sono riportati i risultati delle verifiche agli stati limite di esercizio della soletta di nuova realizzazione nei confronti dell'apertura delle fessure e delle tensioni di esercizio. Le verifiche risultano soddisfatte rispetto ai seguenti limiti normativi:

- Combinazione Rara:

$$\begin{split} &\sigma_{c} = \leq 0.60 {\times} f_{ck} = 224.1 \ daN/cm^{2} \\ &\sigma_{a} = \leq 0.80 {\times} f_{yk} = 3600 \ daN/cm^{2} \end{split}$$

- Combinazione Frequente:

$$w_k = 0.2 \text{ mm}$$

- Combinazione Quasi permanente:

$$\begin{split} \sigma_c &= 14.4 \ daN/cm^2 \leq 0.45 \times f_{ck} = 168.1 \ daN/cm^2 \\ w_k &= 0.2 \ mm \end{split} \label{eq:sigma_c}$$

Tabella 32 - Verifiche agli stati limite di esercizio

SOLETTA	В	Н	c		Armatura superiore		$\Delta p_{ m sup}$		Armatura inferiore		Δp_{inf}	M_{Ek}	$\sigma_{\rm c}$	$\sigma_{s,sup}$	$\sigma_{\mathrm{s,inf}}$	$\mathbf{w}_{\mathbf{k}}$
	[mm]	[mm]	[mm]	Co	rre	nti	[mm]	Co	rre	nti	m	[kNm]	[MPa]	[MPa]	[MPa]	[mm]
RAR M ₁₁ ^{min}	1000	1000	64	10	Φ	24	100	10	Φ	24	100	-599	6,39	-154,0	22,9	-
RAR M ₁₁ ^{max}	1000	1000	64	10	Φ	24	100	10	Φ	24	100	+512	5,46	19,6	-131,6	1
RAR M ₂₂ ^{min}	1000	1000	40	10	Φ	24	100	10	Φ	24	100	-604	6,04	-150,4	26,4	-
RAR M ₂₂ ^{max}	1000	1000	40	10	Φ	24	100	10	Φ	24	100	+360	3,60	15,7	-89,6	-
FRE M ₁₁ ^{min}	1000	1000	64	10	Φ	24	100	10	Φ	24	100	-	-	-	-	no
FRE M ₁₁ ^{max}	1000	1000	64	10	Φ	24	100	10	Φ	24	100	-	-	-	-	no
FRE M ₂₂ ^{min}	1000	1000	40	10	Φ	24	100	10	Φ	24	100	-	-	-	-	no
FRE M ₂₂ ^{max}	1000	1000	40	10	Φ	24	100	10	Φ	24	100	-	-	1	-	no
QPE M ₁₁ ^{min}	1000	1000	64	10	Φ	24	100	10	Φ	24	100	-599	4,04	-	-	no
QPE M ₁₁ ^{max}	1000	1000	64	10	Φ	24	100	10	Φ	24	100	+512	3,45	-	-	no
QPE M ₂₂ ^{min}	1000	1000	40	10	Φ	24	100	10	Φ	24	100	-604	3,79	-	-	no
QPE M ₂₂ ^{max}	1000	1000	40	10	Φ	24	100	10	Φ	24	100	+360	2,26	-	-	no

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

Verifiche a punzonamento

I pali di diametro $\Phi 1000$ costituiscono per la soletta di nuova realizzazione degli appoggi puntuali per cui è necessario verificare a punzonamento la piastra. Il perimetro critico in corrispondenza del singolo palo, definito come il perimetro che circonda l'area caricata ad una distanza pari a 2 volte l'altezza utile effettiva della sezione (d_{eff}), è stato valutato escludendo le parti in cui questo si sovrappone con quello dei pali adiacenti:

$$u_1 = 8.114 \text{ mm}$$

L'altezza utile effettiva della sezione è stata calcolata come:

$$d_{eff} = (d_x + d_y)/2 = 936 \text{ mm}$$

 $con d_x = 924 mm e d_y = 948 mm$

La tensione di taglio applicata è pari:

$$v_{Ed} = \beta V_{Ed}/(u_1 \times d_{eff}) = 388 \text{ kPa}$$

dove:

- $V_{Ed} = 2.944$ kN è il valore di calcolo della forza totale di taglio agente calcolata lungo il perimetro u ed assunta uguale alla reazione dell'appoggio;
- u = 8.114 mm è il perimetro della sezione critica;
- β = 1,0 è un coefficiente che tiene conto degli effetti dell'eccentricità del carico per pilastri d'angolo.

La resistenza a taglio per unità di lunghezza v_{Rd1} per una piastra senza armatura a taglio è invece data da:

$$v_{Rd1} = 0.18 \times k \times (100 \times \rho_l \times f_{ck})^{1/3} / \gamma_c = 464 \text{ kPa}$$

dove:

-
$$k = 1 + (200/d_{eff})^{1/2} = 1,46 \le 2$$

-
$$f_{ck} = 0.83 \times R_{ck} = 37.35 \text{ N/mm}^2$$

$$- v_{min} = 0.035 \times k^{3/2} \times f_{ck}^{1/2} = 0.38 \text{ N/mm}^2$$

-
$$A_{sl} = 4.520 \text{ mm}^2$$

-
$$\rho_{1x}=\rho_{1y}=A_{sl}\!/(b\!\times\!d_{eff})=0,\!005$$

-
$$\rho_l = (\rho_{1x} \times \rho_{1y})^{0.5} = 0,005$$

$$- \gamma_c = 1.5$$

Pertanto, essendo rispettata la seguente condizione:

$$v_{sd} \leq v_{Rd1}$$

la verifica a punzonamento della soletta di c.a. in corrispondenza del pilastro è soddisfatta.

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

9.4.1.2 Collegamento trave coronamento-soletta di nuova realizzazione

Il collegamento tra la trave esistente di coronamento del palancolato e la soletta di nuova realizzazione deve garantire il completo ripristino della continuità strutturale.

La ripresa di getto deve essere preceduta dalla demolizione dello strato corticale della struttura esistente in modo da generare una superficie con asperità di almeno 5 mm e da un'accurata pulizia della superficie interessata con l'impiego di acqua od aria in pressione, con asportazione totale di eventuali parti mobili, polvere e lattice di cemento e successivamente abbondantemente bagnate, al fine di evitare possibili futuri distacchi e discontinuità lungo la superficie di ripresa stessa. Si dovrà però anche eliminare ogni eventuale ristagno di acqua. Prima di procedere al getto, la superficie sarà trattata con resina epossidica tipo EPORIP della Mapei S.p.A. o similare.

L'armatura trasversale di collegamento tra la soletta di nuova realizzazione e la trave esistente di coronamento del palancolato è costituita da barre di armatura superiori di diametro 32 mm ed inferiori di diametro 26 mm disposte in numero di 3 al metro ed inghisate all'interno della trave per una lunghezza di 100 cm.

Caratteristiche di resistenza delle sezioni

Ai fini delle verifiche le caratteristiche di resistenza della sezione di collegamento della soletta di nuova realizzazione sono le seguenti:

- Larghezza: B = 1,00 m

- Altezza: H = 1,00 m

- Ricoprimento trasversale: c = 0.064 m

- Armatura superiore: $A_{sup} = 24.1 \text{ cm}^2 (3\Phi 32)$

- Armatura inferiore: $A_{inf} = 15.9 \text{ cm}^2 (3\Phi 26)$

- Staffe a 4 braccia: St. Φ12/20

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

DIREZIONE TECNICA Pag.: 101 di 104

Verifiche di resistenza agli stati limite ultimi

Nelle tabelle seguenti sono riportati i risultati delle verifiche di resistenza della sezione di collegamento della soletta di nuova realizzazione nei confronti delle sollecitazioni flettenti e taglianti. Le verifiche agli stati limite ultimi (SLU) sono soddisfatte rispetto ai seguenti limiti normativi:

$$\eta = R_d/E_d \ge 1,00$$

Tabella 33 – Verifiche di resistenza agli stati limite ultimi: flessione

SOLETTA	В	Н	с		Armatura superiore		$\Delta p_{ m sup}$		mat ferio	ura ore	Δp_{inf}	$\mathbf{M}_{\mathbf{Ed}}$	$\mathbf{M}_{\mathbf{Rd}}$	M_{Rd}/M_{Ed}	
	mm	mm	mm	Correnti		mm	Correnti		m	kNm	kNm				
${ m M_{11}}^{ m min}$	1000	1000	64	3	Φ	32	333	3	Φ	26	333	-651,00	852,00	1,31	
M ₁₁ ^{max}	1000	1000	64	3	Φ	32	333	3	Φ	26	333	+380,00	583,68	1,54	

Tabella 34 – Verifiche di resistenza agli stati limite ultimi: taglio

SOLETTA	$\mathbf{b}_{\mathbf{w}}$	h	c	Φ_{st}	Φ_{sw}	n _b	S	α	V_{Rd}	V_{Ed}	η
-	mm	mm	mm	mm	mm	-	mm	0	kN	kN	-
V_{13}^{\min}	1000	1000	64	32	12	4,00	200	90	1831	-233	7,86
V ₁₃ ^{max}	1000	1000	64	32	12	4,00	200	90	1831	570	3,21

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

Verifiche agli stati limite di esercizio

Nella tabella seguente sono riportati i risultati delle verifiche agli stati limite di esercizio della soletta di nuova realizzazione nei confronti dell'apertura delle fessure e delle tensioni di esercizio. Le verifiche risultano soddisfatte rispetto ai seguenti limiti normativi:

Combinazione Rara:

$$\begin{split} &\sigma_c = \leq 0.60 \times f_{ck} = 224.1 \ daN/cm^2 \\ &\sigma_a = \leq 0.80 \times f_{yk} = 3600 \ daN/cm^2 \\ &Combinazione \ Frequente: \end{split}$$

 $w_k = 0.2 \ mm$

Combinazione Quasi permanente:

 $\sigma_c = 14.4 \ daN/cm^2 \le 0.45 \times f_{ck} = 168.1 \ daN/cm^2$ $w_k = 0.2 \text{ mm}$

Tabella 35 – Verifiche agli stati limite di esercizio

SOLETTA	В	Н	c		Armatura superiore		Δp_{sup}		Armatura inferiore		Δp_{inf}	M_{Ek}	$\sigma_{\rm c}$	$\sigma_{s,sup}$	$\sigma_{\mathrm{s,inf}}$	$\mathbf{w}_{\mathbf{k}}$
	[mm]	[mm]	[mm]	Co	Correnti		[mm]	Co	rre	nti	m	[kNm]	[MPa]	[MPa]	[MPa]	[mm]
RAR M ₁₁ ^{min}	1000	1000	64	3	Φ	32	333	3	Φ	26	333	-449	6,66	-214,0	19,1	-
RAR M ₁₁ ^{max}	1000	1000	64	3	Φ	32	333	3	Φ	26	333	+254	4,46	9,0	-181,2	-
FRE M ₁₁ ^{min}	1000	1000	64	3	Φ	32	333	3	Φ	26	333	-449	-	-	-	no
FRE M ₁₁ ^{max}	1000	1000	64	3	Φ	32	333	3	Φ	26	333	+254	-	-	-	no
QPE M ₁₁ ^{min}	1000	1000	64	3	Φ	32	333	3	Φ	26	333	-449	4,37	-	-	no
QPE M ₁₁ ^{max}	1000	1000	64	3	Φ	32	333	3	Φ	26	333	+254	2,81	-	-	no

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

9.5 *Pali*

I pali di fondazione del solettone a tergo della palancola sono disposti su tre allineamenti:

- FILA 1: allineamento lato mare, a tergo della paratia metallica, ø1000, interasse 3,60 m, estesi fino a -35 m da l.m.m.;
- FILA 2: allineamento intermedio, a 7,90 m da asse palancola, ø1000, interasse 3,60 m, estesi fino a -35 m da l.m.m.;
- FILA 3: allineamento lato terra, a 13,90 m da asse palancola, ø1000, interasse 3,60 m, estesi fino a -35 m da l.m.m.

Dal modello geotecnico risulta che i pali maggiormente sollecitati sono quelli della prima fila posta subito a tergo del palancolato esistente (condizioni sismiche).

In questa condizione alla quota di -12,83 m s.l.m. i pali sono soggetti alle sollecitazioni massime:

$$N_{Ed} = 2.415 \text{ kN}$$

 $M_{Ed} = 1.689 \text{ kNm}$

Il momento resistente dei pali armati con $32\Phi20$ calcolato con l'ausilio del codice di calcolo PresFLE+ della Concrete S.r.l. risulta pari a:

$$M_{Rd}(N_{Ed}) = 2.136 \text{ kNm}$$

La verifica di resistenza allo stato limite ultimo è pertanto soddisfatta con coefficiente di sicurezza pari a:

$$\eta \ge M_{Rd}(N_{Ed}) / M_{Ed} = 1,26$$

Anche in condizioni di esercizio i pali maggiormente sollecitati sono quelli della prima fila. Le massime sollecitazioni flettenti si hanno alla quota di -11,89 m s.l.m.:

$$N_{Ek} = 2.118 \text{ kN}$$

 $M_{Ek} = 730 \text{ kNm}$

A cui corrispondono le seguenti tensioni nei materiali:

- Calcestruzzo: $\sigma_c = 92 \text{ daN/cm}^2 \le 0.45 \times f_{ck} = 168.1 \text{ daN/cm}^2$
- Acciaio: $\sigma_a = 835 \text{ daN/cm}^2 \le 0.80 \times f_{vk} = 3600 \text{ daN/cm}^2$

Progetto Definitivo Banchina Trattaroli Sud Relazione di calcolo

10 CONTROLLI IN CORSO D'OPERA E MONITORAGGIO

Oltre ai campi prova necessari per i tiranti di ancoraggio (vedi relativo paragrafo) ed alle prove di verifica sui pali, la funzionalità delle opere e il rispetto delle previsioni del modello numerico dovranno essere accertati mediante controlli sul comportamento delle strutture, da eseguire sia in corso di costruzione che in fase di collaudo e di esercizio. Tali controlli dovranno essere dettagliati con più precisione in fase di progettazione esecutiva. In ogni caso sarà necessario:

- un monitoraggio topografico della trave di banchina;
- un monitoraggio inclinometrico del palancolato attraverso l'installazione di due tubi inclinometrico subito a tergo del banchinamento;
- un monitoraggio della forza di trazione sugli ancoraggi (con strain-gauge sulle barre e celle di carico sui tiranti a trefoli);

In conclusione il sistema di monitoraggio previsto permetterà di valutare il comportamento dell'opera nel corso delle più importanti fasi di costruzione e di messa in esercizio.

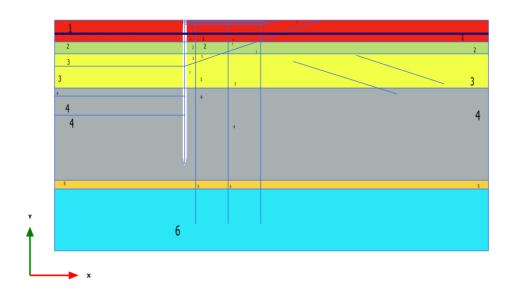
Un vero e proprio collaudo delle strutture di banchina, in accordo alle prescrizioni che verranno date dal Collaudatore, potrà essere realizzato attraverso l'escavo di un tratto di canale fino a raggiungere i fondali di progetto, congiuntamente all'applicazione dei carichi di banchina previsti in esercizio. In questo caso, la presenza di strumenti di misura degli assestamenti e dei tiri, unitamente ai dati sperimentali acquisiti in precedenza consentirà di valutare la risposta dell'opera alle sollecitazioni imposte durante il collaudo e pertanto la funzionalità dell'opera in relazione alle prestazioni richieste dal Committente.

PLAXIS Report Trattaroli Sud

Sommario

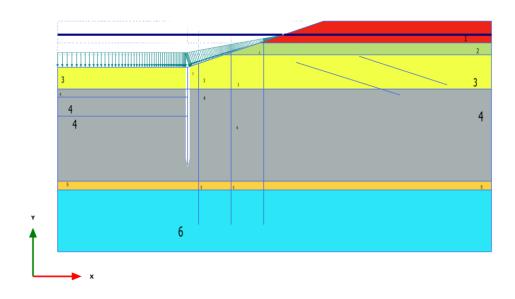
1	Fasi		. 7
	1.1	Initial phase [InitialPhase] (0/0), Materials plot	. 7
	1.2	Scavo -6m [Phase_1] (1/4), Materials plot	. 7
	1.3	Paratia [Phase_2] (3/8), Materials plot	. 8
	1.4	Rimep+2,5m [Phase_3] (7/321), Materials plot	. 8
	1.5	T tr (PT=194 kN/m) [Phase_4] (8/326), Materials plot	. 9
	1.6	Escavo -11,5 m [Phase_5] (9/341), Materials plot	. 9
	1.7	Piano di posa [Phase_6] (10/343), Materials plot	10
	1.8	Nuova Struttura [Phase_7] (11/347), Materials plot	10
	1.9	Riemp +2,5m [Phase_8] (12/350), Materials plot	11
	1.10	Fondale -15m [Phase_9] (13/707), Materials plot	11
	1.11	SLU11 (q=69kPa, T=46kN/m) [Phase_10] (14/725), Materials plot	12
	1.12	q=78kPa, T=52kN/m [Phase_11] (15/367), Materials plot	12
	1.13	SLU12 [Phase_12] (16/394), Materials plot	13
	1.14	SLV (q=48kPa, west, kh=0.06) [Phase_13] (17/440), Materials plot	13
	1.15	SLE (q=60 kPa, T=40kN/m) [Phase_14] (19/457), Materials plot	14
	1.16	SLD (q=48kPa, West, kh=0.034) [Phase_15] (20/477), Materials plot	14
2	Mat	erials - Soil and interfaces –	15
	2.1	Mohr-Coulomb (1/3)	15
	2.2	Mohr-Coulomb (2/3)	16
	2.3	Mohr-Coulomb (3/3)	17
	2.4	Hardening soil	17
	2.5	Plates	19
	2.6	Geogrids	19
	2.7	Anchors	19
3	Gen	eral information	21
	3.1	Calculation information Initial phase [InitialPhase]	22
	3.2	Calculation information Scavo -6m [Phase_1]	22
	3.3	Calculation information Paratia [Phase_2]	22
	3.4	Calculation information Rimep+2,5m [Phase_3]	23
	3.5	Calculation information T tr (PT=194 kN/m) [Phase_4]	23
	3.6	Calculation information Escavo -11,5 m [Phase_5]	24
	3.7	Calculation information Piano di posa [Phase_6]	24

	3.8	Calculation information Nuova Struttura [Phase_7]	24
	3.9	Calculation information Riemp +2,5m [Phase_8]	25
	3.10	Calculation information Fondale -15m [Phase_9	25
	3.11	Calculation information SLU11 (q=69kPa, T=46kN/m) [Phase_10]	26
	3.12	Calculation information q=78kPa, T=52kN/m [Phase_11]	26
	3.13	Calculation information SLU12 [Phase_12]	26
	3.14	Calculation information SLV (q=48kPa, west, kh=0.06) [Phase_13]	27
	3.15	Calculation information SLE (q=60 kPa, T=40kN/m) [Phase_14]	27
	3.16	Calculation information SLD (q=48kPa, West, kh=0.034) [Phase_15]	28
4	Tota	al displacements u _x	.29
	4.1	Initial phase [InitialPhase] (0/0),	29
	4.2	Scavo -6m [Phase_1] (1/4)	29
	4.3	Paratia [Phase_2] (3/8)	30
	4.4	Rimep+2,5m [Phase_3] (7/321)	30
	4.5	T tr (PT=194 kN/m) [Phase_4]	31
	4.6	Escavo -11,5 m [Phase_5] (9/341)	31
	4.7	Piano di posa [Phase_6] (10/343)	32
	4.8	Nuova Struttura [Phase_7] (11/347)	
	4.9	Riemp +2,5m [Phase_8] (12/350	
	4.10	Fondale -15m [Phase_9] (13/707)	33
	4.11	SLU11 (q=69kPa, T=46kN/m) [Phase_10] (14/725)	34
	4.12	q=78kPa, T=52kN/m [Phase_11] (15/367)	
	4.13	SLU12 [Phase_12] (16/394)	
	4.14	SLV (q=48kPa, west, kh=0.06) [Phase_13] (17/440	35
	4.15	SLE (q=60 kPa, T=40kN/m) [Phase_14] (19/457)	36
	4.16	SLD (q=48kPa, West, kh=0.034) [Phase_15] (20/477)	
5	Plas	tic points Status	
	5.1	Initial phase [InitialPhase] (0/0)	
	5.2	Scavo -6m [Phase_1] (1/4)	
	5.3	Paratia [Phase_2] (3/8)	
	5.4	Rimep+2,5m [Phase_3] (7/321)	
	5.5	T tr (PT=194 kN/m) [Phase_4] (8/326)	
	5.6	Escavo -11,5 m [Phase_5] (9/341)	
	5.7	Piano di posa [Phase_6] (10/343)	
	5.8	Nuova Struttura [Phase_7]	
	5.9	Riemp +2,5m [Phase_8] (12/350)	41

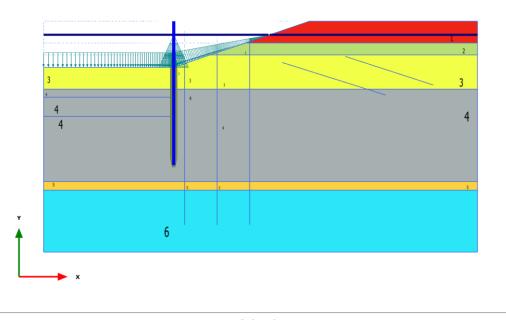

	5.10	Fondale -15m [Phase_9] (13/707)	41
	5.11	SLU11 (q=69kPa, T=46kN/m) [Phase_10] (14/725)	42
	5.12	q=78kPa, T=52kN/m [Phase_11] (15/367)	42
	5.13	SLU12 [Phase_12] (16/394)	43
	5.14	SLV (q=48kPa, west, kh=0.06) [Phase_13] (17/440)	43
	5.15	SLE (q=60 kPa, T=40kN/m) [Phase_14] (19/457)	44
	5.16	SLD (q=48kPa, West, kh=0.034) [Phase_15] (20/477)	44
6	Tota	al displacements u _x – Plate	.45
	6.1	Escavo -11,5 m [Phase_5] (9/341)	45
	6.2	Fondale -15m [Phase_9] (13/707)	45
	6.3	SLU11 (q=69kPa, T=46kN/m) [Phase_10]	46
	6.4	SLU12 [Phase_12] (16/394)	46
	6.5	SLV (q=48kPa, west, kh=0.06) [Phase_13] (17/440)	47
	6.6	SLE (q=60 kPa, T=40kN/m) [Phase_14] (19/457)	47
	6.7	SLD (q=48kPa, West, kh=0.034) [Phase_15	48
7	Tab	e of total displacements- Plate	.49
	7.1	Escavo -11,5 m [Phase_5] (9/341),	49
	7.2	Fondale -15m [Phase_9] (13/707)	51
	7.3	SLU11 (q=69kPa, T=46kN/m) [Phase_10] (14/725)	56
	7.4	SLU12 [Phase_12] (16/394),	61
	7.5	SLV (q=48kPa, west, kh=0.06)	66
	7.6	SLE (q=60 kPa, T=40kN/m) [Phase_14]	71
	7.7	SLD (q=48kPa, West, kh=0.034) [Phase_15] (20/477)	76
8	She	ar forces Q	.81
	8.1	Escavo -11,5 m [Phase_5] (9/341)	81
	8.2	Fondale -15m [Phase_9] (13/707)	81
	8.3	SLU11 (q=69kPa, T=46kN/m) [Phase_10] (14/725)	82
	8.4	SLU12 [Phase_12] (16/394)	82
	8.5	SLV (q=48kPa, west, kh=0.06) [Phase_13] (17/440)	83
	8.6	SLE (q=60 kPa, T=40kN/m) [Phase_14] (19/457)	83
	8.7	Plate, SLD (q=48kPa, West, kh=0.034) [Phase_15] (20/477)	84
9	Ben	ding moments M	.85
	9.1	Escavo -11,5 m [Phase_5] (9/341),	85
	9.2	Fondale -15m [Phase_9] (13/707)	85
	9.3	SLU11 (q=69kPa, T=46kN/m) [Phase_10] (14/725)	86
	9.4	SLU12 [Phase_12] (16/394)	86

9.5	SLV (q=48kPa, west, kh=0.06) [Phase_13] (17/440)	87
9.6	SLE (q=60 kPa, T=40kN/m) [Phase_14] (19/457)	87
9.7	SLD (q=48kPa, West, kh=0.034) [Phase_15] (20/477)	88
10 Axi	al forces N	89
10.1	Escavo -11,5 m [Phase_5] (9/341)	89
10.2	Fondale -15m [Phase_9] (13/707)	89
10.3	SLU11 (q=69kPa, T=46kN/m) [Phase_10] (14/725)	90
10.4	SLU12 [Phase_12] (16/394)	90
10.5	SLV (q=48kPa, west, kh=0.06) [Phase_13] (17/440)	91
10.6	SLE (q=60 kPa, T=40kN/m) [Phase_14] (19/457)	91
10.7	SLD (q=48kPa, West, kh=0.034) [Phase_15] (20/477)	92
11 Tab	ole of plate force envelopes	93
11.1	Escavo -11,5 m [Phase_5] (9/341),	93
11.2	Fondale -15m [Phase_9] (13/707),	94
11.3	SLU11 (q=69kPa, T=46kN/m) [Phase_10] (14/725)	98
11.4	SLU12 [Phase_12] (16/394)	102
11.5	SLV (q=48kPa, west, kh=0.06) [Phase_13] (17/440)	106
11.6	Plate, SLE (q=60 kPa, T=40kN/m) [Phase_14] (19/457)	110
11.7	SLD (q=48kPa, West, kh=0.034) [Phase_15] (20/477)	114
12 Tab	ole of node-to-node anchors	118
12.1	Escavo -11,5 m [Phase_5] (9/341),	118
12.2	Fondale -15m [Phase_9] (13/707)	118
12.3	SLU11 (q=69kPa, T=46kN/m) [Phase_10] (14/725),	118
12.4	SLU12 [Phase_12] (16/394)	118
12.5	SLV (q=48kPa, west, kh=0.06) [Phase_13] (17/440)	118
12.6	SLE (q=60 kPa, T=40kN/m) [Phase_14] (19/457)	118
12.7	SLD (q=48kPa, West, kh=0.034) [Phase_15] (20/477)	118
13 Tot	al displacements u _x - Embedded beam row	119
13.1	Fondale -15m [Phase_9] (13/707)	119
13.2	SLU11 (q=69kPa, T=46kN/m) [Phase_10] (14/725)	119
13.3	SLU12 [Phase_12] (16/394)	120
13.4	SLV (q=48kPa, west, kh=0.06) [Phase_13] (17/440)	
13.5	SLE (q=60 kPa, T=40kN/m) [Phase_14] (19/457)	121
13.6	SLD (q=48kPa, West, kh=0.034) [Phase_15] (20/477)	
14 Tab	ole of total displacements - Embedded beam row	122
14.1	Fondale -15m [Phase 9] (13/707)	122

14.2	SLU11 (q=69kPa, T=46kN/m) [Phase_10] (14/725)	127
14.3	SLU12 [Phase_12] (16/394)	132
14.4	SLV (q=48kPa, west, kh=0.06) [Phase_13] (17/440)	137
14.5	SLE (q=60 kPa, T=40kN/m) [Phase_14] (19/457)	142
14.6	SLD (q=48kPa, West, kh=0.034) [Phase_15] (20/477)	147
15 She	ear forces Q - Embedded beam row	152
15.1	Fondale -15m [Phase_9] (13/707)	152
15.2	SLU11 (q=69kPa, T=46kN/m) [Phase_10] (14/725)	152
15.3	SLU12 [Phase_12] (16/394)	153
15.4	SLV (q=48kPa, west, kh=0.06) [Phase_13] (17/440)	153
15.5	SLE (q=60 kPa, T=40kN/m) [Phase_14] (19/457)	154
15.6	SLD (q=48kPa, West, kh=0.034) [Phase_15] (20/477)	154
16 Ber	nding moments M - Embedded beam row	155
16.1	Fondale -15m [Phase_9] (13/707)	155
16.2	SLU11 (q=69kPa, T=46kN/m) [Phase_10] (14/725)	155
16.3	SLU12 [Phase_12] (16/394)	156
16.4	SLV (q=48kPa, west, kh=0.06) [Phase_13] (17/440)	156
16.5	SLE (q=60 kPa, T=40kN/m) [Phase_14] (19/457)	157
16.6	SLD (q=48kPa, West, kh=0.034) [Phase_15] (20/477)	157
17 Axi	al forces N - Embedded beam row	158
17.1	Fondale -15m [Phase_9] (13/707)	158
17.2	SLU11 (q=69kPa, T=46kN/m) [Phase_10] (14/725)	158
17.3	SLU12 [Phase_12] (16/394)	159
17.4	SLV (q=48kPa, west, kh=0.06) [Phase_13] (17/440)	159
17.5	SLE (q=60 kPa, T=40kN/m) [Phase_14] (19/457)	160
17.6	SLD (q=48kPa, West, kh=0.034) [Phase_15] (20/477)	160
18 Tab	le of embedded pile row force envelopes	161
18.1	Fondale -15m [Phase_9] (13/707),	161
18.2	SLU11 (q=69kPa, T=46kN/m) [Phase_10] (14/725)	164
18.3	SLU12 [Phase_12] (16/394)	167
18.4	SLV (q=48kPa, west, kh=0.06) [Phase_13] (17/440)	170
18.5	SLE (q=60 kPa, T=40kN/m) [Phase_14] (19/457)	174
18.6	SLD (g=48kPa, West, kh=0.034) [Phase 15] (20/477)	. 177

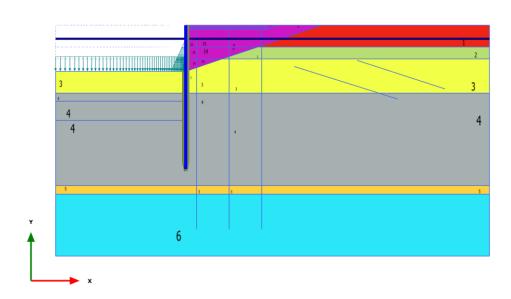

1 Fasi

1.1 Initial phase [InitialPhase] (0/0), Materials plot

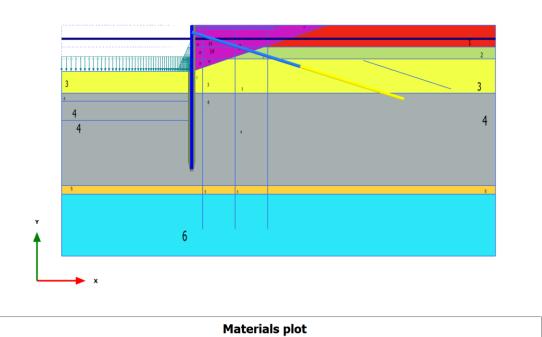


Materials plot

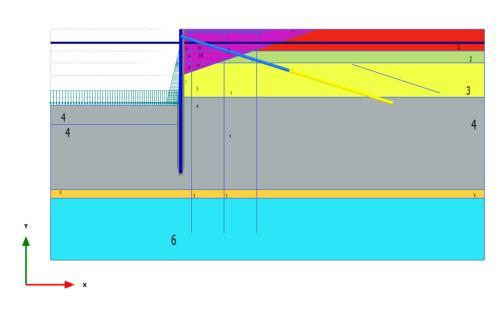
1.2 Scavo -6m [Phase_1] (1/4), Materials plot

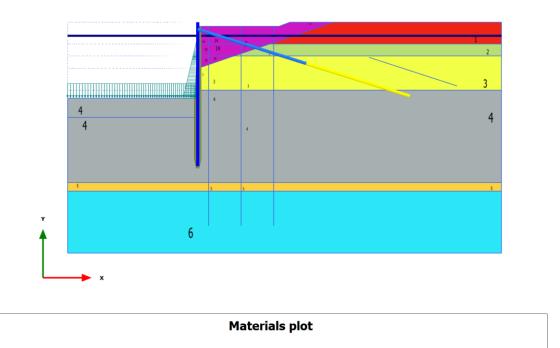


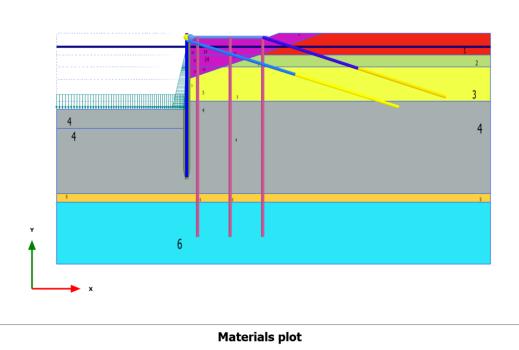
1.3 Paratia [Phase_2] (3/8), Materials plot

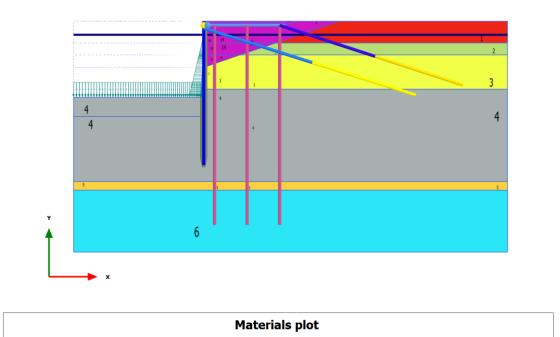


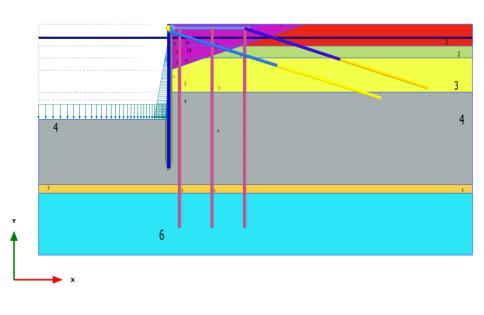
Materials plot

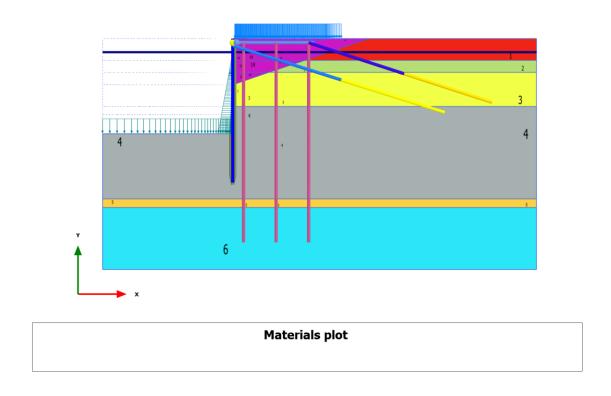

1.4 Rimep+2,5m [Phase_3] (7/321), Materials plot

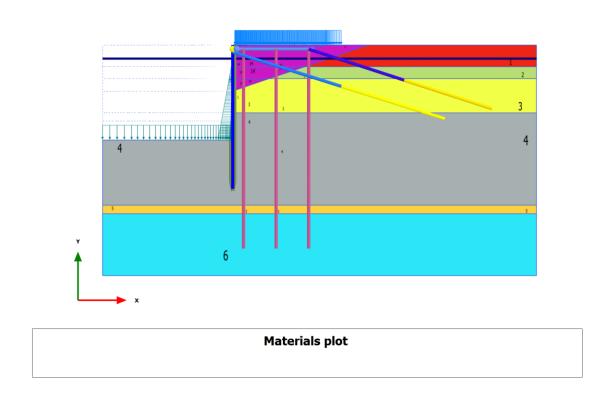

1.5 T tr (PT=194 kN/m) [Phase_4] (8/326), Materials plot

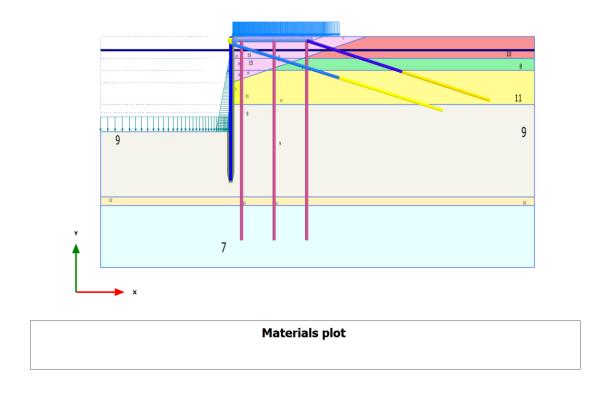

1.6 Escavo -11,5 m [Phase_5] (9/341), Materials plot

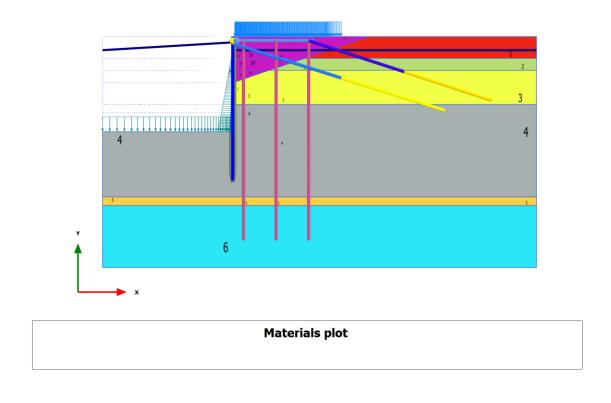

1.7 Piano di posa [Phase_6] (10/343), Materials plot

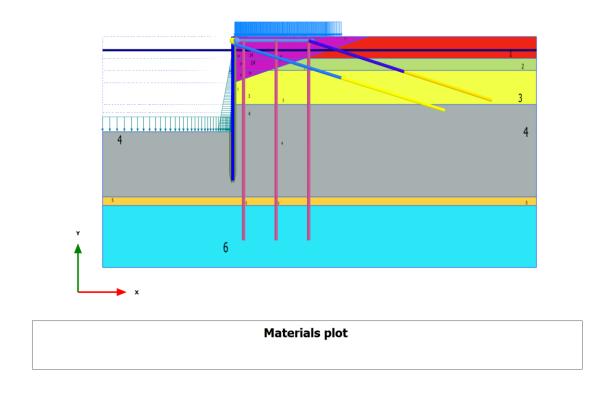

1.8 Nuova Struttura [Phase_7] (11/347), Materials plot

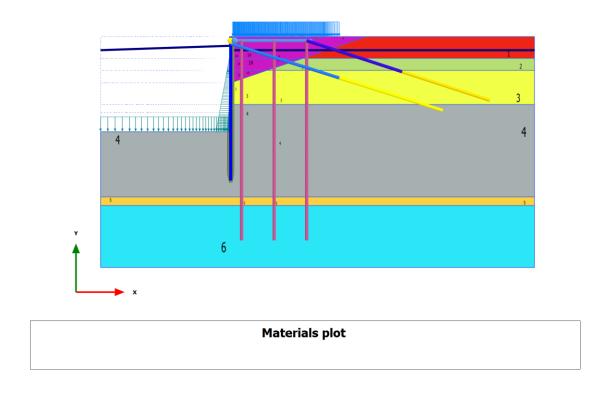

1.9 Riemp +2,5m [Phase_8] (12/350), Materials plot


1.10 Fondale -15m [Phase_9] (13/707), Materials plot


1.11 SLU11 (q=69kPa, T=46kN/m) [Phase_10] (14/725), Materials plot


1.12 q=78kPa, T=52kN/m [Phase_11] (15/367), Materials plot


1.13 SLU12 [Phase_12] (16/394), Materials plot


1.14 SLV (q=48kPa, west, kh=0.06) [Phase_13] (17/440), Materials plot

1.15 SLE (q=60 kPa, T=40kN/m) [Phase_14] (19/457), Materials plot

1.16 SLD (q=48kPa, West, kh=0.034) [Phase_15] (20/477), Materials plot

2 Materials - Soil and interfaces -

2.1 Mohr-Coulomb (1/3)

		2-Dep	3-Dep.	6-Sabbie	7-Alluvioni	7-Alluvioni
Identification		antropici_M1	Palude_M1	profonde_M1	profonde_M1	profonde M2
Identification number		1	2	5	6	7
Drainage type		Drained	Drained	Drained	Drained	Drained
Colour						
Comments						
	kN/m³	18,00	17,50	18,50	19,00	19,00
Yunsat	kN/m³	18,00	17,50	18,50	19,00	19,00
γ _{sat} Dilatancy cut-off	KIN/III	No	No	No	No	No
e _{init}		0,5000	0,5000	0,5000	0,5000	0,5000
		0,000	0,000	0,000	0,000	0,000
e _{min}		999,0	999,0	999,0	999,0	999,0
e_{max} Rayleigh α		0,000	0,000	0,000	0,000	0,000
Rayleigh β	+	0,000	0,000	0,000	0,000	0,000
E	kN/m²	15,00E3	3000	25,00E3	20,00E3	20,00E3
v (nu)	KIN/III	0,2500	0,2500	0,2500	0,2500	0,2500
• •	IcNI /ma2		+ '	<u> </u>		
G	kN/m²	6000	1200	10,00E3	8000	8000
E _{oed}	kN/m²	18,00E3	3600	30,00E3	24,00E3	24,00E3
Cref	kN/m²	2,000	1,000	0,000	0,000	0,000
φ (phi)	0	32,00	26,00	33,00	28,00	23,04
ψ (psi)		0,000	0,000	0,000	0,000	0,000
Vs	m/s	57,18	25,94	72,82	64,27	64,27
V _p	m/s	99,05	44,92	126,1	111,3	111,3
Set to default values	101/2/	Yes	Yes	Yes	Yes	Yes
E _{inc}	kN/m²/m	0,000	0,000	0,000	0,000	0,000
Y ref	m	0,000	0,000	0,000	0,000	0,000
Cinc	kN/m²/m	0,000	0,000	0,000	0,000	0,000
Y ref	m	0,000	0,000	0,000	0,000	0,000
Tension cut-off		Yes	Yes	Yes	Yes	Yes
Tensile strength	kN/m²	0,000	0,000	0,000	0,000	0,000
Undrained behaviour		Standard	Standard	Standard	Standard	Standard
Skempton-B		0,9833	0,9833	0,9833	0,9833	0,9833
V_{u}		0,4950	0,4950	0,4950	0,4950	0,4950
K _{w,ref} / n	kN/m²	588,0E3	117,6E3	980,0E3	784,0E3	784,0E3
Strength		Manual	Manual	Manual	Manual	Manual
R _{inter}		0,7000	0,7000	0,7000	0,7000	0,7000
Consider gap closure		Yes	Yes	Yes	Yes	Yes
δ_{inter}		0,000	0,000	0,000	0,000	0,000
Cross permeability		Impermeable	Impermeable	Impermeable	Impermeable	Impermeable
Drainage conductivity, dk	m³/day/m	0,000	0,000	0,000	0,000	0,000
K ₀ determination		Automatic	Automatic	Automatic	Automatic	Automatic
$K_{0,x} = K_{0,z}$		Yes	Yes	Yes	Yes	Yes
K _{0,x}		0,4701	0,5616	0,4554	0,5305	0,6086
K _{0,z}		0,4701	0,5616	0,4554	0,5305	0,6086
Data set		Standard	Standard	Standard	Standard	Standard
Туре		Coarse	Coarse	Coarse	Coarse	Coarse
< 2 μm	%	10,00	10,00	10,00	10,00	10,00
2 μm - 50 μm	%	13,00	13,00	13,00	13,00	13,00
50 μm - 2 mm	%	77,00	77,00	77,00	77,00	77,00
Use defaults		None	None	None	None	None
k _x	m/day	0,000	0,000	0,000	0,000	0,000
k _y	m/day	0,000	0,000	0,000	0,000	0,000
-ψ _{unsat}	m	10,00E3	10,00E3	10,00E3	10,00E3	10,00E3
einit		0,5000	0,5000	0,5000	0,5000	0,5000
Ss	1/m	0,000	0,000	0,000	0,000	0,000
ck		1000E12	1000E12	1000E12	1000E12	1000E12

2.2 Mohr-Coulomb (2/3)

Identification		3-Dep. palude_M2	2-Dep Antroprici_M2	6-Sabbie profonde_M2	Riporto no-peso	1- Riempimento_ M1
Identification number		8	10	12	13	14
Drainage type		Drained	Drained	Drained	Drained	Drained
Colour						
Comments						
Yunsat	kN/m³	17,50	18,00	18,50	0,000	18,00
Vsat	kN/m³	17,50	18,00	18,50	0,000	18,00
Dilatancy cut-off	,	No	No	No	No	No
e _{init}		0,5000	0,5000	0,5000	0,5000	0,5000
e _{min}		0,000	0,000	0,000	0,000	0,000
e _{max}		999,0	999,0	999,0	999,0	999,0
Rayleigh α		0,000	0,000	0,000	0,000	0,000
Rayleigh β		0,000	0,000	0,000	0,000	0,000
E	kN/m²	3000	15,00E3	25,00E3	15,00E3	3000
v (nu)	,	0,2500	0,2500	0,2500	0,2500	0,2500
G	kN/m²	1200	6000	10,00E3	6000	1200
E _{oed}	kN/m²	3600	18,00E3	30,00E3	18,00E3	3600
Cref	kN/m²	1,000	2,000	0,000	0,000	2,000
φ (phi)	0	21,30	26,56	27,50	32,00	30,00
ψ (psi)	•	0,000	0,000	0,000	0,000	0,000
V _s	m/s	25,94	57,18	72,82	0,000	25,57
V _p	m/s	44,92	99,05	126,1	0,000	44,29
Set to default values	111/3	Yes	Yes	Yes	Yes	Yes
E _{inc}	kN/m²/m	0,000	0,000	0,000	0,000	0,000
y ref	m	0,000	0,000	0,000	0,000	0,000
Cinc	kN/m²/m	0,000	0,000	0,000	0,000	0,000
Yref .	m	0,000	0,000	0,000	0,000	0,000
Tension cut-off	1111	Yes	Yes	Yes	Yes	Yes
Tensile strength	kN/m²	0,000	0,000	0,000	0,000	0,000
Undrained behaviour	KIN/III	Standard	Standard	Standard	Standard	Standard
Skempton-B		0,9833	0,9833	0,9833	0,9833	0,9833
Vu Vu		0,4950	0,4950	0,4950	0,4950	0,4950
K _{w,ref} / n	kN/m²	117,6E3	588,0E3	980,0E3	588,0E3	117,6E3
Strength	KINTIII	Manual	Manual	Manual	Rigid	Rigid
R _{inter}		0,7000	0,7000	0,7000	1,000	1,000
Consider gap closure		Yes	Yes	Yes	Yes	Yes
δ _{inter}		0,000	0,000	0,000	0,000	0,000
Cross permeability		Impermeable	Impermeable	Impermeable	Impermeable	Impermeable
Drainage conductivity, dk	m³/day/m	0,000	0,000	0,000	0,000	0,000
K₀ determination	III /uay/III	Automatic	Automatic	Automatic	Automatic	Automatic
$K_{0,x} = K_{0,z}$		Yes	Yes	Yes	Yes	Yes
K _{0,x} – K _{0,z}		0,6367	0,5529	0,5383	0,4701	0,5000
K _{0,z}		0,6367	0,5529	0,5383	0,4701	0,5000
Data set		Standard	Standard	Standard	Standard	Standard
Туре		Coarse	Coarse	Coarse	Coarse	Coarse
< 2 μm	%	10,00	10,00	10,00	10,00	10,00
2 μm - 50 μm	%	13,00	13,00	13,00	13,00	13,00
50 μm - 2 mm	%	77,00	77,00	77,00	77,00	77,00
Use defaults	70	None	None	None	None	None
k _x	m/day	0,000	0,000	0,000	0,000	0,000
k _y	m/day	0,000	0,000	0,000	0,000	0,000
-Ψ _{unsat}		10,00E3	10,000 10,00E3	10,000 10,00E3	10,000 10,00E3	10,00E3
	m	+		0,5000	0,5000	
e _{init}	1/m	0,5000	0,5000	0,5000	0,5000	0,5000
S_s	1/m	0,000	0,000	0,000	0,000	1000E12

2.3 Mohr-Coulomb (3/3)

Identification		1-Riempimento_M2	Interfaccia
Identification number		15	16
Drainage type		Drained	Drained
Colour			
Comments			
Yunsat	kN/m³	18,00	18,00
Ysat	kN/m³	18,00	18,00
Dilatancy cut-off	·	No	No
e _{init}		0,5000	0,5000
e _{min}		0,000	0,000
e _{max}		999,0	999,0
Rayleigh α		0,000	0,000
Rayleigh β		0,000	0,000
Е	kN/m²	3000	10,00E3
v (nu)		0,2500	0,2500
G	kN/m²	1200	4000
E _{oed}	kN/m²	3600	12,00E3
Cref	kN/m²	2,000	0,000
φ (phi)	۰	24,79	20,00
ψ (psi)	0	0,000	0,000
Vs	m/s	25,57	46,69
Vp	m/s	44,29	80,87
Set to default values		Yes	Yes
E _{inc}	kN/m²/m	0,000	0,000
y ref	m	0,000	0,000
C _{inc}	kN/m²/m	0,000	0,000
y ref	m	0,000	0,000
Tension cut-off		Yes	Yes
Tensile strength	kN/m²	0,000	0,000
Undrained behaviour		Standard	Standard
Skempton-B		0,9833	0,9833
Vu		0,4950	0,4950
K _{w,ref} / n	kN/m²	117,6E3	392,0E3
Strength		Rigid	Rigid
Rinter		1,000	1,000
Consider gap closure		Yes	Yes
δ_{inter}		0,000	0,000
Cross permeability		Impermeable	Impermeable
Drainage conductivity, dk	m³/day/m	0,000	0,000
K ₀ determination		Automatic	Automatic
$K_{0,x} = K_{0,z}$		Yes	Yes
K _{0,x}		0,5807	0,6580
K _{0,z}		0,5807	0,6580
Data set		Standard	Standard
Type		Coarse	Coarse
< 2 μm	%	10,00	10,00
2 μm - 50 μm	%	13,00	13,00
50 μm - 2 mm	%	77,00	77,00
Use defaults	/ /	None	None
k _x	m/day	0,000	0,000
ky	m/day	0,000	0,000
-ψunsat	m	10,00E3	10,00E3
einit	1.1	0,5000	0,5000
Ss	1/m	0,000	0,000
Ck		1000E12	1000E12

2.4 Hardening soil

Identification	4-Sabbie_M1	5-Limi argillosi_M1	5-Limi argillosi_M2	4-Sabbie_M2
Identification number	3	4	9	11
Drainage type	Drained	Drained	Drained	Drained
Colour				
Comments				

Yunsat	kN/m³	18,00	18,00	18,00	18,00
Vsat	kN/m³	18,00	18,00	18,00	18,00
Dilatancy cut-off	,	No	No	No	No
Pinit		0,5000	0,5000	0,5000	0,5000
emin		0,000	0,000	0,000	0,000
e _{max}		999,0	999.0	999,0	999,0
Rayleigh α		0,000	0,000	0,000	0,000
Rayleigh β		0,000	0,000	0,000	0,000
E ₅₀ ref	kN/m²	15,00E3	4000	4000	15,00E3
E _{oed} ref	kN/m²	15,00E3	4000	4000	15,00E3
Eur ^{ref}	kN/m²	45,00E3	12,00E3	12,00E3	45,00E3
power (m)	,	0,5000	0,8000	0,8000	0,5000
Use alternatives		No	No	No	No
Cc		0,02300	0,08625	0,08625	0,02300
Cs		5,695E-3	0,02587	0,02587	5,695E-3
e _{init}		0,5000	0,5000	0,5000	0,5000
C _{ref}	kN/m²	1,000	0,000	0,000	1,000
φ (phi)	0	35,00	28,00	22,60	29,26
ψ (psi)	0	0,000	0,000	0,000	0,000
Set to default values		No	Yes	Yes	No
Vur		0,3000	0,2000	0,2000	0,3000
Pref	kN/m²	100,0	100,0	100,0	100,0
K ₀ ^{nc}	,	0,4264	0,5305	0,6157	0,5112
Cinc	kN/m²/m	0,000	0,000	0,000	0,000
	m	0,000	0,000	0,000	0,000
Rf		0,9000	0,9000	0,9000	0,9000
Tension cut-off		Yes	Yes	Yes	Yes
Tensile strength	kN/m²	0,000	0,000	0,000	0,000
Undrained behaviour		Standard	Standard	Standard	Standard
Skempton-B		0,9783	0,9866	0,9866	0,9783
Vu		0,4950	0,4950	0,4950	0,4950
K _{w,ref} / n	kN/m²	1,687E6	491,7E3	491,7E3	1,687E6
Strength		Manual	Manual	Manual	Manual
R _{inter}		0,7000	0,7000	0,7000	0,7000
Consider gap closure		Yes	Yes	Yes	Yes
δ_{inter}		0,000	0,000	0,000	0,000
Cross permeability		Impermeable	Impermeable	Impermeable	Impermeable
Drainage conductivity, dk	m³/day/m	0,000	0,000	0,000	0,000
K ₀ determination		Automatic	Automatic	Automatic	Automatic
$K_{0,x} = K_{0,z}$		Yes	Yes	Yes	Yes
K _{0,x}		0,4264	0,5305	0,6157	0,5112
K _{0,z}		0,4264	0,5305	0,6157	0,5112
OCR		1,000	1,000	1,000	1,000
POP	kN/m²	0,000	0,000	0,000	0,000
Data set		Standard	Standard	Standard	Standard
Туре		Coarse	Coarse	Coarse	Coarse
< 2 µm	%	10,00	10,00	10,00	10,00
2 μm - 50 μm	%	13,00	13,00	13,00	13,00
50 μm - 2 mm	%	77,00	77,00	77,00	77,00
Use defaults		None	None	None	None
k _x	m/day	0,000	0,000	0,000	0,000
k _y	m/day	0,000	0,000	0,000	0,000
-ψ _{unsat}	m	10,00E3	10,00E3	10,00E3	10,00E3
einit		0,5000	0,5000	0,5000	0,5000
Ss	1/m	0,000	0,000	0,000	0,000
Ck		1000E12	1000E12	1000E12	1000E12

2.5 Plates

Identification		HZ975C-ZH9.5	solettone s=1m
Identification number		1	2
Comments			
Colour			
Material type		Elastic	Elastic
Isotropic		Yes	Yes
End bearing		No	No
EA ₁	kN/m	5,973E6	35,00E6
EA ₂	kN/m	5,973E6	35,00E6
EI	kN m²/m	1,074E6	2,905E6
d	m	1,469	0,9980
w	kN/m/m	0,000	25,00
v (nu)		0,1500	0,2000
Rayleigh α		0,000	0,000
Rayleigh β		0,000	0,000
Identification number		1	2

2.6 Geogrids

Identification		7tr+Bulbo20cm/1,80m	Gewiø50+Bulbo40cm/3,60m
Identification number		1	2
Comments			
Colour			
Material type		Elastic	Elastic
Isotropic		Yes	Yes
EA ₁	kN/m	850,2E3	687,2E3
EA ₂	kN/m	850,2E3	687,2E3
Identification number		1	2
Identification number		1	2

2.7 Anchors

Identification		7tr/1,80m	Gewiø50/3.60m
Identification number		1	2
Comments			
Colour			
Material type		Elastic	Elastic
EA	kN	111,6E3	111,8E3
Lspacing	m	1,000	1,000
Identification number		1	2
Identification number		1	2
Identification number		1	2

Embedded beam row

Identification		paloø1000/3.60	
Identification number		1	
Comments			
Colour			
Е	kN/m²	35,00E6	
γ	kN/m³	25,00	
Pile type		Predefined	
Predefined pile type		Massive circular pile	
Diameter	m	1,000	
A	m²	0,7854	
I ₃	m ⁴	0,04909	
12	m ⁴	0,04909	
Rayleigh α		0,000	
Rayleigh β		0,000	
Axial skin resistance		Layer dependent	
T _{max}	kN/m	1,000E12	
F _{max}	kN	500,0	
Identification number		1	

Comments		
Colour		
Material type		Elastic
E	kN/m²	35,00E6
γ	kN/m³	25,00
Pile type		Predefined
Predefined pile type		Massive circular pile
Diameter	m	1,000
Α	m²	0,7854
1	m⁴	0,04909
Lspacing	m	3,600
Rayleigh α		0,000
Rayleigh β		0,000
Axial skin resistance		Layer dependent
Identification		paloø1000/3.60
Tmax	kN/m	1,000E12
Lateral skin resistance		Unlimited
Fmax	kN	500,0
Default values		No
Axial stiffness factor		0,9566
Lateral stiffness factor		0,9566
Base stiffness factor		9,566
Identification number		1

General information

General information	
Project	
Filename	Trattaroli SUD_A6.P2DX
Directory	C:\Users\Alessandro\Desktop\4-Plaxis_Trattatorli sud\
Title	Trattaroli Sud
General	
Model	Plane strain
Elements	15-Noded
Acceleration	
Gravity angle	-90,00°
x-acceleration	0,000 G
y-acceleration	0,000 G
Earth gravity	9,810 m/s²
Mesh	
Nr of soil elements	2848
Nr of nodes	23657
Average element size	1,414 m
Maximum element size	9,671 m
Minimum element size	0,1357 m
Comments	

3.1 Calculation information Initial phase [InitialPhase]

Calculation information				
Step info				
Phase	Initial phase [InitialPhase]			
Step	Initial			
Calulation mode	Classical mode			
Step type	K0 procedure			
Kernel type	32 bit			
Extrapolation factor	0,000			
Relative stiffness	0,000			
Multipliers				
Soil weight			ΣM_{Weight}	1,000
Strength reduction factor	\mathbf{M}_{sf}	0,000	ΣM_{sf}	1,000
Time	Increment	0,000	End time	0,000
Staged construction				
Active proportion total area	M_{Area}	0,000	ΣM_{Area}	1,000
Active proportion of stage	M_{Stage}	0,000	ΣM_{Stage}	0,000
Forces				
F_X	0,000 kN/m			
F_{Y}	0,000 kN/m			
Consolidation				
Realised P _{Excess,Max}	$0,000 \text{ kN/m}^2$			

3.2 Calculation information Scavo -6m [Phase_1]

Calculation information				
Step info				
Phase	Scavo -6m [Phase_1]			
Step	Initial			
Calulation mode	Classical mode			
Step type	Plastic			
Updated mesh	False			
Solver type	Picos			
Kernel type	64 bit			
Extrapolation factor	0,8239			
Relative stiffness	0,9285			
Multipliers				
Soil weight			ΣM_{Weight}	1,000
Strength reduction factor	\mathbf{M}_{sf}	0,000	$\Sigma M_{ m sf}$	1,000
Time	Increment	0,000	End time	0,000
Staged construction				
Active proportion total area	M_{Area}	-0,01428	ΣM_{Area}	0,9087
Active proportion of stage	M_{Stage}	0,1294	ΣM_{Stage}	1,000
Forces				
F_X	0,000 kN/m			
F_{Y}	0,000 kN/m			
Consolidation				
Realised P _{Excess,Max}	0,000 kN/m ²			
·				

3.3 Calculation information Paratia [Phase_2]

Calculation information				
Step info				
Phase	Paratia [Phase_2]			
Step	Initial			
Calulation mode	Classical mode			
Step type	Plastic			
Updated mesh	False			
Solver type	Picos			
Kernel type	64 bit			
Extrapolation factor	0,3446			
Relative stiffness	0,2392			
Multipliers				
Soil weight			ΣM_{Weight}	1,000
Strength reduction factor	$M_{ m sf}$	0,000	ΣM_{sf}	1,000
Time	Increment	0,000	End time	0,000

Staged construction				
Active proportion total area	M_{Area}	0,000	ΣM_{Area}	0,9087
Active proportion of stage	M_{Stage}	0,09460	ΣM_{Stage}	1,000
Forces				
F_X	0,000 kN/m			
F_{Y}	0,000 kN/m			
Consolidation				
Realised P _{Excess,Max}	$0,000 \text{ kN/m}^2$			

3.4 Calculation information Rimep+2,5m [Phase_3]

Calculation information				
Step info				
Phase	Rimep+2,5m [Phase_3]			
Step	Initial			
Calulation mode	Classical mode			
Step type	Plastic			
Updated mesh	False			
Solver type	Picos			
Kernel type	64 bit			
Extrapolation factor	0,8577			
Relative stiffness	0,05215			
Multipliers				
Soil weight			ΣM_{Weight}	1,000
Strength reduction factor	$ m M_{sf}$	0,000	ΣM_{sf}	1,000
Time	Increment	0,000	End time	0,000
Staged construction				
Active proportion total area	M_{Area}	0,04530E-3	ΣM_{Area}	0,9400
Active proportion of stage	$ m M_{Stage}$	1,385E-3	ΣM_{Stage}	1,000
Forces				
F_X	0,000 kN/m			
F _Y	0,000 kN/m			
Consolidation				
Realised P _{Excess,Max}	0,000 kN/m ²			

3.5 Calculation information T tr (PT=194 kN/m) [Phase_4]

Calculation information				
Step info				
Phase	T tr (PT=194 kN/m) [Phase_4]			
Step	Initial			
Calulation mode	Classical mode			
Step type	Plastic			
Updated mesh	False			
Solver type	Picos			
Kernel type	64 bit			
Extrapolation factor	0,4267			
Relative stiffness	0,9201			
Multipliers				
Soil weight			ΣM_{Weight}	1,000
Strength reduction factor	\mathbf{M}_{sf}	0,000	ΣM_{sf}	1,000
Time	Increment	0,000	End time	0,000
Staged construction				
Active proportion total area	M_{Area}	0,000	ΣM_{Area}	0,9400
Active proportion of stage	M_{Stage}	0,09400	ΣM_{Stage}	1,000
Forces				
F_X	0,000 kN/m			
F _Y	0,000 kN/m			
Consolidation				
Realised P _{Excess,Max}	0,000 kN/m ²			

3.6 Calculation information Escavo -11,5 m [Phase_5]

Calculation information				
Step info				
Phase	Escavo -11,5 m [Phase_5]			
Step	Initial			
Calulation mode	Classical mode			
Step type	Plastic			
Updated mesh	False			
Solver type	Picos			
Kernel type	64 bit			
Extrapolation factor	0,2519			
Relative stiffness	0,1434			
Multipliers				
Soil weight			ΣM_{Weight}	1,000
Strength reduction factor	$M_{\rm sf}$	0,000	ΣM_{sf}	1,000
Time	Increment	0,000	End time	0,000
Staged construction				
Active proportion total area	M_{Area}	-1,050E-3	ΣM_{Area}	0,9012
Active proportion of stage	M_{Stage}	5,377E-3	ΣM_{Stage}	1,000
Forces				
F _X	0,000 kN/m			
F _Y	0,000 kN/m			
Consolidation				
Realised P _{Excess,Max}	0,000 kN/m ²			

3.7 Calculation information Piano di posa [Phase_6]

Calculation information				
Step info				
Phase	Piano di posa [Phase_6]			
Step	Initial			
Calulation mode	Classical mode			
Step type	Plastic			
Updated mesh	False			
Solver type	Picos			
Kernel type	64 bit			
Extrapolation factor	1,000			
Relative stiffness	0,9225			
Multipliers				
Soil weight			ΣM_{Weight}	1,000
Strength reduction factor	\mathbf{M}_{sf}	0,000	$\Sigma M_{\rm sf}$	1,000
Time	Increment	0,000	End time	0,000
Staged construction				
Active proportion total area	M_{Area}	-1,765E-3	ΣM_{Area}	0,8976
Active proportion of stage	M_{Stage}	0,5000	ΣM_{Stage}	1,000
Forces				
F_X	0,000 kN/m			
F _Y	0,000 kN/m			
Consolidation				
Realised P _{Excess,Max}	0,000 kN/m ²			

3.8 Calculation information Nuova Struttura [Phase_7]

Calculation information			
Step info			
Phase	Nuova Struttura [Phase_7]		
Step	Initial		
Calulation mode	Classical mode		
Step type	Plastic		
Updated mesh	False		
Solver type	Picos		
Kernel type	64 bit		
Extrapolation factor	0,2602		
Relative stiffness	0,6964		
Multipliers			
Soil weight		ΣM_{Weight}	1,000

Strength reduction factor	$ m M_{sf}$	0,000	$\Sigma M_{ m sf}$	1,000
Time	Increment	0,000	End time	0,000
Staged construction				
Active proportion total area	M_{Area}	0,000	ΣM_{Area}	0,8976
Active proportion of stage	$ m M_{Stage}$	0,05660	ΣM_{Stage}	1,000
Forces				
F_X	0,000 kN/m			
F_{Y}	0,000 kN/m			
Consolidation				
Realised P _{Excess,Max}	0,000 kN/m ²			

3.9 Calculation information Riemp +2,5m [Phase_8]

Riemp +2,5m [Phase_8]			
Initial			
Classical mode			
Plastic			
False			
Picos			
64 bit			
0,1925			
0,5452			
		ΣM_{Weight}	1,000
\mathbf{M}_{sf}	0,000	$\Sigma M_{\rm sf}$	1,000
Increment	0,000	End time	0,000
$ m M_{Area}$	0,3396E-3	ΣM_{Area}	0,9012
	0,08242	ΣM_{Stage}	1,000
0,000 kN/m			
0,000 kN/m			
$0,000 \text{ kN/m}^2$			
	Initial Classical mode Plastic False Picos 64 bit 0,1925 0,5452 M _{sf} Increment M _{Area} M _{Stage} 0,000 kN/m 0,000 kN/m 0,000 kN/m	Initial Classical mode Plastic False Picos 64 bit 0,1925 0,5452	Initial Classical mode Plastic False Picos

3.10 Calculation information Fondale -15m [Phase_9

Calculation information				
Step info				
Phase	Fondale -15m [Phase_9]			
Step	Initial			
Calulation mode	Classical mode			
Step type	Plastic			
Updated mesh	False			
Solver type	Picos			
Kernel type	64 bit			
Extrapolation factor	0,4086			
Relative stiffness	0,1228			
Multipliers				
Soil weight			ΣM_{Weight}	1,000
Strength reduction factor	\mathbf{M}_{sf}	0,000	ΣM_{sf}	1,000
Time	Increment	0,000	End time	0,000
Staged construction				
Active proportion total area	M_{Area}	-2,099E-3	ΣM_{Area}	0,8765
Active proportion of stage	$ m M_{Stage}$	0,01346	ΣM_{Stage}	1,000
Forces				
F_X	0,000 kN/m			
F_{Y}	0,000 kN/m			
Consolidation		· ·		
Realised P _{Excess,Max}	$0,000 \text{ kN/m}^2$			

3.11 Calculation information SLU11 (q=69kPa, T=46kN/m) [Phase_10]

Calculation information				
Step info				
Phase	SLU11 (q=69kPa, T=46kN/m) [Phase_10]			
Step	Initial			
Calulation mode	Classical mode			
Step type	Plastic			
Updated mesh	False			
Solver type	Picos			
Kernel type	64 bit			
Extrapolation factor	0,5894			
Relative stiffness	0,1438			
Multipliers				
Soil weight			ΣM_{Weight}	1,000
Strength reduction factor	$ m M_{sf}$	0,000	ΣM_{sf}	1,000
Time	Increment	0,000	End time	0,000
Staged construction				
Active proportion total area	M_{Area}	0,000	ΣM_{Area}	0,8765
Active proportion of stage	M_{Stage}	0,05519	ΣM_{Stage}	1,000
Forces				
F_X	0,000 kN/m			
F_{Y}	0,000 kN/m			
Consolidation				
Realised P _{Excess,Max}	0,000 kN/m ²			

3.12 Calculation information q=78kPa, T=52kN/m [Phase_11]

Calculation information				
Step info				
Phase	q=78kPa, T=52kN/m [Phase_11]			
Step	Initial			
Calulation mode	Classical mode			
Step type	Plastic			
Updated mesh	False			
Solver type	Picos			
Kernel type	64 bit			
Extrapolation factor	0,5018			
Relative stiffness	0,1187			
Multipliers				
Soil weight			ΣM_{Weight}	1,000
Strength reduction factor	$ m M_{sf}$	0,000	ΣM_{sf}	1,000
Time	Increment	0,000	End time	0,000
Staged construction				
Active proportion total area	$ m M_{Area}$	0,000	ΣM_{Area}	0,8765
Active proportion of stage	M_{Stage}	0,03100	ΣM_{Stage}	1,000
Forces				
F_X	0,000 kN/m			
F_{Y}	0,000 kN/m			
Consolidation				
Realised P _{Excess,Max}	$0,000 \text{ kN/m}^2$			

3.13 Calculation information SLU12 [Phase_12]

Calculation information			
Step info			
Phase	SLU12 [Phase_12]		
Step	Initial		
Calulation mode	Classical mode		
Step type	Plastic		
Updated mesh	False		
Solver type	Picos		
Kernel type	64 bit		
Extrapolation factor	0,2263		
Relative stiffness	0,05435		
Multipliers			
Soil weight		ΣM_{Weight}	1,000

Strength reduction factor	\mathbf{M}_{sf}	0,000	$\Sigma M_{ m sf}$	1,000
Time	Increment	0,000	End time	0,000
Staged construction				
Active proportion total area	M_{Area}	0,000	ΣM_{Area}	0,8765
Active proportion of stage	$ m M_{Stage}$	0,01053	ΣM_{Stage}	1,000
Forces				
F_X	0,000 kN/m			
F_{Y}	0,000 kN/m			
Consolidation				
Realised P _{Excess,Max}	0,000 kN/m ²			

3.14 Calculation information SLV (q=48kPa, west, kh=0.06) [Phase_13]

Calculation information				
Step info				
Phase	SLV (q=48kPa, west, kh=0.06) [Phase_13]			
Step	Initial			
Calulation mode	Classical mode			
Step type	Plastic			
Updated mesh	False			
Solver type	Picos			
Kernel type	64 bit			
Extrapolation factor	0,6489			
Relative stiffness	0,05564			
Multipliers				
Soil weight			ΣM_{Weight}	1,000
Strength reduction factor	$M_{ m sf}$	0,000	ΣM_{sf}	1,000
Time	Increment	0,000	End time	0,000
Staged construction				
Active proportion total area	M _{Area}	0,000	ΣM_{Area}	0,8765
Active proportion of stage	$ m M_{Stage}$	0,02038	ΣM_{Stage}	1,000
Forces				
F _X	0,000 kN/m			
F _Y	0,000 kN/m			
Consolidation				
Realised P _{Excess,Max}	$0,000 \text{ kN/m}^2$			
Pseudo-static acceleration				
X	0,06000 m/s ²			
Y	0,000 m/s²			
Y	0,000 m/s ²			

3.15 Calculation information SLE (q=60 kPa, T=40kN/m) [Phase_14]

Calculation information				
Step info				
Phase	SLE (q=60 kPa, T=40kN/m) [Phase_14]			
Step	Initial			
Calulation mode	Classical mode			
Step type	Plastic			
Updated mesh	False			
Solver type	Picos			
Kernel type	64 bit			
Extrapolation factor	0,1078			
Relative stiffness	0,1484			
Multipliers				
Soil weight			ΣM_{Weight}	1,000
Strength reduction factor	\mathbf{M}_{sf}	0,000	$\Sigma M_{\rm sf}$	1,000
Time	Increment	0,000	End time	0,000
Staged construction				
Active proportion total area	M_{Area}	0,000	ΣM_{Area}	0,8765
Active proportion of stage	$ m M_{Stage}$	0,01275	ΣM_{Stage}	1,000
Forces				
F_X	0,000 kN/m			
F_{Y}	0,000 kN/m			
Consolidation				
Realised P _{Excess,Max}	$0,000 \text{ kN/m}^2$			

3.16 Calculation information SLD (q=48kPa, West, kh=0.034) [Phase_15]

Calculation information				
Step info				
Phase	SLD (q=48kPa, West, kh=0.034) [Phase_15]			
Step	Initial			
Calulation mode	Classical mode			
Step type	Plastic			
Updated mesh	False			
Solver type	Picos			
Kernel type	64 bit			
Extrapolation factor	0,7005			
Relative stiffness	0,07906			
Multipliers				
Soil weight			ΣM_{Weight}	1,000
Strength reduction factor	\mathbf{M}_{sf}	0,000	ΣM_{sf}	1,000
Time	Increment	0,000	End time	0,000
Staged construction				
Active proportion total area	M _{Area}	0,000	ΣM_{Area}	0,8765
Active proportion of stage	M_{Stage}	0,04342	ΣM_{Stage}	1,000
Forces				
F_X	0,000 kN/m			
F _Y	0,000 kN/m			
Consolidation				
Realised P _{Excess,Max}	0,000 kN/m ²			
Pseudo-static acceleration				
X	0,03400 m/s ²			
Y	0,000 m/s ²			