

Autorità di Sistema Portuale del Mar Adriatico Centro Settentrionale

APPROFONDIMENTO CANALI CANDIANO E BAIONA, ADEGUAMENTO BANCHINE OPERATIVE ESISTENTI, NUOVO TERMINAL IN PENISOLA TRATTATOLI E RIUTILIZZO DEL MATERIALE ESTRATTO IN ATTUAZIONE AL P.R.P. VIGENTE 2007 I FASE

PROGETTO DEFINITIVO

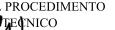
OGGETTO

INDAGINI E PROVE SUI MATERIALI DELLE STRUTTURE ESISTENTI

FILE

1114.SDF.A - IndaginiConoscitive

CODICE


1114.SDF.A

SCALA

Rev.	Data	Causale
0	Set. 2014	Emissione
1	Set. 2017	Revisione generale
2		
3		

AUTORITÀ DI SISTEMA PORTUALE DEL MARE ADRIATICO CENTRO SETTENTRIONALE

IL RESPONSABILE DEL PROCEDIMENTO

MINISTERO INFRASTRUTTURE E DEI TRASPORTI PROVVEDITORATO INTERREGIONALE PER LE OPERE PUBBLICHE PER LA LOMBARDIA E L'EMILIA ROMAGNA

IL RESPONSABILE DELLA REVISIONE
DELLA PROGETTAZIONE

Progetto Definitivo Relazione indagini e prove sui materiali esistenti

1. PREMESSA

Nell'ambito della progettazione degli interventi da effettuarsi per l' approfondimento dei canali Candiano e Baiona, l'adeguamento delle banchine operative esistenti e la realizzazione del nuovo Terminal in penisola Trattaroli, sono state effettuate numerose indagini e prove sui materiali tese a raggiungere un fattore di conoscenza tale da consentire di sviluppare in modo efficace la progettazione dell'intervento oltre che a valutare lo stato di fatto delle strutture e dei materiali che costituiscono le banchine oggetto di adeguamento.

A tal proposito sono stati commissionati indagini e studi a diverse società specializzate finalizzati in particolare ha conoscere lo stato di conservazione e le resistenze meccaniche degli acciai e dei calcestruzzi. Le indagini hanno interessato: tiranti di ancoraggio, calcestruzzi, le armature da c.a. e palancolati.

In considerazione della natura sabbiosa dei terreni costituenti il sedime del porto di Ravenna, al fine di valutare gli interventi da porre in opera, è stato commissionato apposito studio sulla valutazione della suscettibilità del potenziale di liquefazione del terreno, che si riferisce ad uno specifico rapporto tecnico prodotto da "EUCENTRE".

2.AREA DI INTERVENTO

Il Porto di Ravenna è costituito da un canale principale, Candiano, e due secondari, Baiona a Piombone. Nel complesso sono attualmente presenti 24 km di banchine disponibili, di cui 18.5km operative. Le merci trattate dai terminalisti privati sono principalmente rinfuse, liquidi, container. Il porto in questione si è sviluppato a partire dagli anni '60 per iniziativa di privati, e negli anni è stato oggetto di numerosi interventi. Questo ha portato ad avere, allo stato attuale, banchine di diverse tipologie strutturali, con parametri di progetto non uniformi e in diverso stato di conservazione, spesso lunghe poche centinaia di metri.

Le banchine su cui si interverrà sono state costruite da 15 a 45 anni fa, con tecnologie differenti anche se generalmente riconducibili al sistema strutturale della paratia ancorata (diaframmi in c.a. ancorati, prefabbricati in c.a. ancorati, palancolati in acciaio ancorati); la robustezza delle strutture è molto variabile così come la qualità dei materiali utilizzati (calcestruzzi, acciai), l'attenzione ai dettagli costruttivi (protezione dei tiranti di ancoraggio, ad esempio), lo stato di conservazione dell'opera.

Nel corso degli anni risultano diversi eventi di dissesto che hanno interessato le banchine del porto di Ravenna. Un caso riguarda il molo guardiano sinistro, negli anni '80, che ha subito forti cedimenti per la consolidazione dello strato limo-argilloso tenero con compromissione dei blocchi di calcestruzzo della pavimentazione sommitale; tre casi, verificatisi dopo il 2000, riguardano il cedimento del sistema di ancoraggio sommitale.

3. INDAGINI E PROVE SUI MATERIALI DELLE STRUTTURE ESISTENTI

Al fine di stabilire lo stato di fatto delle opere che compongono l'HUB portuale di Ravenna in modo da poter progettare in modo efficace gli interventi di adeguamento delle opere è stata messa in campo una campagna di indagini volte a determinare le caratteristiche dei materiali ed il loro stato di conservazione e

Progetto Definitivo Relazione indagini e prove sui materiali esistenti

si è commissionato uno studio con l'obbiettivo di valutare il potenziale di liquefazione delle sabbie sui cui si prevede di realizzare le nuove banchine in progetto. In particolare per quanto riguarda i materiali e le strutture esistenti si sono indagati:

- tiranti di ancoraggio:

- apertura di alcune nicchie di testata per esame visivo dei sistemi di bloccaggio e misura dell'isolamento elettrico;
- escavo a tergo per valutare presenza dei sistemi di isolamento dei trefoli nella parte libera e stato di corrosione;

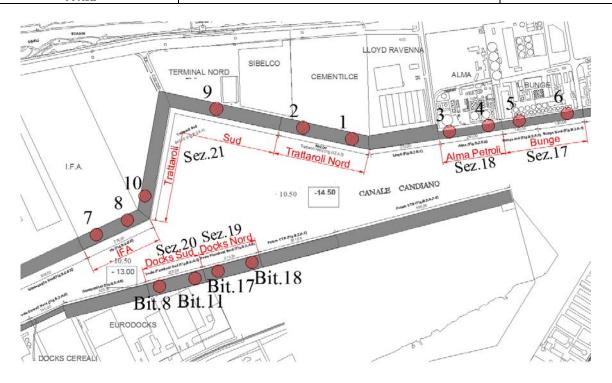
- calcestruzzi:

 prelievo di carote di calcestruzzo dalla trave di banchina per eseguire prova di carbonatazione e valutazione della resistenza a compressione;

- armature da c.a.:

• prelievo di barre di armatura dalla trave di banchina per valutazione della resistenza a trazione;

- palancolati:


- misura dello spessore dell'ala delle palancole a varie profondità con metodi ultrasonici;
- prelievo di fazzoletti di palancola su cui eseguire prove di trazione.

Di seguito si riporta uno stralcio planimetrico dell'area portuale indagata con la posizione indicativa dei diversi siti di indagine. La tipologia di indagine svolta in ogni punto è stata calibrata sulla base dell'età della banchina, della documentazione di progetto disponibile (certificazioni sui materiali) e della possibilità di utilizzare le strutture presenti nel progetto di adeguamento.

Progetto Definitivo Relazione indagini e prove sui materiali esistenti

Stralcio Planimetrico con indicazione siti di indagine

3.1 TIRANTI DI ANCORAGGIO

La prova speciale di verifica dell'idoneità degli ancoraggi esistenti consiste nella:

- misura del tiro presente sugli ancoraggi;
- verifica dell'integrità dei trefoli, in particolare della zona sotto piastra;
- verifica della capacità dei cunei di bloccaggio di sostenere in sicurezza i trefoli.

Per compiere questo tipo di verifica si è svolata la seguente procedura alla seguente procedura:

- scavo per portare alla luce il tirante a tergo della trave;
- scopertura dei trefoli;
- installazione di sistemi di misura degli accorciamenti sui trefoli;
- taglio dei trefoli;
- apertura della nicchia di testata;
- sfilaggio dei singoli trefoli e del relativo sistema di bloccaggio boccola-cuneo;
- esecuzione di una prova di trazione per determinare il carico di sfilamento del trefolo dal sistema di bloccaggio.

Il tiro agente sui trefoli può essere stimato in base all'accorciamento misurato a seguito del taglio. Tale misura può essere fatta con micrometri fissati in due punti del trefolo o con microestensimetri incollati al singolo filo di un trefolo. Il sistema è già stato utilizzato su alcuni ponti post-tesi sulla A3 Salerno – Reggio Calabria per la misura dello sforzo di trazione presente.

In laboratorio è stata effettuata una prova di trazione finalizzata a determinare sia il carico di rottura del trefolo sia quello di sfilamento del trefolo dal bloccaggio; in particolare si è verificato se la forza di bloccaggio è sufficiente a trattenere il trefolo fino alla sua rottura o se il trefolo tende a sfilarsi a carichi più

Progetto Definitivo Relazione indagini e prove sui materiali esistenti

bassi. Infine, tramite ispezione visiva da certificata con documentazione fotografica, si è valutato lo stato di conservazione del trefolo nel tratto sotto piastra, particolarmente critico per l'affidabilità del sistema di ancoraggio nel suo complesso.

Risultati delle prove sui tiranti

Su alcuni tiranti sono state eseguite delle prove volte ad accertare lo stato di conservazione dei trefoli, la presenza della doppia protezione, lo stato delle testate di ancoraggio (attraverso ispezione visiva e misura dell'isolamento elettrico) e la qualità dell'acciaio dei trefoli.

Le tabelle seguenti riassumono i principali risultati ottenuti, grazie ai quali si è decisa l'opportunità o meno di fare affidamento sui tiranti esistenti. In generale la mancanza della doppia protezione in fase progettuale è stata dirimente per decidere l'abbandono dei tiranti esistenti nel progetto di adeguamento. Per i tiranti che avevano la doppia protezione e su cui si è fatto affidamento per l'adeguamento, sulla base all'esito delle indagini sono state previste delle prove di idoneità speciali da realizzare in fase di costruzione.

RISULTATI PROVE DI RESISTENZA A TRAZIONE DEI TREFOLI DEI TIRANTI

PROVE DI TRAZIONE											
Provenienza	Sito d'indagine	massa (kg)	lunghezza (mm)	Diametro (mm)	tolleranza sezione (%)	Sezione (mm²)	fpt (kN)	fpt (N/mm²)			
Banchina Bunge	5	0,595	536	139	2,34	142,25	253,2	1780			
Banchina Alma	3	0,707	640	139	1,53	141,14	267,75	1897			
Banchina IFA	7	0,678	630	139	-0,79	137,9	241,19	1749			
Banchina Tratt.Nord	1	0.457	414	139	1,69	141,35	249,48	1765			
Banchina Tratt.Sud	10 (Terminal T&C)	0,456	415	139	1,32	140,84	237,31	1685			

RISULTATI PROVE DI PROTEZIONE ELETTRICA DEI TIRANTI

			PROVE	DI PROTEZ	IONE ELETTRICA	- UNI EN 1537:2002			
Provenienza	Sito d'indagine	Sigla	Valore max misurato (kΩ)	Metodo		Note	Stato testa/tirante		
Danahina Dunas	5	Testa tirante 1	198,9	ERM II	Misurati diversi v	alori, ma sempre maggiori di 100 kΩ	Testa in buono stato senza tracce di ruggine		
Banchina Bunge	6				Non è sta	to possibile eseguire la prova	-		
Banchina Alma	3 Testa tirante 2 1,1 ERM II					Testa in buono stato, poco ossidata			
Banchina Alma	4	Testa tirante 1	158,0	ERM II	Valori molto d	lispersivi, si ripete spesso 4,6 kΩ	Presenza di ruggine diffusa sulla testa/cavi		
Banchina IFA 7 Te		Testa tirante 1	141,4	ERM II		iferiori a 100 kΩ, tranne in un punto ove ha dato 141,4 kΩ	Testa leggermente ossidata		
	8	Testa tirante 2	190,4	ERM II	Misurati anch	ne alcuni valori inferiori a 100 kΩ	Testa leggermente ossidata		
Banchina	1	Testa tirante 1	191,4	ERM II			In ottimo stato di conservazione, non vi sono segi di ruggine		
Tratt.Nord	2	Testa tirante 2	179,4	ERM II			Testa e piastra ben conservate e protette da pellicola esterna in PVC		
Banchina Tratt.Sud	9 (Terminal Nord spa)	Testa tirante 1	194,4	ERM II	Misurat anch	ne alcuni valori inferiori a 100 kΩ	Piastra di appoggio in buono stato, ruggine superficiale		
	10 (Terminal T&C)	Testa tirante 2	145,0	ERM II	Misurati anch	e alcuni valori inferiori a 100 kΩ.	Piastra leggermente ossidata		

Per un maggiore dettaglio sulle prove eseguite sui tiranti di ancoraggio si rimanda al rapporto di prova prodotto dalla società "Tecno controlli", allegato e parte integrante del presente elaborato.

Progetto Definitivo Relazione indagini e prove sui materiali esistenti

3.2 CALCESTRUZZI

Per poter valutare lo stato del calcestruzzo costituente le travi delle diverse banchine si sono estratte 4 carote per ogni trave, e successivamente sono state sottoposte a prova di compressione e di carbonatazione. Di seguito si riporta la tabella che riassume i risultati dell'indagine sui calcestruzzi della trave di banchina.

Si osservano risultati molto differenziati tra le diverse banchine, peraltro generalmente in linea con i valori indicati nei progetti originali. La maggior parte dei valori di resistenza a compressione non appartiene alla classe di calcestruzzi che oggi si userebbero in ambito marittimo (classe di esposizione XS3, calcestruzzi C35/45).

Sulla base della consistenza della trave di banchina si è valutata di volta in volta l'opportunità di riutilizzare la trave esistente o di demolirla e ricostruirla.

RISULTATI PROVE DI RESISTENZA A COMPRESSIONE DELLE CAROTE

Provenienza	Sito d'indagine	Sigla	Diame tro (cm)	Altez za (cm)	Area (cm^ 2)	Volume (m3)	Mas sa (Kg)	Massa volumi ca (Kg/m c)	Caric o di rottur a (kN)	Resistenz a alla compressi one (N/mm2)	Tipo di rottu ra	Tipo di estrazio ne
		C2-Mare	9.4	9,4	69,4	0,0006	1,45		260,4			
Banchina	BUNGE SUD	C1-	9,4	9,4	0	523	8	2235,0	00	37,52	1	1:1
		Estradosso	9,4	9,5	69,4	0,0006 593	1,50 9	2288.9	253,5 77	36.54	1	1:1
Bunge					69.4	0.0006	1,48	mm 0 0 1 0	293.5	55,61		
	6	C4-Mare	9,4	9.4	0	523	4	2274.9	00	42.29	1	1:1
	0	C3-			69,4	0,0006	1,54		284,5	,		
		Estradosso	9,4	9,5	0	593	0	2335,9	97	41.01	1	1:1
		C1-			69.4	0.0006	1,40		249,7	,		
Banchina Alma	3	Estradosso	9,4	9.3	0	454	9	2183.1	00	35.98	1	1:1
					69,4	0.0006	1,50		252.7			
		C2-Mare	9,4	9.5	0	593	0	2275,2	93	36.43	1	1:1
					69.4	0.0006	1,48		255,2	00,10		
	4	C3-Mare	9,4	9,4	0	523	1	2270,3	17	36.77	1	1:1
	4	C4-			69,4	0.0006	1,48		220,4		_	
		Estradosso	9,4	9,4	0	523	7	2279,5	00	31.76	1	1:1
					69.4	0.0006	1,42		121,0			
	7	C3-Mare	9,4	9,3	0	454	6	2209.5	84	17.45	1	1:1
	,	C1-			69,4	0,0006	1,44		134,9		-	
Banchina IFA		Estradosso	9,4	9,4	0	523	7	2218.2	00	19.44	1	1:1
Danchina IFA	8	C2-			69.4	0.0006	1,53		142.4	10,11		
		Estradosso	9.4	9,6	0	662	2	2299.5	06	20,52	1	1:1
					69.4	0.0006	1.47		170,8			
		C4-Mare	9,4	9,5	0	593	4	2235.8	00	24.61	1	1:1
		C1-			69,4	0,0006	1,47		345.3	21,01		
	1	Estradosso	9,4	9,3	0	454	4	2283,9	21	49.76	1	1:1
	'				69,4	0,0006	1,55		402,0			
Banchina		C2-Scavo	9,4	9,4	0	523	4	2382,2	31	57.93	1	1:1
Tratt.Mord		C3-			69,4	0,0006	1,14		306,9			note.
	2	Estradosso	9,4	9,3	0	454	5	2238,9	00	44,22	1	1:1
	2				69,4	0,0006	1,50		332,5			
		C4-Mare	9,4	9,4	0	523	2	2302,5	91	47,93	1	1:1
		C2-			69,4	0,0006	1,43		117,1			
	9 (Terminal	Estradosso	9,4	9,4	0	523	5	2199,8	00	16,87	1	1:1
	Nord spa)				69,4	0,0006	1,50		216,6			
Banchina		C4-Mare	9,4	9,5	0	593	0	2275,2	39	31,21	1	1:1
Tratt.Sud	10				69,4	0,0006	1,49		240,1			
	(Terminal	C3-Mare	9,4	9,5	0	593	6	2269,1	00	34,6	1	1:1
	T&C)	C1-			69,4	0,0006	1,43		200,8			
	100)	Estradosso	9.4	9,4	0	523	5	2199,8	00	28.93	1	1:1

Progetto Definitivo Relazione indagini e prove sui materiali esistenti

Per un maggiore dettaglio sulle prove eseguite sul calcestruzzo costituente le travi di banchina si rimanda al rapporto di prova prodotto dalla società "Tecno controlli", allegato e parte integrante del presente elaborato.

3.3 ARMATURE DA C.A.

Al fine di valutare lo stato delle barre di armature presenti nelle travi costituenti le banchine esistenti, si sono estratte 2 barre per ogni banchina e su queste sin sono eseguite prove di trazione. La tabella seguente sintetizza i risultati delle suddette prove di trazione svolte sulle barre di armatura prelevate dalle travi di banchina

Si osserva che alcune barre presentavano segni di ossidazione e che alcuni valori sono risultati piuttosto bassi anche tenendo conto che alcune barre erano indicate nei progetti come FeB38k. Nei casi in cui le barre di armatura sono risultate corrose, o hanno fornito risultati inadeguati in fase progettuale sarà prevista la demolizione e la successiva ricostruzione della trave di banchina.

RISULTATI PROVE DI RESISTENZA A TRAZIONE DELLE BARRE DI ARMATURA

Provenienza	Sito	Sigl a	Diametr o nominal e (mm)	mass a	lung h mm	toll sez %	Sezion e effettiv a (mm²)	Diametr o virtuale (mm)	Carico di Snerva m. fy	Carico di Rottur a ft Unitari o (N/mm²	Allunga m. A₅
Provenienza	d'indagine								Unitario (N/mm²)		
Banchina Bunge	5	B1	20	756	315	-2,68	305,73	19,73	416,80	645,60	11,52
	6	B2	20	1222	483	2,59	322,30	20,26	495,40	601,10	18,19
Banchina Alma	3	B1	10	270	452	-3,11	76,09	9,84	OSSID.	524,2	NC
Duncima Ama	4	B2	18	1023	505	1,41	258,06	18,13	502,8	604,5	21
Banchina IFA	7	B1	10	163	394	-32,90	52,70	8,19	OSSID.	167,6	NC
Denomina ii A	8	B2	10	187	410	-26,02	58,10	8,60	248,9	346,3	NC
Banchina	1	B1	20	1095	448	-0,89	311,36	19,91	488,8	593,7	13,2
Tratt.Nord	2	B2	20	1208	490	-0,03	314,05	20,00	514,9	616,5	10,83
Banchina	9 (Terminal Nord spa)	B1	20	1006	404	0,97	317,21	20,10	537,8	620,4	15,16
Tratt.Sud	10 (Terminal T&C)	B2	20	1026	413	0,73	316,47	20,07	552,1	627	14,71

Per un maggiore dettaglio sulle prove eseguite sulle barre di armature da c.a. si rimanda al rapporto di prova prodotto dalla società "Tecno controlli", allegato e parte integrante del presente elaborato.

3.4 PALANCOLATI

Per quanto riguarda la valutazione dello stato delle palancole esistenti si sono eseguite prove volte a determinare:

- resistenza a trazione,
- spessori delle palancole a varie profondità con metodi ultrasonici .

Progetto Definitivo Relazione indagini e prove sui materiali esistenti

I risultati delle prove sui palancolati sono riassunti nelle seguenti tabelle in termini di resistenza a trazione e verifica degli spessori.

Resistenza a trazione

Le prove di trazione sui fazzoletti hanno dato in due casi valori superiori ai valori nominali, mentre in tre casi si sono registrati valori prossimi o leggermente inferiori ai valori nominali. In un caso lo scostamento in termini di soglia di snervamento è stato pari al 9% (Docks Piomboni Nord).

				RISUL		VALORI INDICATI NEI PROGETTI							
POSIZIONE	sp. (mm)	Dimensioni provino		Sezione effettiva	Carico di Sner	vam. fy	Carico di Rottura ft		Allung.	0.014	f _{y,nom.}	f _{t,nom.}	All.,nom.
		A (mm) (*)	B (mm)	(mm²)	Totale (daN)	Unitario (N/mm²)	Totale (daN)	Unitario (N/mm²)	%	SIGLA	N/mm²	N/mm²	%
PALANCOLE SITO 11 Docs Piomboni nord	18	16.35	29.82	487.56	17260	354			34,5	S390GP	390	490	-
PALANCOLE SITO 3 Alma	18	16.55	29.77	492.69	20299	412	28034	569	26,0	PAE360	360	490	22
PALANCOLE SITO 12 Docs Piomboni sud		16.55	29.94	495.51	17045	344	23834	481	31,0	PAE360	360	490	22
PALANCOLE SITO 10 Trattoroli sud		16.46	30.10	495.45	20412	412	27150	548	26,0	Fe510	355	510	-
PALANCOLE SITO 5 Bunge	18	16.40	29.82	489.05	17068	349	23817	487	27,0	PAE360	360	490	22

Verifica degli spessori

Riguardo le misure di spessore dei palancolati, come si può osservare nella tabella sottostante, i risultati sperimentali indicano perdite di metallo generalmente modeste, salvo talvolta in prossimità del livello del mare.

Progetto Definitivo Relazione indagini e prove sui materiali esistenti

					Anni di	Mis	ura ultrasoi	nica spessori	acciaio dei	palancolati		
		Palancola	Spessore nominale (mm)	I Anno di I	esposizion	Spessore (mm)						
BANCHINA INDAGATA		HZ		Installazione	an ambien	Misura su fazzoletto	Profondità (da l.m.m.)					
					te	Idzzoietto	-0,50	-2,50	-4,50	-6,50	-8,50	
PALANCOLE Docks Piomboni nord (Sez.19)	Punto 11-Bitta 18	HZ975A	17	2002	15	-	18,7	18,4	18,3	18,4	18,5	
The model books from both mora (belief)	Punto 12-Bitta 17	TIE575K		2002	13	18,3	18,5	18,4	18,4	18,4	18,4	
PALANCOLE Alma Petroli (Sez. 18)	Punto 3	HZ775B	19	1990/1991	26-27	18,5	17,4	17,5	18,0	18,1	18,2	
	Punto 4	1127730		1330/1331	2027	-	17,5	18,8	18,8	18,7	18,7	
PALANCOLE Docs Piomboni sud (Sez. 20)	Punto 12-Bitta 8	HZ775B	75B 19	1990/1993	24-27	18,1	18,1	18,2	18,1	18,1	18,1	
TABINOOLE BOLS TIOMBOM Sad (Sel. 20)	Bitta 11	1127730	13	15 1550/1555	2427	-	18,1	18,2	18,2	18,3	18,1	
PALANCOLE Trattoroli sud (Sez. 21)	Punto 10	HZ975C	21	1996/1999	18-21	20,0	20,5	21,3	20,8	21,0	21,0	
PADANCOLE Hattoron suu (322. 21)	Punto 9	1123730	21	1990/1999	10-21	-	21,6	21,6	21,8	21,8	21,8	
PALANCOLE Bunge (Sez.17)	Punto 5	HZ775B	19	1988/1989	28-29	18,5	18,1	18,4	18,4	18,5	18,2	
PALANCOLE Bunge (Sez.17)	Punto 6	HZ//5B	19	1500/1505	20-29	-	17,7	17,3	17,2	17,3	17,3	
		74		\$ Sez. 21		Sez. 19			2.50 2.50 2.50 2.50 3 4.50 4.50 4.50 3	<u>0,00 - Lm.n</u>	<u>.</u>	

Peraltro si osserva come alcuni palancolati presentano spessori leggermente inferiori per l'intera altezza indagata (da -0,5 a -8,5 m da l.m.m.), facendo pensare più ad un sottospessore iniziale della fornitura che ad una corrosione più incisiva.

D'altra parte gli attuali cataloghi Arcelor-Mittal, ad esempio, indicano tolleranze nella fornitura dei palancolati HZ nell'intervallo -1,5 mm /+2,5 mm. Tale tolleranza iniziale potrebbe spiegare gli spessori tutti superiori al valore nominale registrati a Docks Piomboni Nord o il valore sempre più basso registrato a Bunge (Punto 6 di misura).

Facendo riferimento ai tassi di corrosione suggeriti dalle Raccomandazioni internazionali (vedi tabelle seguenti) e considerando la zona di permanente immersione per l'ala del palancolato, che è esposta all'acqua da un lato ed a contatto con il terreno dall'altro, si avrebbe una perdita di spessore di 0,3 mm lato terra e 0,9 mm lato acqua in 25 anni, per un totale di 1,2 mm. I risultati sperimentali indicano perdite di spessore generalmente inferiori, per cui i tassi di corrosione suggeriti appaiono ragionevolmente cautelativi.

Considerati gli esiti delle prove appare quindi ragionevole fare riferimento ai tassi di corrosione previsti dalle raccomandazioni e valutare gli spessori persi alla fine della vita nominale tenendo conto degli anni trascorsi dal momento della costruzione delle opere ad oggi. Se quindi l'opera è stata costruita 25 anni fa, si farà riferimento agli spessori prevedibili a 75 anni di vita.

Progetto Definitivo Relazione indagini e prove sui materiali esistenti

Table 4-1: Recommended value for the loss of thickness [mm] due to corrosion for piles and sheet piles in soils, with or without groundwater

Required design working life	5 years	25 years	50 years	75 years	100 years
Undisturbed natural soils (sand, silt, clay, schist,)	0,00	0,30	0,60	0,90	1,20
Polluted natural soils and industrial sites	0,15	0,75	1,50	2,25	3,00
Aggressive natural soils (swamp, marsh, peat,)	0,20	1,00	1,75	2,50	3,25
Non-compacted and non-aggressive fills (clay, schist, sand, silt,)	0,18	0,70	1,20	1,70	2,20
Non-compacted and aggressive fills (ashes, slag,)	0,50	2,00	3,25	4,50	5,75

Notes:

- Corrosion rates in compacted fills are lower than those in non-compacted ones. In compacted fills the figures in the table should be divided by two.
- The values given for 5 and 25 years are based on measurements, whereas the other values are extrapolated.

Progetto Definitivo Relazione indagini e prove sui materiali esistenti

Table 4-2: Recommended value for the loss of thickness [mm] due to corrosion for piles and sheet piles in fresh water or in sea water

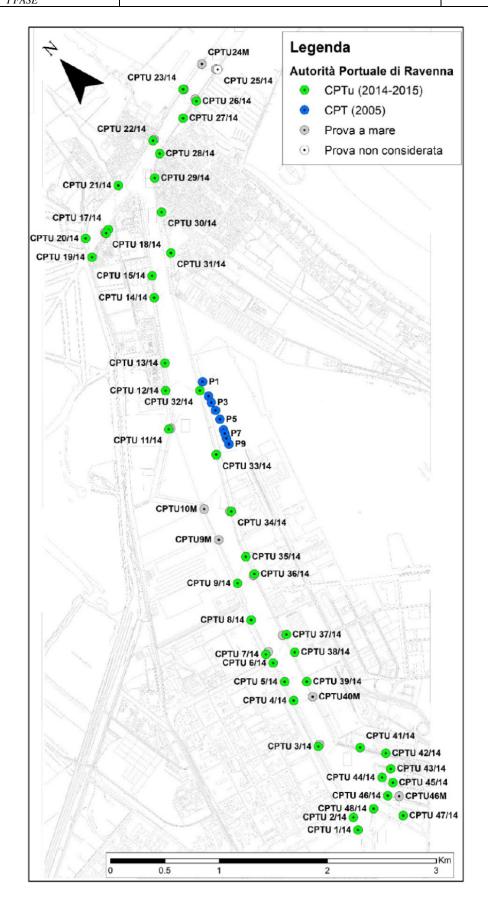
Required design working life	5 years	25 years	50 years	75 years	100 years
Common fresh water (river, ship canal,) in the zone of high attack (water line)	0,15	0,55	0,90	1,15	1,40
Very polluted fresh water (sewage, industrial effluent,) in the zone of high attack (water line)	0,30	1,30	2,30	3,30	4,30
Sea water in temperate climate in the zone of high attack (low water and splash zones)	0,55	1,90	3,75	5,60	7,50
Sea water in temperate climate in the zone of permanent immersion or in the intertidal zone	0,25	0,90	1,75	2,60	3,50

Notes:

- The highest corrosion rate is usually found in the splash zone or at the low water level in tidal waters.
 However, in most cases, the highest bending stresses occur in the permanent immersion zone, see Figure 4-1.
- The values given for 5 and 25 years are based on measurements, whereas the other values are extrapolated.

Per un maggiore dettaglio sulle prove eseguite sui palancolati esistenti si rimanda al rapporto di prova prodotto dalla società "STES – SUB TECHNICAL EDIL SERVICE s.r.l", allegato e parte integrante del presente elaborato.

3.5 VALUTAZIONE POTENZIALE DI LIQUEFAZIONE DELLE SABBIE


Il fenomeno della liquefazione implica una perdita totale o parziale della resistenza al taglio e della rigidezza del terreno, a causa dell'incremento di pressione interstiziale durante lo scuotimento sismico in un terreno a grana grossa, poco addensato e saturo. L'incremento delle pressioni interstiziali indotte dagli sforzi di taglio ciclici, anche in terreni a conducibilità idraulica relativamente elevata, può, infatti, indurre una forte riduzione o persino l'annullamento degli sforzi efficaci nel terreno.

La valutazione della suscettibilità a liquefazione è stata condotta utilizzando i risultati delle prove CPT, riportate nella seguente figura. Si tratta in totale di 69 prove, di cui 60 eseguite nella campagna di indagine 2014-2015 e 9 eseguite nel 2005. Le prove eseguite a partire da una quota corrispondente al fondale marino (prove a mare) sono indicate in grigio.

Progetto Definitivo Relazione indagini e prove sui materiali esistenti

Progetto Definitivo Relazione indagini e prove sui materiali esistenti

Ubicazione delle 69 prove penetrometriche statiche CPT utilizzate per la valutazione della suscettibilità a liquefazione nell'area portuale di Ravenna.

Dalle specifiche analisi sul rischio di liquefazione svolte dall'Università di Pavia risulta che lo strato sabbioso superficiale, denominato S – sabbie di cordone dunale è suscettibile a tale fenomeno specialmente con tempi di ritorno di 712 anni. Il verificarsi di tale evento può portare allo sviluppo di cedimenti dei piazzali e spostamenti dei palancolati che possono danneggiare le opere rendendo i banchinamenti non operativi a seguito dell'evento sismico.

D'altra parte la presenza di sottoservizi, piazzali pavimentati e costruzioni (Silos, depositi, serbatoi), rende un intervento generalizzato di consolidamento, oltre che estremamente costoso, molto impattante sulle strutture esistenti e sulla funzionalità del porto.

In fase progettuale procederà considerando in modo differenziato i due casi di realizzazione di BANCHINE NUOVE o di adeguamento di BANCHINE ESISTENTI, e si terrà conto dello spessore del deposito sabbioso potenzialmente liquefacibile (si rimanda agli elaborati di progetto).

Per un maggiore dettaglio sulle analisi eseguite si rimanda al rapporto tecnico prodotto da "EUCENTRE" dal titolo "Valutazione del potenziale di liquefazione al porto di Ravenna", allegato e parte integrante del presente elaborato.