

Direzione Progettazione e Realizzazione Lavori

S.S.N.318 DI VALFABBRICA

Tratto Valfabbrica-Schifanoia - Interventi di completamento dal Km 16+224 al Km 19+354

Lotto 5 : 1 stralcio parte B: raddoppio galleria Picchiarella e viadotto Tre Vescovi

2 stralcio: raddoppio galleria Casacastalda e viadotto Calvario

PROGETTO ESECUTIVO

COD. PG131 - PG6

ATI SINTAGMA - GDG - ICARIA PROGETTAZIONE: IL RESPONSABILE DELL'INTEGRAZIONE DELLE PRESTAZIONI SPECIALISTICHE: IL GRUPPO DI PROGETTAZIONE: MANDATARIA: MANDANTI: Dott. Ing. Nando Granieri Ordine degli Ingegneri della Prov. di Perugia nº A351 **M**Sintagma società di ingegneria Dott.Ing. N.Granieri D.Carlaccini V.Rotisciani Dott.Arch. N.Kamenicky V.Truffini Dott. Ing. S.Sacconi G.Cordua Dott. Ing. Dott. Ing. F Macchioni IL PROGETTISTA: M.Sorbelli Dott.Ing. Dott.Arch. Dott. Ing. Dott. Ing. Davide Carlaccini Dott. Ing. V.De Gori A.Bracchini Dott. Ing. V.Piunno G.Pulli Dott.Ing. F.Durastanti Dott. Ing. Ordine degli Ingegneri della Prov. di Terni n° A1245 Dott.Geol. G.Cerquiglini Scopetta IL GEOLOGO: Dott.Ing. I Shrenna E.Sellari Dott. Geol. Giorgio Cerquiglini Dott.Ing. Dott.Ing. L.Stoppini Ordine dei Geologi della Regione Umbria n°108 Dott.Ing L.Dinelli Dott.Ing. L.Nani II R.U.P. F.Pambianco Dott.Ing. F.Berti Nulli Dott. Ing Dott. Agr. Antonio Scalamandrè INGEGNERI DELLA PROVINCIA Seziofe A ORDINE degli INGEGNERI IL COORDINATORE PER LA SICUREZZA IN FASE DI PROGETTAZIONE: INGEGNERE Dott. Ing. Filippo Pambianco Ordine degli Ingegneri della Prov. di Perugia nº A1373 David DOTTORS INGEGNERE MANDO GRANIERI **PROTOCOLLO** DATA SETTORE CIVILE E AMBIENTALE SETTORE INDUSTRIALE SETTORE DELL'INFORMAZIONE Provincia di TERNI

OPERE D'ARTE MAGGIORI: GALLERIE NATURALI GALLERIA PICCHIARELLA Relazione geotecnica

CODICE PROGETTO PROGETTO LIV. PROG. N. PROG.		NOME FILE POO-GNO1-OST-REO1-A				REVISIONE	SCALA:
DPPG		CODICE ELAB.	P 0 0 C N 0 1 0 S 1 R E 0 1				-
A	Emissione			25/10/2017	S.Sacconi	D.Carlaccini	N.Granieri
REV.	DESCRIZIONE			DATA	REDATTO	VERIFICATO	APPROVATO

Tratto Valfabbrica-Schifanoia - Interventi di completamento dal Km 16+224 al Km 19+354 Lotto 5: 1° stralcio parte B: raddoppio galleria Picchiarella e viadotto Tre Vescovi 2° stralcio: raddoppio galleria Casacastalda e viadotto Calvario

PROGETTO ESECUTIVO

RELAZIONE GEOTECNICA

INDICE

1. PREMESSA	2
2. INDAGINI ESEGUITE	3
2.1 CAMPAGNA DI INDAGINE DEL 1994	3
2.2 CAMPAGNA DI INDAGINE DEL 2000	4
2.3 CAMPAGNA DI INDAGINE DEL 2001	4
2.4 CAMPAGNA DI INDAGINE DEL 2004	4
2.5 CAMPAGNA DI INDAGINE DEL 2005	5
2.6 CAMPAGNA DI INDAGINE DEL 2006	5
2.7 CAMPAGNA DI INDAGINE DEL 2017	5
3. INQUADRAMENTO GEOLOGICO	6
4. CARATTERIZZAZIONE GEOTECNICA	10
4.1 DEFINIZIONE DELLE UNITÀ GEOTECNICHE	10
4.2 UNITÀ GEOTECNICA A	10
4.3 UNITÀ GEOTECNICA B	14
4.4 MODELLO GEOTECNICO	23
S PEGIME DELLE PRESSIONI INTERSTIZIALI	25

Tratto Valfabbrica-Schifanoia - Interventi di completamento dal Km 16+224 al Km 19+354 Lotto 5: 1° stralcio parte B: raddoppio galleria Picchiarella e viadotto Tre Vescovi 2° stralcio: raddoppio galleria Casacastalda e viadotto Calvario

PROGETTO ESECUTIVO

RELAZIONE GEOTECNICA

1.PREMESSA

In riferimento alla progettazione esecutiva di "S.S.N.318 di Valfabbrica, Tratto Valfabbrica-Schifanoia – Interventi di completamento dal Km 16+224 al Km 19+354 lotto 5 – I e Il stralcio" nel presente rapporto vengono illustrate le informazioni di carattere geotecnico ricavate dalle indagini eseguite con specifico riferimento alla galleria Picchiarella.

Tutto il tracciato in progetto, di lunghezza di circa 4 km, risulta collocato in un'area geografica compresa tra gli abitati di Valfabbrica a SO e Casacastalda a NE, nell'ambito del territorio comunale di Valfabbrica. Tale area è posizionata nella porzione medio-orientale della regione Umbria, con sviluppo SO-NE.

Lo studio ha interessato il tratto dal km 16+224 alla km 19+354 dove è previsto il raddoppio della sede stradale della S.S. 318 di Valfabbrica, attualmente caratterizzata nel lotto in esame da una sezione a singola carreggiata a due corsie, adeguandola ad una sezione di tipo B a due carreggiate e 4 corsie.

Il tracciato stradale si sviluppa a quote comprese tra 380 e 430 m s.l.m.; in direzione Sud-Ovest verso Nord-Est.

Il territorio interessato presenta una morfologia molto accidentata e caratterizzata da elevate pendenze per cui si prevede la realizzazione di 2 gallerie naturali che interessano circa il 70% dell'estensione totale del tracciato. La prima galleria, quella relativa al presente documento, (Picchiarella) con una lunghezza di poco meno di 900 metri, è caratterizzata da coperture variabili che raggiungono un massimo valore di circa 45 m ed un valore minimo tale da realizzare un tratto di circa 90 m in artificiale. La seconda galleria naturale (Casacastalda) ha una lunghezza di circa 1500 m ed è caratterizzata da una copertura massima di circa 85 m. Anche per questa opera è previsto un tratto realizzato in artificiale della lunghezza di 40 m.

In dettaglio si fornisce una descrizione delle campagne indagini condotte per la redazione del progetto esecutivo e dei precedenti livelli di progettazione del lotto SS318, vengono illustrate le interpretazioni delle misure in sito e in laboratorio per la determinazione delle caratteristiche geotecniche dei terreni e degli ammassi rocciosi, per completare poi il tutto con la definizione del modello geotecnico di sottosuolo di riferimento.

Si precisa che in questa fase la caratterizzazione geotecnica è stata effettuata sulla base dei dati a disposizione al momento della stesura della presente relazione. Non sono escluse modifiche al recepimento di nuove indagini specifiche per le progressive in esame.

Tratto Valfabbrica-Schifanoia - Interventi di completamento dal Km 16+224 al Km 19+354 Lotto 5: 1° stralcio parte B: raddoppio galleria Picchiarella e viadotto Tre Vescovi 2° stralcio: raddoppio galleria Casacastalda e viadotto Calvario

PROGETTO ESECUTIVO

RELAZIONE GEOTECNICA

2.INDAGINI ESEGUITE

Per la stesura del Progetto Esecutivo sono stati utilizzati i risultati delle campagne di indagini geotecniche in sito e in laboratorio eseguite durante le precedenti fasi di progettazione del lotto SS318. Si precisa che le campagne di indagini svolte nel corso degli anni sono per lo più relative all'intera tratta della SS318 e dunque non sempre fruibili nel presente progetto comprendente solo una parte del lotto (da prog. 16+000 a prog. 19+353.56).

In particolare le campagne d'indagini eseguite sull'intera tratta sono le seguenti:

1994 – ANAS Compartimento della Viabilità per l'Umbria – "SS318 di Valfabbrica – Lavori di costruzione del tratto in variante da SS3 bis (S.G.C./E45) in loc. Lidarno a Schifanoia – V lotto: dalla prog. 13+640 alla prog. 20+433 – Progetto esecutivo"

2000 – GRASSETTO LAVORI S.p.A. – "SS318 di Valfabbrica – Lavori di costruzione del tratto in variante da SS3 bis (S.G.C./E45) in loc. Lidarno a Schifanoia – V lotto I stralcio: dalla pro. 13+640 alla prog. 17+454. III Perizia di variante tecnica e suppletiva".

2001 – GRASSETTO LAVORI S.p.A. – "SS318 di Valfabbrica – Lavori di costruzione del tratto in variante da SS3 bis (S.G.C./E45) in loc. Lidarno a Schifanoia – V lotto I stralcio: dalla pro. 13+640 alla prog. 17+454. III Perizia di variante tecnica e suppletiva".

2001 – ANAS Compartimento della Viabilità per l'Umbria – "SS318 di Valfabbrica – Lavori di costruzione del tratto in variante da SS3 bis (S.G.C./E45) in loc. Lidarno a Schifanoia – V lotto I stralcio: dalla pro. 13+640 alla prog. 17+454 – Indagini integrative".

2004 – ANAS Compartimento della Viabilità per l'Umbria – "SS318 di Valfabbrica – Lavori di costruzione del tratto in variante da SS3 bis (E45) in loc. Lidarno a Schifanoia – V lotto - completamento I stralcio – Progetto definitivo".

2005 – ANAS Compartimento della Viabilità per l'Umbria – "SS318 di Valfabbrica – Lavori di costruzione del tratto in variante da SS3 bis (S.G.C. E45) in loc. Lidarno a Schifanoia – V lotto I stralcio: dalla prog. 13+640 alla prog. 17+454 – Indagini integrative Imbocco O Galleria Barcaccia".

2006 – ANAS Compartimento della Viabilità per l'Umbria – "SS318 di Valfabbrica – Lavori di costruzione del tratto in variante da SS3 bis (S.G.C. E45) in loc. Lidarno a Schifanoia – V lotto I stralcio: dalla prog. 13+640 alla prog. 17+454 – Indagini Viadotto Barcaccia 1".

2017 DIMMS Control S.p.A. – "SS318 Tratto Valfabbrica – Schifanoia – Interventi di completamento V Lotto – 1° Stralcio – parte B".

2.1 CAMPAGNA DI INDAGINE DEL 1994

Nella campagna di indagine del 1994 per la progettazione esecutiva del V lotto della variante SS318, sono state realizzate le seguenti indagini:

- 19 sondaggi verticali a carotaggio continuo;
- 1 piezometro a tubo aperto;
- 8 piezometri tipo Casagrande;
- 21 prove di resistenza dinamica in foro tipo SPT (Standard Penetration Test);

Tratto Valfabbrica-Schifanoia - Interventi di completamento dal Km 16+224 al Km 19+354 Lotto 5: 1° stralcio parte B: raddoppio galleria Picchiarella e viadotto Tre Vescovi 2° stralcio: raddoppio galleria Casacastalda e viadotto Calvario

PROGETTO ESECUTIVO

RELAZIONE GEOTECNICA

- 31 prelievi di campioni di terreno e roccia;
- 2 prove tipo Lugeon in foro;
- 28 basi sismiche a rifrazione.

2.2 CAMPAGNA DI INDAGINE DEL 2000

Nella campagna di indagini eseguita nel 2000 dalla Grassetto Lavori S.p.A. nell'ambito della redazione della III perizia di Variante tecnica e suppletiva del V lotto I stralcio della variante alla SS318, sono state realizzate le seguenti indagini:

- 11 sondaggi verticali a carotaggio continuo;
- 1 piezometro tipo Casagrande;
- 16 prelievi di campioni di terreno e roccia.

2.3 CAMPAGNA DI INDAGINE DEL 2001

Nella campagna di indagine eseguita nel 2001 dalla Grassetto Lavori S.p.A. nell'ambito della redazione della III perizia di Variante tecnica e suppletiva del V lotto I stralcio della variante alla SS 318 sono state realizzate le seguenti indagini:

- 10 sondaggi verticali a carotaggio continuo;
- 49 prove di resistenza dinamica in foro tipo SPT (Standard Penetration Test);
- 21 prelievi di campioni di terreno e roccia.

La campagna di indagini integrative di Anas nell'ambito dei lavori di costruzione del tratto in variante della SS 318 di Valfabbrica da S.S.3bis (S.G.C./E45) in loc. Lidarno a Schifanoia – V lotto I stralcio: dalla prog. 13+640 alla prog. 17+454 è costituita da:

- 5 sondaggi verticali a carotaggio continuo;
- 15 prove di resistenza dinamica in foro tipo SPT (Standard Penetration Test);
- 5 prelievi di campioni di terreno e roccia.

2.4 CAMPAGNA DI INDAGINE DEL 2004

Nell'ambito della campagna di indagini eseguita nel 2004 per la progettazione definitiva dei lavori di completamento del V lotto I stralcio della variante alla SS 318, sono state realizzate le seguenti indagini:

- 2 sondaggi verticali a carotaggio continuo;
- 2 piezometri a tubo aperto;
- 10 prelievi di campioni di terreno e roccia da sottoporre a prove geotecniche;
- 2 prelievi di campioni di terreno e roccia da sottoporre a prove chimiche;
- 1 prelievo di acqua da piezometri da sottoporre a prove chimiche;

- 3 prelievi di acqua dal cavo galleria da sottoporre a prove chimiche;
- 3 basi sismiche a rifrazione.

Tratto Valfabbrica-Schifanoia - Interventi di completamento dal Km 16+224 al Km 19+354 Lotto 5: 1° stralcio parte B: raddoppio galleria Picchiarella e viadotto Tre Vescovi 2° stralcio: raddoppio galleria Casacastalda e viadotto Calvario

PROGETTO ESECUTIVO

RELAZIONE GEOTECNICA

2.5 CAMPAGNA DI INDAGINE DEL 2005

Nell'anno 2005 nell'ambito dei lavori di costruzione del tratto in variante alla SS 318 di Valfabbrica da SS3 bis in località Lidarno a Schifanoia – V lotto I stralcio: dalla prog. 13+640 alla prog. 17+454 è stata realizzata una campagna di indagini integrative (in corrispondenza dell'imbocco Ovest della Galleria "Picchiarella" interessato da un dissesto) costituita da:

1 sondaggio verticale a carotaggio continuo.

2.6 CAMPAGNA DI INDAGINE DEL 2006

Nell'anno 2006 nell'ambito dei lavori di costruzione del tratto in variante alla SS 318 di Valfabbrica da SS3 bis in località Lidarno a Schifanoia – V lotto I stralcio: dalla prog. 13+640 alla prog. 17+454 è stata realizzata una campagna di indagini integrative (in corrispondenza dell'area di ingombro del Viadotto "Barcaccia I" interessato da un dissesto) costituita da:

- 2 sondaggi geognostici verticali a carotaggio continuo;
- 2 tubi inclinometrici;
- 2 prove di resistenza dinamica in foro tipo SPT (Standard Penetration Test);
- 2 prelievi di campioni di terreno e roccia.

2.7 CAMPAGNA DI INDAGINE DEL 2017

Nell'anno 2017 nell'ambito del progetto esecutivo della SS318 Tratto Valfabbrica-Schifanoia è stata realizzata una campagna di indagini costituita da:

- 5 sondaggi geognostici verticali di cui 3 a carotaggio continuo;
- 1 sondaggio geognostico orizzontale a carotaggio continuo;
- 1 piezometro tipo Casagrande;
- 2 prove di resistenza dinamica in foro tipo SPT (Standard Penetration Test);
- 11 prove pressiometriche;
- 5 prove Lugeon;
- 7 prelievi di campioni;
- 1 prova Down Hole;
- 1 prova Cross Hole;
- 1 indagini di tomografia sismica a rifrazione in onde P e Sh.

Tratto Valfabbrica-Schifanoia - Interventi di completamento dal Km 16+224 al Km 19+354 Lotto 5: 1° stralcio parte B: raddoppio galleria Picchiarella e viadotto Tre Vescovi 2° stralcio: raddoppio galleria Casacastalda e viadotto Calvario

PROGETTO ESECUTIVO

RELAZIONE GEOTECNICA

3. INQUADRAMENTO GEOLOGICO

I terreni affioranti nell'area interessata dal tracciato in progetto sono stati raggruppati in due successioni, una "marina" ascrivile al basamento torbiditico della Formazione della Marnoso-Arenacea s.l. (FMA4), Membro di Galeata, di età Langhiano superiore-Serravalliano superiore, l'altra "continentale" che ricopre un periodo compreso tra il Plio-Pleistocene e l'Olocene, comprendente: depositi alluvionali fluvio-lacustri (FL) depositi eluvio-colluviali (ter), depositi di frana (cfr) e accumuli antropici (ant).

La formazione torbiditica della Marnoso-Arenacea s.l. affiora diffusamente lungo gli opposti versanti della valle del F. Chiascio e del Rio Risacco e costituisce il basamento su cui si sono sedimentate le successive formazioni continentali (vedi Figura 1).

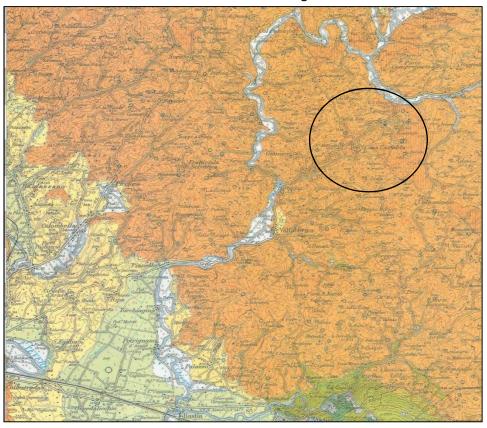


Figura 1: Stralcio carta geologica 1:100000 – Foglio n.123 – Assisi.

Il tracciato in oggetto, interessa prevalentemente le unità litoidi della marnoso arenacea e le unità eluvio colluviali di alterazione della stessa. Solo in alcuni limitati settori le opere andranno ad intercettare corpi eterometrici di frana e depositi antropici di spessore rilevanti, derivanti da lavorazioni eseguite in loco durante le precedenti fasi costruttive del lotto in oggetto.

La successione dei termini marini comprende i termini deposizionali della formazione Marnoso arenacea romagnola.

Tratto Valfabbrica-Schifanoia - Interventi di completamento dal Km 16+224 al Km 19+354 Lotto 5: 1° stralcio parte B: raddoppio galleria Picchiarella e viadotto Tre Vescovi 2° stralcio: raddoppio galleria Casacastalda e viadotto Calvario

PROGETTO ESECUTIVO

RELAZIONE GEOTECNICA

MARNOSO ARENACEA ROMAGNOLA

MEMBRO DI GALEATA - FMA4 (Langhiano sup.-Serravalliano sup.). I termini ascrivibili alla formazione della Marnoso-Arenacea nella zona di interesse sono riferibili al Membro di Galeata (FMA4) dei depositi torbiditici, sedimentati in un bacino di avanfossa, generato nell'ambito della fase tettonica del Burdigaliano- Serravalliano.

Successivamente, durante la fase compressiva appenninica del Miocene-Pliocene la pila tettonica è migrata da O verso E, raggiungendo l'attuale assetto, successivamente riorganizzato dalle fasi post appenniniche distensive e trascorrenti. (Lavecchia et alii, 1988).

Il membro è solitamente suddiviso in due parti corrispondenti alle porzioni di successione rispettivamente sotto e sovrastanti lo Strato Contessa.

La successione pre-Contessa è contraddistinta dall'alternanza di strati torbiditici, sia silicoclastici, sia a composizione ibrida calcareo-silicoclastica, variabili da mediamente a molto spessi. La parte arenitica è compresa fra 20 e 200 cm ed il rapporto A/P è a favore della frazione pelitica con valori che oscillano tra 1/2 e 1/6.

La successione post-Contessa è rappresentata da torbiditi pelitiche e pelitico-arenacee in strati da sottili a molto spessi, con rapporto A/P molto variabile, ma in genere compreso fra 1/4 e 1/8.

Nella porzione sommitale del membro, si osserva un generale aumento della porzione pelitica, con rapporto A/P che oscilla tra 1/6 e 1/10, la diminuzione dello spessore degli strati silicoclastici e la progressiva riduzione nella frequenza delle calcareniti.

Le unità osservate negli affioramenti presenti hanno un rapporto A/P oscillante da 1/5 a 1/10 è quindi probabile che le unità litoidi affioranti siano ascrivibili alla litofacies post-Contessa.

Lo spessore complessivo del membro è stato stimato in circa 1200 m.

Le unità litoidi sopra descritte affiorano diffusamente lungo il tracciato in progetto sia in affioramenti naturali sia artificiali, derivanti dalla realizzazione delle opere in trincea e dalle generali opere in scavo già eseguite nel lotto.

MEMBRO DI NESPOLI - FMA8 (Serravalliano). Tale membro affiora a NE dell'abitato di Casa Castalda. È prevalentemente costituito da marne siltose e sabbiose massive, con intercalazioni arenacee di modesto spessore, da 3 cm a 60 cm.

La parte marnosa è predominante con rapporto A/P superiore ad 1:8. Sono spesso presenti intercalazioni calcarenitiche a granulometria fine. L'arenaria è di colore marrone-giallastro, ricca in quarzo e frammenti litici calcarei; le marne, di colore grigio scuro, sono spesso ricche in sostanza organica.

All'interno dei membri di Galeata e Nespoli è presente il "Complesso Argilloscistoso" che affiora a Ovest dell'abitato di Casa Castalda e al confine tra il Comune di Valfabbrica e i territori comunali di Gualdo Tadino e Nocera Umbra. Si tratta di una litologia presente in letteratura con diversi nomi; viene chiamato "complesso argilloscistoso" da Pialli (1966), "argilloscisti varicolori" da Conversini (1972) e "olistostroma" da Damiani (1995). E' caratterizzato da una massa caotica di argilloscisti rossi, violacei, verdastri e grigi, con intercalazione di lenti calcarenitiche. Tutto il complesso è costituito da blocchi di calcare e marne disposti in modo disordinato, immersi in una

Tratto Valfabbrica-Schifanoia - Interventi di completamento dal Km 16+224 al Km 19+354 Lotto 5: 1° stralcio parte B: raddoppio galleria Picchiarella e viadotto Tre Vescovi 2° stralcio: raddoppio galleria Casacastalda e viadotto Calvario

PROGETTO ESECUTIVO

RELAZIONE GEOTECNICA

matrice di natura argillosa. Sono inoltre sede, per loro natura, di innumerevoli fenomeni di dissesto idrogeologico. Non ci sono passaggi graduali da calcarenite a marna o argilla. Sono stati definiti olistostromi, ovvero masse rocciose ad assetto caotico generate da grandi frane sottomarine.

MEMBRO DI CIVITELLA – FMA9. (Serravalliano superiore). Tale membro affiora solo in una piccola porzione sempre a NE dell'abitato di Casa Castalda. È caratterizzato da arenarie e calcareniti a geometria lenticolare: si tratta di livelli arenacei alternati a marne e marne argillose con intercalazioni di livelli calcarenitici, anche di notevole potenza (possono raggiungere i 5m). Lo spessore dei livelli non è quantificabile in quanto altamente variabile. Il rapporto A/P passa da 1:10 a letto del membro, fino a raggiungere il rapporto di 1:1 al tetto dello stesso.

SUCCESSIONE CONTINENTALE

La successione dei termini continentali comprende sia termini deposizionali di origine sedimentaria, sia depositi di alterazione, sia termini antropici (riporti).

Si distinguono i seguenti depositi in ordine di età crescente.

DEPOSITI FLUVIO-LACUSTRI - FL - (Plio-Pleistocene)

Tale unità deposizionale non affiora nel lotto di interesse ma subito prima, in corrispondenza del tracciato dell'attuale SS 318. In tale area l'unità suddetta è caratterizzata da una successione a stratificazione suborizzontale di depositi di tipo lenticolare e tabulare a caratteristiche da limo-argillose, con medio basso grado di consistenza, di colorazione avana, e ghiaiose, con clasti di dimensioni comprese tra 0,5 e 10 cm di diametro, a grado di arrotondamento medio, in prevalente matrice sabbiosa o limosa di colore nocciola.

Gli spessori di tali terreni sono estremamente variabili e legati sia all'articolata morfologia preesistente del bacino nel quale si sono sedimentati, sia all'azione erosiva cui sono stati sottoposti. Indicativamente, sulla base delle indagini effettuate, gli spessori stimati raggiungono valori massimi minori di 10 m in corrispondenza dell'area di affioramento di inizio lotto.

DEPOSITI ELUVIO-COLLUVIALI - TER - (OLOCENE)

Si tratta di depositi di disfacimento ed alterazione dei sedimenti marini del basamento e delle unità fluvio lacustri, rilevati abbondantemente lungo il versante di imposta del tracciato stradale ed in particolare nelle vallecole topograficamente depresse che tagliano ortogonalmente il tracciato in direzione SE-NO.

I depositi sono costituiti da sedimenti a prevalente componente fine con frammenti arenaceo marnosi centimetrici e caratteristiche di consistenza medio-basse.

Si sviluppano prevalentemente dal disfacimento dei termini marnosi e siltitici, ma da quanto rilevato e verificato in fase di esecuzione degli stendimenti sismici a rifrazione, sono presenti in modo limitato anche in aree in cui risulta subaffiorante il basamento arenaceo.

Mandataria
MSintagma

Tratto Valfabbrica-Schifanoia - Interventi di completamento dal Km 16+224 al Km 19+354 Lotto 5: 1° stralcio parte B: raddoppio galleria Picchiarella e viadotto Tre Vescovi 2° stralcio: raddoppio galleria Casacastalda e viadotto Calvario

PROGETTO ESECUTIVO

RELAZIONE GEOTECNICA

DEPOSITI DI FRANA - cfr – (Olocene)

Con il termine di depositi di frana si intendono le aree di accumulo generate da fenomeni gravitativi che hanno coinvolto differenti spessori in diversi termini affioranti, con prevalenza dei litotipi marnosi e siltitici del basamento torbiditico e dei depositi di alterazione di questi. Considerata la natura prevalentemente pelitica dei terreni interessati dai processi morfologici, le caratteristiche tessiturali dei deposti di frana risultano nella maggioranza dei casi costituiti da una tessitura a struttura caotica, con matrice prevalente limosa e/o sabbiosa fine in cui si rinvengono frammenti litoidi di natura marnosa ed arenacea da centimetrici a veri e propri trovanti metrici, tali depositi sono stati considerati per il loro assetto morfologico attivi o quiescenti (cfra).

Depositi di tale natura (cfra) interferenti con il tracciato in progetto sono stati riscontrati in diverse aree.

ACCUMULI ANTROPICI – ant – (Olocene)

Con tali termini si considerano i deposti di origine antropica rilevati lungo il tracciato e derivanti dalle precedenti opere di scavo e riporto già eseguite in loco. Alcuni accumuli interferiscono con il tracciato in progetto e sono costituiti da terreni a struttura caotica e granulometria prevalentemente limo-argillosa, con basso grado di consistenza, colorazione da avana a grigio scura con frammenti marnoso ed arenacei di pezzatura variabile.

Corpi con spessori di rilievo sono stati individuati ad inizio lotto ed in prossimità della prog. 15+150.

Per la loro distribuzione areale e verticale si vedano la cartografia e le sezioni geologiche allegate al progetto.

Tratto Valfabbrica-Schifanoia - Interventi di completamento dal Km 16+224 al Km 19+354 Lotto 5: 1° stralcio parte B: raddoppio galleria Picchiarella e viadotto Tre Vescovi 2° stralcio: raddoppio galleria Casacastalda e viadotto Calvario

PROGETTO ESECUTIVO

RELAZIONE GEOTECNICA

4. CARATTERIZZAZIONE GEOTECNICA

4.1 DEFINIZIONE DELLE UNITÀ GEOTECNICHE

Come si può dedurre dall'inquadramento geologico, per la quasi totalità dell'area oggetto dell'intervento, il substrato di base è costituito dalla formazione Marnoso-Arenacea. Essa è costituita dalla facies marnoso siltitica caratterizzata da fitte alternanze di marne e siltiti, marne calcareo-arenacee, marne argillose e argilliti marnose grigie, con intercalati sottili strati di arenarie. Gli strati hanno spessori singoli dal cm al dm e spesso si ripetono, senza sensibili variazioni di costituzione mineralogica e di granulometria, per spessori complessi anche dell'ordine del metro. I singoli strati sono di regola caratterizzati da una fitta suddivisione interna, secondo la stratificazione stessa, in lastrine e grosse scaglie appiattite. Per poter definire il modello geotecnico di riferimento e la relativa caratterizzazione fisica e meccanica si è scelto, quindi, di caratterizzare la formazione come un unico ammasso, di seguito indicato come **unità geotecnica B**.

In superficie è presente uno strato di spessore variabile da 1 a 10 m circa, costituito lungo la maggior parte del tracciato dall'alterazione del substrato roccioso di base e in minima parte dalla formazione delle alluvioni recenti. Tale materiale, caratterizzabile come terreno, rappresenta l'**unità geotecnica A** ed è caratterizzato da una prevalenza di componente fine. Dalle analisi granulometriche si nota che il materiale può essere descritto come limo con argilla a tratti debolmente sabbioso.

Si definiscono, pertanto, le seguenti unità geotecniche:

- Unità geotecnica A: terreni sciolti superficiali;
- Unità geotecnica B: formazione Marnoso-Arenacea;

Per la definizione delle caratteristiche fisico-meccaniche delle unità A e B, è stato fatto riferimento in questa fase ai risultati delle campagne di indagini circoscritte alla zona della galleria.

4.2 UNITÀ GEOTECNICA A

Per l'individuazione delle proprietà fisiche e meccaniche dei terreni superficiali interessati dalla realizzazione dell'opera sono stati elaborati i risultati delle analisi e delle prove in laboratorio effettuate nel corso delle campagne di indagini del 2004 (ANAS) e del 2017 (DIMMS Control S.p.A.).

In Tabella 1 e in Tabella 2 sono riportate le caratteristiche fisiche, le proprietà indice e le grandezze di stato dei campioni esaminati.

Tabella 1: Riepilogo proprietà fisiche unità geotecnica A.

Sondaggio	Campione	Profondità (m)	γ (kN/m³)	γ_s (kN/m ³)	γ _d (kN/m³)	γ_{sat} (kN/m ³)	e (-)	n (%)	Sr (%)
S1P	CR1	4.95 – 5.50	-	27.17	-	-	-	-	-
S1DH	CI1	3.10 – 3.70	20.13	25.94	16.8	20.29	0.54	35	95

PROGETTO ESECUTIVO

RELAZIONE GEOTECNICA

				_					
S1DH	CI2	6.70 - 7.00	20.3	25.89	17.74	20.83	0.46	31.5	84
S1DH	CR1	1.70 – 1.90	-	26.48	-	-	-	-	-
S3	C1	3.80 – 4.30	20.04	25.84	17.5	20.68	0.47	32.18	80
S2	CI1	3.30 – 3.70	19.72	25.82	17.8	20.83	0.45	31.2	54
S2	CI2	8.30 – 8.60	19.7	25.78	17.8	20.86	0.44	30.8	61
S4	CR1	2.00 – 2.60	19.07	25.79	15.6	19.5	0.65	39.3	89
S4	CI1	3.90 – 4.50	19.14	25.48	15.4	19.28	0.66	39.6	57
S4	CI2	7.50 – 8.00	19.71	25.49	17.2	20.41	0.48	32.4	78

Tabella 2: Riepilogo proprietà indice unità geotecnica A.

Sondaggio	Campione	Profondità	w (%)	w _I (%)	w _p (%)	I _p (%)	I _c (%)
S1P	CR1	4.95 – 5.50	18.4	42	22	20	1.2
S1DH	CI1	3.10 – 3.70	19.5	52	23	29	1.12
S1DH	CI2	6.70 – 7.00	14.6	44	21	23	1.3
S1DH	CR1	1.70 – 1.90	-	36	18	18	-
S3	C1	3.80 – 4.30	14.4	39	23	16	1.55
S2	CI1	3.30 – 3.70	11.0	34	18	16	1.48
S2	CI2	8.30 – 8.60	10.4	36	17	19	1.33
S4	CR1	2.00 – 2.60	21.9	41	19	22	0.87
S4	CI1	3.90 – 4.50	24.3	44	22	22	0.9
S4	CI2	7.50 – 8.00	14.4	41	22	19	1.4

La Figura 2 riporta le principali caratteristiche fisiche del litotipo in questione stimate dalle prove di laboratorio. Dal punto di vista granulometrico il materiale si presenta come un limo argilloso a tratti debolmente sabbioso.

Per la valutazione delle caratteristiche meccaniche dell'unità si è fatto riferimento alle prove di laboratorio riportate in tabella in Tabella 3:

Tabella 3: Riepilogo risultati prove di laboratorio unità geotecnica A.

.		D (111)	Prova o	di taglio	Triax CIU		
Sondaggio	Campione	Profondità	φ′ _p	c′ _p	φ′	c'	
			(°)	(kPa)	(°)	(kPa)	
S1P	CR1	4.95 – 5.50	19.9	37.32			
S3	C1	3.80 – 4.30			29.1	30.2	
S4	CR1	2.00 – 2.60	20.21	23.03			
S4	Cl2	7.50 – 8.00			28.6	33.2	

PROGETTO ESECUTIVO

RELAZIONE GEOTECNICA

Sulla base dei risultati delle prove di taglio e delle prove triassiali consolidate non drenate, sono stati assunti, come parametri di resistenza, un angolo di resistenza a taglio pari a 26° ed una coesione efficace assunta cautelativamente pari a 5-10 kPa.

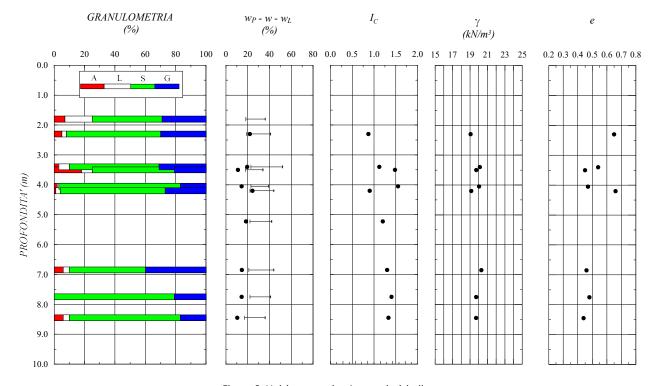


Figura 2: Unità geotecnica A, proprietà indice.

PROGETTO ESECUTIVO

RELAZIONE GEOTECNICA

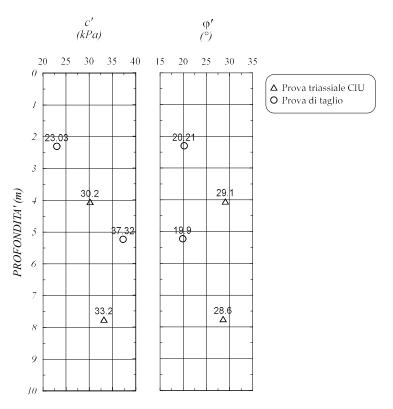


Figura 3: Unità geotecnica A, caratteristiche meccaniche da prove di laboratorio.

Per la determinazione dei parametri di rigidezza è stato fatto riferimento alle prove geofisiche eseguite durante la campagna di indagine del 2017 ed in particolare alle misure delle velocità delle onde P ed S ottenute dalle prove *Cross-Hole* e *Down-Hole*.

Nella Figura 4 sono riportati gli andamenti con la profondità del modulo di Young, ottenuto moltiplicando il modulo di rigidezza alle piccole deformazioni (E₀) per un fattore pari a 0.1.

PROGETTO ESECUTIVO

RELAZIONE GEOTECNICA

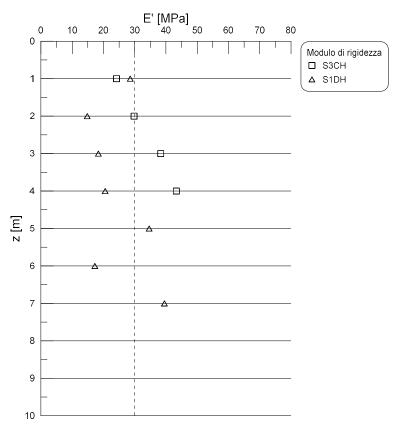


Figura 4: Andamento del modulo di Young con la profondità.

Sulla base degli andamenti del modulo di Young con la profondità, è stato scelto un valore costante pari a 30 MPa.

4.3 UNITÀ GEOTECNICA B

La caratterizzazione dell'unità geotecnica B è stata eseguita valutando il GSI, Geological Strength Index, che è un indice che caratterizza la qualità intrinseca dell'ammasso roccioso, ovvero la qualità dell'ammasso indipendentemente dalla specifica opera da realizzare. L'indice GSI viene poi impiegato di volta in volta per ricavare i parametri di resistenza e di deformabilità dell'ammasso in questione per gli specifici casi applicativi (fondazioni, opere di sostegno, gallerie).

Il GSI è ottenuto come somma di 5 indici parziali, stimati sulla base di:

- Resistenza a compressione uniassiale, σ_c Indice A_1 ;
- Indice di qualità, RQD Indice A2;
- Spaziatura delle discontinuità, J_s Indice A₃;
- Condizione delle discontinuità (persistenza, apertura, scabrezza, riempimento, alterazione delle pareti) Indice A_4 ;
- Condizioni idrauliche Indice A₅.

Tratto Valfabbrica-Schifanoia - Interventi di completamento dal Km 16+224 al Km 19+354 Lotto 5: 1° stralcio parte B: raddoppio galleria Picchiarella e viadotto Tre Vescovi 2° stralcio: raddoppio galleria Casacastalda e viadotto Calvario

PROGETTO ESECUTIVO

RELAZIONE GEOTECNICA

La Figura 5 riporta lo schema per la valutazione dei cinque indici suddetti a partire dai dati di indagine grezzi di partenza.

 σ_f (MPa) 	> 200	200 ÷ 100	100 ÷ 50	50 ÷ 25	25 ÷ 10	10 ÷	3 3 ÷ 1
Indice parziale	15	12	7	4	2	1	0
2. RQD (%)	100 ÷ 90	90	÷ 75	75 ÷ 50	50 ÷ 2:	5	< 25
Indice parziale	20		17	13	8		3
3. J _z (m)	> 3	3	÷ 1	1 ÷ 0.3	0.3 ÷ 0.0)6	< 0.06
Indice parziale	30		25	20	10		5
4 Condizione delle discontinuità	Pareti molto scabre giunti non continui, chiusi, roccia non alterata	, apertura <	oco scabre, 1 mm, roc- o alterata	Pareti poco scabre, apertura < 1 mm, roc- cia molto alterata	Pareti laminat pimento < 5 pertura 1 ÷ : giunti con	mm, a- 5 mm,	Riempimento mat. sciolto > 5 mm, aper tura > 5 mm, giunti continui
Indice parziale	25		20	12	6		0
Condizioni idrau- liche							
Indice parziale				10			

Figura 5: Schema per la valutazione degli indici parziali A₁ - A₅.

Nella seguente relazione l'indice parziale A₄ è stato stimato attraverso lo schema di valutazione di Bieniawski (1989) riportato in Figura 6 e scalato per tener conto che il massimo punteggio assegnabile è pari a 25.

Parametro	Misura o descrizione						
			Indice				
Lunghezza discontinuità, (persistenza/ continuità) (m)	<1	1 ÷ 3	3 ÷ 10	10 ÷ 20	> 20		
	6	4	2	1	0		
Apertura (mm)	0	< 0.1	0.1 ÷ 1	1 ÷ 5	> 5		
	6	5	4	1	0		
Scabrezza	molto scabra	scabra	scabra	liscia	laminata		
	6	5	3	1	0		
		riempimento m	ateriale attritivo	riemp. materia	ale sciolto tenero		
Spessore riempimento (mm)	assente	< 5	> 5	< 5	> 5		
	6	4	2	2	0		
Alterazione pareti	assente	leggera	moderata	elevata	decomposto		
	6	5	3	1	0		

Figura 6: Schema per la valutazione dell'indice parziale A4 "Condizione delle discontinuità" della classifica tecnica RMR (Bieniawski 1989, modificata).

Tratto Valfabbrica-Schifanoia - Interventi di completamento dal Km 16+224 al Km 19+354 Lotto 5: 1° stralcio parte B: raddoppio galleria Picchiarella e viadotto Tre Vescovi 2° stralcio: raddoppio galleria Casacastalda e viadotto Calvario

PROGETTO ESECUTIVO

RELAZIONE GEOTECNICA

La formazione Marnoso-Arenacea, come confermato dai rilievi in affioramento e dai sondaggi effettuati durante le varie campagne di indagini, si presenta come una successione di strati da sottili a molto spessi di parti pelitiche e parti arenacee. Di conseguenza, per la determinazione delle caratteristiche meccaniche dell'unità, le due parti sono state analizzate distintamente per poi operare con una media pesata dei parametri meccanici riscontrati in funzione del rapporto A/P (Arenarie/Peliti) rilevato lungo il tracciato. Tale approccio non è stato seguito per caratterizzare le zone nelle quali la formazione è interessata da faglie. In tali contesti le caratteristiche meccaniche dell'unità, in assenza di misure dirette di resistenza a compressione uniassiale, sono state assunte cautelativamente pari a circa la metà dei parametri scelti in contesti di profondità da piano campagna analoghi. In definitiva sono stati quindi definiti 2 sotto-gruppi (unità **B1** e **B faglia**).

Un'ulteriore distinzione è stata fatta in funzione della profondità in quanto è stato riscontrato un progressivo incremento della qualità dell'ammasso, in termini di resistenza a compressione uniassiale, RQD e caratteristiche del riempimento delle discontinuità indipendentemente dal rapporto A/P. A tal proposito sono state distinte due zone: la prima caratterizzata da una copertura fino a 24 m da piano campagna (**B1a**) e una seconda zona da 24 m in poi (**B1b**).

In definitiva, per l'unità B, sulla base del rapporto A/P e della profondità alla quale si intercetta la formazione, sono state distinte le seguenti sotto-unità:

- unità geotecnica B1: formazione Marnoso-Arenacea con rapporto A/P pari a 20/80 o 40/60 riscontrabile presumibilmente a qualunque profondità. Si distingue B1a per profondità maggiori di 24 metri e B1b per profondità minori di 24;
- > unità geotecnica B faglia: formazione Marnoso-Arenacea con qualunque rapporto A/P interessata dalla presenza di una faglia.

Si precisa infine che in questa fase l'Unità geotecnica B1 è stata caratterizzata assumendo cautelativamente un rapporto A/P pari a 20/80.

Per la determinazione della resistenza a compressione uniassiale σ_c sono stati utilizzati i risultati di prove monoassiali e letture con martello di Schmidt risalenti alla campagna di indagine del 2004 e i risultati di prove monoassiali e PLT svolte nall'ambito della campagna di indagine del 2017

Distinguendo tra parte pelitica e parte arenacea, i risultati ottenuti sono riportati in Figura 7 e in Figura 8 in funzione della profondità.

PROGETTO ESECUTIVO

RELAZIONE GEOTECNICA

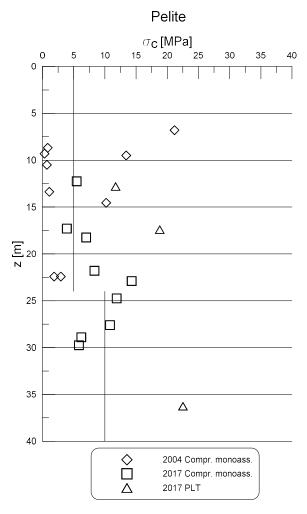


Figura 7: Resistenza a compressione uniassiale della parte pelitica.

PROGETTO ESECUTIVO

RELAZIONE GEOTECNICA

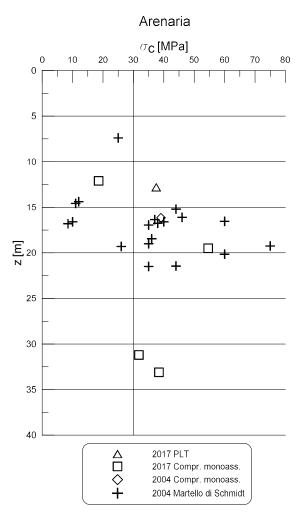


Figura 8: Resistenza a compressione uniassiale della parte arenacea.

Distinguendo in funzione della profondità è stata valutata per la parte pelitica una resistenza a compressione uniassiale di 5 MPa fino alla profondità di 24 m e pari a 10 MPa per profondità maggiori di 24 m. Alla parte arenacea è stata invece assegnata una resistenza a compressione costante con la profondità e pari a 30 MPa. La resistenza a compressione monoassiale caratteristica dell'ammasso è stata quindi calcolata a partire facendo una media pesata delle resistenze delle due parti nelle percentuali sopra esposte. Si riportano in Tabella 4 i valori ottenuti distinti tra i vari sottogruppi.

Tabella 4: Riepilogo resistenza a compressione uniassiale.

Sotto-unità	Profondità da p.c.	σ _c (MPa)
B1a	z > 24 m	14
B1b	z < 24 m	10
B faglia	-	7

Tratto Valfabbrica-Schifanoia - Interventi di completamento dal Km 16+224 al Km 19+354 Lotto 5: 1° stralcio parte B: raddoppio galleria Picchiarella e viadotto Tre Vescovi 2° stralcio: raddoppio galleria Casacastalda e viadotto Calvario

PROGETTO ESECUTIVO

RELAZIONE GEOTECNICA

L'indice di qualità *RQD* è stato valutato dai sondaggi effettuati durante le campagne di indagine del 2000, 2004, 2005 e 2017 distinguendo in funzione della profondità da piano campagna. La Figura 9 e la Figura 10 riportano l'andamento dell'*RQD*; nelle stesse figure è anche indicato il valore medio rappresentativo considerato.

PROGETTO ESECUTIVO

RELAZIONE GEOTECNICA

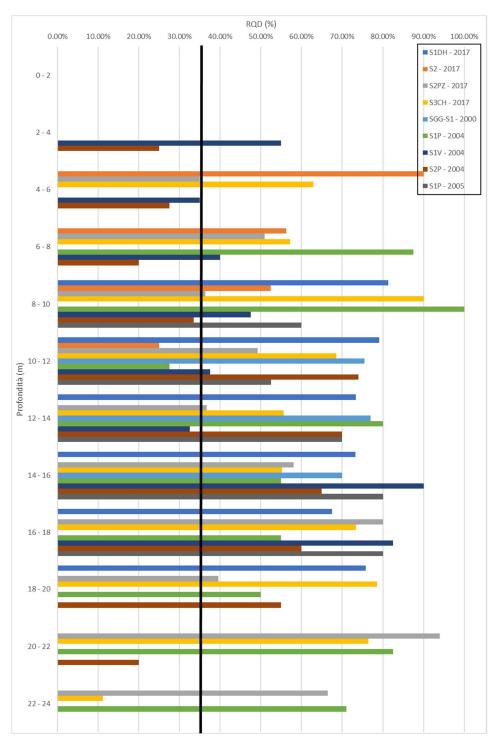


Figura 9: RQD rilevato dai sondaggi fino alla profondità di 12 m.

PROGETTO ESECUTIVO

RELAZIONE GEOTECNICA

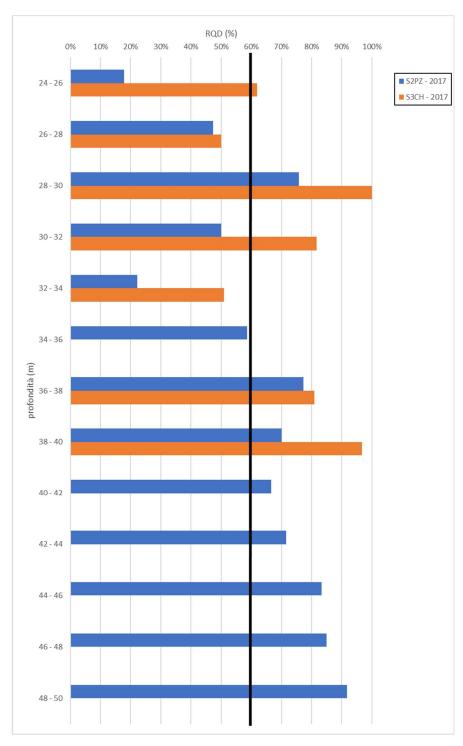


Figura 10: RQD rilevato dai sondaggi dalla profondità di 12 m.

In Tabella 5 si riporta un riepilogo dei valori medi dell'indice di qualità della roccia (RQD) assunti nelle tre zone a profondità crescente:

PROGETTO ESECUTIVO

RELAZIONE GEOTECNICA

Tabella 5: Riepilogo RQD medio.

Profondità da p.c. (m)	RQD _{medio} (%)
z < 24 m	35
z > 24 m	60

Gli indici parziali A_3 e A_4 sono stati, invece, valutati sulla base dei rilievi geostrutturali di superficie e su sondaggi meccanici effettuati durante la campagna di indagine del 2004. In Tabella 6 e in Tabella 7 si riportano le caratteristiche utilizzate per la determinazione del GSI.

Tabella 6: Caratteristiche per la valutazione dell'indice parziale A₃.

Parametro	z < 24 m	z > 24 m
Spaziatura delle discontinuità J_s (m)	< 0.06	0.1

Tabella 7: Caratteristiche per la valutazione dell'indice parziale A₄.

Doromontro	Misura o descrizione			
Parametro 	z < 24 m	z > 24 m		
Lunghezza discontinuità (m)	> 90	> 90		
Apertura (mm)	3	1		
Scabrezza	Laminata	Scabra		
Spessore riempimento (mm)	Sciolto < 5	Attritivo < 5		
Alterazione pareti	Elevata	Assente/leggera		

La Tabella 8 riepiloga i valori dei coefficienti parziali assunti per la stima del GSI per ogni opera.

Tabella 8: Riepilogo indici parziali per opera.

Sotto-unità	Profondità da p.c.	A ₁	A_2	A_3	A_4	A_5	GSI
B1a	z > 24 m	3	10	10	11	10	44
B1b	z < 24 m	2	5	3	3	10	23
B faglia	-	-	-	-	-	-	20

Il modulo di rigidezza è stato valutato con la seguente formula (Hoek et al., 2002):

$$E(GPa) = \left(1 - \frac{D}{2}\right) \cdot \sqrt{\frac{\sigma_c}{100}} \cdot 10^{\frac{GSI - 10}{40}}$$

Dove D, fattore di disturbo, assume valori differenti in funzione del tipo di opera in progetto e delle caratteristiche di resistenza della roccia. Per i dimensionamenti delle opere è stato considerato un fattore di disturbo pari a 0.7. Sulla base di ciò, sono stati stimati i valori riportati nella Tabella 9.

PROGETTO ESECUTIVO

RELAZIONE GEOTECNICA

Tabella 9: Riepilogo modulo di Young.

Sotto-unità	Profondità da p.c.	E (MPa)
B1a	z > 24 m	1700
B1b	z < 24 m	434
B faglia	-	300

4.4 MODELLO GEOTECNICO

Sulla base di quanto esposto nei paragrafi 4.2 e 4.3 per le unità geotecniche A e B si possono assumere i parametri riepilogati nelle tabelle sequenti.

Per l'unità geotecnica A si ha quanto riportato in Tabella 10.

Tabella 10: Caratterizzazione unità geotecnica A.

c′	φ'	E'
(kPa)	(°)	(MPa)
5-10	26	30

Per l'unità geotecnica B si ha quanto riportato in Tabella 11 e Tabella 12.

Tabella 11: Caratterizzazione unità geotecnica B.

Sotto-unità	σ _c (MPa)	GSI	m _i
B1a	14	44	10
B1b	10	23	10
B2	22	45	10
B faglia	7	20	10

A partire dal valore di *GSI* e dal valore della resistenza a compressione uniassiale, σ_c , è possibile poi ricavare i parametri di resistenza dell'ammasso roccioso attraverso il criterio di resistenza di Hoek & Brown, definito dall'espressione seguente:

$$\sigma_1' = \sigma_3' + \sigma_f \cdot \left(m_b \cdot \frac{\sigma_3'}{\sigma_f} + s \right)^a$$

dove:

- \triangleright σ'_1 e σ'_3 sono le tensioni efficaci principali massima e minima;
- \triangleright σ_c è la resistenza a compressione uniassiale;
- ho m_b valore ridotto della costante del materiale m_i , pari a $m_b = m_i \cdot \exp\left(\frac{GSI 100}{28 14D}\right)$;

$$> s = \exp\left(\frac{GSI - 100}{9 - 3D}\right);$$

$$a = \frac{1}{2} + \frac{1}{6} \cdot \left(e^{-GSI/15} - e^{-20/3} \right).$$

PROGETTO ESECUTIVO

RELAZIONE GEOTECNICA

Tabella 12: Riepilogo parametri Hoek & Brown.

Cotto unità		D=0.7		
Sotto-unità	a	S	m_b	
B1a	0.509	0.0003	0.461	
B1b	0.536	0.0000142	0.145	
B2	0.508	0.0003	0.487	
B faglia	0.544	9.22E-06	0.123	

I parametri di resistenza secondo il criterio di Mohr-Coulomb, se necessari, possono essere poi ottenuti linearizzando il criterio di resistenza di Hoek & Brown nel range di pressioni specifico per le problematiche geotecniche del progetto in esame. In dettaglio, i parametri di resistenza possono essere ottenuti assumendo la costante adimensionale caratteristica di ciascun ammasso m_i pari a 10, valore intermedio tra i valori suggeriti da Hoek per le arenarie e le marne, e valutando lo stato tensionale medio alla profondità significativa di ogni zona omogena in cui la galleria è stata suddivisa. I parametri meccanici utilizzati nel dimensionamento dei rivestimenti della galleria sono riportati in Tabella 13 in funzione della copertura.

Tabella 13: Riepilogo parametri Mohr Coulomb per zona omogenea.

	Sotto-unità	H _{min} (m)	H _{max} (m)	c' (kPa)	φ' (°)	E' (MPa)	
	B1a	24	43	133 - 182	30.5 – 34.5	1700	
	B1b	12	24	44 – 63	21 – 24.6	434	
	B faglia	10	44	32 – 68	14.5 – 21.2	300	

Tratto Valfabbrica-Schifanoia - Interventi di completamento dal Km 16+224 al Km 19+354 Lotto 5: 1° stralcio parte B: raddoppio galleria Picchiarella e viadotto Tre Vescovi 2° stralcio: raddoppio galleria Casacastalda e viadotto Calvario

PROGETTO ESECUTIVO

RELAZIONE GEOTECNICA

5.REGIME DELLE PRESSIONI INTERSTIZIALI

La circolazione idrica sotterranea nella Marnoso-Arenacea non è mai particolarmente abbondante e spesso limitata a circuiti poco profondi e comunque sempre di modesta entità. I dati freatimetrici in possesso non hanno permesso in generale una ricostruzione dell'andamento della superficie piezometrica della falda superficiale lungo il tracciato.

