

TA S.c.p.a.

ANAS S.p.A.

DIREZIONE REGIONALE PER LA SICILIA

PA17/08

Affidamento a Contraente Generale dei "Lavori di ammodernamento del tratto Palermo - Lercara Friddi, lotto funzionale dal km 14,4 (km. 0,0 del Lotto 2) compreso il tratto di raccordo della rotatoria Bolognetta, al km 48,0 (km. 33,6 del Lotto 2 - Svincolo Manganaro incluso) compresi i raccordi con le attuali SS n.189 e SS n.121

Bolognetta S.c.p.a.

Contraente erale: Ing. Pierfand Paglini

PERIZIA DI VARIANTE

II Responsabile Ambientale: Dott, Maurizio D'angelo

Dott. Gool D'ANGELC

Titolo elaborato:

"TRATTO SCORCIAVACCHE" **OPERE D'ARTE OPERE DI SOSTEGNO** Relazione di calcolo strutturale

F41B03000230001 Codice Unico Progetto (CUP):

OPERA

ARGOMENTO

DOC. E PROG.

FASE

REVISIONE

Codice elaborato: PA17/08

R

1

CARTELLA:		FILE NAME:	NOTE:	PROT.		SCALA:	
		SVOSRC02	1=1	4	1 3 7		=
5							
4							
3							
2							
1	ISTRUTTO	DRIA - OSSERVAZIONI PRELIMINARI D	L	Dicembre 2017	R Sampletro	S. Fortino	D. Tironi
0	PRIMA EN	MISSIONE		Ottobre 2017	R. Sampletro	S. Fortino	D. Tironi
REV.		DESCRIZI	ONE	DATA	REDATTO	VERIFICATO	APPROVATO

II Progettista Responsabile Prof. Ing. Mario Manassero

> ORDINE INGEGNERI N. PROVINCIA DI TORINO 6134

II Geologo Dott. Fabio Brunamonte

Il Coordinatore per la Sicurezza in fase di esecuzione: Ing. Francesco Cocciante

Il Coordinatore per la sicurezza Ing. Francesco Cocciante

Il Direttore dei Lavori: Ing. Sandro Favero

Il Direttore dei Lavori

ANAS S.p.A.

DATA:

PROTOCOLLO:

VISTO; IL RESPONSABILE DEL PROCEDIMENTO

CODICE PROGETTO

1 1 0 1 L|0|4|1|0|C|

Dott. Ing. Ettore de Cesbron de la Grennelais

RELAZIONE DI CALCOLO DELLE STRUTTURE - DAL KM 11+140 AL KM 11+509

INDICE

1	PREMESSA	3
2	NORMATIVE	5
3	Criteri generali di progettazione	6
3.1	Vita nominale, classi d'uso e periodo di riferimento	6
3.2	Verifiche della sicurezza e delle prestazioni	6
3.2.	.1 Stati limite ultimi	6
3.2.	.2 Stato limite di esercizio	7
4	Caratteristiche dei materiali	8
4.1	Cementi armati	8
4.2	Caratteristiche dell'acciaio di Armatura	8
4.3	Copriferri	8
5	ANALISI DEI CARICHI	10
5.1	Sollecitazioni OPERA DI SOSTEGNO OS90NEW	11
5.1.	.1 Palo di Valle combinazione SLU statica	11
5.1.	.2 Palo di Monte combinazione SLU statica	12
5.1.	.3 Palo di Valle combinazione SLV Sismica	13
5.1.	.4 Palo di Monte combinazione SLV Sismica	14
5.1.	.5 Palo di Valle combinazione SLE statica	15
5.1.	.6 Palo di Monte combinazione SLE statica	16
5.2	Sollecitazioni OPERA DI SOSTEGNO OS90A	17
5.2.	.1 Palo di Valle combinazione SLU statica	17
5.2.	.2 Palo di Monte combinazione SLU statica	18
5.2.	.3 Palo di Valle combinazione SLV Sismica	19
5.2.	.4 Palo di Monte combinazione SLV Sismica	20
5.2.	.5 Palo di Valle combinazione SLE statica	21
5.2.	.6 Palo di Monte combinazione SLE statica	22
5.3	Sollecitazioni OPERA DI SOSTEGNO OS92	23
5.3.	.1 Palo di Valle combinazione SLU statica	23
5.3.	.2 Palo di Monte combinazione SLU statica	24
5.3.	.3 Palo di Valle combinazione SLV Sismica	25
5.3.	.4 Palo di Monte combinazione SLV Sismica	26
5.3.	.5 Palo di Valle combinazione SLE statica	27

RELAZIONE DI CALCOLO DELLE STRUTTURE - DAL KM 11+140 AL KM 11+509 5.3.6 Palo di Monte combinazione SLE statica......28 6.2 Verifica a Taglio31 VERIFICA DELLA TRAVE DI CORONAMENTO......35 VERIFICA DEL TRATTO AD ALTEZZA VARIABILE DELLA TRAVE DI CORONAMENTO......41 8.1 Verifica Cordolo tratto OS90NEW, OS9241

RELAZIONE DI CALCOLO DELLE STRUTTURE - DAL KM 11+140 AL KM 11+509

1 PREMESSA

Nei seguenti paragrafi vengono riportate le verifiche strutturali degli elementi caratterizzanti le nuove opere di sostegno dei rilevati stradali della S.S. 121 nel tratto compreso tra la Progr. 11+140 e la Progr. 11+509.

Sul tratto oggetto di studio si prevedono interventi di rifacimento dei rilevati danneggiati e messa in sicurezza degli stessi attraverso opere di contenimento.

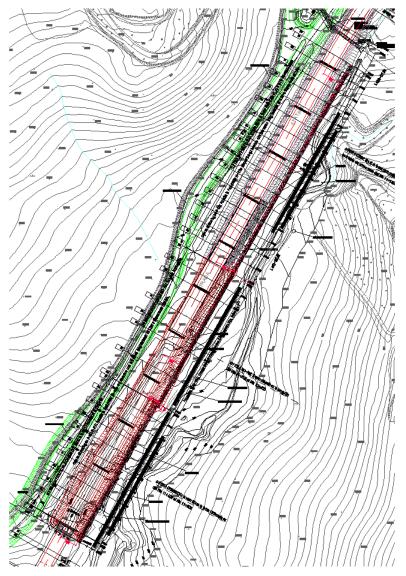
In particolare, a seguito di una approfondita analisi sui meccanismi di rottura, si è deciso di intervenire nel seguente modo:

- Progressiva 11+506 – 11+400:

Opera di sostegno OS90NEW: muro in terra rinforzata + cordolo su pali tirantato in sx con le seguenti caratteristiche:

- Diametro Pali φ800, lunghezza pali 13m.
- Interasse pali: longitudinale 1.6m su ciascuna fila, trasversale 800mm
- Tiranti da 8 trefoli ad interasse 1.8m, precarico 600kN, inclinazione 20° e 25° alternati. Lunghezza tratto libero 20m, lunghezza bulbo 12m
- Drenaggi sub-orizzontali di lunghezza 50m, interasse 2.4m ed inclinazione media 3%
- Progressiva 11+400 11+300:

Opera di sostegno OS90A: cordolo su pali tirantato in sx con le seguenti caratteristiche:


- Diametro Pali: φ800, lunghezza pali 13m.
- Interasse pali: longitudinale 1.6m su ciascuna fila, trasversale 800mm
- Tiranti da 8 trefoli ad interasse 2.4m, precarico 600kN, inclinazione 22°. Lunghezza tratto libero 20m, lunghezza bulbo 12m
- Drenaggi sub-orizzontali di lunghezza 50m, interasse 2.4m ed inclinazione media 3%
- Progressiva 11+300 11+140:

Opera di sostegno OS92: muro in terra rinforzata esistente da conservare + cordolo su pali tirantato in sx con le seguenti caratteristiche:

RELAZIONE DI CALCOLO DELLE STRUTTURE - DAL KM 11+140 AL KM 11+509

- Diametro Pali:

 φ800, lunghezza pali 11m.
- Interasse pali: longitudinale 2.4m su ciascuna fila, trasversale 800mm
- Tiranti da 6 trefoli ad interasse 2.4m, precarico 450kN, inclinazione 22°. Lunghezza tratto libero 15m, lunghezza bulbo 12m
- Drenaggi sub-orizzontali di lunghezza 50m, interasse 2.4m ed inclinazione media 3%

Le verifiche oggetto di questa relazione di calcolo riguarderanno in particolare:

- Verifica Pali
- Verifica trave di coronamento pali

RELAZIONE DI CALCOLO DELLE STRUTTURE - DAL KM 11+140 AL KM 11+509

2 NORMATIVE

Nel seguito è riportato il dettaglio delle norme tecniche, procedurali ed amministrative alle quali si è fatto riferimento durante la progettazione:

Decreto del Presidente della Repubblica 6 giugno 2001, n. 380

Testo unico delle disposizioni legislative e regolamentari in materia edilizia Circ. n.11651 del 14/02/1974

DM 14/01/2008, "Norme Tecniche per le Costruzioni"

Normativa tecnica di riferimento. Essendo un documento generale di carattere prestazionale per la definizione di parametri specifici e per le regole di dettaglio, come previsto dal Decreto stesso, ci si è riferiti alle seguenti normative:

Ministero delle infrastrutture e dei Trasporti, circolare n. 617 del 2 febbraio 2009

Istruzioni per l'applicazione delle "Norme tecniche per le costruzioni" di cui al D.M. 14 Gennaio 2008.

UNI EN 1990:2006

Eurocodice - Criteri generali di progettazione strutturale

UNI EN 1991-1-1:2004

Eurocodice 1 – Azioni sulle strutture – Parte 1-1: Azioni in Generale – Pesi per unità di volume, pesi propri e sovraccarichi per gli edifici.

UNI EN 1991-1-4:2005

Eurocodice 1 – Azioni sulle strutture – Parte 1-4: Azioni in Generale – Azioni del Vento

UNI EN 1992-1-1:2005

Eurocodice 2 – Progettazione delle strutture di calcestruzzo – Parte 1-1: Regole generali e regole per gli edifici.

UNI EN 1993-1-1:2005

Eurocodice 3 - Progettazione delle strutture di acciaio – Parte 1-1: Regole generali e regole per gli edifici.

UNI EN 1998-1:2005

Eurocodice 8 - Progettazione delle strutture per la resistenza sismica – Parte 1: Regole generali, azioni sismiche e regole per gli edifici.

UNI EN 206-1:2006

Calcestruzzo – Parte 1: Specificazione, prestazione e conformità.

UNI 11104:2004

Calcestruzzo: Specificazione, prestazione e conformità. Istruzioni complementari per l'applicazione della EN 206-1

Circ. Min. LL.PP. 14.02.1974, n.11951

"Applicazione della legge 05.11.1971, n. 1086"

Circ. Min. LL.PP. 31.07.1979, n.19581

"Legge 05.11.1971, n. 1086, art. 7- Collaudo Statico"

Circ. Min. LL.PP. 23.10.1979, n.19777

"Competenza amministrativa: Legge 05.11.1971, n. 1086 02.02.1974, n.64"

Circ. Min. LL.PP. 09.01.1980, n.20049

RELAZIONE DI CALCOLO DELLE STRUTTURE - DAL KM 11+140 AL KM 11+509

"Istruzioni relative ai controlli sul conglomerato cementizio adoperato per le strutture in cemento armato".

Circ. Min. LL.PP. 01.09.1987, n.29010

"Legge 05.11.1971, n. 1086 DM 27.07.1985, Controllo dei materiali in genere e degli acciai per cemento armato normale in particolare".

CNR-DT 207/2008

"Istruzioni per la valutazione delle azioni e degli effetti del vento sulle costruzioni.

3 Criteri generali di progettazione

Le verifiche degli elementi strutturali vengono eseguite col metodo degli stati limite.

3.1 VITA NOMINALE, CLASSI D'USO E PERIODO DI RIFERIMENTO

La vita nominale di un'opera strutturale VN è intesa come il numero di anni nel quale la struttura, purché soggetta alla manutenzione ordinaria, deve potere essere usata per lo scopo al quale è destinata.

Come stabilito nel C.S.A. la progettazione delle strutture farà riferimento a:

Vita nominale 50 anni

Classe d'uso IV

Vita di riferimento per l'azione sismica 100 anni

3.2 VERIFICHE DELLA SICUREZZA E DELLE PRESTAZIONI

3.2.1 STATI LIMITE ULTIMI

Per la situazione permanente e transitoria si verifica che l'azione sollecitante di calcolo Sd sia inferiore alla resistenza ultima di calcolo Rd.

Le azioni sollecitanti di calcolo vanno calcolate secondo la seguente formulazione:

$$\boldsymbol{F}_{a} = \boldsymbol{\gamma}_{g} \cdot \boldsymbol{G}_{k} + \boldsymbol{\gamma}_{P} \cdot \boldsymbol{P}_{k} + \boldsymbol{\gamma}_{q} \cdot \left[\boldsymbol{Q}_{1k} + \sum (\boldsymbol{\psi}_{0i} \cdot \boldsymbol{Q}_{ik}) \right]$$

dove:

G_k è il valore caratteristico delle azioni permanenti;

P_k è il valore caratteristico delle azioni di precompressione;

Q_{1k} è il valore caratteristico dell'azione base di ogni combinazione;

Q_{ki} i valori caratteristici delle azioni variabili tra loro indipendenti;

RELAZIONE DI CALCOLO DELLE STRUTTURE - DAL KM 11+140 AL KM 11+509

 γ_g = 1,3/1,5 (1,0 se il suo contributo aumenta la sicurezza);

 γ_p = 0,9 (1,2 se il suo contributo diminuisce la sicurezza);

 γ_q = 1,5 (0 se il suo contributo aumenta la sicurezza);

 ψ_{0i} = coefficiente di combinazione allo SLU

3.2.2 STATO LIMITE DI ESERCIZIO

Per le verifiche di stati limite di esercizio si fa riferimento alle seguenti combinazioni di carico:

Combinazione rara:
$$F_r = G_k + P_k + Q_{1k} + \sum (\psi_{0,i} \cdot Q_{ki})$$

Combinazione frequente:
$$F_r = G_k + P_k + \psi_{11} \cdot Q_{1k} + \sum (\psi_{2,i} \cdot Q_{ki})$$

Combinazione quasi permanente:
$$F_r = G_k + P_k + \sum (\psi_{2,i} \cdot Q_{ki})$$

dove:

$$\gamma_g = \gamma_p = \gamma_q = 1.0;$$

 ψ_{1i} = coefficiente atto a definire i valori delle azioni ammissibili ai frattili di ordine 0,95 delle distribuzioni dei valori istantanei;

 ψ_{2i} = coefficiente atto a definire i valori quasi permanenti delle azioni ammissibili ai valori medi delle distribuzioni dei valori istantanei;

RELAZIONE DI CALCOLO DELLE STRUTTURE - DAL KM 11+140 AL KM 11+509

4 Caratteristiche dei materiali

Le strutture dell'opera in progetto verranno realizzate in calcestruzzo armato.

Le caratteristiche dei materiali adoperati sono le seguenti.

4.1 CEMENTI ARMATI

CALCESTRUZZO(UNI EN 206-1)	Classe di esposizione ambientale	Classe di resistenza	Dimensione max nominale aggregati (mm)	Rapporto a/c max	Classe di consistenza	Tipologia strutturale
GETTO IN OPERA						
Sottofondazioni	-	≥C12/15	-	-	-	Non Armato
Getti pali di fondazione	XA1	C30/37	32	0.55	S4	Armato
Atri getti (travi, cordoli, basamenti, etc)	XA1	C30/37	32	0.55	S4	Armato
COPRIFERRO STRUTTURE GETTA	ATE IN OPER	A		A	matura principale_	\
Pali di fondazione Cordoli e getti		c = 60 mm c = 40 mm		Armatura di riç	artizione —	

4.2 CARATTERISTICHE DELL'ACCIAIO DI ARMATURA

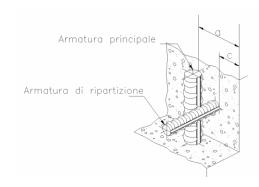
Barre ad aderenza migliorata tipo B450C

Tipo di acciaio
 FB450C

• Peso specifico $\gamma = 78.50 \text{ kN/m}^3$

Modulo di elasticità: E = 210000 N/mm²

Tensione caratteristica di snervamento: $f_{vk} > 450 \text{ N/mm}^2$


Tensione di snervamento di progetto (γ_s = 1,15): $f_{yd} = f_{yk}/\gamma_s$ =391 N/mm²

Massima tensione di esercizio: $\sigma_s = 0.8 \, f_{yk} = 360 \, N/mm^2$

4.3 COPRIFERRI

Il copriferro minimo deve essere determinato sia in funzione della classe di esposizione ambientale che della resistenza al fuoco

Le relative normative di riferimento sulla resistenza al fuoco (Decreto 16 del Febbraio 2007 sulla "Classificazione di resistenza al fuoco di prodotti ed elementi costruttivi di opere da costruzione) e sulla durabilità del calcestruzzo (UNI EN 1992-1-1:2005) definiscono i valori di copriferro minimi da rispettare per garantire le prestazioni richieste. I copriferri sono definiti in maniera differente.

RELAZIONE DI CALCOLO DELLE STRUTTURE - DAL KM 11+140 AL KM 11+509

Per la durabilità il valore di copriferro minimo fa riferimento a:

 c=distanza tra il lembo esterno di calcestruzzo ed il filo esterno della barra di armatura di ripartizione;

Per la resistenza al fuoco il valore di copriferro minimo fa riferimento a:

 - a=c+φr+φp/2 ossia alla distanza tra il lembo esterno di calcestruzzo e l'asse della barra d'armatura principale

I copriferri minimi da adottare per garantire la durabilità sono:

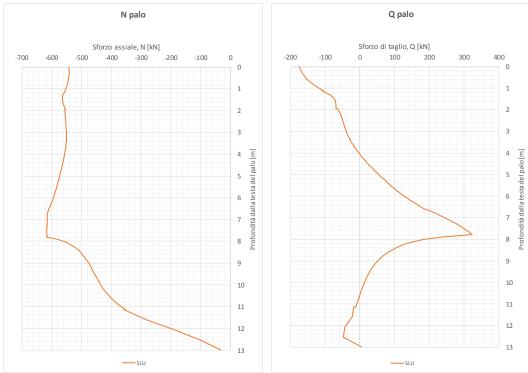
Pali di fondazione: c_{min} =60mm
 Cordoli e altri getti: c_{min} =40mm

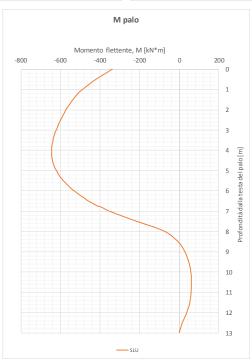
Non essendo presenti prescrizioni sulla resistenza al fuoco degli elementi strutturali, il copriferro verrà determinato in funzione della sola durabilità.

RELAZIONE DI CALCOLO DELLE STRUTTURE - DAL KM 11+140 AL KM 11+509

5 ANALISI DEI CARICHI

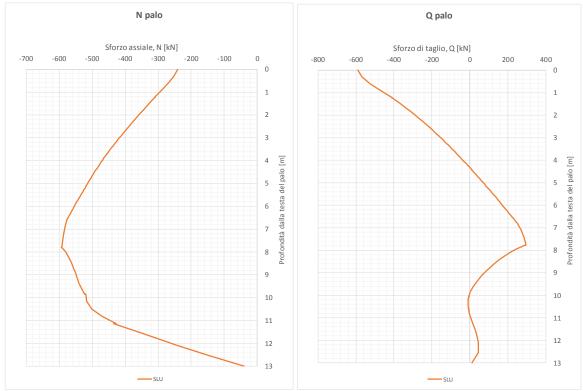
Come meglio dettagliato nella relazione Geotecnica le strutture di contenimento in progetto verranno dimensionate in modo da garantire un momento massimo di plasticizzazione pari a 960 kN*m/palo. Questo limite di resistenza verrà garantito in modo da soddisfare anche le verifiche di stabilità globale (SLU-GEO) ai sensi delle NTC 2008 in condizioni statiche e sismiche.

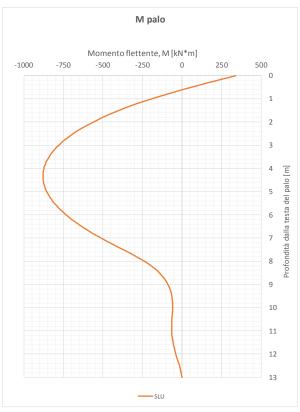

Analogo discorso per il dimensionamento della trave di coronamento che verrà dimensionata per sopportare le sollecitazioni derivanti dal massimo tiro trasmesso dai tiranti, e pari a 1615kN/tirante.


Oltre a questo sono state approfondite le sollecitazioni di progetto agenti sui pali. Come è possibile vedere dagli inviluppi sotto riportati, in ogni situazione tali sollecitazioni risultano inferiori rispetto al momento flettente di verifica.

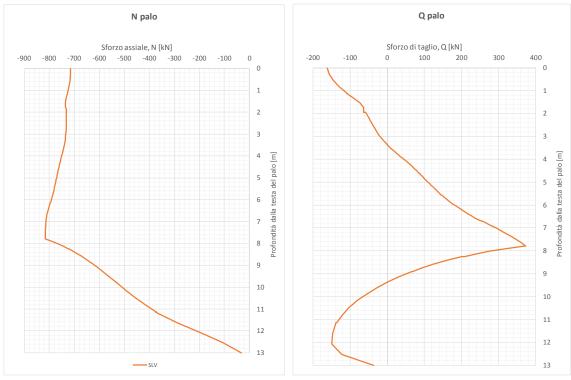
RELAZIONE DI CALCOLO DELLE STRUTTURE - DAL KM 11+140 AL KM 11+509

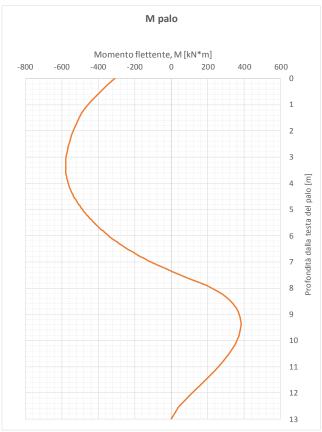
5.1 SOLLECITAZIONI OPERA DI SOSTEGNO OS90NEW


5.1.1 PALO DI VALLE COMBINAZIONE SLU STATICA

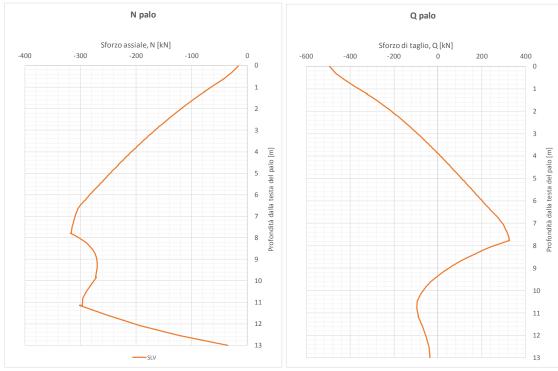


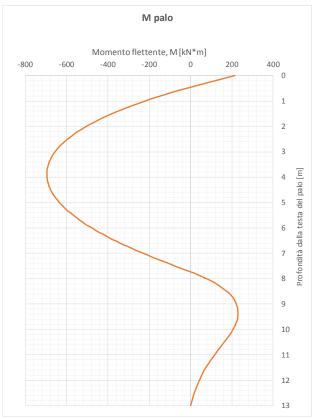
RELAZIONE DI CALCOLO DELLE STRUTTURE - DAL KM 11+140 AL KM 11+509


5.1.2 PALO DI MONTE COMBINAZIONE SLU STATICA

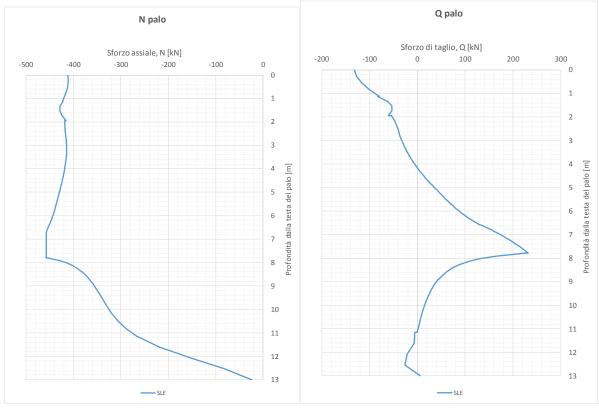


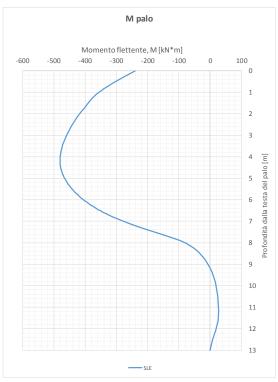
RELAZIONE DI CALCOLO DELLE STRUTTURE - DAL KM 11+140 AL KM 11+509


5.1.3 PALO DI VALLE COMBINAZIONE SLV SISMICA

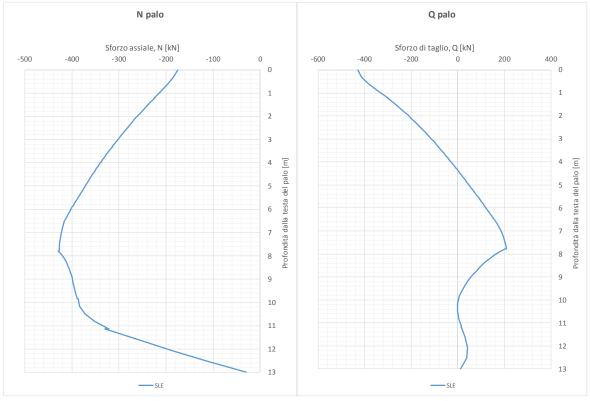


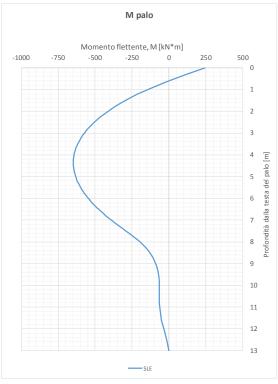
RELAZIONE DI CALCOLO DELLE STRUTTURE - DAL KM 11+140 AL KM 11+509


5.1.4 PALO DI MONTE COMBINAZIONE SLV SISMICA



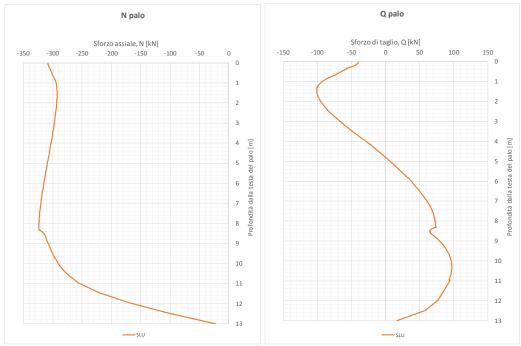
RELAZIONE DI CALCOLO DELLE STRUTTURE - DAL KM 11+140 AL KM 11+509

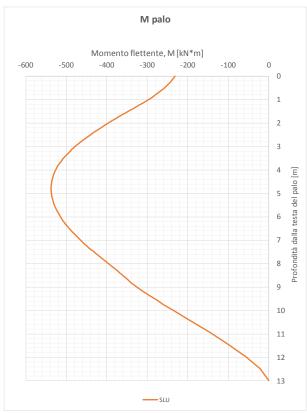

5.1.5 PALO DI VALLE COMBINAZIONE SLE STATICA



RELAZIONE DI CALCOLO DELLE STRUTTURE - DAL KM 11+140 AL KM 11+509

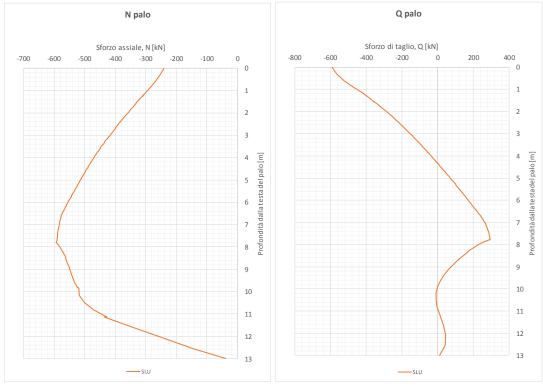
5.1.6 PALO DI MONTE COMBINAZIONE SLE STATICA

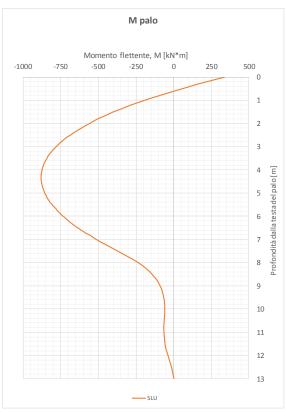




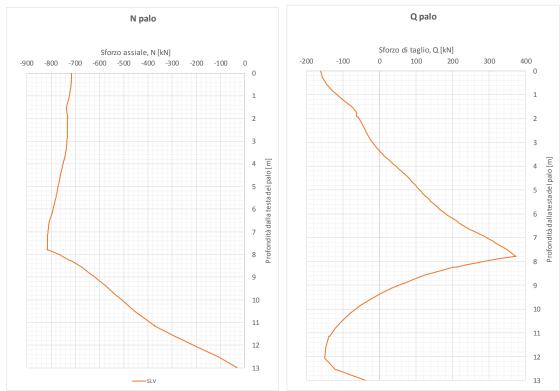
RELAZIONE DI CALCOLO DELLE STRUTTURE - DAL KM 11+140 AL KM 11+509

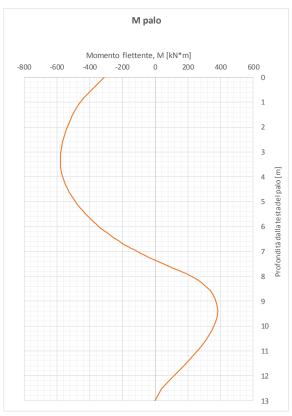
5.2 SOLLECITAZIONI OPERA DI SOSTEGNO OS90A


5.2.1 PALO DI VALLE COMBINAZIONE SLU STATICA

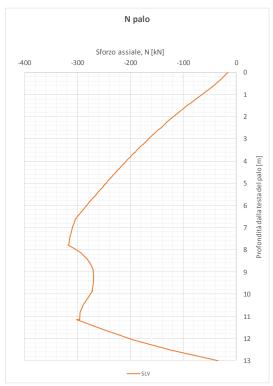


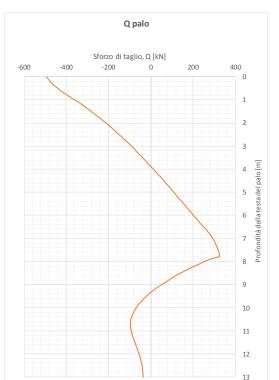
RELAZIONE DI CALCOLO DELLE STRUTTURE - DAL KM 11+140 AL KM 11+509

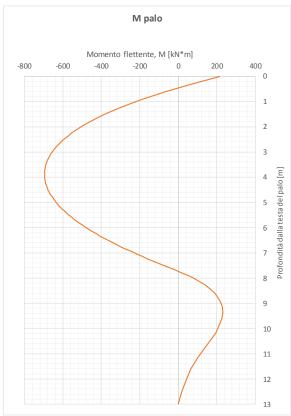

5.2.2 PALO DI MONTE COMBINAZIONE SLU STATICA



RELAZIONE DI CALCOLO DELLE STRUTTURE - DAL KM 11+140 AL KM 11+509

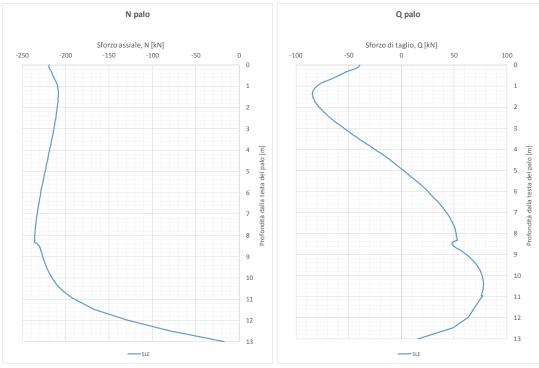

5.2.3 PALO DI VALLE COMBINAZIONE SLV SISMICA

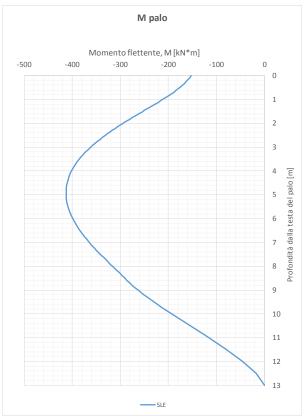




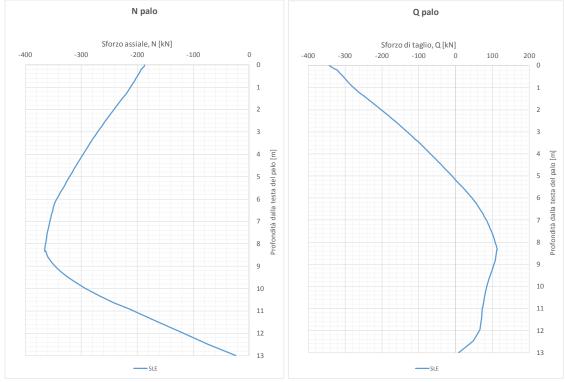
RELAZIONE DI CALCOLO DELLE STRUTTURE - DAL KM 11+140 AL KM 11+509

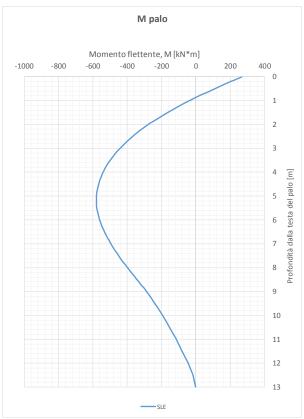
5.2.4 PALO DI MONTE COMBINAZIONE SLV SISMICA





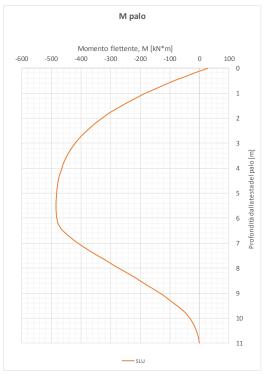
RELAZIONE DI CALCOLO DELLE STRUTTURE - DAL KM 11+140 AL KM 11+509


5.2.5 PALO DI VALLE COMBINAZIONE SLE STATICA



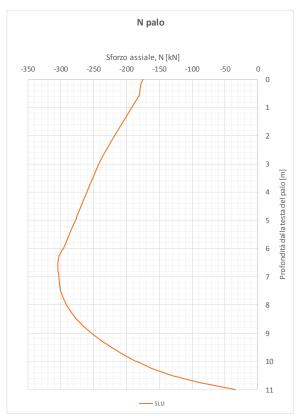
RELAZIONE DI CALCOLO DELLE STRUTTURE - DAL KM 11+140 AL KM 11+509

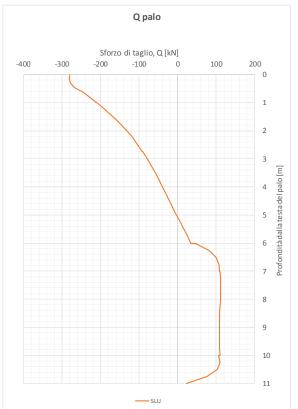
5.2.6 PALO DI MONTE COMBINAZIONE SLE STATICA

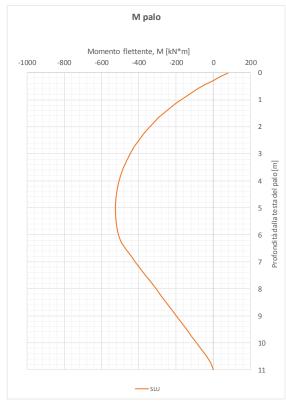


RELAZIONE DI CALCOLO DELLE STRUTTURE - DAL KM 11+140 AL KM 11+509

5.3 SOLLECITAZIONI OPERA DI SOSTEGNO OS92

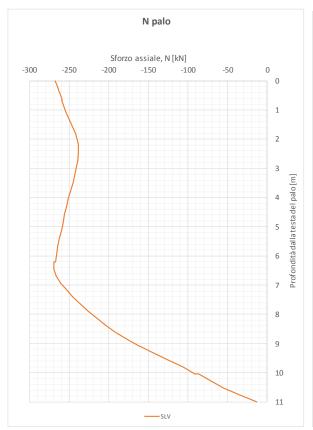

5.3.1 PALO DI VALLE COMBINAZIONE SLU STATICA

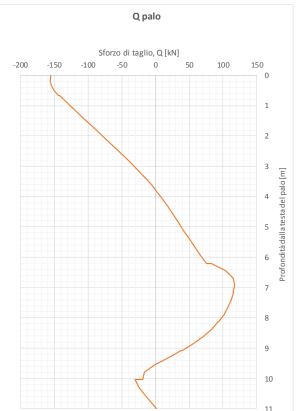




RELAZIONE DI CALCOLO DELLE STRUTTURE - DAL KM 11+140 AL KM 11+509

5.3.2 PALO DI MONTE COMBINAZIONE SLU STATICA

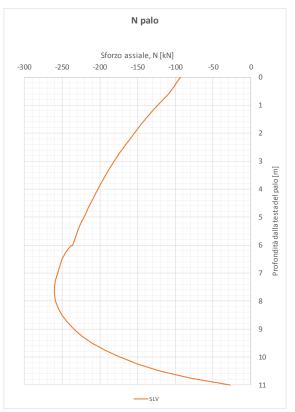


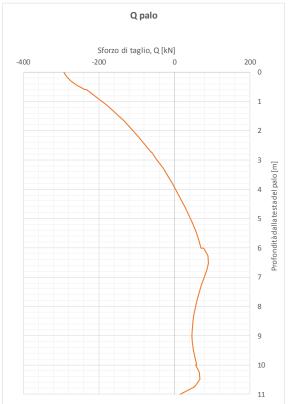


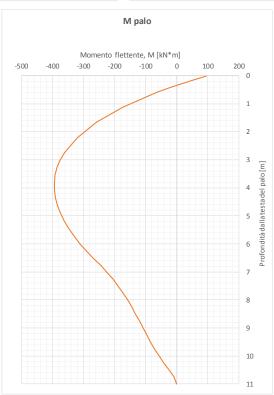


RELAZIONE DI CALCOLO DELLE STRUTTURE - DAL KM 11+140 AL KM 11+509

5.3.3 PALO DI VALLE COMBINAZIONE SLV SISMICA

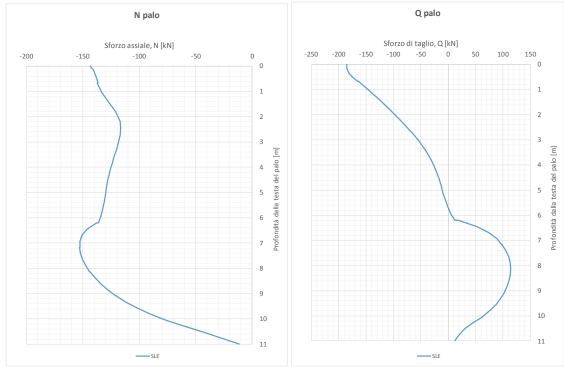


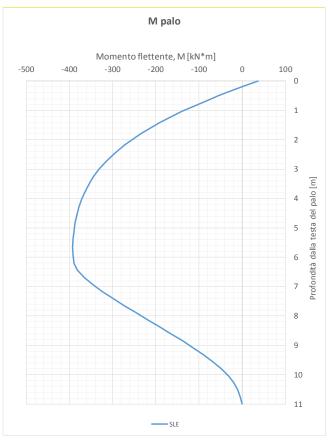




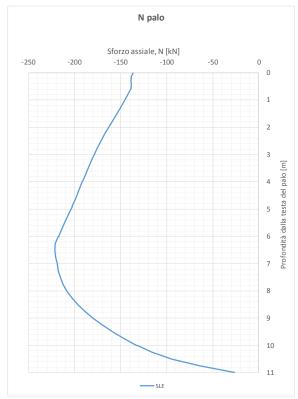
RELAZIONE DI CALCOLO DELLE STRUTTURE - DAL KM 11+140 AL KM 11+509

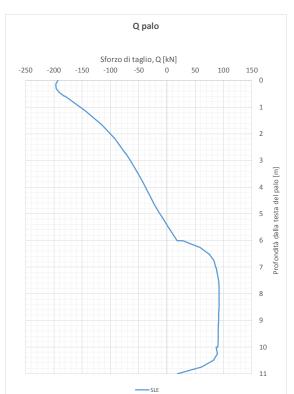
5.3.4 PALO DI MONTE COMBINAZIONE SLV SISMICA

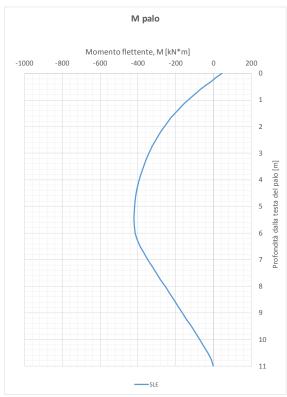




RELAZIONE DI CALCOLO DELLE STRUTTURE - DAL KM 11+140 AL KM 11+509


5.3.5 PALO DI VALLE COMBINAZIONE SLE STATICA





RELAZIONE DI CALCOLO DELLE STRUTTURE - DAL KM 11+140 AL KM 11+509

5.3.6 PALO DI MONTE COMBINAZIONE SLE STATICA

RELAZIONE DI CALCOLO DELLE STRUTTURE - DAL KM 11+140 AL KM 11+509

6 VERIFICA DEI PALI

Come anticipato nel paragrafo di analisi dei carichi, il dimensionamento del palo e verifica della quantità di armatura verrà fatta adottando la sollecitazione limite di plasticizzazione pari a 960kNm/palo.

La verifica a taglio verrà fatta adottando la sollecitazione più gravosa tra quelle ottenute dalle sollecitazioni SLU sopra elencate

6.1 VERIFICA A FLESSIONE SLU

La verifica verrà condotta adottando l'applicativo del codice agli elementi finiti ProSap (2Si), ProVlim.

RELAZIONE DI CALCOLO DELLE STRUTTURE - DAL KM 11+140 AL KM 11+509

DATI GENERALI DELLA SEZIONE

Calcestruzzo: Rck = 37.00 N/mmqSezione circolare. Raggio = 40.00 cm

Acciaio: fyk = 450.00 N/mmq

Ferro N.	X (cm)	Y (cm)	Area (cmq)
1	40.0	75.0	7.07
2	55.2	71.5	7.07
3	67.4	61.8	7.07
4	74.1	47.8	7.07
5	74.1	32.2	7.07
6	67.4	18.2	7.07
7	55.2	8.5	7.07
8	40.0	5.0	7.07
9	24.8	8.5	7.07
10	12.6	18.2	7.07
11	5.9	32.2	7.07
12	5.9	47.8	7.07
13	12.6	61.8	7.07
14	24.8	71.5	7.07
13	12.6	61.8	7.07

Caratteristiche limite della sezione:

	Nu [kN]	Mxu [kN m]	Myu [kN m]
Sezione completamente tesa	-3872.4	0.0	0.0
Sezione completamente compressa	12126.8	0.0	0.0
Fibre inferiori tese	0.0	1110.8	0.0
Fibre superiori tese	0.0	-1110.8	0.0
Fibre di sinistra tese	0.0	0.0	1106.5
Fibre di destra tese	0.0	0.0	-1106.5

VERIFICA AGLI STATI LIMITE ULTIMI

Note sulle unità di misura:

Sollecitazioni: M [kN m], N [kN]

Coef. sicurezza: Gamma

Soll.n. Nd Mxd Myd EpsC EpsA Gamma Nu Mxu Myu 1 0.0 0.0 960.0 0.0 0.0 1110.8 -0.35 0.80 1.14 Ok

RELAZIONE DI CALCOLO DELLE STRUTTURE - DAL KM 11+140 AL KM 11+509

6.2 VERIFICA A TAGLIO

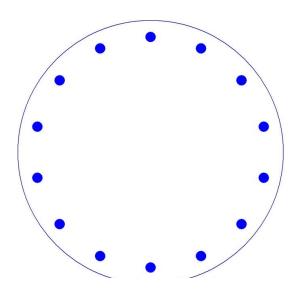
La verifica a taglio della sezione circolare verrà condotta adottando una sezione equivalente quadrata, inclusa all'interno della sezione circolare di progetto.

La massima azione tagliante in combinazione SLU vale: 590kN (comb SLU, opera P-90, palo di monte) in coincidenza con l'attacco della trave di testata.

L'armatura inserita nella sezione di verifica è pari ad una staffa circolare chiusa ϕ 12/20cm+ 1 spinotto ϕ 12/20, per un totale di 3 braccia resistenti.

Verifica a tag	CA 2008 Nio di una i	trave ref	tangolar	'0 (~ =00°)				
$V_{Rd} = (0.18 * k)$					Valore di	progetto ae	lla resistenza a ta □	iglio
$V_{r,sd} = 0.9 * A_s$					sezione	con staffe		
$V_{r,cd} = 0.9 * b *$	$d \star \alpha_c \star f'_{cd}$	* (cot θ +	$\cot \alpha)/(1+$	+cot²θ)				
Data una trave d			1					
Ved	590	kN	forza tagi	liante sollecitant	e a distanz	za d dal filo	dell'appoggio	
b _{trave}	600	mm	base dell	a trave				
h _{trave}	600	mm	altezza d	ella trave				
d'	58	mm		tra bordo libero			sa	
d	542	mm		tra bordo libero				
С	45.00	mm	· · · · · · · · · · · · · · · · · · ·	nto di cls barre		sterne		
Caratteristiche d		145	•	tiche acciaio:	B450C			
fck	25	MPa	fyk	450.00	MPa			
fctm	2.56	MPa	fywd	391.30	MPa			
fcd	14.17 1.5	MPa		1 15				
γС	1.5		γS	1.15				
II calcolo di Vrd,	c nermette di	verificare	se occorre	armatura a tagli				
Armatura zona t		verificare c	SC OCCORC	Armatura zona		a.		
φ	26	n°barre	4	ф	26	n°barre	4	
Asl	2123.7166	mm ²		Asl	2123.72	mm ²		
k						mm		
Λ.	1.61			_	2123.72	mm		
	1.61 0.0065	ok		-	2123.72	mm		
ρΙ	0.0065		he si ester					
ρ l ρ_I = rapporto di	0.0065 armatura long	itudinale c		nde per un tratto	almeno pa			
$ρ$ I $ρ_I = rapporto di$ $I_{bd} = α1 * α2 *$	0.0065 armatura long α3 * α4 * α	nitudinale c 5 * I _{b,rqd} >	= 1 _{b,min}	nde per un tratto EC2 - 2005 - rif.8.	almeno pa	ari a (d+l _{bd})		rassional
$ρ$ I $ρ$ I = rapporto di $I_{bd} = α1 * α2 *$ Ned	0.0065 armatura long $\alpha 3 * \alpha 4 * \alpha$ 0	nitudinale c 5 * I _{b,rqd} > N	= I _{b,min} forza ass	nde per un tratto EC2 - 2005 - rif.8. iale dovuta ai ca	almeno pa 4.4 (1) arichi o alla	ari a (d+l _{bd})	ssione (>0 compr	ressione)
ρI $\rho_I = rapporto di$ $I_{bd} = \alpha 1 * \alpha 2 *$ Ned σ_{cp}	0.0065 armatura long α3 * α4 * α 0 0	nitudinale c 5 * I _{b,rqd} > N MPa	= 1 _{b,min}	nde per un tratto EC2 - 2005 - rif.8. iale dovuta ai ca EC2 - 2005 - rif.6.	almeno pa 4.4 (1) arichi o alla 2.3	ari a (d+l _{bd})		ressione)
$ρ$ I $ρ$ I = rapporto di $I_{bd} = α1 * α2 *$ Ned	0.0065 armatura long $\alpha 3 * \alpha 4 * \alpha$ 0	nitudinale c 5 * I _{b,rqd} > N	= I _{b,min} forza ass	nde per un tratto EC2 - 2005 - rif.8. iale dovuta ai ca EC2 - 2005 - rif.6. α _{cw}	almeno pa 4.4 (1) arichi o alla 2.3	ari a (d+l _{bd}) a precompre	ssione (>0 compr	ressione)
$ρ$ I $ρ_I = rapporto di$ $I_{bd} = α1 * α2 *$ Ned $σ_{cp}$ vmin	0.0065 armatura long 6	nitudinale c 5 * I _{b,rqd} > N MPa MPa	= I _{b,min} forza ass ok	nde per un tratto EC2 - 2005 - rif.8. iale dovuta ai ca EC2 - 2005 - rif.6. α _{cw} ν1	almeno pa 4.4 (1) arichi o alla 2.3 1 0.63	ari a (d+l _{bd}) a precompre fck <= 60 l	ssione (>0 compr	
$ρ$ I $ρ_I = rapporto di$ $I_{bd} = α1 * α2 *$ Ned $σ_{cp}$ vmin Se, sulla base di	0.0065 armatura long a3 * a4 * a 0 0 0.36	nitudinale c 5 * I _{b,rqd} > N MPa MPa	= I _{b,min} forza ass ok	nde per un tratto EC2 - 2005 - rif.8. iale dovuta ai ca EC2 - 2005 - rif.6. α _{cw} ν1	almeno pa 4.4 (1) arichi o alla 2.3 1 0.63	ari a (d+l _{bd}) a precompre fck <= 60 l	ssione (>0 compr	
$ρ$ I $ρ_I = rapporto di$ $I_{bd} = α1 * α2 *$ Ned $σ_{cp}$ vmin Se, sulla base c $EC2 - 2005 - rif. 9.2$	0.0065 armatura long a3 * a4 * a 0 0 0.36 dei calcoli, nor 2 (5)	nitudinale c 5 * I _{b,rqd} > N MPa MPa	= I _{b,min} forza ass ok	nde per un tratto EC2 - 2005 - rif.8. iale dovuta ai ca EC2 - 2005 - rif.6. α _{cw} v1 atura a taglio, si	almeno pa 4.4 (1) arichi o alla 2.3 1 0.63 predisporr	ari a (d+l _{bd}) a precompre fck <= 60 l à comunque	ssione (>0 compr	
$ρ$ I $ρ_I = rapporto di$ $I_{bd} = α1 * α2 *$ Ned $σ_{cp}$ vmin Se, sulla base c $EC2 - 2005 - rif. 9.2$	0.0065 armatura long a3 * a4 * a 0 0 0.36 dei calcoli, nor 2 (5)	nitudinale c 5 * I _{b,rqd} > N MPa MPa	= I _{b,min} forza ass ok	nde per un tratto EC2 - 2005 - rif.8. iale dovuta ai ca EC2 - 2005 - rif.6. α _{cw} ν1	almeno pa 4.4 (1) arichi o alla 2.3 1 0.63	ari a (d+l _{bd}) a precompre fck <= 60 l à comunque	ssione (>0 compr	
ρI $\rho_{I} = rapporto \ di$ $I_{bd} = \alpha 1 * \alpha 2 *$ Ned σ_{cp} $vmin$ $Se, sulla base \ di$ $EC2 - 2005 - rif. 9.2$ $\rho_{w} = A_{sw} / (s * b_{s})$	0.0065 armatura long a 3 * α 4 * α 0 0 0.36 dei calcoli, nor 2 (5) » • sinα)	nitudinale c 5 * I _{b,rqd} > N MPa MPa	= I _{b,min} forza ass ok niesta arma	nde per un tratto EC2 - 2005 - rif.8. iale dovuta ai ca EC2 - 2005 - rif.6. α _{cw} v1 atura a taglio, si	almeno pa 4.4 (1) arichi o alla 2.3 1 0.63 predisporr	ari a (d+l _{bd}) a precompre fck <= 60 l à comunque	ssione (>0 compr	
ρI $\rho_I = rapporto \ di$ $I_{bd} = \alpha 1 * \alpha 2 *$ Ned σ_{cp} $vmin$	0.0065 armatura long $f \alpha 3 * \alpha 4 * \alpha 6$ 0 0.36 dei calcoli, nor $f \alpha 2 (5)$ $f \alpha 3 * \alpha 4 * \alpha 6$	nitudinale c 5 * I _{b,rqd} > N MPa MPa	= I _{b,min} forza ass ok niesta arma	nde per un tratto EC2 - 2005 - rif.8. iale dovuta ai ca EC2 - 2005 - rif.6. α _{cw} v1 atura a taglio, si	almeno pa 4.4 (1) arichi o alla 2.3 1 0.63 predisporr	ari a (d+l _{bd}) a precompre fck <= 60 l à comunque	ssione (>0 compr	
$ρ$ I $ρ_I = rapporto di$ $l_{bd} = α1 * α2 *$ Ned $σ_{cp}$ vmin Se, sulla base c $EC2 - 2005 - rif. 9.2$ $ρ_{w,min} = (0,08 * rif. 9.2)$	0.0065 armatura long $f(\alpha) = \alpha + \alpha + \alpha$ 0 0 0.36 dei calcoli, nor $f(\alpha) = \alpha + \alpha$ radq($f(\alpha)$) / $f(\alpha)$	itudinale c 5 * I _{b,rqd} > N MPa MPa MPa	= I _{b,min} forza ass ok niesta arma	nde per un tratto EC2 - 2005 - rif.8. iale dovuta ai ca EC2 - 2005 - rif.6. α _{cw} v1 atura a taglio, si	almeno pa 4.4 (1) arichi o alla 2.3 1 0.63 predisporr	ari a (d+l _{bd}) a precompre fck <= 60 l à comunque	ssione (>0 compr	
ρI $\rho_{I} = rapporto \ di$ $I_{bd} = \alpha 1 * \alpha 2 *$ Ned σ_{cp} $vmin$ $Se, sulla \ base \ c$ $EC2 - 2005 - rif. 9.2$ $\rho_{w} = A_{sw} / (s \cdot b_{o})$ $\rho_{w,min} = (0.08 * rif. (A_{sw} / s)_{min}$	0.0065 armatura long 6 α3 * α4 * α 0 0 0.36 dei calcoli, nor 1.2 (5) 1.2 (5) 1.3 (f _{ck})) / f _{yk} 0.53	itudinale c 5 * I _{b,rqd} > N MPa MPa MPa n fosse rich	= I _{b,min} forza ass ok ok	nde per un tratto EC2 - 2005 - rif.8. iale dovuta ai ca EC2 - 2005 - rif.6. α _{cw} v1 atura a taglio, si	almeno pa 4.4 (1) arichi o alla 2.3 1 0.63 predisporr	ari a (d+l _{bd}) a precompre fck <= 60 l à comunque	ssione (>0 compr	
ρI $\rho_{I} = rapporto \ di$ $I_{bd} = \alpha 1 * \alpha 2 *$ Ned G_{cp} $Vmin$ $Se, sulla \ base \ c$ $EC2 - 2005 - rif. 9.2$ $\rho_{w} = A_{sw} / (s \cdot b_{v})$ $\rho_{w,min} = (0.08 * r)$ $(A_{sw} / s)_{min}$ $V_{rd,c} = (C_{rd,c} \cdot b)$	0.0065 armatura long $f \approx 3 * \approx 4 * \approx 0$ 0 0.36 dei calcoli, nor $f \approx 2 (5)$ radq(f_{ck})) / f_{yk} 0.53	itudinale c $5 * I_{b,rqd} > N$ MPa MPa m fosse rich mm²/mm $f_{ck})^{1/3} + M$	= I _{b,min} forza ass ok ok	nde per un tratto EC2 - 2005 - rif.8. iale dovuta ai ca EC2 - 2005 - rif.6. α _{cw} v1 atura a taglio, si	almeno pa 4.4 (1) arichi o alla 2.3 1 0.63 predisporr	ari a (d+l _{bd}) a precompre fck <= 60 l à comunque	ssione (>0 compr	
ρI $\rho_{I} = rapporto \ di$ $I_{bd} = \alpha 1 * \alpha 2 *$ Ned σ_{cp} $vmin$ $Se, sulla \ base \ c$ $EC2 - 2005 - rif. 9.2$ $\rho_{w} = A_{sw} / (s * b_{w})$ $\rho_{w,min} = (0,08 * r)$ $(A_{sw} / s)_{min}$ $V_{rd,c} = (C_{rd,c} * B_{w})$ V_{Rd}	0.0065 armatura long a 3 * α4 * α 0 0 0.36 dei calcoli, nor 2 (5) radq(f _{ck})) / f _{yk} 0.53 c (100 · ρ	itudinale c $5 * I_{b,rqd} > N$ MPa MPa fosse rich mm^2/mm $f_{ck})^{1/3} + kN$	= I _{b,min} forza ass ok ok	nde per un tratto EC2 - 2005 - rif.8. iale dovuta ai ca EC2 - 2005 - rif.6. α _{cw} v1 atura a taglio, si	almeno pa 4.4 (1) arichi o alla 2.3 1 0.63 predisporr	ari a (d+l _{bd}) a precompre fck <= 60 l à comunque	ssione (>0 compr	
ρI $\rho_{I} = rapporto \ di$ $I_{bd} = \alpha 1 * \alpha 2 *$ Ned σ_{cp} $vmin$ $Se, sulla \ base \ c$ $EC2 - 2005 - rif. 9.2$ $\rho_{w} = A_{sw} / (s \cdot b_{v})$ $\rho_{w,min} = (0.08 * r)$ $(A_{sw} / s)_{min}$ $V_{rd,c} = (C_{rd,c} \cdot b)$	0.0065 armatura long $f \approx 3 * \approx 4 * \approx 0$ 0 0.36 dei calcoli, nor $f \approx 2 (5)$ radq(f_{ck})) / f_{yk} 0.53	itudinale c $5 * I_{b,rqd} > N$ MPa MPa m fosse rich mm²/mm $f_{ck})^{1/3} + M$	$= I_{b,min}$ $forza \ ass$ ok ds α α $k1 \cdot \sigma_{cp})$	nde per un tratto EC2 - 2005 - rif.8. iale dovuta ai ca EC2 - 2005 - rif.6. α _{cw} v1 atura a taglio, si	almeno pa 4.4 (1) arichi o alla 2.3 1 0.63 predisporr staffe ver	ari a (d+l _{bd}) a precompre fck <= 60 l à comunque	ssione (>0 compr	

RELAZIONE DI CALCOLO DELLE STRUTTURE - DAL KM 11+140 AL KM 11+509


17	1027 40	LAL	(reciptors		adi ala)		
$V_{rd,max}$	1037.40	kN	(resisteriz	a della sezione	ai cis)	ok	
Ved in aoppoggio	590.00	kN					
Quindi eguagliand	do $V_{ed} = V_{ro}$	l,max:					
Dalla precedente	espressione	si ricava il	valore di	θ:			
					rad	gradi	
θ = 1/2 * arcsin ($2V_{ed}$ /(($lpha_{cw}$	* v ₁ *f _{cd})	* b w * z))	=	0.3805	21.80	
Se risulta compre	eso tra 45° e	21,8°, Asu	∥s si deter	mina con il $ heta$ ii	ndividuato,		
altrimenti si impo	ne il limite in	feriore (21,	8°):				
$(A_{sw}/s) = V_{ed}/(2$	z * f _{ywd} * cote	9) =	1.24	mm²/mm			
ф	10.24	mm					
Asw	247.27	mm2	n°bracci	3	n° bracci	delle staffe	
S	200	mm	passo sta	affe verticali			
ф	12.00	mm	diametro	delle staffe da	utilizzare		
Asw	339.29	mm2					

RELAZIONE DI CALCOLO DELLE STRUTTURE - DAL KM 11+140 AL KM 11+509

6.3 VERIFICA AGLI STATI LIMITE DI ESERCIZIO (SLE)

La verifica verrà condotta adottando l'applicativo del codice agli elementi finiti ProSap (2Si), ProVlim.

Per la verifiche sono state adottate le sollecitazioni SLE uguali per tutti e tre gli stati di sollecitazione di esercizio (rare, qp, freq)

DATI GENERALI DELLA SEZIONE

Calcestruzzo: Rck = 37.00 N/mmq

Sezione circolare. Raggio = 40.00 cm

Acciaio: fyk = 450.00 N/mmq

Caratteristiche limite della sezione:

	Nu [kN]	Mxu [kN m]	Myu
[kN m]			
Sezione completamente tesa	-3872.4	0.0	
0.0			
Sezione completamente compressa	12126.8	0.0	
0.0			
Fibre inferiori tese	0.0	1110.8	
0.0			
Fibre superiori tese	0.0	-1110.8	
0.0			
Fibre di sinistra tese	0.0	0.0	
1106.5			
Fibre di destra tese	0.0	0.0	-
1106.5			

RELAZIONE DI CALCOLO DELLE STRUTTURE - DAL KM 11+140 AL KM 11+509

VERIFICA AGLI STATI LIMITE DI ESERCIZIO

Note sulle unità di misura:

Sollecitazioni: M [kN m], N [kN]

Tensioni: [N/mmq] (CLS: SigC+ = max; SigC- = min) (Acciaio: SigA+ =

max; SigA- = min)

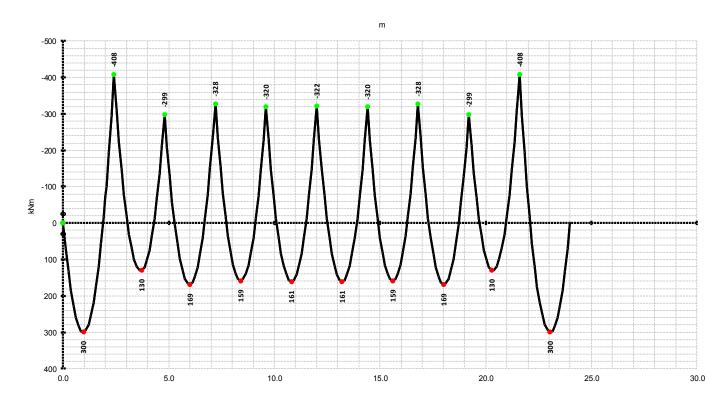
Fessurazione: Wk [mm]

Coef. sicurezza: GammaC = SigC/fck; GammaA = SigA/fyk

COMBINAZIONI DI CARICO RARE:

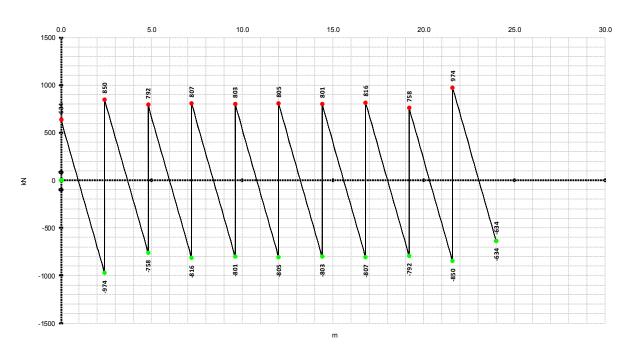
Soll.n. Nd Mxd Myd SigC+ SigC- SigA+ SigA- γC γA Wk
1 354 0.0 647 0.00 -14.17 290.04 -154.27 0.46 0.64 0.281 Ok

RELAZIONE DI CALCOLO DELLE STRUTTURE - DAL KM 11+140 AL KM 11+509


7 VERIFICA DELLA TRAVE DI CORONAMENTO

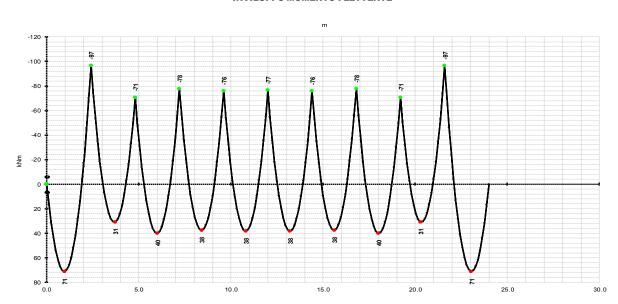
Come anticipato nel paragrafo di analisi dei carichi, il massimo tiro cui è sottoposto il tirante in combinazione SLU è pari a 1615kN.

Considerando una distribuzione costante delle pressioni sul terreno dovute a questa forza, si ottiene, nella configurazione più sfavorevole, una sollecitazione sulla trave tipica di uno schema statico di trave su più appoggi, dove l'appoggio è proprio il punto di applicazione del tirante.


Nel caso più gravoso, l'interasse tra i tiranti è pari a 2.4m, da cui si ricava il seguente andamento delle sollecitazioni:

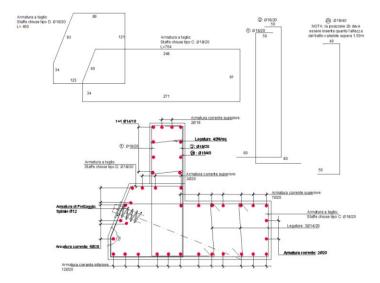
INVILUPPO MOMENTO FLETTENTE

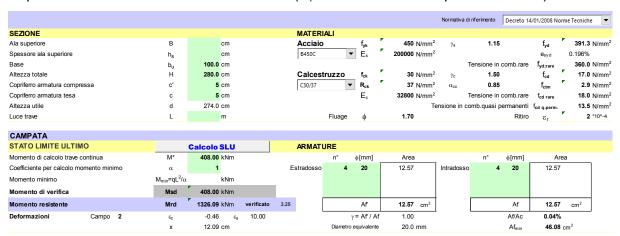
RELAZIONE DI CALCOLO DELLE STRUTTURE - DAL KM 11+140 AL KM 11+509


INVILUPPO DEL TAGLIO

Per le sollecitazioni in esercizio si considererà il taglio trasmesso dai pali in coincidenza dell'attacco con la trave di coronamento, distribuito sull'interasse tra i pali (2.4m). Essendo il taglio massimo pari alla somma tra il palo di valle e quello di monte, il carico lineare per il calcolo delle sollecitazioni sarà pari a:

q=196.3kN(palo monte) + 185.3kN(palo valle)/2.4m=159kN/m

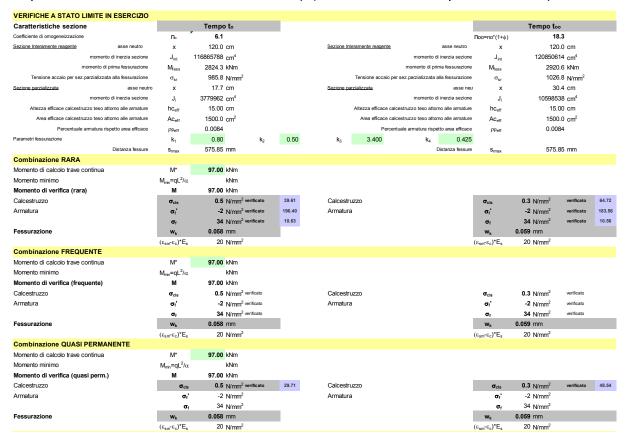

INVILUPPO MOMENTO FLETTENTE


RELAZIONE DI CALCOLO DELLE STRUTTURE - DAL KM 11+140 AL KM 11+509

7.1 VERIFICA A FLESSIONE SLU

Il massimo valore di momento flettente si ha in coincidenza dell'estremità e vale 408kNm.

Per la verifica si considererà, a favore di sicurezza, il contributo delle sole 4 barre correnti disposte sulle due facce verticali della trave (4\psi20 nella condizione più sfavorevole)



La verifica è ampiamente soddisfatta. La trave verrà fondamentalmente armata con la sezione minima di armatura corrente.

RELAZIONE DI CALCOLO DELLE STRUTTURE - DAL KM 11+140 AL KM 11+509

7.2 VERIFICA A FLESSIONE SLE

Il massimo valore di momento flettente si ha in coincidenza dell'estremità e vale 97kNm. Per la verifica si considererà, a favore di sicurezza, il contributo delle sole 4 barre correnti disposte sulle due facce verticali della trave (4\phi20 nella condizione più sfavorevole)

La verifica è ampiamente soddisfatta.

RELAZIONE DI CALCOLO DELLE STRUTTURE - DAL KM 11+140 AL KM 11+509

7.3 VERIFICA A TAGLIO

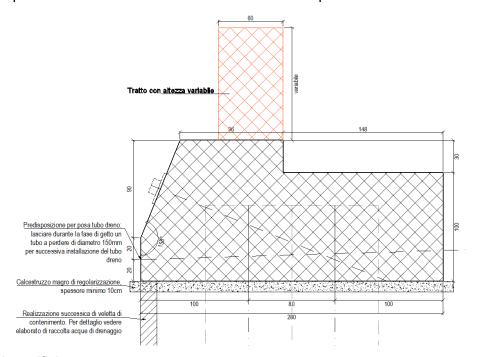
Il massimo valore di azione tagliante vale 974kN.

NORMA TECNI	CA 2008							
Verifica a tag	glio di una t	trave ret	tangolar	re (α =90°)				
$V_{Rd} = (0.18 * k)$					Valore di	progetto de	lla resistenza a t	aglio
$V_{r,sd} = 0.9 * A_s$				•		progette de		J., J.
$V_{r,cd} = 0.9 * b$					sezione	con staffe		
v r,ca — 0.9 D	· u · α _c · r _{ca}	· (COL 0 +		1001 0)				
Data una trave o	con le relative	armatura a	recistenz	٥.				
Ved	974	kN		e. liante sollecitant	⊢ 'e a distan:	za d dal filo	dell'annoggio	
b _{trave}	1000	mm	base deli		d diotain	La a dai mo	dell appoggio	
h _{trave}	2800	mm						
d'	50	mm	4	lella trave tra bordo libero	e asse ha	rra compres	ca .	
d	2750	mm		tra bordo libero			sa	
C	40.00	mm	4	ento di cls barre				
Caratteristiche d				stiche acciaio:	B450C			
fck	30	MPa	fyk	450.00	MPa			
fctm	2.90	MPa	fywd	391.30	MPa			
fcd	17.00	MPa						
γС	1.5		γS	1.15				
•								
II calcolo di Vrd	,c permette di	verificare s	se occorre	armatura a tagl	io:			
Armatura zona i	tesa:			Armatura zona	compress	a:		
ф	20	n°barre	4	ф	20	n°barre	4	
Asl	1256.6371	mm ²		Asl	1256.64	mm ²		
k	1.27							
ρl	0.0005	ok						
o_1 = rapporto di	armatura long	itudinale c	he si este	nde per un tratto	almeno p	ari a (d+l _{bd})		
$t_{bd} = \alpha 1 * \alpha 2$				EC2 - 2005 - rif.8.				
Ned	0	N	-			precompre	ssione (>0 comp	ressione)
σ _{cp}	0	MPa	ok	EC2 - 2005 - rif.6.		. , , , , , , , , , , , , , , , , , , ,		
vmin	0.27	MPa						
VIIIIII	0.27	IVIFa		α _{cw} ν1	1	fck <= 60 l	MDo	
So sulla bass	doi oolooli nor	foogo righ	iooto orm					inimo:
Se, Sulla base (EC2 - 2005 - rif.9.2		1 10886 1101	llesta alliid	atura a tagno, si	predisport	a comunque	e dell'armatura m	IIIIIIa.
$\rho_{\rm w} = A_{\rm sw} / (s * b)$				90°	otoffo	diaali		
$\rho_{\text{w,min}} = (0.08 * 1.00)$			α	90	staffe ver	licali		
	_	2	1					
(A _{sw} / s) _{min}	0.97	mm²/mm						
- (C	k (100 al	£ \1/3		bw d =				
$V_{rd,c} = (C_{rd,c} * I$			nι∗ σ _{cp}) 1	* D W * U =				
V _{Rd}	465.4514	kN	 					
$V_{Rd,min}$	754.22818	kN						

RELAZIONE DI CALCOLO DELLE STRUTTURE - DAL KM 11+140 AL KM 11+509

Preliminarmente	occorre verifi	icare che V	ed sia non	n maggiore di V	rd,max con	cot θ=1:	
$V_{rd,max}$	10511.80	kN	(resistenz	za della sezione	e di cls)	ok	
Ved in aoppoggio	974.00	kN					
Quindi eguagliand	do $V_{ed} = V_{ro}$	l,max :					
Dalla precedente	espressione	si ricava il	valore di	θ:			
					rad	gradi	
θ = 1/2 * arcsin ($2V_{ed}/((\alpha_{cw})$	* v ₁ * f _{cd})	* b _w * z))	=	0.3805	21.80	
Se risulta compre altrimenti si impo				mina con il θ i	ndividuato,		
$(A_{sw}/s) = V_{ed}/(s$	z * f _{ywd} * cot(0.97	mm²/mm				
ф	12.45	mm					
Asw	243.43	mm2	n°bracci	2	n° bracci	delle staffe	
S	250	mm	passo sta	affe verticali			
ф	14.00	mm	diametro	delle staffe da	utilizzare		
Asw	307.88	mm2					

La sezione risulta soddisfatta con l'inserimento di 1 staffa ϕ 14/25cm.


L'armatura inserita sarà pertanto quella minima da normativa.

RELAZIONE DI CALCOLO DELLE STRUTTURE - DAL KM 11+140 AL KM 11+509

8 VERIFICA DEL TRATTO AD ALTEZZA VARIABILE DELLA TRAVE DI CORONAMENTO

8.1 VERIFICA CORDOLO TRATTO OS90NEW, OS92

Come riportato negli elaborati grafici ed estrapolati qui in calce, la trave di coronamento avrà localmente dei tratti ad altezza variabile necessari per contenere i nuovi rilevati. La massima altezza del paramento vale 2m in coincidenza del salto di quota ad intradosso.

Seguono le verifiche:

Combin	azioni									
CMB	Tipo	γg	γq	γ ∈ *	γ_{ϕ}	γ _{c'}	γ_{γ}	R_RIB	R _{SCH}	Rsco
1	EQU	1.10	1.50	0.00	1.25	1.25	1.00	1	-	-
2	EQU	1.10	0.00	0.00	1.25	1.25	1.00	1	-	-
3	EQU	0.90	1.50	0.00	1.25	1.25	1.00	1	-	-
4	EQU	0.90	0.00	0.00	1.25	1.25	1.00	1	-	-
5	STR	1.30	1.50	0.00	1.00	1.00	1.00	-	1.00 (R ₁)	1.00 (R₁)
6	STR	1.30	0.00	0.00	1.00	1.00	1.00	-	1.00 (R ₁)	1.00 (R ₁)
7	STR	1.00	1.50	0.00	1.00	1.00	1.00	-	1.00 (R ₁)	1.00 (R ₁)
8	STR	1.00	0.00	0.00	1.00	1.00	1.00	-	1.00 (R ₁)	1.00 (R ₁)
9	GEO	1.00	1.30	0.00	1.25	1.25	1.00	-	1.00 (R ₂)	1.00 (R ₂)
10	GEO	1.00	0.00	0.00	1.25	1.25	1.00	-	1.00 (R ₂)	1.00 (R ₂)
11	GEO	1.00	1.30	0.00	1.25	1.25	1.00	-	1.00 (R ₂)	1.00 (R ₂)
12	GEO	1.00	0.00	0.00	1.25	1.25	1.00	-	1.00 (R ₂)	1.00 (R ₂)
13	SIS	1.00	0.60	+1.00	1.00	1.00	1.00	-	1.00 (R ₁)	1.00 (R ₁)
14	SIS	1.00	0.60	-1.00	1.00	1.00	1.00	-	1.00 (R ₁)	1.00 (R ₁)
15	SIS	1.00	0.60	+1.00	1.25	1.25	1.00	1	1.00 (R ₂)	1.00 (R ₂)
16	SIS	1.00	0.60	-1.00	1.25	1.25	1.00	1	1.00 (R ₂)	1.00 (R ₂)

RELAZIONE DI CALCOLO DELLE STRUTTURE - DAL KM 11+140 AL KM 11+509

* Il segno di γ_E indica la direzione della componente verticale dell'azione sismica: positivo ψ e negativo \uparrow .

Spinta del terreno

Coefficienti di spinta del terreno di monte

roomoloma di opima dei terrono di monto		
Terreno in condizioni statiche (Coulomb)		
Spinta attiva (coefficienti M1)	K _{AS} =	0.0782
Spinta attiva (coefficienti M2)	$K_{AS} =$	0.1409
Terreno in condizioni dinamiche (Mononobe-Okabe)		
Componente verticale dell'azione sismica agente v	erso l'alto	
Spinta attiva (coefficienti M1)	$K_{AD} =$	5.6114
Spinta attiva (coefficienti M2)	$K_{AD} =$	6.4993
Componente verticale dell'azione sismica agente v	erso il basso	
Spinta attiva (coefficienti M1)	$K_{AD} =$	1.7663
Spinta attiva (coefficienti M2)	$K_{AD} =$	2.1328

NOTA: per tenere in considerazione, in via cautelativa, la possibilità che a tergo della trave si generi, sia in condizioni statiche che sismiche, una spinta K0 (a riposo), le verifiche verranno condotte moltiplicando i valori delle sollecitazioni di seguito riportati e valutati nell'ipotesi di attivazione della spinta attiva, per il fattore 1.7 derivante dal rapporto tra i due coefficienti di spinta.

Valori della spinta attiva del terreno di monte per metro di estensione del muro

Altezza	a di calco	olo				Н	t =	3.300 m	1			
Le spir	nte sono	espress	se in <u>ch</u> i	ilogramr	<u>ni</u> e le coor	dinate in	<u>metri</u> .					
CMB	$S_{S,X}$	$S_{S,Y}$	Ys	Xs	$S_{D,X}$	$S_{D,Y}$	Y_D	X_D	$S_{T,X}$	$S_{T,Y}$	Y_T	X_T
1	780	1352	1.100	1.320	-	-	-	-	780	1352	1.100	1.320
2	780	1352	1.100	1.320	_	-	-	-	780	1352	1.100	1.320
3	639	1106	1.100	1.320	_	-	-	-	639	1106	1.100	1.320
4	639	1106	1.100	1.320	-	-	-	-	639	1106	1.100	1.320
5	512	887	1.100	1.320	_	-	-	-	512	887	1.100	1.320
6	512	887	1.100	1.320	_	-	-	-	512	887	1.100	1.320
7	394	682	1.100	1.320	_	-	-	-	394	682	1.100	1.320
8	394	682	1.100	1.320	_	-	-	-	394	682	1.100	1.320
9	710	1229	1.100	1.320	-	-	-	-	710	1229	1.100	1.320
10	710	1229	1.100	1.320	-	-	-	-	710	1229	1.100	1.320
11	710	1229	1.100	1.320	_	-	-	-	710	1229	1.100	1.320
12	710	1229	1.100	1.320	-	-	-	-	710	1229	1.100	1.320
13	394	682	1.100	1.320	10152	17584	1.650	1.320	10546	18267	1.629	1.320
14	394	682	1.100	1.320	22627	39191	1.650	1.320	23021	39874	1.641	1.320
15	710	1229	1.100	1.320	12025	20828	1.650	1.320	12735	22057	1.619	1.320
16	710	1229	1.100	1.320	25954	44954	1.650	1.320	26664	46183	1.635	1.320
Legen	da											

 $S_{S,X}$, $S_{D,X}$, $S_{T,X}$ componente orizzontale della spinta statica, dinamica, totale del terreno $S_{S,Y}$, $S_{D,Y}$, $S_{T,Y}$ componente verticale della spinta statica, dinamica, totale del terreno ordinata del punto di applicazione della spinta statica, dinamica, totale X_S , X_D , X_T ascissa del punto di applicazione della spinta statica, dinamica, totale (le coordinate del punto di applicazione sono riferite al piede di valle della fondazione)

Forze d'inerzia per metro di estensione del muro

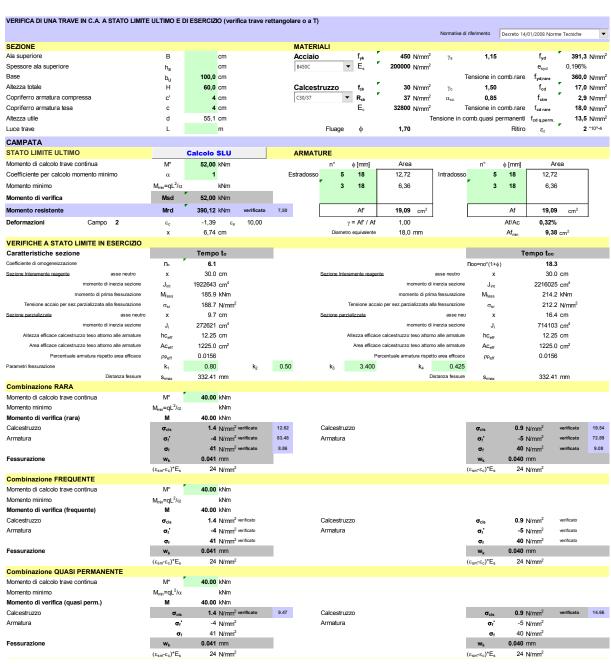
Componente orizzontale forza d'inerzia	$F_{I,X} =$	7087 kg
Ordinata del punto di applicazione della forza	$Y_1 =$	1.914 m
Componente verticale forza d'inerzia	$F_{I,Y} =$	±3544 kg
Ascissa del punto di applicazione della forza	$X_1 = 1$.750 m

RELAZIONE DI CALCOLO DELLE STRUTTURE - DAL KM 11+140 AL KM 11+509

5208

Mensola in elevazione

Le quote delle sezioni sono riferite allo spiccato di fondazione.


Sezione 1 (verificata)

Caratteristiche

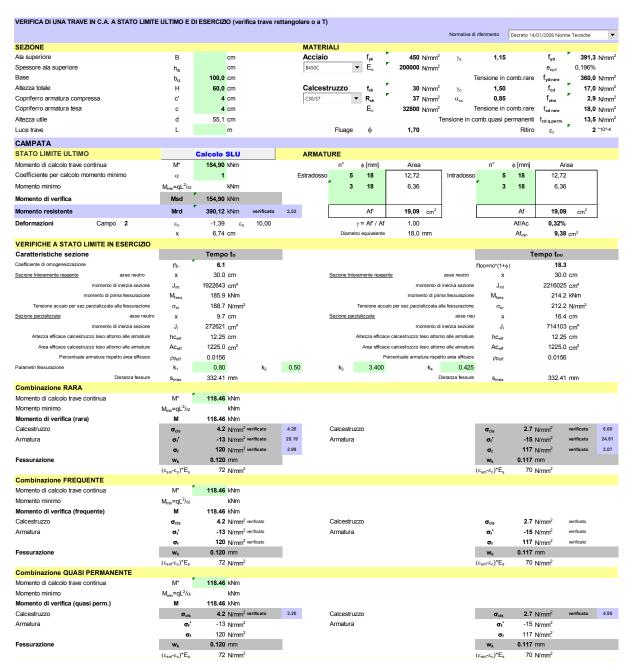
Quota [m] B [cm] H [cm] A_f e A_f' [cm²] 1.533 100.0 40.0 (1 Ø 18 / 20+1 Ø 18 / 40 cm) 19.09

Condizioni più gravose (Combinazione 16)

Sforzo normale (N) [kg] Sforzo di taglio (T) [kg] Momento flettente (M) [kg•m] 1060

RELAZIONE DI CALCOLO DELLE STRUTTURE - DAL KM 11+140 AL KM 11+509

Sezione 2 (verificata)


Caratteristiche

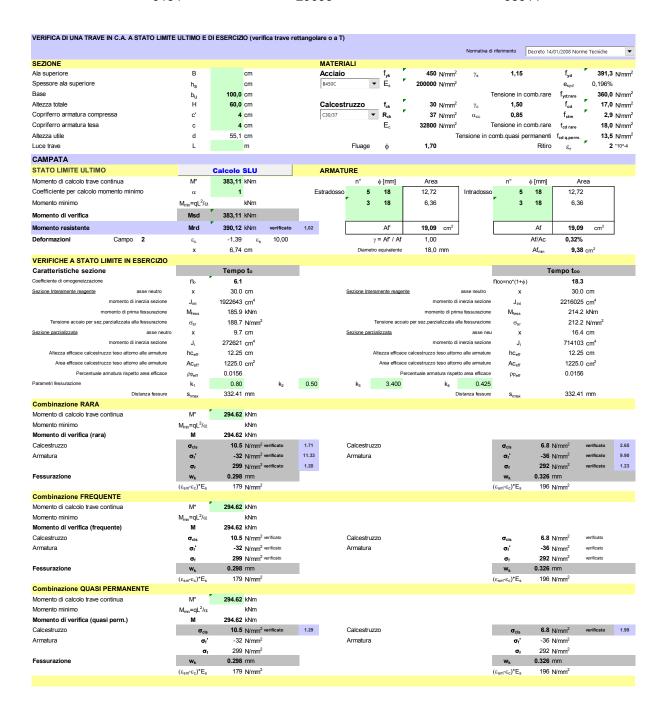
 Quota [m]
 B [cm]
 H [cm]
 A_f e A_f [cm²]

 0.767
 100.0
 40.0
 (1 Ø 18 / 20+1 Ø 18 / 40 cm)
 19.09

Condizioni più gravose (Combinazione 16)

Sforzo normale (N) [kg] Sforzo di taglio (T) [kg] 2123 15612

RELAZIONE DI CALCOLO DELLE STRUTTURE - DAL KM 11+140 AL KM 11+509


Sezione 3 (verificata)

Caratteristiche

Quota [m] B [cm] H [cm] A_f e A_f' [cm²] 0.000 100.0 40.0 (1 Ø 18 / 20+1 Ø 18 / 40 cm) 19.09

Condizioni più gravose (Combinazione 16)


Sforzo normale (N) [kg] Sforzo di taglio (T) [kg] 3184 29653

RELAZIONE DI CALCOLO DELLE STRUTTURE - DAL KM 11+140 AL KM 11+509

8.2 VERIFICA CORDOLO TRATTO OS90A

Analogamente per quanto concerne il tratto OS90NEW, OS92, la massima altezza del paramento vale 2.40m.

Spinta del terreno

Coefficienti	di spinta	del terreno	di monte
--------------	-----------	-------------	----------

Terreno in condizioni statiche (Coulomb) Spinta attiva (coefficienti M1) Kas = 0.2400
0 1 4 40 4 60 1 41 140)
Spinta attiva (coefficienti M2) K _{AS} = 0.3685
Terreno in condizioni dinamiche (Mononobe-Okabe)
Componente verticale dell'azione sismica agente verso l'alto
Spinta attiva (coefficienti M1) K _{AD} = 1.3509
Spinta attiva (coefficienti M2) K _{AD} = 1.4477
Componente verticale dell'azione sismica agente verso il basso
Spinta attiva (coefficienti M1) K _{AD} = 1.0350
Spinta attiva (coefficienti M2) K _{AD} = 1.1448
Valori della spinta attiva del terreno di monte per metro di estensione del muro

NOTA: per tenere in considerazione, in via cautelativa, la possibilità che a tergo della trave si generi, sia in condizioni statiche che sismiche, una spinta K0 (a riposo), le verifiche verranno condotte moltiplicando i valori delle sollecitazioni di seguito riportati e valutati nell'ipotesi di attivazione della spinta attiva, per il fattore 1.7 derivante dal rapporto tra i due coefficienti di spinta.

Altezza di calcolo $H_t = 3.600 \text{ m}$

RELAZIONE DI CALCOLO DELLE STRUTTURE - DAL KM 11+140 AL KM 11+509

Le spinte sono espresse in <u>chilogrammi</u> e le coordinate in <u>metri</u> .												
CMB	$S_{S,X}$	S _{S,Y}	Ys	Xs	$S_{D,X}$	$S_{D,Y}$	Y_D	X_D	$S_{T,X}$	$S_{T,Y}$	Y_T	X_T
1	4567	1662	1.200	1.320	-	-	-	-	4567	1662	1.200	1.320
2	4567	1662	1.200	1.320	-	-	-	-	4567	1662	1.200	1.320
3	3736	1360	1.200	1.320	-	-	-	-	3736	1360	1.200	1.320
4	3736	1360	1.200	1.320	-	-	-	-	3736	1360	1.200	1.320
5	3515	1279	1.200	1.320	-	-	-	-	3515	1279	1.200	1.320
6	3515	1279	1.200	1.320	-	-	-	-	3515	1279	1.200	1.320
7	2704	984	1.200	1.320	-	-	-	-	2704	984	1.200	1.320
8	2704	984	1.200	1.320	-	-	-	-	2704	984	1.200	1.320
9	4152	1511	1.200	1.320	-	-	-	-	4152	1511	1.200	1.320
10	4152	1511	1.200	1.320	-	-	-	-	4152	1511	1.200	1.320
11	4152	1511	1.200	1.320	-	-	-	-	4152	1511	1.200	1.320
12	4152	1511	1.200	1.320	-	-	-	-	4152	1511	1.200	1.320
13	2704	984	1.200	1.320	11118	4047	1.800	1.320	13822	5031	1.683	1.320
14	2704	984	1.200	1.320	9692	3528	1.800	1.320	12396	4512	1.669	1.320
15	4152	1511	1.200	1.320	11136	4053	1.800	1.320	15287	5564	1.637	1.320
16	4152	1511	1.200	1.320	9133	3324	1.800	1.320	13284	4835	1.612	1.320
Legen	nda											

$S_{S,X}$, $S_{D,X}$, $S_{T,X}$	componente orizzontale della spinta statica , dinamica , totale del terreno
$S_{S,Y}$, $S_{D,Y}$, $S_{T,Y}$	componente verticale della spinta statica , dinamica , totale del terreno
Y_S , Y_D , Y_T	ordinata del punto di applicazione della spinta statica, dinamica, totale
X_S , X_D , X_T	ascissa del punto di applicazione della spinta statica , dinamica , totale
(le coordinate del	punto di applicazione sono riferite al piede di valle della fondazione)

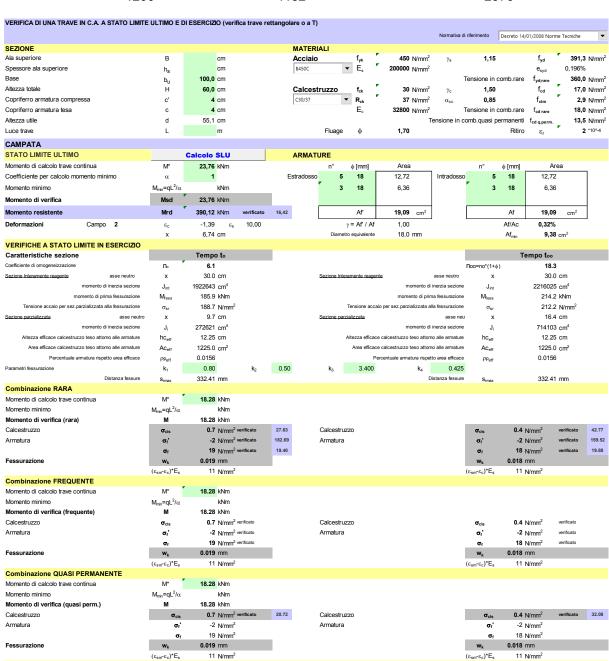
Forze d'inerzia per metro di estensione del muro

1 0120 dilioi2id poi motro di octoriciono dei mare		
Componente orizzontale forza d'inerzia	$F_{I,X} =$	6689 kg
Ordinata del punto di applicazione della forza	$Y_1 =$	1.720 m
Componente verticale forza d'inerzia	$F_{I,Y} =$	±3345 kg
Ascissa del punto di applicazione della forza	$X_1 =$	1.686 m

RELAZIONE DI CALCOLO DELLE STRUTTURE - DAL KM 11+140 AL KM 11+509

Mensola in elevazione

Le quote delle sezioni sono riferite allo spiccato di fondazione.


Sezione 1 (verificata)

Caratteristiche

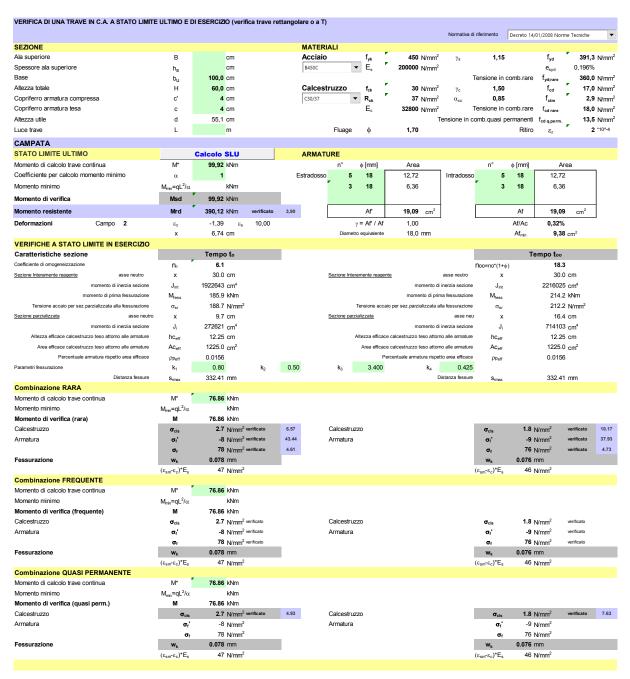
Quota [m] B [cm] H [cm] A_f e A_f' [cm²] 1.733 100.0 40.0 (1 Ø 18 / 20+1 Ø 18 / 40 cm) 19.09

Condizioni più gravose (Combinazione 16)

Sforzo normale (N) [kg] Sforzo di taglio (T) [kg] 1200 4182

RELAZIONE DI CALCOLO DELLE STRUTTURE - DAL KM 11+140 AL KM 11+509

Sezione 2 (verificata)


Caratteristiche

 Quota [m]
 B [cm]
 H [cm]
 Af e Af [cm²]

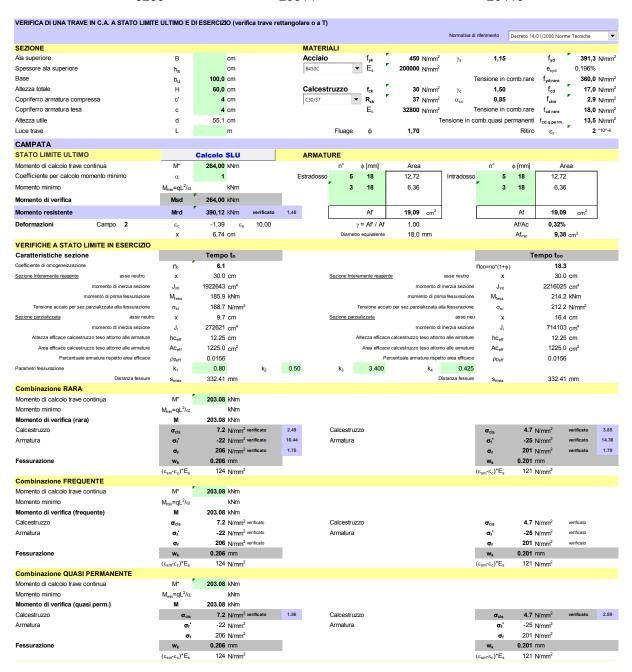
 0.867
 100.0
 40.0
 (1 Ø 18 / 20+1 Ø 18 / 40 cm)
 19.09

Condizioni più gravose (Combinazione 15)

Sforzo normale (N) [kg] Sforzo di taglio (T) [kg] 3493 10940

RELAZIONE DI CALCOLO DELLE STRUTTURE - DAL KM 11+140 AL KM 11+509

Sezione 3 (verificata)


Caratteristiche

 Quota [m]
 B [cm]
 H [cm]
 A_f e A_f [cm²]

 0.000
 100.0
 40.0
 (1 Ø 18 / 20+1 Ø 18 / 40 cm)
 19.09

Condizioni più gravose (Combinazione 15)

Sforzo normale (N) [kg] Sforzo di taglio (T) [kg] 5239 20514

