COMMITTENTE

PROGETTAZIONE:

DIREZIONE TECNICA

U.O. GALLERIE

PROGETTO DEFINITIVO

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA APICE - ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA

GALLERIA GROTTAMINARDA

Relazione geotecnica e di calcolo

								SCALA:
COMM I F	MESSA LOTTO FAS	e ente		G N (DISCIPLIN	A PROC	GR. RE	v.]
Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato/Data
A	Emissione Esecutiva	2R:Pizzoł	Dicembre 2017	P. Bitelli	Dicembre 2017	D. Aprea	Dicembre 2017	A. Sciotti Dicembre Voguna contribution Voguna contribution Voguna contribution Voguna contribution Voguna contribution
File: IF	0G01D07RBGN0100001A.c	loc						n. Elab.: 703

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA							
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	2 di 222		

INDICE

1	PRI	EMESSA	6
2	SCO	OPO E CONTENUTI DEL DOCUMENTO	6
3	DO	CUMENTI DI RIFERIMENTO	7
	3.1	LEGGI E NORMATIVE COGENTI	7
	3.2	NORMATIVE NON COGENTI E RACCOMANDAZIONI	7
	3.3	PRESCRIZIONI E SPECIFICHE TECNICHE (RFI, ITF)	7
	3.4	DOCUMENTI REFERENZIATI	7
	3.5	DOCUMENTI CORRELATI	8
	3.6	DOCUMENTI SUPERATI	9
4	AL	LEGATI	9
5	DO	CUMENTI PRODOTTI A SUPPORTO	9
6	DE	SCRIZIONE DELL'OPERA	11
	6.1	IL TRACCIATO E LE OPERE IN SOTTERRANEO	11
	6.2	INTERFERENZE LUNGO IL TRACCIATO	11
7	FAS	SE CONOSCITIVA	12
	7.1	INQUADRAMENTO GEOLOGICO	12
	7.2	INQUADRAMENTO GEOMORFOLOGICO	13
	7.3	INDAGINI GEOTECNICHE	14
	7.3.	1 Indagini geofisicheErrore. Il segnalibro non è def	finito.
	7.4	CARATTERIZZAZIONE GEOTECNICA DEI TERRENI E DELLE ROCCE.	19
	7.4.	1 Caratterizzazione geotecnica del Flysch Rosso (FYR)	19
	7.4.	2 Caratterizzazione geotecnica delle Molasse di Anzano (ANZ2a)	26
	7.4.	3 Caratterizzazione geotecnica delle Molasse di Anzano (ANZ2)	32
	7.4.	4 Caratterizzazione geotecnica del Flysch Numidico (FYN)	33

A	, , , , ,			ITINERARIO I RADDOPPIO 7	NAPOLI – I FRATTA A	3ARI PICE – ORSAF	RA			
GRUPPO FERROVIE DELLO STATO ITALIANE				I LOTTO FUNZIONALE APICE - HIRPINIA						
GALLERIA	A GROI	TAMINARDA		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione g	eotecni	ca e di calcolo galler	ria naturale	IF0G	01	D 07 RB	GN0100 001	А	3 di 222	
7.5	REGIN	ME IDRAULICO								
8 FAS	SE DI D	DIAGNOSI								
8.1	CLAS	SI DI COMPORTAMEN	TO DEL FRONTE DI	SCAVO						
8.7	DETE									
0.2	DEIE							•••••	•••••	
8.2. 8	I An 3.2.1.1	alisi con il metodo d Metodo di analisi	lelle linee carafferi	stiche				•••••	· · · · · · · · · · · · · · · · · · ·	
8 8	8.2.1.2 8.2.1.3	Sezioni analizzate . Risultati delle anali							, , ,	
82	2 An	alisi della stabilità a	lel fronte							
8	3.2.2.1	Metodi di analisi							·····	
8	3.2.2.2 3.2.2.3	Risultati delle anali	 isi						······	
8.3	Risch	II POTENZIALI NELLA	A FASE DI REALIZZA	ZIONE DELLA	GALLERIA					
9 FAS	SE DI T	ERAPIA			•••••					
9.1	Defin	VIZIONE DELLE SEZIO	ONI TIPO							
9.1.	1 Sez	zione tipo B1								
9.1.	2 Sez	zione tipo B2								
9.1.	3 Sez	zione tipo B2allarga	ta							
9.1.	4 Sez	zione tipo C1								
9.1.	5 Sez	zione tipo C2								
9.1.	6 Sez	zione tipo C2allarga	ıta							
9.1.	7 Sez	zione tipo C2p								
9.1.	8 Sez	zione tipo C2pallarg	ata							
9.2	CARA	TTERISTICHE DEI MA	ATERIALI STRUTTUR	RALI						
9.3	Anal	ISI E VERIFICA DELLI	E SEZIONI TIPO							
03	1 Cr	iteri di verifica								
9.J.	0.3.1.1	Stabilità del fronte	e del cavo				••••••			
9	0.3.1.2	Interazione opera-te	erreno			••••••				

	FALFERR IE DELLO STATO ITALIANE	ITINERARIO RADDOPPIO I LOTTO FUN	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA						
GALLERIA G	ALLERIA GROTTAMINARDA		LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
elazione geot	tecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	4 di 222		
9.4.1	Stabilità del fronte e del cavo								
9.4.2	Interazione opera-terreno								
9.4.3	Fasi e percentuali di rilascio		•••••						
9.4.4	Esame dei risultati	Esame dei risultati							
9.4.5	Verifiche strutturali del rivestimento d	i prima fase							
9.4.6	Verifiche strutturali SLU del rivestime	nto definitivo							
9.4.7	Verifiche strutturali SLE del rivestime	nto definitivo							
9.5 S	EZIONE TIPO C2P p.k. 3+920								
9.5.1	Stabilità del fronte e del cavo		•••••						
9.5.2	Interazione opera-terreno								
9.5.3	Fasi e percentuali di rilascio								
9.5.4	Esame dei risultati		•••••						
9.5.5	Verifiche strutturali del rivestimento d	i prima fase	•••••						
9.5.6	Verifiche strutturali SLU del rivestime	nto definitivo							
9.5.7	Verifiche strutturali SLE del rivestime	nto definitivo							
9.6 S	SEZIONE TIPO C2P P.K. 4+020								
9.6.1	Stabilità del fronte e del cavo								
9.6.2	Interazione opera-terreno		••••••						
9.6.3	Fasi e percentuali di rilascio								
9.6.4	Esame dei risultati								
9.6.5	Verifiche strutturali del rivestimento d	i prima fase							
9.6.6	Verifiche strutturali SLU del rivestime	nto definitivo							
9.6.7	Verifiche strutturali SLE del rivestime	nto definitivo	•••••						
9.7 S	EZIONE C2P ALLARGATA P.K. 3+480								
9.7.1	Stabilità del fronte e del cavo								

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	6 di 222

1 PREMESSA

La presente relazione è parte integrante del progetto definitivo per il raddoppio della linea ferroviaria Apice – Hirpinia; tale progetto si inserisce nel più ampio ambito di riqualificazione e potenziamento dell'itinerario ferroviario Roma - Napoli – Bari.

Nell'ambito di questa tratta è presente la galleria Grottaminarda, oggetto della presente relazione, che si estende per circa 1,9 km.

2 SCOPO E CONTENUTI DEL DOCUMENTO

Nella presente documento si affrontano le problematiche progettuali connesse alla realizzazione della galleria Grottaminarda, ubicata fra le progressive 2+705.00 (inizio imbocco lato Bari) e 4+695.00 (imbocco lato Napoli), per una lunghezza totale di circa 1990.0 m

Per l'inquadramento generale relativo alle caratteristiche ed ai requisiti funzionali delle opere in sotterraneo si rimanda alla "Relazione tecnica delle opere in sotterraneo" (Rif. [19]).

La progettazione delle opere in sotterraneo, condotta secondo il metodo ADECO-RS, si è articolata nelle seguenti fasi:

1. <u>Fase conoscitiva</u>: è finalizzata allo studio e all'analisi del contesto geologico e geotecnico in cui sarà realizzata la galleria; i risultati dello studio geologico sono descritti nella specifica Relazione Geologica e Idrogeologica (Rif. [15]) a cui si rimanda per l'illustrazione del modello geologico; allo studio geotecnico con la definizione del modello geotecnico di sottosuolo e dei parametri di progetto è illustrata nel capitolo 7.

2. <u>Fase di diagnosi</u>: si esegue la valutazione della risposta deformativa dell'ammasso allo scavo in assenza di interventi di stabilizzazione per la determinazione delle categorie di comportamento (cap.7).

3. <u>Fase di terapia</u>: sulla base dei risultati delle precedenti fasi progettuali, si individuano le modalità di scavo e gli interventi di stabilizzazione idonei (sezioni tipo) per realizzare l'opera in condizioni di sicurezza (cap.9). Le soluzioni progettuali sono state analizzate per verificarne l'adeguatezza: nel capitolo9sono illustrati metodi e risultati delle analisicondotteperlaverifica della stabilità globale della cavità, per il dimensionamento/verifica degli interventi di stabilizzazione e dei rivestimenti, nelle diverse fasi costruttive e in condizioni di esercizio, e per la valutazione dei risentimenti attesi in superficie.

4. <u>Fase di verifica e messa a punto</u>: il progetto è completato dal piano di monitoraggio da predisporre ed attuare nella fase realizzativa (cap10). Nel piano di monitoraggio sono individuati i valori delle grandezze fisiche a cui riferirsi in corso d'opera per controllare la risposta deformativa dell'ammasso al procedere dello scavo, verificare la rispondenza con le previsioni progettuali e mettere a punto le soluzioni progettuali nell'ambito delle variabilità previste in progetto.

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA							
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	7 di 222		

3 DOCUMENTI DI RIFERIMENTO

3.1 Leggi e normative cogenti

- Rif. [1] Decreto Ministero delle Infrastrutture e Trasporti 14/01/2008, "Approvazione delle nuove norme tecniche per le costruzioni";
- Rif. [2] C.S.LL.PP., Circolare n°617 del 02/02/2009, "Istruzioni per l'applicazione delle "nuove norme tecniche per le costruzioni" di cui al DM 14/01/2008";
- Rif. [3] Decreto Ministeriale 28/10/2005. "Sicurezza nelle gallerie ferroviarie";
- Rif. [4] Regolamento del 18/11/2014 della Commissione dell'Unione Europea 1303/2014 relativa alla Specifica Tecnica di Interoperabilità concernente "la sicurezza nelle gallerie ferroviarie" nel sistema ferroviario transeuropeo convenzionale e ad alta velocità;
- Rif. [5] Regolamento del 18/11/2014 della Commissione dell'Unione Europea 1300/2014 relativa ad una Specifica Tecnica di Interoperabilità concernente le "persone a mobilità ridotta" nel sistema ferroviario transeuropeo convenzionale e ad alta velocità;
- Rif. [6] Regolamento del 18/11/2014 della Commissione dell'Unione Europea 1299/2014 relativa ad una Specifica Tecnica di Interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario transeuropeo ad alta velocità.

3.2 Normative non cogenti e raccomandazioni

- Rif. [7] SIG, "Linee guida per la progettazione, l'appalto e la costruzione di opere in sotterraneo", 1997;
- Rif. [8] ITA, "Guidelines for the design of tunnels", 1988;

3.3 Prescrizioni e specifiche tecniche (RFI, ITF)

- Rif. [9] RFI, doc RFI DTC SI MA IFS 001 A "Manuale di Progettazione delle opere civili " datato Dic 2016;
- Rif. [10] ITALFERR, Specifica Tecnica PPA.0002403 "Linee guida per la progettazione geotecnica delle gallerie naturali" datato Dicembre 2015.

3.4 Documenti Referenziati

Come input per il presente documento sono stati utilizzati gli elaborati di progetto relativi alle precedenti fasi progettuali:

Rif. [11] ITALFERR, Progetto Preliminare (2007);

Rif. [12] ITALFERR, Aggiornamento del Progetto Preliminare ai requisiti della Legge Obiettivo (2009);

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA							
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	8 di 222		

Rif. [13] Ordinanza n°27 (e relativi Allegati) di approvazione del Progetto Preliminare da parte del Commissario Straordinario, contenente prescrizioni e raccomandazioni per la Progettazione Definitiva (2016).

Nel presente documento si fa inoltre riferimento ai seguenti elaborati allegati al progetto:

- Rif. [14] ITALFERR, Dossier dati e requisti di base per avvio PD IF0G01D05ROMD0000001A Gennaio 2016
- Rif. [15] U.O. Geologia, Gestione Terre e Bonifiche, Elaborati Specialistici;
- Rif. [16] U.O. Infrastrutture Centro, Elaborati Specialistici;
- Rif. [17] U.O. Gallerie, doc IF0G01D07F6GN0000001A "Profilo geotecnico Galleria Grottaminarda" datato Novembre 2017;
- Rif. [18] U.O. Gallerie, doc IF0G01D07LZGN0100001A "Galleria Grottaminarda consolidamento con drenaggio" datato Novembre 17
- Rif. [19] U.O. Gallerie, documento n.º IF0F01D07RHGN0000001 "Relazione tecnica delle opere in sotterraneo" datato Novembre 2017.

3.5 Documenti Correlati

- Rif. [20] Lunardi P. (2006). Progetto e Costruzione di Gallerie: Analisi delle deformazioni controllate nelle rocce e nei suoli ADECO-RS (Hoepli Ed.);
- Rif. [21] Bernaud D., Benamar I., Rousset G. (1994). La "nouvelle méthode implicite" pour le calcul des tunnel dans les milieux élastoplastiques et viscoplastiques Revue Francaise de Géotechnique, N° 68;
- Rif. [22] Bernaud D., Rousset G. (1992). La « nouvelle méthode implicite » pour l'étude du dimensionnement des tunnels Revue Francaise de Géotechnique, N° 60;
- Rif. [23] P.J. Sabatini, D.G. Pass, R.C. Bachus (1999). Geotechnical Engineering Circular No. 4 Ground Anchors and Anchored Systems. Publication No. FHWA-IF-99-015;
- Rif. [24] Oreste P.P. (1999). Aspetti notevoli dell'analisi e dimensionamento dei sostegni di gallerie attraverso i metodi di calcolo numerici Gallerie e grandi opere sotterranee, N.° 57;
- Rif. [25] Hoek E., Brown E.T. (1997), "Practical estimates of rock mass strength", Intnl. J. Rock Mech. & Geomechanics Abstracts, 1165-1186;
- Rif. [26] Hoek E., Carranza-Torres C., Cortkum B. (2002), "Hoek-Brown Failure Criterion 2002 Edition";
- Rif. [27] Tamez E. (1984) "Estabilidad de tuneles excavados en suelos" Mexican Engineering Academy;
- Rif. [28] Hoek E., Diederichs M. S. (2006), "Empirical Estimation of rock mass Modulus", Intnl. J. Rock Mech. & Mining Sciences 43 (2006), 203-215;

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO N RADDOPPIO T I LOTTO FUNZ	IAPOLI – B RATTA AP LIONALE A	ARI ICE – ORSAR PICE - HIRPIN	A NIA		
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	9 di 222

- Rif. [29] Broms B.B., Bennemark H. (1967), "Stability of clay at vertical openings", J. Soil Mechanics and Foundations, Div. Am. Soc. Civ. Eng., 93: 71-94;
- Rif. [30] Croce P., Flora A., Modoni G. (2004), "Jet-grouting Tecnica, progetto e controllo", Hevelius edizioni;
- Rif. [31] Hoek E. (2004), "Numerical Modelling for Shallow Tunnels in Weak Rock", Rocscience, April 2004.
- Rif. [32] Bilotta E at all (2007), "Pseudostatic and dynamic analyses of tunnels in transversal and longitudinal directions", 4th International Conference on Earthquake Geotechnical Engineering, June 2007.

3.6 Documenti Superati

Non sono presenti documenti superati.

4 ALLEGATI

Il documento è corredato dai seguenti allegati:

- All. [1] "Analisi con il metodo delle linee caratteristiche";
- All. [2] "Analisi numerica per la verifica della Sezione C1: risultati delle verifiche";
- All. [3] "Analisi numerica per la verifica della Sezione C2p: risultati delle verifiche";
- All. [4] "Analisi numerica per la verifica della Sezione C2p: risultati delle verifiche";
- All. [5] "Analisi numerica per la verifica della Sezione C2p allargata: risultati delle verifiche";
- All. [6] "Analisi numerica per la verifica della Sezione C2 allargata: risultati delle verifiche";

5 DOCUMENTI PRODOTTI A SUPPORTO

I contenuti della presente relazione sono completati dai seguenti elaborati di progetto:

- Rif. [33] U.O. Gallerie, documento n.IF0G01D07BBGN0000002B "Sezione tipo B1 Carpenteria, scavo e consolidamenti" datato Novembre 2017;
- Rif. [34] U.O. Gallerie, documento n.IF0G01D07BBGN0000003B "Sezione tipo B2 Carpenteria, scavo e consolidamenti" datato Novembre 2017;
- Rif. [35] U.O. Gallerie, documento n.IF0G01D07BBGN0000004B "Sezione tipo C1 Carpenteria, scavo e consolidamenti" datato Novembre 2017;
- Rif. [36] U.O. Gallerie, documento n.IF0G01D07BBGN0000005B "Sezione tipo C2 Carpenteria, scavo e consolidamenti" datato Novembre 2017;
- Rif. [37] U.O. Gallerie, documento n.IF0G01D07BBGN0000006B "Sezione tipo C2p Carpenteria, scavo e consolidamenti" datato Novembre 2017;
- Rif. [38] U.O. Gallerie, documento n.IF0G01D07BBGN0000007A "Sezione allargata tipo B1 Carpenteria, scavo e consolidamenti" datato Luglio 2017;

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO N RADDOPPIO T I LOTTO FUNZ	APOLI – B RATTA AP LIONALE A	ARI ICE – ORSAR PICE - HIRPII	A NIA		
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	10 di 222

- Rif. [39] U.O. Gallerie, documento n.IF0G01D07BBGN0000008A "Sezione allargata tipo B2 Carpenteria, scavo e consolidamenti" datato Luglio 2017;
- Rif. [40] U.O. Gallerie, documento n.IF0G01D07BBGN0000009A "Sezione allargata tipo C2 Carpenteria, scavo e consolidamenti" datato Luglio 2017;
- Rif. [41] U.O. Gallerie, documento n.IF0G01D07BBGN0000010B "Sezione allargata tipo C2p Carpenteria, scavo e consolidamenti" datato Novembre 2017;
- Rif. [42] U.O. Gallerie, documento n.IF0G01D07BBGN0000011B "Scavo Tradizionale Nicchie LFM e Tecnologiche tipo B Carpenteria, scavo e consolidamenti " datato Novembre 2017;
- Rif. [43] U.O. Gallerie, documento n.IF0G01D07BBGN0000012B "Scavo Tradizionale Nicchie LFM e Tecnologiche tipo C Carpenteria, scavo e consolidamenti " datato Novembre 2017;
- Rif. [44] U.O. Gallerie, documento n.IF0G01D07SPGN0000001B "Caratteristiche dei materiali Note generali" datato Novembre 2017;
- Rif. [45] U.O. Gallerie, documento n.IF0G01D07CLGN0000001A "Relazione sulla valutazione delle subsidenze e verifica degli effetti indotti sulle interferenze in superficie" datato Luglio 2017;
- Rif. [46] U.O. Gallerie, documento n.IF0G01D07WAGN0000002A "Monitoraggio Sezioni strumentate galleria di linea" datato Luglio 2017;
- Rif. [47] U.O. Gallerie, documento n.IF0G01D07P7GN0100001A "Planimetria ubicazione nicchie " datato Luglio 2017;
- Rif. [48] U.O. Gallerie, documento n.IF0G01D07PZGN0100001A "Sistema di smaltimento delle acque in galleria" datato Luglio 2017;
- Rif. [49] U.O. Gallerie, documento n.IF0G01D07BZGN0100001A "Andamento plano-altimetrico del marciapiede a ciglio variabile" datato Luglio 2017;
- Rif. [50] U.O. Gallerie, documento n.IF0G01D07P7GN0000004A "Monitoraggio Planimetria tav. 1 di 3" datato Luglio 2017;
- Rif. [51] U.O. Gallerie, documento n.IF0G01D07P7GN0000005A "Monitoraggio Planimetria tav. 2 di 3" datato Luglio 2017;
- Rif. [52] U.O. Gallerie, documento n.IF0G01D07P7GN0000006A "Monitoraggio Planimetria tav. 3 di 3" datato Luglio 2017;

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	11 di 222

6 DESCRIZIONE DELL'OPERA

6.1 Il tracciato e le opere in sotterraneo

La galleria di linea ha una lunghezza complessiva di circa 1990.0 m, di cui circa 25m in galleria artificiale e circa 1965m in galleria naturale da realizzare con metodo tradizionale, come di seguito dettagliato con riferimento alla progressivazione del binario dispari:

•	da pk2+705 a pk2+715	(L=10m)	galleria artificiale a sezione policentrica;
•	da pk2+715 a pk4+680	(L=1965m)	galleria naturale;
•	da pk4+680 a pk4+695	(L=15m)	galleria artificiale a sezione policentrica;

La galleria presenta quota di imbocco lato Bari a circa 324 m s.l.m., mentre quella lato Napoli è pari a circa 300 m s.l.m.. Dall'imbocco lato Bari procedendo in direzione Napoli, il tracciato procede con pendenza del 11.87‰ in discesa

Procedendo dall'imbocco lato Bari le coperture crescono gradatamente fino al valore massimo di circa 70 metri alla progressiva 3+350 circa. A seguire, le coperture decrescono fino a raggiungere circa 5 metri in corrispondenza dell'imbocco della galleria Lato Napoli.

La Galleria Grottaminarda prevede un'unica uscita di emergenza di tipo pedonale, denominata F1, in corrispondenza della progressiva km. 3+700.

Per ulteriori dettagli sulla descrizione del tracciato e delle opere si rimanda alla "Relazione tecnica delle opere in sotterraneo" (Rif. [19]).

6.2 Interferenze lungo il tracciato

In prossimità dell'opera di imbocco della Galleria Lato Napoli è presente una strada di collegamento tra la città di Grottaminarda ed alcune frazioni limitrofe. Si prevede l'interruzione temporanea della strada durante la realizzazione delle opere di imbocco e della galleria di linea, provvedendo alla deviazione dei mezzi su un percorso alternativo. A lavori ultimati la viabilità sarà ripristinata nella sua configurazione ante-operam al di sopra della galleria artificiale policentrica prevista all'imbocco.

Tra le progressive 3+900 e 4+250 circa la galleria Grottaminarda sottoattraversa una coltre di frana quiescente, il cui spessore, individuato nello studio geologico di dettaglio, è variabile tra 6 e 19 metri circa lungo lo sviluppo longitudinale della galleria. La distanza tra la calotta della galleria e la superficie di base del corpo di frana è variabile tra 8 m e 30 m circa lungo lo sviluppo longitudinale della galleria. La formazione interessata dalla coltre in frana è costituita dalle argille del Flysch Rosso.

Tra le progressive pk 3+040 e 3+335 la galleria Grottaminarda sottopassa con una copertura sopra la calotta di 40m-50m un gruppo di abitazioni / edifici commerciali / artigianali (identificati come G1÷G11), ed in aggiunta un edificio in prossimità dell'area interessata dagli scavi dell'uscita/accesso di emergenza F1 (G12).

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	12 di 222

7 FASE CONOSCITIVA

La fase conoscitiva prevede l'acquisizione degli elementi necessari alla caratterizzazione e modellazione geologica del sito e alla caratterizzazione e modellazione geotecnica del volume significativo interessato dallo scavo della galleria Grottaminarda e delle relative opere accessorie.

7.1 Inquadramento geologico

L'area oggetto di studio è ubicata nel settore irpino-dauno dell'Appennino meridionale. In particolare il settore irpino-dauno ricade (Figura 1) nella zona di giunzione fra l'arco molisano-sannitico, a nord, definitosi durante il Pliocene superiore e caratterizzato da strutture ad orientazione NNW-SSE e NW-SE, e l'arco campano lucano, a sud, strutturatosi durante il Pleistocene inferiore e caratterizzato da strutture ad andamento WNW-ESE (Cinque et alii, 1993).

Figura 1. Unità stratigrafico-strutturali dell'Appennino centro-meridionale: unità della piattaforma carbonatica apula (rigato orizzontale), unità della piattaforma carbonatica sud-appenninica (rigato verticale), unità bacinali meso-cenozoiche del bacino lagonegrese-molisano ed associati depositi sinorogeni messiniani (puntinato), depositi clastici e vulcanici del Pliocene-Quaternario (bianco) (da Cinque et alii, 1993). Il riquadro rosso evidenzia l'area di studio.

All'interno dell'area in studio sono presenti esclusivamente le unità tettoniche della falda inferiore. Si tratta di unità deformate in maniera molto intensa a partire dal Tortoniano. Le varie formazioni geologiche possono essere raggruppate in unità stratigrafico-strutturali differenziate tra loro per la collocazione paleogeografica e l'evoluzione geodinamica; si tratta di grandi corpi geologici, unitari e/o in frammenti non necessariamente continui, con caratteri litologici specifici e comportamento meccanico generalmente omogeneo alla grande scala. Le unità stratigrafico-strutturali, dalla più antica alla più recente, sono:

- Unità Tettonica di Frigento;
- Unità Tettonica del Fortore;
- Unità sin-orogeniche del Miocene Medio Superiore;

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA						
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	13 di 222	

- Gruppo di Altavilla;
- Supersintema di Ariano;
- Sintema del Calore e depositi continentali quaternari.

Lo studio geologico ha individuato lungo il tracciato della galleria Grottaminarda le seguenti unità:

- L'unità tettonica di Frigento, rappresentata dal Flysch Rosso- FYR (Cretacico Superiore Burdigaliano Superiore), costituito da argille marnose policrome; comprende una litofacies calcareo clastica (FYRa).
- L'unità tettonica del Fortore rappresentata dal Flysch Numidico- FYN (Burdigaliano Superiore Langhiano) rappresentato litologicamente da quarzareniti in strati medi e spessi talora gradati.
- Le unità sin-orogeniche rappresentate unicamente dalla Formazione di Vallone Ponticello, Molasse di Anzano - Membro di Flumeri - ANZ2 (Messiniano Superiore) costituite da arenarie alternate ad argille marnose; nella parte alta (ANZ2a) sono presenti argille marnose.

Per i dettagli dello studio geologico si rimanda agli elaborati specialistici di progetto (Rif. [15]).

7.2 Inquadramento geomorfologico

Il rilievo entro cui è prevista la galleria Grottaminarda è solcato al piede dal F. Ufita, ed è costituito dai termini argillosi e calcarei del Flysch Rosso e delle Molasse di Anzano. La presenza di questi litotipi, in particolare delle facies più argillose oltre la pk 3+600, si manifesta spesso in superficie con la presenza di dissesti di versante.

Tra le progressive km 3+900 e 4+250 la galleria sottoattraversa un versante, costituito dalle argille del Flysch Rosso, sul quale lo studio geomorfologico ha evidenziato la presenza di un esteso corpo di frana (Figura 2). Sulla base delle osservazioni di dettaglio dalle carote prelevate dai sondaggi e delle caratteristiche geotecniche determinate in laboratorio, e stato possibile individuare uno spessore di materiale con caratteristiche geotecniche tali da poter essere attribuite a materiale di frana. Tali determinazioni insieme ai segni morfologici rilevati in sito e con l'esame del rilievo Lidar hanno consentito di definire uno spessore del corpo di frana, variabile tra 6 e 19 metri circa lungo lo sviluppo longitudinale della galleria.

Ad oggi non sono visibili indizi morfologici di uno stato di attività della porzione mediana e basale della frana e la geometria stessa del deposito fa ipotizzare una condizione di sostanziale quiescenza; solo nella porzione sommitale sono stati riscontrati indizi di recenti e localizzate riattivazioni (Figura 2) (cfr. studio geologico di progetto (Rif. [15])). Gli inclinometri installati nella campagna di indagine del 2017 (inclinometri G1 e BH3) non hanno segnalato alcun movimento profondo, ma solo movimenti superficiali (profondità massime di circa $2 \div 4$ metri dal piano campagna), legati alla presenza di una coltre di alterazione, confermando sostanzialmente lo stato di quiescenza del corpo di frana.

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA						
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	14 di 222	

Figura 2 Galleria Grottaminarda - Estratto da carta geomorfologica (Rif. [15])

7.3 Indagini geotecniche

Per la definizione del modello geotecnico dell'opera in progetto sono stati utilizzati i dati relativi alle campagne geotecniche di seguito elencate:

- Campagna indagini 1984-1985 (Concessione delle prestazioni integrate occorrenti per la progettazione definitiva del raddoppio e potenziamento della linea Caserta Foggia e per la progettazione esecutiva e la realizzazione delle opere occorrenti per una prima fase di raddoppio e potenziamento della suddetta linea);
- Campagna indagini Italferr 2005 Linea Apice Orsara
- Campagna indagini Italferr 2006 Linea Caserta Foggia
- Campagna indagini Italferr 2008 Progettazione preliminare per il "Raddoppio tratta Orsara Apice Soluzione Sud");
- Campagna indagini 2015 Itinerario Napoli Bari -Apice Orsara – Tratta Apice – Stazione Irpinia
 Raddoppio Apice Orsara – Progetti DSI: PD
- Campagna indagini 2017. Itinerario Napoli Bari Raddoppio Apice Orsara I° Lotto Funzionale Apice - Hirpinia

Per ulteriori dettagli relativi alle campagne di indagini si rimanda agli specifici elaborati di progetto specialistici (Rif. [15]).

Nella Tabella 1 si riporta l'elenco delle verticali di sondaggio ricadenti nel tratto interessato dalla Galleria Grottaminarda con indicazione della quota di testa foro, della profondità e della strumentazione installata.

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	15 di 222

ID Periodo di		Quota	Prof.	Coordinate Ga	uss-Boaga*	Strumentazione	
Sondaggio	esecuzione	[m. s.l.m.]	i sondaggio] [metri] E N		Ν	di monitoraggio	
18	28-29/08/1984	312,36	30,00	2524212,054	4548941,951	Piezometro tubo aperto 30 m (fessurato tra 6 e 30 m da p.c.)	
19	03-13/09/1984	359,55	80,00	2524514,261	4548652,003	Tubo PVC 3" 80 m	

ID Sondaggio	Periodo di esecuzione	Quota boccaforo [m. s.l.m.]	Prof. sondaggio [metri]	Coordinate Gauss-Boaga E N		Strumentazione di monitoraggio	
M2	13-17/11/2006	311,20	30,00	2523577,080	4549189,440	Inclinometro 30,0 m	

ID Sondaggio	Periodo di esecuzione	Quota boccaforo [m. s.l.m.]	Prof. sondaggio [metri]	Coordinate G	auss-Boaga* N	Strumentazione di monitoraggio
S02	15/07-17/08/2015	324,30	30,00	2526489.446	4548370.871	Piezometro Norton 3" 30 m (fessurato tra 3 e 30 m da p.c.)
S04	20-23/07/2015	320,46	30,00	2525485,089	4548288,414	Piezometro Norton 3" 30 m (fessurato tra 3 e 30 m da p.c.)
S05	07-10/09/2015	376,14	50,00	2524810,767	4548387,483	Piezometro Norton 2" 45 m (fessurato tra 3 e 45 m da p.c.)
S06	30/07-03/08/2015	333,41	40,00	2524212,985	4548700,988	Piezometro Norton 2" 24 m (fessurato tra 3 e 24 m da p.c.)
S08	28-30/07/2015	336,13	30,00	2523912,021	4548879,071	Piezometro Norton 3" 15 m (fessurato tra 3 e 15 m da p.c.)

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	16 di 222

ID Periodo di		Quota	Prof.	Coordinate G	auss-Boaga*	Strumentazione
Sondaggio	esecuzione	boccaforo [m. s.l.m.]	sondaggio [metri]	Е	N	di monitoraggio
AU1	28-30/03/2017	318,84	50,00	2525542,605	4548327,761	-
AU2	23-28/03/2017	319,21	50,00	2525735,349	4548316,950	Piezometro Norton 3" 50 m (fessurato tra 0,7 e 50 m da p.c.)
AU3	23-28/03/2017	320,19	50,00	2525823,680	4548349,240	Piez. Casagrande 49,5 m da p.c
AU4	29-30/03/2017	321,67	50,00	2525962,393	4548352,149	-
AU5	03-05/04/2017	321,10	50,00	2526164,746	4548344,838	-
AU6	22-28/02/2017	304,95	50,00	2523501,579	4549233,063	-
BH1	29-30/05/2017	323,50	40,00	2524086,515	4548880,720	Piezometro Norton 3" 40 m (fessurato tra 9 e 40 m da p.c.)
BH2	01-05/06/2017	358,00	40,00	2523947,975	4548645,629	Piezometro Norton 3" 40 m (fessurato tra 9 e 40 m da p.c.)
BH3	06-07/06/2017	394,00	30,00	2523782,430	4548481,243	Inclinometro 30,0 m
C4	21-22/03/2017	330,20	30,00	2526867,408	4548370,655	-
C7	22-24/03/2017	322,40	30,00	2525420,003	4548267,781	-
С9	13-16/03/2017	326,00	50,00	2524449,906	4548765,472	Tubo in PVC 3" 50 m
C10	01-03/03/2017	314,23	30,00	2523516,499	4549167,482	Piezometro Norton 3" 30 m (fessurato tra 1,2 e 30 m da p.c.)
G1	16-21/02/2017	331,10	40,00	2524037,239	4548810,375	Inclinometro 40,0 m
G2	30/01-03/02/2017	340,02	50,00	2523762,464	4549026,039	Inclinometro 50,0 m

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	17 di 222

ID	Periodo di	Quota	Prof. sondaggio [metri]	Coordinate G	auss-Boaga*	Strumentazione	
Sondaggio	esecuzione	[m. s.l.m.]		Е	Ν	di monitoraggio	
G11	03-05/04/2017	320,74	40,00	2525258,790	4548357,143	Piezometro Norton 3" 40 m (fessurato tra 1,6 e 40 m da p.c.)	

Tabella 1 Sondaggi di interesse per la caratterizzazione geotecnica della galleria Grottaminarda

Ai fini della caratterizzazione dei terreni e delle rocce interessate dalle opere in sotterraneo e dalle opere di sostegno degli scavi, previste agli imbocchi delle gallerie, sono state eseguite numerose prove in foro di sondaggio, in particolare:

- Standard PenetrationTest,
- prove di permeabilità Lefranc;
- prove di permeabilità Lugeon;
- Prove pressiometriche;
- Prove dilatometriche;

Per la caratterizzazione fisica sono state eseguite le seguenti analisi:

- analisi granulometrica per setacciatura e sedimentazione;
- determinzione del peso di volume;
- determinazione del peso specifico;
- determinazione del contenuto naturale d'acqua;
- limiti di Atterberg.

Sono state inoltre eseguite le prove di laboratorio per la determinazione delle caratteristiche meccaniche; in particolare:

- nella formazione del Flysch Rosso (FYR) sono stati prelevati 38 campioni e sono state eseguite le prove sotto riportate:
 - 14 Prove di Taglio diretto
 - 6 Prove non consolidate non drenate (UU) in Cella Triassiale;
 - 5 Prove consolidate non drenate (CIU) in Cella Triassiale;
 - 5 Prove a rottura ad espansione laterale libera (ELL);
 - 1 Prova consolidata drenata (CD) in Cella Triassiale;
- nella formazione delle Molasse di Anzano (ANZ2a) sono stati prelevati 20 cmapioni e sono state eseguite le prove sotto riportate:
 - 7 Prove di Taglio diretto
 - 8 Prove consolidate non drenate (CIU) in Cella Triassiale;
 - 2 Prove a rottura ad espansione laterale libera (ELL);
 - 1 Prova consolidata drenata (CD) in Cella Triassiale;

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA							
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	18 di 222		

La descrizione dei campioni e i risultati delle prove eseguite sono allegati agli elaborati di progetto specialistici (Rif. [15]).

Sono state eseguite le seguenti prove geofisiche:

- prove sismiche in foro di tipo down-hole;
- profili sismici a rifrazione in onde P
- prove Multi-channel analysis of surface waves (Masw);

I risultati di tali indagini sono allegati agli elaborati specialistici di progetto (Rif. [15]).

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO N RADDOPPIO T I LOTTO FUNZ	APOLI – B RATTA AP LIONALE A	ARI ICE – ORSAR PICE - HIRPIN	A NIA		
GALLERIA GROTTAMINARDA	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLI IF0G 01 D 07 RB GN0100 001 A 19 di 22					
Relazione geotecnica e di calcolo galleria naturale	100	01	D OT ND	6110100 001	11	17 GI 222

7.4 Caratterizzazione geotecnica dei terreni e delle rocce.

7.4.1 Caratterizzazione geotecnica del Flysch Rosso (FYR)

L'Unita definita Flysch Rosso (FYR) è costituita da terrreni argillosi classificabili come argille limose e limi argillosi debolmente sabbiosi, con la frequente presenza di clasti calcarei di dimensioni centimetriche, immersi nella matrice argillosa. Le argille sono caratterizzate da una struttura scagliosa, che suddivide il materiale argilloso in elementi (scaglie) di piccole dimensioni.

Sondaggio S6: Cassetta n. 7 da 30.0 a 35.0 m

Il peso dell'unità di volume è variabile tra $19 \div 20 \text{ KN/m}^3$ (Figura 4) fino a 25 metri dal piano campagna e tra 20 $\div 22 \text{ KN/m}^3$ alle profondità maggiori. Il peso specifico è variabile tra $26 \div 27.5 \text{ KN/m}^3$.

Il contenuto naturale d'acqua risulta compreso tra il 15% ed il 38% nei primi 25 metri di profondità, diminuisce al crescere della profondita fino a valori compresi tra 10% e 25% (Figura 5). I valori più alti del contenuto naturale d'acqua si riferiscono a campioni prelevati dal sondaggio G1 in corrispondenza del corpo di frana descritto nel paragrafo 7.2.

I limiti di Atterberg risultano variabili nei range riportati di seguito (Figura 6 ÷ Figura 8):

- Limite di plasticità: 20%÷30%
- Limite di liquidità: 40% ÷100%
- Indice di Plasticità: 20%÷60%

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO N RADDOPPIO T I LOTTO FUNZ	JAPOLI – B RATTA AP ZIONALE A	ARI PICE – ORSAR PICE - HIRPIN	A NIA		
GALLERIA GROTTAMINARDA	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGL					
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	20 di 222

I valori maggiori dell'indice di plasticità si riscontrano nei primi 25 metri di profondità. Il materiale è molto consistente: l'indice di consistenza è compreso tra 0,80 e 1,40 (Figura 9).

Tabella 2: FYR – Analisi Granulometriche

Figura 4. FYR – Peso dell'unità di volume

Figura 3. FYR – Analisi Granulometriche

Figura 5. FYR - Contenuto d'acqua

Figura 6. FYR – Limite di plasticità

Figura 8. FYR – Indice di plasticità

Figura 7. FYR – Limite di liquidità

Figura 9. FYR - Indice di consistenza

Le caratteristiche meccaniche sono state definite mediante prove in sito e prove di laboratorio.

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO N RADDOPPIO T I LOTTO FUNZ	JAPOLI – B RATTA AF ZIONALE A	ARI PICE – ORSAR PICE - HIRPII	A NIA		
GALLERIA GROTTAMINARDA	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLI					
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	22 di 222

I parametri di resistenza sono stati determinati da prove di taglio diretto e prove triassiali CIU e CID (Figura 10), definendo i seguenti intervalli di valori:

per profondità z < 20 m:

 $10 \le c' \le 30 \text{ KPa}$ $16^\circ \le \phi' \le 20^\circ$

per profondità z > 20 m:

 $20 \le c' \le 35 \text{ KPa}$ $18^{\circ} \le \phi' \le 25^{\circ}$

I dati relativi alla coesione non drenata, ricavati da 6 prove di tipo triassiale UU, Figura 11, e mostrano valori compresi tra 400 e 600 KPa a profondità compresi tra 20 e 40 m.

I parametri di deformabilità sono stati ricavati da prove dilatometriche eseguite nei fori di sondaggio G2 e G3: le prove forniscono valori del modulo di elasticità E compresi tra 300 e 400 m per profondità superiori ai 50 m (Figura 14).

Nello grafico di Figura 14 sono riportati anche i valori dei moduli elastici (E) ricavati a partire dai moduli a piccole deformazioni (E₀) (assumendo il rapporto tra $E/E_0 = 0,1$) derivati dall'interpretazione delle indagini geofisiche eseguite in prossimità degli imbocchi:

- Prova Down Hole C9 imbocco dell'uscita di emergenza F1 della Galleria Grottaminarda;
- Prova Down Hole C11 in prossimità dell'imbocco della Galleria Melito

I valori della velocità delle onde di taglio crescono con la profondità e sono variabili in un range tra 170 e 400 m/s; nei primi 8 metri di profondità i valori di Vs sono compresi tra 170 e 290 m/s, per profondità maggiori il range di variazione è compreso tra 290 e 700 m/s.

L'insieme dei dati ha consentito di definire il seguente intervallo di variazione del modulo elastico:

20 <u><</u> E <u><</u> 160 MPa	per $0 \le z \le 20$ m;
160 <u><</u> E <u><</u> 400MPa	per $20 \le z \le 40 \text{ m}$
260 <u>≤ E≤</u> 400MPa	per $z > 40 m$

Le caratteristiche di deformabilità dei materiali di coltre, di alterazione del sottostante substrato argilloso o di accumulo di frana, sono state definite mediante prove pressiometriche (eseguite nei sondaggi G1 e G2), tra le profondità di 5 m e 35 m circa. Le prove forniscono valori del modulo di elasticità compreso nell'intervallo $10 \le E \le 40$ MPa Figura 12.

Nella Figura 13 è riportato il confronto tra tali dati ed i valori ricavati a partire dalle velocità delle onde Vs nella prova Masw AU8, eseguita in prossimità dell'imbocco della Galleria Grottaminarda lato Napoli, (assumendo il rapporto tra $E/E_0 = 0,1$). Il confronto conferma i bassi valori dei moduli riscontrabili in presenza delle coltri del FYR, variabili nel seguente range: $20 \le E \le 50$ MPa.

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO N RADDOPPIO T I LOTTO FUNZ	NAPOLI – E FRATTA AI ZIONALE A	BARI PICE – ORSAR APICE - HIRPI	RA NIA		
GALLERIA GROTTAMINARDA	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLI					
Relazione geotecnica e di calcolo galleria naturale	IF0G 01 D 07 RB GN0100 001 A 23 di					

Figura 10. FYR – Coesione drenata e angolo di attrito

Figura 11 FYR – Coesione non drenata

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLI					
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	24 di 222

Figura 12 FYR - Coltre – Modulo Elastico da prove pressiometriche

Figura 13 FYR – Coltre – Modulo Elastico da prove pressiometriche e da prove MASW

Figura 14 Modulo Elastico da prove in foro di sondaggio e prove Down-Hole

In base alle indicazioni fornite dalle prove Lefranc eseguite in sito, la formazione FYR è caratterizzata da permeabilità medie $k = 10^{-8} \div 10^{-9}$ m/s. Si riscontrano valori pari a $k = 10^{-5}$ m/s riferiti a prove realizzate in corrispondenza di trovanti calcarei (Figura 15).

Figura 15 FYR – Permeabilità

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO N RADDOPPIO T I LOTTO FUNZ	IAPOLI – B RATTA AP LIONALE A	ARI PICE – ORSAR PICE - HIRPIN	A NIA		
GALLERIA GROTTAMINARDA	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGL					
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	25 di 222

La caratterizzazione geotecnica, condotta sulla base delle indagini e prove descritte nei paragrafi precedenti, ha condotto alla definizione dei seguenti intervalli di valori rappresentativi dei principali parametri geotecnici per l'Unità:

Formazione	Profondità da p.c.	γ	c'	φ'	Cu	Е'
[-]	[m]	[kN/m ³]	[kPa]	[°]	[kPa]	[MPa]
FYR	0 -25	19 ÷20	10÷30	16÷20	40÷ 200	20 ÷160
FYR	20 -40	20 ÷22	20÷35	18÷24	400÷580	200 ÷400
FYR	40 -80	20 ÷ 22	20 ÷ 35	20÷26	>400	260 ÷400

Tabella 3: Flysch Rosso (FYR) – parametri geotecnici

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO N RADDOPPIO T I LOTTO FUNZ	JAPOLI – B TRATTA AF ZIONALE A	ARI PICE – ORSAR PICE - HIRPIN	A NIA		
GALLERIA GROTTAMINARDA	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIC					
Relazione geotecnica e di calcolo galleria naturale	IF0G 01 D 07 RB GN0100 001 A 26 di 2					

7.4.2 Caratterizzazione geotecnica delle Molasse di Anzano (ANZ2a)

Le Molasse di Anzano **ANZ2a** sono costituite, nella parte alta della formazione, da argille marnose, classificabili come argille limose e limi argillosi molto consistenti.

Sondaggio S5: Cassetta n. 10 da 45.0 a 50.0 m

Le analisi granulometriche sui campioni prelevati nelle campagne di indagine hanno infatti evidenziato una percentuale di argilla compresa tra il 26% e il 56%, una percentuale di limo compresa tra il 33% e il 67% e percentuali di sabbia mai superiori al 7% (Figura 16)

Il peso dell'unità di volume è variabile tra $18,5 \div 21,5 \text{ KN/m}^3$ (Figura 17), mentre il peso di volume secco è compreso tra $15.8 \text{ e} 19,0 \text{ KN/m}^3$ (Figura 18); il peso specifico è variabile tra $26 \div 27.5 \text{ KN/m}^3$.

Il contenuto d'acqua risulta compreso tra il 14% ed il 28% (Figura 19). I limiti di Atterberg risultano variabili nei range riportati di seguito (Figura 20÷Figura 22):

- Limite di plasticità: 20%÷25%
- Limite di liquidità: 45% ÷90%
- Indice di Plasticità: 20%÷70%

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO N RADDOPPIO T I LOTTO FUNZ	NAPOLI – B TRATTA AF ZIONALE A	ARI PICE – ORSAR PICE - HIRPII	A NIA		
GALLERIA GROTTAMINARDA	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLI					
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	27 di 222

Figura 16 Formazione ANZ2a – Analisi Granulometrica

Figura 17 Formazione ANZ2A – Peso dell'unità di volume

Figura 18 Formazione ANZ2A – Peso di volume secco

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO N RADDOPPIO T I LOTTO FUNZ	NAPOLI – B TRATTA AF ZIONALE A	ARI PICE – ORSAR APICE - HIRPII	A NIA		
GALLERIA GROTTAMINARDA	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO					
Relazione geotecnica e di calcolo galleria naturale	IF0G 01 D 07 RB GN0100 001 A 28 di 2					

Figura 19 ANZ2a - Contenuto d'acqua

Figura 21 ANZ2a – Limite di liquidità

Figura 20 ANZ2a– Limite di plasticità

Figura 22 ANZ2A – Indice di plasticità

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO N RADDOPPIO T I LOTTO FUNZ	IAPOLI – B RATTA AP LIONALE A	ARI ICE – ORSAR PICE - HIRPII	A NIA		
GALLERIA GROTTAMINARDA	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLI					
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	29 di 222

Le caratteristiche meccaniche della formazione ANZ2a sono state definite mediante prove eseguite in sito ed in laboratorio.

I parametri di resistenza al taglio in condizioni drenate sono stati determinati con prove di taglio diretto e prove triassiali CIU: i risultati delle prove in termini di coesione efficace e angolo d'attrito sono riportati in Figura 23. Sulla base di tali risultati sono stati definiti i seguenti intervalli di valori:

per profondità 0 < z < 20 m:

 $10 \le c' \le 30$ KPa

 $18 \le \phi' \le 25$ °

per profondità z > 20 m:

 $20 \le c' \le 30$ KPa

 $24 \leq \phi' \leq 28$ $^{\circ}$

Per la stima dei parametri di deformabilità del materiale è stata valutata la velocità delle onde di taglio, Vs, a partire dai valori misurati nelle prove geofisiche del tipo Down Hole e MASW. Le prove eseguite mostrano valori di Vs mediamente pari $200 \div 400$ m/s fino a profondità di circa $15 \div 20$ m, e valori compresi tra 400 m/s e 800 m/s circa per profondità superiori e fino ai 30 m.

Da tali andamenti delle velocità Vs sono stati ricavati i valori del modulo elastico G_0 e del modulo elastico E_0 come riportato rispettivamente in Figura 24 e Figura 25, definendo i seguenti intervalli di valori:

$200 \le G_0 \le 750 \text{ MPa}$	per 5 \leq z \leq 20 m
750 <u>≤</u> G ₀ <u>≤</u> 1500 MPa	per $20 \le z \le 30 \text{ m}$
200 < E₀≤ 1000 MPa	per $0 < z < 20 m$
$1000 < E_0 \le 4500 \text{ MPa}$	per $15 \le z \le 30 \text{ m}$

Nella Figura 27 sono riportati i valori dei moduli elastici E ricavati dai valori del modulo elastico iniziale Eo (Figura 26), prendendo a riferimento una percentuale pari al 10% dei valori di modulo iniziale E_0 ricavato dalle prove sismiche disponibili. Nello stesso grafico è mostrato anche il valore della prova pressiometrica eseguita nella formazione all'interno del sondaggio S5.

Sulla base dei dati disponibili sono stati definiti i seguenti valori del modulo elastico E:

20 <u>≤</u> E <u><</u> 100 MPa	$per \ 0 \le z \le 20 \ m$
100 <u>≤</u> E <u><</u> 450MPa	per $20 \le z \le 30$ m

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO N RADDOPPIO T I LOTTO FUNZ	NAPOLI – B FRATTA AF ZIONALE A	ARI PICE – ORSAR PICE - HIRPII	A NIA		
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	30 di 222

Figura 23 ANZ2a - Coesione drenata e angolo di attrito

Figura 24 ANZ2a – Velocità delle onde di taglio Vs (m\s)

Figura 25 ANZa – Modulo di taglio iniziale G₀

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO N RADDOPPIO T I LOTTO FUNZ	NAPOLI – B FRATTA AI ZIONALE A	ARI PICE – ORSAR PICE - HIRPII	A NIA		
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	31 di 222

Figura 26 ANZ2a – Modulo elastico iniziale E₀

20-40

ANZ2A

Figura 27 ANZ2a – Modulo Elastico

 $24\div 28$

 $100 \div 450$

La permeabilità, definita da prove Lefranc, è pari a k = 1x 10 $^{\text{-8}}$ m/s.

La caratterizzazione geotecnica, condotta sulla base delle indagini e prove descritte nei paragrafi precedenti, ha condotto alla definizione dei seguenti intervalli di valori rappresentativi dei principali parametri geotecnici per l'Unità:

Formazione	Profondità da p.c.	γ	c'	φ'	E'
[-]	[m]	$[kN/m^3]$	[kPa]	[°]	[MPa]
ANZ2A	0-20	18 ÷21	10÷30	18÷25	50 ÷100

 $18 \div 21$

Tabella 4: Formazione ANZ2a – Riepilogo parametri geotecnici

 $20 \div 30$

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO N RADDOPPIO T I LOTTO FUNZ	JAPOLI – B RATTA AF ZIONALE A	ARI PICE – ORSAR PICE - HIRPIN	A NIA		
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	32 di 222

7.4.3 Caratterizzazione geotecnica delle Molasse di Anzano (ANZ2)

Le Molasse di Anzano ANZ2 sono costituite da arenarie alternate ad argille, argille marnose.

Sondaggio S5: Cassetta n. 4 da 15.0 a 20.0 m

La caratterizzazione è stata condotta sulla base delle indagini e prove in sito ed in laboratorio relative al sondaggio S5. Il peso dell'unità di volume è variabile tra $17 \div 21 \text{ KN} \text{m}^3$.

Le prove di taglio diretto eseguite sui campioni indisturbati hanno fornito i seguenti valori di angolo di attrito e coesione variabili:

 $10 \le c' \le 25$ KPa

22 ° $\leq \phi$ ' \leq 35 °

Una prova dilatometrica, eseguita nella formazione a profondità di 22,5 metri, in corrispondenza di uno strato di arenarie, ha fornito valori del modulo elastico E pari a circa 400 MPa.

Nelle zone di imbocco, per tenere conto della presenza della coltre superficiale, individuata dalle indagini sismiche a rifrazione eseguite in prossimità dell'area di imbocco della Galleria, che mostrano valori di velocità delle onde di compressione inferiori a 1000 m/s fino a circa 10 metri di profondità dal piano campagna si è assunto un valoredel modulo elastico pari a 100 MPa.

L'analisi dei dati a disposizione ha condotto alla definizione dei seguenti intervalli di valori rappresentativi dei principali parametri geotecnici per l'Unità ANZ2:

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO N RADDOPPIO T I LOTTO FUNZ	IAPOLI – B RATTA AP LIONALE A	ARI ICE – ORSAR PICE - HIRPIN	A NIA		
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	33 di 222

Formazione	Profondità da p.c.	γ	c'	φ'	Е'
[-]	[m]	[kN/m ³]	[kPa]	[°]	[MPa]
ANZ2	0-30	20 ÷21	10 ÷ 20	22 ÷35	100 ÷400

	Tabella 5: For	mazione ANZ2 -	– Riepilogo	parametri	geotecnici
--	----------------	----------------	-------------	-----------	------------

7.4.4 Caratterizzazione geotecnica del Flysch Numidico (FYN)

La formazione del Flysch Numidico è presente lungo il tracciato della galleria solo all'imbocco lato Napoli. Il sondaggio eseguito all'imbocco (M2) ha evidenziato un primo strato di circa 11 m di spessore caratterizzata dalla rpesenza di ghiaia e ciottoli, al di sotto del quale è stata rinvenuto uno strato di sabbia da addensata a molto addensata, con intercalati livelli marnosi e con la presenza di trovanti.

L'interpretazione delle prove SPT eseguite nel foro di sondaggio ha consentito di valutare:

- la densità relativa della formazione che risulta superiore all'80%;
- l'angolo d'attrito, variabile tra 32° e 35 °, secondo la correlazione di De Mello
- il valore del modulo elastico E, dalla correlazione di De Mello.

In tabella sono riportati i valori in particolare si è fatto riferimento ai valori di N_{spt} registrati durante la perforazione di sondaggio, che hanno fornito i seguenti valori:

Prova	Prof. Prova (m dal p.c.)	N _{SPT}
1	3	50
2	6	47
3	9	51
4	12	100
5	15	100

	Tabella 6:	FYN-	Prove	NSPT	in	foro	di	sondaggio	M2
--	------------	------	-------	------	----	------	----	-----------	-----------

Su campione prelevato a 12 m nel sondaggio M2 è stato eseguita una prova di taglio diretto su un interstrato argilloso, che ha fornito i seguenti dati: c' = 45 KPa, ϕ ' = 26°.

Dall'analisi dei dati a disposizione si definiscono i seguenti valori rappresentativi dei principali parametri geotecnici per l'Unità FYN:

Formazione	Profondità da p.c.	γ	c'	φ'	E'
[-]	[m]	[kN/m ³]	[kPa]	[°]	[MPa]
FYN	0-30	20 ÷21	0 ÷ 10	32÷ 36	55 ÷90

Tabella 7: FYN -	- Riepilogo	parametri	geotecnici
------------------	-------------	-----------	------------

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA						
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	34 di 222	

7.5 Regime idraulico

Le misure piezometriche mostrano livelli piezometrici compreso tra i 2 ed i 30 metri dal piano campagna. I livelli più bassi sono stati riscontrati nella parte di tracciato compreso tra le pk 3+200 e 3+600.

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA							
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	35 di 222		

8 FASE DI DIAGNOSI

Nella fase di diagnosi, sulla base del modello geotecnico scaturito dagli studi e dalle indagini effettuati nella fase conoscitiva, si procede alla previsione della risposta tensio-deformativa dell'ammasso allo scavo, in assenza di interventi di stabilizzazione. La valutazione della risposta deformativa dell'ammasso allo scavo è condotta con riferimento alle tre categorie di comportamento fondamentali individuate nel metodo ADECO-RS Rif. [20], di seguito brevemente richiamate, sulla base delle quali il tracciato sotterraneo è suddiviso in tratte a comportamento deformativo omogeneo.

I risultati dell'analisi del comportamento deformativo consentono di individuare gli interventi di precontenimento e/o di contenimento più idonei a garantire condizioni di stabilità della galleria in fase di scavo e a lungo termine.

8.1 Classi di comportamento del fronte di scavo

Secondo l'approccioADECO-RS (Rif. [20]) la previsione dell'evoluzione dello stato tensionale a seguito dell'apertura di una galleria è possibile attraverso l'analisi dei fenomeni deformativi, che forniscono indicazioni sul comportamento della cavità nei riguardi della stabilità a breve e a lungo termine. Dati sperimentali e analisi teoriche hanno dimostrato che il comportamento della cavità è significativamente condizionato, oltre che dalle caratteristiche geometriche della galleria stessa e dai carichi litostatici, anche dalle caratteristiche di resistenza e di rigidezza del nucleo d'avanzamento, inteso come il volume di terreno a monte del fronte di scavo. Se il nucleo non è costituito da materiale sufficientemente rigido e resistente da mantenere in campo elastico il proprio comportamento tensio-deformativo, si sviluppano fenomeni deformativi e plasticizzazioni rilevanti in avanzamento, a cui consegue l'evoluzione verso condizioni di instabilità del fronte e del cavo. Se, invece, il comportamento del nucleo d'avanzamento si mantiene in campo elastico, il nucleo stesso svolge un'azione di precontenimento del cavo, che si mantiene a sua volta in condizioni elastiche, conservando le caratteristiche di massima resistenza del materiale attraversato e quindi configurazioni di stabilità.

Sulla base di tali considerazioni, il comportamento del nucleo-fronte di scavo, al quale è legato quello della cavità, può essere sostanzialmente ricondotto alle seguenti tre categorie:

Categoria A: nucleo-fronte stabile

Tale categoria corrisponde alla condizione in cui lo stato tensionale nel terreno al fronte e al contorno della cavità non supera le caratteristiche di resistenza dell'ammasso; in tal caso le deformazioni sono prevalentemente elastiche, di piccola entità e tendono ad esaurirsi rapidamente con la distanza dal fronte. Il fronte di scavo e il cavo sono stabili e quindi non si rendono necessari interventi preventivi di stabilizzazione, se non localizzati e in misura ridotta. Il rivestimento definitivo costituisce il margine di sicurezza per la stabilità a lungo termine.

Categoria B: nucleo-fronte stabile a breve termine

Tale categoria corrisponde alla condizione in cui lo stato tensionale nel terreno al fronte e al contorno della cavità, a seguito delle operazioni di scavo, raggiunge la resistenza dell'ammasso. I fenomeni deformativi tensioni sono di tipo elasto-plastico, di maggiore entità rispetto al caso precedente. Nell'ammasso può prodursi una eventuale riduzione delle caratteristiche di resistenza con decadimento verso i parametri residui. La risposta tensio-deformativa può essere opportunamente controllata con adeguati interventi di preconsolidamento del fronte e/o di consolidamento al contorno del cavo. In tal modo si fornisce l'opportuno contenimento all'ammasso perché mantenga un comportamento stabile. Nel caso non si prevedano interventi, lo stato tensio-

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA						
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	36 di 222	

deformativo può evolvere verso situazioni di instabilità del cavo in fase di realizzazione. Il rivestimento definitivo costituisce il margine di sicurezza per la stabilità a lungo termine.

Categoria C: nucleo-fronte instabile

Tale categoria corrisponde alla condizione in cui, superata la resistenza del terreno, i fenomeni deformativi evolvono molto rapidamente in campo plastico, producendo la progressiva instabilità del fronte di scavo e un incremento dell'estensione della zona dell'ammasso decompressa ed plasticizzata al contorno della cavità, con rapido decadimento delle caratteristiche meccaniche del materiale. L'espansione della fascia di materiale decompresso al contorno del cavo deve essere contenuta prima dell'arrivo del fronte di scavo, mediante interventi di preconsolidamento in avanzamento, che consentono di creare artificialmente l'effetto arco per far evolvere la risposta tensio-deformativa verso configurazioni di stabilità.

8.2 Determinazione delle categorie di comportamento

La valutazione del comportamento deformativo del fronte è stata condotta utilizzando:

- il metodo delle linee caratteristiche (per le tratte ad alta copertura);
- i metodi di analisi della stabilità del fronte (per le tratta a bassa copertura).

Le analisi nella fase di diagnosi sono state condotte con riferimento ai valori caratteristici dei parametri geotecnici e delle azioni.

8.2.1 Analisi con il metodo delle linee caratteristiche

8.2.1.1 Metodo di analisi

Il metodo delle linee caratteristiche (o convergenza-confinamento) è un metodo di calcolo che consente l'analisi 3D semplificata dello scavo di gallerie in relazione alle proprietà meccaniche dell'ammasso attraversato, alle caratteristiche geometriche dell'opera, agli interventi previsti diprecontenimento e contenimento,eall'installazione dei rivestimenti provvisori e definitivi.

Il comportamento delle strutture di rivestimento e dell'ammasso vengono studiati separatamente: la curva caratteristica del cavo (o curva di convergenza) rappresenta l'evoluzione della convergenza radiale del cavo al diminuire della tensione radiale agente sul contorno del profilo di scavo, espressa in funzione del tasso di deconfinamento con cui viene simulato l'effetto dello scavo in avanzamento; la curva caratteristica dei sostegni (o curva di confinamento) rappresenta l'evoluzione della loro convergenza radiale al crescere della pressione radiale agente sugli stessi.L'intersezione tra la curva di convergenza e la curva di confinamento individua il punto di equilibrio rappresentativo dello stato finale della galleria rivestita.

Le ipotesi alla base del metodo sono le seguenti:

- simmetria cilindrica e stato piano di deformazione;
- ammasso omogeneo ed isotropo;
- stato tensionale iniziale omogeneo ed isotropo.

L'ideale campo di applicazione è pertanto costituito da gallerie profonde a sezione circolare.
GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	37 di 222

Per l'ammasso si utilizza un modello costitutivo elasto-plastico, con criterio di resistenza di Mohr-Coulomb.

Ove necessario, per la definizione del comportamento deformativo della galleria in funzione della distanza dal fronte, si utilizza il Nuovo Metodo Implicito (NMI) (Rif. [21] e Rif. [22]), che consente di ottenere risultati affidabili sia in termini di convergenze, sia in termini di carichi di lavoro sui sostegni.

Per il calcolo della convergenza al fronte si utilizzano le soluzioni analitiche per cavità sferiche.

Per le analisi di seguito riportate, relative alla fase di diagnosi, e finalizzate quindi alla sola valutazione del comportamento deformativo dell'ammasso per la determinazione della categoria di comportamento, non viene presa in considerazione l'interazione con i sostegni, per cui la soluzione del problema è ridotta alla valutazione della sola curva caratteristica del fronte (e del cavo) in assenza di interventi.

8.2.1.2 Sezioni analizzate

Sulla base dei risultati della caratterizzazione geotecnica di cui al precedente paragrafo, in funzione delle condizioni idrauliche previste e della distribuzione delle diverse classi di copertura lungo il tracciato, sono state definite le sezioni di analisi, riassunte nella Tabella 5 e caratterizzate con tutti i dati di input necessari per il calcolo.

Sezione		Н	$\sigma_{\rm o}$	p_{w0}	p_{wR}	\mathbf{R}_{w}	γ	c'_{kp}	ϕ'_{kp}	c' _{kr}	ϕ'_{kr}	C_{uk}	E_k
di calcolo	Unita	[m]	[MPa]	[MPa]	[MPa]	[m]	[kN/m ³]	[kPa]	[°]	[kPa]	[°]	[kPa]	[MPa]
Sez.1	FYR	30	0,63	0,3	0	6,5	21	20	22	20	22	-	300
Sez.2	FYR	60	1.26	0.25	0	6.5	21	30	24	30	24	-	400

H = copertura rispetto al piano dei centri della galleria

 σ_0 = tensione totale iniziale al livello del cavo

 p_{w0} = pressione interstiziale al livello del cavo in condizioni indisturbate

 p_{wR} = pressione interstiziale sul profilo di scavo

 R_w = raggio di influenza idraulica oltre il quale si ristabilisce p_{w0}

 γ = peso dell'unità di volume dell'ammasso

 c'_{kp} = valore caratteristico della coesione efficace di picco dell'ammasso

 φ'_{kp} = valore caratteristico dell'angolo di attrito di picco dell'ammasso

 c'_{kr} = valore caratteristico della coesione efficace residua dell'ammasso

 ϕ'_{kr} = valore caratteristico dell'angolo di attrito residuo dell'ammasso

 C_{uk} = valore caratteristico della coesione non drenata dell'ammasso

 E_k = valore caratteristico del modulo elastico dell'ammasso: (*) drenato (**) non drenato

Tutte le analisi sono svolte con riferimento allo scavo di una galleria di raggio equivalente R_{eq} pari a 6.50 m.

Tabella 8 - Sezioni analizzate con il metodo delle curve caratteristiche: dati di input

Nello specifico le sezioni analizzate riguardano:

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	38 di 222

Sezione 1 - Sezione nella formazione FYR nel tratto che sottoattraversa la frana quiescente

Sezione 2 - Sezione in corrispondenza della massima copertura nella Formazione FYR.

8.2.1.3 <u>Risultati delle analisi</u>

I risultati delle analisi sono stati esaminati alla luce di due aspetti:

- confronto tra la resistenza a compressione monoassiale dell'ammasso σ_c e la pressione critica al fronte $p_c = (3\sigma_o 2\sigma_c) / (1 + 2K_p)$, che individua il passaggio dal comportamento elastico a quello plastico,
- sviluppo dei fenomeni deformativi e di plasticizzazionenella sezione al fronte e al contorno del cavo,

prendendo a riferimento per la definizione della categoria di comportamentoi seguenti due criteri:

σ _c / ρ _c	Classe di comportamento
≥1,2	А
$< 1,2 \ e \ge 0,8$	A/B
$<0{,}8~e \ge 0{,}2$	B/C
< 0,2	С

u _F /R _{eq}	R _{plF} /R _{eq}	Classe di comportamento						
\leq 0,5 %	≤1,5	В						
> 0,5 %	> 1,5	С						
$u_F = conve$ $R_{plF} = ragg$ $R_{eq} = ragg$	u_F = convergenza al fronte R_{plF} = raggio plastico al fronte R_{eq} = raggio di scavo equivalente della galleria							

Tabella 10 - Criterio 2

Sulla base di queste valutazioni quantitative, unitamente all'analisi critica dei risultati ottenuti rispetto all'affidabilità dei dati di ingresso in termini di parametri di ammasso (rigidezza e resistenza) e condizioni idrauliche al contorno, in relazione ad eventuali variabilità attese lungo il tracciato della galleria e alle possibili conseguenze per comportamenti imprevisti, è stata definita la categoria di comportamento del fronte di scavo.

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA						
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	39 di 222	

I risultati delle analisi sono riassunti nella tabella seguente; la rappresentazione delle curve caratteristiche è invece riportata integralmente in Allegato 1.

Sezione	σ_{c}	p_{c}	σ_c/p_c	$u_{\rm F}/R_{eq}$	$R_{\rm PF}/R_{\rm eq}$	Catagoria		
di calcolo	[MPa]	[MPa]	[-]	[%]	[-]	Categoria		
Sez.1	0,059	0,328	0,181	>>0,5	>>1,5	С		
Sez.2	0,092	0,626	0,148	>>0,5	>>1,5	С		
$\sigma_c = (2c \cos \phi) / (1-\sin \phi) = resistenza a compressione monoassiale dell'ammasso (parametri di picco)$								
$p_c = (3\sigma_o - 2\sigma_c)$	$/\left(1+2K_{p}\right)=p$	ressione critica	al fronte (con K	p coefficiente di	spinta passiva)			
$u_{\rm F} = {\rm convergen}$	za al fronte (sol	luzione cavità si	ferica)					
$R_{\rm PF} = raggio pl$	astico al							
fronte								
$\mathbf{u}_{\infty} = \mathbf{convergenza}$ finale del cavo								
R_P = raggio plastico finale al contorno del cavo								
R_{eq} = raggio di scavo equivalente della galleria (=6.50 m)								

Tabella 11 - Sezioni analizzate col metodo delle linee caratteristiche: risultati delle analisi

8.2.2 Analisi della stabilità del fronte

8.2.2.1 Metodi di analisi

Le analisi di stabilità del nucleo-fronte sono state condotte all'equilibrio limite con il metodo di Tamez (1984). Il metodo proposto da Tamez (Rif. [27]) è basato sull'ipotesi di risposta del fronte di scavo in condizioni drenate e pertanto il calcolo viene eseguito in tensioni efficaci. Si ipotizza che al fronte si formi un meccanismo di rottura approssimabile mediante solidi prismatici, come mostrato in Figura 28, e si valuta il coefficiente di sicurezza FSF rispetto a tale condizione di collasso, come rapporto tra i momenti delle forze resistenti e i momenti delle forze agenti.

Figura 28 - Stabilità del fronte secondo il Metodo di Tamez (1984)

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA						
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	40 di 222	

Talvolta la stabilità del solo prisma 3 gravante sulla zona di galleria non ancora sostenuta dal rivestimento, può risultare più critica rispetto all'insieme dei tre prismi; è definito in tal senso un secondo coefficiente di sicurezza FS₃, per cui ai fini della stabilità del fronte si assume il coefficiente di sicurezza minimo tra i due.

$$FSF = \frac{(A+B+C)}{D}$$

$$FS = \frac{2\tau_{m3}}{(1+a/l)^2 \times \sqrt{K_A}} = \frac{2\tau_{m3}}{(1+a/l)^2 \times \sqrt{K_A}}$$

$$FS = \frac{2\tau_{m3}}{(\gamma Z - P_E)} \times \frac{h_1}{b} \times (1 + \frac{b}{a})$$

$$D = \left[1 + \frac{2h}{3Z(1+a/l)^2}\right] \times (\gamma Z - P_E)$$

Il fronte di scavo viene considerato stabile per valori di FSF > 1,5. Per valori di FSF superiori a 2, il sostegno del fronte può considerarsi non necessario.

8.2.2.2 Sezioni analizzate

Sulla base dei risultati della caratterizzazione geotecnica di cui al precedente paragrafo, e con particolare riferimento ai valori caratteristici definiti per i parametri geotecnici, in funzione delle condizioni idrauliche previste e della distribuzione delle diverse classi di copertura lungo il tracciato, sono state definite le sezioni di analisi riassunte in Tabella 12 con riferimento al metodo di Tamez.

Sez.	Progr.	С	Stratigrafia di calcolo	Parame	tri di calc	olo
	0		Formazione	Yk	c'_k	$\boldsymbol{\varphi}'_k$
[n.]	[km]	[m]	[-]	[kN/m ³]	[kPa]	[°]
1	2+720	10	ANZ	20	5	26
2	3+950	10	FYR	19	10	16

Tabella 12 - Sezioni analizzate col metodo di Tamez per l'analisi di stabilità del fronte di scavo

Nello specifico le sezioni analizzate riguardano:

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	41 di 222

Sezione 1 - Sezione a bassa copertura imbocco lato Bari nella formazione ANZ

Tutte le analisi sono svolte con riferimento ad uno scavo di larghezza b pari a 13 m, altezza h pari a 10 m e lunghezza del tratto non sostenuto α pari a 1 m.

8.2.2.3 <u>Risultati delle analisi</u>

I risultati delle analisi sono stati esaminati in funzione dei valori dei coefficienti di sicurezza FSF e FS_3 calcolati secondo quanto riportato nel paragrafo precedente. In particolare per la definizione della categoria di comportamento si è preso a riferimento il seguente criterio:

FS = min(FSF;FS3)	Classe di comportamento
≥ 2	А
$< 2e \ge 1,5$	В
< 1,5	С

Tabella 13 - Criterio per la definizione della categoria di comportamento

Sulla base di queste valutazioni quantitative, unitamente all'analisi critica dei risultati ottenuti rispetto all'affidabilità dei dati di ingresso in termini di parametri del terreno (resistenza) e condizioni idrauliche al contorno, in relazione ad eventuali variabilità attese lungo il tracciato della galleria e alle possibili conseguenze per comportamenti imprevisti, è stata definita la categoria di comportamento del fronte di scavo da cui deriva l'individuazione degli eventuali interventi di precontenimento e contenimento necessari.

I risultati delle analisi sono riassunti nella tabella seguente:

Sez.	FSF	FS ₃	Categoria
[n.]	[-]	[-]	[-]
1	0.12	0.54	" <i>C</i> "
2	0.31	1.13	<i>"C</i> "

Tabella 14 - Sezioni analizzate col metodo di Tamez: risultati delle analisi

8.2.3 Definizione delle tratte a comportamento tensio-deformativo omogeneo

Sulla base dei risultati delle analisi sopra descritte è possibile concludere che per l'intero tracciato della galleria è atteso un comportamento del nucleo-fronte di scavo di categoria C (instabile).

Sezione 2 – Sezione in corrispondenza del sottoattraversamento fosso alla progressiva 3+950 (Formazione FYR).

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO N RADDOPPIO T I LOTTO FUNZ	IAPOLI – B RATTA AP LIONALE A	ARI ICE – ORSAR PICE - HIRPIN	A NIA		
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	42 di 222

Le previsioni di comportamento lungo il tracciato della galleria sono illustrate in forma sintetica nell'elaborato di progetto "Profilo geotecnico Galleria Grottaminarda" (Rif. [17]).

8.3 Rischi potenziali nella fase di realizzazione della galleria

Di seguito si descrivono le principali criticità, legate al contesto geologico, idrogeologico e geotecnico, che potrebbero presentarsi nella fase realizzativa della galleria Grottaminarda. La mappatura dei diversi rischi individuati nella fase conoscitiva, e la relativa gestione definita nella successiva fase di terapia, sono illustrate in forma sintetica nel Profilo geotecnico (Rif. [17]).

Sottoattraversamento di un corpo di frana quiescente

La galleria Grottaminarda tra la progressiva km 3+900 e 4+250 sottopassa un esteso corpo di frana che si sviluppa dal fondovalle del Fiume Ufita fino alla quota di 400 metri (Figura 29). L'analisi geomorfologica di dettaglio ha individuato uno stato di quiescenza per tale corpo di frana, ad eccezione di alcune aree nella porzione sommitale, dove sono visibili marcate contropendenze e scarpate (Rif. [15]).

Figura 29 Galleria Grottaminarda - stralcio della carta geologica di progetto; particolare dell'area in frana tra la pk 3+900 e la pk 4+250 circa

Ad oggi, le misure inclinometriche in corso (G1, BH3) non indicano movimenti in atto. Il monitoraggio di spostamenti superficiali tramite analisi di dati radar satellitari (COSMO-SkyMed, 2012-2016) non ha fornito indicazioni di un movimento in atto, segnalando solo deformazioni localizzate dell'ordine di 4-5 mm/anno.

Dallo studio delle colonne stratigrafiche ricavate dai sondaggi G1, S8, BH1, BH2, BH3, è stato ricostruito il possibile spessore del corpo di frana sia sul suo asse longitudinale che in quello trasversale, in prossimità del

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO N RADDOPPIO T I LOTTO FUNZ	IAPOLI – B RATTA AP LIONALE A	ARI ICE – ORSAR PICE - HIRPIN	A NIA		
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	43 di 222

tracciato di progetto. Lo spessore massimo del deposito in asse al tracciato è di circa 19 metri; pertanto il corpo di frana risulta ad una quota superiore di circa 10-12 metri rispetto alla calotta della galleria in progetto.

Il monitoraggio piezometrico eseguito nei sondaggi attrezzati con piezometro (S8, BH1, BH2, BH3) ha indicato livelli piezometrici con valori massimi a pochi metri dal piano campagna.

Instabilità del fronte e del cavo

Potenziali rischi di instabilità del fronte e del cavo possono interessare le tratte di galleria a basse coperture, che riguardano le zone di imbocco e di fondovalle, e quelle di attraversamento di zone tettonizzate e di transizione litologica, quali il contatto tettonico tra il Flysch Rosso facies calcarea e il Flysch numidico.

Comportamento rigonfiante

La porzione pelitica del Flysch Rosso (FYR) può presentare, come riscontrato in terreni di analoghe caratteristiche, un comportamento rigonfiante per variazione dello stato tensionale lungo percorsi tensionali in scarico e in presenza di acqua.

Presenza di strati e blocchi lapidei

La formazione del Flysch Rosso nelle facies FYR può presentare strati e blocchi lapidei di dimensioni variabili immersi nella matrice argillosa; tali inclusioni sono comunque sporadiche e di potenza generalmente inferiore al metro.

Venute d'acqua

Il potenziale rischio di venute d'acqua in galleria in fase di scavo è stato definito in funzione dei principali caratteri idrogeologici delle formazioni di interesse. Tale rischio dipende dalla conducibilità idraulica dei materiali attraversati, dal carico idraulico e dall'eventuale presenza di zone di faglia e di discontinuità. In particolare, le formazioni a permeabilità maggiore, ma comunque medio - bassa (10 -6 m/s < k < 10 -7 m/s) presenti nella tratta, in studio, sono rappresentate dalle seguenti formazioni:

- Molasse di Anzano (ANZ2), nella facies prevalentemente costituita da arenarie scarsamente cementate, presenti nella Galleria Grottaminarda, nel tratto a basse coperture dopo l'imbocco lato Bari.
- Formazione del Flysch Numidico (FYN), presente nella Galleria Grottaminarda nel tratto a basse coperture dopo l'imbocco lato Napoli.

Considerati i valori di permeabilità e i livelli piezometrici il rischio di venute d'acqua in fase di scavo è basso o nullo.

Presenza di gas

Le analisi per la determinazione del rischio gas sono state condotte per fasi di approfondimento successivo. Preliminarmente, è stata condotta un'analisi bibliografica e storica volta a verificare, in relazione alle differenti unità geologiche individuate e direttamente interessate dal progetto, l'eventuale presenza di termini geologici favorevoli alla presenza di gas. Hanno fornito elementi di giudizio orientativi per la valutazione:

- relazione geologica geotecnica e idrogeologica;
- carte geologiche, geomorfologiche ed idrogeologiche;
- planimetria generale con ubicazione dei sondaggi geognostici;
- sezioni geologiche con ubicazione dei sondaggi;
- campagna di monitoraggio effettuata durante l'esecuzione di alcuni sondaggi.

Successivamente sono state condotte indagini di approfondimento (Rif. [15]); in particolare, sono stati eseguiti:

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO N RADDOPPIO T I LOTTO FUNZ	IAPOLI – B RATTA AP ZIONALE A	ARI ICE – ORSAR PICE - HIRPII	A NIA		
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	44 di 222

- rilievi di gas a bocca foro durante la perforazione dei sondaggi;
- monitoraggio dell'aria realizzata mediante analizzatore di gas a bocca foro in corrispondenza delle verticali di sondaggio;
- analisi gascromatografica su campioni di acqua prelevati da piezometro.

Un valido strumento che può essere utilizzato per l'approccio al problema legato alla presenza di gas in galleria è rappresentato dal documento redatto dalle regioni Emilia-Romagna e Toscana *"Lavori in sotterraneo. Scavo in terreni grisutosi. Grisù 3a ed."*, che seppur riferito al solo problema metano, può essere un valido riferimento tecnico in merito al problema dello scavo di gallerie in presenza di gas. Questo documento, sviluppato nel corso e con i riscontri diretti degli scavi effettuati nell'appennino Tosco Emiliano, durante la realizzazione delle gallerie dell'Alta Velocità ferroviaria Bologna Firenze, e la variante di valico autostradale, sempre tra Bologna e Firenze, può ragionevolmente essere considerato come "Linea guida per buone pratiche di lavoro nelle costruzioni in sotterraneo".

In funzione dei risultati derivanti dall'analisi bibliografica e storica e dalle indagini di approfondimento, è stato possibile associare, quindi, ad ogni galleria di linea e uscita di emergenza della tratta la classe di rischio gas 1B come definita nella citata Nota Interregionale: "Gallerie/tratti per le quali l'analisi geologica strutturale porta a prevedere flussi di grisù, ma non ci sono elementi di riscontro desunti dalle indagini preliminari (studi e ricerche, analisi della storicità, sondaggi) effettuate in fase di progetto e dalla porzione d'opera già realizzata. In definitiva le manifestazioni gassose sono possibili ma con portate prevedibilmente modeste o con modalità che si ritiene non portino a condizioni di rischio"

Fenomeni di subsidenza/interferenza con opere preesistenti

Lungo il tracciato della galleria di linea sono presenti alcuni edifici di civile abitazione o edifici destinati a piccole attività commerciali ed industriali (Rif. [45]).

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO N RADDOPPIO T I LOTTO FUNZ	IAPOLI – B RATTA AF LIONALE A	ARI PICE – ORSAR PICE - HIRPIN	A NIA		
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	45 di 222

9 FASE DI TERAPIA

Nel presente capitolo sono definiti gli interventi necessari per garantire la stabilità del cavo a breve e a lungo termine, in accordo con le indicazioni provenienti dalla fase conoscitiva e dall'analisi del comportamento deformativo allo scavo (fase di diagnosi). Sono descritte le caratteristiche principali delle sezioni tipo di avanzamento, il loro campo di applicazione e la successione delle fasi esecutive; i dettagli delle sezioni di scavo e consolidamento sono illustrati nei pertinenti elaborati progettuali.

9.1 Definizione delle sezioni tipo

Per la realizzazione della tratta in naturale della galleria si utilizzerà la tecnica dello scavo in tradizionale mediante avanzamenti a piena sezione per sfondi aventi lunghezza variabile in funzione del contesto geotecnico.

In funzione delle caratteristiche geotecniche delle formazioni attraversate e del loro comportamento allo scavo, sono state definite 5 diverse sezioni tipo (8 considerando anche 3 sezioni allargate per visibilità segnali in curva la cui applicazione è prevista tra le p.k. 3+480.00 e 3+632.00), intese come complesso inscindibile di modalità operative, fasi di lavoro, interventi di stabilizzazione, confinamento, contenimento, drenaggio e delle relative tecnologie esecutive.

Per ciascuna sezione tipo sono previsti eventuali opportuni interventi di presostegno e precontenimento al fronte ed al contorno, l'installazione a ridosso del fronte di scavo di un rivestimento provvisorio costituito da spritzbeton fibrorinforzato e centine metalliche ed infine il getto dei rivestimenti definitivi di arco rovescio e calotta. La gestione delle acque in sotterraneo è garantita dall'installazione eventuale di 3+3 drenaggi in avanzamento, dall'impermeabilizzazione a tergo dei rivestimenti definitivi di calotta e da un tubo microfessurato, al piede dell'impermeabilizzazione, di presidio per eventuale drenaggio delle acque presenti nelle formazioni attraversate.

Nei paragrafi a seguire si riporta una sintetica descrizione delle sezioni tipo definite, che trovano completa rappresentazione negli elaborati grafici di progetto. Si precisa che per tutte le sezioni la variabilità del \pm 20% indicata per gli interventi di precontenimento è relativa all'incidenza del consolidamento (lunghezza o numero).

Per la distribuzione delle tratte di applicazione delle diverse sezioni tipo si rimanda invece al profilo geotecnico della galleria di linea (Rif. [17]).

9.1.1 Sezione tipo B1

La sezione tipo B1 è una sezione tronco-conica che prevede interventi di precontenimento del fronte e presostegno al contorno, con campi di avanzamento da 8,5 m. Ne è prevista l'applicazione come sezione eventuale quando è presente sulla calotta della galleria il Flysch Rosso – facies calcarea (FYR2) (imbocco lato Napoli) e nelle zone di bassa copertura nell'Unità ANZ2.

Sono di seguito elencati i principali elementi caratterizzanti la sezione B1, ordinati secondo le fasi esecutive previste:

• precontenimento del fronte realizzato mediante 30 elementi strutturali in VTR, L=14,5 m (sovrapposizione minima 6,0 m) cementati in foro con miscele cementizie L'incidenza del preconsolidamento (numero o lunghezza degli elementi) potrà avere una variabilità del ±20%;

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	46 di 222

- presostegno al contorno (entro un angolo di 120° in calotta) realizzato mediante 33 tubi in acciaio valvolati, L=12,0 m (sovrapposizione minima 3,5 m, interasse 0,4 ±20% m);
- scavo a piena sezione per singoli sfondi di 1,0 m secondo campi di avanzamento tronco-conici di lunghezza pari a 8,5 m;
- rivestimento provvisorio (ad ogni sfondo) composto da 0,25 m di spritz-beton fibrorinforzato e doppie centine IPN180 con passo 1,0 m;
- arco rovescio (spessore 0,90 m) e murette in calcestruzzo armato gettati ad una distanza massima dal fronte pari a 1,5 diametri;
- calotta in calcestruzzo armato (spessore variabile da 0,50 m a 1,15 m) gettata ad una distanza massima dal fronte pari a 4 diametri.

9.1.2 Sezione tipo B2

La sezione tipo B2 è una sezione cilindrica che prevede interventi di precontenimento del fronte, con campi di avanzamento da 12,0 m. Ne è prevista l'applicazione come sezione eventuale sia nel Flysch Rosso -facies pelitica (FYR) che nell'Unità ANZ2a quando alla scala del fronte la componente marnosa risulta prevalente e il fronte mostra un comportamento stabile a breve termine.

Sono di seguito elencati i principali elementi caratterizzanti la sezione B2, ordinati secondo le fasi esecutive previste:

- precontenimento del fronte realizzato mediante 50 elementi strutturali in VTR, L=20,0 m (sovrapposizione minima 8,0 m) cementati in foro con miscele cementizie L'incidenza del preconsolidamento (numero o lunghezza degli elementi) potrà avere una variabilità del ±20%;
- scavo a piena sezione per singoli sfondi di 1,0 m secondo campi di avanzamento di lunghezza pari a 12,0 m;
- rivestimento provvisorio (ad ogni sfondo) composto da 0,25 m di spritz-beton fibrorinforzato e doppie centine IPN180 con passo 1,0 m ± 20%;
- arco rovescio (spessore 0,90 m) e murette in calcestruzzo armato gettati ad una distanza massima dal fronte pari a 1,5 diametri;
- calotta in calcestruzzo armato (spessore 0,80 m) gettata ad una distanza massima dal fronte pari a 4 diametri.

9.1.3 Sezione tipo B2allargata

La sezione tipo B2allargata è una sezione cilindrica che prevede interventi di precontenimento del fronte, con campi di avanzamento da 12,0 m. Ne è prevista l'applicazione tra le p.k. 3+480.00 e 3+632.00 in cui la galleria attraversa la formazione del Flysch Rosso- facies pelitica (FYR); in tale contesto i criteri di applicazione di tale sezione allargata sono i medesimi previsti per l'analoga sezione non allargata.

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO N RADDOPPIO T I LOTTO FUNZ	IAPOLI – B RATTA AP LIONALE A	ARI ICE – ORSAR PICE - HIRPIN	A NIA		
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	47 di 222

Sono di seguito elencati i principali elementi caratterizzanti la sezione B2allargata, ordinati secondo le fasi esecutive previste:

- precontenimento del fronte realizzato mediante 58 elementi strutturali in VTR, L=20,0 m (sovrapposizione minima 8,0 m) cementati in foro con miscele cementizie L'incidenza del preconsolidamento (numero o lunghezza degli elementi) potrà avere una variabilità del ±20%;
- scavo a piena sezione per singoli sfondi di 1,0 m secondo campi di avanzamento di lunghezza pari a 12,0 m;
- rivestimento provvisorio (ad ogni sfondo) composto da 0,25 m di spritz-beton fibrorinforzato e doppie centine IPN180 con passo 1,0 m ± 20%;
- arco rovescio (spessore 1,10 m) e murette in calcestruzzo armato gettati ad una distanza massima dal fronte pari a 1,5 diametri;
- calotta in calcestruzzo armato (spessore 0,80 m) gettata ad una distanza massima dal fronte pari a 4 diametri.

9.1.4 Sezione tipo C1

La sezione tipo C1 è una sezione tronco-conica che prevede interventi di precontenimento del fronte e del contorno, con campi di avanzamento da 12,0 m. Ne è prevista l'applicazione come sezione prevalente nelle due tratte in prossimità degli imbocchi che attraversano materiali con comportamento del nucleo-fronte instabile (categoria C):

- Molasse di Anzano (ANZ2), nella facies prevalentemente costituita da arenarie scarsamente cementate,
- Formazione del Flysch Numidico (FYN), appartenente alla facies arenitica costituita da sabbia addensata.

Sono di seguito elencati i principali elementi caratterizzanti la sezione C1, ordinati secondo le fasi esecutive previste:

- precontenimento del fronte realizzato mediante 30 microtrattamenti in jet-grouting Ø300 armati con elementi strutturali in VTR, L=20,0 m (sovrapposizione minima 8,0 m) L'incidenza del preconsolidamento (numero o lunghezza degli elementi) potrà avere una variabilità del ±20%;
- precontenimento al contorno realizzato mediante 61 colonne in jet-grouting Ø600, L=16,5 m (sovrapposizione minima 4,5 m) e ulteriori 8+8 colonne al piede centina L'incidenza del preconsolidamento potrà avere una variabilità del ±20%;
- scavo a piena sezione per singoli sfondi di 1,0 m secondo campi di avanzamento tronco-conici di lunghezza pari a 12,0 m;
- rivestimento provvisorio (ad ogni sfondo) composto da 0,30 m di spritz-beton fibrorinforzato e doppie centine IPN200 con passo 1,0 m;

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO N RADDOPPIO T I LOTTO FUNZ	IAPOLI – B RATTA AF LIONALE A	ARI PICE – ORSAR PICE - HIRPII	IA NIA		
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	48 di 222

- arco rovescio (spessore 1,00 m) e murette in calcestruzzo armato gettati ad una distanza massima dal fronte pari a 1 diametro;
- calotta in calcestruzzo armato (spessore variabile da 0,60 m a 1,35 m) gettata ad una distanza massima dal fronte pari a 3 diametri.

9.1.5 Sezione tipo C2

La C2 è una sezione cilindrica che prevede interventi di precontenimento del fronte e del contorno, con campi di avanzamento da 10,0 m; ne è prevista l'applicazione nelle gallerie con comportamento del nucleo-fronte instabile (categoria C). Nello specifico è prevista l'applicazione della sezione C2 nelle seguenti formazioni:

- Formazione del Flysch Rosso facies prevalentemente pelitica (L<<P e L<P): la sezione è applicata nel caso di risposta deformativa contenuta;
- Molasse di Anzano (ANZ2a) facies costituita da argille marnose: la sezione è applicata come prevalente.

Sono di seguito elencati i principali elementi caratterizzanti la sezione C2, ordinati secondo le fasi esecutive previste:

- precontenimento del fronte realizzato mediante 40 elementi strutturali in VTR, L=20,0 m (sovrapposizione minima 10,0 m) cementati in foro con miscele cementizie L'incidenza del preconsolidamento (numero o lunghezza degli elementi) potrà avere una variabilità del ±20%;
- precontenimento al contorno realizzato mediante 51 elementi strutturali in VTR, L=16,0 m (sovrapposizione minima 6,0 m) cementati in foro con miscele espansive e ulteriori 8+8 elementi strutturali in VTR al piede centina L'incidenza del preconsolidamento potrà avere una variabilità del ±20%;
- scavo a piena sezione per singoli sfondi di 1,0 m secondo campi di avanzamento di lunghezza pari a 10,0 m;
- rivestimento provvisorio (ad ogni sfondo) composto da 0,30 m di spritz-beton fibrorinforzato e doppie centine IPN200 con passo 1,0 m ± 20%;
- arco rovescio (spessore 1,00 m) e murette in calcestruzzo armato gettati ad una distanza massima dal fronte pari a 1 diametro;
- calotta in calcestruzzo armato (spessore 0,90 m) gettata ad una distanza massima dal fronte pari a 3 diametri.

9.1.6 Sezione tipo C2allargata

La C2allargata è una sezione cilindrica che prevede interventi di precontenimento del fronte e del contorno, con campi di avanzamento da 10,0 m. Ne è prevista l'applicazione tra le p.k. 3+480.00 e 3+632.00 in cui la galleria attraversa la formazione del Flysch Rosso-facies pelitica (FYR); in tale contesto i criteri di applicazione di tale sezione allargata sono i medesimi previsti per l'analoga sezione non allargata.

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO N RADDOPPIO T I LOTTO FUNZ	IAPOLI – B RATTA AP LIONALE A	ARI ICE – ORSAR PICE - HIRPIN	A NIA		
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	49 di 222

Sono di seguito elencati i principali elementi caratterizzanti la sezione C2allargata, ordinati secondo le fasi esecutive previste:

- precontenimento del fronte realizzato mediante 46 elementi strutturali in VTR, L=20,0 m (sovrapposizione minima 10,0 m) cementati in foro con miscele cementizie L'incidenza del preconsolidamento (numero o lunghezza degli elementi) potrà avere una variabilità del ±20%;
- precontenimento al contorno realizzato mediante 53 elementi strutturali in VTR, L=16,0 m (sovrapposizione minima 6,0 m) cementati in foro con miscele espansive e ulteriori 8+8 elementi strutturali in VTR al piede centina L'incidenza del preconsolidamento potrà avere una variabilità del $\pm 20\%$;
- scavo a piena sezione per singoli sfondi di 1,0 m secondo campi di avanzamento di lunghezza pari a 10,0 m;
- rivestimento provvisorio (ad ogni sfondo) composto da 0,30 m di spritz-beton fibrorinforzato e doppie centine IPN200 con passo 1,0 m ± 20%;
- arco rovescio (spessore 1,10 m) e murette in calcestruzzo armato gettati ad una distanza massima dal fronte pari a 1 diametro;
- calotta in calcestruzzo armato (spessore 0,90 m) gettata ad una distanza massima dal fronte pari a 3 diametri.

9.1.7 Sezione tipo C2p

La sezione tipo C2p è una sezione cilindrica che prevede interventi di precontenimento del fronte e del contorno, con campi di avanzamento da 12,0 m; la lunghezza dei consolidamenti è tale da garantirne la doppia sovrapposizione sia al fronte sia al contorno; è previsto inoltre l'impiego della centina puntone come rivestimento provvisorio in arco rovescio.

Ne è prevista l'applicazione come sezione prevalente nella formazione del Flysch Rosso- facies pelitica (FYR) nel caso di risposta deformativa elevata.

La sezione C2p è prevista invece come eventuale nel tratto di attraversamento delle Molasse di Anzano (ANZ2a), qualora in fase di scavo dovessero riscontrarsi elevati livelli deformativi al contorno del cavo.

Sono di seguito elencati i principali elementi caratterizzanti la sezione C2p, ordinati secondo le fasi esecutive previste:

- precontenimento del fronte realizzato mediante 54 elementi strutturali in VTR, L=24,0 m (sovrapposizione minima 12,0 m) cementati in foro con miscele cementizie L'incidenza del preconsolidamento (numero o lunghezza degli elementi) potrà avere una variabilità del ±20%;
- precontenimento al contorno realizzato mediante 51 elementi strutturali in VTR, L=24,0 m (sovrapposizione minima 12,0 m) cementati in foro con miscele espansive e ulteriori 8+8 elementi

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO N RADDOPPIO T I LOTTO FUNZ	IAPOLI – B RATTA AF LIONALE A	ARI PICE – ORSAR PICE - HIRPIN	A NIA		
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	50 di 222

strutturali in VTR al piede centina L'incidenza del preconsolidamento potrà avere una variabilità del $\pm 20\%$;

- scavo a piena sezione per singoli sfondi di 1,0 m secondo campi di avanzamento di lunghezza pari a 12,0 m;
- rivestimento provvisorio (ad ogni sfondo) composto da 0,30 m di spritz-beton fibrorinforzato e centina singola HEB240 con passo 1,0 m ± 20%. Chiusura dell'arco rovescio provvisorio con centina puntone HEB240 con passo 1.00 m ± 20% e 0,30 m di spritz-beton;
- arco rovescio (spessore 1,10 m) e murette in calcestruzzo armato gettati ad una distanza massima dal fronte pari a 0.5 diametri;
- calotta in calcestruzzo armato (spessore 1,00 cm) gettata ad una distanza massima dal fronte pari a 2 diametri.

Nei tratti maggiormente critici di galleria parietale a bassa copertura in corrispondenza del sottoattraversamento del fosso e del passaggio al di sotto della frana quiescente tra le progressive 3+890 e 4+190 (tratto ricadente nella formazione del Flysch Rosso FYR), si prevede l'applicazione della sezione C2p con le seguenti variazioni rispetto a quanto sopra indicato:

- precontenimento del fronte realizzato mediante 70 elementi strutturali in VTR, L=24,0 m (sovrapposizione minima 12,0 m) cementati in foro con miscele cementizie L'incidenza del preconsolidamento potrà avere una variabilità del ±20%;
- precontenimento al contorno come sopra indicato;
- scavo a piena sezione per singoli sfondi di 0.80 m secondo campi di avanzamento di lunghezza pari a 12,0 m;
- rivestimento provvisorio (ad ogni sfondo) composto da 0,30 m di spritz-beton fibrorinforzato e centina singola HEB240 con passo 0.80 m ± 20%. Chiusura dell'arco rovescio provvisorio con centina puntone HEB240 con passo 0.80 m ± 20% e 0,30 m di spritz-beton;
- calotta e arco rovescio come sopra indicato armate con armatura passante.

9.1.8 Sezione tipo C2p allargata

La sezione tipo C2p allargata è una sezione cilindrica che prevede interventi di precontenimento del fronte e del contorno, con campi di avanzamento da 12,0 m; la lunghezza dei consolidamenti è tale da garantirne la doppia sovrapposizione sia al fronte sia al contorno. Ne è prevista l'applicazione tra le pk. 3+480.00 e 3+632.00 in cui la galleria attraversa la formazione del Flysch Rosso- facies pelitica (FYR); in tale contesto i criteri di applicazione di tale sezione allargata sono i medesimi previsti per l'analoga sezione non allargata.

Sono di seguito elencati i principali elementi caratterizzanti la sezione C2p allargata, ordinati secondo le fasi esecutive previste:

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA						
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	51 di 222	

- precontenimento del fronte realizzato mediante 58 elementi strutturali in VTR, L=24,0 m (sovrapposizione minima 12,0 m) cementati in foro con miscele cementizie L'incidenza del preconsolidamento (numero o lunghezza degli elementi) potrà avere una variabilità del ±20%;
- precontenimento al contorno realizzato mediante 53 elementi strutturali in VTR, L=24,0 m (sovrapposizione minima 12,0 m) cementati in foro con miscele espansive e ulteriori 8+8 elementi strutturali in VTR al piede centina L'incidenza del preconsolidamento potrà avere una variabilità del ±20%;
- scavo a piena sezione per singoli sfondi di 1,0 m secondo campi di avanzamento di lunghezza pari a 12,0 m;
- rivestimento provvisorio (ad ogni sfondo) composto da 0,30 m di spritz-beton fibrorinforzato e centina singola HEB240 con passo 1,0 m ± 20%. Chiusura dell'arco rovescio provvisorio con centina puntone HEB240 con passo 1.00 m ± 20% e 0,30 m di spritz-beton;
- arco rovescio (spessore 1,10 m) e murette in calcestruzzo armato gettati ad una distanza massima dal fronte pari a 0.5 diametri;
- calotta in calcestruzzo armato (spessore 1,00 cm) gettata ad una distanza massima dal fronte pari a 2 diametri.

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO N RADDOPPIO T I LOTTO FUNZ	IAPOLI – B RATTA AP LIONALE A	ARI ICE – ORSAR PICE - HIRPIN	A NIA		
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	52 di 222

9.2 Caratteristiche dei materiali strutturali

Si riportano di seguito le principali caratteristiche dei materiali impiegati nelle opere in progetto, con l'indicazione dei valori di resistenza e deformabilità adottati nelle verifiche, nel rispetto delle indicazioni del DM 14/01/2008 e della Circolare n.617/2009 (Rif. [1]; Rif. [2]).

Con riferimento ai rivestimenti in calcestruzzo, si sottolinea che la classe di resistenza riportata nelle tabelle che seguono è quella utilizzata ai fini della modellazione numerica e delle verifiche strutturali. Per la completa e puntuale definizione delle caratteristiche dei materiali previsti per la realizzazione dell'opera si rimanda all'elaborato dedicato (Rif. [44]).

Interventi di precontenimento

Elementi in vetroresina strutturali			
Resistenza a trazione caratteristica	f_{tk} = 450 MPa		
Resistenza a taglio	$\tau = 85 \text{ MPa}$		
Diametro di perforazione	>100 mm		

Elementi in vetroresina a 3 piatti				
Resistenza a trazione caratteristica	f _{tk} = 1000 MPa			
Resistenza a taglio	$\tau = 140 \text{ MPa}$			
Diametro di perforazione	>100 mm			

Acciaio per infilaggi al contorno				
Tipo	S 355			
Tensione caratteristica di rottura	$f_{tk} \ge 510 \text{ MPa}$			
Tensione caratteristica di snervamento	$f_{yk} \ge 355 \text{ MPa}$			
Tensione di snervamento di calcolo	$f_{yd} \ge 338.0 \text{ MPa}$			

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	53 di 222

Rivestimento provvisorio

Calcestruzzo proiettato (fibrorinforzato)					
Classe di resistenza	C 20/25				
Resistenza di progetto a compressione a 28 giorni	$f_{cd} = f_{ck}/1.5 = 13.33 MPa$				
Resistenza di progetto a compressione a 2 giorni	$f_{cd} = f_{ck}/1.5 = 8.67 \text{ MPa}$				
Modulo elastico a 28 giorni	$E_{cm} = 22000(f_{cm}/10)^{0.3} = 29962 \text{ MPa}$				
Modulo elastico a 2 giorni	$E_{cm} = 22000(f_{cm}/10)^{0.3} = 27485 \text{ MPa}$				

Acciaio per centine	
Tipo	S 275
Tensione caratteristica di rottura	$f_{tk} \ge 430 \text{ MPa}$
Tensione caratteristica di snervamento	$f_{yk} \ge 275 \text{ MPa}$
Tensione di snervamento di calcolo	f _{yd} ≥ 261.9 MPa

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	54 di 222

Rivestimenti definitivi

Calcestruzzo armato	
Classe di resistenza di calcolo	C 25/30
Resistenza di progetto a compressione a 28 giorni	f_{cd} = 0.85 f_{ck} /1.5 = 14.17 MPa
Modulo elastico a 28 giorni	$E_{cm} = 22000 (f_{cm}/10)^{0.3} = 31476 \text{ MPa}$
Tensione massima di compressione in esercizio (RFI DTC SI MA IFS 001 A. Rif. [9])	$\sigma_c = 0.55 f_{ck} = 13,75 \text{ MPa}$ combinazione caratteristica (rara) $\sigma_c = 0.40 f_{ck} = 10,00 \text{ MPa}$ combinazione quasi permanente
Tensione massima in condizioni di esercizio (NTC 2008.)	$\sigma_c = 0.6f_{ck} = 15,00 \text{ MPa}$ combinazione caratteristica (rara) $\sigma_c = 0.45f_{ck} = 11,25 \text{ MPa}$ combinazione quasi permanente

Acciaio per barre di armatura	
Тіро	B450C
Tensione caratteristica di rottura	$f_{tk} \ge 540 \text{ MPa}$
Tensione caratteristica di snervamento	f _{yk} ≥ 450 MPa
Resistenza di progetto	$f_{yd} = f_{yk} / \gamma_s = 391,3 \text{ MPa}$
Tensione massima di compressione in esercizio (RFI DTC SI MA IFS 001 A.)	$\sigma_{lim} = 0,75 f_{yk} = 337,5 MPa$
Tensione massima in condizioni di esercizio (NTC 2008.)	$\sigma_{\rm lim} = 0,80 \ f_{\rm yk} = 360 \ {\rm MPa}$

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA						
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	55 di 222	

9.3 Analisi e verifica delle sezioni tipo

Le soluzioni progettuali descritte nel capitolo precedente sono state analizzate per verificarne adeguatezza ed efficacia, con riferimento al modello geotecnico illustrato nel capitolo 7.4 e nel rispetto delle indicazioni della normativa vigente (Rif. [1] e Rif. [2]).

9.3.1 Criteri di verifica

Le analisi di stabilità del fronte di scavo sono state condotte secondo il metodo di Tamez (Rif. [27]) e con il Metodo di Broms & Bennermark (Rif. [29]).

Le analisi di interazione, in grado di simulare il comportamento del sistema opera-terreno nelle diverse fasi costruttive fino alla configurazione finale ed in condizioni di esercizio, sono state condotte mediante modelli numerici agli elementi finiti e attraverso il metodo delle curve caratteristiche.

Per ciascuna sezione tipo oggetto di verifica, le sezioni di analisi sono state definite individuando le condizioni (stratigrafiche e di copertura) più gravose nell'ambito delle relative tratte di applicazione in cui le sezioni stesse sono applicate come sezioni prevalenti.

9.3.1.1 <u>Stabilità del fronte e del cavo</u>

Le analisi di stabilità del fronte e del cavo sono mirate alla valutazione dello sviluppo di possibili meccanismi di collasso, con o senza propagazione verso la superficie, o di deformazioni e spostamenti elevati al contorno ed in superficie. Trattandosi di una verifica per uno stato limite ultimo di tipo GEO, si è utilizzato l'Approccio 1-Combinazione 2 (A2+M2+R2), con R2 =1.

Gli interventi di consolidamento del fronte, realizzati mediante elementi strutturali in VTR, sono simulati mediante un incremento di coesione equivalente del fronte (Δc) valutato attraverso il calcolo di una pressione equivalente al fronte (σ_3) determinata sulla base del valore minimo tra resistenza a trazione e resistenza a sfilamento dei singoli elementi di consolidamento, secondo le seguenti relazioni:

$$\Delta c = \frac{1}{2} \cdot \sqrt{k_P} \cdot \sigma_3^{VTR} \qquad \text{con } \sigma_3^{VTR} = \text{minimo} \left(\sigma_3^{VTR}{}_A, \sigma_3^{VTR}{}_B\right)$$
$$\sigma_{3,A}^{VTR} = \frac{\tau_{bk} \cdot L_A \cdot p_A}{A_i} \qquad \sigma_{3,B}^{VTR} = \frac{f_{tk} \cdot A_T}{A_i}$$

dove τ_{bk} è la tensione di aderenza all'interfaccia col terreno, L_A è la lunghezza utile dei consolidamenti resistente a sfilamento, p_A è il perimetro dell'interfaccia col terreno, f_{tk} è la resistenza a trazione dell'elemento in VTR, A_T è la sezione resistente a trazione dell'elemento in VTR e A_i rappresenta l'area di influenza del singolo elemento di consolidamento.

Per gli interventi di precontenimento al fronte che non prevedono l'impiego di elementi resistenti a trazione e sfilamento (colonne in jet-grouting utilizzate nella sezione tipo C1), l'effetto è simulato agendo direttamente sulle proprietà di rigidezza e resistenza dell'ammasso, mediando sull'area di scavo i parametri del terreno naturale e delle colonne trattate:

$$\Delta \mathbf{c'}_{k} \cdot \mathbf{A}_{jet} + \mathbf{c'}_{k} \cdot \mathbf{A}_{terr} = \mathbf{c}^{*}_{k} \cdot \mathbf{A}^{*}$$

dove:

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	56 di 222

 $\Delta c'_{k}$ = coesione del materiale trattato;

 A_{jet} = area delle colonne in jet-grouting;

 c'_k = coesione del terreno non interessato dal trattamento;

A_{terr} = area di terreno non interessato dal trattamento;

 $c_k^* = coesione equivalente;$

 A^* = area totale del fronte.

La coesione $(\Delta c'_k)$ del materiale trattato è stata calcolata a partire dalla resistenza a compressione monoassiale attribuibile al materiale consolidato ($\sigma_{c,jet}$), ipotizzando di mantenere immutato l'angolo d'attrito del materiale naturale, attraverso la seguente relazione:

$$\sigma_{c,jet} = \frac{2 \cdot \Delta c'_k \cdot \cos \varphi'_k}{\left(1 - \sin \varphi'_k\right)}$$

I valori di resistenza a compressione monoassiale ($\sigma_{c,jet}$) attribuiti al materiale consolidato sono stati ricavati da dati sperimentali di letteratura per formazioni analoghe a quelle di interesse.

Per gli interventi di precontenimento al contorno l'effetto dei consolidamenti viene tenuto in conto direttamente nei modelli numerici e simulato come un arco di materiale al contorno dello scavo avente proprietà meccaniche migliori rispetto a quelle iniziali del terreno. In particolare, nella regione consolidata sono incrementati i valori di coesione e di modulo elastico, mantenendo immutato l'angolo d'attrito del materiale naturale.

Le valutazioni relative all'effetto dei consolidamenti vengono condotte a partire dai parametri geotecnici caratteristici, ed adottando coefficienti parziali unitari sulle resistenze dei materiali; agli incrementi di coesione equivalente così calcolati può quindi essere applicato lo stesso coefficiente parziale previsto per la coesione dell'ammasso.

Per le verifiche eseguite con il metodo di Tamez, i risultati delle analisi sono stati esaminati in funzione dei valori dei coefficienti di sicurezza FSF e FS_3 calcolati secondo quanto riportato nei paragrafi precedenti (cfr. analisi diagnosi). Le verifiche si ritengono soddisfatte per valori del minore dei due coefficiente di sicurezza suddetti superiori a 1.0.

Per le verifiche eseguite con il metodo di Broms & Bennermark, i risultati delle analisi sono stati esaminati in funzione del rapporto di stabilità N calcolato attraverso la seguente relazione:

$$N = \frac{q_s - s}{c_u} + \frac{\gamma}{c_u} \cdot (C + R)$$

dove:

 q_s = sovraccarico eventualmente presente in superficie;

s = eventuale pressione di sostegno applicata al fronte (definita a partire dagli interventi di precontenimento previsti al fronte, come descritto nel presente paragrafo);

 c_u = resistenza al taglio, in condizioni non drenate, presente alla profondità della galleria;

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA						
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	57 di 222	

 γ = peso dell'unità di volume del terreno;

C = spessore del terreno di copertura della galleria;

R = raggio della galleria.

Le verifiche si ritengono soddisfatte per valori di N inferiori a 4.

9.3.1.2 Interazione opera-terreno

Il comportamento del sistema opera-terreno è stato analizzato nelle diverse fasi costruttive fino alla configurazione finale e in condizioni di esercizio. Le analisi sono mirate alla previsione del comportamento deformativo al contorno dello scavo e dei carichi attesi sui sostegni provvisori e sui rivestimenti definitivi, e, nel caso delle gallerie superficiali, alla valutazione degli effetti indotti al piano campagna. Le analisi consentono, pertanto, di verificare:

- stati limite ultimi relativi al raggiungimento delle resistenze degli elementi strutturali che costituiscono gli interventi di stabilizzazione, del rivestimento di prima fase e del rivestimento definitivo (stato limite ultimo di tipo STR);
- stati limite di esercizio SLE per il rivestimento definitivo.

Per le verifiche di stati limite ultimi STR, le analisi di interazione opera – terreno sono state condotte con i valori caratteristici delle azioni e dei parametri geotecnici, applicando i coefficienti parziali all'effetto delle azioni, adottando l'Approccio 1- Combinazione 1, conR1 =1. Pertanto, con la combinazione dei carichi fondamentale si è proceduto secondo questo schema:

- verifiche SLU interventi di stabilizzazione: $\gamma_E = 1,3$ applicato alle caratteristiche delle sollecitazioni N, M,T;
- verifiche SLU rivestimento di prima fase: $\gamma_E = 1,3$ applicato alle caratteristiche delle sollecitazioni N, M,T;
- verifiche SLU rivestimento definitivo: $\gamma_E = 1,3$ applicato alle caratteristiche delle sollecitazioni N, M, T.

Per la verifica degli stati limite di esercizio (SLE) del rivestimento definitivo in calcestruzzo armato, le analisi numeriche sono state condotte con i valori caratteristici delle azioni e dei parametri geotecnici, adottando le pertinenti combinazioni dei carichi per la verifica di fessurazione e la verifica delle tensioni di esercizio, secondo quanto previsto dal DM 14/01/2008 e Circolare n.617 (Rif. [1] e Rif. [2]).

Le analisi di interazione opera-terreno sono state condotte mediante modelli numerici agli elementi finiti con il codice di calcolo PLAXIS 2D 2017.

Il modello di calcolo è bidimensionale ed è riferito a condizioni di deformazione piana. Lo scavo della galleria viene simulato rilasciando in modo uniforme un sistema di forze equivalenti applicate sul contorno del profilo di scavo, tenendo conto della variazione del tasso di confinamento in funzione della distanza della sezione di calcolo dal fronte; in questo modo il problema tridimensionale dello scavo della galleria viene ricondotto ad un problema piano, con la possibilità di valutare le azioni sulle strutture di rivestimento al progredire degli avanzamenti.

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	58 di 222

Nello specifico, per la definizione delle percentuali di rilascio delle forze di scavo al variare della distanza dal fronte di scavo, sono state utilizzate le curve di deconfinamento costruite in base ad analisi assialsimmetriche dedicate.

Nel caso di sezioni con campo di avanzamento tronco-conico, per la definizione della geometria della sezione di scavo si fa riferimento alla sezione media. Congruentemente, i rivestimenti definitivi di calotta (a carpenteria variabile) sono verificati secondo lo spessore medio.

Il terreno viene modellato come un mezzo continuo elastico lineare perfettamente plastico con criterio di resistenza di Mohr-Coulomb.

L'effetto dei consolidamenti del fronte di scavo viene tenuto in conto in modo indiretto, nella definizione della percentuale di rilascio delle forze di scavo in corrispondenza del fronte.

Per interventi al fronte realizzati con elementi strutturali in vetroresina l'incremento di coesione equivalente è valutato attraverso il calcolo della pressione equivalente al fronte (σ 3) determinata sulla base del valore più basso tra resistenza a trazione e resistenza a sfilamento dei singoli elementi, secondo le seguenti relazioni:

$$\Delta c = \frac{1}{2} \sqrt{K_p} \cdot \sigma_3^{VTR}$$

con:

$$K_{p} = \frac{1 + sen\varphi}{1 - sen\varphi}$$
$$\sigma_{3}^{\text{VTR}} = \text{minimo}\left(\sigma_{3,A}^{\text{VTR}}, \sigma_{3,B}^{\text{VTR}}\right)$$

$$\sigma_{3,A}^{VTR} = \frac{\tau_{bk} \cdot L_A \cdot p_A}{A_i}$$

$$\sigma_{\mathbf{3},\mathbf{B}}^{VTR} = \frac{f_{tk} \cdot A_T}{A_i}$$

dove:

 τ_{bk} = tensione di aderenza all'interfaccia con il terreno,

 L_A = lunghezza utile dell'elemento,

- p_A = perimetro dell'interfaccia con il terreno,
- f_{tk} = resistenza a trazione dell'elemento in VTR,
- A_{T} = sezione resistente a trazione dell'elemento in VTR

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	59 di 222

A; = area di influenza del singolo elemento di consolidamento.

Per interventi di precontenimento al fronte che prevedono l'esecuzione di microtrattamenti in jet-grouting armati con vetroresina, l'incremento di coesione equivalente è valutato attraverso il calcolo della pressione equivalente al fronte (σ 3) determinata sulla base del valore più basso tra resistenza a trazione dell'elemento tubolare in vetroresina e la resistenza a sfilamento del micro-jet, secondo le seguenti relazioni:

$$\Delta c = \frac{1}{2} \sqrt{K_p} \cdot \sigma_3$$

con:

$$K_p = \frac{1 + sen\varphi}{1 - sen\varphi}$$

$$\sigma_3 = \text{minimo} (\sigma_{3,A}^{\text{JET}}, \sigma_{3,B}^{\text{JET}}, \sigma_{3,A}^{\text{JET}}, \sigma_{3,B}^{\text{JET}})$$

$$\sigma_{3,A}^{\text{JET}} \sigma_{3,A}^{\text{VTR}} = \frac{\frac{\tau_{bk} \cdot L_A \cdot p_A}{A_i}}{A_i}$$

$$\sigma_{3,B}^{\text{VTR}} = \frac{f_{tk} \cdot A_T}{A_i}$$

$$\sigma_{3,B}^{VTR}$$

dove:

 τ_{bk} = tensione di aderenza all'interfaccia tra il micro-jet e il terreno,

 L_{A} = lunghezza utile del micro-jet,

 p_A = perimetro dell'interfaccia del micro-jet con il terreno,

ftk = resistenza a trazione dell'elemento in VTR,

 A_{T} = sezione resistente a trazione dell'elemento in VTR

A, = area di influenza del singolo VTR.

Per gli interventi di precontenimento al contorno l'effetto dei consolidamenti viene tenuto in conto direttamente nei modelli numerici e simulato come un arco di materiale al contorno dello scavo avente proprietà meccaniche migliori rispetto a quelle iniziali del terreno. In particolare, nella regione consolidata sono incrementati i valori di coesione e di modulo elastico, mantenendo immutato l'angolo d'attrito del materiale naturale.

Le strutture di rivestimento provvisorio della galleria vengono simulate con elementi beam elastico-lineari, con proprietà di rigidezza ed inerzia definite considerando la sola sezione di spritz-beton, trascurando il contributo delle centine. In fase di verifica degli elementi strutturali, le sollecitazioni ottenute dalla modellazione (previa applicazione dei coefficienti parziali di Normativa), vengono gestite ripartendo lo sforzo normale (N) tra centine

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	60 di 222

e spritz-beton in base alle rigidezze assiali relative, mentre il taglio (T) e il momento flettente (M) vengono assegnati interamente alle centine.

In definitiva, dunque, lo spritz-beton viene verificato a semplice compressione secondo la seguente disuguaglianza (in accordo con la relazione 2.2.1 del D.M. 14/01/2008):

$$\sigma_{sb,d,max} = \frac{N_{Sd,sb}}{A_{sb}} \le f_{cd}$$

dove:

• *N*_{Sd,sb} rappresenta lo sforzo normale di calcolo sullo spritz-beton:

$$N_{Sd,sb} = N_{Sd} \frac{E_{sb} \cdot A_{sb}}{E_{sb} \cdot A_{sb} + E_{cent} \cdot A_{cent}};$$

- N_{Sd} rappresenta lo sforzo normale di calcolo;
- A_{sb} rappresenta l'area resistente dello spritz-beton;
- $E_{sb} \cdot A_{sb}$ rappresenta la rigidezza assiale dello spritz-beton;
- *E*_{cent} · *A*_{cent} rappresenta la rigidezza assiale della centina.

La verifica delle centine a taglio e pressoflessione (per tutte le classi di sezione, tenendo in conto eventuali instabilità locali) può essere condotta confrontando la tensione ideale calcolata a partire dalle tensioni indotte da ciascuna caratteristica della sollecitazione, con la resistenza di calcolo dell'acciaio, come di seguito specificato (cfr D.M. 14/01/2008 nel § 4.2.4.1.2):

$$\sigma_{cent,d,max} = \frac{N_{Sd,cent}}{A_{cent}} + \frac{M_{Sd}}{W_{cent}}$$
$$\tau_{cent,d} = \frac{V_{Sd}}{A_{V,cent}}$$
$$\sigma_{id,cent,d} = \sqrt[2]{\sigma_{cent,d,max}^2 + 3\tau_{cent,d}^2} \le f_{yd}$$

dove:

• *N_{Sd,cent}* rappresenta lo sforzo normale di calcolo sulla centina:

$$N_{Sd,cent} = N_{Sd} \frac{E_{cent} \cdot A_{cent}}{E_{sb} \cdot A_{sb} + E_{cent} \cdot A_{cent}}$$

- N_{Sd} rappresenta lo sforzo normale di calcolo;
- A_{cent} rappresenta l'area resistente della centina;
- $E_{sb} \cdot A_{sb}$ rappresenta la rigidezza assiale dello spritz-beton;

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	61 di 222

- $E_{cent} \cdot A_{cent}$ rappresenta la rigidezza assiale della centina;
- *W_{cent}* rappresenta il modulo resistente elastico della centina;
- *M*_{Sd} e *V*_{Sd} rappresentano il momento flettente e il taglio di calcolo;
- A_{V,cent} rappresenta l'area resistente a taglio della centina.

La verifica dello spritz-beton e delle centine deve essere effettuata nella fase di installazione del rivestimento di prima fase, nella fase di installazione dell'arco rovescio e in quella di installazione del rivestimento definitivo di calotta.

Le strutture di rivestimento definitivo della galleria vengono simulate con elementi di volume assegnando un legame costitutivo elastico-lineare. Per ottenere le sollecitazioni su quest'ultimi sono introdotti nel modello degli elementi beam in linea d'asse ai rivestimenti definitivi caratterizzati da rigidezza molto bassa (modulo elastico degli elementi diviso per un fattore di scala F=106). A causa della loro bassa rigidezza essi si deformano come il rivestimento definitivo senza interferire con il campo di sforzi e deformazioni agente all'interno dell'elemento di volume del rivestimento. Le sollecitazioni in output devono poi essere moltiplicate per lo stesso fattore di scala F per ottenere le sollecitazioni di verifica strutturale.

La verifica del rivestimento definitivo di arco rovescio è effettuata nella fase di installazione dell'arco rovescio, nella fase di installazione del rivestimento definitivo di calotta e nella fase che simula la condizione di lungo termine (decadimento del rivestimento di prima fase e dell'eventuale consolidamenti al contorno). La verifica del rivestimento definitivo di calotta deve essere eseguita nelle fasi di lungo termine, considerando la perdita di funzionalità degli interventi di stabilizzazione e miglioramento e del rivestimento di prima fase, con una conseguente ridistribuzione dello stato tensio-deformativo al contorno e nel rivestimento definitivo.

Per gallerie superficiali, oltre ad una modellazione completa in cui sono simulate in successione tutte le fasi esecutive (con le opportune percentuali di rilascio delle forze di scavo), ai fini delle verifiche strutturali la verifica del rivestimento definitivo viene condotta con una modellazione semplificata in termini di fasi, assegnando l'intero carico litostatico al rivestimento, senza alcun preventivo rilascio delle forze di scavo.

Per le verifiche nei confronti dell'azione sismica si rimanda alla sezione C2p p.k. 9+440 della galleria Melito le cui verifiche si considerano rappresentative per le tratte a bassa copertura in scavo tradizionale.

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	62 di 222

9.4 SEZIONE TIPO C1 p.k. 2+735

Le analisi e le verifiche riportate di seguito sono relative al tratto a basse coperture prossimo all'imbocco lato Bari in cui la galleria attraversa la formazione ANZ2 e la sezione C1 è prevista applicata come sezione prevalente. Le verifiche sono da intendersi rappresentative anche per il tratto prossimo all'imbocco lato Napoli in cui la galleria attraversa la formazione FYN.

Benchè alla p.k. indicata la falda risulti a quota cavo, nelle analisi condotte si è ipotizzata, a vantaggio di sicurezza, una quota della stessa al di sopra della calotta.

9.4.1 Stabilità del fronte e del cavo

Nel seguente tabella si riassumono i dati di input e i risultati dell'analisi di stabilità del fronte della sezione tipo C1 condotta con il metodo di Tamez.

I parametri geotecnici utilizzati nelle analisi (valori di progetto) così come i valori dell'incremento di coesione equivalente al fronte e al contorno, indotto dagli interventi di consolidamento, sono stati definiti coerentemente con quanto indicato nei criteri di verifica.

La resistenza a compressione monoassiale del materiale trattato è stata assunta pari a 5 MPa. A tale valore è stato applicato un fattore di sicurezza di 2,5 da cui un valore di calcolo pari a 2 MPa.

L'analisi evidenzia che, anche con l'applicazione dei coefficienti parziali corrispondenti alla combinazione A2+M2+R2 e quindi con i valori di progetto, il minore dei coefficienti di sicurezza FSF e FSF₃ risulta maggiore di 1. Si ritiene pertanto che il nucleo-fronte sia stabile e quindi la verifica di stabilità del fronte è soddisfatta.

Metodo di	Tame	Z
DATI GEOMETRICI		
Z (m)	10	copertura sulla calotta
W (m)	8	profondità superficie piezometrica da piano campagna; in assenza di falda indicare W=Z
h (m)	10,7	altezza dello scavo
b (m)	13,5	larghezza dello scavo
a (m)	1,0	lunghezza non sostenuta
DATI GEOTECNICI		
w. (kN/m ³)	20	peso medio dell'unità di volume del terreno sopra la calotta (su h ,)
m (khl/m ³)	20	peso medio dell'unità di volume del terreno da sogvare (su h)
12 (kh/m ³)	20	peso medio dell'unità di valume del terreno carso falda
Y3 (KIV/III)	20	peso meto dell'unità di volume del terreno sopra falda
Y4 (KN/m)	20	peso medio dell'unità di volume del terreno sotto faida
C ₁ (KPa)	138	valore medio della coesione al fronte (su h)
C ₂ (kPa)	29,76	valore medio della coesione dalla calotta lino a h t
C _{2m} (kPa)	30	valore medio della coesione dalla calotta a plano campagna
\$ m (°)	26	valore medio dell'angolo di attrito dei materiali presenti dall'arco rovescio a piano campagna
(°)	26	valore medio dell'angolo di attrito dei materiali presenti dall'arco rovescio fino a h t
DATI PER IL CALCO	LO DEL	VOLUME DI TERRENO POTENZIALMENTE INSTABILE
ф _т (°)	21,32	valore medio dell'angolo di attrito dei materiali presenti dall'arco rovescio a piano campagna
C _{2m} (kPa)	23,81	valore medio della coesione dalla calotta a piano campagna
o (kPa)	69.7	$\sigma = 2c\sqrt{Kn}$
o _c (n a)	00,1	$O_c = 2c \sqrt{\kappa p}$
		$tg \varphi_m$ sec = 0
f	0,732	$f = \begin{cases} f = c' \\ f = $
		(orm oc
		(0)
l (m)	7,311	$l = h \times lg \left[45^{\circ} - \frac{\pi m}{2} \right]$
		N 47
D ()		P_{1} (150 φ_{p})
в (m)	28,121	$B = b + 2h \times lg \left(45^{2} - \frac{1}{2} \right)$
		B
h ₁ (m)	10,000	$h_1 = \frac{D}{2k}$ o $h_1 = Z$ se $h_1 > Z$
- 1	0.000	
s (m)	0,000	$S = Z - W - h_1$ COefficiente che entra nel calcolo di $\tau_{m2} = \tau_{m3}$
DATI PER IL CALCO	LO DEL	COEFFICIENTE DI STABILITA'
φ (°)	21,32	valore medio dell'angolo di attrito dei materiali presenti dall'arco rovescio fino a h $_{ m f}$
C ₂ (kPa)	23,81	valore medio della coesione dalla calotta fino a h t
C1 (kPa)	110,40	valore medio della coesione al fronte (su h)
γ _w (kN/m ³)	10	peso dell'unità di volume dell'acqua
v. (kN/m ³)	20,00	peso medio dell'unità di volume del terreno sopra la calotta (su h ,)
as (kN/m ³)	20.00	neso medio dell'unità di volume del terreno da scavare (su h)
12 (INI/m ³)	20.00	naca madia dall'unità di uskuma dal tarrana conra laida
23 (KIN/III)	20,00	peso medio dell'una di voluna del teneno sopra faida
γ ₄ (KN/m [*])	20,00	peso medio deirunita di volume dei terreno sotto raida
K ₀ (-)	0,65	coefficiente di spinta a riposo 0,6365043
K _A (-)	0,5	coefficiente di spinta attiva 0,467
Z/h (-)	0,9	discriminante galleria superficiale/galleria profonda Z/h=3
U (kPa)	20	$U = \gamma_w (Z - W)$
γ∗Z (kPa)	200	
56 A A		
		$\frac{\overline{C}_{n} + K_{0}}{C_{n} + \frac{1}{N_{0}}} = \frac{(\overline{\gamma}_{2} - \gamma_{m}) \times (Z - W)}{(Z/h < 3)}$
		$2\sqrt{K_A}$ 2
τ _{m2} (kPa)	193	$\tau_{m2} = 1$ $F \begin{bmatrix} 2 \sqrt{C} & (\overline{v} - v) \\ - \sqrt{C} & (\overline{v} - v) \end{bmatrix}$
		$\left \overline{C}_{2} + \frac{\kappa_{0}}{2}\right W\overline{\gamma}_{3} + (Z - h - W) \times (\overline{\gamma}_{1} - \gamma_{w}) + \frac{J + Q_{1}}{\sqrt{w}} - \frac{(y_{2} - \gamma_{w}) \times (Z - W)}{2} \text{ pergallerie profonde}(Z/h \ge 3)$
		[2 [V ^A _A 2]
		$\left(\overline{C}\right)$ par collaria suparficiali $(Z/k<3)$
τ _{m2} (kPa)	24	$\tau_{m3} = \begin{cases} c_2 & \text{pergatere superioral} \\ \hline c_2 & \hline$
110 ($\left[C_2 + \left\{0.25\left[W\gamma_3 + (Z - h_1 - W) \times (\gamma_1 - \gamma_m)\right] - U\right\} \times \operatorname{tg} \varphi_m \qquad \text{per gallerie profonde} (Z / h \ge 3)$
		[2(
A	229,3	$A = \left \frac{2(\mathbf{r}_{m2} - \mathbf{r}_{m3})}{(\mathbf{r}_{m3} + 2\mathbf{r}_{m3})^2} + 2\mathbf{r}_{m3} \right \times \frac{n_1}{r_1}$
		$\left[\left(1+a/l \right)^{n} \right] b$
		[2m] h
В	55,4	$B = \left \frac{dv_{m3}}{dv_{m} + dv_{m}} \right \times \frac{dv_{m}}{h}$
		$\left[\left(1+a/t\right)\times\sqrt{K_{A}}\right]^{-H}$
		340
C	410,8	$C = \left \frac{3 + C_{\perp}}{(1 + \sigma I)^2 \times \sqrt{\kappa}} \right $
		$\begin{bmatrix} (1+an) \times \sqrt{K_n} \end{bmatrix}$
		[2h]
D	310,4	$D = \left 1 + \frac{2\pi}{3Z(1 + \sigma/I)^2} \right \times (\gamma Z - P_g)$
		[settimeter]
RISULTATI		Galleria superficiale
P _E (kPa)	0	
CS (-)	2 24	CC (A + B + C)
5.5. ()	2,24	$c_0 = \frac{D}{D}$
CS. ()	250	$CS = \frac{2 \cdot \tau_{m3}}{2} \times \frac{h}{h} \times (1 + \frac{b}{h})$
0.0.3 (7)	2,50	$(\gamma Z - P_e) b (1 a)$

Tabella 15 - Analisi di stabilità del fronte Sez. C1 : dati di input e risultati dell'analisi

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	64 di 222

9.4.2 Interazione opera-terreno

Nella tabella seguente si riassumono i dati di input che caratterizzano la sezione geotecnica utilizzata per le analisi numeriche di interazione della sezione tipo C1 .

La sezione di analisi è relativa ad una condizione di bassa. La presenza della falda è stata simulata nell'analisi alla quota indicata in tabella.

Stratigrafia di calcolo		C	Foldo		<i>c</i> '			E'	1-
Formazione	Profondità da p.c.		Falua	Ŷ	С _К	Ψк	C _{uK}	E	к ₀
[-]	[m]	[m]	[m da p.c.]	[kN/m ³]	[kPa]	[°]	[kPa]	[MPa]	[-]
ANZ2	$0 \div 18$			20	5	26	-	100	0.56
ANZ2a	18 ÷ 20	10	8	19	30	24	-	250	0.59
FYR	>20			19	40	24	-	400	0.59
C = coperture	ı (rispetto alla calott	a)							
$\gamma = peso \ per \ u$	nità di volume								
c'_{K} =coesione	drenata								
ϕ'_{K} =angolo di attrito interno									
$cu_K = coesione non drenata$									
$E'=modulo\ elastico\ drenato$									
$K_o = coefficient$	$K_{o} = coefficiente di spinta a riposo$								

Tabella 16 - Analisi di interazione Sez. C1 : definizione della stratigrafia di calcolo

Il consolidamento del fronte, simulato mediante una pressione equivalente σ_3 applicata al fronte di scavo ricavata secondo quanto indicato nei criteri di verifica riportati nel paragrafo precedente, interviene nella modellazione FEM in maniera implicita attraverso l'applicazione delle percentuali di rilascio.

Il consolidamento al contorno, applicato su una fascia di circa 0.40m, è caratterizzato dai parametri di seguito riportati, calcolati tenendo conto dell'incremento della coesione e rigidezza determinato dalle colonne di jet grouting al contorno dello scavo.

σc	γ	c_k	E
[MPa]	[kN/m ³]	[kPa]	[MPa]
2.0	21	624	2000

Tabella 17 - Parametri per la modellazione del consolidamento al contorno

Con riferimento all'asse della galleria, la griglia di calcolo presenta un'estensione laterale di 100 m (per una larghezza totale di 200 m) e un'altezza complessiva di 46 m. Il numero complessivo degli elementi è pari a circa 5763 mentre i nodi sono circa 46869.

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	65 di 222

9.4.3 Fasi e percentuali di rilascio

I tassi di deconfinamento sono stati calcolati mediante analisi assialsimmetrica e curva caratteristica numerica. Nell'analisi assialsimmetrica è stato inserito il consolidamento del fronte simulato mediante la pressione equivalente σ_3 applicata al fronte di scavo (cfr. tabella paragrafo precedente).

Figura 30 - Sez. C1 – Curva caratteristica di convergenza numerica

Figura 31 - Sez. C1 – Spostamenti radiali modello assialsimmetrico in funzione della distanza dal fronte

GRUPPO FERROVIE DELLO STATO ITALIANE	ALFERR ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSA JELLO STATO ITALIANE			A NIA		
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	66 di 222

Figura 32 - Sez. C1 – Calcolo percentuale di rilascio $\lambda_{F}\text{-}$ al fronte

Nella tabella successiva è schematizzata la successione delle fasi di calcolo nelle quali è articolata l'analisi di interazione opera-terreno. Le fasi di scavo sono state modellate in condizioni drenate durante lo scavo.

Al termine del processo di scavo è stata simulata la fase di lungo termine in cui è stata innalzata la falda al completo contorno dello scavo e la falda è stata posta alla quota indicata nella Tabella 16.

Fase	Descrizione	Rilascio forze scavo (λ)
0-1	Inizializzazione stato tensionale geostatico	0.00
2	Posizione limite della zona di consolidamento al contorno del cavo	0.135
3	Attivazione consolidamenti al contorno e rilascio a cavo libero in corrispondenza del fronte	0.465
4	Esecuzione dello sfondo elementare di 1 m	0.708
5	Installazione del rivestimento di prima fase e scarico a 6 m dal fronte	0.920
6	Installazione dell'arco rovescio e scarico a 24 m dal fronte	0.990

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA							
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	67 di 222		

7	Installazione del rivestimento definitivo di calotta (scarico completo)	1.00
8	Condizione di lungo termine (decadimento del rivestimento di prima fase/innalzamento falda con decadimento dei consolidamenti al contorno), attivazione sovraccarico in superficie	1.00
9	Condizione di lungo termine (decadimento del rivestimento di prima fase/innalzamento falda con decadimento dei consolidamenti al contorno) a partire dalla fase 1, attivazione sovraccarico in superficie	1.00

Tabella 18 - Analisi di interazione - Sezione C1 : fasi di calcolo

9.4.4 Esame dei risultati

L'analisi si articola in sette successive fasi di calcolo (più le due di lungo termine), che permettono di descrivere i differenti interventi costruttivi e di schematizzare le differenti condizioni di carico per i rivestimenti. Le fasi, descritte al paragrafo precedente, sono illustrate nell'allegato relativo alle sezione in esame.

Lo stesso allegato illustra, per ciascuna fase, le componenti verticale e orizzontale degli spostamenti totali cumulati, i vettori degli spostamenti totali, i punti al contorno del cavo dove si hanno plasticizzazioni e l'orientamento delle direzioni principali efficaci.

La Tabella 19 riporta, per ogni fase di calcolo, i risultati principali in termini di quadro deformativo e tensionale e di localizzazione delle plasticizzazioni nella zona del cavo, distinguendo tra la zona di calotta, dei piedritti e dell'arco rovescio.

La Figura 33 consente di visualizzare la posizione dei nodi di chiave calotta, dei piedritti e dell'arco rovescio cui si riferiscono i dati riportati nella tabella.

	calotta		piedritti						arco rovescio			Fascia	
Fase	u [cm]	σ ₁ [kPa]	σ ₃ [kPa]	u [cm]	σ ₁ [kPa]	σ ₃ [kPa]	u [cm]	σ ₁ [kPa]	σ ₃ [kPa]	u [cm]	σ ₁ [kPa]	σ ₃ [kPa]	plasticizzata
2	0.62	-100	-65	0.20	-250	-98	0.20	-250	-98	0.03	-208	-134	Punti isolati ai piedritti
3	1.39	-117	-76	0.58	-289	-107	0.58	-289	-107	-0.07	-184	-125	Fascia di spessore 1m ai piedritti e 0.5m al di sotto della zona di muretta
4	2.00	-145	-86	0.95	-303	-112	0.95	-303	-112	-0.12	-203	-99	Fascia di spessore 2m ai piedritti e 2m al di sotto della zona di muretta
5	4.90	-166	-102	4.63	-288	-117	4.63	-288	-117	-0.24	-173	-56	Fascia di spessore massimo pari a 5m

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARI RADDOPPI I LOTTO FU	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA						
GALLERIA GROTTAMINARDA Relazione geotecnica e di calcolo galleria naturale	COMMESS IF0G	A LOTTO 01	CODIFICA D 07 RB	DOCUMENTO GN0100 001	REV. A	FOGLIO 68 di 222		
					alle	reni, con		

													estensione al p.c. e 3m al di sotto della zona di muretta
6	5.00	-166	-102	4.69	-288	-117	4.69	-288	-117	-0.21	-173	-56	Fascia di spessore limitato ai piedritti e al di sotto della zona di muretta
7	5.16	-166	-101	4.79	-298	-119	4.79	-298	-119	-0.12	-182	-63	Fascia di spessore circa 1.5m ai piedritti e al di sotto della zona di muretta
8	4.42	-161	-133	4.01	-297	-241	4.01	-297	-241	-0.69	-309	-198	Fascia con spessore 0.5m al contorno dello scavo e bande di spessore 1m che si sviluppano sino a p.c.
9	0.18	-214	-128	0.13	-386	-278	0.13	-386	-278	-0.39	-289	-221	Fascia con spessore 0.5m alle reni
u/=sp	ostament	o totale c	umulativ	o (positivo ·	o se abba	ssamente	o, negativo	o se solle	vamento)			
$\sigma_1 = st$	orzo prin	cipale tot	ale mass	ито									

 σ_1 = sforzo principale totale massimo σ_3 = sforzo principale totale minimo

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA							
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	69 di 222		

Figura 33 - Nodi rilevati nella zona del cavo

FASE 2

Viene simulato il rilascio a cavo libero in corrispondenza del momento precedente all'attivazione del consolidamento al contorno dello scavo. Il campo di spostamenti mostra spostamenti pari a circa .03cm in calotta e a.r. e 0.2 cm ai piedritti. Le zone plastiche rappresentate da punti isolati sui piedritti. Nell'intorno del cavo la massima tensione principale massima è di 250 kPa (piedritti) mentre la massima tensione principale minima è di 65 kPa (calotta).

FASE 3

Viene simulata l'esecuzione dello scavi sino alla posizione del fronte. Il cedimento cumulato in calotta è pari a 1.4 cm, lo spostamento cumulato ai piedritti raggiunge 0.5 cm, mentre il sollevamento cumulato in arco rovescio è di 0.1 cm. Le zone plastiche sono presenti in piedritto (circa 1m) ed al di sotto dei piedritti (circa 0.5m). Nell'intorno del cavo la massima tensione principale massima è di 289 kPa (piedritti) mentre la massima tensione principale minima è di 76 kPa (calotta).

FASE 4

Viene simulata l'esecuzione dello sfondo elementare di 1.0 m. Il cedimento cumulato in calotta è pari a 2.0 cm, lo spostamento cumulato ai piedritti raggiunge 0.7 cm, mentre il sollevamento cumulato in arco rovescio è di 0.2 cm. Le zone plastiche sono presenti in piedritto (circa 2m) ed al di sotto dei piedritti (circa 0.2m). Nell'intorno del cavo la massima tensione principale massima è di 302 kPa (piedritti) mentre la massima tensione principale minima è di 85 kPa (calotta).

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA							
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	70 di 222		

FASE 5

Viene simulata l'installazione del rivestimento di prima fase e l'avanzamento a 6 m dal fronte (distanza di getto dell'arco rovescio dal fronte). Il cedimento cumulato in calotta è pari a 5 cm, lo spostamento cumulato ai piedritti raggiunge 5.1 cm, mentre il sollevamento cumulato in arco rovescio è di 3.5 cm. Le zone plastiche si espandono a partire dalla base dei piedritti sino alle reni, raggiungendo uno spessore massimo di circa 5m, per poi estendersi sino in superficie. Al di sotto delle murette zone plastiche con spessore sino a 3m. Nell'intorno del cavo la massima tensione principale massima è di 287 kPa (piedritti) mentre la massima tensione principale minima è di 56 kPa (arco rovescio).

FASE 6

Viene simulata l'installazione dell'arco rovescio provvisorio e l'avanzamento a 24 m dal fronte. Il cedimento cumulato in calotta è pari a 5 cm, lo spostamento cumulato ai piedritti raggiunge 5.1 cm, mentre il sollevamento cumulato in arco rovescio è di 3.4 cm. Le zone plastiche si riducono a aree di poco spessore limitate ai piedritti e sotto la muretta. Nell'intorno del cavo la massima tensione principale massima è di 287 kPa (piedritti) mentre la massima tensione principale minima è di 56 kPa (arco rovescio).

FASE 7

Viene simulata l'installazione del rivestimento definitivo e lo scarico totale all'interno del cavo. Il cedimento cumulato in calotta è pari a 5.2 cm, lo spostamento cumulato ai piedritti raggiunge 5.2 cm, mentre il sollevamento cumulato in arco rovescio è di 3.2 cm. Le zone plastiche rispetto alla fase precedente si incrementano in estensione e spessore, raggiungendo circa 1.5m. Nell'intorno del cavo la massima tensione principale massima è di 298 kPa (piedritti) mentre la massima tensione principale minima è di 63 kPa (arco rovescio).

FASE 8

Viene simulato il comportamento di lungo termine caratterizzato dalla presenza della falda agente sul rivestimento definitivo ed il decadimento del rivestimento di prima fase con conseguente trasferimento degli sforzi sul rivestimento definitivo ed il decadimento dei parametri del consolidamento al contorno che tornano ad essere quelli del terreno originario. Il cedimento cumulato in calotta è pari a 4.6 cm, lo spostamento cumulato ai piedritti raggiunge 5.1 cm, mentre il sollevamento cumulato in arco rovescio è di 3.9 cm. Le zone plastiche presentano una fascia pari a circa 0.5m al contorno dello scavo e delle zone che si sviluppano sino a p.c. Nell'intorno del cavo la massima tensione principale massima è di 309 kPa (arco rovescio) mentre la massima tensione principale minima è di 133 kPa (calotta).

FASE 8

La fase risulta rappresentativa al solo fine della valutazione delle azioni sui rivestimenti.

In ogni modo, il cedimento cumulato in calotta è pari a 0.4 cm, lo spostamento cumulato ai piedritti raggiunge 0.1 cm, mentre il sollevamento cumulato in arco rovescio è di 0.3 cm. Le zone plastiche si presentano con estensione limitata alla zona delle reni, con spessore pari a circa 0.5m. Nell'intorno del cavo la massima tensione principale massima è di 386 kPa (piedritti) mentre la massima tensione principale minima è di 128 kPa (calotta).

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA							
GALLERIA GROTTAMINARDA	COMMESSA IF0G	LOTTO 01	CODIFICA D 07 RB	DOCUMENTO GN0100 001	REV. A	FOGLIO 71 di 222		
Relazione geolecnica e di calcolo galleria naturale			1 B	21.0100 001				

9.4.5 Verifiche strutturali del rivestimento di prima fase

Le verifiche strutturali sul rivestimento di prima fase sono state eseguite per le fasi di calcolo 5, 6, e 7. Le caratteristiche del rivestimento provvisorio sono riportate nella seguente tabella.

Caratteristiche	Spritz beton/Centine				
Spessore dello spritz beton[m]	0.30				
Area resistente dello spritz beton A_{sb} [m ²]	0.30				
Tipologia profilati	IPN 200				
Interasse longitudinale profilato [m]	2				
Area resistente della centina A_{cent} [cm ²]	33.4				
Modulo resistente elastico della centina W_{cent} [cm ³]	214				
Area resistente a taglio della centina $A_{V,cent}$ [cm ²]	15.6				

Tabella 20 - Analisi di interazione – Sezione tipo C1 : definizione delle caratteristiche del rivestimento provvisorio

La tabella seguente sintetizza le sollecitazioni ottenute, per ogni fase, nelle zone di maggiore interesse del rivestimento: zona di calotta, di contatto calotta-piedritti e dei piedritti, rilevate in corrispondenza dei nodi indicati nella figura a seguire.

	Sollecitazioni	Calotta	zona di cont pied	atto calotta- Iritto	piedritto		
_	Concordentia	Galotta	Sinistro	Destro	Sinistro	Destro	
S	N [kN/m]	-471	-521	-495	-262	-259	
Fase	M [kNm/m]	M [kNm/m] 4		-39	36	28	
	T [kN/m]	-1	-14	16	6	-5	
9 9	N [kN/m]	-660	-617	-591	-314	-309	
Fase	M [kNm/m]	6	-41	-40	33	27	
	T [kN/m]	-1	-15	17	0	-1	
7	N [kN/m] -660		-617	-591	-314	-309	
Fase	M [kNm/m]	6	-41	-40	33	27	
	T [kN/m]	-1	-15	17	0	-1	

Tabella 21 - Analisi di interazione – Sezione tipo C1 : Sollecitazioni nelle zona di maggior interesse del rivestimento di prima fase

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA							
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	72 di 222		

Figura 34 - Nodi rilevati del rivestimento di prima fase

In allegato si riportano, per ogni nodo del rivestimento, le sollecitazioni scaturite dall'analisi e le conseguenti verifiche: le verifiche strutturali del rivestimento di prima fase sono soddisfatte, per ciascuna fase, in tutti i punti.

9.4.6 Verifiche strutturali SLU del rivestimento definitivo

Nella tabella seguente si riportano le caratteristiche simulate dei rivestimenti di prima fase e definitivi.

Tipo di prerivestimento	Spritz beton/Rivestimento definitivo
Spessore dello spritz [m]	0.30
Spessore simulato del rivestimento definitivo di arco rovescio [m]	0.60-1.35 (1.00)
Spessore simulato del rivestimento definitivo di calotta [m]	1.00

Tabella 22 - Analisi di interazione - Sezione tipo C1 : definizione delle caratteristiche dei rivestimenti

La verifica strutturale del rivestimento definitivo prevede il confronto tra le sollecitazioni di calcolo, ottenute a partire dai risultati del modello numerico applicando i relativi coefficienti parziali, e le resistenze di calcolo definite dai punti M_{Rd} , N_{Rd} che individuano il dominio resistente nel piano M, N.

Per la verifica a taglio, il valore resistente di calcolo è ottenuto in accordo con la normativa vigente (DM 14/01/2008 par.4.1.2.1.3. e Circolare n.617/2009).
GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA							
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione geotecnica e di calcolo galleria naturale	IF0G 01 D 07 RB GN0100 001 A 73 di 222							

Il rivestimento definitivo è previsto armato sia in calotta che in arco rovescio. L'incidenza delle armature in calotta e in arco rovescio è di 50kg di acciaio per m³.

Le tabelle seguenti sintetizzano le sollecitazioni ottenute, per ogni fase, nelle zone di maggiore interesse del rivestimento: zona di calotta, di contatto calotta-piedritti e piedritti-arco rovescio, dei piedritti e di arco rovescio, rilevate in corrispondenza dei nodi delle figura a seguire.

	Sollecitazioni	Calotta	zona di conta piedr	itto calotta- itto	piedr	itto
			sinistro	destro	sinistro	destro
7	N [kN/m]	65	-109	-131	-253	-252.645
ase	M [kNm/m]	78	-17	-28	-82	-82
	T [kN/m]	0	-29	29	15	-15
8	N [kN/m]	-1185	-1274	-1310	-1220	-1254
ase	M [kNm/m]	107	-10	3	-176	-189
4	T [kN/m]	-6	-40	48	-39	42
6 9	N [kN/m]	-422	-1147	-1239	-1955	-1955
ase	M [kNm/m]	231	-18	-50	-318	-318
-	T [kN/m]	-1	-82	84	-16	16

Tabella 23 - Analisi di interazione – Sezione tipo C1 : Sollecitazioni nelle zone calotta-piedritto del rivestimento definitivo

	Collocitorioni	arco	zona di contat arc	to piedritto-
	Sollecitazioni	rovescio	sinistro	destro
9 9	N [kN/m]	-134	-109	-106
Fase	M [kNm/m]	48	35	34
	T [kN/m]	0	14	-15
7	N [kN/m]	-164	-189	-194
Fase	M [kNm/m]	121	29	24
	T [kN/m]	1	57	-57
8	N [kN/m]	-909	-1069	-1126
Fase	M [kNm/m]	495	-233	-286
	T [kN/m]	11	240	-221
6	N [kN/m]	-1423	-1689	-1741
Fase	M [kNm/m]	566	-289	-340
_	T [kN/m]	12	400	-394

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA							
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione geotecnica e di calcolo galleria naturale	IFUG	01	D 07 RB	GN0100 001	А	74 di 222		

Figura 35 - Nodi rilevati del rivestimento definitivo

In **calotta e piedritti** si dispongono 1+1 ϕ 20/20 con un copriferro netto di 4 cm. L'armatura longitudinale di ripartizione è costituita da barre ϕ 12/20. L'armatura a taglio è del tipo ϕ 12/40cm/40cm. La verifica viene condotta su di un'altezza della sezione pari a 95cm.

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA							
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	75 di 222		

Figura 36 - Dominio resistente SLU calotta (B=1.00 m, H=0. 90 m) – Fase 7

Figura 37 - Verifica SLU taglio calotta – Fase 7

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA						
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	76 di 222	

Figura 38 - Dominio resistente SLU calotta (B=1.00 m, H=0.95 m) - Fase 8

Figura 39 - Verifica SLU taglio calotta - Fase 8

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA							
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	77 di 222		

Figura 40 - Dominio resistente SLU calotta (B=1.00 m, H=0.95 m) - Fase 9

Figura 41 - Verifica SLU taglio calotta – Fase 9

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA							
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	78 di 222		

In **arco rovescio** si dispongono 1+1 ϕ 20/20 con un copriferro netto di 4 cm. L'armatura longitudinale di ripartizione è costituita da barre ϕ 12/20. L'armatura a taglio prevista consiste in ϕ 12/40cm/40cm.

Figura 42 - Dominio resistente SLU arco rovescio (B=1.00 m, H=1.00 m) - Fase 6

Figura 43 - Verifica SLU taglio arco rovescio - Fase 6

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA						
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	79 di 222	

Figura 44 - Dominio resistente SLU arco rovescio (B=1.00 m, H=1.00 m) – Fase 7

Figura 45 - Verifica SLU taglio arco rovescio - Fase 7

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA							
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	80 di 222		

Figura 46 - Dominio resistente SLU arco rovescio (B=1.00 m, H=1.00 m) - Fase 8

Figura 47 - Verifica SLU taglio arco rovescio – Fase 8

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA							
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	81 di 222		

Figura 48 - Dominio resistente SLU arco rovescio (B=1.00 m, H=1.00 m) - Fase 9

Figura 49 - Verifica SLU taglio arco rovescio - Fase 9

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA							
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione geotecnica e di calcolo galleria naturale	IF0G 01 D 07 RB GN0100 001 A 82 di 222							

9.4.7 Verifiche strutturali SLE del rivestimento definitivo

Le verifiche SLE del rivestimento definitivo sono finalizzate a prevenire la formazione di un quadro fessurativo tale da compromettere la durabilità dell'opera. A tal fine la Normativa (DM 14/01/2008 par.4.1.2.1.3. e Circolare n.617/2009) stabilisce un limite massimo all'ampiezza delle fessure (SLE di fessurazione) ed al contempo, impone il rispetto di opportuni limiti tensionali sia nell'acciaio che nel calcestruzzo (SLE di tensione).

Nello specifico, le verifiche agli SLE di fessurazione della calotta e arco rovescio non evidenziano fessure.

Anche le verifiche SLE di tensione per la calotta e arco rovescio risultano soddisfatte sia lato calcestruzzo che lato acciaio rispettando i valori limite imposti sia dalla normativa NTC1008 che dal Manuale RFI 2016.

Figura 50 - Verifiche SLE tensione cls calotta – Fase 7

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA						
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	83 di 222	

Figura 52 - Verifiche SLE fessurazione calotta – Fase 7

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA						
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	84 di 222	

Figura 54 - Verifiche SLE tensione acciaio calotta – Fase 8

Figura 56 - Verifiche SLE tensione cls calotta – Fase 9

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA						
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	86 di 222	

Figura 58 - Verifiche SLE fessurazione calotta – Fase 9

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA						
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	87 di 222	

Figura 59 - Verifiche SLE tensione cls arco rovescio - Fase 6

Figura 60 - Verifiche SLE tensione acciaio arco rovescio – Fase 6

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	88 di 222

Figura 61 - Verifiche SLE fessurazione arco rovescio – Fase 6

Figura 62 - Verifiche SLE tensione cls arco rovescio – Fase 7

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA						
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	89 di 222	

Figura 63 - Verifiche SLE tensione acciaio arco rovescio - Fase 7

Figura 64 - Verifiche SLE fessurazione arco rovescio – Fase 7

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA						
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	90 di 222	

Figura 65 - Verifiche SLE tensione cls arco rovescio – Fase 8

Figura 66 - Verifiche SLE tensione acciaio arco rovescio – Fase 8

Figura 67 - Verifiche SLE fessurazione arco rovescio - Fase 8

Figura 68 - Verifiche SLE tensione cls arco rovescio - Fase 9

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA						
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	92 di 222	

Figura 69 - Verifiche SLE tensione acciaio arco rovescio - Fase 9

Figura 70 - Verifiche SLE fessurazione arco rovescio - Fase 9

I risultati delle analisi sono riassunti in tabelle; input e output grafici del modello di calcolo sono riportati integralmente in Allegato.

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA							
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	93 di 222		

9.5 SEZIONE TIPO C2p p.k. 3+920

Le analisi e le verifiche riportate di seguito sono relative al tratto a basse coperture e condizioni di parietalità che si riscontrano nel sottoattraversamento del fosso posto alla p.k. 3+920 c.a. in cui la galleria attraversa la formazione del FYR e la sezione C2p è prevista applicata come sezione prevalente. Le verifiche sono da intendersi rappresentative anche per il tratto prossimo all'imbocco lato Bari della galleria Melito in cui viene interessata la medesima formazione (cfr. relazione geotecnica e di calcolo della galleria Melito).

9.5.1 Stabilità del fronte e del cavo

Nel seguente tabella si riassumono i dati di input e i risultati dell'analisi di stabilità del fronte della sezione tipo C2p condotta con il metodo di Tamez.

I parametri geotecnici utilizzati nelle analisi (valori di progetto) così come i valori dell'incremento di coesione equivalente al fronte e al contorno, indotto dagli interventi di consolidamento, sono stati definiti coerentemente con quanto indicato nei criteri di verifica.

Riguardo l'incremento di coesione equivalente al fronte si segnala che il valore è stato ricavato con riferimento a 70 elementi in VTR, cementati con miscele espansive, con lunghezza minima di sovrapposizione pari a 12m.

L'analisi evidenzia che, anche con l'applicazione dei coefficienti parziali corrispondenti alla combinazione A2+M2+R2 e quindi con i valori di progetto, il minore dei coefficienti di sicurezza FSF e FSF₃ risulta maggiore di 1. Si ritiene pertanto che il nucleo-fronte sia stabile e quindi la verifica di stabilità del fronte è soddisfatta.

Metodo di	Tame	22
DATI GEOMETRICI		
7 (m)	10	copertura sulla calotta
W (m)	10	nolondità superficie niezometrica da niano campagna: in assenza di falda indicare W-Z
h (m)	10 38	allezza dello scavo
h (m)	13.63	jarahezza della scavo
2 (m)	1.0	lumbaza non sostenita
	1,0	ia grezza nun sustenuta
DATI GEOTECNICI		
γ ₁ (KN/m ⁻)	19	peso medio dell'uma di volume dell'erreno sopra la calola (su n t)
γ ₂ (kN/m ⁻)	19	peso medio dell'unità di volume del terreno da scavare (su n)
γ ₃ (kN/m°)	19	peso medio dell'unità di volume del terreno sopra falda
γ ₄ (kN/m ³)	19	peso medio dell'unità di volume del terreno sotto falda
C ₁ (kPa)	120	valore medio della coesione al fronte (su h)
C ₂ (kPa)	48	valore medio della coesione dalla calotta fino a h t
C _{2m} (kPa)	48	valore medio della coesione dalla calotta a piano campagna
•m (°)	16	valore medio dell'angolo di attrito dei materiali presenti dall'arco rovescio a piano campagna
(°)	16	valore medio dell'angolo di attrito dei materiali presenti dall'arco rovescio fino a h ₁
DATI PER IL CALCO	LO DEL	VOLUME DI TERRENO POTENZIALMENTE INSTABILE
φ _m (°)	12,92	valore medio dell'angolo di attrito dei materiali presenti dall'arco rovescio a piano campagna
C _{2m} (kPa)	38,40	valore medio della coesione dalla calotta a piano campagna
σ. (kPa)	96.4	$\sigma = 2c\sqrt{Kn}$
02 (10 11)	COLL	ο, <u>ε</u> ωγ.μ.
		$tg \varphi_m$ sec = 0
1	0,628	$f = \begin{cases} tg \varphi_{-} + \frac{c'}{c} & se c' \neq 0 \end{cases}$
		σ_{c}
		(in Pr
l (m)	8,268	$t = h \times tg\left(45^{\circ} - \frac{1}{2}\right)$
B (m)	30,167	$B = b + 2h \times te\left(45^{\circ} - \frac{\varphi_m}{2}\right)$
- ()		
h (B = 1 T $ab = 7$
n ₁ (m)	10,000	$n_1 - \frac{1}{2f}$ o $n_1 = Z$ so $n_1 > Z$
s (m)	0.000	$S = Z - W - h$ coefficiente che entra nel calcolo di $\tau_{m2} \in \tau_{m3}$
DATI PER IL CALCO	DI O DEL	COEFFICIENTE DI STABILITA'
ф (°)	12.92	valore medio dell'annolo di attrito dei materiali presenti dall'arco rovescio fino a h .
C_{r} (kPa)	39.40	valore medio della coesione della calotta fino a h
$C_2(kRa)$	06.00	valara madia dalla casalana al kanta (nu h)
(KPA)	95,00	valore medio della doestone al nonte (su n)
γ _w (KIV/m ⁻)	10	peso deil unità di volume dell'acqua
γ ₁ (kN/m°)	19,00	peso medio dell'unità di volume del terreno sopra la calotta (su h t)
γ ₂ (kN/m°)	19,00	peso medio dell'unità di volume del terreno da scavare (su h)
γ ₃ (kN/m³)	19,00	peso medio dell'unità di volume del terreno sopra falda
γ ₄ (kN/m ³)	19,00	peso medio dell'unità di volume del terreno sotto falda
K ₀ (-)	0,7	coefficiente di spinta a riposo 0,7764112
K _A (-)	0,6	coefficiente di spinta attiva 0,635
Z/h (-)	1.0	discriminante galleria superficiale/galleria profonda Z/h=3
U (kPa)	0	$U = \gamma_w (Z - W)$
v+Z (kPa)	190	
1-2 (2)		
		$\left \frac{1}{C} + K_0 \right 3.4\overline{C}_1 - (\overline{\gamma}_2 - \gamma_\mu) \times (Z - W) $
10.000 D		$C_2 + \frac{1}{2} \sqrt{K_A} = \frac{1}{2}$
τ _{m2} (kPa)	186	$\tau_{m2} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$
		$\left \overline{C}_{2} + \frac{\kappa_{0}}{2}\right W\overline{\gamma}_{3} + (Z - h_{1} - W) \times (\overline{\gamma}_{1} - \gamma_{w}) + \frac{54C_{1}}{\sqrt{w}} - \frac{(\gamma_{2} - \gamma_{w}) \times (Z - W)}{2} \right \text{ pergallerie profonde} (Z/h \ge 3)$
		$\begin{bmatrix} 2 \end{bmatrix}$ $\sqrt{K_4}$ $\begin{bmatrix} 2 \end{bmatrix}$
		$\left(\overline{C}\right)$ per collecte superficiali $\left(\overline{Z}/h<3\right)$
τ _{ma} (kPa)	38	$\tau_{m3} = \begin{cases} c_2 & \text{perganetic superior and } (Z / N < 3) \\ c_2 & \text{perganetic superior and } (Z / N < 3) \\ c_3 & \text{perganetic superior and } (Z / N < 3) \\ c_3 & \text{perganetic superior and } (Z / N < 3) \\ c_3 & \text{perganetic superior and } (Z / N < 3) \\ c_3 & \text{perganetic superior and } (Z / N < 3) \\ c_3 & \text{perganetic superior and } (Z / N < 3) \\ c_4 & \text{perganetic superior and } (Z / N < 3) \\ c_5 & \text{perganetic superior and } (Z / N < 3) \\ c_5 & \text{perganetic superior and } (Z / N < 3) \\ c_6 & \text{perganetic superior and } (Z / N < 3) \\ c_6 & \text{perganetic superior and } (Z / N < 3) \\ c_6 & \text{perganetic superior and } (Z / N < 3) \\ c_6 & \text{perganetic superior and } (Z / N < 3) \\ c_6 & \text{perganetic superior and } (Z / N < 3) \\ c_6 & \text{perganetic superior and } (Z / N < 3) \\ c_6 & \text{perganetic superior and } (Z / N < 3) \\ c_6 & \text{perganetic superior and } (Z / N < 3) \\ c_6 & \text{perganetic superior and } (Z / N < 3) \\ c_6 & \text{perganetic superior and } (Z / N < 3) \\ c_6 & \text{perganetic superior and } (Z / N < 3) \\ c_6 & \text{perganetic superior and } (Z / N < 3) \\ c_6 & \text{perganetic superior and } (Z / N < 3) \\ c_6 & \text{perganetic superior and } (Z / N < 3) \\ c_6 & \text{perganetic superior and } (Z / N < 3) \\ c_6 & \text{perganetic superior and } (Z / N < 3) \\ c_6 & \text{perganetic superior and } (Z / N < 3) \\ c_6 & \text{perganetic superior and } (Z / N < 3) \\ c_6 & \text{perganetic superior and } (Z / N < 3) \\ c_6 & \text{perganetic superior and } (Z / N < 3) \\ c_6 & \text{perganetic superior and } (Z / N < 3) \\ c_6 & \text{perganetic superior and } (Z / N < 3) \\ c_6 & \text{perganetic superior and } (Z / N < 3) \\ c_6 & \text{perganetic superior and } (Z / N < 3) \\ c_6 & \text{perganetic superior and } (Z / N < 3) \\ c_6 & \text{perganetic superior and } (Z / N < 3) \\ c_6 & \text{perganetic superior and } (Z / N < 3) \\ c_6 & \text{perganetic superior and } (Z / N < 3) \\ c_6 & \text{perganetic superior and } (Z / N < 3) \\ c_6 & \text{perganetic superior and } (Z / N < 3) \\ c_6 & \text{perganetic superior and } (Z / N < 3) \\ c_6 & \text{perganetic superior and } (Z / N < 3) \\ c_6 & perganeti$
		$(C_2 + [0.25]w\gamma_3 + (Z - n_1 - w) \times (\gamma_1 - \gamma_w)] = 0 \ j \times tg\varphi_m \qquad \text{per gauerie protonde} (Z / n \ge 3)$
		$\begin{bmatrix} 2(\tau_{1}-\tau_{1}) \end{bmatrix} b$
A	228,6	$A = \left \frac{\alpha_{(m_2)} + \alpha_{(m_3)}}{(1 + \alpha_{(1)})^2} + 2\tau_{(m_3)} \right \times \frac{\gamma_1}{b}$
		$r \left[2\tau_{n} \right] h_{1}$
В	85,2	$B = \frac{1}{(1+a/l) \times \sqrt{K_{A}}} \times \frac{1}{h}$
C	225.4	$C = \boxed{3.4C_1}$
U	555,4	$(1+a/l)^2 \times \sqrt{K_A}$
D	294.6	$D = \left 1 + \frac{2h}{\sqrt{2}} \right \times (\gamma Z - P_{\varepsilon})$
	,5	$\begin{bmatrix} 3Z(1+a/l)^2 \end{bmatrix}$
RISULTATI		Galleria superficiale
P _E (kPa)	0	
		(A + B + C)
C.S. (-)	2,20	$CS = \frac{(X + B + C)}{D}$
	100000	$2:\tau_{a}$ $h(, b)$
C.S. ₃ (-)	4,34	$C_3 = \frac{1}{(2\pi m)} \times \frac{1}{2} \times 1$

Tabella 25 - Analisi di stabilità del fronte Sez. C2p p.k. 3+920 : dati di input e risultati dell'analisi

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA						
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	95 di 222	

9.5.2 Interazione opera-terreno

Nella tabella seguente si riassumono i dati di input che caratterizzano la sezione geotecnica utilizzata per le analisi numeriche della sezione tipo C2p.

La presenza della falda è stata simulata nell'analisi alla quota indicata in tabella.

Stratigra	Stratigrafia di calcolo		Falda		a'		2	E'	1-	
Formazione	Profondità da p.c.	C	Falua	Ŷ	Сĸ	Ψк	C _{uK}	E	к ₀	
[-]	[m]	[m]	[m da p.c.]	[kN/m ³]	[kPa]	[°]	[kPa]	[MPa]	[-]	
FYR	>20	10	10	19	10	16	-	50	0.72	
C = copertura (rispetto alla calotta)										
$\gamma = peso \ per \ us$	nità di volume									
c'_{K} =coesione	drenata									
ϕ'_{K} =angolo di	attrito interno									
$cu_K = coesione$	$cu_K = coesione non drenata$									
E'= modulo elastico drenato										
$K_o = coefficient$	nte di spinta a riposo									

Tabella 26 - Analisi di interazione Sez. C2p: definizione della stratigrafia di calcolo

Figura 71 - Modello di calcolo - Geometria mesh

Il consolidamento del fronte tramite VTR, simulato mediante una pressione equivalente σ_3^{VTR} applicata al fronte di scavo, interviene nella modellazione FEM in maniera implicita attraverso l'applicazione delle percentuali di rilascio.

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA							
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	96 di 222		

Risultano previsti 70 elementi in VTR, cementati con miscele espansive, con lunghezza minima di sovrapposizione pari a 12m.

Al contorno sono previsti 51 elementi in VTR, cementati con miscele espansive, con lunghezza minima di sovrapposizione pari a 12m

Il consolidamento al contorno, applicato su una fascia di circa 2.0m, è caratterizzato dai parametri di seguito riportati, valutati sulla base degli effetti legati al trattamento di iniezione attraverso miscle cementizie, oltre al contributo di resistenza a taglio degli elementi in vetroresina.

γ	c_k	E
[kN/m ³]	[kPa]	[MPa]
19	200	250

Tabella 27 - Parametri per la modellazione del consolidamento al contorno

Con riferimento all'asse della galleria, la griglia di calcolo presenta un'estensione laterale di 70 m (per una larghezza totale di 140 m) e un'altezza complessiva di 53 m. Il numero complessivo degli elementi è pari a circa 6719 mentre i nodi sono circa 54421.

9.5.3 Fasi e percentuali di rilascio

I tassi di deconfinamento sono stati calcolati mediante analisi assialsimmetrica e curva caratteristica numerica. Nell'analisi assialsimmetrica è stato inserito il consolidamento del fronte tramite VTR simulato mediante la pressione equivalente σ_3^{VTR} applicata al fronte di scavo trasformata in materiale equivalente.

Figura 72 - Sez. C2P – Curva caratteristica di convergenza numerica

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA							
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	97 di 222		

Figura 73 - Sez. C2P – Spostamenti radiali modello assialsimmetrico in funzione della distanza dal fronte

Figura 74 - Sez. C2P $\,-$ Calcolo percentuale di rilascio λ_{F^*} al fronte

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA							
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	98 di 222		

Nella tabella successiva è schematizzata la successione delle fasi di calcolo nelle quali è articolata l'analisi di interazione opera-terreno. Le fasi di scavo sono state modellate in condizioni drenaggio durante lo scavo.

Al termine del processo di scavo è stata simulata la fase di lungo termine in cui è stata innalzata la falda al completo contorno dello scavo, a simulare una condizione particolarmente gravosa con mancato funzionamento dei dreni, e la falda è stata posta alla quota indicata nella Tabella 16.

Fase	Descrizione	Rilascio forze scavo (λ)
0-1	Inizializzazione stato tensionale geostatico	0.00
2	Posizione limite della zona di consolidamento al contorno del cavo	0.07
3	Attivazione consolidamenti al contorno e rilascio a cavo libero in corrispondenza del fronte	0.47
4	Esecuzione dello sfondo elementare di 1 m	0.71
5	Installazione del rivestimento di prima fase e scarico a 2 m dal fronte	0.8
6	Installazione del puntone in arco rovescio di prima fase e scarico a 12 m dal fronte	0.96
7	Installazione dell'arco rovescio definitivo e scarico a 24 m dal fronte	0.987
8	Installazione del rivestimento definitivo di calotta (scarico completo)	1.00
9	Condizione di lungo termine (decadimento del rivestimento di prima fase/innalzamento falda con decadimento dei consolidamenti al contorno)	1.00
10	Condizione di lungo termine (decadimento del rivestimento di prima fase/innalzamento falda con decadimento dei consolidamenti al contorno) a partire dalla fase 1	1.00

Tabella 28 - A	Analisi di i	nterazione –	Sezione	C2P	: fasi di calcolo
----------------	--------------	--------------	---------	-----	-------------------

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA							
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	99 di 222		

9.5.4 Esame dei risultati

L'analisi si articola in sette successive fasi di calcolo, che permettono di descrivere i differenti interventi costruttivi e di schematizzare le differenti condizioni di carico per i rivestimenti. Le fasi, descritte al paragrafo precedente, sono illustrate nell'allegato relativo alle sezione in esame.

Lo stesso allegato illustra, per ciascuna fase, le componenti verticale e orizzontale degli spostamenti totali cumulati, i vettori degli spostamenti totali, i punti al contorno del cavo dove si hanno plasticizzazioni e l'orientamento delle direzioni principali efficaci.

La tabella Tabella 19 riporta, per ogni fase di calcolo, i risultati principali in termini di quadro deformativo e tensionale e di localizzazione delle plasticizzazioni nella zona del cavo, distinguendo tra la zona di calotta, dei piedritti e dell'arco rovescio.

La Figura 33 consente di visualizzare la posizione dei nodi di chiave calotta, dei piedritti e dell'arco rovescio cui si riferiscono i dati riportati nella tabella.

	calotta			piedritti						ar	co roves	cio	Fascia	
Fase	u [cm]	σ ₁ [kPa]	σ ₃ [kPa]	u [cm]	σ ₁ [kPa]	σ ₃ [kPa]	u [cm]	σ ₁ [kPa]	σ ₃ [kPa]	u [cm]	σ ₁ [kPa]	σ ₃ [kPa]	plasticizzata	
2	0.88	-102	-70	0.49	-171	-115	0.49	-171	-115	-0.07	-198	-146	Zona plasticizzata dal piedritto di monte alla superficie	
3	2.51	-173	-104	2.05	-213	-139	2.05	-213	-139	-1.28	-242	-167	Non presenti zone plastiche al contorno dello scavo	
4	4.70	-590	-91	3.58	-452	-94	3.58	-452	-94	-0.90	-242	-148	Presenti zone plastiche in zona a.r. con spessore massimo 2.5m	
5	5.42	-618	-157	4.52	-457	-85	4.52	-457	-85	-1.01	-229	-115	Presenti zone plastiche in zona a.r. con spessore massimo 5m, che proseguono a lato del piedritto, in direzione del versante	
6	6.06	-635	-179	4.96	-474	-108	4.96	-474	-108	-1.19	-239	-125	Fascia di spessore limitato al di sotto dell'a.r. lato valle	
7	6.46	-641	-186	5.39	-476	-109	5.39	-476	-109	-1.30	-245	-140	Limitati punti in calotta lato valle	
8	7.42	-643	-183	6.33	-488	-116	6.33	-488	-116	-1.83	-256	-164	Zone plastiche verticali sopra la	

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA								
GALLERIA GROTTAMINARDA	COMMESSA IF0G	LOTTO 01	CODIFICA D 07 RB	DOCUMENTO GN0100 001	REV. A	FOGLIO 100 di 222			
Relazione geolecnica e di calcolo galleria naturale			1	1 1					
					calotta sino in				

													superficie
9	3.13	-245	-164	0.99	-346	-247	0.99	-346	-247	-5.85	-330	-268	Complessa plasticizzazione al contorno dello scavo, dovuto all'interazione con le zone plastiche legate al pendio
10	4.91	-199	-138	4.47	-308	-265	4.47	-308	-265	-4.42	-349	-327	Plasticizzazione di tutta la porzione del pendio a monte sino alla galleria
1.1_ an		a tatala a		a (manistin	a a a abb		a maantin	o ao ao11 o		1			

u/= spostamento totale cumulativo (positivo se abbassamento, negativo se sollevamento)

 σ_1 = sforzo principale totale massimo

 σ_3 = sforzo principale totale minimo

Tabella 29 - Analisi di interazione – Sezione tipo C2P : risultati dell'analisi

Figura 75 - Nodi rilevati nella zona del cavo

FASE 2

Viene simulato il rilascio a cavo libero in corrispondenza del momento precedente all'attivazione del consolidamento al contorno dello scavo. Il campo di spostamenti mostra spostamenti pari a circa 0.9cm in calotta, 0.1 in arco rovescio 0.6 al piedritto di monte. In corrispondenza del piedritto di monte è presente una zona di plasticizzazione che raggiunge la superficie. Nell'intorno del cavo la massima tensione principale massima è di 199 kPa (a.r.) mentre la massima tensione principale minima è di 70 kPa (calotta).

FASE 3

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA							
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	101 di 222		

Viene simulata l'esecuzione dello scavi sino alla posizione del fronte. Il cedimento cumulato in calotta è pari a 2.6 cm, lo spostamento cumulato al piedritto di monte raggiunge 1.8 cm, mentre il sollevamento cumulato in arco rovescio è di 0.1 cm. Le zone plastiche sono presenti in piedritto (circa 1m) ed al di sotto dei piedritti (circa 0.5m). Nell'intorno del cavo la massima tensione principale massima è di 167 kPa (a.r.) mentre la massima tensione principale minima è di 104 kPa (calotta).

FASE 4

Viene simulata l'esecuzione dello sfondo elementare di 1.0 m. Il cedimento cumulato in calotta è pari a 4.9 cm, lo spostamento cumulato al piedritto di monte raggiunge 3.9 cm, mentre il sollevamento cumulato in arco rovescio è di 0.4 cm. Presenti zone plastiche in zona a.r. con spessore massimo 2.5m. Nell'intorno del cavo la massima tensione principale massima è di 589 kPa (calotta) mentre la massima tensione principale minima è di 85 kPa (piedritto di monte).

FASE 5

Viene simulata l'installazione del rivestimento di prima fase e l'avanzamento a 2 m dal fronte (distanza di getto dell'arco rovescio provvisorio dal fronte). Il cedimento cumulato in calotta è pari a 5 cm, lo spostamento cumulato al piedritto raggiunge 4.5 cm, mentre il sollevamento cumulato in arco rovescio è di 1 cm. Le zone plastiche sono presenti in zona a.r. con spessore massimo 5m, che proseguono a lato del piedritto, in direzione del versante.

Nell'intorno del cavo la massima tensione principale massima è di 618 kPa (calotta) mentre la massima tensione principale minima è di 74 kPa (piedritto di monte).

FASE 6

Viene simulata l'installazione dell'arco rovescio provvisorio e l'avanzamento a 24 m dal fronte. Il cedimento cumulato in calotta è pari a 6.5 cm, lo spostamento cumulato ai piedritti raggiunge 5.4 cm, mentre il sollevamento cumulato in arco rovescio è di 1.3 cm. Le zone plastiche si riducono ad una fascia di spessore limitato al di sotto dell'a.r. lato valle. Nell'intorno del cavo la massima tensione principale massima è di 287 kPa (piedritti) mentre la massima tensione principale minima è di 56 kPa (arco rovescio).

FASE 7

Viene simulata l'installazione del dell'arco rovescio e lo scavo alla distanza di 24m dal fronte. Il cedimento cumulato in calotta è pari a 5.2 cm, lo spostamento cumulato ai piedritti raggiunge 5.2 cm, mentre il sollevamento cumulato in arco rovescio è di 3.2 cm. Le zone plastiche sono costituire da limitati punti in calotta lato valle. Nell'intorno del cavo la massima tensione principale massima è di 298 kPa (piedritti) mentre la massima tensione principale minima è di 63 kPa (arco rovescio).

FASE 8

Viene simulata l'installazione del rivestimento definitivo e lo scarico totale all'interno del cavo. Il cedimento cumulato in calotta è pari a 7.4 cm, lo spostamento cumulato ai piedritti raggiunge 6.4 cm, mentre il sollevamento cumulato in arco rovescio è di 1.9 cm. Le zone plastiche citate alla fase 7 si collegano a quelle in superficie. Nell'intorno del cavo la massima tensione principale massima è di 298 kPa (piedritti) mentre la massima tensione principale minima è di 63 kPa (arco rovescio).

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA							
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	102 di 222		

Viene simulato il comportamento di lungo termine caratterizzato dalla presenza della falda agente sul rivestimento definitivo ed il decadimento del rivestimento di prima fase con conseguente trasferimento degli sforzi sul rivestimento definitivo ed il decadimento dei parametri del consolidamento al contorno che tornano ad essere quelli del terreno originario. Il cedimento è modificato dal sollevamento legato all'innalzamento della falda, ed il valore cumulato in calotta è pari a 3.2 cm, lo spostamento cumulato ai piedritti raggiunge 1 cm, mentre il sollevamento cumulato in arco rovescio è di 5.9 cm. Le zone plastiche nell'intorno della galleria interagiscono con quelle del pendio: l'innalzamento della falda genera anche trazioni in superficie.

Nell'intorno del cavo la massima tensione principale massima è di 345 kPa (piedritto) mentre la massima tensione principale minima è di 164 kPa (calotta).

FASE 10

La fase risulta rappresentativa al solo fine della valutazione delle azioni sui rivestimenti.

In ogni modo, il cedimento cumulato in calotta è pari a 5.0 cm, lo spostamento cumulato ai piedritti raggiunge. Nell'intorno del cavo la massima tensione principale massima è di 348 kPa (a.r.) mentre la massima tensione principale minima è di 138 kPa (calotta).

9.5.5 Verifiche strutturali del rivestimento di prima fase

Le verifiche strutturali sul rivestimento di prima fase sono state eseguite per le fasi di calcolo 5, 6, 7 e 8. Le caratteristiche del rivestimento provvisorio sono riportate nella seguente tabella.

Caratteristiche	Spritz beton/Centine
Spessore dello spritz beton[m]	0.30
Area resistente dello spritz beton A_{sb} [m ²]	0.30
Tipologia profilati	HEB 240
Interasse longitudinale profilato [m]	1
Area resistente della centina A _{cent} [cm ²]	106
Modulo resistente elastico della centina W_{cent} [cm ³]	938
Area resistente a taglio della centina A _{V,cent} [cm ²]	33.24

Tabella 30 - Analisi di interazione – Sezione tipo C2P : definizione delle caratteristiche del rivestimento provvisorio

La tabella seguente sintetizza le sollecitazioni ottenute, per ogni fase, nelle zone di maggiore interesse del rivestimento: zona di calotta, di contatto calotta-piedritti e dei piedritti, rilevate in corrispondenza dei nodi indicati nella figura a seguire.

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	A	103 di 222

	Sollecitazioni	Calotta	zona di contatto calotta- piedritto		zona di contatto calotta- piedritto pied		dritto
		Sinistro Destro		Destro	Sinistro	Destro	
5	N [kN/m]	-557	-316	-465	-137	-202	
Fase	M [kNm/m]	-20	-4	-14	-8	5	
	T [kN/m]	9	2	-6	-4	-1	
9	N [kN/m]	-1002	-724	-936	-710	-727	
Fase	M [kNm/m]	-21	0	-16	0	14	
	T [kN/m]	14	1	-8	-6	2	
6 7	N [kN/m]	-1098	-796	-1017	-763	-774	
Fase	M [kNm/m]	-22	0	-17	3	18	
	T [kN/m]	15	1	-8	-7	3	
8	N [kN/m]	-1205	-821	-1042	-713	-721	
ase	M [kNm/m]	-21	0	-17	2	16	
	T [kN/m]	15	1	-8	-7	3	

Tabella 31 - Analisi di interazione – Sezione tipo C2P : Sollecitazioni nelle zona di maggior interesse del rivestimento di prima fase

			zona di co	ntatto a.r
	Sollecitazioni	Arco	mur	etta
	Soliceltazioni	rovescio	Sinistro	Destro
e 6	N [kN/m]	-817	-756	-679
ase	M [kNm/m]	4	6	9
1	T [kN/m]	1	14	-13
7	N [kN/m]	-796	-751	-672
ase	M [kNm/m]	3	6	9
	T [kN/m]	1	14	-13
8	N [kN/m]	-916	-727	-649
ase	M [kNm/m]	5	5	8
-	T [kN/m]	1	14	-16

 Tabella 32 - Analisi di interazione – Sezione tipo C2P : Sollecitazioni nelle zona di maggior interesse del rivestimento di prima fase- arco rovescio provvisorio

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA						
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	104 di 222	

Figura 76 - Nodi rilevati del rivestimento di prima fase

In allegato si riportano, per ogni nodo del rivestimento, le sollecitazioni scaturite dall'analisi e le conseguenti verifiche: le verifiche strutturali del rivestimento di prima fase sono soddisfatte, per ciascuna fase, in tutti i punti.

Benché le verifiche risultino soddisfatte con un passo centine pari ad 1m, per il tratto in esame caratterizzato da ridotte coperture e condizioni di galleria parietale si assume un passo centine pari a 0,8m in analogia a quanto previsto per il tratto di sottoattraversamento della frana quiesciente (cfr. analisi sezione tipo C2p paragrafo successivo).

9.5.6 Verifiche strutturali SLU del rivestimento definitivo

Nella tabella seguente si riportano le caratteristiche simulate dei rivestimenti di prima fase e definitivi.

Tipo di prerivestimento	Spritz beton/Rivestimento definitivo
Spessore dello spritz [m]	0.30
Spessore simulato del rivestimento definitivo di arco rovescio [m]	1.10
Spessore simulato del rivestimento definitivo di calotta [m]	1.00

Tabella 33 - Analisi di interazione – Sezione tipo C2P : definizione delle caratteristiche dei rivestimenti

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	105 di 222

La verifica strutturale del rivestimento definitivo prevede il confronto tra le sollecitazioni di calcolo, ottenute a partire dai risultati del modello numerico applicando i relativi coefficienti parziali, e le resistenze di calcolo definite dai punti M_{Rd} , N_{Rd} che individuano il dominio resistente nel piano M, N.

Per la verifica a taglio, il valore resistente di calcolo è ottenuto in accordo con la normativa vigente (DM 14/01/2008 par.4.1.2.1.3. e Circolare n.617/2009).

Il rivestimento definitivo è previsto armato sia in calotta che in arco rovescio. L'incidenza delle armature in calotta e in arco rovescio è di 50kg di acciaio per m³.

Le tabelle seguenti sintetizzano le sollecitazioni ottenute, per ogni fase, nelle zone di maggiore interesse del rivestimento: zona di calotta, di contatto calotta-piedritti e piedritti-arco rovescio, dei piedritti e di arco rovescio, rilevate in corrispondenza dei nodi delle figura a seguire.

	Sollecitazioni	Calotta	zona di contatto calotta- Calotta piedritto piedr		zona di contatto calotta- piedritto piedritto		itto
			sinistro	destro	sinistro	destro	
8	N [kN/m]	-7	-141	-151	-214	-220	
ase	M [kNm/m]	65	-15	-19	-66	-66	
-	T [kN/m] 4 -24		-24	21	11	-10	
6	N [kN/m]	-1424	-1300	-1469	-1392	-1236	
ase	M [kNm/m]	-50	176	-112	-148	19	
_	T [kN/m]	85	-14	-56	-87	42	
10	N [kN/m]	-1265	-1301	-1484	-1403	-1380.01	
ase	M [kNm/m]	142	307	-277	-462	-213	
ш	T [kN/m]	124	-118	5	-86	-1	

Tabella 34 - Analisi di interazione – Sezione tipo C2P : Sollecitazioni nelle zone calotta-piedritto del rivestimento definitivo

	Sollecitazioni	arco rovescio	zona di contal arc sinistro	to piedritto- co destro
9 9	N [kN/m]	-144	-99	-86
ase.	M [kNm/m]	-44	-23	-21
	T [kN/m]	0	-8	8
۲ a	N [kN/m]	-59	-189	-184
Fase	M [kNm/m]	63	-52	-54
_	T [kN/m]	1	36	-34

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	106 di 222

.

8	N [kN/m]	-1682	-1695	-1581
SE M [kNm/m]		209	-374	-105
_	T [kN/m]	15	206	-102
ase 9-	N [kN/m]	-1776	-1882	-1738
	M [kNm/m]	686	-652	-46
	T [kN/m]	76	380	-323

Figura 77 - Nodi rilevati del rivestimento definitivo

In **calotta e piedritti** si dispongono 1+1 ϕ 20/20 con un copriferro netto di 4 cm. L'armatura longitudinale di ripartizione è costituita da barre ϕ 12/20. L'armatura a taglio è del tipo ϕ 12/40cm/40cm.

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA						
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	107 di 222	

Figura 78 - Dominio resistente SLU calotta (B=1.00 m, H=1.00m) - Fase 8

Figura 79 - Verifica SLU taglio calotta – Fase 8

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	108 di 222

Figura 80 - Dominio resistente SLU calotta (B=1.00 m, H=1.00m) - Fase 9

Figura 81 - Verifica SLU taglio calotta - Fase 9
GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA						
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	109 di 222	

Figura 82 - Dominio resistente SLU calotta (B=1.00 m, H=1.00m) – Fase 10

Figura 83 - Verifica SLU taglio calotta – Fase 10

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA							
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	110 di 222		

In **arco rovescio** si dispongono 1+1 ϕ 20/20 con un copriferro netto di 4 cm. L'armatura longitudinale di ripartizione è costituita da barre ϕ 12/20. L'armatura a taglio prevista consiste in ϕ 12/40cm/40cm.

Figura 84 - Dominio resistente SLU arco rovescio (B=1.00 m, H=1.10 m) – Fase 7

Figura 85 - Verifica SLU taglio arco rovescio - Fase 7

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA						
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	111 di 222	

Figura 86 - Dominio resistente SLU arco rovescio (B=1.00 m, H=1.10 m) – Fase 8

Figura 87 - Verifica SLU taglio arco rovescio – Fase 8

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA						
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	112 di 222	

Figura 88 - Dominio resistente SLU arco rovescio (B=1.00 m, H=1.10 m) – Fase 9

Figura 89 - Verifica SLU taglio arco rovescio – Fase 9

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA						
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	113 di 222	

Figura 90 - Dominio resistente SLU arco rovescio (B=1.00 m, H=1.10 m) – Fase 10

Figura 91 - Verifica SLU taglio arco rovescio – Fase 10

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA							
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	114 di 222		

9.5.7 Verifiche strutturali SLE del rivestimento definitivo

Le verifiche SLE del rivestimento definitivo sono finalizzate a prevenire la formazione di un quadro fessurativo tale da compromettere la durabilità dell'opera. A tal fine la Normativa (DM 14/01/2008 par.4.1.2.1.3. e Circolare n.617/2009) stabilisce un limite massimo all'ampiezza delle fessure (SLE di fessurazione) ed al contempo, impone il rispetto di opportuni limiti tensionali sia nell'acciaio che nel calcestruzzo (SLE di tensione).

Nello specifico, le verifiche agli SLE di fessurazione della calotta e arco rovescio non evidenziano fessure.

Anche le verifiche SLE di tensione per la calotta e arco rovescio risultano soddisfatte sia lato calcestruzzo che lato acciaio rispettando i valori limite imposti sia dalla normativa NTC2P008 che dal Manuale RFI 2016.

Figura 92 - Verifiche SLE tensione cls calotta – Fase 8

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA							
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	115 di 222		

Figura 93 - Verifiche SLE tensione acciaio calotta – Fase 8

Figura 94 - Verifiche SLE fessurazione calotta – Fase 8

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA							
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	116 di 222		

Figura 96 - Verifiche SLE tensione acciaio calotta – Fase 9

Figura 98 - Verifiche SLE tensione cls calotta – Fase 10

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO N RADDOPPIO T I LOTTO FUNZ	IAPOLI – B RATTA AP LIONALE A	ARI PICE – ORSAR PICE - HIRPIN	A NIA		
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	118 di 222

Figura 100 - Verifiche SLE fessurazione calotta – Fase 10

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA							
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	119 di 222		

Figura 101 - Verifiche SLE tensione cls arco rovescio – Fase 7

Figura 102 - Verifiche SLE tensione acciaio arco rovescio – Fase 7

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO N RADDOPPIO T I LOTTO FUNZ	JAPOLI – B RATTA AF ZIONALE A	ARI PICE – ORSAR PICE - HIRPIN	A NIA		
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	120 di 222

Figura 104 - Verifiche SLE tensione cls arco rovescio – Fase 8

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA						
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	121 di 222	

Figura 106 - Verifiche SLE fessurazione arco rovescio – Fase 8

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	122 di 222

Figura 107 - Verifiche SLE tensione cls arco rovescio – Fase 9

Figura 108 - Verifiche SLE tensione acciaio arco rovescio - Fase 9

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	123 di 222

Figura 110 - Verifiche SLE tensione cls arco rovescio – Fase 10

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	124 di 222

Figura 111 - Verifiche SLE tensione acciaio arco rovescio - Fase 10

Figura 112 - Verifiche SLE fessurazione arco rovescio – Fase 10

I risultati delle analisi sono riassunti in tabelle; input e output grafici del modello di calcolo sono riportati integralmente in Allegato.

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	125 di 222

9.6 SEZIONE TIPO C2p p.k. 4+020

Le analisi e le verifiche riportate di seguito sono relative alla sezione in cui la galleria sottoattraversa con franco minimo la frana quiescente posta tra le progressive 3+890 e 4+190. In tale tratta la galleria attraversa la formazione del FYR e la sezione C2p è prevista applicata come sezione prevalente.

Si precisa che, oltre alle analisi di seguito riportate, per la sezione in esame è stata condotta anche un'analisi specifica di interazione dell'opera con il soprastante corpo di frana. Per i dettagli di tale analisi si rimanda al capitolo **Errore. L'origine riferimento non è stata trovata.**

9.6.1 Stabilità del fronte e del cavo

Nel seguente tabella si riassumono i dati di input e i risultati dell'analisi di stabilità del fronte della sezione tipo C2p condotta con il metodo di Tamez.

I parametri geotecnici utilizzati nelle analisi (valori di progetto) così come i valori dell'incremento di coesione equivalente al fronte e al contorno, indotto dagli interventi di consolidamento, sono stati definiti coerentemente con quanto indicato nei criteri di verifica.

Riguardo l'incremento di coesione equivalente al fronte si segnala che il valore è stato ricavato con riferimento a 65 elementi in VTR, cementati con miscele espansive, con lunghezza minima di sovrapposizione pari a 12m. Benché le verifiche risultino soddisfatte con il suddetto numero di VTR, per il tratto in esame di sottoattraversamento della frana quiesciente si assume un precontenimento al fronte di 70 VTR, cementati con miscele espansive, con lunghezza minima di sovrapposizione pari a 12m in analogia a quanto previsto per il tratto a ridotte coperture e condizioni di galleria parietale (cfr. analisi sezione tipo C2p paragrafo precedente).

L'analisi evidenzia che, anche con l'applicazione dei coefficienti parziali corrispondenti alla combinazione A2+M2+R2 e quindi con i valori di progetto, il minore dei coefficienti di sicurezza FSF e FSF₃ risulta maggiore di 1. Si ritiene pertanto che il nucleo-fronte sia stabile e quindi la verifica di stabilità del fronte è soddisfatta.

Metodo di	Tame	22
DATI GEOMETRICI		
7 (m)	30	conartiva svilla calatta
AA (111)	0	proioridia superiole piezometrica da piano campagna; in assenza di laida indicare ivi=z
h (m)	10,38	allezza dello scavo
b (m)	13,63	larghezza della scavo
a (m)	1,0	lunghezza non sostenuta
DATI GEOTECNICI		
w. (kN/m ³)	20.33	peso medio dell'unità di volume del terreno sopra la calotta (su h -)
(khl/m ³)	20.22	naso madio dall'unità di volume dal terrano da scovera (su b)
12 (MININI)	20,35	pescriteur der dirte der teilen der teilen der Statter jachty
γ ₃ (kN/m°)	20,33	peso medio derrunita di Volume dei Terreno sopra faida
γ ₄ (kN/m ³)	20,33	peso medio dell'unità di volume dei terreno sotto faida
C ₁ (kPa)	165	valore medio della coesione al fronte (su h)
C ₂ (kPa)	26,53	valore medio della coesione dalla calotta lino a h ,
Com (kPa)	27	valore medio della coesione dalla calotta a piano campagna
+ (°)	10.5	usion made dall'amale di attela da mataria inversati dell'ace reversi e pare companye.
φ _m (*)	19,5	valore medio dei angloo di attito dei materiali presenti dai arco rovescio a piano campagna
(°)	19,5	valore médio dell'angolo di altrito dei materiali presenti dall'arco rovescio lino a h _i
DATI PER IL CALCO	LO DEL	VOLUME DI TERRENO POTENZIALMENTE INSTABILE
φ _m (°)	15,82	valore medio dell'angolo di attrito dei materiali presenti dall'arco rovescio a piano campagna
Co. (kPa)	21 22	valore medio della coesione dalla calotta a niano camnanna
(LD-)		
σ _c (KPa)	56,1	$\sigma_c = 2c\sqrt{Kp}$
		$\int tg \varphi_{-}$ sec'= 0
4	0.661	f = c
	0,001	$tg\varphi_m + \frac{c}{m}$ se $c \neq 0$
		σ_{c}
71522-00071		· · · · · (
l (m)	7,848	$l = h \times tg \left(45^{\circ} - \frac{m}{2} \right)$
221022		
B (m)	29,326	$B = b + 2h \times lg \left[45^{\circ} - \frac{1}{2} \right]$
h. (m)	30.000	$h_1 = \frac{B}{2}$ o $h_2 = Z$ set $h_1 > Z$
10 ACC/6		$2f$ n_1 r_2
s (m)	0,000	$S = Z - W - h$, coefficiente che entra nel calcolo di $\tau_{m2} \in \tau_{m3}$
DATI PER IL CALCO	O DEL	COEFFICIENTE DI STABILITA'
h (9)	15.92	valore martin dell'annolo di attrito dei materiali presenti dall'arco rovescio fino a.h.
C (kBa)	04.00	uning made dall constant dall constants find on h
O_2 (KPa)	21,22	valore medio della coestone dalla caluna into a rr
C ₁ (kPa)	132,00	valore medio della coesione al fronte (su h)
γ _w (kN/m ³)	10	peso dell'unità di volume dell'acqua
v. (kN/m ³)	20.33	peso medio dell'unità di volume del terreno sopra la calotta (su h +)
(hb1/m ³)	20.22	naro madio dell'unità di unkuma dal tarrano di econora (cu b)
¥2 (KIN/III.)	20,33	peso metuo dentinita di volume denteneno da scavare (su ny
γ ₃ (kN/m°)	20,33	peso medio dell'unità di volume del terreno sopra falda
'y ₄ (kN/m ³)	20,33	peso medio dell'unità di volume del terreno sotto faida
Ka (-)	0.7	coefficiente di spinta a riposo 0,7274317
K. (-)	0.6	coefficiente di sninta attiva 0.572
7/1- /)	0.0	desination of the set
2/n (-)	2,9	oiscriminante galena superiiciale/galena protonoa 2/1=3
U (kPa)	300	$U = \gamma_u (Z - W)$
γ∗Z (kPa)	609,9	
		(
		$\frac{1}{C_{+}} + \frac{K_0}{K_0} \frac{3.4C_1}{(\tilde{p}_2 - \gamma_{*}) \times (Z - W)}$
		$C_2 + 2 \sqrt{K_4} = 2$
τ _{m2} (kPa)	170	$\tau_{wa} = \{ c \in \mathcal{L} : c \in \mathcal{L} \}$
7855946326 2760		$\overline{C}_{+} + \frac{K_0}{K_0} W_{\overline{k}_{+}}(Z - h - W) \times (\overline{k} - \gamma) + \frac{3.4C_1}{K_0} - \frac{(\gamma_2 - \gamma_w) \times (Z - W)}{K_0} \text{pergallerie profond} (Z/h \ge 3)$
		$\begin{bmatrix} -2 & 2 \\ 2 \end{bmatrix}$ K_1 K_2 K_4
2012 10 A 40 T		\overline{C} , per gallerie superficiali $(Z/h < 3)$
τ _{m3} (kPa)	21	$\tau_{m3} = \{\overline{C} + \{0, 25 W\bar{Y} + (Z - h - W) \times (\bar{Y} - Y) \} = II \} \times Iag$
100009000000		$(c_2 + (o(n_1, n_1), (2 - n_1 - n_1), (1 - n_1, n_1))) \land (c_2 n_1 - n_1) $
A	607,9	$A = \left \frac{2(\tau_{m2} - \tau_{m3})}{2} + 2\tau_{m3} \right \times \frac{n_i}{2}$
2.28		$\left[(1+a/l)^{2} \right] b$
B	140.5	$B = \frac{2\tau_{n1}}{2} \times \frac{r_n}{r_n} \times \frac{r_n}{r_n}$
	S	$\lfloor (1+a/l) \times \sqrt{K_n} \rfloor h$
		[
C	455.8	$C = \frac{3.4C_1}{2}$
~	455,6	$(1+\alpha/l)^2 \propto \sqrt{K_A}$
D	700.0	$D = 1$, $2h$ $\langle (\pi, R) \rangle$
U	120,6	$D = \frac{1}{3} \frac{1}{3} \frac{1}{2} \frac{1}{3} \frac{1}{2} \frac{1}{3} $
		e de la compañía de la
RISULTATI		Gallena superficiale
P _E (kPa)	0	
000	1.07	$(\mathbf{A} + \mathbf{B} + \mathbf{C})$
U.S. (-)	1,67	$CS = \frac{CS + CT}{D}$
		$2 \cdot \tau \cdot h (b)$
C.S. ₃ (-)	2,24	$CS_3 = \frac{-m_3}{(\sqrt{2}-P_1)} \times \frac{m_3}{h} \times \left[1 + \frac{m_3}{h}\right]$

Tabella 36 - Analisi di stabilità del fronte Sez. C2p p.k. 4+020 : dati di input e risultati dell'analisi

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	127 di 222

9.6.2 Interazione opera-terreno

Nella tabella seguente si riassumono i dati di input che caratterizzano la sezione geotecnica utilizzata per le analisi numeriche della sezione tipo C2p.

La sezione di analisi è relativa ad una condizione di copertura superficiale, in presenza di un deposito di frana quiesciente in superficie.

I parametri rappresentano l'inviluppo dei valori minimi rilevati nell'area. L'analisi ha lo scopo di prendere in esame le condizioni limite per i sostegni e rivestimenti.

Stratigra	ıfia di calcolo	C	Falda		a'			E'	1z
Formazione	Profondità da p.c.	C	Falua	Ŷ	Сĸ	Ψк	C _{uK}	Ľ	к ₀
[-]	[m]	[m]	[m da p.c.]	[kN/m ³]	[kPa]	[°]	[kPa]	[MPa]	[-]
FYR	0-20		0.00	20	15	17	-	20	0.70
FYR	20-40	30	0 – 20- non presente	21	25	22	-	200	0.69
FYR	40-80		presente	21	25	22	-	300	0.69
C = copertura	(rispetto alla calott	a)							
$\gamma = peso \ per \ u$	nità di volume								
c'_{K} =coesione	drenata								
$\phi'_K = angolo di$	attrito interno								
$cu_K = coesione$	non drenata								
E'= modulo elastico drenato									
$K_o = coefficient$	nte di spinta a riposo								

Tabella 37 - Analisi di interazione Sez. C2p: definizione della stratigrafia di calcolo

La presenza della falda è rilevata a pochi metri sotto il piano campagna. Preventivamente allo scavo della galleria è previsto un intervento di drenaggio realizzato mediante cunicolo drenante. Per tale motivo nei calcoli viene considerata l'assenza di falda fino all'ultima fase di calcolo, nella quale viene simulato il mancato funzionamento dei dreni con attivazione delle pressioni idrostatiche relative ad un livello piezometrico alla quota del piano campagna.

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	128 di 222

Output Version 2016.0.20962.14753

Figura 113 - Modello di calcolo - Geometria mesh

Il consolidamento del fronte tramite VTR, simulato mediante una pressione equivalente σ_3^{VTR} applicata al fronte di scavo, interviene nella modellazione FEM in maniera implicita attraverso l'applicazione delle percentuali di rilascio.

L'incremento di coesione al fronte è stato determinato considerando 65 elementi in VTR cementati con miscele espansive, con lunghezza minima di sovrapposizione pari a 12m. Ad ogni modo, come già evidenziato, benché le verifiche risultino soddisfatte con il suddetto numero di VTR, per il tratto in esame di sottoattraversamento della frana quiesciente si assume un precontenimento al fronte di 70 VTR, cementati con miscele espansive, con lunghezza minima di sovrapposizione pari a 12m in analogia a quanto previsto per il tratto a ridotte coperture e condizioni di galleria parietale (cfr. analisi sezione tipo C2p paragrafo precedente).

Al contorno sono previsti 51 elementi in VTR, cementati con miscele espansive, con lunghezza minima di sovrapposizione pari a 12m.

Il consolidamento al contorno, applicato su una fascia di circa 2.0m, è caratterizzato dai parametri di seguito riportati, valutati sulla base degli effetti legati al trattamento di miglioramento al contorno dello scavo.

γ	c_k	E
[kN/m ³]	[kPa]	[MPa]
20	148	400

Tabella 38	- Parametri per	la modellazione del	consolidamento al contorno
------------	-----------------	---------------------	----------------------------

Con riferimento all'asse della galleria, la griglia di calcolo presenta un'estensione laterale di 450 m a monte e 400 m a valle (per una larghezza totale di 850 m) e un'altezza complessiva di 202 m. Il numero complessivo degli elementi è pari a circa 22309 mentre i nodi sono circa 179706.

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	129 di 222

9.6.3 Fasi e percentuali di rilascio

I tassi di deconfinamento sono stati calcolati mediante analisi assialsimmetrica e curva caratteristica numerica. Nell'analisi assialsimmetrica è stato inserito il consolidamento del fronte tramite VTR simulato mediante il materiale equivalente al fronte e contorno.

Figura 114 - Sez. C2p – Curva caratteristica di convergenza numerica

Figura 115 - Sez. C2p – Spostamenti radiali modello assialsimmetrico in funzione della distanza dal fronte

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	130 di 222

Figura 116 - Sez. C2p – Calcolo percentuale di rilascio $\lambda_{F}\text{-}$ al fronte

Nella tabella successiva è schematizzata la successione delle fasi di calcolo nelle quali è articolata l'analisi di interazione opera-terreno. Le fasi di scavo sono state modellate in condizioni di pendio drenato durante lo scavo.

Al termine del processo di scavo è stata simulata la fase di lungo termine in cui sono stati fatti decadere i parametri dei consolidamenti e dei rivestimenti di prima fase.

Fase	Descrizione	Rilascio forze scavo (λ)
0-1	Inizializzazione stato tensionale geostatico	0.00
2	Posizione limite della zona di consolidamento al contorno del cavo	0.05
3	Attivazione consolidamenti al contorno e rilascio a cavo libero in corrispondenza del fronte	0.49
4	Posa in opera della centina ed esecuzione dello sfondo elementare di 0.80 m	0.77
5	Installazione del rivestimento di prima fase e scarico a 6 m dal fronte	0.93
6	Installazione dell'arco rovescio definitivo e scarico a 24 m dal fronte	0.985
7	Installazione del rivestimento definitivo di calotta (scarico completo)	1.00
8	Condizione di lungo termine (decadimento del rivestimento di prima fase con decadimento dei consolidamenti al contorno)	1.00
9	Condizione strutturale con innalzamento falda	1.00

Tabella 39 - Analisi di interazione - Sezione C2P : fasi di calcolo

9.6.4 Esame dei risultati

L'analisi si articola in sette successive fasi di calcolo, che permettono di descrivere i differenti interventi costruttivi e di schematizzare le differenti condizioni di carico per i rivestimenti. Le fasi, descritte al paragrafo precedente, sono illustrate nell'allegato relativo alle sezione in esame.

Lo stesso allegato illustra, per ciascuna fase, le componenti verticale e orizzontale degli spostamenti totali cumulati, i vettori degli spostamenti totali, i punti al contorno del cavo dove si hanno plasticizzazioni e l'orientamento delle direzioni principali efficaci.

La tabella 19 riporta, per ogni fase di calcolo, i risultati principali in termini di quadro deformativo e tensionale e di localizzazione delle plasticizzazioni nella zona del cavo, distinguendo tra la zona di calotta, dei piedritti e dell'arco rovescio.

La Figura 33 consente di visualizzare la posizione dei nodi di chiave calotta, dei piedritti e dell'arco rovescio cui si riferiscono i dati riportati nella tabella.

Come anticipato, sono stati utilizzati una serie di parametri atti alla massimizazione degli effetti sui rivestimenti. Per tale motivo, i dati delle fase di posa in opera dei sostegni saranno depurati da quelli precedenti.

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO N RADDOPPIO T I LOTTO FUNZ	VAPOLI – B TRATTA AF ZIONALE A	ARI PICE – ORSAR PICE - HIRPII	A NIA		
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	132 di 222

Fase u G1 G3 u G1 R4 G3 u G1 R4 R4 [kPa] [kPa] </th <th></th> <th></th> <th>calotta</th> <th></th> <th></th> <th></th> <th>pied</th> <th>lritti</th> <th></th> <th></th> <th>ar</th> <th>co roveso</th> <th>cio</th>			calotta				pied	lritti			ar	co roveso	cio
2 0.22 -588 -259 0.04 -856 -356 0.03 -811 -335 0.16 -851 -380 3 1.83 -368 -202 0.38 -1174 -334 0.20 -1112 -306 1.55 -515 -260 4 3.93 -409 -194 2.25 -993 -252 0.75 -988 -250 3.02 -361 -186 5 4.54 -343 -167 2.52 -1026 -298 0.43 -1012 -288 3.62 -291 -141 6 4.89 -286 -146 2.79 -793 -327 0.53 -747 -306 3.61 -269 -142 7 5.30 -286 -146 3.11 -793 -327 0.80 -747 -306 3.35 -269 -142 8 5.71 -286 -146 3.24 -793 -327 0.63 -747 -306 3.50 -269 -142	Fase	u [cm]	σı [kPa]	σ ₃ [kPa]	u [cm]	σ1 [kPa]	σ ₃ [kPa]	u [cm]	σı [kPa]	σ ₃ [kPa]	u [cm]	σ ₁ [kPa]	σ ₃ [kPa]
3 1.83 -368 -202 0.38 -1174 -334 0.20 -1112 -306 1.55 -515 -260 4 3.93 -409 -194 2.25 -993 -252 0.75 -988 -250 3.02 -361 -186 5 4.54 -343 -167 2.52 -1026 -298 0.43 -1012 -288 3.62 -291 -141 6 4.89 -286 -146 2.79 -793 -327 0.53 -747 -306 3.61 -269 -142 7 5.30 -286 -146 3.11 -793 -327 0.63 -747 -306 3.35 -269 -142 8 5.71 -286 -146 3.24 -793 -327 0.63 -747 -306 3.50 -269 -142	2	0.22	-588	-259	0.04	-856	-356	0.03	-811	-335	0.16	-851	-380
4 3.93 -409 -194 2.25 -993 -252 0.75 -988 -250 3.02 -361 -186 5 4.54 -343 -167 2.52 -1026 -298 0.43 -1012 -288 3.62 -291 -141 6 4.89 -286 -146 2.79 -793 -327 0.53 -747 -306 3.61 -269 -142 7 5.30 -286 -146 3.11 -793 -327 0.63 -747 -306 3.35 -269 -142 8 5.71 -286 -146 3.24 -793 -327 0.63 -747 -306 3.50 -269 -142	3	1.83	-368	-202	0.38	-1174	-334	0.20	-1112	-306	1.55	-515	-260
5 4.54 -343 -167 2.52 -1026 -298 0.43 -1012 -288 3.62 -291 -141 6 4.89 -286 -146 2.79 -793 -327 0.53 -747 -306 3.61 -269 -142 7 5.30 -286 -146 3.11 -793 -327 0.80 -747 -306 3.35 -269 -142 8 5.71 -286 -146 3.24 -793 -327 0.63 -747 -306 3.50 -269 -142	4	3.93	-409	-194	2.25	-993	-252	0.75	-988	-250	3.02	-361	-186
6 4.89 -286 -146 2.79 -793 -327 0.53 -747 -306 3.61 -269 -142 7 5.30 -286 -146 3.11 -793 -327 0.80 -747 -306 3.61 -269 -142 8 5.71 -286 -146 3.24 -793 -327 0.63 -747 -306 3.50 -269 -142	5	4.54	-343	-167	2.52	-1026	-298	0.43	-1012	-288	3.62	-291	-141
7 5.30 -286 -146 3.11 -793 -327 0.80 -747 -306 3.35 -269 -142 8 5.71 -286 -146 3.24 -793 -327 0.63 -747 -306 3.35 -269 -142	6	4.89	-286	-146	2.79	-793	-327	0.53	-747	-306	3.61	-269	-142
8 5.71 -286 -146 3.24 -793 -327 0.63 -747 -306 3.50 -269 -142	7	5.30	-286	-146	3.11	-793	-327	0.80	-747	-306	3.35	-269	-142
	8	5.71	-286	-146	3.24	-793	-327	0.63	-747	-306	3.50	-269	-142
9 -663 -314 -536 -261 -563 -261 -377 -197	9		-663	-314		-536	-261		-563	-261		-377	-197

 σ_1 = sforzo principale totale massimo σ_3 = sforzo principale totale minimo

Tabella 40 - Analisi di interazione – Sezione tipo C2p: risultati dell'analisi

Figura 117 - Nodi rilevati nella zona del cavo

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO N RADDOPPIO T I LOTTO FUNZ	IAPOLI – B RATTA AF ZIONALE A	ARI PICE – ORSAR PICE - HIRPIN	A NIA		
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	133 di 222

FASE 2

Viene simulato il rilascio a cavo libero in corrispondenza del momento precedente all'attivazione del consolidamento al contorno dello scavo. Il campo di spostamenti mostra spostamenti trascurabili. Le zone plastiche al contorno dello scavo si manifestano ai piedriti, con spessore massimo di 1m. Nell'intorno del cavo la massima tensione principale massima è di 586 kPa (piedritti) mentre la massima tensione principale minima è di 259 kPa (calotta).

FASE 3

Viene simulata l'esecuzione dello scavi sino alla posizione del fronte. Il cedimento cumulato in calotta è pari a 1.9 cm, lo spostamento cumulato al piedritto di monte raggiunge 0.4 cm, mentre il sollevamento cumulato in arco rovescio è di 1.6 cm. Nell'intorno del cavo la massima tensione principale massima è di 1174 kPa (piedritti) mentre la massima tensione principale minima è di 202 kPa (calotta).

FASE 4

Viene simulata l'esecuzione dello sfondo elementare di 0.8 m. Il cedimento cumulato in calotta è pari a 4 cm, lo spostamento cumulato al piedritto di monte raggiunge 2.3 cm, mentre il sollevamento cumulato in arco rovescio è di 3 cm. Nell'intorno del cavo la massima tensione principale massima è di 988 kPa (piedritti) mentre la massima tensione principale minima è di 186 kPa (arco rovescio).

FASE 5

Viene simulata l'installazione del rivestimento di prima fase e l'avanzamento a 6 m dal fronte. Il cedimento cumulato in calotta è pari a 4.5 cm, lo spostamento cumulato al piedritto di monte raggiunge 2.5 cm, mentre il sollevamento cumulato in arco rovescio è di 3.6 cm.. Nell'intorno del cavo la massima tensione principale massima è di 1026 kPa (piedritti) mentre la massima tensione principale minima è di 141 kPa (arco rovescio).

FASE 6

Viene simulata l'installazione dell'arco rovescio provvisorio e l'avanzamento a 24 m dal fronte. Il cedimento cumulato in calotta è pari a 4.9 cm, lo spostamento cumulato al piedritto di monte raggiunge 2.8 cm, mentre il sollevamento cumulato in arco rovescio è di 3.6 cm. Nell'intorno del cavo la massima tensione principale massima è di 793 kPa (piedritti) mentre la massima tensione principale minima è di 142 kPa (arco rovescio).

FASE 7

Viene simulata l'installazione dell'arco rovescio e lo scavo alla distanza di 24m dal fronte. Il cedimento cumulato in calotta è pari 5.3 cm, lo spostamento cumulato al piedritto di monte raggiunge raggiunge 3.1 cm, mentre il sollevamento cumulato in arco rovescio è di 3.3 cm. Nell'intorno del cavo la massima tensione principale massima è di 793 kPa (piedritti) mentre la massima tensione principale minima è di 142 kPa (arco rovescio).

FASE 8

Viene simulata l'installazione del rivestimento definitivo e lo scarico totale all'interno del cavo. Il cedimento cumulato in calotta è pari a 5.7 cm, lo spostamento cumulato al piedritto di monte raggiunge 3.2 cm, mentre il sollevamento cumulato in arco rovescio è di 3.5 cm. Nell'intorno del cavo la massima tensione principale massima è di 793 kPa (piedritti) mentre la massima tensione principale minima è di 142 kPa (arco rovescio).

FASE 9

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO N RADDOPPIO T I LOTTO FUNZ	JAPOLI – B TRATTA AF ZIONALE A	ARI PICE – ORSAR PICE - HIRPIN	A NIA		
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	134 di 222

Viene simulato, solo per la componente strutturale, l'innlzamento della falda, a simulare il mancanto funzionamento del drenaggio superiore e del denaggio della galleria.. Nell'intorno del cavo la massima tensione principale massima è di 663 kPa (calotta) mentre la massima tensione principale minima è di 197 kPa (arco rovescio).

9.6.5 Verifiche strutturali del rivestimento di prima fase

Le verifiche strutturali sul rivestimento di prima fase sono state eseguite per le fasi di calcolo 4, 5, 6, e 7. Le caratteristiche del rivestimento provvisorio sono riportate nella seguente tabella.

Caratteristiche	Spritz beton/Centine
Spessore dello spritz beton[m]	0.30
Area resistente dello spritz beton A_{sb} [m ²]	0.30
Tipologia profilati	HEB 240
Interasse longitudinale profilato [m]	0.8
Area resistente della centina A_{cent} [cm ²]	106
Modulo resistente elastico della centina W_{cent} [cm ³]	938
Area resistente a taglio della centina $A_{V,cent}$ [cm ²]	33.24

Tabella 41 - Analisi di interazione – Sezione tipo C2P : definizione delle caratteristiche del rivestimento provvisorio

La tabella seguente sintetizza le sollecitazioni ottenute, per ogni fase, nelle zone di maggiore interesse del rivestimento: zona di calotta, di contatto calotta-piedritti e dei piedritti, rilevate in corrispondenza dei nodi indicati nella figura a seguire.

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO N RADDOPPIO T I LOTTO FUNZ	JAPOLI – B TRATTA AF ZIONALE A	ARI PICE – ORSAR PICE - HIRPII	A NIA		
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	A	135 di 222

	Sollecitazioni	Calotta	zona di cont pied	zona di contatto calotta- piedritto		iritto
			Sinistro	Destro	Sinistro	Destro
4	N [kN/m]	-514	-575	-666	-675	-704
ase	M [kNm/m]	3	-2	-8	2	3
	T [kN/m]	-1	-5	7	-3	-1
ы С	N [kN/m]	-1189	-1327	-1496	-1600	-1617
Fase	M [kNm/m]	19	2	-22	12	11
	T [kN/m]	-5	-12	24	-37	24
2	N [kN/m]	-1399	-1561	-1754	-1895	-1903
Fase	M [kNm/m]	24	4	-28	1	7
	T [kN/m]	-7	-14	29	-56	30
57	N [kN/m]	-1540	-1589	-1763	-1778	-1795
ase	M [kNm/m]	27	4	-28	-2	4
	T [kN/m]	-7	-14	30	-56	30

Tabella 42 - Analisi di interazione – Sezione tipo C2P : Sollecitazioni nelle zona di maggior interesse del rivestimento di prima fase

	Sollecitazioni	Arco	zona di co mur	ntatto a.r etta
		rovescio	Sinistro	Destro
S	N [kN/m]	-861	-910	-792
Fase	M [kNm/m]	11	28	39
	T [kN/m]		81	-50
9	N [kN/m]	-1229	-1143	-1016
Fase	M [kNm/m]	16	31	42
	ш Т [kN/m]	-1	83	-51
7	N [kN/m]	-1427	-1140	-1029
Fase	M [kNm/m]	19	30	42
_	T [kN/m]	-1	84	-52

 Tabella 43 - Analisi di interazione – Sezione tipo C2P : Sollecitazioni nelle zona di maggior interesse del rivestimento di prima fase- arco rovescio provvisorio

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO N RADDOPPIO T I LOTTO FUNZ	NAPOLI – B TRATTA AF ZIONALE A	ARI PICE – ORSAR PICE - HIRPII	A NIA		
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	136 di 222

Figura 118 - Nodi rilevati del rivestimento di prima fase

In allegato si riportano, per ogni nodo del rivestimento, le sollecitazioni scaturite dall'analisi e le conseguenti verifiche: le verifiche strutturali del rivestimento di prima fase sono soddisfatte, per ciascuna fase, in tutti i punti.

9.6.6 Verifiche strutturali SLU del rivestimento definitivo

Nella tabella seguente si riportano le caratteristiche simulate dei rivestimenti di prima fase e definitivi.

Tipo di prerivestimento	Spritz beton/Rivestimento definitivo
Spessore dello spritz [m]	0.30
Spessore simulato del rivestimento definitivo di arco rovescio [m]	1.00
Spessore simulato del rivestimento definitivo di calotta [m]	1.10

	Tabella 44 - Analisi di interazione -	Sezione tipo C	2p: definizione del	lle caratteristiche dei	rivestimenti
--	---------------------------------------	----------------	---------------------	-------------------------	--------------

La verifica strutturale del rivestimento definitivo prevede il confronto tra le sollecitazioni di calcolo, ottenute a partire dai risultati del modello numerico applicando i relativi coefficienti parziali, e le resistenze di calcolo definite dai punti M_{Rd} , N_{Rd} che individuano il dominio resistente nel piano M, N.

Per la verifica a taglio, il valore resistente di calcolo è ottenuto in accordo con la normativa vigente (DM 14/01/2008 par.4.1.2.1.3. e Circolare n.617/2009).

Il rivestimento definitivo è previsto armato sia in calotta che in arco rovescio. L'incidenza delle armature in calotta è di 50kg di acciaio per m^3 e in arco rovescio è di 70kg di acciaio per m^3 .

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA							
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	137 di 222		

Le tabelle seguenti sintetizzano le sollecitazioni ottenute, per ogni fase, nelle zone di maggiore interesse del rivestimento: zona di calotta, di contatto calotta-piedritti e piedritti-arco rovescio, dei piedritti e di arco rovescio, rilevate in corrispondenza dei nodi delle figura a seguire.

	Sollecitazioni	Calotta	zona di contatto calotta- piedritto		piedr	itto
			sinistro	destro	sinistro	destro
7	N [kN/m]	111	-84	-118	-300	-292
ase	M [kNm/m]	109	-5	-25	-117	-110
	T [kN/m]	-2	-37	43	13	-22
8	N [kN/m]	-1849	-2048	-2185	-2105	-2082.23
ase	M [kNm/m]	159	-49	-106	-118	-116
_	T [kN/m]	-25	-64	102	27	-58
6 8	N [kN/m]	-2846	-2772	-3016	-2754	-2722.13
ase	M [kNm/m]	-838	496	-194	485	733
	T [kN/m]	99	266	-281	-312	172

Tabella 45 - Analisi di interazione – Sezione tipo C2p : Sollecitazioni nelle zone calotta-piedritto del rivestimento definitivo

	Sollecitazioni		zona di contat arc	tto piedritto- co		
	301120111	rovescio	sinistro	destro		
9 e	N [kN/m]	88	-31	20		
ase	M [kNm/m]	289	189	208		
	T [kN/m]	2	61	-38		
7	N [kN/m]	125	-189	-74		
ase	M [kNm/m]	443	184	249		
	T [kN/m]	9	127	-92		
8	N [kN/m]	-1504	-1614	-1460		
Fase	M [kNm/m]	570	55	211		
	T [kN/m]	15	296	-188		
6	N [kN/m]	-2849	-2887	-2675		
ase	M [kNm/m]	-313	-524	248		
-	T [kN/m]	61	80	129		

Tabella 46 - Analisi di interazione – Sezione tipo C2P : Sollecitazioni nelle zone arco rovescio-piedritto del rivestimento definitivo

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA							
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	138 di 222		

Figura 119 - Nodi rilevati del rivestimento definitivo

In **calotta e piedritti** si dispongono 1+1 ϕ 20/20 con un copriferro netto di 4 cm. L'armatura longitudinale di ripartizione è costituita da barre ϕ 12/30. L'armatura a taglio è del tipo ϕ 12/40cm/30cm.

Figura 120 - Dominio resistente SLU calotta (B=1.00 m, H=1.00m) – Fase 7

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA						
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	139 di 222	

Figura 122 - Dominio resistente SLU calotta (B=1.00 m, H=1.00m) - Fase 8

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA							
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	140 di 222		

Figura 124 - Domnio resistente SLU calotta (B=1.00 m, H=1.00m) - Fase 9

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA							
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	141 di 222		

Figura 125 - Verifica SLU taglio calotta – Fase 9

In **arco rovescio** si dispongono $1+1 \phi 30/20$ con un copriferro netto di 4 cm. L'armatura longitudinale di ripartizione è costituita da barre $\phi 12/30$. L'armatura a taglio prevista consiste in $\phi 12/40$ cm/30cm.

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA							
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	142 di 222		

Figura 126 - Dominio resistente SLU arco rovescio (B=1.00 m, H=1.10 m) – Fase 6

Figura 127 - Verifica SLU taglio arco rovescio - Fase 6

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA						
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	143 di 222	

Figura 128 - Dominio resistente SLU arco rovescio (B=1.00 m, H=1.10 m) – Fase 7

Figura 129 - Verifica SLU taglio arco rovescio – Fase 7

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA						
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	144 di 222	

Figura 130 - Dominio resistente SLU arco rovescio (B=1.00 m, H=1.10 m) – Fase 8

Figura 131 - Verifica SLU taglio arco rovescio – Fase 8
GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA						
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	145 di 222	

Figura 132 - Dominio resistente SLU arco rovescio (B=1.00 m, H=1.10 m) – Fase 9

Figura 133 - Verifica SLU taglio arco rovescio - Fase 9

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA							
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	146 di 222		

9.6.7 Verifiche strutturali SLE del rivestimento definitivo

Le verifiche SLE del rivestimento definitivo sono finalizzate a prevenire la formazione di un quadro fessurativo tale da compromettere la durabilità dell'opera. A tal fine la Normativa (DM 14/01/2008 par.4.1.2.1.3. e Circolare n.617/2009) stabilisce un limite massimo all'ampiezza delle fessure (SLE di fessurazione) ed al contempo, impone il rispetto di opportuni limiti tensionali sia nell'acciaio che nel calcestruzzo (SLE di tensione).

Nello specifico, le verifiche agli SLE di fessurazione della calotta e arco rovescio non evidenziano fessure.

Anche le verifiche SLE di tensione per la calotta e arco rovescio risultano soddisfatte sia lato calcestruzzo che lato acciaio rispettando i valori limite imposti sia dalla normativa NTC2008 che dal Manuale RFI 2016.

Figura 134 - Verifiche SLE tensione cls calotta – Fase 7

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA							
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	147 di 222		

Figura 135 - Verifiche SLE tensione acciaio calotta – Fase 7

Figura 136 - Verifiche SLE fessurazione calotta – Fase 7

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA							
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	148 di 222		

Figura 138 - Verifiche SLE tensione acciaio calotta – Fase 8

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA							
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	149 di 222		

Figura 140 - Verifiche SLE tensione cls calotta – Fase 9

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA							
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	150 di 222		

Figura 141 - Verifiche SLE tensione acciaio calotta - Fase 9

Figura 142 - Verifiche SLE fessurazione calotta – Fase 9

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA							
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	151 di 222		

Figura 144 - Verifiche SLE tensione acciaio arco rovescio - Fase 6

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA							
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	152 di 222		

Figura 146 - Verifiche SLE tensione cls arco rovescio – Fase 7

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA							
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	153 di 222		

Figura 147 - Verifiche SLE tensione acciaio arco rovescio - Fase 7

Figura 148 - Verifiche SLE fessurazione arco rovescio – Fase 7

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA							
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	154 di 222		

Figura 150 - Verifiche SLE tensione acciaio arco rovescio – Fase 8

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA							
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	155 di 222		

Figura 152 - Verifiche SLE tensione cls arco rovescio – Fase 9

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA						
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	156 di 222	

Figura 153 - Verifiche SLE tensione acciaio arco rovescio - Fase 9

Figura 154 - Verifiche SLE fessurazione arco rovescio – Fase 9

I risultati delle analisi sono riassunti in tabelle; input e output grafici del modello di calcolo sono riportati integralmente in allegato.

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	157 di 222

9.7 SEZIONE C2p allargata p.k. 3+480

Le analisi e le verifiche riportate di seguito sono relative alla sezione di massima copertura tra le p.k. 3+480.00 e 3+632.00 in cui è prevista l'allargo della sezione della galleria di linea per visibilità segnali in curva. In tale tratto la galleria attraversa la formazione del Flysch Rosso FYR e la sezione C2p allargata è prevista applicata come sezione prevalente.

Le verifiche sono da intendersi rappresentative anche per la sezione C2p in tutte le tratte nel FYR, in cui ne è prevista l'applicazione come sezione prevalente, ad eccezione di quelle a basse coperture in condizioni di galleria parietale e nel sottoattraversamento della frana quiesciente per le quali si rimanda alle verifiche dei paragrafi precedenti.

9.7.1 Stabilità del fronte e del cavo

Nelle seguenti tabelle si riassumono i dati di input e i risultati dell'analisi di stabilità del fronte della sezione tipo C2p allargata condotta con il metodo di Metodo di Broms & Bennermark.

I parametri geotecnici utilizzati nelle analisi (valori di progetto) così come i valori dell'incremento di coesione equivalente al fronte, indotto dagli interventi di consolidamento, sono stati definiti coerentemente con quanto indicato nei criteri di verifica.

n _{VTR}	L _A	$\mathbf{\Phi}_{perf}$	τ _{bk}	σ_{3A}^{VTR}	A _{VTR}	f _{tk}	σ_{3B}^{VTR}	σ3	∆C _{uk}		
[-]	[m]	[m]	[kPa]	[kPa]	[m ²]	[MPa]	[kPa]	[kPa]	[kPa]		
58	12	0.1	150	274	7.200E-04	900	314	274	137		
$n_{VTR} = nume$	$n_{VTR} = numero \ di \ VTR \ al \ fronte$										
$L_A = lunghezza minima di sovrapposizione del VTR$											
$\Phi_{perf} = diametro \ di \ perforazione$											
$\tau_{bk} = tensio$	ne di aderenz	a all'interfac	cia col terren	0							
$\sigma_{3A}^{VTR} = res$	istenza a sfila	imento dell'el	emento strutti	urale in VTR							
$A_{VTR} = area$	del VTR										
$f_{tk} = resistent$	nza a trazione	e del VTR									
$\sigma_{3B}^{VTR} = res$	σ_{3B}^{VTR} = resistenza a rottura dell'elemento strutturale in VTR										
σ_3 = tensione minima resistente al fronte											
$\Delta cu_k = coest$	ione non dren	ata caratteris	stica equivale	nte indotta da	all'intervento	di consolidan	nento del fron	nte			

Tabella 47 - Analisi di stabilità del fronte Sez. C2p allargata p.k. 3+480: Determinazione della coesione equivalente per simulare l'intervento di consolidamento al fronte di scavo

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA			A NIA		
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	158 di 222

Tabella 48 - Analisi di stabilità del fronte Sez. C2p allargata p.k. 3+480: Risultati dell'analisi

L'analisi evidenzia che, anche con l'applicazione dei coefficienti parziali corrispondenti alla combinazione A2+M2+R2 e quindi con i valori di progetto, il rapporto di stabilià N risulta inferiore a 4. Si ritiene pertanto che il nucleo-fronte sia stabile e quindi la verifica di stabilità del fronte è soddisfatta.

9.7.2 Interazione opera-terreno

Nella tabella seguente si riassumono i dati di input che caratterizzano la sezione geotecnica utilizzata per le analisi numeriche della sezione tipo C2p allargata.

La sezione di analisi è relativa ad una condizione di copertura non profonda.

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA							
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	159 di 222		

Stratigre	afia di calcolo	C	Falda	27	c'	(0 ¹	6	F'	k.	
Formazione	Profondità da p.c.	C	1 alua	T	Cκ	ΨК	Cuk	L	K0	
[-]	[m]	[m]	[m da p.c.]	[kN/m ³]	[kPa]	[°]	[kPa]	[MPa]	[-]	
ANZ2	0-30			20	5	26	-	100	0.56	
ANZ2a	30-45			19	30	24	-	250	0.59	
FYR	45-70	60	25	21	25	22	-	400	1.00	
FYR	>70			21	30	24	-	400	1.00	
C = copertura	(rispetto alla calott	a)								
$\gamma = peso \ per \ u$	nità di volume									
c'_{K} =coesione	drenata									
$\phi'_K = angolo di$	attrito interno									
cu_K = coesione non drenata										
E'= modulo el	E'= modulo elastico drenato									
$K_o = coefficient$	nte di spinta a riposo									

Tabella 49 - Analisi di interazione Sez. C2p allargata: definizione della stratigrafia di calcolo

In ragione delle limitate permeabilità dei materiali, si ipotizza un comportamento asciutto durante la fase di scavo. Al fine di tenere condto della condizione di lungo termine la falda viene posta a 35m al di sopra del livello della calotta della galleria.

Figura 155 - Modello di calcolo - Geometria mesh

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA							
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	160 di 222		

Il consolidamento del fronte tramite VTR, simulato mediante una pressione equivalente σ_3^{VTR} applicata al fronte di scavo, interviene nella modellazione FEM in maniera implicita attraverso l'applicazione delle percentuali di rilascio.

Risultano previsti 58 elementi in VTR, cementati con miscele espansive, con lunghezza minima di sovrapposizione pari a 12m.

Al contorno sono previsti 53 elementi in VTR, valvolati ed iniettati mediante miscele cementizie, con lunghezza minima di sovrapposizione pari a 12m.

Il consolidamento al contorno, applicato su una fascia di circa 2.0m, è caratterizzato dai parametri di seguito riportati, valutati sulla base degli effetti legati al trattamento di iniezione attraverso miscele cementizie, oltre al ccontributo di resistenza a taglio degli elementi in vetroresina.

γ	c_k	E
[kN/m ³]	[kPa]	[MPa]
20	250	600

Tabella 50 - Parametri per la modellazione del consolidamento al contorno

Con riferimento all'asse della galleria, la griglia di calcolo presenta un'estensione laterale di 100m (per una larghezza totale di 200 m) e un'altezza complessiva di 120 m. Il numero complessivo degli elementi è pari a circa 7822 mentre i nodi sono circa 62912.

9.7.3 Fasi e percentuali di rilascio

I tassi di deconfinamento sono stati calcolati mediante analisi assialsimmetrica e curva caratteristica numerica. Nell'analisi assialsimmetrica è stato inserito il consolidamento del fronte tramite VTR simulato mediante la pressione equivalente σ_3^{VTR} applicata al fronte di scavo trasformata in materiale equivalente.

Figura 156 - Sez. C2p allargata – Curva caratteristica di convergenza numerica

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA							
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	161 di 222		

Figura 157 - Sez. C2p allargata - Spostamenti radiali modello assialsimmetrico in funzione della distanza dal fronte

Figura 158 - Sez. C2p allargata – Calcolo percentuale di rilascio $\lambda_{F}\text{-}$ al fronte

Nella tabella successiva è schematizzata la successione delle fasi di calcolo nelle quali è articolata l'analisi di interazione opera-terreno.

Al termine del processo di scavo è stata simulata la fase di lungo termine in cui sono stati fatti decadere i parametri dei consolidamenti e dei rivestimenti di prima fase.

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA							
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	162 di 222		

Fase	Descrizione	Rilascio forze scavo (λ)
0-1	Inizializzazione stato tensionale geostatico	0.00
2	Posizione limite della zona di consolidamento al contorno del cavo	0.11
3	Attivazione consolidamenti al contorno e rilascio a cavo libero in corrispondenza del fronte	0.69
4	Esecuzione dello sfondo elementare di 1 m	0.87
5	Installazione del rivestimento di prima fase e scarico a 3 m dal fronte	0.93
6	Installazione del puntone in arco rovescio di prima fase e scarico a 12 m dal fronte	0.97
7	Installazione dell'arco rovescio definitivo e scarico a 24 m dal fronte	0.98
8	Installazione del rivestimento definitivo di calotta (scarico completo)	1.00
9	Condizione di lungo termine (innalzamento della falda, decadimento del rivestimento di prima fase con decadimento dei consolidamenti al contorno)	1.00

Tabella 51 - Analisi di interazione - Sezione C2p allargata: fasi di calcolo

9.7.4 Esame dei risultati

L'analisi si articola in sette successive fasi di calcolo, che permettono di descrivere i differenti interventi costruttivi e di schematizzare le differenti condizioni di carico per i rivestimenti. Le fasi, descritte al paragrafo precedente, sono illustrate in nell'allegato relativo alle sezione in esame.

Lo stesso allegato illustra, per ciascuna fase, le componenti verticale e orizzontale degli spostamenti totali cumulati, i vettori degli spostamenti totali, i punti al contorno del cavo dove si hanno plasticizzazioni e l'orientamento delle direzioni principali efficaci.

La tabella 19 riporta, per ogni fase di calcolo, i risultati principali in termini di quadro deformativo e tensionale e di localizzazione delle plasticizzazioni nella zona del cavo, distinguendo tra la zona di calotta, dei piedritti e dell'arco rovescio.

La Figura 33 consente di visualizzare la posizione dei nodi di chiave calotta, dei piedritti e dell'arco rovescio cui si riferiscono i dati riportati nella tabella.

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE – ORSARA

I LOTTO FUNZIONALE APICE - HIRPINIA

GALLERIA GROTTAMINARDA

Relazione geotecnica e di calcolo galleria naturale

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF0G 01 D 07 RB GN0100 001 A 163 di 222

		calotta	-			pied	ritti	-	-	ar	co roves	cio	Fascia
Fase	u [cm]	σ ₁ [kPa]	σ ₃ [kPa]	u [cm]	σ ₁ [kPa]	σ ₃ [kPa]	u [cm]	σı [kPa]	σ ₃ [kPa]	u [cm]	σı [kPa]	σ ₃ [kPa]	plasticizzata
2	0.43	-1331	-1080	0.24	-1543	-1233	0.24	-1543	-1233	-0.42	-1488	-1344	No zone plastiche
3	2.82	-1585	-384	1.92	-1711	-441	1.92	-1711	-441	-2.84	-1312	-569	Estensione pari a circa 3m al contorno dello scavo e sotto le murette
4	8.86	-1101	-164	7.44	-1155	-188	7.44	-1155	-188	-7.06	-680	-248	Zone plastiche al completo contorno dello scavo, con spessore masssimo 10m alle reni e 8m in arco rovescio.
5	9.22	-1261	-237	9.16	-1011	-189	9.16	-1011	-189	-9.84	-493	-175	Leggera estension delle zone plastiche rispetto alla fase precedente, ma meno continue
6	9.21	-1261	-238	9.10	-1076	-250	9.10	-1076	-250	-10.17	-489	-167	Al contorno dello scavo risultano persistenti zona plastiche alle reni (3.5m e verticalizzazione) e arco rovescio (sino a 10m)
7	9.22	-1261	-237	9.10	-1081	-255	9.10	-1081	-255	-10.17	-483	-165	Situazione sostanzialmente similare alla fase precedente
8	9.40	-1225	-220	9.14	-1071	-266	9.14	-1071	-266	-10.04	-492	-172	Zone plastiche in calotta (2m) con verticalizzazione in corrispondenza delle reni
9	4.50	-940	-588	8.99	-1211	-793	8.99	-1211	-793	-15.33	-880	-615	Zone plastiche in calotta e reni spessore massimo 15m) e arco rovescio (sino a 14m)

u/= *spostamento totale cumulativo (positivo se abbassamento, negativo se sollevamento)*

 σ_1 = sforzo principale totale massimo

 σ_3 = sforzo principale totale minimo

Tabella 52 - A	analisi di interazione	e – Sezione tipo	C2 allargata:	risultati dell'analisi
----------------	------------------------	------------------	---------------	------------------------

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA						
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	164 di 222	

Figura 159 - Nodi rilevati nella zona del cavo

FASE 2

Viene simulato il rilascio a cavo libero in corrispondenza del momento precedente all'attivazione del consolidamento al contorno dello scavo. Il campo di spostamenti mostra spostamenti pari a circa 0.4cm in calotta e in arco rovescio, 0.2cm ai piedritti. Non sono presenti zone plastiche. Nell'intorno del cavo la massima tensione principale massima è di 1543 kPa (piedritti) mentre la massima tensione principale minima è di 1080 kPa (calotta).

FASE 3

Viene simulata l'esecuzione dello scavi sino alla posizione del fronte. Il cedimento cumulato in calotta è pari a 2.8 cm, lo spostamento cumulato ai piedritti raggiunge 2.0 cm, mentre il sollevamento cumulato in arco rovescio è di 2.9 cm. Le zone plastiche Estensione mostrano un'estensione pari a circa 3m al contorno dello scavo e sotto le murette. Nell'intorno del cavo la massima tensione principale massima è di 1711 kPa (piedritti) mentre la massima tensione principale minima è di 384 kPa (calotta).

FASE 4

Viene simulata l'esecuzione dello sfondo elementare di 1.0 m. Il cedimento cumulato in calotta è pari a 8.9 cm, lo spostamento cumulato ai piedritti raggiunge 7.5 cm, mentre il sollevamento cumulato in arco rovescio è di 7.1 cm. Le zone plastiche sono presenti al completo contorno dello scavo, variando il loro spessore da 5m alla base dei piedritti a oltre 10m in corrispondenza delle reni. Alla posizione dell'arco rovescio tali zone raggiungono spessori di circa 8m. Nell'intorno del cavo la massima tensione principale massima è di 1155 kPa (piedritti) mentre la massima tensione principale minima è di 164 kPa (calotta).

FASE 5

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA						
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	165 di 222	

Viene simulata l'installazione del rivestimento di prima fase e l'avanzamento a 3 m dal fronte (distanza di getto dell'arco rovescio provvisiorio dal fronte). Il cedimento cumulato in calotta è pari a 9.3 cm, lo spostamento cumulato al piedritto raggiunge 9.2 cm, mentre il sollevamento cumulato in arco rovescio è di 10 cm. Le zone plastiche si estendono leggermente rispetto alla fase precedente, ma risultano meno compatte, generando bande a spirale lungo il contorno dello scavo. Nell'intorno del cavo la massima tensione principale massima è di 1261 kPa (calotta) mentre la massima tensione principale minima è di 175 kPa (arco rovescio).

FASE 6

Viene simulata l'installazione dell'arco rovescio provvisorio e l'avanzamento a 12 m dal fronte. Il cedimento cumulato in calotta è pari a 9.2 cm, lo spostamento cumulato al piedritto raggiunge 9.1 cm, mentre il sollevamento cumulato in arco rovescio è di 10.2 cm. La chiusura della sezione permette la ridistribuzione degli sforzi, e le zone plastiche si riducono in maniera drastica. Le zone plastiche presentano una riduzione rispetto alla fase precedente, e rimangono oltre il dominio di rottura le zone alle reni ed in arco rovescio. Nell'intorno del cavo la massima tensione principale massima è di 1261 kPa (calotta) mentre la massima tensione principale minima è di 167 kPa (arco rovescio).

FASE 7

Viene simulata l'installazione dell'arco rovescio e lo scavo alla distanza di 24m dal fronte. Il cedimento cumulato in calotta è pari a 9.2 cm, lo spostamento cumulato ai piedritti raggiunge 9.1 cm, mentre il sollevamento cumulato in arco rovescio è di 10.1 cm. Le zone plastiche risultano similari rispetto alla fase precedente. Nell'intorno del cavo la massima tensione principale massima è di 1261 kPa (calotta) mentre la massima tensione principale minima è di 165 kPa (arco rovescio).

FASE 8

Viene simulata l'installazione del rivestimento definitivo e lo scarico totale all'interno del cavo. Il cedimento cumulato in calotta è pari a 9.4 cm, lo spostamento cumulato ai piedritti raggiunge 9.1 cm, mentre il sollevamento cumulato in arco rovescio è di 10.0 cm. Le zone plastiche risultano localizatte in calotta, con tendenza alla verticalizzazione in corrispondenza delle reni. Nell'intorno del cavo la massima tensione principale massima è di 1225 kPa (calotta) mentre la massima tensione principale minima è di 172 kPa (arco rovescio).

FASE 9

Viene simulato il comportamento di lungo termine caratterizzato dal decadimento del rivestimento di prima fase con conseguente trasferimento degli sforzi sul rivestimento definitivo ed il decadimento dei parametri del consolidamento al contorno che tornano ad essere quelli del terreno originario. Il valore di cedimento cumulato in calotta è pari a 4.5 cm, lo spostamento cumulato ai piedritti raggiunge 9.1 cm, mentre il sollevamento cumulato in arco rovescio è di 15.3 cm. Le zone plastiche nell'intorno della galleria sono localizzate in calotta e reni spessore massimo 15m) e arco rovescio (sino a 14m). Nell'intorno del cavo la massima tensione principale massima è di 1211 kPa (piedritti) mentre la massima tensione principale minima è di 588 kPa (calotta).

9.7.5 Verifiche strutturali del rivestimento di prima fase

Le verifiche strutturali sul rivestimento di prima fase sono state eseguite per le fasi di calcolo 5, 6, 7 e 8. Le caratteristiche del rivestimento provvisorio sono riportate nella seguente tabella.

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA						
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	166 di 222	

Caratteristiche	Spritz beton/Centine
Spessore dello spritz beton[m]	0.30
Area resistente dello spritz beton A_{sb} [m ²]	0.30
Tipologia profilati	HEB 240
Interasse longitudinale profilato [m]	1
Area resistente della centina A _{cent} [cm ²]	106
Modulo resistente elastico della centina W_{cent} [cm ³]	938
Area resistente a taglio della centina $A_{V,cent}$ [cm ²]	33.24

Tabella 53 - Analisi di interazione – Sezione tipo C2p allargata: definizione delle caratteristiche del rivestimento provvisorio

La tabella seguente sintetizza le sollecitazioni ottenute, per ogni fase, nelle zone di maggiore interesse del rivestimento: zona di calotta, di contatto calotta-piedritti e dei piedritti, rilevate in corrispondenza dei nodi indicati nella figura a seguire.

	Sollecitazioni	zona di contatto calotta- piedritto		zona di contatto calotta- piedritto		Iritto
	Concontation	Calotta	Sinistro	Destro	Sinistro	Destro
e 5	N [kN/m]	-1084	-1032	-1011	-719	-702
ase	M [kNm/m]	-14	-29	-23	36	39
	T [kN/m]	0	1	-7	3	0
9 9	N [kN/m]	-1462	-1417	-1402	-1135	-1128
ase	M [kNm/m]	-14	-30	-23	30	19
1	T [kN/m]	0	2	-11	-46	69
7 5	N [kN/m]	-1540	-1496	-1480	-1212	-1206
Fase	M [kNm/m]	-15	-31	-23	27	13
-	T [kN/m]	0	3	-11	-54	80
8	N [kN/m]	-1620	-1560	-1540	-1191	-1184
Fase	M [kNm/m]	-14	-31	-23	26	12
_	T [kN/m]	0	3	-11	-54	80

Tabella 54 - Analisi di interazione – Sezione tipo C2p allargata: Sollecitazioni nelle zona di maggior interesse del rivestimento di prima fase

	Sollecitazioni		zona di contatto a.r muretta		
		rovescio	Sinistro	Destro	
Fase 6	N [kN/m]	-948	-686	-698	

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA						
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	167 di 222	

	Sollecitazioni	Arco rovescio	zona di co mur Sinistro	ntatto a.r etta Destro
	M [kNm/m]	-5	12	18
	T [kN/m]	0	36	-39
7	N [kN/m]	-995	-731	-745
Fase	M [kNm/m]	-4	13	18
_	T [kN/m]	0	36	-39
8	N [kN/m]	-1140	-714	-740
ase	M [kNm/m]	-3	12	17
-	T [kN/m]	0	36	-40

Tabella 55 - Analisi di interazione – Sezione tipo C2p allargata: Sollecitazioni nelle zona di maggior interesse del rivestimento di prima fase- arco rovescio provvisorio

Figura 160 - Nodi rilevati del rivestimento di prima fase

In allegato si riportano, per ogni nodo del rivestimento, le sollecitazioni scaturite dall'analisi e le conseguenti verifiche: le verifiche strutturali del rivestimento di prima fase sono soddisfatte, per ciascuna fase, in tutti i punti.

9.7.6 Verifiche strutturali SLU del rivestimento definitivo

Nella tabella seguente si riportano le caratteristiche simulate dei rivestimenti di prima fase e definitivi.

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA						
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	168 di 222	

Tipo di prerivestimento	Spritz beton/Rivestimento definitivo
Spessore dello spritz [m]	0.30
Spessore simulato del rivestimento definitivo di arco rovescio [m]	1.00
Spessore simulato del rivestimento definitivo di calotta [m]	1.10

Tabella 56 - Analisi di interazione - Sezione tipo C2p allargata: definizione delle caratteristiche dei rivestimenti

La verifica strutturale del rivestimento definitivo prevede il confronto tra le sollecitazioni di calcolo, ottenute a partire dai risultati del modello numerico applicando i relativi coefficienti parziali, e le resistenze di calcolo definite dai punti M_{Rd} , N_{Rd} che individuano il dominio resistente nel piano M, N.

Per la verifica a taglio, il valore resistente di calcolo è ottenuto in accordo con la normativa vigente (DM 14/01/2008 par.4.1.2.1.3. e Circolare n.617/2009).

Il rivestimento definitivo è previsto armato sia in calotta che in arco rovescio. L'incidenza delle armature in calotta e in arco rovescio è di 50kg di acciaio per m³.

Le tabelle seguenti sintetizzano le sollecitazioni ottenute, per ogni fase, nelle zone di maggiore interesse del rivestimento: zona di calotta, di contatto calotta-piedritti e piedritti-arco rovescio, dei piedritti e di arco rovescio, rilevate in corrispondenza dei nodi delle figura a seguire.

	Sollecitazioni	Calotta	zona di contatto calotta- piedritto		piedr	itto
			sinistro	destro	sinistro	destro
8	N [kN/m]	-124	-169	-173	-322	-323
Fase	M [kNm/m]	27	11	10	-49	-49
	T [kN/m]	0	-6	6	-4	3
6	N [kN/m]	-4674	-4601	-4599	-3746	-3782
ase	M [kNm/m]	-192	56	122	-110	-161
-	T [kN/m]	-24	128	-99	-195	177

Tabella 57 - Analisi di interazione – Sezione tipo C2p allargata: Sollecitazioni nelle zone calotta-piedritto del rivestimento definitivo

	Sollecitazioni	arco	zona di contat arc	to piedritto- o	
		rovescio sinistro		destro	
7	N [kN/m]	-142	-58	-54	
Fase	M [kNm/m]	5	28	29	
	T [kN/m]	0	5	-5	
Fase 8	N [kN/m]	-388	-346	-336	

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA						
GALLERIA GROTTAMINARDA	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLI					FOGLIO	
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	169 di 222	

	M [kNm/m]	62	-1	1
	T [kN/m] 1		56	-58
•	N [kN/m]	-5185	-4957	-4805
ase	M [kNm/m]	941	-1038	-990
ш	T [kN/m]	59	595	-624

Tabella 58 - Analisi di interazione – Sezione tipo C2p allargata: Sollecitazioni nelle zone arco rovescio-piedritto del rivestimento definitivo

Figura 161 - Nodi rilevati del rivestimento definitivo

In **calotta e piedritti** si dispongono 1+1 ϕ 20/20 con un copriferro netto di 4 cm. L'armatura longitudinale di ripartizione è costituita da barre ϕ 12/20. L'armatura a taglio è del tipo ϕ 12/40cm/40cm.

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA						
GALLERIA GROTTAMINARDA	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO						
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	170 di 222	

Figura 162 - Dominio resistente SLU calotta (B=1.00 m, H=1.00m) – Fase 8

Figura 163 - Verifica SLU taglio calotta – Fase 8

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA						
GALLERIA GROTTAMINARDA	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO						
Relazione geotecnica e di calcolo galleria naturale	IF0G 01 D 07 RB GN0100 001 A 171 di						

Figura 164 - Dominio resistente SLU calotta (B=1.00 m, H=1.0m) - Fase 9

Figura 165 - Verifica SLU taglio calotta – Fase 9

In **arco rovescio** si dispongono 1+1 ϕ 20/20 con un copriferro netto di 4 cm. L'armatura longitudinale di ripartizione è costituita da barre ϕ 12/30. L'armatura a taglio prevista consiste in ϕ 12/40cm/30cm.

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA						
GALLERIA GROTTAMINARDA	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGI						
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	172 di 222	

Figura 166 - Dominio resistente SLU arco rovescio (B=1.00 m, H=1.10 m) – Fase 7

Figura 167 - Verifica SLU taglio arco rovescio – Fase 7

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA						
GALLERIA GROTTAMINARDA	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIC						
Relazione geotecnica e di calcolo galleria naturale	IF0G 01 D 07 RB GN0100 001 A 173 di						

Figura 168 - Dominio resistente SLU arco rovescio (B=1.00 m, H=1.10 m) – Fase 8

Figura 169 - Verifica SLU taglio arco rovescio - Fase 8

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA						
GALLERIA GROTTAMINARDA	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLI						
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	174 di 222	

Figura 170 - Dominio resistente SLU arco rovescio (B=1.00 m, H=1.10 m) – Fase 9

Figura 171 - Verifica SLU taglio arco rovescio - Fase 9

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA							
GALLERIA GROTTAMINARDA	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLI							
Relazione geotecnica e di calcolo galleria naturale	IF0G	IF0G 01 D 07 RB GN0100 001 A 175 di 2						

9.7.7 Verifiche strutturali SLE del rivestimento definitivo

Le verifiche SLE del rivestimento definitivo sono finalizzate a prevenire la formazione di un quadro fessurativo tale da compromettere la durabilità dell'opera. A tal fine la Normativa (DM 14/01/2008 par.4.1.2.1.3. e Circolare n.617/2009) stabilisce un limite massimo all'ampiezza delle fessure (SLE di fessurazione) ed al contempo, impone il rispetto di opportuni limiti tensionali sia nell'acciaio che nel calcestruzzo (SLE di tensione).

Nello specifico, le verifiche agli SLE di fessurazione della calotta e arco rovescio non evidenziano fessure.

Anche le verifiche SLE di tensione per la calotta e arco rovescio risultano soddisfatte sia lato calcestruzzo che lato acciaio rispettando i valori limite imposti sia dalla normativa NTC2008 che dal Manuale RFI 2016.

Figura 172 - Verifiche SLE tensione cls calotta – Fase 8

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA						
GALLERIA GROTTAMINARDA	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLI						
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	176 di 222	

Figura 174 - Verifiche SLE fessurazione calotta – Fase 8

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA							
GALLERIA GROTTAMINARDA	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGL							
Relazione geotecnica e di calcolo galleria naturale	IF0G 01 D 07 RB GN0100 001 A 177 d							

Figura 176 - Verifiche SLE tensione acciaio calotta – Fase 9

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA							
GALLERIA GROTTAMINARDA	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOG					FOGLIO		
Relazione geotecnica e di calcolo galleria naturale	IF0G 01 D 07 RB GN0100 001 A 178 c							

Figura 178 - Verifiche SLE tensione cls arco rovescio – Fase 7

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA							
GALLERIA GROTTAMINARDA	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLI							
Relazione geotecnica e di calcolo galleria naturale	IF0G 01 D 07 RB GN0100 001 A 179 di							

Figura 180 - Verifiche SLE fessurazione arco rovescio – Fase 7

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	180 di 222

Figura 181 - Verifiche SLE tensione cls arco rovescio – Fase 8

Figura 182 - Verifiche SLE tensione acciaio arco rovescio – Fase 8
GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA						
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	181 di 222	

Figura 184 - Verifiche SLE tensione cls arco rovescio – Fase 9

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	182 di 222

Figura 185 - Verifiche SLE tensione acciaio arco rovescio - Fase 9

Figura 186 - Verifiche SLE fessurazione arco rovescio – Fase 9

I risultati delle analisi sono riassunti in tabelle; input e output grafici del modello di calcolo sono riportati integralmente Allegato.

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	183 di 222

9.8 SEZIONE C2 allargata

Le analisi e le verifiche riportate di seguito sono relative alla sezione di massima copertura tra le p.k. 3+480.00 e 3+632.00 in cui è prevista l'allargo della sezione della galleria di linea per visibilità segnali in curva. In tale tratto la galleria attraversa la formazione del Flysch Rosso FYR e la sezione C2 allargata è prevista applicata come sezione eventuale.

Sulla base di considerazioni geotecniche (con riferimento a condizioni stratigrafiche e di copertura), le verifiche sono da intendersi rappresentative anche per la sezione C2 nel tratto di attraversamento delle Molasse di Anzano (ANZ2a), in cui è prevista l'applicazione di tale sezione come sezione prevalente.

9.8.1 Stabilità del fronte e del cavo

Nelle seguenti tabelle si riassumono i dati di input e i risultati dell'analisi di stabilità del fronte della sezione tipo C2 allargata condotta con il metodo di Metodo di Broms & Bennermark.

I parametri geotecnici utilizzati nelle analisi (valori di progetto) così come i valori dell'incremento di coesione equivalente al fronte, indotto dagli interventi di consolidamento, sono stati definiti coerentemente con quanto indicato nei criteri di verifica.

n _{VTR}	$\mathbf{L}_{\mathbf{A}}$	$\mathbf{\Phi}_{perf}$	τ_{bk}	σ_{3A}^{VTR}	A VTR	$\mathbf{f}_{\mathbf{tk}}$	σ_{3B}^{VTR}	σ3	∆C _{uk}	
[-]	[m]	[m]	[kPa]	[kPa]	[m ²]	[m ²] [MPa] [kPa] [[kPa]	[kPa]	
46	10	0.1	150	181	7.200E-04	900	249	181	90	
$n_{VTR} = numero \ di \ VTR \ al \ fronte$										
$L_A = lunghezza minima di sovrapposizione del VTR$										
$\phi_{perf} = diametro \ di \ perforazione$										
$\tau_{bk} = tension$	ne di aderenz	a all'interface	cia col terren	0						
$\sigma_{3A}^{VTR} = res$	istenza a sfila	mento dell'el	emento strutti	ırale in VTR						
$A_{VTR} = area$	del VTR									
$f_{tk} = resistent$	nza a trazione	e del VTR								
$\sigma_{3B}^{VTR} = res$	istenza a rotti	ura dell'eleme	ento struttura	le in VTR						
σ_3 = tensione minima resistente al fronte										
$\Delta cu_k = coest$	ione non dren	ata caratteris	tica equivale	nte indotta da	all'intervento	di consolidan	nento del fron	nte		

Tabella 59 - Analisi di stabilità del fronte Sez. C2 allargata p.k. 3+480: Determinazione della coesione equivalente per simulare l'intervento di consolidamento al fronte di scavo

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA						
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	184 di 222	

Tabella 60 - Analisi di stabilità del fronte Sez. C2 allargata p.k. 3+480: Risultati dell'analisi

L'analisi evidenzia che, anche con l'applicazione dei coefficienti parziali corrispondenti alla combinazione A2+M2+R2 e quindi con i valori di progetto, il rapporto di stabilià N risulta inferiore a 4. Si ritiene pertanto che il nucleo-fronte sia stabile e quindi la verifica di stabilità del fronte è soddisfatta.

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	185 di 222

9.8.2 Interazione opera-terreno

Nella tabella seguente si riassumono i dati di input che caratterizzano la sezione geotecnica utilizzata per le analisi numeriche della sezione tipo C2 allargata.

La sezione di analisi è relativa ad una condizione di copertura media. La presenza della falda è stata simulata nell'analisi alla quota indicata in tabella.

Stratigra	afia di calcolo	G	Falda		- 1		0	E'	1-
Formazione	Profondità da p.c.	C	Falda	γ	с _к	φк	с _{иК}	E	к _о
[-]	[m]	[m]	[m da p.c.]	[kN/m ³]	[kPa]	[°]	[kPa]	[MPa]	[-]
ANZ2	0 ÷ 30			20	5	26	-	100	0.56
ANZ2a	30 ÷ 45	60	10	19	30	24	-	250	0.59
FYR	>45			21	30	24	-	400	1.00
C = copertura	(rispetto alla calott	a)							
$\gamma = peso \ per \ u$	nità di volume								
c'_{K} =coesione	drenata								
$\phi'_K = angolo di$	attrito interno								
$cu_K = coesione$	cu_{K} = coesione non drenata								
$E'=modulo\ elastico\ drenato$									
$K_o = coefficient$	nte di spinta a riposo								

Tabella 61 - Analisi di interazione Sez. C2 allargata: definizione della stratigrafia di calcolo

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	186 di 222

Figura 187 - Modello di calcolo - Geometria mesh

Il consolidamento del fronte tramite VTR, simulato mediante una pressione equivalente σ_3^{VTR} applicata al fronte di scavo, interviene nella modellazione FEM in maniera implicita attraverso l'applicazione delle percentuali di rilascio.

Il consolidamento al contorno, applicato su una fascia di circa 1.0 m, è caratterizzato dai parametri di seguito riportati, calcolati tenendo conto dell'incremento legato alla resistenza al taglio degli elementi in VTR.

γ	c_k	Ε
[kN/m ³]	[kPa]	[MPa]
21	260	400

Con riferimento all'asse della galleria, la griglia di calcolo presenta un'estensione laterale di 100 m (per una larghezza totale di 200 m) e un'altezza complessiva di 120 m. Il numero complessivo degli elementi è pari a circa 7440 mentre i nodi sono circa 59924.

9.8.3 Fasi e percentuali di rilascio

I tassi di deconfinamento sono stati calcolati mediante analisi assialsimmetrica e curva caratteristica numerica (come indicato nella figura soprastante con riferimento alla fase di scavo al fronte). Nell'analisi assialsimmetrica è stato inserito il consolidamento del fronte tramite VTR simulato mediante la pressione equivalente σ_3^{VTR} applicata al fronte di scavo.

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	187 di 222

Figura 188 - Sez. C2 allargata – Curva caratteristica di convergenza numerica

Figura 189 - Sez. C2 allargata – Spostamenti radiali modello assialsimmetrico in funzione della distanza dal fronte

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	188 di 222

Figura 190 - Sez. C2 allargata – Calcolo percentuale di rilascio λ_{F} - al fronte

Nella tabella successiva è schematizzata la successione delle fasi di calcolo nelle quali è articolata l'analisi di interazione opera-terreno. Le fasi di scavo sono state modellate in condizioni di assenza di falda, in ragione della limitata permeabilità del materiale. Conservativamente, è stata assunta tale condizione per una dimensione pari ad un diametro nell'intorno dello scavo, in modo che all'esterno di tale area le condizioni risultassero particolarmente gravose, ragion per cui sono attese discontinuità nel campo delle zone plastiche. Come detto, tale assunzione risulta conservativa rispetto ad un modello completamente asciutto.

Al termine del processo di scavo è stata simulata la fase di lungo termine in cui è stata attivata la falda al completo contorno dello scavo alla sua altezza massima (posta alla quota indicata nella Tabella 16), a simulare una condizione particolarmente gravosa con mancato funzionamento dei dreni .

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	189 di 222

Fase	Descrizione	Rilascio forze scavo (λ)
0-1	Inizializzazione stato tensionale geostatico	0.00
2	Posizione limite della zona di consolidamento al contorno del cavo	0.26
3	Attivazione consolidamenti al contorno e rilascio a cavo libero in corrispondenza del fronte	0.71
4	Esecuzione dello sfondo elementare di 1 m	0.86
5	Installazione del rivestimento di prima fase e scarico a 6 m dal fronte	0.95
6	Installazione dell'arco rovescio e scarico a 36 m dal fronte	0.992
7	Installazione del rivestimento definitivo di calotta (scarico completo)	1.00
8	Condizione di lungo termine (decadimento del rivestimento di prima fase/innalzamento falda con decadimento dei consolidamenti al contorno)	1.00

Tabella 62 - Analisi di interazione - Sezione C2 allargata: fasi di calcolo

9.8.4 Esame dei risultati

L'analisi si articola in sette successive fasi di calcolo, che permettono di descrivere i differenti interventi costruttivi e di schematizzare le differenti condizioni di carico per i rivestimenti. Le fasi, descritte al paragrafo precedente, sono illustrate in nell'allegato relativo alle sezione in esame.

Lo stesso allegato illustra, per ciascuna fase, le componenti verticale e orizzontale degli spostamenti totali cumulati, i vettori degli spostamenti totali, i punti al contorno del cavo dove si hanno plasticizzazioni e l'orientamento delle direzioni principali efficaci.

La tabella Tabella 19 riporta, per ogni fase di calcolo, i risultati principali in termini di quadro deformativo e tensionale e di localizzazione delle plasticizzazioni nella zona del cavo, distinguendo tra la zona di calotta, dei piedritti e dell'arco rovescio.

La Figura 33 consente di visualizzare la posizione dei nodi di chiave calotta, dei piedritti e dell'arco rovescio cui si riferiscono i dati riportati nella tabella.

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA								
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO			
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	190 di 222			

Eas		calotta				pied	ritti			ar	co roves	Fascia	
r as e	u [cm]	σ ₁ [k Pa]	σ ₃ [kPa]	u [cm]	σ ₁ [kP a]	σ ₃ [kPa]	u [cm]	σ ₁ [kP a]	σ ₃ [kPa]	u [cm]	σı[k Pa]	σ ₃ [kPa]	plasticizzata
2	0.99	-1454	-882	0.58	-1700	-997	0.58	-1700	-997	-0.98	-1417	-1097	Punti isolati al di sotto dell'appoggio del sostegno
3	3.26	-1645	-356	2.38	-1736	-394	2.38	-1736	-394	-3.00	-1177	-482	Fascia di spessore 5m ai piedritti, 2.5m in calotta e e 3m in a.r.
4	8.45	-1216	-175	7.51	-1269	-198	7.51	-1269	-198	-6.78	-666	-242	Fascia di spessore 12m ai piedritti e a.r., 3m alla base dei piedritti
5	11.71	-1363	-237	13.64	-1183	-166	13.64	-1183	-166	-11.46	-382	-122	Fascia variabile da 15m in calotta e a.r. a 8m ai piedritti
6	11.75	-1358	-238	13.62	-1228	-221	13.62	-1228	-221	-11.72	-344	-106	Fascia variabile da 15m in calotta e 12m in a.r., no plasticizzazio ne ai piedritti
7	11.90	-1328	-222	13.66	-1223	-232	13.66	-1223	-232	-11.63	-346	-107	Fascia di 5m in reni e calotta
8	6.82	-961	-568	12.20	-1250	-794	12.20	-1250	-794	-17.24	-813	-580	Fascia variabile da 15m in calotta e a.r. a 8m ai piedritti
$u = sp$ $\sigma_1 = sp$ $\sigma_3 = sp$	oostament forzo prin forzo prin	o totale c cipale to cipale to	cumulativo tale massii tale minim	(positiv mo vo	o se abbas	ssamento, r	negativo s	se solleva	mento)		1	1	

Tabella 63 - Analisi di interazione – Sezione tipo C2 allargata: risultati dell'analisi

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA								
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO			
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	191 di 222			

Figura 191 - Nodi rilevati nella zona del cavo

FASE 2

Viene simulato il rilascio a cavo libero in corrispondenza del momento precedente all'attivazione del consolidamento al contorno dello scavo. Il campo di spostamenti mostra spostamenti pari a circa 1cm in calotta e a.r. e 0.5 cm ai piedritti. Le zone plastiche sono limitate all'area di contatto fra pidritti e piano di scavo. Nell'intorno del cavo la massima tensione principale massima è di 1700 kPa (piedritti) mentre la massima tensione principale minima è di 882 kPa (calotta).

FASE 3

Viene simulata l'esecuzione dello scavi sino alla posizione del fronte. Il cedimento cumulato in calotta è pari a 3.3 cm, lo spostamento cumulato ai piedritti raggiunge 2.3 cm, mentre il sollevamento cumulato in arco rovescio è di 3.4 cm. Le zone plastiche sono presenti in piedritto (circa 5m), in calotta (2.5m) e arco rovescio (fascia di potenza 3m disposta a "V"). Nell'intorno del cavo la massima tensione principale massima è di 1735 kPa (piedritti) mentre la massima tensione principale minima è di 356 kPa (calotta).

FASE 4

Viene simulata l'esecuzione dello sfondo elementare di 1.0 m. Il cedimento cumulato in calotta è pari a 8.6 cm, lo spostamento cumulato ai piedritti raggiunge 7.5 cm, mentre il sollevamento cumulato in arco rovescio è di 7.6 cm. Le zone plastiche risultano estese. Le zone plastiche si estendono per 12m in ar e calotta, per chiudersi alla base di appoggio del sostegno (3m circa). Nell'intorno del cavo la massima tensione principale massima è di 1268 kPa (piedritti) mentre la massima tensione principale minima è di 175 kPa (calotta).

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA								
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO			
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	192 di 222			

FASE 5

Viene simulata l'installazione del rivestimento di prima fase e l'avanzamento a 6 m dal fronte (distanza di getto dell'arco rovescio dal fronte). Il cedimento cumulato in calotta è pari a 11.9 cm, lo spostamento cumulato ai piedritti raggiunge 12.9 cm, mentre il sollevamento cumulato in arco rovescio è di 13.8 cm. Le zone plastiche mostrano un'estensione variabile da 15m in calotta e a.r. a 8m ai piedritti. Nell'intorno del cavo la massima tensione principale massima è di 1362 kPa (calotta) mentre la massima tensione principale minima è di 122 kPa (arco rovescio).

FASE 6

Viene simulata l'installazione dell'arco rovescio provvisorio e l'avanzamento a 36 m dal fronte. Il cedimento cumulato in calotta è pari a 11.9 cm, lo spostamento cumulato ai piedritti raggiunge 12.8 cm, mentre il sollevamento cumulato in arco rovescio è di 14.1 cm. Le zone plastiche rispetto alla fase precedente presentano una riduzione dei punti plasticizzati in corrispondenza dei piedritti. Nell'intorno del cavo la massima tensione principale massima è di 1358 kPa (calotta) mentre la massima tensione principale minima è di 106 kPa (arco rovescio).

FASE 7

Viene simulata l'installazione del rivestimento definitivo e lo scarico totale all'interno del cavo. Il cedimento cumulato in calotta è pari a 12.1 cm, lo spostamento cumulato ai piedritti raggiunge 12.8 cm, mentre il sollevamento cumulato in arco rovescio è di 13.9 cm. Le zone plastiche rispetto alla fase precedente presentano una riduzione dei punti plasticizzati in corrispondenza dell'arco rovescio. Nell'intorno del cavo la massima tensione principale massima è di 1328 kPa (calotta) mentre la massima tensione principale minima è di 107 kPa (arco rovescio).

FASE 8

Viene simulato il comportamento di lungo termine caratterizzato dalla presenza della falda agente sul rivestimento definitivo ed il decadimento del rivestimento di prima fase con conseguente trasferimento degli sforzi sul rivestimento definitivo ed il decadimento dei parametri del consolidamento al contorno che tornano ad essere quelli del terreno originario. Il cedimento cumulato in calotta è pari a 7.1 cm, lo spostamento cumulato ai piedritti raggiunge 12.8 cm, mentre il sollevamento cumulato in arco rovescio è di 19.2 cm. Le zone plastiche presentano una fascia variabile da 15m in calotta e a.r. a 8m ai piedritti. Le zone plastiche non variano sostanzialmente rispetto alla fase precedente. Nell'intorno del cavo la massima tensione principale massima è di 1250 kPa (piedritti) mentre la massima tensione principale minima è di 568 kPa (calotta).

9.8.5 Verifiche strutturali del rivestimento di prima fase

Le verifiche strutturali sul rivestimento di prima fase sono state eseguite per le fasi di calcolo 5, 6, 7 e 8. Le caratteristiche del rivestimento provvisorio sono riportate nella seguente tabella.

Caratteristiche	Spritz beton/Centine
Spessore dello spritz beton[m]	0.30
Area resistente dello spritz beton A_{sb} [m ²]	0.30
Tipologia profilati	HEB 240

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	A	193 di 222

Interasse longitudinale profilato [m]	1
Area resistente della centina A_{cent} [cm ²]	106
Modulo resistente elastico della centina W_{cent} [cm ³]	938
Area resistente a taglio della centina $A_{V,cent}$ [cm ²]	33.24

Tabella 64 - Analisi di interazione – Sezione tipo C2 allargata: definizione delle caratteristiche del rivestimento provvisorio

La tabella seguente sintetizza le sollecitazioni ottenute, per ogni fase, nelle zone di maggiore interesse del rivestimento: zona di calotta, di contatto calotta-piedritti e dei piedritti, rilevate in corrispondenza dei nodi indicati nella figura a seguire.

	Sollecitazioni Calotta		zona di cont piec	atto calotta- Iritto	piedritto		
			Sinistro	Destro	Sinistro	Destro	
ъ	N [kN/m]	-1142	-980	-952	-578	-574	
ase	M [kNm/m]	-55	-80	-61	1	-5	
Ľ.	T [kN/m]	-5	18	18 -10		-53	
9	N [kN/m]	-1513	-1359	-1327	-966	-956	
ase	M [kNm/m]	-56	-79	-59	-2	-7	
Ľ.	T [kN/m]	-5	23	-13	4	-16	
7	N [kN/m]	-1584	-1391	-1354	-917	-907	
ase 7	M [kNm/m]	-55	-79	-59	-4	-9	
Ľ Ľ	T [kN/m]	-5	23	-12	4	-16	

Tabella 65 - Analisi di interazione – Sezione tipo C2 allargata: Sollecitazioni nelle zona di maggior interesse del rivestimento di prima fase

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA							
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	194 di 222		

Figura 192 - Nodi rilevati del rivestimento di prima fase

In allegato si riportano, per ogni nodo del rivestimento, le sollecitazioni scaturite dall'analisi e le conseguenti verifiche: le verifiche strutturali del rivestimento di prima fase sono soddisfatte, per ciascuna fase, in tutti i punti.

9.8.6 Verifiche strutturali SLU del rivestimento definitivo

Nella tabella seguente si riportano le caratteristiche simulate dei rivestimenti di prima fase e definitivi.

Tipo di prerivestimento	Spritz beton/Rivestimento definitivo
Spessore dello spritz [m]	0.30
Spessore simulato del rivestimento definitivo di arco rovescio [m]	1.10
Spessore simulato del rivestimento definitivo di calotta [m]	0.90

Tabella 66 - Analisi di interazione – Sezione tipo C2 allargata: definizione delle caratteristiche dei rivestimenti

La verifica strutturale del rivestimento definitivo prevede il confronto tra le sollecitazioni di calcolo, ottenute a partire dai risultati del modello numerico applicando i relativi coefficienti parziali, e le resistenze di calcolo definite dai punti M_{Rd} , N_{Rd} che individuano il dominio resistente nel piano M, N.

Per la verifica a taglio, il valore resistente di calcolo è ottenuto in accordo con la normativa vigente (DM 14/01/2008 par.4.1.2.1.3. e Circolare n.617/2009).

Il rivestimento definitivo è previsto armato sia in calotta che in arco rovescio. L'incidenza delle armature è di 50kg di acciaio per m^3 in calotta e in arco rovescio.

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA								
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO			
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	195 di 222			

Le tabelle seguenti sintetizzano le sollecitazioni ottenute, per ogni fase, nelle zone di maggiore interesse del rivestimento: zona di calotta, di contatto calotta-piedritti e piedritti-arco rovescio, dei piedritti e di arco rovescio, rilevate in corrispondenza dei nodi delle figura a seguire.

	Sollecitazioni	Calotta	zona di contatto calotta- piedritto		piedr	itto
			sinistro	destro	sinistro	destro
2	N [kN/m]	-14	-95	-101	-27	-180.419
Fase	M [kNm/m]	33	0	-5	-3	-46
	T [kN/m]	0	-14	14	0	-1
~	N [kN/m]	-4131	-4257	-4319	-1159	-2898.9
Fase 8	M [kNm/m]	-179	244	323	48	-241
	T [kN/m]	19	103	-88	-55	185

Tabella 67 - Analisi di interazione – Sezione tipo C2 allargata: Sollecitazioni nelle zone calotta-piedritto del rivestimento definitivo

	Sollecitazioni	arco	zona di contat arc	to piedritto- o
		rovescio	sinistro	destro
9	N [kN/m]	-684	-432	-372
Fase	M [kNm/m]	165	217	143
	т [kN/m]		108	-177
~	N [kN/m]	-799	-623	-573
Fase	M [kNm/m]	222	162	76
	T [kN/m]	-15	157	-187
ŝ	N [kN/m]	-4394	-4600	-4396
Fase 8	M [kNm/m]	1143	-991	-1160
-	T [kN/m]	-27	494	0

Tabella 68 - Analisi di interazione – Sezione tipo C2 allargata: Sollecitazioni nelle zone arco rovescio-piedritto del rivestimento definitivo

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	196 di 222

Figura 193 - Nodi rilevati del rivestimento definitivo

In **calotta e piedritti** si dispongono 1+1 ϕ 20/20 con un copriferro netto di 4 cm. L'armatura longitudinale di ripartizione è costituita da barre ϕ 12/20. L'armatura a taglio è del tipo ϕ 12/40cm/40cm.

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	197 di 222

Figura 194 - Dominio resistente SLU calotta (B=1.00 m, H=0. 90 m) – Fase 7

Figura 195 - Verifica SLU taglio calotta – Fase 7

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	198 di 222

Figura 196 - Dominio resistente SLU calotta (B=1.00 m, H=0.90 m) - Fase 8

Figura 197 - Verifica SLU taglio calotta - Fase 8

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	199 di 222

In **arco rovescio** si dispongono 1+1 ϕ 20/20 con un copriferro netto di 4 cm. L'armatura longitudinale di ripartizione è costituita da barre ϕ 12/20. L'armatura a taglio prevista consiste in

- ϕ 12/40cm/40cm per le zone di muretta e a.r.
- ϕ 12/20cm/40cm per la zona di contattoa.r. muretta

Figura 198 - Dominio resistente SLU arco rovescio (B=1.00 m, H=1.10 m) – Fase 6

Figura 199 - Verifica SLU taglio arco rovescio – Fase 6

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	200 di 222

Figura 200 - Dominio resistente SLU arco rovescio (B=1.00 m, H=1.10 m) – Fase 7

Figura 201 - Verifica SLU taglio arco rovescio - Fase 7

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	201 di 222

Figura 202 - Dominio resistente SLU arco rovescio (B=1.00 m, H=1.10 m) – Fase 8

Figura 203 - Verifica SLU taglio arco rovescio - Fase 8

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	202 di 222

9.8.7 Verifiche strutturali SLE del rivestimento definitivo

Le verifiche SLE del rivestimento definitivo sono finalizzate a prevenire la formazione di un quadro fessurativo tale da compromettere la durabilità dell'opera. A tal fine la Normativa (DM 14/01/2008 par.4.1.2.1.3. e Circolare n.617/2009) stabilisce un limite massimo all'ampiezza delle fessure (SLE di fessurazione) ed al contempo, impone il rispetto di opportuni limiti tensionali sia nell'acciaio che nel calcestruzzo (SLE di tensione).

Nello specifico, le verifiche agli SLE di fessurazione della calotta e arco rovescio non evidenziano fessure.

Anche le verifiche SLE di tensione per la calotta e arco rovescio risultano soddisfatte sia lato calcestruzzo che lato acciaio rispettando i valori limite imposti sia dalla normativa NTC2008 che dal Manuale RFI 2016.

Figura 204 - Verifiche SLE tensione cls calotta – Fase 7

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	203 di 222

Figura 205 - Verifiche SLE tensione acciaio calotta – Fase 7

Figura 206 - Verifiche SLE fessurazione calotta – Fase 7

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	204 di 222

Figura 208 - Verifiche SLE tensione acciaio calotta – Fase 8

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	205 di 222

Figura 210 - Verifiche SLE tensione cls arco rovescio – Fase 6

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA						
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	206 di 222	

Figura 211 - Verifiche SLE tensione acciaio arco rovescio - Fase 6

Figura 212 - Verifiche SLE fessurazione arco rovescio - Fase 6

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA						
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	207 di 222	

Figura 214 - Verifiche SLE tensione acciaio arco rovescio - Fase 7

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA						
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	208 di 222	

Figura 216 - Verifiche SLE tensione cls arco rovescio – Fase 8

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	209 di 222

Figura 218 - Verifiche SLE fessurazione arco rovescio – Fase 8

I risultati delle analisi sono riassunti in tabelle; input e output grafici del modello di calcolo sono riportati integralmente in allegato.

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA						
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	210 di 222	

9.9 Azioni di mitigazione dei potenziali rischi che incidono sulla realizzazione della galleria

Sottoattraversamento del corpo di frana

La galleria Grottaminarda sottopassa tra la progressiva km 3+900 e 4+250 un esteso corpo di frana quiescente. Lo scavo della galleria di linea non interferisce direttamente con il corpo di frana, tuttavia al fine di migliorare le condizioni al contorno della galleria e limitare gli effetti prodotti dalla variazione dello stato tensionale nel terreno, conseguente allo scavo della galleria di linea, si prevede di realizzare un intervento di consolidamento, mediante cunicolo drenante. Il drenaggio da cunicolo ha lo scopo di ridurre le pressioni interstiziali nella porzione del corpo di frana che ricade nel volume significativo potenzialmente interessato dallo scavo della galleria. Il conseguente aumento delle tensioni efficaci produce un effetto benefico nei confronti della resistenza a taglio del terreno.

Il cunicolo drenante, disposto ad una quota di 15 m dal p.c. e lungo circa 350 m, di diametro esterno pari a 2500 mm, ed interno pari a 2000 mm, sarà realizzato con la tecnologia del microtunneling e rivestito in conci prefabbricati in calcestruzzo armato di spessore pari a 25 cm. Successivamente è prevista l'installazione, dall'interno dello stesso cunicolo, di tubazioni drenanti autoperforanti in acciaio (**Figura 219**) di lunghezza variabile tra gli 8 ed i 15 m, disposte radialmente al contorno del cunicolo.

Figura 219 - Galleria Grottaminarda - configurazione del cunicolo drenante e della galleria di linea

Tale intervento è propedeutico alla realizzazione della galleria di linea, e deve essere considerato come provvisionale, ed attivo fino al completamento delle opere ferroviarie.

L'interazione tra la galleria Grottaminarda ed pendio in esame è stata analizzata con modellazioni numeriche con il metodo degli elementi finiti (Plaxis 2D 2017). Le analisi sono state riferite ad una sezione di calcolo centrale rispetto al corpo di frana ed ortogonale all'asse del tracciato, caratterizzata da un'altezza di ricoprimento pari a circa 30 m. Nella sezione di analisi considerata, il corpo di frana ha spessore 19 m in asse galleria e poggia sul deposito argilloso del Flysch Rosso (FYR) con rigidezza crescente con la profondità, al cui

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	211 di 222

interno possono rinvenirsi inclusi di natura calcarea. In asse alla galleria, la successione stratigrafica è così definita:

Strato A – Corpo di frana (da 0 a 19 m dal p.c. - spessore 19 m) Strato B – Flysch Rosso_1 (da 19 a 39 m dal p.c. - spessore 20 m) Strato C –Flysch Rosso_2 (da 39 m dal p.c.)

Ai terreni sono stati assegnati parametri geotecnici ricavati dalle indagini in sito ed in laboratorio e la quota piezometrica è stata assunta a 2 m dal p.c in riferimento alla lettura piezometrica più elevata desunta dai piezometri a disposizione (S8, BH1, BH2, BH3).

La realizzazione della galleria è stata quindi simulata, in ipotesi di condizione piane di deformazione, adottando la fasistica di calcolo riferita alla sezione cilindrica C2p, che prevede interventi di precontenimento del fronte al contorno e l'impiego della centina puntone come rivestimento provvisorio in arco rovescio.

Dalle analisi sono stati valutati:

- l'entità degli spostamenti indotti dalla realizzazione della galleria;
- i fenomeni di plasticizzazione al contorno del cavo indotti dallo scavo;
- gli effetti del cunicolo drenante, sia in termini di deformazioni che di plasticizzazioni;
- l'interazione dell'opera con il regime idraulico;
- il confronto tra le condizioni di stabilità del pendio ante operam e post operam.

Sono state condotte due modellazioni distinte, una che ha previsto la simulazione dello scavo della galleria senza l'ausilio del cunicolo drenante e l'altra con scavo della galleria preceduto dalla realizzazione del cunicolo.

Si è assunto un dominio 2D avente dimensioni di 850 m di larghezza e 100 m di profondità massima (**Figura 220** e **Figura 221**), con reticolo di calcolo (infittito all'intorno della galleria) costituito da 21487 elementi, ciascuno di 15 nodi e larghezza media dei lati di 3,466 m. Le condizioni al contorno imposte sono: spostamenti liberi lungo la sommità, spostamenti impediti sul fondo del dominio e spostamenti orizzontali impediti e verticali liberi per i nodi ai lati.

I terreni sono stati modellati attraverso il modello costitutivo di Mohr-Coulomb. I parametri meccanici assegnati ai terreni sono riportati nella seguente tabella:

		Corpo di	Flysch	Flysch
		frana	Rosso_1	Rosso_2
γ	[kN/m ³]	20	21	21
Е	[MPa]	20	200	300
с	$[kN/m^2]$	15	25	25
φ	[°]	17	22	22
φ	[-]	0,3	0,3	0,3

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	212 di 222

Figura 220 - Dominio di calcolo discretizzato

Figura 221 – Dettaglio del dominio del modello con cunicolo

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	213 di 222

Gli elementi strutturali relativi al rivestimento provvisorio, sono stati modellati come elementi *plate* a comportamento elastico con valori di rigidezza flessionale EI e rigidezza estensionale EA desunti dalle caratteristiche geometriche e dalle proprietà riferite al solo *spritz-beton*. Il rivestimento definitivo è stato modellato invece come elemento *cluster* a comportamento elastico lineare caratterizzato da rigidezza funzione della classe di calcestruzzo adottato.

Il terreno trattato mediante elementi strutturali in VTR iniettati, di precontenimento al contorno del cavo, è stato modellato mediante semplice attivazione (*wished in place*), assegnando nuove caratteristiche meccaniche ai materiali interessati dagli interventi, considerando un incremento di rigidezza e della componente coesiva della resistenza.

Per un maggior dettaglio sui parametri assegnati, si rimanda comunque al paragrafo della presente relazione dedicato alla sezione di calcolo di riferimento, nel quale sono riportati tutti i valori adottati.

Di seguito, vengono descritte le fasi simulate nell'analisi:

- 1. generazione dello stato tensionale iniziale;
- 2. realizzazione del cunicolo drenante (per il modello di calcolo con cunicolo drenante);
- 3. simulazione, mediante semplice attivazione, degli interventi di precontenimento al contorno (scarico tensionale del cavo pari al 5,6%);
- 4. rilascio a cavo libero in corrispondenza del fronte (scarico tensionale del cavo pari al 49%);
- 5. esecuzione dello sfondo elementare di 1m (scarico tensionale del cavo pari al 77%);
- 6. installazione del rivestimento di prima fase (scarico tensionale del cavo pari al 81%);
- 7. installazione della centina puntone (scarico tensionale del cavo pari al 91%);
- 8. realizzazione del rivestimento definitivo in arco rovescio (scarico tensionale del cavo pari a 98,1%);
- 9. completamento del rivestimento definitivo in calotta (scarico tensionale del cavo pari al 100%);
- 10. condizione di lungo termine con falda indisturbata ed assenza di consolidamenti al contorno.

Sono state pertanto eseguite le analisi di seguito descritte, di cui sono brevemente riassunti i risultati salienti.

Caso 1) Scavo della galleria senza cunicolo drenante. Lo scavo della galleria induce un meccanismo di deformazione al contorno del cavo, coinvolgendo parzialmente il corpo di frana mediante la formazione di un anello plastico di spessore massimo pari a circa 16 m in direzione del p.c. L'eventuale zona di accumulo delle deformazioni plastiche, pur se estesa al solo tratto soprastante la galleria, determina una ridistribuzione dello stato di sforzo che interessa, pur se limitatamente, il corpo di frana. Inoltre, in termini deformativi l'accumulo di spostamenti orizzontali indotto nel pendio dallo scavo della galleria, individua un valore massimo a monte della galleria, dell'ordine dei pochi cm, in corrispondenza dell'ubicazione dell'eventuale superfice di taglio.

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	214 di 222

Figura 222 – Plasticizzazioni indotte dallo scavo della galleria (fase di installazione del rivestimento definitivo)

Figura 223 – Spostamenti orizzontali indotti dallo scavo a monte della galleria (fase di installazione del rivestimento definitivo)

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	215 di 222

Lo sviluppo delle deformazioni plastiche si modifica e si accentua in funzione delle caratteristiche della superficie di discontinuità rappresentata dalla superficie di scorrimento, come mostra la Figura 235, nella quale sono stati assegnati parametri di resistenza residua in corrispondenza della zona di possibile mobilitazione del corpo di frana soprastante la galleria.

Figura 224 – Plasticizzazioni con parametri residui lungo la discontinuità di taglio soprastante la galleria (fase di installazione del rivestimento definitivo)

Caso 2) Scavo della galleria con cunicolo drenante. In presenza del cunicolo drenante, lo spessore massimo dell'anello plastico risulta pari a circa 6 m in direzione del p.c., non coinvolgendo direttamente il corpo di frana ma restando distante da esso oltre 5 m. Anche gli spostamenti orizzontali indotti nel pendio nel tratto a monte della galleria si riducono del 40% rispetto alla condizione precedente e modificano la loro distribuzione con il valore massimo non al contatto tra corpo di frana e substrato.

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	216 di 222

Figura 225 – Plasticizzazioni indotte dallo scavo della galleria con cunicolo drenante (fase di installazione del rivestimento definitivo)

Figura 226 – Spostamenti orizzontali indotti dallo scavo a monte della galleria con cunicolo drenante (fase di installazione del rivestimento definitivo)
GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	217 di 222

Le analisi dimostrano che la soluzione progettuale del cunicolo drenante consente di minimizzare gli effetti di interazione tra galleria e pendio naturale in termini di plasticizzazione e di spostamenti indotti.

Per ciascuno degli schemi di calcolo sopra esposti, sono state compiute analisi di stabilità globale con il metodo denominato *Phi-c reduction*. Nell'approccio *Phi-c reduction* i parametri di resistenza $tan\varphi$ e c del terreno vengono ridotti fin quando non si determina un meccanismo di collasso. Il moltiplicatore totale ΣMsf viene utilizzato per definire il valore dei parametri di resistenza del terreno in un dato stadio dell'analisi:

$$\sum Msf = \frac{\tan \varphi_{input}}{\tan \varphi_{reduced}} = \frac{c_{input}}{c_{reduced}}$$

dove i parametri di resistenza con il pedice *input* si riferiscono alle proprietà del materiale in sito ed i parametri con il pedice *reduced* si riferiscono ai valori ridotti nel corso della procedura d'analisi. All'inizio del calcolo, a ΣMsf è assegnato il valore di 1,0 per impostare tutte le resistenze dei materiali ai loro valori originali. Al termine del calcolo si svilupperà in maniera completa il meccanismo di rottura, a cui corrisponderà il fattore di sicurezza dato dal rapporto:

$$SF = \frac{resistenza \ disponibile}{resistenza \ a \ rottura} = valore \ di \sum Msf \ a \ rottura$$

Pertanto, con l'approccio *Phi-c reduction* è stato possibile verificare la stabilità del versante sia in assenza di galleria, sia a seguito della realizzazione della galleria, avvenuta simulando ogni singola fase costruttiva.

Il risultato delle analisi condotte con il programma Plaxis ha evidenziato l'efficacia progettuale della realizzazione del cunicolo drenante nell'interazione tra lo scavo ed il fenomeno franoso sovrastante, in termini di stabilità del pendio indisturbato. In particolare, si è osservato che il fattore di sicurezza riferito alla stabilità globale (inteso come rapporto tra la resistenza al taglio disponibile, presa con il suo valore caratteristico, e lo sforzo di taglio mobilitato lungo la potenziale superficie di scorrimento) nel corso della realizzazione della galleria con cunicolo drenante aumenta di un valore pari al rapporto percentuale:

$$\frac{\Delta FS}{FS_0} = 4\%$$

in cui ΔFS è la variazione del fattore di sicurezza dalla condizione *ante operam* alla condizione relativa all'esecuzione della galleria con l'ausilio del cunicolo drenante, ed FS_0 è il coefficiente di sicurezza alla stabilità globale del pendio *ante operam*.

Al contrario, il fattore di sicurezza alla stabilità globale riferito al caso della realizzazione della galleria senza cunicolo drenante, in presenza di parametri di resistenza residui in corrispondenza dell'eventuale superficie di taglio, diminuisce di un valore pari al rapporto percentuale:

$$\frac{\Delta FS^*}{FS_0} = -10\%$$

in cui ΔFS^* è la variazione del fattore di sicurezza dalla condizione *ante operam* alla condizione relativa all'esecuzione della galleria senza l'ausilio del cunicolo drenante, ed FS_0 è il coefficiente di sicurezza alla stabilità globale del pendio *ante operam*.

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	218 di 222

Al termine delle lavorazioni per la realizzazione della galleria, con cunicolo drenante non più attivo e falda in condizioni indisturbate, il fattore di sicurezza alla stabilità globale calcolato *post operam* è del tutto paragonabile a quello della condizione *ante operam*.

Nella configurazione finale, per una estensione di circa 150 m, si prevede la posa in opera all'estradosso del rivestimento definitivo, di specifici geocompositi con capacità drenante ed elevati valori di trasmissività, affiancati alla membrana di impermeabilizzazione in PVC. Lo scopo di tale intervento è quello di mantere attivi nel tempo gli effetti benefici di riduzione delle pressioni interstiziali (e conseguente aumento della resistenza al taglio) nel volume significativo della galleria. E'inoltre prevista la realizzazione dia rmatura passante nei conci del rivestimento definitivo della galleria.

Instabilità del fronte e del cavo

In condizioni di bassa copertura, l'avanzamento avverrà con l'esecuzione di interventi di preconsolidamento al fronte e al contorno in grado di controllare lo sviluppo dei fenomeni deformativi indotti dallo scavo e prevenire lo sviluppo di eventuali meccanismi di collasso. Per l'attraversamento di incisioni, è prevista l'adozione di avanzamenti con sfondi di lunghezza limitata, preceduti da interventi di consolidamento al fronte e/o al contorno, in relazione al grado di fratturazione e all'entità dei fenomeni deformativi attesi.

Comportamento rigonfiante

Per tener conto di eventuali potenziali fenomeni di rigonfiamento, sono state condotte analisi di interazione con la simulazione di una pressione di rigonfiamento. Nella Formazione del Flysch Rosso (FYR) è stata eseguita una prova di rigonfiamento del tipo Huder-Amberg (cfr. indagini geotecniche galleria Melito), dalla quale si ricava una pressione di rigonfiamento a deformazione nulla pari a 100 KPa. Per le analisi sopra dette, a titolo cautelativo, è stato considerato un valore della pressione di rigonfiamento pari a 300 KPa. Le analisi hanno condotto ad un incremento dell'incidenza delle armature.

Presenza di trovanti/blocchi

Nello scavo in tradizionale la presenza blocchi non comporta particolare criticità in relazione alla flessibilità della tecnica di avanzamento che può essere rapidamente adattata alle puntuali variazioni delle condizioni del fronte.

Fenomeni di subsidenza/interferenza con opere preesistenti

Le analisi condotte (Rif. [45]) hanno evidenziato che gli edifici analizzati ricadono in categoria di danno a cui corrispondono effetti trascurabili.

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	219 di 222

10 FASE DI VERIFICA E MESSA A PUNTO DEL PROGETTO

10.1 Monitoraggio in corso d'opera

Nella fase realizzativa dovrà essere posto in opera un adeguato programma di monitoraggio che consenta di:

- confermare le sezioni tipo previste per le tratte omogenee, come da profilo geotecnico, secondo i criteri di applicazione definiti in progetto;
- definire le variazione degli interventi da effettuarsi nell'ambito delle variabilità previste in progetto sulla base di quanto riscontrato in fase di scavo;
- definire il passaggio tra una sezione tipo ed un'altra presente nel progetto all'interno delle tratte omogenee.

Se necessario, il piano di monitoraggio dovrà prevedere anche il controllo degli effetti prodotti dallo scavo in superficie.

Il piano di monitoraggio deve prevedere:

- il rilievo analitico e speditivo del fronte di scavo;
- il controllo della convergenza del cavo, mediante installazione di stazioni di convergenza con 5 mire. Il numero delle sezioni di misura è specificato in Tabella 69 per le diverse sezioni tipo. Le sezioni devono essere ubicate in prossimità del fronte scavo, la lettura di zero deve essere eseguita prima della ripresa dell'avanzamento per lo scavo del campo successivo, e le letture successive dovranno essere eseguite con frequenza almeno giornaliera fino alla completa stabilizzazione delle misure.
- il controllo dell'estrusione del fronte, mediante installazione di estrusometri con lunghezza e frequenza di misura indicate in Tabella 69;
- il monitoraggio dello sforzo assiale nelle centine del rivestimento di prima fase mediante celle di carico, come definito negli elaborati di progetto pertinenti;
- il monitoraggio delle deformazioni del rivestimento definitivo mediante barrette estensimetriche, come definito negli elaborati di progetto pertinenti;
- in corrispondenza degli imbocchi e nelle zone di bassa copertura, il controllo degli spostamenti del piano campagna, mediante installazione di sezioni di misura topografica disposte trasversalmente all'asse della galleria, costituite da almeno 5 capisaldi;
- il controllo topografico degli spostamenti degli edifici interferenti;
- il controllo delle deformazioni dell'ammasso al contorno della galleria mediante stazioni strumentate geotecniche costituite da inclinometri ed estensimetri;
- il controllo delle variazioni del regime delle pressioni interstiziali nel terreno al contorno della galleria mediante piezometri Casagrande o celle piezometriche, in funzione del contesto geotecnico.

I dati di monitoraggio dovranno essere inseriti in una piattaforma Web-GIS, in modo tale da garantire l'esame tempestivo e continuativo dei dati rilevati e la trasmissione sistematica dei dati e delle elaborazioni, avendo

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	220 di 222

precedentemente definito ed assegnato le responsabilità per la lettura, l'elaborazione e l'interpretazione dei dati di monitoraggio, nonché per la loro distribuzione.

Le grandezze individuate come rappresentative dovranno essere rilevate e controllate con un sistema di misura che abbia un grado di precisione compatibile con i valori attesi per le grandezze sopra dette.

Gli strumenti di misura utilizzati dovranno permettere di garantire la precisione e l'affidabilità delle letture in modo da non essere influenzati in modo significativo da cambiamenti di temperatura, umidità, corrente elettrica e vibrazioni indotte.

La strumentazione di monitoraggio dovrà essere installata e predisposta all'uso con sufficiente anticipo rispetto all'arrivo degli scavi e dei consolidamenti in modo da poter effettuare le necessarie misure di zero.

Sezione	Misure di convergenza	Rilievi del fronte	Estrusometro				
tipo	Frequenza sezioni	Frequenza (*)					
B1	1 ogni campo	1 ogni campo	L=35m ogni 2 campi con 2 letture per ogni campo				
B2/B2 all	1 ogni campo	1 ogni campo	L=35m ogni 2 campi con 2 letture per ogni campo				
C1	1 ogni campo	1 ogni campo	L=35m ogni 2 campi e 2 letture per ogni campo				
C2/C2 all	1 ogni campo	1 ogni campo	L=35m ogni 2 campi e 2 letture per ogni campo				
C2p/C2p all	1 ogni mezzo campo	1 ogni campo	L=35m ogni campo e 2 letture per ogni campo				
	(*) sempre al cambio di litologia						

Tabella 69 – Programma di monitoraggio

10.2 Criteri generali per l'applicazione delle sezioni tipo

Sono di seguito illustrati i criteri che dovranno essere adottati in corso d'opera per l'applicazione delle sezioni tipo e la gestione delle variabilità, nell'ambito delle previsioni del progetto, che sono sintetizzate nei valori attesi delle grandezze caratteristiche. I valori attesi dei fenomeni deformativi al fronte, al cavo e al piano campagna (ove pertinente) sono individuati in funzione dei risultati delle analisi numeriche, di esperienze in contesti analoghi e di dati di letteratura (Tabella 70).

In corso d'opera, i rilievi del fronte e i dati di monitoraggio della risposta deformativa del fronte e del cavo, correlati alle fasi di avanzamento, sono confrontati con le previsioni progettuali (i valori attesi) per consentire la verifica e la messa a punto del progetto con i criteri di seguito descritti:

1. Le condizioni geologiche e geotecniche rilevabili al fronte corrispondono con quanto previsto in progetto e la risposta deformativa rientra nel campo dei valori attesi: la previsione progettuale è confermata, si procede con la sezione tipo media prevista per la tratta.

2. La risposta deformativa non rientra nel campo di accettabilità definito in progetto: la sezione tipo prevista per la tratta è ottimizzata secondo le definite variabilità, che consistono in: aumento/diminuzione ($\pm 20\%$) degli

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	221 di 222

interventi di preconsolidamento, diminuzione/aumento dell'interasse delle centine ($\pm 20\%$ del passo medio), diminuzione/aumento delle distanze di getto del rivestimento definitivo dal fronte di scavo.

3. Le condizioni geologiche e geotecniche osservate sono sensibilmente differenti da quelle ipotizzate e la risposta deformativa non rientra nel campo di accettabilità definito in progetto: si passa ad una diversa sezione tipo, tra quelle definite in progetto come "sezioni eventuali" per quella tratta.

		VALORI ATTESI					
Sezione tipo Formazione Con		Convergenza radiale ^(*) (mm)	Estrusione cumulativa totale (mm)				
B1	ANZ, FYN	25	40				
B2/B2 all	FYR, ANZ2A	25	30				
C1	ANZ, FYN	30	-				
C2/C2all	FYR, ANZ2A, ANZ2	40	50				
C2p/C2p all	FYR, ANZ2A	40	70				
(*) convergenza radiale depurata della preconvergenza							

Tabella 70– Previsioni progettuali

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA					
GALLERIA GROTTAMINARDA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione geotecnica e di calcolo galleria naturale	IF0G	01	D 07 RB	GN0100 001	А	222 di 222

11 CONCLUSIONI

Nella presente relazione sono state affrontate le problematiche progettuali connesse con la realizzazione della galleria Grottaminarda, inclusa nel raddoppio della linea ferroviaria Apice – Hirpinia; tale progetto si inserisce nel più ampio ambito di riqualificazione e potenziamento dell'itinerario ferroviario Roma - Napoli – Bari.

La progettazione delle opere in sotterraneo, è stata condotta secondo il metodo ADECO-RS (Rif. [20]), articolandosi nelle seguenti fasi:

1. <u>Fase conoscitiva (cap. 7)</u>: questa fase è stata dedicata allo studio e all'analisi del contesto geologico e geotecnico di inserimento in cui sarà realizzata la galleria, considerati anche i dati relativi alle precedenti fasi progettuali, ed ha portato alla definizione del modello geotecnico di sottosuolo utilizzato per le successive fasi del progetto.

2.<u>Fase di diagnosi (cap. 8)</u>: in questa fase è stata eseguita la valutazione della risposta deformativadell'ammasso allo scavo in assenza di interventi di stabilizzazione, per la determinazione delle categorie di comportamento; sulla base delle analisi condotte l'intero tracciato della galleria presenta comportamentocomportamento di categoria B (stabile a breve termine).

3. <u>Fase di terapia (cap. 9)</u>: si prevede di realizzare lo scavo con metodo tradizionale. Tale soluzione progettuale è stata analizzata verificandone adeguatezza ed efficacia in tutte le fasi costruttive previste ed in condizioni di esercizio.

Il progetto è completato dal piano di monitoraggio (cap. 10) da predisporre ed attuare nella fase realizzativa, nel quale sono individuati i valori delle grandezze fisiche a cui riferirsi in corso d'opera per controllare la risposta deformativa dell'ammasso e della galleria al procedere dello scavo, verificarne la rispondenza con le previsioni progettuali e mettere a punto le sezioni tipo individuate nell'ambito delle variabilità previste.