MPIANTO DI PRODUZIONE DI ENERGIA DA FONTE EOLICA "SAN PANCRAZIO TORREVECCHIA" DI POTENZA PARI A 34,50 MW

REGIONE PUGLIA PROVINCIA di BRINDISI COMUNE di SAN PANCRAZIO SALENTINO

Località: Masserie Corte Finocchio, Torre Vecchia e Campone OPERE DI CONNESSIONE NEI COMUNI DI: San Pancrazio S. (BR) Erchie (BR) ed Avetrana (TA)

PROGETTO DEFINITIVO Id AU H4QPRN5

Tav.:

Titolo:

R02

RELAZIONE TECNICA

Scala:	Formato Stampa:	Codice Identificatore Elaborato
N.A.	A4	H4QPRN5_RelazioneTecnica_02

STC S.r.I.

Via V. M. STAMPACCHIA, 48 - 73100 Lecce Tel. +39 0832 1798355 studiocalcarella@gmail.com - fabio.calcarella@gmail.com

Direttore Tecnico: Dott. Ing. Fabio CALCARELLA

Committente:

Tozzigreen

Via Brigata Ebraica, 50 - 48123 Mezzano (RA) Tel. +39 0544 525311 - Fax +39 0544 525319 pec: tozzi.re@legalmail.it - www.tozziholding.com

Data	Motivo della revisione:	Redatto:	Controllato:	Approvato:					
16 febbraio 2018	Prima emissione	STC	FC	TOZZI GREEN S.p.a.					

Sommario

1. DATI GENERALI DEL PROPONENTE	2
2. CARATTERISTICHE DELLA FONTE UTILIZZATA ED ANALISI	
PRODUCIBILITÀ	2
1.1 L'energia eolica	
1.2 Analisi della producibilità	3
3. DESCRIZIONE DELL'INTERVENTO, DELLE FASI, DEI TEMPI E DELLE MOI	DALITÀ
DI ESECUZIONE DEI LAVORI	3
1.3 Fasi di lavorazione	
1.4 Cronoprogramma	
1.5 Modalità di esecuzione dei lavori	8
1.5.1 Piste e piazzole	8
1.5.2 Scavi e fondazioni	9
1.5.2.1 Attività preliminari	9
1.5.2.2 Realizzazione	
1.5.3 Cavidotti	
1.5.4 Trasporti eccezionali	
1.5.5 Montaggio aerogeneratori	
1.5.6 Cabina di Trasformazione 30/150 kV e Consegna (o SSE)	
1.6 Mobilitazione mezzi per le attività di cantiere	
4. RIPRISTINO DELLO STATO DEI LUOGHI	
5. PIANO DI DISMISSIONE DELL'IMPIANTO	
6. STIMA DEI COSTI DI DISMISSIONE E DI RIPRISTINO DELLO STATO DEI LU	
7. ANALISI DELLE RICADUTE SOCIALI, OCCUPAZIONALI ED ECONOMICHE	
8. ELENCO AUTORIZZAZIONI	18

1. DATI GENERALI DEL PROPONENTE

La società proponente l'intervento in oggetto è la Società per Azioni Tozzigreen S.p.a., con sede in Via Brigata Ebraica, 50 – 48123 Mezzano (RA), C.F. e P.IVA 02132890399, n. REA: RA 174504, PEC: tozzi.re@legalmail.it.

2. CARATTERISTICHE DELLA FONTE UTILIZZATA ED ANALISI DELLA PRODUCIBILITÀ

1.1 L'energia eolica

Lo sfruttamento dell'energia del vento è una fonte naturalmente priva di emissioni: la conversione in elettricità avviene infatti senza alcun rilascio di sostanze nell'atmosfera.

La tecnologia utilizzata consiste nel trasformare l'energia del vento in energia meccanica attraverso degli impianti eolici, che riproducono il funzionamento dei vecchi mulini a vento. La rotazione prodotta viene utilizzata per azionare gli impianti aerogeneratori.

Lo sviluppo tecnologico delle moderne turbine eoliche inizia nella seconda metà degli anni '70, con l'avvio dei programmi di ricerca nazionali dei vari Paesi sulle fonti rinnovabili conseguente alla crisi petrolifera del 1973.

Attualmente la potenza nominale per gli aerogeneratori commerciali va da 1.5 a 4 MW con diametri dei rotori sino a 140 m e le più importanti imprese costruttrici hanno sviluppato le prime macchine da 5-6 MW (sino a 150 m di diametro rotorico) anche destinate al mercato offshore.

Per quanto riguarda efficienza ed affidabilità delle macchine, le wind farm attuali lavorano con una disponibilità media del 97%.

Rispetto alle configurazioni delle macchine, anche se sono state sperimentate varie soluzioni nelle passate decadi, attualmente la maggioranza degli aerogeneratori sul mercato sono del tipo tripala ad asse orizzontale, sopravvento rispetto alla torre. La potenza è trasmessa al generatore elettrico attraverso un moltiplicatore di giri o direttamente utilizzando un generatore elettrico ad elevato numero di poli.

La potenza eolica installata in Europa è la maggiore a livello mondiale. Germania, Danimarca, Olanda, Spagna, Portogallo, paesi in cui la densità e la ventosità mantiene livelli costanti e continui, sono fra i più attivi nell'utilizzo di questa fonte.

In Italia, negli anni 2000 si è registrato un significativo incremento, nonostante le difficoltà concrete a livello territoriale e ambientale, come la densità montuosa e la scarsa ventosità media. Per questa ragione le centrali eoliche si situano nelle zone più favorevoli, come Sardegna, Puglia, Campania, nelle zone montuose dell'Appennino e nella Sicilia Occidentale.

Le prospettive di sviluppo secondo il Global Wind Energy Council (GWEC) indicano per la produzione di energia elettrica da fonte eolica un ruolo di primo piano nell'ambito delle fonti rinnovabili: con il numero record di 55.6 GW di energia eolica installati nel 2016, si è arrivati ad un totale cumulato di 468.8 GW installati alla fine del 2016.

1.2 Analisi della producibilità

Lo studio sulla producibilità nel sito scelto per la realizzazione dell'impianto in oggetto è stata condotta da Tozzi Renewable Engineering S.p.A. con l'ausilio di una stazione anemometrica limitrofa all'area interessata, con la quale sono stati acquisiti dati sulla direzione e velocità del vento per un periodo di oltre 5 anni. In particolare la torre di rilevazione anemometrica di tipo tubolare ha un'altezza pari a 50m, ed è dotata di sensori di velocità a 50m, 40m, 30m, con banderuole di direzione alle stesse quote.

Lo studio sulla producibilità è stato condotto sulla base delle caratteristiche tecniche (curve di potenza) dell'aerogeneratore Vestas V136-3,45MW oggi presente sul mercato che presenta caratteristiche analoghe a quelle di altre macchine presenti sul mercato.

I risultati sono riportati nella relazione "Analisi di producibilità dell'impianto" e si riassumono nei valori di produzione attesa che si presenta una probabilità del 75% di essere superata:

$$P_{75\%} = 3.015 \text{ h/anno}$$

Dove h sono le ore equivalenti di funzionamento all'anno, corrispondenti ai MWh prodotti in un anno per MW nominale installato.

3. DESCRIZIONE DELL'INTERVENTO, DELLE FASI, DEI TEMPI E DELLE MODALITÀ DI ESECUZIONE DEI LAVORI

Scopo del progetto è la realizzazione di un "Parco Eolico" per la produzione di energia elettrica da fonte rinnovabile (vento) e l'immissione, attraverso un'opportuna connessione, dell'energia prodotta nella Rete di Trasmissione Nazionale.

I principali componenti dell'impianto sono:

- i generatori eolici installati su torri tubolari in acciaio, con fondazioni in c.a.;
- le linee elettriche in cavo interrate, con tutti i dispositivi di trasformazione di tensione e sezionamento necessari;
- la Sottostazione di Trasformazione e connessione (SSE) alla Rete di Trasmissione Nazionale, ovvero tutte le apparecchiature (interruttori, sezionatori, TA, TV, ecc.) necessari alla realizzazione della connessione elettrica dell'impianto.

L'energia elettrica prodotta a 690 V in c.a. dagli aerogeneratori installati sulle torri, viene prima trasformata a 30 kV (da un trasformatore all'interno di ciascuna torre) e quindi immessa in una rete in cavo a 30 kV (interrata) per il trasporto alla Sottostazione, dove subisce una ulteriore trasformazione di tensione (30/150 kV) prima dell'immissione nella rete TERNA di alta tensione.

Opere accessorie, e comunque necessarie per la realizzazione del parco eolico, sono le strade di collegamento e accesso (piste), le aree realizzate per la costruzione delle torri (piazzole con aree di lavoro gru), nonché allargamenti ed adeguamenti stradali per il passaggio dei mezzi di trasporto speciali.

In relazione alle caratteristiche plano-altimetriche, al numero ed alla tipologia di torri e generatori eolici da installare (10 aerogeneratori, con potenza unitaria di 3,45 MW su torre tubolare da 132 m, per una potenza totale di 34,50 MW), si stima per ciascun aerogeneratore del parco eolico una produzione di energia elettrica pari a circa 3.015 ore equivalenti/anno, corrispondenti ad una produzione totale non inferiore a 104.020 MWh/anno.

Tutte le componenti dell'impianto sono progettate per un periodo di vita utile di 30 anni, senza la necessità di sostituzioni o ricostruzioni di parti. Un impianto eolico tipicamente è autorizzato all'esercizio, dalla Regione Puglia, per 20 anni. Dopo tale periodo si prevede lo smantellamento dell'impianto ed il ripristino delle condizioni preesistenti in tutta l'area, ivi compresa la distruzione (parziale) e l'interramento sino ad un 1 m di profondità dei plinti di fondazione.

Tutto l'impianto e le sue componenti, incluse le strade di comunicazione all'interno del sito, saranno progettate e realizzate in conformità a leggi e normative vigenti.

Le opere civili relative al Parco Eolico sono finalizzate a:

- Allestimento dell'area di cantiere;
- Realizzazione delle vie di accesso e di transito all'interno al parco e delle piazzole necessarie al montaggio degli aerogeneratori;
- Realizzazione delle fondazioni degli aerogeneratori;
- Realizzazione di trincee per cavidotti interrati MT;
- Realizzazione di una Sottostazione di Trasformazione, con relativi locali tecnici.

L'organizzazione del sistema di cantierizzazione ha tre obiettivi fondamentali:

- 1) garantire la realizzabilità delle opere nei tempi previsti;
- 2) minimizzare gli impatti sul territorio circostante;
- 3) migliorare le condizioni di sicurezza nell'esecuzione delle opere.

Il cantiere eolico presenta delle specificità, poiché è un cantiere "diffuso" seppure non itinerante. È prevista pertanto la realizzazione di un'area principale di cantiere (area base) e di altre aree in corrispondenza della ubicazione delle torri, che di fatto coincideranno con le aree di lavoro delle gru.

Nell'area base è prevista l'installazione dei moduli prefabbricati:

- per le imprese di opere civili ed opere elettriche;
- per l'impresa di montaggio degli aerogeneratori;
- per i tecnici;
- per servizi;
- per mensa, refettorio, spogliatoio e locali doccia.

Inoltre, all'interno dell'area base saranno custoditi mezzi e materiali, con la possibilità di una guardia notturna.

L'area di cantiere principale avrà una dimensione di riferimento pari a 3.500 mq e sarà in piano, così come le aree di lavoro gru, che avranno dimensioni di 50x30 m.

L'area di cantiere principale sarà, per quanto più possibile, centrale rispetto alla posizione degli aerogeneratori, la posizione dell'area sarà definita prima dell'inizio dei lavori di concerto con le imprese esecutrici dei lavori. L'area di cantiere, alla fine dei lavori, sarà completamente smantellata e saranno ripristinate le condizioni ex-ante.

1.3 Fasi di lavorazione

La realizzazione dell'impianto prevede una serie articolata di lavorazioni, complementari tra di loro, che possono essere sintetizzate mediante una sequenza di otto fasi, determinata dall'evoluzione logica, ma non necessariamente temporale.

1°fase - Riguarda la "predisposizione" del cantiere attraverso i rilievi sull'area e la realizzazione delle piste d'accesso alle aree del campo eolico. Segue a breve l'allestimento dell'area di cantiere recintata, ed il posizionamento dei moduli di cantiere. In detta area sarà garantita una fornitura di energia elettrica e di acqua.

2°fase – Realizzazione di nuove piste e piazzole ed adeguamento delle strade esistenti, per consentire ai mezzi speciali di poter raggiungere, e quindi accedere, alle singole aree di lavoro gru (piazzole) in prossimità delle torri, nonché la realizzazione delle stesse aree di lavoro gru.

3°fase – Scavi per i plinti e per i pali di fondazione, montaggio dell'armatura dei pali e dei plinti, posa dei conci di fondazione e verifiche di planarità, getto del calcestruzzo.

4°fase – Realizzazione dei cavidotti interrati (per quanto possibile lungo la rete viaria esistente o su quella di nuova realizzazione) per la posa in opera dei cavi dell'elettrodotto.

5°fase – Trasporto dei componenti di impianto (tronchi di torri tubolari, navicelle, hub, pale) montaggio e sistemazione delle torri, delle pale e degli aerogeneratori.

6°fase - Cantiere per Sottostazione Elettrica (SSE), con realizzazione di opere civili, montaggi elettromeccanici, cablaggi, connessioni elettriche lato utente e lato Rete di Trasmissione Nazionale.

7°fase – Collaudi elettrici e start up degli aerogeneratori.

8°fase – Opere di ripristino e mitigazione ambientale: il trasporto a rifiuto degli inerti utilizzati per la realizzazione del fondo delle aree di lavoro gru e posa di terreno vegetale allo scopo di favorire l'inerbimento e comunque il ripristino delle condizioni *ex ante*.

1.4 Cronoprogramma

Per la realizzazione dell'opera è previsto il seguente cronoprogramma di massima.

Attività		Mesi																			
Fasi		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	Progetto esecutivo																				
1	Convenzioni per attraversamenti e interferenze																				
1	Espropri																				
1	Affidamento lavori																				
1	Allestimento del cantiere																				
2	Opere civili – strade																				
3	Opere civili – fondazioni torri																				
4	Opere civili ed elettriche – cavidotti																				
5	Trasporto componenti torri ed aerogeneratori																				
5	Montaggio torri ed aerogeneratori																				
6	Costruzione SSE – Opere elettriche e di connessione alla RTN																				
7	Collaudi																				
8	Dismissione del cantiere e ripristini ambientali																				

1.5 Modalità di esecuzione dei lavori

1.5.1 Piste e piazzole

Prima dell'inizio dell'installazione delle torri e degli aerogeneratori saranno tracciate le piste necessarie al movimento dei mezzi di cantiere (betoniere, gru, autocarri), oltre che dei mezzi pesanti utilizzati per il trasporto delle navicelle con gli aerogeneratori, delle pale, dei rotori e dei tronchi tubolari delle torri.

Nella prima fase di lavorazione sarà necessario adeguare la viabilità esistente all'interno dell'area del parco e realizzare nuovi tratti di strade, per permettere l'accesso dalle strade esistenti agli aerogeneratori, o meglio alle piazzole antistanti gli aerogeneratori su cui opereranno la gru principale e quella di appoggio.

Le piste interne così realizzate avranno la funzione di permettere l'accesso all'intera area interessata dalle opere, con particolare attenzione ai mezzi speciali adibiti al trasporto dei componenti di impianto (navicella, hub, pale, tronchi di torri tubolari).

Le piazzole antistanti gli aerogeneratori saranno utilizzate, in fase di costruzione, per l'installazione delle gru e per la posa dei materiali di montaggio.

Dopo la realizzazione, nella fase di esercizio dell'impianto, dovrà essere garantito esclusivamente l'accesso agli aerogeneratori da parte dei mezzi per la manutenzione; si procederà pertanto, prima della chiusura dei lavori di realizzazione, al ridimensionamento delle piste e delle piazzole, con il ripristino ambientale di queste aree.

Tali piste avranno larghezza di 5-6 m, e raggio interno di curvatura non inferiore a 45 m; dovranno inoltre permettere il passaggio di veicoli con carico massimo per asse di 12,5 t ed un peso totale anche superiore a 100 t.

Il manto stradale dovrà essere perfettamente in piano, dal momento che alcuni autocarri utilizzati nella fase di cantiere hanno una luce libera da terra di soli 10 cm.

La realizzazione di tali piste prevede le seguenti opere:

- Scavo di sbancamento dello strato di terreno vegetale, laddove presente, per apertura della sede stradale, con uno spessore medio di 20-40 cm;
- Eventuale posa di geotessile di separazione del piano di posa degli inerti,
- Strato di fondazione per struttura stradale, dello spessore di 20 cm, da eseguirsi con materiale lapideo duro proveniente da cave di prestito (misto cava), avente assortimento granulometrico con pezzatura 7-10 cm;
- Formazione di strato di base per struttura stradale, dello spessore di 20 cm e pezzatura 0,2-2 cm, da eseguirsi con materiali idonei alla compattazione, provenienti da cave di prestito o dagli scavi di cantiere. Si prevede il compattamento a strati, fino a raggiungere in

sito una densità (peso specifico apparente a secco) pari al 100% della densità massima ASHO modificata in laboratorio.

In corrispondenza di ciascun aerogeneratore sarà realizzata una piazzola con funzione di servizio. Tali piazzole saranno utilizzate nel corso dei lavori per il posizionamento delle gru necessarie all'assemblaggio ed alla posa in opera delle strutture degli aerogeneratori.

L'area interessata, delle dimensioni di metri 30 di larghezza e metri 50 di lunghezza, dovrà essere tale da sopportare un carico di 200 ton, con un massimo unitario di 185 kN/m². La pendenza massima non potrà superare lo 0,25%.

Le caratteristiche strutturali delle piazzole di nuova realizzazione saranno:

- Scavo di sbancamento per apertura della sede stradale, con uno spessore medio di 30-50 cm;
- Eventuale posa di geotessile di separazione del piano di posa degli inerti;
- Strato di fondazione per struttura stradale, dello spessore di 30-50 cm per l'area destinata ad ospitare la gru di montaggio dell'aerogeneratore e di 20 cm per l'area di lavoro e stoccaggio, da eseguirsi con materiale lapideo duro proveniente da cave di prestito (misto cava), avente assortimento granulometrico con pezzatura 7-10 cm;
- Formazione di strato di base per struttura stradale, dello spessore di 20 cm sia per l'area destinata ad ospitare la gru di montaggio dell'aerogeneratore sia per l'area di lavoro e stoccaggio, pezzatura 0,2-2 cm, da eseguirsi con materiali idonei alla compattazione, provenienti da cave di prestito o dagli scavi di cantiere. Si prevede il compattamento a strati, fino a raggiungere in sito una densità (peso specifico apparente a secco) pari al 100% della densità massima ASHO modificata in laboratorio.

La superficie terminale dovrà garantire la planarità per la messa in opera delle gru e comunque lo smaltimento superficiale delle acque meteoriche.

1.5.2 Scavi e fondazioni

1.5.2.1 Attività preliminari

Indagini geologiche puntuali (per ciascuna torre) saranno effettuate prima dell'inizio degli scavi per la realizzazione del plinto di fondazione. Si procederà all'esecuzione di indagini geologiche puntuali effettuando dei carotaggi sino ad una profondità di circa 20 m. I campioni prelevati subiranno le opportune analisi di laboratorio. Inoltre si effettuerà un accurato rilievo topografico dell'area di intervento mediante il quale saranno determinate:

- Altimetria:
- Presenza di ostacoli;

Linee elettriche esistenti.

1.5.2.2 Realizzazione

SCAVI

Gli scavi a sezione larga per la realizzazione dei plinti di fondazione verranno effettuati con l'utilizzo di pale meccaniche evitando scoscendimenti, franamenti ed in modo tale che le acque scorrenti alla superficie del terreno non si riversino negli scavi. Effettuato lo scavo si provvederà alla pulizia del fondo, il quale verrà successivamente ricoperto da uno strato di circa 10 cm di magrone al fine di garantire l'appianamento della superficie.

ARMATURE

Dopo la realizzazione del magrone di sottofondazione del plinto verrà montata l'armatura inferiore, su cui verrà posata la dima e quindi la gabbia di ancoraggio ("anchor cage") della torre tubolare. Si procederà quindi con la prima verifica per constatare l'assenza di pendenza, con la tolleranza stabilità dal fornitore delle turbine eoliche. Tale verifica sarà effettuata mediante il rilevamento dell'altezza di tre punti posti sulla circonferenza della base della torre rispettivamente a 0°, 120°, 240°.

Effettuata tale verifica, la fase successiva vedrà il montaggio dell'armatura superiore ed una nuova verifica della eventuale pendenza, così come descritto immediatamente sopra per la prima verifica. Il materiale e tutto il ferro necessario verrà posizionato in prossimità dello scavo e portato all'interno dello stesso, mediante una gru di dimensioni ridotte, qui i montatori provvederanno alla corretta posa in opera. Campioni di acciaio della lunghezza di 1,5 m e suddivisi in base al diametro saranno prelevati per effettuare opportuni test di trazione e snervamento.

GETTI

Realizzata l'armatura, verrà effettuato, in modo continuo, il getto di cemento (755 m³) mediante l'ausilio di pompa. Durante il periodo di maturazione è possibile che siano effettuate delle misure di temperatura (mediante termocoppie a perdere, immerse nel calcestruzzo). Prove di fluidità (Cono di Abrams) verranno effettuate durante il getto, così come verranno prelevati i cubetti-campione per le prove di schiacciamento sul cls. Ultimato il getto, il plinto sarà ricoperto con fogli di polietilene per prevenirne il rapido essiccamento ed evitare così l'insorgere di pericolose cricche nel plinto.

1.5.3 Cavidotti

Verranno effettuati scavi per la posa dei cavi elettrici, mediante l'utilizzo di pale meccaniche o escavatori a nastro, evitando scoscendimenti, franamenti ed in modo tale che le acque scorrenti alla superficie del terreno non si riversino negli scavi. Gli scavi saranno eseguiti in corrispondenza

delle strade di nuova realizzazione o lungo quelle già esistenti, per minimizzare l'impatto sull'ambiente.

Lo scavo sarà profondo al massimo 1,2 m e avrà larghezza variabile da un minimo di 0,4 m a un massimo di 0,6 m, in dipendenza del numero di terne di cavi da posare.

Prima della posa dei cavi verrà ricoperto il fondo dello scavo (letto di posa) con uno strato (3-4 cm di spessore) di sabbia avente proprietà dielettriche.

I cavi saranno posati direttamente nello scavo e quindi ricoperti da uno strato di sabbia dielettrica (circa 20 cm). L'utilizzo di cavi tipo airbag, con doppia guaina in materiali termoplastici (PE e PVC) che migliora notevolmente la resistenza meccanica allo schiacciamento rendendoli equivalenti, ai sensi della Norma CEI 11-17, a cavi armati, consente la posa interrata senza utilizzo di ulteriore protezione meccanica. Il nastro segnalatore sarà posato a 30 cm dal piano stradale.

L'energia prodotta dagli aerogeneratori sarà convogliata, tramite un cavidotto interrato, alla SSE, dove avverrà l'innalzamento di tensione (da 30 kV a 150 kV). La SSE sarà ubicata in prossimità della Stazione Elettrica TERNA ERCHIE, dove avverrà la consegna alla RTN.

Tutti gli impianti in bassa e media tensione saranno realizzati secondo le prescrizioni della norma CEI 11-1, con particolare riferimento alla scelta dei componenti della disposizione circuitale, degli schemi elettrici, della sicurezza di esercizio.

Più in generale, le modalità di connessione saranno conformi alle disposizioni tecniche emanate dall'Autorità per l'Energia Elettrica e il Gas (CEI 0-16), dal GSE ed in completo accordo con disposizioni e consuetudini tecniche di TERNA, in qualità di gestore della Rete di Trasmissione Nazionale in AT.

1.5.4 Trasporti eccezionali

Il trasporto degli aerogeneratori nell'area di installazione avverrà con l'ausilio di mezzi eccezionali provenienti, molto probabilmente, dal porto di Taranto, secondo il seguente percorso:

- Uscita dal Porto di Taranto, direttamente su SS7 direzione Brindisi;
- 18 km circa su SS7 direzione Brindisi, sino all'uscita Grottaglie Est, dopo lo svincolo si entra su SP exSS7 (Provincia Taranto);
- 3,2 km circa su SP exSS7, prima rotonda, svolta a sx su SC Esterna Misicuro-Monache;
- 0,55 km circa su SC Esterna Misicuro-Monache, quindi svolta a sx su SP 84 (Provincia Taranto);
- 3 km circa si risale la SP 84 verso nord direzione Grottaglie, quindi svolta a dx su SP 86 (Prov. TA);
- 4,7 km circa su SP 86 verso sud sino all'incrocio con SP ex SS603 (Prov. TA), dove in corrispondenza di una rotonda si svolta a sx verso Francavilla Fontana;
- 2,2 km circa su SP ex SS603, sino al limite della Provincia di Taranto, qui la strada (che è sempre la stessa) cambia denominazione in SP 4 (Provincia di Brindisi). La si percorre

ancora per 1,4 km, qui in prossimità della Masseria Cantagallo, si svolta a dx nella SP 51 (Prov. BR), in direzione Oria;

- 13,8 km su SP 51, nell'ultimo tratto la SP 51 diventa la circonvallazione di Oria piegando verso sud, e la si percorre sino all'incrocio con la SP 58 (Prov. BR), dove si svolta a dx nella SP 58, verso sud in direzione Erchie – Manduria;
- Da SP 58 (Provincia di BR) si continua su SP 98 (Provincia di TA), la strada è la stessa,
 dopo il confine di provincia cambia denominazione;
- 4,6 km su SP 98 (Prov. TA), sino alla circonvallazione di Manduria, qui si svolta a sx su SS
 7 ter
- 8 km su SS7ter direzione San Pancrazio Salentino;
- Uscita strada consortile Argentoni;
- Dopo 3 km uscite su strade di cantiere.

Nel caso di accesso dal porto di Brindisi, si percorrerà la SS7 in direzione di Taranto, fino ad imboccare l'uscita Grottaglie Est e da qui si procederà secondo il percorso sopra esposto.

I componenti di impianto da trasportare saranno:

- Pale del rotore dell'aerogeneratore (n. 3 trasporti);
- Navicella;
- Sezioni tronco coniche della torre tubolare di sostegno (n. 5 trasporti);
- Hub (n.2 hub con un trasporto)

Le dimensioni dei componenti è notevole, in particolare le pale avranno lunghezza di 66,7 m ed il mezzo eccezionale che le trasporta ha lunghezza di circa 69-70 m.

La lavorazione consisterà essenzialmente nelle seguenti fasi:

- sopralluogo di dettaglio (road survey) con individuazione degli adeguamenti da realizzare per permettere il passaggio dei trasporti eccezionali;
- predisposizione di tutte le modificazioni previste; gli interventi dovranno essere realizzati in maniera tale da garantire la sicurezza stradale per tutto il periodo interessato dai trasporti (circa 4 settimane), ad esempio con utilizzo di segnaletica con innesto a baionetta, new jersey in plastica ed altri apprestamenti facilmente rimuovibili;
- trasporti eccezionali, che avverranno per quanto possibile nelle ore di minor traffico (solitamente nelle ore notturne dalle 22.00 alle 6.00); nel corso delle operazioni si procederà alla rimozione temporanea ed all'immediato ripristino degli apprestamenti di sicurezza stradale;
- ripristino di tutti gli adeguamenti alle condizioni ex ante.

1.5.5 Montaggio aerogeneratori

Ultimate le fondazioni, il lavoro di installazione delle turbine in cantiere consisterà essenzialmente nelle seguenti fasi:

- trasporto e scarico dei materiali;
- controllo delle pale;
- controllo dei tronchi di torre tubolare;
- montaggio torre;
- sollevamento della navicella e relativo posizionamento;
- montaggio delle pale sul mozzo;
- sollevamento del rotore e dei cavi in navicella;
- collegamento delle attrezzature elettriche e dei cavi al quadro di controllo a base torre;
- montaggi interni all'aerogeneratore;
- prove;
- messa in esercizio della macchina.

Le strutture in elevazione sono limitate alla torre, che rappresenta il sostegno dell'aerogeneratore, ossia del rotore e della navicella: la torre è costituita da un elemento in acciaio a sezione circolare, finita in superficie con vernici protettive, ha una forma tronco conica, cava internamente, ed è realizzata in conci assemblati in opera.

L'altezza media dell'asse del mozzo dal piano di campagna è pari a 132 m.

La torre è accessibile dall'interno. La stessa è rastremata all'estremità superiore per permettere alle pale, flesse per la spinta del vento, di poter ruotare liberamente. Sempre all'interno della torre, trovano adeguata collocazione i cavi MT per il convogliamento e trasporto dell'energia prodotta al trasformatore posto nella navicella. Dal punto di vista elettrico gli aerogeneratori saranno connessi tra loro da linee interrate MT a 30 kV in configurazione entra-esci, in due gruppi denominati sottocampi. Le due linee provenienti dai gruppi di aerogeneratori convoglieranno l'energia prodotta verso la SSE, ubicata, come detto, in prossimità della Stazione TERNA ERCHIE.

1.5.6 Cabina di Trasformazione 30/150 kV e Consegna (o SSE)

La SSE sarà realizzata in prossimità della Stazione Elettrica TERNA ERCHIE.

In estrema sintesi, nella SSE si avrà:

- Arrivo delle linee MT a 30 KV interrate, provenienti dall'impianto eolico;
- Apparecchiature di protezione e sezionamento MT;
- Trasformazione 30/150 kV, tramite opportuno trasformatore di potenza (da 40 MVA);
- Apparecchiature elettriche di protezione e sezionamento AT;
- Apparecchiature di misura dell'energia elettrica;

- Partenza di una linea interrata AT, di lunghezza pari a 55 m circa, che permetterà la connessione allo stallo a 150 kV della Stazione Elettrica TERNA ERCHIE, dedicato all'impianto in oggetto.

Tutti gli impianti in bassa, media ed alta tensione saranno realizzati secondo le prescrizioni delle norme CEI applicabili, con particolare riferimento alla scelta dei componenti, della disposizione circuitale, degli schemi elettrici e della sicurezza di esercizio.

Le modalità di connessione saranno conformi alle disposizioni tecniche emanate dall'autorità per l'energia elettrica e il gas (delibera ARG/elt 99/08 del 23 luglio 2008 – Testo integrato delle condizioni tecniche ed economiche per la connessione alle reti elettriche con obbligo di connessione di terzi degli impianti di produzione di energia elettrica - TICA), e in completo accordo con le disposizioni tecniche definite nell'Allegato A (CEI 0-16) della delibera ARG/elt 33/08.

La superficie su cui sorgerà la SSE avrà una forma rettangolare, con dimensione 30x35 m (1.050 mq). Tale area si colloca all'interno di un'area più grande che sarà completamente recintata, di forma poligonale, avente una superficie di 2.515 mq circa e comunque di proprietà della Società proponente. La restante area recintata, come richiesto da TERNA S.p.a., sarà a disposizione per un eventuale altro produttore che condividerà lo stesso stallo con la Società proponente.

La predisposizione dell'area su cui sorgerà la SSE (30x35 m) prevederà le seguenti opere:

- Scavo di sbancamento per un'altezza di circa 40-50 cm per tutta la superficie interessata;
- Realizzazione delle opere esterne da interrare:
 - Plinti di fondazione delle apparecchiature AT, secondo le indicazioni progettuali e le specifiche dei dispositivi;
 - Vasca di raccolta olio e fondazione del trasformatore MT/AT;
 - Cavidotti e pozzetti di collegamento
- Rinterro, in corrispondenza delle apparecchiature, con materiale di riporto sino a 15 cm dalla quota finita;
- Pavimentazione, in corrispondenza dell'area ospitante le apparecchiature AT, con materiali provenienti dalla frantumazione di rocce lapidee dure (misto cava) aventi assortimento granulometrico con pezzatura 8-10 cm;
- Cordolo perimetrale realizzato con elementi retti o curvi prefabbricati in cemento di altezza 18 cm;
- Pavimentazione dell'area circostante con finitura stradale, così realizzata:
 - Ossatura stradale con materiali provenienti dalla frantumazione di rocce lapidee dure (misto cava) aventi assortimento granulometrico con pezzatura 8-10 cm;
 - o Fondazione stradale in misto cementato dello spessore di cm 20;
 - Conglomerato bituminoso per strato di collegamento (bynder) dello spessore di 7
 cm;
 - Conglomerato bituminoso per strato di usura (tappetino) dello spessore di 3 cm;

La superficie al di fuori dell'area interessata dalla SSE Utente ed all'interno dell'area recintata, non sarà oggetto di lavori (sarà lasciata allo stato tal quale), a meno della realizzazione della recinzione perimetrale con elementi prefabbricati in cls.

1.6 Mobilitazione mezzi per le attività di cantiere

Durante la realizzazione dell'opera vari tipi di automezzi avranno accesso al cantiere:

- automezzi speciali fino a lunghezze di 69-70 m, utilizzati per il trasporto dei tronchi delle torri, delle navicelle e delle pale del rotore;
- betoniere per il trasporto del cemento;
- camion per il trasporto dei componenti dell'impianto di distribuzione elettrica (apparecchiature BT, MT ed AT);
- altri mezzi di dimensioni minori per il trasporto di attrezzature e maestranze;
- le due autogru: quella principale (600-750 t, braccio tralicciato da 130 m) e quella ausiliaria (160/250 t) necessarie per il montaggio delle torri e degli aerogeneratori.

A regime si prevedono i seguenti arrivi in cantiere:

- 15 settimanali dei mezzi speciali per il trasporto dei tronchi delle torri, della navicella, delle pale del rotore;
- circa 50 arrivi giornalieri di autobetoniere nei giorni in cui si realizzeranno le colate di cemento per i plinti di fondazione;
- altri arrivi quotidiani di mezzi più piccoli.

Le gru stazioneranno in cantiere per tutto il tempo necessario ad erigere le torri e ad installare gli aerogeneratori.

L'utilizzo previsto di mezzi di trasporto speciale con ruote posteriori del rimorchio manovrabili e sterzanti permetterà l'accesso a strade di larghezza minima pari a 5 m. Il raggio interno libero da ostacoli dovrà essere di almeno 45 m.

Qualora si abbiano danni alle sedi viarie durante la realizzazione dell'opera è previsto il ripristino delle strade eventualmente danneggiate.

4. RIPRISTINO DELLO STATO DEI LUOGHI

Terminata la costruzione, i terreni interessati dall'occupazione temporanea dei mezzi d'opera o dal deposito provvisorio dei materiali di risulta o di quelli necessari alle varie lavorazioni, saranno ripristinati.

Nel dettaglio tali operazioni interesseranno le seguenti superfici:

• Piste: fasce relative agli allargamenti in corrispondenza di curve ed intersezioni;

- Piazzole: aree di assemblaggio e superficie non interessata dalla porzione di piazzola che esisterà in fase di esercizio;
- Area principale di cantiere: ripristino di tutta la superficie interessata;
- Altre superfici: aree interessate dal deposito dei materiali rivenienti dagli scavi e dai movimenti materie;
- Ripristino muretti a secco, rispettando le dimensioni originarie e riutilizzando per quanto più possibile il pietrame originario
- Reimpianto degli alberi di ulivo nelle posizioni originarie.

Le operazioni di ripristino consisteranno in:

- Rimozione del terreno di riporto o eventuale rinterro, fino al ripristino della geomorfologia pre-esistente, che sarà eventualmente evidenziata dalla posa del geotessile in fase di costruzione;
- Finitura con uno strato superficiale di terreno vegetale;
- Idonea preparazione del terreno per l'attecchimento.

Particolare cura si dovrà osservare per:

- eliminare dalla superficie della pista e/o dall'area provvisionale di lavoro, ogni residuo di lavorazione o di materiali;
- provvedere al ripristino del regolare deflusso delle acque di pioggia attraverso la rete idraulica costituita dalle fosse campestri, provvedendo a ripulirle ed a ripristinarne la sezione originaria;
- dare al terreno la pendenza originaria al fine di evitare ristagni.

5. PIANO DI DISMISSIONE DELL'IMPIANTO

Alla fine dell'esercizio avverrà lo smantellamento dell'impianto.

I costi di dismissione e delle opere di rimessa in pristino dello stato dei luoghi saranno coperti da una fideiussione bancaria indicata nell'atto di convenzione definitivo fra società proponente e Comuni interessati dall'intervento.

Lo smantellamento dell'impianto prevede:

- lo smontaggio delle torri, delle navicelle e dei rotori, con il recupero (per il riciclaggio) dell'acciaio;
- l'allontanamento dal sito, per il recupero o per il trasporto a rifiuto, di tutti i componenti dell'impianto;
- l'annegamento della struttura in calcestruzzo sotto il profilo del suolo per almeno un metro, demolizione parziale dei plinti di fondazione, il trasporto a rifiuto del materiale rinvenente

dalla demolizione, la copertura con terra vegetale di tutte le cavità createsi con lo smantellamento dei plinti;

- il ripristino dello stato dei luoghi;
- la rimozione completa delle linee elettriche e conferimento agli impianti di recupero e trattamento secondo la normativa vigente;
- rispetto dell'obbligo di comunicazione a tutti gli assessorati regionali interessati, della dismissione o sostituzione di ciascun aerogeneratore.

6. STIMA DEI COSTI DI DISMISSIONE E DI RIPRISTINO DELLO STATO DEI LUOGHI

A fine vita utile l'impianto eolico sarà dismesso. Le ipotesi per la stima dei costi di dismissione sono le sequenti:

- 1. Le torri vengono smontate, viene recuperato il ferro ed altri pezzi che è possibile riutilizzare, il resto smaltito in discariche autorizzate:
- 2. I plinti di fondazione sono distrutti sino alla profondità di almeno 1 m dal piano di campagna, ed il materiale residuo trasportato in discariche autorizzate;
- 3. Le piste e le piazzole sono rimosse e il materiale smaltito in discariche autorizzate. Il ripristino viene terminato con l'apporto di terreno vegetale sull'area in cui insisteva il plinto;
- 4. I cavi elettrici posati ad una profondità di circa 1 m saranno recuperati solo nell'ipotesi in cui il costo di rimozione sia coperto interamente dal ricavo per il recupero dei materiali (alluminio e rame) e pertanto non sarà preso in considerazione nel computo allegato;
- Smontaggio delle apparecchiature elettromeccaniche della SSE, loro recupero o smaltimento, demolizione dei fabbricati, demolizione delle aree asfaltate e cementate e trasporto a rifiuto in discariche autorizzate di questi materiali, ripristino del terreno vegetale;
- 6. Negli altri costi di dismissione sono compresi gli oneri amministrativi e tecnici, oneri di sicurezza, allestimento cantiere per la dismissione, adeguamento viabilità stradale.

I costi di dismissione e ripristino dello stato dei luoghi sono riassunti nelle voci di seguito riportate:

7. ANALISI DELLE RICADUTE SOCIALI, OCCUPAZIONALI ED ECONOMICHE

Le ricadute sociali ed occupazionali sul territorio sono legate essenzialmente alla fase di realizzazione dell'impianto e si riferiscono a:

- opere civili per la realizzazione di scavi, plinti di fondazione in c.a., strade di servizio, locali in SSE (fornitura e trasporto di cls, realizzazione di armature in ferro, movimentazione terre, etc.);
- opere elettromeccaniche per la realizzazione dell'impianto all'interno del parco eolico e per la connessione elettrica alla rete AT;
- costruzione in officina e installazione in cantiere di torri tubolari;
- trasporti e movimentazione componenti di impianto.

Tutte queste opere saranno preferibilmente realizzate da imprese locali.

Le ricadute economiche dirette sul territorio, dovute alla realizzazione del parco eolico, saranno:

- pagamento dei diritti di superficie ai proprietari dei terreni, nell'area di intervento;
- benefici dal pagamento delle Imposte Municipali su Immobili, particolarmente elevate sulle particelle su cui insistono gli aerogeneratori;
- assunzione di 2 tecnici per la gestione dell'impianto;
- coinvolgimento delle imprese locali nella gestione tecnica dell'impianto, con una ricaduta economica variabile quantificabile tra 80 e 120 k€/anno.

8. ELENCO AUTORIZZAZIONI

Le autorizzazioni che si dovranno ottenere per la realizzazione del presente progetto sono:

- Autorizzazione Unica, ai sensi dell'art. 12 c.3 del D.Lgs. 387/03;
- Valutazione di Impatto Ambientale, ai sensi del Dlgs. 152/2006 così come modificato dal D.lgs 104 del 16 giugno 2017;

Di seguito si riporta l'elenco (non esaustivo) degli Enti e Società che dovranno rilasciare il proprio parere / nulla osta / assenso / concessione e con i quali, eventualmente, si dovranno stipulare apposite convenzioni:

- Comune di San Pancrazio Salentino (aerogeneratori e cavidotto)
- Comuni di Erchie (cavidotto e SSE) e Avetrana (cavidotto)
- Provincia di Brindisi Settore Territorio e Ambiente
- Provincia di Brindisi Settore Viabilità
- Ufficio Struttura Tecnica Provinciale di Brindisi (Ufficio Edilizia Sismica ex Genio Civile)
- Comando Provinciale dei Vigili del Fuoco di Brindisi
- Regione Puglia Ufficio Provinciale Agricoltura di Brindisi
- Regione Puglia Assessorato allo Sviluppo Economico, Settore Industria ed Energia
- Regione Puglia Assessorato Regionale all'assetto del territorio ed urbanistica
- Regione Puglia Assessorato Regionale all'Ecologia, Ufficio Attività Estrattive

- Regione Puglia Assessorato Regionale, Ispettorato Ripartimentale delle Foreste
- Soprintendenza per i Beni Archeologici e paesaggistici della Puglia
- Ministero dell'Ambiente e della Tutela del territorio e del Mare Direzione Generale per le Valutazioni Ambientali
- ARPA Puglia
- ASL Brindisi
- Autorità di Bacino della Puglia
- Comando Reclutamento e Forze di Completamento "Puglia"
- Ministero delle Comunicazioni
- Ministero dello Sviluppo Economico
- Agenzia del Territorio (Demanio Statale)
- ENAC
- ENAV
- Aeronautica Militare C.I.G.A.
- Aeronautica Militare Comando III Regione Aerea Reparto Territorio e Patrimonio
- Consorzio di Bonifica dell'Arneo
- Acquedotto Pugliese
- Telecom S.p.A.
- Enel S.p.A.
- Terna S.p.A.
- Snam Rete Gas
- Consorzio di Bonifica Arneo
- Eventuali altri Enti e Società gestori di sottoservizi interferenti con le opere da realizzare