

Direzione Progettazione e Realizzazione Lavori

NUOVA S.S.291 COLLEGAMENTO SASSARI - ALGHERO - AEROPORTO

Lavori di costruzione del 1° lotto Mamuntanas - Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

PROGETTAZIONE: ANAS - DIREZIONE PROGETTAZIONE E REALIZZAZIONE LAWORI

PROGETTO DEFINITIVO

cod. **CA29**

PROGETTISTI:	
Dott. Ing. ACHILLE DEVITOFRANCESCHI Ordine Ing. di Roma n. 19116	
Dott. Ing. ALESSANDRO MICHELI Ordine Ing. di Roma n. 19654	
IL GEOLOGO Dott. Geol. Serena MAJETTA Ordine Geol. Lazio n. 928	
IL RESPONSABILE DEL S.I.A. Dott. Arch. GIOVANNI MAGARO' Ordine Arch. di Roma n. 16183	
COORDINATORE PER LA SICUREZZA IN FASE DI PROGETTAZIONE Geom. FABIO QUONDAM	
VISTO: IL RESP. DEL PROCEDIMENTO Dott. Ing. SALVATORE FRASCA	
PROTOCOLLO	DATA

GEOLOGIA E GESTIONE MATERIE

Studio di compatibilità geologica e geotecnica Documentazione indagini geognostiche

CODICE P	ROGETTO LIV. PROG. N. PROG.	NOME FILE TOOGEOOGEORE11_A.F	PDF		REVISIONE	SCALA
LOPL	SC D 1601	CODICE TOOGEOOGEORE11			A	-
D						
С						
В						
А	Nuova emissione a seguit	o indirizzo MIT del 11-05-2016	SET 2017	Dott. Geol. R. Laureti	Dott. Geol. S. Serangeli	Dott. Geol. S. Majetta
REV.	DESCRIZIONE		DATA	REDATTO	VERIFICATO	APPROVATO

con l'aeroporto di Fertilia Progetto Definitivo

CAMPAGNA DI INDAGINI GEOGNOSTICHE

LOTTO 1

Imprese esecutrici: SOLES s.r.l. - ANNO 2004

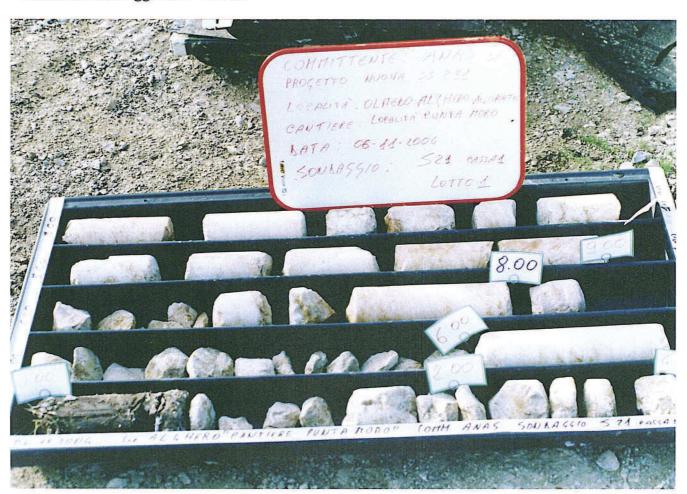
Geo-Lavori s.r.l. - ANNO 2005

LEGENDA: SONDAGGIO: S20 LUNGHEZZA (m): 12.0 DA METRI: 0.0 A METRI: 12.0 PROVE S.P.T.: PA Punta aperta - PC Punta chiusa CAMPIONI: S Pareti sottili - O Osterberg - M Mazier R Rimaneggiato - Rs Rimaneggiato da S.P.T. PIEZOMETRI: TA Aperto - C Casagrande - E Elettrico PERFORAZIONE: CS Carotiere semplice - CD Ca-Sonda tipo: Maf 800 Responsabile: Operatore: COMMITTENTE: ANAS Spa CANTIERE: Nuova Strada Statale 291 LOCALITA': Olmedo-Alghero-Aeroporto (Lotto n 1) DATA INIZIO: 5-11-2004 DATA FINE: 5-11-2004 QUOTA BOCCAFORO (m s.l.m.): rotiere doppio - EC Elica continua STABILIZZAZIONE: RM Rivestimento metallico FB Fanghi bentonitici TERRENO VEGETALE MARRONE (LIMO SCURO SABBIOSO MARRONE) 2.0 LIMO ARGILLOSO DEBOLMENTE SABBIOSO MARRONE SCURO 3.5 CALCARE GRIGIO-BIANCASTRO DEBOLMENTE FRATTURATO NEI PRIMI METRI 10

12.0

Postazione sondaggio S20 -Lotto1

Sondaggio S20 cassa 1


LEGENDA: SONDAGGIO: S21 LUNGHEZZA (m): 10.0 PROVE S.P.T.: PA Punta aperta - PC Punta chiusa CAMPIONI: S Pareti sottili - O Osterberg - M Mazier R Rimaneggiato - Rs Rimaneggiato da S.P.T. PIEZOMETRI: TA Aperto - C Casagrande - E Elettrico PERFORAZIONE: CS Carotiere semplice - CD Carotiere doppio - EC Elica continua STABILIZZAZIONE: RM Rivestimento metallico DA METRI: 0.0 A METRI: 10.0 Sonda tipo: Maf 800 Responsabile: Operatore: COMMITTENTE: ANAS Spa CANTIERE: Nuova Strada Statale 291 LOCALITA': Olmedo-Alghero-Aeroporto (Lotto n 1) DATA INIZIO: 6-11-2004 DATA FINE: 6-11-2004 QUOTA BOCCAFORO (m s.l.m.): FB Fanghi bentonitici TERRENO VEGETALE MARRONE SCURO (LIMO SABBIOSO 0.5 MARRONE) CALCARE GRIGIO BIANCASTRO A LUOGHI CARIATO E FRATTURATO

10.0

6

Postazione sondaggio S21 -Lotto1

Sondaggio S21 cassa 1

Progetto Definitivo

CAMPAGNA DI INDAGINI GEOGNOSTICHE

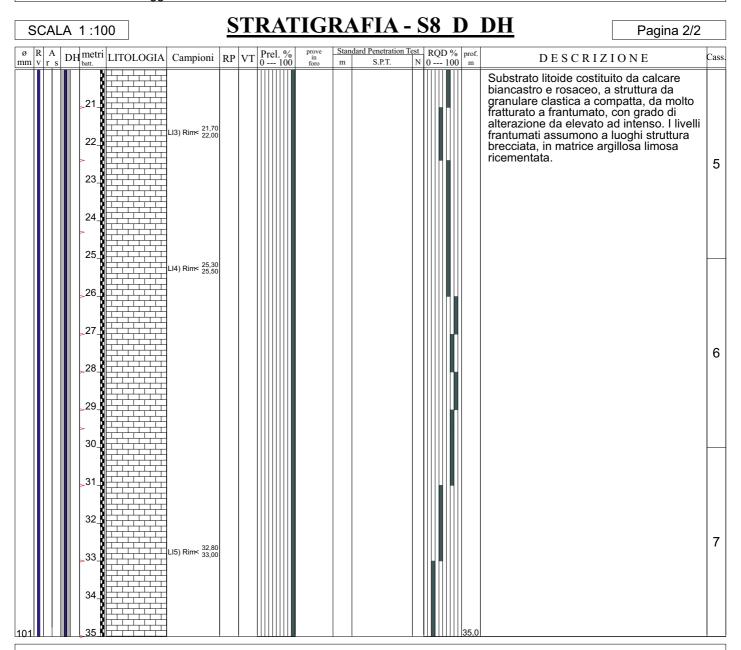
Impresa esecutrice: Sondedile s.r.l.

ANNO 2015

Certificato n° 526 del 06/11/2015

Committente: Anas S.p.A.

Riferimento: SS 291 Alghero


Coordinate: N 40°35'07.75520"; E 8°20'20.09658"

Perforazione: Carotaggio continuo

SCALA 1:100	STRATIG	RAFIA - S8 D	DH Pagina 1/2
$ \begin{bmatrix} \text{\tt \emptyset} & \text{\tt R} & \text{\tt A} \\ \text{\tt mm} & \text{\tt v} & \text{\tt r} & \text{\tt s} \end{bmatrix} \text{\tt DH} \\ \text{\tt $metri$} \\ \text{\tt $batt.} \\ \text{\tt $LITOLOGIA$} \\ \text{\tt $Campioni} \\ \\ \text{\tt $}$	RP VT Prel. % prove in foro	Standard Penetration Test RQD % prof.	DESCRIZIONE Cass.
1. 1. 1. 1. 1. 1. 1. 1.		1,8 11-8-9 17 2.1	Limo sabbioso organico, asciutto, molto consistente, di colore brunastro. Presenti resti vegetali.
3 1) Rim < 2.70 3.08 2) SPT < 3.08 4 3 3 3 45 4 4 5 5 6 6 2 2) Rim < 5.20 5 6 6 6 2 2) Rim < 5.20		3,0 16-8-4 12 5,5	con ghiaia e rari ciottoli calcarei eterometrici, da asciutta a molto umida, da addensata a molto addensata, di colore da marrone passante a nocciola.
7 2) She < 6,00 6,55	3	6,6 1-2-4 6	Limo sabbioso fine, da molto consistente a mediamente consistente, umido, di colore marrone ocraceo.
9_			Substrato litoide costituito da calcare biancastro e rosaceo, a struttura da granulare clastica a compatta, da molto fratturato a frantumato, con grado di alterazione da elevato ad intenso. I livelli frantumati assumono a luoghi struttura brecciata, in matrice argillosa limosa ricementata.
11. Ll1) Rims 11.40 12. Ll2) Rims 14.10 14. Ll2) Rims 14.30			3
16_			4

Certificato n° 526 del 06/11/2015 Verbale di accettazione n° 31 del 06/11/2015		
Committente: Anas S.p.A.	Sondaggio: S8_D_DH	
Riferimento: SS 291 Alghero	Data: 28/09-02/10/2015	
Coordinate: N 40°35'07.75520"; E 8°20'20.09658"	Quota: 7,366 m s.l.m.	
Perforazione: Carotaggio continuo		

Utilizzato carotiere doppio T6 con corona diamantata da 7,50m a 9,50m e da 10,50m a 35,00m.

Sfilato campione da SPT n°3 (6,55m-7,00m).

Installata tubazione in PVC da 3" per esecuzione prova sismica Down Hole fino a 35,00m dal p.c.

Installato chiusino in ferro con lucchetto.

Decreto di concessione n°. 57211 del 05-11-2007, per il rilascio dei certificati relativi alle prove geotecniche sui terreni (settore C), ai sensi dell'art. 8 D.P.R. 246.

Normativa: A.G.I. 1977

Sondaggio S8 D_DH

Sondaggio S8 D_DH

Sondaggio S8 D_DH

Sondaggio S8 D_DH

Progetto Definitivo

CAMPAGNA DI INDAGINI GEOGNOSTICHE

Impresa esecutrice: RTI: Experimentations s.r.l. – Geolab s.r.l. – Studio Sperimentale Stradale s.r.l. – Dott. Antonello Angius – I.M.O.S. s.r.l.

ANNO 2016/2017

Allegato 1

Tabelle prove SPT

Committente: ANAS SPA	Cantiere: S.S. 291 1°- 4° lotto
Sondaggio: 30	Prova SPT n°: 1 del 25/10/2016
Tratto di prova (m dal p.c.): 2.00 – 2.45	Descrizione litologica: Suolo sabbioso e sabbia fina,
Punta aperta X Punta chiusa	da marrone-rossiccia a giallastra, incoerente,
	addensata.
Tratto testato	Valori N _{SPT} x 15 cm
Da m. 2.00 a m. 2.15	12 colpi
Da m. 2.15 a m. 2.30	25 colpi
Da m. 2.30 a m. 2.45	48 colpi
Valore N _{SPT} x 30 cm = 73	
Operatore: G.P. Salis	Responsabile prova: Dr. Geol. A. Angius

Committente: ANAS SPA	Cantiere: S.S. 291 1°- 4° lotto
Sondaggio: 30	Prova SPT n°: 2 del 25/10/2016
Tratto di prova (m dal p.c.): 4.50 – 4.55	Descrizione litologica: Sabbia molto addensata con
Punta aperta X Punta chiusa	livelli arenacei, da beige-biancastra a marroncina.
Tratto testato	Valori N _{SPT} x 15 cm
Da m. 4.50 a m. 4.55	50 colpi = 5 cm
Da m. a m.	colpi
Da m. a m.	colpi
Valore N _{SPT} x 30 cm = Rifiuto	
Operatore: G.P. Salis	Responsabile prova: Dr. Geol. A. Angius

Committente: ANAS SPA	Cantiere: S.S. 291 1°- 4° lotto
Sondaggio: 31	Prova SPT n°: 1 del 04/11/2016
Tratto di prova (m dal p.c.): 2.00 – 2.45	Descrizione litologica: Sabbia da debolmente
Punta aperta X Punta chiusa	limosa ad argillosa, marroncina, addensata.
Tratto testato	Valori N _{SPT} x 15 cm
Da m. 2.00 a m. 2.15	10 colpi
Da m. 2.15 a m. 2.30	13 colpi
Da m. 2.30 a m. 2.45	17 colpi
Valore N _{SPT} x 30 cm = 30	
Operatore: G.P. Salis	Responsabile prova: Dr. Geol. A. Angius

Committente: ANAS SPA	Cantiere: S.S. 291 1°- 4° lotto
Sondaggio: 31	Prova SPT n°: 2 del 04/11/2016
Tratto di prova (m dal p.c.): 5.00 – 5.05	Descrizione litologica: Coltre superficiale del
Punta aperta X Punta chiusa	substrato carbonatico, assimilabile ad una ghiaia
	sabbiosa con matrice marnosa, beige-biancastra,
	semilapidea.
Tratto testato	Valori N _{SPT} x 15 cm
Da m. 5.00 a m. 5.06	50 colpi = 6 cm
Da m. a m.	colpi
Da m. a m.	colpi
Valore N _{SPT} x 30 cm = Rifiuto	
Operatore: G.P. Salis	Responsabile prova: Dr. Geol. A. Angius

Committente: ANAS SPA	Cantiere: S.S. 291 1°- 4° lotto
Sondaggio: 32	Prova SPT n°: 1 del 11/11/2016
Tratto di prova (m dal p.c.): 2.00 – 2.45	Descrizione litologica: Argilla limosa e sabbia,
Punta aperta X Punta chiusa	beige, satura, moderatamente consistente.
Tratto testato	Valori N _{SPT} x 15 cm
Da m. 2.00 a m. 2.15	8 colpi
Da m. 2.15 a m. 2.30	15 colpi
Da m. 2.30 a m. 2.45	14 colpi
Valore N _{SPT} x 30 cm = 30	
Operatore: G.P. Salis	Responsabile prova: Dr. Geol. A. Angius

Committente: ANAS SPA	Cantiere: S.S. 291 1°- 4° lotto
Sondaggio: 32	Prova SPT n°: 2 del 11/11/2016
Tratto di prova (m dal p.c.): 5.00 – 5.05	Descrizione litologica: Coltre superficiale del
Punta aperta X Punta chiusa	substrato carbonatico, beige-biancastra, da
	semilapidea a lapidea.
Tratto testato	Valori N _{SPT} x 15 cm
Da m. 4.50 a m. 4.65	8 colpi
Da m. 4.65 a m. 4.72	50 colpi = 7 cm
Da m. a m.	colpi
Valore N _{SPT} x 30 cm = Rifiuto	
Operatore: G.P. Salis	Responsabile prova: Dr. Geol. A. Angius

Committente: ANAS SPA	Cantiere: S.S. 291 1°- 4° lotto	
Sondaggio: 34	Prova SPT n°: 1 del 15/11/2016	
Tratto di prova (m dal p.c.): 2.00 – 2.26	Descrizione litologica: Argilla limosa e sabbia,	
Punta aperta X Punta chiusa	beige, satura, moderatamente consistente.	
Tratto testato	Valori N _{SPT} x 15 cm	
Da m. 2.00 a m. 2.15	21 colpi	
Da m. 2.15 a m. 2.26	50 colpi = 11 cm	
Da m. a m.	colpi	
Valore N _{SPT} x 30 cm = Rifiuto		
Operatore: G.P. Salis	Responsabile prova: Dr. Geol. A. Angius	

Committente: ANAS SPA	Cantiere: S.S. 291 1°- 4° lotto
Sondaggio: 35	Prova SPT n°: 1 del 22/11/2016
Tratto di prova (m dal p.c.): 3.20 – 3.27	Descrizione litologica: Calcarenite semilapidea o
Punta aperta X Punta chiusa	debolmente cementata, da debolmente ossidata
	ad ossidata, beige-giallastra.
Tratto testato	Valori N _{SPT} x 15 cm
Da m. 3.20 a m. 3.27	50 colpi = 7 cm
Da m. a m.	colpi
Da m. a m.	colpi
Valore N _{SPT} x 30 cm = Rifiuto	
Operatore: G.P. Salis	Responsabile prova: Dr. Geol. A. Angius

	· · · · · · · · · · · · · · · · · · ·
Committente: ANAS SPA	Cantiere: S.S. 291 indagini integrative
Sondaggio: 38_D	Prova SPT n°: 4 del 5/10/2017
Tratto di prova (m dal p.c.): 10.60 – 11.05	Descrizione litologica: Sabbia da media a
X Punta aperta Punta chiusa	grossolana, argillosa.
Tratto testato	Valori N _{SPT} x 15 cm
Da m. 10.60 a m. 10.75	6 colpi
Da m. 10.75 a m. 10.90	8 colpi
Da m. 10.90 a m. 11.05	10 colpi
Valore N _{SPT} x 30 cm = 18	
Operatore: G.P. Salis	Responsabile prova: Dr. Geol. A. Angius

Committente: ANAS SPA	Cantiere: S.S. 291 indagini integrative
Sondaggio: 38_D	Prova SPT n°: 5 del 6/10/2017
Tratto di prova (m dal p.c.): 20.00 – 20.45	Descrizione litologica: Sabbia da media a
X Punta aperta Punta chiusa	grossolana, argillosa.
Tratto testato	Valori N _{SPT} x 15 cm
Da m. 20.00 a m. 20.15	18 colpi
Da m. 20.15 a m. 20.30	36 colpi
Da m. 20.30 a m. 20.45	38 colpi
Valore N _{SPT} x 30 cm = 74	
Operatore: G.P. Salis	Responsabile prova: Dr. Geol. A. Angius

Committente: ANAS SPA	Cantiere: S.S. 291 indagini integrative
Sondaggio: 39_D	Prova SPT n°: 1 del 9/10/2017
Tratto di prova (m dal p.c.): 1.50 – 1.95	Descrizione litologica: Sabbia limosa, debolmente
X Punta aperta Punta chiusa	argillosa, con microciottoli.
Tratto testato	Valori N _{SPT} x 15 cm
Da m. 1.50 a m. 1.65	18 colpi
Da m. 1.65 a m. 1.80	23 colpi
Da m. 1.80 a m. 1.95	23 colpi
Valore N _{SPT} x 30 cm = 46	
Operatore: G.P. Salis	Responsabile prova: Dr. Geol. A. Angius

Committente: ANAS SPA	Cantiere: S.S. 291 indagini integrative
Sondaggio: 39_D	Prova SPT n°: 2 del 9/10/2017
Tratto di prova (m dal p.c.): 3.10 – 3.55	Descrizione litologica: Sabbia limosa, debolmente
X Punta aperta Punta chiusa	argillosa, con microciottoli.
Tratto testato	Valori N _{SPT} x 15 cm
Da m. 3.10 a m. 3.25	7 colpi
Da m. 3.25 a m. 3.40	7 colpi
Da m. 3.40 a m. 3.55	8 colpi
Valore N _{SPT} x 30 cm = 15	
Operatore: G.P. Salis	Responsabile prova: Dr. Geol. A. Angius

Allegato 2

Colonne stratigrafiche

Committente Profondità raggiunta Quota Ass. P.C.			Certificato nº					Pagina				
ANAS SPA	-25	16.402		7	7			2				
Operatore	Indagine	Cantiere						Inizio/Fine Es				
G.P. Salis	Geognostica	SS 291 IV LOTTO							04/11.11.2016			
Responsabile	Sondaggio	Tipo Carotaggio			ipo Sonda			Coordinate X				
Dott. Geol. A. Angius	S 31_D	Rotazione continu		n '[⊩≘	DELTABASE			1444385	<u> </u>	383N		
Litologia	Descrizione		Quota	%Carotaggic R.Q.D.	S.P.T.	Pocket Test kg/cmq	Vane Test kg/cmq	Campioni	Metodo Perforazione			
Scala (mt)				Caro 1.O.L),cm	Je T	gub	fora	Falda		
<u> </u>				8"		g _x	\$ 2	0	Σē	ш		
ah ah ah Suolo sab	bioso, marrone, asciutto.		0.60									
	arbonatica, beige chiaro, addensat	a con livelletti	0.00									
	ce cementati.	a con liveliceei										
			1.70		10-13-17	7						
Sabbia da	debolmente limosa ad argillosa,	marroncina,										
² addensata					2.00 PC							
× ×× ××			2.80									
Detrito d	li calcarenite e sabbia, beige, ad	densato.										
\$67% F.\$67			3.60									
	perficiale del substrato carbonat											
. aa ana gn	ad una ghiaia sabbiosa con matrice marnosa, beige-biancastra, semilapidea.						[4.30 R				
					50 colp:	1=6 0	m	4.60				
5			5.20	<u> </u>	5.00 PC							
	siltoso massivo, integro e privo d grigio-beige. Giunti da obliqui a							€ £.80				
	e cementati.	morco incrinaci,						6.00				
								6.00				
7								7.30 R				
								7.60				
8								7.00				
9												
10												
11												
12												
13				06=								
				%RQD=								
				%								
14												
15												
16												
16								16.6	0			
								R ^{6.6}				
17								16.8	U			
18												
19												
								1 ⁹ .6	0			
20								19.8	0			
							L					
-										\equiv		

Committente	Profondità raggiunta	Quota Ass. P.C.			ertificato nº		Pagina					
ANAS SPA Operatore	-25 Indagine	16.402 Cantiere		7				2 Inizio/Fine Esecuzione				
G.P. Salis	Geognostica	SS 291 IV LOTTO				C	04/11.11.2016					
Responsabile	Sondaggio	Tipo Carotaggio	- 101	Tipo Sonda 1 mm DELTABASE 520				Coordinate X Y 1444385E44				
Dott. Geol. A. Angius	S 31_D Descrizione	Rotazione continuo	0 101 mr Quota	n 'D	S.P.T.				<u>⊏4496</u> ∣ ₂	583		
Scala (mt)				%Carotaggid R.Q.D.		Pocket Test kg/cmq	Vane Test kg/cmq	Campioni	Metodo Perforazione	Falda		
	ussivo, fratturato, da bei	a a		1		12-	>=		1 2	+		
grigio-beige. Giun	nti da obliqui a molto in	clinati, serrati	22.00									
e cementati.			22.00									
Calcare siltoso mas	ssivo, integro e privo di ge. Giunti da obliqui a m	cariature, da	0	Ĭ								
serrati e cementat:	ge. Giunci da obilqui a m i.	iorto incrinati,		0				← R ^{3.}	0			
				=10				23.	20			
24				%RQD=100								
				0/0								
			25.00									
25												
26												
27												
28												
29												
30												
30												
31												
31												
32												
32												
33												
33												
34												
34												
35												
36												
37												
38												
39 1												
40												
41												
				1	I .	1	1	1	1	1		

Cor	mmittente		Profondità raggiunta		Quota Ass. P.C.		C	ertificato nº			Pagina				
	NAS SPA		-25		3.46		8	3				2			
	eratore		Indagine		Cantiere						Inizio/Fine Esecuzione				
	P. Salis sponsabile		Geognostica Sondaggio		SS 291 IV LOTTO Tipo Carotaggio		+	ipo Sonda		1	11/15.11 Coordinate X	1.2016)		
	-	Angius				o 101 mr		-	E20				- 1 C O N		
D	ott. Geol. A Litologia	. Aligius	S 32_D	crizione	Rotazione continu	O 101 mr Quota		S.P.T.			1444321 -	<u>∟4490</u>	ואט ר ע\ 		
r q							%Carotaggid R.Q.D.		Pocket Test kg/cmq	Vane Test kg/cmq	Campioni	Metodo Perforazione	g		
Scala (mt)							%2.		Pod/ kg/	Van kg/c	පී	Perfe	Falda		
		Argilla limos	sa e sabbiosa, ma	rroncina con scr	reziature brune,										
		da moderatame	ente consistente	a consistente, s	satura.										
1						1.60									
	~ ~ ~	Argilla limos	sa e sabbia, beig	e, satura, moder	atamente	1.00		8-15-14			2.00				
2		consistente.	,	.,				2.00 PC	3		S				
											2.50	o			
3						3.20									
	* * *	Sabbia argill moderatamente	osa, satura, oss	idata, giallastr	a, da poco a										
4	33 33 33	moderatamente	addensala.					8-50 co	 pi=7	cm	4.00	o			
4	* * *	Coltro contro	ficiale del subst	-rato gambanatic	^	4.40	_		- '		4.40				
	3 3 3		ficiale del subst stra, da semilapi		·,	1		4.50 PC			5.00				
5		Calcare silto	so massivo, inte	gro e privo di c							R				
		grigio. Giunt	ntati.		0				5.40						
6					%RQD=100				R						
									6.40	Ò					
7		† T					% \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\								
						7.80									
		Calcare silto	oso ed argilloso,	massivo, integr	o e privo di	,,,,,,		\dagger							
8		cariature, gr	rigio scuro. Giun												
		cementati.													
9															
											₽.80 R.80	o			
10											10.0				
11							0								
11							RQD=100								
							Ø								
12							% K								
13															
	1-1-1-														
14	0 00 00										← R ⁴ ·	10			
											14.	30			
1.						15.00									
15		Calcare silto	so massivo, inte i suborizzontali	gro e privo di c serrati e cemer	cariature, stati.										
		grigio. Grand	Juporrazonicali	SCITACI C CEMEI											
16															
17															
							0								
18	وف وف وف						%RQD=100								
							Ö								
							% K								
19															
											← R -	10			
20		I									20.0	o o			
	++++	1													
Ш						21.00		Ц							

	Committente Profondita raggiunta Quota Ass. P.C.						ertificato nº			igina		
AI\ One	IAS SPA eratore		-25 Indagine	3.46 Cantiere		8			2 In	izio/Fine Es	ecuzione	,
	P. Salis		Geognostica	SS 291 IV LOTTO								
Res	ponsabile		Sondaggio	Tipo Carotaggio		Ti	po Sonda		Co	1/15.11 oordinate X	.2010 Y	
	tt. Geol. A.	. Anaius	S 32_D	Rotazione continuo	o 101 mn	ı D	ELTABASE	520		4443211		
	Litologia		Descrizione		Quota	ggie	S.P.T.	st		<u>=</u>	oue .	
t)						arota 2.D.		et Te	a Te	Campioni	odo	g.
Scala (mt)				Rotazione continuo		% ?.		Pocket Test kg/cmq	Vane Test kg/cmq	రి	Metodo Perforazione	Falda
	0 0 0	Calcare siltoso mas	ssivo, integro e privo di ca									$\overline{\Box}$
		grigio. Giunti sub	prizzontali serrati e cementa	ati.								
22												
23										23.2 R	0	
										23.5		
										23.3	0	
24												
					25.00							
25												
26												
27												
28												
20												
29												
30												
50												
31												
32												
33												
34												
35												
36												
37												
91												
38												
39												
40												
41												

	nmittente NAS SPA		Profondità raggiunta -30	Quota Ass. P.C.			Certificato nº 9		Pagina 2					
	eratore		-30 Indagine	4.72 Cantiere			9			Z Inizio/Fine Es	ecuzione	:		
G.	P. Salis		Geognostica	SS 291 IV LOTTO		1				15/21.11.2016				
	sponsabile		Sondaggio	Tipo Carotaggio		Tipo Sonda				Coordinate X				
Do	ott. Geol. A	. Angius	S 34_D	Rotazione continue	o 101 mr Quota	n '∣	DELTABASE S.P.T.				44275E44965			
	Litologia		Descrizione		Quota	%Carotaggid R.Q.D.	5.7.1.	Pocket Test kg/cmq	Vane Test kg/cmq	Campioni	Metodo Perforazione			
Scala (mt)						Å.		g/a	ane g/cm	Cam	Meto	Falda		
•		a 1 11 '			°`		<u>~</u>	>=		_ ~				
	oh, oh, oh,	Suolo sabbioso, ma	rrone. icamente assortita, argillos		0.40	<u> </u>								
			chiaro, satura, addensata.	a e										
1	10 10 10	, ,	·											
	# # # #				0 10		21-50 cd	lpi=	11 c	m 1.70				
2	25 25 25	Coltro gunorficial	le del substrato carbonatico,		2.10		2.00 PC			2.00				
			da semilapidea a lapidea.	,	2.60	<u> </u>								
3														
3			arenaceo, massivo, frattura orizzontali e rari vertical							2 70				
	1886	cementati.	orizzoneari e rari vererear	i, bellael e						3.70 R				
4										4.00				
					,	9 H T T T T T T T T T T T T T T T T T T								
5						. ₹								
	عصفد				0	#								
6	اعلالا													
ь										6.60 R				
	100E				6.90									
7			ige con livelli di calcare s poco fratturato. Giunti sub							6.90				
			cabri, serrati e cementati.	verticali o										
8		, ,	,											
9														
										9.70 R				
10										10.0	0			
	-1-1-1													
11						2								
						RQD=7								
12						%								
										13.0 R	0			
13														
	FFF									13.3	0			
14	1-1-1-													
	1-1-1-													
15														
	a Fa Fa F				1.0.00									
16	7,7,7	Calcare eiltoso ma	ssivo, integro e privo di ca	riatura	16.20		\forall							
		grigio. Giunti sub	orizzontali serrati e cement	ati.										
17		· •								17.2 R	0			
										17.5				
18										1/.3	-			
10						100								
						RQD=100								
19						%RQ								
						010								
20														
					01.00									
	9 89 89				21.00		<u> </u>					Ш		

	mmittente NAS SPA		Profondità raggiunta -30	Quota Ass. P.C. 4.72		9	Certificato nº		Pagina 2			
	eratore		Indagine	Cantiere		3	,		Ir	nizio/Fine Es	ecuzione	
	P. Salis		Geognostica	SS 291 IV LOTTO						5/21.11		
	sponsabile ott. Geol. A	Angius	Sondaggio S 34_D	Tipo Carotaggio Rotazione continuo	101 mn		ipo Sonda DELTABASE	E20		Coordinate X Y 1444275E4496		
DC	Litologia	. Anglus	Descrizione	Rotazione continuo	Quota	ieg L	S.P.T.			444 2/31	2 4490	SSSIN
± a						%Carotaggie R.Q.D.		Pocket Test kg/cmq	Vane Test kg/cmq	Campioni	Metodo Perforazione	р
Scala (mt)						85		Pock kg/	Van kg/c	පී	Perfc	Falda
		Calcare siltoso ma	ssivo, integro e privo di ca	riature,								
		grigio. Giunti sub	orizzontali serrati e cement	ati.								
22												
23										∠ £3.2	0	
										23.4		
24	10 10 10 10 10 10 10 10 10 10 10 10 10 1											
2-1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					00-						
						%RQD=100						
25	2 - 2 - 2 - 2 2 - 2 - 2 - 2					%RQ						
						01						
26												
27										0.7.6		
										27.6 R	0	
28					28.35					28.0	0	
		Calcare marnoso be	ige massivo, integro o poco i o molto inclinati, scabri,	fratturato,		0						
29		cementati.	i o morto incrinati, scapii,	Serrati e		=10				29.2 R	0	
					30.00	RQD=100				29.5	0	
30					30.00	-% 						
31												
32												
33												
J												
34												
35												
36												
37												
38												
39												
40												
41												
												Щ

Committente	Profondità raggiunta	Quota Ass. P.C.	=			Certificato nº				
ANAS SPA Operatore	-25 Indagine	14.17 Cantiere			10			2 Inizio/Fine Es	ecuzion	e
G.P. Salis	Geognostica	SS 291 IV LOTTO						22/23.11.2016		
Responsabile	Sondaggio	Tipo Carotaggio			ipo Sonda			Coordinate X		
Dott. Geol. A. Angius Litologia	S 35_D	Rotazione continu	O 101 mr Quota		S.P.T.		1 :	14442271	E4496	5544N
	Descrizione		Quota	%Carotaggic R.Q.D.	S.P.1.	Pocket Test kg/cmq	Test	Campioni	Metodo Perforazione	
Scala (mt)				R.Q		Pocke kg/c	Vane Test kg/cmq	Can	Metc	Falda
Sabbia, da marr	one a rossiccia, debolm	mente cementata.						İ		
05 05 05			0.90							
	idata, debolmente caria beige a giallastra, mo							1.30		
Semilapidei, da	beige a graffastra, m	oito ilattulata.						1.60		
2										
(1) 1 The second of the second			2.90		50 colps	=7c	m			
3					3.20 PC					
	ilapidea o debolmente data ad ossidata, beige				3.20 PC					
4 depointence ossi	masa aa oooraaca, berge		4.55							
Calcare siltoso	o da grigio a grigio-be	eige, massivo,	4.55	3	-					
5 parzialmente de	ecompresso. Scomposto s	secondo piani di	5.50	11 1				_5 15		
	stratificazione suborizzontali in livelletti da decimetri la centimetrici. Giunti scabri, serrati.							F. 45		
6										
Calcare siltoso grigio. Giunti	Calcare siltoso massivo, integro e privo di cariature, grigio. Giunti suborizzontali serrati e cementati.									
7	grigio. Giunti Suborizzontari Serrati e Cementati.							₹·10		
								7.30		
8										
9										
10										
11										
								11.5 R	0	
12								11.8	0	
13				100						
				%RQD=100						
14				% \(\text{\tint{\text{\tin}\text{\ti}\tint{\text{\text{\text{\text{\text{\text{\tin}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tin}\text{\text{\text{\text{\text{\text{\text{\text{\ti}\}\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\titil\titt{\text{\text{\texi}\titileft{\text{\tiin}\tiint{\text{\text{\text{\text{\text{\text{\texi}\tint{\text{\texi}\tex						
-										
15										
16								16.0	0	
T-T-T-										
17										
								17.6	0	
18								R		
								1		
19										
20								20.1 R	0	
								20.4	0	
			21.00							

	nmittente Profondità raggiunta Quota Ass. P.C.						ertificato nº			agina				
Al	NAS SPA		-25	14.17		1	.0		2					
	eratore		Indagine	Cantiere						Inizio/Fine Esecuzione				
G	.P. Salis		Geognostica	SS 291 IV LOTTO					22/23.11.2016 Coordinate X Y					
	sponsabile		Sondaggio	Tipo Carotaggio			ipo Sonda							
D	ott. Geol. A	. Angius	S 35_D	Rotazione continuo	2 101 mn	າ ' [PELTABASE	520		4442271	E4496	544N		
	Litologia		Descrizione		Quota	%Carotaggio R.Q.D.	S.P.T.	Pocket Test kg/cmq	şş	Campioni	Metodo Perforazione			
Scala (mt)						O.D		Ç.	Vane Test kg/cmq	du	oraz	Falda		
S.E						8.5		P P P	Var kg/	Ö	Per	굔		
	2 2 2	Calcare siltoso ma	ssivo, integro e privo di ca	riaturo										
		grigio. Giunti sub	orizzontali serrati e cement	ati.										
		3												
22														
						0								
						10								
23														
						%RQD=100								
24						0/0								
24														
					25.00									
25							-							
26														
27														
28														
29														
30														
_ [
31														
32														
52														
33														
34														
35														
55														
36														
37														
20 1														
38														
39														
40														
41														
												Щ.		

Committente			Profondità raggiunta		Quota Ass. P.C.		- 1				agina			
ANAS SPA Operatore			-20.00				4			1				_
			Indagine Cantiere								nizio/Fine Es			
G.P. Salis				Geognostica SS 291 Sondaggio Tipo Carotaggio							9/10.10.2017 Coordinate X Y			
Responsabile			Sondaggio	101		-			1443876.20E44966					
ט	ott. Geol. A Litologia	. Angius	S 39_D Descrizione		Rot. Car. continuo	Quota	<u>.</u>						1966.	././ZIN
	Litologia		Descrizione			Quota	%Carotaggio R.Q.D.	3.F.1.	Pocket Test kg/cmq	Vane Test kg/cmq	Campioni	Metodo Perforazione		
Scala (mt)							ig O		/cm	g g	amb	fora	Falda	
χΞ							8"		8 3 ,	Ş. Ş.	O	ΣÞ	亞	
	000000000000000000000000000000000000000	Suolo sabbioso-ghi	aioso marrone, as	ciutto.										
		3	,											
						1.10		10000						
1	On the second	Sabbia limosa, deb	oolmente argillosa	. con micro	ciottoli.			18-23-23	\$					
		marroncina, d asciutta a debolmente umida, moderatamente						1.50 PA						
	E0 E0 E0	addensata.	lensata.					1.50 171						
2											2 50	,		
	~ ~ ~							7-7-8			2.50 R			
											2.75	ł		
3								3.10 PA						
	10 10 10					4.00								
4	on on on	0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		. 1	1-1 (4 10	4.00		_						
7		Sabbia e argilla b cm), ossidata, add	peige con al tetto	alcuni blo	ccni (4-10	4.70					4 60			
				a.a. al- 2 -		4./0	_	-			\$.60			
5		Argilla sabbiosa e	e carbonatica, bei	ge cniaro,	consistente.						4.80	1		
.						5.50								
		Calcare siltoso ma	assivo, sino a -6 .	90 molto fr	atturato e									
6		debolmente decompr												
		locali patine di c												
		inclinati, debolme	ente scapri, coior	e da grigio	e beige.									
7														
8														
9														
10														
10														
11														
12														
							LO							
							RQD=85							
13														
							0/0							
14											1			
											1			
1.											1			
15														
16														
10														
17											1			
											1			
											1			
18														
19														
						20.00								
20			<u> </u>											
											1			
												$oxed{oxed}$	Ш	

Allegato 3

Report fotografico

Fotografia 33: S30, C4 (15 - 20m)

Fotografia 34: S31, C1 (0 - 5m)

Fotografia 35: S31, C2 (5 - 10m)

Fotografia 36: S31, C3 (10 - 15m)

Fotografia 37: S31, C4 (15 - 20m)

Fotografia 38: S31, C5 (20 - 25m)

Fotografia 39: S32, C1 (0 - 5m)

Fotografia 40: S32, C2 (5 - 10m)

Fotografia 41: S32, C3 (10 - 15m)

Fotografia 42: S32, C4 (15 - 20m)

Fotografia 43: S32, C5 (20 - 25m)

Fotografia 44: S34, C1 (0 - 5m)

Fotografia 45: S34, C2 (5 - 10m)

Fotografia 46: S34, C3 (10 - 15m)

Fotografia 47: S34, C4 (15 - 20m)

Fotografia 48: S34, C5 (20 - 25m)

Fotografia 49: S34, C6 (25 - 30m)

Fotografia 50: S35, C1 (0 - 5m)


Fotografia 51: S35, C2 (5 - 10m)

Fotografia 52: S35, C3 (10 - 15m)

Fotografia 53: S35, C4 (15 - 20m)

Fotografia 54: S35, C5 (20 - 25m)

Fotografia 29: S38_D, C6 (25 - 27.20 m).

Fotografia 30: S39_D, C1 (0 - 5m).

Fotografia 31: S39_D, C2 (5 - 10m).

Fotografia 32: S39_D, C3 (10 - 15m).

Fotografia 33: S39_D, C4 (15 - 20m).

Fotografia 34: S40_D, C1 (0 - 5m).

Allegato 5

Caratterizzazione geomeccanica

RILIEVO GEOMECCANICO

Commessa

Secondo raccomandazioni ISRM

Data	SPERIMENTATORE	DIRETTORE	CERTIFICATO
10-11-2016	Dott. Geol. Antonello Angius	Dott. Geol. Antonello Angius	4 - 2016

COMMITTENTE: ANAS SPA

CANTIERE: SS 291 1° e 4° Lotto

SONDAGGIO N°: S 31

CASSA 2

DA m 5,00 a m 10,00

Descrizione litologica:

Calcare siltoso massivo, integro e privo di cariature, da beige a grigio-beige. Giunti da obliqui a molto inclinati, serrati e cementati.

N° frattura e famiglia		Tipo Discontinuità	Forma	Scabrezza	Apertura	Ossidazione	Riempimento
Iaiiigiia	IIICIIIIazione	Tipo Discontinuita	FOITII	Scabiezza	Apertura	Ossidazione	Kiempimento
N° = Frattura	O orizzontale	F frattura	P piana	Barton (JRC)	A se = 0mm	1 assente	A assente
a = famiglia	I ' I	S strato	O ondulata		B se < 0,1 mm	2 lievemente ossidato	R rigido granulare
	l inclinato MI molto inclinato	C scistosità	I irregolare		C se 0,1 - 10 mm	3 moderatamente ossidato	P plastico coesivo
	V verticale	M meccanica			D se > 10 mm	4 profondamente ossidato	
1a	0	F	Р	8-10	С	1	Α
2a	0	F	Р	6-8	С	1	А
3a	0	F	nd	nd	nd	1	А
	,						
	'						

RILIEVO GEOMECCANICO

Commessa

Secondo raccomandazioni ISRM

Data	SPERIMENTATORE	DIRETTORE	CERTIFICATO
10-11-2016	Dott. Geol. Antonello Angius	Dott. Geol. Antonello Angius	4 - 2016

COMMITTENTE: ANAS SPA

CANTIERE: SS 291 1° e 4° Lotto

SONDAGGIO N°: S 31

CASSA 3

DA m 10,00 a m 15,00

Descrizione litologica:

Calcare siltoso massivo, integro e privo di cariature, da beige a grigio-beige. Giunti da obliqui a molto inclinati, serrati e cementati.

N° frattura e famiglia		Tipo Discontinuità	Forma	Scabrezza	Apertura	Ossidazione	Riempimento
N° = Frattura	O orizzontale	F frattura	P piana	Barton (JRC)	A se = 0mm	1 assente	A assente
	PI poco inclinato I inclinato MI molto inclinato		O ondulata I irregolare		B se < 0,1 mm C se 0,1 - 10 mm		R rigido granulare P plastico coesivo
	V verticale	M meccanica		<u> </u>	D se > 10 mm	4 profondamente ossidato	
1 a	0	F	Р	10-12	С	2	А
2 a	PI	F	Р	8-10	С	2	А
				 			
	 			<u> </u>	 	-	
				 			

RILIEVO GEOMECCANICO

Commessa

Secondo raccomandazioni ISRM

Data	SPERIMENTATORE	DIRETTORE	CERTIFICATO
11-11-2016	Dott. Geol. Antonello Angius	Dott. Geol. Antonello Angius	4 - 2016

COMMITTENTE: ANAS SPA

CANTIERE: SS 291 1° e 4° Lotto

SONDAGGIO N°: S 31

CASSA 4

DA m 15,00 a m 20,00

Descrizione litologica:

Calcare siltoso massivo, integro e privo di cariature, da beige a grigio-beige. Giunti da obliqui a molto inclinati, serrati e cementati.

١.								
	N° frattura e famiglia	Inclinazione	Tipo Discontinuità	Forma	Scabrezza	Apertura	Ossidazione	Riempimento
ľ	Tarriigila	IIICIIIIazione	TIPO DISCOILITUILA	i Orina	SCADI CZZA	Apertura	Ossidazione	Kiempimento
ŀ	N° = Frattura	O orizzontale	F frattura	P piana	Barton (JRC)	A se = 0mm	1 assente	A assente
í	a = famiglia	PI poco inclinato I inclinato	S strato	O ondulata		B se < 0,1 mm	2 lievemente ossidato	R rigido granulare
П		MI molto inclinato	C scistosità	I irregolare		C se 0,1 - 10 mm	3 moderatamente ossidato	P plastico coesivo
П		V verticale	M meccanica			D se > 10 mm	4 profondamente ossidato	
	1 a	0	F	Р	8-10	С	1	Α
I	2 a	PI	F	Р	6-8	С	1	А
ı	·							

RILIEVO GEOMECCANICO

Commessa

Secondo raccomandazioni ISRM

Data	SPERIMENTATORE	DIRETTORE	CERTIFICATO
11-11-2016	Dott. Geol. Antonello Angius	Dott. Geol. Antonello Angius	4 - 2016

COMMITTENTE: ANAS SPA

CANTIERE: SS 291 1° e 4° Lotto

SONDAGGIO N°: S 31

CASSA 5

DA m 20,00 a m 25,00

Descrizione litologica:

Calcare siltoso massivo, integro e privo di cariature, da beige a grigio-beige. Giunti da obliqui a molto inclinati, serrati e cementati.

N° frattura e famiglia		Tipo Discontinuità	Forma	Scabrezza	Apertura	Ossidazione	Riempimento
N° = Frattura	O orizzontale	F frattura	P piana	Barton (JRC)	A se = 0mm	1 assente	A assente
	PI poco inclinato I inclinato MI molto inclinato		O ondulata I irregolare		B se < 0,1 mm C se 0,1 - 10 mm		R rigido granulare P plastico coesivo
	V verticale	M meccanica			D se > 10 mm	4 profondamente ossidato	
1 a	PI	F	1	14-16	С	1	Α
2 a	PI	F	Р	12-14	С	1	Α
3 a	PI	F	Р	14-16	С	2	Α
4 c	V	F	Р	4-6	С	1	А
5 a	PI	F	Р	2-4	С	1	А

RILIEVO GEOMECCANICO

Commessa

Secondo raccomandazioni ISRM

Data	SPERIMENTATORE	DIRETTORE	CERTIFICATO
14-11-2016	Dott. Geol. Antonello Angius	Dott. Geol. Antonello Angius	5 - 2016

COMMITTENTE: ANAS SPA

CANTIERE: SS 2911° e 4° Lotto

SONDAGGIO N°: S 32

CASSA 2 DA m 5,00 a m 10,00

Descrizione litologica:

Calcare siltoso massivo, integro e privo di cariature, grigio. Giunti suborizzontali serrati e cementati.

206						1	
N° frattura e			L	L .	. .		<u>.</u>
famiglia	Inclinazione	Tipo Discontinuità	Forma	Scabrezza	Apertura	Ossidazione	Riempimento
N° = Frattura	O orizzontale	F frattura	P piana	Barton (JRC)	A se = 0mm	1 assente	A assente
a = famiglia	PI poco inclinato	S strato	O ondulata		B se < 0,1 mm	2 lievemente ossidato	R rigido granulare
	l inclinato MI molto inclinato	C scistosità	I irregolare		C se 0,1 - 10 mm	3 moderatamente ossidato	P plastico coesivo
	V verticale	M meccanica	<u> </u>		D se > 10 mm	4 profondamente ossidato	
1 a	0	F	Р	8-10	С	2	А
2 a	0	S	Р	6-8	С	1	А
3 a	0	F	Р	8-10	С	2	Α

RILIEVO GEOMECCANICO

Commessa

Secondo raccomandazioni ISRM

Data	SPERIMENTATORE	DIRETTORE	CERTIFICATO
15-11-2016	Dott. Geol. Antonello Angius	Dott. Geol. Antonello Angius	5 - 2016

COMMITTENTE: ANAS SPA

CANTIERE: SS 2911° e 4° Lotto

SONDAGGIO N°: S 32

CASSA 3

DA m 10,00 a m 15,00

Descrizione litologica:

Calcare siltoso ed argilloso, massivo, integro e privo di cariature, grigio scuro. Giunti suborizzontali serrati e cementati.

N° frattura e							
famiglia	Inclinazione	Tipo Discontinuità	Forma	Scabrezza	Apertura	Ossidazione	Riempimento
N° = Frattura	O orizzontale	F frattura	P piana	Barton (JRC)	A se = 0mm	1 assente	A assente
a = famiglia	PI poco inclinato	S strato	O ondulata		B se < 0,1 mm	2 lievemente ossidato	R rigido granulare
,	I inclinato						
,	MI molto inclinato	C scistosità	l irregolare		C se 0,1 - 10 mm	3 moderatamente ossidato	P plastico coesivo
	V verticale	M meccanica			D se > 10 mm	4 profondamente ossidato	
1 a	0	F	Р	8-10	С	1	Α
2 a	0	F	Р	14-16	С	2	А
3 a	0	F	Р	4-6	С	2	R

RILIEVO GEOMECCANICO

Commessa

Secondo raccomandazioni ISRM

Data	SPERIMENTATORE	DIRETTORE	CERTIFICATO
15-10-2016	Dott. Geol. Antonello Angius	Dott. Geol. Antonello Angius	5 - 2016

COMMITTENTE: ANAS SPA

CANTIERE: SS 2911° e 4° Lotto

SONDAGGIO N°: S 32

CASSA 4 DA m 15,00 a m 20,00

Descrizione litologica:

Calcare siltoso massivo, integro e privo di cariature, grigio. Giunti suborizzontali serrati e cementati.

N° frattura e famiglia		Tipo Discontinuità	Forma	Scabrezza	Apertura	Ossidazione	Riempimento
		· ·	P piana		A se = 0mm	1 assente	A assente
	PI poco inclinato I inclinato MI molto inclinato		O ondulata I irregolare		B se < 0,1 mm C se 0,1 - 10 mm	2 lievemente ossidato 3 moderatamente ossidato	R rigido granulare P plastico coesivo
	V verticale	M meccanica	<u> </u>		D se > 10 mm	4 profondamente ossidato	
1 a	PI	F	Р	6-8	С	2	А
2 b	MI	F	Р	10-12	С	1	А
3 a	0	F	Р	8-10	nd	1	Α
	'			\Box			
	'						
	<u>'</u>						

RILIEVO GEOMECCANICO

Commessa

Secondo raccomandazioni ISRM

Data	SPERIMENTATORE	DIRETTORE	CERTIFICATO
15-11-2016	Dott. Geol. Antonello Angius	Dott. Geol. Antonello Angius	5 - 2016

COMMITTENTE: ANAS SPA

CANTIERE: SS 2911° e 4° Lotto

SONDAGGIO N°: S 32

CASSA 5

DA m 20,00 a m 25,00

Descrizione litologica:

Calcare siltoso massivo, integro e privo di cariature, grigio. Giunti suborizzontali serrati e cementati.

N° frattura e famiglia		Tipo Discontinuità	Forma	Scabrezza	Apertura	Ossidazione	Riempimento
N° = Frattura	O orizzontale	F frattura	P piana	Barton JRC)	A se = 0mm	1 assente	A assente
a = famiglia	PI poco inclinato I inclinato	S strato	O ondulata		B se < 0,1 mm	2 lievemente ossidato	R rigido granulare
	MI molto inclinato	C scistosità	I irregolare		C se 0,1 - 10 mm	3 moderatamente ossidato	P plastico coesivo
	V verticale	M meccanica			D se > 10 mm	4 profondamente ossidato	
1 a	MI	F	0		4-6	1	Α

RILIEVO GEOMECCANICO

Commessa

Secondo raccomandazioni ISRM

Data	SPERIMENTATORE	DIRETTORE	CERTIFICATO
15-11-2016	Dott. Geol. Antonello Angius	Dott. Geol. Antonello Angius	6 - 2016

COMMITTENTE: ANAS SPA

CANTIERE: SS 291 1° e 4° Lotto

SONDAGGIO N°: S 34

CASSA 1 DA m 0,00 a m 5,00

Descrizione litologica:

Calcare siltoso ed arenaceo, massivo, fratturato, da beige a grigio. Giunti suborizzontali e rari verticali, serrati e cementati

N° frattura e famiglia		Tipo Discontinuità	Forma	Scabrezza	Apertura	Ossidazione	Riempimento
N° = Frattura	O orizzontale	F frattura	P piana	Barton (JRC)	A se = 0mm	1 assente	A assente
	PI poco inclinato I inclinato MI molto inclinato		O ondulata I irregolare		B se < 0,1 mm C se 0,1 - 10 mm		R rigido granulare P plastico coesivo
	V verticale	M meccanica	<u> </u>		D se > 10 mm	4 profondamente ossidato	
1 a	0	F	1	14-16	С	1	Α
2 a	0	F	0	12-14	С	1	А
3 b	V	F	0	12-14	С	1	R
4 a	0	F	0	4-6	С	1	А
5 b	MI	F	0	8-10	С	1	R
	'						

RILIEVO GEOMECCANICO

Commessa

Secondo raccomandazioni ISRM

Data	SPERIMENTATORE	DIRETTORE	CERTIFICATO
17-11-2016	Dott. Geol. Antonello Angius	Dott. Geol. Antonello Angius	6 - 2016

COMMITTENTE: ANAS SPA

CANTIERE: SS 291 1° e 4° Lotto

SONDAGGIO N°: S 34

CASSA 2DA m 5,00 a m 10,00

Descrizione litologica:

Calcare marnoso beige con livelli di calcare siltoso grigio, massivo, integro o poco fratturato. Giunti subverticali o molto inclinati, scabri, serrati e cementati.

NOTA: I giunti non "classificati" sono fratture meccaniche

N° frattura e famiglia		Tipo Discontinuità	Forma	Scabrezza	Apertura	Ossidazione	Riempimento
Idilliglia	IIICIIIIazione	Tipo Discontinuita	FOITII	Scapiezza	Apertura	Ossidazione	Kiempimento
N° = Frattura	O orizzontale	F frattura	P piana	Barton (JRC)	A se = 0mm	1 assente	A assente
a = famiglia	PI poco inclinato I inclinato	S strato	O ondulata		B se < 0,1 mm	2 lievemente ossidato	R rigido granulare
	MI molto inclinato	C scistosità	I irregolare		C se 0,1 - 10 mm	3 moderatamente ossidato	P plastico coesivo
	V verticale	M meccanica	<u> </u>		D se > 10 mm	4 profondamente ossidato	
1 a	0	F	I	14-16	С	1	Α
2 a	0	S	<u> </u>	12-14	С	1	Α
3 b	V	F	0	16-18	С	1	R
4 b	MI	F	0	16-18	С	1	А
5 a		F	0	10-12	С	3	R
6 b	V	F	0	12-14	С	1	А

RILIEVO GEOMECCANICO

Commessa

Secondo raccomandazioni ISRM

Data	SPERIMENTATORE	DIRETTORE	CERTIFICATO
18-11-2016	Dott. Geol. Antonello Angius	Dott. Geol. Antonello Angius	6 - 2016

COMMITTENTE: ANAS SPA

CANTIERE: SS 291 1° e 4° Lotto

SONDAGGIO N°: S 34

NOTA: I giunti non "classificati" sono fratture meccaniche

CASSA 3 DA m 10,00 a m 15,00

Descrizione litologica:

Calcare marnoso beige con livelli di calcare siltoso grigio, massivo, integro o poco fratturato. Giunti subverticali o molto inclinati, scabri, serrati e cementati.

N° frattura e						T	
		Tipo Discontinuità	Forma	Scabrezza	Apertura	Ossidazione	Riempimento
N° = Frattura	O orizzontale	F frattura	P piana	Barton (JRC)	A se = 0mm	1 assente	A assente
	I inclinato		O ondulata I irregolare		B se < 0,1 mm C se 0,1 - 10 mm		R rigido granulare P plastico coesivo
			liffegulare		1 '		P plastico coesivo
	V verticale	M meccanica			D se > 10 mm	4 profondamente ossidato	
1 a	V	F	0	10-12	С	2	Α
2 a	V	F	0	14-16	С	2	R
	1						
	1						

RILIEVO GEOMECCANICO

Commessa

Secondo raccomandazioni ISRM

Data	SPERIMENTATORE	DIRETTORE	CERTIFICATO
18-11-2016	Dott. Geol. Antonello Angius	Dott. Geol. Antonello Angius	6 - 2016

COMMITTENTE: ANAS SPA

CANTIERE: SS 291 1° e 4° Lotto

SONDAGGIO N°: S 34

CASSA 4 DA m 15,00 a m 20,00

Descrizione litologica:

Calcare siltoso massivo, integro e privo di cariature, grigio. Giunti suborizzontali serrati e cementati.

N° frattura e famiglia		Tipo Discontinuità	Forma	Scabrezza	Apertura	Ossidazione	Riempimento
N° = Frattura	O orizzontale	F frattura	P piana	Barton (JRC)	A se = 0mm	1 assente	A assente
a = famiglia	PI poco inclinato I inclinato MI molto inclinato	S strato C scistosità	O ondulata I irregolare		B se < 0,1 mm C se 0,1 - 10 mm		R rigido granulare P plastico coesivo
		M meccanica			1	4 profondamente ossidato	
1 a	V	F	0	14-16	С	2	R
				Į			

RILIEVO GEOMECCANICO

Commessa

Secondo raccomandazioni ISRM

Data	SPERIMENTATORE	DIRETTORE	CERTIFICATO
18-11-2016	Dott. Geol. Antonello Angius	Dott. Geol. Antonello Angius	6 - 2016

COMMITTENTE: ANAS SPA

CANTIERE: SS 291 1° e 4° Lotto

SONDAGGIO N°: S 34

CASSA 5

DA m 20,00 a m 25,00

Descrizione litologica:

Calcare siltoso massivo, integro e privo di cariature, grigio. Giunti suborizzontali serrati e cementati.

N° frattura e famiglia		Tipo Discontinuità	Forma	Scabrezza	Apertura	Ossidazione	Riempimento
N° = Frattura	O orizzontale	F frattura	P piana	Barton (JRC)	A se = 0mm	1 assente	A assente
a = famiglia	l inclinato	S strato C scistosità	O ondulata I irregolare		B se < 0,1 mm C se 0,1 - 10 mm		R rigido granulare P plastico coesivo
	V verticale	M meccanica			D se > 10 mm	4 profondamente ossidato	
1 a	0	F	Р	8-10	С	1	А

RILIEVO GEOMECCANICO

Commessa

Secondo raccomandazioni ISRM

Data	SPERIMENTATORE	DIRETTORE	CERTIFICATO
21-11-2016	Dott. Geol. Antonello Angius	Dott. Geol. Antonello Angius	6 - 2016

COMMITTENTE: ANAS SPA

CANTIERE: SS 291 1° e 4° Lotto

SONDAGGIO N°: S 34

CASSA 6DA m 25,00 a m 30,00

Descrizione litologica: Calcare marnoso beige massivo, integro o poco fratturato, giunti subverticali o molto inclinati, scabri, serrati e cementati.

N° frattura e famiglia		Tipo Discontinuità	Forma	Scabrezza	Apertura	Ossidazione	Riempimento
N° = Frattura	O orizzontale	F frattura	P piana	Barton (JRC)	A se = 0mm	1 assente	A assente
a = famiglia	PI poco inclinato I inclinato MI molto inclinato		O ondulata I irregolare		B se < 0,1 mm C se 0,1 - 10 mm	2 lievemente ossidato 3 moderatamente ossidato	R rigido granulare P plastico coesivo
	V verticale	M meccanica			D se > 10 mm	4 profondamente ossidato	
1 a	V	F	0	10-12	С	1	А
2 a	MI	F	0	6-8	С	1	А
3 b	PI	F	Р	12-14	С	1	А
	'						
	'						
	·			1			

RILIEVO GEOMECCANICO

Commessa

Secondo raccomandazioni ISRM

Data	SPERIMENTATORE	DIRETTORE	CERTIFICATO
22-11-2016	Dott. Geol. Antonello Angius	Dott. Geol. Antonello Angius	7 - 2016

COMMITTENTE: ANAS SPA

CANTIERE: SS 291 1° e 2° Lotto

SONDAGGIO N°: S 35

NOTA: I giunti non "classificati" sono fratture meccaniche

CASSA 1 DA m 0,00 a m 5,00

Descrizione litologica:

Calcare siltoso da grigio a grigio-beige, massivo, parzialmente decompresso. Scomposto secondo piani di stratificazione suborizzontali in livelletti da decimetrici a centimetrici. Giunti scabri, serrati.

	1		i	i -	i	i	
N° frattura e famiglia		Tipo Discontinuità	Forma	Scabrezza	Apertura	Ossidazione	Riempimento
N° = Frattura	O orizzontale	F frattura	P piana	Barton (JRC)	A se = 0mm	1 assente	A assente
a = famiglia	PI poco inclinato I inclinato MI molto inclinato	S strato C scistosità	O ondulata I irregolare		B se < 0,1 mm C se 0,1 - 10 mm		R rigido granulare P plastico coesivo
	V verticale	M meccanica			D se > 10 mm	4 profondamente ossidato	•
1 a	PI	F	Р	8-10	С	1	Α
2 a	0	S	Р	10-12	С	2	А

RILIEVO GEOMECCANICO

Commessa

Secondo raccomandazioni ISRM

Data	SPERIMENTATORE	DIRETTORE	CERTIFICATO
22-11-2016	Dott. Geol. Antonello Angius	Dott. Geol. Antonello Angius	7 - 2016

COMMITTENTE: ANAS SPA

CANTIERE: SS 291 1° e 2° Lotto

SONDAGGIO N°: S 35

CASSA 2 DA m 5,00 a m 10,00

Descrizione litologica:

Calcare siltoso massivo, integro e privo di cariature, grigio. Giunti suborizzontali serrati e cementati.

N° frattura e famiglia		Tipo Discontinuità	Forma	Scabrezza	Apertura	Ossidazione	Riempimento
N° = Frattura	O orizzontale	F frattura	P piana	Barton (JRC)	A se = 0mm	1 assente	A assente
	PI poco inclinato I inclinato MI molto inclinato		O ondulata I irregolare		B se < 0,1 mm C se 0,1 - 10 mm		R rigido granulare P plastico coesivo
	V verticale	M meccanica			D se > 10 mm	4 profondamente ossidato	
1 a	V	F	0	8-10	С	1	А
2 b	0	F	Р	8-10	С	1	А
	 '	 '	 				<u> </u>
, 	 '	 '	↓				<u> </u>
	<u> </u>		<u> </u>		<u> </u>		
	<u> '</u>		<u> </u>		<u> </u>		

RILIEVO GEOMECCANICO

Commessa

Secondo raccomandazioni ISRM

Data	SPERIMENTATORE	DIRETTORE	CERTIFICATO
22-11-2016	Dott. Geol. Antonello Angius	Dott. Geol. Antonello Angius	7 - 2016

COMMITTENTE: ANAS SPA

CANTIERE: SS 291 1° e 2° Lotto

SONDAGGIO N°: S 35

CASSA 3

DA m 10,00 a m 15,00

Descrizione litologica:

Calcare siltoso massivo, integro e privo di cariature, grigio. Giunti suborizzontali serrati e cementati.

N° frattura e famiglia		Tipo Discontinuità	Forma	Scabrezza	Apertura	Ossidazione	Riempimento
N° = Frattura	O orizzontale	F frattura	P piana	Barton (JRC)	A se = 0mm	1 assente	A assente
	PI poco inclinato I inclinato MI molto inclinato		O ondulata I irregolare		B se < 0,1 mm C se 0,1 - 10 mm		R rigido granulare P plastico coesivo
	V verticale	M meccanica		<u> </u>	D se > 10 mm	4 profondamente ossidato	
1 a	0	F	Р	10-12	С	1	А
	<u> </u>	 '	<u> </u>	<u> </u>	<u> </u>		
	 '	 '	<u> </u>		<u> </u>		
<u> </u>	 '	 '	<u> </u>				
	<u> </u> '		<u> </u>		<u> </u>		
, <u>L</u>	<u> '</u>			<u> </u>		<u></u>	

RILIEVO GEOMECCANICO

Commessa

Secondo raccomandazioni ISRM

Data	SPERIMENTATORE	DIRETTORE	CERTIFICATO
23-11-2016	Dott. Geol. Antonello Angius	Dott. Geol. Antonello Angius	7 - 2016

COMMITTENTE: ANAS SPA

CANTIERE: SS 291 1° e 2° Lotto

SONDAGGIO N°: S 35

CASSA 4

DA m 15,00 a m 20,00

Descrizione litologica:

Calcare siltoso massivo, integro e privo di cariature, grigio. Giunti suborizzontali serrati e cementati.

N° frattura e famiglia		Tipo Discontinuità	Forma	Scabrezza	Apertura	Ossidazione	Riempimento
N° = Frattura	O orizzontale	F frattura	P piana	Barton (JRC)	A se = 0mm	1 assente	A assente
a = famiglia	l inclinato	S strato C scistosità	O ondulata I irregolare		B se < 0,1 mm C se 0,1 - 10 mm		R rigido granulare P plastico coesivo
	V verticale	M meccanica			D se > 10 mm	4 profondamente ossidato	
1 a	0	F	Р	6-8	С	1	Α

RILIEVO GEOMECCANICO

Commessa

Secondo raccomandazioni ISRM

Data	SPERIMENTATORE	DIRETTORE	CERTIFICATO
23-11-2016	Dott. Geol. Antonello Angius	Dott. Geol. Antonello Angius	7 - 2016

COMMITTENTE: ANAS SPA

CANTIERE: SS 291 1° e 2° Lotto

SONDAGGIO N°: S 35

CASSA 5DA m 20,00 a m 25,00

Descrizione litologica:

Calcare siltoso massivo, integro e privo di cariature, grigio. Giunti suborizzontali serrati e cementati.

N° frattura e famiglia		Tipo Discontinuità	Forma	Scabrezza	Apertura	Ossidazione	Riempimento
N° = Frattura	O orizzontale	F frattura	P piana	Barton (JRC)	A se = 0mm	1 assente	A assente
	PI poco inclinato I inclinato MI molto inclinato	S strato C scistosità	O ondulata I irregolare		B se < 0,1 mm C se 0,1 - 10 mm	2 lievemente ossidato 3 moderatamente ossidato	R rigido granulare P plastico coesivo
	V verticale	M meccanica	<u> </u>		D se > 10 mm	4 profondamente ossidato	
1 a	0	F	Р	12 -14	С	1	A
2 a	0	F	Р	12-14	С	2	А
3 a	0	F	Р	14-16	С	2	R
	'						<u> </u>
							1
				1			

RILIEVO GEOMECCANICO

Commessa

Secondo raccomandazioni ISRM

Data	SPERIMENTATORE	DIRETTORE	CERTIFICATO
09-10-2017	Dott. Geol. Antonello Angius	Dott. Geol. Antonello Angius	3 - 2017

COMMITTENTE: ANAS SPA

CANTIERE: SS 291 Indagini integrative

SONDAGGIO N°: S 39_D

NOTA: I giunti non "classificati" sono fratture meccaniche

CASSA 2

DA m 5,00 a m 10,00

Descrizione litologica:

Calcare siltoso massivo, sino a -6.90 molto fratturato e debolmente decompresso poi da poco fratturato a integro, con locali patine di ossidazione, giunti suborizzontali o poco inclinati, debolmente scabri, colore da grigio e beige.

							-
N° frattura e famiglia		Tipo Discontinuità	Forma	Scabrezza	Apertura	Ossidazione	Riempimento
N° = frattura	O orizzontale	F frattura	P piana	Barton (JRC)	A se = 0 mm	1 assente	A assente
a = famiglia	PI poco inclinato I inclinato	S strato	O ondulata		B se < 0,1 mm	2 lievemente ossidato	R rigido granulare
	MI molto inclinato	C scistosità	I irregolare		C se 0,1 - 10 mm	3 moderatamente ossidato	P plastico coesivo
	V verticale	M meccanica			D se > 10 mm	4 profondamente ossidato	
1 a	0	S	Р	2-4	С	1	Α
2 a	0	S	Р	2-4	С	1	Α
3 a	0	S	Р	4-6	С	1	Α
4 a	0	S	Р	2-4	С	1	Α
5 a	0	S	Р	4-6	С	2	Α
6 a	0	S	Р	2-4	С	2	Α
7 a	0	S	I	14-16	С	2	Α
8 b	V	F	I	14-16	Α	2	R

RILIEVO GEOMECCANICO

Commessa

Secondo raccomandazioni ISRM

Data	SPERIMENTATORE	DIRETTORE	CERTIFICATO
10-10-2017	Dott. Geol. Antonello Angius	Dott. Geol. Antonello Angius	3 - 2017

COMMITTENTE: ANAS SPA

CANTIERE: SS 291 Indagini integrative

SONDAGGIO N°: S 39_D

NOTA: I giunti non "classificati" sono fratture meccaniche

CASSA 3

DA m 10,00 a m 15,00

Descrizione litologica:

Calcare siltoso massivo, sino a -6.90 molto fratturato e debolmente decompresso poi da poco fratturato a integro, con locali patine di ossidazione, giunti suborizzontali o poco inclinati, debolmente scabri, colore da grigio e beige.

N° frattura e				T	T	T	
		Tipo Discontinuità	Forma	Scabrezza	Apertura	Ossidazione	Riempimento
N° = frattura	O orizzontale	F frattura	P piana	Barton (JRC)	A se = 0 mm	1 assente	A assente
a = famiglia	PI poco inclinato I inclinato	S strato	O ondulata		B se < 0,1 mm	2 lievemente ossidato	R rigido granulare
	MI molto inclinato	C scistosità	I irregolare		C se 0,1 - 10 mm	3 moderatamente ossidato	P plastico coesivo
	V verticale	M meccanica			D se > 10 mm	4 profondamente ossidato	
1 b	Mi	F	1	14-16	С	1	А
2 a	0	S	Р	2-4	С	1	А
3 a	0	S	Р	4-6	С	1	А
4 a	0	F	1	6-8	С	1	А
5 b	I	F	Р	8-10	С	1	А
6 a	PI	S	0	6-8	С	1	А
7 b	MI	F	Р	12-14	С	2	А
8 a	0	S	Р	4-6	С	1	Α
9 a	0	S	Р	2-4	С	1	А

RILIEVO GEOMECCANICO

Commessa

Secondo raccomandazioni ISRM

Data	SPERIMENTATORE	DIRETTORE	CERTIFICATO
10-10-2017	Dott. Geol. Antonello Angius	Dott. Geol. Antonello Angius	3 - 2017

COMMITTENTE: ANAS SPA

CANTIERE: SS 291 Indagini integrative

SONDAGGIO N°: S 39_D

NOTA: I giunti non "classificati" sono fratture meccaniche

CASSA 4

DA m 15,00 a m 20,00

Descrizione litologica:

Calcare siltoso massivo, sino a -6.90 molto fratturato e debolmente decompresso poi da poco fratturato a integro, con locali patine di ossidazione, giunti suborizzontali o poco inclinati, debolmente scabri, colore da grigio e beige.

N° frattura e		L					L 1
famiglia	Inclinazione	Tipo Discontinuità	Forma	Scabrezza	Apertura	Ossidazione	Riempimento
N° = frattura	O orizzontale	F frattura	P piana	Barton (JRC)	A se = 0 mm	1 assente	A assente
~	1 '	S strato	O ondulata		B se < 0,1 mm	2 lievemente ossidato	R rigido granulare
	l inclinato MI molto inclinato	C scistosità	l irregolare		C se 0,1 - 10 mm	3 moderatamente ossidato	P plastico coesivo
	V verticale	M meccanica			D se > 10 mm	4 profondamente ossidato	
1 a	0	S	Р	6-8	С	1	Α
2 b	MI	F	0	12-14	С	1	Α
3 a	0	S	Р	6-8	С	1	Α
4 a	0	S	Р	4-6	С	1	А
5 b	MI	F	Р	14-16	Α	2	В
6 b	MI	F	0	10-12	С	2	Α
7 a	PI	S	Р	8-10	С	2	Α

Allegato 6

Monografie pozzetti geognostici

<u>POZZETTO Pz42 D</u>				
<u>Data esecuzione:</u> 17/02/2017	<u>Tipo di scavo:</u> pozzetto geognostico	<u>Geologo:</u> Dr. Angius Antonello		
<u>Coord. Est:</u> 1 443 869	<u>Coord. Nord:</u> 4 496 680	Quota p.c.: 15 m.s.l.m		

STRATIGRAFIA

Profondità (in m)	Descrizione dei terreni
0.0 – 1.20	Sabbia argillosa, pedogenizzata, con blocchi di calcare (diametro massimo 10 cm), bruna, umida.
1.20 – 2.10	Sabbia con blocchi di calcare diametro massimo 20 cm, marrone, umida.
2.10 – 2.66	Calcarenite molto alterata, totalmente ossidata, con sacche sabbiose marroncine.

Profondità prelievo campione rimaneggiato (in m dal p.c): 1.20 – 1.50

POZZETTO Pz52 D - COMMITTENTE ANAS S.p.A CANTIERE SS 291 - ALGHERO			
Data esecuzione: 22/06/2017	<u>Tipo di scavo:</u> Pozzetto geognostico	Geologo: Dr. Antonello Angius	
Coord. Est: 1444080.28	Coord. Nord: 4496599.38	Quota p.c.: 15.22 m.s.l.m	

STRATIGRAFIA

Profondità (in m)	Descrizione dei terreni
0.0 – 0.30	Suolo sabbioso, marrone
0.30 – 1.30	Sabbia carbonatica con livelli arenacei cementati.

Profondità prelievo campione rimaneggiato (in m dal p.c): 0.30 – 0.60

EXPERIMENTATIONS S.r.l.

Sede Legale: Via Y. Gagarin, 69 - 06073 S. Mariano di Corciano - Perugia - Tel. +39 075 5170556 - Fax +39 075 5178146 P.IVA e C. Fisc. 03372400543 - REA PG 284510 - PEC: experimentations@pec.it

Rilievi, monitoraggi, ispezioni, elaborazione dati, certificazioni e prove sperimentali di prodotti da costruzione, strutture, terreni e materiali in sito ed in laboratorio

PERUGIA Laboratorio Autorizzato dal Ministero delle Infrastrutture e dei Trasporti (art. 59 del D.P.R. 380/2001) settori;

- Materiali da costruzione Settore A (Legge n. 1086/71) Decreto n. 38194 del 14/01/1994 e successivi
- Terreni Settore A Decreto n. 54349 del 16/02/2006 e successivi

PERUGIA - VERONA Organismo di Ispezione, Certificazione e Prova settore:

- Prodotti da costruzione ai sensi del Regolamento (UE) n. 305/2011 - Notifica n. 1676

Laboratorio Terre

Decreto di concessione per il Settore A n. 54349 del 16/02/2006 e successivi

Pag. | di 2

CERTIFICATO N°

T029950

DEL

12/09/2017

Verbale d'accettazione n°

T / 5846

del

31/07/2017

Intestatario:

ANAS S.P.A. COMPARTIMENTO DELLA VIABILITA' PER LA SARDEGNA

Via Biasi, 27 09131 CAGLIARI (CA)

Oggetto:

DGACQ 15-14 Accordo Quadro con un unico operatore per lotto, ai sensi dell'art. 59, comma 4, del D. Lgs 163/2006 e s.m.i., per l'affidamento dell'appalto dei servizi di prove di laboratorio e controllo qualità dei materiali, delle lavorazioni e indagini geognostiche per lavori su opere stradali di competenza di ANAS S.p.A.. CODICE CIG: 6023248D7A - Accordo

Quadro in data 08/07/2016.

Cantiere:

S.S. 291 Collegamento Sassari-Alghero - LOTTO 1 (Alghero-Olmedo) e LOTTO 4 (Bretella per Aeroporto

Fertilia). Servizi di indagine geognostica.

Proprietà:

ANAS S.P.A.

Località:

Itinerario Sassari - Alghero

Richiesta:

Sottoscritta dal Progettista Dott. Geol. Stefano Serangeli

Natura del campione:

Terra in posto

DATI IDENTIFICATIVI		PROVE ESEGUITE		
Data ricevimento/prova :	01/08/2017	DESCRIZIONE	PROGRESSIVO	
Sondaggio:		Determinazione del modulo di deformazione	GD01	
Campione:	**			
Contrassegno:	PZ52D 010817-A CPT			
Profondità/quota:	-0,30 m da p.c.			
Punto di prelievo/prova:	SS 291 - POZZETTO 52D Lat. 40.618681 Long. 8.336198			
No.		STRUMENTAZIONE UT	ILIZZATA	

POSTAZIONE DI PRO

Manometro con sistema oleodinamico a spinta **GEO E43 E44**

GEO E45 Comparatore di spostamento

Il Dirett@fe

PFRUGIA

Via Y. Gagarin, 69/71 - 06073 S. Mariano di Corciano - Perugia - Tel. +39 075 5170556-5179254 - Fax +39 075 5178146

E-mail: info@sgmlaboratorio.com - PEC; sgmlaboratorio@pec.it - Web Site: www.sgmlaboratorio.com

Via Caboto, 25 - 37036 San Martino Buon Albergo - Verona - Tel. +39 045 8250321 - Fax +39 045 8232066 E-mail: verona@sgmlaboratorio.com

EXPERIMENTATIONS S.r.l.

Sede Legale: Via Y. Gagarin, 69 - 06073 S. Mariano di Corciano - Perugia - Tel. +39 075 5170556 - Fax +39 075 5178146 P.IVA e C. Fisc. 03372400543 - REA PG 284510 - PEC: experimentations@pec.it

Rilievi, monitoraggi, ispezioni, elaborazione dati, certificazioni e prove sperimentali di prodotti da costruzione, strutture, terreni e materiali in sito ed in laboratorio

PERUGIA Laboratorio Autorizzato dal Ministero delle Infrastrutture e dei Trasporti (art. 59 del D.P.R. 380/2001) settori:

- Materiali da costruzione Settore A (Legge n. 1086/71) Decreto n. 38194 del 14/01/1994 e successivi
- Terreni Settore A Decreto n. 54349 del 16/02/2006 e successivi

PERUGIA - VERONA Organismo di Ispezione, Certificazione e Prova settore:

- Prodotti da costruzione ai sensi del Regolamento (UE) n. 305/2011 - Notifica n. 1676

Laboratorio Terre

Decreto di concessione per il Settore A n. 54349 del 16/02/2006 e successivi

DETERMINAZIONE DEL MODULO DI DEFORMAZIONE

(CNR B.U. n.146)

Pag. 2 di 2

Contenuto

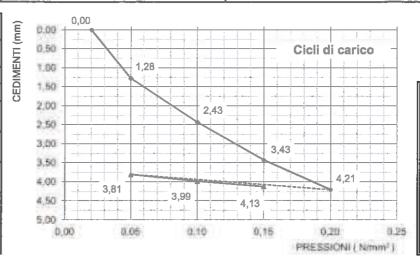
d'acqua

4,1 %

Temperatura a

suolo

 \mathcal{C}


39,1

CERTIFICATO N°	T029950	DEL	12/09/2017	
PROGRESSIVO PROVA	GD01			
Verbale d'accettazione n°	T / 5846	del	31/07/2017	

Data inizio prova: 01/08/2017 Data fine prova 03/08/2017

Contrassegno	Profondità/quota	Zona sottoposta a prova
PZ52D 010817-A CPT	-0,30 m da p.c.	SS 291 - POZZETTO 52D Lat. 40.618681 Long. 8.336198

CICLI DI CARICO					
PRESSIONI	CEDIMENTI				
N/mm ²	m	m			
IN/mm	1° ciclo	2° ciclo			
0,02	0,00				
0,05	1,28	3,81			
0,10	2,43	3,99			
0,15	3,43	4,13			
0,20	4,21				

Modulo di	M _d	=	14,0	N/mm ²	Rapporto M _d /M _d '
deformazione (intervallo 0,05 e 0,15 N/mm²)	M _d '	=	93,7	N/mm²	0,15

Annotazioni:

==

Lo Sperimentatore
P.I. Andrea Inglani

Museum

Il Direttore
Dott. Ing. Alberto Bufali

PERUGIA

Via Y. Gagarin, 69/71 - 06073 S. Mariano di Corciano - Perugia - Tel. +39 075 5170556-5179254 - Fax +39 075 5178146

E-mail: info@sgmlaboratorio.com - PEC: sgmlaboratorio@pec.it - Web Site: www.sgmlaboratorio.com

Via Caboto, 25 - 37036 San Martino Buon Albergo - Verona - Tel. +39 045 8250321 - Fax +39 045 8232056 E-mail: verona@sgmlaboratorio.com

EXPERIMENTATIONS S.r.l.

Sede Legale: Via Y. Gagarin, 69 - 06073 S. Mariano di Corciano - Perugia - Tel. +39 075 5170556 - Fax +39 075 5178146 P.IVA e C. Fisc. 03372400543 - REA PG 284510 - PEC: experimentations@pec.it

Rilievi, monitoraggi, ispezioni, elaborazione dati, certificazioni e prove sperimentali di prodotti da costruzione, strutture, terreni e materiali in sito ed in laboratorio

PERUGIA Laboratorio Autorizzato dal Ministero delle Infrastrutture e dei Trasporti (art. 59 del D.P.R. 380/2001) settori:

- Materiali da costruzione Settore A (Legge n. 1086/71) Decreto n. 38194 del 14/01/1994 e successivi
- Terreni Settore A Decreto n. 54349 del 16/02/2006 e successivi

PERUGIA - VERONA Organismo di Ispezione, Certificazione e Prova settore:

- Prodotti da costruzione ai sensi del Regolamento (UE) n. 305/2011 - Notifica n. 1676

Laboratorio Terre

Decreto di concessione per il Settore A n. 54349 del 16/02/2006 e successivi

Pag. 'i di 2

 CERTIFICATO N°
 T029951
 DEL
 12/09/2017

 Verbale d'accettazione n°
 T / 5846
 del
 31/07/2017

Intestatario: ANAS S.P.A. COMPARTIMENTO DELLA VIABILITA' PER LA SARDEGNA

Via Biasi, 27 09131 CAGLIARI (CA)

Oggetto: DGACQ 15-14 Accordo Quadro con un unico operatore per lotto, ai sensi dell'art. 59, comma 4, del D. Lgs 163/2006 e

s.m.i., per l'affidamento dell'appalto dei servizi di prove di laboratorio e controllo qualità dei materiali, delle lavorazioni e indagini geognostiche per lavori su opere stradali di competenza di ANAS S.p.A.. CODICE CIG: 6023248D7A - Accordo

Quadro in data 08/07/2016.

Cantiere: S.S. 291 Collegamento Sassari-Alghero - LOTTO 1 (Alghero-Olmedo) e LOTTO 4 (Bretella per Aeroporto

Fertilia). Servizi di indagine geognostica.

Proprietà: ANAS S.P.A.

Località: Itinerario Sassari - Alghero

Richiesta: Sottoscritta dal Progettista Dott. Geol. Stefano Serangeli

Natura del campione: Terra in posto

DATI IDENTIFICATIVI		PROVE ESEGUITE		
Data ricevimento/prova :	01/08/2017	DESCRIZIONE	PROGRESSIVO	
Sondaggio:	••	Determinazione del modulo di deformazione	GD01	
Campione:	217.			
Contrassegno:	PZ52D 010817-B CPT			
Profondità/quota:	-0,50 m da p.c.			
Punto di prelievo/prova:	SS 291 - POZZETTO 52D Lat. 40.618681 Long. 8.336198			
4				
ROVA		STRUMENTAZIONE UT		

POSTAZIONE DI PROVA

Manometro con sistema oleodinamico a spinta GEO E43 E44

Comparatore di spostamento GEO E45

II Direttore

PERUGIA

Via Y. Gagarin, 69/71 - 06073 S. Mariano di Corciano - Perugia - Tel. +39 075 5170556-5179254 - Fax +39 075 5178146

E-mail: info@sgmlaboratorio.com - PEC: sgmlaboratorio@pec.it - Web Site: www.sgmlaboratorio.com - PEC: sgmlaboratorio.com - PEC: sgmlaboratorio

Via Caboto, 25 - 37036 San Martino Buon Albergo - Verona - Tel. +39 045 8250321 - Fax +39 045 8232066 E-mail: verona@sgmlaboratorio.com

EXPERIMENTATIONS S.r.I.

Sede Legale: Via Y. Gagarin, 69 - 06073 S. Mariano di Corciano - Perugia - Tel. +39 075 5170556 - Fax +39 075 5178146 P.IVA e C. Fisc. 03372400543 - REA PG 284510 - PEC: experimentations@pec.it

Rilievi, monitoraggi, ispezioni, elaborazione dati, certificazioni e prove sperimentali di prodotti da costruzione, strutture, terreni e materiali in sito ed in laboratorio

PERUGIA Laboratorio Autorizzato dal Ministero delle Infrastrutture e dei Trasporti (art. 59 del D.P.R. 380/2001) settori:

- Materiali da costruzione Settore A (Legge n. 1086/71) Decreto n. 38194 del 14/01/1994 e successivi
- Terreni Settore A Decreto n. 54349 del 16/02/2006 e successivi

PERUGIA - VERONA Organismo di Ispezione, Certificazione e Prova settore:

- Prodotti da costruzione ai sensi del Regolamento (UE) n. 305/2011 - Notifica n. 1676

Laboratorio Terre

Decreto di concessione per il Settore A n. 54349 del 16/02/2006 e successivi

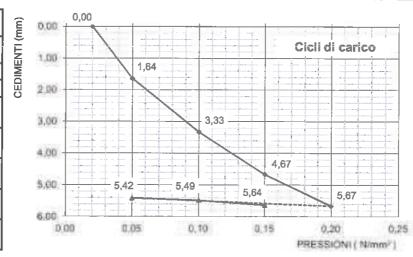
DETERMINAZIONE DEL MODULO DI DEFORMAZIONE

(CNR B.U. n.146)

Pag. 2 di 2

CERTIFICATO N°	T029951	DEL	12/09/2017	
PROGRESSIVO PROVA	GD01			
Verbale d'accettazione n°	T / 5846	del	31/07/2017	

Data inizio prova:


01/08/2017

Data fine prova:

03/08/2017

Contrassegno	Profondità/quota	Zona sottoposta a prova		
PZ52D 010817-B CPT	-0.50 m da p.c.	SS 291 - POZZETTO 52D Lat. 40.618681 Long. 8.336198		

CICLI DI CARICO					
PRESSIONI	CEDIMENTI				
N/mm ²	m	ım			
IN/mm	1°ciclo	2° ciclo			
0,02	0,00				
0,05	1,64	5,42			
0,10	3,33	5,49			
0,15	4,67	5,64			
0,20	5,67				

Contenuto d'acqua
3,9 %
Temperatura al suolo °C
39,9

Modulo di deformazione	M _d	=	9,9	N/mm ²	Rapporto M _d /M _d '
(intervallo 0,05 e 0,15 N/mm²)	M _d '	=	136,4	N/mm ²	0,07

Annotazioni:

==

Lo Sperimentatore
P.I. Andrea Incani

Il Direttore
Dott. Ing. Alberto Bufali

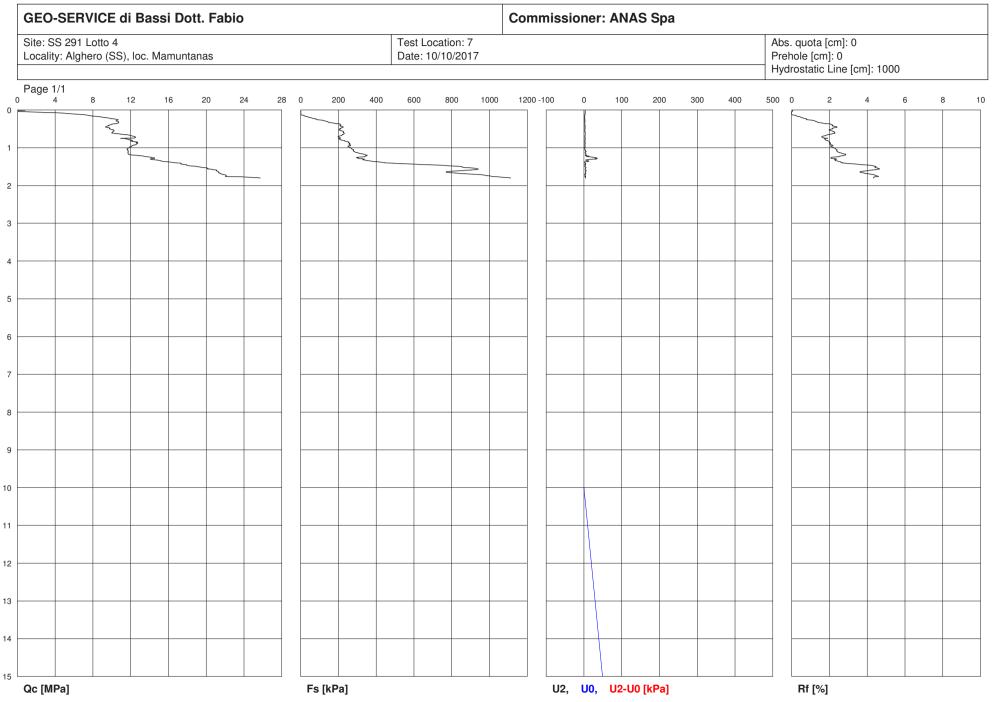
Via Y. Gagarin, 69/71 · 06073 S. Mariano di Corciano - Perugia - Tel. +39 075 5170556-5179254 - Fax +39 075 5178146 E-mail: info@sgmlaboratorio.com - PEC: sgmlaboratorio@pec.it - Web Site: www.sgmlaboratorio.com

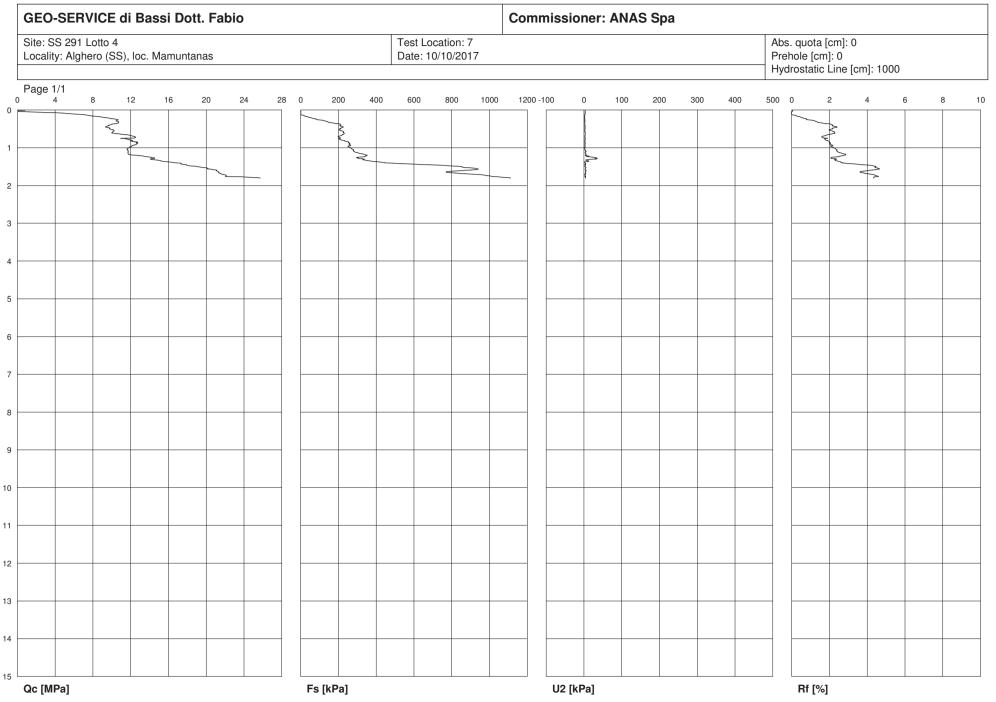
Via Caboto, 25 - 37036 San Martino Buon Albergo - Verona - Tel. +39 045 8250321 - Fax +39 045 8232066 E-mail: verona@sgmlaboratorio.com

Allegato 11

Elaborati prove CPTU

GEO-SERVICE di Bassi Dott. Fabio		Commissioner: ANAS Spa	
Site: SS 291 Lotto 4	Test Location: 7		Abs. quota [cm]: 0
Locality: Alghero (SS), loc. Mamuntanas	Date: 10/10/2017		Prehole [cm]: 0
	•		Hydrostatic Line [cm]: 1000


Page 1/3							
Depth	Qc	Fs	U2	Rf	U0	U2-U0	qT
[cm]	[MPa]	[kPa]	[kPa]	[%]	[kPa]	[kPa]	[MPa]
					[Ki u]	[Ki U]	
1	0,795	0,51	3,41	0,06			0,796
2	0,092	0,03	3,09	0,03			0,093
3	0,097	0,03	3,09	0,03			0,098
4 5	0,097	0,03	3,09	0,03 0,00			0,098
6	1,351 2,303	0,03 0,06	3,09 3,00	0,00			1,352 2,304
7	3,919	0,06	3,09	0,00			3,920
8	4,709	0,06	3,09	0,00			4,710
9	5,179	0,06	3,09	0,00			5,180
10	5,725	0,06	3,00	0,00			5,726
11	6,157	0,03	2,91	0,00			6,158
12	6,920	0,03	2,64	0,00			6,921
13	7,249	3,16	2,73	0,04			7,250
14	7,482	15,46	1,82	0,21			7,482
15	7,633	17,13	2,00	0,22			7,633
16	7,941	21,63	2,27	0,27			7,941
17	8,455	27,32	2,18	0,32			8,455
18	8,709	37,22	1,82	0,43			8,709
19	9,012	42,49	2,00	0,47			9,012
20	9,266	50,32	1,55	0,54			9,266
21	9,563	56,55	1,64	0,59			9,563
22	9,785	63,26	2,09	0,65			9,785
23 24	9,893 10,293	73,77 80,90	2,46	0,75 0,79			9,894 10,293
25 25	10,293	81,32	1,46 2,27	0,79			10,293
26	10,677	89,91	2,46	0,77			10,678
27	10,547	116,62	2,40	1,11			10,547
28	10,531	119,24	1,82	1,13			10,531
29	10,434	129,18	2,27	1,24			10,434
30	10,623	134,39	2,27	1,27			10,623
31	10,698	143,78	1,55	1,34			10,698
32	10,720	145,41	2,46	1,36			10,721
33	10,736	150,01	2,46	1,40			10,737
34	10,677	162,44	2,37	1,52			10,677
35	10,655	174,90	2,00	1,64			10,655
36	10,450	187,74	1,91	1,80			10,450
37	10,131	208,54	2,18	2,06			10,131
38	10,006	208,00	2,00	2,08			10,006
39	9,866	209,25	2,37	2,12			9,866
40 41	9,779 9,644	213,50 209,28	2,82 2,46	2,18 2,17			9,780 9,645
42	9,677	207,27	2,64	2,17			9,678
43	9,504	211,29	3,27	2,22			9,505
44	9,385	219,82	2,46	2,34			9,386
45	9,336	224,01	2,91	2,40			9,337
46	9,390	224,97	2,73	2,40			9,391
47	9,698	217,39	3,00	2,24			9,699
48	9,790	214,45	2,46	2,19			9,791
49	9,725	208,26	2,82	2,14			9,726
50	9,774	211,29	2,64	2,16			9,775
51	9,866	204,52	2,55	2,07			9,867
52	10,109	202,09	2,73	2,00			10,110
53	10,179	200,78	2,73	1,97			10,180
54 55	10,234	209,25	2,18	2,04			10,234
55 56	10,217 10,212	216,18	2,64	2,12 2,16			10,218
56 57	10,212	220,59 225,86	2,73 2,55	2,16			10,213 10,116
58	10,113	225,86	2,64	2,23			10,116
59	10,050	227,59	3,00	2,26			10,059
60	10,006	225,92	2,82	2,26			10,007
61	9,990	230,05	3,36	2,30			9,991
62	10,298	230,81	3,18	2,24			10,299
63	10,617	229,31	3,55	2,16			10,618
64	10,942	227,75	3,09	2,08			10,943
65	11,390	221,29	3,36	1,94			11,391


GEO-SERVICE di Bassi Dott. Fabio		Commissioner: ANAS Spa	a
Site: SS 291 Lotto 4	Test Location: 7		Abs. quota [cm]: 0
Locality: Alghero (SS), loc. Mamuntanas	Date: 10/10/2017		Prehole [cm]: 0
	•		Hvdrostatic Line [cm]: 1000

Dana 0/0							
Page 2/3		_		D.		110 110	_
Depth	Qc	Fs	U2	Rf	U0	U2-U0	qΤ
[cm]	[MPa]	[kPa]	[kPa]	[%]	[kPa]	[kPa]	[MPa]
66	11,677	221,29	3,55	1,90			11,678
67	11,904	216,02	3,46	1,81			11,905
68	12,018	215,22	2,46	1,79			12,019
69	12,126	207,43	2,55	1,71			12,127
70	12,391	198,42	2,37	1,60			12,391
71	12,445	198,57	2,09	1,60			12,445
72	12,515	201,74	2,82	1,61			12,516
73	12,488	206,82	2,91	1,66			12,489
74	12,396	211,04	3,82	1,70			12,397
75 75	10,926	207,90	3,09	1,70			10,927
76 76	11,493	199,85	2,37	1,74			11,493
76 77	11,607	204,93	2,46	1,77			11,608
78	11,817	209,34		1,77			•
			2,46				11,818
79	11,828	212,44	2,37	1,80			11,828
80	12,131	218,86	3,09	1,80			12,132
81	12,191	231,52	3,09	1,90			12,192
82	11,974	230,78	2,18	1,93			11,974
83	12,174	240,65	2,55	1,98			12,175
84	12,374	246,82	1,91	1,99			12,374
85	12,726	254,78	3,00	2,00			12,727
86	12,574	252,38	2,27	2,01			12,574
87	12,569	257,27	2,82	2,05			12,570
88	12,747	257,49	3,73	2,02			12,748
89	12,661	260,88	2,73	2,06			12,662
90	12,628	255,10	2,91	2,02			12,629
91	12,585	257,14	2,73	2,04			12,586
92	12,536	259,09	2,64	2,07			12,537
93	12,342	264,75	2,37	2,15			12,342
94	12,136	265,13	2,91	2,18			12,137
95	12,136	252,89	2,82	2,08			12,137
96	12,115	250,24	2,91	2,07			12,116
97	12,055	250,72	2,91	2,08			12,056
98	11,893	254,78	2,09	2,14			11,893
99	11,845	260,85	2,27	2,20			11,845
100	11,807	263,34	2,37	2,23			11,807
101	11,736	266,25	2,18	2,27			11,736
102	11,693	268,68	2,18	2,30			11,693
103	11,607	270,66	2,00	2,33			11,607
104	11,617	272,51	2,27	2,35			11,617
105	11,639	278,48	2,55	2,39			11,640
106	11,650	280,27	2,46	2,41			11,651
107	11,720	279,28	4,09	2,38			11,721
108	11,693	278,29	4,27	2,38			11,694
109	11,736	280,05	4,82	2,39			11,737
110	11,742	283,53	5,82	2,41			11,743
111	11,720	285,39	5,64	2,44			11,721
112	11,720	290,79	2,91	2,48			11,721
113	11,726	297,50	3,18	2,54			11,727
114	11,704	307,53	3,36	2,63			11,705
115	11,699	311,14	4,18	2,66			11,700
116	11,736	325,77	5,36	2,78			11,737
117	11,769	334,65	5,36	2,76			11,770
118	11,893	340,88	4,82	2,87			11,894
119	12,061	342,90	4,36	2,84			12,062
120	12,650			2,79			12,651
120	12,650	352,51 351.24	6,45 3.64	2,79			12,948
121		351,24	3,64	2,71			
	13,374	342,51	13,08				13,377
123	13,472	340,18	6,73	2,53			13,473
124	13,726	338,84	14,54	2,47			13,729
125	14,164	303,18	23,17	2,14			14,169
126	14,212	294,59	30,25	2,07			14,218
127	14,510	303,98	33,16	2,09			14,517
128	14,510	302,38	35,43	2,08			14,517
129	14,137	320,85	29,16	2,27			14,143
130	14,056	336,09	33,16	2,39			14,063

GEO-SERVICE di Bassi Dott. Fabio		Commissioner: ANAS Spa	a
Site: SS 291 Lotto 4	Test Location: 7		Abs. quota [cm]: 0
Locality: Alghero (SS), loc. Mamuntanas	Date: 10/10/2017		Prehole [cm]: 0
	•		Hydrostatic Line [cm]: 1000

131 14,229 329,51 10,54 2,32 14 132 14,499 328,10 7,09 2,26 14 133 14,839 342,96 4,36 2,31 14 134 15,121 349,93 8,45 2,31 15 135 15,207 366,89 12,18 2,41 15 136 15,407 382,13 12,99 2,48 15 137 15,829 408,49 2,46 2,58 15 138 16,159 416,26 2,55 2,58 16 139 16,504 441,79 1,73 2,68 16 140 16,813 445,94 2,73 2,65 16 141 17,283 484,89 4,09 2,81 17 142 17,364 534,70 3,36 3,08 17 143 17,321 581,06 4,27 3,35 17 144 17,451 611,80 1,91 3,51 17 145 17,921 676,53 4,36 3,78 17 146 17,915 726,18 2,37 4,05 17 147 18,007 762,32 3,36 4,23 18 148 18,224 787,37 3,18 4,32 18 150 19,040 849,96 2,18 4,46 15 151 19,321 858,43 3,64 4,44 15 150 19,040 849,96 2,18 4,46 15 151 19,321 858,43 3,64 4,44 15 152 19,499 857,53 5,18 4,40 15 153 20,008 896,06 5,36 4,48 20 155 20,191 930,83 4,18 4,61 20 157 20,573 940,34 3,49 4,57 20 166 21,104 864,77 5,82 4,10 12 161 21,075 835,22 5,09 3,96 21 162 21,182 803,20 5,36 3,79 21 163 21,229 774,45 4,00 3,65 12 166 21,364 792,32 4,73 3,71 21 167 21,370 820,95 5,19 3,84 21	
132 14,499 328,10 7,09 2,26 133 14,839 342,96 4,36 2,31 134 15,121 349,93 8,45 2,31 135 15,207 366,89 12,18 2,41 136 15,407 382,13 12,99 2,48 137 15,829 408,49 2,46 2,58 138 16,159 416,26 2,55 2,58 139 16,504 441,79 1,73 2,68 140 16,813 445,94 2,73 2,65 141 17,283 484,89 4,09 2,81 142 17,364 534,70 3,36 3,08 17 143 17,321 581,06 4,27 3,35 144 17,451 611,80 1,91 3,51 145 17,921 676,53 4,36 3,78 146 17,915 726,18 2,37 4,05 147 18,007 762,32 3,36 4,23 148 18,224 78	qT MPa]
132 14,499 328,10 7,09 2,26 133 14,839 342,96 4,36 2,31 134 15,121 349,93 8,45 2,31 135 15,207 366,89 12,18 2,41 136 15,407 382,13 12,99 2,48 137 15,829 408,49 2,46 2,58 138 16,159 416,26 2,55 2,58 139 16,504 441,79 1,73 2,68 140 16,813 445,94 2,73 2,65 141 17,283 484,89 4,09 2,81 142 17,364 534,70 3,36 3,08 17 143 17,321 581,06 4,27 3,35 144 17,451 611,80 1,91 3,51 145 17,921 676,53 4,36 3,78 146 17,915 726,18 2,37 4,05 147 18,007 762,32 3,36 4,23 148 18,224 78	1,231
133 14,839 342,96 4,36 2,31 14 134 15,121 349,93 8,45 2,31 15 135 15,207 366,89 12,18 2,41 15 136 15,407 382,13 12,99 2,48 15 137 15,829 408,49 2,46 2,58 15 138 16,159 416,26 2,55 2,58 16 139 16,504 441,79 1,73 2,68 16 140 16,813 445,94 2,73 2,65 16 141 17,283 484,89 4,09 2,81 17 142 17,364 534,70 3,36 3,08 17 143 17,321 581,06 4,27 3,35 17 144 17,451 611,80 1,91 3,51 17 145 17,915 762,18 2,37 4,05 17 147 18,007 762,32 3,36 4,23 18 148 18,224 787,37	,500
134 15,121 349,93 8,45 2,31 15 135 15,207 366,89 12,18 2,41 15 136 15,407 382,13 12,99 2,48 15 137 15,829 408,49 2,46 2,58 15 138 16,159 416,26 2,55 2,58 16 140 16,813 445,94 2,73 2,65 16 141 17,283 484,89 4,09 2,81 17 142 17,364 534,70 3,36 3,08 17 143 17,321 581,06 4,27 3,35 17 144 17,451 611,80 1,91 3,51 17 145 17,921 676,53 4,36 3,78 17 146 17,915 762,32 3,36 4,23 18 148 18,224 787,37 3,18 4,32 18 149 18,786 828,49 2,82 4,41 18 150 19,040 849,96	,840
136 15,407 382,13 12,99 2,48 15 137 15,829 408,49 2,46 2,58 15 138 16,159 416,26 2,55 2,58 16 139 16,504 441,79 1,73 2,68 16 140 16,813 445,94 2,73 2,65 16 141 17,283 484,89 4,09 2,81 17 142 17,364 534,70 3,36 3,08 17 143 17,321 581,06 4,27 3,35 17 144 17,451 611,80 1,91 3,51 17 145 17,921 676,53 4,36 3,78 17 146 17,915 726,18 2,37 4,05 17 147 18,007 762,32 3,36 4,23 18 148 18,224 787,37 3,18 4,32 18 150 19,040 849,96 2,18 4,44 18 151 19,321 858,43	,123
137 15,829 408,49 2,46 2,58 15 138 16,159 416,26 2,55 2,58 16 139 16,504 441,79 1,73 2,68 16 140 16,813 445,94 2,73 2,65 16 141 17,283 484,89 4,09 2,81 17 142 17,364 534,70 3,36 3,08 17 143 17,321 581,06 4,27 3,35 17 144 17,451 611,80 1,91 3,51 17 145 17,921 676,53 4,36 3,78 17 146 17,915 726,18 2,37 4,05 17 147 18,007 762,32 3,36 4,23 18 148 18,224 787,37 3,18 4,32 18 150 19,040 849,96 2,18 4,46 15 151 19,321 858,43 3,64 4,44 15 152 19,499 857,53	5,210
138 16,159 416,26 2,55 2,58 16 139 16,504 441,79 1,73 2,68 16 140 16,813 445,94 2,73 2,65 16 141 17,283 484,89 4,09 2,81 17 142 17,364 534,70 3,36 3,08 17 143 17,321 581,06 4,27 3,35 17 144 17,451 611,80 1,91 3,51 17 145 17,921 676,53 4,36 3,78 17 146 17,915 726,18 2,37 4,05 17 147 18,007 762,32 3,36 4,23 18 148 18,224 787,37 3,18 4,32 18 149 18,786 828,49 2,82 4,41 18 150 19,040 849,96 2,18 4,46 19 151 19,321 858,43 3,64 4,44 19 153 20,008 896,06	,410
139 16,504 441,79 1,73 2,68 16 140 16,813 445,94 2,73 2,65 16 141 17,283 484,89 4,09 2,81 17 142 17,364 534,70 3,36 3,08 17 143 17,321 581,06 4,27 3,35 17 144 17,451 611,80 1,91 3,51 17 145 17,921 676,53 4,36 3,78 17 146 17,915 726,18 2,37 4,05 17 147 18,007 762,32 3,36 4,23 18 148 18,224 787,37 3,18 4,32 18 149 18,786 828,49 2,82 4,41 18 150 19,040 849,96 2,18 4,46 19 151 19,321 858,43 3,64 4,44 19 152 19,499 857,53 5,18 4,40 19 153 20,008 896,06	,830
140 16,813 445,94 2,73 2,65 16 141 17,283 484,89 4,09 2,81 17 142 17,364 534,70 3,36 3,08 17 143 17,321 581,06 4,27 3,35 17 144 17,451 611,80 1,91 3,51 17 145 17,921 676,53 4,36 3,78 17 146 17,915 726,18 2,37 4,05 17 147 18,007 762,32 3,36 4,23 18 148 18,224 787,37 3,18 4,32 18 149 18,786 828,49 2,82 4,41 18 150 19,040 849,96 2,18 4,46 19 151 19,321 858,43 3,64 4,44 19 152 19,499 857,53 5,18 4,40 19 153 20,008 896,06 5,36 4,48 20 154 20,116 916,38	5,160
141 17,283 484,89 4,09 2,81 17 142 17,364 534,70 3,36 3,08 17 143 17,321 581,06 4,27 3,35 17 144 17,451 611,80 1,91 3,51 17 145 17,921 676,53 4,36 3,78 17 146 17,915 726,18 2,37 4,05 17 147 18,007 762,32 3,36 4,23 18 148 18,224 787,37 3,18 4,32 18 149 18,786 828,49 2,82 4,41 16 150 19,040 849,96 2,18 4,46 15 151 19,321 858,43 3,64 4,44 15 152 19,499 857,53 5,18 4,40 15 153 20,008 896,06 5,36 4,48 20 154 20,116 916,38 4,45 4,56 20 155 20,191 930,83	5,504
142 17,364 534,70 3,36 3,08 17 143 17,321 581,06 4,27 3,35 17 144 17,451 611,80 1,91 3,51 17 145 17,921 676,53 4,36 3,78 17 146 17,915 726,18 2,37 4,05 17 147 18,007 762,32 3,36 4,23 18 148 18,224 787,37 3,18 4,32 18 149 18,786 828,49 2,82 4,41 18 150 19,040 849,96 2,18 4,46 15 151 19,321 858,43 3,64 4,44 18 152 19,499 857,53 5,18 4,40 19 153 20,008 896,06 5,36 4,48 20 154 20,116 916,38 4,45 4,56 20 155 20,191 930,83 4,18 4,61 20 156 20,132 937,79	3,814
143 17,321 581,06 4,27 3,35 17 144 17,451 611,80 1,91 3,51 17 145 17,921 676,53 4,36 3,78 17 146 17,915 726,18 2,37 4,05 17 147 18,007 762,32 3,36 4,23 18 148 18,224 787,37 3,18 4,32 18 149 18,786 828,49 2,82 4,41 18 150 19,040 849,96 2,18 4,46 19 151 19,321 858,43 3,64 4,44 19 152 19,499 857,53 5,18 4,40 19 153 20,008 896,06 5,36 4,48 20 154 20,116 916,38 4,45 4,56 20 155 20,191 930,83 4,18 4,61 20 156 20,132 937,79 3,64 4,66 20 157 20,573 940,34	,284
144 17,451 611,80 1,91 3,51 17 145 17,921 676,53 4,36 3,78 17 146 17,915 726,18 2,37 4,05 17 147 18,007 762,32 3,36 4,23 18 148 18,224 787,37 3,18 4,32 18 149 18,786 828,49 2,82 4,41 18 150 19,040 849,96 2,18 4,46 19 151 19,321 858,43 3,64 4,44 18 152 19,499 857,53 5,18 4,40 19 153 20,008 896,06 5,36 4,48 20 154 20,116 916,38 4,45 4,56 20 155 20,191 930,83 4,18 4,61 20 156 20,132 937,79 3,64 4,66 20 157 20,573 940,34 3,49 4,57 20 158 20,779 921,34	,365
145 17,921 676,53 4,36 3,78 17 146 17,915 726,18 2,37 4,05 17 147 18,007 762,32 3,36 4,23 18 148 18,224 787,37 3,18 4,32 18 149 18,786 828,49 2,82 4,41 18 150 19,040 849,96 2,18 4,46 19 151 19,321 858,43 3,64 4,44 19 152 19,499 857,53 5,18 4,40 19 153 20,008 896,06 5,36 4,48 20 154 20,116 916,38 4,45 4,56 20 155 20,191 930,83 4,18 4,61 20 157 20,573 940,34 3,49 4,57 20 158 20,779 921,34 3,45 4,43 20 159 21,077 900,34 3,17 4,27 21 160 21,104 864,77	,322
146 17,915 726,18 2,37 4,05 17 147 18,007 762,32 3,36 4,23 18 148 18,224 787,37 3,18 4,32 18 149 18,786 828,49 2,82 4,41 18 150 19,040 849,96 2,18 4,46 18 151 19,321 858,43 3,64 4,44 19 152 19,499 857,53 5,18 4,40 19 153 20,008 896,06 5,36 4,48 20 154 20,116 916,38 4,45 4,56 20 155 20,191 930,83 4,18 4,61 20 156 20,132 937,79 3,64 4,66 20 157 20,573 940,34 3,49 4,57 20 158 20,779 921,34 3,45 4,43 20 159 21,077 900,34 3,17 4,27 21 160 21,104 864,77	,451
147 18,007 762,32 3,36 4,23 18 148 18,224 787,37 3,18 4,32 18 149 18,786 828,49 2,82 4,41 18 150 19,040 849,96 2,18 4,46 19 151 19,321 858,43 3,64 4,44 19 152 19,499 857,53 5,18 4,40 19 153 20,008 896,06 5,36 4,48 20 154 20,116 916,38 4,45 4,56 20 155 20,191 930,83 4,18 4,61 20 156 20,132 937,79 3,64 4,66 20 157 20,573 940,34 3,49 4,57 20 158 20,779 921,34 3,45 4,43 20 159 21,077 900,34 3,17 4,27 21 160 21,104 864,77 5,82 4,10 21 161 21,075 835,22	,922
148 18,224 787,37 3,18 4,32 18 149 18,786 828,49 2,82 4,41 18 150 19,040 849,96 2,18 4,46 19 151 19,321 858,43 3,64 4,44 19 152 19,499 857,53 5,18 4,40 19 153 20,008 896,06 5,36 4,48 20 154 20,116 916,38 4,45 4,56 20 155 20,191 930,83 4,18 4,61 20 156 20,132 937,79 3,64 4,66 20 157 20,573 940,34 3,49 4,57 20 158 20,779 921,34 3,45 4,43 20 159 21,077 900,34 3,17 4,27 21 160 21,104 864,77 5,82 4,10 21 161 21,075 835,22 5,99 3,96 21 162 21,182 803,20	,915
149 18,786 828,49 2,82 4,41 18 150 19,040 849,96 2,18 4,46 19 151 19,321 858,43 3,64 4,44 19 152 19,499 857,53 5,18 4,40 18 153 20,008 896,06 5,36 4,48 20 154 20,116 916,38 4,45 4,56 20 155 20,191 930,83 4,18 4,61 20 156 20,132 937,79 3,64 4,66 20 157 20,573 940,34 3,49 4,57 20 158 20,779 921,34 3,45 4,43 20 159 21,077 900,34 3,17 4,27 21 160 21,104 864,77 5,82 4,10 21 161 21,075 835,22 5,09 3,96 21 162 21,182 803,20 5,36 3,79 21 163 21,229 774,45	3,008
150 19,040 849,96 2,18 4,46 19 151 19,321 858,43 3,64 4,44 19 152 19,499 857,53 5,18 4,40 19 153 20,008 896,06 5,36 4,48 20 154 20,116 916,38 4,45 4,56 20 155 20,191 930,83 4,18 4,61 20 156 20,132 937,79 3,64 4,66 20 157 20,573 940,34 3,49 4,57 20 158 20,779 921,34 3,45 4,43 20 159 21,077 900,34 3,17 4,27 21 160 21,104 864,77 5,82 4,10 21 161 21,075 835,22 5,09 3,96 21 162 21,182 803,20 5,36 3,79 21 163 21,229 774,45 4,00 3,65 21 164 21,321 769,82	3,225
151 19,321 858,43 3,64 4,44 19 152 19,499 857,53 5,18 4,40 19 153 20,008 896,06 5,36 4,48 20 154 20,116 916,38 4,45 4,56 20 155 20,191 930,83 4,18 4,61 20 156 20,132 937,79 3,64 4,66 20 157 20,573 940,34 3,49 4,57 20 158 20,779 921,34 3,45 4,43 20 159 21,077 900,34 3,17 4,27 21 160 21,104 864,77 5,82 4,10 21 161 21,075 835,22 5,09 3,96 21 162 21,182 803,20 5,36 3,79 21 163 21,229 774,45 4,00 3,65 21 164 21,321 769,82 4,01 3,61 21 165 21,262 772,51	3,787
152 19,499 857,53 5,18 4,40 15 153 20,008 896,06 5,36 4,48 20 154 20,116 916,38 4,45 4,56 20 155 20,191 930,83 4,18 4,61 20 156 20,132 937,79 3,64 4,66 20 157 20,573 940,34 3,49 4,57 20 158 20,779 921,34 3,45 4,43 20 159 21,077 900,34 3,17 4,27 21 160 21,104 864,77 5,82 4,10 21 161 21,075 835,22 5,09 3,96 21 162 21,182 803,20 5,36 3,79 21 163 21,229 774,45 4,00 3,65 21 164 21,321 769,82 4,01 3,61 21 165 21,262 772,51 4,28 3,63 21 166 21,364 792,32	,040
153 20,008 896,06 5,36 4,48 20 154 20,116 916,38 4,45 4,56 20 155 20,191 930,83 4,18 4,61 20 156 20,132 937,79 3,64 4,66 20 157 20,573 940,34 3,49 4,57 20 158 20,779 921,34 3,45 4,43 20 159 21,077 900,34 3,17 4,27 21 160 21,104 864,77 5,82 4,10 21 161 21,075 835,22 5,09 3,96 21 162 21,182 803,20 5,36 3,79 21 163 21,229 774,45 4,00 3,65 21 164 21,321 769,82 4,01 3,61 21 165 21,262 772,51 4,28 3,63 21 166 21,364 792,32 4,73 3,71 21 167 21,370 820,95	,322
154 20,116 916,38 4,45 4,56 20 155 20,191 930,83 4,18 4,61 20 156 20,132 937,79 3,64 4,66 20 157 20,573 940,34 3,49 4,57 20 158 20,779 921,34 3,45 4,43 20 159 21,077 900,34 3,17 4,27 21 160 21,104 864,77 5,82 4,10 21 161 21,075 835,22 5,09 3,96 21 162 21,182 803,20 5,36 3,79 21 163 21,229 774,45 4,00 3,65 21 164 21,321 769,82 4,01 3,61 21 165 21,262 772,51 4,28 3,63 21 166 21,364 792,32 4,73 3,71 21 167 21,370 820,95 5,19 3,84 21	,500
155 20,191 930,83 4,18 4,61 20 156 20,132 937,79 3,64 4,66 20 157 20,573 940,34 3,49 4,57 20 158 20,779 921,34 3,45 4,43 20 159 21,077 900,34 3,17 4,27 21 160 21,104 864,77 5,82 4,10 21 161 21,075 835,22 5,09 3,96 21 162 21,182 803,20 5,36 3,79 21 163 21,229 774,45 4,00 3,65 21 164 21,321 769,82 4,01 3,61 21 165 21,262 772,51 4,28 3,63 21 166 21,364 792,32 4,73 3,71 21 167 21,370 820,95 5,19 3,84 21	0,009
156 20,132 937,79 3,64 4,66 20 157 20,573 940,34 3,49 4,57 20 158 20,779 921,34 3,45 4,43 20 159 21,077 900,34 3,17 4,27 21 160 21,104 864,77 5,82 4,10 21 161 21,075 835,22 5,09 3,96 21 162 21,182 803,20 5,36 3,79 21 163 21,229 774,45 4,00 3,65 21 164 21,321 769,82 4,01 3,61 21 165 21,262 772,51 4,28 3,63 21 166 21,364 792,32 4,73 3,71 21 167 21,370 820,95 5,19 3,84 21),117
157 20,573 940,34 3,49 4,57 20 158 20,779 921,34 3,45 4,43 20 159 21,077 900,34 3,17 4,27 21 160 21,104 864,77 5,82 4,10 21 161 21,075 835,22 5,09 3,96 21 162 21,182 803,20 5,36 3,79 21 163 21,229 774,45 4,00 3,65 21 164 21,321 769,82 4,01 3,61 21 165 21,262 772,51 4,28 3,63 21 166 21,364 792,32 4,73 3,71 21 167 21,370 820,95 5,19 3,84 21),192
158 20,779 921,34 3,45 4,43 20 159 21,077 900,34 3,17 4,27 21 160 21,104 864,77 5,82 4,10 21 161 21,075 835,22 5,09 3,96 21 162 21,182 803,20 5,36 3,79 21 163 21,229 774,45 4,00 3,65 21 164 21,321 769,82 4,01 3,61 21 165 21,262 772,51 4,28 3,63 21 166 21,364 792,32 4,73 3,71 21 167 21,370 820,95 5,19 3,84 21),133
159 21,077 900,34 3,17 4,27 21 160 21,104 864,77 5,82 4,10 21 161 21,075 835,22 5,09 3,96 21 162 21,182 803,20 5,36 3,79 21 163 21,229 774,45 4,00 3,65 21 164 21,321 769,82 4,01 3,61 21 165 21,262 772,51 4,28 3,63 21 166 21,364 792,32 4,73 3,71 21 167 21,370 820,95 5,19 3,84 21),574
160 21,104 864,77 5,82 4,10 21 161 21,075 835,22 5,09 3,96 21 162 21,182 803,20 5,36 3,79 21 163 21,229 774,45 4,00 3,65 21 164 21,321 769,82 4,01 3,61 21 165 21,262 772,51 4,28 3,63 21 166 21,364 792,32 4,73 3,71 21 167 21,370 820,95 5,19 3,84 21),780
161 21,075 835,22 5,09 3,96 21 162 21,182 803,20 5,36 3,79 21 163 21,229 774,45 4,00 3,65 21 164 21,321 769,82 4,01 3,61 21 165 21,262 772,51 4,28 3,63 21 166 21,364 792,32 4,73 3,71 21 167 21,370 820,95 5,19 3,84 21	,078
162 21,182 803,20 5,36 3,79 21 163 21,229 774,45 4,00 3,65 21 164 21,321 769,82 4,01 3,61 21 165 21,262 772,51 4,28 3,63 21 166 21,364 792,32 4,73 3,71 21 167 21,370 820,95 5,19 3,84 21	,105
163 21,229 774,45 4,00 3,65 21 164 21,321 769,82 4,01 3,61 21 165 21,262 772,51 4,28 3,63 21 166 21,364 792,32 4,73 3,71 21 167 21,370 820,95 5,19 3,84 21	,076 ,183
164 21,321 769,82 4,01 3,61 21 165 21,262 772,51 4,28 3,63 21 166 21,364 792,32 4,73 3,71 21 167 21,370 820,95 5,19 3,84 21	,103
165 21,262 772,51 4,28 3,63 21 166 21,364 792,32 4,73 3,71 21 167 21,370 820,95 5,19 3,84 21	,322
166 21,364 792,32 4,73 3,71 21 167 21,370 820,95 5,19 3,84 21	,263
167 21,370 820,95 5,19 3,84 21	,365
	,371
100 21,010 000,10 4,02 0,00	,517
169 21,532 868,11 3,65 4,03 21	,533
	,662
	,852
	2,025
	2,073
	2,139
	2,122
	2,008
	3,690
	,474
	,365
	,728
	,138

)

PENETROMETRO DINAMICO IN USO: EMILIA (20)

Classificazione ISSMFE (1988) dei penetrometri dinamici				
TIPO	Sigla riferimento	Peso M	assa B M (kg	
Leggero	DPL (Light)		M <	10
Medio	DPM (Medium)	10 <	M <	40
Pesante	DPH (Heavy)	40 ≤	M <	60
Super pesante	DPSH (Super Heavy)		M ≥	60

CARATTERISTICHE TECNICHE: EMILIA (20)

PESO MASSA BATTENTE	M	= 63,50 kg
ALTEZZA CADUTA LIBERA	Н	= 0,75 m
PESO SISTEMA BATTUTA	Ms	= 30,00 kg
DIAMETRO PUNTA CONICA	D	= 50,50 mm
AREA BASE PUNTA CONICA	Α	$= 20,00 \text{ cm}^2$
ANGOLO APERTURA PUNTA	α	= 60 °
LUNGHEZZA DELLE ASTE	La	= 1,00 m
PESO ASTE PER METRO	Ма	= 8,00 kg
PROF. GIUNZIONE 1ª ASTA	P1	= 0,80 m
AVANZAMENTO PUNTA	δ	= 0,20 m
NUMERO DI COLPI PUNTA	N	= N(20) ⇒ Relativo ad un avanzamento di 20 cm
RIVESTIMENTO / FANGHI	SI	
ENERGIA SPECIFICA x COLPO	Q	= $(MH)/(A\delta)$ = 11,91 kg/cm ² (prova SPT : Qspt = 7.83 kg/cm ²)
COEFF.TEORICO DI ENERGIA	βt	= Q/Qspt = 1,521 (teoricamente : Nspt = β t N)
COLITICO DI LIVERIGIA	þι	$= \alpha_i \alpha_i \beta_i \beta_i = 1,021$ (toollocalionto : Nopt = $\beta_i N_i$)

Valutazione resistenza dinamica alla punta Rpd [funzione del numero di colpi N] (FORMULA OLANDESE) :

Rpd = $M^2 H / [A e (M+P)] = M^2 H N / [A \delta (M+P)]$

Rpd = resistenza dinamica punta [area A] M = peso massa battente (altezza caduta H) e = infissione per colpo = <math>gamma / N P = peso totale aste e sistema battuta

UNITA' di MISURA (conversioni)

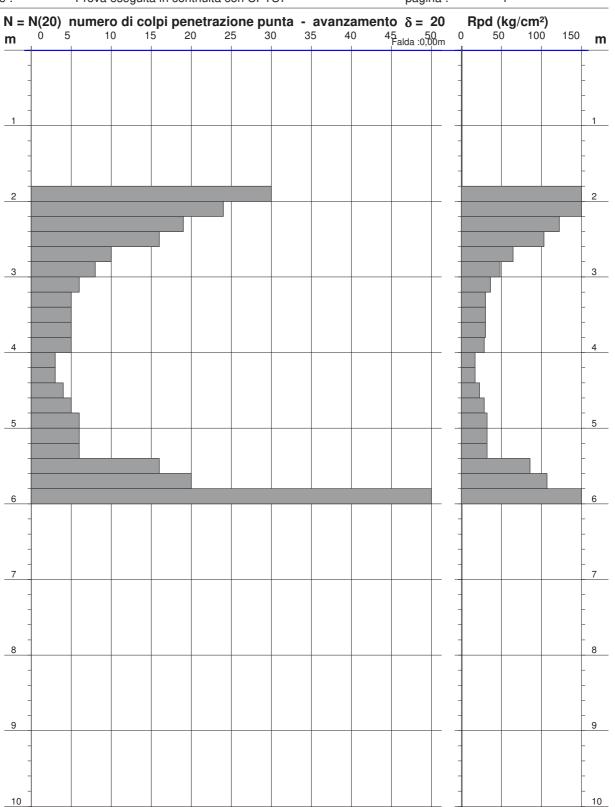
 $1 \text{ kg/cm}^2 = 0.098067 \text{ MPa}$

 $1 \text{ MPa} = 1 \text{ MN/m}^2 = 10.197 \text{ kg/cm}^2$

1 bar = $1.0197 \text{ kg/cm}^2 = 0.1 \text{ MPa}$

1 kN = 0.001 MN = 101.97 kg

Software by: Dr.D.MERLIN - 0425/840820


64 Ozzano dell'Emilia (Bo)

Riferimento: 490-01

PROVA PENETROMETRICA DINAMICA DIAGRAMMA NUMERO COLPI PUNTA - Rpd

DIN 7
Scala 1: 50

- committente : ANAS Spa - data : 10/10/2017 - lavoro : SS 291 Lotto 4 - quota inizio : - 1.80 m da p.c.a. - località : SS - Alghero, loc. Mamuntanas - prof. falda : 0,00 m da quota inizio - note : Prova eseguita in contnuità con CPTU7 - pagina : 1

