COMMITTENTE:

PROGETTAZIONE:

U.O. AMBIENTE ARCHITETTURA E ARCHEOLOGIA

PROGETTO ESECUTIVO

RADDOPPIO BARI - TARANTO Tratta Bari S.Andrea – Bitetto

COMPONENTE AMBIENTALE VIBRAZIONI REPORT DI FINE MISURA (Ric.VIV-01 Dicembre 2014)

COMMESSA	ΙΟΠΟ	FASE	ENTE	TIPO DOC.	OPERA / DISCIPLINA	PROGR.	REV

L022000D	2 2 RH	A F 0 0 C 3	0 0 2 A
----------	--------	-------------	---------

Rev	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato/Data
A	Emissione definitiva	ERACLITO	Gen-15	Fencole	Gen-15	F. Perotti	Gen-15	
								A. MARTINO Gen-15

Raddoppio Ferroviario Bari S. Andrea - Bitetto Progetto di Monitoraggio Ambientale. Componente Vibrazioni in Corso d'Opera

1. Premessa

Il presente documento costituisce il report di misura delle indagini vibrazionali condotte nell'ambito del Progetto di Monitoraggio Ambientale per il Raddoppio Ferroviario Bari S. Andrea – Bitetto.

La postazione di misura è situata presso una scuola situata in Piazza Luigi Einaudi a Modugno, Bari (BA) ed ha codice di PMA "VIV01". Le terne di misura sono state poste al piano terra e all'ultimo piano.

2. Normativa di riferimento

L'inquinamento da vibrazioni viene regolamentato da normative tecniche inerenti al disturbo sull'uomo e agli effetti sugli edifici, dal momento che non esiste a tutt'oggi una legislazione specifica in merito a livello nazionale. Tali norme introducono le grandezze e i parametri che devono essere valutati e definiscono le caratteristiche dei sistemi di rilevazione e della strumentazione da impiegare per le misure.

Il problema del disturbo causato dalle vibrazioni sull'uomo viene trattato, in particolare, dalla norma ISO 2631 e dalla UNI 9614 che risultano sostanzialmente in accordo. Gli standard di protezione sull'uomo previsti dalle suddette normative garantiscono ampiamente rispetto alla possibile insorgenza di danni agli edifici e, pertanto, l'azione sugli edifici deve essere valutata nel caso di beni monumentali o storici per i quali possono essere assunti limiti più restrittivi.

3. Parametri oggetto delle misure

La grandezza principale per la valutazione del disturbo da vibrazioni è individuata nel valore efficace (RMS - Root-Mean-Square) dell'accelerazione complessiva ponderata in frequenza w a, definito dalla relazione:

$$a_w = \left[\frac{1}{T} \int_0^T a_w^2(t) dt\right]^{0.5}$$

dove:

- *t* è il tempo;
- $a_w(t)$ è l'accelerazione complessiva ponderata in frequenza;
- Tè la durata del periodo di riferimento.

Raddoppio Ferroviario Bari S. Andrea - Bitetto Progetto di Monitoraggio Ambientale. Componente Vibrazioni in Corso d'Opera

Una rappresentazione equivalente è data dal livello di accelerazione L, definito dalla relazione:

$$L = 20 \text{ LOG } \left(\frac{a_{\text{w}}}{a_0} \right)$$

dove a_0 è il valore dell'accelerazione di riferimento, pari a $10^{-6 \,\mathrm{m/s}2}$. Nel caso si utilizzino sistemi di acquisizione senza filtri di ponderazione, il livello dell'accelerazione complessiva ponderata in frequenza può essere calcolato in fase di elaborazione dall'accelerogramma misurato in terzi d'ottava nell'intervallo 1-80 Hz.

4. Organizzazione delle misure

Le misurazioni sono state effettuate mediante terne accelerometriche ancorate al centro dei solai e collegate ad un sistema di acquisizione. Ciascuna terna di misura risulta composta da tre accelerometri disposti secondo tre assi mutuamente ortogonali denominati x, y e z. Gli accelerometri sono collegati all'acquisitore multicanale tramite cavi coassiali schermati in modo da avere l'acquisizione simultanea delle accelerazioni sui tre assi.

Le misurazioni sono state effettuate in continuo per la durata di 24h memorizzando la timehistory del livello di accelerazione lineare e ponderato in frequenza secondo il filtro per postura non nota. E' stato inoltre acquisito lo spettro in terzi di ottava nell'intervallo di frequenze 1-80Hz. In fase di elaborazione vengono restituiti:

- Livello equivalente dell'accelerazione ponderata in frequenza su base oraria
- Livello equivalente per il periodo diurno e notturno
- Valore massimo orario per il periodo diurno e notturno
- Livello equivalente per eventuali eventi significativi correlati alle attività oggetto di indagine.

5. Strumentazione di misura

Per il monitoraggio si è fatto uso della seguente strumentazione:

- Sistema di acquisizione Sinus mod. Soundbook s/n 06145
- Accelerometri PCB Piezotronics mod. 393A03
- Sistema di acquisizione Svantek SV106 s/n 36773
- Accelerometri Svantek mod. SV84
- Calibratore IMI 699A02 s/n 476

	Parametr	o di riferiment	to (UNI 9614 – A	Appendice	e A)					
		li vibrazioni		Прропило	Parametro [a =]	Tabella limiti				
A 1 - Di livello costant frequenza variabile entr	-			lerata in	RMS	Prospetto III				
A 2 - Di livello non costa frequenza variabile entr	nte (livello di	accelerazione co	omplessiva pond	derata in	a _{w,eq}	Prospetto III				
A 3 - Impulsive (radell'accelerazione e osci	apido innalza			valore	0,71 a _{pk}	Prospetto V				
A 4 - Prodotte da veicoli	ferroviari nell	e abitazioni			a'	Sperimentale				
		Limiti di	riferimento	<u>'</u>		1				
	Limite U	NI 9614 – prosp	etto II / III	Lim	ite UNI 9614 –	prospetto V				
Tipologia ricettore	a _x [mm/s ²]	a _y [mm/s ²]	a _z (*) [mm/s ²]	a _x [mm/s	a _y [mm/s ²]	$a_{z}(*)$ $[mm/s^{2}]$				
Aree critiche	3,6	3,6	3,6	3,6	3,6	5,0				
Abitazioni (notte)	5,0	5,0	5,0	5,0	5,0	7,0				
Abitazioni (giorno)	7,2	7,2	7,2	220	220	300				
Uffici	14,4	14,4	14,4	460	460	640				
Fabbriche	28,8	28,8	28,8	460	460	640				
(*) Per postura non nota	o variabile									
	Limite U	NI 9614 – veicol	li ferroviari		Curva Limite I	SO 2631				
Tipologia ricettore	a _x [mm/s ²]	a _y [mm/s ²]	a _z (*) [mm/s ²]		a [mm/s ²					
Aree critiche					ISO 2631 X	YZ x1				
Abitazioni (notte)	24.6	24.6	20.0		ISO 2631 XY	/Z x1,4				
Abitazioni (giorno)	21,6	21,6	30,0		ISO 2631 XY	[mm/s ²] ISO 2631 XYZ x1 SO 2631 XYZ x1,4 SO 2631 XYZ x2÷4				
Uffici					ISO 2631 X	YZ x4				
Fabbriche					ISO 2631 X	YZ x8				

Raddoppio Ferroviario Bari S. Andrea - Bitetto Progetto di Monitoraggio Ambientale. Componente Vibrazioni in Corso d'Opera

VIV01 - Piazza Luigi Einaudi - Modugno (BA)

Raddoppio Ferroviario Bari S. Andrea - Bitetto Progetto di Monitoraggio Ambientale. Componente Vibrazioni in Corso d'Opera

		DATI	GENER	ALI D	ELL	A MISU	JRA			
Area Operativa	Raddo	ldoppio Ferroviario Bari S. Andrea - Bitetto								
Punto di misura	Piazza	azza Luigi Einaudi, Modugno (BA)								
Monitoraggio		An	te operam		Corso d'opera				Post operam	
Codice misura	VIV_0)1								
Caratterizzazione	tipolog	gica delle	sorgenti di	monito	raggio					
☐ Traffico veicolare			Ferroviar	io - VIF	V	Cantiere -	VIV			Altro *
(*)										

Caratteristiche del Monitoraggio

Il monitoraggio è stato eseguito per un tempo di 24 ore, su due terne accelerometriche, la prima posta al piano terra e la seconda al primo ed ultimo piano dell'edificio oggetto di indagine, in Piazza Luigi Einaudi. La zona è densamente antropizzata e il traffico piuttosto sostenuto soprattutto sulla vicina Strada Provinciale Modugno Bitritto.

Normativa di riferimento

Le misure per la valutazione del disturbo provocato dalle vibrazioni alle persone negli ambienti abitativi sono eseguite in conformità alle norme UNI 9614 ed ISO 2631-2

Strumentazione adottata

Le misurazioni sono state eseguite con un analizzatore della Swantek.

	INDIV	IDUAZIONE DE	L P	UNTO DI MIS	UR	A						
Caratteristiche d	Caratteristiche del ricettore											
Coordinate geogr	afiche:	Zona 33 T, 65004	8.00	m E 4548581.00	m N							
Tipologia ricetto	truttura edificio	Tipe	ologia solai	N	lume	ero piani fuori terra	i					
□ Area critica		I Cemento armato	V	Latero cementizio		1	□ 7					
□ Abitazione		l Acciaio		Orditura in legno	Ø	2	□ 8					
□ Ufficio] Muratura		Putrelle e tavelle		3	□ 9					
□ Fabbrica				Putrelle e voltine		4	□ 10					
☑ Scuole / ospe	edali			Volte in muratura		5	□ 11					
□ Altro				Misti		6	□ 12					
Fotografia del ri	cettore VIV	01										

Raddoppio Ferroviario Bari S. Andrea - Bitetto Progetto di Monitoraggio Ambientale. Componente Vibrazioni in Corso d'Opera

PLANIMETRIE CON INDIVIDUAZIONE DEL PUNTO DI MISURA

Stralcio planimetrico del sito di misura

ORIENTAMENTO TERNE ACCELEROMETRICHE

UBICAZIONE: PIANO TERRA.

Asse X : Piano orizzontale. Asse parallelo P.zza Einaudi

Asse Y: Piano orizzontale Asse ortogonale P.zza Einaudi

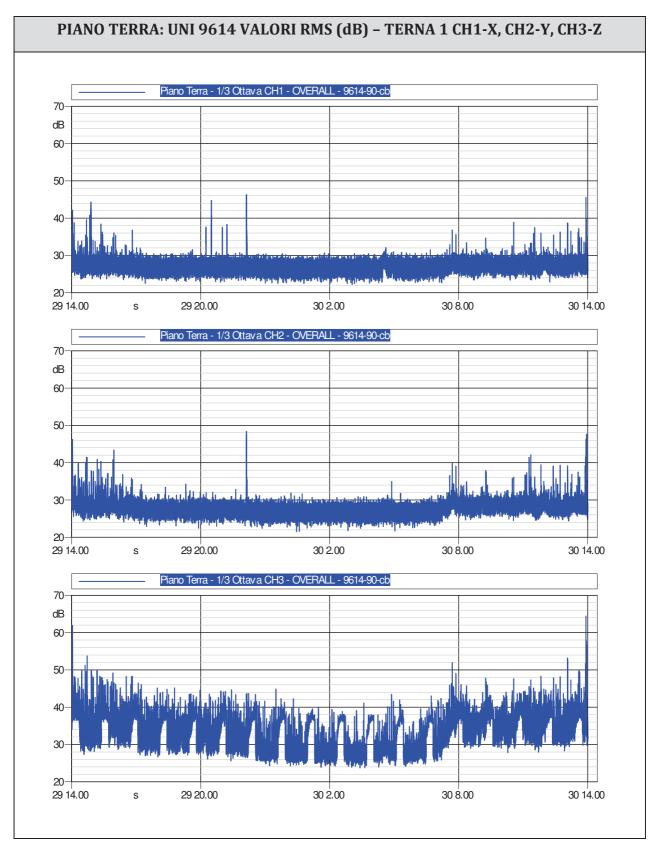
Asse Z: Asse verticale, ortogonale al piano XY

UBICAZIONE: PIANO ULTIMO.

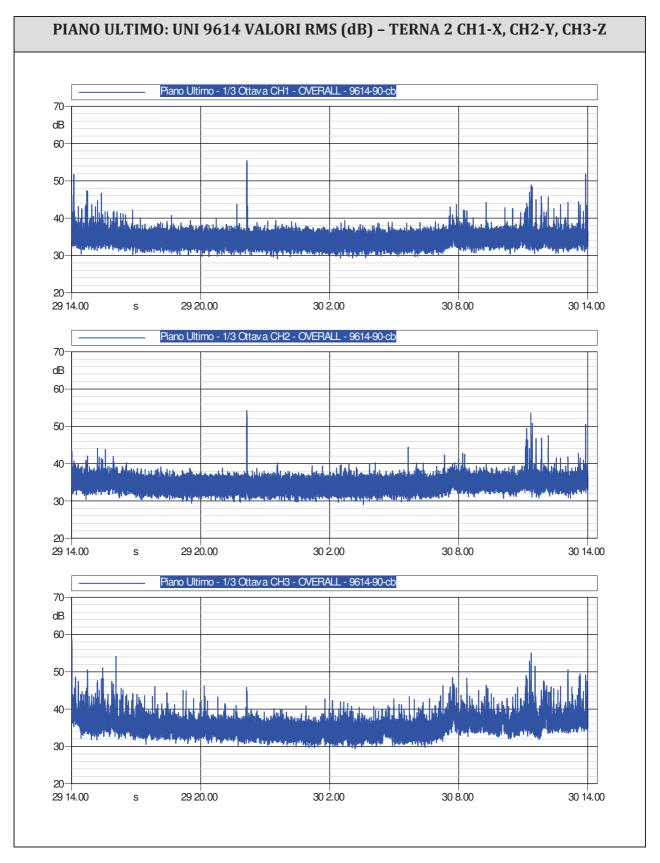
Asse X : Piano orizzontale. Asse parallelo P.zza Einaudi

Asse Y: Piano orizzontale Asse ortogonale P.zza Einaudi

Asse Z: Asse verticale, ortogonale al piano XY



Raddoppio Ferroviario Bari S. Andrea - Bitetto Progetto di Monitoraggio Ambientale. Componente Vibrazioni in Corso d'Opera


TIME HISTORY 24 H

Raddoppio Ferroviario Bari S. Andrea - Bitetto Progetto di Monitoraggio Ambientale. Componente Vibrazioni in Corso d'Opera

SINTESI INTERVALLI ORARI

Raddoppio Ferroviario Bari S. Andrea - Bitetto Progetto di Monitoraggio Ambientale. Componente Vibrazioni in Corso d'Opera

VIV01 TERNA 1 PIANO TERRA - INTERVALLI ORARI

	ASSE X - P			iano terra	ASS	E Y -	Piano tei	ra	ASS	E Z - I	Piano ter	ra	
PERIODO	Lin	niti		Valori combi		Limit	ti	Valori comb		Limit	ti	Valori combi	
DALLE	mm/s²		dB	mm/s²	dB	mm/s²	dB	mm/s²	dB	mm/s²	dB	mm/s²	dB
14.00-15.00	7,2		77	0,028	29,0	7,2	77	0,030	29,4	7,2	77	0,086	38,7
15.00-16.00	7,2		77	0,024	27,7	7,2	77	0,028	29,0	7,2	77	0,075	37,5
16.00-17.00	7,2		77	0,024	27,5	7,2	77	0,026	28,3	7,2	77	0,066	36,3
17.00-18.00	7,2		77	0,022	27,0	7,2	77	0,024	27,5	7,2	77	0,049	33,8
18.00-19.00	7,2		77	0,022	26,9	7,2	77	0,023	27,3	7,2	77	0,055	34,8
19.00-20.00	7,2		77	0,022	26,9	7,2	77	0,023	27,4	7,2	77	0,054	34,7
20.00-21.00	7,2		77	0,024	27,5	7,2	77	0,023	27,3	7,2	77	0,045	33,0
21.00-22.00	7,2		77	0,022	27,0	7,2	77	0,023	27,2	7,2	77	0,049	33,8
22.00-23.00	5		74	0,028	28,9	5	74	0,030	29,4	5	74	0,051	34,1
23.00-0.00	5		74	0,022	26,7	5	74	0,022	26,8	5	74	0,047	33,4
0.00-1.00	5		74	0,021	26,6	5	74	0,022	26,7	5	74	0,028	28,9
1.00-2.00	5		74	0,021	26,6	5	74	0,022	26,7	5	74	0,044	32,9
2.00-3.00	5		74	0,022	26,7	5	74	0,022	26,8	5	74	0,044	32,8
3.00-4.00	5		74	0,021	26,5	5	74	0,022	26,7	5	74	0,039	31,9
4.00-5.00	5		74	0,023	27,2	5	74	0,022	26,8	5	74	0,032	30,1
5.00-6.00	5		74	0,022	26,7	5	74	0,022	26,7	5	74	0,042	32,6
6.00-7.00	5		74	0,022	26,7	5	74	0,022	26,8	5	74	0,044	32,9
7.00-8.00	7,2		77	0,023	27,4	7,2	77	0,027	28,8	7,2	77	0,065	36,3
8.00-9.00	7,2		77	0,024	27,4	7,2	77	0,027	28,5	7,2	77	0,063	35,9
9.00-10.00	7,2		77	0,024	27,6	7,2	77	0,028	28,9	7,2	77	0,068	36,6
10.00-11.00	7,2		77	0,024	27,5	7,2	77	0,027	28,5	7,2	77	0,068	36,6
11.00-12.00	7,2		77	0,024	27,6	7,2	77	0,028	28,9	7,2	77	0,063	36,0
12.00-13.00	7,2		77	0,023	27,4	7,2	77	0,026	28,4	7,2	77	0,065	36,3
13.00-14.00	7,2		77	0,025	28,0	7,2	77	0,029	29,2	7,2	77	0,085	38,6
VALORI M DIURNI		7, 2	77	0,0240	27,5	7,2	77	0,0262	28,4	7,2	77	0,0650	36,2
VALORI M NOTTURI		5	74	0,0220	27,0	5	74	0,0228	27,1	5	74	0,0420	32,4
VALORI M DIURNO		7, 2	77	0,028	29,0	7,2	77	0,030	29,4	7,2	77	0,086	38,7
VALORI M NOTTURN		5	74	0,028	28,9	5	74	0,030	29,4	5	74	0,051	34,1

Raddoppio Ferroviario Bari S. Andrea - Bitetto Progetto di Monitoraggio Ambientale. Componente Vibrazioni in Corso d'Opera

VIV01 TERNA 2 PIANO ULTIMO - INTERVALLI ORARI

	ASSE X - Piano			o ultimo ASSE Y - Piano ul					ano ultimo ASSE Z -			Piano ultimo	
PERIODO			Valori				Valori				Valori		
DALLE	Lim		comb		Limi		combi		Limiti		combinati		
DALLE	mm/s²	dB	mm/s²	dB	mm/s²	dB	mm/s²	dB	mm/s²	dB	mm/s²	dB	
14.00-15.00	7,2	77	0,060	35,6	7,2	77	0,059	35,4	7,2	77	0,082	38,3	
15.00-16.00	7,2	77	0,058	35,2	7,2	77	0,059	35,4	7,2	77	0,074	37,4	
16.00-17.00	7,2	77	0,054	34,7	7,2	77	0,056	34,9	7,2	77	0,066	36,4	
17.00-18.00	7,2	77	0,051	34,1	7,2	77	0,051	34,1	7,2	77	0,058	35,3	
18.00-19.00	7,2	77	0,051	34,1	7,2	77	0,050	33,9	7,2	77	0,056	35,0	
19.00-20.00	7,2	77	0,050	34,1	7,2	77	0,049	33,8	7,2	77	0,056	34,9	
20.00-21.00	7,2	77	0,050	34,0	7,2	77	0,049	33,8	7,2	77	0,055	34,8	
21.00-22.00	7,2	77	0,050	34,0	7,2	77	0,049	33,7	7,2	77	0,054	34,6	
22.00-23.00	5	74	0,064	36,1	5	74	0,063	36,0	5	74	0,055	34,9	
23.00-0.00	5	74	0,049	33,8	5	74	0,049	33,7	5	74	0,051	34,1	
0.00-1.00	5	74	0,049	33,8	5	74	0,048	33,5	5	74	0,049	33,8	
1.00-2.00	5	74	0,048	33,6	5	74	0,048	33,6	5	74	0,049	33,8	
2.00-3.00	5	74	0,049	33,7	5	74	0,050	34,0	5	74	0,050	33,9	
3.00-4.00	5	74	0,048	33,6	5	74	0,049	33,8	5	74	0,048	33,6	
4.00-5.00	5	74	0,049	33,8	5	74	0,049	33,8	5	74	0,053	34,5	
5.00-6.00	5	74	0,048	33,7	5	74	0,050	33,9	5	74	0,050	33,9	
6.00-7.00	5	74	0,049	33,7	5	74	0,050	34,1	5	74	0,051	34,2	
7.00-8.00	7,2	77	0,054	34,7	7,2	77	0,056	34,9	7,2	77	0,078	37,8	
8.00-9.00	7,2	77	0,054	34,6	7,2	77	0,056	35,0	7,2	77	0,069	36,7	
9.00-10.00	7,2	77	0,054	34,6	7,2	77	0,056	35,0	7,2	77	0,068	36,6	
10.00-11.00	7,2	77	0,054	34,6	7,2	77	0,055	34,8	7,2	77	0,066	36,4	
11.00-12.00	7,2	77	0,058	35,3	7,2	77	0,064	36,1	7,2	77	0,079	38,0	
12.00-13.00	7,2	77	0,053	34,5	7,2	77	0,057	35,1	7,2	77	0,072	37,1	
13.00-14.00	7,2	77	0,055	34,8	7,2	77	0,058	35,2	7,2	77	0,075	37,5	
VALORI MEDI	7.2	77	0.054	24.6	7.2	77	0.055	240	7.2	77	0.000	26.6	
DIURNI	7,2	77	0,054	34,6	7,2	77	0,055	34,8	7,2	77	0,068	36,6	
VALORI MEDI NOTTURNI	5	74	0,050	34,1	5	74	0,051	34,1	5	74	0,051	34,1	
VALORI MAX DIURNO	7,2	77	0,060	35,6	7,2	77	0,064	36,1	7,2	77	0,082	38,3	
VALORI MAX NOTTURNO	5	74	0,064	36,1	5	74	0,063	36,0	5	74	0,055	34,9	

6. Conclusioni

I valori rilevati con le metodiche descritte in relazione ed elaborati secondo le normative tecniche di riferimento non evidenziano superamenti dei valori limite.