AUTOSTRADA (A14) : BOLOGNA-BARI-TARANTO

TRATTO: BOLOGNA S.LAZZARO - NUOVO SVINCOLO DI PONTE RIZZOLI

NUOVA STAZIONE DI PONTE RIZZOLI REALIZZAZIONE DELLA COMPLANARE NORD

PROGETTO DEFINITIVO

CORPO STRADALE

IMPIANTI FI FTTROMECCANICI

RELAZIONE DI CALCOLO IMPIANTI ELETTRICI

IL PROGETTISTA SPECIALISTICO

Ing. Federica Luciani Ord. Ingg. Roma n.26460 RESPONSABILE OPERE TECNOLOGICHE

IL RESPONSABILE INTEGRAZIONE PRESTAZIONI SPECIALISTICHE

Ing. Federica Ferrari Ord. Ingg. Milano N. 21082 IL DIRETTORE TECNICO

Ing. Orlando Mazza Ord. Ingg. Pavia N. 1496

PROGETTAZIONE NUOVE OPERE AUTOSTRADALI

													C	ODIC	EI	DEN	TIFIC	CATI	VO																		Ordinatore:
				RIFER	RIMENT													RIFER	IMENT	O DIR	ETTOF	RIO							F	RIFERI	MENT	O ELA	BORA	ATO			$\cap \cap$
	Codic	e C	omm	essa		Lot	tto, S	Sub-F Appal	Prog, to	Fo	ise	Сар	itolo	P	aragr	ıfo	tipo	ogia	WBS pro	gres	sivo		PART	E D'O	OPER/	A	Tip.	Di	sciplin	na	Pr	ogre	ssivo	1	R	ev.	00
				_																		(_)	_	((+))					SCALA:
1	1	1	4	3	9	Ю	0	0	1	P	D	0	0	Ю	0	0	0	O	0	0	0	O	O	\cup	O	O	0	O	P		O	0	O	1	Ю	0	

	PROJECT MAN	AGER:	SUPPORTO SP	ECIALISTICO:		REVISIONE
enea .	l .				n.	data
		ng. Federica Ferrari			0	GENNAIO 2017
FAIGURIFFDIAIG	l Ora.	Ingg. Milano N. 21082			1	_
ENGINEERING					2	_
A.1 6	REDATTO:	_	VERIFICATO:		3	_
gruppo Atlantia	NEDATIO.	_	VEINI IOATO.	_	4	_

VISTO DEL COMMITTENTE

autostrade per l'italia

IL RESPONSABILE UNICO DEL PROCEDIMENTO Ing. Antonio Procopio

VISTO DEL CONCEDENTE

Ministero delle Infrastrutture e dei Trasporti

SOMMARIO

		MESSA	3
2.		ODOLOGIA DI VERIFICA	4
	2.1	Protezione contro i sovraccarichi	4
	2.2	Protezione contro i cortocircuiti	4
	2.3	Protezione contro contatti indiretti	5
	2.3	8.1 per sistemi TT	6
		B.2 per sistemi TN	
	2.4	Energia specifica passante	8
		Caduta di tensione	
	2.5	5.1 Temperatura a regime del conduttore	9
		Lunghezza max protetta per guasto a terra	
	2.7	Lunghezza max	10
	2.8	Calcolo della potenza del gruppo di rifasamento	10
3.		MULE DI CALCOLO UTILIZZATE DAL PROGRAMMA	
	3.1	Correnti di cortocircuito	11
	3. 1	1.1 Fattore di tensione	12
	3.2	Verifica della chiusura in cortocircuito	12
	2 1	2.1 Valore di cresta $^{I_{P}}$ della corrente di cortocircuito	12
1		TURA TABELLE DI VERIFICA	
ᅻ.		Dati relativi alla linea	
		Dati relativi alla protezione	
		Parametri elettrici	
5		RELATIVI AI CAVI SECONDO LE TABELLE CEI UNEL 35024/1 E 35026/1	
J.		Cavi Unipolari – Pose	
		Cavi Multipolari – Pose	
		Cavi Unipolari – Pose	
		Cavi Multipolari – Portate	
		Coefficienti di temperatura per pose in aria libera	
		Coefficienti di temperatura per pose interrate	
		Colori distintivi dei conduttori	
		Sigle di designazione dei cavi	
		3.1 Esempio di designazione di un cavo	
6	DATI	RELATIVI AI CAVI SECONDO LE TABELLE IEC 364-5-523-1983	20 26
Ο.		Portate in funzione del tipo di posa	
		Cavi Unipolari – Pose	
		Cavi Multipolari – Pose	
		RELATIVI AI CAVI SECONDO LE TABELLE CEI UNEL 35024/70	
•		Dati tecnici dei cavi	
		Coefficienti di temperatura	
8		EGATI - TABELLE DI VERIFICA SVINCOLO BORGATELLA	
		EGATI - TABELLE DI VERIFICA SVINCOLO IDICE	
		EGATI - TABELLE DI VERIFICA SVINCOLO E BARRIERA DI PONTE	
		OLI	40

Relazione esplicativa e di calcolo impianti elettrici

1. PREMESSA

Nel seguito si analizzeranno gli strumenti di progettazione elettrica che permettono la realizzazione e la simulazione di un impianto elettrico a regime.

I calcoli elettrici sono stati verificati con il personal computer utilizzando il programma INTEGRA EXEL. Nella relazione sono esposti i criteri di calcolo usati, i risultati e le verifiche.

2. METODOLOGIA DI VERIFICA

2.1 Protezione contro i sovraccarichi

I conduttori che costituiscono gli impianti devono essere protetti contro le sovracorrenti causate da sovraccarichi o da corto circuiti.

La protezione contro i sovraccarichi deve essere effettuata in ottemperanza alle prescrizioni delle norme CEI 64-8 – 433.2. Le caratteristiche di funzionamento di un dispositivo di protezione delle condutture contro i sovraccarichi devono rispondere alle seguenti condizioni:

$$I_b \le I_n \le I_Z$$

$$I_f \leq 1.45 \cdot I_Z$$

Dove

- *I*_b Corrente di impiego del circuito [A]
- *I*_n Corrente nominale del dispositivo di protezione [A]
- I₇ Portata in regime permanente della conduttura [A]
- I_f Corrente che assicura l'effettivo funzionamento del dispositivo di protezione entro il tempo convenzionale in condizioni definitive [A].

Quindi in particolare i conduttori devono essere scelti in modo che la loro portata $(^{I_Z})$ sia superiore alla corrente di impiego $(^{I_b})$ (valore di corrente calcolato in funzione della massima potenza di trasmettere in regime permanente). I dispositivi di protezione da installare devono avere una corrente nominale $(^{I_n})$ compresa fra la corrente di impiego del conduttore $(^{I_b})$ e la sua portata nominale $(^{I_Z})$ ed una corrente di funzionamento $(^{I_f})$ minore o uguale a 1,45 volte la portata $(^{I_Z})$.

La seconda delle due disuguaglianze sopra indicate è automaticamente soddisfatta nel caso di impiego di interruttori automatici conformi alle CEI 23-3 e CEI 17-5.

2.2 Protezione contro i cortocircuiti

La protezione contro i cortocircuiti deve essere effettuata in ottemperanza alle prescrizioni delle norme CEI 64-8/4 – 434.3.

Relazione esplicativa e di calcolo impianti elettrici

Ogni dispositivo di protezione contro i cortocircuiti deve rispondere alle due seguenti condizioni:

- il potere di interruzione non deve essere inferiore alla corrente di cortocircuito, presunta nel punto di installazione;
- la corrente di corto circuito sia interrotta entro un tempo non superiore a quello che porta i conduttori ad una temperatura limite non ammissibile (la verifica deve essere effettuata per tutti i valori di corrente di corto circuito fino al valore massimo)

 $I_{cc} \max \leq P.d.i.$

 $I^2t < K^2S^2$

Dove

 I_{cc} max Corrente di cortocircuito massima [kA]

P.d.i. Potere di interruzione apparecchiatura di protezione [kA]

 I^2t Integrale di Joule della corrente di cortocircuito presunta (valore letto sulle curve delle apparecchiature di protezione) [A²s]

K Coefficiente della conduttura utilizzata

115 per cavi isolati in PVC

135 per cavi isolati in gomma naturale e butilica

143 per cavi isolati in gomma etilenpropilenica e polietilene reticolato

Sezione della conduttura

2.3 Protezione contro contatti indiretti

La protezione contro i contatti indiretti deve essere effettuata in ottemperanza alle prescrizioni delle norme CEI Norma CEI 64-8/4 - 413.1.3 (sistemi TN), 413.1.4 (sistemi TT), 413.1.5 (sistemi IT).

Devono essere protette contro i contatti indiretti tutte le parti metalliche accessibili dell'impianto elettrico e degli apparecchi utilizzatori, normalmente non in tensione ma che, per cedimento dell'isolamento principale o per altre cause accidentali, potrebbero trovarsi sotto tensione (masse).

Per la protezione contro i contatti indiretti ogni impianto elettrico utilizzatore deve avere un proprio impianto di terra.

Relazione esplicativa e di calcolo impianti elettrici

A tale impianto di terra devono essere collegati tutti i sistemi di tubazioni e carcasse metalliche accessibili destinate ad adduzione, distribuzione e scarico, nonché tutte le masse metalliche accessibili di notevole estensioni esistenti nell'area dell'impianto elettrico utilizzatore stesso.

Una volta eseguito l'impianto di messa a terra, la protezione contro i contatti indiretti deve essere realizzata attuando il coordinamento fra l'impianto di messa a terra e interruttori automatici (magnetotermici e/o differenziali).

2.3.1 per sistemi TT

Se è soddisfatta la condizione:

$$R_A \cdot I_a \leq 50$$

Dove

 R_A = somma delle resistenze del dispersore e del conduttore di protezione [Ω]

 I_a = corrente che provoca l'intervento automatico del dispositivo di protezione [A]

2.3.2 per sistemi TN

Deve essere quindi soddisfatta la seguente relazione:

$$Z_{s} \cdot I_{a} \leq U_{o}$$

Dove

 U_o Tensione nominale in c.a., valore efficace tra fase e terra [V]

U_{o}	Tempo di intervento [s]
$50V < U_o \le 120V$	0,8
$120V < U_o \leq 230V$	0,4
$230V < U_o \leq 400V$	0,2
$U_{o} > 4000V$	0,1

 Z_s Impedenza dell'anello di guasto che comprende la sorgente, il conduttore attivo fino al punto di guasto ed il conduttore di protezione tra il punto di guasto e la sorgente

 I_a corrente che provoca l'interruzione automatica del dispositivo di protezione, entro il tempo di intervento definito precedentemente in funzione della tensione nominale per i circuiti terminali protetti contro le sovracorrenti aventi corrente nominale o regolata che non supera 32A, ed, entro un tempo convenzionale a 5s; se si usa un interruttore differenziale I_a è la corrente differenziale nominale di intervento.

Nei sistemi TN (norma CEI 64-8) l'impedenza dell'anello di guasto, che è interamente in rame, ha normalmente un valore che è dello stesso ordine di grandezza dell'impedenza di corto circuito. Un eventuale guasto franco a massa provoca correnti di elevata intensità.

In assenza della protezione differenziale si deve verificare (norma CEI 64-8) che la Z_s più alta presente nell'impianto, relativa all'anello di guasto più esteso, sia sufficiente in caso di guasto a sganciare automaticamente la protezione di massima corrente entro tempi fissati, in base alla curva di sicurezza tensione tempo.

Nel caso di circuiti terminali protetti da dispositivo di protezione contro le sovracorrenti di taratura amperometrica fino a 32 A il tempo di intervento è di 0,4 sec, per tutti gli altri circuiti il tempo di intervento è di 5 secondi.

Utilizzando differenziali, I_a diventa la I_d nominale con evidenti vantaggi impiantistici e di sicurezza, come la possibilità di ampliare l'impianto senza dover rivedere l'intero sistema di protezione al primo insorgere del guasto e senza attendere la sua evoluzione, anzi impedendola.

Indipendentemente dalla resistenza di terra, la protezione contro le tensioni di contatto può in questo caso essere realizzata mediante gli stessi interruttori automatici magnetotermici di protezione delle linee. Il criterio è basato sull'assicurare l'intervento dei dispositivi di protezione, più che sul limitare il valore della tensione di contatto. Vi è comunque da considerare che se il guasto a massa non è franco l'intervento delle protezioni può non essere tempestivo, per cui può permanere una situazione di pericolo anche per tempi relativamente lunghi.

A tal proposito si tenga presente il legame ammesso tra la corrente nominale dell'apparecchio di protezione di massima corrente e la corrispondente impedenza dell'anello di guasto necessaria a consentire lo sgancio automatico entro i tempi previsti in seguito a guasto.

Relazione esplicativa e di calcolo impianti elettrici

L'impiego di un interruttore differenziale opportunamente coordinato assicura invece, anche in tali situazioni, l'immediata apertura del circuito elettrico, con vantaggi anche dal punto di vista di contribuire alla protezione contro il pericolo di incendio, permettendo l'individuazione di guasti iniziali dell'isolamento verso terra.

2.4 Energia specifica passante

$$I^2t \leq K^2S^2$$

Dove

 I^2t valore dell'energia specifica passante letto sulla curva I^2t della protezione in corrispondenza delle correnti di corto circuito

 K^2S^2 Energia specifica passante sopportata dalla conduttura dove:

K coefficiente del tipo di cavo (115,135,143)

S sezione della conduttura

2.5 Caduta di tensione

$$\Delta V = K \cdot I_b \cdot L \cdot (R_I \cos \varphi + X_I sen \varphi)$$

Dove

 I_b corrente di impiego (A)

 R_r resistenza alla temperatura di regime (T_R) della linea [Ω /km]

 X_i , reattanza della linea [Ω /km]

K 2 per linee monofasi - 1,73 per linee trifasi

L lunghezza della linea (Km)

ΔV caduta di tensione (V) riferita alla tensione nominale

Per calcolare le cadute di tensione lungo le linee occorre determinare la resistenza, alla temperatura di regime, e la reattanza delle linee di collegamento e sommarle a quelle relative al circuito di cabina. Più precisamente per i quadri primari, ossia derivati direttamente dalla cabina, l'impedenza del circuito è data dalla somma vettoriale dell'impedenza della linea di collegamento e l'impedenza del circuito di cabina; per i

Relazione esplicativa e di calcolo impianti elettrici

quadri secondari, ossia derivati dai quadri primari, occorre sommare, all'impedenza della linea di collegamento del quadro, l'impedenza calcolata per il relativo quadro primario.

2.5.1 Temperatura a regime del conduttore

Il conduttore attraversato da corrente dissipa energia che si traduce in un aumento della temperatura del cavo. La temperatura viene calcolata come di seguito indicato:

$$T_R = T_Z \cdot n^2 - T_A \cdot (n^2 - 1)$$

Dove

 T_R è la temperatura a regime espressa [°C]

è la temperatura massima di esercizio relativa alla portata espressa [°C]

 T_{A} è la temperatura ambiente espressa [°C]

n è il rapporto tra la corrente d'impiego I_b e la portata I_Z del cavo, ricavata dalla tabella delle portate adottata dall'utente (Unel 35024/70, IEC 364-5-523, CEI - Unel 35024/1)

2.6 Lunghezza max protetta per guasto a terra

 I_{CC} min a fondo linea > I_{int}

Dove

 I_{cc} min corrente di corto circuito minima tra fase e protezione calcolata a fondo linea considerando la sommatoria delle impedenze di protezione a monte del tratto in esame.

 $I_{\rm int}$ corrente di corto circuito necessaria per provocare l'intervento della protezione entro 5 secondi o nei tempi previsti dalle tabelle CEI 64-8/4 - 41A, 41B e 48A . (valore rilevato dalla curva I^2t della protezione) o, infine, il valore di intervento differenziale.

Relazione esplicativa e di calcolo impianti elettrici

2.7 Lunghezza max

Lunghezza massima determinata oltre che dalla lunghezza massima per guasto a terra, anche dalla corrente di corto circuito a fondo linea e dalla caduta di tensione a fondo linea.

2.8 Calcolo della potenza del gruppo di rifasamento

Il calcolo della potenza reattiva del gruppo di rifasamento fatto in automatico dal programma viene eseguito utilizzando la formula:

$$Q_C = P \cdot (tg\varphi_i - tg\varphi_f)$$

Dove

 Q_{C} è la potenza reattiva della batteria di rifasamento

P è la potenza attiva assorbita dall'impianto da rifasare

 $tg \varphi_i$ è la tangente dello sfasamento di partenza da recuperare

 $tg \varphi_f$ è la tangente dello sfasamento a cui si vuole arrivare

3. FORMULE DI CALCOLO UTILIZZATE DAL PROGRAMMA

3.1 Correnti di cortocircuito

$$I_{cc} = \frac{U_n \cdot C}{k \cdot Z_{cc}}$$

Dove

per I_{cc} trifase: U_n tensione concatenata

C fattore di tensione

 $k \sqrt{3}$

 $Z_{cc} = \sqrt{\left(\sum R_{fase}^2 + \sum X_{fase}^2\right)}$

per I_{cc} fase-fase: U_n tensione concatenata

C fattore di tensione

k 2

 $Z_{CC} = \sqrt{\left(\sum R_{fase}^2 + \sum X_{fase}^2\right)}$

per I_{cc} fase-neutro: U_n tensione concatenata

C fattore di tensione

 $k \sqrt{3}$

 $Z_{CC} = \sqrt{\left(\left(\sum R_{fase} + \sum R_{neutro}\right)^2 + \left(\sum X_{fase} + \sum X_{neutro}\right)^2\right)}$

per I_{cc} fase-protezione: U_n tensione concatenata

C fattore di tensione

k √3

 $Z_{CC} = \sqrt{\left(\left(\sum R_{fase} + \sum R_{protez.}\right)^2 + \left(\sum X_{fase} + \sum X_{protez.}\right)^2\right)}$

3.1.1 Fattore di tensione

Il fattore di tensione e la resistenza dei cavi assumono valori differenti a seconda della corrente di cortocircuito calcolata. I valori assegnati sono riportati nella tabella seguente:

Tabella 1

	I_{cc} max	I_{cc} min
C	1	0.95
R	$R_{20^{\circ}C}$	$R = \left[1 + 0.004 \frac{1}{{}^{\circ}C} (\theta_e - 20^{\circ}C)\right] R_{20^{\circ}C}$
		(Norma CEI 11-28 Pag. 11 formula (7))

dove la $R_{20^{\circ}C}$ è la resistenza del cavo a 20°C e θ_e è la temperatura impostata dall'utente nella impostazione dei parametri per il calcolo.

Il valore della $R_{20^{\circ}C}$ viene riportato nella tabella "Resistenze e Reattanze" riportata di seguito.

3.2 Verifica della chiusura in cortocircuito

Verifica della chiusura in cortocircuito deve essere effettuata in ottemperanza alle prescrizioni delle norme CEI EN 60947-2

$$I_P \leq I_{CM}$$

Dove

 è il valore di cresta della corrente di cortocircuito (massimo valore possibile della corrente presunta di cortocircuito)

 $I_{\rm CM}$ è il valore del potere di chiusura nominale in cortocircuito

3.2.1 Valore di cresta I_p della corrente di cortocircuito

Il valore di cresta I_P è dato dalla norma CEI 11-28 - Art. 9.1.2 da:

$$I_P = K_{CR} \cdot \sqrt{2} \cdot I_K^{II}$$

Dove

 $I_{\scriptscriptstyle K}^{\quad \ \ }$ è la corrente simmetrica iniziale di cortocircuito

 K_{CR} è il coefficiente correttivo ricavabile dalla seguente formula:

$$K_{CR} = 1.02 + 0.98 \cdot e^{3*R_{CC}/X_{CC}}$$

ll valore di $I_{\rm CM}$ è dato dalla norma CEI 11-28 - Art. 9.1.1 da:

$$I_{\scriptscriptstyle CM} = I_{\scriptscriptstyle CU} \cdot n$$

Dove:

 $I_{\it CU}$ è il valore del potere di interruzione estremo in cortocircuito

è un coefficiente da utilizzare in funzione della tabella normativa di seguito
 riportata

Estratto dalla Tabella 2 – Rapporto n tra potere di chiusura e potere di interruzione in cortocircuito e fattore di potenza relativo (interruttori per corrente alternata)

Potere di interruzione	Fattore di	Valore minimo del fattore
in cortocircuito kA valore efficace	potenza	n = <u>potere di interruzione in</u> <u>cortocircuito</u> potere di chiusura in cortocircuito
4,5 ≤ I ≤ 6	0,7	1,5
6 < I ≤ 10	0,5	1,7
10 < I ≤ 20	0,3	2,0
20 < I ≤ 50	0,25	2,1
50 < I	0,2	2,2

4. LETTURA TABELLE DI VERIFICA

4.1 Dati relativi alla linea

Sigla = identificativo alfanumerico introdotto nello schema

Sezione = formazione e sezione della conduttura

es.: 4X50+PE16 per cavo di neutro = cavo di fase

es.: 2Fj+1Nh+PEg per cavo di neutro diverso dal cavo di fase o con cavi fase (F), neutro (N), protezione (PE); in parallelo (1F, 2F, 3F ecc.). (la lettera minuscola indica la sezione ed è riportata di seguito nelle

tabelle)

lunghezza = lunghezza della conduttura in metri

4.2 Dati relativi alla protezione

tipo e curva = Stringa di testo del tipo di apparecchiatura

numero dei poli = Poli dell'apparecchiatura

corrente nominale (I_n) = Corrente di taratura della protezione

potere di interruzione (P.d.I.) = Potere di interruzione della apparecchiatura

corrente differenziale (I_d) = Corrente differenziale della protezione

corrente di intervento = Corrente di intervento della protezione

4.3 Parametri elettrici

 I_{CC} max a fondo linea = Corrente di corto circuito massima a fine linea

 I_{a} fase/protezione a f.l. = Corrente di corto circuito minima a fondo linea

 I^2t inizio linea = Energia specifica passante massima ad inizio linea

 I^2t fondo linea = Energia specifica passante massima a fondo linea

 K^2S^2 = Energia specifica passante sopportata dalla

conduttura

 I_b = Corrente nominale del carico (o di impiego)

*I*_n = Corrente di taratura della protezione

 I_z = Portata della conduttura

*I*_f = Corrente di funzionamento della protezione

Relazione esplicativa e di calcolo impianti elettrici

C.d.t. con lb

= Caduta di tensione con la corrente del carico

Lungh. max protetta per g.t.

= Lunghezza massima della conduttura per avere un valore di corto circuito tra fase e protezione tale da garantire l'apertura automatica dell'organo di protezione entro i 5 secondi, o secondo la tabella CEI 64-8/4 - 41A

Lunghezza max

= Lunghezza massima della conduttura per avere un valore di corto circuito tra fase e protezione tale da garantire l'apertura automatica dell'organo di protezione entro i 5 secondi, o secondo la tabella CEI 64-8/4 - 41A, per avere un corto circuito Trifase / Fase - Fase / Fase - Neutro superiore alla corrente di intervento della protezione (se richiesta la verifica), per avere una caduta di tensione inferiore al valore massimo impostato.

5. DATI RELATIVI AI CAVI SECONDO LE TABELLE CEI UNEL 35024/1 E 35026/1

Le tabelle seguenti riportano la corrispondenza esistente tra le tipologie di posa della norma CEI 64-8 tabella 52 C e le tabelle di portata dei cavi della norma UNEL 35024/1. Le tabelle sono caratterizzate da tre colonne. Il contenuto delle colonne è il seguente:

Tipo posa: riferimento numerico della posa secondo la Tabella 52C.

Descrizione: descrizione della posa secondo la Tabella 52C della norma CEI

64-8/5.

Metodo di installazione: è la tipologia di posa prevista dalla norma UNEL 35024/1 in

corrispondenza della quale è possibile ricavare la portata del cavo. Il metodo viene indicato con il riferimento della tabella delle portate e un numero progressivo. Il numero progressivo rappresenta la posizione della metodologia di posa prevista

nella tabella.

5.1 Cavi Unipolari - Pose

Tabella 2 - Tabelle di corrispondenza tra il tipo di posa secondo la norma CEI 64-8 e i metodi di installazione della norma CEI UNEL 35024/1

	UNIPOLARI	
Tipo di	Descrizione	Metodo
posa		d'installazione
1	senza guaina in tubi circolari entro muri isolanti	1U
3	senza guaina in tubi circolari su o distanziati da pareti	2U
4	senza guaina in tubi non circolari su pareti	2U
5	senza guaina in tubi annegati nella muratura	2U
11	con o senza armatura su o distanziati da pareti	4U
11A	con o senza armatura fissati su soffitti	
11B	con o senza armatura distanziati da soffitti	
12	con o senza armatura su passerelle non perforate	4U
13	con o senza armatura su passerelle perforate	5U
14	con o senza armatura su mensole distanziati dalle pareti	5U
14	con guaina a contatto fra loro su mensole	5U, 6U, 7U
15	con o senza armatura fissati da collari	5U, 6U, 7U
16	con o senza armatura su passerelle a traversini	5U, 6U, 7U
17	con guaina sospesi a od incorporati in fili o corde	5U
18	conduttori nudi o cavi senza guaina su isolatori	3U
21	con guaina in cavità di strutture	4U
22	senza guaina in tubi in cavità di strutture	2U
22A	con guaina in tubi in cavità di strutture	
23	senza guaina in tubi non circolari in cavità di strutture	2U
24	senza guaina in tubi non circolari annegati nella muratura	2U
24A	con guaina in tubi non circolari annegati nella muratura	
25	con guaina in controsoffitti o pavimenti sopraelevati	4U
31	con guaina in canali orizzontali su pareti	2U
32	con guaina in canali verticali su pareti	2U
33	senza guaina in canali incassati nel pavimento	2U
34	senza guaina in canali sospesi	2U
34A	con guaina in canali sospesi	
41	senza guaina in tubi in cunicoli chiusi orizzontali o verticali	2U
42	senza guaina in tubi in cunicoli ventilati in pavimento	2U
43	con guaina in cunicoli aperti o ventilati	4U
51	con guaina entro pareti termicamente isolanti	1U
52	con guaina in muratura senza protezione meccanica	4U
53	con guaina in muratura con protezione meccanica	4U
61	con guaina in tubi o cunicoli interrati	
62	con guaina interrati senza protezione meccanica	
63	con guaina interrati con protezione meccanica	
71	senza guaina in elementi scanalati	1U
72	senza guaina in canali provvisti di separatori	2U
73	senza/con guaina posati in stipiti di porte	1U
74	senza/con guaina posati in stipiti di finestre	1U

5.2 Cavi Multipolari - Pose

Tabella 3 - Tabelle di corrispondenza tra il tipo di posa secondo la norma CEI 64-8 e i metodi di installazione della norma CEI UNEL 35024/1

	MULTIPOLARI	
Tipo di	Descrizione	Metodo
posa	Descrizione	d'installazione
2	in tubi circolari entro muri isolanti	1M
3A	in tubi circolari su o distanziati da pareti	2M
4A	in tubi non circolari su pareti	2M
5A	in tubi annegati nella muratura	2M
11	con o senza armatura su o distanziati da pareti	4M
11A	con o senza armatura fissati su soffitti	4M
11B	con o senza armatura distanziati da soffitti	4101
12	con o senza armatura su passerelle non perforate	
13	con o senza armatura su passerelle perforate	3M
14	con o senza armatura su mensole distanziati da pareti	3M
15	con o senza armatura fissati da collari	3M
16	con o senza armatura su passerelle a traversini	3M
17	con guaina sospesi a od incorporati in fili o corde	3M
21	in cavità di strutture	2M
22A	in tubi in cavità di strutture	2M
24A	in tubi non circolari annegati in muratura	ZIVI
24A 25	in controsoffitti o pavimenti sopraelevati	2M
31	in canali orizzontali su pareti	2M
32	in canali verticali su pareti	2M
33A	in canali incassati nel pavimento	2M
34A	in canali sospesi	2M
43	in cunicoli aperti o ventilati	2M
51	entro pareti termicamente isolanti	1M
52	in muratura senza protezione meccanica	4M
53	in muratura con protezione meccanica	4M
61	in tubi o cunicoli interrati	TIVI
62	interrati senza protezione meccanica	
63	interrati con protezione meccanica	
73	posati in stipiti di porte	1M
74	posati in stipiti di porte posati in stipiti di finestre	1M
81	immersi in acqua	I IVI
ΟI	Infinite of the acqua	

5.3 Cavi Unipolari - Portate

Tabella 4 - Tabella delle portate alla temperatura di 30 °C dei cavi unipolari con o senza guaina relative alla tabella della norma CEI-UNEL 35024/1

Di seguito vengono riportate le portate dei cavi con conduttori di rame. La norma non prende in considerazione i seguenti tipi di posa: cavi interrati o posati in acqua, cavi posti all'interno di apparecchi elettrici o quadri e cavi per rotabili o aeromobili.

				С	avi ı	unip	ola	ri co	n o	sen	za ç	guaii	na									
Metodo di installazione	Isolante	n° conduttori attivi								Sez	zion	e no	omin	ale	mm	2						
			1	1,5	2,5	4	6	10	16	25	35	50	70	95	120	150	185	240	300	400	500	630
1U	PVC	2	-	14,5	19,5	26	34	46	61	80	99	119	151	182	210	240	273	320	-	-	-	-
		3	-	13,5	18	24	31	42	56	73	89	108	136	164	188	216	245	286	-	-	-	-
	EPR	2	-	19	26	35	45	61	81	106	131	158	200	241	278	318	362	424	-	-	-	-
		3	-	17	23	31	40	54	73	95	117	141	179	216	249	285	324	380	-	-	-	-
2U	PVC	2	13,5	17,5	24	32	41	57	76	101	125	151	192	232	269	309	353	415	-	-	-	-
		3	12	15,5	21	28	36	50	68	89	110	134	171	207	239	275	314	369	-	1	ı	1
	EPR	2	17	23	31	42	54	75	100	133	164	198	253	306	354	402	472	555	-	-	-	-
		3	15	20	28	37	48	66	88	117	144	175	222	269	312	355	417	490	-	-	-	-
3U	PVC	2	-	19,5	26	35	46	63	85	112	138	168	213	258	299	344	392	461	-	-	-	-
		3	-	15,5	21	28	36	57	76	101	125	151	192	232	269	309	353	415	-	-	-	-
	EPR	2	-	24	33	45	58	80	107	142	175	212	270	327	-	-	-	-	-	-	-	-
		3	-	20	28	37	48	71	96	127	157	190	242	293	-	-	-	-	-	-	-	-
4U	PVC	3	-	19,5	26	35	46	63	85	110	137	167	216	264	308	356	409	485	561	656	749	855
	EPR	3	-	24	33	45	58	80	107	135	169	207	268	328	383	444	510	607	703	823	946	1088
5U	PVC	2	-	22	30	40	52	71	96	131	162	196	251	304	352	406	463	546	629	754	868	1005
		3	-	19,5	26	35	46	63	85	114	143	174	225	275	321	372	427	507	587	689	789	905
	EPR	2	-	27	37	50	64	88	119	161	200	242	310	377	437	504	575	679	783	940	1083	1254
		3	-	24	33	45	58	80	107	141	176	216	279	342	400	464	533	634	736	868	998	1151
6U	PVC	2	-	-	-	-	-	-	-	146	181	219	281	341	396	456	521	615	709	852	982	1138
		3	-	-	-			-		146	181	219	281	341	396	456	521	615	709	852	982	1138
	EPR	2	-	-	-	-	-	-	-	182	226	275	353	430	500	577	661	781	902	1085	1253	1454
		3	-	-	-	-	-	-	-	182	226	275	353	430	500	577	661	781	902	1085	1253	1454
7U	PVC	2	-	-	-	-	-	-	1	130	162	197	254	311	362	419	480	569	659	795	920	1070
		3	-	-	-	-	-	-	-	130	162	197	254	311	362	419	480	569	659	795	920	1070
	EPR	2	-	-	-	-	-	-	-	161	201	246	318	389	454	527	605	719	833	1008	1169	1362

Impianti elettrici e speciali Relazione esplicativa e di calcolo impianti elettrici

	3	-	-	-	-	-	-	-	161	201	246	318	389	454	527	605	719	833	1008	1169	1362
--	---	---	---	---	---	---	---	---	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	------	------	------

5.4 Cavi Multipolari – Portate

Tabella 5 - Tabella delle portate alla temperatura di 30 °C dei cavi multipolari relative alla tabella della norma CEI-UNEL 35024/1

Di seguito vengono riportate le portate dei cavi con conduttori di rame. La norma non prende in considerazione i seguenti tipi di posa: cavi interrati o posati in acqua, cavi posti all'interno di apparecchi elettrici o quadri e cavi per rotabili o aeromobili.

						С	av	i m	ultip	ola	ri											
Metodo di installazione	Isolante	n° conduttori attivi								Se	zion	e no	omin	ale	mm	2		_				
			1	1,5	2,5	4	6	10	16	25	35	50	70	95	120	150	185	240	300	400	500	630
1M	PVC	2	,	14	18,5	25	32	43	57	75	92	110	139	167	192	219	248	291	334	-	-	-
		3		13	17,5	23	29	39	52	68	83	99	125	150	172	196	223	261	298	-	-	-
	EPR	2	-	18,5	25	33	42	57	76	99	121	145	183	220	253	290	329	386	442	-	-	-
		3	-	16,5	22	30	38	51	68	89	109	130	164	197	227	259	295	346	396	-	-	-
2M	PVC	2	13,5	16,5	23	30	38	52	69	90	111	133	168	201	232	258	294	344	394	-	-	-
		3	12	15	20	27	34	46	62	80	99	118	149	179	206	225	255	297	339	-	-	-
	EPR	2	17	22	30	40	51	69	91	119	146	175	221	265	305	334	384	459	532	-	-	-
		3	15	19,5	26	35	44	60	80	105	128	154	194	233	268	300	340	398	455	-	-	-
3M	PVC	2	15	22	30	40	51	70	94	119	148	180	232	282	328	379	434	514	593	-	-	-
		3	13,6	18,5	25	34	43	60	80	101	126	153	196	238	276	319	364	430	497	-	-	-
	EPR	2	19	26	36	49	63	86	115	149	185	225	289	352	410	473	542	641	741	-	-	-
		3	17	23	32	42	54	75	100	127	158	190	246	298	346	399	456	538	621	-	-	-
4M	PVC	2	15	19,5	27	36	46	63	85	112	138	168	213	258	299	344	392	461	530	-	-	-
		3	13,5	17,5	24	32	41	57	76	96	119	144	184	223	259	299	341	403	464	-	-	-
	EPR	2	19	24	33	45	58	80	107	138	171	209	269	328	382	441	506	599	693	-	-	-
		3	17	22	30	40	52	71	96	119	147	179	229	278	322	371	424	500	576	-	-	-

5.5 Coefficienti di temperatura per pose in aria libera

Tabella 6 - Tabella dei coefficienti di temperatura (K1) relativa alle pose in aria libera secondo la tabella CEI Unel 35024/1

Di seguito viene riportata la tabella contenente i coefficienti moltiplicativi che permettono di ricavare la portata dei cavi nel caso in cui la temperatura di posa sia diversa da 30°C, per le pose in aria libera.

La portata in tal caso è data da: $I_T = I_{30^{\circ}} * K$

Dove

 I_T = è la portata del cavo alla temperatura considerata

l_{30°} = è la portata del cavo alla temperatura di 30°C

 K = è il coefficiente moltiplicativo riportato nella tabella e corrispondente alla temperatura di posa considerata.

Temperatura	PVC	EPR
10	1,22	1,15
15	1.17	1.12
20	1.12	1.08
25	1.06	1.04
30	1.00	1.00
35	0.94	0.96
40	0.87	0,91
45	0.79	0.87
50	0.71	0.82
55	0,61	0.76
60	0,50	0,71
65	-	0,65
70	-	0,58
75	-	0,50
80	-	0,41

5.6 Coefficienti di temperatura per pose interrate

Tabella 7 - Tabella dei coefficienti di correzione per temperature di posa (K1) relative ai cavi interrati secondo la tabella UNEL 35026/1

Di seguito viene riportata la tabella contenente i coefficienti moltiplicativi che permettono di ricavare la portata dei cavi nel caso in cui la temperatura di posa sia diversa da 20°C, per le pose interrate.

La portata in tal caso è data da: $I_T = I_{20^{\circ}} * K$

Dove

 I_T = è la portata del cavo alla temperatura considerata

Relazione esplicativa e di calcolo impianti elettrici

l_{20°} = è la portata del cavo alla temperatura di 20°C

K = è il coefficiente moltiplicativo riportato nella tabella e corrispondente alla temperatura di posa considerata

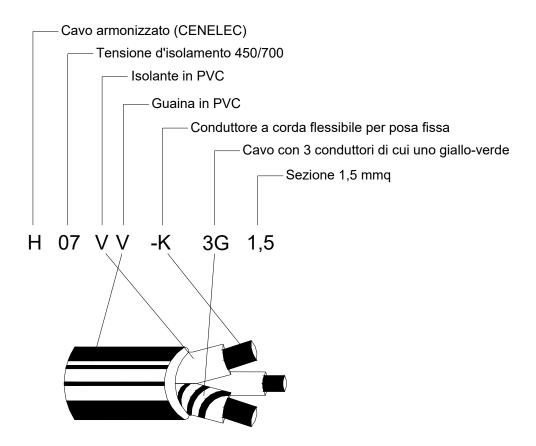
Temperatura	PVC	EPR
10	1,10	1,07
15	1.05	1.04
20	1.00	1.00
25	0.95	0.96
30	0.89	0.93
35	0.84	0.89
40	0.77	0.85
45	0.71	0.80
50	0.63	0.76
55	0.55	0.71
60	0,45	0,65
65	-	0,60
70	-	0,53
75	-	0,46
80	-	0,38

5.7 Colori distintivi dei conduttori

Tabella 8 - Colori distintivi dei conduttori (CEI 64-8/5 Art. 514)

Blu chiaro	Riservato al Neutro
Giallo - Verde	Riservato esclusivamente ai conduttori di terra, di protezione di collegamenti equipotenziali. I conduttori usati congiuntamente come neutro e conduttore di protezione (PEN), quando sono isolati, devono essere contrassegnati secondo uno dei metodi seguenti: Giallo/verde su tutta la loro lunghezza con, in aggiunta, fascette blu chiaro alle estremità; Blu chiaro su tutta la loro lunghezza con, in aggiunta, fascette giallo/verde alle estremità.
Marrone, Nero, Grigio	Consigliati per i conduttori di Fase.

Tabella 9 - Sezioni minime dei conduttori (CEI 64-8/5 Art. 524.1)


0,5 mm ²	Circuiti di segnalazione e circuiti ausiliari di comando. Se questi circuiti sono elettronici è ammessa anche la sezione di 0,1 mm2.
0,75 mm ²	Conduttore mobile con cavi flessibili (con e senza guaina).
1,5 mm²	Circuiti di potenza.

5.8 Sigle di designazione dei cavi

Tabella 10 - Sigle di designazione dei cavi (CEI 20-27 e CENELEC HD 361)

Caratteristiche	
Riferim. normativi	Norma armonizzata
Tensione nominale	300/300 V
Isolante	PVC
Guaina (eventualmente	PVC
Particolari costruttivi (eventuali)	Cavo piatto, anime divisibili
Conduttore	A filo unico rigido
Numero di anim	9
Con conduttore	e di protezione

5.8.1 Esempio di designazione di un cavo

6. DATI RELATIVI AI CAVI SECONDO LE TABELLE IEC 364-5-523-1983

6.1 Portate in funzione del tipo di posa

Tabella 11 - Tabella delle portate in funzione del tipo di posa secondo la norma CEI 64-8 e i metodi di installazione della norma IEC 364-5-523

	Stral	cio da IEC 364	-5-52	3-198	33 e	da ra	appor	to CI	ENEL	EC F	₹O 6	4-00´	1 199)1			
Metodo di	Isolante	n° conduttori						Sezi	one r	nomir	nale i	mm²					
installazione		attivi															
			1,5	2,5	4	6	10	16	25	35	50	70	95	120	150	185	240
Α	PVC	2	14,5	19,5	26	34	46	61	80	99	119	151	182	210	240	273	320
		3	13,5	18	24	31	42	56	73	89	108	136	164	188	216	245	286
	XPLE	2	19	26	35	45	61	81	106	131	158	200	241	278	318	362	424
	EPR	3	17	23	31	40	54	73	95	117	141	179	216				
A2	PVC	2	14	, .	25	32	43	57	75	92	110	139	167	192	219		
		3	13		23	29	39	52	68	83	99	125	150	172	196		
	XPLE	2	18,5	25	33	42	57	76	99	121	145		220	253	290		
	EPR	3	16,5	22	30	38	51	68	89	109	130	164	197	227	259	295	346
В	PVC	2	17,5	24	32	41	57	76	101	125	151	192	232	269	-	-	-
		3	15,5	21	28	36	50	68	89	110	134	171	207	239	-	-	-
	XPLE	2	23	31	42	54	75	100	133	164	198		306		-	-	-
	EPR	3	20	28	37	48	66	86	117	144	175	222	269		-	-	-
B2	PVC	2	16,5	23	30	38	52	69	90	111	135			232	-	-	-
		3	15	20	27	34	46	62	80	99	118	149	176	206	-	-	-
	XPLE	2	22	30	40	51	69	91	119	146	175		265	305	-	-	-
	EPR	3	19,5	26	35	44	60	80	105	128	154	194	233			-	-
С	PVC	2	19,5	27	36	46	63	85	112	138	168						
		3	17,5	24	32	41	57	76	96	119	144	184	223				403
	XPLE	2	24	35	45	58	80	107	138	171	209	269	328		441	506	
	EPR	3	22	30	40	52	71	96	119	147	179	229	278		371	424	500
D	PVC	2	22	29	38	47	63	81	104	125	148			246			
		3	18	24	31	39	52	67	86	103	122	151	179				297
	XPLE	2	26	34	44	56	73	95	121	146	173			287	324		
	EPR	3	22	29	37	46	61	79	101	122	144	178	211	240		304	
E	PVC	2	22	30	40	51	70	94	119	148	180	232	282	328			
		3	18,5	25	34	43	60	80	101	126	153	196	238	276			
	XPLE	2	26	36	49	63	86	115	149	185	225		352	410			641
	EPR	3	23	32	42	54	75	100	127	158	192	246					
F	PVC	2	-	-	-	-	-	-	131	162	196		304				
		3 ⁽¹⁾	-	-	-	-	-	-	110	137	167	216					
	XPLE	2	-	-	-	-	-	-	161	200	242	310	377	437	504		
	EPR	3(1)	-	-	-	-	-	-	135	169	207	268					
G	PVC	3(2)	-	-	-	-	-	-	130	162	197	254	311		419		
	XPLE/EPR	3 ⁽²⁾	-	-	-	-	-	-	161	201	246	318	389	454	527	605	719

Note: (1) - Disposti a trefolo

(2) - Distanziati di almeno 1 diametro e disposti verticalmente

6.2 Cavi Unipolari - Pose

Tabella 12 - Tabella di corrispondenza tra il tipo di posa dei cavi unipolari secondo la norma CEI 64-8 e i metodi di installazione della norma IEC 364-5-523

Il metodo di installazione permette di stabilire la portata del cavo utilizzato per la conduzione dell'energia.

	UNIPOLARI	
Tipo di posa	Descrizione	Metodo di
		installazione
1	senza guaina in tubi circolari entro muri isolanti	A
3	senza guaina in tubi circolari su o distanziati da pareti	В
4	senza guaina in tubi non circolari su pareti	В
5	senza guaina in tubi annegati nella muratura	A
11	con o senza armatura su o distanziati da pareti	С
11A	con o senza armatura fissati su soffitti	С
11B	con o senza armatura distanziati da soffitti	С
12	con o senza armatura su passerelle non perforate	С
13	con o senza armatura su passerelle perforate	E
14	con o senza armatura su mensole distanziati dalle pareti	E
14	con guaina a contatto fra loro su mensole	F
15	con o senza armatura fissati da collari	E
16	con o senza armatura su passerelle a traversini	E
17	con guaina sospesi a od incorporati in fili o corde	E
18	conduttori nudi o cavi senza guaina su isolatori	G
21	con guaina in cavità di strutture	B2
22	senza guaina in tubi in cavità di strutture	B2
22A	con guaina in tubi in cavità di strutture	B2
23	senza guaina in tubi non circolari in cavità di strutture	B2
24	senza guaina in tubi non circolari annegati nella muratura	B2
24A	con guaina in tubi non circolari annegati nella muratura	B2
25	con guaina in controsoffitti o pavimenti sopraelevati	B2
31	con guaina in canali orizzontali su pareti	В
32	con guaina in canali verticali su pareti	B2
33	senza guaina in canali incassati nel pavimento	В
34	senza guaina in canali sospesi	В
34A	con guaina in canali sospesi	B2
41	senza guaina in tubi in cunicoli chiusi orizzontali o verticali	B2
42	senza guaina in tubi in cunicoli ventilati in pavimento	В
43	con guaina in cunicoli aperti o ventilati	В
51	con guaina entro pareti termicamente isolanti	A
52	con guaina in muratura senza protezione meccanica	С
53	con guaina in muratura con protezione meccanica	С
61	con guaina in tubi o cunicoli interrati	D
62	con guaina interrati senza protezione meccanica	D
63	con guaina interrati con protezione meccanica	D
71	senza guaina in elementi scanalati	A
72	senza guaina in canali provvisti di separatori	В
73	senza/con guaina posati in stipiti di porte	A
74	senza/con guaina posati in stipiti di finestre	A

6.3 Cavi Multipolari - Pose

Tabella 13 - Tabella di corrispondenza tra il tipo di posa dei cavi multipolari secondo la norma CEI 64-8 e i metodi di installazione della norma IEC 364-5-523
 Il metodo di installazione permette di stabilire la portata del cavo utilizzato per la

conduzione dell'energia.

	MULTIPOLARI	
Tipo di posa	Descrizione	Metodo di installazione
2	in tubi circolari entro muri isolanti	A2
3A	in tubi circolari su o distanziati da pareti	B2
4A	in tubi non circolari su pareti	B2
5A	in tubi annegati nella muratura	A2
11	con o senza armatura su o distanziati da pareti	С
11A	con o senza armatura fissati su soffitti	С
11B	con o senza armatura distanziati da soffitti	С
12	con o senza armatura su passerelle non perforate	С
13	con o senza armatura su passerelle perforate	E
14	con o senza armatura su mensole distanziati da pareti	E
15	con o senza armatura fissati da collari	E
16	con o senza armatura su passerelle a traversini	E
17	con guaina sospesi a od incorporati in fili o corde	E
21	in cavità di strutture	B2
22A	in tubi in cavità di strutture	B2
24A	in tubi non circolari annegati in muratura	B2
25	in controsoffitti o pavimenti sopraelevati	B2
31	in canali orizzontali su pareti	В
32	in canali verticali su pareti	B2
33A	in canali incassati nel pavimento	B2
34A	in canali sospesi	B2
43	in cunicoli aperti o ventilati	В
51	entro pareti termicamente isolanti	Α
52	in muratura senza protezione meccanica	С
53	in muratura con protezione meccanica	С
61	in tubi o cunicoli interrati	D
62	interrati senza protezione meccanica	D
63	interrati con protezione meccanica	D
73	posati in stipiti di porte	Α
74	posati in stipiti di finestre	Α
81	immersi in acqua	Α

7. DATI RELATIVI AI CAVI SECONDO LE TABELLE CEI UNEL 35024/70

Tabella 14 - Tabella riepilogativa di tipo, posa e portata dei conduttori della tabella UNEL 35024/70 (a 30°C)

modo ⇒	01		02		03			04			05			06	07			
tipo	multipol	ari	unip	olari	unip	olari r	on dis	tanz	iati		multi _l dista			unipolari d	unipolari distanziati			
conduttore			con sen: gua	za	senz	a gua	ina	cor	n guaina					senza guaina	con guaina			
tipo posa	entro tubi o sotto modanature					asser	elle	su passerelle a parete su fune portante			su pa	issere ete	lle	su passerella	su passerella su isolatori			
portata∜	Protezio ↓ nume				PVC c	Gom	ıma G											
01	4																	
02		3	3		4						4							
03	4			2		3		4				3						
04		3	3		4		2		3		4		2					
05				2		3		4		2		3			2-3-4			
06							2		3				2	2-3-4				
07										2					2-3-4			
08														2-3-4				
	Protezio	ne o	cond	duttori: (Gomn	na G2	o Gor	nma	G5 o EF	PR			I					
!			01		02		03		04	05		06		07	08			
SEZIONE	\downarrow		PC	ORTATE	≣ ↓									<u> </u>				
а	1			10,5		12	13	3,5	15	5	17		19	21	23			
b	1,5			14		15,5		7,5	19,5		22		24	27	29			
C	2,5)		19		21 28		24	26		30		33	37	40 55			
d e	6		1	25 32		36		32 41	35 46		40 52		45 58	50 64				
f	10)	1	44		50		57	63		71		80	88	97			
g	16			59		68		76	85		96		107	119	130			
h	25			75		89		01	112		127		142	157	172			
i	35			97		111		25	138		157		175	194	213			
J k	50		\vdash	-		134 171		51	168		190 242		212	235 299	257			
k I	70 95		+	<u>-</u>		207		92 32	213 258		293		270 327	362	327 396			
m	120		1	-		239		69	299		339			419	458			
n	150					275		09	344		390			481	527			
0	o 185 - 314 35		53	392		444		496	549	602								
р	240)		-		369	4	15	461		522		584	645	707			

7.1 Dati tecnici dei cavi

Tabella 15 - Tabella delle resistenze e delle reattanze dei cavi elettrici secondo la tabella UNEL 35023-70 (a 20°C)

Sezione mm²	Cavi unipolari		Cavi Multipolari	
	R ₂₀ °c	X	R ₂₀ °c	Х
	mΩ/m	mΩ/m	mΩ/m	mΩ/m
1	17,82	0,176	18,14	0,125
1,5	11,93	0,168	12,17	0,118
2,5	7,18	0,155	7,32	0,109
4	4,49	0,143	4,58	0,101
6	2,99	0,135	3,04	0,0955
10	1,80	0,119	1,83	0,0861
16	1,137	0,112	1,15	0,0817
25	0,717	0,106	0,731	0,0813
35	0,517	0,101	0,527	0,0783
50	0,381	0,101	0,389	0,0779
70	0,264	0,0965	0,269	0,0751
95	0,190	0,0975	0,194	0,0762
120	0,152	0,0939	0,154	0,0740
150	0,123	0,0928	0,126	0,0745
185	0,0992	0,0908	0,100	0,0742
240	0,0760	0,0902	0,0779	0,0752
300	0,0614	0,0895	0,0629	0,0750
400	0,0489	0,0876	0,0504	0,0742
500	0,0400	0,0867	0,0413	0,0744
630	0,0324	0,0865	0,0336	0,0749

N.B.: Le resistenze e le reattanze per i cavi multipolari sono utilizzate per l'eventuale cavo di collegamento tra il trasformatore e il quadro generale di bassa tensione. Il cavo di collegamento tra il trasformatore e il quadro generale di bassa tensione è possibile inserirlo nei dati di ingresso del quadro generale, però è possibile gestirlo in maniera più efficace creando un quadro fittizio in cui viene identificato solo il collegamento.

7.2 Coefficienti di temperatura

Tabella 16 - Tabella dei coefficienti di temperatura (K1) relativa alla tabella Unel 35024/70

Di seguito viene riportata la tabella contenente i coefficienti moltiplicativi che permettono di ricavare la portata dei cavi nel caso in cui la temperatura ambiente sia diversa da 30°C.

Relazione esplicativa e di calcolo impianti elettrici

La portata in tal caso è data da: $I_T = I_{30^{\circ}} * K$

dove l⊤ = è la portata del cavo alla temperatura considerata

l_{30°} = è la portata del cavo alla temperatura di 30°C

 K = è il coefficiente moltiplicativo riportato nella tabella e corrispondente alla temperatura di posa considerata

Temperatura	PVC	Gomma (G2)	EPR
15	1.17	1.22	1.13
20	1.12	1.15	1.09
25	1.06	1.06	1.04
30	1.00	1.00	1.00
35	0.94	0.91	0.95
40	0.87	0.82	0.90
45	0.79	0.71	0.85
50	0.71	0.58	0.80

Verifica protezione contatti indiretti: SI

8. ALLEGATI - TABELLE DI VERIFICA SVINCOLO BORGATELLA

AUTOSTRADA (A14): BOLOGNA—BARI—TARANTO TRATTO: BOLOGNA S.LAZZARO - PONTE RIZZOLI Oggetto: Tabella verifica Quadri Elettrici Sistema di distribuzione: TT Tensione: 400/400 [V] Frequenza: 50 [Hz] Commessa: 336/16/MC Data: Dicembre 2016 Verifica contemporaneità: SI

CALCOLI E VERIFICHE

Verifica I²t con Icc Max: SI

Verifica C.d.t. con lb: SI

COL	EGAMEN	то		INTERRUTTOR	RE			CAVO					ı	FASE	NEU	JTRO	PROTE	ZIONE		l _b ≤	l _n ≤ l _z		I _f ≤ 1,4	.5	
Da Quadro	A Quadro	Rif. circuito	Taglia In max	Corrente termica regolata di Fase (Ir) / Lungo ritardo (L2) / Tempo (t1)	Corrente magnetica regolata (Irm) / Tempo (t2) / Istantaneo (I)	Icc massima Ii barratura	Tipo cavo	Sezione	Distanza	C.d.t. % Con I _b	IK Massima Trifase fine linea	IK minima Trifase fine linea	l ² t max Inizio Linea	K ² S ²	l ² t max Inizio Linea	K²S²	l ² t max Inizio Linea	K²S²	Pot. cont	l _{b n}	I _{n z}	Iz	lf	1.45l _z	Test
			[A]	[A]	[A]	[kA]		[mm²]	[m]	[%]	[kA]	[kA]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[kW]	[A]	[A]	[A]	[A]	[A]	
A_			3P x 25,00 + N/	25,00//	250,00//	8,26				0,04	7,94	5,87							5,26	11,00	25,00		32,50		SI
A_		LC.0	4 x 10,00/	10,00//	100,00//	7,94	FG7R/N07 V-K PE	4(1x10)+(1PE35)	278,0	1,22	0,41	0,26	0,01	2,04	0,01	2,04	0,00	25,05	2,48	4,29	10,00	43,90	13,00	63,65	SI
A_		MC.0	2 x 10,00/	10,00//	100,00//	6,32	FG7R/N07 V-K PE	2(1x6)+(1PE35)	278,0	2,29	0,12		0,01	0,74	0,01	0,74	0,00	25,05	0,50	2,41	10,00	38,69	13,00	56,10	SI
A_		LD.0	4 x 10,00/	10,00//	100,00//	7,94	FG7R/N07 V-K PE	4(1x10)+(1PE35)	473,0	1,59	0,25	0,16	0,01	2,04	0,01	2,04	0,00	25,05	1,78	3,34	10,00	46,64	13,00	67,63	SI
A_		MD.0	2 x 10,00/	10,00//	100,00//	6,32	FG7R/N07 V-K PE	2(1x10)+(1PE35)	473,0	2,28	0,12		0,01	2,04	0,01	2,04	0,00	25,05	0,50	2,41	10,00	52,08	13,00	75,52	SI
A_			1	//	//																				
			1	//	//																				
			1	//	//																				
			1	//	//																				
			1	//	//																				
			1	//	//																				
			1	//	//																			.——	
			1	//	//																				
			1	//	//																				
			1	//	//																				
				//	//								1									-		- 	
				//	//								1										\longrightarrow		
			1	//	//																	+	\longrightarrow		
			1	//	"																	+	\longrightarrow		
				"	"								1									+			
			1	//	"								1												
-			1	//	"																		\longrightarrow		
			1	//	//																				

AUTOSTRADA (A14) : BOLOGNA-BARI-TARANTO

TRATTO: BOLOGNA S.LAZZARO - PONTE RIZZOLI

COMPLETAMENTO DELLA COMPLANARE NORD DI BOLOGNA

PROGETTO DEFINITIVO

Oggetto: Tabella verifica Quadri Elettrici	Sistema di distribuzione: TT	Tensione: 400/400 [V]	Frequenza: 50 [Hz]	Commessa: 336/16/MC	Data: Dicembre 2016						
Controllo corto circuito a fondo linea: SI	Verifica contemporaneità: SI		Verifica C.d.t. massima sui quadri: SI								
Verifica protezione contatti indiretti: SI	Verifica I²t con Icc Max: SI		Verifica C.d.t. con Ib: SI								

COLL	LEGAMENTO		INTERRUTTOR	RE		1	CAVO					FA	ASE .	NEU	TRO	PROTE	ZIONE		I _b ≤	≤ I _n ≤ I _z		I _f ≤ 1,4	5	1
Da	A Rif.	Taglia	Corrente termica	Corrente magnetica	lcc	Tipo cavo	Sezione	Distanza	C.d.t.	IK	IK	l²t	K ² S ²	l²t	K ² S ²	l²t	K ² S ²	Pot.	l _{b n}	I _{n z}	lz	lf	1.45lz	Test
Quadro	Quadre circuito	In max	regolata	regolata (Irm) /	massima				%	Massima	minima	max		max		max		cont	,		, ,	1	ļ	1
			di Fase (Ir) /	Tempo (t2) /	li barratura				Con	Trifase	Trifase	Inizio		Inizio		Inizio			, ,		, ,	1	,	1
			Lungo	Istantaneo (I)					I _b	fine linea	fine linea	Linea		Linea		Linea			,		, ,	1	ļ	1
			ritardo (L2) / Tempo (t1)																		, ,	1	ļ	1
		[A]	[A]	[A]	[kA]		[mm²]	[m]	[%]	[kA]	[kA]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[kW]	[A]	[A]	[A]	[A]	[A]	
C_	LC.0	3P x 16,00 + N/	10,00//	100,00//	0,41				1,23	0,41	0,26							2,48	4,29	10,00		13,00		SI
C_	LB.0	/	10,00//	100,00//	0,41	FG7R/N07 V-K PE	4(1x10)+(1PE35)	265,0	1,9	0,22	0,14	0,00	2,04	0,00	2,04	0,00	25,05	1,53	2,62	10,00	43,90	13,00	63,65	SI
C_		3P x 25,00 + N/	10,00//	100,00//	0,41				1,23	0,41	0,26							0,94	1,67	10,00		13,00		SI
C_	LC1	2 x 6,00/	6,00//	60,00//	0,21	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	40,0	1,4	0,12		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
C_	LC2	2 x 6,00/	6,00//	60,00//	0,21	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	50,0	1,44	0,11		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
C_	LC3	2 x 6,00/	6,00//	60,00//	0,21	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	107,0	1,65	0,08		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
C_	LC4	2 x 6,00/	6,00//	60,00//	0,21	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	170,0	1,89	0,06		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
C_	LC5	2 x 6,00/	6,00//	60,00//	0,21	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	239,0	2,15	0,05		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
C_	LC6	2 x 6,00/	6,00//	60,00//	0,21	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	51,0	1,44	0,11		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
C_	LC7	2 x 6,00/	6,00//	60,00//	0,21	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	399,0	2,76	0,03		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
C_	LC8	2 x 6,00/	6,00//	60,00//	0,21	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	239,0	2,15	0,05		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
C_	LC9	2 x 6,00/	6,00//	60,00//	0,21	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	302,0	2,39	0,04		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
C_		1P x 6,00 + N/	6,00//	60,00//	0,21			0,0	1,28	1,13								0,05	2,31	6,00		7,80		SI
C_	MC.0	2 x 16,00/	10,00//	100,00//	0,12				2,29	0,12								0,50	2,41	10,00		13,00		SI
C_	MB.0	/	10,00//	100,00//	0,12	FG7R/N07 V-K PE	2(1x6)+(1PE35)	265,0	3,35	0,06		0,02	0,74	0,02	0,74	0,00	25,05	0,25	1,20	10,00	38,69	13,00	56,10	SI
C_		2 x 125,00/	16,00//	54,00//	0,12				2,29	0,12								0,00	0,00	16,00		30,40		SI
C_	MC1	2 x 6,00/	6,00//	60,00//	0,12	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	1,0	2,36	0,11		0,00	0,13	0,00	0,13	0,00	25,05	0,25	1,20	6,00	17,86	7,80	25,89	SI
C_	MC2	/	10,00//	100,00//	0,12	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	1,0	2,29	0,12		0,02	0,13	0,02	0,13	0,00	25,05	0,00	0,00	10,00	17,86	13,00	25,89	SI
C_		1	//	//																				<u>, </u>
		1	//	//																				
		1	//	//																				<u>, </u>
		1	//	//																				
		1	//	//																				1
		1	//	//																				

AUTOSTRADA (A14) : BOLOGNA-BARI-TARANTO

TRATTO: BOLOGNA S.LAZZARO - PONTE RIZZOLI

COMPLETAMENTO DELLA COMPLANARE NORD DI BOLOGNA

PROGETTO DEFINITIVO

Oggetto: Tabella verifica Quadri Elettrici	Sistema di distribuzione: TT	Tensione: 400/400 [V]	Frequenza: 50 [Hz]	Commessa: 336/16/MC	Data: Dicembre 2016
Controllo corto circuito a fondo linea: SI	Verifica contemporaneità: SI		Verifica C.d.t. massima sui q	uadri: SI	
Verifica protezione contatti indiretti: SI	Verifica I²t con Icc Max: SI		Verifica C.d.t. con lb: SI		

COLI	COLLEGAMENTO INTERRUTTORE				1	CAVO					F.A	SE	NEU	TRO	PROTE	ZIONE		l _b ≤	$I_n \le I_z$		I _f ≤ 1,45	.5		
Da	A Rif.	Taglia	Corrente termica	Corrente magnetica	lcc	Tipo cavo	Sezione	Distanza	C.d.t.	IK	IK	l ² t	K ² S ²	l²t	K ² S ²	l²t	K ² S ²	Pot.	l _{b n}	I _{n z}	lz	lf	1.45lz	Test
Quadro	Quadre circuito	In max	regolata	regolata (Irm) /	massima				%	Massima	minima	max		max		max		cont						
			di Fase (Ir) /	Tempo (t2) /	li barratura				Con	Trifase	Trifase	Inizio		Inizio		Inizio								
			Lungo	Istantaneo (I)					I _b	fine linea	fine linea	Linea		Linea		Linea								
			ritardo (L2) / Tempo (t1)																					
		[A]	[A]	[A]	[kA]		[mm²]	[m]	[%]	[kA]	[kA]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[kW]	[A]	[A]	[A]	[A]	[A]	
B_	LB.0	3P x 25,00 + N/	10,00//	100,00//	0,22				1,9	0,22	0,14							1,53	2,62	10,00		13,00		SI
B_	LB1	2 x 6,00/	6,00//	60,00//	0,11	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	50,0	2,11	0,08		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
B_	LB2	2 x 6,00/	6,00//	60,00//	0,11	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	42,0	2,08	0,08		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
B_	LB3	2 x 6,00/	6,00//	60,00//	0,11	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	97,0	2,29	0,06		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
В_	LB4	2 x 6,00/	6,00//	60,00//	0,11	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	159,0	2,53	0,05		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
В_	LB5	2 x 6,00/	6,00//	60,00//	0,11	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	226,0	2,78	0,04		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
В_	LB6	2 x 6,00/	6,00//	60,00//	0,11	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	301,0	3,06	0,03		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
В_	LB7	2 x 6,00/	6,00//	60,00//	0,11	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	383,0	3,38	0,03		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
В_	LB8	2 x 6,00/	6,00//	60,00//	0,11	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	472,0	3,71	0,02		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
В_	LB9	2 x 6,00/	6,00//	60,00//	0,11	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	570,0	4,09	0,02		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
B_	LB10	2 x 6,00/	6,00//	60,00//	0,11	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	214,0	2,73	0,04		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
B_	LB11	2 x 6,00/	6,00//	60,00//	0,11	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	273,0	2,96	0,04		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
B_	LB12	2 x 6,00/	6,00//	60,00//	0,11	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	338,0	3,21	0,03		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
B_	LB13	2 x 6,00/	6,00//	60,00//	0,11	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	410,0	3,48	0,03		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
B_	LB14	2 x 6,00/	6,00//	60,00//	0,11	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	489,0	3,78	0,02		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
B_	LB15	2 x 6,00/	6,00//	60,00//	0,11	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	305,0	3,08	0,03		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
B_		1P x 6,00 + N/	6,00//	60,00//	0,11			0,0	1,96	0,77								0,05	2,31	6,00		7,80		SI
B_	MB.0	2 x 25,00/	10,00//	100,00//	0,06				3,35	0,06								0,25	1,20	10,00		13,00		SI
B_		2 x 125,00/	16,00//	54,00//	0,06				3,35	0,06								0,00	0,00	16,00		30,40		SI
B_	MB1	2 x 6,00/	6,00//	60,00//	0,06	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	1,0	3,42	0,06		0,01	0,13	0,01	0,13	0,00	25,05	0,25	1,20	6,00	17,86	7,80	25,89	SI
B_	MB2	/	10,00//	100,00//	0,06	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	1,0	3,35	0,06		0,00	0,13	0,00	0,13	0,00	25,05	0,00	0,00	10,00	17,86	13,00	25,89	SI
B_		1	//	//																				
		1	//	//																				

AUTOSTRADA (A14) : BOLOGNA-BARI-TARANTO

TRATTO: BOLOGNA S.LAZZARO - PONTE RIZZOLI

COMPLETAMENTO DELLA COMPLANARE NORD DI BOLOGNA

PROGETTO DEFINITIVO

TRATTO. BOLOGINA S.EAZZARO TORRE RIZ	201				
Oggetto: Tabella verifica Quadri Elettrici	Sistema di distribuzione: TT	Tensione: 400/400 [V]	Frequenza: 50 [Hz]	Commessa: 336/16/MC	Data: Dicembre 2016
Controllo corto circuito a fondo linea: SI	Verifica contemporaneità: SI		Verifica C.d.t. massima sui q	uadri: SI	
Verifica protezione contatti indiretti: SI	Verifica I²t con Icc Max: SI		Verifica C.d.t. con lb: SI		

COL	EGAMEN	то		INTERRUTTOR	RE			CAVO						FASE	NEU	JTRO	PROTEZ	ZIONE		l _b :	≤ I _n ≤ I _z		I _f ≤ 1,4	1 5	
Da	Α	Rif.	Taglia	Corrente termica	Corrente magnetica	lcc	Tipo cavo	Sezione	Distanza	C.d.t.	IK	IK	l²t	K ² S ²	l²t	K ² S ²	l²t	K ² S ²	Pot.	l _{b n}	I _{n z}	lz	lf	1.45lz	Test
Quadro	Quadro	circuito	In max	regolata	regolata (Irm) /	massima				%	Massima	minima	max		max		max		cont				.	ı l	
				di Fase (Ir) /	Tempo (t2) /	li barratura				Con	Trifase	Trifase	Inizio		Inizio		Inizio							1	
				Lungo ritardo (L2) /	Istantaneo (I)					lb	fine linea	fine linea	Linea		Linea		Linea						.	ı l	
				Tempo (t1)																			.	ı l	
			[A]	[A]	[A]	[kA]		[mm²]	[m]	[%]	[kA]	[kA]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[kW]	[A]	[A]	[A]	[A]	[A]	-
D_		LD.0	3P x 16,00 + N/	10,00//	100,00//	0,25				1,6	0,25	0,16				-	-		1,78	3,34	10,00		13,00		SI
D_		LE.0	/	10,00//	100,00//	0,25	FG7R/N07 V-K PE	4(1x10)+(1PE35)	79,0	1,72	0,21	0,13	0,02	2,04	0,02	2,04	0,00	25,05	0,94	1,67	10,00	43,90	13,00	63,65	SI
D_			3P x 25,00 + N/	10,00//	100,00//	0,25				1,6	0,25	0,16					_		0,84	1,67	10,00		13,00		SI
D_		LD1	2 x 6,00/	6,00//	60,00//	0,12	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	51,0	1,81	0,08		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
D_		LD2	2 x 6,00/	6,00//	60,00//	0,12	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	65,0	1,86	0,08		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
D_		LD3	2 x 6,00/	6,00//	60,00//	0,12	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	123,0	2,08	0,06		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
D_		LD4	2 x 6,00/	6,00//	60,00//	0,12	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	186,0	2,32	0,05		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
D_		LD5	2 x 6,00/	6,00//	60,00//	0,12	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	256,0	2,59	0,04		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
D_		LD6	2 x 6,00/	6,00//	60,00//	0,12	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	333,0	2,88	0,03		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
D_		LD7	2 x 6,00/	6,00//	60,00//	0,12	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	422,0	3,22	0,03		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
D_		LD8	2 x 6,00/	6,00//	60,00//	0,12	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	512,0	3,56	0,02		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
D_			1P x 6,00 + N/	6,00//	60,00//	0,12			0,0	1,65	0,84								0,05	2,31	6,00		7,80		SI
D_		MD.0	2 x 16,00/	10,00//	100,00//	0,12				2,28	0,12								0,50	2,41	10,00		13,00		SI
D_		ME.0	/	10,00//	100,00//	0,12	FG7R/N07 V-K PE	2(1x10)+(1PE35)	79,0	2,47	0,11		0,02	2,04	0,02	2,04	0,00	25,05	0,25	1,20	10,00	52,08	13,00	75,52	SI
D_			2 x 125,00/	16,00//	54,00//	0,12				2,28	0,12								0,00	0,00	16,00		30,40		SI
D_		MD1	2 x 6,00/	6,00//	60,00//	0,12	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	1,0	2,34	0,12		0,00	0,13	0,00	0,13	0,00	25,05	0,25	1,20	6,00	17,86	7,80	25,89	SI
D_		MD2	/	10,00//	100,00//	0,12	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	1,0	2,28	0,12		0,02	0,13	0,02	0,13	0,00	25,05	0,00	0,00	10,00	17,86	13,00	25,89	SI
D_			1	//	//																			1	
			1	//	//																				
			1	//	//																				
			1	//	//															_					
			1	//	//																				
			1	//	//																			i	

AUTOSTRADA (A14) : BOLOGNA-BARI-TARANTO

TRATTO: BOLOGNA S.LAZZARO - PONTE RIZZOLI

COMPLETAMENTO DELLA COMPLANARE NORD DI BOLOGNA

PROGETTO DEFINITIVO

Oggetto: Tabella verifica Quadri Elettrici	Sistema di distribuzione: TT	Tensione: 400/400 [V]	Frequenza: 50 [Hz]	Commessa: 336/16/MC	Data: Dicembre 2016
Controllo corto circuito a fondo linea: SI	Verifica contemporaneità: SI		Verifica C.d.t. massima sui q	uadri: SI	
Verifica protezione contatti indiretti: SI	Verifica I²t con Icc Max: SI		Verifica C.d.t. con lb: SI		

COL	LEGAMENTO		INTERRUTTOF	RE		1	CAVO					F.A	SE	NEU	JTRO	PROTE	ZIONE		I _b ≤	$I_n \le I_z$		I _f ≤ 1,4	5	
Da	A Rif.	Taglia	Corrente termica	Corrente magnetica	Icc	Tipo cavo	Sezione	Distanza	C.d.t.	IK	IK	l²t	K ² S ²	l²t	K ² S ²	l ² t	K ² S ²	Pot.	l _{b n}	I _{n z}	lz	lf	1.45lz	Test
Quadro	Quadre circuito	In max	regolata	regolata (Irm) /	massima				%	Massima	minima	max		max		max		cont						
			di Fase (Ir) /	Tempo (t2) /	li barratura				Con .	Trifase	Trifase	Inizio		Inizio		Inizio								
			Lungo ritardo (L2) /	Istantaneo (I)					lb	fine linea	fine linea	Linea		Linea		Linea								
			Tempo (t1)																					
		[A]	[A]	[A]	[kA]		[mm²]	[m]	[%]	[kA]	[kA]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[kW]	[A]	[A]	[A]	[A]	[A]	
E_	LE.0	3P x 25,00 + N/	10,00//	100,00//	0,21				1,72	0,21	0,13							0,94	1,67	10,00		13,00		SI
E_	LE1	2 x 6,00/	6,00//	60,00//	0,11	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	42,0	1,9	0,08		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
E_	LE2	2 x 6,00/	6,00//	60,00//	0,11	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	47,0	1,92	0,08		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
E_	LE3	2 x 6,00/	6,00//	60,00//	0,11	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	104,0	2,14	0,06		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
E_	LE4	2 x 6,00/	6,00//	60,00//	0,11	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	166,0	2,38	0,05		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
E_	LE5	2 x 6,00/	6,00//	60,00//	0,11	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	204,0	2,52	0,04		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
E_	LE6	2 x 6,00/	6,00//	60,00//	0,11	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	276,0	2,79	0,03		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
E_	LE7	2 x 6,00/	6,00//	60,00//	0,11	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	354,0	3,09	0,03		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
E_	LE8	2 x 6,00/	6,00//	60,00//	0,11	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	444,0	3,43	0,02		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
E_	LE9	2 x 6,00/	6,00//	60,00//	0,11	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	541,0	3,8	0,02		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
E_		1P x 6,00 + N/	6,00//	60,00//	0,11			0,0	1,78	0,76								0,05	2,31	6,00		7,80		SI
E_	ME.0	2 x 25,00/	10,00//	100,00//	0,11				2,47	0,11								0,25	1,20	10,00		13,00		SI
E_		2 x 125,00/	16,00//	54,00//	0,11				2,47	0,10								0,00	0,00	16,00		30,40		SI
E_	ME1	2 x 6,00/	6,00//	60,00//	0,11	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	1,0	2,53	0,10		0,00	0,13	0,00	0,13	0,00	25,05	0,25	1,20	6,00	17,86	7,80	25,89	SI
E_	ME2	/	10,00//	100,00//	0,11	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	1,0	2,47	0,11		0,02	0,13	0,02	0,13	0,00	25,05	0,00	0,00	10,00	17,86	13,00	25,89	SI
E_		1	//	//																				
		1	//	//																				
		1	//	//																				
		1	//	//																				
		1	//	//																				
		1	//	//																				
		1	//	//																				
		1	//	//																				

9. ALLEGATI - TABELLE DI VERIFICA SVINCOLO IDICE

autostrade per l'italia

COMPLETAMENTO DELLA COMPLANARE NORD DI BOLOGNA

AUTOSTRADA (A14) : BOLOGNA-BARI-TARANTO

PROGETTO DEFINITIVO

TRATTO: BOLOGNA S.LAZZARO - PONTE RIZ	ZOLI				
Oggetto: Tabella verifica Quadri Elettrici	Sistema di distribuzione: TT	Tensione: 400/400 [V]	Frequenza: 50 [Hz]	Commessa: 336/16/MC	Data: Dicembre 2016
Controllo corto circuito a fondo linea: SI	Verifica contemporaneità: SI		Verifica C.d.t. massima sui q	uadri: SI	
Verifica protezione contatti indiretti: SI	Verifica I²t con Icc Max: SI		Verifica C.d.t. con lb: SI		

COLL	EGAMEN	то		INTERRUTTOR	RE		(CAVO					FA	ASE	NEU	TRO	PROTE	ZIONE		I _b ≤	I _n ≤ I _z		I _f ≤ 1,45		
Da	Α	Rif.	Taglia	Corrente termica	Corrente magnetica	lcc	Tipo cavo	Sezione	Distanza	C.d.t.	IK	IK	l²t	K ² S ²	l²t	K ² S ²	l²t	K ² S ²	Pot.	l _{b n}	I _{n z}	lz	l _f 1.	.45lz	Test
Quadro	Quadro	circuito	In max	regolata	regolata (Irm) /	massima				%	Massima	minima	max		max		max		cont						
				di Fase (Ir) /	Tempo (t2) /	li barratura				Con	Trifase	Trifase	Inizio		Inizio		Inizio								
				Lungo	Istantaneo (I)					lb	fine linea	fine linea	Linea		Linea		Linea								
				ritardo (L2) /																					
			FA 3	Tempo (t1)				F2 3		F0/3			r 420 1	. A ² O. I	. A ² O 1	r 420 1	. A ² O 1	r 420 1	71.14.0						
			[A]	[A]	[A] 250,00//	[kA]		[mm ²]	[m]	[%]	[kA]	[kA] 5,87	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[kW]	[A]		[A]	[A] 32,50	[A]	
A_			3P x 25,00 + N/	25,00//		8,26				0,02	7,94								2,28	5,74	25,00				SI
A_		LB.0	4 x 10,00/	10,00//	100,00//	7,94	FG7R/N07 V-K PE	4(1x10)+(1PE35)	482,0	1,6	0,24	0,15	0,01	2,04	0,01	2,04	0,00	25,05	1,78	3,34	10,00	43,90		63,65	SI
A		MB.0	2 x 10,00/	10,00//	100,00//	6,32	FG7R/N07 V-K PE	2(1x10)+(1PE35)	482,0	2,3	0,12		0,01	2,04	0,01	2,04	0,00	25,05	0,50	2,41	10,00	52,08	13,00	75,52	SI
A			1	//	//																				
			1	//	//																				
			1	//	//																				
			1	//	//																				
			1	//	//																				
			1	//	//																				
			1	//	//																				
			1	//	//																		-		
			/	//	//																				
			/	//	//																				
			1	//	//																				
			,	//	"																		-		
			,	//																					
			,	// //	<u>"</u>																	+			
			,	"	//																		\longrightarrow		\longrightarrow
			/	//	//																				
			1	//	//																				
			1	//	//																				
			1	//	//																				
			1	//	//																	T			7
			1	//	//																				

AUTOSTRADA (A14) : BOLOGNA-BARI-TARANTO

TRATTO: BOLOGNA S.LAZZARO - PONTE RIZZOLI

COMPLETAMENTO DELLA COMPLANARE NORD DI BOLOGNA

PROGETTO DEFINITIVO

Oggetto: Tabella verifica Quadri Elettrici	Sistema di distribuzione: TT	Tensione: 400/400 [V]	Frequenza: 50 [Hz]	Commessa: 336/16/MC	Data: Dicembre 2016
Controllo corto circuito a fondo linea: SI	Verifica contemporaneità: SI		Verifica C.d.t. massima sui q	uadri: SI	
Verifica protezione contatti indiretti: SI	Verifica I²t con Icc Max: SI		Verifica C.d.t. con lb: SI		

COLL	LEGAMENTO		INTERRUTTOR	RE			CAVO					FA	ASE .	NEU	TRO	PROTE	ZIONE		I _b ≤	≤ I _n ≤ I _z		I _f ≤ 1,4	5	
Da	A Rif.	Taglia	Corrente termica	Corrente magnetica	Icc	Tipo cavo	Sezione	Distanza	C.d.t.	IK	IK	l²t	K ² S ²	l²t	K ² S ²	l²t	K ² S ²	Pot.	l _{b n}	I _{n z}	lz	lf	1.45lz	Test
Quadro	Quadre circuito	In max	regolata	regolata (Irm) /	massima				%	Massima	minima	max		max		max		cont						
			di Fase (Ir) /	Tempo (t2) /	li barratura				Con	Trifase	Trifase	Inizio		Inizio		Inizio								
			Lungo	Istantaneo (I)					l _b	fine linea	fine linea	Linea		Linea		Linea								
			ritardo (L2) / Tempo (t1)																					
		[A]	[A]	[A]	[kA]		[mm²]	[m]	[%]	[kA]	[kA]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[kW]	[A]	[A]	[A]	[A]	[A]	
B_	LB.0	3P x 16,00 + N/	10,00//	100,00//	0,24				1,6	0,24	0,15							1,78	3,34	10,00		13,00		SI
В_	LC.0	/	10,00//	100,00//	0,24	FG7R/N07 V-K PE	4(1x10)+(1PE35)	87,0	1,74	0,21	0,13	0,02	2,04	0,02	2,04	0,00	25,05	0,84	1,67	10,00	43,90	13,00	63,65	SI
B_		3P x 25,00 + N/	10,00//	100,00//	0,24				1,6	0,24	0,15							0,94	2,38	10,00		13,00		SI
B_	LB1	2 x 6,00/	6,00//	60,00//	0,12	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	51,0	1,82	0,08		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
В_	LB2	2 x 6,00/	6,00//	60,00//	0,12	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	32,0	1,75	0,09		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
В_	LB3	2 x 6,00/	6,00//	60,00//	0,12	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	73,0	1,9	0,07		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
В_	LB4	2 x 6,00/	6,00//	60,00//	0,12	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	113,0	2,05	0,06		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
B_	LB5	2 x 6,00/	6,00//	60,00//	0,12	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	154,0	2,21	0,05		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
B_	LB6	2 x 6,00/	6,00//	60,00//	0,12	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	194,0	2,36	0,05		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
B_	LB7	2 x 6,00/	6,00//	60,00//	0,12	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	235,0	2,52	0,04		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
B_	LB8	2 x 6,00/	6,00//	60,00//	0,12	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	279,0	2,68	0,04		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
B_	LB9	2 x 6,00/	6,00//	60,00//	0,12	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	320,0	2,84	0,03		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
В_		1P x 6,00 + N/	6,00//	60,00//	0,12			0,0	1,66	0,83								0,05	2,31	6,00		7,80		SI
В_	MB.0	2 x 16,00/	10,00//	100,00//	0,12				2,3	0,12								0,50	2,41	10,00		13,00		SI
B_	MC.0	/	10,00//	100,00//	0,12	FG7R/N07 V-K PE	2(1x10)+(1PE35)	87,0	2,5	0,10		0,02	2,04	0,02	2,04	0,00	25,05	0,25	1,20	10,00	52,08	13,00	75,52	SI
В_		2 x 125,00/	16,00//	54,00//	0,12				2,3	0,12								0,00	0,00	16,00		30,40		SI
B_	MB1	2 x 6,00/	6,00//	60,00//	0,12	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	1,0	2,35	0,12		0,00	0,13	0,00	0,13	0,00	25,05	0,25	1,20	6,00	17,86	7,80	25,89	SI
B_	MB2	/	10,00//	100,00//	0,12	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	1,0	2,3	0,12		0,02	0,13	0,02	0,13	0,00	25,05	0,00	0,00	10,00	17,86	13,00	25,89	SI
B_		1	//	//																				
		1	//	//																				
		1	//	//																				
		1	//	//																				
		1	//	//																				
		<i>I</i>	// // // // // // // // // // // // //	// //																			_	

AUTOSTRADA (A14) : BOLOGNA-BARI-TARANTO

TRATTO: BOLOGNA S.LAZZARO - PONTE RIZZOLI

COMPLETAMENTO DELLA COMPLANARE NORD DI BOLOGNA

PROGETTO DEFINITIVO

Oggetto: Tabella verifica Quadri Elettrici	Sistema di distribuzione: TT	Tensione: 400/400 [V]	Frequenza: 50 [Hz]	Commessa: 336/16/MC	Data: Dicembre 2016
Controllo corto circuito a fondo linea: SI	Verifica contemporaneità: SI		Verifica C.d.t. massima sui q	uadri: SI	
Verifica protezione contatti indiretti: SI	Verifica I²t con Icc Max: SI		Verifica C.d.t. con lb: SI		

COLI	EGAMENTO		INTERRUTTO	RE			CAVO					FA	ASE	NEU	ITRO	PROTE	EZIONE		I _b ≤	≤ I _n ≤ I _z		I _f ≤ 1,45	.5	ı
Da	A Rif.	Taglia	Corrente termica	Corrente magnetica	lcc	Tipo cavo	Sezione	Distanza	C.d.t.	IK	IK	l ² t	K ² S ²	l²t	K ² S ²	l²t	K ² S ²	Pot.	l _{b n}	I _{n z}	lz	lf	1.45lz	Test
Quadro	Quadre circuito	In max	regolata	regolata (Irm) /	massima				%	Massima	minima	max		max		max		cont	į	1				i
			di Fase (Ir) /	Tempo (t2) /	li barratura				Con .	Trifase	Trifase	Inizio		Inizio		Inizio			1	1				1
			Lungo ritardo (L2) /	Istantaneo (I)					I _b	fine linea	fine linea	Linea		Linea		Linea			į	1				i
			Tempo (t1)																į	1				i
		[A]	[A]	[A]	[kA]		[mm²]	[m]	[%]	[kA]	[kA]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[kW]	[A]	[A]	[A]	[A]	[A]	
C_	C.0	3P x 25,00 + N/	10,00//	100,00//	0,21				1,74	0,21	0,13							0,84	1,67	10,00		13,00		SI
C_	LC1	2 x 6,00/	6,00//	60,00//	0,1	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	43,0	1,93	0,08		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
C_	LC2	2 x 6,00/	6,00//	60,00//	0,1	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	46,0	1,94	0,08		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
C_	LC3	2 x 6,00/	6,00//	60,00//	0,1	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	86,0	2,09	0,06		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
C_	LC4	2 x 6,00/	6,00//	60,00//	0,1	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	127,0	2,25	0,05		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
C_	LC5	2 x 6,00/	6,00//	60,00//	0,1	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	169,0	2,41	0,05		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
C_	LC6	2 x 6,00/	6,00//	60,00//	0,1	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	209,0	2,56	0,04		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
C_	LC7	2 x 6,00/	6,00//	60,00//	0,1	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	250,0	2,72	0,04		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
C_	LC8	2 x 6,00/	6,00//	60,00//	0,1	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	292,0	2,87	0,03		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
C_		1P x 6,00 + N/	6,00//	60,00//	0,1			0,0	1,8	0,75								0,05	2,31	6,00		7,80		SI
C_	MC.0	2 x 25,00/	10,00//	100,00//	0,1				2,5	0,10								0,25	1,20	10,00		13,00		SI
C_		2 x 125,00/	16,00//	54,00//	0,1				2,5	0,10								0,00	0,00	16,00		30,40		SI
C_	MC1	2 x 6,00/	6,00//	60,00//	0,1	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	1,0	2,57	0,10		0,00	0,13	0,00	0,13	0,00	25,05	0,25	1,20	6,00	17,86	7,80	25,89	SI
C_	MC2	/	10,00//	100,00//	0,1	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	1,0	2,5	0,10		0,02	0,13	0,02	0,13	0,00	25,05	0,00	0,00	10,00	17,86	13,00	25,89	SI
C_		1	//	//															igsquare	,				
		1	//	//																				
		1	//	//																				
		1	//	//																1				
		1	//	//																				
		1	//	//																				
		1	//	//																				
		1	//	//																				
		1	//	//																				<u>. </u>

10. ALLEGATI - TABELLE DI VERIFICA SVINCOLO E BARRIERA DI PONTE RIZZOLI

autostrade per l'italia COMPLETAMENTO DELLA COMPLANARE NORD DI BOLOGNA **PROGETTO DEFINITIVO** AUTOSTRADA (A14) : BOLOGNA-BARI-TARANTO TRATTO: BOLOGNA S.LAZZARO - PONTE RIZZOLI Tensione: 400/400 [V] Oggetto: Tabella verifica Quadri Elettrici Sistema di distribuzione: TT Frequenza: 50 [Hz] Commessa: 336/16/MC Data: Dicembre 2016 Controllo corto circuito a fondo linea: SI Verifica contemporaneità: SI Verifica C.d.t. massima sui quadri: SI Verifica I²t con Icc Max: SI Verifica C.d.t. con lb: SI Verifica protezione contatti indiretti: SI

COL	LEGAMENTO		INTERRUTTO	RE			CAVO					FA	ASE	NEU	ITRO	PROTE	ZIONE		l _b :	$\leq I_n \leq I_z$		I _f ≤ 1,4	<i>,</i> 5	
Da Quadro	A Rif. Quadre circuito	Taglia In max	Corrente termica regolata di Fase (Ir) / Lungo	Corrente magnetica regolata (Irm) / Tempo (t2) / Istantaneo (I)	Icc massima Ii barratura	Tipo cavo	Sezione	Distanza	C.d.t. % Con I _b	IK Massima Trifase fine linea	IK minima Trifase fine linea	l ² t max Inizio Linea	K²S²	l²t max Inizio Linea	K²S²	l ² t max Inizio Linea	K²S²	Pot. cont	l _{b n}	Inz	lz	lr	1.45l _z	Test
		[A]	ritardo (L2) / Tempo (t1) [A]	[A]	[kA]		[mm²]	[m]	[%]	[kA]	[kA]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[kW]	[A]	[A]	[A]	[A]	[A]	
A_		3P x 25,00 + N/	25,00//	250,00//	8,26				0,01	7,94	5,87							1,19	2,86	25,00		32,50		SI
A_	LB.0	4 x 10,00/	10,00//	100,00//	7,94	FG7R/N07 V-K PE	4(1x4)+(1PE35)	220,0	1,59	0,21	0,13	0,01	0,33	0,01	0,33	0,00	25,05	0,94	2,86	10,00	26,04	13,00	37,76	SI
A_	MB.0	2 x 10,00/	10,00//	100,00//	6,32	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	220,0	2,14	0,06		0,01	0,13	0,01	0,13	0,00	25,05	0,25	1,20	10,00	25,30	13,00	36,68	SI
A_		1	//	//															·					
		1	//	//															·					
		1	//	//															·					
		1	//	//															·					
		1	//	//															·					
		1	//	//															' ' ,	J				
		1	//	//															' ' ,	J				
		1	//	//															' ' ,	J				
		1	//	//															' ' ,	J				
		1	//	//															i					
		1	//	//															<u> </u>	ļ				
		1	//	//															<u>.</u>					
		1	//	//															<u>.</u>					
		1	//	//															<u>.</u>					
		1	//	//																				
		1	//	//															ļ	<u> </u>	L'	<u> </u>		
		1	//	//															<u> </u>					
		1	//	//																				
		1	//	//																				
		1	//	//																	1		,	

AUTOSTRADA (A14) : BOLOGNA-BARI-TARANTO

TRATTO: BOLOGNA S.LAZZARO - PONTE RIZZOLI

COMPLETAMENTO DELLA COMPLANARE NORD DI BOLOGNA

PROGETTO DEFINITIVO

Oggetto: Tabella verifica Quadri Elettrici	Sistema di distribuzione: TT	Tensione: 400/400 [V]	Frequenza: 50 [Hz]	Commessa: 336/16/MC	Data: Dicembre 2016
Controllo corto circuito a fondo linea: SI	Verifica contemporaneità: SI		Verifica C.d.t. massima sui q	uadri: SI	
Verifica protezione contatti indiretti: SI	Verifica I²t con Icc Max: SI		Verifica C.d.t. con lb: SI		

COLL	EGAMEN	то		INTERRUTTOF	RE		(CAVO					F.A	ASE	NEU	ITRO	PROTE	ZIONE		I _b ≤	I _n ≤ I _z		I _f ≤ 1,45	j	
Da	Α	Rif.	Taglia	Corrente termica	Corrente magnetica	lcc	Tipo cavo	Sezione	Distanza	C.d.t.	IK	IK	l²t	K ² S ²	l²t	K ² S ²	l²t	K ² S ²	Pot.	l _{b n}	I _{n z}	lz	lf	1.45lz	Test
Quadro	Quadro	circuito	In max	regolata	regolata (Irm) /	massima				%	Massima	minima	max		max		max		cont						
				di Fase (Ir) /	Tempo (t2) /	li barratura				Con	Trifase	Trifase	Inizio		Inizio		Inizio								
				Lungo ritardo (L2) /	Istantaneo (I)					l _b	fine linea	fine linea	Linea		Linea		Linea								
				Tempo (t1)																					
			[A]	[A]	[A]	[kA]		[mm²]	[m]	[%]	[kA]	[kA]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[kW]	[A]	[A]	[A]	[A]	[A]	
В_	1	LB.0	3P x 25,00 + N/	10,00//	100,00//	0,21				1,59	0,21	0,13							0,94	2,86	10,00		13,00		SI
В_	1	LB1	2 x 6,00/	6,00//	60,00//	0,1	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	51,0	1,8	0,07		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
В_	1	LB2	2 x 6,00/	6,00//	60,00//	0,1	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	31,0	1,73	0,08		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
В_	1	LB3	2 x 6,00/	6,00//	60,00//	0,1	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	79,0	1,91	0,06		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
В_	1	LB4	2 x 6,00/	6,00//	60,00//	0,1	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	136,0	2,12	0,05		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
В_	1	LB5	2 x 6,00/	6,00//	60,00//	0,1	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	188,0	2,32	0,04		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
В_	1	LB6	2 x 6,00/	6,00//	60,00//	0,1	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	238,0	2,51	0,04		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
В_	1	LB7	2 x 6,00/	6,00//	60,00//	0,1	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	288,0	2,7	0,03		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
В_	1	LB8	2 x 6,00/	6,00//	60,00//	0,1	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	342,0	2,91	0,03		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
В_	1	LB9	2 x 6,00/	6,00//	60,00//	0,1	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	393,0	3,1	0,03		0,00	0,13	0,00	0,13	0,00	25,05	0,10	0,48	6,00	17,86	7,80	25,89	SI
В_			1P x 6,00 + N/	6,00//	60,00//	0,1			0,0	1,65	0,75	-							0,05	2,31	6,00		7,80		SI
В_	ı	MB.0	2 x 25,00/	10,00//	100,00//	0,06				2,14	0,06								0,25	1,20	10,00		13,00		SI
В_			2 x 125,00/	16,00//	54,00//	0,06				2,14	0,06								0,00	0,00	16,00		30,40		SI
В_	ı	MB1	2 x 6,00/	6,00//	60,00//	0,06	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	1,0	2,2	0,06		0,01	0,13	0,01	0,13	0,00	25,05	0,25	1,20	6,00	17,86	7,80	25,89	SI
В_	1	MB2	/	10,00//	100,00//	0,06	FG7R/N07 V-K PE	2(1x2,5)+(1PE35)	1,0	2,14	0,06		0,00	0,13	0,00	0,13	0,00	25,05	0,00	0,00	10,00	17,86	13,00	25,89	SI
В_			1	//	//																				
			1	//	//																				
			1	//	//																				
			1	//	//																				
			1	//	//																				
			1	//	//																				
			1	//	//																				
			/	//	//																				

AUTOSTRADA (A14) : BOLOGNA-BARI-TARANTO

TRATTO: BOLOGNA S.LAZZARO - PONTE RIZZOLI

COMPLETAMENTO DELLA COMPLANARE NORD DI BOLOGNA

PROGETTO DEFINITIVO

TOTAL NO. BOLOGIAN S.B. 227 NO. TOTAL NO.	200				
Oggetto: Tabella verifica Quadri Elettrici	Sistema di distribuzione: TT	Tensione: 230/230 [V]	Frequenza: 50 [Hz]	Commessa: 336/16/MC	Data: Dicembre 2016
Controllo corto circuito a fondo linea: SI	Verifica contemporaneità: SI		Verifica C.d.t. massima sui q	uadri: SI	
Verifica protezione contatti indiretti: SI	Verifica I²t con Icc Max: SI		Verifica C.d.t. con lb: SI		

COL	EGAMEN	ITO		INTERRUTTO	RE			CAVO					1	FASE	NEU	JTRO	PROTE	ZIONE		I _b ≤	$ I_n \leq I_z $		I _f ≤ 1,4	15	i l
Da	Α	Rif.	Taglia	Corrente termica	Corrente magnetica	lcc	Tipo cavo	Sezione	Distanza	C.d.t.	IK	IK	l²t	K ² S ²	l²t	K ² S ²	l²t	K ² S ²	Pot.	l _{b n}	I _{n z}	lz	lf	1.45lz	Test
Quadro	Quadro	circuito	In max	regolata	regolata (Irm) /	massima				%	Massima	minima	max		max		max		cont					, ,	i l
				di Fase (Ir) /	Tempo (t2) /	li barratura				Con	Trifase	Trifase	Inizio		Inizio		Inizio							, ,	i l
				Lungo	Istantaneo (I)					Ib	fine linea	fine linea	Linea		Linea		Linea							, '	i l
				ritardo (L2) /																				, ,	i l
			FA 3	Tempo (t1)	FA 1			F 2 1	r1	F0/3	FI-A 3	FI- A 7	F A20 1	F A20 1	F A20 1	F A20 1	F A2O 1	F A2O 1	FI-VACT						
			[A]	[A]	[A] 100,00//	[kA]		[mm²]	[m]	[%] 0,13	[kA] 3,04	[kA]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[kW]	[A] 5,98	[A] 10,00	[A]	[A] 13,00	[A]	SI
P_ _				1						-											-				
P_			1P x 10,00 + N/	10,00//	100,00//	3,04				0,15	2,47		-						0,59	2,87	10,00		13,00		SI
P_		LP2-3	/	10,00//	100,00//	2,47	FG7R	2(1x2,5)	14,0	0,26	0,74		0,00	0,13	0,00	0,13			0,20	0,96	10,00	25,30	13,00	36,68	
P_		LP4-5-6-7		10,00//	100,00//	2,47	FG7R	2(1x2,5)	43,0	0,81	0,30		0,00	0,13	0,00	0,13			0,40	1,91	10,00	25,30	13,00	36,68	SI
P_		LP1-11-12	1P x 10,00 + N/	10,00//	100,00//	3,04	FG7R	2(1x2,5)	9,0	0,36	0,99		0,00	0,13	0,00	0,13			0,59	2,87	10,00	23,81	13,00	34,52	SI
P_			1P x 10,00 + N/	10,00//	100,00//	3,04			0,0	0,15	1,91								0,05	2,31	10,00		13,00		SI
P_			1	//	//																			, ,	i l
			1	//	//																				
			1	//	//																			i ,	
			1	//	//																				
			1	//	//																				
			1	//	//																				
			,	"	"																				
			,	"	"																			$\overline{}$	
			,	"	"						-													\vdash	
			7	"	//						1		1												\vdash
			/	//	//																			 '	—
			1	//	//																			⊢——'	
			1	//	//																			<u> </u>	
			1	//	//																			<u> </u>	
			1	//	//																		T	<u> </u>	ш
			1	//	//											_	_							_ 	
			1	//	//																				i
			/	//	//						1													i	i
																								'	(

AUTOSTRADA (A14) : BOLOGNA-BARI-TARANTO

TRATTO: BOLOGNA S.LAZZARO - PONTE RIZZOLI

COMPLETAMENTO DELLA COMPLANARE NORD DI BOLOGNA

PROGETTO DEFINITIVO

TOTAL BOLDON S.B. ZZZANO	2021				
Oggetto: Tabella verifica Quadri Elettrici	Sistema di distribuzione: TT	Tensione: 230/230 [V]	Frequenza: 50 [Hz]	Commessa: 336/16/MC	Data: Dicembre 2016
Controllo corto circuito a fondo linea: SI	Verifica contemporaneità: SI		Verifica C.d.t. massima sui q	uadri: SI	
Verifica protezione contatti indiretti: SI	Verifica I²t con Icc Max: SI		Verifica C.d.t. con lb: SI		

,45
1.45l _z Test
] [A]
) SI
0 25,89 SI
36,68 SI
36,68 SI
25,89 SI
25,89 SI
36,68 SI
25,89 SI
36,68 SI
25,89 SI
3,00

AUTOSTRADA (A14) : BOLOGNA-BARI-TARANTO

TRATTO: BOLOGNA S.LAZZARO - PONTE RIZZOLI

COMPLETAMENTO DELLA COMPLANARE NORD DI BOLOGNA

PROGETTO DEFINITIVO

TRATTO: BOLOGNA S.LAZZARO – PONTE RIZ	ZULI				
Oggetto: Tabella verifica Quadri Elettrici	Sistema di distribuzione: TT	Tensione: 230/230 [V]	Frequenza: 50 [Hz]	Commessa: 336/16/MC	Data: Dicembre 2016
Controllo corto circuito a fondo linea: SI	Verifica contemporaneità: SI		Verifica C.d.t. massima sui q	uadri: SI	
Verifica protezione contatti indiretti: SI	Verifica I ² t con Icc Max: SI		Verifica C.d.t. con lb: SI		

COL	COLLEGAMENTO INTERRUTTORE Da A Rif. Taglia Corrente termica Corrente magnetica Icc			CAVO					FA	SE	NEU	JTRO	PROTEZ	ZIONE		I _b ≤	$I_n \le I_z$		I _f ≤ 1,4	5	1			
Da Quadro	A Rif. Quadre circuito	Taglia In max	Corrente termica regolata di Fase (Ir) /	Corrente magnetica regolata (Irm) / Tempo (t2) /	a Icc massima Ii barratura	Tipo cavo	Sezione	Distanza	C.d.t. % Con	IK Massima Trifase	IK minima Trifase	l²t max Inizio	K²S²	l ² t max Inizio	K²S²	l²t max Inizio	K²S²	Pot. cont	l _{b n}	I _{n z}	lz	lf	1.45lz	Test
			Lungo ritardo (L2) / Tempo (t1)	Istantaneo (I)					l _b	fine linea	fine linea	Linea		Linea		Linea								
		[A]	[A]	[A]	[kA]		[mm²]	[m]	[%]	[kA]	[kA]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[kW]	[A]	[A]	[A]	[A]	[A]	
LP2_		/	10,00//	100,00//	0,74				0,26	0,74								0,20	0,96	10,00		13,00		SI
LP2_	LP3	/	10,00//	100,00//	0,74	FG7R	2(1x2,5)	49,0	0,44	0,21		0,00	0,13	0,00	0,13			0,10	0,48	10,00	17,86	13,00	25,89	SI
LP2_	LP2	/	10,00//	100,00//	0,74	FG7R	2(1x2,5)	10,0	0,3	0,49		0,00	0,13	0,00	0,13			0,10	0,48	10,00	17,86	13,00	25,89	SI
LP2_		1	//	//																				<u> </u>
		1	//	//																				,
		1	//	//																				
		1	//	//																				
		1	//	//																				
		1	//	//																				
		1	//																					
		1	//																					i
			- //	//																				<u> </u>
		1		//																				
		1																						
		1																						
		1		"																				
		1	<i>"</i>																					
		1	<i>"</i>	"																				
		1	"																					
		,	"	"																		\longrightarrow	\longrightarrow	
		· /	//																					
			"																			-	-	
L		•		L."										L]									

AUTOSTRADA (A14) : BOLOGNA-BARI-TARANTO

TRATTO: BOLOGNA S.LAZZARO – PONTE RIZZOLI

COMPLETAMENTO DELLA COMPLANARE NORD DI BOLOGNA

PROGETTO DEFINITIVO

TRATTO. BOLOGNA S.LAZZARO TONTE RIZ	201				
Oggetto: Tabella verifica Quadri Elettrici	Sistema di distribuzione: TT	Tensione: 230/230 [V]	Frequenza: 50 [Hz]	Commessa: 336/16/MC	Data: Dicembre 2016
Controllo corto circuito a fondo linea: SI	Verifica contemporaneità: SI		Verifica C.d.t. massima sui q	uadri: SI	
Verifica protezione contatti indiretti: SI	Verifica I²t con Icc Max: SI		Verifica C.d.t. con lb: SI		

COL	LEGAMENTO		INTERRUTTO	RE			CAVO					F	ASE	NEU	ITRO	PROTE	ZIONE		l _b :	≤ I _n ≤ I _z		I _f ≤ 1,4	.5	1
Da	A Rif.	Taglia	Corrente termica	Corrente magnetica	Icc	Tipo cavo	Sezione	Distanza	C.d.t.	IK	IK	l²t	K ² S ²	l²t	K ² S ²	l²t	K ² S ²	Pot.	l _{b n}	I _{n z}	lz	lf	1.45lz	Test
Quadro	Quadre circuito	In max	regolata	regolata (Irm) /	massima				%	Massima	minima	max		max		max		cont					, ,	1
			di Fase (Ir) /	Tempo (t2) /	li barratura				Con	Trifase	Trifase	Inizio		Inizio		Inizio							, ,	1
			Lungo	Istantaneo (I)					lь	fine linea	fine linea	Linea		Linea		Linea							, ,	1
			ritardo (L2) / Tempo (t1)																				, ,	1
		[A]	[A]	[A]	[kA]		[mm²]	[m]	[%]	[kA]	[kA]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[kW]	[A]	[A]	[A]	[A]	[A]	1
LP4_		/	10,00//	100,00//	0,3				0,81	0,30								0,40	1,91	10,00		13,00		SI
LP4_	LP4	/	10,00//	100,00//	0,3	FG7R	2(1x2,5)	10,0	0,85	0,25		0,00	0,13	0,00	0,13			0,10	0,48	10,00	17,86	13,00	25,89	SI
LP4_	Pozzetto L	/	10,00//	100,00//	0,3	FG7R	2(1x2,5)	22,0	1,06	0,21		0,00	0,13	0,00	0,13			0,30	1,43	10,00	25,30	13,00	36,68	SI
LP4_	LP7	/	10,00//	100,00//	0,21	FG7R	2(1x2,5)	38,0	1,21	0,13		0,00	0,13	0,00	0,13			0,10	0,48	10,00	17,86	13,00	25,89	SI
LP4_	Pozzetto L	/	10,00//	100,00//	0,21	FG7R	2(1x2,5)	10,0	1,14	0,18		0,00	0,13	0,00	0,13			0,20	0,96	10,00	25,30	13,00	36,68	SI
LP4_	LP6	/	10,00//	100,00//	0,18	FG7R	2(1x2,5)	50,0	1,33	0,11		0,00	0,13	0,00	0,13			0,10	0,48	10,00	17,86	13,00	25,89	SI
LP4_	LP5	/	10,00//	100,00//	0,18	FG7R	2(1x2,5)	10,0	1,18	0,16		0,00	0,13	0,00	0,13			0,10	0,48	10,00	17,86	13,00	25,89	SI
LP4_		1	//	//																				
		1	//	//																				ı————
		1	//	//																				
		1	//	//																				
		1	//	//																				ı————
		1	//	//																				<u>. </u>
		1	//	//																				
		1	//	//																				
		1	//	//																				ı————
		1	//	//																				
		1	//	//																				
		1	//	//																				
		1	//	//																				
		1		//																				
		1	//	//																				
		1	//	//																				