

ANAS S.p.A.

Compartimento della Viabilita' per la Toscana

ITINERARIO INTERNAZIONALE E78 S.G.C. GROSSETO - FANO ADEGUAMENTO A 4 CORSIE NEL TRATTO GROSSETO - SIENA (S.S. 223 "DI PAGANICO") DAL KM 30+040 AL KM 41+600 - LOTTI 5, 6, 7, 8

MONITORAGGIO AMBIENTALE

L'ASSOCIAZIONE TEMPORANEA DI IMPRESE

STRABAG

L'ESECUTORE DEL MONITORAGGIO

IL DIRETTORE TECNICO

L'APPALTATORE
Geom. Roberto Manna

IL RESPONSABILE AMBIENTALE Dott. Ing. Claudio Lamberti

ANAS S.p.A. - IL DIRETTORE DEI LAVORI Dott. Ing. Stefano Sestini

ANAS S.p.A. - IL RESPONSABILE DEL PROCEDIMENTO

Dott. Ing. Barbara Di Franco

TITOLO ELABORATO

SCALA

MONITORAGGIO AMBIENTALE CORSO D'OPERA LE RELAZIONE SEMESTRALE PERIODO AGOSTO 2013 - GENNAIO 2015

CODICE ELABORATO T00IA00MOARE49 A

Rev.	Data	Descrizione	Redatto	Approvato
Α	Feb. 2015	Emissione	ambiente s.c.	Ing. Claudio Lamberti

INDICE

1.	INTRO	DUZIONE	2
2.	MONI	TORAGGIO COMPONENTE ACQUE SOTTERRANEE	3
	2.1	DESCRIZIONE DELLE ATTIVITÀ DI MONITORAGGIO	3
	2.2	CONFRONTO CON LE CAMPAGNE PRECEDENTI	5
	2.2.1	PIEZOMETRI	5
	2.2.2	SORGENTI	12
	2.3	CONCLUSIONI SUL MONITORAGGIO DELLA MATRICE ACQUE SOTTERRANEE	42
3.	MONI	TORAGGIO COMPONENTE IDRICO SUPERFICIALE	48
	3.1	DESCRIZIONE DELLE ATTIVITÀ DI MONITORAGGIO	48
	3.2	CONFRONTO CON LE CAMPAGNE PRECEDENTI	49
	3.2.1	MISURE PORTATA E CHIMICO-FISICHE IN SITO	49
	3.2.2	ANALISI CHIMICO-BATTERIOLOGICHE	59
	3.2.3	ANALISI CHIMICHE DI LABORATORIO MENSILI	70
	3.2.4	STAR-ICMI	81
	3.2.5	ECOSISTEMI (IFF)	84
	3.2.6	MONITORAGGIO IN CONTINUO TORRENTE FARMA	87
	3.2.7	RISULTATI CENTRALINE	87
	3.3	CONCLUSIONI SUL MONITORAGGIO DELLA MATRICE IDRICO SUPERFICIALE	99
4.	MONI	TORAGGIO COMPONENTE ATMOSFERA	104
	4.1	DESCRIZIONE DELLE ATTIVITÀ DI MONITORAGGIO	104
	4.2	CONFRONTO CON LE CAMPAGNE PRECEDENTI	106
	4.3	CONCLUSIONI SUL MONITORAGGIO DELLA MATRICE ATMOSFERA	112
5.	MONI	TORAGGIO COMPONENTE FAUNA	113
	5.1	DESCRIZIONE DELLE ATTIVITÀ DI MONITORAGGIO	113
	5.2	CONFRONTO CON LE CAMPAGNE PRECEDENTI	115
	5.3	CONCLUSIONI SUL MONITORAGGIO DELLA MATRICE FAUNA	118
6.	MONI	FORAGGIO COMPONENTE RUMORE	125
	6.1	DESCRIZIONE DELLE ATTIVITÀ DI MONITORAGGIO	125
	6.2	RISULTATI E CONFRONTI CON LE CAMPAGNE ESEGUITE	126
	6.3	CONCLUSIONI SUL MONITORAGGIO DELLA MATRICE RUMORE	135
7.	MONI	TORAGGIO COMPONENTE STATO FISICO DEI LUOGHI E PAESAGGIO	138
	7.1	DESCRIZIONE DELLE ATTIVITÀ DI MONITORAGGIO	138
	7.2	CONCLUSIONI SUL MONITORAGGIO DELLA MATRICE STATO FISICO DEI LUOGHI	139
8.	MONI	TORAGGIO COMPONENTE VEGETAZIONE	144
	8.1	DESCRIZIONE DELLE ATTIVITÀ DI MONITORAGGIO	144
	8.2	RISULTATI E CONFRONTI CON LE CAMPAGNE ESEGUITE	146
	83	CONCLUSIONI SUL MONITORAGGIO DELLA MATRICE VEGETAZIONE	151

1. INTRODUZIONE

La presente relazione contiene la sintesi dei risultati ottenuti nel periodo di monitoraggio ambientale delle campagne di indagine effettuate nella fase di corso d'opera per il periodo da Agosto 2013 a Gennaio 2015 per i lavori di ammodernamento della S.S. 223 Itinerario internazionale E78 / S.G.C. Grosseto – Fano; adeguamento a 4 corsie nel tratto Grosseto – Siena (S.S. 223 "di Paganico") dal km 30+400 al km 41+600 – lotti 5, 6, 7, 8.

Le campagne di monitoraggio sono state eseguite secondo quanto indicato dal piano di monitoraggio ambientale e legate alla pianificazione di lavoro del cantiere, coordinando le attività con riunioni con cadenza mensile dove si rapportavano le lavorazioni previste con i possibili aspetti ambientali coinvolti.

Le componenti riportate nel documento sono quelle per cui si riscontravano possibili impatti dovuti alle lavorazioni del cantiere. In dettaglio le matrici indagate in questo periodo sono state:

- · acque sotterranee;
- acque superficiali;
- · atmosfera;
- fauna;
- rumore;
- · stato fisico dei luoghi e paesaggio;
- vegetazione.

Scopo della presente relazione è quello di riportare la sintesi dei risultati delle matrici elencate in precedenza e procedere ad analizzare i dati ottenuti durante i rilievi effettuati nella fase di corso d'opera finora condotta.

Per il dettaglio dei risultati del monitoraggio si rimanda ai report trimestrali nei quali sono riportati in forma di tabellare e grafica le risultanze e gli andamenti temporali. Nei report trimestrali sono inoltre raccolte le schede di monitoraggio relative alle indagini effettuate.

2. MONITORAGGIO COMPONENTE ACQUE SOTTERRANEE

Il monitoraggio della componete acque sotterrane ha lo scopo di controllo volto all'individuazione di alcuni fenomeni non prevenibili ed accidentali causati direttamente o indirettamente dalle attività di cantiere.

2.1 DESCRIZIONE DELLE ATTIVITÀ DI MONITORAGGIO

Il piano di monitoraggio individua 18 sorgenti comprese in una fascia di ampiezza di 1 km da entrambi i lati del tracciato stradale (9 sorgenti non termali, 8 termali, di cui 3 nel Comune di Civitella Paganico e 5 nel Comune di Monticiano e 1 pozzo termale nel Comune di Monticiano).

Di seguito un elenco sintetico delle sorgenti:

- Sorgente n. 1 (Leoncini) in località P. Loncini, Civitella Paganico
- Sorgente n. 2 (dell'Ontaneta) in località Poggio la Torretta, Civitella Paganico
- Sorgente n. 3 (delle Caldanelle) in località Caldanelle, Civitella Paganico
- Sorgente n. 4 in località Terme di Petriolo, Civitella Paganico
- Sorgente n. 5 in località Terme di Petriolo, Monticiano
- Sorgente n. 6 in località Bagni di Petriolo, Civitella Paganico
- Sorgente n. 7 in località Bagni di Petriolo, Civitella Paganico
- Sorgente n. 8 in località Bagni di Petriolo, Monticiano
- Sorgente n. 9 (Pozzo di Petriolo) in località Bagni di Petriolo, Monticano
- Sorgente n. 10 in località Bagni di Petriolo, Monticiano
- Sorgente n. 11 in località Bagni di Petriolo, Monticiano
- Sorgente n. 12 in località Bagni di Petriolo, Monticiano
- Sorgente n. 13 in località Bagni di Petriolo, Monticiano
- Sorgente (putizza) n. 14 in località Bagni di Petriolo, Monticiano
- Sorgente (putizza) n. 15 in località Bagni di Petriolo, Monticiano
- Sorgente (putizza) n. 16 in località Bagni di Petriolo, Monticiano
- Sorgente n. 17 in località Bagni di Petriolo, Monticiano
- Sorgente n. 18 in località Il Palazzetto, Monticiano

Inoltre è previsto il monitoraggio, dal punto di vista analitico, dei seguenti piezometri:

- Piezometro PN01 in località Valle del Farma
- Piezometro PN02 in località Valle del Farma
- Piezometro PN03 imbocco Galleria Casal di Pari
- Piezometro PN04 imbocco Galleria Casal di Pari

Le frequenze del monitoraggio, come indicato nel PMA, è di cadenza o mensile o bimensile a seconda del punto considerato e del tipo di indagine in previste. L'inizio del monitoraggio di ogni punto è stato valutato in funzione dell'avvio di significative attività di cantiere in relazione al possibile impatto sulla matrice.

Di seguito i punti di monitoraggio previsti nel PMA.

Figura 1 – Planimetria generale – acque sotterranee / Piezometri

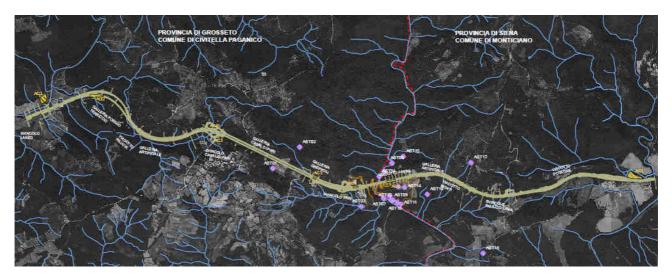


Figura 2 – Planimetria generale – acque sotterranee / Sorgenti

2.2 CONFRONTO CON LE CAMPAGNE PRECEDENTI

Di seguito si riportano i confronti significativi con i limiti di legge e con le campagne precedenti.

2.2.1 PIEZOMETRI

Piezometro n.1 - PN01

			,	AST - Acqu	e sotterran	ee - [PA.PL	Ξ.132]				
Parametri	U.M.	Limite di	AO	СО	СО	СО	СО	CO	СО	СО	CO
misurati in situ	O.IVI.	Legge	04/12/12	29/11/13	22/01/14	19/03/14	25/05/14	16/07/14	24/09/14	27/11/14	23/01/15
temperatura aria	°C		9.00	7	8	19.5	24	28	15.5	15.8	11.2
temperatura acqua	°C		14.24	14.1	11.1	13.8	16	16.4	15.2	13.6	12.9
conducibilità elettrica	μS/cm ²		916	967	970	850	1701	590	1752	1723	1821
potenziale redox	mV		84.60	132	93	61	79.5	64.1	199	128	130
рН	-		8.03	5.8	5.75	5.91	5.89	7.4	6.06	5.98	6.01
ossigeno disciolto	%		76.00	71.5	3.2	9.9	12.8	15.8	22.9	17.5	29
ossigeno disciolto	ppm		7.84	7.21	0.35	1.01	1.22	1.49	2.24	1.8	1.8
livello freatimetrico (b.p.)	m	-	12.46	11.31	12.9	11.5	12.5	11.33	11.5	11.54	11.2
fondo piezometro (b.p.)	m		n.r.	n.r.					30	30	30

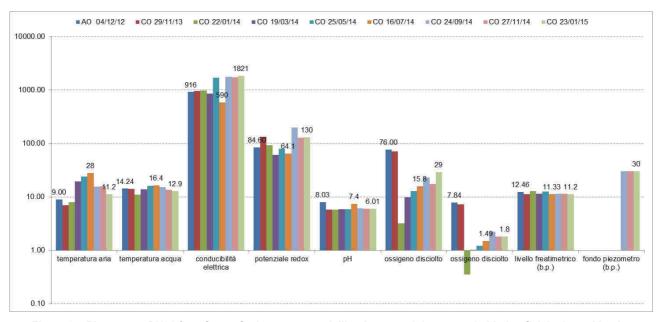


Figura 3 – Piezometro PN01 / confronto fra le campagne dell'andamento dei parametri chimico fisici misurati in situ

			AS	ST - Acque	sotterrane	e - [PA.PE	.132]				
Parametro /	U.M.	Limite di	AO	СО	СО	со	СО	СО	со	со	со
Analita	U.IVI.	Legge	04/12/12	29/11/13	22/01/14	19/03/14	25/05/14	16/07/14	24/09/14	27/11/14	23/01/15
Ossidabilità	mg/l O ₂		0.38	1.1	1.3	0.8	0.8	0.96	1.3	1.4	0.8
Cloruri	mg/l		43.5	65	62	61	63	16	n.a.	58	55
Nitrati	mg/l		6.82	1.1	0.12	0.41	0.13	< 0.1	n.a.	< 0.1	< 0.1
Durezza totale	mg/l CaCO₃		527	656	610	700	350	860	600	1400	660
Nitriti	μg/l	500	<rl< td=""><td>< 50</td><td>< 50</td><td>< 50</td><td>< 50</td><td>< 50</td><td>n.a.</td><td>< 50</td><td>350</td></rl<>	< 50	< 50	< 50	< 50	< 50	n.a.	< 50	350
Grassi e olii animali/vegetali	mg/l		<0.5	< 10	< 10	< 10	< 10	< 10	n.a.	< 10	< 10
Oli minerali	mg/l			< 10	< 10	< 10	< 10	< 10	n.a.	< 10	< 10
Idrocarburi totali	mg/l		0.7	< 10	< 10	< 10	< 10	< 10	n.a.	< 10	< 10
Idrocarburi come n-esano	μg/l	350		583	1900	260	790	190	n.a.	59	62
Azoto amm. (come NH4)	mg/l		<rl< td=""><td>0.43</td><td>0.54</td><td>< 0.1</td><td>0.11</td><td>< 0.1</td><td>< 0,1</td><td>2.3</td><td>2.6</td></rl<>	0.43	0.54	< 0.1	0.11	< 0.1	< 0,1	2.3	2.6
Materiali sedimentabili	ml/l			< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	n.a.	< 0,1	< 0,1
Alcalinità	mg/l CaCO₃		<rl< td=""><td>625</td><td>570</td><td>630</td><td>270</td><td>640</td><td>530</td><td>990</td><td>620</td></rl<>	625	570	630	270	640	530	990	620
Conta di Coliformi Totali	ufc/100 ml		360	0	13	0	0	180	2700	150	16
Conta di Coliformi Fecali	ufc/100 ml		17	0	0	0	0	0	0	0	0

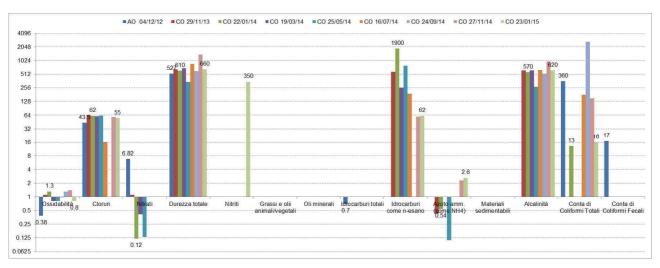


Figura 4 – Piezometro PN01 / andamento degli parametri chimico fisici e biologici valutati in laboratorio

Piezometro n.2 - PN02

	AST - Acque sotterranee - [PA.PE.132] Parametri Limite AQ CQ CQ													
Parametri misurati in	U.M.	Limite di	AO	СО										
situ	U.IVI.	Legge	04/12/12	29/11/13	22/01/14	19/03/14	25/05/14	16/07/14	24/09/14	26/11/14	23/01/15			
temperatura aria	°C		9.1	7	10	19.5	24	29	15.5	16	11			
temperatura acqua	°C		15.06		13.1	13.1	16.5	16.2	15.4	16.7	12.8			
conducibilità elettrica	μS/cm ²	-	468		494	530	559	1455	703	607	580			
potenziale redox	mV		90.50		11	20	31	149.7	86.4	8.7	10.1			
рН	-		8.22		7.75	7.49	7.39	6.19	7.19	6.99	7.02			
ossigeno disciolto	%		87.20		14.9	12.9	20.1	20.5	22.5	31.6	17.2			
ossigeno disciolto	ppm		8.71		1.55	1.35	1.89	1.95	2.19	2.95	3.05			
livello freatimetrico (b.p.)	m		7.18		6.91	10.5	11.68	11.17	11.6	10.42	10.35			
fondo piezometro (b.p.)	m		n.r.						35	35	35			

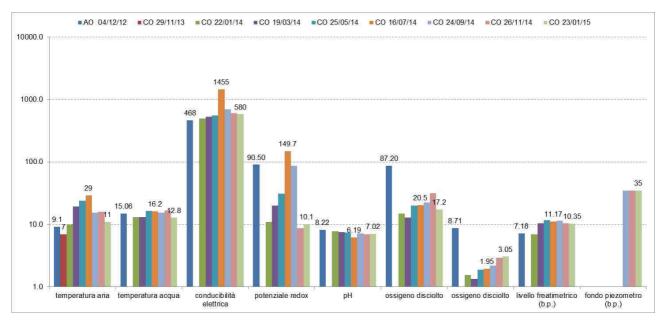


Figura 5 – Piezometro PN02 / confronto fra le campagne dell'andamento dei parametri chimico fisici misurati in situ

			,	AST - Acqu	e sotterran	ee - [PA.PE	E.132]				
Parametro /	U.M.	Limite di	AO	СО	СО	СО	СО	СО	СО	со	СО
Analita	U.IVI.	Legge	04/12/12	29/11/13	22/01/14	19/03/14	25/05/14	16/07/14	24/09/14	26/11/14	23/01/15
Ossidabilità	mg/l O ₂	1	0.39	-	0.96	0.64	0.64	0.8	0.8	1.1	1.1
Cloruri	mg/l	1	13.34	-	49	49	56	49	48	51	60
Nitrati	mg/l	1	6.95	-	0.45	< 0.1	< 0.1	0.24	< 0,1	0.79	1.3
Durezza totale	mg/l CaCO ₃		272		390	300	600	350	300	600	310
Nitriti	μg/l	500	<rl< td=""><td></td><td>< 50</td><td>< 50</td><td>< 50</td><td>< 50</td><td>< 50</td><td>65</td><td>540</td></rl<>		< 50	< 50	< 50	< 50	< 50	65	540
Grassi e olii animali/vege tali	mg/l		<0.5	-	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Oli minerali	mg/l	1		-	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Idrocarburi totali	mg/l		0.7		< 10	< 10	< 10	< 10	< 10	< 10	< 10
Idrocarburi come n- esano	μg/l	350		-	130	80	150	< 35	< 35	< 35	< 35
Azoto amm. (come NH4)	mg/l		<rl< td=""><td>-</td><td>0.25</td><td>< 0.1</td><td>< 0.1</td><td>< 0.1</td><td>< 0,1</td><td>0.66</td><td>0.9</td></rl<>	-	0.25	< 0.1	< 0.1	< 0.1	< 0,1	0.66	0.9
Materiali sedimentabil i	ml/l			-	< 0.1	< 0.1	< 0.1	< 0.1	< 0,1	< 0,1	< 0,1
Alcalinità	mg/l CaCO ₃		<rl< td=""><td></td><td>310</td><td>280</td><td>430</td><td>360</td><td>270</td><td>340</td><td>310</td></rl<>		310	280	430	360	270	340	310
Conta di Coliformi Tot ali	ufc/100ml		290		130000	0	0	280	0	60	150000
Conta di Coliformi Fecali	ufc/100 ml		38		0	0	0	< 4	0	0	1300

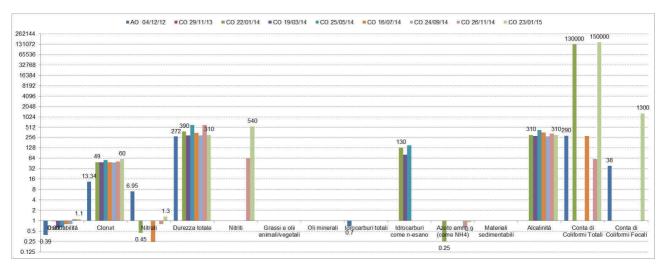


Figura 6 – Piezometro PN02 / andamento degli parametri chimico fisici e biologici valutati in laboratorio

Piezometro n.3 - PN03

				AST -	Acque so	terranee -	[PA.PE.13	32]				
Parametri misurati in	U.M.	Limite di	AO	СО	СО	СО	СО	СО	СО	СО	СО	СО
situ	O.IVI.	Legge	04/12/12	09/08/13	28/10/13	13/12/13	12/02/14	24/04/14	18/06/14	20/08/14	23/10/14	23/12/14
temperatura aria	°C		10.00	26.5	21	7	10	18	29	26	18	12
temperatura acqua	°C	-	13.05	15	16.6	11.9	n.r	n.r	secco	16.6	18.6	n.r.
conducibilità elettrica	μS/cm ²	-	1042	954.1	1065	705	n.r	n.r	secco	1394	1427	n.r.
potenziale redox	mV		40.20	195	106	217.6	n.r	n.r	secco	133.8	44.6	n.r.
рН	-		7.61	7.43	7.16	7.1	n.r	n.r	secco	8.33	8.21	n.r.
ossigeno disciolto	%		26.40	36.4	18.8	18.6	n.r	n.r	secco	33.4	33.1	n.r.
ossigeno disciolto	ppm		2.71	3.66	1.76	2.01	n.r	n.r	secco	3.13	2.9	n.r.
livello freatimetrico (b.p.)	m		23.21	23.19	23	23.1	n.r	n.r	n.r	26.5	27.62	27
fondo piezometro (b.p.)	m		n.r.	40	40	n.r.	n.r	n.r	n.r	47	47	47

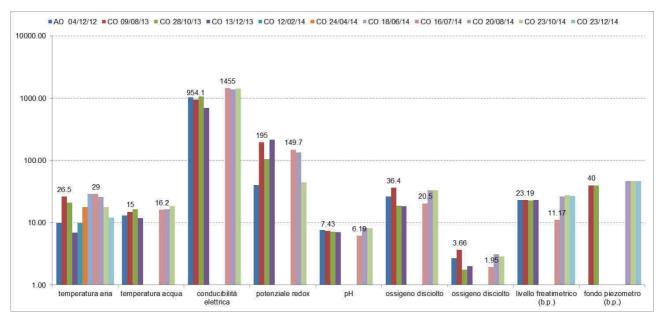


Figura 7 – Piezometro PN03 / confronto fra le campagne dell'andamento dei parametri chimico fisici misurati in situ

				AST -	Acque so	terranee -	[PA.PE.13	32]				
Parametro /	U.M.	Limite	AO	со	со	СО	СО	со	СО	со	СО	СО
Analita	U.IVI.	di Legge	04/12/12	09/08/13	28/10/13	13/12/13	12/02/14	24/04/14	18/06/14	20/08/14	23/10/14	23/12/14
Ossidabilità	mg/l O ₂		0.394	3.8	1.3	0.72				0.64	1.1	0.8
Cloruri	mg/l		32.6	34	24	23				40	48	42
Nitrati	mg/l		1.73	0.72	0.94	0.83				3.9	4	4.1
Durezza totale	mg/l CaCO₃		533	422	315	380				770	400	900
Nitriti	μg/l	500	<rl< td=""><td>< 50</td><td>< 50</td><td>< 50</td><td></td><td></td><td></td><td>< 50</td><td>280</td><td>< 50</td></rl<>	< 50	< 50	< 50				< 50	280	< 50
Grassi e olii animali/vege tali	mg/l		<0.5	< 10	< 10	< 10				< 10	< 10	< 10
Oli minerali	mg/l			< 10	< 10	< 10				< 10	< 10	< 10
Idrocarburi totali	mg/l		0.9	< 10	< 10	< 10				< 10	< 10	< 10
Idrocarburi come n- esano	μg/l	350		< 35	< 35	< 35				38	57	150
Azoto amm. (come NH4)	mg/l		<rl< td=""><td>< 0,1</td><td>0.31</td><td>< 0.1</td><td></td><td></td><td></td><td>< 0.1</td><td>0.59</td><td>< 0.1</td></rl<>	< 0,1	0.31	< 0.1				< 0.1	0.59	< 0.1
Materiali sedimentabil i	ml/l			31	< 0.1	< 0.1				< 0.1	< 0.1	< 0.1
Alcalinità	mg/l CaCO₃		<rl< td=""><td>318</td><td>290</td><td>350</td><td>1-1</td><td></td><td>1</td><td>540</td><td>100</td><td>640</td></rl<>	318	290	350	1-1		1	540	100	640
Conta di Coliformi Tot ali	ufc/100 ml		980	0	3400	1500				0	presenti	27
Conta di Coliformi Fecali	ufc/100 ml		45	0	52	120				0	0	0

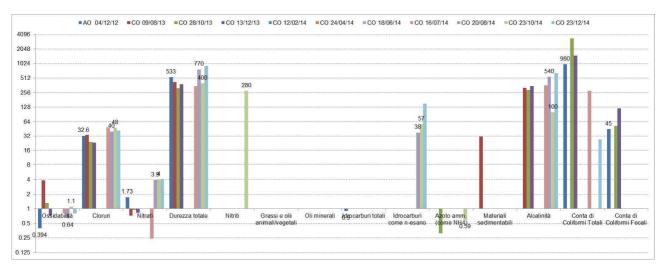


Figura 8 – Piezometro PN03 / andamento degli parametri chimico fisici e biologici valutati in laboratorio

Piezometro n.4 – PN04

				AST -	Acque sot	terranee -	[PA.PE.13	32]				
Parametri misurati in	U.M.	Limite di	AO	СО	СО	СО	СО	СО	СО	СО	СО	CO
situ	O.IVI.	Legge	04/12/12	09/08/13	28/10/13	13/12/13	12/02/14	24/04/14	18/06/14	20/08/14	23/10/14	23/12/14
temperatura aria	°C		10.0	27	21	7	10	18	29	26	n.r.	12
temperatura acqua	°C		secco	secco	secco	secco	secco	secco	secco	secco	secco	secco
conducibilità elettrica	μS/cm ²		secco	secco	secco	secco	secco	secco	secco	secco	secco	secco
potenziale redox	mV		secco	secco	secco	secco	secco	secco	secco	secco	secco	secco
pН	-		secco	secco	secco	secco	secco	secco	secco	secco	secco	secco
ossigeno disciolto	%		secco	secco	secco	secco	secco	secco	secco	secco	secco	secco
ossigeno disciolto	ppm		secco	secco	secco	secco	secco	secco	secco	secco	secco	secco
livello freatimetrico (b.p.)	m		n.r.	n.r	n.r	n.r	n.r	n.r	n.r	n.r	n.r.	n.r
fondo piezometro (b.p.)	m		n.r.	n.r	n.r	n.r	n.r	n.r	40	39	39	39

			A	IST - Acqu	ue sotterra	anee - [PA	.PE.132]					
Parametro /	U.M.	Limite di	AO	СО	СО	СО	СО	СО	СО	СО	СО	СО
Analita	U.IVI.	Legge	04/12/12	09/08/13	28/10/13	13/12/13	12/02/14	24/04/14	18/06/14	20/08/14	23/10/14	23/12/14
Ossidabilità	mg/l O ₂											
Cloruri	mg/l											
Nitrati	mg/l											
Durezza totale	mg/l CaCO₃											
Nitriti	μg/l	500										
Grassi e olii animali/vegetali	mg/l											
Oli minerali	mg/l											
Idrocarburi totali	mg/l											
Idrocarburi come n-esano	μg/l	350										
Azoto amm. (come NH4)	mg/l											
Materiali sedimentabili	ml/l											-
Alcalinità	mg/l CaCO₃	1					1		1		1	
Conta di Coliformi Totali	ufc/100ml											
Conta di Coliformi Fecali	ufc/100 ml											

Il piezometro è sempre risultato secco.

2.2.2 SORGENTI

Di seguito si riportano i confronti con le campagne analitiche eseguite sulle sorgenti. Per le sorgenti che hanno una popolazione di dati significativi sono evidenziati i confronti tramite grafici ad istogramma. Seguiranno i dati sulle portate rilevate.

Campagne analitiche delle sorgenti ASP - Acque sotterranee - [PA.PE.132]

Sorgente n.1 - ASP01

		AS	ST - Acque	sotterrane	e - [PA.PE.	132]				
Doromatri miaurati in aitu	LLM	Limite	AO	AO	СО	СО	СО	со	со	СО
Parametri misurati in situ	U.M.	di Legge	26/07/12	16/04/13	19/03/14	25/05/14	18/06/14	20/08/14	23/10/14	23/12/14
temperatura aria	°C		31	n.r.	17	24	30	25	17.5	11
temperatura acqua	°C		22.84	n.r.	14.1	n.d.	19.5	19.3	14.6	13.3
conducibilità elettrica	μS/cm ²		840	n.r.	500	n.d.	842.5	754	804	802
potenziale redox	mV		11.30	n.r.	118	n.d.	120	2.69	39.4	40
pH	=		8.01	n.r.	7.35	n.d.	7.8	7.81	8.12	8.02
ossigeno disciolto	%		82.10	n.r.	77.9	n.d.	90.1	74	76.7	80.6
ossigeno disciolto	ppm		7.20	n.r.	7.89	n.d.	7.65	6.33	7.65	8.77
livello freatimetrico (b.p.)	m				-	-				
fondo piezometro (b.p.)	m									

Figura 9 – Sorgente ASP01 / confronto fra le campagne dell'andamento dei parametri chimico fisici misurati in situ

			AST - Acq	ue sotterrai	nee - [PA.P	E.132]				
Parametro /	U.M.	Limite di	AO	AO	СО	со	СО	СО	СО	СО
Analita	O.IVI.	Legge	26/07/12	16/04/13	19/03/14	25/05/14	18/06/14	20/08/14	23/10/14	23/12/14
Ossidabilità	mg/l O ₂		0.4		0.96		0.8	0.96	0.8	0.8
Cloruri	mg/l		22.59		16		19	16	22	17
Nitrati	mg/l		<rl< td=""><td></td><td>0.2</td><td></td><td>0.17</td><td>< 0.1</td><td>< 0.1</td><td>0.27</td></rl<>		0.2		0.17	< 0.1	< 0.1	0.27
Durezza totale	mg/l CaCO₃		497		390		620	390	600	630
Nitriti	μg/l	500	<rl< td=""><td></td><td>< 50</td><td></td><td>< 50</td><td>< 50</td><td>< 50</td><td>< 50</td></rl<>		< 50		< 50	< 50	< 50	< 50
Grassi e olii animali/vegetali	mg/l		<0.5		< 10		< 10	< 10	< 10	< 10
Oli minerali	mg/l				< 10		< 10	< 10	< 10	< 10
Idrocarburi totali	mg/l		<rl< td=""><td></td><td>< 10</td><td></td><td>< 10</td><td>< 10</td><td>< 10</td><td>< 10</td></rl<>		< 10		< 10	< 10	< 10	< 10
Idrocarburi come n-esano	μg/l	350			< 35		< 35	< 35	< 35	< 35
Azoto amm. (come NH4)	mg/l		0.16		< 0.1		< 0.1	< 0.1	0.24	< 0.1
Materiali sedimentabili	ml/l				< 0.1		< 0.1	< 0.1	< 0.1	< 0.1
Alcalinità	mg/l CaCO₃		<rl< td=""><td></td><td>360</td><td></td><td>580</td><td>320</td><td>400</td><td>590</td></rl<>		360		580	320	400	590
Conta di Coliformi Totali	ufc/100ml		2300		63		280	4600	320	100
Conta di Coliformi Fecali	ufc/100 ml		9		0		6.4	0	22	52

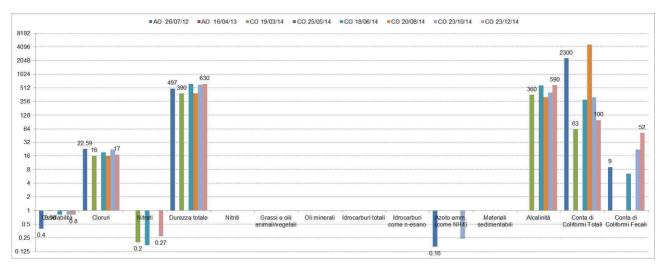


Figura 10 - Sorgente ASP01 / andamento degli parametri chimico fisici e biologici valutati in laboratorio

Sorgente n.3 - ASP03

	AST - Acque sotterranee - [PA.PE.132] Bosometri Limite AO AO CO CO														
Parametri	U.M.	Limite di	AO	AO	СО	СО	СО	СО	СО	СО	CO				
misurati in situ	O.IVI.	Legge	26/07/12	16/04/13	30/12/13	14/02/14	24/04/14	18/06/14	20/08/14	23/10/14	23/12/14				
temperatura aria	ů		29	n.r.	11	11	16.5	19.1	25	18	11				
temperatura acqua	°C		37.50	n.r.	33.9	27.1	32	33.5	34.3	35.4	33				
conducibilità elettrica	μS/cm ²		2851	n.r.	205	1461	2730	2712	2630	2604	2565				
potenziale redox	mV		295.80	n.r.	133	12	15	-20	203	2.09	-22				
рН	=		6.50	n.r.	6.63	6.69	6.45	6.16	6.51	6.58	6.47				
ossigeno disciolto	%		6.95	n.r.	69.8	21.8	40.1	42.2	25.9	60.5	33				
ossigeno disciolto	ppm		0.07	n.r.	2.89	1.35	1.89	1.8	1.04	2.23	2.3				
livello freatimetrico (b.p.)	E														
fondo piezometro (b.p.)	m														

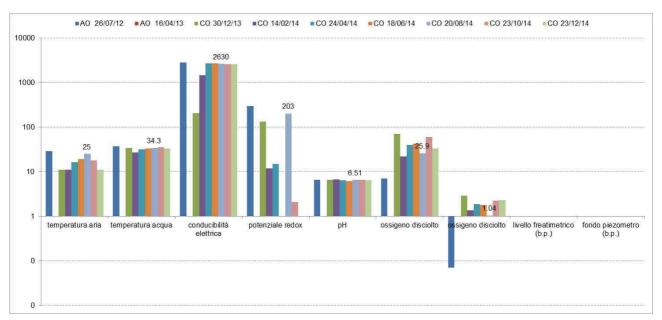


Figura 11 – Sorgente ASP03 / confronto fra le campagne dell'andamento dei parametri chimico fisici misurati in situ

			AST - Ac	que sotter	ranee - [P	A.PE.132	1				
Danasa atua / Analita	U.M.	Limite	AO	AO	СО	СО	СО	СО	СО	СО	СО
Parametro / Analita	U.IVI.	di Legge	26/07/12	16/04/13	30/12/13	14/02/14	24/04/14	18/06/14	20/08/14	23/10/14	23/12/14
Ossidabilità	mg/l O ₂		0.41		0.8	1.3	< 0.5	0.96	0.8	1.3	0.8
Cloruri	mg/l		28.3		25	17	23	25	21	38	20
Nitrati	mg/l		<rl< td=""><td></td><td>0.25</td><td>< 0.1</td><td>< 0.1</td><td>0.12</td><td>< 0.1</td><td>< 0.1</td><td>< 0.1</td></rl<>		0.25	< 0.1	< 0.1	0.12	< 0.1	< 0.1	< 0.1
Durezza totale	mg/I CaCO ₃		2570		2116	300	350	390	760	860	810
Nitriti	μg/l	500	<rl< td=""><td></td><td>62</td><td>< 50</td><td>< 50</td><td>< 50</td><td>< 50</td><td>< 50</td><td>< 50</td></rl<>		62	< 50	< 50	< 50	< 50	< 50	< 50
Grassi e olii animali/vegetali	mg/l		3.5		< 10	< 10	< 10	< 10	< 10	< 10	< 10
Oli minerali	mg/l				< 10	< 10	< 10	< 10	< 10	< 10	< 10
Idrocarburi totali	mg/l		1.5		< 10	< 10	< 10	< 10	< 10	< 10	< 10
Idrocarburi come n- esano	μg/l	350			185	< 35	< 35	< 35	< 35	< 35	< 35
Azoto amm. (come NH4)	mg/l		9.74		< 0,1	0.84	0.52	< 0.1	< 0.1	1.3	< 0.1
Materiali sedimentabili	ml/l				< 0,1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Alcalinità	mg/I CaCO ₃		<rl< td=""><td></td><td>1780</td><td>270</td><td>330</td><td>340</td><td>420</td><td>420</td><td>740</td></rl<>		1780	270	330	340	420	420	740
Conta di Coliformi Totali	ufc/100ml		1900		2500	45	0	160	2800	350	32
Conta di Coliformi Fecali	ufc/100 ml		7		15	0	64	5.5	0	0	present i

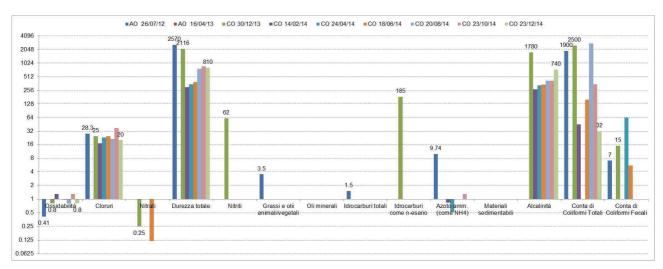


Figura 12 – Sorgente ASP03 / andamento degli parametri chimico fisici e biologici valutati in laboratorio

Sorgente n.4 - ASP04

	AST - Acque sotterranee - [PA.PE.132]														
Parametri misurati in situ	U.M.	Limite di	AO	AO	СО										
Farameth misurati in Situ	U.IVI.	Legge	21/08/12	16/04/13	23/12/13	14/02/14	24/04/14	18/06/14	20/08/14	23/10/14	24/12/14				
temperatura aria	°C		39	n.r.	9	10.5	14.5	29.5	24	17.5	12				
temperatura acqua	°C		19.86	n.r.	secco	13.2	14.1	secco	secco	secco	secco				
conducibilità elettrica	μS/cm ²		1264	n.r.	secco	622	7.02	secco	secco	secco	secco				
potenziale redox	mV		21.50	n.r.	secco	180	210	secco	secco	secco	secco				
pH	=		7.08	n.r.	secco	6.88	6.78	secco	secco	secco	secco				
ossigeno disciolto	%		65.20	n.r.	secco	27.4	28.2	secco	secco	secco	secco				
ossigeno disciolto	ppm		5.90	n.r.	secco	2.85	2.85	secco	secco	secco	secco				
livello freatimetrico (b.p.)	m														
fondo piezometro (b.p.)	m														

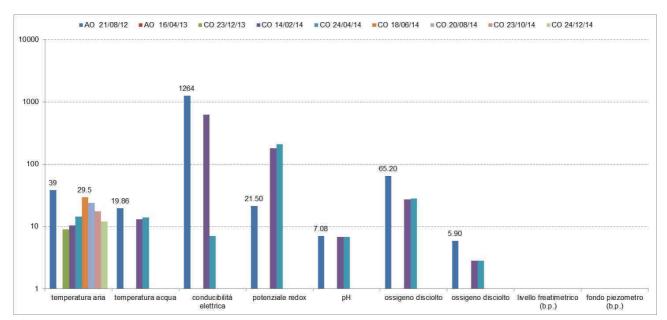


Figura 13 – Sorgente ASP04 / confronto fra le campagne dell'andamento dei parametri chimico fisici misurati in situ

			AST	Г - Acque s	otterranee	- [PA.PE.1	132]				
Parametro / Analita	U.M.	Limite di	AO	AO	СО	СО	СО	СО	СО	СО	СО
Analita		Legge	21/08/12	16/04/13	23/12/13	14/02/14	24/04/14	18/06/14	20/08/14	23/10/14	24/12/14
Ossidabilità	mg/l O ₂		0.39			1.1	0.8				
Cloruri	mg/l		25.5			19	24				
Nitrati	mg/l		<rl< td=""><td></td><td></td><td>2.7</td><td>2.7</td><td></td><td></td><td></td><td></td></rl<>			2.7	2.7				
Durezza totale	mg/l CaCO₃		390			270	380				
Nitriti	μg/l	500	<rl< td=""><td></td><td></td><td>< 50</td><td>< 50</td><td></td><td></td><td></td><td></td></rl<>			< 50	< 50				
Grassi e olii animali/vegetali	mg/l		<0.5			< 10	< 10				
Oli minerali	mg/l					< 10	< 10				
Idrocarburi totali	mg/l		<rl< td=""><td></td><td></td><td>< 10</td><td>< 10</td><td></td><td></td><td></td><td></td></rl<>			< 10	< 10				
Idrocarburi come n-esano	μg/l	350				< 35	< 35				
Azoto amm. (come NH4)	mg/l		<rl< td=""><td></td><td></td><td>< 0.1</td><td>< 0.1</td><td></td><td></td><td></td><td></td></rl<>			< 0.1	< 0.1				
Materiali sedimentabili	ml/l					< 0.1	< 0.1				
Alcalinità	mg/l CaCO₃		<rl< td=""><td></td><td></td><td>230</td><td>360</td><td></td><td></td><td></td><td></td></rl<>			230	360				
Conta di Coliformi Totali	ufc/100ml		1100			34	1.8				
Conta di Coliformi Fecali	ufc/100 ml	1	260			0	73				

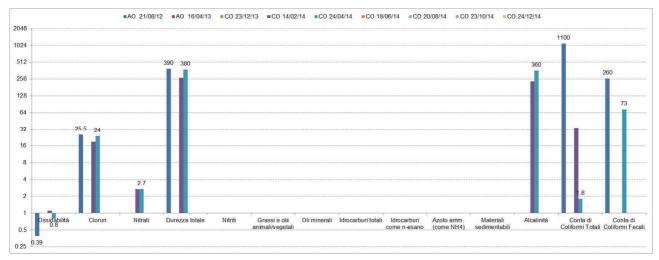


Figura 14 – Sorgente ASP04 / andamento degli parametri chimico fisici e biologici valutati in laboratorio

Sorgente n.5 - ASP05

AST - Acque sotterranee - [PA.PE.132]														
Parametri misurati	U.M.	Limite di	AO	AO	СО									
in situ	U.IVI.	Legge	21/08/12	16/04/13	23/12/13	14/02/14	24/04/14	18/06/14	20/08/14	23/10/14	24/12/14			
temperatura aria	°C		39	n.r.	8.5	11	15.2	28.5	24	18	12			
temperatura acqua	°C		15.71	n.r.	12.5	14.2	14.2	15.3	18.6	16.6	13.1			
conducibilità elettrica	μS/c m²		2205	n.r.	17.01	1584	1825	2364	2090	2504	2302			
potenziale redox	mV		227.70	n.r.	77	71	61	32	104	174	-121			
рН	-		6.19	n.r.	5.83	6.09	6.11	5.4	6.17	6.25	6.12			
ossigeno disciolto	%		25.80	n.r.	10.3	7.4	39.2	38.4	9	22.5	21.4			
ossigeno disciolto	ppm		2.51	n.r.	1.09	0.75	3.96	3.75	0.79	2.11	1.95			
livello freatimetrico (b.p.)	m													
fondo piezometro (b.p.)	m													

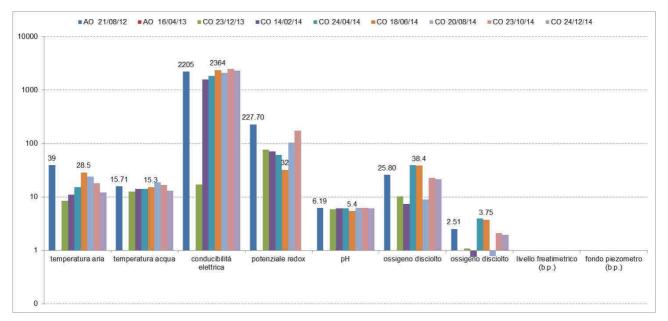


Figura 15 – Sorgente ASP05 / confronto fra le campagne dell'andamento dei parametri chimico fisici misurati in situ

			AST - A	Acque sotte	erranee - [PA.PE.132	2]				
Parametro /	U.M.	Limite di	AO	AO	co	СО	co	co	co	co	СО
Analita	U.IVI.	Legge	21/08/12	16/04/13	23/12/13	14/02/14	24/04/14	18/06/14	20/08/14	23/10/14	24/12/14
Ossidabilità	mg/I O ₂		0.39		N.V.	0.96	0.64	1.1	1.1	1.4	1.1
Cloruri	mg/l		26.1		N.V.	21	21	24	22	29	60
Nitrati	mg/l		<rl< td=""><td></td><td>N.V.</td><td>0.21</td><td>< 0.1</td><td>< 0.1</td><td>< 0.1</td><td>< 0.1</td><td>< 0.1</td></rl<>		N.V.	0.21	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Durezza totale	mg/I CaCO ₃		598		N.V.	890	450	380	590	870	680
Nitriti	μg/l	500	<rl< td=""><td></td><td>N.V.</td><td>< 50</td><td>< 50</td><td>< 50</td><td>< 50</td><td>< 50</td><td>< 50</td></rl<>		N.V.	< 50	< 50	< 50	< 50	< 50	< 50
Grassi e olii animali/vegetali	mg/l		0.6		N.V.	< 10	< 10	< 10	< 10	< 10	< 10
Oli minerali	mg/l				N.V.	< 10	< 10	< 10	< 10	< 10	< 10
Idrocarburi totali	mg/l		<rl< td=""><td></td><td>N.V.</td><td>< 10</td><td>< 10</td><td>< 10</td><td>< 10</td><td>< 10</td><td>< 10</td></rl<>		N.V.	< 10	< 10	< 10	< 10	< 10	< 10
Idrocarburi come n-esano	μg/l	350			N.V.	< 35	< 35	< 35	< 35	92	< 35
Azoto amm. (come NH4)	mg/l		<0.5		N.V.	0.54	0.5	< 0.1	< 0.1	< 0.1	< 0.1
Materiali sedimentabili	ml/l				N.V.	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Alcalinità	mg/l CaCO ₃		<rl< td=""><td></td><td>N.V.</td><td>750</td><td>380</td><td>330</td><td>450</td><td>660</td><td>540</td></rl<>		N.V.	750	380	330	450	660	540
Conta di Coliformi Totali	ufc/100ml		0		N.V.	0	0	0	0	0	0
Conta di Coliformi Fecali	ufc/100 ml		0		N.V.	0	0	0	0	0	0

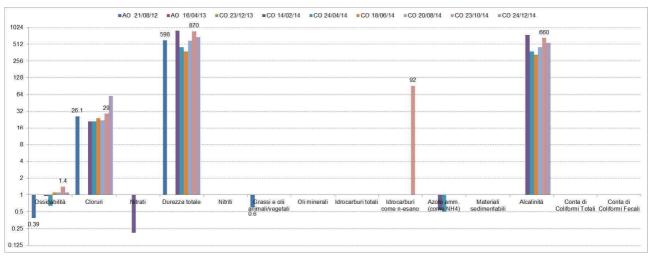


Figura 16 - Sorgente ASP05 / andamento degli parametri chimico fisici e biologici valutati in laboratorio

Sorgente n.6 - ASP06

	AST - Acque sotterranee - [PA.PE.132]														
Parametri misurati in situ	U.M.	Limite di	AO	AO	СО	СО	СО	СО	СО	СО	CO				
Farameth misurati in Situ	U.IVI.	Legge	20/09/12	16/04/13	30/12/13	14/02/14	24/04/14	18/06/14	20/08/14	23/10/14	22/12/14				
temperatura aria	°C		24	n.r.	11	10.5	16	30	28	17.5	10				
temperatura acqua	°C		32.20	n.r.	21.3	23.9	30.3	31.2	30	21.8	21				
conducibilità elettrica	μS/cm ²		1215	n.r.	9720	11960	11790	10750	11660	11270	11026				
potenziale redox	mV		230.50	n.r.	131	153	21	19	472	61.5	51.3				
pH	=		6.60	n.r.	6.38	5.33	5.91	5.85	6.72	6.61	6.42				
ossigeno disciolto	%		26.50	n.r.	50.1	49.1	75.2	59.5	79.3	60.9	59.7				
ossigeno disciolto	ppm		1.92	n.r.	3.98	3.52	3.93	2.95	4.22	4.75	4.32				
livello freatimetrico (b.p.)	m														
fondo piezometro (b.p.)	m														

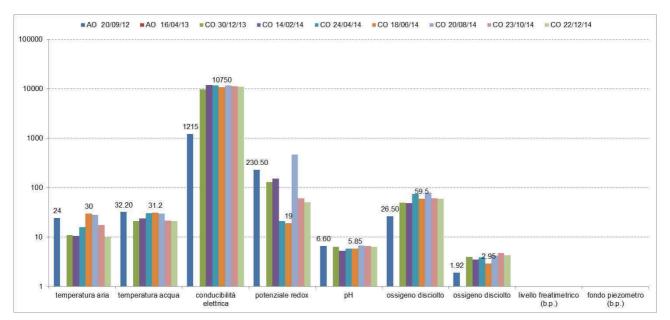


Figura 17 – Sorgente ASP06 / confronto fra le campagne dell'andamento dei parametri chimico fisici misurati in situ

			AS	ST - Acque	sotterrane	e - [PA.PE.	.132]				
Parametro /	11.54	Limite	AO	AO	co	co	co	co	co	СО	co
Analita	U.M.	di Legge	20/09/12	16/04/13	30/12/13	14/02/14	24/04/14	18/06/14	20/08/14	23/10/14	22/12/14
Ossidabilità	mg/l O ₂		0.4		0.96	1.1	0.8	1.4	0.64	0.96	0.6
Cloruri	mg/l		3.61		4030	3600	4400	3700	3100	3700	3300
Nitrati	mg/l		<rl< td=""><td></td><td>0.83</td><td>0.12</td><td>0.87</td><td>0.44</td><td>0.28</td><td>< 0.1</td><td>< 0.1</td></rl<>		0.83	0.12	0.87	0.44	0.28	< 0.1	< 0.1
Durezza totale	mg/l CaCO₃		780		1431	900	880	450	830	900	600
Nitriti	μg/l	500	<rl< td=""><td></td><td>< 50</td><td>2900</td><td>< 50</td><td>< 50</td><td>< 50</td><td>< 50</td><td>18000</td></rl<>		< 50	2900	< 50	< 50	< 50	< 50	18000
Grassi e olii animali/vegetali	mg/l		<0.5		< 10	< 10	< 10	< 10	< 10	< 10	< 10
Oli minerali	mg/l				< 10	< 10	< 10	< 10	< 10	< 10	< 10
Idrocarburi totali	mg/l		<rl< td=""><td></td><td>< 10</td><td>< 10</td><td>< 10</td><td>< 10</td><td>< 10</td><td>< 10</td><td>< 10</td></rl<>		< 10	< 10	< 10	< 10	< 10	< 10	< 10
Idrocarburi come n-esano	μg/l	350			< 35	< 35	< 35	< 35	160	79	< 35
Azoto amm. (come NH4)	mg/l		4.31		< 0,1	2.6	2.5	< 0.1	< 0.1	< 0.1	0.94
Materiali sedimentabili	ml/l				< 0,1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Alcalinità	mg/l CaCO₃		<rl< td=""><td></td><td>1075</td><td>890</td><td>820</td><td>410</td><td>640</td><td>790</td><td>470</td></rl<>		1075	890	820	410	640	790	470
Conta di Coliformi Totali	ufc/100 ml		0		1.8	10	0	150	75000	8.2	250
Conta di Coliformi Fecali	ufc/100 ml		0		0	0	0	0	0	6.4	0

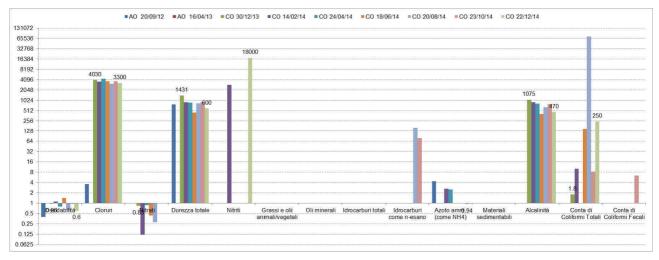


Figura 18 – Sorgente ASP06 / andamento degli parametri chimico fisici e biologici valutati in laboratorio

Sorgente n.9 - ASP09

	AST - Acque sotterranee - [PA.PE.132]														
Parametri misurati in situ	U.M.	Limite di	AO	AO	СО										
Farameth misurati in situ	U.IVI.	Legge	20/09/12	16/04/13	30/12/13	14/02/14	24/04/14	18/06/14	20/08/14	23/10/14	22/12/14				
temperatura aria	°C		24	n.r.	12	10	15.5	30	23	18.5	10				
temperatura acqua	°C		42.95	n.r.	40.5	43.1	41.8	44.3	41.6	40.5	43.1				
conducibilità elettrica	μS/cm ²		4110	n.r.	3450	3350	3521	3965	3725	4020	3347				
potenziale redox	mV		315.50	n.r.	276	29	31	40.2	150	294	-203				
рН	-		6.59	n.r.	6.27	6.37	6.51	6.27	6.51	6.46	6.49				
ossigeno disciolto	%		5.50	n.r.	37.3	91.9	78.7	375.9	164.3	55.5	5.5				
ossigeno disciolto	ppm		0.34	n.r.	0.8	1.25	1.38	3.75	2.98	1.19	3.33				
livello freatimetrico (b.p.)	m														
fondo piezometro (b.p.)	m														

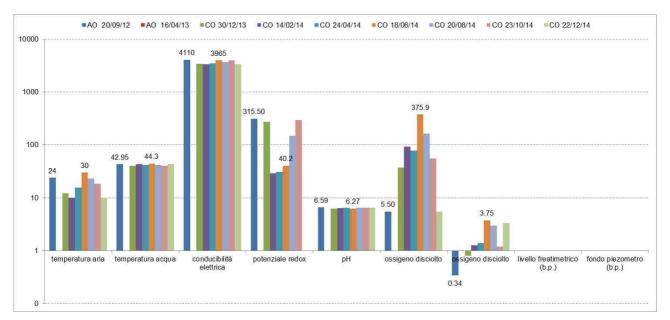


Figura 19 – Sorgente ASP09 / confronto fra le campagne dell'andamento dei parametri chimico fisici misurati in situ

			,	AST - Acqu	ıe sotterran	ee - [PA.PE	E.132]				
Parametro /	U.M.	Limite di	AO	AO	СО	СО	СО	со	СО	СО	СО
Analita	U.IVI.	Legge			30/12/13	14/02/14	24/04/14	18/06/14	20/08/14	23/10/14	22/12/14
Ossidabilità	mg/I O ₂		0.24		1.3	0.8	0.96	0.64	0.8	1.1	0.8
Cloruri	mg/l		179		213	180	280	190	160	230	190
Nitrati	mg/l		<rl< td=""><td></td><td>1.8</td><td>1.6</td><td>< 0.1</td><td>0.1</td><td>< 0.1</td><td>0.32</td><td>< 0.1</td></rl<>		1.8	1.6	< 0.1	0.1	< 0.1	0.32	< 0.1
Durezza totale	mg/l CaCO₃		2530		2955	930	910	890	810	990	640
Nitriti	μg/l	500	<rl< td=""><td></td><td>< 50</td><td>< 50</td><td>< 50</td><td>< 50</td><td>< 50</td><td>< 50</td><td>1600</td></rl<>		< 50	< 50	< 50	< 50	< 50	< 50	1600
Grassi e olii animali/vegetali	mg/l		2.3		< 10	< 10	< 10	< 10	< 10	< 10	< 10
Oli minerali	mg/l				< 10	< 10	< 10	< 10	< 10	< 10	< 10
Idrocarburi totali	mg/l		3.4		< 10	< 10	< 10	< 10	< 10	< 10	< 10
Idrocarburi come n-esano	μg/l	350			< 35	< 35	< 35	< 35	< 35	< 35	< 35
Azoto amm. (come NH4)	mg/l		9.51		< 0,1	0.24	1.1	< 0.1	< 0.1	< 0.1	0.47
Materiali sedimentabili	ml/l				< 0,1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Alcalinità	mg/l CaCO₃		<rl< td=""><td></td><td>2280</td><td>900</td><td>840</td><td>730</td><td>510</td><td>830</td><td>430</td></rl<>		2280	900	840	730	510	830	430
Conta di Coliformi Totali	ufc/100 ml		0		0	0	0	0	0	0	0
Conta di Coliformi Fecali	ufc/100 ml		0		0	0	0	0	0	0	0

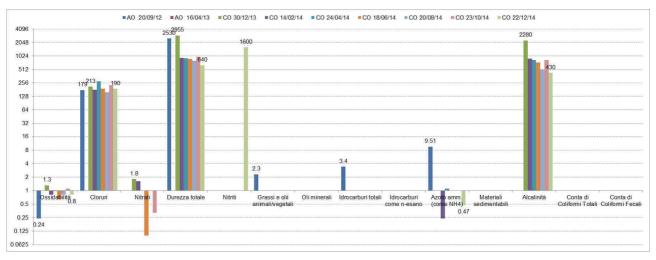


Figura 20 – Sorgente ASP09 / andamento degli parametri chimico fisici e biologici valutati in laboratorio

Sorgente n.10 - ASP10

	AST - Acque sotterranee - [PA.PE.132]														
Parametri misurati in	U.M.	Limite di	AO	AO	со										
situ	U.IVI.	Legge		16/04/13	30/12/13	14/02/14	24/04/14	18/06/14	20/08/14	23/10/14	22/12/14				
temperatura aria	°C		23	n.r.	10	10.5	15.5	30.5	25	18	10				
temperatura acqua	°C		38.70	n.r.	35.5	n.camp.	38.5	38.2	36.7	32.6	36.5				
conducibilità elettrica	μS/cm ²		3501	n.r.	3390	n.camp.	2752	3870	3950	3880	3802				
potenziale redox	mV		276.40	n.r.	214	n.camp.	25	31.5	241	203	-195				
рН	-		7.60	n.r.	7.48	n.camp.	6.85	7.37	7.46	7.54	7.42				
ossigeno disciolto	%		76.40	n.r.	97.1	n.camp.	43.6	167.2	103.2	81.8	80.1				
ossigeno disciolto	ppm		4.93	n.r.	3.55	n.camp.	1.2	4.75	3.4	3.71	5.41				
livello freatimetrico (b.p.)	m														
fondo piezometro (b.p.)	m														

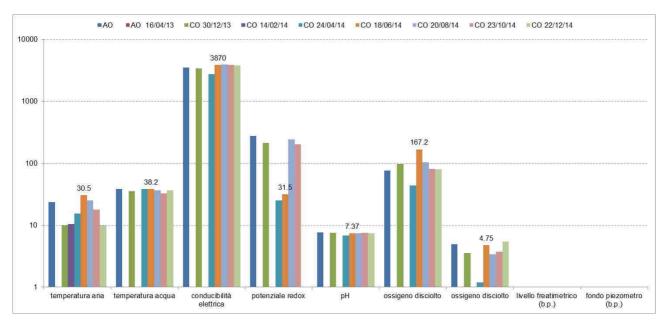


Figura 21 – Sorgente ASP10 / confronto fra le campagne dell'andamento dei parametri chimico fisici misurati in situ

		AS7	- Acqu	ue sotterra	nee - [PA	.PE.132]					
Parametro / Analita	U.M.	Limite di	AO	AO	СО	СО	СО	СО	СО	СО	СО
Parametro/Anama	U.IVI.	Legge		16/04/13	30/12/13	14/02/14	24/04/14	18/06/14	20/08/14	23/10/14	22/12/14
Ossidabilità	mg/I O ₂		0.08		1.1		1.1	1.3	1.3	1.6	0.6
Cloruri	mg/l		218		206		240	17	150	180	180
Nitrati	mg/l		<rl< td=""><td></td><td>< 0,1</td><td></td><td>0.12</td><td>0.14</td><td>< 0.1</td><td>0.32</td><td>< 0.1</td></rl<>		< 0,1		0.12	0.14	< 0.1	0.32	< 0.1
Durezza totale	mg/l CaCO ₃		1460		2266		840	800	460	900	630
Nitriti	μg/l	500	<rl< td=""><td></td><td>< 50</td><td></td><td>< 50</td><td>< 50</td><td>< 50</td><td>< 50</td><td>2600</td></rl<>		< 50		< 50	< 50	< 50	< 50	2600
Grassi e olii animali/vegetali	mg/l		<0.5		< 10		< 10	< 10	< 10	< 10	< 10
Oli minerali	mg/l				< 10		< 10	< 10	< 10	< 10	< 10
Idrocarburi totali	mg/l		1		< 10		< 10	< 10	< 10	< 10	< 10
Idrocarburi come n-esano	μg/l	350			< 35		< 35	< 35	< 35	< 35	< 35
Azoto amm. (come NH4)	mg/l		3.41		< 0,1		2.6	< 0.1	< 0.1	< 0.1	0.49
Materiali sedimentabili	ml/l				< 0,1		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Alcalinità	mg/l CaCO ₃		<rl< td=""><td></td><td>2080</td><td></td><td>760</td><td>640</td><td>390</td><td>810</td><td>380</td></rl<>		2080		760	640	390	810	380
Conta di Coliformi Totali	ufc/100ml		2500		350		0	870	64	430	19
Conta di Coliformi Fecali	ufc/100 ml		64		0		250	0	0	6.4	0

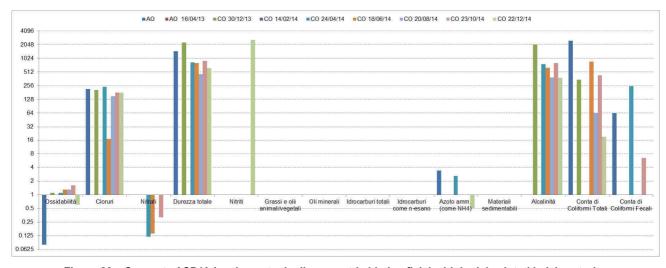


Figura 22 – Sorgente ASP10 / andamento degli parametri chimico fisici e biologici valutati in laboratorio

Sorgente n.17 - ASP17

			A	IST - Acqu	ue sotterra	anee - [PA	.PE.132]					
Parametri misurati	U.M.	Limite di	AO	AO	СО	СО	СО	СО	СО	СО	СО	СО
in situ	O.IVI.	Legge	26/07/12	16/04/13	26/09/13	23/12/13	14/02/14	24/04/14	18/06/14	20/08/14	23/10/14	22/12/14
temperatura aria	°C		secco	secco	22	9.5	14	16	28.5	24	17.5	10
temperatura acqua	°C		secco	secco	secco	12.1	9.8	12.1	17.9	n.camp	n.camp	11.5
conducibilità elettrica	μS/cm ²		secco	secco	secco	650	265	350	243.8	n.camp	n.camp	263
potenziale redox	mV		secco	secco	secco	179	61.4	52.5	151	n.camp	n.camp	149
рН	-	1	secco	secco	secco	6.63	6.05	6.45	7.47	n.camp	n.camp	7.1
ossigeno disciolto	%		secco	secco	secco	21.9	56.5	42	73.3	n.camp	n.camp	49.5
ossigeno disciolto	ppm		secco	secco	secco	2.35	6.45	4.51	6.58	n.camp	n.camp	5.11
livello freatimetrico (b.p.)	m		secco	secco								
fondo piezometro (b.p.)	m		secco	secco								

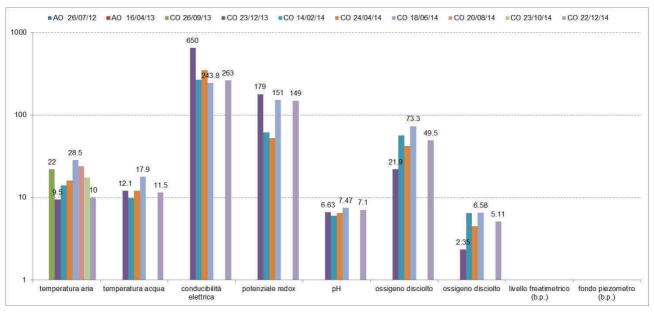


Figura 23 – Sorgente ASP17 / confronto fra le campagne dell'andamento dei parametri chimico fisici misurati in situ

	AST - Acque sotterranee - [PA.PE.132]														
Parametro /	U.M.	Limite di	AO	AO	СО										
Analita	U.IVI.	Legge	26/07/12	16/04/13	26/09/13	23/12/13	14/02/14	24/04/14	18/06/14	20/08/14	23/10/14	22/12/14			
Ossidabilità	mg/l O ₂					N.V.	1.3	1.3	0.96			0.96			
Cloruri	mg/l					N.V.	18	21	18			29			
Nitrati	mg/l					N.V.	< 0.1	< 0.1	< 0.1			< 0.1			
Durezza totale	mg/l CaCO₃					N.V.	320	240	320			610			
Nitriti	μg/l	500				N.V.	< 50	< 50	< 50			< 50			
Grassi e olii animali/vegetali	mg/l					N.V.	< 10	< 10	< 10			< 10			
Oli minerali	mg/l					N.V.	< 10	< 10	< 10			< 10			
Idrocarburi totali	mg/l					N.V.	< 10	< 10	< 10			< 10			
Idrocarburi come n-esano	μg/l	350				N.V.	< 35	< 35	< 35			72			
Azoto amm. (come NH4)	mg/l					N.V.	< 0.1	< 0.1	< 0.1			< 0.1			
Materiali sedimentabili	ml/l					N.V.	< 0.1	< 0.1	< 0.1			< 0.1			
Alcalinità	mg/l CaCO₃					N.V.	200	180	310			360			
Conta di Coliformi Totali	ufc/100ml					N.V.	670	0	440			460			
Conta di Coliformi Fecali	ufc/100 ml					N.V.	9.1	0	9.1			95			

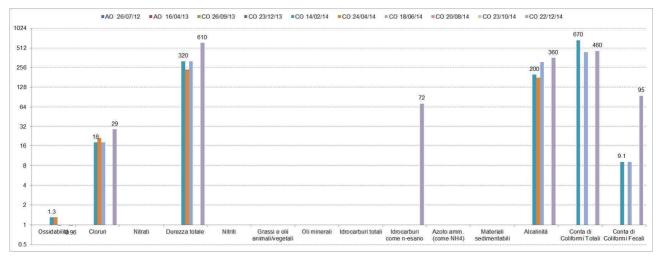


Figura 24 – Sorgente ASP17 / andamento degli parametri chimico fisici e biologici valutati in laboratorio

Sorgente n.18 - ASP18

	AST - Acque sotterranee - [PA.PE.132]													
Parametri misurati in	ati in U.M.	Limite di	AO	AO	со	CO								
situ	O.IVI.	Legge	26/07/12	16/04/13	26/09/13	23/12/13	14/02/14	24/04/14	18/06/14	20/08/14	23/10/14	23/12/14		
temperatura aria	°C		secco	secco	22	9	11	16	28	24	18.5	11		
temperatura acqua	°C		secco	secco	secco	secco	13.5	14.1	n.camp.	n.camp.	secco	secco		
conducibilità elettrica	μS/cm ²		secco	secco	secco	secco	620	540	n.camp.	n.camp.	secco	secco		
potenziale redox	mV		secco	secco	secco	secco	216	195	n.camp.	n.camp.	secco	secco		
рН	-		secco	secco	secco	secco	6.98	7.05	n.camp.	n.camp.	secco	secco		
ossigeno disciolto	%		secco	secco	secco	secco	35.9	28.2	n.camp.	n.camp.	secco	secco		
ossigeno disciolto	ppm		secco	secco	secco	secco	3.7	2.86	n.camp.	n.camp.	secco	secco		
livello freatimetrico (b.p.)	m		secco	secco							-			
fondo piezometro (b.p.)	m		secco	secco										

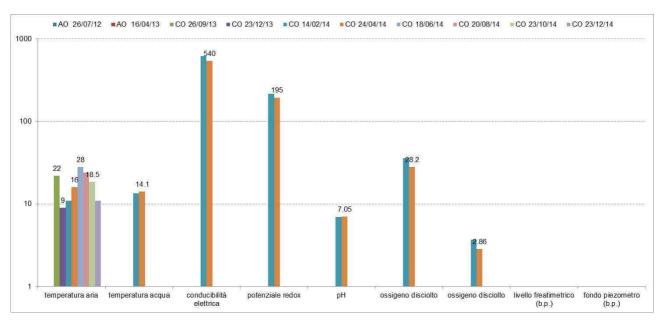


Figura 25 – Sorgente ASP18 / confronto fra le campagne dell'andamento dei parametri chimico fisici misurati in situ

	AST - Acque sotterranee - [PA.PE.132]													
Parametro /	U.M.	Limite di	AO	AO	СО									
Analita	U.IVI.	Legge	26/07/12	16/04/13	26/09/13	23/12/13	14/02/14	24/04/14	18/06/14	20/08/14	23/10/14	23/12/14		
Ossidabilità	mg/I O ₂						0.96	0.96						
Cloruri	mg/l						12	29						
Nitrati	mg/l						0.14	0.11						
Durezza totale	mg/l CaCO₃						270	540						
Nitriti	μg/l	500					< 50	< 50						
Grassi e olii animali/vegeta li	mg/l						< 10	< 10						
Oli minerali	mg/l						< 10	< 10						
Idrocarburi totali	mg/l						< 10	< 10						
Idrocarburi come n-esano	μg/l	350		1		1-1-	< 35	< 35	1					
Azoto amm. (come NH4)	mg/l						< 0.1	< 0.1						
Materiali sedimentabili	ml/l						< 0.1	< 0.1						
Alcalinità	mg/l CaCO₃						240	420						
Conta di Coliformi Total i	ufc/100ml						350	4.5						
Conta di Coliformi Fecali	ufc/100 ml						0	300						

Figura 26 – Sorgente ASP18 / andamento degli parametri chimico fisici e biologici valutati in laboratorio

Sorgente n.02 – ASP02

AST - Acque sotterranee - [PA.PE.132]													
Parametri misurati in situ	U.M.	Limite di	AO	AO	СО	СО	СО	СО	СО	СО			
Parameth misurati in situ	U.IVI.	Legge	21/08/12	16/04/13	19/03/14	25/05/14	18/06/14	20/08/14	23/10/14	23/12/14			
temperatura aria	°C		36	n.r.	17	24	29	25	18	11			
temperatura acqua	°C		13.76	n.r.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.			
conducibilità elettrica	μS/cm²		602	n.r.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.			
potenziale redox	mV		15.10	n.r.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.			
рН	-		7.24	n.r.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.			
ossigeno disciolto	%		66.60	n.r.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.			
ossigeno disciolto	ppm		6.74	n.r.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.			
livello freatimetrico (b.p.)	m												
fondo piezometro (b.p.)	m												

		AST - Acc	que sotteri	anee - [P	4. <i>PE.132</i>]					
Parametro / Analita	U.M.	Limite di	AO	AO	СО	СО	СО	СО	СО	СО
Parametro / Analita	U.IVI.	Legge	21/08/12	16/04/13	19/03/14	25/05/14	18/06/14	20/08/14	23/10/14	23/12/14
Ossidabilità	mg/l O ₂		0.38		I	-	I			
Cloruri	mg/l		19.92							
Nitrati	mg/l		<rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></rl<>							
Durezza totale	mg/I CaCO ₃		212							
Nitriti	μg/l	500	<rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></rl<>							
Grassi e olii animali/vegetali	mg/l		<0.5							
Oli minerali	mg/l									
Idrocarburi totali	mg/l		<rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></rl<>							
Idrocarburi come n-esano	μg/l	350								
Azoto amm. (come NH4)	mg/l		<rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></rl<>							
Materiali sedimentabili	ml/l									
Alcalinità	mg/l CaCO₃		<rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></rl<>							
Conta di Coliformi Totali	ufc/100ml		7100							
Conta di Coliformi Fecali	ufc/100 ml		75							

Sorgente n.15 – ASP15

	AST - Acque sotterranee - [PA.PE.132]														
Parametri misurati in situ	U.M.	Limite di	AO	AO	СО										
Faiamem misurati in situ	O.IVI.	Legge	20/09/1 2	16/04/1 3	23/12/1 3	14/02/1 4	24/04/1 4	18/06/1 4	20/08/1 4	23/10/1 4	23/12/1 4				
temperatura aria	°C		secco	n.r.	9	10	16	29	29	18	11				
temperatura acqua	°C		secco	n.r.	secco										
conducibilità elettrica	μS/cm ²		secco	n.r.	secco										
potenziale redox	mV		secco	n.r.	secco										
рН	ı		secco	n.r.	secco										
ossigeno disciolto	%		secco	n.r.	secco										
ossigeno disciolto	ppm		secco	n.r.	secco										
livello freatimetrico (b.p.)	m														
fondo piezometro (b.p.)	m														

		AS	ST - Acqu	e sotterra	nee - [PA	.PE.132]					
Danagatus / Apalita	LLM	Limite di	AO	AO	СО						
Parametro / Analita	U.M.	Legge	20/09/1 2	16/04/1 3	23/12/1 3	14/02/1 4	24/04/1 4	18/06/1 4	20/08/1 4	23/10/1 4	23/12/1 4
Ossidabilità	mg/l O ₂		secco								
Cloruri	mg/l		secco								
Nitrati	mg/l		secco								
Durezza totale	mg/I CaCO ₃		secco								
Nitriti	μg/l	500	secco								
Grassi e olii animali/vegetali	mg/l		secco								
Oli minerali	mg/l										
Idrocarburi totali	mg/l		secco								
Idrocarburi come n- esano	μg/l	350									-
Azoto amm. (come NH4)	mg/l	-	secco	1				I		1	I
Materiali sedimentabili	ml/l										
Alcalinità	mg/l CaCO ₃		secco								
Conta di Coliformi Totali	ufc/100ml		secco								
Conta di Coliformi Fecali	ufc/100 ml		secco								

Sorgente n.07 – ASP07

AST - Acque sotterranee - [PA.PE.132]														
Parametri misurati in	U.M.	Limite di	AO	AO	СО									
situ	U.IVI.	Legge	21/08/12	16/04/13	23/12/13	14/02/14	24/04/14	18/06/14	20/08/14	20/10/14	23/12/14			
temperatura aria	°C		secco	n.r.	9	10	16.5	30.5	24	18.5	11			
temperatura acqua	°C		secco	n.r.	secco									
conducibilità elettrica	μS/cm ²		secco	n.r.	secco									
potenziale redox	mV		secco	n.r.	secco									
pH	-		secco	n.r.	secco									
ossigeno disciolto	%		secco	n.r.	secco									
ossigeno disciolto	ppm		secco	n.r.	secco									
livello freatimetrico (b.p.)	m													
fondo piezometro (b.p.)	m													

			AST - Ac	que sotter	ranee - [P	A.PE.132	1				
Parametro / Analita	U.M.	Limite di	AO	AO	со	со	со	СО	со	со	СО
Parametro / Analita	U.IVI.	Legge	21/08/12	16/04/13	23/12/13	14/02/14	24/04/14	18/06/14	20/08/14	20/10/14	23/12/14
Ossidabilità	mg/l O ₂		secco								
Cloruri	mg/l		secco								
Nitrati	mg/l		secco					-			
Durezza totale	mg/I CaCO ₃		secco					1			
Nitriti	μg/l	500	secco								
Grassi e olii animali/vegetali	mg/l		secco								
Oli minerali	mg/l										
Idrocarburi totali	mg/l		secco								
Idrocarburi come n- esano	μg/l	350									
Azoto amm. (come NH4)	mg/l		secco					-			
Materiali sedimentabili	ml/l										
Alcalinità	mg/I CaCO ₃		secco								
Conta di Coliformi Totali	ufc/100ml		secco								
Conta di Coliformi Fecali	ufc/100 ml		secco								

Sorgente n.8 – ASP08

	AST - Acque sotterranee - [PA.PE.132]													
Parametri misurati	U.M.	Limite di	AO	AO	со									
in situ	U.IVI.	Legge	20/09/12	16/04/13	23/12/13	14/02/14	24/04/14	18/06/14	20/08/14	20/10/14	24/12/14			
temperatura aria	°C		secco	n.r.	9	10	16	30	24	18	12			
temperatura acqua	°C		secco	n.r.	secco									
conducibilità elettrica	μS/cm²		secco	n.r.	secco									
potenziale redox	mV		secco	n.r.	secco									
рН	-		secco	n.r.	secco									
ossigeno disciolto	%		secco	n.r.	secco									
ossigeno disciolto	ppm		secco	n.r.	secco									
livello freatimetrico (b.p.)	m													
fondo piezometro (b.p.)	m													

			AST - A	Acque sotte	erranee - [PA.PE.132	2]				
Parametro /	U.M.	Limite di	AO	AO	СО	СО	СО	со	СО	СО	СО
Analita	U.IVI.	Legge	20/09/12	16/04/13	23/12/13	14/02/14	24/04/14	18/06/14	20/08/14	20/10/14	24/12/14
Ossidabilità	mg/l O ₂		secco								
Cloruri	mg/l		secco								
Nitrati	mg/l		secco								
Durezza totale	mg/I CaCO ₃		secco								
Nitriti	μg/l	500	secco								
Grassi e olii animali/vegetali	mg/l		secco								
Oli minerali	mg/l										
Idrocarburi totali	mg/l		secco								
Idrocarburi come n-esano	μg/l	350									
Azoto amm. (come NH4)	mg/l		secco								
Materiali sedimentabili	ml/l										
Alcalinità	mg/I CaCO ₃		secco								
Conta di Coliformi Totali	ufc/100ml		secco								
Conta di Coliformi Fecali	ufc/100 ml		secco								

Sorgente n.12 – ASP12

AST - Acque sotterranee - [PA.PE.132]											
Parametri misurati in situ	U.M.	Limite di Legge	AO	AO	СО						
			20/09/12	16/04/13	23/12/13	14/02/14	24/04/14	18/06/14	20/08/14	23/10/14	23/12/14
temperatura aria	°C		n.camp.	n.r.	9	11	17	29	25	17.5	11
temperatura acqua	°C		n.camp.	n.r.	n.camp.						
conducibilità elettrica	μS/cm ²		n.camp.	n.r.	n.camp.						
potenziale redox	mV		n.camp.	n.r.	n.camp.						
рН	=		n.camp.	n.r.	n.camp.						
ossigeno disciolto	%		n.camp.	n.r.	n.camp.						
ossigeno disciolto	ppm		n.camp.	n.r.	n.camp.						
livello freatimetrico (b.p.)	m										
fondo piezometro (b.p.)	m										

AST - Acque sotterranee - [PA.PE.132]											
Parametro / Analita	U.M.	Limite di	AO	AO	СО						
	O.IVI.	Legge	20/09/12	16/04/13	23/12/13	14/02/14	24/04/14	18/06/14	20/08/14	23/10/14	23/12/14
Ossidabilità	mg/l O ₂		n.camp.								
Cloruri	mg/l		n.camp.								
Nitrati	mg/l		n.camp.								
Durezza totale	mg/l CaCO₃		n.camp.								I
Nitriti	μg/l	500	n.camp.								
Grassi e olii animali/vegetali	mg/l		n.camp.								
Oli minerali	mg/l										
Idrocarburi totali	mg/l		n.camp.								
Idrocarburi come n-esano	μg/l	350									
Azoto amm. (come NH4)	mg/l		n.camp.								
Materiali sedimentabili	ml/l										-
Alcalinità	mg/l CaCO₃		n.camp.								
Conta di Coliformi Totali	ufc/100ml		n.camp.								
Conta di Coliformi Fecali	ufc/100 ml		n.camp.								

Sorgente n.11 – ASP11

AST - Acque sotterranee - [PA.PE.132]											
Parametri misurati in situ	U.M.	Limite di Legge	AO	AO	со						
			26/07/12	16/04/13	23/12/13	14/02/14	24/04/14	18/06/14	20/08/14	23/10/14	22/12/14
temperatura aria	°C		secco	n.r.	9	11	16	28	25	18.5	10
temperatura acqua	°C		secco	n.r.	n.d.						
conducibilità elettrica	μS/cm ²		secco	n.r.	n.d.						
potenziale redox	mV		secco	n.r.	n.d.						
pH	-		secco	n.r.	n.d.						
ossigeno disciolto	%		secco	n.r.	n.d.						
ossigeno disciolto	ppm		secco	n.r.	n.d.						
livello freatimetrico (b.p.)	m										
fondo piezometro (b.p.)	m										

AST - Acque sotterranee - [PA.PE.132]											
Parametro / Analita	U.M.	Limite di	AO	AO	со						
	U.IVI.	Legge	26/07/12	16/04/13	23/12/13	14/02/14	24/04/14	18/06/14	20/08/14	23/10/14	22/12/14
Ossidabilità	mg/I O ₂		secco								
Cloruri	mg/l		secco								
Nitrati	mg/l		secco								
Durezza totale	mg/l CaCO₃		secco								
Nitriti	μg/l	500	secco								
Grassi e olii animali/vegetali	mg/l		secco								
Oli minerali	mg/l										
Idrocarburi totali	mg/l		secco								
Idrocarburi come n- esano	μg/l	350									
Azoto amm. (come NH4)	mg/l		secco			-					-
Materiali sedimentabili	ml/l										
Alcalinità	mg/l CaCO₃		secco								
Conta di Coliformi Totali	ufc/100 ml		secco								
Conta di Coliformi Fecali	ufc/100 ml		secco								-

Sorgente n.13 – ASP13

			AS7	- Acque s	otterranee	- [PA.PE.1	132]				
Parametri misurati in	U.M.	Limite di	AO	AO	СО	СО	СО	СО	СО	СО	CO
situ	U.IVI.	Legge	26/07/12	16/04/13	23/12/13	14/02/14	24/04/14	18/06/14	20/08/14	20/10/14	22/12/14
temperatura aria	°C		secco	n.r.	9	10	16.5	30	26	18	10
temperatura acqua	°C		secco	n.r.	secco	secco	secco	secco	secco	secco	secco
conducibilità elettrica	μS/cm ²		secco	n.r.	secco	secco	secco	secco	secco	secco	secco
potenziale redox	mV		secco	n.r.	secco	secco	secco	secco	secco	secco	secco
рH	=		secco	n.r.	secco	secco	secco	secco	secco	secco	secco
ossigeno disciolto	%		secco	n.r.	secco	secco	secco	secco	secco	secco	secco
ossigeno disciolto	ppm		secco	n.r.	secco	secco	secco	secco	secco	secco	secco
livello freatimetrico (b.p.)	m										
fondo piezometro (b.p.)	m										

			AS7	- Acque s	otterranee	- [PA.PE.1	132]				
Parametro / Analita	U.M.	Limite di Legge	AO 26/07/12	AO 16/04/13	CO 23/12/13	CO 14/02/14	CO 24/04/14	CO 18/06/14	CO 20/08/14	CO 20/10/14	CO 22/12/14
Ossidabilità	mg/l O ₂		secco								
Cloruri	mg/l		secco								
Nitrati	mg/l		secco								
Durezza totale	mg/l CaCO₃		secco								
Nitriti	μg/l	500	secco								
Grassi e olii animali/vegetali	mg/l		secco								
Oli minerali	mg/l										
Idrocarburi totali	mg/l		secco								
Idrocarburi come n- esano	μg/l	350									
Azoto amm. (come NH4)	mg/l		secco								
Materiali sedimentabili	ml/l										
Alcalinità	mg/l CaCO₃		secco								
Conta di Coliformi Totali	ufc/100 ml		secco								
Conta di Coliformi Fecali	ufc/100 ml		secco								

Sorgente n.14 – ASP14

			AS7	- Acque s	otterranee	- [PA.PE.1	132]				
Parametri misurati in	U.M.	Limite di	AO	AO	СО	СО	со	СО	со	СО	CO
situ	U.IVI.	Legge	26/07/12	16/04/13	23/12/13	14/02/14	24/04/14	18/06/14	20/08/14	20/10/14	22/12/14
temperatura aria	°C		secco	n.r.	9	10	16	29	26	18	10
temperatura acqua	°C		secco	n.r.	secco	secco	secco	secco	secco	secco	secco
conducibilità elettrica	μS/cm ²		secco	n.r.	secco	secco	secco	secco	secco	secco	secco
potenziale redox	mV		secco	n.r.	secco	secco	secco	secco	secco	secco	secco
рH	-		secco	n.r.	secco	secco	secco	secco	secco	secco	secco
ossigeno disciolto	%		secco	n.r.	secco	secco	secco	secco	secco	secco	secco
ossigeno disciolto	ppm		secco	n.r.	secco	secco	secco	secco	secco	secco	secco
livello freatimetrico (b.p.)	m										
fondo piezometro (b.p.)	m	- 1									

			AS7	- Acque s	otterranee	- [PA.PE.1	132]				
Parametro / Analita	U.M.	Limite di	AO 26/07/12	AO 16/04/13	CO 23/12/13	CO 14/02/14	CO 24/04/14	CO 18/06/14	CO 20/08/14	CO 20/10/14	CO 22/12/14
		Legge	26/07/12	16/04/13	23/12/13	14/02/14	24/04/14	16/06/14	20/06/14	20/10/14	22/12/14
Ossidabilità	mg/I O ₂		secco			-					
Cloruri	mg/l		secco								
Nitrati	mg/l		secco								
Durezza totale	mg/l CaCO₃		secco								
Nitriti	μg/l	500	secco								
Grassi e olii animali/vegetali	mg/l		secco								
Oli minerali	mg/l										
Idrocarburi totali	mg/l		secco								
Idrocarburi come n- esano	μg/l	350				-					
Azoto amm. (come NH4)	mg/l		secco								
Materiali sedimentabili	ml/l					-					
Alcalinità	mg/l CaCO₃	1	secco			-					
Conta di Coliformi Totali	ufc/100 ml		secco			-					
Conta di Coliformi Fecali	ufc/100 ml		secco								

Sorgente n.16 – ASP16

			A	IST - Acqu	ue sotterra	anee - [PA	.PE.132]					
Parametri misurati	LLM	Limite	AO	AO	СО	СО	СО	СО	СО	СО	СО	СО
in situ	U.M.	di Legge	26/07/12	16/04/13	26/09/13	23/12/13	14/02/14	24/04/14	18/06/14	20/08/14	23/10/14	22/12/14
temperatura aria	°C		secco	secco	22	9	10.5	16	30	26	18	10
temperatura acqua	°C		secco	secco	secco	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
conducibilità elettrica	μS/cm ²		secco	secco	secco	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
potenziale redox	mV		secco	secco	secco	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
pH	-		secco	secco	secco	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
ossigeno disciolto	%		secco	secco	secco	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
ossigeno disciolto	ppm		secco	secco	secco	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
livello freatimetrico (b.p.)	m		secco	secco								
fondo piezometro (b.p.)	m		secco	secco								

			A	IST - Acqu	ue sotterra	anee - [PA	N.PE.132]					
Parametro /	U.M.	Limite di	AO	AO	СО	СО	СО	СО	СО	СО	СО	СО
Analita	U.IVI.	Legge	26/07/12	16/04/13	26/09/13	23/12/13	14/02/14	24/04/14	18/06/14	20/08/14	23/10/14	22/12/14
Ossidabilità	mg/l O ₂											
Cloruri	mg/l											
Nitrati	mg/l											
Durezza totale	mg/l CaCO₃											
Nitriti	μg/l	500										
Grassi e olii animali/vegetali	mg/l											
Oli minerali	mg/l											
Idrocarburi totali	mg/l											
Idrocarburi come n-esano	μg/l	350										
Azoto amm. (come NH4)	mg/l											
Materiali sedimentabili	ml/l	-1										
Alcalinità	mg/l CaCO₃											
Conta di Coliformi Totali	ufc/100 ml											
Conta di Coliformi Fecali	ufc/100 ml											

Portate di acqua rilevate delle sorgenti ASP - Acque sotterranee - [PA.PE.133]

		АО	АО	СО	СО	СО	СО	СО	СО
Portata	U. M.	26/07/12	16/04/13	19/03/14	25/05/14	18/06/14	20/08/14	23/10/14	23/12/14
ASP01	l/mi n	n.r.	14.5	60.0	n.r.	60.0	n.r.	n.r.	n.r.

		АО	АО	СО	СО	СО	СО	СО	СО
Portata	U. M.	21/08/12	16/04/13	19/03/14	25/05/14	18/06/14	20/08/14	23/10/14	23/12/14
ASP02	l/mi n	n.r.	5.5	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.

Ī			AO	АО	СО	СО	CO	CO	CO	CO	СО
	Portata	U. M.	26/07/12	16/04/13	23/12/13	12/02/14	24/04/14	18/06/14	20/08/14	23/10/14	23/12/14
Ī	ASP03	l/mi	nr	capta	540.	600.	600.	600.	540.	540.	540.
	ASPUS	n	n.r.	ta	0	0	0	0	0	0	0

		АО	АО	СО													
Portata	U. M.	21/08/12	16/04/13	23/12/13	21/01/14	12/02/14	19/03/14	24/04/14	25/05/14	18/06/14	16/07/14	20/08/14	24/09/14	23/10/14	21/11/14	24/12/14	23/01/15
ASP04	l/mi n	6.0	9.0	0.0	0.0	20.0	18.0	9.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

		AO	AO	CO	СО	СО	CO	CO	СО	CO	СО						
Portata	U. M.	21/08/12	16/04/13	23/12/13	22/01/14	12/02/14	19/03/14	24/04/14	25/05/14	18/06/14	16/07/14	20/08/14	24/09/14	23/10/14	21/11/14	24/12/14	23/01/15
ASP05	l/mi n	1.5	2.5	1.0	1.0	1.0	1.0	1.0	1.4	1.2	1.1	1.0	1.1	1.0	1.1	1.2	1.1

		АО	АО	СО													
Portata	U. M.	20/09/12	16/04/13	23/12/13	22/01/13	12/02/14	19/03/14	24/04/14	25/05/14	18/06/14	16/07/14	20/08/14	24/09/14	23/10/14	21/11/14	22/12/14	23/01/15
ASP06	l/mi n	n.r.	n.r.	10.0	11.0	12.0	10.0	5.0	4.1	3.5	3.3	3.0	3.2	3.0	2.9	3.3	n.r.

		AO	AO	СО	СО	СО	СО	СО	СО	СО							
Portata	U. M.	20/09/12	16/04/13	23/12/13	12/02/14	24/04/14	18/06/14	20/08/14	23/10/14	23/12/14							
ASP15	l/mi n	secc o	secc o	0.0	0.0	0.0	0.0	0.0	0.0	0.0							
		AO	AO	СО	СО	СО	СО	СО	СО	СО	СО	СО	СО	СО	СО	СО	СО
Portata	U. M.	21/08/12	16/04/13	23/12/13	22/01/14	12/02/14	19/03/14	24/04/14	25/05/14	18/06/14	16/07/14	20/08/14	24/09/14	20/10/14	21/11/14	23/12/14	23/01/15
ASP07	l/mi n	secc o	secc o	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	indet	0.0	0.0	0.0	0.0
		AO	AO	СО	СО	СО	СО	СО	СО	СО	СО	СО	СО	СО	СО	СО	СО
Portata	U. M.	20/09/12	16/04/13	23/12/13	22/01/14	12/02/14	19/03/14	24/04/14	25/05/14	18/06/14	16/07/14	20/08/14	24/09/14	20/10/14	21/11/14	24/12/14	23/01/15
ASP08	l/mi n	secc o	secc o	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
				<u>I</u>	<u>I</u>	l .				I							
		40															
		AO	AO	CO	CO	CO	CO	CO	CO	CO	CO	CO	СО	СО	СО	СО	СО
Portata	U. M.	20/09/12	16/04/13 P	23/12/13	22/01/14	12/02/14	19/03/14	24/04/14	25/05/14	18/06/14	16/07/14 S	20/08/14	24/09/14	23/10/14	21/11/14	22/12/14	23/01/15
Portata ASP09	M.		capta				19/03/14	24/04/14			16/07/14						
	M.	20/09/12	16/04/13	23/12/13	22/01/14	12/02/14	19/03/14	24/04/14	25/05/14	18/06/14	16/07/14	20/08/14	24/09/14	23/10/14	21/11/14	22/12/14	23/01/15
	M.	20/09/12	capta	23/12/13	22/01/14	12/02/14	19/03/14	24/04/14	25/05/14	18/06/14	16/07/14	20/08/14	24/09/14	23/10/14	21/11/14	22/12/14	23/01/15
	M.	c. 20/09/12	capta ta	Indet .	. 22/01/14	12/02/14	Indet .	. 24/04/14	. apul 25/05/14	18/06/14	16/07/14	. 20/08/14	. 24/09/14	. appl 23/10/14	Indet .	Indet .	1 S S S S S S S S S S S S S S S S S S S
ASP09	I/mi n	n.r.	capta ta	CO CO	CO Indet	Ludet .	CO Indet .	CO	CO .	CO Indet	Lindet .	CO Indet	CO Indet .	CO Indet .	CO Indet .	CO Indet .	23/01/15
ASP09	I/mi n	20/09/12 O 20/09/12	AO Capta ta AO 16/04/13	23/12/13 O	. O S 22/01/14	12/02/14 O Indet .	19/03/14 S	24/04/14 S	25/05/14 S et .	18/06/14 O	16/07/14 O O +1/10/01/14	CO 8/14 CO 20/08/14	24/09/14 O O T O O O O O O O O O O O O O O O O	23/10/14 S Indet .	21/11/14 S Indet .	22/12/14 S Indet .	23/01/15 O 23/01/15
ASP09	I/mi n	20/09/12 O 20/09/12	AO Capta ta AO 16/04/13	23/12/13 O	. O S 22/01/14	12/02/14 O Indet .	19/03/14 S	24/04/14 S	25/05/14 S et .	18/06/14 O	16/07/14 O O +1/10/01/14	CO 8/14 CO 20/08/14	24/09/14 O O T O O O O O O O O O O O O O O O O	23/10/14 S Indet .	21/11/14 S Indet .	22/12/14 S Indet .	23/01/15 O 23/01/15
ASP09	I/mi n	n.r. AO 21/00/12 n.r.	AO capta ta n.r.	CO CO S3/12/13 Indet .	Indet .	Indet .	Indet .	Indet .	Undet .	Undet .	Undet .	Ludet	Indet .	Undet .	Indet C	Indet .	S3/01/15 CO S1/10/25 Indet

n.d.

n.r.

15.0

ASP10

600.

650.

0.0

n.d.

n.d.

n.d.

n.d.

n.d.

n.d.

n.d.

		AO	AO	СО													
Portata	U. M.	26/07/12	16/04/13	23/12/13	22/01/14	12/02/14	19/03/14	24/04/14	25/05/14	18/06/14	16/07/14	20/08/14	24/09/14	23/10/14	21/11/14	22/12/14	23/01/15
ASP11	l/mi n	secc o	secc 0	n.r.	n.d.	n.d.	n.d.	n.d.	0.0	0.0							

		АО	АО	СО						
Portata	U. M.	26/07/12	16/04/13	23/12/13	12/02/14	24/04/14	18/06/14	20/08/14	20/10/14	22/12/14
ASP13	l/mi n	secc o	secc o	0.0	0.0	0.0	0.0	0.0	0.0	0.0

		АО	АО	СО						
Portata	U. M.	26/07/12	16/04/13	23/12/13	12/02/14	24/04/14	18/06/14	20/08/14	20/10/14	22/12/14
ASP14	l/mi n	secc o	secc o	0.0	0.0	0.0	0.0	0.0	0.0	0.0

		АО	АО	СО							
Portata	U. M.	26/07/12	16/04/13	26/09/13	23/12/13	12/02/14	24/04/14	18/06/14	20/08/14	23/10/14	22/12/14
ASP16	l/mi n	secc o	secc o	0.0	n.r.						

		АО	АО	СО	СО	СО	СО	СО	СО	СО	СО
Portata	U. M.	26/07/12	16/04/13	26/09/13	23/12/13	12/02/14	24/04/14	18/06/14	20/08/14	23/10/14	22/12/14
ASP17	l/mi n	secc o	secc o	0.0	acqu a p.	5.0	2.0	acqu a p.	acqu a p.	acqu a p.	acqu a p.

		AO	АО	СО	СО	СО	СО	СО	СО	СО	СО
Portata	U. M.	26/07/12	16/04/13	26/09/13	23/12/13	12/02/14	24/04/14	18/06/14	20/08/14	23/10/14	23/12/14
ASP18	l/mi n	secc o	secc o	0.0	0.0	1.5	1.0	0.0	acqu a p.	0.0	0.0

2.3 CONCLUSIONI SUL MONITORAGGIO DELLA MATRICE ACQUE SOTTERRANEE

Nel trimestre di monitoraggio, agosto – ottobre 2013, della matrice idrico sotterraneo non è stato possibile procedere alle misurazioni dei seguenti punti a causa dell'assenza di acqua.

- PN 04,
- AST 16,
- AST 17,
- AST 18.

L'assenza di acqua in questi punti è stata riscontrata anche nel periodo ante operam.

Nel piezometro PN 03, in cui era presente acqua per entrambi i campionamenti pianificati i valori riscontarti sono fra loro allineati e non presentano criticità o variazioni significative. Si segnala nella campagna di ottobre l'aumento di coliformi totali rispetto alla precedente.

Nel trimestre di monitoraggio, novembre 2013 – gennaio 2014, della matrice idrico sotterraneo non è stato possibile procedere alle misurazioni dei seguenti punti a causa dell'assenza di acqua

- PN 04
- AST 04
- AST 15
- AST 07
- AST 08
- AST 12
- AST 11
- AST 13
- AST 14
- AST 16
- AST 17
- AST 18

L'assenza di acqua in questi punti è stata riscontrata anche nel periodo ante operam. Per la sorgente AST04 non si rileva la presenza. La sorgente AST 12, come nell'AO, risulta captata mentre la AST 17 rilevata secca in precedenza ora si verifica con un fronte non definito. La AST 18 presentava acqua stagnate.

Nei piezometri in cui si rileva acqua, PN 01, PN 02 e PN 03, i valori riscontarti sono fra loro allineati e non presentano criticità o variazioni significative. Per il PN 01 rispetto alle campagne precedenti, nella campagna di gennaio, si riscontra un aumento del parametro idrocarburi come n-esano. Per il PN 02 si segnala l'aumento di coliformi totali.

Nelle sorgenti attive, AST 03, AST 05, AST 06, AST 09, AST 10 e AST 17, i valori riscontarti sono fra loro allineati e non presentano criticità o variazioni significative. Si segnalano le variazioni più rilevanti nella campagna di dicembre. Per AST 03 si riscontra un aumento nei parametri misurati in situ dell'ossigeno

Itinerario internazionale E78 / S.G.C. Grosseto – Fano / adeguamento a 4 corsie nel tratto Grosseto – Siena (S.S. 223 "di Paganico") dal km 30+400 al km 41+600 – lotti 5, 6, 7, 8

disciolto. Per AST 06 si riscontra un aumento nei parametri misurati in situ della conducibilità elettrica. Per i parametri misurati in laboratorio si riscontra un aumento dei cloruri, della durezza totale e dell'alcalinità. Per AST 09 si riscontra un aumento nei parametri misurati in situ dell'ossigeno disciolto. Per i parametri misurati in laboratorio si riscontra un aumento dell'alcalinità. Per AST 10 si riscontra un aumento nei parametri dell'ossidabilità.

Nel trimestre di monitoraggio tra febbraio ed aprile 2014 non è stato possibile procedere alle misurazioni dei seguenti punti a causa dell'assenza di acqua per:

- PN 03
- PN 04
- AST 02
- AST 15
- AST 07
- AST 08
- AST 12
- AST 11
- AST 13
- AST 14
- AST 16

L'assenza di acqua in questi punti è stata riscontrata anche nel periodo ante operam, tranne per il piezometro PN 03 in cui era presente acqua nei precedenti campionamenti e la sorgente AST 12, che come rilevato in ante operam, risulta captata. Si segnala che il PN3 è stato rifatto, a seguito dell'avvenuta distruzione a febbraio, in sito poco più a monte della precedente postazione tra la galleria esistente e quella in costruzione. L'indagine di aprile è quindi già relativa alla nuova localizzazione del piezometro PN 03.

Nei piezometri in cui si rileva acqua, PN 01, PN 02, i valori riscontarti sono fra loro allineati e non presentano criticità o variazioni significative. Per il PN 01 rispetto alle campagne precedenti si riscontra una diminuzione del parametro idrocarburi come n-esano. Per il PN 02 si riscontra la diminuzione del parametro coliformi totali.

Nelle sorgenti attive, AST 01, AST 03, AST 04, AST 05, AST 06, AST 09, AST 10, AST 17 e AST 18, i valori riscontarti sono fra loro allineati e non presentano criticità o variazioni significative. Per la sorgente AST 01, in confronto con le precedenti indagini, si rileva la diminuzione di coliformi totali. Per AST 03 si rileva la diminuzione di coliformi totali e un lieve aumento dei fecali. Per AST 04 sui parametri rilevati in situ si rileva la diminuzione della conducibilità elettrica. Si rileva la diminuzione di coliformi totali e fecali nelle analisi eseguite in laboratorio. Per AST 05 rispetto alle campagne precedenti si riscontrano variazioni oscillati a carico della conducibilità ed ossigeno disciolto. Sui parametri chimici si riscontra una diminuzione dell'alcalinità e della durezza totale. Per AST 06 sui parametri misurati in laboratorio si riscontra una diminuzione della durezza totale e dell'alcalinità. Per AST 10 rispetto alle campagne precedenti si riscontrano variazioni dei parametri misurati in situ a carico dell'ossigeno disciolto e potenziale redox. Per i parametri misurati in laboratorio si riscontra una diminuzione della durezza totale e dell'alcalinità. Inoltre si

Itinerario internazionale E78 / S.G.C. Grosseto – Fano / adeguamento a 4 corsie nel tratto Grosseto – Siena (S.S. 223 "di Paganico") dal km 30+400 al km 41+600 – lotti 5, 6, 7, 8

rileva la diminuzione dei coliformi totali e un aumento dei coliformi fecali. Nelle indagini in ante operam la sorgente AST 17 e AST 18 sono risultate secche. Per AST 17 rispetto alle campagne precedenti di corso d'opera si riscontrano variazioni dei parametri misurati in situ a carico della conducibilità elettrica e potenziale redox. Per i parametri misurati in laboratorio si riscontra una lieve diminuzione della durezza totale e dell'alcalinità. Inoltre si rileva la diminuzione dei coliformi totali e dei coliformi fecali. Per AST 18 rispetto alle campagne precedenti si riscontrano variazioni limitate dei parametri misurati in situ. Per i parametri misurati in laboratorio si riscontra un aumento della durezza totale e dell'alcalinità. Inoltre si rileva la diminuzione dei coliformi totali e un aumento dei coliformi fecali nella campagna di aprile.

Nel trimestre di monitoraggio tra maggio e luglio 2014 non è stato possibile procedere alle misurazioni dei seguenti punti a causa dell'assenza di acqua per:

- PN 03
- PN 04
- ASP 04
- ASP 02
- ASP 15
- ASP 07
- ASP 08
- ASP 12
- ASP 11
- ASP 13
- ASP 14
- ASP 16

L'assenza di acqua in questi punti è stata riscontrata anche nel periodo ante operam, tranne per il piezometro PN 03 in cui era presente acqua nei precedenti campionamenti e la sorgente ASP 12, che come rilevato in ante operam, risulta captata. Si segnala che il PN3 è stato rifatto, a seguito dell'avvenuta distruzione a febbraio, in sito poco più a monte della precedente postazione tra la galleria esistente e quella in costruzione.

Nei piezometri in cui si rileva acqua, PN 01, PN 02, i valori riscontarti sono fra loro allineati e non presentano criticità o variazioni significative. Per il PN 01 rispetto alle campagne precedenti si riscontra un aumento del parametro idrocarburi come n-esano nel mese di Maggio mentre una diminuzione del medesimo parametro nel mese di Luglio . Per il PN 02 non si rilevano particolari situazioni rispetto alle campagne precedenti nel mese di Maggio mentre si rileva nel mese di Luglio sia una diminuzione del parametro idrocarburi come n-esano sia un aumento dei coliformi totali rispetto alle campagne svolte in precedenza.

Nelle sorgenti attive, ASP 01, ASP 03, ASP 05, ASP 06, ASP 09, ASP 10, ASP 17 e ASP 18, i valori riscontarti sono fra loro allineati e non presentano criticità o variazioni significative. Per la sorgente ASP 01, in confronto con le precedenti indagini, si rileva un aumento della durezza totale e dell'alcalinità mentre l'aumento dei coliformi è compatibile con quanto riscontrato in ante operam. Per ASP 03 si hanno minime variazioni dei parametri rispetto alle precedenti campagne da attribuire al periodo stagionale. Per ASP 05 . si hanno minime variazioni dei parametri rispetto alle precedenti campagne da attribuire al periodo stagionale.

Itinerario internazionale E78 / S.G.C. Grosseto – Fano / adeguamento a 4 corsie nel tratto Grosseto – Siena (S.S. 223 "di Paganico") dal km 30+400 al km 41+600 – lotti 5, 6, 7, 8

Per ASP 06 non si rilevano particolari situazioni difformi dall' AO per ciascun parametro analizzato. Per ASP 09 si hanno minime variazioni dei parametri rispetto alle precedenti campagne da attribuire al periodo stagionale. Per ASP 10 non si rilevano particolari situazioni difformi dall' AO per ciascun parametro analizzato. Nelle indagini in ante operam la sorgente ASP 17 e ASP 18 sono risultate secche. Per ASP 17 rispetto alle campagne precedenti in corso d'opera non si riscontrano particolari variazioni nei valori dei parametri analizzati.. Per ASP 18 come riscontrato nelle campagne della fase di ante-operam la sorgente è risultata priva di acqua. Nella campagna attuale è stata riscontrata la presenza di acqua stagnante che non ha permesso il campionamento dell'acqua per il punto considerato.

Nel trimestre di monitoraggio tra agosto e ottobre 2014 non è stato possibile procedere alle misurazioni dei seguenti punti a causa dell'assenza di acqua per:

- PN 04
- ASP 02
- ASP 04
- ASP 15
- ASP 07
- ASP 08
- ASP 12
- ASP 11
- ASP 13
- ASP 14
- ASP 16
- ASP 17
- ASP 18

L'assenza di acqua in questi punti è stata riscontrata anche nel periodo ante operam, tranne per il piezometro PN 03 in cui era presente acqua nei precedenti campionamenti e la sorgente ASP 12, che come rilevato in ante operam, risulta captata. Si segnala che il PN3 è stato rifatto, a seguito dell'avvenuta distruzione a febbraio, in sito poco più a monte della precedente postazione tra la galleria esistente e quella in costruzione.

Nei piezometri in cui si rileva acqua, PN 01, PN 02 e PN03 i valori riscontarti sono fra loro allineati e non presentano criticità o variazioni significative. Per il PN 01 rispetto alle campagne precedenti si riscontra una diminuzione del parametro idrocarburi come n-esano tornando su valori inferiori rispetto alle campagne precedenti. Per il PN 02 si rileva una diminuzione di coliformi totali e fecali rispetto alle precedenti campagne mentre si nota una aumento di nitriti e dell'azoto ammoniacale per il punto PN 03.

Nelle sorgenti attive, ASP 01, ASP 03, ASP 05, ASP 06, ASP 09, ASP 10, i valori riscontarti sono fra loro allineati e non presentano criticità o variazioni significative. Per la sorgente ASP 01, in confronto con le precedenti indagini, non si rilevano variazioni per tutti i parametri considerati. Per ASP 03 si hanno minime variazioni dei parametri rispetto alle precedenti campagne da attribuire al periodo stagionale. Per ASP 05 si hanno minime variazioni dei parametri rispetto alle precedenti campagne da attribuire al periodo stagionale. Per ASP 06 si rileva una riduzione dei coliformi totali rispetto alle campagne precedenti. Per ASP 09 e per

ASP 10 si hanno minime variazioni dei parametri rispetto alle precedenti campagne da attribuire al periodo stagionale. Nelle indagini in ante operam la sorgente ASP 17 e ASP 18 sono risultate secche. Per ASP 17 rispetto alle campagne precedenti in corso d'opera non si riscontrano particolari variazioni nei valori dei parametri analizzati. Per ASP 18 nelle campagne è stata riscontrata la presenza di acqua stagnante che non ha permesso il campionamento dell'acqua per il punto considerato.

Nel trimestre di monitoraggio tra novembre 2014 e gennaio 2015 non è stato possibile procedere alle misurazioni dei seguenti punti a causa dell'assenza di acqua per:

- PN 04
- ASP 02
- ASP 15
- ASP 07
- ASP 08
- ASP 12
- ASP 11
- ASP 13
- ASP 14
- ASP 16
- ASP 18

L'assenza di acqua in questi punti è stata riscontrata anche nel periodo ante operam, tranne per la sorgente ASP 12, che come rilevato in ante operam, risulta captata. Si segnala che il PN3 è stato rifatto, a seguito dell'avvenuta distruzione a febbraio 2014, in sito poco più a monte della precedente postazione tra la galleria esistente e quella in costruzione.

Nei piezometri in cui si rileva acqua, PN 01, PN 02 e PN03 i valori riscontarti sono fra loro allineati e non presentano criticità o variazioni significative.

Per il PN 01 rispetto alle campagne precedenti si riscontra una diminuzione del parametro idrocarburi come n-esano ed un aumento dell'alcalinità; a gennaio 2015 si rilevano valori confrontabili alle campagne precedenti a meno della diminuzione della durezza totale e dell'aumento dei nitriti. Per il PN 02 si rilevano valori confrontabili alle campagne precedenti a meno dell'aumento di coliformi totali e fecali. Per PN 03 si rileva la diminuzioni dei nitriti e dell'azoto ammoniacale. Si riscontra un aumento della durezza e degli idrocarburi come n-esano. Il valore di quest'ultimo è inferiore al limite.

Nelle sorgenti attive, ASP 01, ASP 03, ASP 04, ASP 05, ASP 06, ASP 09, ASP 10, ASP17 e ASP18 i valori riscontarti sono fra loro allineati e non presentano criticità o variazioni significative.

Per la sorgente ASP 01, rispetto alla campagna precedente si rileva un aumento dell'alcalinità mentre si ha una sostanziale riduzione dei Coliformi totali riassestandosi ai valori delle campagne precedenti. Per ASP 03 si rileva una diminuzione dei Coliformi totali rispetto alla campagna precedente. Per ASP 05 si hanno minime variazioni dei parametri rispetto alle precedenti campagne da attribuire al periodo stagionale. Per ASP 06 si rileva un aumento dei coliformi totali. Per ASP 09 rispetto alle precedenti indagini si rileva l'aumento dei nitriti e per ASP 10 si hanno minime variazioni dei parametri rispetto alle precedenti campagne da attribuire al

Itinerario internazionale E78 / S.G.C. Grosseto – Fano / adeguamento a 4 corsie nel tratto Grosseto – Siena (S.S. 223 "di Paganico") dal km 30+400 al km 41+600 – lotti 5, 6, 7, 8

periodo stagionale. Nelle indagini in ante operam la sorgente ASP 17 è risulta secca; rispetto alle campagne precedenti in corso d'opera non si riscontrano particolari variazioni nei valori dei parametri analizzati.

3. MONITORAGGIO COMPONENTE IDRICO SUPERFICIALE

Il monitoraggio della componete acque superficiali, al pari delle acque sotterranee, ha lo scopo di controllo volto all'individuazione di alcuni fenomeni non prevenibili ed accidentali causati direttamente o indirettamente dalle attività di cantiere. Per ciò che concerne il sistema di acque superficiali, della ubicazione dei cantieri principali e secondari e delle lavorazioni il piano di monitoraggio ambientale prevede di monitorare i seguenti corsi d'acqua:

- 1. Torrente Lanzo, in quanto adiacente al cantiere principale;
- 2. Fosso della Rilucia, in quanto posto a valle dello svincolo "Casal dei Pari" (cantiere operativo n.3) e comunque oggetto di superamento mediante viadotto;
- 3. Torrente Farma, la cui gola è attraversata dal viadotto omonimo il cui completamento richiede la realizzazione di piste di accesso lungo i versanti del corso d'acqua ed un attraversamento temporaneo.

3.1 DESCRIZIONE DELLE ATTIVITÀ DI MONITORAGGIO

Le finalità del monitoraggio ambientale in corso d'opera sono la verifica ed il controllo nel tempo delle specifiche pressioni ed impatti prodotti dalle attività di cantiere sulla matrice. La durata del monitoraggio è influenzata dalla durata della fase di cantiere che risulta variabile per ciascun tratto in cui è stata suddivisa la fase di costruzione del tracciato di progetto.

Le attività di monitoraggio in corso d'opera di ciascun tratto, avranno una durata pari a quella delle attività di cantiere e le frequenze del monitoraggio sono mensili o trimestrali a seconda del punto di monitoraggio e della tipologia di indagine. L'esecuzione delle misure, come previsto anche nel PMA, è verificata con le attività di cantiere, al fine di tenere conto dell'effettivo avanzamento delle lavorazioni.

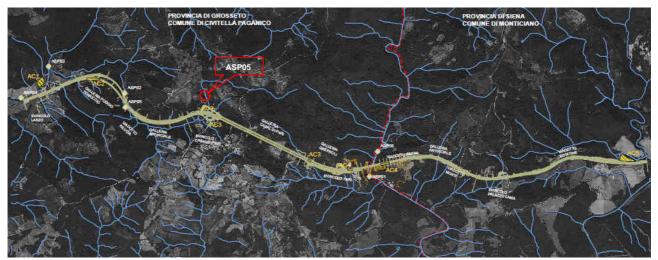


Figura 27 - Planimetria generale - acque superficiali

A seguito di riunione con ARPAT è stato richiesto di integrare un set di analisi di laboratorio aggiuntivo sulla matrice. Il set aggiuntivo prevede la ricerca di Olii minerali e Idrocarburi C>12 da eseguire con una frequenza mensile su tutti i sei punti di monitoraggio. La ricerca dei nuovi analiti è stata eseguita dal mese di

gennaio 2014. Si è inoltre modificata, da novembre 2013, la posizione del punto ASP 05 da quella indicata in PMA a monte dello svincolo Casal di Pari. Ciò si è reso necessario in quanto il punto precedente risultava essere a valle delle aree di cantiere di Casal di Pari AC3. Di seguito l'ubicazione dei punti di monitoraggio.

3.2 CONFRONTO CON LE CAMPAGNE PRECEDENTI

Di seguito si riportano i confronti limiti di legge e con le campagne precedenti.

- Per il torrente Lanzo il punto ASP 04 è a valle dell'area di cantiere. Il punto a monte è ASP 03.
- Per il torrente Rilucia il punto ASP 02 è a valle dell'area di cantiere. Il punto a monte è ASP 05.
- Per il torrente Farma il punto ASP 01 è a valle dell'area di cantiere. Il punto a monte è ASP 06.

3.2.1 MISURE PORTATA E CHIMICO-FISICHE IN SITO

Misure portata e chimico-fisiche in sito per il Torrente Farma

	ASP 01														
ASP - Acque superficiali (misure portata e chimico-fisiche in sito) - [PA.PE.126]															
Parametro U.M. Limite di AO AO CO CO CO CO CO															
Parametro	U.IVI.	Legge	28/06/2012	20/09/2012	09/08/2013	29/11/13	10/02/14	05/05/14	19/08/14	25/11/14					
temperatura aria	°C		26,3	25,5	26	7	10	20	23	15,9					
temperatura acqua	°C		29,15	19,3	24,4	5,6	5,9	15,3	22,2	12,9					
conducibilità elettrica	μS/cm²		1537	1958	1540	664,4	223	537,0	1226,0	980,0					
potenziale redox	mV		33	58,6	186	102	104,1	92,5	90,8	100					
рН	ı		7,6	7,75	7,44	7,7	7,4	7,58	7,33	7,6					
ossigeno disciolto	%		83,1	84,6	82,1	98,8	38,1	98,9	70,3	42					
ossigeno disciolto	ppm		6,39	7,76	6,05	12,46	4,8	9,88	6,25	4,4					

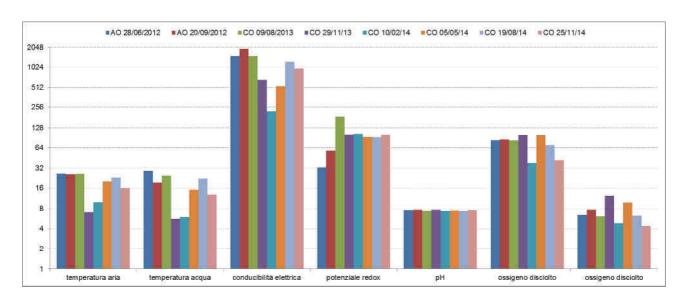


Figura 28 – ASP 01 punto di valle torrente Farma – analisi in situ

					ASP 01						
ASP - Acque superficiali (misure portata e chimico-fisiche in sito) - [PA.PE.126]											
Parametro	U.M.	Limite di	AO	AO	СО	СО	СО	СО	СО	СО	
Farameno	U.IVI.	Legge	28/06/2012	20/09/2012	09/08/2013	29/11/13	10/02/14	05/05/14	19/08/14	25/11/14	
portata	m³/s		0,047	0,055	0,105	0,946	15,569	1,871	1,542	1,979	

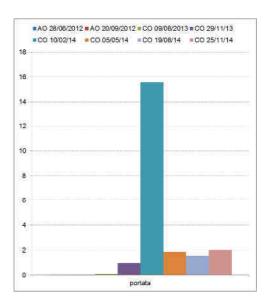


Figura 29 – ASP 01 punto di valle torrente Farma – portata

				А	SP 06					
	ASF	- Acque	superficiali ((misure port	ata e chimic	o-fisiche in	sito) - [PA.P	E.126]		
Parametro U.M. di AO AO CO CO CO CO CO CO										
Parametro	U.IVI.	Legge	28/06/2012	20/09/2012	09/08/2013	29/11/2013	10/02/2014	05/05/2014	19/08/2014	25/11/2014
temperatura aria	°C		27,3	26,6	27	7	10	20	23	15,9
temperatura acqua	°C		27,89	20,3	25,3	5,8	6	15	22,4	12,4
conducibilità elettrica	μS/cm ²		1505	1961	1508	666,7	228	530	1168	899
potenziale redox	mV		45,4	60,1	183	125	121,5	98,5	101	93,7
рН	ı		7,23	7,61	7,35	7,61	7,5	7,93	7,32	7,5
ossigeno disciolto	%		91,5	86,1	91	95,4	31,8	93	69,8	63,9
ossigeno disciolto	ppm		7,14	7,93	7,49	11,8	4,0	9,4	6,22	6,8

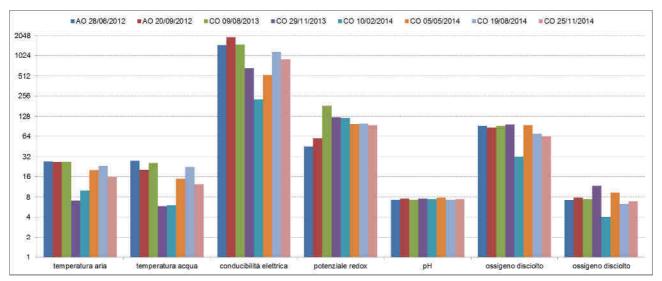


Figura 30 - ASP 06 punto di monte torrente Farma - analisi in situ

					ASP 0	6								
	ASP - Acque superficiali (misure portata e chimico-fisiche in sito) - [PA.PE.126]													
Parametro	U.M.	Limite di	AO	AO	СО	СО	СО	СО	СО	СО				
Tarametro	O.IVI.	Legge	28/06/2012	20/09/2012	09/08/2013	29/11/2013	10/02/2014	05/05/2014	19/08/2014	25/11/2014				
portata	m³/s		0,073	0,088	0,084	0,88	15,459	1,198	0,878	1,451				

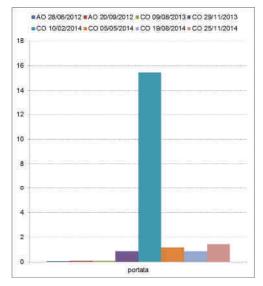


Figura 31 – ASP 06 punto di monte torrente Farma – portata

Misure portata e chimico-fisiche in sito per il torrente Rilucia

	ASP 02 ASP - Acque superficiali (misure portata e chimico-fisiche in sito) - [PA.PE.126]														
Parametro U.M. di															
1 drametro	O.IVI.	Legge	16/04/2012	09/08/2013	29/11/2013	10/02/2014	07/05/14	19/08/14	25/11/14	16/10/14	16/01/15				
temperatura aria	°C									24	12				
temperatura acqua	°C		buono	sufficiente	sufficiente	scarso	sufficiente	scarso	scarso	20,5	7,6				
conducibilità elettrica	μS/cm ²		secco	secco	secco	534,6	523,1	629	495	365,5	104				
potenziale redox	mV		secco	secco	secco	115	112	132,3	116	114	77,8				
рН	-		secco	secco	secco	8,22	8,11	8,29	8,20	7,03	7,47				
ossigeno disciolto	%		secco	secco	secco	72,3	95,7	84,5	79,1	69,3	87,7				
ossigeno disciolto	ppm		secco	secco	secco	6,76	11,12	9,16	6,97	6,4	10,58				

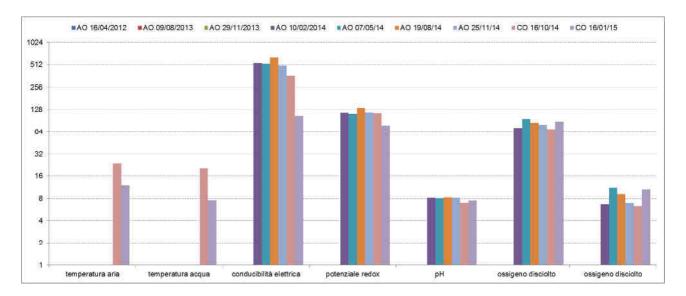


Figura 32 - ASP 02 punto di valle torrente Rilucia - analisi in situ

	ASP 02												
		AS	P - Acque su	uperficiali (m	isure portata	e chimico-fi	siche in sitc) - [PA.PE.	126]				
Davaga atva	LIM Limite	Limite di	AO	AO	СО	СО	СО	СО	СО	СО	СО		
Farametro	rametro U.M. Limite		28/06/2012	12/09/2012	09/08/2013	28/10/2013	13/01/14	17/04/14	24/07/14	16/10/14	16/01/15		
portata	m³/s		secco	secco	secco	0,035	0,022	0,003	scarsa	scarsa	scarsa		

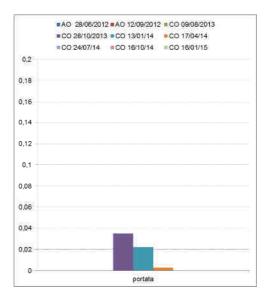


Figura 33 - ASP 02 punto di valle torrente Rilucia - portata

	ASP 05													
	ASP - Acque superficiali (misure portata e chimico-fisiche in sito) - [PA.PE.126]													
Parametro U.M. Limite di AO AO CO CO CO CO CO CO CO														
Farametro	U.IVI.	Legge	28/06/2012	20/09/2012	09/08/2013	28/10/2013	13/01/14	17/04/14	24/07/14	16/10/14	16/01/15			
temperatura aria	°C		25,8	28	27	21	10	20	28	24	12			
temperatura acqua	°C		secco	secco	secco	18,2	9,1	12,3	19	20,9	7,1			
conducibilità elettrica	μS/cm ²		secco	secco	secco	530,2	307,4	342	390	806,5	236			
potenziale redox	mV		secco	secco	secco	99	91	142	104	132	73,8			
pН	=		secco	secco	secco	8,15	6,93	8,02	7,95	7,03	7,73			
ossigeno disciolto	%		secco	secco	secco	77,5	93,8	81,4	74,3	64,9	84,9			
ossigeno disciolto	ppm		secco	secco	secco	7,05	11,02	8,64	6,64	6,3	10,3			

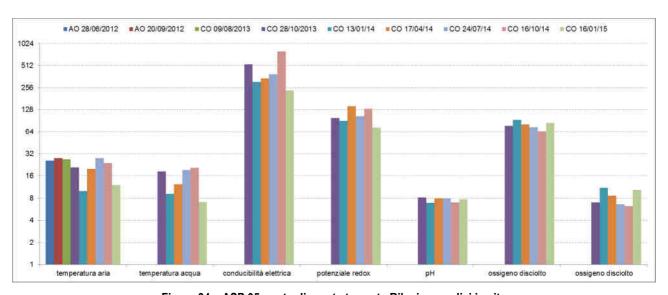


Figura 34 – ASP 05 punto di monte torrente Rilucia – analisi in situ

					ASP	05					
		AS	P - Acque su	ıperficiali (m.	isure portata	e chimico-fi	siche in sitc) - [PA.PE.	126]		
Parametro	Daviera et la 11 M		AO	AO	СО	СО	СО	со	со	СО	со
Farametro	U.M.	Legge	28/06/2012	20/09/2012	09/08/2013	28/10/2013	13/01/14	17/04/14	24/07/14	16/10/14	16/01/15
portata	m³/s		secco	secco	secco	0,021	0,015	0,001	scarsa	scarsa	scarsa

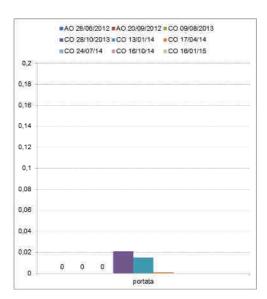


Figura 35 - ASP 05 punto di monte torrente Rilucia - portata

Misure portata e chimico-fisiche in sito per il torrente Lanzo

				ASP 04										
	ASP - Acque superficiali (misure portata e chimico-fisiche in sito) - [PA.PE.126]													
Parametro	U.M.	Limite di	AO	AO	СО	CO	СО	СО	CO					
Farameno	U.IVI.	Legge	28/06/2012	20/09/2012	29/11/2013	10/02/14	07/05/14	19/08/14	25/11/14					
temperatura aria	°C		29,07	27	8	10,5	20	23	16					
temperatura acqua	°C		28,77	secco	7,7	6,7	16,8	20,4	13,7					
conducibilità elettrica	μS/cm²		489	secco	335,6	162	340,0	448	90					
potenziale redox	mV		14,5	secco	155	98,8	94,5	88,6	83,5					
рН	-		8,45	secco	7,8	7,7	8,14	7,94	8,03					
ossigeno disciolto	%		171,2	secco	97,3	34	93,6	82,2	96,6					
ossigeno disciolto	ppm		13,02	secco	11,5	4,2	9,07	7,55	9,9					

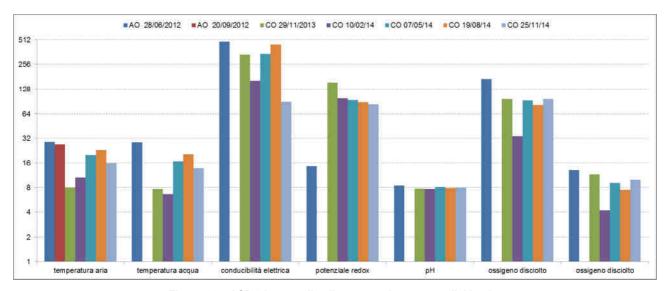


Figura 36 - ASP 04 punto di valle torrente Lanzo - analisi in situ

	ASP 04											
	ASP - Acque superficiali (misure portata e chimico-fisiche in sito) - [PA.PE.126]											
Daramatra	11.54	Limite di	AO	AO	СО	СО	СО	СО	СО			
Parametro	U.M.	Legge	28/06/2012	20/09/2012	29/11/2013	10/02/14	07/05/14	19/08/14	25/11/14			
portata	m³/s		stagnate	secco	0,286	6,421	0,324	0,091	0,100			

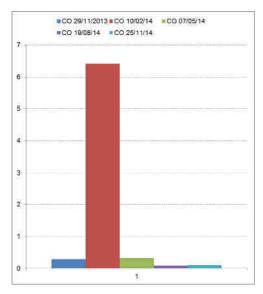


Figura 37 - ASP 04 punto di valle torrente Lanzo - portata

				ASP 03									
	ASP - Acque superficiali (misure portata e chimico-fisiche in sito) - [PA.PE.126]												
Parametro U.M. Limite di AO AO CO CO CO CO													
Farameno	U.IVI.	Legge	28/06/12	12/09/12	29/11/13	10/02/14	07/05/14	19/08/14	25/11/14				
temperatura aria	°C		28,99	28,50	7	10,5	20	23	16				
temperatura acqua	°C		27,54	22,60	5,9	7,1	16,1	20,6	13,1				
conducibilità elettrica	μS/cm ²		527	742	327,8	131	323,0	443,0	83,4				
potenziale redox	mV		42,50	-13,10	112	111,4	98,2	81,7	85,6				
рН	-		7,69	7,60	7,95	7,6	8,18	7,79	7,94				
ossigeno disciolto	%		59,80	59,80	104,5	36,8	96,4	65,5	97,8				
ossigeno disciolto	ppm		4,85	5,25	13,51	4,5	9,45	6,05	10,2				

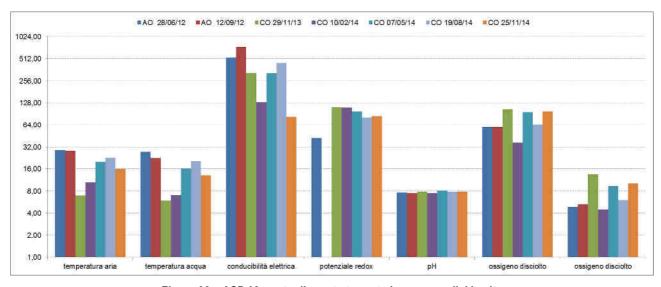


Figura 38 – ASP 03 punto di monte torrente Lanzo – analisi in situ

				AS	SP 03							
	ASP - Acque superficiali (misure portata e chimico-fisiche in sito) - [PA.PE.126]											
Parametro	U.M.	Limite di	i AO AO CO CO CO									
Farameno	U.IVI.	Legge	28/06/12	12/09/12	29/11/13	10/02/14	07/05/14	19/08/14	25/11/14			
portata	m³/s		0,003	0,0009	0,368	6,072	0,297	0,091	0,155			

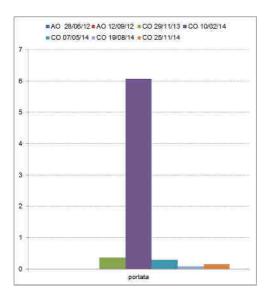


Figura 39 - ASP 03 punto di monte torrente Lanzo - portata

3.2.2 ANALISI CHIMICO-BATTERIOLOGICHE

Analisi chimico-batteriologiche in laboratorio per il Torrente Farma

				ASP 01					
ASP - Acq	ue superficiali (analisi d	chimico-batterio	logiche in lab	ooratorio) con	frequenze	trimestrali - [PA.PE.129]	
		Limit e di	AO	СО	СО	со	СО	со	СО
Parametro / Analita	U.M.	Legg e	15/11/12	09/08/13	29/11/13	11/02/14	05/05/14	19/08/14	25/11/14
Nitrati	mg/l		0,21	2,4	0,61	0,23	0,43	1,9	1,1
COD	mg/l	-	7,9	< 16	< 16	< 16	< 16	< 16	< 16
Nitriti	mg/l		<rl< td=""><td>< 0,05</td><td>< 0,05</td><td>< 0.05</td><td>< 0.05</td><td>< 0.05</td><td>0,31</td></rl<>	< 0,05	< 0,05	< 0.05	< 0.05	< 0.05	0,31
Fosforo totale (come P)	mg/l		<rl< td=""><td>< 0,1</td><td>0,24</td><td>< 0.1</td><td>< 0.1</td><td>< 0.1</td><td>< 0.1</td></rl<>	< 0,1	0,24	< 0.1	< 0.1	< 0.1	< 0.1
Tensioattivi anionici	mg/l		<rl< td=""><td>< 0,03</td><td>< 0,03</td><td>< 0.03</td><td>< 0.03</td><td>< 0.03</td><td>< 0.03</td></rl<>	< 0,03	< 0,03	< 0.03	< 0.03	< 0.03	< 0.03
Tensioattivi non ionici	mg/l		<rl< td=""><td>< 0,03</td><td>< 0,03</td><td>0,16</td><td>< 0.03</td><td>< 0.03</td><td>< 0.03</td></rl<>	< 0,03	< 0,03	0,16	< 0.03	< 0.03	< 0.03
Tensioattivi totali	mg/l	1	<0.05	< 0,03	< 0,03	< 0.03	< 0.03	< 0.03	< 0.03
Alluminio	mg/l		0,064	0,053	0,15	0,46	0,27	< 0.05	< 0.05
Cadmio	mg/l		<rl< td=""><td>< 0,01</td><td>< 0,01</td><td>< 0.01</td><td>< 0.01</td><td>< 0.01</td><td>< 0.01</td></rl<>	< 0,01	< 0,01	< 0.01	< 0.01	< 0.01	< 0.01
Cromo totale	mg/l		<rl< td=""><td>< 0,04</td><td>< 0,04</td><td>< 0.04</td><td>< 0.04</td><td>< 0.04</td><td>< 0.04</td></rl<>	< 0,04	< 0,04	< 0.04	< 0.04	< 0.04	< 0.04
Ferro	mg/l		0,048	0,2	0,2	0,57	0,12	0,051	0,1
Manganese	mg/l		0,0164	< 0,01	0,023	< 0.01	< 0.01	< 0.01	0,052
Nichel	mg/l		0,00101	< 0,06	< 0,06	< 0.06	< 0.06	< 0.06	< 0.06
Piombo	mg/l		<rl< td=""><td>< 0,1</td><td>< 0,02</td><td>< 0.02</td><td>< 0.02</td><td>< 0.02</td><td>< 0.02</td></rl<>	< 0,1	< 0,02	< 0.02	< 0.02	< 0.02	< 0.02
Rame	mg/l		0,00189	0,023	0,016	0,015	< 0.01	< 0.01	< 0.01
Zinco	mg/l		<rl< td=""><td>0,025</td><td>0,084</td><td>0,027</td><td>0,13</td><td>< 0.02</td><td>< 0.02</td></rl<>	0,025	0,084	0,027	0,13	< 0.02	< 0.02
Fenoli	mg/l		<rl< td=""><td>< 0,01</td><td>< 0,01</td><td>< 0.01</td><td>< 0.01</td><td>< 0.01</td><td>< 0.01</td></rl<>	< 0,01	< 0,01	< 0.01	< 0.01	< 0.01	< 0.01
Durezza totale	mg/I CaCO ₃		233	544	331	150	300	510	500
Conta di Coliformi Totali	MPN/100ml		2500	1600	170	630	7,4	6200	740
Conta di Coliformi Fecali	MPN/100 ml		76	45	43	13	2,7	0	19
Streptococchi fecali	ufc/100 ml		36	56	7,3	35	0	190	24
Ricerca di Salmonella spp	Pres-Ass / 1		Ass.	Ass.	Ass.	Ass.	Ass.	Ass.	Ass.
RdP			13/00000869 1	17107 /2013	26077 /2013	14LA01 670	14LA0747 1	14LA1366 8	14LA1987 7

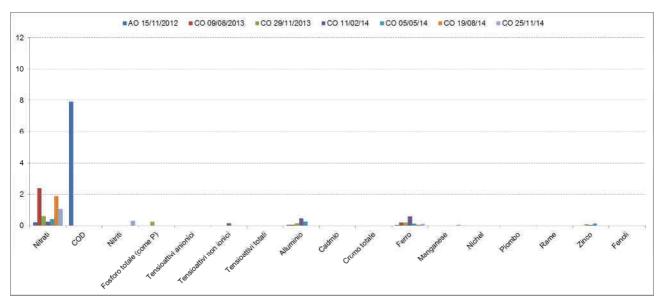


Figura 40 - ASP 01 punto di valle torrente Farma - analisi di laboratorio

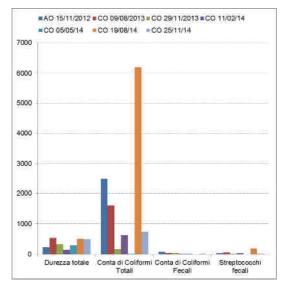


Figura 41 – ASP 01 punto di valle torrente Farma – analisi di laboratorio

				ASP 06					
ASP - Acqu	ie superficiali (a	nalisi ch	nimico-batteriolo	giche in lab	oratorio) co	on frequenze	e trimestrali -	[PA.PE.129]	
		Limite di	AO	СО	co	СО	СО	СО	СО
Parametro / Analita	U.M.	Legg e	14/11/12	09/08/13	29/11/13	11/02/14	05/05/14	19/08/14	25/11/14
Nitrati	mg/l		<rl< td=""><td>2,1</td><td>0,61</td><td>0,49</td><td>0,29</td><td>1,3</td><td>0,81</td></rl<>	2,1	0,61	0,49	0,29	1,3	0,81
COD	mg/l		10,3	< 16	< 16	< 16	< 16	< 16	< 16
Nitriti	mg/l		0	< 0,05	< 0,05	0,53	< 0.05	< 0.05	0,46
Fosforo totale (come P)	mg/l		0,1	< 0,1	0,24	< 0.1	< 0.1	< 0.1	< 0.1
Tensioattivi anionici	mg/l		<rl< td=""><td>< 0,03</td><td>< 0,03</td><td>< 0.03</td><td>< 0.03</td><td>< 0.03</td><td>< 0.03</td></rl<>	< 0,03	< 0,03	< 0.03	< 0.03	< 0.03	< 0.03
Tensioattivi non ionici	mg/l		<rl< td=""><td>< 0,03</td><td>< 0,03</td><td>0,22</td><td>< 0.03</td><td>< 0.03</td><td>< 0.03</td></rl<>	< 0,03	< 0,03	0,22	< 0.03	< 0.03	< 0.03
Tensioattivi totali	mg/l		<0.05	< 0,03	< 0,03	< 0.03	< 0.03	< 0.03	< 0.03
Alluminio	mg/l		0,062	< 0,05	< 0,1	0,38	0,28	< 0.05	< 0.05
Cadmio	mg/l		<rl< td=""><td>< 0,01</td><td>< 0,01</td><td>< 0.01</td><td>< 0.01</td><td>< 0.01</td><td>< 0.01</td></rl<>	< 0,01	< 0,01	< 0.01	< 0.01	< 0.01	< 0.01
Cromo totale	mg/l		<rl< td=""><td>< 0,04</td><td>< 0,04</td><td>< 0.04</td><td>< 0.04</td><td>< 0.04</td><td>< 0.04</td></rl<>	< 0,04	< 0,04	< 0.04	< 0.04	< 0.04	< 0.04
Ferro	mg/l		0,056	0,23	0,14	0,41	0,13	0,05	0,056
Manganese	mg/l		0,0155	0,019	< 0,01	< 0.01	< 0.01	< 0.01	0,048
Nichel	mg/l		0,00103	< 0,06	< 0,06	< 0.06	< 0.06	< 0.06	< 0.06
Piombo	mg/l		<rl< td=""><td>< 0,1</td><td>< 0,02</td><td>< 0.02</td><td>< 0.02</td><td>< 0.02</td><td>< 0.02</td></rl<>	< 0,1	< 0,02	< 0.02	< 0.02	< 0.02	< 0.02
Rame	mg/l		0,000237	0,028	0,014	0,015	< 0.01	< 0.01	< 0.01
Zinco	mg/l		<rl< td=""><td>< 0,02</td><td>0,024</td><td>0,026</td><td>0,1</td><td>< 0.02</td><td>< 0.02</td></rl<>	< 0,02	0,024	0,026	0,1	< 0.02	< 0.02
Fenoli	mg/l		<rl< td=""><td>< 0,01</td><td>< 0,01</td><td>< 0.01</td><td>< 0.01</td><td>< 0.01</td><td>< 0.01</td></rl<>	< 0,01	< 0,01	< 0.01	< 0.01	< 0.01	< 0.01
Durezza totale	mg/l CaCO₃		232	408	301	160	370	560	600
Conta di Coliformi Totali	MPN/100ml		830	2100	240	620	8,6	5300	500
Conta di Coliformi Fecali	MPN/100 ml		38	250	<3	350	2,7	Pres.	26
Streptococchi fecali	ufc/100 ml		34	63	6,4	25	0	470	14
Ricerca di Salmonella spp	Pres-Ass / 1		Ass.	Ass.	Ass.	Ass.	Ass.	Ass.	Ass.
RdP			13/00000086 93	17109 /2013	26079 /2013	14LA016 73	14LA0746 7	14LA1367 1	14LA1987 2

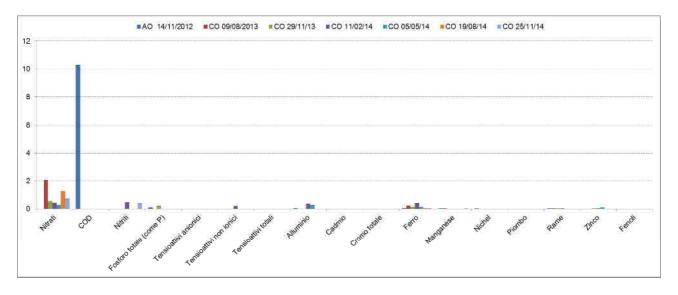


Figura 42 - ASP 06 punto di monte torrente Farma - analisi di laboratorio

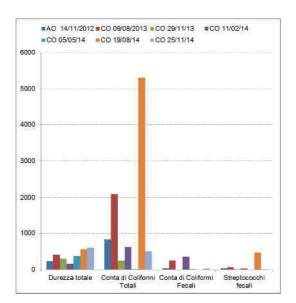


Figura 43 – ASP 06 punto di monte torrente Farma – analisi di laboratorio

Analisi chimico-batteriologiche in laboratorio per il Torrente Rilucia

	ASP 02											
ASP - A	ASP - Acque superficiali (analisi chimico-batteriologiche in laboratorio) con frequenze trimestrali - [PA.PE.129]											
		Limit e di	AO	СО	СО	СО	СО	СО	СО	СО	СО	
Parametro / Analita	U.M.	Legg	20/09/12	09/08/13	28/10/13	13/01/14	17/04/14	24/07/14	16/10/14	25/11/14	16/01/15	
Nitrati	mg/l				0,71	0,93	0,59	0,47	0,6	1,3	2	
COD	mg/l				< 16	< 16	< 16	< 16	< 16	< 16	< 16	
Nitriti	mg/l				< 0.05	< 0.1	< 0.05	0,06	< 0.05	< 0.05	< 0.05	
Fosforo totale (come P)	mg/l				0,23	0,26	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
Tensioattivi anionici	mg/l				< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	
Tensioattivi non ionici	mg/l				< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	
Tensioattivi totali	mg/l				< 0.03	< 0.01	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	
Alluminio	mg/l				4,2	< 0.2	0,39	< 0.05	0,18	0,085	0,057	
Cadmio	mg/l				< 0.01	< 0.005	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
Cromo totale	mg/l				< 0.04	< 0.02	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	
Ferro	mg/l				2,3	< 0.2	0,12	0,053	0,51	0,25	0,35	
Manganese	mg/l				0,056	0,029	0,027	0,018	0,034	0,011	0,19	
Nichel	mg/l				< 0.06	< 0.02	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	
Piombo	mg/l				< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	
Rame	mg/l				0,015	< 0.02	0,011	< 0.01	0,017	< 0.01	0,017	
Zinco	mg/l				0,039	0,021	< 0.02	< 0.02	0,021	0,041	0,04	
Fenoli	mg/l				< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
Durezza totale	mg/l CaCO₃				300	250	360	300	430	470	140	
Conta di Coliformi Totali	MPN/100 ml				12000	480	330	53000	33000	950	1400	
Conta di Coliformi Fecali	MPN/100 ml				4	6,4	26	860	280	28	440	
Streptococchi fecali	ufc/100 ml				260	32	36	160	310	51	820	
Ricerca di Salmonella spp	Pres-Ass /				Assent e	Assent e	Assente	Assente	Assente	Ass.	Assente	
RdP					23367 /2013	14LA00 203	14LA067 23	14LA124 97	14LA16 732	14LA19 887	15LA00 797	

Figura 44 – ASP 02 punto di valle torrente Rilucia – analisi di laboratorio

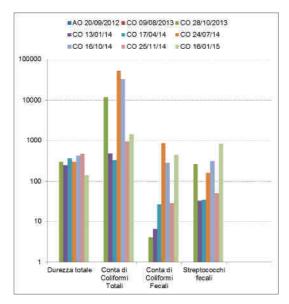


Figura 45 – ASP 02 punto di valle torrente Rilucia – analisi di laboratorio

				AS	P 05					
ASP - Acq	ue superficiali	(analisi	chimico-ba	atteriologich	e in labora	torio) con fr	equenze trin	nestrali - [PA	.PE.129]	
		Limit e di	AO	СО	СО	СО	СО	СО	СО	СО
Parametro / Analita	U.M.	Legg e	20/09/12	09/08/13	28/10/13	13/01/14	17/04/14	24/07/14	16/10/14	16/01/15
Nitrati	mg/l				0,63	0,68	0,9	0,59	1,2	0,53
COD	mg/l				16	< 16	< 16	< 16	< 16	< 16
Nitriti	mg/l				< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05
Fosforo totale (come P)	mg/l				0,2	0,29	< 0.1	< 0.1	< 0.1	< 0.1
Tensioattivi anionici	mg/l	I			< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Tensioattivi non ionici	mg/l	I			< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Tensioattivi totali	mg/l				< 0.03	< 0.01	< 0.03	< 0.03	< 0.03	< 0.03
Alluminio	mg/l				4,2	< 0.2	0,3	< 0.05	2,1	0,059
Cadmio	mg/l				< 0.01	< 0.005	< 0.01	< 0.01	< 0.01	< 0.01
Cromo totale	mg/l				< 0.04	< 0.02	< 0.04	< 0.04	< 0.04	< 0.04
Ferro	mg/l				1,8	< 0.2	0,1	0,14	5	0,14
Manganese	mg/l				0,034	< 0.02	< 0.01	0,012	0,22	< 0.01
Nichel	mg/l				< 0.06	< 0.02	< 0.06	< 0.06	< 0.06	< 0.06
Piombo	mg/l				< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Rame	mg/l				0,018	< 0.02	0,016	< 0.01	0,022	0,018
Zinco	mg/l				0,039	0,028	< 0.02	< 0.02	0,036	0,038
Fenoli	mg/l				< 0.01	< 0.01	< 0.01	< 0.01	5	< 0.01
Durezza totale	mg/l CaCO₃				270	110	200	180	480	94
Conta di Coliformi Totali	MPN/100ml				2190	96	52	450000	24000	250
Conta di Coliformi Fecali	MPN/100 ml				3	0	0	0	680	230
Streptococchi fecali	ufc/100 ml				28	0,91	25	170	910	17
Ricerca di Salmonella spp	Pres-Ass / 1				Assent e	Assente	Assente	Assente	Assente	Assente
RdP					23369 /2013	14LA002 00	14LA067 27	14LA124 98	14LA167 27	15LA00 802

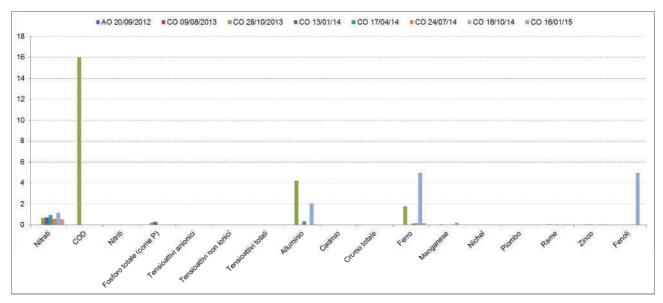


Figura 46 – ASP 05 punto di monte torrente Rilucia – analisi di laboratorio

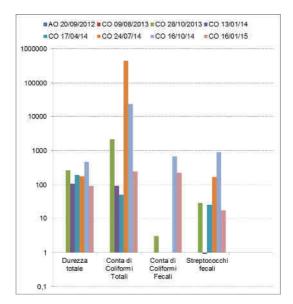


Figura 47 – ASP 05 punto di monte torrente Rilucia – analisi di laboratorio

Analisi chimico-batteriologiche in laboratorio per il Torrente Lanzo

ASP 04 ASP - Acque superficiali (analisi chimico-batteriologiche in laboratorio) con frequenze trimestrali - IPA PF 1291												
ASP - Acque superficiali (analisi chimico-batteriologiche in laboratorio) con frequenze trimestrali - [PA.PE.129]												
Davassatus / Assalita	U.M.	Limite	AO	СО	СО	СО	СО	СО				
Parametro / Analita	U.M.	di Legge	28/06/12	29/11/13	11/02/14	05/05/14	19/08/14	25/11/14				
Nitrati	mg/l		<rl< td=""><td>1,60</td><td>< 0.1</td><td>0,45</td><td>< 0.1</td><td>3,1</td></rl<>	1,60	< 0.1	0,45	< 0.1	3,1				
COD	mg/l		21	< 16	17	< 16	< 16	< 16				
Nitriti	mg/l		<rl< td=""><td>< 0,05</td><td>< 0.05</td><td>< 0.05</td><td>< 0.05</td><td>< 0.05</td></rl<>	< 0,05	< 0.05	< 0.05	< 0.05	< 0.05				
Fosforo totale (come P)	mg/l		<rl< td=""><td>0,20</td><td>< 0.1</td><td>< 0.1</td><td>< 0.1</td><td>< 0.1</td></rl<>	0,20	< 0.1	< 0.1	< 0.1	< 0.1				
Tensioattivi anionici	mg/l		<rl< td=""><td>< 0,03</td><td>< 0.03</td><td>< 0.03</td><td>< 0.03</td><td>< 0.03</td></rl<>	< 0,03	< 0.03	< 0.03	< 0.03	< 0.03				
Tensioattivi non ionici	mg/l		0,28	< 0,03	< 0.03	< 0.03	< 0.03	< 0.03				
Tensioattivi totali	mg/l		0,28	< 0,03	< 0.03	< 0.03	< 0.03	< 0.03				
Alluminio	mg/l		0,0319	0,1	1,8	0,36	< 0.05	< 0.05				
Cadmio	mg/l		<rl< td=""><td>< 0,01</td><td>< 0.01</td><td>< 0.01</td><td>< 0.01</td><td>< 0.01</td></rl<>	< 0,01	< 0.01	< 0.01	< 0.01	< 0.01				
Cromo totale	mg/l		0,00305	< 0,04	< 0.04	< 0.04	< 0.04	< 0.04				
Ferro	mg/l		0,032	0,17	2,2	0,1	0,04	0,12				
Manganese	mg/l		0,0199	0,013	0,024	< 0.01	< 0.01	0,013				
Nichel	mg/l		0,0019	< 0,06	< 0.06	< 0.06	< 0.06	< 0.06				
Piombo	mg/l		0,00084	< 0,02	< 0.02	< 0.02	< 0.02	< 0.02				
Rame	mg/l		0,00236	0,015	0,016	< 0.01	< 0.01	< 0.01				
Zinco	mg/l		0,00353	0,053	< 0.02	0,26	< 0.02	< 0.02				
Fenoli	mg/l		<rl< td=""><td>< 0,01</td><td>< 0.01</td><td>< 0.01</td><td>< 0.01</td><td>< 0.01</td></rl<>	< 0,01	< 0.01	< 0.01	< 0.01	< 0.01				
Durezza totale	mg/l CaCO ₃		216	145	120	200	200	330				
Conta di Coliformi Totali	MPN/100ml		230	2100	1700	53	9400	10000				
Conta di Coliformi Fecali	MPN/100 ml		<30	<3	410	6,4	1200	1800				
Streptococchi fecali	ufc/100 ml		0	250	1100	0,9	400	360				
Ricerca di Salmonella spp	Pres-Ass / 1 I		Ass.	Ass.	Ass.	Ass.	Ass.	Ass.				
RdP			12/000234055	26073 /2013	14LA01660	14LA07479	14LA13657	14LA19882				

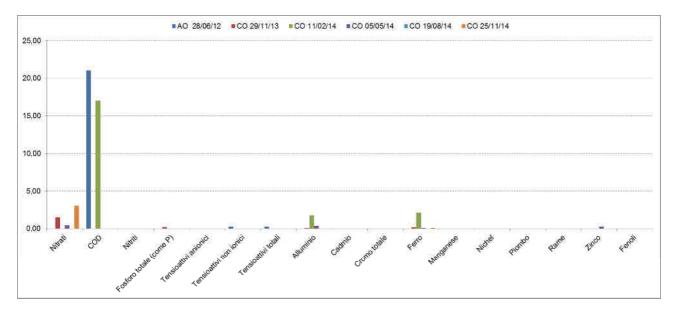


Figura 48 – ASP 04 punto di valle torrente Lanzo – analisi di laboratorio

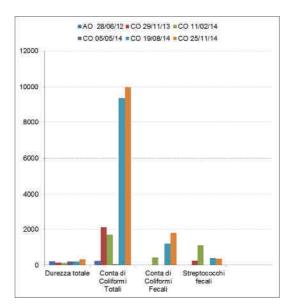


Figura 49 - ASP 04 punto di valle torrente Lanzo - analisi di laboratorio

ASP 03										
ASP - Acque superficiali (analisi chimico-batteriologiche in laboratorio) con frequenze trimestrali - [PA.PE.129]										
Parametro / Analita	U.M.	Limite	AO	СО	СО	СО	СО	СО		
		di Legge	26/06/12	29/11/13	11/02/14	05/05/14	19/08/14	25/11/14		
Nitrati	mg/l		<rl< td=""><td>1,70</td><td>0,44</td><td>0,24</td><td>0,56</td><td>1,3</td></rl<>	1,70	0,44	0,24	0,56	1,3		
COD	mg/l		13,40	< 16	19,00	< 16	< 16	< 16		
Nitriti	mg/l		<rl< td=""><td>< 0,05</td><td>< 0.05</td><td>< 0.05</td><td>< 0.05</td><td>< 0.05</td></rl<>	< 0,05	< 0.05	< 0.05	< 0.05	< 0.05		
Fosforo totale (come P)	mg/l		<rl< td=""><td>0,16</td><td>< 0.1</td><td>< 0.1</td><td>< 0.1</td><td>< 0.1</td></rl<>	0,16	< 0.1	< 0.1	< 0.1	< 0.1		
Tensioattivi anionici	mg/l		<rl< td=""><td>< 0,03</td><td>< 0.03</td><td>< 0.03</td><td>< 0.03</td><td>< 0.03</td></rl<>	< 0,03	< 0.03	< 0.03	< 0.03	< 0.03		
Tensioattivi non ionici	mg/l		0,24	< 0,03	< 0.03	< 0.03	< 0.03	< 0.03		
Tensioattivi totali	mg/l		0,24	< 0,03	< 0.03	< 0.03	< 0.03	< 0.03		
Alluminio	mg/l		0,0097	0,11	0,43	0,25	0,27	0,085		
Cadmio	mg/l		<rl< td=""><td>< 0,01</td><td>< 0.01</td><td>< 0.01</td><td>< 0.01</td><td>< 0.01</td></rl<>	< 0,01	< 0.01	< 0.01	< 0.01	< 0.01		
Cromo totale	mg/l		0,00266	< 0,04	< 0.04	< 0.04	< 0.04	< 0.04		
Ferro	mg/l		0,0371	0,15	0,52	0,14	0,44	0,25		
Manganese	mg/l		0,0146	< 0,01	< 0.01	< 0.01	< 0.01	0,011		
Nichel	mg/l		0,00067	< 0,06	< 0.06	< 0.06	< 0.06	< 0.06		
Piombo	mg/l		<rl< td=""><td>< 0,02</td><td>< 0.02</td><td>< 0.02</td><td>< 0.02</td><td>< 0.02</td></rl<>	< 0,02	< 0.02	< 0.02	< 0.02	< 0.02		
Rame	mg/l		0,00183	0,015	0,014	< 0.01	< 0.01	< 0.01		
Zinco	mg/l		0,00329	0,032	0,02	0,12	< 0.02	0,041		
Fenoli	mg/l		<rl< td=""><td>< 0,01</td><td>< 0.01</td><td>< 0.01</td><td>< 0.01</td><td>< 0.01</td></rl<>	< 0,01	< 0.01	< 0.01	< 0.01	< 0.01		
Durezza totale	mg/l CaCO₃		249	151	95	250	210	470		
Conta di Coliformi Totali	MPN/100ml		4300	230	440	22	57000	950		
Conta di Coliformi Fecali	MPN/100 ml		<30	3	200	7,3	190	28		
Streptococchi fecali	ufc/100 ml		0	5,50	100	2,7	330	51		
Ricerca di Salmonella spp	Pres-Ass / 1 I		Ass.	Ass.	Ass.	Ass.	Ass.	Ass.		

RdP 12/000234054 26075 14LA01663 14LA07475 14LA13664 14LA19887

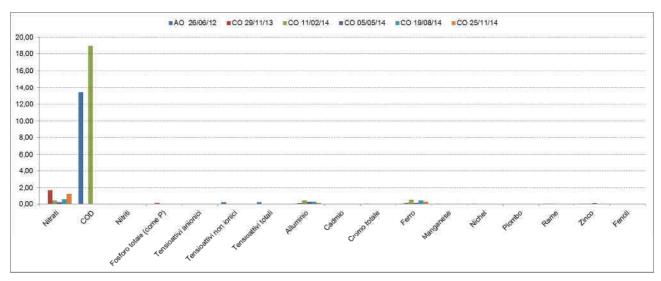


Figura 50 – ASP 03 punto di monte torrente Lanzo – analisi di laboratorio

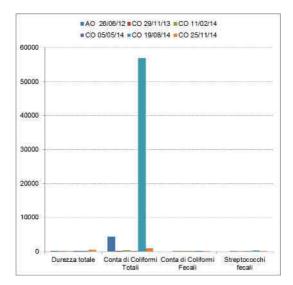


Figura 51 - ASP 03 punto di monte torrente Lanzo - analisi di laboratorio

3.2.3 ANALISI CHIMICHE DI LABORATORIO MENSILI

Analisi chimiche in laboratorio a cadenza mensile per il Torrente Farma

ASP 01																		
ASP - Acque superficiali (analisi parametri solidi sospesi totali, ammoniaca, cloruri, solfati ed idrocarburi totali) - [PA.PE.130]																		
		Эе	АО	СО	СО	СО	СО	СО	СО	СО	СО	СО	СО	СО	СО	СО	СО	СО
Parametro / Analita	U.M.	Limite di Legge	15/11/12	61/80/60	26/09/13	28/10/13	29/11/13	09/12/13	13/01/14	11/02/14	24/03/14	17/04/14	05/05/14	24/06/14	11/0/114	19/08/14	11/60/80	16/10/14
Solidi sospesi totali	mg/l		<rl< td=""><td>7.1</td><td>20</td><td>7</td><td>1.2</td><td>1.3</td><td>2.6</td><td>90</td><td>1.8</td><td>2.8</td><td>3.7</td><td>2.8</td><td>1.2</td><td>1,2</td><td>9,9</td><td>7,4</td></rl<>	7.1	20	7	1.2	1.3	2.6	90	1.8	2.8	3.7	2.8	1.2	1,2	9,9	7,4
Azoto ammon. (come NH4)	mg/l		<rl< td=""><td>1.9</td><td>2.8</td><td>0.23</td><td>0.21</td><td>0.53</td><td><0.05</td><td><0.1</td><td><0.1</td><td>0.26</td><td><0.1</td><td><0.1</td><td>0.1</td><td>0,85</td><td>1,6</td><td>2,9</td></rl<>	1.9	2.8	0.23	0.21	0.53	<0.05	<0.1	<0.1	0.26	<0.1	<0.1	0.1	0,85	1,6	2,9
Cloruri	mg/l		21	153	190.5	34.6	26.6	42.5	28	9	19	28	20	63	47	32	11	25
Solfati	mg/l		79	369	453	147	105	171	120	24	92	95	66	180	280	180	28	86
Idrocarburi totali	μg/l		500	<35	<35	<35	<35	<35	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
RdP			I	17108 /2013	20297 /2013	23371 /2013	26078 /2013	27240 /2013	14LA00209	14LA01671	14LA04742	14LA06719	14LA07472	14LA10452	14LA11693	14LA16465	14LA14504	14LA16718

	ASP 01									
ASP - Acque superficiali (analisi parametri solidi sospesi totali, ammoniaca, cloruri, solfati ed idrocarburi totali) - [PA.PE.130]										
		Limite di Legge	СО	со	СО					
Parametro / Analita	U.M.		25/11/14	10/12/14	16/01/15					
Solidi sospesi totali	mg/l		3,9	3,8	2,8					
Azoto ammon. (come NH4)	mg/l		0,43	< 0.1	0,9					
Cloruri	mg/l		29	12,0	44,0					
Solfati	mg/l		74	24,0	130,0					
Idrocarburi totali	μg/l		< 10	< 10	< 10					
RdP				14LA19878	14LA21262					

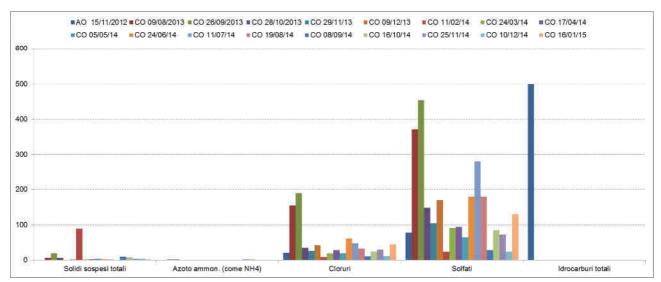


Figura 52 – ASP 01 punto di valle torrente Farma – analisi di laboratorio mensili

ASP 06																		
ASP - Acque superfic	ASP - Acque superficiali (analisi parametri solidi sospesi totali, ammoniaca, cloruri, solfati ed idrocarburi totali) - [PA.PE.130]																	
) Je	АО	СО	co	СО	СО	СО	СО	СО	СО	СО	СО	СО	СО	СО	СО	СО
Parametro / Analita	U.M.	Limite di Legge	14/11/12	09/08/13	26/09/13	28/10/13	29/11/13	09/12/13	13/01/14	11/02/14	24/03/14	17/04/14	05/05/14	24/06/14	11/07/14	19/08/14	08/09/14	16/10/14
Solidi sospesi totali	mg/l		<rl< td=""><td>5.3</td><td>15</td><td>0.72</td><td>1.1</td><td>1.2</td><td>3.1</td><td>88</td><td>2</td><td>1.2</td><td>1.4</td><td>2.1</td><td>1.96</td><td>1,3</td><td>13</td><td>15</td></rl<>	5.3	15	0.72	1.1	1.2	3.1	88	2	1.2	1.4	2.1	1.96	1,3	13	15
Azoto ammon. (come NH4)	mg/l		<rl< td=""><td>2</td><td>2.7</td><td>0.21</td><td>0.18</td><td>0.45</td><td><0.05</td><td><0.1</td><td><0.1</td><td>0.16</td><td><0.1</td><td><0.1</td><td><0.1</td><td>0,9</td><td>1,2</td><td>2,5</td></rl<>	2	2.7	0.21	0.18	0.45	<0.05	<0.1	<0.1	0.16	<0.1	<0.1	<0.1	0,9	1,2	2,5
Cloruri	mg/l		22	160	185.2	36.3	27.5	40.8	27	9.4	20	27	20	65	45	37	12	22
Solfati	mg/l		82	394	481	154	109	169	110	25	91	93	65	180	220	160	19	91
Idrocarburi totali	μg/l		<rl< td=""><td><35</td><td><35</td><td><35</td><td><35</td><td><35</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td></rl<>	<35	<35	<35	<35	<35	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
RdP			I	17110/2013	20299/2013	23372/2013	26080 /2013	27241/2013	14LA00208	14LA01674	14LA04744	14LA06721	14LA07468	14LA10458	14LA11692	14LA16467	14LA14506	14LA16716

	ASP 06				
ASP - Acque superficiali (analisi parametri solidi sospesi to	tali, ammonia	ca, cloruri, so	olfati ed idrocai	rburi totali) - [F	PA.PE.130]
		<u>o</u>	СО	СО	CO
Parametro / Analita	U.M.	Limite di Legge	25/11/14	10/12/14	16/01/15
Solidi sospesi totali	mg/l		6,6	2,6	2,9
Azoto ammon. (come NH4)	mg/l		0,29	< 0.1	0,57
Cloruri	mg/l		18	9,7	45
Solfati	mg/l		25	32	140
Idrocarburi totali	μg/l		< 10	< 10	< 10
RdP				14LA19873	14LA21272

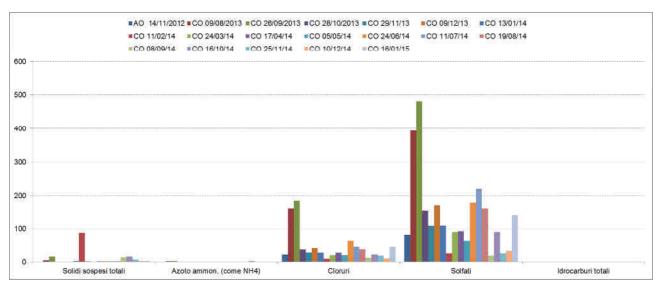


Figura 53 – ASP 06 punto di monte torrente Farma – analisi di laboratorio mensili

Analisi chimiche in laboratorio a cadenza mensile per il Torrente Rilucia

ASP 02																		
ASP - Acque superfi	ASP - Acque superficiali (analisi parametri solidi sospesi totali, ammoniaca, cloruri, solfati ed idrocarburi totali) - [PA.PE.130]																	
		je	AO	СО	СО	СО	СО	СО	СО	СО	СО	СО	СО	СО	СО	СО	СО	СО
Parametro / Analita	U.M.	Limite di Legge	14/11/12	81/80/60	26/09/13	28/10/13	29/11/13	09/12/13	13/01/14	11/02/14	24/03/14	17/04/14	05/05/14	18/06/14	24/07/14	19/08/14	08/09/14	16/10/14
Solidi sospesi totali	mg/l					54	36	1.5	39	130	1.4	99	100	2.5	1.8	sec	sec	260,0
Azoto ammon. (come NH4)	mg/l					0.4	0.8	0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	sec	sec	0,11
Cloruri	mg/l					23.9	21.3	28.4	25	10	20	29	20	130	37	sec	sec	20
Solfati	mg/l					68	55	76	60	21	24	66	49	670	150	sec	sec	49
Idrocarburi totali	μg/l					<35	<35	<35	<10	<10	<10	<10	<10	<10	<10	sec	sec	<10
RdP			I	ı	1	23368 /2013	26082 /2013	27243 /2013	14LA00204	14LA01676	14LA04748	14LA06724	14LA07485	14LA10121	14LA12501	-	-	14LA16724

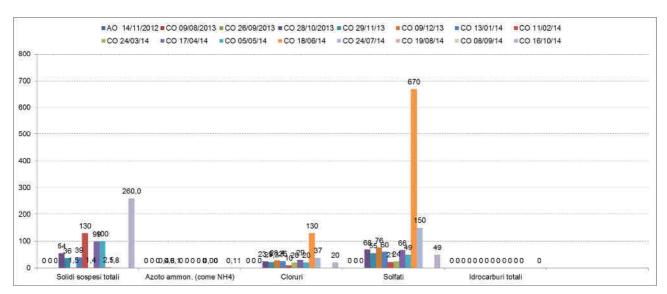


Figura 54 - ASP 02 punto di valle torrente Rilucia - analisi di laboratorio mensili

ASP 05																		
ASP - Acque superficiali (analisi parametri solidi sospesi totali, ammoniaca, cloruri, solfati ed idrocarburi totali) - [PA.PE.130]																		
		e l	АО	СО	СО	СО	СО	СО	СО	СО	СО	СО	СО	СО	СО	СО	СО	СО
Parametro / Analita	U.M.	Limite di Legge	14/11/12	09/08/13	26/09/13	28/10/13	29/11/13	09/12/13	13/01/14	11/02/14	24/03/14	17/04/14	05/05/14	18/06/14	24/07/14	19/08/14	08/09/14	16/10/14
Solidi sospesi totali	mg/l					40	15	2.6	4.8	8.3	2	4	3.4	2.6	1.2	2,2	18,6	2,9
Azoto ammon. (come NH4)	mg/l					0.4	0.25	0.14	<0.05	<0.1	<0.1	<0.1	1.9	<0.1	<0.1	<0.1	0,33	<0.1
Cloruri	mg/l					23	22.2	21.3	18	8.8	28	22	18	24	27	23	9,7	31
Solfati	mg/l					71	125	49	26	15	79	30	22	33	46	42	18	58
Idrocarburi totali	μg/l					<35	<35	<35	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
RdP			1	1	I	23370 /2013	26081 /2013	27242 /2013	14LA00202	14LA01677	14LA04746	14LA06728	14LA07483	14LA10119	14LA12503	14LA13675	14LA14502	14LA16729

AS	P 05											
ASP - Acque superficiali (analisi parametri solidi sospesi totali, ammoniaca, cloruri, solfati ed idrocarburi totali) - [PA.PE.130]												
		<u>o</u>	СО	СО	СО							
Parametro / Analita	U.M.	Limite di Legge	25/11/14	10/12/14	16/01/15							
Solidi sospesi totali	mg/l		7,9	7,8	4,1							
Azoto ammon. (come NH4)	mg/l		0,59	< 0.1	0,4							
Cloruri	mg/l		31	11,0	28,0							
Solfati	mg/l		40	20,0	34,0							
Idrocarburi totali	μg/l		< 10	< 10	< 10							
RdP			14LA19893	14LA21270	15LA00803							

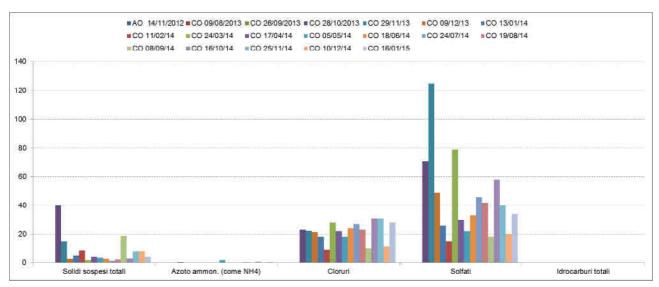


Figura 55 – ASP 05 punto di monte torrente Rilucia – analisi di laboratorio mensili

Analisi chimiche in laboratorio a cadenza mensile per il Torrente Lanzo

	ASP 04														
ASP - Acque superfi	ASP - Acque superficiali (analisi parametri solidi sospesi totali, ammoniaca, cloruri, solfati ed idrocarburi totali) - [PA.PE.130]														
		је	AO	СО	СО	СО	СО	СО	СО	СО	СО	СО	СО	СО	co
Parametro / Analita	U.M.	Limite	28/06/12	29/11/13	13/12/13	13/01/14	11/02/14	24/03/14	17/04/14	05/05/14	24/06/14	11/07/14	19/08/14	08/09/14	16/10/14
Solidi sospesi totali	mg/l		12	0.72	2.8	1.4	180	1.8	37	37	2.1	1.6	1,7	10,4	21
Azoto ammon. (come NH4)	mg/l		<rl< td=""><td>0.31</td><td>0.1</td><td><0.05</td><td><0.1</td><td><0.1</td><td><0.1</td><td>1.1</td><td><0.1</td><td><0.1</td><td>1,3</td><td>0,61</td><td>0,84</td></rl<>	0.31	0.1	<0.05	<0.1	<0.1	<0.1	1.1	<0.1	<0.1	1,3	0,61	0,84
Cloruri	mg/l		35.8	16.8	17.7	19	9.2	21	26	19	30	24	27	12	23
Solfati	mg/l		41.9	28	33	31	11	35	36	26	43	220	37	30	62
Idrocarburi totali	μg/l		<rl< td=""><td><35</td><td><35</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td></rl<>	<35	<35	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
RdP			12/000234055	26074 /2013	27668 /2013	14LA00207	14LA01661	14LA04738	14LA06715	14LA07480	14LA10457	14LA11696	14LA16461	14LA14500	14LA16722

А	SP 04				
ASP - Acque superficiali (analisi parametri solidi sospesi to	ali, ammoniaca	a, cloruri, sol	lfati ed idrocarb	uri totali) - [PA.	PE.130]
		je Je	СО	СО	CO
Parametro / Analita	U.M.	Limite di Legge	25/11/14	10/12/14	16/01/15
Solidi sospesi totali	mg/l		8,4	4,9	3,6
Azoto ammon. (come NH4)	mg/l		0,49	< 0.1	0,34
Cloruri	mg/l		23	8,9	25
Solfati	mg/l		59	40	45
Idrocarburi totali	μg/l		< 10	< 10	< 10
RdP			14LA19883	14LA21268	15LA00812



Figura 56 - ASP 04 punto di valle torrente Lanzo - analisi di laboratorio mensili

	ASP 03														
ASP - Acque superfic	ciali (ar	alisi para	ametri s	solidi sc	spesi to	otali, an	nmonia	ca, cloru	uri, solfa	ati ed ia	Irocarbu	ıri totali) - [PA.	PE.130	1
			AO	со	СО	со	со	СО	со	СО	со	со	со	СО	СО
Parametro / Analita	U.M.	Limite di Legge	26/06/12	29/11/13	13/12/13	13/01/14	11/02/14	24/03/14	17/04/14	05/05/14	24/06/14	11/07/14	19/08/14	08/09/14	16/10/14
Solidi sospesi totali	mg/l		<rl< td=""><td>1.6</td><td>0.8</td><td>7.1</td><td>61</td><td>2.3</td><td>4.5</td><td>20</td><td>1.4</td><td>1.64</td><td>1,4</td><td>16,7</td><td>12</td></rl<>	1.6	0.8	7.1	61	2.3	4.5	20	1.4	1.64	1,4	16,7	12
Azoto ammon. (come NH4)	mg/l		<rl< td=""><td>0.1</td><td>0.54</td><td>0.056</td><td>< 0.1</td><td>< 0.1</td><td>< 0.1</td><td>< 0.1</td><td><0.1</td><td><0.1</td><td>1,4</td><td>1,6</td><td>0,59</td></rl<>	0.1	0.54	0.056	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1	1,4	1,6	0,59
Cloruri	mg/l		28.5	16	19.5	19	9.7	22	25	21	28	26	26	11	27
Solfati	mg/l		43.4	43	34	31	10	38	38	25	39	47	42	16	46
Idrocarburi totali	μg/l		<rl< td=""><td><35</td><td><35</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td></rl<>	<35	<35	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
RdP			12/000234054	26076 /2013	27667 /2013	14LA00206	14LA01664	14LA04740	14LA06717	14LA07476	14LA10456	14LA11697	14LA16463	14LA14497	14LA16720

	ASP (03												
ASP - Acque superficiali (analisi parametri solidi s	ASP - Acque superficiali (analisi parametri solidi sospesi totali, ammoniaca, cloruri, solfati ed idrocarburi totali) - [PA.PE.130]													
			СО	СО	СО									
Parametro / Analita	U.M.	Limite di Legge	25/11/14	10/12/14	16/01/15									
Solidi sospesi totali	mg/l		6,2	4,6	2,2									
Azoto ammon. (come NH4)	mg/l		0,56	< 0.1	0,52									
Cloruri	mg/l		28	15	23									
Solfati	mg/l		50	39	39									
Idrocarburi totali	μg/l		< 10	< 10	< 10									
RdP			14LA19888	14LA21266	15LA00810									

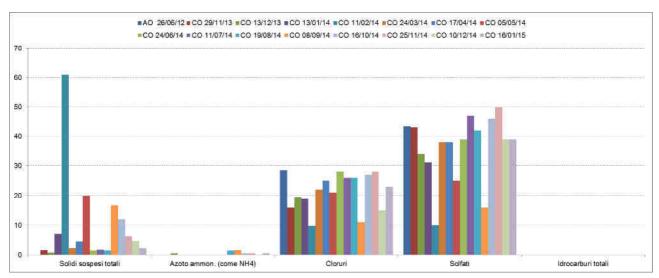
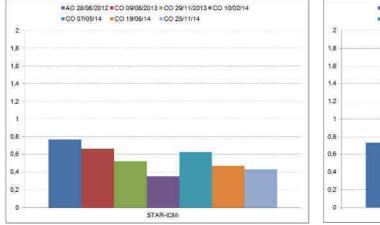


Figura 57 – ASP 03 punto di monte torrente Lanzo – analisi di laboratorio mensili

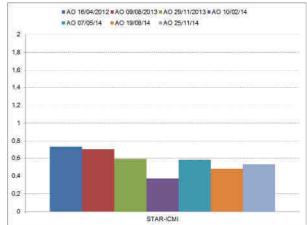


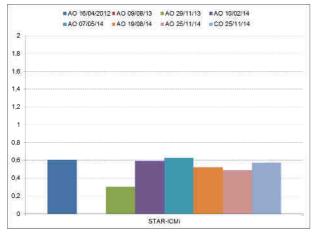
3.2.4 STAR-ICM

Indagine STAR-ICMi per il Torrente Farma

	ASP 01													
	ASP - Acque superficiali (determinazione indice STAR-ICMi) - [PA.PE.131]													
Parametro	U.M.	Limite di	AO	СО	СО	со	СО	СО	СО					
Farameno	O.IVI.	Legge	28/06/2012	09/08/2013	29/11/2013	10/02/14	07/05/14	19/08/14	25/11/14					
STAR-ICMi			0,768	0,66	0,52	0,35	0,620	0,470	0,430					
Giudizio	Giudizio sufficiente sufficiente scarso sufficiente scarso scarso													

	ASP 06													
	ASP - Acque superficiali (determinazione indice STAR-ICMi) - [PA.PE.131]													
Parametro	Parametro U.M.	U.M. Limite di Legge	AO	AO	AO	AO	AO	AO	AO					
Falameno	O.IVI.		16/04/2012	09/08/2013	29/11/2013	10/02/14	07/05/14	19/08/14	25/11/14					
STAR-ICMi			0,738	0,708	0,59	0,37	0,58	0,48	0,53					
Giudizio			buono	sufficiente	sufficiente	scarso	sufficiente	scarso	scarso					




Figura 58 - STAR-ICMi a sinistra ASP 01 (valle) a destra ASP 06 (monte)

Indagine STAR-ICMi per il Torrente Rilucia

	ASP 02													
	ASP - Acque superficiali (determinazione indice STAR-ICMi) - [PA.PE.131]													
Parametro	U.M.	Limite di	AO	AO	AO	AO	AO	AO	AO	СО	СО			
Falameno	U.IVI.	Legge	16/04/2012	09/08/13	29/11/13	10/02/14	07/05/14	19/08/14	25/11/14	25/11/14	16/01/15			
STAR-ICMi			0,605	secco	0,301	0,589	0,626	0,518	0,487	0,57	0,526			
Giudizio				n.d.	scarso	sufficiente	Sufficiente	Sufficiente	sufficiente	sufficiente	sufficiente			

	ASP 05														
	ASP - Acque superficiali (determinazione indice STAR-ICMi) - [PA.PE.131]														
Parametro U.M. Limite di AO CO CO CO CO CO															
Falameno	O.IVI.	Legge	apr-13	09/08/2013	28/10/2013	13/01/2014	17/04/2014	24/07/14	16/10/14	16/01/15					
STAR-ICMi			0,6	secco	0,29	0,587	0,802	0,603	0,5	0,638					
Giudizio				n.d.	scarso	sufficiente	buono	Sufficiente	sufficiente	sufficiente					

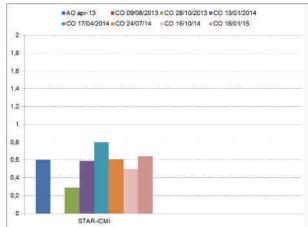


Figura 59 - STAR-ICMi a sinistra ASP 02 (valle) a destra ASP 05 (monte)

Indagine STAR-ICMi per il Torrente Lanzo

	ASP 04														
	ASP - Acque superficiali (determinazione indice STAR-ICMi) - [PA.PE.131]														
Parametro	U.M.	Limite di	AO	СО	СО	СО	СО	СО							
Farameno	O.IVI.	Legge	16/04/12	29/11/13	10/02/14	07/05/14	19/08/14	25/11/14							
STAR-ICMi			0,455	0,5	0,362	0,65	0,52	0,474							
Giudizio			scarso	sufficiente	scarso	sufficiente	sufficiente	scarso							

	ASP 03														
	ASP - Acque superficiali (determinazione indice STAR-ICMi) - [PA.PE.131]														
Parametro	U.M.	Limite di	AO	СО	СО	СО	СО	СО							
Farameno	O.IVI.	Legge	28/06/12	29/11/13	10/02/14	07/05/14	19/08/14	25/11/14							
STAR-ICMi			0,555	0,59	0,45	0,71	0,57	0,57							
Giudizio			sufficiente	sufficiente	scarso	sufficiente	sufficiente	sufficiente							

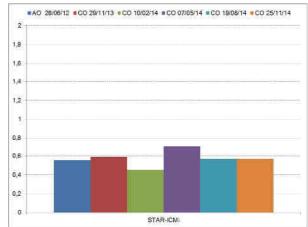


Figura 60 - STAR-ICMi a sinistra ASP 04 (valle) a destra ASP 03 (monte)

3.2.5 ECOSISTEMI (IFF)


ECO1 - Torrente Lanzo

ECO - Monitoraggio Ecosistemi - [art.22 - ECO]

AO

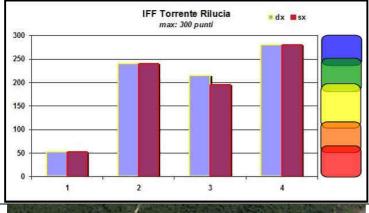
IFF non eseguito durante AO poiché non applicabile in quanto il torrente era in secca

									CC) – 1	6/04	/20 ⁻	14							
Townstell same	Torrente Lanzo sponda 1 2 2bis 3 4 5 6 7 8 9 10 11 12 13 14 IFF 2007															the construction				
Torrente Canzo	sponda	TER	VEG 1	VEG 2	AMP	CON	IDR	ES0	RIT	ERO	SEZ	ITT	IDM	VEG AB	DET	MBT	SCORE	lungh (m)	LIVELLO	GIUDIZIO
1529	dx	5	10		5	10	5	5	15	20	15	20	5	10	10	10	145	5,-364	- 11	mediocre
7.97	SX	5	25		10	10	5	5	15	20	15	20	5	10	10	10	165	260	- 111	mediocre
949	dx	5	25		5	10	5	5	15	15	15	25	15	10	10	20	180	7-77	10	mediocre
2	SX	5	25		10	10	5	5	15	15	15	25	15	10	10	20	185	270	11-111	buano-mediacre
•	dx	20	25		10	10	5	15	25	15	15	25	20	15	10	20	230			buono
	SX	20	25		10	10	5	15	25	15	15	25	20	15	10	20	230	230		buono.

Il torrente Lanzo scorre nei pressi del cantiere Campo Base, in un ambiente antropizzato e costituito da incolti e superfici coltivate. La fascia di vegetazione arborea riparia che lo caratterizza è piuttosto limitata in spessore ma qualitativamente sufficiente come specie presenti e funzionalità delle stesse. La sponda che più si allontana dalla funzionalità ideale è quella destra, ovvero quella interessata dalla presenza del cantiere. Dal ponte di ingresso al cantiere per i primi 260 metri di transetto anche la sponda sinistra risulta modificata e valutabile come "mediocre", in seguito si riscontra un migliormanto fino ad avere un corso d'acqua caratterizzato da una vegetazione ripariale pressoché integra a "galleria", più o meno dall'altezza del traliccio di alta tensione in sponda sinistra, fino alla fine del transetto di circa 700 metri. Nelgi ultimi 230 metri la valutazione, sia per la sponda destra che per la sinistra, risulta "buona".

La campagna ante-operam, svolta in regime di magra, non può dare indicazioni confrontabili con la campagna della quale si mostrano le risultanze nella presente scheda di monitoraggio.

ECO2 - Torrente Rilucia

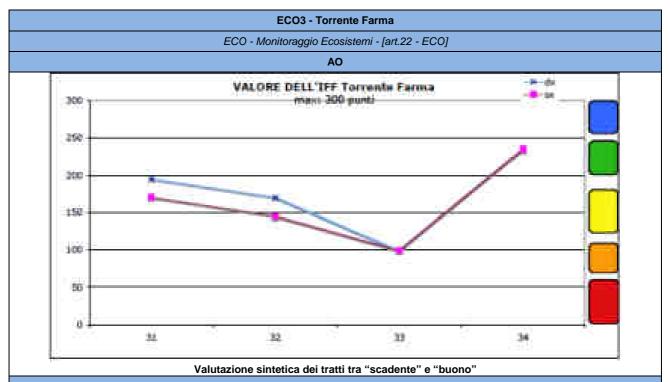

ECO - Monitoraggio Ecosistemi - [art.22 - ECO]

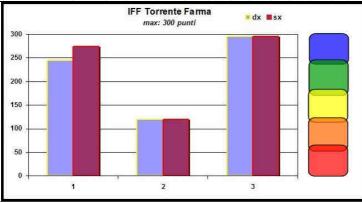
AO

IFF non eseguito durante AO poiché non applicabile in quanto il torrente era in secca

CO - 16/04/2014

Torrente Rilucia	120.00	1	2	2bls	3	4	5	6	7	8	9	10	11	12	13	14	- 1	1	IFF 2007	
Torrente Kilucia	sponua	TER	VEG 1	VEG 2	AMP	CON	IDR	ESO	RIT	ERO	SEZ	ITT	IDM	VEG AB	DET	MBT	SCORE	lungh (m)	LIVELLO	GIUDIZIO
W 1	dx	1	1		1	1	5	1	5	1	5	1	1	15	10	5	53		IV-V	scadente-pessimo
3	SX	1			1	3	5	1	5	. 1	5	1	1	15	10	5	53	130	IV-V	scadente-pessimo
	dx	20	25		10	10	5	25	25	20	15	25	20	10	10	-20	240	1700		buono
340	SX	20	25		10	10	5	25	25	20	15	25	20	10	10	20	240	210		buono
	dx	20	40		15	10	5	5	15	20	5	20	15	15	10	20	215			buono
3.	SX	20	25		10	10	5	5	15	20	5	20	15	15	10	20	195	45	11-111	buono-mediocre
791	dx	25	40		15	10	5	25	25	25	20	25	20	15	10	20	280	320		ottimo
2	SX	25	40		15	10	5	25	25	25	20	25	20	15	10	20	280	320		ottimo




La porzione del torrente Rilucia che attraversa il cantiere risulta completamente compromessa nella sua funzionalità ecologica ed ha ottenuto un giudizio "scarso-pessimo". Oltre il tracciato della S.S.223 abbiamo invece una situazione completamente diversa e migliore. Le sponde sono caratterizzate non tanto da specie ripariali quanto da specie più meso-xerofile di macchia mediterranea che, comunque consentono una buona funzionalità rispetto anche alla conformazione morfologica dell'impluvio, che è molto scavato. In sponda sinistra troviamo alcune opere in cemento di contenimento del pendio e, nel terzo tratto del transetto, alcuni scivoli in cemento che interrompono la continuità fluviale e rendono difficoltoso il passaggio di specie ittiche in risalita. L'ultima parte del transetto presenta, su entrambe le sponde, condizioni di naturalità assolute, ottenendo un giudizio "ottimo".

La campagna ante-operam, svolta in regime di magra, non può dare indicazioni confrontabili con la campagna della quale si mostrano le risultanze nella presente scheda riassuntiva.

	CO – 16/04/2014																			
Torrente Farma	enenda	1	2	2bis	3	4	5	6	7	8	9	10	11	12	13	14		5 5	IFF 2007	i:
Torrente Farma	sponda	TER	VEG 1	VEG 2	AMP	CON	IDR	ESO	RIT	ERO	SEZ	IIT	IDM	VEG AB	DET	MBT	SCORE	lungh (m)	LIVELLO	GIUDIZIO
4	dx	20	25		10	10	20	25	25	20	15	25	20	10	10	10	245		11 2	ottimo
100	SX	25	40		15	15	20	25	25	20	15	25	20	10	10	10	275	410	Щ.,	buono
9	dx	1	1		1	1	10	5	15	15	15	20	5	10	10	10	119		III-IV	mediocre-scadente
-	SX	1	1		1	. 1	10	5	15	15	15	20	5	10	10	10	119	100	III-IV	mediocre-scadente
	dx	25	40		15	15	20	25	25	20	20	25	20	15	10	20	295			ottimo
3	SX	25	40		15	15	20	25	25	20	20	25	20	15	10	-20	295	280		ottimo

Il torrente Farma è il corso d'acqua principale della zona ed è noto, con il fiume Merse, come asse fluviale di particolare importanza dal punto di vista della tutela della biodiversità locale. Di fatto entrambi, sia nelle loro porzioni superiori che nelle loro porzioni inferiori, sono protetti da specifiche Riserve provinciali. Nella fattispecie dei rilievi svolti possiamo notare come la zona del cantiere al di sotto del viadotto sia quella allo stato attuale più fortemente compromessa, avendo ottenuto un giudizio "mediocre-scadente": le sponde sono modificate sia dalle infrastrutture realizzate in passato, sia dalle lavorazioni presenti, la morfologia dell'alveo risulta, quindi, semplificata rispetto ai tratti precedenti e seguenti. Il primo tratto analizzato, dal ponte dei Bagni di Petriolo al ponte di servizio del cantiere, presenta una funzionalità ancora "buona" nella sponda di accesso al cantiere, anche se con riduzione del margine boschivo, ed una funzionalità "ottima" nell'altra sponda, non toccata dai lavori in quel tratto per la sua morfologia scoscesa. Dalla fine del cantiere alla prima ansa del torrente, la funzionalità è risultata "ottima" per entrambe le sponde con elementi di naturalità non modificati dai lavori.

I rilievi condotti nella presente indagine confermano di fatto quanto registrato nell'AO, ove il tratto principalmente modificato è risultato, come era da aspettarsi per altro, quello al di sotto del viadotto.

3.2.6 MONITORAGGIO IN CONTINUO TORRENTE FARMA

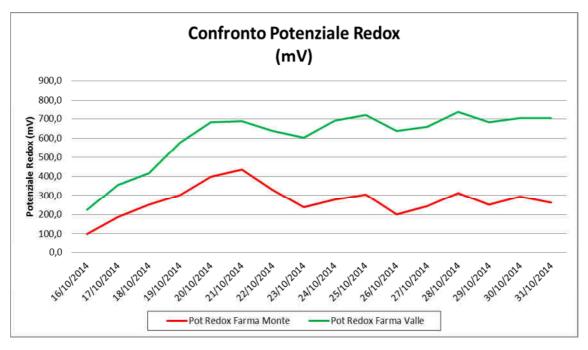
In relazione al monitoraggio delle acque del torrente Farma, dal 15 ottobre 2014, sono state fornite e messe in servizio due centraline di monitoraggio delle acque superficiali del torrente Farma a monte ed a valle dell'area di cantiere.

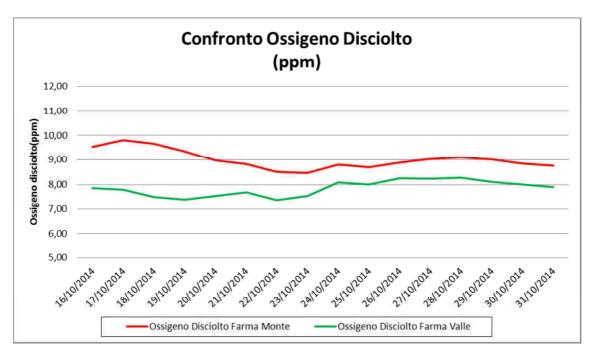
Per ogni centralina di monitoraggio i parametri oggetto di indagine sono i seguenti:

- · Temperatura dell'acqua;
- pH;
- Potenziale Redox (ORP);
- Conducibilità;
- · Ossigeno disciolto;

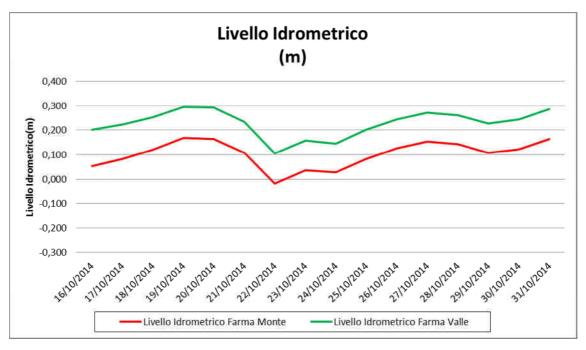
Inoltre, al fine di valutare la presenza di acqua e la corretta immersione della sonda, è presente il misuratore del livello idrometrico.

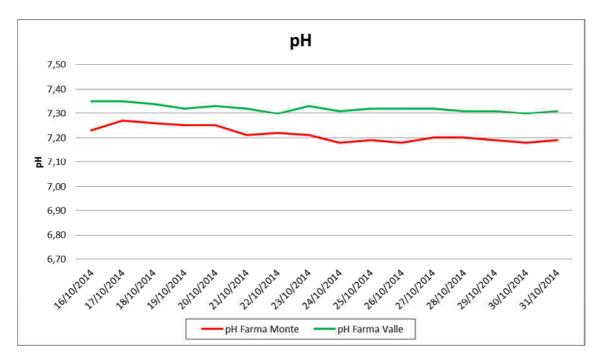
I sistemi installati sono progettati per essere completamente automatici, trasmettere i dati acquisiti, eventuali allarmi in caso di superamenti di limiti impostati sui parametri ed essere controllati in remoto, oltre che in locale.

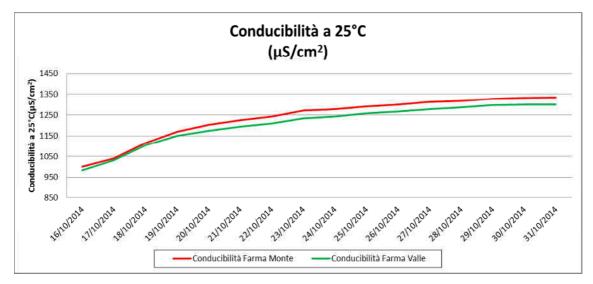

In dettaglio, ogni centralina è composta da

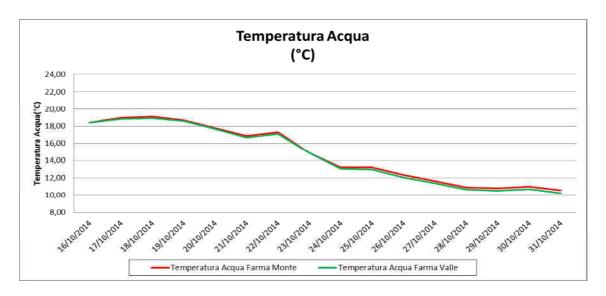

- sonda acquatica multiparametrica modello YSI 6920 V2-1 dotata dei seguenti sensori (Temperatura dell'acqua, pH, Potenziale Redox (ORP); Conducibilità; Ossigeno disciolto; Livello idrometrico)
- tubo di calma in PVC posizionato nel torrente a protezione della sonda
- sistema di acquisizione e trasmissione dati modello Sentinel
- sistema di alimentazione indipendente da rete costituito da pannello solare completo di batteria tampone in box stagno e sistema di carica batteria
- container (bxh=1.50x1.50m, h=1.80/1.90m in pannelli sandwich dotati di porta con serratura) per contenere il sistema di acquisizione e trasmissione dati ed il sistema di alimentazione 12V.

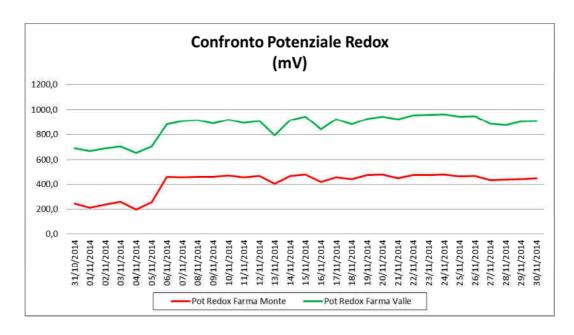
3.2.7 RISULTATI CENTRALINE

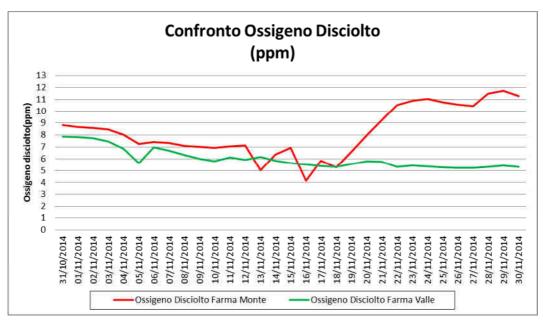

Di seguito si riportano i risultati in forma grafica delle due centraline per il periodo dal 16 al 31 ottobre 2014. Dalla sovrapposizione degli andamenti dei parametri monitorati in continuo non si evidenziano variazioni significative tra la postazione di valle e quella di monte. La differenza costante che si rileva per alcuni parametri è da attribuire alla postazione di indagine.



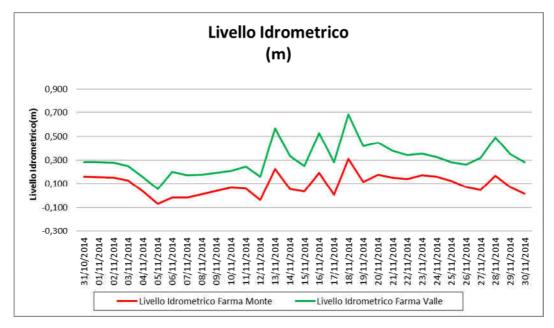


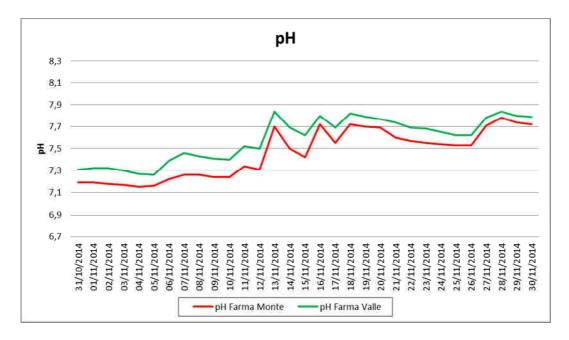


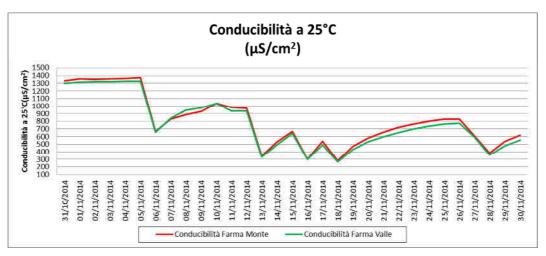


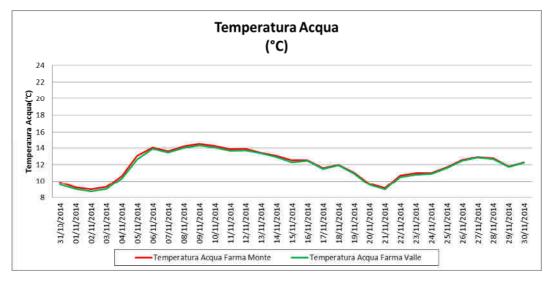

Di seguito si riportano i risultati in forma grafica delle due centraline per il periodo dal 1 Novembre 2014 al 31 Gennaio 2015 divisi per risultati mensili.

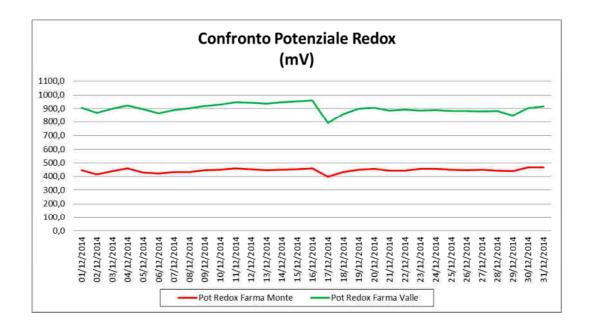
Dalla sovrapposizione degli andamenti dei parametri monitorati in continuo non si evidenziano variazioni significative tra la postazione di valle e quella di monte. La differenza costante che si rileva per alcuni parametri è da attribuire alla postazione di indagine.

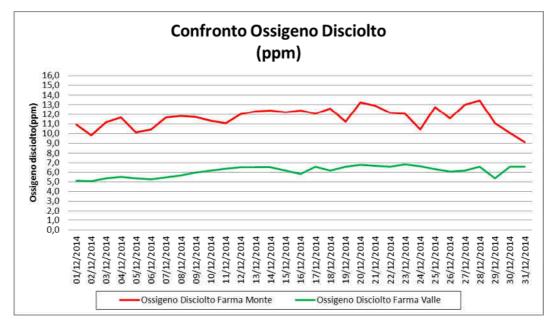

Nel mese di Gennaio 2015 si riscontra la mancanza di alcuni giorni di campionamento della centralina di Monte dovuto ad un malfunzionamento della centralina mentre si riscontra l'assenza di dati fino al 22 Gennaio nella centralina di Valle dovuto alla vandalizzazione della stessa.

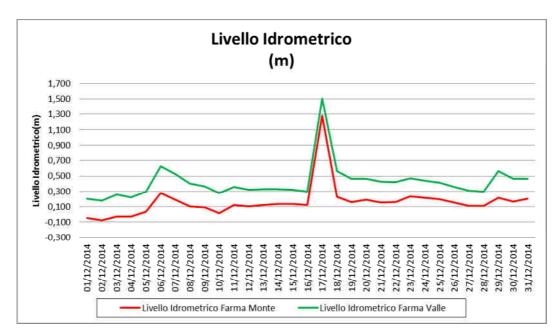

Mese di Novembre 2014



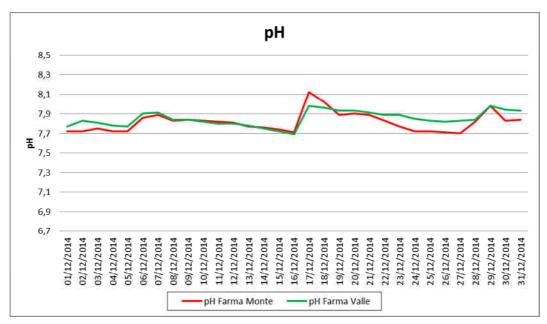


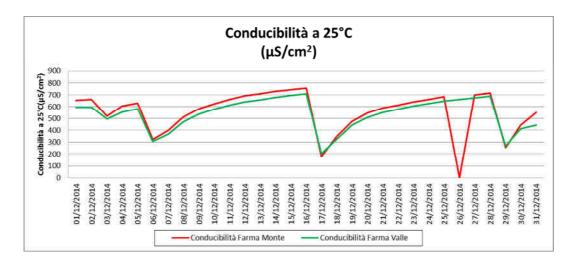


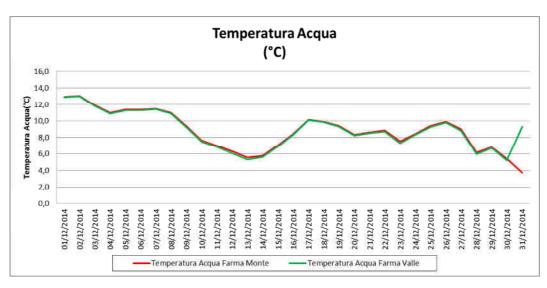


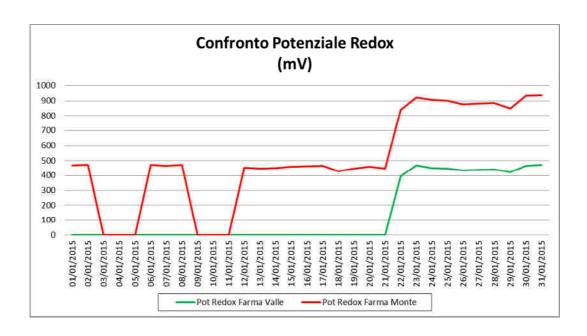


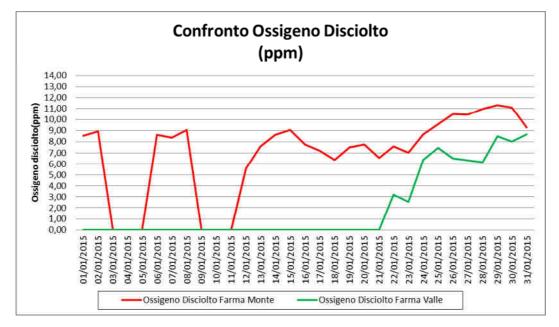
Mese di Dicembre 2014

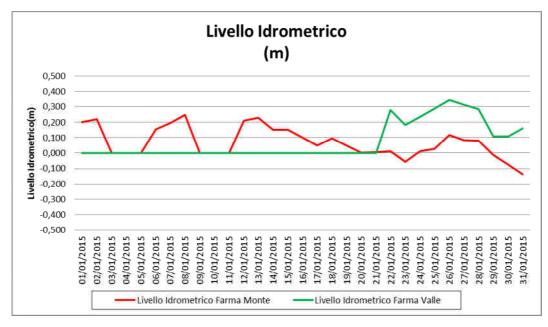


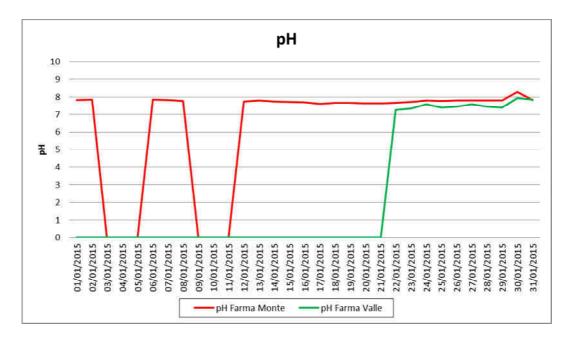


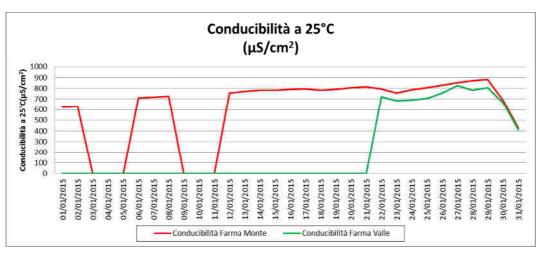


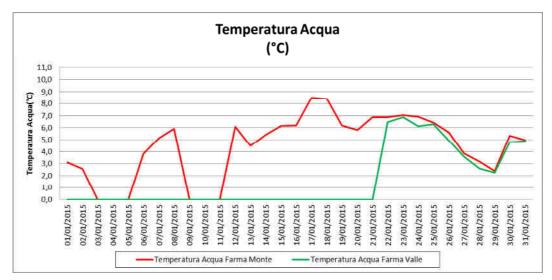







Mese di Gennaio 2015





3.3 CONCLUSIONI SUL MONITORAGGIO DELLA MATRICE IDRICO SUPERFICIALE

Per il trimestre di monitoraggio tra agosto ed ottobre 2013 si rileva che per i punti ASP 01 e ASP 06, appartenenti al Torrente Farma, rispetto alle misure eseguite nella fase ante operam non si riscontrano variazioni significative dei parametri fisico-chimici e della portata, se non variazioni di carattere stagionale. Si riscontrano lievi aumenti a carico del Ferro, Rame e Nitrati. Si verifica un aumento della durezza. Sotto l'aspetto biologico si osserva una diminuzione di Coliformi e un incremento di Streptococchi. Rispetto all'indagine eseguita in precedenza nella fase ante operam si riscontrano aumenti a carico di tutti gli analiti in esame tranne che degli idrocarburi totali, i quali hanno subito una drastica diminuzione.

L'indice STAR-ICMi non presenta limiti di legge a cui essere rapportato (benché il raggiungimento dello status di 'Buono' rappresenti uno degli obiettivi della Direttiva quadro sulle acque, 2000/60/CEE, recepita a livello nazionale tramite DL 3 aprile 2006, n.152). Per il punto ASP 01 rispetto alle misure eseguite in precedenza nella fase ante operam si riscontra un lieve decremento (da Buono a Sufficiente) della qualità del corpo idrico in relazione al parametro in oggetto. Si rappresenta come la stagionalità in cui sono stati eseguiti i controlli CO (estate inoltrata) rispetto a quelli AO (primavera) possa aver contribuito a determinare il risultato sperimentale registrato. Per il punto ASP 06 rispetto alle misure eseguite in precedenza nella fase ante operam si riscontra un lieve decremento (da Buono a Sufficiente) della qualità del corpo idrico in relazione al parametro in oggetto. Tuttavia, lo scarto tra il valore ottenuto ed il valore soglia per la classe successiva (Buono) risulta ridotto (l'aggiunta di due soli individui appartenenti a due famiglie di Efemerotteri determinerebbe il raggiungimento del valore Buono), indicando uno stato ecologico sostanzialmente invariato; i valori leggermente più bassi riscontrabili per le varie metriche sono verosimilmente attribuibili alle normali fluttuazioni stagionali piuttosto che ad effetti connessi all'opera in corso di realizzazione.

Per i punti ASP 02 e ASP 05 nella campagna di agosto il torrente si presentava secco. Nella campagna di ottobre non si riscontano valori significativi o alterati delle componenti chimiche e fisiche. Si segnala un elevato valore di solidi sospesi totali. In relazione all'indice STAR-ICMi rispetto alle misure eseguite nella fase ante operam si rileva un peggioramento, ma è possibile supporre che ciò sia dovuto al poco tempo intercorso tra le prime piogge e il momento del campionamento eseguito per la mancanza di dati sui punti e la presenza attiva del cantiere.

Per il trimestre di monitoraggio successivo, tra novembre 2013 e gennaio 2014, si rileva che per i punti ASP 01 e ASP 06, appartenenti al Torrente Farma, dall'analisi eseguite non si riscontrano criticità. Rispetto all'indagine eseguita in precedenza nella fase ante operam si riscontrano lievi aumenti a carico del Ferro, Rame e Nitrati. Si verifica un aumento dell'alluminio. Sotto l'aspetto biologico si osserva una diminuzione di Coliformi e di Streptococchi. Per i punti ASP 02 e ASP 05, appartenenti al torrente Rilucia, non si riscontrano variazioni significative se non dovute a quelle stagionali. Per i punti ASP 04 e ASP 03, appartenenti al Lanzo, dall'analisi eseguite non si riscontrano criticità. Rispetto all'indagine eseguita in precedenza nella fase ante operam si riscontrano lievi aumenti a carico del Ferro, Rame e Zinco. Sotto l'aspetto biologico si osserva una diminuzione di Coliformi totali ed un limitato aumento di Streptococchi fecali.

In riferimento all'indice STAR-ICMi per il punto ASP 01 e per il punto ASP 06 (torrente Farma) rispetto alle misure eseguite in precedenza nella fase ante operam si riscontra un lieve decremento (da Buono a

Itinerario internazionale E78 / S.G.C. Grosseto – Fano / adeguamento a 4 corsie nel tratto Grosseto – Siena (S.S. 223 "di Paganico") dal km 30+400 al km 41+600 – lotti 5, 6, 7, 8

Sufficiente) della qualità del corpo idrico in relazione al parametro in oggetto. Si rappresenta come la stagionalità in cui sono stati eseguiti i controlli CO (inverno) rispetto a quelli AO (primavera) possa aver contribuito a determinare il risultato sperimentale registrato. Per i punti ASP 02 e ASP 05 (torrente Rilucia) rispetto alle misure eseguite ad ottobre si rileva un sostanziale miglioramento, probabilmente dovuto a migliori condizioni di campionamento. Il dato ottenuto è in linea con il risultato del monitoraggio ante operam. Per il punto ASP 03 (torrente Lanzo) rispetto alle misure eseguite in precedenza nella fase ante operam si riscontra il medesimo status qualitativo (Sufficiente) relativamente al corpo idrico in relazione al parametro in oggetto. Si rappresenta come la stagionalità in cui sono stati eseguiti i controlli CO (inverno) rispetto a quelli AO (primavera) possa aver contribuito a determinare il risultato sperimentale registrato. Per il ASP 04 (torrente Lanzo) rispetto alle misure eseguite in precedenza nella fase ante operam si riscontra un miglioramento dello status qualitativo (da Scarso a Sufficiente) relativamente al corpo idrico in relazione al parametro in oggetto.

Per il trimestre di monitoraggio successivo, tra febbraio e aprile 2014 si rileva quanto segue. Per i punti ASP 01 e ASP 06, appartenenti al Torrente Farma, dall'analisi eseguite non si riscontrano criticità. Rispetto all'indagine eseguita in precedenza nella fase ante operam si riscontrano lievi aumenti a carico del Ferro, Rame e Nitrati. Si verifica un aumento dell'alluminio. Sotto l'aspetto biologico si osserva una diminuzione di Coliformi e di Streptococchi. Per i punti ASP 02 e ASP 05, appartenenti al torrente Rilucia, non si riscontrano variazioni significative se non dovute a quelle stagionali. Per i punti ASP 04 e ASP 03, appartenenti al Lanzo, dall'analisi eseguite non si riscontrano criticità. Rispetto all'indagine eseguita in precedenza nella fase ante operam si riscontrano lievi aumenti a carico del Ferro, Rame e Zinco. Sotto l'aspetto biologico si osserva una diminuzione di Coliformi totali ed un limitato aumento di Streptococchi fecali.

L'indice STAR-ICMi non presenta limiti di legge a cui essere rapportato (benché il raggiungimento dello status di 'Buono' rappresenti uno degli obiettivi della Direttiva quadro sulle acque, 2000/60/CEE, recepita a livello nazionale tramite DL 3 aprile 2006, n.152). Per il punto ASP 01 e per il punto ASP 06 (torrente Farma) rispetto alle misure eseguite in precedenza nella fase ante operam si riscontra un lieve decremento (da Buono a Sufficiente) della qualità del corpo idrico in relazione al parametro in oggetto. Si rappresenta come la stagionalità in cui sono stati eseguiti i controlli CO (inverno) rispetto a quelli AO (primavera) possa aver contribuito a determinare il risultato sperimentale registrato. Per i punti ASP 02 e ASP 05 (torrente Rilucia) Rispetto alle misure eseguite ad ottobre si rileva un sostanziale miglioramento, probabilmente dovuto a migliori condizioni di campionamento. Il dato ottenuto è in linea con il risultato del monitoraggio ante operam. Per il punto ASP 03 (torrente Lanzo) rispetto alle misure eseguite in precedenza nella fase ante operam si riscontra il medesimo status qualitativo (Sufficiente) relativamente al corpo idrico in relazione al parametro in oggetto. Si rappresenta come la stagionalità in cui sono stati eseguiti i controlli CO (inverno) rispetto a quelli AO (primavera) possa aver contribuito a determinare il risultato sperimentale registrato. Per il ASP 04 (torrente Lanzo) rispetto alle misure eseguite in precedenza nella fase ante operam si riscontra un miglioramento dello status qualitativo (da Scarso a Sufficiente) relativamente al corpo idrico in relazione al parametro in oggetto.

Per il trimestre di monitoraggio tra maggio e luglio 2014 si riportano le seguenti evidenze. Per il Torrente Farma si rileva per i punti di controllo ASP 06 ed ASP 01 quanto segue. In ASP 06 nel mese di maggio

Itinerario internazionale E78 / S.G.C. Grosseto – Fano / adeguamento a 4 corsie nel tratto Grosseto – Siena (S.S. 223 "di Paganico") dal km 30+400 al km 41+600 – lotti 5, 6, 7, 8

dall'analisi eseguite non si riscontrano criticità. Rispetto all'indagine eseguita in precedenza nella fase ante operam si riscontrano lievi aumenti a carico del Ferro e Nitrati, ma inferiori alla prima indagine in corso d'opera. Sotto l'aspetto biologico si osserva una diminuzione di Coliformi e di Streptococchi. Nel mese seguente ed a luglio rispetto alle indagini eseguite in precedenza si riscontrano valori confrontabili. Nella postazione ASP 01 a maggio non si riscontrano criticità. Rispetto all'indagine eseguita in precedenza nella fase ante operam si riscontrano lievi aumenti a carico del Ferro, Alluminio e Nitrati. Sotto l'aspetto biologico si osserva una diminuzione di Coliformi e di Streptococchi. Nel mese seguente ed a luglio rispetto alle indagini eseguite in precedenza si riscontrano valori confrontabili. Per il Torrente Lanzo si rileva per i punti ASP 03 ed ASP 04 quanto segue. Per il punto ASP 03 nel mese di maggio dall'analisi eseguite non si riscontrano criticità. Rispetto all'indagine eseguita in precedenza nella fase ante operam si riscontrano lievi aumenti a carico del Ferro, Rame e Zinco e un aumento dei solidi sospesi totali. Sotto l'aspetto biologico si osserva una diminuzione di Coliformi totali ed un limitato aumento di Streptococchi fecali. Nel mese seguente si riscontra una diminuzione dei solidi sospesi totali che si conferma a luglio. Per il punto ASP 04 a maggio si riscontrano lievi aumenti a carico del Ferro, Zinco e dell'azoto ammoniacale. Sotto l'aspetto biologico si osserva una diminuzione di Coliformi totali e di Streptococchi fecali. A giugno si evidenzia la diminuzione dell'azoto ammoniacale riportandosi a valori dei mesi precedenti. Nel mese seguente, luglio, si riscontrano valori confrontabili a meno dei solfati di cui si rileva l'aumento. Per il Torrente Rilucia si evidenzia per i punti di monitoraggio ASP 05 ed ASP 02 quanto segue. Nel punto ASP 05 a maggio rispetto alle indagini eseguite in precedenza si riscontrano valori confrontabili a meno dell'aumento dell'azoto ammoniacale. A giugno si riscontrano la diminuzione dell'azoto ammoniacale riportandosi a valori dei mesi precedenti. Nel mese di luglio si evidenzia un aumento dei coliformi totali, probabilmente da attribuire a fattori naturali inoltre si conferma la diminuzione dell'azoto ammoniacale riportandosi a valori dei mesi precedenti. Per la postazione ASP 02 a maggio, rispetto alle indagini eseguite in precedenza, si riscontrano valori confrontabili. Si segnala la presenza di solidi sospesi totali. A giugno si segnala la forte riduzione dei solidi sospesi totali, ma l'aumento di solfati e cloruri. Nel mese di luglio non si evidenzia variazioni tra le campagne precedenti di CO se non dovute a fattori stagionali, si riscontra però un aumento dei coliformi totali, probabilmente derivanti da quanto riscontrato nel punto di monitoraggio di monte. Si registra inoltre la riduzione dei solidi sospesi totali e rispetto, al mese precedente, anche dei cloruri e solfati.

L'indice STAR-ICMi non presenta limiti di legge a cui essere rapportato (benché il raggiungimento dello status di 'Buono' rappresenti uno degli obiettivi della Direttiva quadro sulle acque, 2000/60/CEE, recepita a livello nazionale tramite DL 3 aprile 2006, n.152). Per il punto ASP 01 e per il punto ASP 06 (torrente Farma) rispetto alle misure eseguite in precedenza nella fase ante operam si riscontra un miglioramento (da Scarso a Sufficiente) della qualità del corpo idrico in relazione al parametro in oggetto. Per i punti ASP 02 e ASP 05 (torrente Rilucia) rispetto alle misure eseguite si rileva un lieve decremento, probabilmente dovuto alla naturale riduzione di portata del corso d'acqua. Il dato ottenuto è in linea con il risultato del monitoraggio ante operam. Per i punto ASP 03 e ASP04 (torrente Lanzo) rispetto alle misure eseguite in precedenza e nella fase ante operam si riscontra un miglioramento dell'indice (sufficiente) relativamente al corpo idrico.

Nel trimestre da agosto ad ottobre 2014 si segnalano le seguenti situazioni. Per il Torrente Farma si rileva per i punti di controllo ASP 06, a monte del cantiere, ed ASP 01, a valle del cantiere, quanto segue. In ASP 06 nel mese di Agosto dall'analisi eseguite non si riscontrano particolari criticità. Nel mese in analisi si nota

Itinerario internazionale E78 / S.G.C. Grosseto – Fano / adeguamento a 4 corsie nel tratto Grosseto – Siena (S.S. 223 "di Paganico") dal km 30+400 al km 41+600 – lotti 5, 6, 7, 8

un aumento dei nitrati e della durezza. Sotto l'aspetto biologico si osserva un aumento di coliformi e di streptococchi. Nel mese seguente si nota una diminuzione dei cloruri e dei solfati mentre nel mese di Ottobre i parametri esaminati si sono assestati alle campagne precedenti. Nella postazione ASP 01 nel mese di Agosto rispetto all'indagine eseguita in precedenza e nella fase ante operam si riscontra un aumento a carico dei nitrati e della durezza. Sotto l'aspetto biologico si osserva un aumento di coliformi e di streptococchi. Nel mese seguente si nota un aumento dell'azoto ammoniacale, verificatosi anche nel mese di Ottobre, ed una riduzione dei solfati e dei cloruri. Per il Torrente Lanzo si rileva per i punti ASP 03 ed ASP 04 quanto segue. Per il punto ASP 03, a monte del cantiere, nel mese di Agosto dall'analisi eseguite non si riscontrano variazioni significative rispetto all'indagine eseguita in precedenza. Sotto l'aspetto biologico si osserva un aumento di coliformi totali e streptococchi fecali. Nel mese seguente si riscontra un aumento dei solidi sospesi totali che si conferma ad Ottobre. Per il punto ASP 04, a valle, ad Agosto rispetto all'indagine eseguita in precedenza nella fase ante operam si riscontra una diminuzione dei nitrati. Sotto l'aspetto biologico si osserva un aumento di coliformi totali e di streptococchi fecali. A Settembre si evidenzia l'aumento dell'azoto ammoniacale confermato anche nel mese successivo. Per il Torrente Rilucia si evidenzia per i punti di monitoraggio ASP 05, a monte, ed ASP 02, a valle, quanto segue. Nel punto ASP 05 ad Ottobre rispetto alle indagini eseguite in precedenza si riscontra un aumento di nitrati e della durezza. Sotto l'aspetto biologico si evidenzia la diminuzione di coliformi totali ed un aumento di coliformi fecali e streptococchi probabilmente da attribuire a fattori naturali. Nelle analisi del mese di Settembre si nota un sensibile aumento dei solidi sospesi che nel mese successivo è tornando sui valori delle campagne precedenti. Per la postazione ASP 02 ad Ottobre, rispetto alle indagini eseguite in precedenza, si riscontrano valori confrontabili. Si segnala un minimo aumento della durezza mentre, dal punto di vista biologico, vi è un aumento di coliformi totali e streptococchi ed una diminuzione dei coliformi fecali. Nei mesi di Agosto e Settembre la sezione è risultata secca mentre si nota un evidente aumento dei solidi sospesi nel mese di Ottobre rispetto alle campagne precedenti.

L'indice STAR-ICMi non presenta limiti di legge a cui essere rapportato (benché il raggiungimento dello status di 'Buono' rappresenti uno degli obiettivi della Direttiva quadro sulle acque, 2000/60/CEE, recepita a livello nazionale tramite DL 3 aprile 2006, n.152). Per il punto ASP 01 e per il punto ASP 06 (torrente Farma) rispetto alle misure eseguite in precedenza nella fase ante operam si riscontra un peggioramento (da Sufficiente a Scarso) della qualità del corpo idrico in relazione al parametro in oggetto. Per i punti ASP 02 e ASP 05 (torrente Rilucia) rispetto alle misure eseguite si rileva un lieve decremento, probabilmente dovuto alla naturale riduzione di portata del corso d'acqua. Il dato ottenuto è in linea con il risultato del monitoraggio ante operam. Per i punto ASP 03 e ASP04 (torrente Lanzo) rispetto alle misure eseguite in precedenza e nella fase ante operam si riscontra un lieve decremento, probabilmente dovuto alla naturale riduzione di portata del corso d'acqua. Il dato ottenuto è in linea con il risultato del monitoraggio ante operam.

Il monitoraggio in continuo sul torrente Farma, eseguito con le due centraline fisse, non ha evidenziato anomalie dei parametri monitorati tra monte e valle dell'area di cantiere.

Nel trimestre di monitoraggio da novembre 2014 a gennaio 2015 si riportano le seguenti evidenze. Per il Torrente Farma si rileva per i punti di controllo ASP 06, a monte del cantiere, ed ASP 01, a valle del cantiere, quanto segue. In ASP 06 nel mese di Novembre 2014 dall'analisi eseguite non si riscontrano particolari criticità; le variazioni riscontrate sono dovuti alla stagionalità della misura. Nel mese in analisi si

Itinerario internazionale E78 / S.G.C. Grosseto – Fano / adeguamento a 4 corsie nel tratto Grosseto – Siena (S.S. 223 "di Paganico") dal km 30+400 al km 41+600 – lotti 5, 6, 7, 8

nota un aumento del manganese e della durezza. Sotto l'aspetto biologico si osserva una diminuzione di coliformi e di streptococchi. Nel mese seguente si nota una diminuzione di tutti i parametri chimici analizzati a meno dei solfati i quali rimangono su valori confrontabili ai mesi precedenti. Nella postazione ASP 01 nel mese di Novembre 2014 non si rilevano discostamenti nei valori delle analisi chimico-fisiche effettuate in precedenza. Si riscontrano lievi aumenti a carico dei nitrati; sotto l'aspetto biologico si osserva una diminuzione di coliformi e di streptococchi. Nel mese seguente si nota una diminuzione di tutti i parametri analizzati eccetto i solidi sospesi. Per il Torrente Lanzo si rileva per i punti ASP 03 ed ASP 04 quanto segue. Per il punto ASP 03, a monte del cantiere, nel mese di Novembre 2014 dall'analisi eseguite non si riscontrano variazioni significative rispetto all'indagine eseguita in precedenza. Sotto l'aspetto biologico si osserva un aumento dei nitrati e una diminuzione di coliformi e streptococchi. Nel mese sequente si riscontra una diminuzione dei solidi sospesi totali. Per il punto ASP 04, a valle, nel mese di Novembre 2014 si osserva una linearità di valori rispetto all'indagine eseguita in precedenza; si riscontra un aumento dei nitrati e una diminuzione del ferro. Sotto l'aspetto biologico si osserva una diminuzione di coliformi e di streptococchi. A Dicembre 2014 si evidenzia una diminuzione di tutti i parametri analizzati rispetto alle campagne precedenti. Per il Torrente Rilucia si evidenzia per i punti di monitoraggio ASP 05, a monte, ed ASP 02, a valle, quanto segue. Nel punto ASP 05, nel mese di Dicembre 2014, si rileva un aumento dei solidi sospesi rispetto alle indagini eseguite in precedenza. Nel mese di Gennaio 2015 non si evidenziano variazioni dei parametri chimico-fisici analizzati rispetto alle campagne precedenti mentre, sotto l'aspetto biologico, si evidenzia la diminuzione di coliformi totali, di coliformi fecali e streptococchi probabilmente da attribuire a fattori naturali. Per la postazione ASP 02 a Dicembre 2014, rispetto alle indagini eseguite in precedenza, si segnala la diminuzione dei solidi sospesi totali. Nel mese di Gennaio 2015 si segnala una minima diminuzione della durezza mentre, dal punto di vista biologico, vi è una diminuzione di coliformi totali e un aumento di streptococchi e coliformi fecali.

L'indice STAR-ICMi non presenta limiti di legge a cui essere rapportato (benché il raggiungimento dello status di 'Buono' rappresenti uno degli obiettivi della Direttiva quadro sulle acque, 2000/60/CEE, recepita a livello nazionale tramite DL 3 aprile 2006, n.152). Per il punto ASP 01 e per il punto ASP 06 (torrente Farma), nel mese di Novembre 2014, rispetto alle misure eseguite in precedenza, si riscontra uno stato qualitativo confrontabile della qualità del corpo idrico in relazione al parametro in oggetto. Per i punti ASP 02 e ASP 05 (torrente Rilucia), nel mese di Gennaio 2015, rispetto alle misure eseguite precedentemente, si rileva un lieve decremento, probabilmente dovuto alla naturale riduzione di portata del corso d'acqua. Il dato ottenuto è in linea con il risultato del monitoraggio ante operam. Per i punto ASP 03 e ASP04 (torrente Lanzo) rispetto alle misure eseguite in precedenza e nella fase ante operam si riscontra un lieve decremento, probabilmente dovuto alla naturale riduzione di portata del corso d'acqua. Il dato ottenuto è in linea con il risultato del monitoraggio ante operam.

Il monitoraggio in continuo sul torrente Farma, eseguito con le due centraline fisse, non ha evidenziato anomalie dei parametri monitorati tra monte e valle dell'area di cantiere

4. MONITORAGGIO COMPONENTE ATMOSFERA

Gli impatti a carico della componente atmosfera determinati dalle lavorazioni previste dal progetto possono essere legati all'attività di cantiere quali:

- l'esercizio e la gestione di impianti e macchine in cantiere (cantieri fissi);
- la diffusione e il sollevamento di polveri legate alle fasi di scavo, alla movimentazione degli inerti, alle demolizioni o al transito di mezzi d'opera su piste di cantiere (zone operative in corrispondenza del fronte di avanzamento dei lavori);
- l'emissione di inquinanti da traffico da parte dei mezzi d'opera o eventuali modificazioni in senso peggiorativo del regime di traffico veicolare civile indotte dalla cantierizzazione (viabilità locale interferita).

Il monitoraggio della qualità dell'aria è finalizzato al controllo della fase di esecuzione dell'opera al fine di poter intervenire in caso di rilievo di criticità sulle modalità operative di conduzione delle lavorazioni e sulla predisposizione di misure correttive e/o preventive in accordo con la gestione ambientale dei cantieri. I rilievi, inoltre, consentono la verifica dell'efficacia degli interventi di mitigazione e delle misure di controllo preventive della dispersione delle polveri aerodisperse.

In relazione al monitoraggio delle polveri aerodisperse nella fase di esecuzione dell'opera gli studi specialistici effettuati mettono in evidenza che le aree maggiormente impattanti coincidono con le aree di cantiere Lanzo e Potatine.

Nello specifico le campagne di misura avranno lo scopo di monitorare l'evoluzione della qualità dell'aria in corrispondenza dello svincolo Lanzo (recettore R3, ATC 01), dell'area Potatine (ricettore R13, ATC 02), delle Terme di Petriolo (ATL 01) e di Bagni di Petriolo (ATL 02).

Le attività di monitoraggio saranno complessivamente organizzate per la verifica l'incremento del livello di concentrazione delle polveri aerodisperse conseguenti l'esecuzione dei lavori.

4.1 DESCRIZIONE DELLE ATTIVITÀ DI MONITORAGGIO

Le campagne di misura prevedono i seguenti ambiti di monitoraggio:

- ATC 01 prossimo allo svincolo Lanzo;
- ATC 02 area Potatine;
- ATL 01 Terme di Petriolo;
- ATL 02 Bagni di Petriolo.

Le motivazioni, indicate nel PMA, che inducono l'inserimento degli ambiti territoriali rappresentati dai punti indicati sono le seguenti:

- distanza dei ricettori dalle fonti di pressione;
- azioni di progetto potenzialmente critiche: significativo transito dei mezzi d'opera su piste di cantiere, scavi e importanti movimenti terra, ecc;
- durata delle fasi operative;

Itinerario internazionale E78 / S.G.C. Grosseto – Fano / adeguamento a 4 corsie nel tratto Grosseto – Siena (S.S. 223 "di Paganico") dal km 30+400 al km 41+600 – lotti 5, 6, 7, 8

• sensibilità delle biocenosi presenti con riferimento alle aree di importanza naturalistica limitrofe (ed in particolare il SIC "Val di Farma").

La distribuzione dei punti di monitoraggio, oltre ad essere rivolta al controllo degli effetti sulla salute umana, è sufficientemente rappresentativa delle aree di pregio naturalistico circostanti il tracciato stradale ed i contesti operativi, consentendo una valutazione delle potenziali ricadute sugli ecosistemi e la vegetazione.

Le frequenze del monitoraggio della qualità dell'aria è di cadenza bimestralmente. L'inizio del monitoraggio di ogni punto è valutato in funzione dell'avvio di significative attività di cantiere in relazione al possibile impatto sull'ambiente.

Di seguito i punti di monitoraggio previsti nel PMA.

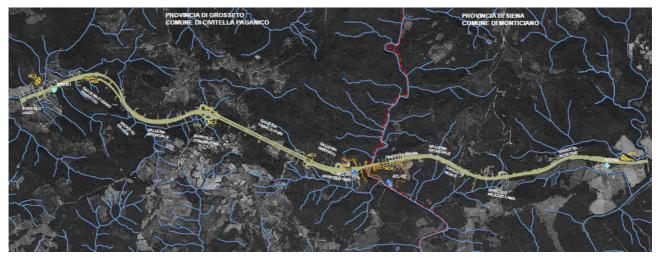


Figura 61 – Planimetria generale – atmosfera

4.2 CONFRONTO CON LE CAMPAGNE PRECEDENTI

Confronto fra le campagne ATL01 / Terme di Petriolo

	ATL 01 ATL - Monitoraggio Atmosfera Lavorazioni (IN) - [PA.PE.137]													
		ATL - M	lonitora	ggio At	mosfer	a Lavor	azioni (IN) - [PA	N.PE.137	7]				
Parametro / Analita	U.M.	Limite di Legge	AO 21-27/08/12	AO 21-27/09/12	AO 18-24/12/12	CO 22-24/10/13	CO 21-22-25 /11/13	CO 24-27-28 /01/14	CO 25-26-27 /03/14	CO 06-07-08 /05/14	CO 14-15-16 /07/14	CO 05-06-07/09/14	CO 24 -25-26/11/14	CO 12 -13-14/01/15
PTS - media giornaliera 1	mg/m ³		< RL	< RL		N.V.	37.9	22.1	8.4	10.3	20.6	37.7	26.1	27.0
PM10 - media giornaliera 1	μg/m³	50	21.3	16		N.V.	2.9	9.91	< 1.83	10.46	17.98	20.00	35.41	9.7
PM2.5 - media giornaliera 1	mg/m³				2.4	N.V.	< 1.83	9.17	< 1.83	< 1.83	15.23	18.72	8.26	5.0
PTS - media giornaliera 2	μg/m³		< RL	< RL		N.V.	44.2	13.3	17.9	23.4	26.1	29.5	29.9	26.6
PM10 - media giornaliera 2	mg/m³	50	37.3	20.1		N.V.	< 1.83	12.4	11.19	15.6	24.0	19.08	43.49	6.4
PM2.5 - media giornaliera 2	μg/m³				3.9	N.V.	< 1.83	2.2	10.09	< 1.83	18.9	10.46	4.59	4.6
PTS - media giornaliera 3	mg/m³		< RL	< RL		N.V.	11.7	17.7	17.1	16.4	25.2	27.1	20.6	23.1
PM10 - media giornaliera 3	μg/m³	50	21.2	24.4		N.V.	< 1.83	10.64	17.25	8.62	22.94	12.29	53.03	6.8
PM2.5 - media giornaliera 3	mg/m³				4.8	N.V.	< 1.83	8.07	12.66	< 1.83	17.61	11.38	17.25	2.4
PTS - media giornaliera 4	μg/m³		< RL	< RL										
PM10 - media giornaliera 4	mg/m³	50	18.7	33.9										
PM2.5 - media giornaliera 4	μg/m³				2.7									
PTS - media giornaliera 5	mg/m³		< RL	< RL										
PM10 - media giornaliera 5	μg/m³	50	24.5	29.8										
PM2.5 - media giornaliera 5	mg/m ³				2.3									
PTS - media giornaliera 6	μg/m³		< RL	< RL										
PM10 - media giornaliera 6	mg/m ³	50	12.5	22.1										
PM2.5 - media giornaliera 6	μg/m³				8.7									
PTS - media giornaliera 7	mg/m ³		< RL	< RL										
PM10 - media giornaliera 7	μg/m³	50	22.5	47.5										
PM2.5 - media giornaliera 7	mg/m ³				4.9									
NOx - periodo	mg/m ³	40			< RL									
Benzene - periodo	mg/m ³	5			< RL									
SO2 - media giornaliera 1	μg/m³					N.V.	3.28	0.90	0.24	0.97	0.6	0.8	1.5	3.8
NOx - media giornaliera 1	μg/m³					N.V.	8.7	5.84	2.50	5.90	9.9	44.8	5.8	134.2
CO - media giornaliera 1	mg/m ³					N.V.	0.0	0.0	0.4	0.2	0.9	0.6	0.8	0.6
SO2 - media giornaliera 2	μg/m³					N.V.	2.96	0.97	0.20	0.79	1.60	0.80	1.80	3.3
NOx - media giornaliera 2	μg/m³					N.V.	15.1	10.08	0.50	8.70	15.6	46.3	4.4	93.8
CO - media giornaliera 2	mg/m ³					N.V.	0.0	0.0	0.4	0.3	0.2	0.6	0.8	0.2
SO2 - media giornaliera 3	μg/m³					N.V.	1.99	0.94	0.35	0.82	1.8	0.8	2.3	4.8
NOx - media giornaliera 3	μg/m³					N.V.	12.7	6.16	0.10	5.70	8.9	48.2	6.6	177.6
CO - media giornaliera 3	mg/m ³					N.V.	0.0	0.0	0.4	0.3	0.1	0.6	0.9	0.7

Confronto fra le campagne ATC01 / Svincolo Lanzo

	ATC 01													
	A	TC - Monit	toraggio A	Atmosfera	Cantieri fi	ssi (IN) - [PA.PE.14	1]						
Parametro / Analita	U.M.	Limite di Legge	AO 10-16/12/12	CO 22-24/10/13	CO 03-05/12/13	CO 04-06/02/14	CO 14-16/04/14	CO 25-27/06/14	CO 05-07/08/14	CO 07-09/10/14	CO 03-05/12/14			
PTS - media giornaliera 1	mg/m³		< RL	50.98	16.70	22.00	10.00	N.V.	25.20	20.83	7.99			
PM10 - media giornaliera 1	μg/m³	50	15.5	27.8	5.69	25.69	9.17	21.10	21.10	8.06	6.97			
PM2.5 - media giornaliera 1	mg/m³		5	20.9	5.50	13.76	8.99	11.38	20.18	13.03	3.12			
PTS - media giornaliera 2	μg/m³		< RL	38.59	48.50	21.50	20.80	N.V.	29.90	41.32	25.00			
PM10 - media giornaliera 2	mg/m³	50	28.7	29	11.19	21.10	9.72	21.10	28.44	13.03	9.72			
PM2.5 - media giornaliera 2	μg/m³		20.8	16.5	11.01	6.79	9.54	4.40	25.14	9.17	3.12			
PTS - media giornaliera 3	mg/m³		< RL	17.86	51.70	27.40	24.50	N.V.	30.00	10.42	21.53			
PM10 - media giornaliera 3	μg/m³	50	34.7	16.1	11.74	18.72	6.06	25.50	27.34	10.63	7.89			
PM2.5 - media giornaliera 3	mg/m³		25.3	13.7	11.56	5.50	< 1.83	22.02	14.86	8.62	2.75			
PTS - media giornaliera 4	μg/m³		< RL											
PM10 - media giornaliera 4	mg/m ³	50	14.7											
PM2.5 - media giornaliera 4	μg/m³		13.6											
PTS - media giornaliera 5	mg/m³		< RL											
PM10 - media giornaliera 5	μg/m³	50	8.1											
PM2.5 - media giornaliera 5	mg/m³		16.4											
PTS - media giornaliera 6	μg/m³		< RL											
PM10 - media giornaliera 6	mg/m³	50	13.9											
PM2.5 - media giornaliera 6	μg/m³		5.6											
PTS - media giornaliera 7	mg/m³		< RL											
PM10 - media giornaliera 7	μg/m³	50	14.3											
PM2.5 - media giornaliera 7	mg/m³		5.6											
NOx - periodo	mg/m³	40	< RL											
Benzene - periodo	mg/m³	5	< RL											
SO2 - media giornaliera 1	μg/m³			0.1	1.60	2.70	0.78	1.30	N.V.	4.30	4.77			
NOx - media giornaliera 1	μg/m³			28.8	7.70	8.30	8.80	1.50	3.80	25.31	9.80			
CO - media giornaliera 1	mg/m ³			0	0.30	0.00	0.20	0.00	0.70	2.26	1.17			
SO2 - media giornaliera 2	μg/m³			0.6	1.80	2.80	0.39	1.30	N.V.	4.19	4.60			
NOx - media giornaliera 2	μg/m³			29.7	29.90	8.20	1.50	1.50	3.80	19.87	27.38			
CO - media giornaliera 2	mg/m ³			0	0.30	0.00	0.20	0.00	0.70	2.04	1.21			
SO2 - media giornaliera 3	μg/m³			0.5	1.90	3.10	0.37	1.20	N.V.	4.09	4.60			
NOx - media giornaliera 3	μg/m³			3	36.40	8.20	1.10	3.50	2.80	10.64	28.43			
CO - media giornaliera 3	mg/m ³			0	0.40	0.00	0.20	0.00	0.70	1.37	1.16			

Confronto fra le campagne ATL02 / Bagni di Petriolo

				ATL 02						
	ATI	L - Monitora	ggio Atmo	sfera Lavo	razioni (IN)	- [PA.PE.	137]			
Parametro / Analita	U.M.	Limite di Legge	AO 03-09/12/12	CO 10-12/12/13	CO 24-26/02/14	CO 08-10/04/14	CO 19-20-23/06/14	CO 27-29/08/14	CO 17-20-21/10/14	CO 17-18-19/12/14
PTS - media giornaliera 1	mg/m³		< RL	27.10	35.50	19.4	N.V.	21.40	22.57	10.07
PM10 - media giornaliera 1	µg/m³	50	16.5	5.14	9.17	12.7	64.6	18.17	10.33	6.76
PM2.5 - media giornaliera 1	mg/m³		10.0	3.85	8.81	9.0	64.4	< 1,83	16.88	3.85
PTS - media giornaliera 2	µg/m³		< RL	15.70	53.80	16.3	N.V.	23.00	15.23	12.85
PM10 - media giornaliera 2	mg/m³	50	16.1	8.44	< 1.83	11.7	28.6	18.53	13.89	6.06
PM2.5 - media giornaliera 2	µg/m³		8.0	8.26	< 1.83	9.7	3.5	9.91	5.87	4.95
PTS - media giornaliera 3	mg/m³		< RL	25.70	37.00	18.6	15.7	26.10	22.94	10.07
PM10 - media giornaliera 3	μg/m³	50	15.8	17.80	14.13	21.1	16.0	17.80	7.20	5.32
PM2.5 - media giornaliera 3	mg/m³		10.2	17.61	11.38	16.5	10.1	7.89	4.95	< 1.83
PTS - media giornaliera 4	µg/m³		< RL							
PM10 - media giornaliera 4	mg/m³	50	22.6							
PM2.5 - media giornaliera 4	μg/m³		13.5							
PTS - media giornaliera 5	mg/m³		< RL							
PM10 - media giornaliera 5	μg/m³	50	25.3							
PM2.5 - media giornaliera 5	mg/m³		13.6							
PTS - media giornaliera 6	μg/m³		< RL							
PM10 - media giornaliera 6	mg/m³	50	25.5							
PM2.5 - media giornaliera 6	μg/m³		16.1							
PTS - media giornaliera 7	mg/m³		< RL							
PM10 - media giornaliera 7	μg/m³	50	21.6							
PM2.5 - media giornaliera 7	mg/m³		12.6							
NOx - periodo	mg/m³	40	< RL							
Benzene - periodo	mg/m³	5	< RL							
SO2 - media giornaliera 1	µg/m³			1.90	2.60	0.95	1.10	1.20	4.34	6.51
NOx - media giornaliera 1	µg/m³			9.90	12.80	0.80	1.30	52.30	31.91	15.81
CO - media giornaliera 1	mg/m³			0.30	0.00	0.10	0.00	0.60	2.15	1.17
SO2 - media giornaliera 2	μg/m³			2.20	2.60	0.74	1.10	N.V.	4.06	6.34
NOx - media giornaliera 2	µg/m³			9.90	5.20	3.20	3.10	57.40	13.60	6.52
CO - media giornaliera 2	mg/m³			0.20	0.00	0.10	0.00	0.50	1.35	1.02
SO2 - media giornaliera 3	μg/m³			2.40	2.60	0.85	1.30	N.V.	4.22	6.79
NOx - media giornaliera 3	µg/m³			9.30	7.50	0.40	5.30	65.10	16.58	16.58
CO - media giornaliera 3	mg/m³			0.20	0.00	0.10	0.00	0.60	1.73	1.73

Confronto fra le campagne ATC02 / area Potatine

				ATC	02						
	A	TC - Monit	oraggio A	Atmosfera	Cantieri fi	ssi (IN) - [PA.PE.14	1]			
Parametro / Analita	U.M.	Limite di Legge	AO 28/12/12-3/1/13	CO 16-18/12/13	CO 03-05/12/13	CO 11-13/02/14	CO 28-30/04/14	CO 13-16-17/06/14	CO 20-22/08/ 14	CO 13-15/10/14	CO 11-12-15/12/14
PTS - media giornaliera 1	mg/m ³		< RL	20.10	16.70	19.00	13.10	27.20	37.70	36.88	13.54
PM10 - media giornaliera 1	µg/m³	50	26.0	4.95	5.69	9.91	14.68	18.17	23.67	7.63	13.21
PM2.5 - media giornaliera 1	mg/m ³		1.5	< 1.83	5.50	9.54	11.38	12.11	< 1,83	8.62	< 1.83
PTS - media giornaliera 2	μg/m³		< RL	64.60	48.50	12.20	11.20	17.10	29.50	20.55	9.72
PM10 - media giornaliera 2	mg/m ³	50	15.4	10.83	11.19	4.77	10.46	12.66	14.31	9.41	8.99
PM2.5 - media giornaliera 2	μg/m³		1.3	< 1.83	11.01	3.49	7.34	11.19	< 1,83	9.72	6.42
PTS - media giornaliera 3	mg/m ³		< RL	33.40	51.70	12.40	14.80	18.70	27.10	10.46	32.64
PM10 - media giornaliera 3	μg/m³	50	16.1	3.67	11.74	13.03	29.72	5.69	28.62	6.78	27.71
PM2.5 - media giornaliera 3	mg/m ³		< RL	< 1.83	11.56	12.48	10.09	5.32	2.20	9.54	10.46
PTS - media giornaliera 4	µg/m³		< RL								
PM10 - media giornaliera 4	mg/m ³	50	16.7								
PM2.5 - media giornaliera 4	µg/m³		< RL								
PTS - media giornaliera 5	mg/m ³		< RL								
PM10 - media giornaliera 5	μg/m³	50	21.6								
PM2.5 - media giornaliera 5	mg/m ³		< RL								
PTS - media giornaliera 6	μg/m³		< RL								
PM10 - media giornaliera 6	mg/m ³	50	34.8								
PM2.5 - media giornaliera 6	µg/m³		< RL								
PTS - media giornaliera 7	mg/m ³		< RL								
PM10 - media giornaliera 7	μg/m³	50	23.9								
PM2.5 - media giornaliera 7	mg/m ³		1.4								
NOx - periodo	mg/m ³	40	< RL								
Benzene - periodo	mg/m ³	5	< RL								
SO2 - media giornaliera 1	μg/m³			2.20	1.60	3.20	0.27	0.10	1.30	2.43	7.20
NOx - media giornaliera 1	µg/m³			25.40	7.70	9.40	0.40	7.60	7.80	3.83	22.36
CO - media giornaliera 1	mg/m ³			0.20	0.30	0.00	0.30	1.10	0.70	0.32	1.02
SO2 - media giornaliera 2	μg/m³			2.10	1.80	3.10	0.32	0.20	0.60	2.42	7.11
NOx - media giornaliera 2	μg/m³	1		27.30	29.90	8.10	1.60	2.40	8.30	7.74	25.16
CO - media giornaliera 2	mg/m ³	1		0.40	0.30	0.00	0.30	1.00	0.60	0.34	1.09
SO2 - media giornaliera 3	μg/m³			2.30	1.90	3.00	0.32	0.20	N.V.	2.43	6.84
NOx - media giornaliera 3	μg/m³			33.70	36.40	11.30	6.90	2.82	4.50	3.27	11.64
CO - media giornaliera 3	mg/m ³			0.20	0.40	0.00	0.40	1.10	0.60	0.32	1.11

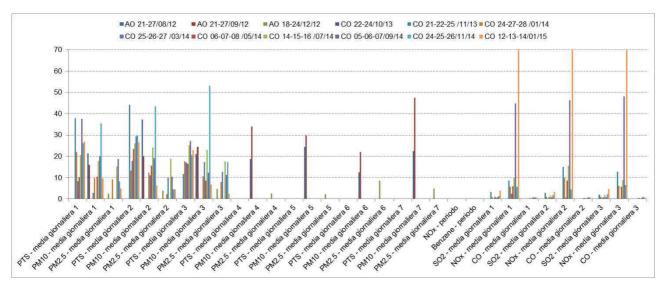


Figura 62 – Monitoraggio Atmosfera Lavorazioni ATL 01 / Terme di Petriolo (*limite per le PM10 – 50 μg/m3*)

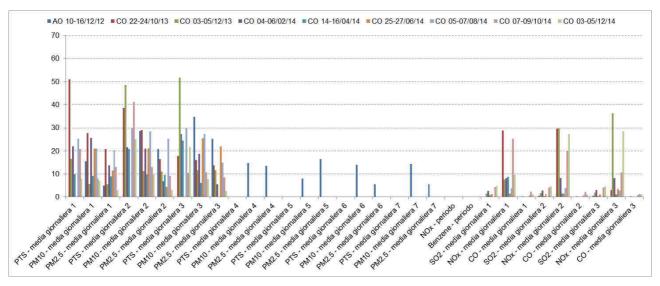


Figura 63 – Monitoraggio Atmosfera Cantieri fissi ATC 01 / Svincolo Lanzo (limite per le PM10 – 50 μg/m3)

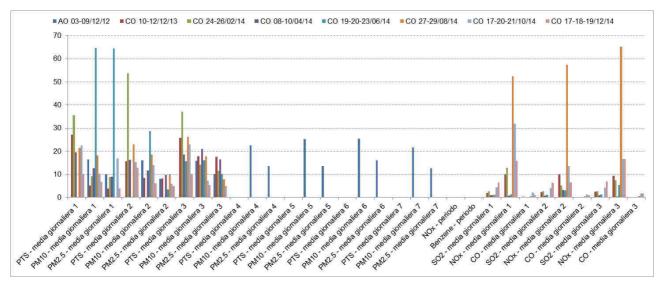


Figura 64 – Monitoraggio Atmosfera Lavorazioni ATL 02 / Bagni di Petriolo (limite per le PM10 – 50 μg/m3)

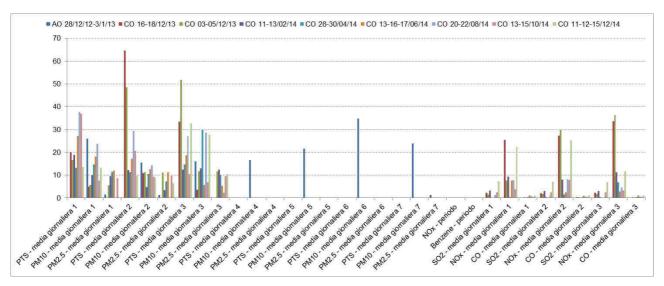


Figura 65 – Monitoraggio Atmosfera Cantieri fissi ATC 02 / area Potatine (limite per le PM10 – 50 μg/m3)

4.3 CONCLUSIONI SUL MONITORAGGIO DELLA MATRICE ATMOSFERA

Per il trimestre di monitoraggio della componente atmosfera nel periodo di corso d'opera tra agosto e ottobre 2013 nel punto ATC 01 non ha evidenziato alterazione della qualità dell'aria. I risultati delle campagne non hanno evidenziato per alcun parametro superamenti dei limiti normativi. In relazione alle campagne ante operam si riscontrano valori allineati. La campagna sul punto ATL 01, terme di Petriolo, è stata invalidata da laboratorio.

Nel trimestre di monitoraggio successivo, tra novembre 2013 e gennaio 2014, su tutti i punti previsti dal PMA ATC 01, ATC02, ATL01 e ATL02, non sono state rilevate alterazione della qualità dell'aria. I risultati delle campagne non hanno evidenziato per alcun parametro superamenti dei limiti normativi. In relazione alle campagne ante operam si riscontrano valori confrontabili.

Per il trimestre successivo, tra febbraio e aprile 2014, il monitoraggio della componente atmosfera nel periodo di corso d'opera non ha evidenziato alterazione della qualità dell'aria. I risultati delle campagne non hanno evidenziato per alcun parametro superamenti dei limiti normativi. In relazione alle campagne ante operam si riscontrano valori allineati.

Per il trimestre di monitoraggio tra maggio e luglio 2014 si riportano le seguenti evidenze. Si segnala un superamento del valore di 50 μ g/m3 delle PM10 (64.59 μ g/m3) nel punto ATL02 – Bagni di Petriolo. Tale superamento si registra il primo giorno di monitoraggio. I giorni successivi il valore è molto inferiore al valore limite (28.62 μ g/m3 e 15.96 μ g/m3).

Per gli altri punti i risultati delle campagne non hanno evidenziato per alcun parametro superamenti dei limiti normativi. In relazione alle campagne ante operam si riscontrano valori allineati.

Per il trimestre tra agosto e ottobre il monitoraggio della componente atmosfera nel periodo di corso d'opera non ha evidenziato alterazione della qualità dell'aria. Si segnala un aumento del valore degli NOx nel punto ATL02 – Bagni di Petriolo. Nel successivo monitoraggio ritorna a valori confrontabili con le precedenti indagini. Si registra un aumento degli NOx anche per il punto ATL01 – Terme di Petriolo, nel mese di settembre. Per gli altri punti i risultati delle campagne non hanno evidenziato per alcun parametro aumenti significativi dei valori. In relazione alle campagne ante operam si riscontrano valori allineati.

Per il trimestre di monitoraggio tra novembre e gennaio 2015 sono state riscontrate alcune alterazioni della qualità dell'aria. Le alterazioni individuate sono relative all'NOx, SO2 ed in un caso al PM10. In dettaglio nel mese di novembre per la postazione ATL01 (Terme di Petriolo) si riscontra un giorno in cui si ha il superamento del limite del PM10, rilevando 53.03 μg/m³ rispetto limite di 50 μg/m³. Nel mese di dicembre si riscontra valori elevati per l'NOx nella postazione ATC02 (area Potatine), mentre per le postazioni ATC01 (Svincolo Lanzo) e per ATL02 (Bagni di Petriolo) si rilevano valori confrontabili con le precedenti indagini. Nella campagna di gennaio 2015 si riscontrano valori elevati di SO2 ed in particolare dell'NOx nell'unica postazione indagata nel mese ATL01.

5. MONITORAGGIO COMPONENTE FAUNA

Il monitoraggio della componente faunistica è previsto nel PMA al fine di verificare gli effetti delle attività di costruzione dell'infrastruttura stradale sulla fauna esistente, per permettere l'adozione tempestiva di eventuali azioni correttive.

5.1 DESCRIZIONE DELLE ATTIVITÀ DI MONITORAGGIO

I punti di monitoraggio previsti nel PMA sono i seguenti

- FAU 01 / Torrente Rilucia, per possibile presenza di Anfibi, Rettili, Crostacei, Pesci, Mammiferi;
- FAU 02 / Torrente Farma, per possibile presenza di Insetti, Crostacei e Pesci.

Durante il corso d'opera per la fauna negli ambiti sensibili il PMA prevede di procedere con campagne annuali articolate in sessioni di rilievo (frequenza annuale con 3 o 5 sessioni di rilievo ognuna).

Nella fase di corso d'opera la tempistica di esecuzione delle indagini è stabilita in funzione dell'effettivo avanzamento del cantiere in accordo con il cronoprogramma delle attività del cantiere. Nel PMA è stato ipotizzato che le indagini siano effettuate con la relativa cadenza prevista su tutti gli ambiti sensibili individuati. Successivamente, in fase di cantiere, è possibile valutare l'opportunità di indagare solo quelli di volta in volta effettivamente interessati dalle lavorazioni.

Poiché gli ambiti sensibili, sono riferiti ad alcune tra le aree ripariali poste in stretta contiguità con il progetto e caratterizzate dalla presenza di habitat di un certo interesse naturalistico ad elevata diversità biologica, il monitoraggio della fauna è incentrato sul rilievo di categorie faunistiche indicatrici di tali biotopi ovvero su Uccelli, Anfibi, Rettili, Crostacei, Pesci.

Nelle varie zone umide gli uccelli svolgono importanti fasi del loro ciclo biologico (riproduzione, muta del piumaggio, sosta migratoria, svernamento). Altre differenze temporali si registrano nell'utilizzo degli habitat durante le attività giornaliere (alimentazione e riposo) che sono fortemente condizionate dalla disponibilità di cibo e dalla caratterizzazione stessa degli habitat. Pertanto ornitofauna ed erpetofauna mostrano delle forti correlazioni che giustificano l'interesse per le aree umide.

Ornitofauna, la metodologia adottata si articola essenzialmente sull'esecuzione di punti di ascolto (Point counts), sul conteggio delle specie tramite osservazioni standard (Direct count) e degli individui al canto (Vocal individuality count), in corrispondenza delle stazioni di campionamento stabilite.

Erpetofauna, la maggior parte delle specie appartenenti all'erpetofauna divengono rilevabili durante le attività legate alla riproduzione. Per le specie che depongono le uova in acqua stagnante (rane, rospi, tritoni e salamandre) il rilevamento viene condotto presso i siti ecologicamente adatti alla deposizione delle uova (stagni, fontanili ed altre raccolte d'acqua ferma o lentamente corrente). In tali siti è possibile effettuare rilevamenti anche sulle uova e sulle larve, che sono talvolta osservabili in numeri enormemente maggiori rispetto agli adulti. Diversamente, per le specie che non depongono le uova in acqua, non vi è la possibilità di focalizzare i rilevamenti sui siti di riproduzione.

Per **Anfibi, Rettili, Crostacei, Pesci e Mammiferi** si potranno applicare diverse tecniche di monitoraggio delle quali si elencano le principali:

- il conteggio delle specie tramite osservazioni standard;
- l'osservazione diretta con cattura a mano di esemplari adulti;
- il metodo del retino-guada: consiste nell'immersione nell'acqua di un retino a maglia fitta, trascinandolo lungo il fondo nel tentativo di raccogliere una parte di substrato con foglie, rami e fango, sul quale possono nascondersi anfibi adulti, urodeli e girini;
- l'osservazione e l'eventuale raccolta di ovature e girini (eventuale censimento di siti riproduttivi);
- l'osservazione diretta sulle specie ittiche verrà condotta definendo stazioni di campionamento puntuali eseguendo sessioni di rilievo tramite la metodica dell'elettropesca con l'utilizzo dell'elettrostorditore.

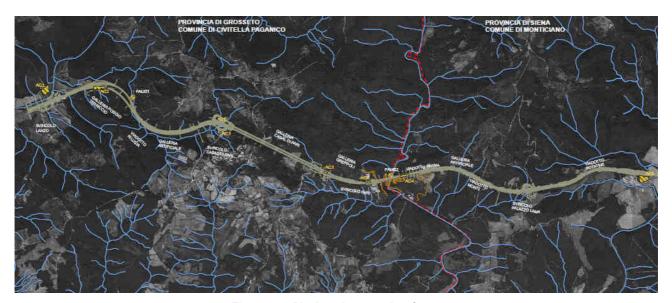


Figura 66 – Planimetria generale – fauna

5.2 CONFRONTO CON LE CAMPAGNE PRECEDENTI

Monitoraggio Erpetofauna nella postazione FAU 01 - Torrente Rilucia

Erpetofauna - confronto fra l'AO e le sessioni eseguite in corso d'opera

	Sessione 1	Sessione 2	Sessione 3	Sessione 4	Sessione 5	Sessione 1	Sessione 2	Sessione 3	Sessione 4	Sessione 5
AO	CO 14/04/201 4	CO 14/04/201 4	CO 14/04/201 4	CO 14/04/201 4	CO 14/04/201 4	CO 28/10/201 4	CO 28/10/201 4	CO 28/10/201 4	CO 28/10/201 4	CO 28/10/201 4
Podarc is muralis	Podarcis muralis	Podarcis muralis	Pelophyla x esculentus	Nessun avvistame nto	Podarcis muralis	Nessun avvistame nto	Nessun avvistame nto	Nessun avvistame nto	Nessun avvistame nto	Nessun avvistame nto
Podarc is sicula	Podarcis sicula	Podarcis sicula			Podarcis sicula					
	Lacerta viridis	Pelophyla x esculentus			Lacerta viridis					
	Vipera aspis	Bufo bufo								
		Hyla intermedia								

Monitoraggio Uccelli e Mammiferi nella postazione FAU 01

Uccelli – confronto fra l'AO e le sessioni eseguite in corso d'opera

	Sessione 1	Sessione 2	Sessione 3	Sessione 1	Sessione 2	Sessione 3
АО	CO 29/11/2013	CO 29/11/2013	CO 29/11/2013	CO 28/10/2014	CO 28/10/2014	CO 28/10/2014
Aegithalos caudatus	Carduelis carduelis	Columbia livia	Athena noctua	Erithacus rubecula	Erithacus rubecula	Erithacus rubecula
Buteo buteo	Certhia brachydactila	Corvus corone cornix	Corvus monedula	Fringilla coelebs	Fringilla coelebs	Fringilla coelebs
Columba palumbo	Columbia livia	Corvus monedula	Dendrocopos major	Garrulus glandarius	Garrulus glandarius	Motacilla alba
Corvus corone cornix	Corvus corone cornix	Erithacus rubecula	Falco tinnunculus	Motacilla cinerea	Motacilla alba	Parus major
Cyanistes caeruleus	Corvus monedula	Fringilla coelebs	Fringilla coelebs	Parus major	Parus major	Sylvia atricapilla
Emberiza cirlus	Erithacus rubecula	Garrulus glandarius	Garrulus glandarius	Phasianus colchicus	Pica pica	Sylvia cantillans
Erithacus rubecula	Falco tinnunculus	Turdus merula	Motacilla alba	Pica pica	Sylvia atricapilla	Turdus merula
Fringilla coelebs	Garrulus glandarius	Passer italiae	Pica pica	Turdus merula	Turdus merula	
Garrulus glandarius	Pica pica		Turdus merula			
Motacilla alba	Turdus merula					
Parus major						
Pica pica						
Sitta europaea						
Streptopelia decaocto						
Sylvia atricapilla						
Sylvia melanocephala						
Turdus merula						

Itinerario internazionale E78 / S.G.C. Grosseto – Fano / adeguamento a 4 corsie nel tratto Grosseto – Siena (S.S. 223 "di Paganico") dal km 30+400 al km 41+600 – lotti 5, 6, 7, 8

Mammiferi – confronto fra l'AO e le sessioni eseguite in corso d'opera

	Sessione 1	Sessione 2	Sessione 3	Sessione 1	Sessione 2	Sessione 3
AO	СО	СО	СО	СО	СО	СО
7.0	29/11/2013	29/11/2013	29/11/2013	28/10/2014	28/10/2014	28/10/2014
Capreolus	Capreolus	Capreolus	Capreolus	Capreolus	Capreolus	Capreolus
capreolus	capreolus	capreolus	capreolus	capreolus	capreolus	capreolus
Hystrix cristata	Sus scrofa	Sus scrofa	Canis familiaris	Hystrix cristata	Sus scrofa	Vulpes vulpes
Martes foina	Vulpes vulpes	Vulpes vulpes	Erinaceus europaeus	Meles meles	Vulpes vulpes	
Sciurus vulgaris			Felis silvestris catus	Sciurus vulgaris		
Sus scrofa			Martes foina	Sus scrofa		
Vulpes vulpes			Vulpes vulpes	Vulpes vulpes		

Monitoraggio Crostacei e Pesci nella postazione FAU 01 - Torrente Rilucia

Crostacei – confronto fra l'AO e le sessioni eseguite in corso d'opera

	Sessione 1	Sessione 2	Sessione 3	Sessione 1	Sessione 2	Sessione 3
AO	со	со	СО	СО	СО	СО
	14/04/2014	14/04/2014	14/04/2014	28/10/2014	28/10/2014	28/10/2014
Torrente secco	Nessun	Nessun	Nessun	Nessun	Nessun	Nessun
TOTTETILE SECCO	avvistamento	avvistamento	avvistamento	avvistamento	avvistamento	avvistamento

Pesci – confronto fra l'AO e le sessioni eseguite in corso d'opera

	Sessione 1	Sessione 2	Sessione 3	Sessione 1	Sessione 2	Sessione 3
AO	СО	СО	СО	СО	СО	CO
	14/04/2014	14/04/2014	14/04/2014	28/10/2014	28/10/2014	28/10/2014
Torrente secco	Nessun	Nessun	Alburnus	Nessun	Alburnus	Nessun
TOTTETHE SECCO	avvistamento	avvistamento	alburnus	avvistamento	alburnus	avvistamento

Monitoraggio Uccelli e Mammiferi nella postazione FAU 02 - Torrente Farma

Uccelli – confronto fra l'AO e le tre sessioni eseguite

	Sessione 1	Sessione 2	Sessione 3	Sessione 1	Sessione 2	Sessione 3
AO	CO 26/09/2013	CO 26/09/2013	CO 26/09/2013	CO 14/04/2014	CO 14/04/2014	CO 14/04/2014
Aegithalos caudatus	Carduelis chloris	Columbia livia	Alcedo atthis	Aegithalos caudatus	Carduelis carduelis	Anas platyrhynchos
Buteo buteo	Columbia livia	Columba palumbo	Ardea cinerea	Buteo buteo	Cyanister caeruleus	Carduelis carduelis
Columba palumbo	Corvus corone cornix	Corvus monedula	Buteo buteo	Columba palumbo	Emberiza cia	Corvus corone
Corvus corone cornix	Corvus monedula	Garrulus glandarius	Columba palumbo	Corvus corone	Fringilla coelebs	Corvus monedula
Cyanistes caeruleus	Fringilla coelebs	Parus major	Corvus monedula	Corvus monedula	Hirundo rustica	Cyanister caeruleus
Emberiza cirlus	Garrulus glandarius	Streptopelia decaocto	Cyanistes caeruleus	Cyanistes caeruleus	Parus major	Emberiza cirlus
Erithacus rubecula	Parus major	Turdus merula	Falco tinnunculus	Erithacus rubecola	Regulus ignicapillus	Erithacus rubecola
Fringilla coelebs	Pica pica		Garrulus glandarius	Fringilla coelebs	Serinus serinus	Fringilla coelebs
Garrulus glandarius	Streptopelia decaocto		Motacilla alba	Garrulus glandarius	Silvia atricapilla	Hirundo rustica
Motacilla alba	Strix aluco		Pica pica	Hirundo rustica	Streptotelia decaocto	Larus michahellis

Itinerario internazionale E78 / S.G.C. Grosseto – Fano / adeguamento a 4 corsie nel tratto Grosseto – Siena (S.S. 223 "di Paganico") dal km 30+400 al km 41+600 – lotti 5, 6, 7, 8

	Sessione 1	Sessione 2	Sessione 3	Sessione 1	Sessione 2	Sessione 3
AO	CO 26/09/2013	CO 26/09/2013	CO 26/09/2013	CO 14/04/2014	CO 14/04/2014	CO 14/04/2014
Parus major	Troglodites troglodites		Strix aluco	Parus major	Turdus merula	Luscinia megarhynchos
Pica pica	Turdus merula		Sylvia melanocephala	Pica pica		Motacilla alba
Sitta europaea			Turdus merula	Picus viridis		Motacilla flava
Streptopelia decaocto				Regulus ignicapillus		Parus major
Sylvia atricapilla				Sylvia atricapilla		Regulus ignicapillus
Sylvia melanocephala				Troglodytes troglodytes		Silvia atricapilla
Turdus merula				Turdus merula		Streptotelia decaocto

Mammiferi - confronto fra l'AO e le tre sessioni eseguite

	Sessione 1	Sessione 2	Sessione 3	Sessione 1	Sessione 2	Sessione 3
AO	CO 26/09/2013	CO 26/09/2013	CO 26/09/2013	CO 14/04/2014	CO 14/04/2014	CO 14/04/2014
Capreolus capreolus	Capreolus capreolus	Capreolus capreolus	Capreolus capreolus	Hystrix cristata	Capreolus capreolus	Capreolus capreolus
Hystrix cristata	Canis familiaris	Hystrix cristata	Canis familiaris	Sus scrofa	Chirotteri	Sus scrofa
Martes foina	Erinaceus europaeus	Martes foina	Hystrix cristata	Vulpes vulpes	Hystrix cristata	
Sciurus vulgaris	Felis domesticus	Vulpes vulpes	Martes foina		Lepus europaeus	
Sus scrofa	Hystrix cristata		Sus scrofa		Microtus sp.	
Vulpes vulpes	Sciurus vulgaris		Vulpes vulpes		Sus scrofa	
	Sus scrofa				Vulpes vulpes	
	Vulpes vulpes					

Monitoraggio Crostacei e Pesci nella postazione FAU 02 - Torrente Farma

Crostacei – confronto fra l'AO e le tre sessioni eseguite

	Sessione 1	Sessione 2	Sessione 3	Sessione 1	Sessione 2	Sessione 3
AO	СО	СО	СО	СО	СО	СО
	26/09/2013	26/09/2013	26/09/2013	14/04/2014	14/04/2014	14/04/2014
Potamon	Potamon	Potamon	Potamon	Nessun	Nessun	Nessun
fluviatile	fluviatile	fluviatile	fluviatile	avvistamento	avvistamento	avvistamento

Pesci – confronto fra l'AO e le tre sessioni eseguite

4.0	Sessione 1	Sessione 2	Sessione 3	Sessione 1	Sessione 2	Sessione 3
AO	CO 26/09/2013	CO 26/09/2013	CO 26/09/2013	CO 14/04/2014	CO 14/04/2014	CO 14/04/2014
Leuciscus cephalus	Barbus tyberinus	Barbus tyberinus	Barbus tyberinus	Alburnus alburnus	Nessun avvistamento	Alburnus alburnus
Leuciscus souffia	Leuciscus cephalus	Leuciscus cephalus	Leuciscus cephalus	Rutilus rubilio		Chondrostoma genei
	Leuciscus souffia	Leuciscus souffia	Leuciscus souffia			Leusciscus Iucumonis
	Rutilius rubilio	Rutilius rubilio	Rutilius rubilio			Rutilus rubilio
	Padogobius nigricans		Padogobius nigricans			
	Barbus tyberinus					

5.3 CONCLUSIONI SUL MONITORAGGIO DELLA MATRICE FAUNA

Nel trimestre di monitoraggio tra agosto ed ottobre 2013 si rileva che relativamente al monitoraggio degli uccelli (FAU 02) si riscontra quanto segue. Il numero totale di specie censite per le tre sessioni di monitoraggio effettuate risulta maggiore di quanto rilevato in AO. Rispetto a quanto rilevato in AO, non si registrano sostanziali cambiamenti per quanto riguarda il popolamento a corvidi e passeriformi. Fra i rapaci, si conferma la presenza della poiana, e si segnala quella del nibbio, oltre che dell'allocco (precedentemente non segnalati). Non si conferma la presenza del picchio muratore; sono tuttavia presenti gli ardeidi (airone grigio), precedentemente non segnalati.

Relativamente al monitoraggio mammiferi si riscontra che il numero totale di specie censite per le tre sessioni di monitoraggio effettuate risulta maggiore di quanto rilevato in AO. Rispetto a quanto rilevato in AO, si conferma la presenza degli ungulati di grandi dimensioni (capriolo, cinghiale) e dei carnivori. Si confermano le presenze dell'istrice; si segnala la presenza di alcuni domestici (da ricondurre alle presenza di frequentatori dell'adiacente stazione termale presso l'area di rilievo).

Relativamente al monitoraggio crostacei si evidenzia che il numero totale di specie censite per le tre sessioni di monitoraggio effettuate risulta maggiore di quanto rilevato in AO. Rispetto a quanto rilevato in AO, si conferma la presenza del granchio di fiume, specie particolarmente rilevante dal punto di vista conservazionistico (Lista Rossa IUCN-NT). Non rilevato, sebbene atteso, il gamberetto di fiume.

Relativamente al monitoraggio crostacei si rileva che il numero totale di specie censite per le tre sessioni di monitoraggio effettuate risulta maggiore di quanto rilevato in AO. Rispetto a quanto rilevato in AO, si conferma la presenza dei ciprinidi (cavedano e vairone), sono presenti anche rovella, barbo tiberino e ghiozzo di ruscello.

Si segnala la presenza di segni di eutrofizzazione, al momento contenuta, lungo le sponde del fiume. Si rileva la presenza di mucillagine rossastra in destra idrografica, in corrispondenza del punto di immissione di acque di percolamento provenienti dal rilievo soprastante, a relativa distanza dall'area di cantiere, probabilmente imputabile alla presenza di ferrobatteri/solfobatteri.

Nel trimestre successivo, relativamente al monitoraggio degli uccelli, eseguito tra novembre 2013 e gennaio 2014, si riscontra quanto segue (FAU 01). Il numero totale di specie censite per le tre sessioni di monitoraggio effettuate risulta maggiore di quanto rilevato in AO.

Nel primo transetto, rispetto a quanto rilevato in AO, non si registrano sostanziali cambiamenti per quanto riguarda il popolamento a corvidi e passeriformi. Risultano assenti i rapaci ad eccezione del gheppio (precedentemente non documentato per il sito in esame). Nel secondo transetto, rispetto a quanto rilevato in AO, si registra una diminuzione delle specie di corvidi e passeriformi (in particolare quelle legate ad ambienti maggiormente vegetati). Risultano assenti i rapaci. Nel terzo transetto, rispetto a quanto rilevato in AO, non si registrano sostanziali cambiamenti per quanto riguarda il popolamento a corvidi, mentre si osserva una riduzione dei passeriformi. Fra i rapaci, si segnala la presenza della civetta (precedentemente non segnalati). Non si conferma la presenza del picchio muratore, mentre si segnala la presenza del picchio rosso maggiore (precedentemente non segnalato) e del rampichino.

Itinerario internazionale E78 / S.G.C. Grosseto – Fano / adeguamento a 4 corsie nel tratto Grosseto – Siena (S.S. 223 "di Paganico") dal km 30+400 al km 41+600 – lotti 5, 6, 7, 8

Relativamente al monitoraggio mammiferi si riscontra che il numero totale di specie censite per le tre sessioni di monitoraggio effettuate risulta maggiore di quanto rilevato in AO. Nel primo e secondo transetto, rispetto a quanto rilevato in AO, si conferma la presenza degli ungulati di grandi dimensioni (capriolo, cinghiale) e dei carnivori ad eccezione della faina, mentre non si rilevano chirotteri e micromammiferi (il rilievo coincide col periodo di quiescenza invernale). Nel terzo transetto, rispetto a quanto rilevato in AO, si conferma la presenza degli ungulati di grandi dimensioni (capriolo, cinghiale), e dei carnivori; si segnala quella del riccio, nonché la presenza di alcuni domestici.

Nel trimestre tra febbraio e aprile 2014 si rileva quanto segue. Per l'Erpetofauna FAU01. Nella postazione FAU 01 sono state eseguite cinque sessioni di indagine per la matrice erpetofauna. La prima sessione è stata effettuata in ambiente boscato a specie quercine (leccio e sughera), in transetto lineare di ca. 300m, congruente con il tracciato stradale esistente. La sessione 2 è stata effettuata a partire dal tracciato stradale esistente fino al Torrente Rilucia in ambiente boscato a specie quercine (leccio e sughera). Nel tratto di greto fluviale con presenza di bosco ripario in transetto di circa 250m. Sono state rilevate ovature di Bufo bufo, avvistati individui di Hyla intermedia e di Pelophylax esculentus. La terza sessione è stata effettuata lungo il corso del torrente Rilucia a partire dalla fine del cantiere. La conformazione delle sponde e l'altezza dell'acqua non hanno permesso di proseguire oltre. La vegetazione è caratterizzata da specie igrofile e meso-igrofile. Rispetto a quanto rilevato in AO, non sono state avvistate le due specie di Podarcis, ma sono stati osservati girini ed individui adulti di Pelophylax esculentus. La quarta sessione è stata eseguita a partire dall'area di cantiere lungo il greto fluviale (a monte del guado sul Rilucia), in un ambiente di bosco ripario. Transetto lineare di circa 200. Nella presente sessione non è stato possibile effettuare nessun avvistamento, compatibilmente con il disturbo arrecato dalle azioni di cantiere nelle immediate vicinanze. La quinta sessione è stata effettuata con percorso ad anello di 240m a partire dall'ingresso dell'area di cantiere. Si rileva ambiente boschivo (a SW del guado sul Rilucia) a specie quercine miste a specie arbustive termofile principalmente erica, corbezzolo e ginestra. Le specie avvistate in questo transetto sono le stesse del rilievo in AO, con aggiunta di Lacerta viridis.

Si rappresenta come la lista faunistica riportata per il rilievo AO includa l'intera stazione del Rilucia e non soltanto quelle indicate in ogni sessione della presente indagine: il numero totale di specie censite per le cinque sessioni di monitoraggio effettuate risulta maggiore di quanto rilevato in AO. Si rimanda alle schede di monitoraggio per il dettagli.

Per gli Uccelli e Mammiferi FAU02 Nella postazione FAU 02 sono state eseguite tre sessioni di indagine per la matrice uccelli e mammiferi. Nella prima sessione dell'ambiente uccelli si è eseguito un percorso in ambiente boscato (rilievo collinare a NE del guado sul Farma) a specie quercine (leccio e sughera) con un transetto di ca. 350m, effettuato lungo la strada di accesso al cantiere e nell'interno dell'area boscata. Rispetto a quanto rilevato nel primo monitoraggio CO, non si registrano sostanziali cambiamenti per quanto riguarda il popolamento a corvidi. Presente poiana, codibugnolo, colombaccio, cinciarella, pettirosso, rondine, picchio verde, fiorrancino, capinera non rilevati nel primo CO. Non è stata rilevata la presenza dell'allocco e della tortora dal collare orientale. La seconda sessione è stata misurata in ambiente di prati aperti (a N del guado sul Farma, lungo il tracciato esistente), in un ambiente di macchia degradata a specie arbustive termofile (principalmente erica, corbezzolo e ginestra). Si rileva la presenza di rudere e di strutture

Itinerario internazionale E78 / S.G.C. Grosseto – Fano / adeguamento a 4 corsie nel tratto Grosseto – Siena (S.S. 223 "di Paganico") dal km 30+400 al km 41+600 – lotti 5, 6, 7, 8

antropiche dismesse. Transetto di 500m. Rispetto al primo CO si segnala un maggior numero di passeriformi.

La terza sessione è stata effettuata lungo la sponda sinistra del greto fluviale, in alneto ripario. Presenza di vegetazione igrofila. La prima parte del transetto attraversa l'area di cantiere oggetto della costruzione del nuovo viadotto. Transetto di circa 400m. Si segnala come la lista faunistica riportata per il rilievo AO includa l'intera stazione del Farma e non soltanto quelle indicate in ogni sessione della presente indagine. Nel presente rilievo si segnala un numero maggiore di specie rispetto al primo CO ed all'AO.

Nella prima sessione dell'ambiente mammiferi è stata eseguita in un percorso in ambiente boscato (rilievo collinare a NE del guado sul Farma) a specie quercine (leccio e sughera). Transetto di ca. 350m effettuato lungo la strada di accesso al cantiere e nell'interno dell'area boscata. Rispetto a quanto rilevato nel primo CO, si conferma la presenza di istrice, cinghiale e volpe. Non rilevati segni di presenza di animali domestici. La seconda sessione è stata misurata in ambiente di prati aperti (a N del guado sul Farma, lungo il tracciato esistente), in un ambiente di macchia degradata a specie arbustive termofile (principalmente erica, corbezzolo e ginestra). Presenza di rudere e di strutture antropiche dismesse. Transetto di 500m. Rispetto al primo CO si conferma la presenza di ungulati quali capriolo e cinghiale, e si segnalano tracce di escrementi di Chirotteri all'interno del rudere presente, fatte di lepre, e aculei di istrice. Avvistata un' arvicola.

La terza sessione è stata effettuata lungo la sponda sinistra del greto fluviale, in alneto ripario. Presenza di vegetazione igrofila. La prima parte del transetto attraversa l'area di cantiere oggetto della costruzione del nuovo viadotto. Transetto di circa 400m. Rispetto al primo CO si conferma la presenza di capriolo e cinghiale. Si rappresenta come la lista faunistica riportata per il rilievo AO includa l'intera stazione del Farma e non soltanto quelle indicate in ogni sessione della presente indagine. Si rimanda alle schede di monitoraggio per il dettagli.

Per i Pesci e Crostacei FAU01 Nella postazione FAU 01 sono state eseguite tre sessioni di indagine per la matrice pesci e crostacei. La prima sessione per l'ambiente pesci è stata effettuata nell' alveo del Torrente Rilucia nella zona interessata dall'area di cantiere. Il corso d'acqua si presenta minimo e compromesso dai lavori di costruzione del viadotto. Risalendo il greto in direzione NE la situazione torna ad essere pressoché normale. Transetto lineare di 200m. Durante i rilievi effettuati in AO non era stato effettuato nessun avvistamento a causa della secca del torrente. La presente sessione in CO non ha portato avvistamenti dovuti alla mancanza di acqua/acqua stagnate nel tratto in oggetto.

La seconda sessione è stata effettuata lungo il corso del torrente Rilucia a partire dal centro del cantiere per una distanza di circa 200m. La conformazione delle sponde e l'altezza dell'acqua non hanno permesso di proseguire oltre. La vegetazione è caratterizzata da specie igrofile e meso-igrofile. Durante i rilievi effettuati in AO non era stato effettuato nessun avvistamento a causa della secca del torrente. Nella presente sessione in CO non è stato possibile effettuare avvistamenti.

La terza sessione è stata misurata in ambiente di greto fluviale con transetto lineare di 180m. Nel punto iniziale del percorso sono presenti delle rampe che impediscono di risalire ulteriormente il greto. L'area è caratterizzata da presenza di bosco ripario e vegetazione igrofila e mesoigrofila. Durante i rilievi effettuati in AO non era stato effettuato nessun avvistamento a causa della secca del torrente. Nella presente sessione sono stati avvistati 10 individui di Alburnus alburnus.

La prima sessione sull'ambiente crostacei è stata effettuata nell' alveo del Torrente Rilucia nella zona interessata dall'area di cantiere. Il corso d'acqua si presenta minimo e compromesso dai lavori di costruzione

del viadotto. Risalendo il greto in direzione NE la situazione torna ad essere pressoché normale. Transetto lineare di 200m. Durante i rilievi effettuati in AO non era stato effettuato nessun avvistamento a causa della secca del torrente. La presente sessione in CO non ha portato avvistamenti dovuti alla mancanza di acqua nel tratto in oggetto e alla stagione non favorevole per questo tipo di avvistamenti.

La seconda sessione è stata effettuata lungo il corso del torrente Rilucia a partire dal centro del cantiere per un percorso di circa 200m. La conformazione delle sponde e l'altezza dell'acqua non hanno permesso di proseguire oltre. La vegetazione è caratterizzata da specie igrofile e meso-igrofile. Durante i rilievi effettuati in AO non era stato effettuato nessun avvistamento a causa della secca del torrente. La presente sessione in CO non ha portato avvistamenti dovuti alla mancanza di acqua nel tratto in oggetto e alla stagione non favorevole per questo tipo di avvistamenti.

La terza sessione sull'ambiente crostacei è stata misurata in ambiente di greto fluviale con transetto lineare di 180m. Nel punto iniziale del percorso sono presenti delle rampe che impediscono di risalire ulteriormente il greto. L'area è caratterizzata da presenza di bosco ripario e vegetazione igrofila e mesoigrofila. Durante i rilievi effettuati in AO non era stato effettuato nessun avvistamento a causa della secca del torrente. La presente sessione in CO non ha portato avvistamenti dovuti alla mancanza di acqua nel tratto in oggetto e alla stagione poco favorevole per questo tipo di avvistamenti. Si rimanda alle schede di monitoraggio per il dettagli.

Per i Pesci e Crostacei FAU02 Nella postazione FAU 02 sono state eseguite tre sessioni di indagine per la matrice pesci e crostacei Nella prima sessione dell'ambiente pesci è stato eseguito un transetto lineare di 250 m. La sessione è stata effettuata lungo la sponda sinistra del greto fluviale, in alneto ripario. Si rileva la presenza di vegetazione igrofila. La prima parte del transetto attraversa l'area di cantiere oggetto della costruzione del nuovo viadotto. Si rappresenta come la lista faunistica riportata per il rilievo AO includa l'intera stazione del Farma e non soltanto la sessione presente. Nel corso di questa sessione è stato possibile avvistare Barbo comune e rovella. La seconda sessione è stata misurata in corrispondenza del guado sul Farma. E' stato eseguito un transetto di ca.250m, congruente col percorso del fiume, nella porzione maggiormente interessata dall'area di cantiere. Si rappresenta come la lista faunistica riportata per il rilievo AO includa l'intera stazione del Farma e non soltanto la sessione presente. Nel corso di questa sessione non è stato possibile avvistare pesci. La terza sessione è stata eseguita nel guado sul Farma in un transetto di circa 300m, congruente col percorso del fiume, dalla zona centrale del cantiere fino al ponte di Petriolo. Si rappresenta come la lista faunistica riportata per il rilievo AO includa l'intera stazione del Farma e non soltanto la sessione presente. Nella presente sessione di CO si conferma la rovella, segnalata nel primo CO, e si segnala barbo, lasca, cavedano etrusco.

La prima sessione sull'ambiente crostacei del punto FAU02 è stata eseguita su un transetto lineare di 250 m. La sessione è stata effettuata lungo la sponda sinistra del greto fluviale, in alneto ripario. Si rileva la presenza di vegetazione igrofila. La prima parte del transetto attraversa l'area di cantiere oggetto della costruzione del nuovo viadotto. Si rappresenta come la lista faunistica riportata per il rilievo AO includa l'intera stazione del Farma e non soltanto la sessione presente. Nel corso di questa sessione non è stato possibile avvistare crostacei, presumibilmente in relazione alle caratteristiche della stagione.

La seconda sessione è stata misurata in corrispondenza del guado sul Farma in un transetto di ca.250m, congruente col percorso del fiume, nella porzione maggiormente interessata dall'area di cantiere. Si rappresenta come la lista faunistica riportata per il rilievo AO includa l'intera stazione del Farma e non

Itinerario internazionale E78 / S.G.C. Grosseto – Fano / adeguamento a 4 corsie nel tratto Grosseto – Siena (S.S. 223 "di Paganico") dal km 30+400 al km 41+600 – lotti 5, 6, 7, 8

soltanto la sessione presente. Nel corso di questa sessione non è stato possibile avvistare crostacei, presumibilmente in relazione alle caratteristiche della stagione. La terza sessione è stata realizzata nel guado sul Farma in un transetto di circa 300m, congruente col percorso del fiume, dalla zona centrale del cantiere fino al ponte di Petriolo. Si rappresenta come la lista faunistica riportata per il rilievo AO includa l'intera stazione del Farma e non soltanto la sessione presente. Nel corso di questa sessione non è stato possibile avvistare crostacei, presumibilmente in relazione alle caratteristiche della stagione.

Nelle trimestre tra maggio e luglio 2014 non è stato eseguito il monitoraggio della matrice in oggetto, in quanto non previsto da PMA ed inoltre ritenuto il periodo poco significativo.

Nel trimestre di monitoraggio tra agosto ed ottobre 2014 si rileva quanto segue. Nella postazione FAU 01 sono state eseguite cinque sessioni di indagine per la matrice erpetofauna. La prima sessione misurata in ambiente boscato (rilievo collinare a N del guado sul Rilucia) a specie quercine (leccio e sughera). Transetto di circa 350 m da (32 T 685802 4767775) a (32 T 685478 4767749). Durante il presente rilievo non è stata rilevata alcuna specie di anfibi o rettili a differenza di quanto rilevato nel precedente CO. La sessione 2 è stata effettuata a partire dal tracciato stradale esistente fino al Torrente Rilucia in ambiente boscato a specie quercine (leccio e sughera). Nel tratto di greto fluviale, presenza di bosco ripario. Il transetto di circa 250m è stato effettuato a partire da (32 T 685478 4767749) per intercettare il greto fluviale in 32 T 685512 4767704, percorrerlo fino a 32 T 685401 4767686 e ritornare sulla strada di partenza in 32 T 685386 4767746. Durante il presente rilievo non è stata rilevata alcuna specie di anfibi o rettili a differenza di quanto rilevato nel precedente CO. La terza sessione è stata effettuata lungo il corso del torrente Rilucia a partire dalla fine del cantiere (32 T 685702 4767718) per circa 200m fino a (32 T 685526 4767706). La conformazione delle sponde e l'altezza dell'acqua non hanno permesso di proseguire oltre. La vegetazione è caratterizzata da specie igrofile e meso-igrofile. Durante il presente rilievo non è stata rilevata alcuna specie di anfibi o rettili a differenza di quanto rilevato nel precedente CO. La quarta sessione è stata eseguita a partire dall'area di cantiere lungo il greto fluviale (a monte del guado sul Rilucia), in un ambiente di bosco ripario. Transetto lineare di circa 200m da (32 T 685712 4767704) a (32 T 685887 4767733). Durante il presente rilievo non è stata rilevata alcuna specie di anfibi o rettili a differenza di quanto rilevato nel precedente CO. Il presente transetto inoltre attraversa l'area di cantiere, quindi si può ipotizzare un disturbo dovuto alla presenza antropica nell'area. La quinta sessione è stata effettuata con percorso ad anello di 240m a partire dall'ingresso dell'area di cantiere (32 T 685706 4767694). Ambiente boschivo (a SW del guado sul Rilucia) a specie quercine miste a specie arbustive termofile (principalmente erica, corbezzolo e ginestra). Durante il presente rilievo non è stata rilevata alcuna specie di anfibi o rettili a differenza di quanto rilevato nel precedente CO. Si segnala che la stagione autunnale non è propriamente indicata per questo tipo di rilievo, quindi l'assenza di erpetofauna è ascrivibile alle normali variazioni stagionali.

Si rappresenta come la lista faunistica riportata per il rilievo AO includa l'intera stazione del Rilucia e non soltanto quelle indicate in ogni sessione della presente indagine: il numero totale di specie censite per le cinque sessioni di monitoraggio effettuate risulta maggiore di quanto rilevato in AO. Si rimanda alle schede di monitoraggio per il dettagli.

Relativamente al monitoraggio degli uccelli si riscontra quanto segue. Il numero totale di specie censite per le tre sessioni di monitoraggio effettuate risulta maggiore di quanto rilevato in AO. Nel primo, secondo e

Itinerario internazionale E78 / S.G.C. Grosseto – Fano / adeguamento a 4 corsie nel tratto Grosseto – Siena (S.S. 223 "di Paganico") dal km 30+400 al km 41+600 – lotti 5, 6, 7, 8

terzo transetto, rispetto a quanto rilevato in AO e nelle precedenti campagne, non si registrano sostanziali cambiamenti nella comunità ornitica se non una normale diminuzione delle specie rilevate in quanto il periodo di campionamento si colloca alla fine dei movimenti migratori e precede l'arrivo delle specie svernanti.

Relativamente al monitoraggio mammiferi si riscontra che il numero totale di specie censite per le tre sessioni di monitoraggio effettuate risulta maggiore di quanto rilevato in AO. Nel primo transetto, rispetto a quanto rilevato in AO e nelle campagne precedenti, si conferma la presenza degli ungulati di grandi dimensioni (capriolo, cinghiale) e dei carnivori ad eccezione della faina. A quest'ultima categoria si aggiunge però il tasso. Nel secondo transetto, rispetto a quanto rilevato in AO e a quanto rilevato nelle campagne precedenti, si conferma la presenza degli ungulati di grandi dimensioni (capriolo, cinghiale) e della volpe. Nel terzo transetto, rispetto a quanto rilevato in AO e nelle precedenti campagne, si conferma la presenza solo del capriolo e della volpe, due specie abbastanza resilienti nonostante il disturbo antropico crescente con lo svilupparsi dei lavori di cantiere.

Nella postazione FAU 01 sono state eseguite tre sessioni di indagine per la matrice pesci e crostacei. La prima sessione per l'ambiente pesci è stata effettuata nell' alveo del Torrente Rilucia nella zona interessata dall'area di cantiere. Il corso d'acqua si presenta minimo e compromesso dai lavori di costruzione del viadotto. Risalendo il greto in direzione NE la situazione torna ad essere pressoché normale. Transetto lineare di 200m. Durante i rilievi effettuati in AO non era stato effettuato nessun avvistamento a causa della secca del torrente. La presente sessione in CO non ha portato avvistamenti probabilmente per la scarsità di acqua/acqua stagnate nel tratto in oggetto, così come avvenuto nella passata sessione. La seconda sessione è stata effettuata lungo il corso del torrente Rilucia a partire dal centro del cantiere per una distanza di circa 200m. La conformazione delle sponde e l'altezza dell'acqua non hanno permesso di proseguire oltre. La vegetazione è caratterizzata da specie igrofile e meso-igrofile. Durante i rilievi effettuati in AO non era stato effettuato nessun avvistamento a causa della secca del torrente. Nella precedente sessione in CO non erano stati effettuati avvistamenti, mentre nella presente sono stati individuati oltre 50 individui di Alburnus alburnus, specie già ritrovata in un altro transetto nella precedente sessione CO. La terza sessione è stata misurata in ambiente di greto fluviale con transetto lineare di 180m. Nel punto iniziale del percorso sono presenti delle rampe che impediscono di risalire ulteriormente il greto. L'area è caratterizzata da presenza di bosco ripario e vegetazione igrofila e mesoigrofila. Durante i rilievi effettuati in CO erano stati rilevati individui di Alburnus alburnus, nella presente sessione invece non è stata avvistata nessuna specie di Pesci, per altro rilevati in un altro transetto.

La prima sessione sull'ambiente crostacei è stata effettuata nell'alveo del Torrente Rilucia nella zona interessata dall'area di cantiere. Il corso d'acqua si presenta minimo e compromesso dai lavori di costruzione del viadotto. Risalendo il greto in direzione NE la situazione torna ad essere pressoché normale. Transetto lineare di 200m. Durante i rilievi effettuati in AO non era stato effettuato nessun avvistamento a causa della secca del torrente. La presente sessione in CO non ha portato avvistamenti dovuti alla scarsità di acqua/acqua stagnate nel tratto in oggetto, così come avvenuto nella passata sessione. La seconda sessione è stata effettuata lungo il corso del torrente Rilucia a partire dal centro del cantiere per un percorso di circa 200m. La conformazione delle sponde e l'altezza dell'acqua non hanno permesso di proseguire oltre. La vegetazione è caratterizzata da specie igrofile e meso-igrofile. Durante i rilievi effettuati in AO non era stato effettuato nessun avvistamento a causa della secca del torrente. La scorsa sessione in CO non aveva

Itinerario internazionale E78 / S.G.C. Grosseto – Fano / adeguamento a 4 corsie nel tratto Grosseto – Siena (S.S. 223 "di Paganico") dal km 30+400 al km 41+600 – lotti 5, 6, 7, 8

avvistamenti dovuti alla mancanza di acqua nel tratto in oggetto e alla stagione non favorevole per questo tipo di avvistamenti, anche la presente sessione non ha permesso di ritracciare Crostacei. La terza sessione sull'ambiente crostacei è stata misurata in ambiente di greto fluviale con transetto lineare di 180m. Nel punto iniziale del percorso sono presenti delle rampe che impediscono di risalire ulteriormente il greto. L'area è caratterizzata da presenza di bosco ripario e vegetazione igrofila e mesoigrofila. Durante i rilievi effettuati in AO non era stato effettuato nessun avvistamento a causa della secca del torrente. La scorsa sessione in CO non aveva avvistamenti dovuti alla mancanza di acqua nel tratto in oggetto e alla stagione non favorevole per questo tipo di avvistamenti, anche la presente sessione non ha permesso di ritracciare Crostacei.

Nelle trimestre tra novembre 2014 e gennaio 2015 non è stato eseguito il monitoraggio della matrice in oggetto, in quanto non previsto da PMA ed inoltre ritenuto il periodo poco significativo.

6. MONITORAGGIO COMPONENTE RUMORE

Per quanto attiene alla componente rumore il Piano di monitoraggio ambientale predispone un monitoraggio nella fase di cantiere al fine di garantire l'adeguata conoscenza e il controllo del clima acustico e delle potenziali variazioni indotte dalla realizzazione delle opere in progetto e individuare e predisporre eventuali opere di mitigazione opportune. Particolarmente gravosa dal punto di vista acustico è la fase di cantiere. Il monitoraggio avrà il compito di verificare il rispetto dei limiti relativamente alla verifica dei livelli previsti per i ricettori considerati.

6.1 DESCRIZIONE DELLE ATTIVITÀ DI MONITORAGGIO

Le postazioni di monitoraggio acustico indicate nel PMA sono scelte in base a criteri che riguardano le caratteristiche intrinseche del ricettore (destinazione d'uso del ricettore; distanza ricettore – infrastruttura; assenza di schermature naturali o antropiche dalla sorgente) e la natura delle relazioni che si instaurano tra i ricettori più a rischio di esposizione agli effetti delle attività di cantiere dell'infrastruttura per controlli di corso d'opera.

Per le fasi di cantiere (RUC) sono stati selezionati i seguenti ricettori:

- Area di Sosta 5 (RUC-01);
- Terme di Petriolo (RUC-02);
- Monti (RUC-03);
- Rita (RUC-04).

La fase di monitoraggio CO si propone di quantificare l'impatto di sorgenti fisse, mobili e traffico indotto. In generale, per la scelta del periodo di monitoraggio valgono le prescrizioni della buona pratica ingegneristica, unitamente alle raccomandazioni contenute nelle norme UNI ed ISO di settore e nel DM 16 marzo 1998 sulle modalità di misura del rumore.

Nella fase di monitoraggio di CO, nelle aree di cantiere e fronte avanzamento lavori, è prevista l'installazione di una postazione semifissa per 24 ore per il monitoraggio in continuo del rumore ambientale.

La cadenza dei rilievi di CO sarà semestrale; l'esecuzione degli stessi dovrà essere stabilita con esattezza in funzione del cronoprogramma esecutivo delle attività. Nel PMA si ipotizza che l'indagine sia effettuata con cadenza semestrale su i punti individuati; successivamente, in fase di cantiere, si potrà valutare l'opportunità pertanto di indagare solo quelli di volta in volta effettivamente interessati dalle lavorazioni.

Le frequenze del monitoraggio è di cadenza semestrale. L'inizio del monitoraggio di ogni punto è valutato in funzione dell'avvio di significative attività di cantiere in relazione al possibile impatto sulla matrice ambientale.

Di seguito l'ubicazione dei punti di misura.

Figura 67 - Planimetria generale - rumore

6.2 RISULTATI E CONFRONTI CON LE CAMPAGNE ESEGUITE

Di seguito si propone il confronto con la campagna eseguita in ante operam, i limiti di legge e la campagna in corso d'opera.

		F	RUC 02 – PERIO	DDO NOTTURNO			
		DPR 142/04	PCCA	AO	СО	СО	СО
Parametro	U.M.	Fascia A	Classe III	14-15/09/12	14-15/10/13	07-08/04/14	15-16/10/14
LAeq	dB(A)	60	50	52.4	51.7	52.7	52.9
LAI massimo	dB(A)				73.8	73.3	73.2
LAF massimo	dB(A)				72.5	71.3	71.3
LAS massimo	dB(A)				71.1	70.4	69.7
L01	dB(A)			62.9	64	64.7	64.2
L10	dB(A)			57	55.3	56.5	57.4
L50	dB(A)			41.9	36.7	41.3	44.1
L90	dB(A)			30.8	33.8	36.1	34.2
L99	dB(A)			30	33.1	35.1	31.7

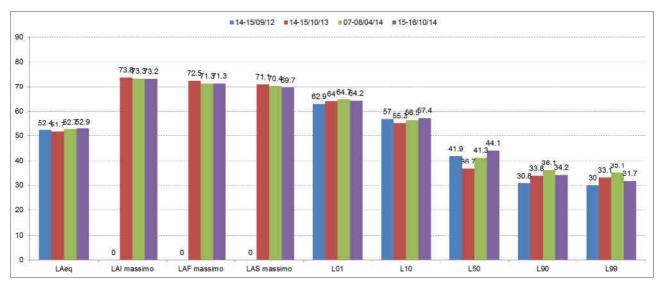


Figura 68 - confronto RUC 02 / Terme di Petriolo - periodo notturno

	RUC 02 – PERIODO DIURNO							
		DPR 142/04	PCCA	AO	СО	СО	CO	
Parametro	U.M.	Fascia A	Classe III	14-15/09/12	14-15/10/13	07-08/04/14	15-16/10/14	
LAeq	dB(A)	70	60	60.6	58.6	59.4	59.1	
LAI massimo	dB(A)				76.5	86.7	83.1	
LAF massimo	dB(A)				73.4	80.3	81.6	
LAS massimo	dB(A)				72.1	81.9	79.5	
L01	dB(A)			73.6	66.4	67.0	66.8	
L10	dB(A)			60.5	62.5	63.1	62.8	
L50	dB(A)			54.4	56.1	56.8	56.2	
L90	dB(A)			44.5	45.6	48.0	46.5	
L99	dB(A)			38	35.7	36.5	37.8	

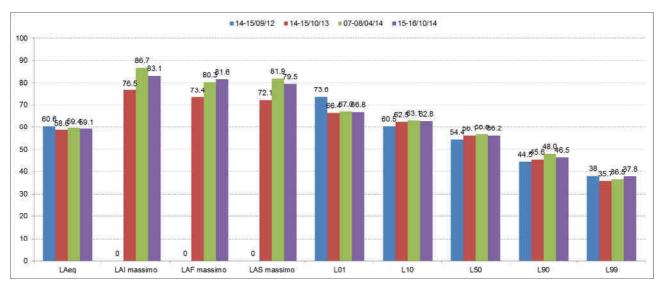


Figura 69 - confronto RUC 02 / Terme di Petriolo - periodo diurno

	RUC 01 – PERIODO NOTTURNO							
		DPR 142/04	PCCA	AO	СО	СО	СО	
Parametro	U.M.	Fascia A	Classe III	20-21/08/12	25-26/11/13	07-08/05/14	24-25/11/14	
LAeq	dB(A)	60	50	57.3	56.0	52.7	59.1	
LAI massimo	dB(A)				81.3	78.0	83.5	
LAF massimo	dB(A)				78.4	76.3	77.1	
LAS massimo	dB(A)				77.9	78.3	76.6	
L01	dB(A)			69.1	70.2	65.2	67.8	
L10	dB(A)			61.4	54.7	55.1	62.1	
L50	dB(A)			43.0	34.9	36.7	58.1	
L90	dB(A)			34.0	30.4	27.4	40.6	
L99	dB(A)			28.1	29.4	26.2	38.9	

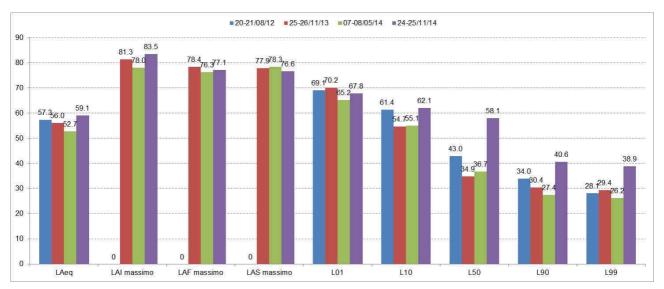


Figura 70 - confronto RUC 01 / Area di Sosta 5 – periodo notturno

	RUC 01 – PERIODO DIURNO						
Parametro	U.M.	DPR 142/04	PCCA	AO	СО	СО	CO
Parametro	O.IVI.	Fascia A	Classe III	20-21/08/12	25-26/11/13	07-08/05/14	24-25/11/14
LAeq	dB(A)	70	60	62.7	62.5	60.3	63.9
LAI massimo	dB(A)				83.0	83.2	91.7
LAF massimo	dB(A)				82.2	79.7	86.2
LAS massimo	dB(A)				79.7	78.3	82.4
L01	dB(A)			71.4	72.1	69.3	73.6
L10	dB(A)			67.7	66.9	64.4	67.4
L50	dB(A)			57.5	56.8	56.4	59.1
L90	dB(A)			43.1	44.1	45.4	50.2
L99	dB(A)			35.8	34.3	38.5	43.4

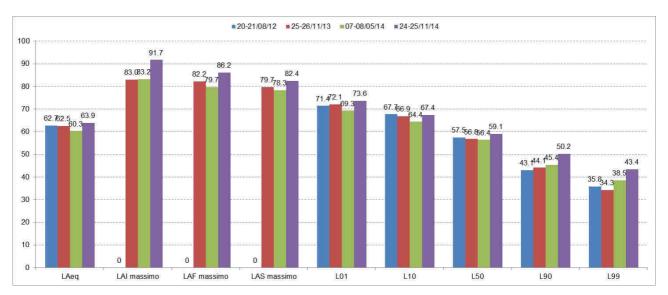


Figura 71 - confronto RUC 01 / Area di Sosta 5 - periodo diurno

	RUC 03 – PERIODO NOTTURNO							
Donomotus	11.84	DDD 440/04	PCCA	AO	СО	СО	СО	
Parametro	U.M.	DPR 142/04	Classe II	21-22/08/12	27-28/11/13	05-06/05/14	24-25/11/14	
LAeq	dB(A)		45	42.5	35.6	39.0	37.7	
LAI massimo	dB(A)				74.1	60.4	59.3	
LAF massimo	dB(A)				64.5	59.1	58.4	
LAS massimo	dB(A)				64.4	56.8	55.3	
L01	dB(A)			48.8	47.0	48.7	47.6	
L10	dB(A)			45.9	37.2	43.4	40.7	
L50	dB(A)			40.8	29.7	32.2	33.3	
L90	dB(A)			34.6	27.2	25.5	27.1	
L99	dB(A)			27.8	25.6	24.3	23.8	

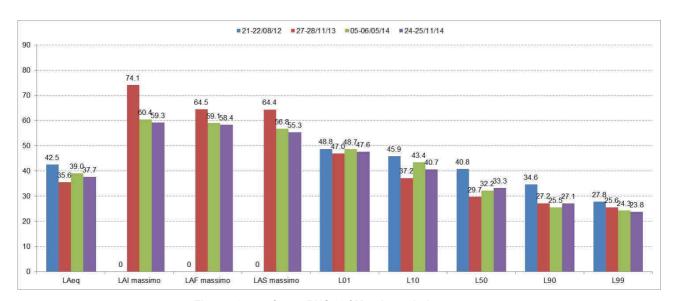


Figura 72 - confronto RUC 03 / Monti - periodo notturno

	RUC 03 – PERIODO DIURNO							
Donomotus	11.84	DDD 440/04	PCCA	AO	СО	СО	СО	
Parametro	U.M.	DPR 142/04	Classe II	21-22/08/12	27-28/11/13	05-06/05/14	24-25/11/14	
LAeq	dB(A)		55	45.1	44.6	47.4	51.7	
LAI massimo	dB(A)				70.9	71.8	83.8	
LAF massimo	dB(A)				65.6	69.1	81.7	
LAS massimo	dB(A)				62.7	66.1	80.5	
L01	dB(A)			51.6	53.1	53.0	62.5	
L10	dB(A)			47.1	47.8	50.0	49.6	
L50	dB(A)			41.8	42.1	46.3	44.7	
L90	dB(A)			35.8	34.9	42.5	39.0	
L99	dB(A)			31.2	30.2	38.7	33.1	

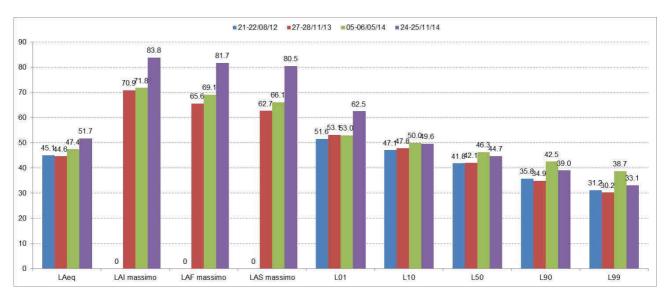


Figura 73 - confronto RUC 03 / Monti - periodo diurno

133

	RUC 04 – PERIODO NOTTURNO							
Donomotus	11.84	DPR 142/04	PCCA	AO	СО	СО	СО	
Parametro	U.M.	Fascia A	Classe III	22-23/08/12	11-12/12/13	19-20/06/14	10-11/12/14	
LAeq	dB(A)	60	50	49.3	46.6	50.4	46.7	
LAI massimo	dB(A)				68.8	74.1	66.9	
LAF massimo	dB(A)				66.1	69.2	65.5	
LAS massimo	dB(A)				64.6	66.0	63.3	
L01	dB(A)			59.0	57.9	60.9	57.5	
L10	dB(A)			53.6	50.8	54.9	50.8	
L50	dB(A)			43.4	35.3	42.2	38.7	
L90	dB(A)			30.2	25.7	29.0	35.5	
L99	dB(A)			22.6	24.5	25.9	35.3	

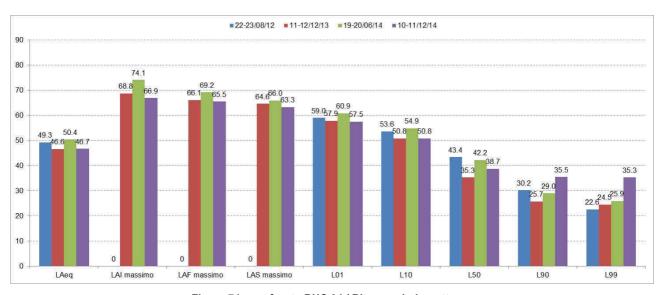


Figura 74 - confronto RUC 04 / Rita - periodo notturno

	RUC 04 – PERIODO DIURNO							
Donomotus	11.84	DPR 142/04	PCCA	AO	СО	СО	СО	
Parametro	U.M.	Fascia A	Classe III	22-23/08/12	11-12/12/13	19-20/06/14	10-11/12/14	
LAeq	dB(A)	70	60	53.7	52.6	59.0	56.6	
LAI massimo	dB(A)				80.8	93.2	101.2	
LAF massimo	dB(A)				73.9	84.2	90.8	
LAS massimo	dB(A)				72.4	80.4	89.3	
L01	dB(A)			61.6	60.8	67.2	61.5	
L10	dB(A)			57.3	56.4	61.6	57.6	
L50	dB(A)			51.1	49.6	56.6	51.4	
L90	dB(A)			42.1	39.7	48.8	43.1	
L99	dB(A)			34.2	29.2	39.5	36.8	

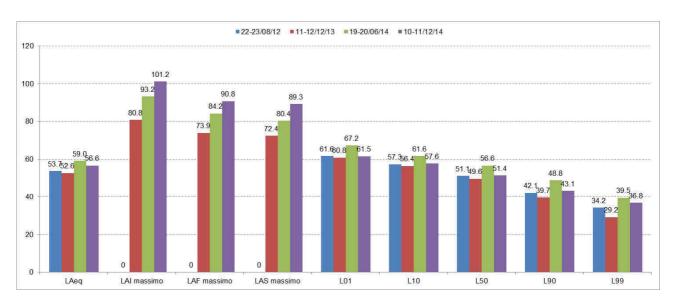


Figura 75 - confronto RUC 04 / Rita - periodo diurno

6.3 CONCLUSIONI SUL MONITORAGGIO DELLA MATRICE RUMORE

Nel trimestre tra agosto ad ottobre 2013 è stato eseguito il monitoraggio fonometrico nella postazione RUC02. Nella fase ante operam si è riscontrato un clima acustico conforme a quanto indicato dal DPR 142/04. Nella fase AO sono stati considerati come limiti la fascia delle nuove infrastrutture (65 dB(A) periodo diurno e 55 dB(A) periodo notturno). Il confronto dei valori rilevati in AO con i limiti del PCCA del Comune di Monticiano - Classe III "Area di tipo misto" sono risultati non conformi. Nella misura eseguita in CO si risconta il rispetto dei limiti del DPR 142/04. I limiti considerati, come indicato nel DPR 142/04, sono quelli delle strade esistenti - fascia A (70 dB(A) periodo diurno e 60 dB(A) periodo notturno). Rispetto ai limiti del PCCA si ha il rispetto del limite del periodo diurno, mentre si riscontra un lieve superamento in quello notturno, la misura risulta influenzata dal traffico stradale.

Nel trimestre tra novembre 2013 a gennaio 2014 sono stati indagati i punti RUC 01, RUC03 e RUC 04. Per la postazione RUC01 nella fase ante operam si è riscontrato un clima acustico conforme a quanto indicato dal DPR 142/04. Nella fase AO sono stati considerati come limiti la fascia delle nuove infrastrutture (65 dB(A) periodo diurno e 55 dB(A) periodo notturno). Il confronto dei valori rilevati in AO con i limiti del PCCA - Classe III "Area di tipo misto" sono risultati non conformi. Nella misura eseguita in CO si risconta il rispetto dei limiti del DPR 142/04. I limiti considerati, come indicato nel DPR 142/04, sono quelli delle strade esistenti - fascia A. Rispetto ai limiti del PCCA non si ha il rispetto del limite sia del periodo diurno che in quello notturno. La misura risulta influenzata dal traffico stradale.

La postazione di misura RUC 03 è oltre le fasce indicate dal DPR 142/04. Il confronto dei valori rilevati in AO con i limiti del PCCA del Comune di Monticiano - Classe II "Area prevalentemente residenziali" sono risultati conformi. Nella misura eseguita in CO si risconta il rispetto dei limiti del PCCA sia del periodo diurno che di quello notturno.

Per la postazione RUC04 nella fase ante operam si è riscontrato un clima acustico conforme a quanto indicato dal DPR 142/04. Nella fase AO sono stati considerati come limiti la fascia delle nuove infrastrutture (65 dB(A) periodo diurno e 55 dB(A) periodo notturno). Il confronto dei valori rilevati in AO con i limiti del PCCA - Classe III "Area di tipo misto" sono risultati conformi. Nella misura eseguita in CO si risconta il rispetto dei limiti del DPR 142/04. I limiti considerati, come indicato nel DPR 142/04, sono quelli delle strade esistenti - fascia A. Rispetto ai limiti del PCCA si ha il rispetto del limite sia del periodo diurno che in quello notturno. La misura risulta influenzata dal traffico stradale.

Nel trimestre da febbraio ad aprile 2014 è stato indagato il punto RUC 02. Nella fase ante operam si è riscontrato un clima acustico conforme a quanto indicato dal DPR 142/04. Nella fase AO sono stati considerati come limiti la fascia delle nuove infrastrutture (65 dB(A) periodo diurno e 55 dB(A) periodo notturno). Il confronto dei valori rilevati in AO con i limiti del PCCA del Comune di Monticiano - Classe III "Area di tipo misto" sono risultati non conformi. Nella misura eseguita in CO si risconta il rispetto dei limiti del DPR 142/04. I limiti considerati, come indicato nel DPR 142/04, sono quelli delle strade esistenti - fascia A. Rispetto ai limiti del PCCA si ha il rispetto del limite del periodo diurno, mentre si riscontra il superamento in quello notturno. La misura risulta influenzata dal traffico stradale. Non si riscontrano componenti tonali.

Nel trimestre da maggio a luglio 2014 sono stati indagati i punti RUC 01, RUC03 e RUC 04. Per la postazione RUC01 nella fase ante operam si è riscontrato un clima acustico conforme a quanto indicato dal DPR 142/04. Nella fase AO sono stati considerati come limiti la fascia delle nuove infrastrutture (65 dB(A) periodo diurno e 55 dB(A) periodo notturno). Il confronto dei valori rilevati in AO con i limiti del PCCA - Classe III "Area di tipo misto" sono risultati non conformi. Nella misura eseguita in CO si risconta il rispetto dei limiti del DPR 142/04. I limiti considerati, come indicato nel DPR 142/04, sono quelli delle strade esistenti - fascia A. Rispetto ai limiti del PCCA non si ha il rispetto del limite sia del periodo diurno che in quello notturno; in relazione alle indagini precedenti si rileva una diminuzione del valore di immissione del rumore. La misura risulta influenzata dal traffico stradale.

La postazione di misura RUC03 è oltre le fasce indicate dal DPR 142/04. Il confronto dei valori rilevati in AO con i limiti del PCCA del Comune di Monticiano - Classe II "Area prevalentemente residenziali" sono risultati conformi. Nella misura eseguita in CO si risconta il rispetto dei limiti del PCCA sia del periodo diurno che di quello notturno.

Per la postazione RUC04 nella fase ante operam si è riscontrato un clima acustico conforme a quanto indicato dal DPR 142/04. Nella fase AO sono stati considerati come limiti la fascia delle nuove infrastrutture (65 dB(A) periodo diurno e 55 dB(A) periodo notturno). Il confronto dei valori rilevati in AO con i limiti del PCCA - Classe III "Area di tipo misto" sono risultati conformi. Nella misura eseguita in CO si risconta il rispetto dei limiti del DPR 142/04. I limiti considerati, come indicato nel DPR 142/04, sono quelli delle strade esistenti - fascia A. Rispetto ai limiti del PCCA si ha il rispetto del limite del periodo diurno, mentre nel periodo notturno si riscontra un lieve superamento probabilmente da attribuire al traffico stradale. Rispetto alle precedenti indagini si rileva un incremento del clima acustico nel periodo diurno, mentre il periodo notturno risulta confrontabile con la fase ante operam.

Nel trimestre da agosto ad ottobre 2014 è stato indagato il punto RUC 02. Per tale postazione nella fase ante operam si è riscontrato un clima acustico conforme a quanto indicato dal DPR 142/04. Nella fase AO sono stati considerati come limiti la fascia delle nuove infrastrutture (65 dB(A) periodo diurno e 55 dB(A) periodo notturno). Il confronto dei valori rilevati in AO con i limiti del PCCA del Comune di Monticiano - Classe III "Area di tipo misto" sono risultati non conformi.

Nella misura eseguita in CO si risconta il rispetto dei limiti del DPR 142/04. I limiti considerati, come indicato nel DPR 142/04, sono quelli delle strade esistenti - fascia A. Rispetto ai limiti del PCCA si ha il rispetto del limite del periodo diurno, mentre si riscontra il superamento in quello notturno. La misura risulta influenzata dal traffico stradale. Non si riscontrano componenti tonali.

Nel trimestre da novembre 2014 a gennaio 2015 sono stati indagati i punti RUC 01, RUC03 e RUC 04. Per la postazione RUC01 nella fase ante operam si è riscontrato un clima acustico conforme a quanto indicato dal DPR 142/04. Nella fase AO sono stati considerati come limiti la fascia delle nuove infrastrutture (65 dB(A) periodo diurno e 55 dB(A) periodo notturno). Il confronto dei valori rilevati in AO con i limiti del PCCA - Classe III "Area di tipo misto" sono risultati non conformi.

Itinerario internazionale E78 / S.G.C. Grosseto – Fano / adeguamento a 4 corsie nel tratto Grosseto – Siena (S.S. 223 "di Paganico") dal km 30+400 al km 41+600 – lotti 5, 6, 7, 8

Nella misura eseguita in CO si risconta il rispetto dei limiti del DPR 142/04. I limiti considerati, come indicato nel DPR 142/04, sono quelli delle strade esistenti - fascia A. Rispetto ai limiti del PCCA non si ha il rispetto del limite sia del periodo diurno che in quello notturno. La misura risulta influenzata dal traffico stradale.

Per la postazione RUC03. La postazione di misura è oltre le fasce indicate dal DPR 142/04. Il confronto dei valori rilevati in AO con i limiti del PCCA del Comune di Monticiano - Classe II "Area prevalentemente residenziali" sono risultati conformi. Nella misura eseguita in CO si risconta il rispetto dei limiti del PCCA sia del periodo diurno che di quello notturno. Rispetto alle campagne precedenti si riscontra un aumento nel periodo diurno.

Per la postazione RUC04 nella fase ante operam si è riscontrato un clima acustico conforme a quanto indicato dal DPR 142/04. Nella fase AO sono stati considerati come limiti la fascia delle nuove infrastrutture (65 dB(A) periodo diurno e 55 dB(A) periodo notturno). Il confronto dei valori rilevati in AO con i limiti del PCCA - Classe III "Area di tipo misto" sono risultati conformi.

Nella misura eseguita in CO si risconta il rispetto dei limiti del DPR 142/04. I limiti considerati, come indicato nel DPR 142/04, sono quelli delle strade esistenti - fascia A. Rispetto ai limiti del PCCA si ha il rispetto del limite del periodo diurno e notturno. Rispetto alla precedente indagine si rileva una diminuzione del clima acustico nel periodo diurno, mentre il periodo notturno risulta confrontabile con la fase ante operam.

7. MONITORAGGIO COMPONENTE STATO FISICO DEI LUOGHI E PAESAGGIO

Il monitoraggio dello stato fisico dei luoghi interesserà la sistemazione delle aree di cantiere con la finalità di tenerne sotto controllo lo sviluppo ed il successivo ripristino. In particolare sarà valutato il consumo di suolo effettivo interessato dalle aree di cantiere e dai siti di stoccaggio provvisori e confrontato con quanto previsto dal progetto esecutivo della cantierizzazione. Il monitoraggio del paesaggio permetterà di valutare l'impatto visivo delle opere nel corso delle loro realizzazione.

7.1 DESCRIZIONE DELLE ATTIVITÀ DI MONITORAGGIO

In PMA prevede per le aree coinvolte temporaneamente dai cantieri (campi base e operativo) che si documentino le varie fasi evolutive del cantiere, per cui si procederà con la redazione di una scheda contenente tutti gli elementi caratterizzanti queste aree (ad es.: impianti logistici: dormitori, mensa, cucina, uffici, direzione cantiere, aree di stoccaggio inerti e materiali, aree di lavaggio, ecc.) e le misure di mitigazione previste per la fase temporanea e soprattutto le operazioni di ripristino e/o adeguamento al termine dei lavori. Verranno inoltre verificate le condizioni e l'effettivo consumo di suolo sulla base dell'estensione delle aree di cantiere e stoccaggio provvisorio.

Le frequenze del monitoraggio è di cadenza annuale. Il monitoraggio dell'area è stato valutato in funzione dell'avvio di significative attività di cantiere in relazione al possibile impatto sulla componete ambientale.

Il monitoraggio in corso d'opera della componente stato fisico dei luoghi, si realizza mediante campagne di misure aventi una cadenza annuale durante tutta la fase di realizzazione degli interventi.

L'indagine prevede la compilazione di schede che consentono di verificare il rispetto del progetto e delle indicazioni che eventualmente potranno pervenire dall'andamento del PMA di altre componenti (es. richiesta di implementazione di barriere schermanti, ecc). Per il paesaggio si prenderà in esame l'impatto visivo e la variazione della gamma cromatica nelle fasi di realizzazione delle opere.



Figura 76 – Planimetria generale – Stato fisico dei luoghi

Figura 77 - Planimetria generale - Paesaggio

7.2 CONCLUSIONI SUL MONITORAGGIO DELLA MATRICE STATO FISICO DEI LUOGHI

Le indagini sullo stato fisico dei luoghi sono state eseguite del trimestre da agosto ad ottobre 2013 e le aree in indagini sono state l'area SF 01 e SF 05.

L'area SF 01 risulta attrezzata a Campo Base e Campo Operativo. In riferimento a quanto previsto sul Progetto Esecutivo si rileva corrispondenza per quanto riguarda i contenuti del Campo Base a meno di alcuni elementi. Al momento del rilievo i dormitori risultano essere dieci anziché dodici. Sono però presenti le fondazioni di altri due. Si rileva l'installazione dei quadri elettrici, gruppi elettrogeni e motocompressore all'interno del campo base che non sono indicati nel Progetto Esecutivo in questa area. Infine l'area verde e punto di raccolta sono disponibili come spazi, ma non sono attrezzate.

Il Campo Operativo in confronto con la tavola del Progetto Esecutivo presenta delle differenze di uso e destinazione dell'area. Allo stato del rilievo non risultano presenti le strutture a supporto e gestione del deposito inerti e cemento sfuso. Sono presenti l'officina meccanica e il magazzino in posizioni diverse da come indicato nella tavola del Progetto esecutivo.

In relazione al confronto dello stato attuale con quanto era presente nella fase ante operam si rileva l'evidente cambiamento dell'uso del suolo, ora attrezzato a campo base e campo operativo. La dimensione e forma dell'area risulta compatibile con quanto previsto nel Progetto Esecutivo. Il suolo risulta livellato nel campo base con un misto granulare, mentre nel campo operativo la pavimentazione è in conglomerato bituminoso.

L'area SF 05 risulta destina a Campo Operativo. In riferimento a quanto previsto sulla tavola del Progetto Esecutivo sono presenti delle differenze relative alla disposizione e presenza di elementi. La recinzione dell'area è realizzata parzialmente da rete da cantiere plastica arancione e new jersey in cemento. Non sono presenti cancelli. Nella zona di stoccaggio del materiale era indicato la realizzazione di piastre di stoccaggio ma non sono presenti, si rileva per un tratto del cumulo di terre la posa di tessuto non tessuto. La

Itinerario internazionale E78 / S.G.C. Grosseto – Fano / adeguamento a 4 corsie nel tratto Grosseto – Siena (S.S. 223 "di Paganico") dal km 30+400 al km 41+600 – lotti 5, 6, 7, 8

disposizione e dimensioni dei box di cantiere risultano inferiore a quelli previsti. Non è individuata la zona parcheggi mezzi pesanti e la pavimentazione non è di conglomerato bituminoso ma è in terra.

In relazione al confronto dello stato attuale con quanto era presente nella fase ante operam si rileva il cambiamento dell'uso del suolo, ora utilizzato come campo operativo. La dimensione e forma dell'area risulta compatibile con quanto previsto nel Progetto Esecutivo. Il suolo risulta livellato con un misto granulare nella zona dei box di cantiere, mentre nel resto è stato livellato il terreno. Dove era prevista la pavimentazione in conglomerato bituminoso nel parcheggio dei mezzi pesanti è presente terra spianata.

Per il trimestre tra novembre e gennaio 2014 non sono state eseguiti indagini sullo stato fisico dei luoghi in quanto non previsto da PMA e per la scarsa significatività delle variazioni dei luoghi.

Per il trimestre da febbraio ad aprile 2014 si rileva quanto segue. Le aree in indagini sono state l'area SF 03 - campo operativo Casal di Pari e SF 04 - campo operativo Viadotto Farma.

L'area SF 03 risulta attrezzata a Campo Operativo. In riferimento a quanto previsto sul Progetto Esecutivo si rileva corrispondenza per quanto riguarda i contenuti del Campo Base a meno di alcuni elementi. Al momento del rilievo si rileva una disposizione delle baracche di cantiere parzialmente confrontabile a quella indicata nel P.E. La pavimentazione nelle aree delle baracche (uffici, spogliatoi ed infermeria) risulta essere in conglomerato bituminoso anziché misto stabilizzato come da P.E. E' presente un impianto di trattamento acque e fanghi (calcestruzzo). Per quanto riguarda il campo base secondario non si ha riscontro nel P.E. se non nell'individuazione delle aree. Anche questo risulta attrezzato con baracche di cantiere, servizi igienici ed infermeria. Inoltre in entrambi i campi sono presenti officine meccanici, generatori e deposito carburante. Nel campo base non si riscontrano le piattaforme in cls indicate per lo stoccaggio, ma si rileva l'uso di tessuto non tessuto sotto i depositi. In relazione al confronto dello stato attuale con quanto era presente nella fase ante operam si rileva l'evidente cambiamento dell'uso del suolo, ora attrezzato a campo operativo. La dimensione e forma dell'area risulta compatibile con quanto previsto nel Progetto Esecutivo. L'area SF 04 risulta destina a Campo Operativo. In riferimento a quanto previsto sulla tavola del Progetto Esecutivo non sono ancora presenti tutte le baracche di cantiere previste. La recinzione dell'area è realizzata da rete da cantiere plastica arancione. Non sono presenti cancelli che dividono le aree interne, è presente il cancello sulla viabilità principale. Nella zona di stoccaggio del materiale si rileva l'uso di tessuto non tessuto per stoccare le armature. Non risulta ben individuata la zona parcheggi. In relazione al confronto dello stato attuale con quanto era presente nella fase ante operam si rileva il cambiamento dell'uso del suolo, ora utilizzato come campo operativo. La dimensione e forma dell'area risulta compatibile con quanto previsto nel Progetto Esecutivo. Il suolo risulta livellato con un misto granulare nella zona destinata a campo operativo. Il campo operativo non è completamente realizzato, al momento dell'indagine era presente l'impianto di trattamento delle acque e i tombini di raccolta. Non erano presenti le baracche indicate nel progetto esecutivo, ma l'area è a disposizione per la loro realizzazione. Si segnala un accenno di frana nella zona nord-est del campo operativo. Sono presenti aree di deposito sotto il viadotto Farma e il materiale destinato all'armatura è stoccato su teli di tessuto non tessuto.

Per il trimestre da maggio a luglio 2014 sono stati completati i punti dello stato fisico dei luoghi e sono stati indagati i punti del paesaggio. L' area in indagini relativamente lo stato fisico dei luoghi è la SF 02 - campo

Itinerario internazionale E78 / S.G.C. Grosseto – Fano / adeguamento a 4 corsie nel tratto Grosseto – Siena (S.S. 223 "di Paganico") dal km 30+400 al km 41+600 – lotti 5, 6, 7, 8

operativo Poggio Terriccio. L'area SF 02 risulta destina a Campo Operativo secondario. In riferimento a quanto previsto sulla tavola del Progetto Esecutivo alla data del rilievo non sono presenti le baracche di cantiere. La recinzione dell'area è rilevata solo in alcuni tratti limitati. Non sono presenti né cancelli che dividono le aree interne, né è presente il cancello sulla viabilità principale. Non risulta individuata la zona parcheggi. Relativamente alla installazioni di cantiere si rileva la presenza dell'impianto di iniezione per i tiranti. In relazione al confronto dello stato attuale con quanto era presente nella fase ante operam si rileva l'evidente cambiamento dell'uso del suolo. Le zone interessate dalle lavorazioni sono infatti prive di alcuna vegetazione. La dimensione e forma dell'area risulta compatibile con quanto previsto nel Progetto Esecutivo, l'area prevista per lo stoccaggio (area ad est) non è stata ancora occupata dalle attività di cantiere. Relativamente alle installazioni di cantiere risulta presente un impianto per iniezioni e servizi igienici, non sono ancora presenti baracche di cantiere con altre connotazioni.

L'indagine sulla matrice paesaggio ha interessato i seguenti punti: PA01, PA03, PA06, PA07, PA08 e PA09. Il punto di osservazione PA01 è ubicato lungo la cavedagna che collega la S.S. 223 alla località Lampugnano. L'area osservata è caratterizzata dalla presenza della S.S. 223 e dal Torrente Lanzo che corre parallelamente alla viabilità principale. Ad Est e a Ovest della strada sono presenti prati incolti e macchie di vegetazione ad alto fusto, al centro si riscontra l'insediamento del cantiere che contribuisce con tonalità chiare. In relazione al confronto dello stato attuale con quanto era presente nella fase ante operam si rileva cambiamento dell'uso dell'area. Rispetto a quanto rilevato in ante operam è evidente la componente bianca, dovuta alle lavorazioni ed insediamento del cantiere. Gli istogrammi dei colori non differiscono in modo significativo dall'ante operam. Alcune differenze cromatiche della vegetazione presente sono da attribuire a caratteristiche stagionali. Il punto di osservazione panoramico PA03 è situato a Sud Ovest dell'abitato di Casal di Pari, in prossimità della collina dove è ubicato il centro storico. Il lungo declivio che separa l'abitato dalla S.S. 223 è caratterizzato dalla presenza di prati e macchie di vegetazione ad alto fusto. Oltre la viabilità esistente, a Ovest di Casal di Pari è visibile un'area collinare quasi completamente boschiva, su tutto l'orizzonte si riscontra la presenza delle attività di cantiere. In relazione al confronto dello stato attuale con quanto era presente nella fase ante operam si rileva cambiamento dell'uso dell'area. Rispetto a quanto rilevato in ante operam è evidente la componente dovuta alle lavorazioni ed insediamento del cantiere. Gli istogrammi dei colori non differiscono in modo significativo dall'ante operam. Alcune differenze cromatiche della vegetazione presente sono da attribuire a caratteristiche stagionali. Il punto di osservazione PA06 è ubicata in prossimità dell'ingresso Nord della Galleria di Casal di Pari, sul lato opposto della S.S. 223 rispetto allo svincolo di Pari. L'indagine ha rilevato l'insediamento del cantiere e le lavorazioni di costruzione dell'infrastruttura attive. Si rileva aperta la galleria Greppoli e l'attacco del raddoppio della galleria Casal di Pari. In relazione al confronto dello stato attuale con quanto era presente nella fase ante operam si rileva cambiamento dell'uso dell'area. Rispetto a quanto rilevato in ante operam è evidente la componente dovuta alle lavorazioni ed insediamento del cantiere. Gli istogrammi dei colori non sono stati esaminati in AO. In generale si osserva un contributo maggiore delle tonalità chiare appartenenti al cantiere. Alcune differenze cromatiche della vegetazione presente sono da attribuire a caratteristiche stagionali. Il punto di osservazione PA07 è ubicato a Nord Est del viadotto del Farma, da dove è possibile osservarlo per quasi tutta la sua lunghezza. Nell' area sottostante il viadotto è presente il campo operativo del cantiere. In relazione al confronto dello stato attuale con quanto era presente nella fase ante operam si rileva cambiamento dell'uso dell'area. Rispetto a quanto rilevato in ante operam è evidente la componente dovuta alle lavorazioni ed

insediamento del cantiere. Negli istogrammi si osserva un contributo maggiore delle tonalità chiare appartenenti al cantiere. Alcune differenze cromatiche della vegetazione presente sono da attribuire a caratteristiche stagionali. Il punto di osservazione PA08 è ubicato ad una distanza di ca. 650 m ad Est della S.S. 223. Il panorama che si osserva da questo punto è caratterizzato dalla presenza del viadotto sul Torrente Farma e da macchia di vegetazione ad alto fusto. Si osserva la presenza di ampie aree utilizzate dal cantiere e le tre gru a fianco del viadotto Farma. In relazione al confronto dello stato attuale con quanto era presente nella fase ante operam si rileva cambiamento dell'uso dell'area. Rispetto a quanto rilevato in ante operam è evidente la componente dovuta alle lavorazioni ed insediamento del cantiere. Negli istogrammi si osserva un contributo maggiore delle tonalità chiare appartenenti al cantiere. Alcune differenze cromatiche della vegetazione presente sono da attribuire a caratteristiche stagionali. Il punto PA 09 è ubicato a circa 400 m ad Est della S.S. 223, da dove si osserva il viadotto Potatine. Il paesaggio è caratterizzato dalla presenza della S.S. 223, di prati incolti e macchie di vegetazione costituita da arbusti, cespugli e piante ad alto fusto; lungo la strada si osservano aree occupate dalle attività di cantiere. In lontananza sono presenti aree collinari interamente coperte da boschi. In relazione al confronto dello stato attuale con quanto era presente nella fase ante operam si rileva cambiamento dell'uso dell'area. Rispetto a quanto rilevato in ante operam è evidente la componente dovuta alle lavorazioni ed insediamento del cantiere. Negli istogrammi si osserva un contributo maggiore delle tonalità chiare appartenenti al cantiere. Alcune differenze cromatiche della vegetazione presente sono da attribuire a caratteristiche stagionali.

Per il trimestre da agosto ad ottobre 2014 le aree in indagini sono state l'area SF 01 e SF 05. L'area SF 01 risulta attrezzata a Campo Base e Campo Operativo. In riferimento a quanto previsto sul Progetto Esecutivo si rileva corrispondenza per quanto riguarda i contenuti del Campo Base a meno di alcuni elementi. Al momento del rilievo i dormitori risultano essere dieci anziché dodici. Sono però presenti le fondazioni di altri due. Si rileva l'installazione dei quadri elettrici, gruppi elettrogeni e motocompressore all'interno del campo base che non sono indicati nel Progetto Esecutivo in questa area. Infine l'area verde e punto di raccolta sono disponibili come spazi, ma non sono attrezzate.

Il Campo Operativo in confronto con la tavola del Progetto Esecutivo presenta delle differenze di uso e destinazione dell'area. Allo stato del rilievo non risultano presenti le strutture a supporto e gestione del deposito inerti e cemento sfuso. Sono presenti l'officina meccanica e il magazzino in posizioni diverse da come indicato nella tavola del Progetto esecutivo.

In relazione al confronto dello stato attuale con quanto era presente nella fase ante operam si rileva l'evidente cambiamento dell'uso del suolo, ora attrezzato a campo base e campo operativo. La dimensione e forma dell'area risulta compatibile con quanto previsto nel Progetto Esecutivo. Il suolo risulta livellato nel campo base con un misto granulare, mentre nel campo operativo la pavimentazione è in conglomerato bituminoso. Rispetto alla campagna precedente non si rilevano variazioni significative se non l'installazione all'ingresso dei campi di barre automatiche per controllare gli accessi con badge.

Descrizione litostratigrafica-pedologica: Argille e limi eluvio colluviali prive di stratificazione di colore marrone rossastre poco addensate con ghiaie e ciottoli. Dal punto di vista pedologico si distinguono i seguenti orizzonti pedologici:

- C orizzonte relativamente poco interessato da processi pedologici, mancano segni dell'alterazione biologica ad opera di organismi, composto quasi totalmente da frazione minerale

Itinerario internazionale E78 / S.G.C. Grosseto – Fano / adeguamento a 4 corsie nel tratto Grosseto – Siena (S.S. 223 "di Paganico") dal km 30+400 al km 41+600 – lotti 5, 6, 7, 8

- R orizzonte posto alla base del suolo, non propriamente appartenente al suolo poiché costituito sostanzialmente dall'alterazione della roccia madre

L'area SF 05 risulta destina a Campo Operativo. In riferimento a quanto previsto sulla tavola del Progetto Esecutivo sono presenti delle differenze relative alla disposizione e presenza di elementi. La recinzione dell'area è realizzata parzialmente da rete da cantiere plastica arancione e new jersey in cemento. Non sono presenti cancelli. Nella zona di stoccaggio del materiale era indicato la realizzazione di piastre di stoccaggio ma non sono presenti, si rileva per un tratto del cumulo di terre la posa di tessuto non tessuto. La disposizione e dimensioni dei box di cantiere risultano inferiore a quelli previsti. Non è individuata la zona parcheggi mezzi pesanti e la pavimentazione non è di conglomerato bituminoso ma è in terra.

In relazione al confronto dello stato attuale con quanto era presente nella fase ante operam si rileva il cambiamento dell'uso del suolo, ora utilizzato come campo operativo. La dimensione e forma dell'area risulta compatibile con quanto previsto nel Progetto Esecutivo. Il suolo risulta livellato con un misto granulare nella zona dei box di cantiere, mentre nel resto è stato livellato il terreno. Dove era prevista la pavimentazione in conglomerato bituminoso nel parcheggio dei mezzi pesanti è presente terra spianata. Rispetto alla campagna precedente non si rilevano variazioni significative se non la maggior quantità di terre depositate nell'area.

Descrizione litostratigrafica-pedologica: Argille e limi eluvio colluviali prive di stratificazione di colore marrone rossastre poco addensate. Dal punto di vista pedologico si distinguono i seguenti orizzonti pedologici:

- A si distingue un orizzonte superficiale composto sia da frazione minerale che organica (humus) alterato e rimescolato da radici e pedofauna.
- C orizzonte relativamente poco interessato da processi pedologici, mancano segni dell'alterazione biologica ad opera di organismi, composto quasi totalmente da frazione minerale

Per il trimestre tra novembre 2014 e gennaio 2015 non sono state eseguiti indagini sullo stato fisico dei luoghi in quanto non previsto da PMA e per la scarsa significatività delle variazioni dei luoghi.

8. MONITORAGGIO COMPONENTE VEGETAZIONE

Il monitoraggio della componente vegetazione ha lo scopo di verificare gli effetti delle attività di costruzione dell'infrastruttura stradale sulla vegetazione esistente, per permettere l'adozione tempestiva di eventuali azioni correttive e controllare l'evoluzione dei nuovi impianti a verde previsti dagli interventi di inserimento ambientale del progetto.

Nel complesso, pertanto, l'attività proposta ha il compito di:

- caratterizzare e monitorare, anche dal punto di vista delle evoluzioni fitosociologiche, durante la fase di costruzione, le aree e le piante di particolare interesse vegetazionale, paesaggistico, storico e ambientale, poste in prossimità delle aree di cantiere, e delle aree sensibili;
- monitorare l'evoluzione della vegetazione durante la costruzione dell'opera e in fase di esercizio;
- verificare lo stato e l'evoluzione della vegetazione di nuovo impianto nelle aree soggette a ripristino vegetazionale.

Se la diversificazione della componente non giustifica il monitoraggio per l'intero corridoio di riferimento del progetto, la presenza di fitocenosi di indubbio interesse naturalistico impone di considerarle, tra gli ambiti da monitorare quelle aree sensibili anche se non sempre direttamente coinvolte dalle attività di progetto.

Il controllo durante il corso d'opera, si concentrerà sia su tali biotopi sia sulle aree in prossimità del cantiere principale in prossimità del torrente Lanzo e dei cantieri secondari.

8.1 DESCRIZIONE DELLE ATTIVITÀ DI MONITORAGGIO

Il monitoraggio della componente vegetazione si realizza negli ambiti sensibili. Le aree di analisi sono illustrate nel seguente elenco.

VE 01 - Nel tratto iniziale del Lotto 5, si registra l'interferenza dell'infrastruttura con il fosso secondario Botro della Bufala, che scorre verso il torrente Lanzo tagliando trasversalmente il tracciato a livello dello Svincolo Lanzo. Il bosco interferito presenta elementi appartenenti alla tipologia forestale "codice 9.1 Saliceto e pioppeto ripario".

VE 02 - Il cantiere secondario allo sbocco della galleria Poggio Terriccio ricade su un'area boscata naturale a prevalenza di leccio (codice della tipologia "1.2 Lecceta di transizione a boschi di caducifoglie"). Il bosco in questa zona è caratterizzato da un grado di copertura (intesa come copertura esercitata dalla proiezione orizzontale delle chiome) superiore al 70% (densità piena).

VE 03 - Il viadotto Rilucia coinvolge il popolamento vegetale presente lungo il Fosso Della Rilucia, caratterizzato da specie igrofile tipiche dell'ambiente ripariale, in particolar modo è presente il pioppo bianco, associato al leccio, frassino e carpino nero ("codice 9.1 Saliceto e pioppeto ripario"). Inoltre compromette il querceto sempreverde a prevalenza di leccio, sottostante (codice 1.2).

VE 04 - Il raccordo sinistro dello svincolo Casal di Pari si sviluppa su un querceto termofilo con piano arboreo costituito da roverella, con cerro, castagno (loc.), sorbo domestico, e pino marittimo (loc.) ("codice 10.1 Querceto mesotermofilo di roverella sottotipo con arbusti del pruneto"). Esso è caratterizzato da un grado di copertura compresa fra il 40% e il 70% (densità media).

VE 05 - Allo sbocco della galleria Casal di Pari e all'ingresso della Galleria Greppoli è presente un querceto di roverella, e cerro con leccio ed orniello (codice 10.1). Il grado di copertura del bosco è superiore al 70% (densità piena).

VE 06 - Il viadotto Farma, lungo il versante orografico sinistro, fino al Torrente omonimo, si sviluppa in corrispondenza di un querceto acidofilo con piano arboreo costituito da cerro e rovere ("codice 12.2 Querceto acidofilo di rovere e cerro"), castagno (loc.), definito a densità piena. Lungo il versante orografico destro il bosco di leccio (codice 1.2) contrassegnato da densità media. Lungo le sponde è presente bosco composto principalmente da pioppo bianco e nero, in minor misura da salice bianco e salici ripariali (codice della tipologia 9.1)

Le frequenze del monitoraggio è di cadenza annuale. L'inizio del monitoraggio di ogni punto è sempre valutato in funzione dell'avvio di significative attività di cantiere in relazione al possibile impatto sull'ambiente.

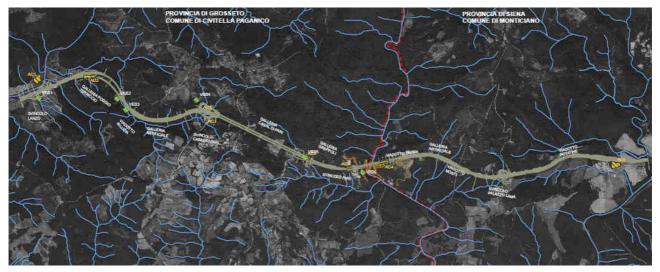


Figura 78 - Planimetria generale - vegetazione

8.2 RISULTATI E CONFRONTI CON LE CAMPAGNE ESEGUITE

Monitoraggio della vegetazione VEG 02, confronto fra l'AO e la campagna eseguita

	со	со
AO	28/10/2013	28/10/2014
Arbutus unedo	Fraxinus ornus	Arbutus unedo
Smilax aspera	Quercus ilex	Brachypodium sp.
Hedera helix	Arbutus unedo	Cichorium intybus
Quercus ilex	Erica arborea	Cystus sp.
Prunus avium	Phillyrea latifolia	Erica arborea
Fraxinus ornus	Inula viscosa	Eupatorium cannabinum
Erica arborea	Rubia peregrina	Fraxinus ornus
Brachypodium sylvaticum	Rubus spp.	Hedera helix
Rubus hirtus	Brachypodium sp.	Inula viscosa
Rubia peregrina	Hedera helix	Parthenocissus quinquefolia
Ruscus hypoglossum	Eupatorium cannabinum	Phillyrea latifolia
Populus tremula		Plantago sp
Cornus mas		Populus alba
Viburnus tinus		Quercus ilex
Carex flacca		Quercus robur
Cystus sp.		Quercus suber
		Robinia pseudoacacia
		Rubia peregrina
		Rubus spp.
		Smilax aspera
		Viburnus tinus

Monitoraggio della vegetazione VEG 03, confronto fra l'AO e la campagna eseguita

AO	со	со
AO	28/10/2013	28/10/2014
Alnus glutinosa	Fraxinus ornus	Alnus glutinosa
Quercus ilex	Quercus ilex	Arbutus unedo
Brachypodium sylvaticum	Arbutus unedo	<i>Brachypodium</i> sp.
Viola reichenbachiana	Erica arborea	Cichorium intybus
Clematis vitalba	Phillyrea latifolia	Corylus avellana
Corylus avellana	Inula viscosa	Cystus sp.
Fraxinus ornus	Rubia peregrina	Erica arborea
Hedera helix	Rubus spp.	Eupatorium cannabinum
Eupatorium cannabinum	Brachypodium sp.	Fraxinus ornus
Cyclamen hederifolium	Hedera helix	Hedera helix
Carex pendula	Smilax aspera	Inula viscosa
Asplenium adiantum-nigrum	Calamintha nepeta	Parthenocissus quinquefolia
Asplenium trichomanes ssp. quadrivalens		Phillyrea latifolia
Rubus sp.		Plantago sp

Itinerario internazionale E78 / S.G.C. Grosseto – Fano / adeguamento a 4 corsie nel tratto Grosseto – Siena (S.S. 223 "di Paganico") dal km 30+400 al km 41+600 – lotti 5, 6, 7, 8

40	со	со
AO	28/10/2013	28/10/2014
Mycelis muralis		Populus alba
Rubia peregrina		Quercus ilex
Viburnus tinus		Quercus suber
Mentha spicata		Robinia pseudoacacia
Melittis melissophyllum		Rubia peregrina
Xanthium italicum		Rubus spp.
Ruscus aculeatus		Smilax aspera
Sorbus torminalis		Viburnus tinus
Phyllirea latifolia		
Quercus cerris		

Monitoraggio della vegetazione VEG 04, confronto fra l'AO e la campagna eseguita

	со	со
AO	28/10/2013	28/10/2014
Castanea sativa	Castanea sativa	Brachypodium sp.
Fraxinus ornus	Quercus suber	Castanea sativa
Pteridium aquilinum	Quercus ilex	Cistus incanus
Quercus ilex	Populus tremula	Cytisus scoparius
Quercus suber	Quercus pubescens	Erica arborea
Arbutus unedo	Populus tremula	Euphorbia cyparissias
Asplenium adiantum-nigrum	Olea europaea	Fraxinus ornus
Hedera helix	Erica arborea	Hedera helix
Festuca heterophylla	Sorbus torminalis	Inula viscosa
Rubia peregrina	Rubia peregrina	Olea europaea
Erica arborea	Hedera helix	Pinus pinaster
Sorbus torminalis	Stachys salvifolia	Populus alba
Mycelis muralis	Pteridium aquilinum	Populus tremula
llex aquifolium	Cytisus scoparius	Pteridium aquilinum
Carex pendula	Rubus sp.	Quercus ilex
Osmunda regalis	Brachypodium sp.	Quercus pubescens
Juncus conglomeratus	Cistus incanus	Quercus robur
Brachypodium sylvaticum	Euphorbia cyparissias	Quercus suber
Hypericum perforatum	Vicia faba	Rubia peregrina
Hypericum androsemum	Smilax aspera	Rubus sp.
Conyza sp.		Smilax aspera
Citysus villosus		Sorbus torminalis
Dactylis glomerata		Stachys salvifolia
Digitalis micrantha		Vicia faba
Teucrium scordonia		
Hyeracium gr. murorum		

Itinerario internazionale E78 / S.G.C. Grosseto – Fano / adeguamento a 4 corsie nel tratto Grosseto – Siena (S.S. 223 "di Paganico") dal km 30+400 al km 41+600 – lotti 5, 6, 7, 8

Monitoraggio della vegetazione VEG 01, confronto fra l'AO e la campagna eseguita

AO	CO 15/04/2014
Inula viscosa	Inula viscosa
Sanguisorba minor	Sanguisorba minor
Hypericum perforatum	Hypericum perforatum
Cytisus scoparius	Cytisus scoparius
Phyllirea latifolia	Phyllirea latifolia
Sorbus domestica	Crataegus monogyna
Crataegus monogyna	Rubus sp.
Rubus sp.	Xanthium italicum
Xanthium italicum	Phleum pratense
Daucus carota	Arbutus unedo
Phleum pratense	Quercus ilex
Arbutus unedo	Quercus cerris
Quercus ilex	Quercus suber
Quercus cerris	Carex flacca
Quercus suber	Cirsium vulgare
Carex flacca	Fraxinus ornus
Cirsium vulgare	Erica arborea
Fraxinus ornus	Euonymus europaeus
Ruscus aculeatus	Conyza albida
Xeranthemum sp.	Picris hieracioides
Erica arborea	Hedera elix
Euonymus europaeus	Rubia peregrina
Conyza albida	Cistus salvifolia
Sorbus torminalis	Asparagus acutifolius
Picris hieracioides	Ostrya carpinifolia
Hedera elix	Spartium junceum
Rubia peregrina	Coleostephus myconis
Dactylis glomerata	Orchis morio
Myrtus communis	Eryngium amethystinum
Juniperus communis	Helycrisum italicum
Holcus lanatus	Viburnus tinus
Cistus sp.	Olea europaea
	Pinus pinaster
	Cytisus sessifolia
	Euphorbia sp.
	Plantago lanceolata
	Rosa canina
	Cyclamen repandum
	Juncus sp.
	Populus nigra
	Mentha acquatica
	Salix alba

Itinerario internazionale E78 / S.G.C. Grosseto – Fano / adeguamento a 4 corsie nel tratto Grosseto – Siena (S.S. 223 "di Paganico") dal km 30+400 al km 41+600 – lotti 5, 6, 7, 8

AO	CO 15/04/2014
	Muscari neglectum
	Galium aparina
	Dypsacum fullonum

Monitoraggio della vegetazione VEG 05, confronto fra l'AO e la campagna eseguita

AO	CO 15/04/2014
Arbutus unedo	Smilax aspera
Phyllirea latifolia	Viburnus tinus
Smilax aspera	Fraxinus ornus
Viburnus tinus	Pistacia lentiscus
Fraxinus ornus	Hedera elix
Pistacia lentiscus	Quercus ilex
Hedera elix	Plantago lanceolata
Rosa sempervirens	Coleostephus myconis
Erica arborea	Cistus salvifolium
Quercus ilex	Rubus sp.
Quercus pubescens	Hypericum perforatum
Sorbus domestica	Inula viscosa
Asparagus acutifolius	

Monitoraggio della vegetazione VEG 06, confronto fra l'AO e la campagna eseguita

AO	CO 15/04/2014
Ostrya carpinifolia	Ostrya carpinifolia
Salix alba	Salix alba
Salix purpurea	Salix purpurea
Cytisus sessifolius	Cytisus sessifolius
Fraxinus ornus	Fraxinus ornus
Quercus ilex	Quercus ilex
Smilax aspera	Smilax aspera
Pyracantha coccinea	Pyracantha coccinea
Juniperus communis	Juniperus communis
Clematis vitalba	Clematis vitalba
Brachypodium sylvaticum	Brachypodium sylvaticum
Arbutus unedo	Arbutus unedo
Viburnum tinus	Taraxacum officinalis
Dorycnium hirsutus	Geranium molle
Xeranthemum sp.	Cornus mas
Astragalus monspessulanus	Viburnum tinus
Osyris alba	Rubia peregrina
Pistacia lentiscus	Ulmus minor
Phyllirea latifolia	Ajuga reptans
Centaurea gr. jacea	Asplenium onopteris
Rubia peregrina	Rosa sempervirens

AO	CO 15/04/2014
Teucrium montanum	Galium aparina
Knautia sp.	Cyclamen repandum
Ulmus minor	Ranunculus acris
Ajuga reptans	Leucanthemum ircutianum
Asplenium onopteris	Euphorbia sp.
	Coleostephus myconis
	Sanguisorba minor
	Vinca minor
	Robinia pseudoacacia
	Stachys arvensis
	Rubus sp.
	Acer campestre
	Populus nigra
	Alnus glutinosa
	Veronica persica

8.3 CONCLUSIONI SUL MONITORAGGIO DELLA MATRICE VEGETAZIONE

Le indagini sulla matrice vegetazione sono state eseguite del trimestre da agosto ad ottobre 2013 e le aree in indagini sono state VEG 02, VEG 03 e VEG 04.

Per la posizione VEG 02 si rileva bosco misto di latifoglie (lecceta accompagnata da orniello), non governato. Vegetazione semplificata a causa dell'opera di diboscamento. Strato dominante dato da leccio e orniello, strato dominato (arbustivo) a macchia fitta di erica e corbezzolo (meno rappresentato). Strato erbaceo rarefatto sotto la vegetazione strutturata, abbondante nelle aree diboscate: presenza di essenze ruderali accompagnati da abbondanti ricacci delle arbustive. Rispetto a quanto rilevato in AO, l'assetto fitosociologico dell'area risulta invariato, benché il popolamento appaia maggiormente semplificato a causa delle azioni di disboscamento. Per tali aree, si rappresenta come l'abbondanza di ricacci spontanei da parte delle ceppaie (in part. corbezzolo ed erica) possa favorire l'innesco della successione ecologica naturale al termine dei lavori. Non si segnalano essenze di particolare pregio conservazionistico. Non sono presenti, al momento, specie alloctone invasive e/o banalizzatrici.

Per la postazione VEG 03 si rileva bosco misto di latifoglie (lecceta accompagnata da orniello), non governato. Vegetazione semplificata a causa dell'opera di diboscamento. Strato dominante dato da leccio e orniello, strato dominato (arbustivo) a macchia fitta di erica e corbezzolo. Strato erbaceo rarefatto sotto la vegetazione strutturata, abbondante nelle aree diboscate: presenza di essenze ruderali accompagnati da abbondanti ricacci delle arbustive. Rispetto a quanto rilevato in AO, l'assetto fitosociologico dell'area risulta invariato, benché il popolamento appaia semplificato a causa delle azioni di disboscamento. Particolarmente evidente risulta il cambiamento composizionale nello strato erbaceo, che si presenta privo di felci ed arricchito di essenze opportuniste. Si rappresenta in ogni caso come l'abbondanza di ricacci spontanei da parte delle ceppaie (in part. corbezzolo ed erica) possa favorire l'innesco della successione ecologica naturale al termine dei lavori. Non si segnalano essenze di particolare pregio conservazionistico. Non sono presenti, al momento, specie alloctone invasive e/o banalizzatrici.

Per la postazione VEG 04 si rileva querceto termofilo misto accompagnato da castagno ed essenze di impianto pregresso, ora spontaneizzate. Strato dominante a specie quercine (prevalenza: leccio, sughera, roverella); salendo di quota, è progressivamente sostituito da un castagneto da frutto. Presso l'area di cantiere si rilevano popolamenti derivanti da arboricolture pregresse, in particolare pioppo tremulo, olivo e sorbo. Strato arbustivo relativamente ben strutturato, dato in prevalenza da erica e corbezzolo; abbondanti le lianose. Strato erbaceo abbondante nelle zone ecotonali, più rarefatto all'interno dell'area; le specie sono quelle comunemente associate ad ambienti di questo tipo. Non si rilevano emergenze conservazionistiche particolari: si segnala, al momento, l'assenza di infestanti presso l'area di rilievo. Considerate le numerose ingressioni di specie eterotopiche rispetto al contesto vegetazionale di riferimento, risulta difficoltoso definire l'assetto fitosociologico dell'area: la medesima situazione si ritrova tanto in CO quanto in AO. L'impatto dell'area di cantiere risulta al momento limitato al perimetro esterno dell'area boscata. Nel complesso il soprassuolo si presenta ben strutturato, sebbene non si segnalino essenze di particolare pregio conservazionistico. Non sono presenti, al momento, specie alloctone invasive e/o banalizzatrici all'interno dell'area e/o presso l'area di cantiere. Non sono state rilevate situazioni di criticità o anomalia. In relazione alla futura ripresa delle aree si hanno segnali positivi dettati dalla presenza di piante precursori.

Itinerario internazionale E78 / S.G.C. Grosseto – Fano / adeguamento a 4 corsie nel tratto Grosseto – Siena (S.S. 223 "di Paganico") dal km 30+400 al km 41+600 – lotti 5, 6, 7, 8

Nel trimestre tra novembre 2013 e gennaio 2014 non sono state eseguite indagini sulla matrice in esame.

Nel trimestre da febbraio a aprile 2014 si è rilevato quanto segue. Per la posizione VEG 01 si rileva che l'area è costituita da una collina arida con vegetazione arbustiva a sclerofile mediterranee che digrada verso l'impluvio del fosso Botro della Bufala, ove ad elementi xerofili si accompagnano specie mesofile e meso-igrofile, più caratteristiche delle zone umide. L'influenza dei lavori di cantiere è limitata alle fasce vegetate più prossime alle strade percorse dai mezzi; per tali fasce si riscontra un alto livello di deposizione di polveri grossolane sugli apparati fogliari, fattore che può determinare una discreta mortalità nel lungo periodo. Rispetto a quanto rilevato in AO, l'assetto fitosociologico dell'area risulta invariato, con le problematiche legate al traffico di cantiere specificate nel punto precedente. Non si segnalano essenze di particolare pregio conservazionistico. Non sono presenti, al momento, specie alloctone invasive e/o banalizzatrici.

Per la posizione VEG 05 si rilevano residui di vegetazione sclerofilla in piena area di cantiere, sottoposta a disboscamento e praticamente distrutta nel suo profilo fitosociologico. Presenti ricacci delle specie arbustive più rustiche e meno esigenti, unitamente a specie erbacee pioniere estremamente comuni anche in ambienti degradati. Rispetto a quanto rilevato in AO, l'assetto fitosociologico dell'area risulta completamente modificato per la collocazione stessa dell'area di rilievo in una zona del cantiere che ha subito modifiche e riorganizzazioni dovute all'avanzamento dei lavori. Allo stato attuale l'assetto fitosociologico del sito risulta talmente compromesso da suggerire l'eliminazione di questo punto dalle successive sessioni per la sua assenza di significatività.

Il sito della posizione VEG 06 è collocato presso il viadotto Farma fino alle sponde del corso d'acqua (versante orografico sx). Esso si presenta con una componente vegetazionale meso-igrofila, limitrofa alle sponde del fiume, ed una più spiccatamente meso-xerofila/xerofila, man mano che ci si allontana dall'area più influenzata dal corso d'acqua, salendo, anche ripidamente, sul versante collinare. Presenza di specie termofile sui versanti più esposti. L'impatto dell'area di cantiere risulta molto limitato. Nel complesso il soprassuolo si presenta ben strutturato, sebbene non si segnalino essenze di particolare pregio conservazionistico. Non sono presenti, al momento, specie alloctone invasive e/o banalizzatrici all'interno dell'area e/o presso l'area di cantiere. Poco rappresentata l'unica di esse, ovvero la Robinia pseudoacacia.

Nel trimestre tra maggio e luglio 2014 non sono state eseguite indagini sulla matrice in esame.

Nel trimestre da agosto a ottobre 2014 si è rilevato quanto segue. Per la posizione VEG 02 si rileva bosco misto di latifoglie (lecceta accompagnata da orniello), non governato. Vegetazione semplificata a causa dell'opera di diboscamento. Strato dominante dato da leccio e orniello, strato dominato (arbustivo) a macchia fitta di erica e corbezzolo (meno rappresentato). Strato erbaceo rarefatto sotto la vegetazione strutturata, abbondante nelle aree diboscate: presenza di essenze ruderali accompagnati da abbondanti ricacci delle arbustive. Rispetto a quanto rilevato nel primo CO, l'assetto fitosociologico dell'area risulta invariato, benché il popolamento appaia maggiormente semplificato a causa delle azioni di disboscamento. Per tali aree, si rappresenta come l'abbondanza di ricacci spontanei da parte delle ceppaie (in part. corbezzolo ed erica) possa favorire l'innesco della successione ecologica naturale al termine dei lavori. Non si segnalano essenze di particolare pregio conservazionistico. Non sono presenti, al momento, specie alloctone invasive e/o banalizzatrici.

Itinerario internazionale E78 / S.G.C. Grosseto – Fano / adeguamento a 4 corsie nel tratto Grosseto – Siena (S.S. 223 "di Paganico") dal km 30+400 al km 41+600 – lotti 5, 6, 7, 8

Per la postazione VEG 03 si rileva bosco misto di latifoglie (lecceta accompagnata da orniello), non governato. Vegetazione semplificata a causa dell'opera di diboscamento. Strato dominante dato da leccio e orniello, strato dominato (arbustivo) a macchia fitta di erica e corbezzolo. Strato erbaceo rarefatto sotto la vegetazione strutturata, abbondante nelle aree diboscate: presenza di essenze ruderali accompagnati da abbondanti ricacci delle arbustive. Rispetto a quanto rilevato nel precedente CO, l'assetto fitosociologico dell'area risulta invariato, benché il popolamento appaia semplificato a causa delle azioni di disboscamento. Non si segnalano essenze di particolare pregio conservazionistico. Non sono presenti, al momento, specie alloctone invasive e/o banalizzatrici.

Per la postazione VEG 04 si rileva querceto termofilo misto accompagnato da castagno ed essenze di impianto pregresso, ora spontaneizzate. Strato dominante a specie quercine (prevalenza: leccio, sughera, roverella); salendo di quota, è progressivamente sostituito da un castagneto da frutto. Presso l'area di cantiere si rilevano popolamenti derivanti da arboricolture pregresse, in particolare pioppo tremulo, olivo e sorbo. Strato arbustivo relativamente ben strutturato, dato in prevalenza da erica e corbezzolo; abbondanti le lianose. Strato erbaceo abbondante nelle zone ecotonali, più rarefatto all'interno dell'area; le specie sono quelle comunemente associate ad ambienti di questo tipo. Non si rilevano emergenze conservazionistiche particolari: si segnala, al momento, l'assenza di infestanti presso l'area di rilievo.

Rispetto a quanto rilevato nel precedente CO, l'impatto dell'area di cantiere risulta aver invaso in massima parte l'area boscata e asportato terreno nel punto di rilievo. Nel complesso il soprassuolo si presenta ben strutturato, sebbene non si segnalino essenze di particolare pregio conservazionistico. Non sono presenti, al momento, specie alloctone invasive e/o banalizzatrici all'interno dell'area e/o presso l'area di cantiere.

Non sono state rilevate situazioni di criticità o anomalia. In relazione alla futura ripresa delle aree si hanno segnali positivi dettati dalla presenza di piante precursori.

Nel trimestre tra novembre 2014 e gennaio 2015 non sono state eseguite indagini sulla matrice in esame.

