

AUTOSTRADA VALDASTICO A31 NORD

1° LOTTO Piovene Rocchette - Valle dell'Astico

PROGETTO DEFINITIVO

 CUP
 G21B1 30006 60005

 WBS
 B25.A31N.L1

 COMMESSA
 J16L1

COMMITTENTE

FUNZIONE PROGETTO VALDASTICO

CAPO COMMESSA PER LA PROGETTAZIONE Dott. Ing. Pier Mauro Masoli

PRESTATORE DI SERVIZI:
CONSORZIO RAETIA

RAPPRESENTANTE: Dott. Ing. Alberto Scotti

RESPONSABLE DELLINHEGRAXIONE TRA LE PRISTAZIONE SPECIALE TICHE: Technital S. A. A. DOLLING PROPERTIES RENSO PROGETTAZIONE:

ITALCONSULT

ELABORATO: DOCUMENTAZIONE INTEGRATIVA PREDISPOSTA DURANTE LE PROCEDURE APPROVATIVE INTEGRAZIONI RICHIESTE DAL MATTM

Studio modellistico dispersione inquinanti in atmosfera - Scenario di progetto - integrazioni

 $\begin{array}{c|c} \mathsf{Progressivo} & \mathsf{Rev.} \\ \hline 2 \ 1 & \boxed{0} \ 2 & \boxed{0} \ 2 & \boxed{0} \ 0 \ 1 & \boxed{0} \ 0 \\ \end{array}$

Rev.	Data	Descrizione	Redazione	Controllo	Approvazione	SCALA:	-			
00	04/2018	Prima Emissione	Reniero	Tamasan	Mondello	NOME F	LE: J16L1_21_02_02_0	01_0101_0	0PD_A0.D	OC
						CM.	PROGR.	FG.	LIV.	REV.
						J16L1	21 02 02 001	0101	0PD	A0
						cm. J16L1		001		001 0101 0PD

IL PRESENTE DOCUMENTO NON POTRA' ESSERE COPIATO, RIPRODOTTO O ALTRIMENTI PUBBLICATO, IN TUTTO O IN PARTE, SENZA IL CONSENSO SCRITTO DELLA AUTOSTRADA BS-VR-VI-PD S.P.A., OGNI UTILIZZO NON AUTORIZZATO SARA' PERSEGUITO A NORMA DI LEGGE.
THIS DOCUMENT MAY NOT BE COPIED, REPRODUCED OR PUBLISHED, EITHER IN PART OR IN ITS ENTIRETY, WITHOUT THE WRITTEN PERMISSION OF AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.P.A., UNAUTHORIZZATO USE WILL BE PROSECUTE BY LAW.

Committente:

Progettazione: CONSORZIO RAETIA

PROGETTO DEFINITIVO

Studio modellistico dispersione inquinanti in atmosfera - Scenario di progetto - integrazioni

INDICE

1	PREMESSA							
2	RIFE	RIM	ENTI NORMATIVI	5				
3	STATO DELLA QUALITÀ DELL'ARIA ANTE-OPERAM							
	3.1	QL	ALITA' ARIA DA RETE DI MONITORAGGIO REGIONALE ARPAV	8				
	3.2		TI QUALITA' ARIA DA CAMPAGNA CON MEZZO MOBILE NELL'AREA GETTO DI INTERVENTO	g				
	3.3	DE AR	TERMINAZIONE DEI VALORI DI FONDO ANTE-OPERAM QUALITA' IA	13				
	3.4	со	NCLUSIONI	18				
4	MOI	DELL	O DI CALCOLO UTILIZZATO: CALMET/CALPUFF	20				
5	CAR 3D A		ERIZZAZIONE METEO CLIMATICA DELL'AREA- MODELLO CALMET	20				
6	DEF	INIZ	ONE DELLE GRIGLIE DI CALCOLO E RECETTORI	21				
7	CAR	ATT	ERIZZAZIONE DELLE SORGENTI EMISSIVE	24				
	7.1	FLU	JSSI DI TRAFFICO VEICOLARE	24				
	7.2	FA	ITORI DI EMISSIONE DEL TRAFFICO VEICOLARE	25				
	7.3	IPC	TESI MODELLISTICHE E SCHEMATIZZAZIONE SORGENTI EMISSIVE	26				
	7.	.3.1	CARATTERISTICHE E LOCALIZZAZIONI SORGENTI AREA 1	29				
	7.	.3.2	CARATTERISTICHE E LOCALIZZAZIONI SORGENTI AREA 2	31				
	7.	.3.3	CARATTERISTICHE E LOCALIZZAZIONI SORGENTI AREA 3	3 3				
8	CON	ICEN	TRAZIONI BENZENE POST-OPERAM - ANALISI DEI RISULTATI E					
	VER	IFIC	A DEL RISPETTO DEI LIMITI DI LEGGE	35				
9	BILA	NCI	O EMISSIVO COMPLESSIVO DELL'OPERA IN PROGETTO	39				
10	CON	ICLU	SIONI	41				

Indice delle tabelle

Tabella 1: Valori limite di qualità dell'aria (Decreto Lgs. 13 Agosto 2010, n. 155)	7
Tabella 2: Statistiche Concentrazioni inquinanti (C_6H_6) rilevate nella stazione ARPAV di Schio (VI)	8
Tabella 3: Statistiche Concentrazioni benzene rilevate nei punti PD01, PD02, PD03, PD04 e PD05	10
Tabella 4: Statistiche Concentrazioni C_6H_6 rilevate nei punti PD01, PD02, PD03, PD04, PD05 e SCHIO	10
Tabella 5: Concentrazioni di fondo rappresentative per i punti di monitoraggio	18
Tabella 6: Flussi traffico veicolare al 2030	24
Tabella 7: Fattore correttivo PIARC - Rinnovo del parco veicolare nel tempo	25
Tabella 8: Fattore correttivo flussi di emissione tra 2015 e 2030	26
Tabella 9: Fattori emissivi COPERT - (highway: ambito autostradale) – Anno 2030	26
Tabella 10: Caratteristiche di ciascuna sezione oggetto di simulazione per la stima delle emissioni in atmosfera per i diversi inquinanti secondo la metodologia COPERT	27
Tabella 11: Flussi massici di emissione per ciascun tratto sommando il contributo delle due direzioni di marcia	28
Tabella 12: Caratteristiche emissive sorgenti areali - Area 1	29
Tabella 13: Caratteristiche emissive sorgenti puntuali – Area 1	29
Tabella 14: Caratteristiche emissive sorgenti areali - Area 2	31
Tabella 15: Caratteristiche emissive sorgenti puntuali – Area 2	32
Tabella 16: Caratteristiche emissive sorgenti areali - Area 3	33
Tabella 17: Caratteristiche emissive sorgenti puntuali – Area 3	33
Tabella 18: Valori di Concentrazione totale e contributi A31 per le sorgenti ricadenti nell'area 1 a 100 m dall'asse del tracciato	38
Tabella 19: Valori di Concentrazione totale e contributi A31 per le sorgenti ricadenti nell'area 2 a 100 m dall'asse del tracciato	38
Tabella 20: Valori di Concentrazione totale e contributi A31 per le sorgenti ricadenti nell'area 3 a 100 m dall'asse del tracciato	39
Tabella 21: Flussi massici di emissione per ciascun tratto sommando il contributo delle due direzioni di marcia	39
Tahella 22: Flussi massici di emissione giornalieri totali ner l'intera infrastruttura	40

Indice delle figure

Figura 1 - Localizzazione punti monitoraggio qualità aria	9
Figura 2 - Andamento concentrazioni giornaliere di C ₆ H ₆ in corrispondenza dei punti PD01, PD02 e stazione ARPAV di Schio	11
Figura 3 - Andamento concentrazioni giornaliere di C ₆ H ₆ in corrispondenza dei punti PD03, PD04 e stazione ARPAV di Schio	12
Figura 4 - Andamento concentrazioni giornaliere di C ₆ H ₆ in corrispondenza del punto PD05 e stazione ARPAV di Schio	13
Figura 5 - SCATTER PD01-SCHIO – C ₆ H ₆	14
Figura 6 - SCATTER PD02-SCHIO – C ₆ H ₆	14
Figura 7 - SCATTER PD03-SCHIO - C ₆ H ₆	15
Figura 8 - SCATTER PD04-SCHIO – C ₆ H ₆	15
Figura 9 - SCATTER PD05-SCHIO – C ₆ H ₆	16
Figura 10 SCATTER Statistiche Punti di Monitoraggio PD – dati SCHIO	17
Figura 11 - Localizzazione ed estensione aree di pertinenza rappresentative del fondo per i punti di monitoraggio PD01,PD02,PD03,PD04 e PD05	19
Figura 12 - Griglia di calcolo e DTM – Area 1	22
Figura 13 Griglia di calcolo e DTM – Area 2	22
Figura 14 - Griglia di calcolo e DTM – Area 3	23
Figura 15 - Tratti A31 – Flusso veicolare	24
igura 16 - Localizzazione sorgenti Areali - Area 1 - tratti a cielo aperto presenti dal Km 0 al Km 2,24	30
Figura 17 - Localizzazione sorgenti Areali - Area 1 - dal Km 3,5 al Km 4,7	30
Figura 18 - Localizzazione sorgenti puntuali - Area 1	31
Figura 19 - Localizzazione sorgenti Areali - Area 2	32
Figura 20 - Localizzazione sorgenti puntuali - Area 2	33
Figura 21 - Localizzazione sorgenti Areali - Area 3	34
Sigura 22 - Localizzazione sorgenti nuntuali - Area 2	2/

1 PREMESSA

L'obiettivo del presente documento riguarda la richiesta di integrazioni (CTVA REGISTRO UFFICIALE U. 0000672 15-02-2018) sull'impatto ambientale sulla componente atmosfera relativo alla dispersione degli inquinanti in atmosfera rilasciati dal traffico veicolare che interessa il progetto di realizzazione dell'infrastruttura autostradale denominata A31 Valdastico Nord per il tratto Piovene Rocchette- Valle dell'Astico di seguito A31. In particolare lo studio sarà costituito da due sezioni distinte:

- Simulazione modellistica, mediante modello CALPUFF, della dispersione di Benzene (C_6H_6) rilasciato dal traffico veicolare che interessa il progetto di realizzazione dell'infrastruttura autostradale denominata A31;
- Bilancio Emissivo di PM₁₀, NOx/NO₂, CO, C₆H₆ e VOC durante la fase di esercizio dell'infrastruttura autostradale in progetto.

2 RIFERIMENTI NORMATIVI

La qualità dell'aria, nella normativa italiana, viene tutelata sia in termini di limiti alle emissioni (D.Lgs. 152/2006), ovvero attraverso limiti sulle concentrazioni di inquinanti nel momento in cui essi escono dalla sorgente ed entrano in contatto con l'atmosfera, sia in termini di immissioni (D.Lgs. 155/2010), ovvero le concentrazioni di inquinanti in aria presso i potenziali ricettori, imponendo limiti di concentrazioni per la qualità dell'aria ambiente.

Poiché l'oggetto dello studio riguarda la valutazione del progetto in termini di impatti sulla qualità dell'aria presso i recettori ovvero nei punti di immissione si procede nell'inquadramento normativo dei limiti di qualità dell'aria definiti D.Lgs. 155/2010.

Il Decreto Legislativo 13 agosto 2010, n. 155, in attuazione della direttiva Comunitarie 2008/50/CE, relativa alla qualità dell'aria ambiente e per un'aria più pulita in Europa, definisce (Allegato XI) i valori limiti e i valori obiettivo per il Biossido di Zolfo, il Biossido di Azoto, gli ossidi di Azoto, il particolato (PM₁₀ e PM_{2.5}), il Piombo, il Benzene e il Monossido di Carbonio. Il decreto abroga di fatto tutto il corpo normativo previgente sulla Qualità dell'aria pur non portando modifiche ai valori limite/obiettivo per gli inquinanti già normati da leggi precedenti. L'allegato XIII definisce invece i valori obiettivo per la protezione della salute umana per Arsenico, Cadmio, Nichel e benzo(a)pirene.

Nella Tabella 1 sono indicati, per gli inquinanti menzionati, il periodo di mediazione, il valore limite e la data entro il quale il limite deve essere raggiunto.

Inquinante	Livello di protezione	Periodo di mediazione	Valore limite	Data alla quale il valore limite deve essere raggiunto
	Valore limite orario per la protezione della salute umana	1 ora	350 μg/m³ da non superare più di 24 volte per l'anno civile (corrisponde al 99,726 perc,)	1° gennaio 2005
SO ₂	Valore limite di 24 ore per la protezione della salute umana	24 ore	125 μg/m³ da non superare più di 3 volte per l'anno civile (corrisponde al 99,178 perc,)	1° gennaio 2005
	Valore limite per la protezione della vegetazione	Anno civile e Inverno (1 ottobre – 31 marzo)	20 μg/m³	-
NO ₂	Valore limite orario per la protezione della salute umana	1 ora	200 μg/m³ NO ₂ da non superare più di 18 volte per l'anno civile (corrisponde al 99,794 perc,)	1° gennaio 2010
	Valore limite annuale per la protezione della salute umana	Anno civile	40 μg/m³ NO ₂	1° gennaio 2010
NO _X	Valore limite per la protezione della vegetazione	Anno civile	30 μg/m³ NO _x	-
PM ₁₀	Valore limite giornaliero per la protezione della salute umana	24 ore	50 μg/m³ da non superare più di 35 volte per l'anno civile (corrisponde al 90,410 perc,)	1° gennaio 2005
	Valore limite annuale per la protezione della salute umana	Anno civile	40 μg/m³	1° gennaio 2005
PM _{2.5}	Valore limite annuale per la protezione della salute umana	Anno civile	25 μg/m³	1° gennaio 2015
Pb	Valore limite annuale per la protezione della salute umana	Anno civile	0,5 μg/m³	1° gennaio 2005
Benzene	Valore limite annuale per la protezione della salute umana	Anno civile	5 μg/m³	1° gennaio 2010
СО	Valore limite per la protezione della salute umana	Media massima giornaliera su 8 ore	10 mg/m³	1° gennaio 2005
Arsenico	Valore obiettivo per la protezione della salute umana	Riferito al tenore totale di ciascun inquinante presente	6 ng/m³	31 dicembre 2012
cadmio	Valore obiettivo per la protezione della salute umana	nella frazione PM10, calcolato come media su un anno civile	5 ng/m³	31 dicembre 2012

Inquinante	Livello di protezione	Periodo di mediazione	Valore limite	Data alla quale il valore limite deve essere raggiunto
Nichel	Valore obiettivo per la protezione della salute umana		20 ng/m³	31 dicembre 2012
Benzo(a)pirene	Valore obiettivo per la protezione della salute umana		1 ng/m³	31 dicembre 2012

Tabella 1: Valori limite di qualità dell'aria (Decreto Lgs. 13 Agosto 2010, n. 155)

3 STATO DELLA QUALITÀ DELL'ARIA ANTE-OPERAM

Si rimanda al documento J16L1_050407002_0101_0PD_02.doc per la descrizione di dettaglio della qualità dell'aria in condizioni ante-operam, definita analizzando i dati resi disponibili dalla rete di monitoraggio ARPAV integrati con i dati raccolti da una specifica campagna di monitoraggio con mezzi mobili condotte dal proponente (Cfr. paragrafo 3.2).

Tali dati sono stati integrati analizzando ed elaborando statisticamente i dati di qualità dell'aria disponibili per il benzene, determinando i valori rappresentativi del fondo anteoperam che saranno utilizzati per la quantificazione dell'impatto post-operam dell'opera A31 (Autostrada A 31 Nord Trento Rovigo – Tronco Trento - Valdastico – Piovene Rocchette) sommando al contributo dell'opera in esame simulato mediante modello di ricaduta (CALMET/CALPUFF) il valore di fondo ante-operam.

In particolare per ciascun punto oggetto del monitoraggio con mezzo mobile saranno determinati dei valori rappresentativi del fondo per il benzene, questi valori saranno considerati costanti all'interno dell'area di pertinenza del punto di monitoraggio.

3.1 QUALITA' ARIA DA RETE DI MONITORAGGIO REGIONALE ARPAV

Come riportato nel documento J16L1_050407002-0101_0PD_02.doc, la stazione di monitoraggio della qualità dell'aria della Regione Veneto considerata maggiormente rappresentativa per l'area di interesse dell'opera A31 è la stazione di fondo urbano di Schio in Provincia di Vicenza. Essa risulta la più vicina all'area di studio (distante solo 8 km dal Comune di Piovene Rocchette e 10 km dalla località Valle dell'Astico).

Nella tabella che segue si riportano i valori statistici rilevati nella stazione di Schio nel corso dell'anno 2017 e per i giorni del 2017 in cui sono state condotte dal proponente dell'opera le indagini di monitoraggio mediante mezzo mobile (campagna di misura dal 3 al 17 Febbraio 2017, campagna dal 21 Febbraio al 3 Marzo 2017 e campagna dal 10 Marzo al 24 Marzo 2017). I dati sono stati forniti e validati da ARPAV Servizio Osservatorio Regionale Aria e sono relativi a una media bigiornaliera.

Verrà analizzata solamente la concentrazione di benzene, in quanto di interesse per la determinazione del fondo ante-operam ed oggetto delle successive simulazioni modellistiche di dispersione degli inquinanti in atmosfera per la quantificazione dell'impatto post-operam.

Inquinante	Anno 2017	3-17/02/2017	21/02-8/03 2017	10-24/03 2017				
	C_6H_6 (µg/m³)							
Valore massimo	3,60	3,60	2,90	1,40				
Valore medio	0,70	0,69	0,80	0,37				
Dev. standard	3,60	3,60	2,90	1,40				

Tabella 2: Statistiche Concentrazioni inquinanti (C₆H₆) rilevate nella stazione ARPAV di Schio (VI)

3.2 DATI QUALITA' ARIA DA CAMPAGNA CON MEZZO MOBILE NELL'AREA OGGETTO DI INTERVENTO

Il proponente dell'opera A31 ha condotto nel corso dei primi mesi del 2017 (Febbraio-Marzo) una specifica campagna di monitoraggio mediante mezzo mobile in corrispondenza di 5 punti denominati ATOPD01, ATOPD02, ATOPD03, ATOPD04 e ATOPD05 localizzati come riportato nella figura che segue.

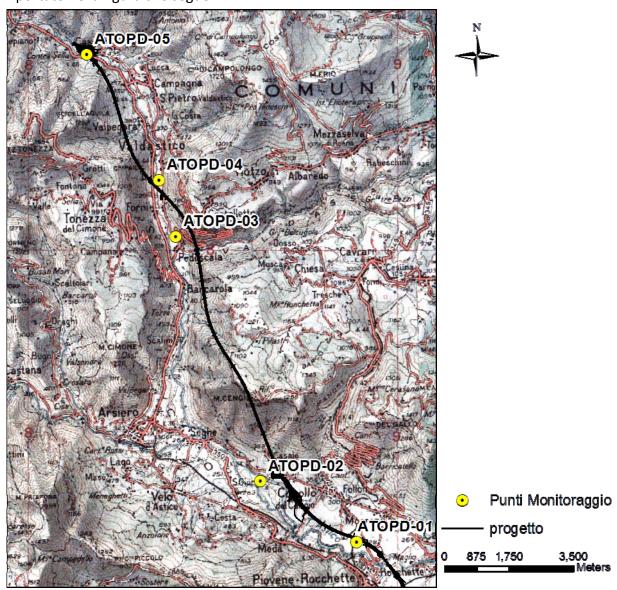


Figura 1 - Localizzazione punti monitoraggio qualità aria

Per i dettagli tecnici relativi alle caratteristiche dei monitoraggi ed ai parametri oggetto delle campagne si rimanda al documento J16L1_050407002_0101_0PD_02.doc.

In questa sezione si riportano le grandezze statistiche di interesse ottenute elaborando i dati orari degli inquinanti oggetto delle simulazioni modellistiche ovvero il benzene.

Nella tabella che segue si riportano le statistiche rilevate durante tre campagne temporali di monitoraggio in corrispondenza dei 5 punti di indagine.

Inquinante	3-17/02/2017		21/02-8	/03 2017	10-24/03 2017	
C ₆ H ₆ (μg/m ³)	PD01	PD02	PD03	PD04	PD05	
Max oraria	3,81	4,20	6,90	3,65	2,63	
Media oraria	2,46	3,06	3,35	2,16	1,75	
Dev.st orarie	0,62	0,80	1,60	0,77	0,58	

Tabella 3: Statistiche Concentrazioni benzene rilevate nei punti PD01, PD02, PD03, PD04 e PD05

Nella tabella seguente si riportano insieme le statistiche delle concentrazioni di benzene rilevate contemporaneamente nei punti PD e nella stazione ARPAV di Schio (VI).

Analizzando le statistiche sul benzene si rileva come i 5 punti di monitoraggio registrano valori superiori rispetto a quanto rilevato nella centralina di Schio, sia in termini di valore massimo giornaliero, sia in termini di valore medio.

Inquinante	nante 3-17/02/2017		21/02-8/03 2017			10-24/03 2017		
Benzene (μg/m³)	PD01	PD02	SCHIO	PD03	PD04	SCHIO	PD05	SCHIO
Valore massimo	3,81	4,20	3,60	6,90	3,65	2,90	2,63	1,40
Valore medio	2,46	3,06	1,99	3,35	2,16	1,24	1,75	1,05
Dev. standard	0,62	0,80	0,69	1,60	0,77	0,80	0,58	0,37

Tabella 4: Statistiche Concentrazioni C₆H₆ rilevate nei punti PD01, PD02, PD03, PD04, PD05 e SCHIO

Nelle figure che seguono si riportano gli andamenti delle concentrazioni di benzene rilevate in contemporanea durante le tre campane nei punti di monitoraggio con mezzo mobile e nel punto della stazione fissa ARPAV di Schio (VI).

Figura 2 - Andamento concentrazioni giornaliere di C₆H₆ in corrispondenza dei punti PD01, PD02 e stazione ARPAV di Schio

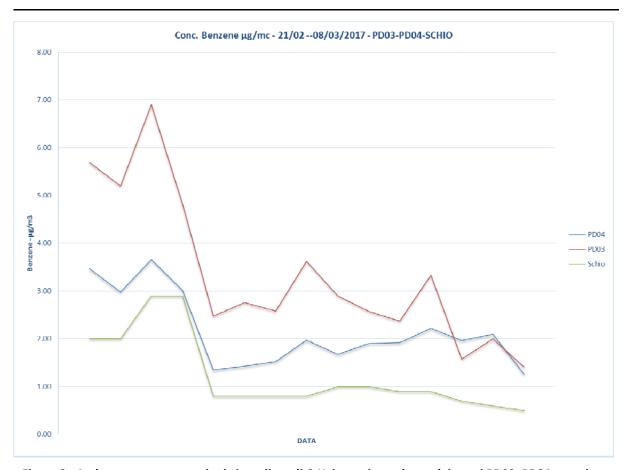


Figura 3 - Andamento concentrazioni giornaliere di C_6H_6 in corrispondenza dei punti PD03, PD04 e stazione ARPAV di Schio

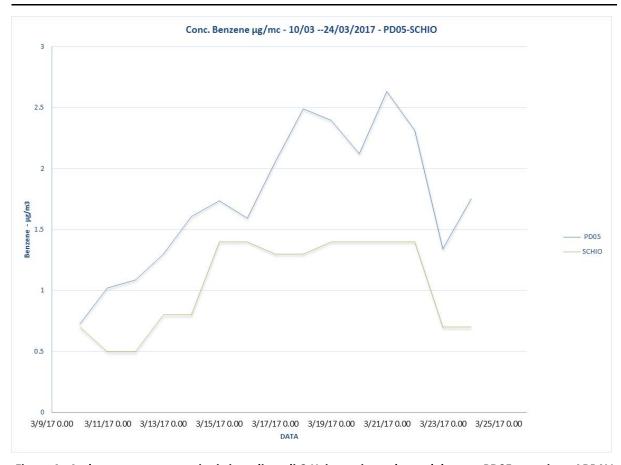


Figura 4 - Andamento concentrazioni giornaliere di C_6H_6 in corrispondenza del punto PD05 e stazione ARPAV di Schio

3.3 DETERMINAZIONE DEI VALORI DI FONDO ANTE-OPERAM QUALITA' ARIA

Dopo avere analizzato nei paragrafi precedenti i valori delle concentrazioni rilevate dalla stazione fissa di monitoraggio ARPAV della qualità dell'aria di Schio (VI) e i dati delle campagne di monitoraggio con mezzo mobile condotte dal proponente, si procede in questa sezione nell'elaborazione statistica dei dati al fine di stimare le concentrazioni di benzene rappresentativi del fondo ante-operam per ciascun punto di monitoraggio.

In particolare visto che la durata delle campagne di misura con mezzo mobile è limitata nel tempo (qualche settimana) e il data set delle osservazioni non è sufficiente per la determinazione dei parametri statistici fissati dai limiti normativi, si procede in una analisi e confronto statistico al fine di estrapolare dei valori di fondo ante-operam presso i punti di monitoraggio che siano rappresentativi di un periodo temporale più lungo (Anno 2017).

Nelle figure che seguono si riportano gli scattergrammi dei dati di qualità dell'aria rilevati in contemporanea nei punti PD01, PD02, PD03, PD04, PD05 e nella stazione di monitoraggio ARPAV di Schio, al fine di verificare la sussistenza di qualche correlazione lineare tra i dati di ARPAV a Schio e i dati nei punti di interesse PD01, PD02, PD03, PD04, PD05.

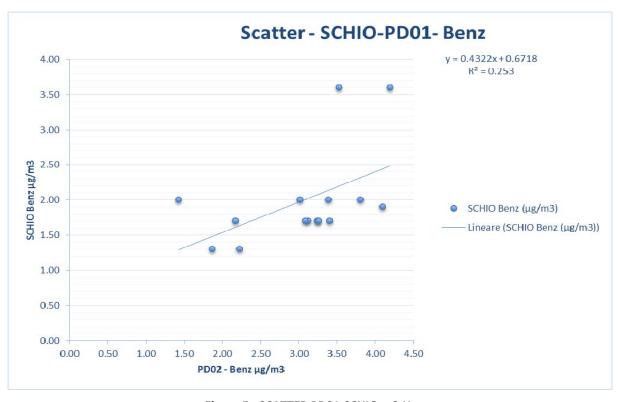


Figura 5 - SCATTER PD01-SCHIO - C₆H₆

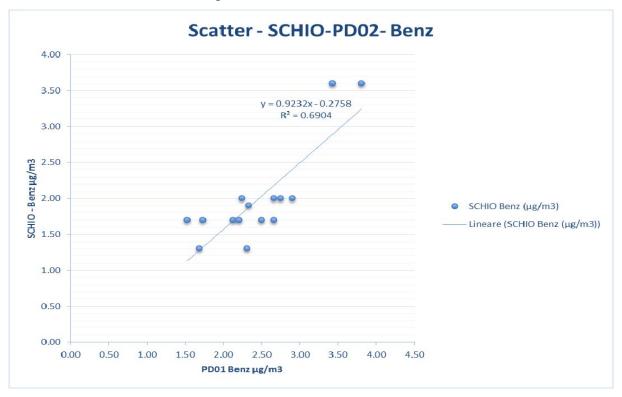


Figura 6 - SCATTER PD02-SCHIO - C₆H₆

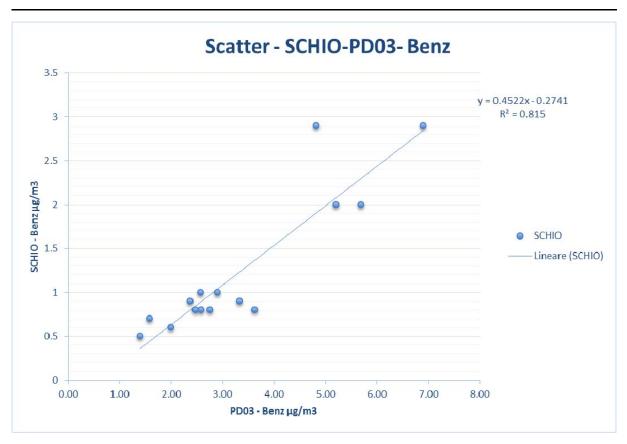


Figura 7 - SCATTER PD03-SCHIO - C₆H₆

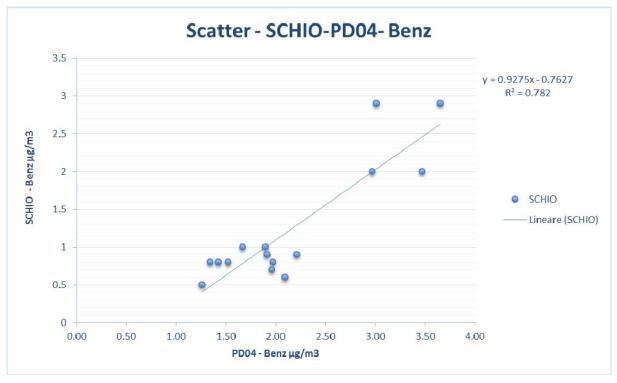


Figura 8 - SCATTER PD04-SCHIO - C₆H₆

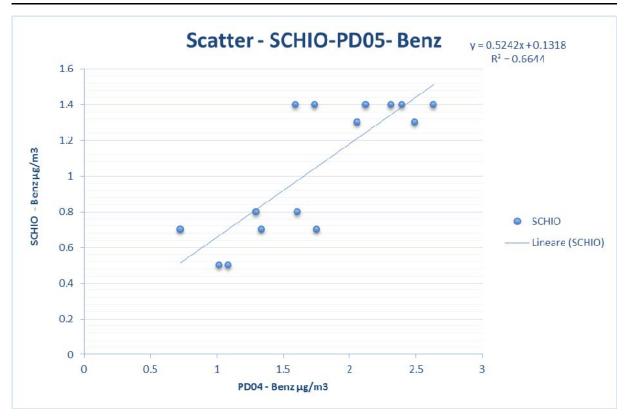


Figura 9 - SCATTER PD05-SCHIO - C₆H₆

Analizzando gli scattergrammi tra le osservazioni giornaliere di C₆H₆ in corrispondenza di cascun punto di indagine con i dati rilevati nel medesimo periodo dalla stazione fissa ARPAV di Schio si osserva come non esistano correlazioni di tipo lineare, fatta eccezione per il punto PD03.

In generale non è possibile applicare una correlazione di tipo lineare alle osservazioni giornaliere tra i punti di monitoraggio PD e la stazione di SCHIO.

Analizzando e plottando lo scattergramma dei valori statistici (media, massimo, deviazione standard) rilevati in corrispondenza dei punti PD e della stazione ARPAV di SCHIO si rileva una buon andamento di tipo lineare con un coefficiente R² accettabile come riportato nella figura che segue.

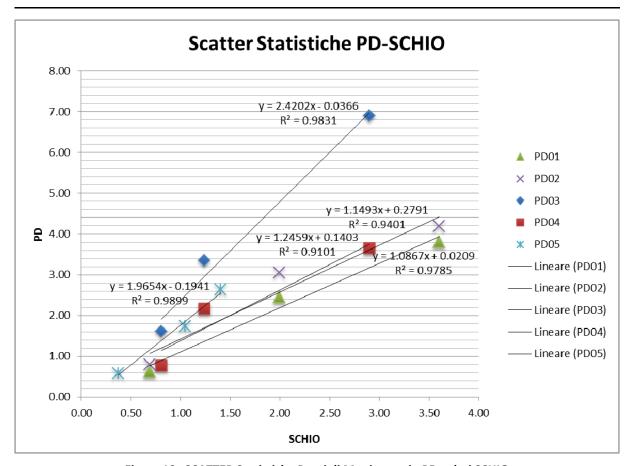


Figura 10 SCATTER Statistiche Punti di Monitoraggio PD – dati SCHIO

Pertanto al fine di quantificare le grandezze statistiche rappresentative del benzene è possibile applicare una correlazione di tipo lineare in grado di correlare le grandezze statistiche quantificate sul lungo periodo (Anno 2017) in corrispondenza della stazione di ARPAV Schio con le medesime grandezze statistiche rilevate per le brevi campagne di analisi in corrispondenza dei punti PD.

In tal senso si procede attraverso la semplice correlazione lineare:

grandezza_stat_PDx_annuale=(grandezza_stat_PDx_periodo*
grandezza_stat_SCHIO_anno2017)/ grandezza_stat_SCHIO_periodo

dove:

 grandezza_stat= parametro statistico rappresentativo del limite di legge (Media annua Benzene)

PDx: identificativo punto di monitoraggio (PD01,PD02,PD03,PD04,PD05)

Periodo = periodo temporale campagna mezzo mobile:

- 03/02 al 17/02/2017
- 21/02 al 08/03/2017
- 10/03 al 24/03/2017

Nella tabella che segue si riportano i valori media annuali di Benzene rappresentativi del fondo ante-operam stimati per i 5 punti di monitoraggio localizzati lungo il tracciato dell'A31.

Inquinante	Fondo				
C_6H_6 (µg/m ³)	PD01	PD02	PD03	PD04	PD05
Media Annua Limite 5 μg/m³	1.18	1.46	2.58	1.66	1.59

Tabella 5: Concentrazioni di fondo rappresentative per i punti di monitoraggio

3.4 CONCLUSIONI

Analizzando i valori di fondo determinati per punti di interesse si osserva come i valori per il benzene, analogamente agli altri inquinanti già considerati, sia al di sotto dei limiti normativi vigenti. Al fine di determinare l'impatto nello scenario post-operam dell'opera nei paragrafi successivi si procederà nel sommare ai valori di fondo i contributi determinati dalla nuova infrastruttura ottenuti mediante studio modellistico di dispersione. Poiché il numero dei punti a disposizione è molto limitato, non si procede nell'interpolazione statistica dei valori di fondo stimati per ciascun punto, ma si è preferito procedere nel definire per ciascun punto di indagine un area di pertinenza all'interno della quale la concentrazione di fondo rappresentativa per un generico inquinante è da ritenersi costante.

Nella figura che segue si riporta l'estensione delle 5 aree di pertinenza per la rappresentazione delle concentrazioni di fondo ante-operam ai fini della simulazione modellistica.

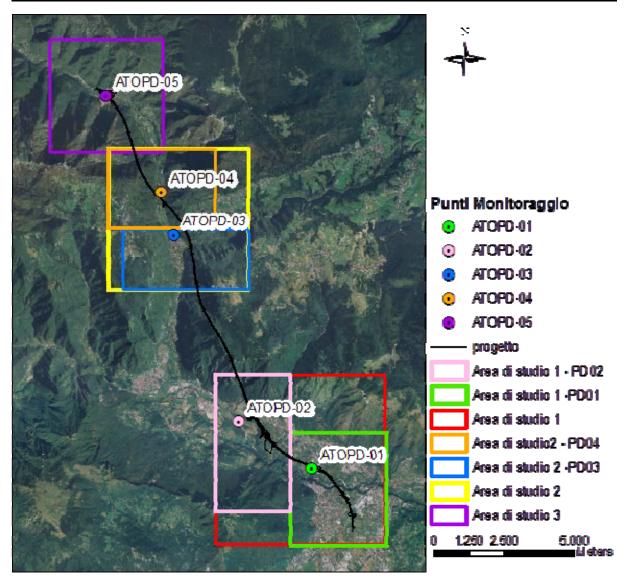


Figura 11 - Localizzazione ed estensione aree di pertinenza rappresentative del fondo per i punti di monitoraggio PD01,PD02,PD03,PD04 e PD05

4 MODELLO DI CALCOLO UTILIZZATO: CALMET/CALPUFF

La simulazione della dispersione delle emissioni oggetto del presente studio è stata effettuata utilizzando CALPUFF (Scire J.S. et al. 2000a), modello Gaussiano a puff sviluppato da Earth Tech Inc., associato a un modello meteorologico diagnostico per la ricostruzione di campi di vento, temperatura e pressione su aree ad orografia complessa CALMET (SCIRE et al., 2000b) e ad un postprocessore (CALPOST) per l'analisi dati degli output forniti dal modello. Si rimanda al documento J16L1_050407002_0101_0PD_02.doc per una descrizione del modello.

5 CARATTERIZZAZIONE METEO CLIMATICA DELL'AREA- MODELLO CALMET 3D ARPAV

Le simulazioni sono state condotte con i dati metereologici forniti dal dipartimento regionale per la sicurezza del territorio ARPAV Servizio Meteorologico di Teolo (anno 2016) descritti nel documento J16L1 050407002 0101 0PD 02.doc.

6 DEFINIZIONE DELLE GRIGLIE DI CALCOLO E RECETTORI

La definizione dell'estensione e del numero di punti appartenenti alla griglia di calcolo utilizzata nelle simulazioni rappresenta una fase delicata in cui occorre stabilire il giusto compromesso tra velocità di calcolo e rappresentatività del fenomeno della ricaduta degli inquinanti rilasciati dalle sorgenti.

Per tale motivo, nell'ottica della stima relativa alle emissioni in atmosfera dovute al transito dei veicoli, all'interno dell'area di interesse sono state prese in esame 3 aree di studio, centrate su tutti i tratti a cielo aperto (trincea, rilevato, viadotto), con particolare attenzione ai punti di discontinuità delle gallerie.

in particolare:

- L'area 1 (cfr. Figura 12) ha estensione 6 x 6 km e comprende il tratto di autostrada dal km 0 al km 4,66 (ingresso galleria Cogollo, lato Sud)
- L'area 2 (cfr. Figura 13) ha estensione 5 x 5 km e comprende il tratto di autostrada dal km 11,2 (uscita galleria Cogollo, lato Nord) al km 13,7 (ingresso galleria San Pietro, lato Sud)
- L'area 3 (cfr. Figura 14) ha estensione 4 x 4 km e comprende il tratto di autostrada dal km 17,15 al km 18 (uscita galleria San Pietro fino al termine dell'autostrada in progetto).

I recettori, in corrispondenza dei quali sono state calcolate le concentrazioni degli inquinanti al suolo, appartengono a una griglia regolare di punti con un passo di 100 m. Complessivamente il numero totale di recettori è pari a 3721 per l'area 1, 2601 per l'area 2 e 1681 per l'area 3.

A ciascun punto della griglia di calcolo è stata assegnata la quota sul livello del mare derivata dal DTM (Modello Digitale del Terreno) della Regione Veneto con una risoluzione spaziale di 5 m.

Nelle figure che seguono si riportano l'estensione e la localizzazione delle aree di studio, delle griglie di calcolo utilizzate nelle simulazioni modellistiche ed il modello digitale del terreno.

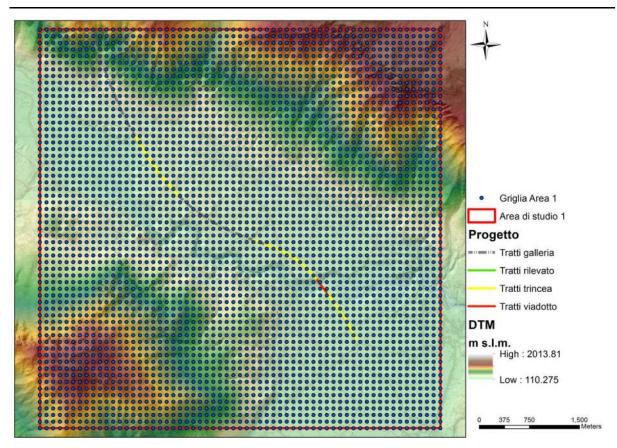


Figura 12 - Griglia di calcolo e DTM - Area 1

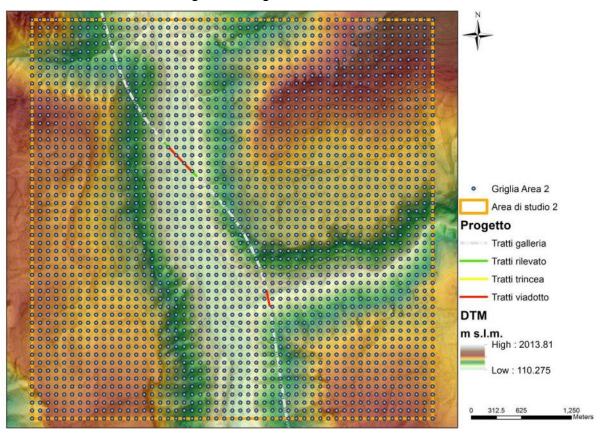


Figura 13 Griglia di calcolo e DTM – Area 2

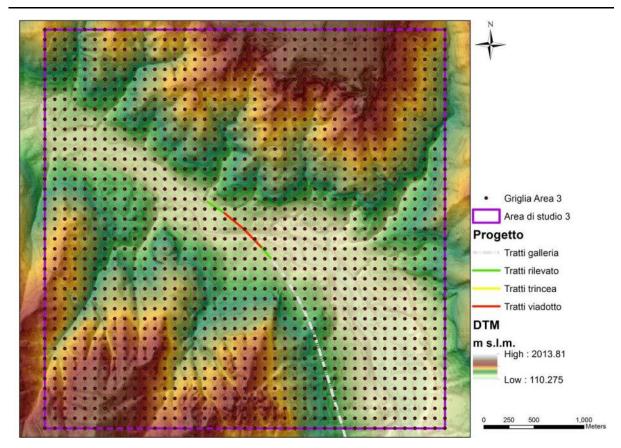


Figura 14 - Griglia di calcolo e DTM - Area 3

7 CARATTERIZZAZIONE DELLE SORGENTI EMISSIVE

7.1 FLUSSI DI TRAFFICO VEICOLARE

I flussi di traffico che interessano l'infrastruttura stradale A31 sono stati caratterizzati distinguendo i veicoli leggeri da quelli pesanti e i flussi relativi al traffico diurno da quello notturno. I flussi sono stati quantificati in modo differente per ciascuna delle sezioni che si generano a partire dallo svincolo Cogollo:

- Tratta 1: Piovene Rocchette Svincolo Cogollo;
- Tratta 2: Svincolo Cogollo –Valle dell'Astico.

I flussi veicolari utilizzati per la stima delle emissioni di inquinanti in atmosfera e della loro dispersione sono stati forniti dallo specifico studio trasportistico e fanno riferimento allo scenario futuro al 2030 come riportato nella tabella che segue:

Tratto elementare A31	Veicoli/h per	Mezzi pesanti	
Tratto elementare ASI	Diurno (06.00-22.00)	Notturno (22.00-06.00)	%
Piovene Rocchette - Cogollo	910	154	26,30%
Cogollo - Valle dell'Astico	867	147	27,10%

Tabella 6: Flussi traffico veicolare al 2030

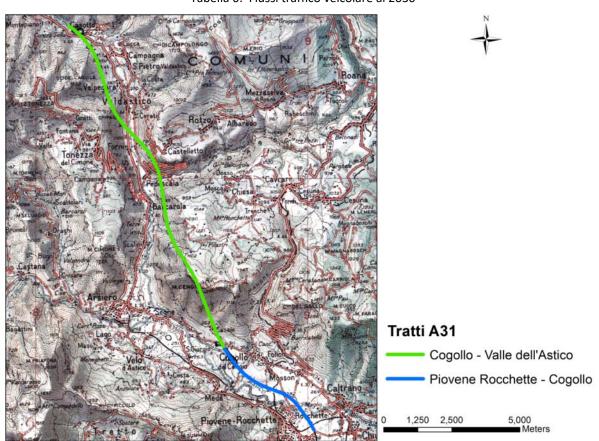


Figura 15 - Tratti A31 - Flusso veicolare

7.2 FATTORI DI EMISSIONE DEL TRAFFICO VEICOLARE

In questa sezione si procede nella quantificazione delle emissioni di inquinanti, in termini di portate massiche, che vengono rilasciate in atmosfera dal traffico veicolare che transita nell'opera A31. Al fine di quantificare le emissioni si fa riferimento a banche dati di fattori di emissione specifiche per il parco veicolare che interessa l'infrastruttura stradale.

In particolare si è fatto riferimento ai dati forniti dalla banca dati "COPERT 4 – Stima delle emissioni da trasporto stradale", acquisite dalla Rete del Sistema Informativo Nazionale Ambientale (SINAnet – ISPRA¹), per le emissioni da traffico autostradale.

Si precisa che nella definizione dei flussi emissivi sono state adottate le seguenti ipotesi:

- le emissioni sono riferite al parco veicolare italiano caratteristico per l'area centro settentrionale (Parco veicolare fornito dalle statistiche ACI per il 2015²)
- le emissioni sono stimate ipotizzando come anno di riferimento il 2030 e sono ottenute adottando un fattore correttivo temporale al 2030 così come indicato dalla metodologia PIARC³, che permette di ipotizzare le emissioni dei veicoli per gli anni futuri, influenzati dal rinnovo del parco veicolare caratterizzato da standard di emissione più severi (Cfr. Tabella 7).

TABLE 11 - INFLUENCING FACTOR (FT) FOR PASSENGER CARS, TECHNOLOGY STANDARD A								
ft	C	CO NO _x Opacity						
Passenger cars	Gasoline	Diesel	Gasoline	Diesel	Diesel			
2010	1.00	1.00	1.00	1.00	1.00			
2015	0.75	0.74	0.65	0.76	0.55			
2020	0.58	0.65	0.44	0.52	0.29			
2025	0.46	0.60	0.30	0.40	0.17			
2030	0.40	0.57	0.22	0.35	0.13			

Tabella 7: Fattore correttivo PIARC - Rinnovo del parco veicolare nel tempo

Nel caso in esame, non essendo disponibili dati relativi a benzene e VOC, è stato assunto per entrambi gli inquinanti il fattore correttivo che permette di calcolare le emissioni dal 2015 al 2030 per gli NOx.

¹ http://www.sinanet.isprambiente.it/it/sia-ispra/fetransp/

² http://www.aci.it/laci/studi-e-ricerche/dati-e-statistiche/autoritratto/autoritratto-2015.html

³ ROAD TUNNELS: VEHICLE EMISSIONS AND AIR DEMAND FOR VENTILATION - PIARC

A	Benzene, VOC		
Anno	benzina	diesel	
2010	1	1	
2015	0,65	0,76	
2030	0,22	0,35	
2015-2030	0,34	0,46	

Tabella 8: Fattore correttivo flussi di emissione tra 2015 e 2030

Per le emissioni di benzene e VOC da autovetture è stato considerato un fattore correttivo medio pesato sul parco veicolare medio al 2015 (stime ACI 2015) che è costituito per il 39,7% da veicoli a gasolio e per il restante 60,3% da veicoli a benzina (considerando anche i veicoli ibridi). Per i mezzi pesanti è stato considerato il fattore correttivo solo del diesel.

Area Centro -Nord	Benzene 2030 g/km TOTALE	VOC 2030 g/km H
Passenger Cars	0.0020	0.0433
Heavy Duty Trucks	0.0001	0.0783

Tabella 9: Fattori emissivi COPERT - (highway: ambito autostradale) – Anno 2030

Le simulazioni dell'impatto generato dall'A31 sulla componente atmosfera in condizioni post-operam sono state condotte solo per il benzene (cfr. Paragrafo 8).

Per i seguenti inquinanti: NO_2/NOx , CO, PM_{10} , benzene e VOC è stato effettuato un bilancio emissivo totale su tutta l'area (cfr. Paragrafo 9).

7.3 IPOTESI MODELLISTICHE E SCHEMATIZZAZIONE SORGENTI EMISSIVE

Il tracciato oggetto di studio è stato suddiviso in archi stradali (sezioni) caratterizzati da flussi di traffico e ipotesi emissive omogenee. Tutte le sezioni stradali a cielo aperto sono state simulate come sorgenti areali con larghezza pari alla larghezza della carreggiata.

Le sezioni a cielo aperto sono state simulate come sorgenti areali rappresentate da uno o più quadrilateri, a seconda della geometria della strada stessa.

Le sezioni oggetto delle simulazioni sono caratterizzate da una larghezza pari a 30 m e flusso emissivo complessivo considerando il traffico complessivo bidirezionale. Per ciascuna tipologia stradale è stata assegnata una quota media sul terreno come riportato nelle tavole di progetto (NASTRI ASFALTO 2D.dwg).

Per quanto concerne la simulazione delle emissioni in corrispondenza delle uscite dalle gallerie (tunnel portal) si è ipotizzato che in condizioni stazionarie tutte le emissioni generate all'interno della galleria siano rilasciate in corrispondenza dell'uscita della stessa e si è proceduto nella caratterizzazione della sorgente come segue:

- Stima dell'emissione interna alla galleria tenendo conto della sua lunghezza media (tra i due sensi di marcia) e del numero di veicoli circolanti;
- Definizione di una sorgente puntuale virtuale in corrispondenza dell'uscita della galleria di diametro 6 m, velocità 1 m/s e temperatura pari a 15 °C, a cui viene assegnata l'emissione dell'intero tratto di galleria, altezza pari alla metà dell'altezza della galleria.

Di seguito si riportano per ciascuna sezione oggetto della simulazione i dettagli della stima delle emissioni in atmosfera per i diversi inquinanti secondo la metodologia COPERT.

Si riepilogano nella tabella seguente le caratteristiche di ciascuna sezione oggetto di simulazione.

TRATTO	Lunghe	ezza	Flusso Veicoli TOT	/h per senso di MARCIA	% mezzi pesanti
TRATTO	m	km	diurno	Notturno	
Trincea	839	0,84	910,00	154,00	26,30%
Viadotto Piovene	262	0,26	910,00	154,00	26,30%
Trincea	951	0,95	910,00	154,00	26,30%
Galleria S. Agata 1	100	0,10	910,00	154,00	26,30%
Trincea	87	0,09	910,00	154,00	26,30%
Galleria S.agata 2	1306	1,31	910,00	154,00	26,30%
Trincea	1115	1,11	910,00	154,00	26,30%
Galleria Cogollo	6528	6,53	867,00	147,00	27,10%
Viadotto Assa	201	0,20	867,00	147,00	27,10%
Galleria Pedescala	1697	1,70	867,00	147,00	27,10%
Rilevato	89	0,09	867,00	147,00	27,10%
Viadotto Settecà	422	0,42	867,00	147,00	27,10%
Rilevato	81	0,08	867,00	147,00	27,10%
Galleria San Pietro	3470	3,47	867,00	147,00	27,10%
Rilevato	148	0,15	867,00	147,00	27,10%
Viadotto Molino	501	0,50	867,00	147,00	27,10%
Rilevato	203	0,20	867,00	147,00	27,10%

Tabella 10: Caratteristiche di ciascuna sezione oggetto di simulazione per la stima delle emissioni in atmosfera per i diversi inquinanti secondo la metodologia COPERT

Nella tabella che segue si riportano i valori dei flussi massici di emissione per ciascun tratto sommando il contributo delle due direzioni di marcia:

		Flussi somma di entrambe direzioni Nord/sud				
	ı	Benzene	voc			
TRATTO	Diurno	Diurno Notturno		Notturno		
	g/h	g/h	g/h	g/h		
Trincea	2,3	0,4	80,1	13,6		
Viadotto Piovene	0,7	0,1	25,0	4,2		

	Flussi somma di entrambe direzioni Nord/sud					
TRATTO	В	enzene	١	/OC		
TRATTO	Diurno	Notturno	Diurno	Notturno		
	g/h	g/h	g/h	g/h		
Trincea	2,6	0,4	90,9	15,4		
Galleria S. Agata 1	0,3	0,0	9,6	1,6		
Trincea	0,2	0,0	8,3	1,4		
Galleria S.agata 2	3,6	0,6	124,9	21,1		
Trincea	3,1	0,5	106,5	18,0		
Galleria Cogollo	17,0	2,9	597,6	101,3		
Viadotto Assa	0,5	0,1	18,4	3,1		
Galleria Pedescala	4,4	0,8	155,3	26,3		
Rilevato	0,2	0,0	8,1	1,4		
Viadotto Settecà	1,1	0,2	38,6	6,5		
Rilevato	0,2	0,0	7,4	1,3		
Galleria San Pietro	9,0	1,5	317,7	53,9		
Rilevato	0,4	0,1	13,6	2,3		
Viadotto Molino	1,3	0,2	45,9	7,8		
Rilevato	0,5	0,1	18,6	3,2		

Tabella 11: Flussi massici di emissione per ciascun tratto sommando il contributo delle due direzioni di marcia

Si riportano nei paragrafi che seguono, per ciascuna area di studio, le caratteristiche di ciascun tratto stradale inserito nelle simulazioni modellistiche e simulato come sorgente areale o puntuale. Si precisa che per i tratti a cielo aperto il flusso emissivo è pari a quello bidirezionale. Per i tratti in galleria, ciascuna sorgente, posizionata in uscita dalle gallerie sarà caratterizzata dal flusso emissivo relativo pari alla metà del flusso bidirezionale calcolato in quanto rappresentativa di un solo senso di marcia.

7.3.1 CARATTERISTICHE E LOCALIZZAZIONI SORGENTI AREA 1

In Tabella 12 si riepilogano le caratteristiche di ciascun tratto stradale inserito nelle simulazioni modellistiche nell'area di studio 1 e simulato come sorgente areale (tratti a cielo aperto), mentre in Tabella 13 si riepilogano le caratteristiche delle sorgenti puntuali (uscite gallerie).

	Area	Overte	Flusso Benzene	
Tratto	Area	Quota	(g/s/m²)	
Tracto	m²	m	(6-22)	(22-6)
Trincea1	25139	255	2,56E-08	4,34E-09
Viadotto1 (Piovene)	7850	264	2,56E-08	4,34E-09
Trincea2	28507	271	2,56E-08	4,34E-09
Trincea3	2618	278	2,56E-08	4,33E-09
Trincea4	33422	294	2,56E-08	4,34E-09

Tabella 12: Caratteristiche emissive sorgenti areali - Area 1

_	A 4	Overte	Flusso Benzene	
Tratto	Altezza	Quota -	(g,	/s)
	m	m	(6-22)	(22-6)
S.Agata1_PN	3	275	3,85E-05	6,51E-06
S.Agata1_PP	3	277	3,85E-05	6,51E-06
S.Agata2_PN	4	278	5,02E-04	8,49E-05
S.Agata2_PP	4	300	5,02E-04	8,49E-05
Cogollo_PN	4	288	2,36E-03	4,01E-04

Tabella 13: Caratteristiche emissive sorgenti puntuali – Area 1

Nelle figure seguenti si riportano le sorgenti inserite nelle simulazioni modellistiche.

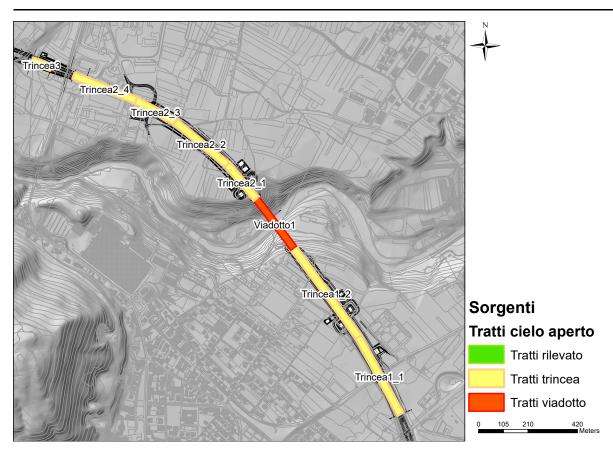


Figura 16 - Localizzazione sorgenti Areali - Area 1 - tratti a cielo aperto presenti dal Km 0 al Km 2,24

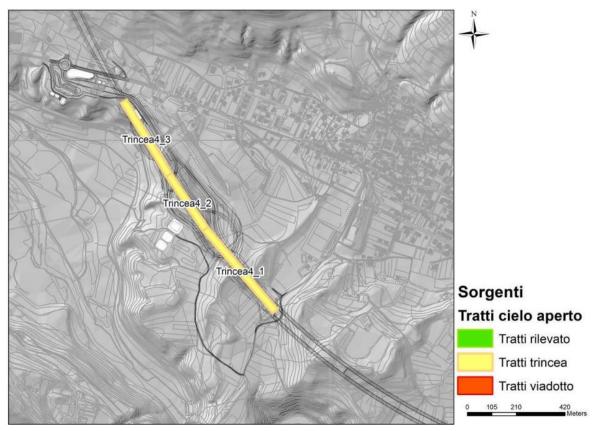


Figura 17 - Localizzazione sorgenti Areali - Area 1 - dal Km 3,5 al Km 4,7

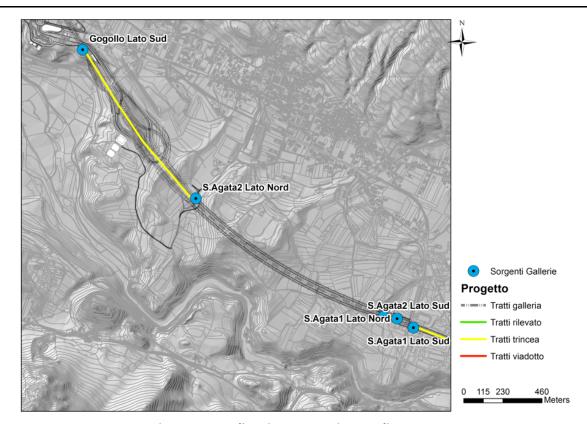


Figura 18 - Localizzazione sorgenti puntuali - Area 1

7.3.2 CARATTERISTICHE E LOCALIZZAZIONI SORGENTI AREA 2

In Tabella 12 si riepilogano le caratteristiche di ciascun tratto stradale inserito nelle simulazioni modellistiche nell'area di studio 2 e simulato come sorgente areale (tratti a cielo aperto), mentre in Tabella 15 si riepilogano le caratteristiche delle sorgenti puntuali (uscite gallerie).

	Area	Quete	Flusso benzene	
Tratto	Area	Quota	(g/s/m²)	
Hutto	m²	m	(6-22)	(22-6)
Viadotto 2 (Assa)	6026	352	2,41E-08	4,09E-09
Rilevato 1	2663	331	2,41E-08	4,09E-09
Viadotto3 (Settecà)	12659	332	2,41E-08	4,09E-09
Rilevato 2	2441	335	2,41E-08	4,09E-09

Tabella 14: Caratteristiche emissive sorgenti areali - Area 2

-	Altezza	Quota	Flusso benzene		
Tratto	Aitezza	Quota	(g/	's)	
	m	m	(6-22)	(22-6)	
Cogollo_PP	4	352	2,36E-03	4,01E-04	
Pedescala_PP	3	352	6,14E-04	1,04E-04	
Pedescala_PN	3	331	6,14E-04	1,04E-04	

Toolie	Tratto Altezza Quota		Flusso benzene		
Tratto	Aitezza	Quota	(g/	's)	
	m	m	(6-22)	(22-6)	
SanPietroPN	4	335	1,26E-03	2,13E-04	

Tabella 15: Caratteristiche emissive sorgenti puntuali – Area 2

Nelle figure seguenti si riportano le sorgenti inserite nelle simulazioni modellistiche.

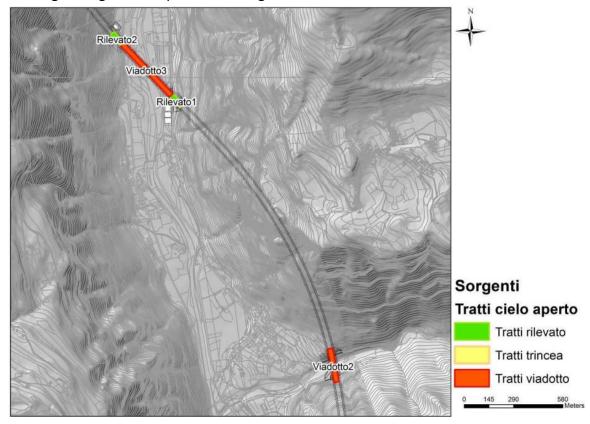


Figura 19 - Localizzazione sorgenti Areali - Area 2

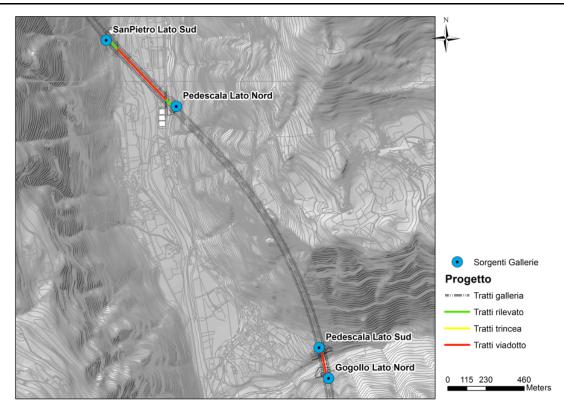


Figura 20 - Localizzazione sorgenti puntuali - Area 2

7.3.3 CARATTERISTICHE E LOCALIZZAZIONI SORGENTI AREA 3

In Tabella 16 si riepilogano le caratteristiche di ciascun tratto stradale inserito nelle simulazioni modellistiche nell'area di studio 3 e simulato come sorgente areale (tratti a cielo aperto), mentre in Tabella 17Tabella 15 si riepilogano le caratteristiche delle sorgenti puntuali (uscite gallerie).

	Avec	Overto	Flusso benzene			
Tratto	Area	Quota	(g/s/m²)			
	m²	m	(6-22)	(22-6)		
Rilevato3	4445	410	2,41E-08	4,09E-09		
Viadotto Molino	15034	417	2,41E-08	4,09E-09		
Rilevato4	6091	424	2,41E-08	4,09E-09		

Tabella 16: Caratteristiche emissive sorgenti areali - Area 3

	Altezza	Quota	ota Flusso benzene (g/s)		
Tratto	Aitezza	Quota			
	m	m	(6-22)	(22-6)	
SanPietroPP	4	408	1,26E-03	2,13E-04	

Tabella 17: Caratteristiche emissive sorgenti puntuali – Area 3

Nelle figure seguenti si riportano le sorgenti inserite nelle simulazioni modellistiche.

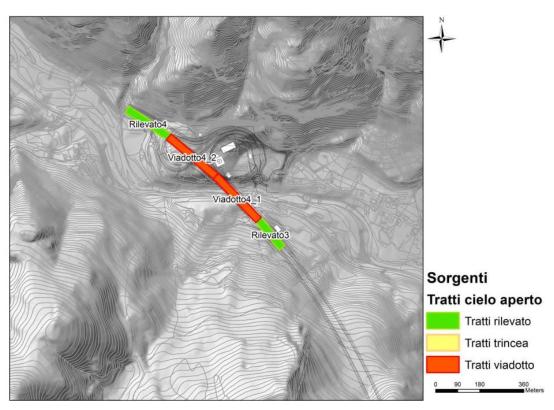


Figura 21 - Localizzazione sorgenti Areali - Area 3

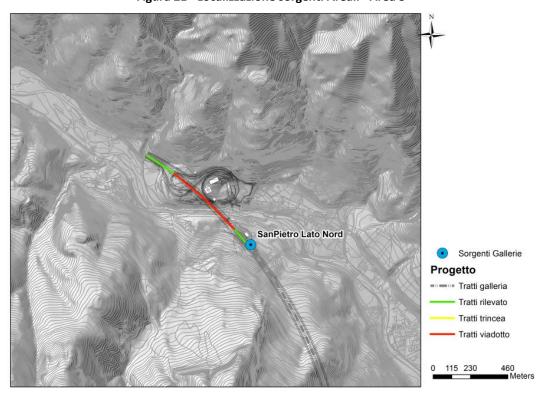


Figura 22 - Localizzazione sorgenti puntuali - Area 3

8 CONCENTRAZIONI BENZENE POST-OPERAM - ANALISI DEI RISULTATI E VERIFICA DEL RISPETTO DEI LIMITI DI LEGGE

Di seguito si descrivono i risultati delle simulazioni modellistiche di dispersione di benzene in atmosfera emessi dall'infrastruttura stradale A31; in particolare si procede nella verifica dell'impatto ambientale sulla componente atmosfera nello scenario post-operam, ottenuto sommando al contributo della sola opera in esame i valori di concentrazione di fondo stimati come descritto nel paragrafo 3.3.

I risultati delle simulazioni modellistiche nello scenario post-operam sono rappresentati come mappe raster di distribuzione spaziale delle concentrazioni al suolo (1,7 m - altezza media recettore umano) del benzene dove gli intervalli di concentrazione sono riportati con una specifica scala di colori. Per il benzene, la normativa di riferimento fissa un valore limite annuale, perciò i valori rappresentati sono mediati sull'anno completo.

Nelle J16L1 2102020020105 OPD 00 tavole (da Tavola alla tavola J16L1 2102020020505 OPD 00) si riportano le mappe delle distribuzioni medie annuali di concentrazioni del benzene al suolo nello scenario post-operam. Le mappe sono rappresentative della qualità dell'aria attesa nello scenario post-operam, sommando al fondo esistente, valutato attraverso specifiche campagne di monitoraggio (cfr. paragrafo 3.3), il contributo atteso dall'esercizio dell'autostrada A31. In particolare le somme sono state effettuate considerando come concentrazione di fondo ante-operam le medie temporali (concentrazioni medie annuali per benzene) in coerenza con i limiti sulla qualità dell'aria definiti dal Decreto Lgs. 155/2010, calcolate tramite correlazione con i dati della centralina di Schio.

Inoltre per ciascun punto di monitoraggio sono state individuate delle aree di pertinenza in cui si assumono concentrazioni rappresentative del fondo ante-operam costante come indicato in Figura 11.

Analizzando i risultati delle simulazioni si può constatare come la distribuzione spaziale delle concentrazioni degli inquinanti al suolo sia fortemente influenzata dall'orografia dell'area. In generale le aree maggiormente impattate sono quelle limitrofe all'uscita delle gallerie (tunnel portal) in quanto si concentrano le emissioni di lunghi tratti stradali, o in prossimità del tracciato dell'opera, tuttavia si rileva come anche nelle condizioni post-operam l'estensione degli impatti sia limitata e non si determina il superamento dei limiti normativi in corrispondenza dei recettori sensibili.

Di seguito si descrivono in dettaglio i risultati ottenuti per le 3 aree di interesse:

AREA1

- Per nessun inquinante si prevedono presso i recettori sensibili, nello scenario postoperam, concentrazioni al suolo superiori ai limiti normativi vigenti.
- L'estensione spaziale dell'impatto dell'infrastruttura stradale è limitato a circa 500 m dall'asse stradale.
- Le aree residenziali del Comune di Piovene Rocchette e di Cogollo del Cengio, poste ai lati e a distanze superiori ai 500 m, risentono in maniera marginale dell'impatto dell'opera sulla componente qualità dell'aria.
- Le emissioni determinate dai tunnel portal delle gallerie S. Agata 1 e S. Agata 2 generano un impatto trascurabile sull'area. Sommando le concentrazioni di fondo rappresentative del punto di monitoraggio ATOPD01 si ottengono valori massimi al suolo decisivamente inferiori ai limiti normativi.
- Per quanto riguarda la sorgente di emissione rappresentata dall'uscita sud della galleria Cogollo, si evidenziano incrementi di concentrazione nelle immediate vicinanze ma che non determinano nello scenario post-operam nessun superamento dei limiti normativi in corrispondenza dei potenziali recettori presenti. Nel dettaglio, sommando ai valori di valori di fondo ante-operam rappresentativi del punto di monitoraggio ATOPD02 il contributo della sorgente (Cogollo sud), si osserva come a 50 m dalla sorgente, la concentrazione media annuale di benzene raggiunge 1.7 μg/m³ (valore limite 5 μg/m³)

AREA2

- Per nessun inquinante si prevedono presso i recettori sensibili, nello scenario postoperam, concentrazioni al suolo superiori ai limiti normativi vigenti.
- L'estensione spaziale dell'impatto dell'infrastruttura stradale è limitato a circa 500 m dall'asse stradale.
- L'area maggiormente impattata risulta localizzata a ridosso del viadotto denominato Assa dove sono presenti i tunnel portal della galleria Pedescala (Lato sud) e Cogollo (Lato Nord). Ai fini del calcolo dell'impatto post-operam si considerano come concentrazioni rappresentative del fondo ante-operam quelle caratteristiche del punto di monitoraggio ATOPD03. A 70 m lungo la direzione maggiormente impattata (direzione est) dall'asse del tracciato le concentrazioni della media annuale di benzene raggiungono 2.7 μg/m³(valore limite 5 μg/m³).
- L'impatto post-operam nell'area a ridosso dell'uscita della galleria Pedescala Nord e
 San Pietro Sud (in prossimità del viadotto Settecà) caratterizzata dal fondo misurato nel punto di monitoraggio ATOPD04, risulta più limitato e non presenta alcun

superamento del limite normativo. A 100 m dall'asse del viadotto la concentrazione media annuale di benzene è inferiore a $1.75 \mu g/m^3$ (valore limite $5 \mu g/m^3$).

AREA3

- Per nessun inquinante si prevedono presso i recettori sensibili, nello scenario postoperam, concentrazioni al suolo superiori ai limiti normativi vigenti.
- L'estensione spaziale dell'impatto dell'infrastruttura stradale è limitata a circa 500 m dall'asse stradale.
- L'area maggiormente impattata in condizioni post-operam risulta localizzata a ridosso del rilevato terminale e caratterizzata da valori rappresentativi del fondo anteoperam così come misurato in corrispondenza del punto di monitoraggio ATOPD05. A 40 m dall'asse del tracciato la concentrazione media annuale raggiunge 1.7 μg/m³ (valore limite 5 μg/m³).

Le tabelle seguenti riportano i contributi (in termini di concentrazione degli inquinanti al suolo) della sola infrastruttura di progetto, del fondo ante-operam misurato e della concentrazione attesa futura nello scenario post-operam (ottenuta sommando il contributo dell'opera A31 e i valori di fondo ante-operam) differenziati per le diverse sezioni dell'A31 in corrispondenza dei punti di massima ricaduta a 100 m dall'asse del tracciato.

		Benzene		
	AREA 1	Concentrazione Media Annua		
		μg/m³		
FONDO	PD01	1.18		
	Trincea 1	1.23		
Fondo + A31	Viadotto Piovene	1.24		
Fondo + A31	Trincea 2	1.22		
	Trincea 3	1.2		
FONDO	PD02	1.46		
Fondo + A31	Trincea 4 (Galleria S.agata 2 Nord)	1.52		
Fondo + A31	Uscita Galleria (cogollo Sud)	1.55		
	A31			
	Trincea 1	0.05		
	Viadotto Piovene	0.06		
A31	Trincea 2	0.04		
	Trincea 3	0.02		
	Trincea 4 (Galleria S.agata 2 Nord)	0.06		
	Uscita Galleria (Cogollo Sud)	0.09		

Tabella 18: Valori di Concentrazione totale e contributi A31 per le sorgenti ricadenti nell'area 1 a 100 m dall'asse del tracciato

		Benzene
	AREA 2	Concentrazione Media Annua
		μg/m³
FONDO	PD03	2.58
Fondo +	galleria Cogollo (uscita Nord)	2.67
A31	Viadotto Assa (galleria Pescescala Sud)	2.62
FONDO	PD04	1.66
Fondo +	Rilevato (galleria Pescescala Nord)- Viadotto settecà - Rilevato	1.72
A31	Uscita Galleria (San Pietro sud)	1.72
	A31	
	galleria Cogollo (uscita Nord)	0.09
A31	Viadotto Assa (galleria Pescescala Sud)	0.04
A31	Rilevato (galleria Pedescala Nord)- Viadotto settecà - Rilevato	0.06
	Uscita Galleria (San Pietro sud)	0.06

Tabella 19: Valori di Concentrazione totale e contributi A31 per le sorgenti ricadenti nell'area 2 a 100 m dall'asse del tracciato

AREA 3		Benzene
		Concentrazione Media Annua
		μg/m³
FONDO	PD05	1.59

		Benzene		
	AREA 3	Concentrazione Media Annua		
		μg/m³		
Fondo + A31	Uscita Galleria (San Pietro Nord)	1.64		
Folido + ASI	Rilevato - Viadotto - Molino	1.64		
	A31			
A31	Uscita Galleria (San Pietro Nord)	0.05		
	Rilevato - Viadotto - Molino	0.05		

Tabella 20: Valori di Concentrazione totale e contributi A31 per le sorgenti ricadenti nell'area 3 a 100 m dall'asse del tracciato

9 BILANCIO EMISSIVO COMPLESSIVO DELL'OPERA IN PROGETTO

Nella tabella seguente si riassume l'emissione oraria complessiva di PM_{10} , NO_2 , CO, C_6H_6 e VOC durante la fase di esercizio dell'infrastruttura autostradale in progetto.

			Flus	si somma	di entra	mbe direzi	ioni Nor	d/sud		
TRATTO	со		I	NO ₂		PM ₁₀	(C ₆ H ₆	cov	
IRATIO	Diurno	Notturno	Diurno	Notturno	Diurno	Notturno	Diurno	Notturno	Diurno	Notturno
	g/h	g/h	g/h	g/h	g/h	g/h	g/h	g/h	g/h	g/h
Trincea	1006	170	375	64	20	3	2.3	0.4	80.1	13.6
Viadotto Piovene	314	53	117	20	6	1	0.7	0.1	25.0	4.2
Trincea	1141	193	426	72	23	4	2.6	0.4	90.9	15.4
Galleria S. Agata 1	120	20	45	8	2	0	0.3	0.0	9.6	1.6
Trincea	105	18	39	7	2	0	0.2	0.0	8.3	1.4
Galleria S.agata 2	1568	265	585	99	32	5	3.6	0.6	124.9	21.1
Trincea	1338	226	499	84	27	5	3.1	0.5	106.5	18.0
Galleria Cogollo	7494	1271	2846	482	154	26	17.0	2.9	597.6	101.3
Viadotto Assa	231	39	88	15	5	1	0.5	0.1	18.4	3.1
Galleria Pedescala	1948	330	740	125	40	7	4.4	0.8	155.3	26.3
Rilevato	102	17	39	7	2	0	0.2	0.0	8.1	1.4
Viadotto Settecà	484	82	184	31	10	2	1.1	0.2	38.6	6.5
Rilevato	93	16	35	6	2	0	0.2	0.0	7.4	1.3
Galleria San Pietro	3984	675	1513	256	82	14	9.0	1.5	317.7	53.9
Rilevato	170	29	65	11	4	1	0.4	0.1	13.6	2.3
Viadotto Molino	575	98	219	37	12	2	1.3	0.2	45.9	7.8
Rilevato	233	40	89	15	5	1	0.5	0.1	18.6	3.2
SOMMA (g/h)	20907	3543	7901	1339	429	73	48	8	1667	282

Tabella 21: Flussi massici di emissione per ciascun tratto sommando il contributo delle due direzioni di marcia

Considerando 16 ore nel periodo diurno e 8 ore nel periodo notturno, ne derivano i seguenti flussi emissivi giornalieri.

	Flussi somma di entrambe direzioni Nord/sud									
TRATTO	СО		NO ₂		PM ₁₀		C ₆ H ₆		cov	
	Diurno	Notturno	Diurno	Notturno	Diurno	Notturno	Diurno	Notturno	Diurno	Notturno
Totale (g/h)	20907	3543	7901	1339	429	73	48	8	1667	282
N. ore	16	8	16	8	16	8	16	8	16	8
g/periodo	334515	28344	126424	10712	6865	582	763	65	26665	2259
TOTALE Kg/giorno	3	63	1	137		7		1		29

Tabella 22: Flussi massici di emissione giornalieri totali per l'intera infrastruttura

Si precisa che, come definito nel documento J16L1_050407002_0101_0PD_02.doc il rapporto tra il fattore emissivo COPERT degli NO₂ e degli NO_x è pari a 0,31. L'emissione totale in termini di NO_x sarà quindi 457 kg/giorno.

10 CONCLUSIONI

Analizzando le distribuzioni medie annue delle concentrazioni di benzene al suolo in condizioni post-operam si rileva come non ci sia superamento dei limiti normativi e pertanto si conclude come l'impatto sulla qualità dell'aria dell'opera A31 sia da ritenersi accettabile.