STUDIO TORCIA A TERRA PER IMPIANTO P1CR - VERSALIS (Eni) **REQUEST FOR QUOTATION**

EQUIPMENT: ENCLOSED GROUND FLARE

TECHNICAL SUPPLY SPECIFICATION FOR BUDGETARY QUOTATION

SCOPE OF SUPPLY

The supply is composed of the following parts:

Part I: Equipment / Material Supply

Part II: List of Attachment

Part III: Particular Technical Specification

Part IV: Inspection and test plan

	(DD/MM/YYYY)	DOCUMEN	(name & visa) T REVISIONS	(name & visa)	(name & visa)
REV.	DATE	STATUS	WRITTEN BY	CHECKED BY	APPROV./AUTHOR. BY
Α	10/04/2017	REQUEST FOR QUOTATION	G.CORRADO	C.SAVONA	C.SAVONA / G.MONTI

Unit **000**

Document Code RFQ 0186

Serial N° 01 Rev. Pa

Page **2/26**

STUDIO TORCIA A TERRA PER IMPIANTO P1CR - VERSALIS (Eni) REQUEST FOR QUOTATION

PART I: EQUIPMENT/MATERIAL SUPPLY

			BASE QUOTATION									
POSITION	ITEM/TAG	QUANTITY	DESCRIPTION									
1	RV-101E	1	ENCLOSED GROUND FLARE PACKAGE INCLUDING ALL LOCAL INSTRUMENTATION AND PLC									
2	-	1 SET	SPARES FOR ERECTION, COMMISIONING AND START-UP									
			OPTIONS									
POSITION	ITEM/TAG	QUANTITY	DESCRIPTION									
1	-	1 SET	SPARES FOR TWO YEARS									
2	-	1 SET	CAPITAL SPARES									
3	-	-	CAPITAL SPARES SMOKELESS WITH AIR INSTEAD OF STEAM									
4	-	-	BUCKLING PINS INSTEAD OF RUPTURE DISKS									
5	V 9101	-	NEW LIQUID SEAL DRUM									
6	V 9063	-	MODIFICATIONS OR REPLACEMENT OF EXISTING LIQUID SEAL DRUM									
7	-	-	MODIFICATION ON DCS									
8	-	-	DAILY RATES FOR ERECTION SUPERVISION									
9	-	-	TRANSPORTATION AT SITE									
10	-	-	ERECTION AT SITE									

Unit **000** Document Code RFQ 0186

Serial N° 01

Rev. Pa **A 3/**

Page **3/26**

STUDIO TORCIA A TERRA PER IMPIANTO P1CR - VERSALIS (Eni) REQUEST FOR QUOTATION

PART II: LIST OF ATTACHMENTS

			ATTACH	IMENT
DESCRIPTION	REFERENCE	REV	INCLUSION DATE	DELETION DATE
1. APPLICABLE DOCUMENTS				
DATA SHEET FOR GROUND FLARE	070327C001-091-SP-0180-001	Α	10/04/2017	
BASIC DESIGN DATA	070327C001-000-JSD-0001-001	Α	10/04/2017	
SITE AMBIENT DATA	BR392416-INMA_05_114	3	10/04/2017	
AUXILIARY SERVICE DATA	BR392417-INMA_05_115	1	10/04/2017	
PROCESS DESCRIPTION	070327C001-000-CN-0009-002	А	10/04/2017	
PFD ENCLOSED GROUND FLARE	070327C001-091-PFD-0010-001	А	10/04/2017	
DATA SHEET OF EXISTING LIQUID SEAL	2638-RM-PF-002	1	10/04/2017	
PLOT PLAN SCHEME (for collectors and flares RV-101 a/b/c/d)	BR366409	3	10/04/2017	
P&ID - SYMBOLS	1742-00-AS-0020-01 1of2	4	10/04/2017	
P&ID - SYMBOLS	1742-00-AS-0020-01 2of2	5	10/04/2017	
P&ID – FLARE GAS RECOVERY	1742-90-AS-0020-02 2of2	8	10/04/2017	

Unit Docu

Document Code S RFQ 0186

Serial N° Rev.

01

v. Page **4/26**

STUDIO TORCIA A TERRA PER IMPIANTO P1CR - VERSALIS (Eni) REQUEST FOR QUOTATION

PART III: PARTICULAR TECHNICAL SPECIFICATION

1. INTRODUCTION

1.1 General

This document defines the minimum technical requirements for the design, performance, material supply, inspection, testing and preparation for shipment of the supply of enclosed ground flare and ancillaries.

The scope is to estimate the cost for the installation of a new enclosed ground flare RV-101E working in parallel with the existing elevated flare RV-101C; the purpose is to reduce the flaring gas sent to the existing elevated flare RV-101C, from the cracking unit P1CR, improving the smokeless capacity of the flare system.

The new enclosed ground flare will be installed at ENI-Versalis polymer plant, Brindisi (Italy).

The attachments to this RFQ shall be taken into consideration and in case of conflict the Vendor shall refer to Contractor for clarification.

The Vendor is the sole responsible for the correct application of the contractual documentation and the adherence of the supply to specifications.

In principle No deviations to the applicable job specifications, standards and documents attached to this RFQ are allowed unless due to a clear equipment design limit. No deviation that can be solved commercially shall be submitted.

1.2 Project References

- Project Name: STUDIO TORCIA A TERRA PER IMPIANTO P1CR

- Client name: VERSALIS (ENI)

- Plant: PETROLCHIMICO DI BRINDISI

- Location: BRINDISI (ITALY)

- Project Language: ITALIAN (*)

(*) All documentations at execution stage will be provided in Italian language.

1.3 Order of Priority

In case of conflict among this RFQ, Project Specifications, Standards and codes, the following order shall govern:

- Italian laws and regulations
- Directives of European Union
- This requisition and relevant attachments
- Project Specifications and Standards
- International Codes and Standards

Vendor shall submit any ambiguity in or contradiction among the documents of the same priority in writing, for Technip Italy resolution.

Unit **000** Document Code RFQ 0186

Serial N° 01

Rev.

Page **5/26**

STUDIO TORCIA A TERRA PER IMPIANTO P1CR - VERSALIS (Eni) REQUEST FOR QUOTATION

SCOPE OF SUPPLY

2.1 Inclusions

The supply shall include all the equipment and accessories required to meet the performances stated in the attached Data Sheet within specified battery limits.

The main equipment described into the pertinent data sheet is the basis of the supply, which in details shall include, but shall not be limited to, the following item and services:

- Flare firebox frame, combustion chamber and casing;
- All support steel structures;
- Refractory and insulation lining with relevant anchors;
- Antiacid coating for firebox panels lined with ceramic fiber and insulation blocks
- Refractory to protect foundation pillars;
- SS rain cap to protect refractory on flare top;
- All required Platforms, gratings, and ladders;
- All access/inspection doors;
- Flue gas instrument connections on firebox casing including sampling connection;
- Wind fence complete of internal lining;
- Staging system; consist of but not limited of:
 - complete burner groups systems for staging (burner SS310 as minimum);
 - complete staging piping system including manifolds, manual and on-off automatic valves, safety relief device (rupture disks);
 - continuous Pilots (SS310 min.) c/w ignition system and relevant detectors (2 Thermocouples, k type, retractable for each pilot);
 - service piping for pilots inside battery limits in SS (SS304 min.);
 - post purge system including Nitrogen post purge valves and manifolds;
 - flame arrestor/s:
 - limit switches on rupture disks /Nitrogen/Staging Valves;
- All smokeless steam piping and staging distribution to burners;
- All purge gas system and staging distribution to burners:
- All required control valve, flare alarms etc for safe operation;
- All control valves on waste and service lines:
- Pressure transmitters on Main Flare Headers;

Unit Document Code **000 RFQ 0186**

Serial N° 01

Rev. I

Page **6/26**

- Ignition system composed by automatic high energy spark, ignited pilot type-FFG, as auxiliary ignition system;
- Local Ignition panels for automatic H.E. spark and FFG ignition complete of all instrumentation with alarm & status signals repeated to DCS;
- Ignition cables between the local Panel and pilots;
- FFG piping between each stage to the Ignition control panel;
- All required junction boxes;
- Combustion & Staging Control Management System (PLC to be separated quoted);
- All necessary steam control system, skid mounted with all required instrument, valves, piping, steam trap etc.;
- Any other required instruments for equipment operation and safe control;
- Suitable lifting lugs for any pieces to be handled/lifted;
- Foundation template (if necessary);
- Bolts, nuts and washers for field erection, including a minimum overage of 10%;
- Earthing clips;
- Complete insulation work including design, material and supports;
- Nameplates in Stainless Steel material;
- Painting up to final coat;
- All accessories and appurtenances necessary for a satisfactory and safe operation;
- All required cabling, guides, conduit and supports;
- Special Tools for Installation and Maintenance;
- Spare Parts for Erection, Pre-Commissioning, Commissioning & Start-Up;
- Packing suitable for storage and sea transportation;
- Spare parts for erection, commissioning and start-up; including 10% bolting for field erection;
- Any other appurtenance within the battery limits not specifically listed in the exclusions;
- Engineering;
- Flue gas dispersion calculation;
- Fabrication and manufacturing;
- Management of sub-vendors, inspections and test activities in workshop;
- Certificates:

Unit Document Code **000 RFQ 0186**

Serial N° 01

Rev.

Page **7/26**

STUDIO TORCIA A TERRA PER IMPIANTO P1CR - VERSALIS (Eni) REQUEST FOR QUOTATION

- EC declaration of conformity and CE marking;
- Documentation and drawings;
- Documentation for transportation;
- Kick-off meeting (two days);
- Attendance at HAZOP and FAT; two days for each meeting of attendance of Vendor specialists to be included in the base scope of supply
- Site assistance for erection (on daily rate);

2.2 Exclusions

The following will be out of the Vendor scope of supply:

- Foundation and civil works (except loading data for foundation design);
- Foundation anchor bolts (if standard type);
- Piping outside the battery limits;
- Instrumentation / electrical part outside battery limits;
- Electric power, lighting and grounding systems;
- Transportation to Site;
- Field Erection;

2.3 **Option**

Vendor will include the following optional price for:

- Smokeless with air instead of steam inducing all system (air fans, ducting, control and distribution system, etc.);
 - Liquid Seal Drums;
- Buckling pin valves instead of rupture disks;
- DCS implementation;
- Spare Parts for two year's operation;
- Capital Spares;
- Transportation at site;
- Erection at site;

Unit **000**

Document Code RFQ 0186

Serial N° 01

Rev. Page **A 8/26**

STUDIO TORCIA A TERRA PER IMPIANTO P1CR - VERSALIS (Eni) REQUEST FOR QUOTATION

2.4 The Package battery limits shall be shown into a General Assembly Drawing and P&ID's to be submitted by Vendor with the proposal.

The following battery limits will be considered for the enclosed ground flare package.

At Flare:

Flares waste gas inlet

One Flanged connection

Flanged connections

Instrumentation/Electrical Junction boxes

Instrument air One flanged connection

Above battery limits will be considered located at boundary of flare area.

All distribution (piping, instrumentation and electrical) inside battery limits will be included in the scope of supply.

At control local panel (shop assembled on skid):

Instrument air

One flanged connection at panel
Fuel gas lines

One flanged connection at panel
Ignition/pilot lines

Flanged connections at panel
Instrumentation / Electrical

Junction boxes at panel

Unit 000 **Document Code RFQ 0186**

Serial N° 01

Rev. Α

Page 9/26

STUDIO TORCIA A TERRA PER IMPIANTO P1CR - VERSALIS (Eni) **REQUEST FOR QUOTATION**

2.5 **Shop Prefabrication/ Modularization**

The shop prefabrication shall be extended at maximum possible extent; the shop prefabrication shall be as minimum:

2.5.1 Firebox

Casing shop prefabricated in panels with internal insulation anchors, supports, lugs and similar device already shop installed. Antacid coating will be shop installed.

Structural steel will be assembled by bolting at site. Connection between panels, supports and other structures will be flanged.

2.5.2 Windfence

Shop prefabricated in panels with internal insulation anchors, supports, lugs and similar device already shop installed. Ready to be assembled by bolting.

2.5.3 Refractory

Supplied loose for site installation.

2.5.4 Manifolds and burners and pilots

- Each stage manifold will be shop prefabricated
- Each burner will be provided in preassembled unit ready to be installed on relevant manifold
- Each pilot will be provided already shop prefabricated ready to be installed on relevant stage

2.5.5 Stagging piping and valves

Shop prefabricated on skids. Actuated valves will be flanged.

2.5.6 Local Ignition & control panel

Completely shop prefabricated, tested and wired on common on rack ready to be installed on relevant foundation.

Unit 000

Document Code RFQ 0186

Serial N° Page 10/26 01

STUDIO TORCIA A TERRA PER IMPIANTO P1CR - VERSALIS (Eni) **REQUEST FOR QUOTATION**

2.5.7 **Piping**

Piping shall be shop prefabricated and tested in spools for OD 2" and higher and in commercial lengths for OD 11/2" and lower. Flanges where foreseen will be provided shop installed.

2.5.8 Miscellanea

All loose parts such as burner assemblies, pipe supports, instrumentation, shall be supplied loose, duly packed.

2.5.9 Platforms, stairs and ladders

- Platforms partly assembled in panels including beams, bracing, grating supports, handrailing connections, etc.
- The shapes not assembled in panels will be supplied ready to be bolted to the supports.
- The grating shall be in panels ready to be bolted to the supports.
- The handrails assembled in panels including posts, plate, intermediate strips, etc.
- The ladders assembled in sections including stringers, rungs, connections, etc.
- The relevant cages assembled in sections to be bolted to the ladders in field.
- Ladders and platforms will be hot dip galvanized.

2.5.10 Packing

All goods shall be properly packed suitably for sea transportation.

All surface of equipment both inferior and exterior, subject to corrosion during transportation and storage period at site shall be protected by a rust preventive or suitable means.

Unit D **000**

Document Code Serial N° **RFQ 0186 01**

Rev.

v. Page 11/26

STUDIO TORCIA A TERRA PER IMPIANTO P1CR - VERSALIS (Eni) REQUEST FOR QUOTATION

3. **DESIGN REQUIREMENTS**

3.1 General

Unit shall be designed, fabricated and tested strictly in accordance with the notes of this document and all the specifications herein mentioned.

Unless otherwise specified, all publications, codes, etc. referred in the present document and its attachments shall be last edition at the date of Proposal submission.

It will be Vendor's responsibility to comply with any other effective local law, regulation and code.

Vendor shall include in the proposal the Deviation Clarification List duly filled in and signed, even in case of full compliance with the requirements of this document.

Unless otherwise specified in the deviation list, the proposal will be deemed fully in compliance with the requirements.

3.2 Applicable Standard and Codes

Supplier shall design and fabricate the flares in accordance with all the Project specifications and Contractor specifications mentioned on this specification and/or its attached documents, and in particular with the following design documents:

- Basic Design Data 070327C001-000-JSD-0001-001
- Data sheet 070327C001-091-SP-0180-001

Unless otherwise noted, latest issues of the following industry codes and standards shall be applicable:

- API Std. 521 Pressure relieving and Depressuring System
- API Std. 537 Flare Details for General Refinery and Petrochemical Service
- ANSI / ASME B.31.3 / 16.5 /16.47;
- ASTM for material test selection;
- ASME SEC V Non-Destructive Examination
- ASME SEC IX Welding Qualifications
- EN 288-1 Requirements regarding welding technology for steel structure

Unit **000** Document Code RFQ 0186

Serial N°
01

Rev. Page **A 12/26**

STUDIO TORCIA A TERRA PER IMPIANTO P1CR - VERSALIS (Eni) REQUEST FOR QUOTATION

3.3 Basic Design Data Requirements

Ambient conditions are:

Minimum/Maximum ambient air temperature: -5 / + 45°C

Minimum design metal temperature: -5 °C

Relative Humidity (min. / aver. / max): 20% / 75 % /90%
 Pressure 1013 ± 7 mbar abs.

Area elevation:5.7 m above sea

Max wind velocity: 120 km/h

For complete data see the Basic Design Data 070327C001-000-JSD-0001-001.

3.4 Civil & Structural Requirements

- Refer to the project specification for applicable codes.
- 3 mm of corrosion allowance will be considered for firebox steel casing.
- The design shall guarantee free accessibility for maintenance and proper access for operation of all equipment; adequate handling devices, when necessary, shall also be provided

3.5 Piping

The number of interfaces or battery limit piping connections including steam, waste gas, drains and utilities shall be minimized by collecting to a single point located at flare boundary area, unless otherwise stated.

Battery limit connections shall be ASME/ANSI flanged.

When interconnecting piping is provided loose by Vendor, Vendor shall provide all necessary supports, gaskets, bolts and nuts: the limit of supply is the piping support connection to the foundation or main structure.

All Battery Limits will be considered fixed points.

Unit **000** Document Code RFQ 0186

Serial N°
01

Rev. Page **A 13/26**

STUDIO TORCIA A TERRA PER IMPIANTO P1CR - VERSALIS (Eni)
REQUEST FOR QUOTATION

3.6 Painting & Coating – Insulation

Vendor shall paint the flare system and all ancillary up to the final coat suitable for heavy corrosive (marine) environmental.

On structural steel at least 300 µm of total dry film thickness of external coating will be considered.

Inside antacid coating on firebox panels will be shop applied, only where panel are lined with ceramic fiber or block.

Bolting, grating will be provided hot dip galvanized.

3.7 Refractory

Vendor will define in its proposal the applied refractory system giving evidence the **Refractory** system in the firebox will be design to withstand the thermal shock during flaring.

Where firebox sections in contact with flame it is recommended to provide brick wall with insulation panels as backup, section not in contact with the flame may be lined with CF blocks. Refractory thickness will be not lower than 150 mm.

Anchor material in fireboxes will be SS310 as minimum. SS304 is acceptable only for short anchoring (pins, block supports, etc.) in contact with CS panel.

Refractory temperature class will be as minimum 200 °C higher than the maximum flue gas temperature.

Refractory in contact with the flame will have a temperature class not lower than 1430 °C.

Refractory not in contact with the flame will have a temperature class not lower than 1260 °C.

All Ceramic Fibers will be asbestos free type (exonerated from any carcinogenic classification as per European Directives).

3.8 Area Classification

Field electrical and instrumentation components shall be supplied in EEx-d execution, according to area classification as required for fuel and flared gases (Zone 2 IIC T3 as minimum).

Unit Document Code **000 RFQ 0186**

Serial N° 01

Rev. Page **A 14/26**

STUDIO TORCIA A TERRA PER IMPIANTO P1CR - VERSALIS (Eni)
REQUEST FOR QUOTATION

3.9 Instrumentation

Vendor shall consider the following criteria:

- 6 years of continuous operation of the flare system is required. Additional redundant instrumentation/devices will be provided as necessary to guarantee the continuity of the operating service.
- Buckling pins in lieu of rupture disks, to improve the continuous operation, will be separately quoted as option.
- the possibility to anticipate the opening of staging valve by a signal from a flow transmitter on discharge line, before the flare gas pressure rise up to opening set point, will be considered.
- PLC for BMS/SIS will be Stand-alone type Emerson DeltaV SIS, in accordance with IEC61508 e IEC61511, certified SIL3. PLC will be included in scope of supply and separately quoted. PLC cabinet will be installed in FAR and not in filed. Vendor to provide preliminary information of PLC cabinet.
- Interface with existing DCS will be wired. Expansion on DCS will be ABB Symphony plus type and separately quoted (as option):

ABB DCS: MODEL: SYNPHONY PLUS HARMONY

ABB CONSOLLE: MODEL for graphic pages: SYNPHONY PLUS OPERATION

VERSIONE: 2.0.3

3.10 EC Declaration of Conformity and CE marking

Vendor shall be the Manufacturer according to applicable CE Marking Directives of each of the below mentioned Items to be considered as Products to be placed on the European Economic Area (EEA). Where for some of these Items the Manufacturer will be a Sub-Supplier, Vendor must inform TPIT in the Technical and Commercial bid giving reference to the Items that will be CE marked by Sub-Supplier and listing the potential Sub-Suppliers with full name and address.

The main CE Marking Directives for the above Items, as applicable, are:

- 2014/68/EU (ex 97/23/EC) Pressure Equipment Directive (PED);
- 2014/34/EU (ex 94/9/EC) ATEX Directive (ATEX);
- 305/2011 Construction Product Regulation (CPR);

Unit D **000**

Document Code RFQ 0186

Serial N° F

ev. Page **A 15/26**

STUDIO TORCIA A TERRA PER IMPIANTO P1CR - VERSALIS (Eni) REQUEST FOR QUOTATION

- MD, applicable module for assessing the conformity of the machinery and issue a Declaration of Conformity as per Annex II.1.A;
- CPR for structural steel as applicable with reference to EN 1090, considering the Flare as minimum as per execution class EXC3

According to CE Marking Directive definition, if Vendor or one of the eventual Sub-Suppliers as Manufacturer of some of the above mentioned Items, is located outside the EEA, the Manufacturer has to declare in writing who is the selected "European Authorized Representative" (EAR). In that case, Vendor has to provide, the Manufacturer official "Delegation to the European Authorized Representative" undertaken by the nominated European Authorized Representative in writing by acceptance signature.

4. PERFORMANCE GUARANTEES

Vendor shall guarantee the performances as specified in process data sheet.

- 99% min of thermal destruction
- Smokeless within all operating range
- Maximum pressure drops at design
- Reliable and proper operation of the flare
- Noise level

List of guarantees will be included in the proposal.

In case process performances are not achieved, Vendor will be requested to make the necessary corrective work to match the guaranteed performances. All necessary modifications shall be made at Vendor care and expenses.

Unit [

Document Code RFQ 0186

Serial N° 01 Rev. Page **A 16/26**

STUDIO TORCIA A TERRA PER IMPIANTO P1CR - VERSALIS (Eni) REQUEST FOR QUOTATION

5. **SPARE PARTS**

Vendor will provide the list of spare parts for erection and start up (already included in the scope of supply) and the lists of two years spare parts.

Two years spare parts will be separately quoted as option.

6. QA/QC, INSPECTIONS AND TESTS REQUIREMENTS

VENDOR shall establish, document and maintain a quality system as a mean of assuring that his supply conforms to the contract requirements. This quality system shall be addressed to elements of ISO 9001 or 9002, as appropriate.

The type and extent of tests shall be in strict compliance with the contractual codes, standards, data sheet(s) and/or specifications attached to this requisition.

Cost of NoBo for CE marking of the package is considered included in the scope of supply included cost for site NoBo's activities for completion of CE marking. Vendor shall establish and implement QA/QC management in Sub-supplier's premises wherever outsourcing is done. The minimum extent of inspection activities by (review of documents, random or complete inspection of material, spot or complete witnessing of tests) is specified on the attached Inspection Test Plan (ITP) Appendix.

Unit **000**

Document Code RFQ 0186

Serial N° 01 ev. Page **A 17/26**

STUDIO TORCIA A TERRA PER IMPIANTO P1CR - VERSALIS (Eni) REQUEST FOR QUOTATION

7. PROPOSAL INFORMATION

Vendor shall include in its proposal, at least the following information:

- Technical description of the proposed flare system
- Commercial description with inclusions, options and delivery terms
- Flare data sheets
- Preliminary pollutant dispersion study
- Performance Guarantees list
- Utilities consumption list
- Outline preliminary drawings showing flare system arrangement
- Preliminary burner and pilot assembly drawings
- Preliminary Piping and Instrumentation Diagrams with evidence of Battery Limits, local instrumentation and signals
- Description of the refractory system
- Preliminary information for PLC
- List of deviations
- Degree of prefabrication
- Preliminary Shipping dimensions and weights
- List of proposed sub-Vendors
- Reference list
- List of special tools (if any)
- List of spare parts (commissioning and pre commissioning and start up)
- Two years spare part list

Unit 000 **Document Code RFQ 0186**

Serial N° 01

Rev.

Page 18/26

STUDIO TORCIA A TERRA PER IMPIANTO P1CR - VERSALIS (Eni) REQUEST FOR QUOTATION

APPENDIX - A

	Part IV:	nspect	ion and test p	lan	
EQUIPMENT DESCRIPTION: EN	CLOSED GROUND FL	ARE			
CRITICALITY RATING:	INSPECTION LEVEL:	3	(1)	MR CODE:	0186-01
VENDOR:		INSPEC	TION AUTHORITY:		
REMARKS: (1) This inspection level is ref	erred to the complete unit.				

SCOPE

This Inspection and test plan is an engineering document which defines for each type of equipment:

- The type and extent of Contractor and Owner/Owner Representative involvement in each phase of fabrication, control and testing requiring an inspection
- The resulting Suppliers contractual obligations, in accordance with applicable Project General Purchase Conditions.

Note: The inspection and test plan of TECHNIP ITALY may under no circumstances be used as a substitute for the Suppliers Quality Control Plan

DEFINITION OF UT INVOLVEMENT

The nature of TECHNIP ITALY involvement is indicated against each activity of fabrication and testing by means of the letters, H, W and R the meaning of which is the following:

(Hold) Point

The Supplier cannot carry out the specified controls and tests without Inspector attendance.

Consequently, the attendance to witnessing is mandatory. The Supplier must notify to TECHNIP ITALY by fax of the dedicated inspection activity at least fifteen (15) days in advance.

The Supplier cannot deviate from this rule unless written approval has been given by involved operating center.

W:

The Supplier must notify to TECHNIP ITALY of the dedicated inspection activity at least fifteen (15) days in advance. Technip Italy representative witnessing is not mandatory, but optional. When a percentage value is indicated (i.e. W 10%) the inspection activities will be witnessed on spot basis as per percentage indicated.

If TECHNIP ITALY representative do not elect to be present, the Supplier may proceed with his own inspection, provided controls and tests records are made available to Inspector for review.

R: (Review) - Review of Documents

The Supplier has either to submit to Inspector for comments the documents required prior to the performance of the dedicated activity or to transmit or make available for the review of Inspector the results of the controls and tests conducted, as the case may be

SUPPLIER'S FABRICATION AND QUALITY CONTROL PLAN

- The Supplier must issue a Fabrication and Quality Control Plan for each equipment.
- The Supplier's Fabrication and Quality Control Plan is a document which defines in a chronological manner the list of the operations of fabrication, controls and tests in accordance with his own "know-how" and with the requirements specified in Material Requisition.
- Following information shall be clearly specified against each operation:
- Reference documents (drawings, procedures, etc.)
- Acceptance criteria (code, etc.)
- Recording documents for controls and tests
- Involvement of the Quality Control department of the Supplier and/or his sub-supplier

This Supplier's Fabrication and Quality Control Plan will have to include all inspection activities defined in Inspection and Test Plan as well as all inspection activities scheduled by the Independent Inspection Authority and/or the Client.

For equipment of inspection levels 1, 2 and 3, the Supplier's Fabrication and Quality Control Plan will have to be submitted compulsory to TECHNIP ITALY for comments before the pre-inspection meeting is held.

INSPECTION RELEASE CERTIFICATE

This document issued by TECHNIP ITALY inspector, permits the Vendor to proceed with the packing and to notify the shipment.

Unit **000**

Document Code RFQ 0186

Serial N° **01**

Rev. Pa

Page 19/26

CLASS	ENCLOSED GROUND TYPE:					C	ЭМІ	PLE	TE (ואנ	Т			MR:	0186-01
					IN	ISPE(N							
	ACTIVITIES	1	1	2	2	3	}	4	ŀ	5	5	REQ.	APF	PLICA	BLE DOCUMENTS
STAGE	DESCRIPTION											OF CERTIF.		AN	D REMARKS
	Pre-Inspection Meeting Suborders check	HR		H R		HR		ΗR		R		-		with a	ials and/or activities Ill the technical
⊰E 4TION	Material Test Certificates	R		R		R		R		R		YES	Type EN	10204	-3.1
BEFORE FABRICATION	Inspection of Sub-order components	W		W		W		W		R		-	See pertir	nent S	heet
ш	N.D.E. on row materials	W		W		R		R		R		YES			
	Explosion Proof/Intrinsically Safe Certificates/ ATEX certificates	R		R		R		R		R		YES	Where ap	plicab	le
DURING FABRICATION	Flare manifolds Flare burners and pilots Structural steel Piping Instruments Control & Ignition Local Panel Refractory												See shee See shee See shee See shee See shee See shee	t t t t	Inspection level of components 3 3 3 3 3 3 3
FINAL TEST	Visual check of mechanical protection degree – Packing and Marking Check Final visual and dimensional check Painting check Nameplate Check	w w w		w w w		W W R W		W W R W		R		YES - YES -			
DOCUMENTATI ON	Quality Control Manufacturing Dossier EC Declaration of Conformity	H R		H R		H R		H R		H R					

Unit **000**

Document Code RFQ 0186

Serial N°
01

Rev. Page **A 20/26**

CLASS	ENCLOSED GROUND TYPE: FLARE	FLARE MANIFOLDS INSPECTION												MR: 0186-01	
					IN	ISPE LE\		N					_		
STAGE	ACTIVITIES DESCRIPTION		1	2	2	3	3	4	1	ţ	5	REQ. OF CERTIF.		CABLE DOCUMENTS AND REMARKS	
BEFORE	Welders and N.D.E. operators qualifications Material test certificates	R R		R R		R R		R		R R		YES	Type EN	10204-3.1	
DURING FABRICATION	Non Destructive Examination X-Rays Inspection	R R		R R		R R		R R		R R		YES YES	Film revier requested	ew - Location map is	
FINAL	Hydraulic/Pneumatic test Visual and Dimensional check Painting check	H H W				W W R		W W R		R		YES	As requir marking	ed for PED and CE	
DOCUMENTATION	Quality Control Manufacturing Dossier	н		I		Н		н							

Unit 1

Document Code RFQ 0186

Serial N° **01** ev. Page **A 21/26**

CLASS	ENCLOSED GROUND TYPE: FLARE		FLARE BURNERS AND PILTOS INSPECTION											MR: 0186-01
					IN	ISPE LE\		N						
STAGE	ACTIVITIES DESCRIPTION	,	1	2	2	3	3	2	1		5	REQ. OF CERTIF.		CABLE DOCUMENTS AND REMARKS
BEFORE	Welders and N.D.E. operators qualifications Material test certificates	R R		R		R R		R R		R R		YES	Type EN	10204-3.1
DURING FABRICATION	Dry Penetrant Examination Fit-up X-Rays Inspection Final N.D.E. PMI	W W 5% R W 10 %		R R W W 10%		R R R W 5%		R R R R		R R R R		YES YES YES	welding a and beve	
FINAL	Dimensional Check Visual check	Н		W W		w w		W W						
DOCUMENTATION	Quality Control Manufacturing Dossier	Н		Н		Н		Н						

Unit Document Code **000 RFQ 0186**

Serial N° **01** Rev. Page **A 22/26**

CLASS	ENCLOSED GROUND TYPE: FLARE				;	STR		MR: 0186-01					
	,			I	NSPE LE\								
STAGE	A CTIVITIES DESCRIPTION	1		2	3	3	2	1	5	5	REQ. OF CERTIF.		CABLE DOCUMENTS AND REMARKS
BEFORE FABRICATION	Material test certificates	R R R R R YES Type struct R R R R R YES							Type EN structural	10204-3.1 for main components			
DURING FABRICATION	Final NDE Trial Assembly Check	R	R		R W 10 %		R		R		YES		
FINAL	Visual check Dimensional Check Painting check	w w	W 10 % W		W W 10 % R		R		R		YES		
DOCUMENTATION	Quality Control Manufacturing Dossier	Н	Н		н		Н						

Unit [

Document Code RFQ 0186

Serial N° **01** Rev. Page **A 23/26**

CLASS	ENCLOSED GROUND TY	PE:				S	MR: 0186-01							
STAGE	ACTIVITIES DESCRIPTION		1		2		3	4	4	ţ	5	OF		CABLE DOCUMENTS AND REMARKS
BEFORE FABRICATION	Welders and N.D.E. operators qualifications Material test certificates												Type EN	10204-3.1
DURING FABRICATION	N.D.E. PMI					W 10							On SS pa	urts
FINAL	Dimensional Check Visual Check Hydraulic test		w	١	v	W		R		R		YES	As require marking	ed for PED and CE
DOCUMENTATION	Quality Control Manufacturing Dose	sier	Н	ŀ	4	Н		Н						

Unit [

Document Code RFQ 0186

Serial N° **01** Rev. Page **A 24/26**

CLASS	ENCLOSED GROUND TYPE: FLARE					ı	NST	RU	N	^{IR:} 0186-01				
	_				IN	ISPE LE\	CTIO /EL	N						
STAGE	ACTIVITIES DESCRIPTION		1	2	2	3	3	4	1	5	5	REQ. OF CERTIF.		ABLE DOCUMENTS ID REMARKS
	Material test certificates	R		R		R		R		R		YES		nformity Certificate
	Mechanical Protection degree Certificate	R		R		R		R		R		YES	At least Cor	nformity Certificate
BEFORE	Explosion Proof/Intrinsically safe Certificate	R		R		R		R		R		YES	Issued by R	ecognized Authority icate
DURING FABRICATION														
	Calibration test	R		R		R		R		R		YES	As per appli	icable code
	Functional Test	R		R		R		R		R		YES	As per appli	icable code
FINAL TEST	Pressure Test	R		R		R		R		R		YES	As per appli	icable code
FINAL	Tagging Check	W		W		W								
	Visual and Dimensional check	W		W		W								
DOCUMENTATION	Quality Control Manufacturing Dossier	Н		H		H		H						

Unit Document Code **000 RFQ 0186**

Serial N° **01** Rev. Page **A 25/26**

CLASS	ENCLOSED GROUND TYPE: FLARE	CON	INSPECTION											MR:	0186-01				
	,				IN	SPE(N											
STAGE	ACTIVITIES DESCRIPTION	1	1	2	2	3	3	4	4	5	5	REQ. OF CERTIF.		ICABLE DO	OCUMENTS ARKS				
BEFORE	Manufacturing certificates	R		R		R		R		R		YES	Issued by (Conform	urer v, Internal Test)					
DURING FABRICATION																			
	Wiring check	W		W		W		W											
	Simulated Functional Test	W		W		W		W		R		YES							
FINAL	Insulation check	W		W		W		W				YES -							
	Visual and dimensional check	W		W		W		W				-							
	Painting check	W		W		W		R		R		YES							
	Pressure test	W		W		W		R		R		YES							
DOCUMENTATION	Quality Control Manufacturing Dossier	н		Н		Н		Н											

Unit Document Code **000 RFQ 0186**

Serial N° **01** Rev. Page **A 26/26**

CLASS	ENCLOSED GROUND TYPE: FLARE	REF	REFRACTORY											MR:	0186-01	
					IN	ISPE LE\		N								
STAGE	ACTIVITIES DESCRIPTION	,	1	2	2	•	3	4	4	5	5	REQ. OF CERTIF.		ICABLE [OOCUMENTS MARKS	;
BEFORE FABRICATION	Manufacturing certificates	R		R		R		R		R		YES				
DURING FABRICATION	Bulk Density Check Permanent Linear Change Test Compressive Strength Test Chemical composition	R R R R		R R R		R R R		R R R		R R R R		YES YES YES YES				
FINAL	Anchor visual check Marking and Packing check	н		W		W (5 %)		R		R R		YES				
DOCUMENTATION	Quality Control Manufacturing Dossier	Н		Н		Н		Н								

	eni _{versalis}					STUDIO TORCIA A TERRA PER IMPIANTO PICR VERSALIS (Eni)									
		DATA SHEE GROUND F			Proje			cument Code	Serial N	° Rev					
-	Service	GROUND	GROUND F	T.ARE	07032	70001		Item		RV-101					
	Number Required		01100112 1	1 (note	3)			MR			- <u>-</u>				
	Туре		ENCLOSED GROU	-		ocation			RINDISI - I	TALY					
	-78-	-													
	PERFORMANCE DATA														
	Capacity	an (Nata 5)	kg/h	1		2	3	130000	4	5	6				
	Emergency Stage/Ca Flow Rate	se (Note 3)	kg/h	1500		5000	12500	, ,	20000	30000	5500				
	Temperature		°C	-130/201		140/152	-37/8		10/276	31/75	-22/2				
	Allowable Pressure I)ron	mbar	-130/201		140/132		endor (note	1	31/73	-22/2				
	Molecular Weight	этор	kg/kmol	3,8/35,4	9	9,7/56	15/45		,6/79,8	41/55,1	19,4/8				
	Ratio of Specific Hea	ats	5,	2,3,32,1		- , . ,			, , , , , ,	,,					
	Low Heating Value		kcal/kg												
	8								2/4						
	Composition		% mol.	page 3 (1A,1B,1C,1		page 3 2A,2B)	page (3A,3E	_	ge 3/4 AA,4B)	page 4 (5A/5B)	page (6A/6				
				(,,,,,		,	(SA)SE	-, (-	,,	(,)	(3A/0				
	Design Conditi	on													
	Temperature		°C bar(g)	1	-140/280 (note 6)										
	Pressure				2.	3,5	. 1								
_	Material	(not = 1 2)	D.		Sta	whole Dane).							
A	SMOKELESS: - Medium	Required	yes	(note 4, 8) - Percentage				Whole Rang	,7-18,1 (MP STE		(AIR) b				
	- Medium - Flow Rate	LP STEAM or MP STEAM / Al		kg/h	- Pressure										
	- Flow Kate			1.g/11	- Tempera	ature	150-180 (LP STEAM) or 2		LU-LIV (MF BIEF	, , Ambient	(DIK)				
			M.W.	L.H.V.	1	Flow	Rate	Dra	essure	Ta	Temperature				
	Utility Gas	Type	kg/kmol	kcal/kg			/h		bar(g)		°C				
	- Purge Gas	Nitrogen	_				endor		2,9-4,4		ambient				
	<u> </u>	Fuel Gas	Gas 9000-1		_				2020						
	- Pilot Gas	(note 2)		9000-115	UU	By Ve	endor	2,9	2,9-3,9		ambient				
	-Support gas	Fuel Gas (note 2)		9000-115	00	By Ve	endor	2,9	2,9-3,9		ambient				
	-Instrument air	Air		_	By Ve		endor	2,9	2,9-4,4		ambient				
		Dag	ion Min	May		A leituda			57 + 0 1	m a.s.l.					
	Temperature	Design Min. Max. Altitude 5,7 ± 0,1 m a.s.l. °C -5 45 Wind Velocity 33 max, 5 average m/s													
	Rel. Humid.	8	20	90		Solar Radiat	-		-		W/m²				
	DESIGN DATA														
	Design Code API 521 , API 537 (ISO 25457)														
	Exit Gas Velocity m/s Mach Number									-					
]	FLARE PF	ROCESS DE									
	Combustion Chamber Diameter ~15m(9)														
A	Windfence Diameter						30m(9)								
71	Total Flare Height ~35m(9)														
A															
A	NOTES:	ble Pressur	e Drop at Ful	ll Capacity:	0.3 har	(To be	Confirmed	d by Vendor	.)						
	(1) Max. Allowable Pressure Drop at Full Capacity: 0,3 bar (To be Confirmed by Vendor)														
		(2)Composed by recovery gas with variable composition; if available, methane is fed. Density=0,7÷1,3 kg/m ³													
	(2)Composed by		he ground fla	(3) Vendor shall provide the ground flare and (as option) the new liquid seal drum V-9101 and the modified liquid seal 9063. B.L. will be interconnecting at Supplier equipment.											
	(2)Composed by (3)Vendor shall	l provide t	-		quipmen										
	(2)Composed by (3)Vendor shal 9063. B.L. w	l provide the	rconnecting a	at Supplier e			perature o	of the above	e relief so	enarios.					
	(2)Composed by (3)Vendor shal 9063. B.L. w Liquid seal dr	l provide the interpolation of	rconnecting a	at Supplier e uate, to face	the lo	ower temp									
	(2)Composed by (3)Vendor shal 9063. B.L. w	l provide the control of the control	rconnecting a hall be adequ flare and Lic	at Supplier e uate, to face quid seal dru	the lo	ower temp	7-9101, sh	nall also c	onsider the	ı					
	(2)Composed by (3)Vendor shal 9063. B.L. w Liquid seal dr Vendor design	l provide the control of the control	rconnecting a hall be adequ flare and Lic	at Supplier e uate, to face quid seal dru	the lo	ower temp	7-9101, sh	nall also c	onsider the	ı					
	(2)Composed by (3)Vendor shal 9063. B.L. w Liquid seal dr Vendor design contemporaneou	l provide the interior sign of the interior ground is operation apacity.	rconnecting a hall be adequ flare and Lic of the exist	at Supplier e uate, to face quid seal dru ting elevated	the loms V-90	ower temp 063 and V when the	7-9101, she total re	nall also o	onsider the	the					
	(2)Composed by (3)Vendor shal 9063. B.L. w Liquid seal dr Vendor design contemporaneou ground flare o	l provide the interpretation of the interpretation apacity.	rconnecting a hall be adequ flare and Lic of the exist minimum stea	at Supplier e uate, to face quid seal dru ting elevated am (MP or LP)	ms V-90 flare	ower temp 063 and V when the	7-9101, she total re	nall also o	onsider the	the					
	(2)Composed by (3)Vendor shall 9063. B.L. w Liquid seal dr Vendor design contemporaneou ground flare c (4) Vendor to	l provide the ill be interested in the intereste	rconnecting a hall be adequ flare and Lic of the exist minimum steakeless operat	at Supplier e mate, to face quid seal dru ting elevated am (MP or LP) tion with air	the loms V-90 flare	ower temp 063 and V when the otion for	7-9101, she total re	nall also control	onsider the will exceed n and as an	the option					
	(2)Composed by (3)Vendor shall 9063. B.L. w Liquid seal dr Vendor design contemporaneou ground flare c (4) Vendor to Vendor will qu	l provide the ill be interested in the intereste	rconnecting a hall be adequ flare and Lic of the exist minimum stea keless operat extreme conc	at Supplier e mate, to face quid seal dru ting elevated mm (MP or LP) tion with air ditions. Such	the loms V-90 flare consump	ower temp 063 and V when the otion for will be	7-9101, she total restricted restricted from the smokeless finalized	nall also control	onsider the will exceed n and as an	the option					
	(2)Composed by (3)Vendor shall 9063. B.L. w Liquid seal dr Vendor design contemporaneou ground flare c (4) Vendor to Vendor will qu (5) Represente	l provide the ill be interested in the intereste	rconnecting a hall be adequ flare and Lic of the exist minimum stea keless operat extreme conc	at Supplier e mate, to face quid seal dru ting elevated mm (MP or LP) tion with air ditions. Such	the loms V-90 flare consump	ower temp 063 and V when the otion for will be	7-9101, she total restricted restricted from the smokeless finalized	nall also control	onsider the will exceed n and as an	the option					
A	(2)Composed by (3)Vendor shall (3)Vendor shall po63. B.L. w Liquid seal dr Vendor design contemporaneou ground flare c (4) Vendor to Vendor will qu (5) Represente definition of	l provide the ill be interested in the intereste	minimum steakeless operate extreme conceader and release.	at Supplier endate, to face quid seal dru ting elevated am (MP or LP) tion with air ditions. Such levant heat e	the loms V-90 flare consump cases exchange	ower temp 063 and V when the otion for will be	7-9101, she total restricted restricted from the smokeless finalized	nall also control	onsider the will exceed n and as an	the option					
A	(2)Composed by (3)Vendor shall 9063. B.L. w Liquid seal dr Vendor design contemporaneou ground flare c (4) Vendor to Vendor will qu (5) Represente definition of	l provide the ill be interested in the intereste	minimum steakeless operate extreme conceader and release.	at Supplier e mate, to face quid seal dru ting elevated am (MP or LP) tion with air ditions. Such levant heat e	the loms V-90 flare consump cases exchange	ower temp 063 and V when the otion for will be	7-9101, she total restricted restricted from the smokeless finalized	nall also control	onsider the will exceed n and as an	the option					

AMBIENT DATA AMBIENT DATA AMBIENT DATA Temperature °C Rel. Humid. % Solar Radiation Design Code Exit Gas Velocity m/s Mach Number Exit Gas Velocity m/s Mach Number FLARE PROCESS DESIGN Combustion Chamber Diameter m Windfence Diameter m Windfence beight m Windfence beight m NOTES: (6) Design temperature associated to the discharge scenario with limited time duration. Normal condition are ambient. Minimum design temperature for selection of materials will be -140 °C. (7) Vendor to specify noise level at ground. A ISSUE FOR RFQ 10-apr-17 G.C. C.S. C.S. C.S.	CR											
Service												
Number Required												
Periodic	1E											
Capacity kg/h 130000												
Capacity kg/h 7												
Finergency Stage/Case (Note 5)	PERFORMANCE DATA											
Flow Rate												
Temperature												
Allowable Pressure Drop mbar By Vendor (note 1)												
Molecular Weight kg /kmol 18,7/48,9 23,3/38,2												
Ratio of Specific Heats Low Heating Value kcal/kg Page 4 Page 4 (7A/7B) (8A/8B)												
Low Heating Value Real Required Requir												
Composition Required Pressure Date Pressure Date Pressure Date Pressure Date Pressure Date Design Desi	-											
Composition	-											
Pressure bar(g) Material A SMOKELESS: Required resides page1) - How Rate Pressure												
Pressure Dar(g)												
Material A SMOKELESS: Required years page 1) - Percentage Mhole range (see page 1) - Notes: - Medium - Pressure Pressure - Pr												
- Hedium												
- Hedium	ee page 1) %											
Utility Gas Type M.W. L.H.V. Flow Rate Pressure Temperature & Design Min. Max. Altitude Design DATA Design DATA Design DATA Design Code Exit Gas Velocity m/s Mach Number FLARE PROCESS DESIGN Combustion Chamber Diameter m Windfence Diameter m Windfence height m Windfence height m NOTES: (6) Design temperature associated to the discharge scenario with limited time duration. Normal condition are ambient. Minimum design temperature for selection of materials will be 140 °C. (7) Vendor to specify noise level at ground. A (8) Thermal destruction will be 99% min. A (9) Expected to be confirmed by Vendor.												
Cullity Gas Type kg/kmol kcal/kg kg/h bar(g) AMBIENT DATA AMBIENT DATA Temperature °C Rel. Humid. % Solar Radiation Design Code Exit Gas Velocity m/s Mach Number Exit Gas Velocity m/s Mach Number FLARE PROCESS DESIGN Combustion Chamber Diameter m Windfence Diameter m Windfence Diameter m Windfence height m NOTES: (6) Design temperature associated to the discharge scenario with limited time duration. Normal condition are ambient. Minimum design temperature for selection of materials will be -140 °C. (7) Vendor to specify noise level at ground. A (8) Thermal destruction will be 99% min. A ISSUE FOR RFQ 10-apr-17 G.C. C.S. C.S.												
AMBIENT DATA AMBIENT DATA AMBIENT DATA Temperature °C Min. Max. Altitude Wind Velocity Rel. Humid. % Solar Radiation Design Code Exit Gas Velocity m/s Mach Number FLARE PROCESS DESIGN Combustion Chamber Diameter m Windfence Diameter m Windfence Diameter m Windfence height m Wormal condition are ambient. Minimum design temperature for selection of materials will be -140 °C. (7) Vendor to specify noise level at ground. A (8) Thermal destruction will be 99% min. A (9) Expected to be confirmed by Vendor.												
Temperature °C Wind Velocity Rel. Humid. % Solar Radiation DESIGN DATA Design Code Exit Gas Velocity m/s Mach Number FLARE PROCESS DESIGN Combustion Chamber Diameter m Windfence Diameter m Windfence Diameter m Windfence Height m NOTES: (6) Design temperature associated to the discharge scenario with limited time duration. Normal condition are ambient. Minimum design temperature for selection of materials will be -140 °C. (7) Vendor to specify noise level at ground. A (8) Thermal destruction will be 99% min. A (9) Expected to be confirmed by Vendor.	oc											
Design Min. Max. Altitude Temperature °C Wind Velocity Rel. Humid. % Solar Radiation DESIGN DATA DESIGN DATA Design Code Exit Gas Velocity m/s Mach Number FLARE PROCESS DESIGN Combustion Chamber Diameter m Windfence Diameter m Windfence Diameter m Windfence Height m NOTES: (6) Design temperature associated to the discharge scenario with limited time duration. Normal condition are ambient. Minimum design temperature for selection of materials will be -140 °C. (7) Vendor to specify noise level at ground. A (8) Thermal destruction will be 99% min. A (9) Expected to be confirmed by Vendor.												
Design Min. Max. Altitude Temperature °C Wind Velocity Rel. Humid. % Solar Radiation DESIGN DATA Design Code Exit Gas Velocity m/s Mach Number FLARE PROCESS DESIGN Combustion Chamber Diameter m Windfence Diameter m Windfence Diameter m Windfence height m NOTES: (6) Design temperature associated to the discharge scenario with limited time duration. Normal condition are ambient. Minimum design temperature for selection of materials will be -140 °C. (7) Vendor to specify noise level at ground. A (8) Thermal destruction will be 99% min. A (9) Expected to be confirmed by Vendor.												
Temperature °C Wind Velocity Rel. Humid. % Solar Radiation DESIGN DATA Design Code Exit Gas Velocity m/s Mach Number FLARE PROCESS DESIGN Combustion Chamber Diameter m Windfence Diameter m Windfence Diameter m Windfence height m NOTES: (6) Design temperature associated to the discharge scenario with limited time duration. Normal condition are ambient. Minimum design temperature for selection of materials will be -140 °C. (7) Vendor to specify noise level at ground. A (8) Thermal destruction will be 99% min. A (9) Expected to be confirmed by Vendor. A ISSUE FOR RFQ 10-apr-17 G.C. C.S. C.S. C.S. Wind Velocity Solar Radiation Wind Velocity Solar Radiation Mach Number m m Mach Number m m Mach Number m m Mach Number m Mach Number m m Minimum design temperature for selection of materials will be -140 °C. (7) Vendor to specify noise level at ground. A (8) Thermal destruction will be 99% min. A ISSUE FOR RFQ 10-apr-17 G.C. C.S. C.S. A ISSUE FOR RFQ 10-apr-17 G.C. C.S. C.S. Mach Number Water Gas Velocity Mach Number m m m m m m m m m	AWDIENT DATA											
Temperature °C Wind Velocity Solar Radiation DESIGN DATA Design Code Exit Gas Velocity m/s Mach Number FLARE PROCESS DESIGN Combustion Chamber Diameter m Windfence Diameter m Windfence height m Windfence height m NOTES: (6) Design temperature associated to the discharge scenario with limited time duration. Normal condition are ambient. Minimum design temperature for selection of materials will be -140 °C. (7) Vendor to specify noise level at ground. A (8) Thermal destruction will be 99% min. A (9) Expected to be confirmed by Vendor. A ISSUE FOR RFQ 10-apr-17 G.C. C.S. C.S. C.S.	m a.s											
Rel. Humid. % Solar Radiation DESIGN DATA Design Code Exit Gas Velocity m/s Mach Number FLARE PROCESS DESIGN Combustion Chamber Diameter m Windfence Diameter m Windfence height m NOTES: (6) Design temperature associated to the discharge scenario with limited time duration. Normal condition are ambient. Minimum design temperature for selection of materials will be -140 °C. (7) Vendor to specify noise level at ground. A (8) Thermal destruction will be 99% min. A (9) Expected to be confirmed by Vendor.	m/s											
Design Code Exit Gas Velocity m/s Mach Number FLARE PROCESS DESIGN Combustion Chamber Diameter Windfence Diameter Windfence Diameter Windfence height Mottes: (6) Design temperature associated to the discharge scenario with limited time duration. Normal condition are ambient. Minimum design temperature for selection of materials will be -140 °C. (7) Vendor to specify noise level at ground. A (8) Thermal destruction will be 99% min. A (9) Expected to be confirmed by Vendor.	W/m²											
Design Code Exit Gas Velocity m/s Mach Number FLARE PROCESS DESIGN Combustion Chamber Diameter Windfence Diameter Windfence Diameter Windfence height Mottes: (6) Design temperature associated to the discharge scenario with limited time duration. Normal condition are ambient. Minimum design temperature for selection of materials will be -140 °C. (7) Vendor to specify noise level at ground. A (8) Thermal destruction will be 99% min. A (9) Expected to be confirmed by Vendor.												
Exit Gas Velocity m/s Mach Number FLARE PROCESS DESIGN Combustion Chamber Diameter m Windfence Diameter m Total Flare Height m Windfence height m NOTES: (6) Design temperature associated to the discharge scenario with limited time duration. Normal condition are ambient. Minimum design temperature for selection of materials will be -140 °C. (7) Vendor to specify noise level at ground. A (8) Thermal destruction will be 99% min. A (9) Expected to be confirmed by Vendor.												
Exit Gas Velocity m/s Mach Number FLARE PROCESS DESIGN Combustion Chamber Diameter m Windfence Diameter m Total Flare Height m Windfence height m NOTES: (6) Design temperature associated to the discharge scenario with limited time duration. Normal condition are ambient. Minimum design temperature for selection of materials will be -140 °C. (7) Vendor to specify noise level at ground. A (8) Thermal destruction will be 99% min. A (9) Expected to be confirmed by Vendor.												
FLARE PROCESS DESIGN Combustion Chamber Diameter m Windfence Diameter m Total Flare Height m NOTES: (6) Design temperature associated to the discharge scenario with limited time duration. Normal condition are ambient. Minimum design temperature for selection of materials will be -140 °C. (7) Vendor to specify noise level at ground. A (8)Thermal destruction will be 99% min. A (9)Expected to be confirmed by Vendor.												
Combustion Chamber Diameter m Windfence Diameter m Total Flare Height m Windfence height m NOTES: (6) Design temperature associated to the discharge scenario with limited time duration. Normal condition are ambient. Minimum design temperature for selection of materials will be -140 °C. (7) Vendor to specify noise level at ground. A (8)Thermal destruction will be 99% min. A (9)Expected to be confirmed by Vendor.	Exit Gas Velocity m/s Mach Number											
Combustion Chamber Diameter m Windfence Diameter m Total Flare Height m Windfence height m NOTES: (6) Design temperature associated to the discharge scenario with limited time duration. Normal condition are ambient. Minimum design temperature for selection of materials will be -140 °C. (7) Vendor to specify noise level at ground. A (8)Thermal destruction will be 99% min. A (9)Expected to be confirmed by Vendor.	ELADE DDOCECC DECICN											
Windfence Diameter m Total Flare Height m Windfence height m NOTES: (6) Design temperature associated to the discharge scenario with limited time duration. Normal condition are ambient. Minimum design temperature for selection of materials will be -140 °C. (7) Vendor to specify noise level at ground. A (8)Thermal destruction will be 99% min. A (9)Expected to be confirmed by Vendor. A ISSUE FOR RFQ 10-apr-17 G.C. C.S. C.S.												
Total Flare Height m Windfence height m NOTES: (6) Design temperature associated to the discharge scenario with limited time duration. Normal condition are ambient. Minimum design temperature for selection of materials will be -140 °C. (7) Vendor to specify noise level at ground. A (8)Thermal destruction will be 99% min. A (9)Expected to be confirmed by Vendor. A ISSUE FOR RFQ 10-apr-17 G.C. C.S. C.S.												
Windfence height m NOTES: (6) Design temperature associated to the discharge scenario with limited time duration. Normal condition are ambient. Minimum design temperature for selection of materials will be -140 °C. (7) Vendor to specify noise level at ground. A (8)Thermal destruction will be 99% min. A (9)Expected to be confirmed by Vendor. A ISSUE FOR RFQ 10-apr-17 G.C. C.S. C.S.												
NOTES: (6) Design temperature associated to the discharge scenario with limited time duration. Normal condition are ambient. Minimum design temperature for selection of materials will be -140 °C. (7) Vendor to specify noise level at ground. A (8)Thermal destruction will be 99% min. A (9)Expected to be confirmed by Vendor. A ISSUE FOR RFQ 10-apr-17 G.C. C.S. C.S.												
(6) Design temperature associated to the discharge scenario with limited time duration. Normal condition are ambient. Minimum design temperature for selection of materials will be -140 °C. (7) Vendor to specify noise level at ground. A (8)Thermal destruction will be 99% min. A (9)Expected to be confirmed by Vendor. A ISSUE FOR RFQ 10-apr-17 G.C. C.S. C.S.												
Normal condition are ambient. Minimum design temperature for selection of materials will be -140 °C. (7) Vendor to specify noise level at ground. A (8)Thermal destruction will be 99% min. A (9)Expected to be confirmed by Vendor. A ISSUE FOR RFQ 10-apr-17 G.C. C.S. C.S.												
be -140 °C. (7) Vendor to specify noise level at ground. A (8)Thermal destruction will be 99% min. A (9)Expected to be confirmed by Vendor. A ISSUE FOR RFQ 10-apr-17 G.C. C.S. C.S.												
(7) Vendor to specify noise level at ground. A (8)Thermal destruction will be 99% min. A (9)Expected to be confirmed by Vendor. A ISSUE FOR RFQ 10-apr-17 G.C. C.S. C.S.												
A (8)Thermal destruction will be 99% min. A (9)Expected to be confirmed by Vendor. A ISSUE FOR RFQ 10-apr-17 G.C. C.S. C.S.												
A (9)Expected to be confirmed by Vendor. A ISSUE FOR RFQ 10-apr-17 G.C. C.S. C.S.												
PA PROCESS ISSUE 7-apr-17 SC DS DS												

	versalis DATA SE	IEET FOR			-+	Project	N° Unit		nent Code	S (Eni	rial N°	Rev.	
		D FLARE					2001 091		0180		001	A	
	Service	3 T E. H.E.		GROUND	FLARE				Ite			RV-101E	_
	Number Required			1 (1	note 3)				М	R			
_	Type ENCLOSED GROUND	FLARE				Loca	tion		BR	INDISI	- ITALY		_
			DISCHAF	RGED FL	ARE GAS	S AND	FUEL GAS	COMPOS	SITION				
	DISCHARGED FLAI	RE GAS											
	Stage/Emergency Case		Formula	l .	1A	1B	1C	1D	2A	2B	3A	3B	-
	Total Molecular Weight WATER		H20		27,3	3,8	35,4 38,0	28,0	9,7	56,0	15	45	1
	HYDROGEN		H2		20,7	87,0			45,0		7,0	-	Ę
	NITROGEN		N2		0,6	07,0	, 0,5	100,0	45,0		7,0		`
	METHANE		C2H4		25,8	13,0) 12,0	100,0	55,0		93,0		9
	ACETYLENE		C2H2		20,0	. 0,	, , , , ,		00,0		00,0		Ť
	ETHYLENE		C2H4		15,4		15,0						3
\exists	ETHANE		C2H6		2,2		3,0						_
	PROPYNE		C3H4									4,7	_
	PROPADIENE		C3H4									4,0	_
	PROPENE		C3H6		17,2		5,0					66,5	_
	PROPANE		C3H8		3,1							2,8	
	VAC (VINYLACETYLENE)	C4H4							1,0			
	1,3 BUTADIENE		C4H6				1,5			46,5		11,0	
	1-BUTENE		C4H8							13,5		3,5	
	Cis 2-BUTENE		C4H8							4,5			
	Trans 2-BUTENE I-BUTENE		C4H8 C4H8							4,0		0.0	
	IBUTANE		C4H10							23,0		6,0	
	BUTANE		C4H10							5,0		0,5	_
	CYCLOPENTADIENE		C5H6							0,0		1,0	_
	Trans 1,3 PENTADIENE		C5H8									.,0	_
	PENTANE		C5H12										_
	HEXANE		C6H14										_
	BENZENE		C6H6				2,5						
	HEPTANE		C7H16										
	TOLUENE		C7H8				3,0						
	STYRENE		C8H8				4,0						
	EBENZENE		C8H10										
	MXYLENE		C8H10		10.0		5,0						
	C4 TOTALI		-		13,9								
	IDROCARBURI > C4 C4-C5		-		1,1		2,0						
	IDROCARBURI CON NBP	155°C	-				2,5					-	
	VAPORI "VIRGIN NAFTA"		-				2,5						_
	VAPORI OLIO (NBP=200°C		-										
	VAPORI BENZINE	·)	-										_
	ALTRI IDROCARBURI PES	SANTI	-							0,5			_
	ALTRI IDROCARBURI PES	SANTI	-							0,5			
	NOTES:												<u>-</u>
													_]
- +				i	i	1			I			1	
PA	PROCESS ISSUE 7	-apr-17	sc	DS	DS								+

DATA SHEET FO GROUND FLARE equired ENCLOSED GROUND FLARE HARGED FLARE GASE Emergency Case Molecular Weight R OGEN GEN ANE (LENE LENE NE ME ADIENE ENE WINYLACETYLENE) TADIENE	E GRO 1 DISCHARGED	UND FLARE (note 3	Location	01 091 on	SP		7A 18,7 8,0 25,0	7B 48,9	Rev. A RV-101E	8
HARGED FLARE GASEMETERS HARGED FLARE GASEMETERS Molecular Weight R OGEN ANE VLENE LENE NE ADJENE ADJENE KNE WINYLACETYLENE) TADJENE	DISCHARGED S (molar comp Formula H20 H2 N2 C2H4 C2H2 C2H4 C2H6 C3H4 C3H6 C3H6	UND FLARE (note 3 FLARE GAS ossition % 48 79,8 11,5 6,5	Location S AND FU 5 A 41,0 1,0	on EL GAS C 5B	6A 19,4 30,0	TION 6B 84,3	7A 18,7 8,0 25,0	- ITALY	RV-101E	
HARGED FLARE GASEmergency Case Molecular Weight R OGEN GEN ANE //LENE LENE NE //NE ADJIENE ENE ANE //NE ADJIENE ENE ANE //NE ANE //NE ADJIENE ENE ANE //NE ADJIENE	DISCHARGED S (molar comp Formula H20 H2 N2 C2H4 C2H2 C2H4 C2H6 C3H4 C3H4 C3H6	(note 3 FLARE GAS osition % 4B 79,8 11,5 6,5	Location	EL GAS C	6A 19,4 30,0	TION 6B 84,3	7A 18,7 8,0 25,0	- ITALY	Z 8A	8
HARGED FLARE GASEmergency Case Molecular Weight R OGEN GEN ANE //LENE LENE NE //NE ADJIENE ENE ANE //NE ADJIENE ENE ANE //NE ANE //NE ADJIENE ENE ANE //NE ADJIENE	DISCHARGED S (molar comp Formula H20 H2 N2 C2H4 C2H2 C2H4 C2H6 C3H4 C3H4 C3H6	resition % 48 79,8 11,5 6,5	Location S AND FU 5 A	EL GAS C	6A 19,4 30,0	TION 6B 84,3	7A 18,7 8,0 25,0	7B	8A	
HARGED FLARE GASEmergency Case Molecular Weight R OGEN GEN ANE //LENE LENE NE //NE ADIENE ENE ADIENE ENE ANE //NE ADIENE	S (molar comp Formula H20 H2 N2 C2H4 C2H2 C2H4 C2H6 C3H4 C3H4 C3H6	79,8 11,5 6,5	5 AND FU 5 A 41,0 1,0	EL GAS C	6A 19,4 30,0	6B 84,3	7A 18,7 8,0 25,0	7B	8A	
Emergency Case Molecular Weight R OGEN GEN ANE VLENE LENE NE VNE ADIENE ENE NE VINE ADIENE ENE VINE ANE VINE ADIENE TALE TALE TALE TALE TALE TALE TALE TAL	S (molar comp Formula H20 H2 N2 C2H4 C2H2 C2H4 C2H6 C3H4 C3H4 C3H6	79,8 11,5 6,5	5A 41,0 1,0	5B	6A 19,4 30,0	6B 84,3	18,7 8,0 25,0			
Emergency Case Molecular Weight R OGEN GEN ANE VLENE LENE NE VNE ADIENE ENE NE VINE ADIENE ENE VINE ANE VINE ADIENE TALE TALE TALE TALE TALE TALE TALE TAL	Formula H20 H2 N2 C2H4 C2H2 C2H4 C2H6 C3H4 C3H4 C3H6	4B 79,8 11,5 6,5	5A 41,0		30,0	84,3	18,7 8,0 25,0			
Emergency Case Molecular Weight R OGEN GEN ANE VLENE LENE NE VNE ADIENE ENE NE VINE ADIENE VINE ANE VINYLACETYLENE) TADIENE	Formula H20 H2 N2 C2H4 C2H2 C2H4 C2H6 C3H4 C3H4 C3H6	4B 79,8 11,5 6,5	5A 41,0		30,0	84,3	18,7 8,0 25,0			
Molecular Weight R OGEN OGEN ANE VLENE LENE NE VNE ADIENE ENE NE VINE ADIENE VINE VINYLACETYLENE) TADIENE	H20 H2 N2 C2H4 C2H2 C2H4 C2H6 C3H4 C3H4 C3H6	79,8 11,5 6,5	1,0		30,0	84,3	18,7 8,0 25,0			
R OGEN OGEN ANE VLENE LENE NE VNE ADIENE ENE ANE VINYLACETYLENE) TADIENE	H2 N2 C2H4 C2H2 C2H4 C2H6 C3H4 C3H4 C3H6	11,5 6,5	1,0	55,1	30,0		8,0 25,0	48,9	23,3	38
OGEN GEN ANE /LENE LENE NE /NE ADIENE ENE ANE VINYLACETYLENE) TADIENE	H2 N2 C2H4 C2H2 C2H4 C2H6 C3H4 C3H4 C3H6	6,5			,	25,0	25,0			
GEN ANE (TLENE LENE NE (TNE ADIENE LENE ADIENE LENE ADIENE LENE LENE ANE ANE VINYLACETYLENE) TADIENE	N2 C2H4 C2H2 C2H4 C2H6 C3H4 C3H4 C3H6				,					
ANE YLENE LENE NE YNE ADIENE CNE UNE VINYLACETYLENE) TADIENE	C2H4 C2H2 C2H4 C2H6 C3H4 C3H4 C3H6	26,0			28,0		25.0			
VLENE LENE NE VINE ADIENE CNE ANE VINYLACETYLENE) TADIENE	C2H2 C2H4 C2H6 C3H4 C3H4 C3H6	20,0			20,0		35.0		72,0	
LENE NE TNE ADIENE ENE ANE VINYLACETYLENE) TADIENE	C2H4 C2H6 C3H4 C3H4 C3H6						00,0		72,0	
NE YNE ADIENE ENE ANE VINYLACETYLENE) TADIENE	C2H6 C3H4 C3H4 C3H6				24,0		20,0			28
TNE ADIENE ENE ANE VINYLACETYLENE) TADIENE	C3H4 C3H4 C3H6		9.0		24,0		3,0			
ADIENE ENE ANE VINYLACETYLENE) TADIENE	C3H4 C3H6		0,0				0,0	3,5		
ENE ANE VINYLACETYLENE) TADIENE	C3H6							2,5		
NNE VINYLACETYLENE) TADIENE			87,0		18,0		5.0	37,0	28,0	72
VINYLACETYLENE) TADIENE	しいコロガ		3,0		10,0		0,0	3,0	20,0	
TADIENE	C4H4		0,0	1,7				0,0		
	C4H6			46,8			1,0	36,0		
ENE	C4H8			13,5			-,-			
UTENE	C4H8			4,0						
-BUTENE	C4H8			4,5						
ENE	C4H8			23,0			0,5	18,0		
NE	C4H10			2,0						
NE	C4H10			4,5		9,0				
OPENTADIENE	C5H6					2,0	0,5			
,3 PENTADIENE	C5H8					0,5				
NE	C5H12					0,5				
NE	C6H14					2,0				
ENE	C6H6					11,0	1,5			
NE	C7H16					4,0				
ENE	C7H8					4,0	0,5			
ENE	C8H8									
ENE	C8H10									
ENE	C8H10									
ΓALI	-									
ARBURI > C4	-									
	-									
'ARBURI CON NBP≥155°C	-									
	-	11,0								
		45,0								
						11,0				
IDROCARBURI PESANTI	-									
	JA PENTADIENE ANE NE ENE ENE ENE ENE EARBURI > C4 CARBURI CON NBP≥155°C RI "VIRGIN NAFTA" RI OLIO (NBP=200°C) RI BENZINE IDROCARBURI PESANTI	ANE C5H12 NE C6H14 ENE C6H6 ANE C7H16 ENE C7H8 ENE C8H8 ZENE C8H10 ENE C8H10 TALI CARBURI > C4	ANE C5H12 NE C6H14 ENE C6H6 ANE C7H16 ENE C7H8 ENE C8H8 ZENE C8H10 ENE C8H10 EARBURI > C4	ANE C5H12 NE C6H14 CNE C6H6 ANE C7H16 ENE C7H8 ENE C8H8 ENE C8H10 ENE C8H10 ENE C8H10 ENE C8H10 ENE C8H10 ENE C8H10 TALI CARBURI > C4 - CARBURI > C4 - CARBURI CON NBP≥155°C EN "VIRGIN NAFTA" FI OLIO (NBP=200°C) EN ENZINE - - - - - - - - - - - - -	C5H12	C5H12	ANE C5H12 0,5 NE C6H14 2,0 SNE C6H6 111,0 ANE C7H16 4,0 SNE C7H8 4,0 SNE C8H8 4,0 SNE C8H8 5 SNE C8H10 5 SNE C8H1	ANE C5H12 0,5 NE C6H14 2,0 ENE C6H6 11,0 1,5 ANE C7H16 4,0 ENE C7H8 4,0 0,5 ENE C8H8 4,0 0,5 ENE C8H8 ZENE C8H10	ANE C5H12 0,5 NE C6H14 2,0 SNE C6H6 11,0 1,5 ANE C7H16 4,0 SNE C7H8 4,0 0,5 SNE C8H8 4,0 0,5 SNE C8H8 5 SNE C8H8 5 SNE C8H10 5 SNE C8H10 5 SNE C8H10 6 SNE C8H10 7 SNE C8H10	ANE C5H12 0,5

