

Direzione Progettazione e Realizzazione Lavori

S.S. n.21 "della Maddalena" Variante agli abitati di Demonte, Aisone e Vinadio Lotto 1. Variante di Demonte

	P	R	\cap	\mathbf{C}	ΕT	\top	\cap	Γ	١F	FI	N	11	Γľ	١,	"	ገ
ı		ı 🔪	v	v	டா	١,	J		′∟		I		ı	v	•	J

PROGETTAZIONE: ANAS - DIREZIONE PROGETTAZIONE E REALIZZAZIONE LAVO						
I PROGETTISTI: ing. Vincenzo Marzi Ordine Ing. di Bari n.3594						
ing. Achille Devitofranceschi Ordine Ing. di Roma n.19116						
geol. Flavio Capozucca Ordine Geol. del Lazio n.1599						
RESPONSABILE DEL SIA arch. Giovanni Magarò Ordine Arch. di Roma n.16183						
IL COORDINATORE PER LA SICURE	ZZA IN FASE DI PROGETTAZIONE					
geom. Fabio Quondam						
VISTO: IL RESPONSABILE DEL PRO	OCEDIMENTO :					
ing. Nicolò Canepa						
PROTOCOLLO	DATA					

OPERE D'ARTE MINORI

Relazione di calcolo muri rotatoria e muro ad U

CODICE PF	ROGETTO LIV. PROG. N. PROG.	NOME FILE TOOOMOOGETRE01_A.DWG	REVISIONE	SCALA:		
DPT005 D 1601		CODICE TOOOMOOGETRE01			A	ı
С						
В						
А	EMISSIONE					
REV.	DESCRIZIONE		DATA	REDATTO	VERIFICATO	APPROVATO

INDICE

1		INTRODUZIONE2	
2		RIFERIMENTI NORMATIVI	
3		CARATTERISTICHE DEI MATERIALI	
4		CARATTERIZZAZIONE GEOTECNICA DEI TERRENI	
5		METODOLOGIA DI CALCOLO	
6		MURO DI SOTTOSCARPA DELLA ROTATORIA	
	6.1	1 Analisi dei Carichi	
	6.2	2 Modello di calcolo	
	6.3	3 Verifiche Geotecniche	
6.3 7	3.1	Resistenza di progetto dei micropali	14
	7.1	1 Analisi dei Carichi	
	7.2	2 Modello di calcolo	
	7.3	3 Verifiche Geotecniche	
7.3 8	3.1	Resistenza di progetto dei micropali	21
	8.1	1 Analisi dei Carichi25	
	8.2	2 Modello di calcolo	
	8.3	3 Verifiche Geotecniche e Strutturali	
9		ALLEGATO A – TABULATO MURO DI SOTTOSCARPA	
1(0	ALLEGATO B – TABULATO MURO DI CONTRORIPA	
1	1	ALLEGATO C – TABULATO MURO ANDATORE 78	

1 INTRODUZIONE

Il presente documento costituisce la relazione di calcolo delle opere di sostegno inerenti il Progetto Definitivo della S.S.21 della Maddalena, Variante di Demonte e Vinadio (Aisone) lotto 1°, Variante di Demonte volta ad eliminare la criticità del passaggio dei veicoli all'interno del centro abitato di Demonte.

Nella presente Relazione sono riportate le verifiche geotecniche e strutturali delle opere di sostegno necessarie per l'inserimento della rotatoria Ovest (Errore. L'origine riferimento non è stata trovata.) e di un muro andatore ad "U", in prossimità della spalla SpA del viadotto Cant (Figura 1.2)

Nella parte a monte della rotatoria ovest, infatti, si è reso necessario realizzare un'opera di contenimento di altezza variabile, ma che raggiunge nel punto di massima altezza i 9,0 m. L'opera prevista è un muro di controripa fondata su pali di piccolo diametro per tener conto della presenza del Flysch di Demonte costituito da ardesie e scisti con presenza di patine di ossidazione. Per lo scavo provvisorio si prevede l'utilizzo di una paratia di micropali multitirantata.

La scelta di optare per un muro definitivo e non per una paratia con tiranti è stata determinata per evitare ulteriori oneri manutentivi dovuti alla presenza dei tiranti. Il muro è previsto rivestito con pietra locale avente spessore 4 cm.

La presenza della rotatoria determina anche la necessità di realizzare a valle un riempimento di terreno che arriva fino a 15m di altezza a ridosso della spalla SpA del Viadotto Perdioni. Per contenere il piede del rilevato, ed in continuità con la spalla del Viadotto, si è scelto di prevedere la realizzazione di un muro di sottoscarpa con altezza massima di 7,5 m fondato su micropali e rivestito con pietra locale. L'ultima banca, di altezza inferiore a 4,0 m, è prevista in terra rinforzata con pendenza 60°. Gli scavi provvisori per la realizzazione del rilevato a tergo del muro, sono previsti attraverso una gradonatura del terreno in posto di dimensioni 1,5 in orizzontale e 1,0 in verticale.

Infine, per contenere l'ingombro del rilevato a ridosso della spalla A del viadotto Cant e per garantire la viabilità su una strada secondaria, si è reso necessario prevedere un muro ad U di lunghezza 12 m di altezza massima di cprca 9,9m. Il muro ha una struttura in continuità con la spalla del viadotto ed è previsto su fondazioni dirette. Il riempimento all'interno è previsto con materiale da rilevato.

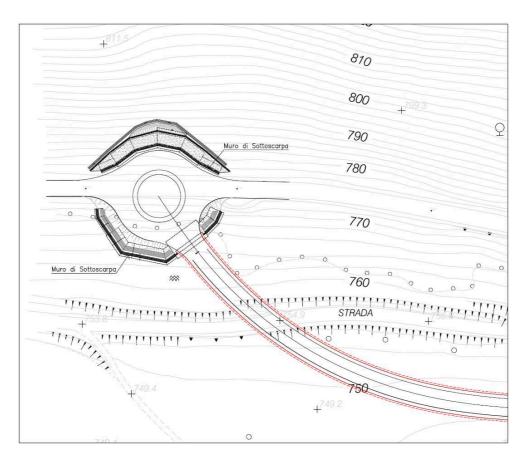


Figura 1.1 – Planimetria ubicazione muri rotatoria

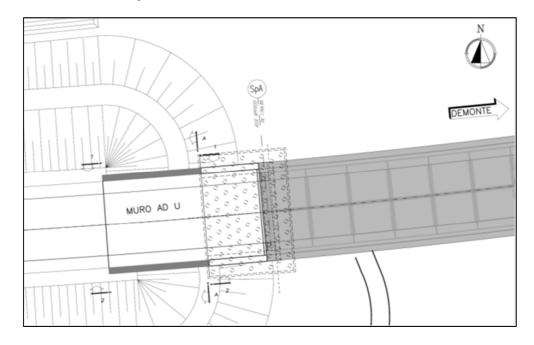


Figura 1.2 - Planimetria ubicazione Muro ad U

2 RIFERIMENTI NORMATIVI

Le normative di riferimento adottate sono:

- ✓ DM 14.01.2008 Norme Tecniche per le Costruzioni;
- ✓ CIRCOLARE n.617 del 02.02.2009 –Istruzioni per l'applicazione delle Norme tecniche per le costruzioni di cui al DM 14.01.2008.
- ✓ O.P.C.M. n° 3274 del 20.03.2003 e successive modifiche: "Normativa tecnica per le costruzioni in zona sismica e connessa classificazione del territorio sismico nazionale".
- ✓ O.P.C.M. n. 3316: "Modifiche ed integrazioni all'Ordinanza del Presidente del Consiglio dei Ministri n.3274 del 20.03.03".
- ✓ UNI EN 206-1 del marzo 2006: "Calcestruzzo Parte1: specificazione, prestazione, produzione e conformità".
- ✓ Linee guida Consiglio Superiore dei Lavori Pubblici (07/02/2003) Calcestruzzo preconfezionato, calcestruzzo strutturale ad alta resistenza, calcestruzzo strutturale.

3 CARATTERISTICHE DEI MATERIALI

Per le opere in progetto si prevede l'impiego dei seguenti materiali:

Calcestruzzo per opere di sostegno

Classe di resistenza	$C25/30 (R_{ck} = 30 \text{ N/mm}^2)$
Olabbe di l'ebible l'Ea	

Rapporto acqua – cemento (a/c) 0.60

Contenuto minimo di cemento 280 kg/m³

Resistenza cilindrica caratteristica a compressione $f_{ck} = 0.83 \cdot R_{ck} = 24.9 \text{ N/mm}^2$

Resistenza media a compressione $f_{cm} = f_{ck} + 8 = 32.9 \text{ N/mm}^2$

Resistenza media a trazione semplice $f_{ctm} = 0.30 \cdot f_{ct}^{2/3} = 2.55 \text{ N/mm}^2$

Resistenza caratteristica a trazione semplice $f_{ctk} = 0.7 \cdot f_{ctm} = 1.785 \text{ N/mm}^2$

Fattore parz. di sicurezza resistenza $\gamma_c = 1.5$

Coeff. Riduttivo per resistenze di lunga durata $\alpha_{cc} = 0.85$

Resistenza di calcolo a compressione $f_{cd} = \frac{\alpha_{cc} \cdot f_{ck}}{\gamma_c} = 14.11 \text{N/mm}^2$

Resistenza di calcolo a trazione $f_{ctd} = \frac{f_{ctk}}{\gamma_c} = 1.19 \text{ N/mm}^2$

Modulo di elasticità

$$E_{cm} = 22000 \cdot \left[\frac{f_{cm}}{10} \right]^{0.3} = 31447 \ N/mm^2$$

Acciaio da c.a. ordinario

Acciaio B450C

Tensione di rottura nominale $f_{tk} = 540 \ N/mm^2$

Tensione di snervamento nominale $f_{yk} = 450 \text{ N/mm}^2$

Allungamento a rottura caratteristico $(A_{gt})_k \ge 7.5 \%$

Coefficiente parziale di sicurezza: $\phi_s = 1.15$

4 CARATTERIZZAZIONE GEOTECNICA DEI TERRENI

La tabella seguente riassume i valori operativi dei parametri fisici e meccanici attribuiti ai diversi litotipi a seguito dell'interpretazione delle prove in sito e delle prove di laboratorio. Maggiori dettagli sulla caratterizzazione sono forniti nella Relazione Geotecnica di progetto (cfr. T00GE00GETRE01A).

Litotipo	SIGLA	γ' [kN/m³]	c' _{operativo} [kPa]	$arphi$ 'operativo $oxed{ [°] }$
Calcare	С	25	50	37
Detrito Alluvionale	D	19	0	35
Flysch di Demonte	FD	24	20	34
Materiale da rilevato	Ril	19	0	35
Conoide Alluvionale	CO	20	0	38

Tabella 4.1 – Sintesi caratterizzazione Geotecnica dei litotipi: valori operativi

5 METODOLOGIA DI CALCOLO

Tutte le analisi sono state effettuate con riferimento alle prescrizioni contenute nelle Norme Tecniche delle costruzioni del 14/01/2008 (NTC) e alle Istruzioni per l'applicazione delle "Norme tecniche per le costruzioni" pubblicate a Febbraio del 2009.

Le verifiche di sicurezza relative agli stati limite ultimi (SLU) consistono, in generale, nel verificare il rispetto della condizione:

$$E_d < R_d$$

dove con E_d si indica il valore di progetto delle azioni, o degli effetti delle azioni, e con R_d il valore di progetto delle resistenze.

La verifica di tale condizione deve essere effettuata impiegando diverse combinazioni di gruppi di coefficienti parziali definiti rispettivamente per la azioni (A1 e A2), per i parametri geotecnici (M1 e M2) e per le resistenze (R1, R2 e R3).

Relativamente alle verifiche allo stato limite ultimo SLU (scorrimento sul piano di posa, collasso per carico limite dell'insieme fondazione-terreno), è stato seguito l'approccio 1, le cui combinazioni previste sono:

$$A1 + M1 + R1$$

$$A2 + M2 + R2$$

Infine, le verifiche allo stato limite ultimo di ribaltamento, che non prevedono la mobilitazione della resistenza del terreno di fondazione, sono state trattate come uno stato limite di equilibrio come corpo rigido (EQU), utilizzando i coefficienti parziali sulle azioni (Tabella 6.2.I della NTC2008) e adoperando coefficienti parziali del gruppo (M2) per il calcolo delle spinte (Tabella 6.2.II della NTC2008).

In base al modello geotecnico e simico si assume che la categoria di suolo per le opere in progetto sia di tipo B come indicato dagli elaborati specifici allegati al progetto.

Le analisi in presenza di sisma possono essere effettuate adottando il metodo pseudostatico, in cui l'azione sismica è rappresentata da una azione statica equivalente proporzionale al peso W del volume di terreno instabile; le componenti orizzontali e verticali di tale forza possono esprimersi come *Fh=kh W* e *Fv=kv W* dove il coefficiente *kh* è legato all'accelerazione di picco dalla relazione:

$$k_h = \beta_m \cdot \frac{a_{\text{max}}}{g} = \beta_m \cdot \frac{S_s \cdot S_T \cdot a_g}{g}$$

con

 β_m coefficiente di riduzione dell'accelerazione massima attesa al sito, si ricava dalla Tabella 7.11.II del NTC;

 S_s coefficiente che tiene conto della amplificazione stratigrafica;

 S_T coefficiente di amplificazione topografica;

 a_q accelerazione orizzontale massima attesa su sito di riferimento.

Il coefficiente ky è definito pari a ky=±0.5 kh.

In Tabella 5.1 si riportano i valori delle grandezze necessarie per la definizione dell'azione sismica:

Stato Limite	V _N (anni)	Cu	V _R (anni)	T _R (anni)	a _g /g	Cat. Terreno	S _T	F ₀	S _s	a _{max}	$eta_{ extsf{s}}$	k _h	k _ν
SLV	50	1.5	75	712	0.172	В	1.2	2.472	1.2	2.431	0.24	0.06	0.03

Tabella 5.1 - Riepilogo grandezze necessarie per la definizione dell'azione sismica

Maggiori dettagli sulla caratterizzazione SISMICA sono forniti nella Relazione Sismica di progetto (cfr. T00GE00GETRE02A).

La verifica di stabilità del complesso opera-terreno deve essere effettuata secondo l'approccio 1 combinazione 2: (A2+M2+R2) tenendo conto dei coefficienti parziali (Tabelle 6.2.I, 6.2.II e 6.8.I della NTC).

6 MURO DI SOTTOSCARPA DELLA ROTATORIA

Il muro, come detto, di altezza massima di 7,5 m ed in continuità con la spalla del Viadotto, Pedioni, è fondato su micropali disposti a quinconce con maglia 1.00x0.90 m e rivestito con pietra locale. L'ultima banca, di altezza inferiore a 4,0 m, è prevista in terra rinforzata con pendenza 60°.

Le verifiche sono state eseguite assumendo che le azioni agenti lungo il piano di posa del muro in c.a. siano completamente assorbite dai micropali di fondazione.

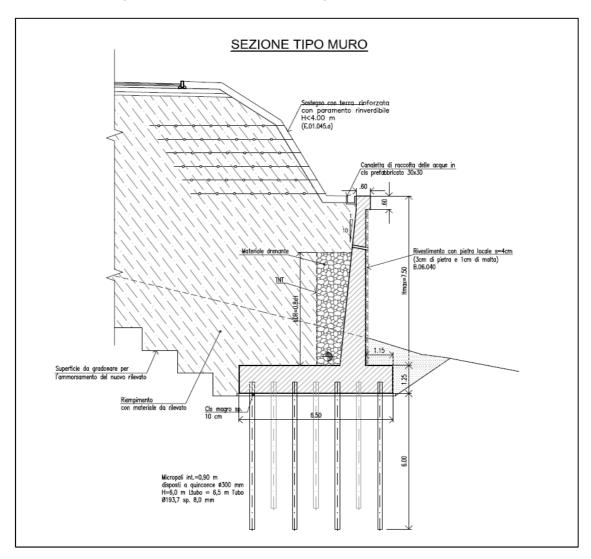


Figura 6.1 – Sezione Tipo muro di Sottoscarpa

6.1 Analisi dei Carichi

Peso proprio:

Il peso proprio della struttura viene calcolato automaticamente in funzione della geometria dal programma di calcolo MAX 10 di Aztec Informatica. Si assume un peso specifico per il muro di

sostegno pari a 25 kN/m³ Il peso proprio della barriera di sicurezza viene omesso dal calcolo in quanto a favore di sicurezza.

Spinta del terreno

Viene calcolata in automatico dal software di calcolo sulla base della teoria classica di Culmann assumendo i parametri geotecnici riportati nel paragrafo 4.

Sovraccarico Permanente

La presenza della terra armata è stata simulata, all'interno del modello, come uno strato di terreno da rilevato, ma con un valore della coesione molto elevato in modo da escludere superfici di instabilità all'interno della terra armata.

6.2 Modello di calcolo

Geometria muro e fondazione

Lunghezza del muro	10,00 [m]
Inclinazione paramento interno	5,71 [°]
Inclinazione paramento esterno	0,00 [°]
Spessore all'attacco con la fondazione	1,25 [m]
Spessore in sommità	0,50 [m]
Altezza del paramento	7,50 [m]

Fondazione

Lunghezza mensola fondazione di valle	1,15 [m]
Lunghezza mensola fondazione di monte	4,10 [m]
Lunghezza totale fondazione	6,50 [m]
Inclinazione piano di posa della fondazione	0,00 [°]
Spessore fondazione	1,25 [m]
Spessore magrone	0,10 [m]

Modello geotecnico e stratigrafia

I calcoli sono stati condotti sulla base dello schema geotecnico riportato in tabella e secondo il modello di Figura 6.2.

Litotipo	γ' [kN/m 3]	c' _{operativo} [kPa]	$arphi$ operativo $oxedsymbol{ \left[{}^{\circ} ight] }$
Calcare -C-	25	50	37
Materiale da rilevato - Ril-	19	0	35°
Terre Armate	19	1000	35°

Tabella 6.1 – Sintesi caratterizzazione Geotecnica dei litotipi: valori operativi

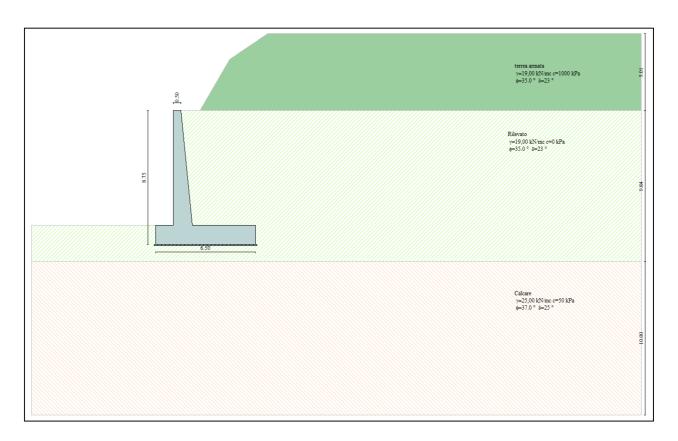


Figura 6.2 - Modello di Calcolo

6.3 Verifiche Geotecniche

Per il muro di Sottoscarpa le sollecitazioni agenti all'intradosso del plinto di fondazione sono di seguito riportate (Tabella 6.2). Tali sollecitazioni derivano dall'analisi numerica condotta con il codice di calcolo Aztec.

Combinazione	N	Tx	Ту	Mx	Му
	KN	KN	KN	KN-m	KN-m
1	13410	3680	0	0	220
2	16960	3680	0	0	2000
3	15880	3680	0	0	2780
4	14500	3680	0	0	1000
5	12170	4440	0	0	4650
7	16120	4230	0	0	1300
8	14730	4230	0	0	2500
9	13650	4230	0	0	1700
10	17200	4230	0	0	510
11	12420	5170	0	0	7000
13	13520	3830	0	0	2460
14	12740	3650	0	0	2530
15	13720	5190	0	0	7400
16	12930	4950	0	0	7200
19	13700	4230	0	0	3500
20	12910	4030	0	0	3500
21	13910	5730	0	0	9110
22	13110	5450	0	0	8830

Tabella 6.2 – Azioni ad intradosso Fondazione

Una volta determinate le sollecitazioni agenti all'intradosso della fondazione, nota la disposizione geometrica dei pali di fondazione, si può determinare la sollecitazione agente sul singolo palo.

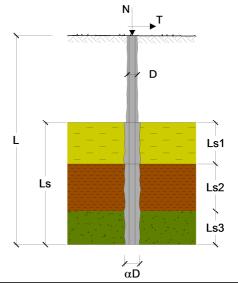
Le caratteristiche della sollecitazione risultanti sul palo più sollecitato sono riportati di seguito (Tabella 6.3):

Sollecitazioni in testa							
micropalo							
N_{max}	N_{min}	T_{max}					
kN	kN	kN					
359	50	86					

Tabella 6.3 – Sollecitazioni in testa al micropalo

6.3.1 Resistenza di progetto dei micropali

Di seguito si riportano i fogli di calcolo con i quali sono state condotte le verifiche di capacità portante e strutturali dei micropali di lunghezza pari a 6,00m.


CAPACITA' PORTANTE DI UN MICROPALO

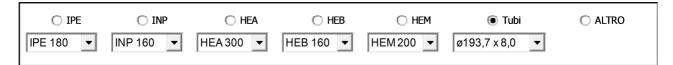
OPERA: Muro

DATI DI INPUT:

Sollecitazioni Agenti:

	Permanenti	Temporanee	Calcolo
N (kN)	360,00	0,00	360,00
T (kN)	86,00	0,00	86,00

coefficienti parziali		azion	ni resistenza latera			
	Metodo di calcolo		permanenti variabili			
			γg	γα	γs	γs traz
	A1+M1+R1	0	1,30	1,50	1,00	1,00
SLU	A2+M1+R2	0	1,00	1,30	1,45	1,60
SI	A1+M1+R3	0	1,30	1,50	1,15	1,25
	SISMA	0	1,00	1,00	1,15	1,25
DM88		0	1,00	1,00	1,00	1,00
definiti d	lal progettista	•	1,00	1,00	1,15	1,25


n	1	2	3	4	5	7	≥10 ○	DM88	prog.
ξ3	1,70	1,65	1,60	1,55	1,50	1,45	1,40	1,00	1,80
ξ4	1,70	1,55	1,48	1,42	1,34	1,28	1,21	1,00	1,80

Caratteristiche del micropalo:

Diametro di perforazione del micropalo (D): 0,24 (m)

Lunghezza del micropalo (L): 6,00 (m)

Armatura:

ø193,7 x 8,0

Coeff. di Winkler (k): 150,0 (MN/m³)

CAPACITA' PORTANTE ESTERNA

Capacità portante di fusto

$$QI = \sum_{i} \pi^* Ds_i^* s_i^* Is_i$$

Tipo di Terreno	Spessore Is _i	α (-)	$Ds_i = \alpha *D$ (m)	s; media (MPa)	s; minima (MPa)	s; calcolo (MPa)	Qsi (kN)
Alluvioni	1,00	1,30	0,31	0,000	0,000	0,000	0,00
Calcare	5,00	1,10	0,26	0,250	0,250	0,128	530,29
			0,00			0,000	0,00

Ls = 6,00 (m) Ql = 530,29 (kN)

<u>Capacità portante di punta</u> Qp = %Punta*Ql (consigliato 10-15%)

% Punta 0% **Qp** = 0,00 **(kN)**

CARICO LIMITE DEL MICROPALO COEFFICIENTE DI SICUREZZA

Qlim = Qb + Ql Fs = Qlim / N (Fs > 1)

Qlim = 530,29 (kN) Fs = 1,47

CAPACITA' PORTANTE PER INSTABILITA' DELL'EQUILIBRIO ELASTICO

Reaz. Laterale per unità di lunghezza e di spostam.(β) ($\beta = k^*D_{am}$): 29,06 (N/mm²)

$$Pk = 2*(\beta*Earm*Jarm)^{0.5} \qquad \eta = Pk/N \quad (consigliato \ \eta > 10)$$

$$Pk = 22179,18$$
 (MN) $\eta = 61,61$

VERIFICA ALLE FORZE ORIZZONTALI

Momento massimo per carichi orizzontali (M): (Ipotesi di palo con testa impedita di ruotare)

$$M = T / (2 \cdot b)$$

$$b = \sqrt[4]{\frac{k \cdot D}{4 \cdot E_{arm} \cdot J_{arm}}}$$

Momento Massimo (M):

$$M = 35,61 (kN m)$$

VERIFICHE STRUTTURALI DEL MICROPALO

Acciaio S 355 (Fe 510)

Tensioni nel singolo micropalo

$$\sigma = N/Aarm + /- M/Warm$$

$$\tau = 2*T/Aarm$$

$$\sigma_{\text{max}} = 248,24 \ (N/mm^2)$$
 $\sigma_{\text{min}} = -93,97 \ (N/mm^2)$

$$\tau = 36,85 \, (N/mm^2)$$

$$\sigma_{id} = (\sigma^2 + 3 \tau^2)^{0,5}$$

$$\sigma_{id} = 256,32 \, (N/mm^2)$$
 verifica soddisfatta

7 MURO DI CONTRORIPA DELLA ROTATORIA

Il muro di controripa è di altezza massima di 9,0 m. L'opera prevista è un muro di controripa fondata su pali di piccolo diametro.

Il muro è previsto rivestito con pietra locale avente spessore 4 cm.

Le verifiche sono state eseguite assumendo che le azioni agenti lungo il piano di posa del muro in c.a. siano completamente assorbite dai micropali di fondazione.

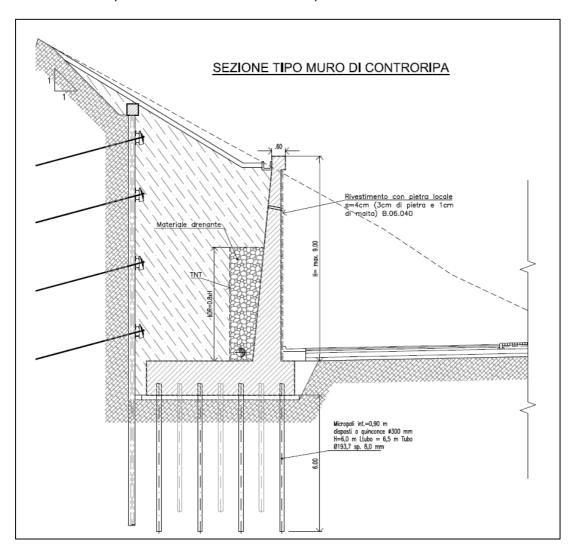


Figura 7.1 – Sezione Tipo muro di Controripa

7.1 Analisi dei Carichi

Peso proprio:

Il peso proprio della struttura viene calcolato automaticamente in funzione della geometria dal programma di calcolo MAX 10 di Aztec Informatica. Si assume un peso specifico per il muro di

sostegno pari a 25 kN/m³ Il peso proprio della barriera di sicurezza viene omesso dal calcolo in quanto a favore di sicurezza.

Spinta del terreno

Viene calcolata in automatico dal software di calcolo sulla base della teoria classica di Culmann assumendo i parametri geotecnici riportati nel paragrafo 4Errore. L'origine riferimento non è stata trovata..

7.2 Modello di calcolo

Geometria muro e fondazione

Altezza del paramento	9,00 [m]
Spessore in sommità	0,50 [m]
Spessore all'attacco con la fondazione	1,50 [m]
Inclinazione paramento esterno	0,00 [°]
Inclinazione paramento interno	6,35 [°]
Lunghezza del muro	10,00 [m]

Fondazione

Lunghezza mensola fondazione di valle	1,50 [m]
Lunghezza mensola fondazione di monte	3,50 [m]
Lunghezza totale fondazione	6,50 [m]
Inclinazione piano di posa della fondazione	0,00 [°]
Spessore fondazione	1,25 [m]
Spessore magrone	0,10 [m]

Modello geotecnico e stratigrafia

I calcoli sono stati condotti sulla base dello schema geotecnico riportato in tabella e secondo il modello di.Figura 7.2

Litotipo	γ' [kN/m 3]	c' _{operativo} [kPa]	φ 'operativo
Flysch di Demonte -FD-	24	20	34
Materiale da rilevato - Ril-	19	0	35

Tabella 7.1 – Sintesi caratterizzazione Geotecnica dei litotipi: valori operativi

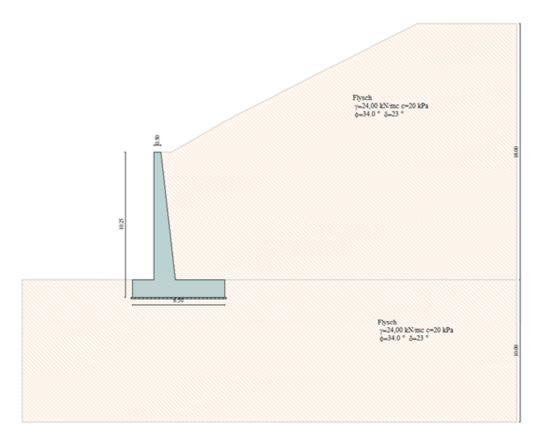


Figura 7.2 - Modello di Calcolo

7.3 Verifiche Geotecniche

Per il muro di Controripa le sollecitazioni agenti all'intradosso del plinto di fondazione sono di seguito riportate (Tabella 7.2). Tali sollecitazioni derivano dall'analisi numerica condotta con il codice di calcolo Aztec.

Combinazione	N	Tx	Ту	Mx	Му
	KN	KN	KN	KN-m	KN-m
1	16060	5380	0	0	169
2	15850	6090	0	0	3370
3	14770	6990	0	0	6985
5	15250	5250	0	0	2110
6	16240	5640	0	0	2160
7	16850	8680	0	0	11380
8	15840	8130	0	0	10790
9	15840	8130	0	0	10790
10	16850	8680	0	0	11380

Tabella 7.2 – Azioni ad intradosso Fondazione

Una volta determinate le sollecitazioni agenti all'intradosso della fondazione, nota la disposizione geometrica dei pali di fondazione, si può determinare la sollecitazione agente sul singolo palo.

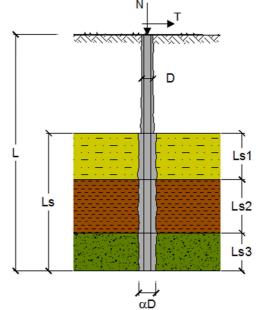
Le caratteristiche della sollecitazione risultanti sul palo più sollecitato sono riportati di seguito (Tabella 7.3):

Sollecitazioni in testa micropalo						
N _{max} N _{min} T _{max}						
kN	kN	kN				
451	-104	130				

Tabella 7.3 – Sollecitazioni in testa al micropalo

7.3.1 Resistenza di progetto dei micropali

Di seguito si riportano i fogli di calcolo con i quali sono state condotte le verifiche di capacità portante e strutturali dei micropali di lunghezza pari a 6,00m.


CAPACITA' PORTANTE DI UN MICROPALO

OPERA: Muro Controripa

DATI DI INPUT:

Sollecitazioni Agenti:

	Permanenti	Temporanee	Calcolo
N (kN)	451.00	0.00	451.00
T (kN)	130.00	0.00	130.00

coefficienti parziali			azior	ni	resisten	za laterale
	Matada di salasia		Metodo di calcolo permanenti variabili			
	- Wetodo di Calcolo		γ̈́G	γο	γs	γs traz
	A1+M1+R1	0	1.30	1.50	1.00	1.00
SLU	A2+M1+R2	0	1.00	1.30	1.45	1.60
ഗ	A1+M1+R3	0	1.30	1.50	1.15	1.25
	SISMA	0	1.00	1.00	1.15	1.25
DM88		0	1.00	1.00	1.00	1.00
definiti dal progettista		•	1.00	1.00	1.15	1.25

n	1 •	2	3 O	4	5 O	7	≥10 ○	DM88	prog.
\$ 3	1.70	1.65	1.60	1.55	1.50	1.45	1.40	1.00	1.80
<u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> 4	1.70	1.55	1.48	1.42	1.34	1.28	1.21	1.00	1.80

Caratteristiche del micropalo:

Diametro di perforazione del micropalo (D): 0.24 (m)

Lunghezza del micropalo (L): 6.00 (m)

○ IPE	○ INP	○ HEA	○ HEB	○ НЕМ	Tubi	O ALTRO
IPE 180 ▼	INP 160 ▼	HEA 300 <u>▼</u>	HEB 160 <u>▼</u>	HEM 200 ▼	ø193,7 x 10,0 ▼	

5771

Ø193,7 x 10,0Area dell'armatura (Aarm):

Tensione di snervamento dell'acciaio (fy)	355	(N/mm ²)
Coefficiente Parziale Acciaio γ_{M}	1.05	
Tensione ammissibile dell'acciaio (σ _{lim}).	338	(N/mm ²)
Modulo di elasticità dell'acciaio (E _{arm}):	210,000	(N/mm ²)

Coefficiente di Reazione Laterale:

Coeff. di Winkler (k): 150.0 (MN/m³)

CAPACITA' PORTANTE ESTERNA

Capacità portante di fusto

$QI = \Sigma_i$	π*Ds	*s ; */s	
-----------------	------	----------	--

QI =

509.08

(kN)

Tipo di Terreno	Spessore Is ;	α (-)	$Ds_i = \alpha * D$ (m)	s ; media (MPa)	s ; minima (MPa)	s ; calcolo (MPa)	Qsi (kN)
Flysh di Demonte	6.00	1.10	0.26	0.200	0.200	0.102	509.08
			0.00			0.000	0.00
			0.00			0.000	0.00

Capacità portante di punta	Qp = %Punta*Ql	(consigliato	(consigliato 10-15%)			
% Punta	0%	Qp =	0.00	(kN)		
CARICO LIMITE DEL MICROPALO		COEFFICIEN	ITE DI SICU	REZZA		

6.00 (m)

Qlim = Qb + Ql Fs = Qlim/N Fs = 1.13

CAPACITA' PORTANTE PER INSTABILITA' DELL'EQUILIBRIO ELASTICO

Ls =

Reaz. Laterale per unità di lunghezza e di spostam.(
$$\beta$$
) (β = k'D_{am}): 29.06 (N/mm²)

Pk = 2'(β 'Earm' Jarm)^{0,5} η = Pk / N (consigliato η > 10)

Pk = 24411.04 (MN) η = 54.13

VERIFICA ALLE FORZE ORIZZONTALI

Momento massimo per carichi orizzontali (M): (Ipotesi di palo con testa impedita di ruotare)

$$M = T / (2 \cdot b)$$

$$b = \sqrt[4]{\frac{k \cdot D}{4 \cdot E_{arm} \cdot J_{arm}}}$$

Momento Massimo (M):

M = 56.47 (kN m) VERIFICHE STRUTTURALI DEL MICROPALO

Acciaio S 355 (Fe 510)

Tensioni nel singolo micropalo

 $\tau = 2*T/Aarm$

$$\sigma_{max}$$
 = 302.15 (N/mm²) σ_{min} = -145.85 (N/mm²)

 τ = 45.05 (N/mm²)

 σ_{id} = $(\sigma^2 + 3 \tau^2)^{0.5}$
 σ_{id} = 312.06 (N/mm²) verifica soddisfatta

CAPACITA' PORTANTE PER INSTABILITA' DELL'EQUILIBRIO ELASTICO

Reaz. Laterale per unità di lunghezza e di spostam.(β) (β = k^*D_{arm}): 29,06 (N/mm²)

 $Pk = 2*(\beta*Earm*Jarm)^{0,5}$

$$\eta = Pk/N$$
 (consigliato $\eta > 10$)

Pk = 22179,18 (MN) $\eta = 54,63$

VERIFICA ALLE FORZE ORIZZONTALI

Momento massimo per carichi orizzontali (M): (Ipotesi di palo con testa impedita di ruotare)

$$M = T / (2 \cdot b)$$

$$b = \sqrt[4]{\frac{k \cdot D}{4 \cdot E_{arm} \cdot J_{arm}}}$$

$$b = 1,208 (1/m)$$

Momento Massimo (M):

$$M = 31,47 (kN m)$$

VERIFICHE STRUTTURALI DEL MICROPALO

Acciaio S 355 (Fe 510)

Tensioni nel singolo micropalo

$$\sigma = N/Aarm +/- M/Warm$$

$$\tau = 2*T/Aarm$$

$$\sigma_{\text{max}} = 238,20 \ (N/mm^2)$$
 $\sigma_{\text{min}} = -64,22 \ (N/mm^2)$

$$\tau = 32,57 \, (N/mm^2)$$

$$\sigma_{id} = (\sigma^2 + 3 \tau^2)^{0.5}$$

$$\sigma_{id} = 244,79 \, (N/mm^2)$$
 verifica soddisfatta

8 MURO ANDATORE AD U- VIADOTTO CANT

Tale opera si sviluppa per un' estensione planimetrica di 12m ed ha un'altezza di quasi 10 m.

I muri di sostegno in oggetto, adiacenti alle spalle del viadotto Cant, sono muri a mensola con la soletta di fondazione che collega le pareti verticali. L'imposta della fondazione è la stessa della spalla adiacente. Lo studio viene effettuato su una profondità di 1 m.

L'opera è soggetta alle azioni dei veicoli in transito e al terreno da rilevato in esso contenuto. Inoltre, è stata considerata la condizione eccezionale nel caso di urto di veicolo in svio sulla barriera presente in testa al muro stesso.

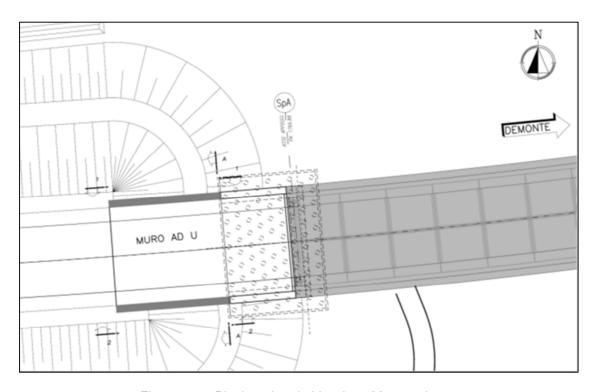


Figura 8.1 – Planimetria ed ubicazione Muro andatore

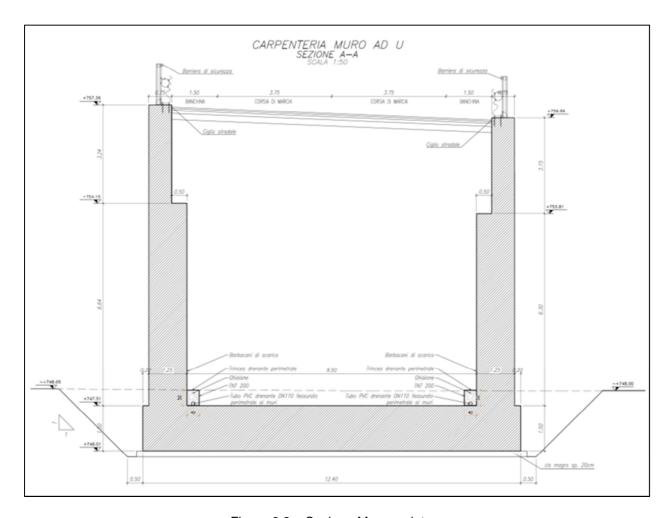


Figura 8.2 - Sezione Muro andatore

8.1 Analisi dei Carichi

Peso proprio:

Il peso proprio della struttura viene calcolato automaticamente in funzione della geometria dal programma di calcolo IS Muri di CDM DOLMEN e omnia IS srl . Si assume un peso specifico per il muro di sostegno pari a 25 kN/m³ Il peso proprio della barriera di sicurezza viene omesso dal calcolo in quanto a favore di sicurezza.

Spinta del terreno

Il calcolo della spinta è svolto secondo il metodo del cuneo di tentativo generalizzato (Rif.: Renato LANCELLOTTA "Geotecnica" (2004) - NAVFAC Design Manual 7.02 (1986)). Il metodo è iterativo e prevede la suddivisione del terreno a monte dell'opera in poligoni semplici definiti dal paramento, dalla successione stratigrafica e dalla superficie di scivolamento di tentativo.

La procedura automatica vaglia numerose superfici di scivolamento ad ogni quota di calcolo lungo il paramento, determinando la configurazione che comporta la spinta massima sull'opera.

Carichi Variabili

Carico Nastriforme:

- descrizione = Carichi veicolari
- tipologia = variabili da traffico distribuiti
- estremi (xi;xf) = 0;1050 cm
- tipo inserimento = sul profilo
- intensità = 0.2 daN/cm2

Carico in Testa Muro

In testa al muro è applicata la seguente terna di sollecitazione:

Carico 1:

- descrizione = Urto
- tipologia = eccezionale
- -N = 0 daN a modulo
- M = 106000 daN*cm a modulo
- T = 1060 daN a modulo

Considera come carico principale variabile (per coeff. psi [NTC08 2.5.3]) i casi di tipo: variabili da traffico distribuiti

8.2 Modello di calcolo

Geometria muro e fondazione

Altezza del paramento	9,88 [m]
Spessore in sommità	0,75 [m]
Spessore all'attacco con la fondazione	1,25 [m]
Inclinazione paramento esterno	0,00 [°]

Progetto Definitive	0	

Inclinazione paramento interno	0,00 [°]
--------------------------------	----------

Lunghezza del muro 12,00 [m]

Fondazione

Lunghezza mensola fondazione di valle	0,20 [m]
Lunghezza mensola fondazione di monte	4,75 [m]
Lunghezza totale fondazione	6,20 [m]
Inclinazione piano di posa della fondazione	0,00 [°]
Spessore fondazione	1,50 [m]

Modello geotecnico e stratigrafia

I calcoli sono stati condotti sulla base dello schema geotecnico riportato in tabella e secondo il modello di Figura 8.3

Litotipo	γ ' [kN/m 3]	c' _{operativo} [kPa]	$arphi$ operativo [$^{\circ}$]
Conoide Alluvionale -CO-	20	0	38
Materiale da rilevato - Ril-	19	0	35

Tabella 8.1 – Sintesi caratterizzazione Geotecnica dei litotipi: valori operativi

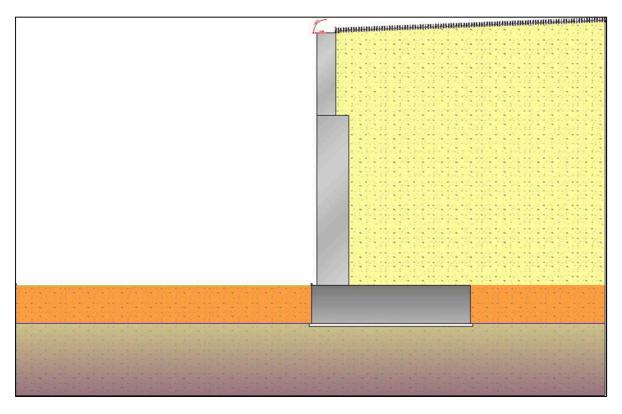


Figura 8.3 – Modello di Calcolo

8.3 Verifiche Geotecniche e Strutturali

Di seguito viene riportata la tabella riassuntiva con i fattori di sicurezza minimi (= rapporto R_d/E_d o C_d/E_d) calcolati per tutte le verifiche.

La verifica si intende superata se il valore del rapporto è maggiore o uguale a 1.0. Le caselle con i trattini indicano che la verifica corrispondente non va svolta per il relativo Caso di Carico.

caso di	capacità	scorrimento	ribaltamento	stabilità	FS strutturale	FS strutturale	FS strutturale	FS strutturale	FS strutturale	FS strutturale	FS strutturale
carico	portante			globale	Fusto(press o-flessione)	Fusto(taglio)	Tensione(cl s)	Tensione(ac ciaio)	apertura Fessure	Fondazione(flessione)	Fondazione(taglio)
1 - STR(SLU)	2.96	2.21			1.69	1.17				1.59	1.03
2 - GEO(SLU_GE O)				1.33							
3 - EQU(SLU_EQ U)			Stabile 1.97 (s.max.=3.8 [cm])								
4 - STR_SISMA_S U(SLU)	3.67	1.9			2.38	1.59				2.23	1.45
5 - GEO_SISMA_S U(SLU_GEO)		1.38		1.37							
6 - EQU_SISMA_S U(SLU_EQU)			Stabile 2.34 (s.max.=2.9 [cm])								
7 - STR_SISMA_G IU(SLU)	3.52	1.92			2.28	1.52				2.12	1.38
8 - GEO_SISMA_ GIU(SLU_GEO)		1.4		1.38							
9 - EQU_SISMA_ GIU(SLU_EQU)			Stabile 2.36 (s.max.=3.0 [cm])								
10 - STR_ECCEZIO NALE(SLU)	4.4	2.28			2.49	1.81				2.38	1.56
11 - GEO_ECCEZI ONALE(SLU_ GEO)				1.38							
12 - EQU_ECCEZI ONALE(SLU_E QU)			Stabile 2.56 (s.max.=2.7 [cm])								
13 - RARA(RARA)							2.83	2.07			
14 - FREQ.(FREQU ENTE)									1.47		
15 - Q.PERM.(QUA SI_PERM)							2.76		1.37		

Muro Verificato!

[Verifiche Superate]

Tabella 8.2 - Sintesi dei coefficiente di sicurezza

9 ALLEGATO A – TABULATO MURO DI SOTTOSCARPA

Progetto: Muro di sostegno

Ditta:
Comune:
Progettista:
Direttore dei Lavori:
Impresa:

Il calcolo dei muri di sostegno viene eseguito secondo le seguenti fasi:

- Calcolo della spinta del terreno
- Verifica a ribaltamento
- Verifica a scorrimento del muro sul piano di posa
- Verifica della stabilità complesso fondazione terreno (carico limite)
- Verifica della stabilità globale

Calcolo delle sollecitazioni sia del muro che della fondazione, progetto delle armature e relative verifiche dei materiali

Calcolo della spinta sul muro

Valori caratteristici e valori di calcolo

Effettuando il calcolo tramite gli Eurocodici è necessario fare la distinzione fra i parametri caratteristici ed i valodi di calcolo (o di progetto) sia delle azioni che delle resistenze.

I valori di calcolo si ottengono dai valori caratteristici mediante l'applicazione di opportuni coefficienti di sicurezza parziali γ. In particolare si distinguono combinazioni di carico di tipo **A1-M1** nelle quali vengono incrementati i carichi e lasciati inalterati i parametri di resistenza del terreno e combinazioni di carico di tipo **A2-M2** nelle quali vengono ridotti i parametri di resistenza del terreno e incrementati i soli carichi variabili.

Metodo di Culmann

Il metodo di Culmann adotta le stesse ipotesi di base del metodo di Coulomb. La differenza sostanziale è che mentre Coulomb considera un terrapieno con superficie a pendenza costante e carico uniformemente distribuito (il che permette di ottenere una espressione in forma chiusa per il coefficiente di spinta) il metodo di Culmann consente di analizzare situazioni con profilo di forma generica e carichi sia concentrati che distribuiti comunque disposti. Inoltre, rispetto al metodo di Coulomb, risulta più immediato e lineare tener conto della coesione del masso spingente. Il metodo di Culmann, nato come metodo essenzialmente grafico, si è evoluto per essere trattato mediante analisi numerica (noto in questa forma come metodo del cuneo di tentativo). Come il metodo di Coulomb anche questo metodo considera una superficie di rottura rettilinea.

I passi del procedimento risolutivo sono i seguenti:

- si impone una superficie di rottura (angolo di inclinazione ρ rispetto all'orizzontale) e si considera il cuneo di spinta delimitato dalla superficie di rottura stessa, dalla parete su cui si calcola la spinta e dal profilo del terreno;
- si valutano tutte le forze agenti sul cuneo di spinta e cioè peso proprio (W), carichi sul terrapieno, resistenza per attrito e per coesione lungo la superficie di rottura (R e C) e resistenza per coesione lungo la parete (A);
- dalle equazioni di equilibrio si ricava il valore della spinta S sulla parete.

Questo processo viene iterato fino a trovare l'angolo di rottura per cui la spinta risulta massima.

La convergenza non si raggiunge se il terrapieno risulta inclinato di un angolo maggiore dell'angolo d'attrito del terreno.

Nei casi in cui è applicabile il metodo di Coulomb (profilo a monte rettilineo e carico uniformemente distribuito) i risultati ottenuti col metodo di Culmann coincidono con quelli del metodo di Coulomb.

Le pressioni sulla parete di spinta si ricavano derivando l'espressione della spinta S rispetto all'ordinata z. Noto il diagramma delle pressioni è possibile ricavare il punto di applicazione della spinta.

Spinta in presenza di sisma

Per tener conto dell'incremento di spinta dovuta al sisma si fa riferimento al metodo di Mononobe-Okabe (cui fa riferimento la Normativa Italiana).

La Normativa Italiana suggerisce di tener conto di un incremento di spinta dovuto al sisma nel modo seguente.

Detta ϵ l'inclinazione del terrapieno rispetto all'orizzontale e β l'inclinazione della parete rispetto alla verticale, si calcola la spinta S' considerando un'inclinazione del terrapieno e della parte pari a

$$\varepsilon' = \varepsilon + \theta$$

$$\beta' = \beta + \theta$$

dove $\theta = \text{arctg}(k_h/(1\pm k_v))$ essendo k_h il coefficiente sismico orizzontale e k_v il coefficiente sismico verticale, definito in funzione di k_h . In presenza di falda a monte, θ assume le seguenti espressioni:

Terreno a bassa permeabilità

$$\theta = arctg[(\gamma_{sat}/(\gamma_{sat}-\gamma_{w}))^{*}(k_{h}/(1\pm k_{v}))]$$

Terreno a permeabilità elevata

$$\theta = arctg[(\gamma/(\gamma_{sat}-\gamma_{w}))^{*}(k_{h}/(1\pm k_{v}))]$$

Detta S la spinta calcolata in condizioni statiche l'incremento di spinta da applicare è espresso da

$$\Delta S = AS' - S$$

dove il coefficiente A vale

$$A = \frac{\cos^2(\beta + \theta)}{\cos^2\beta\cos\theta}$$

In presenza di falda a monte, nel coefficiente A si tiene conto dell'influenza dei pesi di volume nel calcolo di θ.

Adottando il metodo di Mononobe-Okabe per il calcolo della spinta, il coefficiente A viene posto pari a 1.

Tale incremento di spinta è applicato a metà altezza della parete di spinta nel caso di forma rettangolare del diagramma di incremento sismico, allo stesso punto di applicazione della spinta statica nel caso in cui la forma del diagramma di incremento sismico è uguale a quella del diagramma statico.

Oltre a questo incremento bisogna tener conto delle forze d'inerzia orizzontali e verticali che si destano per effetto del sisma. Tali forze vengono valutate come

$$F_{iH} = k_h W \qquad \quad F_{iV} = \pm k_v W$$

dove W è il peso del muro, del terreno soprastante la mensola di monte ed i relativi sovraccarichi e va applicata nel baricentro dei pesi. Il metodo di Culmann tiene conto automaticamente dell'incremento di spinta. Basta inserire nell'equazione risolutiva la forza d'inerzia del cuneo di spinta. La superficie di rottura nel caso di sisma risulta meno inclinata della corrispondente superficie in assenza di sisma.

Verifica a ribaltamento

La verifica a ribaltamento consiste nel determinare il momento risultante di tutte le forze che tendono a fare ribaltare il muro (momento ribaltante M_r) ed il momento risultante di tutte le forze che tendono a stabilizzare il muro (momento stabilizzante M_s) rispetto allo spigolo a valle della fondazione e verificare che il rapporto M_s/M_r sia maggiore di un determinato coefficiente di sicurezza η_r . Eseguendo il calcolo mediante gli eurocodici si puo impostare $\eta_r > 1.0$.

Deve quindi essere verificata la seguente diseguaglianza

$$M_s$$
 $\rightarrow= \eta_r$

Il momento ribaltante M_r è dato dalla componente orizzontale della spinta S, dalle forze di inerzia del muro e del terreno gravante sulla fondazione di monte (caso di presenza di sisma) per i rispettivi bracci. Nel momento stabilizzante interviene il peso del muro (applicato nel baricentro) ed il peso del terreno gravante sulla fondazione di monte. Per quanto riguarda invece la componente verticale della spinta essa sarà stabilizzante se l'angolo d'attrito terra-muro δ è positivo, ribaltante se δ è negativo. δ è positivo quando è il terrapieno che scorre rispetto al muro, negativo quando è il muro che tende a scorrere rispetto al terrapieno (questo può essere il caso di una spalla da ponte gravata da carichi notevoli). Se sono presenti dei tiranti essi contribuiscono al momento stabilizzante. Questa verifica ha significato solo per fondazione superficiale e non per fondazione su pali.

Verifica a scorrimento

Per la verifica a scorrimento del muro lungo il piano di fondazione deve risultare che la somma di tutte le forze parallele al piano di posa che tendono a fare scorrere il muro deve essere minore di tutte le forze, parallele al piano di scorrimento, che si oppongono allo scivolamento, secondo un certo coefficiente di sicurezza. La verifica a scorrimento sisulta soddisfatta se il rapporto fra la risultante delle forze resistenti allo scivolamento F_r e la risultante delle forze che tendono a fare scorrere il muro F_s risulta maggiore di un determinato coefficiente di sicurezza η_s

Eseguendo il calcolo mediante gli Eurocodici si può impostare $\eta_s >= 1.0$

Relazione di Calcolo Muri della Rotatoria e Muro ad U

Le forze che intervengono nella F_s sono: la componente della spinta parallela al piano di fondazione e la componente delle forze d'inerzia parallela al piano di fondazione.

La forza resistente è data dalla resistenza d'attrito e dalla resistenza per adesione lungo la base della fondazione. Detta N la componente normale al piano di fondazione del carico totale gravante in fondazione e indicando con $\delta_{\rm f}$ l'angolo d'attrito terrenofondazione, con $c_{\rm a}$ l'adesione terreno-fondazione e con $E_{\rm f}$ la larghezza della fondazione reagente, la forza resistente può esprimersi come

$$F_r = N tg \delta_f + c_a B_r$$

La Normativa consente di computare, nelle forze resistenti, una aliquota dell'eventuale spinta dovuta al terreno posto a valle del muro. In tal caso, però, il coefficiente di sicurezza deve essere aumentato opportunamente. L'aliquota di spinta passiva che si può considerare ai fini della verifica a scorrimento non può comunque superare il 50 percento.

Per quanto riguarda l'angolo d'attrito terra-fondazione, δ_f , diversi autori suggeriscono di assumere un valore di δ_f pari all'angolo d'attrito del terreno di fondazione.

Verifica al carico limite

Il rapporto fra il carico limite in fondazione e la componente normale della risultante dei carichi trasmessi dal muro sul terreno di fondazione deve essere superiore a η_a . Cioè, detto Q_u , il carico limite ed R la risultante verticale dei carichi in fondazione, deve essere:

$$\frac{Q_u}{R} >= \eta_q$$

Eseguendo il calcolo mediante gli Eurocodici si può impostare $\eta_q>=1.0$ Si adotta per il calcolo del carico limite in fondazione il metodo di MEYERHOF.

L'espressione del carico ultimo è data dalla relazione:

$$Q_u = c \ N_c d_c i_c + q N_q d_q i_q + 0.5 \gamma B N_\gamma d_\gamma i_\gamma$$

In questa espressione

- c coesione del terreno in fondazione;
- φ angolo di attrito del terreno in fondazione;
- γ peso di volume del terreno in fondazione;
- B larghezza della fondazione;
- D profondità del piano di posa;
- q pressione geostatica alla quota del piano di posa.

I vari fattori che compaiono nella formula sono dati da:

$$N_a = A tg^2 (45 \circ + \phi/2)$$

$$N_c = (N_q - 1) ctg \phi$$

$$N_{\gamma} = (N_q - 1) \text{ tg } (1.4\phi)$$

Indichiamo con K_p il coefficiente di spinta passiva espresso da:

$$K_p = tg^2(45 \circ + \phi/2)$$

I fattori d e i che compaiono nella formula sono rispettivamente i fattori di profondità ed i fattori di inclinazione del carico espressi dalle seguenti relazioni:

Fattori di profondità

$$d_q = 1 + 0.2 \frac{D}{---} \sqrt{K_p}$$

$$d_q = d_{\gamma} = 1$$
 per $\phi = 0$

$$d_q = d_\gamma = 1 \, + 0.1 \, \frac{D}{B} \, \sqrt{K_p} \qquad per \, \phi > 0 \label{eq:dq}$$

Fattori di inclinazione

Indicando con θ l'angolo che la risultante dei carichi forma con la verticale (espresso in gradi) e con ϕ l'angolo d'attrito del terreno di posa abbiamo:

$$i_c = i_q = (1 - \theta \% 90)^2$$

$$i_{\gamma} = (1 - \frac{\theta^{\circ}}{\phi^{\circ}})^2$$
 per $\phi > 0$

$$i_{\gamma} = 0$$
 per $\phi = 0$

Verifica alla stabilità globale

La verifica alla stabilità globale del complesso muro+terreno deve fornire un coefficiente di sicurezza non inferiore a η_α

Eseguendo il calcolo mediante gli Eurocodici si può impostare η_g>=1.0

Viene usata la tecnica della suddivisione a strisce della superficie di scorrimento da analizzare. La superficie di scorrimento viene supposta circolare e determinata in modo tale da non avere intersezione con il profilo del muro o con i pali di fondazione. Si determina il minimo coefficiente di sicurezza su una maglia di centri di dimensioni 10x10 posta in prossimità della sommità del muro. Il numero di strisce è pari a 50.

Il coefficiente di sicurezza fornito da Fellenius si esprime secondo la seguente formula:

$$\eta = \frac{\sum_{i}^{n} \ (\frac{c_{i}b_{i}}{cos\alpha_{i}} + [W_{i}cos\alpha_{i}-u_{i}l_{i}]tg\phi_{i}\)}{\sum_{i}^{n}W_{i}sin\alpha_{i}}$$

dove n è il numero delle strisce considerate, b_i e α_i sono la larghezza e l'inclinazione della base della striscia i_{esima} rispetto all'orizzontale, W_i è il peso della striscia i_{esima} e c_i e ϕ_i sono le caratteristiche del terreno (coesione ed angolo di attrito) lungo la base della striscia. Inoltre u_i ed l_i rappresentano la pressione neutra lungo la base della striscia e la lunghezza della base della striscia (l_i = b_i /cos α_i). Quindi, assunto un cerchio di tentativo lo si suddivide in n strisce e dalla formula precedente si ricava η . Questo procedimento viene eseguito per il numero di centri prefissato e viene assunto come coefficiente di sicurezza della scarpata il minimo dei coefficienti così determinati.

Normativa

N.T.C. 2008 - Approccio 2

Simbologia adottata

Y_{Gstav} Coefficiente parziale sfavorevole sulle azioni permanenti Y_{Gtav} Coefficiente parziale favorevole sulle azioni permanenti Coefficiente parziale sfavorevole sulle azioni variabili Coefficiente parziale favorevole sulle azioni variabili

Relazione di Calcolo Muri della Rotatoria e Muro ad U

γ _c Coefficiente parziale di riduzione della coesione drenata γ _u Coefficiente parziale di riduzione della coesione non drenata γ _u Coefficiente parziale di riduzione del carico ultimo									
	le di riduzione della resistenza a com	pressione uniassiale delle	rocce						
Coefficienti di partecip	pazione combinazioni stati	che							
Coefficienti parziali per l	e azioni o per l'effetto delle :	azioni:							
Carichi	Effetto		A1	A2	EQU	HYD			
Permanenti	Favorevole	$\gamma_{\sf Gfav}$	1,00	1,00	0,90	0,90			
Permanenti	Sfavorevole	γGsfav	1,30	1,00	1,10	1,30			
Variabili	Favorevole	γ_{Qfav}	0,00	0,00	0,00	0,00			
Variabili	Sfavorevole	γQsfav	1,50	1,30	1,50	1,50			
Coefficienti parziali per i	parametri geotecnici del ter	reno:							
Parametri	-		M1	M2	M2	M1			
Tangente dell'angolo di	attrito	γ _{tanφ} '	1,00	1,25	1,25	1,00			
Coesione efficace		γ _{c'}	1,00	1,25	1,25	1,00			
Resistenza non drenata		$\gamma_{ m cu}$	1,00	1,40	1,40	1,00			
Resistenza a compressi	one uniassiale	$\gamma_{ m qu}$	1,00	1,60	1,60	1,00			
Peso dell'unità di volume	е	γ_{γ}	1,00	1,00	1,00	1,00			
Coefficienti di partecip	pazione combinazioni sism	iiche							
	<u>e azioni o per l'effetto delle :</u>	<u>azioni:</u>							
Carichi	Effetto		A1	A2	EQU	HYD			
Permanenti	Favorevole	γ_{Gfav}	1,00	1,00	1,00	0,90			
Permanenti	Sfavorevole	γGsfav	1,00	1,00	1,00	1,30			
Variabili	Favorevole	$\gamma_{ m Qfav}$	0,00	0,00	0,00	0,00			
Variabili	Sfavorevole	γQsfav	1,00	1,00	1,00	1,50			
	parametri geotecnici del ter	reno:							
Parametri			M1	M2	M2	M1			
Tangente dell'angolo di	attrito	$\gamma_{ an\phi'}$	1,00	1,25	1,25	1,00			
Coesione efficace		$\gamma_{c'}$	1,00	1,25	1,25	1,00			
Resistenza non drenata		γ _{cu}	1,00	1,40	1,40	1,00			
Resistenza a compressi	one uniassiale	$\gamma_{ m qu}$	1,00	1,60	1,60	1,00			
Peso dell'unità di volume	9	γ_{γ}	1,00	1,00	1,00	1,00			

FONDAZIONE SUPERFICIALE

Coefficienti parziali γ_R per le verifiche agli stati limite ultimi STR e GEO

Coefficiente parziale di riduzione dell'angolo di attrito drenato

Coefficienti parziali		
R1	R2	R3
1,00	1,00	1,40
1,00	1,00	1,10
1,00	1,00	1,40
	1,10	
	R1 1,00 1,00	R1 R2 1,00 1,00 1,00 1,00 1,00 1,00

Geometria muro e fondazione

Descrizione Muro a mensola in c.a.

Altezza del paramento	7,50 [m]
Spessore in sommità	0,50 [m]
Spessore all'attacco con la fondazione	1,25 [m]
Inclinazione paramento esterno	0,00 [១]
Inclinazione paramento interno	5,71 [°]
Lunghezza del muro	10,00 [m]

Fondazione

Relazione di Calcolo Muri della Rotatoria e Muro ad U

Lunghezza mensola fondazione di valle	1,15 [m]
Lunghezza mensola fondazione di monte	4,10 [m]
Lunghezza totale fondazione	6,50 [m]
Inclinazione piano di posa della fondazione	0,00 [ๆ
Spessore fondazione	1,25 [m]
Spessore magrone	0,10 [m]

Materiali utilizzati per la struttura

Calcestruzzo

Peso specifico 24,517 [kN/mc] Classe di Resistenza C25/30 30000 [kPa] Resistenza caratteristica a compressione R_{ck} Modulo elastico E 31447048 [kPa] Acciaio

Tipo B450C Tensione di snervamento σ_{fa} 449936 [kPa]

Geometria profilo terreno a monte del muro

Simbologia adottata e sistema di riferimento

(Sistema di riferimento con origine in testa al muro, ascissa X positiva verso monte, ordinata Y positiva verso l'alto)

N numero ordine del punto

X ascissa del punto espressa in [m] Y ordinata del punto espressa in [m]

A inclinazione del tratto espressa in [°]

N	X	Υ	Α
1	1,25	0,00	0,00
2	3,18	3,34	59,98
3	5,67	5,00	33,69
4	30.00	5.00	0.00

Terreno a valle del muro

Inclinazione terreno a valle del muro rispetto all'orizzontale 0,00 [°] 0,00 Altezza del rinterro rispetto all'attacco fondaz valle-paramento [m]

Descrizione terreni

Simbologia adottata

Nr. Indice del terreno
Descrizione Descrizione terreno

Peso di volume del terreno espresso in [kN/mc] Peso di volume saturo del terreno espresso in [kN/mc]

Angolo d'attrito interno espresso in [°] Angolo d'attrito terra-muro espresso in [°] Coesione espressa in [kPa] Adesione terra-muro espressa in [kPa]

Descrizione	γ	γs	ф	δ	С	Ca
Rilevato	19,00	19,00	35.00	23.33	0,0	0,0
Calcare	25,00	25,00	37.00	24.67	50,0	0,0
terrea armata	19,00	19,00	35.00	23.33	1000,0	0,0

Stratigrafia

Simbologia adottata

Indice dello strato

Indice dello strato
Spessore dello strato espresso in [m]
Inclinazione espressa in [°]
Costante di Winkler orizzontale espressa in Kg/cm²/cm
Coefficiente di spinta a Kw

Ks Terreno Terreno dello strato

Nr.	Н	а	Kw	Ks	Terreno
1	0,01	0,00	0,00	0,00	terrea armata
2	9,84	0,00	11,25	0,00	Rilevato
3	10,00	0,00	0,00	0,00	Calcare

Condizioni di carico

Simbologia e convenzioni di segno adottate

Simbologia e convenzioni di segno adottate
Carichi verticali positivi verso il basso.
Carichi orizzontali positivi verso sinistra.
Momento positivo senso antiorario.

X Ascissa del punto di applicazione del carico concentrato espressa in [m]
F_x Componente orizzontale del carico concentrato espressa in [kN]
F_y Componente verticale del carico concentrato espressa in [kN]
M Momento espresso in [kNm]
X_i Ascissa del punto iniziale del carico ripartito espressa in [m]
X_i Ascissa del punto finale del carico ripartito espressa in [m]
Q_i Intensità del carico per x=X_i espressa in [kN/m]
D/C Tipo carico: D=distribuito C=concentrato

Cond	izione n° 1	(Condizione 1)
=		

D Profilo $X_{i}=6,00$ $X_{f} = 11,00$ $Q_i = 20,0000$ $Q_f = 20,0000$

Descrizione combinazioni di carico

Simbologia adottata

F/S Effetto dell'azione (FAV: Favorevole, SFAV: Sfavorevole) Coefficiente di partecipazione della condizione Coefficiente di combinazione della condizione

Combinazione nº 1 - Caso A1-M1 (STR)				
Peso proprio muro Peso proprio terrapieno Spinta terreno	S / F FAV FAV SFAV	γ 1,00 1,00 1,30	Ψ 1.00 1.00 1.00	γ*Ψ 1,00 1,00 1,30
Combinazione n°2 - Caso A1-M1 (STR)				
Peso proprio muro Peso proprio terrapieno Spinta terreno	S/F SFAV SFAV SFAV	γ 1,30 1,30 1,30	Ψ 1.00 1.00 1.00	γ*Ψ 1,30 1,30 1,30
Combinazione n° 3 - Caso A1-M1 (STR)				
Peso proprio muro Peso proprio terrapieno Spinta terreno	S / F SFAV FAV SFAV	γ 1,30 1,00 1,30	Ψ 1.00 1.00 1.00	γ*Ψ 1,30 1,00 1,30
Combinazione n° 4 - Caso A1-M1 (STR)				
Peso proprio muro Peso proprio terrapieno Spinta terreno	S / F FAV SFAV SFAV	γ 1,00 1,30 1,30	Ψ 1.00 1.00 1.00	γ*Ψ 1,00 1,30 1,30
Combinazione n° 5 - Caso EQU (SLU)				
Peso proprio muro	S/F FAV	γ 0,90	Ψ 1.00	γ*Ψ 0,90

		Progetto D	efinitivo	
Peso proprio terrapieno Spinta terreno	FAV SFAV	0,90 1,10	1.00 1.00	0,90 1,10
Combinazione n° 6 - Caso A2-M2 (GEO	-STAB)			
Peso proprio muro	S / F SFAV	γ 1,00	Ψ 1.00	γ*Ψ 1,00
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Combinazione n°7 - Caso A1-M1 (STR)				
Peso proprio muro	S / F SFAV	γ 1,30	Ψ 1.00	γ*Ψ 1,30
Peso proprio terrapieno	FAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,30	1.00	1,30
Condizione 1	SFAV	1.50	1.00	1.50
Combinazione n° 8 - Caso A1-M1 (STR)	<u>)</u> S/F	v	Ψ	γ*Ψ
Peso proprio muro	FAV	γ 1,00	1.00	1,00
Peso proprio terrapieno	SFAV	1,30	1.00	1,30
Spinta terreno Condizione 1	SFAV SFAV	1,30 1.50	1.00 1.00	1,30 1.50
Combinazione n° 9 - Caso A1-M1 (STR)				
Combinazione ii 9 - Caso A1-Wii (STA)	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	FAV	1,00	1.00	1,00
Peso proprio terrapieno Spinta terreno	FAV SFAV	1,00 1,30	1.00 1.00	1,00 1,30
Condizione 1	SFAV	1.50	1.00	1.50
Combinazione n° 10 - Caso A1-M1 (STF				
Peso proprio muro	S / F SFAV	γ 1,30	Ψ 1.00	γ*Ψ 1,30
Peso proprio terrapieno	SFAV	1,30	1.00	1,30
Spinta terreno Condizione 1	SFAV SFAV	1,30 1.50	1.00	1,30 1.50
		1.50	1.00	1.50
Combinazione n° 11 - Caso EQU (SLU)	S/F	N	Ψ	γ*Ψ
Peso proprio muro	FAV	γ 0,90	1.00	0,90
Peso proprio terrapieno	FAV	0,90	1.00	0,90
Spinta terreno Condizione 1	SFAV SFAV	1,10 1.50	1.00 1.00	1,10 1.50
Combinazione n° 12 - Caso A2-M2 (GEO	O CTAD)			
Combinazione II 12 - Caso A2-iviz (GEO	<u>S/F</u>	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrapieno Spinta terreno	SFAV SFAV	1,00 1,00	1.00 1.00	1,00 1,00
Condizione 1	SFAV	1.30	1.00	1.30
Combinazione nº 13 - Caso A1-M1 (STF	R) - Sisma Vert.	positivo		
Dana amanda mum	S/F	γ	Ψ	γ*Ψ
Peso proprio muro Peso proprio terrapieno	SFAV SFAV	1,00 1,00	1.00 1.00	1,00 1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Combinazione n° 14 - Caso A1-M1 (STF	R) - Sisma Vert.	<u>negativo</u>		
Paga proprio mura	S / F SFAV	γ	Ψ 1.00	γ*Ψ
Peso proprio muro Peso proprio terrapieno	SFAV	1,00 1,00	1.00	1,00 1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Combinazione n° 15 - Caso EQU (SLU)		<u>ositivo</u>		
Pasa proprio mura	S/F FAV	γ 1,00	Ψ 1.00	γ*Ψ 1,00
Peso proprio muro Peso proprio terrapieno	FAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Combinazione nº 16 - Caso EQU (SLU)	- Sisma Vert. ne	<u>egativo</u>		
	S/F	γ	Ψ	γ*Ψ
Relazione di Calcolo Muri della I				
ANAS S n A Diraziona Progatto	-iono o Doo	lii		

		Progetto D	efinitivo	
Peso proprio muro	FAV	1,00	1.00	1,00
Peso proprio terrapieno	FAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
0 1: : 047 0 40 10 (01	CO OTAB) O			
Combinazione n° 17 - Caso A2-M2 (GE	<u>:O-STAB) - Sism</u> ; S / F	-	Ψ	*)T(
Peso proprio muro	SFAV	γ 1,00	1.00	γ*Ψ 1,00
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
·	-	·		1,00
Combinazione n° 18 - Caso A2-M2 (GE		-		
Dana manula muu	S / F SFAV	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1,00 1,00	1.00 1.00	1,00 1,00
Peso proprio terrapieno Spinta terreno	SFAV	1,00	1.00	1,00
Opinia terreno	OI AV	1,00	1.00	1,00
Combinazione nº 19 - Caso A1-M1 (ST	R) - Sisma Vert.	<u>positivo</u>		
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	FAV	1,00	1.00	1,00
Peso proprio terrapieno	FAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Condizione 1	SFAV	1.00	1.00	1.00
Combinazione n° 20 - Caso A1-M1 (ST	R) - Sisma Vert	negativo		
COMBINALIONO IL LO CASO XI WII (CI	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Condizione 1	SFAV	1.00	1.00	1.00
Combinazione nº 21 Case FOLL(SLL)) Siama Vart no	ocitivo		
Combinazione n° 21 - Caso EQU (SLU	<u>) - Sisma vent. po</u> S/F		Ψ	γ*Ψ
Peso proprio muro	FAV	γ 1,00	1.00	1,00
Peso proprio terrapieno	FAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Condizione 1	SFAV	1.00	1.00	1.00
Combinazione n° 22 - Caso EQU (SLU		-	> **	+ 144
Dago proprio muro	S/F	γ	Ψ	γ*Ψ
Peso proprio torrapione	FAV FAV	1,00 1,00	1.00 1.00	1,00 1,00
Peso proprio terrapieno Spinta terreno	SFAV	1,00	1.00	1,00
Condizione 1	SFAV	1.00	1.00	1.00
Combinazione n° 23 - Caso A2-M2 (GE	<u> EO-STAB) - Sism</u>	a Vert. positivo		
_	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno Condizione 1	SFAV SFAV	1,00 1.00	1.00 1.00	1,00 1.00
Condizione i	SIAV	1.00	1.00	1.00
Combinazione nº 24 - Caso A2-M2 (GE	EO-STAB) - Sisma	a Vert. negativo		
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Condizione 1	SFAV	1.00	1.00	1.00
Combinazione n° 25 - Quasi Permaner	nto (SLE)			
Combinazione il 25 Quasi i emianei	S/F	γ	Ψ	γ*Ψ
Peso proprio muro		1,00	1.00	1,00
Peso proprio terrapieno		1,00	1.00	1,00
Spinta terreno		1,00	1.00	1,00
Condizione 1	SFAV	1.00	1.00	1.00
Combinations at 000 Francisco (OLF)				
Combinazione n° 26 - Frequente (SLE)	<u>)</u> S/F	~	Ψ	γ*Ψ
Peso proprio muro	3/F 	γ 1,00	4 1.00	γ Ψ 1,00
Peso proprio terrapieno		1,00	1.00	1,00
Spinta terreno		1,00	1.00	1,00
Condizione 1	SFAV	1.00	1.00	1.00
Polaziono di Coloolo Muzi della	Dotatorio o M	luro ad II		
Relazione di Calcolo Muri della	notatoria e M	เนเบ สน ป		

Quasi permanente $\sigma_c < 0.45 f_{ck}$

Combinazione n° 27 - Rara (SLE)				
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro		1,00	1.00	1,00
Peso proprio terrapieno		1,00	1.00	1,00
Spinta terreno		1,00	1.00	1,00
Condizione 1	SFAV	1.00	1.00	1.00

Impostazioni di analisi

Metodo verifica sezioni	Stato limite
Impostazioni verifiche SLU	
<u>Coefficienti parziali per resistenze di calcolo dei materiali</u> Coefficiente di sicurezza calcestruzzo a compressione	1.50
Coefficiente di sicurezza calcestruzzo a trazione	1.50
Coefficiente di sicurezza acciaio	1.15
Fattore riduzione da resistenza cubica a cilindrica	0.83
Fattore di riduzione per carichi di lungo periodo	0.85
Coefficiente di sicurezza per la sezione	1.00
Impostazioni verifiche SLE	
Condizioni ambientali Armatura ad aderenza migliorata	Ordinarie
<u>Verifica fessurazione</u> Sensibilità delle armature	Poco sensibile
Valori limite delle aperture delle fessure	$W_1 = 0.20$
valori limite delle apertare delle ressure	$W_1 = 0.20$ $W_2 = 0.30$
	$w_2 = 0.30$ $w_3 = 0.40$
Metodo di calcolo aperture delle fessure	E.C. 2
<u>Verifica delle tensioni</u>	
Combinazione di carico	Rara $\sigma_c < 0.60~f_{ck}~-~\sigma_f < 0.80~f_{yk}$

Calcolo della portanza metodo di Meyerhof

Coefficiente correttivo su Ny per effetti cinematici (combinazioni sismiche SLU): 1,00 Coefficiente correttivo su Ny per effetti cinematici (combinazioni sismiche SLE): 1,00

Impostazioni avanzate

Diagramma correttivo per eccentricità negativa con aliquota di parzializzazione pari a 0.00

Quadro riassuntivo coeff. di sicurezza calcolati

Simbologia adottata

C Identificativo della combinazione
Tipo Tipo combinazione
Tipo Combinazione sismica
CSSCO Coeff. di sicurezza allo scorrimento
CSRIB Coeff. di sicurezza al ribaltamento C
Tipo
Sisma
CS_{SCO}
CS_{RIB}
CS_{OLIM}
CS_{STAB} Coeff. di sicurezza a carico limite Coeff. di sicurezza a stabilità globale

С	Tipo	Sisma	CS _{sco}	CS _{rib}	CSqlim	CS _{stab}
1	A1-M1 - [1]		1,57		6,33	
2	A1-M1 - [1]		1,99		5,97	
3	A1-M1 - [1]		1,86		5,94	
4	A1-M1 - [1]		1,70		6,21	
5	EQU - [1]			3,14		
6	STAB - [1]					1,19
7	A1-M1 - [2]		1,64		5,40	
8	A1-M1 - [2]		1,50		5,24	

9	A1-M1 - [2]		1,39		5,26	
10	A1-M1 - [2]		1,75		5,46	
11	EQU - [2]			2,71		
12	STAB - [2]					1,15
13	A1-M1 - [3]	Orizzontale + Verticale positivo	1,52		5,76	
14	A1-M1 - [3]	Orizzontale + Verticale negativo	1,50		6,01	
15	EQU - [3]	Orizzontale + Verticale positivo		2,85		
16	EQU - [3]	Orizzontale + Verticale negativo		2,70		
17	STAB - [3]	Orizzontale + Verticale positivo				1,13
18	STAB - [3]	Orizzontale + Verticale negativo				1,12
19	A1-M1 - [4]	Orizzontale + Verticale positivo	1,40		5,04	
20	A1-M1 - [4]	Orizzontale + Verticale negativo	1,38		5,26	
21	EQU - [4]	Orizzontale + Verticale positivo		2,61		
22	EQU - [4]	Orizzontale + Verticale negativo		2,49		
23	STAB - [4]	Orizzontale + Verticale positivo				1,10
24	STAB - [4]	Orizzontale + Verticale negativo				1,09
25	SLEQ - [1]		1,81		7,28	
26	SLEF - [1]		1,81		7,28	
27	SLER - [1]		1,81		7,28	

Analisi della spinta e verifiche

Sistema di riferimento adottato per le coordinate :
Origine in testa al muro (spigolo di monte)
Ascisse X (espresse in [m]) positive verso monte
Ordinate Y (espresse in [m]) positive verso l'alto
Le forze orizzontali sono considerate positive se agenti da monte verso valle
Le forze verticali sono considerate positive se agenti dall'alto verso il basso

Calcolo riferito ad 1 metro di muro

Tipo di analisi

Calcolo della spintametodo di CulmannCalcolo del carico limitemetodo di MeyerhofCalcolo della stabilità globalemetodo di FelleniusCalcolo della spinta in condizioni diSpinta attiva

<u>Sisma</u>

Identificazione del sito

Latitudine44.315114Longitudine7.295374ComuneDemonteProvinciaCuneoRegionePiemonte

Punti di interpolazione del reticolo 16894 - 17116 - 17117 - 16895

Tipo di opera

Tipo di costruzione Opera ordinaria
Vita nominale 50 anni
Classe d'uso III - Affollamenti significativi e industrie non pericolose
Vita di riferimento 75 anni

Combinazioni SLU

Combinazioni SLE

 $\begin{array}{lll} \mbox{Accelerazione al suolo a_g} & 0.66 \ [m/s^2] \\ \mbox{Coefficiente di amplificazione per tipo di sottosuolo (S)} & 1.20 \\ \mbox{Coefficiente di amplificazione topografica (St)} & 1.20 \\ \mbox{Coefficiente riduzione } (\beta_m) & 0.18 \\ \mbox{Rapporto intensità sismica verticale/orizzontale} & 0.50 \\ \mbox{Coefficiente di intensità sismica orizzontale (percento)} & k_h=(a_g/g^*\beta_m^*St^*S)=1.75 \\ \mbox{Coefficiente di intensità sismica verticale (percento)} & k_v=0.50 \ ^*k_h=0.88 \\ \end{array}$

Forma diagramma incremento sismico Stessa forma diagramma statico

Partecipazione spinta passiva (percento) 0,0 10,00 [m]Peso muro 360,0937 [kN]Baricentro del muro X=0,87 Y=-6,41

Superficie di spinta

Punto inferiore superficie di spinta X = 4,85 Y = -8,75 Punto superiore superficie di spinta X = 4,85 Y = 4,45 Altezza della superficie di spinta X = 4,85 Y = 4,45 Altezza della superficie di spinta X = 4,85 Y = 4,45 Inclinazione superficie di spinta X = 4,85 Y = 4,45 Y = 4,

Peso muro favorevole e Peso terrapieno favorevole

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	341,5417 313,6091 135,2778 X = 4,85 23,33 70,13	[kN] [kN] [kN] [m] ["]	Y = -5,21	[m]
Incremento sismico della spinta Punto d'applicazione dell'incremento sismico di spinta Inclinazione linea di rottura in condizioni sismiche	43,0045 X = 4,85 69,44	[kN] [m] [°]	Y = -5,21	[m]
Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a monte Inerzia del muro Inerzia verticale del muro Inerzia del terrapieno fondazione di monte Inerzia verticale del terrapieno fondazione di monte	822,5676 X = 2,82 21,4137 10,7068 48,9156 24,4578	[kN] [m] [kN] [kN] [kN]	Y = -2,45	[m]
Risultanti Risultante dei carichi applicati in dir. orizzontale Risultante dei carichi applicati in dir. verticale Sforzo normale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione Carico ultimo della fondazione	423,4258 1370,1369 1370,1369 423,4258 0,26 6,50 1434,0727 17,17 349,7337 6912,2748	[kN] [kN] [kN] [kN] [m] [m] [kN] [g] [kNm]		
Tensioni sul terreno Lunghezza fondazione reagente Tensione terreno allo spigolo di valle Tensione terreno allo spigolo di monte	6,50 260,46 161,12	[m] [kPa] [kPa]		

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 46.12$	$N_q = 33.30$	$N_{\gamma} = 37.15$
Fattori forma	$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
Fattori inclinazione	$i_c = 0,65$	$i_{q} = 0,65$	$i_{\gamma} = 0.26$
Fattori profondità	$d_{c} = 1,07$	$d_{q} = 1,04$	$d_{\gamma} = 1,04$
I coefficienti N' tengono conto dei fattori	di forma, profondità, inclinazione ca	rico, inclinazione piano di posa	, inclinazione pendio.
	hu 00.40	h.u. 00.0/	

 $N'_c = 32.43 \hspace{1cm} N'_q = 22.61 \hspace{1cm} N'_\gamma = 9.99 \label{eq:N'c}$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 1.40
Coefficiente di sicurezza a carico ultimo 5.04

Sollecitazioni paramento

Combinazione n° 19

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	M	Т
1	0,00	0,000	0,000	0,0000
2	0,38	4,7688	1,3007	7,8355
3	0,75	9,8811	6,3851	18,7147
4	1,13	15,3371	15,8143	30,4407
5	1,50	21,1368	29,8902	42,9288
6 7	1,88	27,2801	48,8901	56,0494
7	2,25	33,7669	72,9018	68,7703
8	2,63	40,5975	101,5405	79,9769
9	3,00	47,7716	134,2394	89,7844
10	3,38	55,2894	170,5532	98,5799
11	3,75	63,1508	210,1742	106,6917
12	4,13	71,3558	252,8868	114,2677
13	4,50	79,9045	298,5042	121,3851
14	4,88	88,7968	346,9048	128,2379
15	5,25	98,0327	397,9956	134,8294
16	5,63	107,6123	451,7029	141,2472
17	6,00	117,5354	507,9564	147,4388
18	6,38	127,8022	566,7033	153,5630
19	6,75	138,4127	627,9619	159,7873
20	7,13	149,3667	691,7292	165,7514
21	7,50	160,6644	757,8200	171,0869

Sollecitazioni fondazione di valle

Combinazione n° 19

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle Momento positivo se tende le fibre inferiori, espresso in kNm Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	М	Т
1	0,00	0,000	0,0000
2	0,11	1,5157	26,3271
3	0,23	6,0475	52,4522
4	0,34	13,5720	78,3751
5	0,46	24,0660	104,0959
6	0,57	37,5063	129,6147
7	0,69	53,8696	154,9313
8	0,80	73,1328	180,0458
9	0,92	95,2724	204,9582
10	1,03	120,2654	229,6685
11	1.15	148.0884	254.1767

Sollecitazioni fondazione di monte

Combinazione n° 19

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte Momento positivo se tende le fibre inferiori, espresso in kNm Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0,00	0,000	0,0000
2	0.41	-7.8012	-37.2715

3	0,82	-29,9206	-69,8449
4	1,23	-64,4319	-97,7201
5	1,64	-109,4090	-120,8971
6	2,05	-162,7406	-137,9166
7	2,46	-221,3942	-146,8489
8	2,87	-282,0502	-147,6851
9	3,28	-341,3895	-140,4251
10	3,69	-396,0964	-125,2022
11	4,10	-443,5246	-105,7268

Armature e tensioni nei materiali del muro

Combinazione nº 19

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro B base della sezione espressa in [m] $_$

altezza della sezione espressa in [m] area di armatura in corrispondenza del lembo di monte in [mq]

area di armatura in corrispondenza del lembo di valle in [mq] sforzo normale ultimo espresso in [kN]

L'ord B H A_{fs} A_{fi} N_u M_u CS VRcd VRcd momento ultimo espresso in [kNm]

coefficiente sicurezza sezione Aliquota di taglio assorbito dal cls, espresso in [kN]

Aliquota di taglio assorbito dall'armatura, espresso in [kN] Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	A_{fs}	A_{fi}	N_u	M_u	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0,00	1,00, 0,50	0,001608	0,002011	0,00	0,00	1000,00	191,72		
2	0,38	1,00, 0,54	0,003820	0,002011	3567,23	-972,99	748,04	265,90		
3	0,75	1,00, 0,58	0,003820	0,002011	1639,99	-1059,75	165,97	275,78		
4	1,13	1,00, 0,61	0,003820	0,002011	1007,42	-1038,76	65,68	285,47		
5	1,50	1,00, 0,65	0,003820	0,002011	741,62	-1048,75	35,09	294,99		
6	1,88	1,00, 0,69	0,003820	0,002011	603,61	-1081,76	22,13	304,35		
7	2,25	1,00, 0,73	0,003820	0,002011	521,05	-1124,93	15,43	313,58		
8	2,63	1,00, 0,76	0,003820	0,002011	469,42	-1174,09	11,56	322,69		
9	3,00	1,00, 0,80	0,003820	0,002011	436,70	-1227,14	9,14	331,69		
10	3,38	1,00, 0,84	0,003820	0,002011	415,88	-1282,88	7,52	340,59		
11	3,75	1,00, 0,88	0,003820	0,002011	402,78	-1340,50	6,38	349,40		
12	4,13	1,00, 0,91	0,003820	0,002011	394,90	-1399,52	5,53	358,14		
13	4,50	1,00, 0,95	0,003820	0,002011	390,72	-1459,65	4,89	366,80		
14	4,88	1,00, 0,99	0,003820	0,002011	389,25	-1520,68	4,38	375,40		
15	5,25	1,00, 1,03	0,003820	0,002011	389,79	-1582,47	3,98	383,95		
16	5,63	1,00, 1,06	0,003820	0,002011	391,88	-1644,93	3,64	392,44		
17	6,00	1,00, 1,10	0,003820	0,002011	395,21	-1708,00	3,36	400,89		
18	6,38	1,00, 1,14	0,003820	0,002011	399,54	-1771,64	3,13	409,29		
19	6,75	1,00, 1,18	0,003820	0,002011	404,63	-1835,78	2,92	417,66		
20	7,13	1,00, 1,21	0,003820	0,002011	410,36	-1900,39	2,75	426,00		
21	7.50	1.00, 1.25	0.003820	0.002011	416.71	-1965.52	2.59	434.31		

Armature e tensioni nei materiali della fondazione

Combinazione nº 19

Simbologia adottata

base della sezione espressa in [m] altezza della sezione espressa in [m] B H

area di armatura in corrispondenza del lembo inferiore in [mq] area di armatura in corrispondenza del lembo superiore in [mq]

 $\begin{array}{c} A_{fi} \\ A_{fs} \\ N_u \\ M_u \\ CS \end{array}$ sforzo normale ultimo espresso in [kN] momento ultimo espresso in [kNm] coefficiente sicurezza sezione

Aliquota di taglio assorbito dal cls, espresso in [kN]

Aliquota di taglio assorbito dall'armatura, espresso in [kN]

Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Progetto	Definitive	_
I IOGGILO		_

Nr.	Υ	В, Н	A_{fs}	A_{fi}	N_u	Mu	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1 2	0,00	1,00, 1,25	0,002614	0,002614	0,00	0,00	1000,00	361,98		
3	0,11 0,23	1,00, 1,25 1,00, 1,25	0,002614 0,002614	0,002614 0,002614	0,00 0,00	1211,66 1211,66	799,38 200,36	361,98 361,98		
4	0,34	1,00, 1,25	0,002614	0,002614	0,00	1211,66	89,28	361,98		
5	0,46	1,00, 1,25	0,002614	0,002614	0,00	1211,66	50,35	361,98		
6	0,57	1,00, 1,25	0,002614	0,002614	0,00	1211,66	32,31	361,98		
7	0,69	1,00, 1,25	0,002614	0,002614	0,00	1211,66	22,49	361,98		
8 9	0,80 0,92	1,00, 1,25 1,00, 1,25	0,002614 0,002614	0,002614 0,002614	0,00	1211,66 1211,66	16,57 12,72	361,98 361,98		
10	1,03	1,00, 1,25	0,002614	0,002614	0,00	1211,66	10,07	361,98		
11	1,15	1,00, 1,25	0,002614	0,002614	0,00	1211,66	8,18	361,98		
<u>Fondaz</u>	zione di mor	<u>nte</u>								
(L'ascissa	X, espressa in	[m], è positiva vers	so valle con origi	ne in corrisponden	za dell'estrem	o libero della fo	ndazione di mont	e)		
Nr.	Υ	В, Н	A_{fs}	A_{fi}	Nu	M_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0,00	1,00, 1,25	0,002614	0,002614	0,00	0,00	1000,00	361,98		
2 3	0,41 0,82	1,00, 1,25 1,00, 1,25	0,002614 0,002614	0,002614 0,002614	0,00	-1211,66 -1211,66	155,32 40,50	361,98 361,98		
4	1,23	1,00, 1,25	0,002614	0,002614	0,00	-1211,66	18,81	361,98		
5	1,64	1,00, 1,25	0,002614	0,002614	0,00	-1211,66	11,07	361,98		
6	2,05	1,00, 1,25	0,002614	0,002614	0,00	-1211,66	7,45	361,98		
7	2,46	1,00, 1,25	0,002614	0,002614	0,00	-1211,66	5,47	361,98		
8	2,87	1,00, 1,25	0,002614	0,002614	0,00	-1211,66	4,30	361,98		
9 10	3,28 3,69	1,00, 1,25 1,00, 1,25	0,002614 0,002614	0,002614 0,002614	0,00 0,00	-1211,66 -1211,66	3,55 3,06	361,98 361,98		
11	4,10	1,00, 1,25	0,002614	0,002614	0,00	-1211,66	2,73	361,98		
Valore (Compo Compo Punto c	nente vertic d'applicazior		a statica	o guporficio		3 1 X	941,5417 113,6091 35,2778 (= 4,85 13,33	[kN] [kN] [kN] [m] [ៗ	Y = -5,21	[m]
Inclinaz	rione linea d	li rottura in cor				7	0,13 20.9757	[1] [8] [kN]		
Punto d	d'applicazior	ne dell'increme li rottura in cor				×	ζ = 4,85 69,57	[m] [°]	Y = -5,21	[m]
Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a monte Inerzia del muro Inerzia verticale del muro Inerzia del terrapieno fondazione di monte Inerzia verticale del terrapieno fondazione di monte					x 2 - 4	22,5676 (= 2,82 11,4137 10,7068 48,9156 24,4578	[kN] [m] [kN] [kN] [kN]	Y = -2,45	[m]	
Risulta	<u>nti</u>									

403,1986

1291,0824

1291,0824

1352,5764

350,5826

6789,9205

403,1986 0,27

6,50

17,34

6,50

248,41

148,84

[kN]

[kN]

įkNį

[kN]

[m]

[m]

[kN]

[°] [kNm]

[kN]

[kPa] [kPa]

Risultante dei carichi applicati in dir. orizzontale

Sforzo normale sul piano di posa della fondazione

Inclinazione della risultante (rispetto alla normale)

Momento rispetto al baricentro della fondazione

Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione

Risultante dei carichi applicati in dir. verticale

Lunghezza fondazione reagente

Carico ultimo della fondazione

Lunghezza fondazione reagente

Tensione terreno allo spigolo di valle

Tensione terreno allo spigolo di monte

Risultante in fondazione

Tensioni sul terreno

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 46.12$	$N_q = 33.30$	$N_{\gamma} = 37.15$
Fattori forma	$s_c = 1,00$	$s_{q} = 1,00$	$s_{\gamma} = 1,00$
Fattori inclinazione	$i_c = 0,65$	$i_q = 0,65$	$i_{\gamma} = 0,25$
Fattori profondità	$d_{c} = 1,07$	$d_{q} = 1,04$	$d_{\gamma} = 1,04$
I coefficienti N' tengono conto dei fattori	di forma, profondità, inclinazione d	carico, inclinazione piano di posa,	inclinazione pendio.

 $N'_{c} = 32.28$ $N'_q = 22.50$ $N'_{\gamma} = 9.80$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 1.38 Coefficiente di sicurezza a carico ultimo 5.26

Sollecitazioni paramento

 $\label{eq:combinationen} \begin{array}{l} \underline{Combinazione\ n^\circ\ 20} \\ \underline{L'ordinata\ Y(espressa\ in\ m)\ \grave{e}\ considerata\ positiva\ verso\ il\ basso\ con\ origine\ in\ testa\ al\ muro\ Momento\ positivo\ se\ tende\ le\ fibre\ contro\ terra\ (a\ monte),\ espresso\ in\ kNm\ Sforzo\ normale\ positivo\ di\ compressione,\ espresso\ in\ kN\ Taglio\ positivo\ se\ diretto\ da\ monte\ verso\ valle,\ espresso\ in\ kN \end{array}$

Nr.	Υ	N	M	Т
1	0,00	0,000	0,000	0,0000
2	0,38	4,7688	1,2342	7,4182
3	0,75	9,8811	6,0542	17,7129
4	1,13	15,3371	14,9908	28,8088
5	1,50	21,1368	28,3302	40,6259
6	1,88	27,2801	46,3351	53,0416
7	2,25	33,7669	69,0892	65,0808
8	2,63	40,5975	96,2297	75,6905
9	3,00	47,7716	127,2219	84,9797
10	3,38	55,2894	161,6459	93,3138
11	3,75	63,1508	199,2119	101,0031
12	4,13	71,3558	239,7168	108,1874
13	4,50	79,9045	282,9851	114,9396
14	4,88	88,7968	328,9027	121,4429
15	5,25	98,0327	377,3823	127,7005
16	5,63	107,6123	428,3553	133,7951
17	6,00	117,5354	481,7558	139,6771
18	6,38	127,8022	537,5350	145,4967
19	6,75	138,4127	595,7108	151,4118
20	7,13	149,3667	656,2812	157,0823
21	7,50	160,6644	719,0720	162,1601

Sollecitazioni fondazione di valle

Combinazione n° 20

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle Momento positivo se tende le fibre inferiori, espresso in kNm Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0,00	0,000	0,0000
2	0,11	1,4361	24,9421
3	0,23	5,7289	49,6816
4	0,34	12,8551	74,2185
5	0,46	22,7914	98,5528
6	0,57	35,5145	122,6846
7	0,69	51,0011	146,6137
8	0,80	69,2279	170,3402
9	0,92	90,1716	193,8642
10	1,03	113,8089	217,1855
11	1.15	140.1165	240.3043

Sollecitazioni fondazione di monte

Combinazione n° 20

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0,00	0,0000	0,0000
2	0,41	-8,8331	-42,3044
3	0,82	-34,0466	-79,9043
4	1,23	-73,7117	-112,7999
5	1,64	-125,8996	-140,9910
6	2,05	-188,4966	-163,0183
7	2,46	-258,4674	-176,9523
8	2,87	-332,4902	-182,7839
9	3,28	-407,2429	-180,5131
10	3,69	-479,4076	-170,2731
11	4,10	-546,3353	-155,7745

Armature e tensioni nei materiali del muro

Combinazione n° 20

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro B base della sezione espressa in [m] H altezza della sezione espressa in [m] Ars area di armatura in corrispondenza del lembo di monte in [mq]

A_{fs}
A_{fi}
N_u
M_u
CS
VRcd area di armatura in corrispondenza del lembo di valle in [mq] sforzo normale ultimo espresso in [kN] momento ultimo espresso in [kNm]

coefficiente sicurezza sezione Aliquota di taglio assorbito dal cls, espresso in [kN]

VRsd VRd Aliquota di taglio assorbito dall'armatura, espresso in [kN] Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	A_{fs}	A_{fi}	Nu	Mu	cs	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0,00	1,00, 0,50	0,001608	0,002011	0,00	0,00	1000,00	191,72		
2	0,38	1,00, 0,54	0,003820	0,002011	3694,91	-956,27	774,82	265,90		
3	0,75	1,00, 0,58	0,003820	0,002011	1753,65	-1074,46	177,47	275,78		
4	1,13	1,00, 0,61	0,003820	0,002011	1078,59	-1054,23	70,33	285,47		
5	1,50	1,00, 0,65	0,003820	0,002011	791,12	-1060,36	37,43	294,99		
6	1,88	1,00, 0,69	0,003820	0,002011	642,68	-1091,59	23,56	304,35		
7	2,25	1,00, 0,73	0,003820	0,002011	554,15	-1133,82	16,41	313,58		
8	2,63	1,00, 0,76	0,003820	0,002011	498,88	-1182,51	12,29	322,69		
9	3,00	1,00, 0,80	0,003820	0,002011	463,87	-1235,36	9,71	331,69		
10	3,38	1,00, 0,84	0,003820	0,002011	441,61	-1291,09	7,99	340,59		
11	3,75	1,00, 0,88	0,003820	0,002011	427,59	-1348,84	6,77	349,40		
12	4,13	1,00, 0,91	0,003820	0,002011	419,14	-1408,08	5,87	358,14		
13	4,50	1,00, 0,95	0,003820	0,002011	414,65	-1468,49	5,19	366,80		
14	4,88	1,00, 0,99	0,003820	0,002011	413,03	-1529,87	4,65	375,40		
15	5,25	1,00, 1,03	0,003820	0,002011	413,57	-1592,05	4,22	383,95		
16	5,63	1,00, 1,06	0,003820	0,002011	415,76	-1654,95	3,86	392,44		
17	6,00	1,00, 1,10	0,003820	0,002011	419,27	-1718,50	3,57	400,89		
18	6,38	1,00, 1,14	0,003820	0,002011	423,83	-1782,64	3,32	409,29		
19	6,75	1,00, 1,18	0,003820	0,002011	429,22	-1847,32	3,10	417,66		
20	7,13	1,00, 1,21	0,003820	0,002011	435,28	-1912,51	2,91	426,00		
21	7,50	1,00, 1,25	0,003820	0,002011	442,00	-1978,24	2,75	434,31		

Armature e tensioni nei materiali della fondazione

Combinazione n° 20

adottata
base della sezione espressa in [m]
altezza della sezione espressa in [m]
area di armatura in corrispondenza del lembo inferiore in [mq]
area di armatura in corrispondenza del lembo superiore in [mq]

Simbologia adottata
B base de
H altezza
A_{fi} area di a
N_u sforzo n
M_u moment
CS coefficie
VRcd Aliquota
VRsd Aliquota
VRd Resiste sforzo normale ultimo espresso in [kN] momento ultimo espresso in [kNm]

coefficiente sicurezza sezione Aliquota di taglio assorbito dal cls, espresso in [kN]

Aliquota di taglio assorbito dall'armatura, espresso in [kN] Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	В, Н	A_{fs}	A_{fi}	N_{u}	M_u	cs	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0,00	1,00, 1,25	0,002614	0,002614	0,00	0,00	1000,00	361,98		
2	0,11	1,00, 1,25	0,002614	0,002614	0,00	1211,66	843,71	361,98		
3	0,23	1,00, 1,25	0,002614	0,002614	0,00	1211,66	211,50	361,98		
4	0,34	1,00, 1,25	0,002614	0,002614	0,00	1211,66	94,25	361,98		
5	0,46	1,00, 1,25	0,002614	0,002614	0,00	1211,66	53,16	361,98		
6	0,57	1,00, 1,25	0,002614	0,002614	0,00	1211,66	34,12	361,98		
7	0,69	1,00, 1,25	0,002614	0,002614	0,00	1211,66	23,76	361,98		
8	0,80	1,00, 1,25	0,002614	0,002614	0,00	1211,66	17,50	361,98		
9	0,92	1,00, 1,25	0,002614	0,002614	0,00	1211,66	13,44	361,98		
10	1,03	1,00, 1,25	0,002614	0,002614	0,00	1211,66	10,65	361,98		
11	1,15	1,00, 1,25	0,002614	0,002614	0,00	1211,66	8,65	361,98		

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Υ	В, Н	A_{fs}	\mathbf{A}_{fi}	N_u	$M_{\rm u}$	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0,00	1,00, 1,25	0,002614	0,002614	0,00	0,00	1000,00	361,98		
2	0,41	1,00, 1,25	0,002614	0,002614	0,00	-1211,66	137,17	361,98		
3	0,82	1,00, 1,25	0,002614	0,002614	0,00	-1211,66	35,59	361,98		
4	1,23	1,00, 1,25	0,002614	0,002614	0,00	-1211,66	16,44	361,98		
5	1,64	1,00, 1,25	0,002614	0,002614	0,00	-1211,66	9,62	361,98		
6	2,05	1,00, 1,25	0,002614	0,002614	0,00	-1211,66	6,43	361,98		
7	2,46	1,00, 1,25	0,002614	0,002614	0,00	-1211,66	4,69	361,98		
8	2,87	1,00, 1,25	0,002614	0,002614	0,00	-1211,66	3,64	361,98		
9	3,28	1,00, 1,25	0,002614	0,002614	0,00	-1211,66	2,98	361,98		
10	3,69	1,00, 1,25	0,002614	0,002614	0,00	-1211,66	2,53	361,98		
11	4.10	1.00. 1.25	0.002614	0.002614	0.00	-1211.66	2.22	361.98		

COMBINAZIONE n° 22

SOMBING CONCENT - EE				
Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	477,4950 451,3748 155,7633 X = 4,85 19,04 65,87	[kN] [kN] [kN] [m] ["]	Y = -5,01	[m]
Incremento sismico della spinta Punto d'applicazione dell'incremento sismico di spinta Inclinazione linea di rottura in condizioni sismiche	25,1585 X = 4,85 65,87	[kN] [m] [ී]	Y = -5,01	[m]
Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a monte Inerzia del muro Inerzia verticale del muro Inerzia del terrapieno fondazione di monte Inerzia verticale del terrapieno fondazione di monte	822,5676 X = 2,82 21,4137 -10,7068 48,9156 -24,4578	[kN] [m] [kN] [kN] [kN]	Y = -2,45	[m]
<u>Risultanti</u> Risultante dei carichi applicati in dir. orizzontale Risultante dei carichi applicati in dir. verticale Momento ribaltante rispetto allo spigolo a valle	545,4865 1311,4669 2270,7878	[kN] [kN] [kNm]		

Momento stabilizzante rispetto allo spigolo a valle	5649,4698	[kNm]
Sforzo normale sul piano di posa della fondazione	1311,4669	[kN]
Sforzo tangenziale sul piano di posa della fondazione	545,4865	[kN]
Eccentricità rispetto al baricentro della fondazione	0,67	[m]
Lunghezza fondazione reagente	6,50	[m]
Risultante in fondazione	1420,3876	[kN]
Inclinazione della risultante (rispetto alla normale)	22,58	[°]
Momento rispetto al baricentro della fondazione	883,5853	[kNm]

<u>COEFFICIENTI DI SICUREZZA</u> Coefficiente di sicurezza a ribaltamento

Inviluppo Sollecitazioni paramento

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in [kNm] Sforzo normale positivo di compressione, espresso in [kN] Taglio positivo se diretto da monte verso valle, espresso in [kN]

					\sim .	
Invili	Inna	comb	บทวร	IODI	S.I	

Nr.	Υ	Nmin	Nmax	Mmin	Mmax	Tmin	Tmax			
1	0,00	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000			
2	0,38	4,7688	6,1994	1,2342	1,5242	7,4182	9,1930			
3	0,75	9,8811	12,8455	6,0542	7,5173	17,7129	22,0050			
4	1,13	15,3371	19,9383	14,9908	18,6329	28,8088	35,7864			
5	1,50	21,1368	27,4778	28,3302	35,2211	40,6259	50,4551			
6	1,88	27,2801	35,4641	46,3351	57,6039	53,0416	65,8409			
7	2,25	33,7669	43,8970	69,0892	85,8649	65,0808	80,6759			
8	2,63	40,5975	52,7767	96,2297	119,5214	75,6905	93,6590			
9	3,00	47,7716	62,1031	127,2219	157,8874	84,9797	104,9550			
10	3,38	55,2894	71,8762	161,6459	200,4250	93,3138	115,0207			
11	3,75	63,1508	82,0961	199,2119	246,7586	101,0031	124,2455			
12	4,13	71,3558	92,7626	239,7168	296,6220	108,1874	132,8041			
13	4,50	79,9045	103,8759	282,9851	349,7825	114,9396	140,7873			
14	4,88	88,7968	115,4358	328,9027	406,0856	121,4429	148,4281			
15	5,25	98,0327	127,4425	377,3823	465,4106	127,7005	155,7296			
16	5,63	107,6123	139,8959	428,3553	527,6604	133,7951	162,7972			
17	6,00	117,5354	152,7961	481,7558	592,7413	139,6771	169,5671			
18	6,38	127,8022	166,1429	537,5350	660,5811	145,4967	176,2310			
19	6,75	138,4127	179,9365	595,7108	731,1931	151,4118	182,9906			
20	7,13	149,3667	194,1768	656,2812	804,5648	157,0823	189,4113			
21	7,50	160,6644	208,8638	719,0720	880,4644	162,1601	195,0489			
بيانيما	luviluma asaskinasiani CLE									

Inviluppo combinazioni SLE

Nr.	Υ	Nmin	Nmax	Mmin	Mmax	Tmin	Tmax
1	0,00	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
2	0,38	4,7688	4,7688	1,1623	1,1623	7,0132	7,0132
3	0,75	9,8811	9,8811	5,7427	5,7427	16,8340	16,8340
4	1,13	15,3371	15,3371	14,2556	14,2556	27,4222	27,4222
5	1,50	21,1368	21,1368	26,9747	26,9747	38,6991	38,6991
6	1,88	27,2801	27,2801	44,1510	44,1510	50,5445	50,5445
7	2,25	33,7669	33,7669	65,8592	65,8592	61,9997	61,9997
8	2,63	40,5975	40,5975	91,7354	91,7354	72,0297	72,0297
9	3,00	47,7716	47,7716	121,2466	121,2466	80,7414	80,7414
10	3,38	55,2894	55,2894	153,9726	153,9726	88,4943	88,4943
11	3,75	63,1508	63,1508	189,6208	189,6208	95,5933	95,5933
12	4,13	71,3558	71,3558	227,9846	227,9846	102,1758	102,1758
13	4,50	79,9045	79,9045	268,8838	268,8838	108,3133	108,3133
14	4,88	88,7968	88,7968	312,1988	312,1988	114,1862	114,1862
15	5,25	98,0327	98,0327	357,8365	357,8365	119,7974	119,7974
16	5,63	107,6123	107,6123	405,7219	405,7219	125,2284	125,2284
17	6,00	117,5354	117,5354	455,7829	455,7829	130,4303	130,4303
18	6,38	127,8022	127,8022	507,9641	507,9641	135,5507	135,5507
19	6,75	138,4127	138,4127	562,2756	562,2756	140,7450	140,7450
20	7,13	149,3667	149,3667	618,7081	618,7081	145,6786	145,6786
21	7,50	160,6644	160,6644	677,0829	677,0829	150,0097	150,0097

Inviluppo Sollecitazioni fondazione di valle

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle Momento positivo se tende le fibre inferiori, espresso in [kNm] Taglio positivo se diretto verso l'alto, espresso in [kN]

Inviluppo combinazioni SLU

Nr.	X	Mmin	Mmax	Tmin	Tmax
1	0,00	0,0000	0,000	0,0000	0,0000

37,3527

56,0904

74,8692

93,6889

112,5496

131,4512

150,3938

169,3774

188,4019

Tmin

-69,7067

-59,5471

-48,2247

37,3527

56,0904

74,8692

93,6889

112,5496

131,4512

150,3938

169,3774

188,4019

Tmay

-69,7067

-59,5471

-48,2247

2	0,11	1,1544	1,5157	20,1026	26,3271
3	0,23	4,6298	6,0475	40,3663	52,4522
4	0,34	10,4448	13,5720	60,7912	78,3751
5	0,46	18,6179	24,0660	81,3774	104,0959
6	0,57	29,1678	37,5063	102,1247	129,6147
7	0,69	42,1128	53,8696	123,0331	154,9313
8	0,80	57,4716	73,1328	143,6855	180,0458
9	0,92	75,2626	95,2724	164,1611	204,9582
10	1,03	95,5045	120,2654	184,6239	229,6685
11	1,15	118,0396	148,0884	205,0740	254,1767
Invilu	ippo comb	inazioni SLE			
Nr.	X	Mmin	Mmax	Tmin	Tmax
1	0,00	0,0000	0,0000	0,0000	0,0000
2	0.11	1.0723	1.0723	18.6558	18.6558

4,2924

9,6650

17,1948

26.8865

38,7448

52,7745

68,9801

87,3666

107,9385

Inviluppo Sollecitazioni fondazione di monte

4,2924

9,6650

17,1948

26,8865

38,7448

52,7745

68,9801

87,3666

107,9385

Mmin

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte Momento positivo se tende le fibre inferiori, espresso in [kNm] Taglio positivo se diretto verso l'alto, espresso in [kN]

Inviluppo combinazioni SLU

X

3

4

5

6 7

8

9

10

11

Nr

9

10

3,28

3,69

4,10

-171,3641

-198,0089

-220,0843

0,23

0,34

0,46

0,57

0.69

0,80

0,92

1,03

1,15

	^	141111111	IVIIIIAA	11111111	IIIIax
1	0,00	0,0000	0,000	0,0000	0,0000
2	0,41	-11,7731	-3,4745	-56,6632	-16,8288
3	0,82	-45,8353	-13,7013	-108,7276	-32,9383
4	1,23	-100,3012	-30,3856	-156,1930	-48,3285
5	1,64	-173,2850	-53,2324	-199,0595	-62,9994
6	2,05	-262,6611	-81,7065	-235,4298	-75,0538
7	2,46	-365,1053	-114,0746	-263,9198	-80,8589
8	2,87	-476,9212	-148,2307	-284,4865	-80,4346
9	3,28	-594,4120	-182,0689	-296,6167	-74,2936
10	3,69	-716,9978	-210,3767	-300,4837	-62,6091
11	4,10	-840,3264	-233,4534	-300,9112	-50,2049
Invilu	ppo comb	oinazioni SLE			
Nr.	Х	Mmin	Mmax	Tmin	Tmax
			Mmax 0,0000	Tmin 0,0000	Tmax 0,0000
Nr.	Х	Mmin	-		
Nr. 1	X 0,00	Mmin 0,0000	0,0000	0,0000	0,0000
Nr. 1 2	X 0,00 0,41	Mmin 0,0000 -3,6667	0,0000 -3,6667	0,0000 -17,6182	0,0000 -17,6182
Nr. 1 2 3	X 0,00 0,41 0,82	Mmin 0,0000 -3,6667 -14,2271	0,0000 -3,6667 -14,2271	0,0000 -17,6182 -33,6278	0,0000 -17,6182 -33,6278
Nr. 1 2 3 4 5	X 0,00 0,41 0,82 1,23	Mmin 0,0000 -3,6667 -14,2271 -31,0216	0,0000 -3,6667 -14,2271 -31,0216	0,0000 -17,6182 -33,6278 -48,0288	0,0000 -17,6182 -33,6278 -48,0288
Nr. 1 2 3 4 5	X 0,00 0,41 0,82 1,23 1,64	Mmin 0,0000 -3,6667 -14,2271 -31,0216 -53,3908	0,0000 -3,6667 -14,2271 -31,0216 -53,3908	0,0000 -17,6182 -33,6278 -48,0288 -60,8212	0,0000 -17,6182 -33,6278 -48,0288 -60,8212
Nr. 1 2 3 4 5	X 0,00 0,41 0,82 1,23 1,64 2,05	Mmin 0,0000 -3,6667 -14,2271 -31,0216 -53,3908 -80,4903	0,0000 -3,6667 -14,2271 -31,0216 -53,3908 -80,4903	0,0000 -17,6182 -33,6278 -48,0288 -60,8212 -70,5457	0,0000 -17,6182 -33,6278 -48,0288 -60,8212 -70,5457

-171,3641

-198,0089

-220,0843

Mmax

Inviluppo armature e tensioni nei materiali del muro

VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN] VRd Resistenza al taglio, espresso in [kN]
--

Inviluppo SLU

Nr.	Υ	В, Н	A_{fs}	${\sf A}_{\sf fi}$	N_u	$M_{\rm u}$	cs	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0,00	1,00, 0,50	0,001608	0,002011	0,00	0,00	1000,00	191,72		
2	0,38	1,00, 0,54	0,003820	0,002011	3194,75	-939,66	616,47	265,90		
3	0,75	1,00, 0,58	0,003820	0,002011	1354,17	-1022,75	137,05	275,78		
4	1,13	1,00, 0,61	0,003820	0,002011	828,61	-999,89	54,03	285,47		
5	1,50	1,00, 0,65	0,003820	0,002011	615,63	-1019,20	29,13	294,99		
6	1,88	1,00, 0,69	0,003820	0,002011	503,57	-1056,58	18,46	304,35		
7	2,25	1,00, 0,73	0,003820	0,002011	436,14	-1102,11	12,92	313,58		
8	2,63	1,00, 0,76	0,003820	0,002011	393,93	-1152,52	9,70	322,69		
9	3,00	1,00, 0,80	0,003820	0,002011	367,25	-1206,12	7,69	331,69		
10	3,38	1,00, 0,84	0,003820	0,002011	350,37	-1261,96	6,34	340,59		
11	3,75	1,00, 0,88	0,003820	0,002011	339,89	-1319,36	5,38	349,40		
12	4,13	1,00, 0,91	0,003820	0,002011	333,73	-1377,94	4,68	358,14		
13	4,50	1,00, 0,95	0,003820	0,002011	330,67	-1437,46	4,14	366,80		
14	4,88	1,00, 0,99	0,003820	0,002011	329,86	-1497,74	3,71	375,40		
15	5,25	1,00, 1,03	0,003820	0,002011	330,76	-1558,68	3,37	383,95		
16	5,63	1,00, 1,06	0,003820	0,002011	332,96	-1620,20	3,09	392,44		
17	6,00	1,00, 1,10	0,003820	0,002011	336,22	-1682,26	2,86	400,89		
18	6,38	1,00, 1,14	0,003820	0,002011	340,32	-1744,81	2,66	409,29		
19	6,75	1,00, 1,18	0,003820	0,002011	345,09	-1807,82	2,49	417,66		
20	7,13	1,00, 1,21	0,003820	0,002011	350,40	-1871,24	2,35	426,00		
21	7,50	1,00, 1,25	0,003820	0,002011	356,27	-1935,13	2,22	434,31		
Invilup	oo SLE									
Nr.	Υ	В, Н	\mathbf{A}_{fs}	${f A}_{\sf fi}$	σ_{c}	$ au_{ m c}$	σ_{fs}	$\sigma_{\!\scriptscriptstyle fi}$		
1	0,00	1,00, 0,50	0,001608	0,002011	0	0	0	0		
2	0,38	1,00, 0,54	0,003820	0,002011	29	16	228	-397		
3	0,75	1,00, 0,58	0,003820	0,002011	116	36	2024	-1527		
4	1,13	1,00, 0,61	0,003820	0,002011	249	55	5434	-3262		
5	1,50	1,00, 0,65	0,003820	0,002011	419	73	10262	-5483		
6	1,88	1,00, 0,69	0,003820	0,002011	618	90	16358	-8100		
7	2,25	1,00, 0,73	0,003820	0,002011	839	105	23531	-11019		
8	2,63	1,00, 0,76	0,003820	0,002011	1070	116	31459	-14106		
9	3,00	1,00, 0,80	0,003820	0,002011	1303	123	39824	-17238		
10	3,38	1,00, 0,84	0,003820	0,002011	1533	129	48406	-20341		
11	3,75	1,00, 0,88	0,003820	0,002011	1756	133	57071	-23372		
12	4,13	1,00, 0,91	0,003820	0,002011	1970	136	65733	-26310		
13	4,50	1,00, 0,95	0,003820	0,002011	2175	139	74333	-29143		
14	4,88	1,00, 0,99	0,003820	0,002011	2372	140	82834	-31867		
15	5,25	1,00, 1,03	0,003820	0,002011	2559	142	91219	-34484		
16	5,63	1,00, 1,06	0,003820	0,002011	2739	143	99472	-36996		
17	6,00	1,00, 1,10	0,003820	0,002011	2910	143	107585	-39407		
18	6,38	1,00, 1,14	0,003820	0,002011	3073	144	115554	-41722		
19	6,75	1,00, 1,18	0,003820	0,002011	3230	145	123390	-43950		
20	7,13	1,00, 1,21	0,003820	0,002011	3381	145	131100	-46098		
21	7,50	1,00, 1,25	0,003820	0,002011	3525	145	138651	-48159		
	,	,, ,—-	,	,		_				

Inviluppo armature e tensioni nei materiali della fondazione

Simbologia adottata

B base della sezione espressa in [m]

H altezza della sezione espressa in [m]

A_{ri} area di armatura in corrispondenza del lembo inferiore in [mq]

A_{ts} area di armatura in corrispondenza del lembo superiore in [mq] B H A_{fi}

σ_{c}	tensione	nel	calcestruzzo	espressa	in	[kPa]

 $\begin{array}{l} \tau_c \\ \sigma_{fi} \\ \sigma_{fs} \\ N_u \\ M_u \\ CS \\ VRcd \\ VRsd \\ VRd \end{array}$

Aliquota di taglio assorbito dal (s, espresso in [kN] Aliquota di taglio assorbito dall'armatura, espresso in [kN] Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Inviluppo SLU

Nr.	Υ	В, Н	A_{fs}	A_{fi}	Nu	Mu	cs	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0,00	1,00, 1,25	0,002614	0,002614	0,00	0,00	1000,00	361,98		
2	0,11	1,00, 1,25	0,002614	0,002614	0,00	1211,66	799,38	361,98		
3	0,23	1,00, 1,25	0,002614	0,002614	0,00	1211,66	200,36	361,98		
4	0,34	1,00, 1,25	0,002614	0,002614	0,00	1211,66	89,28	361,98		
5	0,46	1,00, 1,25	0,002614	0,002614	0,00	1211,66	50,35	361,98		
6	0,57	1,00, 1,25	0,002614	0,002614	0,00	1211,66	32,31	361,98		
7	0,69	1,00, 1,25	0,002614	0,002614	0,00	1211,66	22,49	361,98		
8	0,80	1,00, 1,25	0,002614	0,002614	0,00	1211,66	16,57	361,98		
9	0,92	1,00, 1,25	0,002614	0,002614	0,00	1211,66	12,72	361,98		
10	1,03	1,00, 1,25	0,002614	0,002614	0,00	1211,66	10,07	361,98		
11	1,15	1,00, 1,25	0,002614	0,002614	0,00	1211,66	8,18	361,98		
Invilupp	oo SLE									
		5								
Nr.	Х	В, Н	A _{fs}	A _{fi}	σ _c	τ _c	σ_{fi}	σ_{fs}		
12	0,00	1,00, 1,25	0,002614	0,002614	0	0	0	0		
13	0,11	1,00, 1,25	0,002614	0,002614	6	18	357	-78		
14	0,23	1,00, 1,25	0,002614	0,002614	24	36	1428	-314		
15	0,34	1,00, 1,25	0,002614	0,002614	54	54	3216	-706		
16	0,46	1,00, 1,25	0,002614	0,002614	96	72	5721	-1257		
17	0,57	1,00, 1,25	0,002614	0,002614	149	90	8946	-1965		
18	0,69	1,00, 1,25	0,002614	0,002614	215	109	12891	-2832		
19	0,80	1,00, 1,25	0,002614	0,002614	293	127	17559	-3857		
20	0,92	1,00, 1,25	0,002614	0,002614	383	145	22951	-5042		
21	1,03	1,00, 1,25	0,002614	0,002614	485	163	29069	-6386		
22	1,15	1,00, 1,25	0,002614	0,002614	600	182	35914	-7890		

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Inviluppo SLU

Nr.	Υ	В, Н	A_{fs}	A_{fi}	N_u	Mu	cs	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0,00	1,00, 1,25	0,002614	0,002614	0,00	0,00	1000,00	361,98		
2	0,41	1,00, 1,25	0,002614	0,002614	0,00	-1211,66	102,92	361,98		
3	0,82	1,00, 1,25	0,002614	0,002614	0,00	-1211,66	26,43	361,98		
4	1,23	1,00, 1,25	0,002614	0,002614	0,00	-1211,66	12,08	361,98		
5	1,64	1,00, 1,25	0,002614	0,002614	0,00	-1211,66	6,99	361,98		
6	2,05	1,00, 1,25	0,002614	0,002614	0,00	-1211,66	4,61	361,98		
7	2,46	1,00, 1,25	0,002614	0,002614	0,00	-1211,66	3,32	361,98		
8	2,87	1,00, 1,25	0,002614	0,002614	0,00	-1211,66	2,54	361,98		
9	3,28	1,00, 1,25	0,002614	0,002614	0,00	-1211,66	2,04	361,98		
10	3,69	1,00, 1,25	0,002614	0,002614	0,00	-1211,66	1,69	361,98		
11	4,10	1,00, 1,25	0,002614	0,002614	0,00	-1211,66	1,44	361,98		
Invilup	oo SLE									
Nr.	X	В, Н	A_{fs}	A_{fi}	σο	τ _c	σ _{fi}	σ_{fs}		
12	0,00	1,00, 1,25	0,002614	0,002614	0	0	0	0		
13	0,41	1,00, 1,25	0,002614	0,002614	20	-17	-268	1220		
14	0,82	1,00, 1,25	0,002614	0,002614	79	-32	-1040	4734		
15	1,23	1,00, 1,25	0,002614	0,002614	172	-46	-2267	10322		
16	1,64	1,00, 1,25	0,002614	0,002614	297	-59	-3902	17764		
17	2,05	1,00, 1,25	0,002614	0,002614	447	-68	-5883	26781		
18	2,46	1,00, 1,25	0.002614	0.002614	614	-73	-8081	36784		
19	2,87	1,00, 1,25	0,002614	0,002614	786	-72	-10345	47090		

tensione nel calcestruzzo espressa in [kPa]
tensione tangenziale nel calcestruzzo espressa in [kPa]
tensione nell'armatura disposta in corrispondenza del lembo inferiore in [kPa]
tensione nell'armatura disposta in corrispondenza del lembo superiore in [kPa]
sforzo normale ultimo espresso in [kNn]
momento ultimo espresso in [kNm]
coefficiente sicurezza sezione
Aliquita di taglia asercitto dal els espresso in [kNl]

20	3,28	1,00, 1,25	0,002614	0,002614	952	-67	-12525	57017
21	3,69	1,00, 1,25	0,002614	0,002614	1100	-57	-14473	65882
22	4,10	1,00, 1,25	0,002614	0,002614	1223	-47	-16087	73227

10 ALLEGATO B - TABULATO MURO DI CONTRORIPA

Progetto: Muro di sostegno Ditta: Comune: Progettista: Direttore dei Lavori: Impresa: Normativa N.T.C. 2008 - Approccio 1 Simbologia adottata γGsfav Coefficiente parziale sfavorevole sulle azioni permanenti γGfav Coefficiente parziale favorevole sulle azioni permanenti γQsfav Coefficiente parziale sfavorevole sulle azioni variabili γQfav Coefficiente parziale favorevole sulle azioni variabili Coefficiente parziale di riduzione dell'angolo di attrito drenato γtanφ' үс' Coefficiente parziale di riduzione della coesione drenata Coefficiente parziale di riduzione della coesione non drenata γcu Coefficiente parziale di riduzione del carico ultimo γqu Coefficiente parziale di riduzione della resistenza a compressione uniassiale delle rocce γγ Coefficienti di partecipazione combinazioni statiche Coefficienti parziali per le azioni o per l'effetto delle azioni: Carichi Effetto Α1 EQU HYD Permanenti Favorevole □Gfav 1,00 1,00 0,90 0,90 Permanenti Sfavorevole □Gsfav 1,30 1,00 1,10 1,30 Variabili Favorevole □Qfav 0,00 0,00 0,00 0,00 Variabili Sfavorevole □Qsfav 1,50 1,30 1,50 1,50 Coefficienti parziali per i parametri geotecnici del terreno: Parametri M1 M2 M2 M1 Tangente dell'angolo di attrito □tan□' 1,00 1,25 1,25 1,00 1,25 1,00 1,25 1,00 Resistenza non drenata \Box cu 1,00 1,40 1,40 1,00 Resistenza a compressione uniassiale □qu 1,00 1,60 1,60 1,00 Peso dell'unità di volume 1,00 1,00 1,00 1,00 Coefficienti di partecipazione combinazioni sismiche Coefficienti parziali per le azioni o per l'effetto delle azioni: HYD Carichi Effetto Α1 A2 EQU Favorevole □Gfav 1,00 1,00 1,00 0,90 Permanenti Sfavorevole □Gsfav 1,00 1,00 1,00 1,30 Permanenti Variabili Favorevole □Qfav 0.00 0,00 0,00 0,00 Variabili Sfavorevole □Qsfav 1,00 1,00 1,00 1,50 Coefficienti parziali per i parametri geotecnici del terreno: M1 Parametri M2 M2 M1 Tangente dell'angolo di attrito □tan□' 1,00 1,25 1,25 1,00

1.00

Coesione efficace □c'

1,25

1,25

Progetto	Definitive	_
I IOGGILO		_

Resistenza non drenata	□cu	1,00	1,40	1,40	1,00	
Resistenza a compressione	uniassiale	□qu	1,00	1,60	1,60	1,00
Peso dell'unità di volume		1,00	1,00	1,00	1,00	

FONDAZIONE SUPERFICIALE

Coefficienti parziali □R per le verifiche agli stati limite ultimi STR e GEO

Verifica Coefficienti parziali

R1 R2 R3

Capacità portante della fondazione 1,00 1,00 1,40

Scorrimento 1,00 1,00 1,10

Resistenza del terreno a valle 1,00 1,00 1,40

Stabilità globale 1,10

Geometria muro e fondazione

Descrizione Muro a mensola in c.a.

Altezza del paramento 9,00 [m] Spessore in sommità 0,50 [m]

Spessore all'attacco con la fondazione 1,50 [m] Inclinazione paramento esterno 0,00 [°] Inclinazione paramento interno 6,35 [°] Lunghezza del muro 10,00 [m]

Fondazione

Lunghezza mensola fondazione di valle 1,50 [m] Lunghezza mensola fondazione di monte 3,50 [m]

Lunghezza totale fondazione 6,50 [m]

Inclinazione piano di posa della fondazione 0,00 [°]

Spessore fondazione 1,25 [m] Spessore magrone 0,10 [m]

Materiali utilizzati per la struttura

Calcestruzzo

Peso specifico 24,517 [kN/mc] Classe di Resistenza Rck 250

Resistenza caratteristica a compressione Rck 24517 [kPa]

Modulo elastico E 30073438 [kPa]

Acciaio

Tipo B450C

Tensione di snervamento □fa 449936 [kPa]

Geometria profilo terreno a monte del muro

Simbologia adottata e sistema di riferimento

(Sistema di riferimento con origine in testa al muro, ascissa X positiva verso monte, ordinata Y positiva verso l'alto)

N numero ordine del punto

X ascissa del punto espressa in [m]

Y ordinata del punto espressa in [m]

A inclinazione del tratto espressa in [°]

N X Y A

						rioge	tto Dellilli	100
1	0,75	0,00	0,00					
2	5,10	2,50	29,89					
3	18.00	9,00	26,74					
4	25,00	9,00	0,00					
Terreno	a valle de	el muro						
				-	orizzontale Ille-parame		[°] 0,00	[m]
Descrizi	one terrer	ni						
Simbolo	gia adotta	ata						
Nr.	9.0. 0.0.0		lel terreno					
Descrizi	one	Descriz	ione terrei	าด				
γ		Peso di	volume d	el terreno	espresso i	n [kN/mc]	
γs		Peso di	volume s	aturo del t	erreno esp	resso in	[kN/mc]	
ф		Angolo	d'attrito in	terno espr	esso in [°]			
δ		Angolo	d'attrito te	rra-muro e	espresso ir	າ [°]		
С		Coesior	ne espress	sa in [kPa]				
ca		Adesion	ne terra-m	uro espres	sa in [kPa]		
Descrizi	one	П	□s			С	ca	
RINTER		19,00	19,00	35.00	23.33	0,0	0,0	
Flysch	24,00	24,00	34.00	22.67	20,0	0,0	0,0	
Stratigra Simbolo	afia ogia adotta	ata						
N		Indice d	lello strato)				
Н				rato espre	sso in [m]			
а		-	ione espre	-				
Kw		Costant	e di Winkl	er orizzon	tale espres	ssa in Kg	/cm2/cm	
Ks		Coeffici	ente di sp	inta				
Terreno		Terreno	dello stra	to				
Nr.	Н	а	Kw	Ks	Terreno			
1	9,00	0.00	0,00	0,00	Flysch			
2	10,00	0,00	17,60	0,00	Flysch			
Descrizi	one comb	oinazioni d	i carico					
Simbolo	gia adotta	ata						
F/S	-		(FAV: Fa	vorevole.	SFAV: Sfa	vorevole)	1	
	Coeffici	ente di pa	rtecipazio	ne della co	ndizione			
	Coeffici	ente di co	mbinazion	e della co	ndizione			
Combin	azione n°	1 - Caso <i>I</i>	A1-M1 (ST	R)				
	S/F			□ * □				
•	oprio mur		1,00	1.00	1,00			
	oprio terra	•	FAV	1,00	1.00	1,00		
Spinta to	erreno	SFAV	1,30	1.00	1,30			
Combin		2 - Caso A	`	,				
	S/F			_ * _				

Dana muamia musa CEAV	1.00	1.00	1.00	
Peso proprio muro SFAV	1,00 SFAV	1.00	1,00 1.00	1.00
Peso proprio terrapieno Spinta terreno SFAV		1,00		1,00
Spinta terreno SFAV	1,00	1.00	1,00	
Combinazione n°3 - Caso E	FOLL(SLLI)		
S/F		, _ * _		
Peso proprio muro FAV	0,90	1.00	0,90	
Peso proprio terrapieno	FAV	0,90	1.00	0,90
Spinta terreno SFAV	1,10	1.00	1,10	-,
	, -		, -	
Combinazione n° 4 - Caso A	A2-M2 (GE	O-STAB)		
S/F		_ * _ ´		
Peso proprio muro SFAV	1,00	1.00	1,00	
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno SFAV	1,00	1.00	1,00	
Combinazione n° 5 - Caso A	A1-M1 (ST	R) - Sism	a Vert. ne	gativo
S/F		□ * □		
Peso proprio muro SFAV	1,00	1.00	1,00	
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno SFAV	1,00	1.00	1,00	
Combinazione n° 6 - Caso A	A1-M1 (ST	R) - Sism	a Vert. po	sitivo
S/F		□ * □		
Peso proprio muro SFAV	1,00	1.00	1,00	
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno SFAV	1,00	1.00	1,00	
Combinazione nº 7 - Caso A	A2-M2 (GE	O) - Sism	na Vert. po	sitivo
S/F		□ * □		
Peso proprio muro SFAV	1,00	1.00	1,00	
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno SFAV	1,00	1.00	1,00	
Combinazione n° 8 - Caso A	A2-M2 (GE		na Vert. ne	egativo
S/F		□ * □		
Peso proprio muro SFAV	1,00	1.00	1,00	
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno SFAV	1,00	1.00	1,00	
Combinazione n° 9 - Caso E			Vert. nega	ativo
S/F 🗆		□ * □		
Peso proprio muro FAV	1,00	1.00	1,00	
Peso proprio terrapieno	FAV	1,00	1.00	1,00
Spinta terreno SFAV	1,00	1.00	1,00	
Combinazione nº 10 - Caso			a Vert. pos	sitivo
S/F 🗆		□ * □		
Peso proprio muro FAV	1,00	1.00	1,00	
Peso proprio terrapieno	FAV	1,00	1.00	1,00
Spinta terreno SFAV	1,00	1.00	1,00	
Combinazione n° 11 - Caso			3) - Sisma	vert. positivo
S/F □		_ * _	4.66	
Peso proprio muro SFAV	1,00	1.00	1,00	4.00
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Relazione di Calcolo N				
ANAS S n A Direzione	Proget	ttazione	e Reali	zzaziona I a

					Proget	tto Defini	tivo			
Spinta ter	reno SFA\	/ 1,00	1.00	1,00						
Combina	zione n° 12 - Ca	so A2-M2 (0	GEO-STA	3) - Sisma	Vert. nega	ativo				
	S/F		□ * □							
Peso prop	orio muro SFA	/ 1,00	1.00	1,00						
Peso prop	orio terrapieno	SFAV	1,00	1.00	1,00					
Spinta ter	reno SFA	/ 1,00	1.00	1,00						
Impostazi	oni di analisi									
Metodo v	erifica sezioni	Stato li	mite							
Impostazi	oni verifiche SL	U								
Coefficier	nti parziali per re	esistenze di d	calcolo de	i materiali						
Coefficier	nte di sicurezza	calcestruzzo	a compre	essione	1.50					
Coefficier	nte di sicurezza	calcestruzzo	a trazion	e 1.50						
Coefficier	nte di sicurezza	acciaio	1.15							
Fattore ric	duzione da resis	stenza cubic	a a cilindri	ca 0.83						
Fattore di	riduzione per c	arichi di lung	go periodo	0.85						
Coefficier	nte di sicurezza	per la sezioi	ne 1.00							
Calcolo d	ella portanza	metodo	di Meyer	hof						
·	oni avanzate na correttivo pe	r eccentricità	a negativa	con aliquo	ota di parzi	alizzazior	ie pari a (0.00		
Quadro ri	assuntivo coeff.	di sicurezza	a calcolati							
Simbolog	ia adottata									
C		alla aambina	ziono							
	Identificativo de		ZIUI I C							
Tipo Sisma	Tipo combinazione									
CSSCO	Combinazione Coeff. di sicure		rrimanta							
CSRIB	Coeff. di sicure									
	Coeff. di sicure Coeff. di sicure									
С	Tipo Sism	a cssco	csrib	csqlim	csstab					
1	A1-M1 - [1]		1,25		6,74					
2	A2-M2 - [1]		0,87		2,33					
3	EQU - [1]		2,74							
4	STAB - [1]					1,26				
5	A1-M1 - [2]	Orizzor	ntale + Ve	rticale ned	ativo	1,21		6,62		
6	A1-M1 - [2]		ntale + Ve	_		1,20		6,18		
7	A2-M2 - [2]		ntale + Ve			0,65		1,38		
8	A2-M2 - [2]		ntale + Ve			0,65		1,47		
9	EQU - [2] Orizz			_		2,35				
10	EQU - [2] Orizz		_			2,44				
11	STAB - [2]		ntale + Ve		itivo	<u>-</u> ,++			1,17	
10	STAB - [2]		itale + Vei	-					1,17	

STAB - [2]

1,18

Orizzontale + Verticale negativo

Analisi della spinta e verifiche

Sistema di riferimento adottato per le coordinate :

Origine in testa al muro (spigolo di monte)

Ascisse X (espresse in [m]) positive verso monte

Ordinate Y (espresse in [m]) positive verso l'alto

Le forze orizzontali sono considerate positive se agenti da monte verso valle

Le forze verticali sono considerate positive se agenti dall'alto verso il basso

Calcolo riferito ad 1 metro di muro

Tipo di analisi

Calcolo della spinta metodo di Culmann

Calcolo del carico limite metodo di Meyerhof Calcolo della stabilità globale metodo di Fellenius Calcolo della spinta in condizioni di Spinta attiva

Sisma

Identificazione del sito Latitudine 44.315114

Longitudine 7.295374

Comune Demonte Provincia Cuneo Regione Piemonte

Punti di interpolazione del reticolo 16894 - 17116 - 17117 - 16895

Tipo di opera

Tipo di costruzione Opera ordinaria

Vita nominale 50 anni

Classe d'uso III - Affollamenti significativi e industrie non pericolose

Vita di riferimento 75 anni

Combinazioni SLU

Accelerazione al suolo ag 1.69 [m/s^2]

Coefficiente di amplificazione per tipo di sottosuolo (S) 1.00

Coefficiente di amplificazione topografica (St) 1.20

Coefficiente riduzione (□m) 0.29

Rapporto intensità sismica verticale/orizzontale 0.50

Coefficiente di intensità sismica orizzontale (percento) $kh=(ag/g^*\Box m^*St^*S)=5.99$ Coefficiente di intensità sismica verticale (percento) kv=0.50 * kh=2.99

Forma diagramma incremento sismico Stessa forma diagramma statico

Partecipazione spinta passiva (percento) 0,0

Lunghezza del muro 10,00 [m]

Peso muro 420,0738 [kN] Baricentro del muro X=0,62 Y=-7,33

Superficie di spinta

Punto inferiore superficie di spinta $X = 4,50 \quad Y = -10,25$

Punto superiore superficie di spinta X = 4,50 Y = 2,16Altezza della superficie di spinta 12,41 [m]

Inclinazione superficie di spinta(rispetto alla verticale) 0,00 [°]

COMBINAZIONE nº 1

Peso muro favorevole e Peso terrapieno favorevole

Valore della spinta statica 582,8842 [kN]

Componente orizzontale della spinta statica 537,8506 [kN]
Componente verticale della spinta statica 224,6570 [kN]

Punto d'applicazione della spinta X = 4,50 [m] Y = -7,00 [m] Inclinaz. della spinta rispetto alla normale alla superficie 22,67 [°]

Inclinazione linea di rottura in condizioni statiche 53,35 [°]

Peso terrapieno gravante sulla fondazione a monte 961,2319 [kN]

Baricentro terrapieno gravante sulla fondazione a monte X = 2,57 [m] Y = -3,80 [m]

Risultanti

Risultante dei carichi applicati in dir. orizzontale 537,8506 [kN]

Risultante dei carichi applicati in dir. verticale 1605,9626 [kN]

Sforzo normale sul piano di posa della fondazione 1605,9626 [kN]

Sforzo tangenziale sul piano di posa della fondazione 537,8506 [kN]

Eccentricità rispetto al baricentro della fondazione0,01 [m]

Lunghezza fondazione reagente 6,50 [m]

Risultante in fondazione 1693,6349 [kN]

Inclinazione della risultante (rispetto alla normale) 18,52 [°]

Momento rispetto al baricentro della fondazione 16,9123 [kNm]

Carico ultimo della fondazione 10822,1454 [kN]

Tensioni sul terreno

Lunghezza fondazione reagente 6,50 [m]
Tensione terreno allo spigolo di valle 249,41 [kPa]
Tensione terreno allo spigolo di monte 244,61 [kPa]

Fattori per il calcolo della capacità portante

Coeff. capacità portante Nc = 42.16 Nq = 29.44 $N \square = 31.15$

Fattori forma $sc = 1,00 \ sq = 1,00 \ s \square = 1,00$ Fattori inclinazione $ic = 0,63 \ iq = 0,63 \ i \square = 0,21$ Fattori profondità $dc = 1,07 \ dq = 1,04 \ d \square = 1,04$

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

N'c = 28.52 N'q = 19.24 $N' \square = 6.69$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 1.25 Coefficiente di sicurezza a carico ultimo 6.74

Sollecitazioni paramento

Combinazione nº 1

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro

Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr. Y N M T

1	0,00	0,0000 0,0000 0,0000
2	0,45	5,7914 2,2855 10,1192
3	0,90	12,1331 9,6497 21,8275
4	1,35	19,0250 22,5847 33,6131
5	1,80	26,4671 40,3440 42,0158
6	2,25	34,4595 61,1589 46,6171
7	2,70	43,0021 83,7104 48,9957
8	3,15	52,0949 107,2174 49,9868
9	3,60	61,7380 131,2447 50,5202
10	4,05	71,9312 156,0854 52,9567
11	4,50	82,6747 183,1014 59,1154
12	4,95	93,9685 213,9983 68,9000
13	5,40	105,8124 250,3478 82,0204
14	5,85	118,2066 293,6285 98,3337
15	6,30	131,1511 346,4299 136,9281
16	6,75	144,6457 452,1096 332,4065
17	7,20	158,6906 646,0081 477,8713
18	7,65	173,2857 872,8925 511,8477
19	8,10	188,4311 1115,3293 545,3288
20	8,55	204,1266 1373,1278 578,4013
21	9,00	220,3724 1646,1227 611,1187

Sollecitazioni fondazione di valle

Combinazione nº 1

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	Χ	M	Т
1	0,00	0,0000	0,0000
2	0,15	2,4607	32,8066
3	0,30	9,8412	65,5966
4	0,45	22,1389	98,3700
5	0,60	39,3513	131,1268
6	0,75	61,4761	163,8670
7	0,90	88,5106	196,5905
8	1,05	120,4524	229,2975
9	1,20	157,2990	261,9878
10	1,35	199,0479	294,6615
11	1,50	245,6966	327,3186

Sollecitazioni fondazione di monte

Combinazione n° 1

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr. X M T 1 0,00 0,0000 0,0000

2	0,35	-8,0805 -45,7930	
3	0,70	-31,7883 -89,2990	
4	1,05	-70,3230 -130,518	0
5	1,40	-122,8840	-169,4499
6	1,75	-188,6711	-206,0949
7	2,10	-266,8836	-240,4528
8	2,45	-356,7212	-272,5237
9	2,80	-457,3834	-302,3076
10	3,15	-568,0697	-329,8045
11	3,50	-687,9797	-355,0144

COMBINAZIONE n°2

Valore della spinta statica 641,9176 [kN]

Componente orizzontale della spinta statica 608,8262 [kN] Componente verticale della spinta statica 203,4424 [kN] Punto d'applicazione della spinta X = 4,50 [m] Y = -6,97 [m] Inclinaz. della spinta rispetto alla normale alla superficie 18,48 [°] Inclinazione linea di rottura in condizioni statiche 49,90 [°]

Peso terrapieno gravante sulla fondazione a monte 961,2319 [kN]

Baricentro terrapieno gravante sulla fondazione a monte X = 2,57 [m] Y = -3,80 [m]

Risultanti

Risultante dei carichi applicati in dir. orizzontale 608,8262 [kN]

Risultante dei carichi applicati in dir. verticale 1584,7481 [kN]

Sforzo normale sul piano di posa della fondazione 1584,7481 [kN]

Sforzo tangenziale sul piano di posa della fondazione 608,8262 [kN]

Eccentricità rispetto al baricentro della fondazione0,21 [m]

Lunghezza fondazione reagente6,50[m]Risultante in fondazione1697,6737[kN]

Inclinazione della risultante (rispetto alla normale) 21,02 [°] Momento rispetto al baricentro della fondazione 337,0187 [kNm]

Carico ultimo della fondazione 3691,7008 [kN]

Tensioni sul terreno

Lunghezza fondazione reagente 6,50 [m]
Tensione terreno allo spigolo di valle 291,59 [kPa]
Tensione terreno allo spigolo di monte 195,91 [kPa]

Fattori per il calcolo della capacità portante

Coeff. capacità portante Nc = 26.50 Nq = 15.30 N = 11.87

Fattori forma $sc = 1,00 \ sq = 1,00 \ s = 1,00$ Fattori inclinazione $ic = 0,59 \ iq = 0,59 \ i = 0,07$ Fattori profondità $dc = 1,06 \ dq = 1,03 \ d = 1,03$

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

N'c = 16.57 N'q = 9.28 $N' \square = 0.82$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 0.87 Coefficiente di sicurezza a carico ultimo 2.33

Sollecitazioni paramento

Combinazione n° 2

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro

Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	M	Т	
1	0,00	0,0000	0,0000	0,0000	
2	0,45	5,7914	2,2942	10,1485	
3	0,90	12,1331	9,6621	21,7400	
4	1,35	19,0250	22,3644	32,5139	
5	1,80	26,4671	39,3035	39,5549	
6	2,25	34,4595	58,8062	43,3175	
7	2,70	43,0021	79,7427	45,1440	
8	3,15	52,0949	101,4086	45,6866	
9	3,60	61,7380	123,4694	46,2140	
10	4,05	71,9312	146,5098	49,3526	
11	4,50	82,6747	172,1196	56,4910	
12	4,95	93,9685	202,0799	67,3852	
13	5,40	105,8124	238,0290	81,7950	
14	5,85	118,2066	281,5913	99,9504	
15	6,30	131,1511	335,5591	139,3852	
16	6,75	144,6457	439,8919	322,3725	
17	7,20	158,6906	626,1971	456,4461	
18	7,65	173,2857	842,5763	486,6109	
19	8,10	188,4311	1072,830	6	516,4502
20	8,55	204,1266	1316,848	1	546,0596
21	9,00	220,3724	1574,536	3	575,4379

Sollecitazioni fondazione di valle

Combinazione n° 2

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	Χ	M	Т
1	0,00	0,0000	0,0000
2	0,15	2,9273	38,9755
3	0,30	11,6761	77,6199
4	0,45	26,1967	115,9332
5	0,60	46,4395	153,9154
6	0,75	72,3548	191,5664
7	0,90	103,8929	228,8864
8	1,05	141,0041	265,8753
9	1,20	183,6389	302,5330
10	1,35	231,7475	338,8597
11	1,50	285,2802	374,8553

Sollecitazioni fondazione di monte

Combinazione n° 2

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	Χ	M T	
1	0,00	0,0000 0,000	00
2	0,35	-6,0732 -34,1	221
3	0,70	-23,4780 -64,7	518
4	1,05	-50,9921 -91,8	892
5	1,40	-87,3930 -115,	5343
6	1,75	-131,4586	-135,6870
7	2,10	-181,9665	-152,3474
8	2,45	-237,6944	-165,5155
9	2,80	-297,4199	-175,1912
10	3,15	-359,9208	-181,3746
11	3,50	-423,9747	-184,0657

COMBINAZIONE n°3

Valore della spinta statica 737,1801 [kN]

Componente orizzontale della spinta statica 699,1779 [kN]
Componente verticale della spinta statica 233,6339 [kN]

Punto d'applicazione della spinta X = 4,50 [m] Y = -6,88 [m] Inclinaz. della spinta rispetto alla normale alla superficie 18,48 [°] Inclinazione linea di rottura in condizioni statiche 49,77

Peso terrapieno gravante sulla fondazione a monte 865,1087 [kN]

Baricentro terrapieno gravante sulla fondazione a monte X = 2,57 [m] Y = -3,80 [m]

Risultanti

Risultante dei carichi applicati in dir. orizzontale 699,1779 [kN]

Risultante dei carichi applicati in dir. verticale 1476,8090 [kN] Momento ribaltante rispetto allo spigolo a valle 2356,8839 [kNm] Momento stabilizzante rispetto allo spigolo a valle 6459,1723 [kNm]

Sforzo normale sul piano di posa della fondazione 1476,8090 [kN]

Sforzo tangenziale sul piano di posa della fondazione 699,1779 [kN]

Eccentricità rispetto al baricentro della fondazione0,47 [m]

Lunghezza fondazione reagente 6,50 [m]
Risultante in fondazione 1633,9567 [kN]
Inclinazione della risultante (rispetto alla normale) 25,33 [°]
Momento rispetto al baricentro della fondazione 698,4926 [kNm]

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a ribaltamento 2.74

COMBINAZIONE n°5

Valore della spinta statica 373,2988 [kN]

Componente orizzontale della spinta statica 344,4578 [kN] Componente verticale della spinta statica 143,8779 [kN] Punto d'applicazione della spinta X = 4,50 [m] Y = -7,23 [m] Inclinaz. della spinta rispetto alla normale alla superficie 22,67 [°] Inclinazione linea di rottura in condizioni statiche 56,98 [°]

Incremento sismico della spinta 105,9615 [kN]

Punto d'applicazione dell'incremento sismico di spinta X = 4,50 [m] Y = -7,23 [m]

Inclinazione linea di rottura in condizioni sismiche 51,29 [º]

Peso terrapieno gravante sulla fondazione a monte 961,2319 [kN]

Baricentro terrapieno gravante sulla fondazione a monte X = 2,57 [m] Y = -3,80 [m]

Inerzia del muro 25,1540 [kN]

Inerzia verticale del muro -12,5770 [kN]

Inerzia del terrapieno fondazione di monte 57,5585 [kN]

Inerzia verticale del terrapieno fondazione di monte -28,7793 [kN]

Risultanti

Risultante dei carichi applicati in dir. orizzontale 524,9452 [kN]

Risultante dei carichi applicati in dir. verticale 1524,6673 [kN]

Sforzo normale sul piano di posa della fondazione 1524,6673 [kN]

Sforzo tangenziale sul piano di posa della fondazione 524,9452 [kN]

Eccentricità rispetto al baricentro della fondazione0,14 [m]

Lunghezza fondazione reagente 6,50 [m

Risultante in fondazione 1612,5067 [kN]

Inclinazione della risultante (rispetto alla normale) 19,00 [°]

Momento rispetto al baricentro della fondazione 211,4519 [kNm]

Carico ultimo della fondazione 10098,5837 [kN]

Tensioni sul terreno

Lunghezza fondazione reagente 6,50 [m]
Tensione terreno allo spigolo di valle 264,52 [kPa]
Tensione terreno allo spigolo di monte 204,49 [kPa]

Fattori per il calcolo della capacità portante

Coeff. capacità portante Nc = 42.16 Nq = 29.44 N = 31.15

Fattori forma $sc = 1,00 \ sq = 1,00 \ s \square = 1,00$ Fattori inclinazione $ic = 0,62 \ iq = 0,62 \ i \square = 0,19$ Fattori profondità $dc = 1,07 \ dq = 1,04 \ d \square = 1,04$

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

N'c = 28.14 N'q = 18.98 $N' \square = 6.28$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 1.21

Coefficiente di sicurezza a carico ultimo 6.62

Sollecitazioni paramento

Combinazione n° 5

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro

Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr. Y N M T 1 0,00 0,0000 0,0000 0,0000 2 0,45 5,7914 1,5663 6,8779

3	0,90	12,1331	6,6938	15,1040	
4	1,35	19,0250	15,8326	23,5499	
5	1,80	26,4671	28,4422	29,3248	
6	2,25	34,4595	43,0790	31,9286	
7	2,70	43,0021	58,6812	32,9304	
8	3,15	52,0949	74,8276	33,5030	
9	3,60	61,7380	91,4640	34,0804	
10	4,05	71,9312	108,6779	35,1162	
11	4,50	82,6747	126,9813	37,9963	
12	4,95	93,9685	147,4513	43,5548	
13	5,40	105,8124	171,3126	51,7522	
14	5,85	118,2066	199,7433	62,4956	
15	6,30	131,1511	234,8377	91,5113	
16	6,75	144,6457	312,3656	250,2273	
17	7,20	158,6906	461,8639	368,9727	
18	7,65	173,2857	638,2596	396,3601	
19	8,10	188,4311	827,2605	423,3408	
20	8,55	204,1266	1028,718	9	450,0016
21	9,00	220,3724	1242,503	1	476,3661

Sollecitazioni fondazione di valle

Combinazione n° 5

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	Χ	M	Т
1	0,00	0,0000	0,0000
2	0,15	2,6259	34,9775
3	0,30	10,4829	69,7473
4	0,45	23,5397	104,3093
5	0,60	41,7653	138,6636
6	0,75	65,1284	172,8102
7	0,90	93,5979	206,7490
8	1,05	127,1427	240,4801
9	1,20	165,7316	274,0034
10	1,35	209,3333	307,3190
11	1,50	257,9169	340,4268

Sollecitazioni fondazione di monte

Combinazione n° 5

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in k ${\rm Nm}$

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	Χ	M	Т
1	0,00	0,0000	0,0000
2	0,35	-5,5867	-31,4540
3	0,70	-21,6887	-60,0874
4	1.05	-47.3188	-85.9001

5	1,40	-81,4897 -108	,8920
6	1,75	-123,2142	-129,0633
7	2,10	-171,5049	-146,4139
8	2,45	-225,3748	-160,9438
9	2,80	-283,8365	-172,6530
10	3,15	-345,9028	-181,5415
11	3,50	-410,5865	-187,6094

COMBINAZIONE n° 6

Valore della spinta statica 373,2988 [kN]

Componente orizzontale della spinta statica 344,4578 [kN] Componente verticale della spinta statica 143,8779 [kN]

Punto d'applicazione della spinta X = 4,50 [m] Y = -7,23 [m]Inclinaz. della spinta rispetto alla normale alla superficie 22,67 [°] Inclinazione linea di rottura in condizioni statiche 56,98 [°]

Incremento sismico della spinta 147,9086 [kN]

Punto d'applicazione dell'incremento sismico di spinta X = 4,50 [m] Y = -7,23 [m]

Inclinazione linea di rottura in condizioni sismiche 51,35 [°]

Peso terrapieno gravante sulla fondazione a monte 961,2319 [kN]

Baricentro terrapieno gravante sulla fondazione a monte X = 2,57 [m] Y = -3,80 [m]

Inerzia del muro 25,1540 [kN]

Inerzia verticale del muro 12,5770 [kN]

Inerzia del terrapieno fondazione di monte 57,5585 [kN]

Inerzia verticale del terrapieno fondazione di monte 28,7793 [kN]

Risultanti

Risultante dei carichi applicati in dir. orizzontale 563,6514 [kN]

Risultante dei carichi applicati in dir. verticale 1623,5472 [kN]

Sforzo normale sul piano di posa della fondazione 1623,5472 [kN]

Sforzo tangenziale sul piano di posa della fondazione 563,6514 [kN]

Eccentricità rispetto al baricentro della fondazione0,13 [m]

Lunghezza fondazione reagente 6,50 [m] Risultante in fondazione 1718,6066 [kN]

Inclinazione della risultante (rispetto alla normale) 19,15 [°] Momento rispetto al baricentro della fondazione 216,0416 [kNm]

Carico ultimo della fondazione 10028,0389 [kN]

Tensioni sul terreno

Lunghezza fondazione reagente 6,50 [m]
Tensione terreno allo spigolo di valle 280,38 [kPa]
Tensione terreno allo spigolo di monte 219,05 [kPa]

Fattori per il calcolo della capacità portante

Coeff. capacità portante Nc = 42.16 Nq = 29.44 $N \square = 31.15$

Fattori forma $sc = 1,00 \ sq = 1,00 \ s = 1,00$ Fattori inclinazione $ic = 0,62 \ iq = 0,62 \ i = 0,19$ Fattori profondità $dc = 1,07 \ dq = 1,04 \ d = 1,04$

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

N'c = 28.02 N'q = 18.91 $N' \square = 6.16$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 1.20

Coefficiente di sicurezza a carico ultimo 6.18

Sollecitazioni paramento

Combinazione nº 6

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro

Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	М	Т	
1	0,00	0,0000	0,0000	0,0000	
2	0,45	5,7914	1,6748	7,3778	
3	0,90	12,1331	7,1593	16,2044	
4	1,35	19,0250	16,9355	25,2652	
5	1,80	26,4671	30,4197	31,4480	
6	2,25	34,4595	46,0556	34,2144	
7	2,70	43,0021	62,6976	35,2538	
8	3,15	52,0949	79,8904	35,8285	
9	3,60	61,7380	97,5733	36,4059	
10	4,05	71,9312	115,8383	37,4743	
11	4,50	82,6747	135,2343	40,5256	
12	4,95	93,9685	156,9189	46,4577	
13	5,40	105,8124	182,2083	55,2283	
14	5,85	118,2066	212,3683	66,7371	
15	6,30	131,1511	249,6514	97,9144	
16	6,75	144,6457	332,5633	268,7164	
17	7,20	158,6906	492,8990	396,4862	
18	7,65	173,2857	682,1337	425,9028	
19	8,10	188,4311	884,8789	454,8792	
20	8,55	204,1266	1100,973	7	483,5086
21	9,00	220,3724	1330,273	9	511,8166

Sollecitazioni fondazione di valle

Combinazione nº 6

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	Χ	M	Т
1	0,00	0,0000	0,0000
2	0,15	2,8042	37,3543
3	0,30	11,1957	74,4963
4	0,45	25,1425	111,4261
5	0,60	44,6129	148,1436
6	0,75	69,5750	184,6489
7	0,90	99,9969	220,9419
8	1,05	135,8470	257,0227
9	1,20	177,0932	292,8912
10	1,35	223,7037	328,5475
11	1,50	275,6468	363,9916

Sollecitazioni fondazione di monte

Combinazione nº 6

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	Χ	M	Т	
1	0,00	0,0000	0,0000	
2	0,35	-4,6937	-26,3468	
3	0,70	-18,1108	-49,8483	
4	1,05	-39,2555	-70,5046	
5	1,40	-67,1320	-88,3156	
6	1,75	-100,744	5	-103,2814
7	2,10	-139,097	1	-115,4020
8	2,45	-181,193	9	-124,6773
9	2,80	-226,039	2	-131,1074
10	3,15	-272,637	1	-134,6922
11	3,50	-319,9918	В	-135,4318

COMBINAZIONE n° 7

Valore della spinta statica 641,9176 [kN]

 $\label{eq:componente} \begin{tabular}{ll} Componente orizzontale della spinta statica & 608,8262 [kN] \\ Componente verticale della spinta statica & 203,4424 [kN] \\ Punto d'applicazione della spinta & X = 4,50 & [m] & Y = -6,97 & [m] \\ Inclinaz. della spinta rispetto alla normale alla superficie & 18,48 & [°] \\ Inclinazione linea di rottura in condizioni statiche & 49,90 & [°] \\ \end{tabular}$

Incremento sismico della spinta 185,7152 [kN]

Punto d'applicazione dell'incremento sismico di spinta X = 4,50 [m] Y = -6,97 [m]

Inclinazione linea di rottura in condizioni sismiche 47,27 []

Peso terrapieno gravante sulla fondazione a monte 961,2319 [kN]

Baricentro terrapieno gravante sulla fondazione a monte X = 2,57 [m] Y = -3,80 [m]

Inerzia del muro 25,1540 [kN]

Inerzia verticale del muro 12,5770 [kN]

Inerzia del terrapieno fondazione di monte 57,5585 [kN]

Inerzia verticale del terrapieno fondazione di monte 28,7793 [kN]

Risultanti

Risultante dei carichi applicati in dir. orizzontale 867,6801 [kN]

Risultante dei carichi applicati in dir. verticale 1684,9629 [kN]

Sforzo normale sul piano di posa della fondazione 1684,9629 [kN]

Sforzo tangenziale sul piano di posa della fondazione 867,6801 [kN]

Eccentricità rispetto al baricentro della fondazione0,68 [m]

Lunghezza fondazione reagente 6,50 [m] Risultante in fondazione 1895,2490 [kN]

Inclinazione della risultante (rispetto alla normale) 27,25 [°]

Momento rispetto al baricentro della fondazione 1138,1516 [kNm]

Carico ultimo della fondazione 2324,2741 [kN]

Tensioni sul terreno

Lunghezza fondazione reagente 6,50 [m]
Tensione terreno allo spigolo di valle 420,72 [kPa]
Tensione terreno allo spigolo di monte 97,61 [kPa]

Fattori per il calcolo della capacità portante

Coeff. capacità portante Nc = 26.50 Nq = 15.30 $N \square = 11.87$

Fattori forma $sc = 1,00 \ sq = 1,00 \ s\Box = 1,00$ Fattori inclinazione $ic = 0,49 \ iq = 0,49 \ i\Box = 0,00$ Fattori profondità $dc = 1,06 \ dq = 1,03 \ d\Box = 1,03$

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

N'c = 13.72 N'q = 7.68 $N' \square = 0.02$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 0.65 Coefficiente di sicurezza a carico ultimo 1.38

Sollecitazioni paramento

Combinazione n° 7

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro

Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	M	Т	
1	0,00	0,0000	0,0000	0,0000	
2	0,45	5,7914	2,6636	11,8311	
3	0,90	12,1331	11,2120	25,3282	
4	1,35	19,0250	25,9535	37,9329	
5	1,80	26,4671	45,6588	46,3464	
6	2,25	34,4595	68,4476	51,0828	
7	2,70	43,0021	93,0542	53,6613	
8	3,15	52,0949	118,6947	54,8198	
9	3,60	61,7380	145,0033	55,9940	
10	4,05	71,9312	172,6550	60,1561	
11	4,50	82,6747	203,4615	68,8776	
12	4,95	93,9685	239,4517	81,8820	
13	5,40	105,8124	282,4923	98,8978	
14	5,85	118,2066	334,4346	120,1852	
15	6,30	131,1511	398,4514	165,5859	
16	6,75	144,6457	519,7752	373,4680	
17	7,20	158,6906	734,1869	526,0309	
18	7,65	173,2857	982,9696	561,0403	
19	8,10	188,4311	1247,805	2	595,7143
20	8,55	204,1266	1528,579	9	630,1610
21	9,00	220,3724	1825,202	2	664,3792

Sollecitazioni fondazione di valle

Combinazione n°7

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	T
1	0,00	0,0000	0,0000
2	0,15	4,3603	57,9514
3	0,30	17,3295	114,7847
4	0,45	38,7398	170,4997
5	0,60	68,4235	225,0966
6	0,75	106,2129	278,5753
7	0,90	151,9402	330,9358
8	1,05	205,4377	382,1782
9	1,20	266,5378	432,3024
10	1,35	335,0725	481,3084
11	1,50	410,8744	529,1962

Sollecitazioni fondazione di monte

Combinazione n° 7

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	Χ	М	T
1	0,00	0,0000	0,0000
2	0,35	-11,8442	2 -66,3851
3	0,70	-45,5622	2 -124,9927
4	1,05	-98,4318	3 -175,8228
5	1,40	-167,730	98 -218,8754
6	1,75	-250,737	'1 -254,1504
7	2,10	-344,728	-281,6480
8	2,45	-446,983	-301,3680
9	2,80	-554,778	-313,3105
10	3,15	-665,393	33 -317,4754
11	3,50	-776,104	-313,8629

COMBINAZIONE n°8

Valore della spinta statica 641,9176 [kN]

Componente orizzontale della spinta statica 608,8262 [kN]
Componente verticale della spinta statica 203,4424 [kN]

Punto d'applicazione della spinta X = 4,50 [m] Y = -6,97 [m] Inclinaz. della spinta rispetto alla normale alla superficie 18,48 [°] Inclinazione linea di rottura in condizioni statiche 49,90 [°]

Incremento sismico della spinta 128,5224 [kN]

Punto d'applicazione dell'incremento sismico di spinta X = 4,50 [m] Y = -6,97 [m]

Inclinazione linea di rottura in condizioni sismiche 47,21 [°]

Peso terrapieno gravante sulla fondazione a monte 961,2319 [kN]

Baricentro terrapieno gravante sulla fondazione a monte X = 2,57 [m] Y = -3,80 [m]

Inerzia del muro 25,1540 [kN]

Inerzia verticale del muro -12,5770 [kN]

Inerzia del terrapieno fondazione di monte 57,5585 [kN]

Inerzia verticale del terrapieno fondazione di monte -28,7793 [kN]

Risultanti

Risultante dei carichi applicati in dir. orizzontale 813,4357 [kN]

Risultante dei carichi applicati in dir. verticale 1584,1243 [kN]

Sforzo normale sul piano di posa della fondazione 1584,1243 [kN]

Sforzo tangenziale sul piano di posa della fondazione 813,4357 [kN]

Eccentricità rispetto al baricentro della fondazione0,68 [m]

Lunghezza fondazione reagente 6,50 [m]

Risultante in fondazione 1780,7660 [kN] Inclinazione della risultante (rispetto alla normale) 27,18

Inclinazione della risultante (rispetto alla normale) 27,18 [°]

Momento rispetto al baricentro della fondazione 1078,9433 [kNm]

Carico ultimo della fondazione 2325,0084 [kN]

Tensioni sul terreno

Lunghezza fondazione reagente 6,50 [m]
Tensione terreno allo spigolo di valle 396,80 [kPa]
Tensione terreno allo spigolo di monte 90,50 [kPa]

Fattori per il calcolo della capacità portante

Coeff. capacità portante Nc = 26.50 Nq = 15.30 $N\Box = 11.87$

Fattori forma $sc = 1,00 \ sq = 1,00 \ s = 1,00$ Fattori inclinazione $ic = 0,49 \ iq = 0,49 \ i = 0,00$ Fattori profondità $dc = 1,06 \ dq = 1,03 \ d = 1,03$

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

N'c = 13.74 N'q = 7.69 N' = 0.02

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 0.65

Coefficiente di sicurezza a carico ultimo 1.47

Sollecitazioni paramento

Combinazione nº 8

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro

Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	М	Т
1	0,00	0,0000	0,0000	0,0000
2	0,45	5,7914	2,4909	11,0425
3	0,90	12,1331	10,4842	23,6388
4	1,35	19,0250	24,2690	35,4064
5	1,80	26,4671	42,7023	43,2727
6	2,25	34,4595	64,0351	47,7167
7	2,70	43,0021	87,0904	50,1533
8	3,15	52,0949	111,1402	51,2696
9	3,60	61,7380	135,8458	52,4029
10	4,05	71,9312	161,8377	56,3211
11	4,50	82,6747	190,8053	64,4878
12	4,95	93,9685	224,6401	76,6457
13	5,40	105,8124	265,0825	92,5417
14	5,85	118,2066	313,8588	112,4183
15	6,30	131,1511	373,9258	154,7547

16	6,75	144,6457 487,4120 348,4173	}
17	7,20	158,6906 687,6431 490,5617	•
18	7,65	173,2857 919,9364 523,2270)
19	8,10	188,4311 1167,2334	555,5823
20	8,55	204,1266 1429,4302	587,7282
21	9,00	220,3724 1706,4437	619,6635

Sollecitazioni fondazione di valle

Combinazione nº 8

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	Χ	M	T
1	0,00	0,0000	0,0000
2	0,15	4,0928	54,3934
3	0,30	16,2650	107,7268
4	0,45	36,3578	160,0001
5	0,60	64,2120	211,2135
6	0,75	99,6688	261,3668
7	0,90	142,5691	310,4601
8	1,05	192,7539	358,4935
9	1,20	250,0641	405,4668
10	1,35	314,3409	451,3801
11	1,50	385,4252	496,2334

Sollecitazioni fondazione di monte

Combinazione nº8

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	Χ	М	Т
1	0,00	0,0000	0,0000
2	0,35	-12,2979	-69,0304
3	0,70	-47,4509	-130,6001
4	1,05	-102,847	6 -184,7089
5	1,40	-175,876	7 -231,3569
6	1,75	-263,927	0 -270,5441
7	2,10	-364,387	1 -302,2704
8	2,45	-474,645	8 -326,5360
9	2,80	-592,091	8 -343,3407
10	3,15	-714,113	9 -352,6846
11	3,50	-838,100	6 -354,5677

COMBINAZIONE n° 9

Valore della spinta statica 641,9176 [kN]

Componente orizzontale della spinta statica 608,8262 [kN]
Componente verticale della spinta statica 203,4424 [kN]

Punto d'applicazione della spinta X = 4,50 [m] Y = -6,97 [m]

Inclinaz. della spinta rispetto alla normale alla superficie 18,48 [°] Inclinazione linea di rottura in condizioni statiche 49,90 [°]

Incremento sismico della spinta 128,5224 [kN]

Punto d'applicazione dell'incremento sismico di spinta X = 4,50 [m] Y = -6,97 [m]

Inclinazione linea di rottura in condizioni sismiche 47,21 [°]

Peso terrapieno gravante sulla fondazione a monte 961,2319 [kN]

Baricentro terrapieno gravante sulla fondazione a monte X = 2,57 [m] Y = -3,80 [m]

Inerzia del muro 25,1540 [kN]

Inerzia verticale del muro -12,5770 [kN]

Inerzia del terrapieno fondazione di monte 57,5585 [kN]

Inerzia verticale del terrapieno fondazione di monte -28,7793 [kN]

Risultanti

Risultante dei carichi applicati in dir. orizzontale 813,4357 [kN]

Risultante dei carichi applicati in dir. verticale 1584,1243 [kN]

Momento ribaltante rispetto allo spigolo a valle 3005,9189 [kNm]

Momento stabilizzante rispetto allo spigolo a valle 7076,6150 [kNm]

Sforzo normale sul piano di posa della fondazione 1584,1243 [kN]

Sforzo tangenziale sul piano di posa della fondazione 813,4357 [kN]

Eccentricità rispetto al baricentro della fondazione0,68 [m]

Lunghezza fondazione reagente 6,50 [m] Risultante in fondazione 1780,7660 [kN]

Inclinazione della risultante (rispetto alla normale) 27,18 [9]

Momento rispetto al baricentro della fondazione 1078,9433 [kNm]

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a ribaltamento 2.35

COMBINAZIONE nº 10

Valore della spinta statica 641,9176 [kN]

Componente orizzontale della spinta statica 608,8262 [kN]
Componente verticale della spinta statica 203,4424 [kN]

Punto d'applicazione della spinta X = 4,50 [m] Y = -6,97 [m] Inclinaz. della spinta rispetto alla normale alla superficie 18,48 [°]

Inclinazione linea di rottura in condizioni statiche 49,90 [°]

Incremento sismico della spinta 185,7152 [kN]

Punto d'applicazione dell'incremento sismico di spinta X = 4,50 [m] Y = -6,97 [m]

Inclinazione linea di rottura in condizioni sismiche 47,27 [°]

Peso terrapieno gravante sulla fondazione a monte 961,2319 [kN]

Baricentro terrapieno gravante sulla fondazione a monte X = 2,57 [m] Y = -3,80 [m]

Inerzia del muro 25,1540 [kN]

Inerzia verticale del muro 12,5770 [kN]

Inerzia del terrapieno fondazione di monte 57,5585 [kN]

Inerzia verticale del terrapieno fondazione di monte 28,7793 [kN]

Risultanti

Risultante dei carichi applicati in dir. orizzontale 867,6801 [kN]

Risultante dei carichi applicati in dir. verticale 1684,9629 [kN] Momento ribaltante rispetto allo spigolo a valle 3019,5143 [kNm] Momento stabilizzante rispetto allo spigolo a valle 7358,8062 [kNm]

Sforzo normale sul piano di posa della fondazione 1684,9629 [kN] Sforzo tangenziale sul piano di posa della fondazione 867,6801 [kN] Eccentricità rispetto al baricentro della fondazione0,68 [m] Lunghezza fondazione reagente 6,50 Risultante in fondazione 1895,2490 [kN] Inclinazione della risultante (rispetto alla normale) 27,25 [9] Momento rispetto al baricentro della fondazione 1138,1516 [kNm]

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a ribaltamento 2.44

Inviluppo Sollecitazioni paramento

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in [kNm]

Sforzo normale positivo di compressione, espresso in [kN]

Taglio positivo se diretto da monte verso valle, espresso in [kN]

Inviluppo combinazioni SLU

Nr.	Υ	Nmin	Nmax	Mmin	Mmax	Tmin	Tmax	
1	0,00	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	
2	0,45	5,7914	5,7914	1,5663	2,6636	6,8779	11,8311	
3	0,90	12,1331	12,1331	6,6938	11,2120	15,1040	25,3282	
4	1,35	19,0250	19,0250	15,8326	25,9535	23,5499	37,9329	
5	1,80	26,4671	26,4671	28,4422	45,6588	29,3248	46,3464	
6	2,25	34,4595	34,4595	43,0790	68,4476	31,9286	51,0828	
7	2,70	43,0021	43,0021	58,6812	93,0542	32,9304	53,6613	
8	3,15	52,0949	52,0949	74,8276	118,6947	33,5030	54,8198	
9	3,60	61,7380	61,7380	91,4640	145,0033	34,0804	55,9940	
10	4,05	71,9312	71,9312	108,6779	172,6550	35,1162	60,1561	
11	4,50	82,6747	82,6747	126,9813	203,4615	37,9963	68,8776	
12	4,95	93,9685	93,9685	147,4513	239,4517	43,5548	81,8820	
13	5,40	105,8124	105,8124	171,3126	282,4923	51,7522	98,8978	
14	5,85	118,2066	118,2066	199,7433	334,4346	62,4956	120,1852	
15	6,30	131,1511	131,1511	234,8377	398,4514	91,5113	165,5859	
16	6,75	144,6457	144,6457	312,3656	519,7752	250,2273	373,4680	
17	7,20	158,6906	158,6906	461,8639	734,1869	368,9727	526,0309	
18	7,65	173,2857	173,2857	638,2596	982,9696	396,3601	561,0403	
19	8,10	188,4311	188,4311	827,2605	1247,805	2	423,3408	595,7143
20	8,55	204,1266	204,1266	1028,718	9	1528,579	9	450,0016 630,1610
21	9,00	220,3724	220,3724	1242,503	1	1825,202	2	476,3661 664,3792

Inviluppo Sollecitazioni fondazione di valle

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in [kNm]

Taglio positivo se diretto verso l'alto, espresso in [kN]

Inviluppo combinazioni SLU

Nr.	Χ	Mmin	Mmax	Tmin	Tmax
1	0,00	0,0000	0,0000	0,0000	0,0000
2	0,15	2,4607	4,3603	32,8066	57,9514

3	0,30	9,8412	17,3295	65,5966	114,7847
4	0,45	22,1389	38,7398	98,3700	170,4997
5	0,60	39,3513	68,4235	131,1268	225,0966
6	0,75	61,4761	106,2129	163,8670	278,5753
7	0,90	88,5106	151,9402	196,5905	330,9358
8	1,05	120,4524	205,4377	229,2975	382,1782
9	1,20	157,2990	266,5378	261,9878	432,3024
10	1,35	199,0479	335,0725	294,6615	481,3084
11	1,50	245,6966	410,8744	327,3186	529,1962

Inviluppo Sollecitazioni fondazione di monte

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in [kNm]

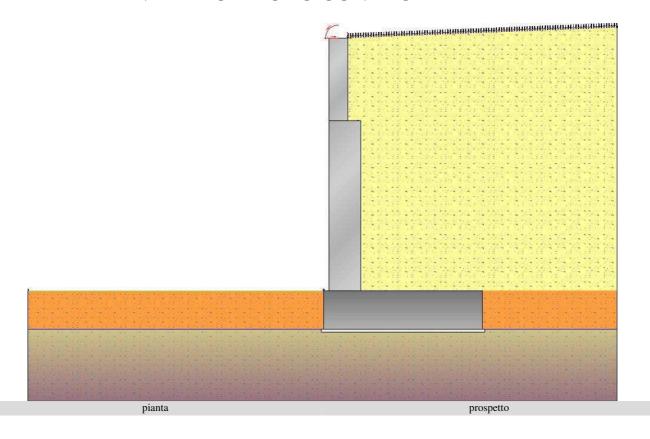
Taglio positivo se diretto verso l'alto, espresso in [kN]

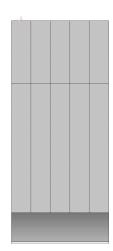
Inviluppo combinazioni SLU

Nr.	Χ	Mmin	Mmax	Tmin	Tmax			
1	0,00	0,0000	0,0000	0,0000	0,0000			
2	0,35	-12,2979	-4,6937	-69,0304	-26,3468			
3	0,70	-47,4509	-18,1108	-130,600	1	-49,8483		
4	1,05	-102,8476	6	-39,2555	-184,7089)	-70,5046	
5	1,40	-175,8767	7	-67,1320	-231,3569)	-88,3156	
6	1,75	-263,9270	0	-100,744	5	-270,5441		-103,2814
7	2,10	-364,387	1	-139,097	1	-302,2704	1	-115,4020
8	2,45	-474,6458	В	-181,1939	9	-326,5360)	-124,6773
9	2,80	-592,0918	В	-226,039	2	-343,3407	7	-131,1074
10	3,15	-714,1139	9	-272,637	1	-352,6846	3	-134,6922
11	3,50	-838,1006	6	-319,9918	8	-355,0144	1	-135,4318

11 ALLEGATO C - TABULATO MURO ANDATORE

Descrizione : descrizione progetto


Committente : committente
Località : localita'
Progettista : progettista
Direttl Lavori : direttore lavori
Impresa : impresa


Software: IS Muri

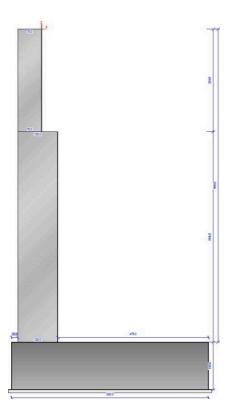
di CDM DOLMEN e omnia IS srl, Via Drovetti 9/f, 10138 Tonno - 011 4470755 - www.omniai...

VERIFICA MURO CONTRO TERRA -

- Riassunto verifiche

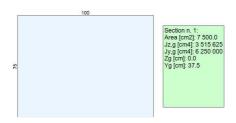
Di seguito viene riportata la tabella riassuntiva con i fattori di sicurezza minimi (= rapporto R_d/E_d o C_d/E_d) calcolati per tutte le verifiche.

La verifica si intende superata se il valore del rapporto è maggiore o uguale a 1.0.


Le caselle con i trattini indicano che la verifica corrispondente non va svolta per il relativo Caso di Carico.

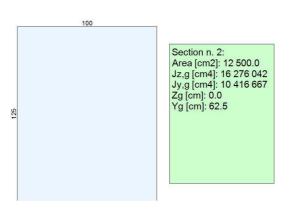
caso di	capacità	scorrimento	ribaltamento	stabilità	FS strutturale	FS strutturale	FS strutturale	FS strutturale	FS strutturale	FS strutturale	FS strutturale
carico	portante			globale				Tensione(ac		Fondazione(
carico	*	•	•	giodaic	o-flessione))	s)	ciaio)	Fessure	flessione)	taglio)
1 - STR(SLU)	2.96	2.21			1.69	1.17				1.59	1.03
2 - GEO(SLU_GE O)				1.33							
3 - EQU(SLU_EQ U)			Stabile 1.97 (s.max.=3.8 [cm])								
4 - STR_SISMA_S U(SLU)	3.67	1.9			2.38	1.59				2.23	1.45
5 - GEO_SISMA_S U(SLU_GEO)		1.38		1.37							
6 - EQU_SISMA_S U(SLU_EQU)			Stabile 2.34 (s.max.=2.9 [cm])								
7 - STR_SISMA_G IU(SLU)	3.52	1.92			2.28	1.52				2.12	1.38
8 - GEO_SISMA_ GIU(SLU_GEO)		1.4		1.38							
9 - EQU_SISMA_ GIU(SLU_EQU)			Stabile 2.36 (s.max.=3.0 [cm])								
10 - STR_ECCEZIO NALE(SLU)	4.4	2.28			2.49	1.81				2.38	1.56
11 - GEO_ECCEZI ONALE(SLU_ GEO)				1.38							
12 - EQU_ECCEZI ONALE(SLU_E			Stabile 2.56								

QU)		(s.max.=2.7 [cm])					
13 - RARA(RARA)	 		 	 2.83	2.07		
14 - FREQ.(FREQU ENTE)	 		 	 		1.47	
15 - Q.PERM.(QUA SI_PERM)	 		 	 2.76		1.37	


Muro Verificato! [Verifiche Superate]

- Elementi strutturali
- Muro e fondazione

Sezione 1:

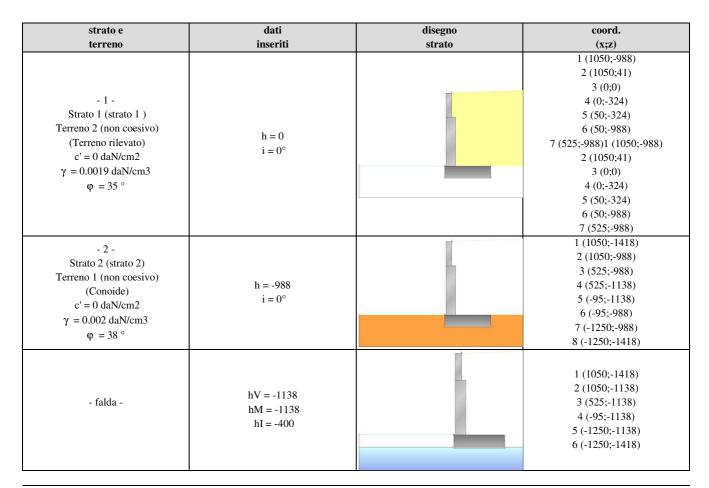

(valle)

(monte)

Sezione 2:

(valle)

(monte)


- Terreno

- Profili di Monte e Valle

MONTE			-	VALLE		
punto	x [cm]	z [cm]	-	punto	x [cm]	z [cm]
1	0	0	-	1	-95	-988
2	1050	41	-	2	-1250	-988

Coordinate vertici profilo di monte e di valle.

Strati

Stratigrafia.

- Normativa, materiali e modello di calcolo

- Norme Tecniche per le Costruzioni 14/01/2008

- Approccio 2

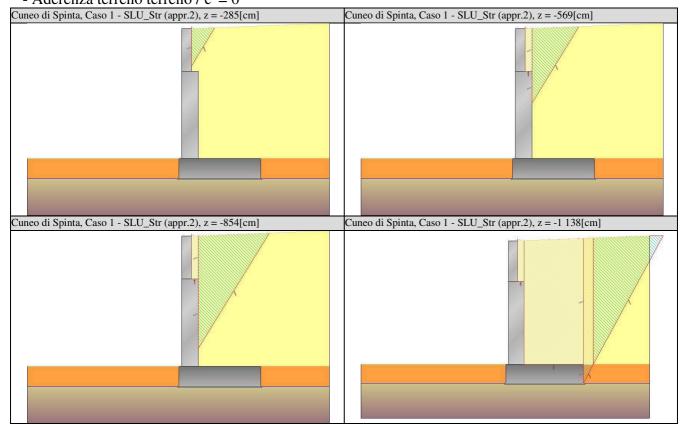
Coeff. sulle azioni	Coeff. proprietà terreno	Coeff. resistenze
- permanenti/favorevole = 1 - permanenti/sfavorevole = 1.3 - permanenti non strutturali/favorevole = 0 - permanenti non strutturali/sfavorevole = 1.5 - variabili/favorevole = 0 - variabili/sfavorevole = 1.5	- Coesione = 1 - Angolo di attrito = 1 - Resistenza al taglio non drenata = 1	- Capacità portante = 1.4 - Scorrimento = 1.1 - Resistenza terreno a valle = 1.4 - Stabilità globale =

- Dati di progetto dell'azione sismica:

L'analisi è stata eseguita in condizioni sismiche; parametri scelti :

- località = DEMONTE [44.31482800,7.29626300]
- vita nominale = 50 anni
- classe d'uso = III
- -SLU = SLV
- categoria di sottosuolo = cat sottosuolo B
- categoria topografica = categoria T2
- $-ag = 1.6888 \text{ m/s}^2$
- Fo = 2.4728
- beta m = 0.24
- beta s = 0.24
- --> kh (muro) = 0.0595
- --> kv (muro) = 0.0297
- --> kh (pendio) = 0.0595
- --> kv (pendio) = 0.0297

- Caratteristiche dei materiali:


Calcestruzzo	Acciaio		
- Descrizione = C25/30	- Descrizione = B450C		
$-f_{ck} = 249 \text{ daN/cmq}$	- E = 2000000 daN/cmq		
$-\gamma_c = 1.5$	$-f_{yk} = 4500 \text{ daN/cmq}$		
$- f_{cd} = 141.1 \text{ daN/cmq}$	$-f_{tk} = 5400 \text{ daN/cmq}$		
$-E_{cm} = 314471.6 \text{ daN/cmq}$	$- \varepsilon_{\rm yd} = 0.1960 \%$		
$-\alpha_{cc}=0.85$	$- \varepsilon_{\rm ud} = 6.7500 \%$		
$- \varepsilon_{c2} = 0.2000 \%$	$-\gamma_{\rm s} = 1.15$		
$- \varepsilon_{cu2} = 0.3500 \%$	$- f_{yd} = 3 913.0 \text{ daN/cmq}$		
$-\gamma$ (p.vol.) = 0.0025 daN/cmc	$- f_{ud} = 4 695.7 \text{ daN/cmq}$		

Condizioni ambientali = aggressivo.

- Opzioni di calcolo

Spinte calcolate con coefficiente di spinta attiva "ka" (si considera il muro libero di traslare/ruotare al piede). Il calcolo della spinta è svolto secondo il metodo del cuneo di tentativo generalizzato (Rif.: Renato LANCELLOTTA "Geotecnica" (2004) - NAVFAC Design Manual 7.02 (1986)). Il metodo è iterativo e prevede la suddivisione del terreno a monte dell'opera in poligoni semplici definiti dal paramento, dalla successione stratigrafica e dalla superficie di scivolamento di tentativo. La procedura automatica vaglia numerose superfici di scivolamento ad ogni quota di calcolo lungo il paramento, determinando la configurazione che comporta la spinta massima sull'opera.

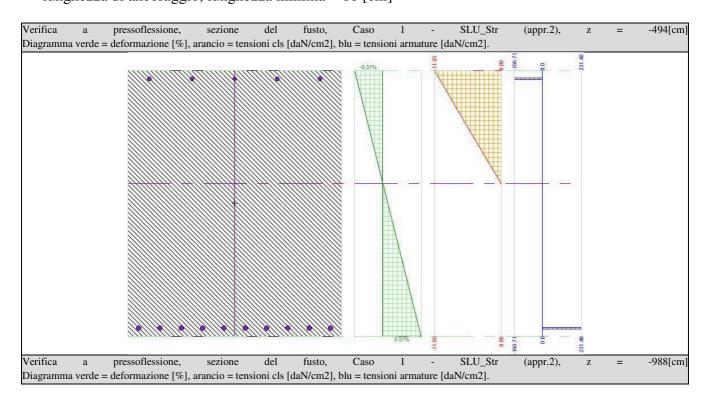
- Attrito muro terreno / $\emptyset' = 0.67$
- Aderenza muro terreno / c' = 0
- Attrito terreno terreno / $\emptyset' = 0.67$
- Aderenza terreno terreno / c' = 0

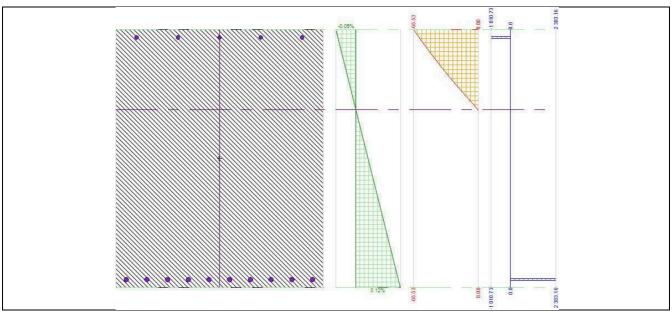
La capacità portante della fondazione nastriforme, su suolo omogeneo, viene calcolata con la formula di Brinch-Hansen (1970) considerando separatamente i contributi dovuti alla coesione, al sovraccarico laterale ed al peso del terreno, utilizzando i coefficienti di capacità portante suggeriti da vari Autori ed i coefficienti correttivi dovuti alla forma della fondazione (s), all'approfondimento (d), alla presenza di un'azione orizzontale (i), all'inclinazione del piano di posa (b) e del piano campagna (g). La resistenza a slittamento è valutata considerando l'attrito sviluppato lungo la base

della fondazione, e trascurando il contributo del terreno a lato.

- Attrito fond. terreno / \emptyset ' o Cu = 0.67
- coeff. per calcolo della sottospinta idraulica = 0.1

La verifica di stabilità globale viene eseguita con i metodi di Bishop semplificato.


- Attrito stab. globale / \emptyset ' o Cu = 1


Il calcolo delle sollecitazioni e degli spostamenti dell'opera viene svolto con il metodo degli elementi finiti (FEM). Gli elementi schematizzanti il muro hanno peso e caratteristiche meccaniche proprie dei materiali di cui è costituito. Il terreno spingente (a monte) è rappresentato per mezzo di azioni distribuite applicate sugli elementi. Il terreno di fondazione è rappresentato per mezzo di elementi finiti non-lineari (con parzializzazione), con opportuno coefficiente di reazione alla Winkler in compressione.

- lunghezze aste elevazione = 20 [cm]
- lunghezze aste fondazione = 10 [cm]
- coefficiente di reazione del terreno (Winkler) = 5 [daN/cm3]

La verifica delle sezioni in cemento armato viene eseguita a SLU e SLE. La pressoflessione è verificata a SLU con i diagrammi costitutivi parabola-rettangolo (cls) e bilatero (acciaio) [NTC08 4.1.2.1.2]. La resistenza nei confronti di sollecitazioni taglianti è verificata a SLU [NTC08 4.1.2.1.3]. A SLE si verifica lo stato limite di apertura delle fessure [NTC08 4.1.2.2.4], e la tensione massima nei materiali [NTC08 4.1.2.2.5].

- lunghezza di ancoraggio, numero di diametri = 10
- lunghezza di ancoraggio, lunghezza minima = 10 [cm]

- Carichi

- Carichi Nastriformi:

Carico 1:

- descrizione = Carichi veicolari
- tipologia = variabili da traffico distribuiti
- estremi (xi;xf) = 0;1050 cm
- tipo inserimento = sul profilo
- intensità = 0.2 daN/cm2

- Carichi in Testa muro:

In testa al muro è applicata la seguente terna di sollecitazione:

Carico 1:

- descrizione = Urto
- tipologia = eccezionale
- -N = 0 daN a modulo
- M = 106000 daN*cm a modulo
- -T = 1060 daN a modulo

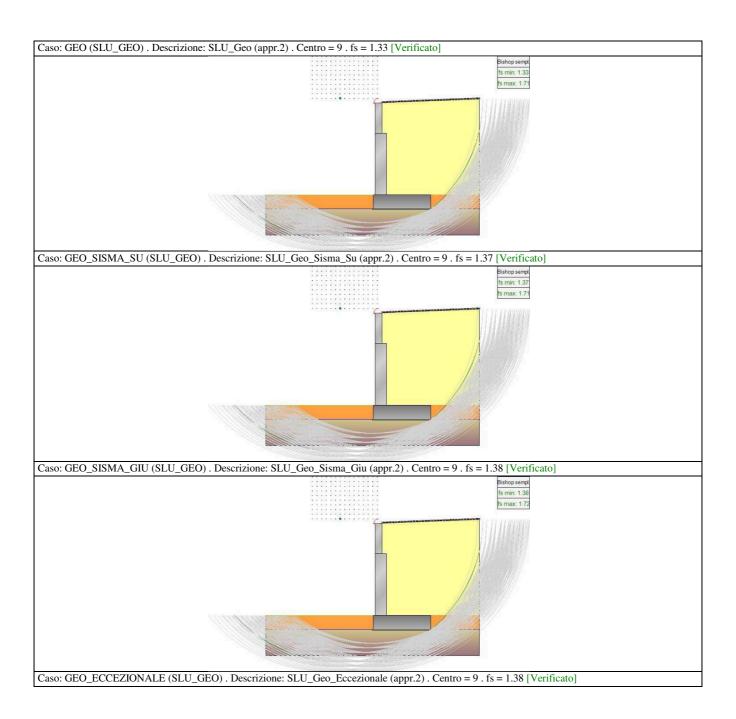
Considera come carico principale variabile (per coeff. psi [NTC08 2.5.3]) i casi di tipo: variabili da traffico distribuiti

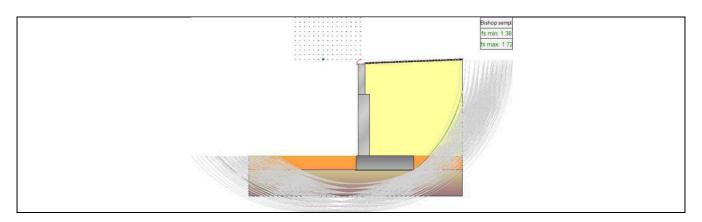
- Casi di Carico

caso	coefficienti per i carichi
STR (SLU)	Car.Nas.(ter) 1) Carichi veicolari [1.50; -]
descr. = SLU_Str (appr.2)	Car.Pun.(mur) 1) Urto [0.00; -]
coeff. = 1.3(pp.), 1.3(ter.m.), 1.3(fld.m.)1.3(ter.cs.), 1.3(fld.cs.)	
GEO (SLU_GEO)	Car.Nas.(ter) 1) Carichi veicolari [1.30; -]
descr. = SLU_Geo (appr.2)	Car.Pun.(mur) 1) Urto [0.00; -]
coeff. = 1(pp.), 1(ter.m.), 1(fld.m.)1(ter.cs.), 1(fld.cs.)	
EQU (SLU_EQU)	Car.Nas.(ter) 1) Carichi veicolari [1.50; -]
descr. = SLU_Equ (per equilibrio)	Car.Pun.(mur) 1) Urto [0.00; -
coeff. = 0.9(pp.), 0.9(ter.m.), 0.9(fld.m.)1.1(ter.cs.), 1.1(fld.cs.)	
STR_SISMA_SU (SLU)	Car.Nas.(ter) 1) Carichi veicolari [0.00;0.00]
descr. = SLU_Str_Sisma_Su (appr.2)	Car.Pun.(mur) 1) Urto [0.00;0.00]
coeff. = 1(pp.), 1(ter.m.), 1(fld.m.)1(ter.cs.), 1(fld.cs.)	
GEO_SISMA_SU (SLU_GEO)	Car.Nas.(ter) 1) Carichi veicolari [0.00;0.00]
descr. = SLU_Geo_Sisma_Su (appr.2)	Car.Pun.(mur) 1) Urto [0.00;0.00]
coeff. = 1(pp.), 1(ter.m.), 1(fld.m.)1(ter.cs.), 1(fld.cs.)	
EQU SISMA SU (SLU EQU)	Car.Nas.(ter) 1) Carichi veicolari [0.00;0.00]
descr. = SLU_Equ_Sisma_Su (per equilibrio)	Car.Pun.(mur) 1) Urto [0.00;0.00]
coeff. = 1(pp.), 1(ter.m.), 1(fld.m.)1(ter.cs.), 1(fld.cs.)	[,]
STR_SISMA_GIU (SLU)	Car.Nas.(ter) 1) Carichi veicolari [0.00;0.00]
descr. = SLU_Str_Sisma_Giu (appr.2)	Car.Pun.(mur) 1) Urto [0.00;0.00]
coeff. = 1(pp.), 1(ter.m.), 1(fld.m.)1(ter.cs.), 1(fld.cs.)	[8100,9100]
GEO_SISMA_GIU (SLU_GEO)	Car.Nas.(ter) 1) Carichi veicolari [0.00;0.00]
descr. = SLU_Geo_Sisma_Giu (appr.2)	Car.Pun.(mur) 1) Urto [0.00;0.00]
coeff. = 1(pp.), 1(ter.m.), 1(fld.m.)1(ter.cs.), 1(fld.cs.)	
EQU SISMA GIU (SLU EQU)	Car.Nas.(ter) 1) Carichi veicolari [0.00;0.00]
descr. = SLU_Equ_Sisma_Giu (per equilibrio)	Car.Pun.(mur) 1) Urto [0.00;0.00]
coeff. = 1(pp.), 1(ter.m.), 1(fld.m.)1(ter.cs.), 1(fld.cs.)	[oloo,oloo]
STR_ECCEZIONALE (SLU)	Car.Nas.(ter) 1) Carichi veicolari [0.00; -
descr. = SLU_Str_Eccezionale (appr.2)	Car.Pun.(mur) 1) Urto [1.00; -
coeff. = 1(pp.), 1(ter.m.), 1(fld.m.)1(ter.cs.), 1(fld.cs.)	
GEO_ECCEZIONALE (SLU_GEO)	Car.Nas.(ter) 1) Carichi veicolari [0.00; -]
descr. = SLU_Geo_Eccezionale (appr.2)	Car.Pun.(mur) 1) Urto [1.00; -
coeff. = 1(pp.), 1(ter.m.), 1(fld.m.)1(ter.cs.), 1(fld.cs.)	
EQU_ECCEZIONALE (SLU_EQU)	Car.Nas.(ter) 1) Carichi veicolari [0.00; -
descr. = SLU_Equ_Eccezionale (per equilibrio)	Car.Pun.(mur) 1) Urto [1.00; -
coeff. = 1(pp.), 1(ter.m.), 1(fld.m.)1(ter.cs.), 1(fld.cs.)	(1.00, 1.00)
RARA (Rara)	Car.Nas.(ter) 1) Carichi veicolari [1.00; -
descr. = Combinazione caratteristica (rara) - SLE	Car.Pun.(mur) 1) Urto [0.00;
coeff. = 1(pp.), 1(ter.m.), 1(fld.m.)1(ter.cs.), 1(fld.cs.)	Car.i un.\mar)
FREQ. (Frequente)	Car.Nas.(ter) 1) Carichi veicolari [0.75; -
descr. = Combinazione frequente - SLE	Car.Pun.(mur) 1) Urto [0.00; -
coeff. = 1(pp.), 1(ter.m.), 1(fld.m.)1(ter.cs.), 1(fld.cs.)	(0.00,
Q.PERM. (Quasi_Perm)	Car.Nas.(ter) 1) Carichi veicolari [0.00; -]
descr. = Combinazione quasi permanente - SLE	Car.Pun.(mur) 1) Urto [0.00; -
coeff. = 1(pp.), 1(ter.m.), 1(fld.m.)1(ter.cs.), 1(fld.cs.)	Car.1 un.(mur) 1) Ofto [0.00, -
coeii. – 1(pp.), 1(co.iii.), 1(iid.iii.)1(co.co.), 1(iid.co.)	

Casi di Carico

- Verifiche Geotecniche


caso di carico	capacità portante	scorrimento	equilibrio
1 - STR (SLU)	- Drenata - q di progetto = 4.88 daN/cm2 q limite = 14.43 daN/cm2> fs = 2.96 [Verificato]	- Drenata - v applicato = 43339.75 daN v limite = 95765.23 daN> fs = 2.21 [Verificato]	- Ribaltamento - verifica non prevista - Stab. globale - verifica non prevista
2 - GEO (SLU_GEO)	- Drenata - verifica non prevista	- Drenata - verifica non prevista	- Ribaltamento - verifica non prevista - Stab. globale> fs = 1.33 [Verificato]
3 - EQU (SLU_EQU)	- Drenata - verifica non prevista	- Drenata - verifica non prevista	- Ribaltamento - Stabile> fs = 1.97 (spost.max.=3.8[cm]) [Verificato] - Stab. globale - verifica non prevista
4 - STR_SISMA_SU (SLU)	- Drenata - q di progetto = 3.44 daN/cm2 q limite = 12.62 daN/cm2> fs = 3.67 [Verificato]	- Drenata - v applicato = 34932.69 daN v limite = 66326.92 daN> fs = 1.9 [Verificato]	- Ribaltamento - verifica non prevista - Stab. globale - verifica non prevista
5 - GEO_SISMA_SU (SLU_GEO)	- Drenata - verifica non prevista	- Drenata - v applicato = 43645.51 daN v limite = 60447.13 daN> fs = 1.38 [Verificato]	- Ribaltamento - verifica non prevista - Stab. globale> fs = 1.37 [Verificato]
6 - EQU_SISMA_SU (SLU_EQU)	- Drenata - verifica non prevista	- <i>Drenata -</i> verifica non prevista	- Ribaltamento - Stabile> fs = 2.34 (spost.max.=2.9[cm]) [Verificato] - Stab. globale - verifica non prevista
7 - STR_SISMA_GIU (SLU)	- Drenata - q di progetto = 3.63 daN/cm2 q limite = 12.75 daN/cm2> fs = 3.52 [Verificato]	- Drenata - v applicato = 36617.41 daN v limite = 70341.31 daN> fs = 1.92 [Verificato]	- Ribaltamento - verifica non prevista - Stab. globale - verifica non prevista
8 - GEO_SISMA_GIU (SLU_GEO)	- Drenata - verifica non prevista	- Drenata - v applicato = 45819.84 daN v limite = 64108.02 daN> fs = 1.4 [Verificato]	- Ribaltamento - verifica non prevista - Stab. globale> fs = 1.38 [Verificato]


9 - EQU_SISMA_GIU	- Drenata -	- <i>Drenata -</i>	- Ribaltamento - Stabile> fs = 2.36 (spost.max.=3.0[cm]) [Verificato] - Stab. globale - verifica non prevista
(SLU_EQU)	verifica non prevista	verifica non prevista	
10 - STR_ECCEZIONALE (SLU)	- Drenata - q di progetto = 3.37 daN/cm2 q limite = 14.82 daN/cm2> fs = 4.4 [Verificato]	- Drenata - v applicato = 29661.36 daN v limite = 67528.8 daN> fs = 2.28 [Verificato]	- Ribaltamento - verifica non prevista - Stab. globale - verifica non prevista
11 - GEO_ECCEZIONALE	- Drenata -	- <i>Drenata</i> -	- Ribaltamento - verifica non prevista - Stab. globale> fs = 1.38 [Verificato]
(SLU_GEO)	verifica non prevista	verifica non prevista	
12 - EQU_ECCEZIONALE	- Drenata -	- <i>Drenata -</i>	- Ribaltamento - Stabile> fs = 2.56 (spost.max.=2.7[cm]) [Verificato] - Stab. globale - verifica non prevista
(SLU_EQU)	verifica non prevista	verifica non prevista	

Verifiche geotecniche della fondazione.

caso	p. proprio muro	p. proprio terreno	azioni sul muro	azioni sul muro	attrito terreno	spinta terreno	momento	momento	coeff. di
di carico	(stab) [daN×cm]	(stab) [daN×cm]	(stab) [daN×cm]	(instab) [daN×cm]	(stab) [daN×cm]	(instab) [daN×cm]	stabilizzante [daN×cm]	ribaltante [daN×cm]	sicurezza
1 STR SLU	12 049 293.8	51 052 250.5	0.0	106 000.0	11 874 498.6	26 416 073.8	74 976 042.8	26 522 073.8	2.83
2 GEO SLU_GEO	9 268 687.5	39 821 091.1	0.0	106 000.0	9 672 054.1	25 517 400.6	58 761 832.6	25 623 400.6	2.29
3 EQU SLU_EQU	8 341 818.8	37 081 115.7	0.0	106 000.0	10 716 073.7	28 322 800.1	56 139 008.1	28 428 800.1	1.97
4 STR_SISMA_ SU SLU	8 992 965.6	33 888 815.2	0.0	106 000.0	8 783 034.1	18 612 644.9	51 664 814.9	18 718 644.9	2.76
5 GEO_SISMA_ SU SLU_GEO	8 992 965.6	33 888 815.2	0.0	106 000.0	9 188 262.2	22 108 995.0	52 070 043.0	22 214 995.0	2.34
6 EQU_SISMA_ SU SLU_EQU	8 992 965.6	33 888 815.2	0.0	106 000.0	9 188 262.2	22 108 995.0	52 070 043.0	22 214 995.0	2.34
7 STR_SISMA_ GIU SLU	9 544 409.4	35 966 858.7	0.0	106 000.0	9 246 089.6	19 548 549.6	54 757 357.6	19 654 549.6	2.79
8 GEO_SISMA_ GIU SLU_GEO	9 544 409.4	35 966 858.7	0.0	106 000.0	9 679 522.2	23 258 450.3	55 190 790.3	23 364 450.3	2.36
9 EQU_SISMA_ GIU SLU_EQU	9 544 409.4	35 966 858.7	0.0	106 000.0	9 679 522.2	23 258 450.3	55 190 790.3	23 364 450.3	2.36
10 STR_ECCEZI ONALE SLU	9 268 687.5	34 927 836.9	0.0	1 312 280.0	7 861 000.1	15 953 899.5	52 057 524.5	17 266 179.5	3.01
11 GEO_ECCEZI ONALE SLU_GEO	9 268 687.5	34 927 836.9	0.0	1 312 280.0	8 335 238.8	19 236 363.2	52 531 763.2	20 548 643.2	2.56
12 EQU_ECCEZI ONALE SLU_EQU	9 268 687.5	34 927 836.9	0.0	1 312 280.0	8 335 238.8	19 236 363.2	52 531 763.2	20 548 643.2	2.56
13 RARA RARA	9 268 687.5	38 691 878.6	0.0	106 000.0	8 956 380.0	19 787 146.1	56 916 946.1	19 893 146.1	2.86
14 FREQ. FREQUENTE	9 268 687.5	37 750 868.2	0.0	106 000.0	8 673 204.1	18 745 821.8	55 692 759.8	18 851 821.8	2.95
15 Q.PERM. QUASI_PER M	9 268 687.5	34 927 836.9	0.0	106 000.0	7 861 000.1	15 756 044.5	52 057 524.5	15 862 044.5	3.28

Dettaglio della verifica di ribaltamento.

Dettaglio della verifica di stabilità globale.

Dichiarazioni secondo N.T.C. 2008 (punto 10.2)

Analisi e verifiche svolte con l'ausilio di codici di calcolo

Il sottoscritto, in qualità di calcolatore delle opere in progetto, dichiara quanto segue.

Tipo di analisi svolta

L'analisi strutturale e le verifiche sono condotte con l'ausilio di un codice di calcolo automatico. La verifica della sicurezza degli elementi strutturali è stata valutata con i metodi della scienza delle costruzioni.

Il calcolo dei muri di sostegno viene eseguito secondo le seguenti fasi:

- Calcolo della spinta del terreno
- Verifica a ribaltamento
- Verifica a scorrimento del muro sul piano di posa
- Verifica della stabilità complesso fondazione terreno (carico limite)
- Verifica della stabilità globale
- Calcolo delle sollecitazioni sia del muro che della fondazione, progetto delle armature e relative verifiche dei materiali.

L'analisi strutturale sotto le azioni sismiche è condotta con il metodo dell'analisi statica equivalente secondo le disposizioni del capitolo 7 del DM 14/01/2008.

La verifica delle sezioni degli elementi strutturali è eseguita con il metodo degli Stati Limite. Le combinazioni di carico adottate sono esaustive relativamente agli scenari di carico più gravosi cui l'opera sarà soggetta.

Origine e caratteristiche dei codici di calcolo

Titolo MAX - Analisi e Calcolo Muri di Sostegno

Versione 10.10

Produttore Aztec Informatica srl, Casole Bruzio (CS)
Utente ANAS S.P.A.- DIREZIONE GENERALE

Licenza AIR01039Y

Affidabilità dei codici di calcolo

Un attento esame preliminare della documentazione a corredo del software ha consentito di valutarne l'affidabilità. La documentazione fornita dal produttore del software contiene un'esauriente descrizione delle basi teoriche, degli algoritmi impiegati e l'individuazione dei campi d'impiego. La società produttrice Aztec Informatica srl ha verificato l'affidabilità e la robustezza del codice di calcolo attraverso un numero significativo di casi prova in cui i risultati dell'analisi numerica sono stati confrontati con soluzioni teoriche.

Modalità di presentazione dei risultati

La relazione di calcolo strutturale presenta i dati di calcolo tale da garantirne la leggibilità, la corretta interpretazione e la riproducibilità. La relazione di calcolo illustra in modo esaustivo i dati in ingresso ed i risultati delle analisi in forma tabellare.

Informazioni generali sull'elaborazione

Il software prevede una serie di controlli automatici che consentono l'individuazione di errori di modellazione, di non rispetto di limitazioni geometriche e di armatura e di presenza di elementi non verificati. Il codice di calcolo consente di visualizzare e controllare, sia in forma grafica che tabellare, i dati del modello strutturale, in modo da avere una visione consapevole del comportamento corretto del modello strutturale.