

MT01E0004R01

Revisione 00 07.06.2006

Divisione Refining & Marketing Raffineria di Sannazzaro de Burgondi (PV) Sistema Monitoraggio Emissioni Punto di Emissione S05

									Dott			Dott		
00	07.06.2006	Versione iniziale				ABB			Dott Giov			Saet		
Rev	Data	Descrizione				Pre	parat	ю.	Veri	ficat	0	Арр	rovat	0
DOCUMENTO M T 0		1	E	0	0	0	4	R	0	1				
© Cop	© Copyright 2003-2005 C.T. Sistemi srl Pagina 1 di 19													

MT01E0004R01

Revisione 00

07.06.2006

Contenuto

1	INT	RODUZIONE	3
	1.1	Prescrizioni	3
	1.2	CARATTERISTICHE DEL PUNTO DI EMISSIONE	4
	1.3	STRUMENTAZIONE ANALITICA	5
	1.3.1	Strumentazione	5
	1.3.2	? Montaggi a Camino	5
	1.3.3	B Modalità di campionamento	5
	1.3.4	J	
	1.3.5		
	1.3.6		
	1.4	MISURE AUSILIARIE	
	1.5	SISTEMA ELABORAZIONE DATI	
	1.6	QUADERNO DI MANUTENZIONE E GESTIONE GUASTI	
	1.7	GESTIONE DEI SUPERAMENTI	
	1.8	VERIFICA DI GESTIONE PERIODICHE.	6
2	MIS	URE ANALISI	7
	2.1	BIOSSIDO DI ZOLFO – SO2	7
	2.2	OSSIDI DI AZOTO – NOX	
	2.3	MONOSSIDO DI CARBONIO – CO	8
	2.4	POLVERI – PLV	8
	2.5	MONOSSIDO DI AZOTO – NO	9
	2.6	OPACITÀ – PLV	9
	2.7	PORTATA FUMI – QF	9
	2.8	OSSIGENO – O2	10
	2.9	TEMPERATURA FUMI – TF	10
	2.10	Pressione Fumi – PF	10
3	MIS	URE IMPIANTO	11
	3.1	CARATTERISTICHE DEGLI IMPIANTI DEL PUNTO DI EMISSIONE	11
	3.1.1	FCC – Cracking Catalitico	12
	3.2	PORTATA COMBUSTIBILE GASSOSO	13
	3.3	POTENZA TERMICA GENERATA	14
4	STA	TI IMPIANTO	15
	4.1	CARATTERISTICHE DEGLI IMPIANTI DEL PUNTO DI EMISSIONE	15
	4.1.1		
	4.1.2		
	4.1.3		
	4.2	STATO IMPIANTO	
	4.3	STATO DEPOLVERATORE	

MT01E0004R01

Revisione 00

07.06.2006

1 Introduzione

Il presente documento descrive le caratteristiche tecniche-funzionali e le metodologie di elaborazione dei codici monitor e di stato monitor utilizzati dal sistema di monitoraggio emissioni del CAMINO S05, situato nella raffineria ENI di Sannazzaro de Burgondi (PV).

Il documento è redatto in conformità alle prescrizioni della normativa della Regione Lombardia, DDG 3536 del 29 Agosto 1997.

Il camino S05 convoglia in atmosfera i fumi prodotti dagli impianti

■ FCC (unità 58)

della SOI EST della Raffineria.

Il punto di emissione è dotato di un sistema di monitoraggio emissioni in continuo di fornitura ABB e realizzato nel 2005.

In condizioni ottimali di esercizio la portata dei fumi inviati al camino S05 è decisamente ridotta rispetto alla potenizialità nominale in quanto le emissioni prodotte dall'impianto FCC vengono dirottate al camino S05 NEW. Il flusso ridotto dei fumi al camino S05 consente di mantenere in temperatura i condotti e permetterne l'utilizzo immediato in condizioni di anomalie o emergenza. Infatti l'impianto FCC è composto dalla cascata di un reattore di rigenerazione del catalizzatore (D5802), dal forno di combustione dei resuidi di CO (CO BOILER, B5802) e da una batteria di filtri elettrostatici. I fumi prodotti dal reattore possono essere inviati, mediante bypass, direttamente al camino. Un analogo bypass è presente in uscita al CO BOILER, mentre il punto di prelievo e di misura del sistema monitoraggio emissioni è posto all'uscita dell'unità elettrofiltro perché le condizioni di esercizio del camino, all'apertura dei bypass, non permettono l'installazione di strumentazione a camino.

1.1 Prescrizioni

L'impianto FCC è stato realizzato nel 1963 durante le prime fasi di insediamento della raffineria.

In seguito sono state apportate delle modifiche al progetto originale, autorizzate dal CRIAL il 26 maggio 1989, ai sensi dell'articolo 5 D.P.R 15.4.1971 n°322.

In assenza di autorizzazioni specifiche, il punto di emissione è disciplinato dal D.P.R 203 del 24 maggio 1988 ed vegono assunte le prescrizioni riportate alla lettera B dell'allegato 3 al DM 12 luglio 1990.

L'elenco delle prescrizioni e ulteriori riferimenti sono presenti nel documento MT01E0015R00.

MT01E0004R01

Revisione 00 07.06.2006

1.2 Caratteristiche del punto di emissione

Nella seguente tabella sono riportati i dati maggiormente significativi riguardanti il punto di emissione. Per ulteriori referenze (disegni costruttivi, tipologia...) si rimanda alla documentazione di costruzione del camino riportata al paragrafo 5.1.

Tipologia	Descrizione
Altezza	50 m
Diametro Esterno	Conico da 3810 a 2375 mm
Diametro Interno	Uscita 2282 mm
Altezza massima del punto di ingresso emissioni	n/a
Altezza Sezione di prelievo	n/a
Caratteristiche costruttive	Acciaio
Caratteristiche dimensionali e costruttive della sez. di prelievo	

Il punto di prelievo e di misura non è situato a camino ma nel condotto in uscita all'elettrofiltro. Si rimanda al paragrafo 5.1 per i relativi disegni e diagrammi.

MT01E0004R01

Revisione 00

07.06.2006

1.3 Strumentazione Analitica

La raccolta delle informazioni tecniche degli analizzatori verrà trattata nel documento MT01E0016R00.

1.3.1 Strumentazione

La tabella di seguito riporta la strumentazione adotta per i parametri analitici.

	Analizzatore	Identificativo	Campo Misura	Principio di Misura	Installazione
O2	ABB – Advance Optima – MAGNOS			Paramegnetismo	Cabina Analisi
CO	ABB – Advance Optima – URAS			NDIR	Cabina Analisi
SO2	ABB – Advance Optima – URAS			NDIR	Cabina Analisi
NO	ABB – Advance Optima – URAS			NDIR	Cabina Analisi
Polveri	SICK –			Opacimetro	Camino

1.3.2 Montaggi a Camino

Gli schemi ed i diagrammi di montaggio a camino della strumentazione analitica sono allegati al capitolo 5.

1.3.3 Modalità di campionamento

Il campione d'analisi viene prevelavato mediante una coppia di linee riscaldate e convogliato in cabina analisi per il condizionamento e la successiva misura. Per maggiori dettagli si rimanda al documento MT01E0016R01.

1.3.4 Materiali di Riferimento (Gas Campione) e Calibrazioni

Si rimanda al documento MT01E0016R00.

1.3.5 Conversione catalitica Ossidi di Azoto

La linea di misura degli ossidi d'azoto utilizza un convertitore catalitico per la trasformazione del Biossido d'Azoto (NO2) in Ossido d'Azoto (NO). Si rimanda al documento MT01E0016R00.

1.3.6 Sistema di acquisizione dati

Il sistema di acquisizione dati è composto da un PLC e da un elaboratore installati nella cabina analisi. L'elaboratore è integrato nella rete di raffineria come riportato nel documento MT01E0018R00.

MT01E0004R01

Revisione 00 07.06.2006

1.4 Misure Ausiliarie

Le misure ausiliarie acquisite sono le seguenti.

	Strumentazione	Identificativo	Campo Misura	Principio di Misura	Installazione
Temperatura Fumi					Uscita Elettrofiltro
Portata Fumi					Uscita Elettrofiltro
Pressione Fumi					Uscita Elettrofiltro

La descrizione degli strumenti di misura ausiliari è riportata nel documento MT01E0017R00.

1.5 Sistema Elaborazione Dati

Gli aspetti relativi alle elaborazioni dati, quali:

- Valori Stimati
- Validazione dei dati
- Fuzioni di preelaborazione dei dati
- Funzioni di elaborazione dei dati
- Conservazione dei dati
- Archivio Storico
- Presentazione dati

vengono trattate nel documento MT01E0018R00

1.6 Quaderno di manutenzione e gestione guasti

La gestione delle informazioni relative ai guasti e manutenzioni viene trattata nel documento MT01E0021R00.

1.7 Gestione dei superamenti

Le procedure da utilizzare nel caso di superamento dei limiti sono descritte nel documento MT01E0022R00

1.8 Verifica di Gestione Periodiche

La lista delle verifiche periodiche che l'esercente o gli enti di controllo devono effettuare per mantenere in efficienzail sistema sme è descritta nel documento MT01E0023R00

MT01E0004R01

Revisione 00 07.06.2006

2 Misure Analisi

In questa capitolo viene trattata la gestione dei codici monitor relativi alle misure acquisite dal sistema monitoraggio emissioni. Codici monitor previsti sono riportati nella tabella seguente

Misura	Cod. Monitor Tal Quale	Cod. Monitor Condizioni Normali	Cod. Monitor Riferimento Ossigeno
SO2	601	681	691
NOx	602	682	692
CO	603	683	693
Polveri	607	687	697
NO	609	689	699
Polveri Estinzione %	611		
Portata Fumi	623	624	
O2 – Riferimento	630		
O2	631		
Temp. Fumi	641		
Pressione Fumi	642		

Nei paragrafi seguenti, per ogni parametro, vengono elencati i codici monitor e di stato monitor elaborati ai sensi del DDG 3536. Le modalità di elaborazione e calcolo sono riportate nel documento MT01E0018.

2.1 Biossido di Zolfo - SO2

Analizzatore Advance Optima

	•	601 Tal Quale	681 Normalizzato	691 Riferito O2
00	Dato valido misurato	✓	✓	✓
10	Monitor non funzionante	✓		
15	Dato non valido	✓	✓	\checkmark
20	Dato valido stimato	✓		
25	Dato non valido per verifica limite			✓
40	Calibrazione	✓		
99	Sistema di acquisizione non attivo	✓		

MT01E0004R01

Revisione 00 07.06.2006

2.2 Ossidi di Azoto - NOx

Analizzatore Advance Optima

	•	602 Tal Quale	682 Normalizzato	692 Riferito O2
00	Dato valido misurato	✓	✓	✓
10	Monitor non funzionante	✓		
15	Dato non valido	✓	✓	✓
20	Dato valido stimato	✓		
25	Dato non valido per verifica limite			✓
40	Calibrazione	✓		
99	Sistema di acquisizione non attivo	√		

2.3 Monossido di Carbonio - CO

Analizzatore Advance Optima

		603 Tal Quale	683 Normalizzato	693 Riferito O2
00	Dato valido misurato	✓	✓	✓
10	Monitor non funzionante	✓		
15	Dato non valido	✓	✓	✓
20	Dato valido stimato	✓		
25	Dato non valido per verifica limite			✓
40	Calibrazione	✓		
99	Sistema di acquisizione non attivo	✓		

2.4 Polveri - PLV

Analizzatore SICK

		607 Tal Quale	687 Normalizzato	697 Riferito O2
00	Dato valido misurato	1	√	✓
10	Monitor non funzionante	✓		
15	Dato non valido	✓	✓	✓
20	Dato valido stimato	✓		
25	Dato non valido per verifica limite			✓
40	Calibrazione	✓		
99	Sistema di acquisizione non attivo	✓		

MT01E0004R01

Revisione 00 07.06.2006

2.5 Monossido di Azoto - NO

Analizzatore Advance Optima

		609	689	699
		Tal Quale	Normalizzato	Riferito O2
00	Dato valido misurato	✓	✓	✓
10	Monitor non funzionante	✓		
15	Dato non valido	✓	✓	✓
20	Dato valido stimato	✓		
25	Dato non valido per verifica limite			✓
40	Calibrazione	✓		
99	Sistema di acquisizione non attivo	✓		

2.6 Opacità - PLV

Analizzatore SICK

		611 Tal Quale
00	Dato valido misurato	✓
10	Monitor non funzionante	✓
15	Dato non valido	✓
20	Dato valido stimato	✓
25	Dato non valido per verifica limite	
40	Calibrazione	✓
99	Sistema di acquisizione non attivo	✓

2.7 Portata Fumi - QF

Analizzatore xxx

		623	624
		Tal Quale	Normalizzata
00	Dato valido misurato	✓	✓
10	Monitor non funzionante	✓	
15	Dato non valido	✓	✓
20	Dato valido stimato	✓	
25	Dato non valido per verifica limite		
40	Calibrazione	✓	
99	Sistema di acquisizione non attivo	✓	

MT01E0004R01

Revisione 00 07.06.2006

2.8 Ossigeno – O2

Analizzatore Advance Optima

		630	631
		Riferimento	Misurato
00	Dato valido misurato	✓	✓
10	Monitor non funzionante		✓
15	Dato non valido		✓
20	Dato valido stimato		✓
25	Dato non valido per verifica limite		
40	Calibrazione		✓
99	Sistema di acquisizione non attivo	✓	✓

Il tenore dell'ossigeno di riferimento è assunto pari al 3% in base alle prescrizioni e alle caratteristiche degli impianti del punto di emissione S01.

2.9 Temperatura Fumi – TF

Trasmettitore di Temperatura

		641
		Tal Quale
00	Dato valido misurato	✓
10	Monitor non funzionante	✓
15	Dato non valido	✓
20	Dato valido stimato	✓
25	Dato non valido per verifica limite	
40	Calibrazione	
99	Sistema di acquisizione non attivo	✓

2.10 Pressione Fumi - PF

Trasmettitore di Pressione

		642 Tal Quale
00	Dato valido misurato	✓
10	Monitor non funzionante	✓
15	Dato non valido	✓
20	Dato valido stimato	✓
25	Dato non valido per verifica limite	
40	Calibrazione	
99	Sistema di acquisizione non attivo	✓

MT01E0004R01

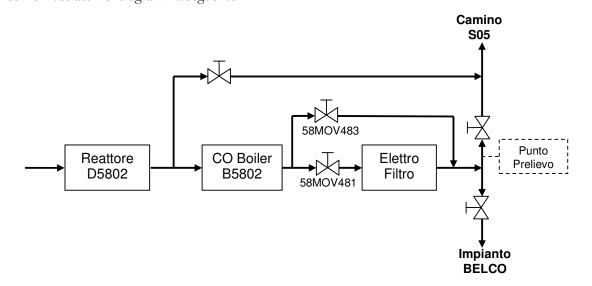
Revisione 00 07.06.2006

3 Misure Impianto

In questo capitolo vengono presentate le modalità di calcolo per i codici monitor delle misure impianto acquisite per il punto di emissione S05.

Le misure elaborate ai sensi del DDG 3536 sono elencate nella tabella seguente.

Misura	Cod. Monitor Tal Quale
Portata Combustibile Gassoso	652
Potenza Termica Generata	660


Per ogni impianto attinente al punto di emissione verrà introdotta una breve descrizione del processo, dei combustibili impiegati e delle condizioni di funzionamento.

3.1 Caratteristiche degli impianti del punto di emissione

La seguente tabella riepiloga gli impianti che immettono fumi al camino S05.

Impianto	Sigla	Codice Imp.
Cracking Catalitico	FCC	58

Ai fini delle elaborazioni delle misure impianto, risulta necessaria l'acquisizione dei dati di processo relativi alle portate dei combustibili impiegati, come descritto nei paragrafi seguenti. L'impianto FCC è composto dalla cascata di un reattore di rigenerazione del catalizzatore (D5802), dal forno di combustione dei resuidi di CO (CO BOILER, B5802) e da una batteria di filtri elettrostatici, come illustrato nel diagramma seguente.

I fumi prodotti dal reattore possono essere inviati, mediante bypass, direttamente al camino. Un analogo bypass è presente in uscita al CO BOILER, mentre il punto di prelievo e di misura del sistema monitoraggio emissioni è posto all'uscita dell'unità elettrofiltro perché le condizioni di esercizio del camino, all'apertura dei bypass del CO Boiler, non permettono l'installazione di strumentazione a camino

MT01E0004R01

Revisione 00

07.06.2006

In condizioni ottimali di esercizio la portata dei fumi inviati al camino S05 è decisamente ridotta rispetto alla potenzialità nominale in quanto le emissioni prodotte dall'impianto FCC vengono dirottate all'impianto Belco e qundi al camino S05 NEW. Il flusso ridotto dei fumi al camino S05 permette di mantenere in temperatura i condotti consentendo l'utilizzo immediato in condizioni di anomalie o emergenza.

3.1.1 FCC - Cracking Catalitico

Il rettore D5802 ed il forno B5802 sono alimentati a FUEL GAS. I segnali acquisiti sono elencati nelle seguenti tabelle.

Portate FUEL GAS D5802

Tag	Indirizzo	U.M.	Range	Note
58FC142		t/h	0 – tbd	

Portate FUEL GAS B5802

Tag	Indirizzo	U.M.	Range	Note
		t/h	0 – tbd	

MT01E0004R01

Revisione 00 07.06.2006

3.2 Portata Combustibile Gassoso

Misura Elaborata

		652 Tal Quale
00	Dato valido misurato	✓
10	Monitor non funzionante	
15	Dato non valido	\checkmark
20	Dato valido stimato	✓
25	Dato non valido per verifica limite	
40	Calibrazione	
99	Sistema di acquisizione non attivo	✓

La misura della portata combustibile gassoso è dato dalla somma di tutte le portate acquisite nei forni, come riportato nella tabella seguente:

Impianto	Forno	Tag Misura FUEL GAS
FCC	D5802	
	B5802	

MT01E0004R01

Revisione 00 07.06.2006

3.3 Potenza Termica Generata

Misura Elaborata

		660 Tal Quale
00	Dato valido misurato	✓
10	Monitor non funzionante	
15	Dato non valido	√
20	Dato valido stimato	✓
25	Dato non valido per verifica limite	
40	Calibrazione	
99	Sistema di acquisizione non attivo	✓

Elaborata dalle portate Fuel Gas e Fuel Oil totali degli impianti del punto di emissioni utilizzando una stima del potere calorifico dei combustibili.

Paramentri previsti:

Parametro	UM	Valore
Potere Calorifico Comb. Gassoso (Fuel Gas)	KCal/Kg	

MT01E0004R01

Revisione 00 07.06.2006

4 Stati Impianto

In questo capitolo vengono presentate le modalità di calcolo per i codici monitor degli stati impianto acquisiti per il punto di emissione S05.

Le misure elaborate ai sensi del DDG 3536 sono elencate nella tabella seguente.

Misura	Cod. Monitor Tal Quale
Impianto	670
Depolveratore	672

4.1 Caratteristiche degli impianti del punto di emissione

La seguente tabella riepiloga gli impianti che immettono fumi nel camino S05.

Impianto	Sigla	Codice Imp.
Cracking Catalitico	FCC	58

Ai fini delle elaborazioni degli stati impianto, risulta necessaria l'acquisizione dei dati di processo relativi alle temperature dei prodotti trattati e allo stato dei bypass, come descritto nei paragrafi seguenti.

4.1.1 Segnali acquisiti impianto FCC

Temperatura reattore D5802

Tag	Indirizzo	U.M.	Range	Note
58TC076		°C	0 – tbd	

Temperatura forno B5802

Tag	Indirizzo	U.M.	Range	Note
58TC511		°C	0 – tbd	

Bypass uscita D5802

Tag	Indirizzo	Note
		Fine corsa Bypass Aperto
	Fine corsa Bypass Chiuso	

MT01E0004R01

Revisione 00 07.06.2006

Bypass Elettrofiltro

Tag	Indirizzo	Note
58MOV481		Ingresso Elettrofiltro
58MOV483	Bypass Elettrofiltro	

4.1.2 Elaborazione dello stato del reattore D5802

La procedura di determinazione dello stato reattore D5802 è riassunta nella tabella seguente:

Temperatura Media	Portate Combustibili	Stato D5802
< T ₀		Fermo
> T ₀		Accensione Spegnimento
> T ₁	> QC ₀	Regolare

La procedura richiede alcuni parametri caratteristici di funzionamento dell'impianto come riportato nella tabella seguente:

Parametro	Descizione Descizione		Valore
T_0	Temperatura avviamento/fermata	°C	450
T_1	Temperatura minima di esercizio regolare	°C	500
QC_0	Soglia Portate Combustibili	t/h	

MT01E0004R01

Revisione 00 07.06.2006

4.1.3 Elaborazione dello stato del CO Boiler B5802

La procedura di determinazione dello stato reattore B5802 è riassunta nella tabella seguente:

Temperatura Media	Portate Combustibili	Stato B5802
< T ₀		Fermo
> T ₀		Accensione Spegnimento
> T ₁	> QC ₀	Regolare

La procedura richiede alcuni parametri caratteristici di funzionamento dell'impianto come riportato nella tabella seguente:

Parametro	metro Descizione		Valore
T_0	Temperatura avviamento/fermata	°C	200
T_1	Temperatura minima di esercizio regolare	°C	680
QC_0	Soglia Portate Combustibili	t/h	

MT01E0004R01

Revisione 00 07.06.2006

4.2 Stato IMPIANTO

Dato elaborato

		Codice 670
30	In servizio regolare	✓
31	Accensione	✓
32	Spegnimento	
33	Manutenzione	
34	Fuori servizio per fermata	✓
35	Fuori Servizio per guasto	
36	Funzionamento anomalo/parziale	✓

La procedura di determinazione dei codici di stato monitor impianto per il punto di emissione S05 è ricavata dallo stato del reattore D5802 e del boiler B5802. Va evidenziata che in caso di fermata o avviamento del boiler B5802 i flussi emessi da D5802 evengono indirizzati direttamente al camino S05 determinando la condizione di funzionamento anomalo. In questa condizioni i dati di emissione devono essere stimati in quanto il punto di prelievo non è significativo rispetto ai valori emissivi. La tabella seguente riassume la procedura di elaborazione utilizzata.

Stato Reattore D5802	Stato Boiler B5802	Codice Stato Monitor Camino S05 [670]
Fermo		Fermo [34]
Accensione Spegnimento		Accensione Spegnimento [31]
Regolare	Fermo	Anomalo [36]
Regolare	Accensione Spegnimento	Anomalo [36]
Regolare	Regolare	Regolare [30]

MT01E0004R01

Revisione 00 07.06.2006

4.3 Stato DEPOLVERATORE

Dato elaborato

		Codice 672
30	In servizio regolare	✓
31	Accensione	
32	Spegnimento	
33	Manutenzione	
34	Fuori servizio per fermata	✓
35	Fuori Servizio per guasto	
36	Funzionamento anomalo/parziale	

La procedura di determinazione dei codici di stato monitor depolveratore per il punto di emissione S05 è descritta nella tebella seguente

Stato 58MOV481	Stato 58MOV483	Codice Stato Monitor Camino S05 [672]
Chiusa	Aperta	Fermo [34]
Aperta	Chiusa	Regolare [30]

Va considerato che in condizioni di elettrofiltro fermo i fumi sono indirizzati al camino S05 mentre l'impianto Belco risulta in fermata.