

AUTORIZZAZIONE INTEGRATA AMBIENTALE ALLEGATO D BIS.6: IDENTIFICAZIONE E QUANTIFICAZIONE DEGLI EFFETTI DELLE EMISSIONI IN ATMOSFERA E CONFRONTO CON SQA PER LA PROPOSTA IMPIANTISTICA PER LA QUALE SI RICHIEDE L'AUTORIZZAZIONE

RAFFINERIA ENI R&M DI SANNAZZARO DE' BURGONDI (PV)

INDICE

IN	TRO	DUZIONE	4
1.	INC	QUADRAMENTO NORMATIVO	5
	1.1	VERIFICA DEL CRITERIO DI SODDISFAZIONE	
2.	DA	TI DI INPUT DEL MODELLO	ε
	2.1 2.2 2.3 <i>2.3</i>	Dominio di calcolo Dati meteorologici Dati sulle sorgenti di emissione 2.1 Lo scenario "anno di riferimento"	8 8
	2.3	2.2 Lo scenario "BAT Modifiche Programmate agli impianti"	10
	2.3	2.3 Lo scenario "case study"	1.
	2.4	PARAMETRI STATISTICI DI SIMULAZIONE	12
3.	RIS	SULTATI DELLE SIMULAZIONI	13
	3.1 3.2 3.3	AVVERTENZE SULLA RAPPRESENTAZIONE DEI RISULTATI RISULTATI NUMERICI COMMENTI AI RISULTATI	13
4.	VE	RIFICA DEL CRITERIO DI SODDISFAZIONE	16
	4.1 4.2 4.3	VERIFICA DEL PRIMO CRITERIO	16

INDICE DELLE TABELLE

Tabella 1-1: valori limite imposti dal DM 02/04/02, nº 60	5
Tabella 1-2: valori limite imposti dal DPR 203/88	6
Tabella 2-1: caratteristiche delle sorgenti di emissione	9
Tabella 2-2: tassi di emissione degli inquinanti	9
Tabella 2-3: caratteristiche delle sorgenti di emissione	10
Tabella 2-4: tassi di emissione degli inquinanti	10
Tabella 2-5: caratteristiche delle sorgenti di emissione	11
Tabella 2-6: tassi di emissione degli inquinanti	
Tabella 2-7 : parametri statistici di simulazione	12
Tabella 3-1: valori massimi di concentrazione al suolo di NO_x ($\mu g/m^3$) – 1997	13
Tabella 3-2: valori massimi di concentrazione al suolo di NO_x ($\mu g/m^3$) – 1998	13
Tabella 3-3: valori massimi di concentrazione al suolo di SO_2 ($\mu g/m^3$) – 1997	14
Tabella 3-4: valori massimi di concentrazione al suolo di SO_2 ($\mu g/m^3$) - 1998	14
Tabella 3-5: Valori massimi di concentrazione al suolo di polveri ($\mu g/m^3$) – 1997	14
Tabella 3-6: Valori massimi di concentrazione al suolo di polveri ($\mu g/m^3$) - 1998	14
Tabella 3-7: Valori massimi di concentrazione al suolo di CO (mg/m³) – 1997	14
Tabella 3-8: Valori massimi di concentrazione al suolo di CO (mg/m³) - 1998	15
Tabella 4-1: calcolo dei valori per l'SO ₂ per le centraline – 2004	17
Tabella 4-2: calcolo dei valori per tutti gli inquinanti per la centralina di Sannazzaro - 2004	17
Tabella 4-3: calcolo dei valori per l'SO ₂ per le centraline - 2005	17
Tabella 4-4: calcolo dei valori per tutti gli inquinanti per la centralina di Sannazzaro - 2005	17
Tabella 4-5: livelli differenziali calcolati	18

INTRODUZIONE

La presente scheda raccoglie i risultati delle simulazioni effettuate per la definizione degli effetti delle emissioni in atmosfera di sostanze gassose e materiale particolato generate dalla Raffineria di Sannazzaro.

Sono stati simulati tre scenari:

- 1. **lo scenario "anno di riferimento"**, rappresentativo dei dati emissivi attuali della Raffineria;
- 2. **lo scenario "Modifiche programmate agli impianti"** corrisponde allo scenario emissivo che si verificherà a seguito delle modifiche programmate;
- 3. **lo scenario "case study"**, che descrive lo scenario emissivo qualora venga applicata la tecnica di trattamento secondario SCR Unit al camino S13 per la riduzione delle emissioni di NO_x

1. INQUADRAMENTO NORMATIVO

I valori di riferimento per la definizione della qualità dell'aria elaborati dalla normativa comunitaria e nazionale si distinguono in:

- 1. <u>valori limite</u>, ovvero limiti massimi di accettabilità delle concentrazioni in aria;
- 2. <u>livelli di attenzione ed allarme</u> in base ai quali adottare provvedimenti per prevenire episodi acuti di inquinamento atmosferico;
- 3. <u>valori guida</u>, ovvero valori da raggiungere per salvaguardare la salute e l'ambiente dagli effetti a lungo termine dell'inquinamento e migliorare la qualità dell'aria.

Tabella 1-1: valori limite imposti dal DM 02/04/02, nº 60

Inquinante	Valore limite di legge	Parame	Data alla quale il limite deve essere raggiunto	
NO ₂	200 μg/m³	99,8° percentile delle concentrazioni medie di 24 ore nell'arco di un anno	Valore limite orario per la protezione della salute umana	1 gennaio 2010
NO ₂	40 μg/m³	Mediana delle concentrazioni medie di 24 ore nell'arco di un anno	Valore limite annuale per la protezione della salute umana	1 gennaio 2010
NO _x	30 μg/m³	Mediana delle valore limite annuale per la protezione della vegetazione		19 luglio 2001
	350 μg/m³	99,7° percentile delle concentrazioni medie di 1 ora nell'arco di un anno	Valore limite orario per la protezione della salute umana	1 gennaio 2005
SO ₂	125 μg/m³	99,2° percentile delle concentrazioni medie di 1 ora nell'arco di un anno	Valore limite di 24 ore per la protezione della salute umana	1 gennaio 2005
	20 μg/m³	Mediana delle concentrazioni medie annuali e invernali	Valore limite per la protezione degli ecosistemi	19 luglio 2001
PM10	50 μg/m³	90,4° percentile delle concentrazioni medie di 24 ore nell'arco di un anno	Valore limite di 24 ore per la protezione della salute umana	1 gennaio 2005
PMIO	40 μg/m³	Mediana delle concentrazioni medie annuali	Valore limite annuale per la protezione della salute umana	1 gennaio 2005
со	10 mg/m³	Media massima giornaliera su 8 ore	Valore limite annuale per la protezione della salute umana	1 gennaio 2005

Valore limite di **Inquinante Parametro** legge Mediana delle concentrazioni medie di 24 ore nell'arco di $80 \mu g/m^{3}$ 98° percentile delle concentrazioni medie di 24 ore SO₂250 $\mu g/m^3$ rilevate nell'arco di un anno Mediana delle concentrazioni medie di 24 ore rilevate 130 $\mu g/m^3$ durante l'inverno 98° percentile delle concentrazioni medie di 1 ora rilevate NO_2 $200 \mu g/m^{3}$ nell'arco di un anno

Tabella 1-2: valori limite imposti dal DPR 203/88

L'art. 40, comma 1 b) del DM 60/02, precisa quanto segue: "ai sensi dell'art. 13 del D.Lgs. 4/08/99, n.351, sono abrogate le disposizioni relative a biossido di zolfo, biossido di azoto, alle particelle sospese e al PM_{10} (...) contenute nei seguenti decreti: (...) Decreto del Presidente della Repubblica 24/05/1991, n. 203".

Tuttavia, l'art. 13 del D.Lgs. 351/99, garantisce che fino al termine in cui siano in vigore i margini di tolleranza (stabiliti dal DM 60/02 ai sensi dell'art. 4, comma 1 b) del D.Lgs. 351/99), rimangono in vigore le disposizioni previste dalla normativa nazionale in materia di qualità dell'aria, nella quale rientra il DPR 203/88.

Pertanto, unicamente per l'NO₂, rimangono in vigore anche i valori limite imposti dal DPR 203/88, Allegato I, in quanto la data prevista per il raggiungimento del valore limite è il giorno 1 gennaio 2010.

1.1 Verifica del criterio di soddisfazione

La verifica del criterio di soddisfazione relativo all'assenza di fenomeni di inquinamento significativi, relativamente all'inquinamento atmosferico, è stata condotta, come previsto dalla modulistica APAT, in base alle immissioni di inquinanti gassosi e di particolato nell'ambiente le quali sono state confrontate con degli opportuni standard di qualità ambientale (SQA), al fine di pervenire ad un giudizio di rilevanza.

Più specificatamente il criterio di soddisfazione prevede che per ciascuna matrice ambientale d'interesse e per ciascun inquinante significativo del processo in analisi (in questo caso il comparto atmosferico), la valutazione sia basata, in genere, sul confronto tra il contributo aggiuntivo che il processo in esame determina al livello di inquinamento nell'area geografica interessata (C_A), il livello finale d'inquinamento nell'area (L_F) ed il corrispondente requisito di qualità ambientale (SQA). I criteri di soddisfazione saranno pertanto i seguenti:

$$C_A << SQA$$

$$L_F < SQA$$

Per quanto riguarda la componente atmosfera e soprattutto alla luce del quadro normativo precedentemente descritto, risultano già vigenti specifici criteri per valutare il contributo aggiuntivo del processo mediante la verifica del <u>valore limite di qualità dell'aria</u>.

1. INQUADRAMENTO NORMATIVO

In questo caso, pertanto, gli SQA sono rappresentati dai valori limite previsti dal DM 60/02.

In particolare si ritiene che i criteri richiesti dalla verifica dei criteri di soddisfazione introdotti dalla modulistica APAT, applicati al comparto atmosferico, possano essere espressi come segue:

Livello simulato << Valore limite Livello finale < Valore limite

Per la verifica del criterio di soddisfazione vengono analizzati i dati rilevati dalle centraline ubicate in prossimità dell'impianto, in particolare le medie annuali.

2. DATI DI INPUT DEL MODELLO

Il modello applicato nell'ambito di questo studio è l'Atmospheric Dispersion Modelling System (ADMS), release 3.3, modello climatologico iterativo.

La descrizione di dettaglio del modello è riportata nella Scheda D bis.5.

2.1 Dominio di calcolo

La griglia è stata definita su un'area di $10 \times 10 \text{ km}^2$ (scala locale), centrata sull'impianto.

Data la scala del dominio di calcolo, il DTM (Digital Terrain Model, ossia il file che contiene le informazioni topografiche) è stato costruito su un'area di circa 676 km² mediante l'utilizzo del programma Terrainx64 (Ultrasoft3D).

2.2 Dati meteorologici

I dati meteorologici vengono forniti, come già accennato, in un file che contiene dati statistici di diverse serie di variabili meteorologiche oppure le misure sequenziali (ad esempio orarie) delle seguenti variabili:

- temperatura al suolo;
- velocità del vento;
- direzione del vento;
- piovosità;
- copertura nuvolosa/irraggiamento solare.

Nel caso in esame il file di ingresso è costituito da serie orarie di dati per gli anni 1997 e 1998 per la stazione meteorologica storica non classificata di Sannazzaro de' Burgondi appartenente alla Rete di Rilevamento dati di Qualità dell'Aria della Regione Lombardia.

2.3 Dati sulle sorgenti di emissione

I tassi emissivi e le caratteristiche geometriche delle sorgenti sono stati estratti dalle informazioni riportate nelle schede Addendum C bis.6 e Addendum C bis.7.

Vengono qui aggiunte per comodità delle tabelle che riassumono le caratteristiche emissive degli scenari simulati.

2.3.1 Lo scenario "anno di riferimento"

Tabella 2-1: caratteristiche delle sorgenti di emissione

Dati di emissione			D	ati struttura	li
Sorgente	Temperatura dei fumi	Velocità di efflusso	Altezza sorgente	Diametro sorgente	Superficie sorgente
	°C	m/s	m	m	m2
S01	211,00	3,77	60,00	4,60	16,61
S02	209,00	1,49	40,00	1,49	1,75
S03	172,00	5,38	47,20	2,26	4,01
S05 OLD	303,00	8,64	50,00	2,37	4,41
S05 NEW	60,00	6,60	80,00	2,50	4,91
S06	255,00	3,24	40,00	1,70	2,27
S07	300,00	1,72	40,00	1,50	1,77
S10	245,00	0,32	100,00	5,00	19,63
S12	176,00	6,98	53,00	4,80	18,09
S13	166,00	9,62	120,00	4,30	14,51
S14	171,00	23,94	120,00	4,17	13,65
S15	234,00	10,78	70,00	1,60	2,01
S17	303,00	11,11	40,00	1,60	2,00

Tabella 2-2: tassi di emissione degli inquinanti

	S02	NOx	PTS	СО
Sorgente	(g/s)	(g/s)	(g/s)	(g/s)
S01	35,008	16,931	2,6028	2,025
S02	0,009	0,284	0,0194	0,016
S03	1,706	0,833	0,0422	1,829
S05 OLD	11,060	3,142	0,8694	-
S05 NEW	5,898	6,399	1,2611	-
S06	0,464	0,959	0,0264	-
S07	0,126	0,412	0,0031	0,032
S10	32,623	0,174	-	0,076
S12	0,006	31,646	0,0297	3,869
S13	15,443	32,227	0,2575	4,947
S14	16,873	10,946	1,1002	13,876
S15	0,165	4,141	-	0,745
S17	0,022	-	-	-

2.3.2 Lo scenario "BAT Modifiche Programmate agli impianti"

Tabella 2-3: caratteristiche delle sorgenti di emissione

Dati di emissione			D	ati struttura	li
Sorgente	Temperatura dei fumi	Velocità di efflusso	Altezza sorgente	Diametro sorgente	Superficie sorgente
	°C	m/s	m	m	m2
S01	211,00	4,76	60,00	4,60	16,61
S02	209,00	2,15	40,00	1,49	1,75
S03	172,00	5,49	47,20	2,26	4,01
S05 OLD	303,00	3,99	50,00	2,37	4,41
S05 NEW	60,00	8,89	80,00	2,50	4,91
S06	255,00	2,31	40,00	1,70	2,27
S07	300,00	3,22	40,00	1,50	1,77
S10	245,00	0,42	100,00	5,00	19,63
S12	176,00	2,27	53,00	4,80	18,09
S13	166,00	16,03	120,00	4,30	14,51
S14	171,00	25,15	120,00	4,17	13,65
S15	234,00	16,70	70,00	1,60	2,01
S16	303,00	5,68	40,00	1,60	2,00
S17	303,00	2,12	40,00	1,60	2,00

Tabella 2-4: tassi di emissione degli inquinanti

Courante	S 02	NOx	PTS	СО
Sorgente	(g/s)	(g/s)	(g/s)	(g/s)
S01	34,614	19,789	2,172	10,925
S02	0,031	0,667	0,211	0,531
S03	1,828	5,000	1,333	2,017
S05 OLD	13,903	3,056	0,417	1,842
S05 NEW	0,017	12,786	1,789	10,167
S06	0,586	1,083	0,269	0,669
S07	0,308	1,083	0,269	0,669
S10	44,433	0,583	0,589	1,589
S12	2,778	11,250	1,250	3,897
S13	58,889	58,181	5,569	10,967
S14	16,667	94,986	10,556	45,889
S15	0,561	6,944	1,806	4,219
S16	0,225	0,808	0,536	0,331
S17	0,004	-	-	0,701

2.3.3 Lo scenario "case study"

Lo scenario "case study" è stato definito nella scheda D.3.1° e corrisponde all'adozione di una Selective Catalytic Reduction (SCR) Unit al camino S13 per la riduzione delle emissioni di NO_x .

Tabella 2-5: caratteristiche delle sorgenti di emissione

	Dati di emissione			Dati strutturali		
Sorgente	Temperatura dei fumi	Velocità di efflusso	Altezza sorgente	Diametro sorgente	Superficie sorgente	
	°C	m/s	m	m	m2	
S01	211,00	4,76	60,00	4,60	16,61	
S02	209,00	2,15	40,00	1,49	1,75	
S03	172,00	5,49	47,20	2,26	4,01	
S05 OLD	303,00	3,99	50,00	2,37	4,41	
S05 NEW	60,00	8,89	80,00	2,50	4,91	
S06	255,00	2,31	40,00	1,70	2,27	
S07	300,00	3,22	40,00	1,50	1,77	
S10	245,00	0,42	100,00	5,00	19,63	
S12	176,00	2,27	53,00	4,80	18,09	
S13	166,00	16,03	120,00	4,30	14,51	
S14	171,00	25,15	120,00	4,17	13,65	
S15	234,00	16,70	70,00	1,60	2,01	
S16	303,00	5,68	40,00	1,60	2,00	
S17	303,00	2,12	40,00	1,60	2,00	

Tabella 2-6: tassi di emissione degli inquinanti

Sorgente	S02	NOx	PTS	СО
Sorgente	(g/s)	(g/s)	(g/s)	(g/s)
S01	34,614	19,789	2,172	10,925
S02	0,031	0,667	0,211	0,531
S03	1,828	5,000	1,333	2,017
S05 OLD	13,903	3,056	0,417	1,842
S05 NEW	0,017	12,786	1,789	10,167
S06	0,586	1,083	0,269	0,669
S07	0,308	1,083	0,269	0,669
S10	44,433	0,583	0,589	1,589
S12	2,778	11,250	1,250	3,897
S13	58,889	10,343	5,569	10,967
S14	16,667	94,986	10,556	45,889
S15	0,561	6,944	1,806	4,219
S16	0,225	0,808	0,536	0,331
S17	0,004	-	-	0,701

2.4 Parametri statistici di simulazione

Gli indicatori presi a riferimento sono costituiti dai prodotti di combustione di interesse per l'analisi, vale a dire ossidi di azoto (NO_x), biossido di zolfo (SO_2), Monossido di Carbonio (CO) e polveri totali.

Un elenco di tutti i parametri statistici impostati per la fase di simulazione, in ottemperanza alle richieste della normativa che disciplina la definizione dello stato di qualità dell'aria è riportato in Tabella 2-7.

Tabella 2-7: parametri statistici di simulazione

Inquinante	Parametro	Periodo di	Rifer	imento
inquinance	rarametro	mediazione	DM 60/02	DPR 203/88
	Media annuale(*)	1 ora	x	
NO _x	99,8° percentile	1 ora	x	
	98° percentile	1 ora		х
	Media annuale(*)	1 ora	x	
SO ₂	99,7° percentile	1 ora	x	
	99,2° percentile	24 ore	x	
со	Media mobile annuale(*)	8 ore	х	
	Media annuale(*)	1 ora		
PTS	100° percentile	1 ora		

^(*) per questi parametri è stata calcolata cautelativamente la media oraria in quanto ADMS non accetta un periodo di mediazione superiore alle 72 ore.

3. RISULTATI DELLE SIMULAZIONI

L'applicazione del modello previsionale nei due anni di dati meteo disponibili ed utilizzabili ha dato i risultati che vengono di seguito riportati e commentati.

3.1 Avvertenze sulla rappresentazione dei risultati

In tutto lo studio, nel rappresentare i risultati delle simulazioni si farà uso di tabelle, grafici e mappe.

Per quanto riguarda le mappe bisogna sottolineare che i risultati ottenuti vengono visualizzati, su uno sfondo recante una mappa generale del territorio, tramite curve di isoconcentrazione. In tali mappe viene anche riportata la posizione della sorgente.

Le curve di isoconcentrazione vengono generate a partire dai dati di uscita di ADMS, cioè dalla matrice di valori (un valore di concentrazione per ogni punto del grigliato che rappresenta il dominio di calcolo) mediante appositi software di contouring (restituzione grafica su mappa effettuata con il software ArcGis), e poi riportati su GIS per l'elaborazione cartografica finale.

3.2 Risultati numerici

Tabella 3-1: valori massimi di concentrazione al suolo di NO_x ($\mu g/m^3$) – 1997

Parametro	Valore calcolato			Valore	Riferimento
	Attuale	BAT	Case Study	limite	normativo
Valor medio per NO ₂	1,38	1,90	1,87	40,00	DM 60/02
98° percentile per NO ₂	10,21	11,64	11,38	200,00	DPR 203/88
99,8° percentile per NO ₂	52,78	54,12	53,82	200,00	DM 60/02
Valor medio per NO _x	1,38	1,90	1,87	30,00	DM 60/02

Tabella 3-2: valori massimi di concentrazione al suolo di NO_x ($\mu g/m^3$) – 1998

Parametro	Valore calcolato			Valore	Riferimento
	Attuale	BAT	Case Study	limite	normativo
Valor medio per NO ₂	1,16	1,64	1,61	40,00	DM 60/02
98° percentile per NO ₂	9,91	9,14	9,09	200,00	DPR 203/88
99,8° percentile per NO ₂	44,19	43,00	42,90	200,00	DM 60/02
Valor medio per NO _x	1,16	1,64	1,61	30,00	DM 60/02

Tabella 3-3: valori massimi di concentrazione al suolo di SO₂ (μg/m³) – 1997

Parametro	Valore calcolato			Valore	Riferimento
	Attuale	BAT	Case Study	limite	normativo
Valor medio	1,76	2,42	2,42	20,00	DM 60/02
99,2° percentile	23,08	23,97	23,97	125,00	DM 60/02
99,7° percentile	66,67	69,53	69,53	350,00	DM 60/02

Tabella 3-4: valori massimi di concentrazione al suolo di SO_2 ($\mu g/m^3$) - 1998

Parametro	Valore calcolato			Valore	Riferimento
	Attuale	BAT	Case Study	limite	normativo
Valor medio	1,52	2,11	2,11	20,00	DM 60/02
99,2° percentile	45,36	47,37	47,37	125,00	DM 60/02
99,7° percentile	49,41	54,73	54,73	350,00	DM 60/02

Tabella 3-5: Valori massimi di concentrazione al suolo di polveri (μg/m³) – 1997

Parametro	Valore calcolato			Valore	Riferimento
	Attuale	BAT	Case Study	limite	normativo
Valor medio	0,11	0,38	0,38		
100° percentile	6,43	12,03	12,03		

Tabella 3-6: Valori massimi di concentrazione al suolo di polveri ($\mu g/m^3$) - 1998

Parametro	Valore calcolato			Valore	Riferimento
	Attuale	BAT	Case Study	limite	normativo
Valor medio	0,09	0,33	0,33		
100° percentile	6,43	12,07	12,07		

Tabella 3-7: Valori massimi di concentrazione al suolo di CO (mg/m³) – 1997

Parametro		Valore calcolato		Valore	Riferimento	
		Attuale	BAT	Case Study	limite	normativo
Media mobile ore	8	0,0002	0,0082	0,0082	10,00	DM 60/02

Tabella 3-8: Valori massimi di concentrazione al suolo di CO (mg/m³) - 1998

Par	rametro		Valore calcolato		Valore	Riferimento	
			Attuale	BAT	Case Study	limite	normativo
Media ore	mobile	8	0,0002	0,0094	0,0094	10,00	DM 60/02

3.3 Commenti ai risultati

L'analisi dei risultati mostra che gli inquinanti emessi, non superano i limiti normativi imposti dal DM 60/02 per nessuno dei parametri analizzati, in nessuno degli anni simulati.

La forma della "piuma" evidenzia l'azione dei venti forti provenienti dal quadrante Sud Occidentale. I venti deboli provocano una forte dispersione trasversale, mentre i venti forti rendono prevalente la componente advettiva, creando una vera e propria "piuma" con asse nella direzione del vento, nel caso particolare SO-NE

Per quanto riguarda gli Ossidi di Azoto (NO_x), la normativa impone dei valori limite per NO_2 , ad esclusione del valor medio annuale per la protezione della vegetazione, in cui l'inquinante che viene controllato è l'intera classe degli Ossidi di Azoto (NO_x).

Le simulazioni sono state impostate considerando la dispersione di NO_x.

Si ricorda che solo una percentuale di NO_x è costituita da NO_2 , generalmente inferiore al 5-7%. Pertanto la concentrazione al suolo di NO_2 , seppure considerando una parziale ossidazione in atmosfera di NO a NO_2 , deve essere ritenuta largamente sovrastimata.

Per quanto riguarda invece le Polveri Totali, la normativa nazionale non prevede dei valori limite di qualità dell'aria per questa classe di inquinanti, ma unicamente per il PM_{10} .

Pertanto sono stati calcolati per le polveri il valore medio annuale ed il 100° percentile, quale indicatore del "worst case".

Come mostrato nelle mappe di isoconcentrazione (da Tavola 1 a Tavola 42), si può notare quindi che le maggiori ricadute interessano per quanto riguarda i valori medi, prevalentemente le aree a NE rispetto all'impianto, ad una distanza compresa fra i 1.000 m e i 3.500 m, con l'eccezione della media di SO_2 per lo scenario "BAT modifiche programmate agli impianti" per l'anno 1998 nel quale il valore massimo ricade a a circa 4.500 m NE.

Per molti dei parametri, inoltre, si individua una seconda zona di ricaduta in direzione SO ed ubicata a circa 900 m - 1.700 m dall'impianto.

Dalla distribuzione dei valori massimi, ben rappresentata ad esempio dalla distribuzione del 99,8° percentile di NO_x , si può dedurre che i valori all'esterno del dominio di calcolo siano sempre inferiori a quelli interni. Non si ritiene pertanto che all'esterno del dominio si possano trovare dei valori superiori ai massimi calcolati.

4. VERIFICA DEL CRITERIO DI SODDISFAZIONE

Come già descritto al § 1.1, i criteri richiesti dalla verifica del criterio di soddisfazione sono i seguenti:

Livello simulato << Valore limite Livello finale < Valore limite

4.1 Verifica del primo criterio

Il primo criterio è verificato per tutti gli inquinanti e per tutti i parametri statistici considerati, come riportato al § 3.2.

Viene ora descritta la procedura che è stata applicata per la verifica del secondo criterio.

4.2 Verifica del secondo criterio

Il livello finale di concentrazione che si rileva nell'ambiente è dato dalla somma tra il contributo della raffineria e il livello di fondo ambientale (valore di background).

Tale valore è stato ricavato dai dati rilevati dalle centraline di rilevamento ambientale, distribuite nel territorio nei dintorni dell'impianto.

Nella Tavola 43, è riportata l'ubicazione delle centraline considerate nello studio.

Per poter operare un confronto tra valori puntuali, come sono quelli misurati dalle centraline, per ciascuna di esse è stato considerato un intorno molto ristretto, e sono stati ricavati dai file di output del modello i valori calcolati sui i nodi della griglia compresi in tale intorno.

Per quanto riguarda i dati rilevati dalle centraline, sono stati considerati i dati degli anni 2004 e 2005. Per quanto riguarda invece i dati calcolati dal modello è stato considerato cautelativamente il 1997, nell'ipotesi del "Worst Case".

Le centraline Scaldasole, Ferrera, Galliavola e Casoni B rilevano solamente SO₂, pertanto per esse lo studio si è limitato a questo inquinante.

Per la centralina di Sannazzaro, invece è stato possibile calcolare il valore di fondo ambientale per SO₂, NO₂ e PM_.

Tabella 4-1: calcolo dei valori per l'SO₂ per le centraline – 2004

	Scaldasole	Ferrera	Galliavola	Casoni B
Media annuale	12,967	20,050	12,017	10,967
Contributo raffineria	1,604	0,121	0,250	0,402
Valore di background	11,363	19,929	11,767	10,565
Livello finale BAT	12,961	11,566	10,835	12,766
Livello finale Case study	12,961	11,566	10,835	12,766

Tabella 4-2: calcolo dei valori per tutti gli inquinanti per la centralina di Sannazzaro - 2004

	SO2	NO2	PTS
Media annuale	7,208	3,445	12,958
Contributo raffineria	0,044	0,028	0,001
Valore di background	7,164	3,417	12,957
Livello finale BAT	7,220	3,461	12,968
Livello finale Case study	7,220	3,461	12,968

Tabella 4-3: calcolo dei valori per l'SO₂ per le centraline - 2005

	Scaldasole	Ferrera	Galliavola	Casoni B
Media annuale	12,267	11,508	10,725	12,583
Contributo raffineria	1,604	0,121	0,250	0,402
Valore di background	10,663	11,387	10,475	12,181
Livello finale BAT	13,661	20,107	12,127	11,149
Livello finale Case study	13,661	20,107	12,127	11,149

Tabella 4-4: calcolo dei valori per tutti gli inquinanti per la centralina di Sannazzaro - 2005

	SO2	NO2	PTS
Media annuale	6,575	20,289	9,900
Contributo raffineria	0,044	0,028	0,001
Valore di background	6,531	20,261	8,999
Livello finale BAT	6,587	20,305	9,010
Livello finale Case study	6,587	20,305	9,010

Dove:

• <u>media annuale</u>: è pari al valor medio annuale misurato dalle centraline;

4. VERIFICA DEL CRITERIO DI SODDISFAZIONE

- <u>contributo raffineria</u>: è pari al risultato del modello nei punti circostanti la centralina;
- valore di background: è dato dalla differenza tra la media annuale e il contributo della raffineria;
- <u>Livello finale BAT modifiche programmate agli impianti</u>: corrisponde alla somma tra il valore di background e il valore calcolato dal modello nello scenario "BAT Modifiche Programmate agli impianti".
- <u>Livello finale case study</u>: corrisponde alla somma tra il valore di background e il valore calcolato dal modello nello scenario "case study"

Come si vede dai dati elencati nelle Tabelle i valori "media annuale "BAT Modifiche Programmate agli impianti" e "media annuale Case Study" sono sempre inferiori al valore limite del DM 60/02, tranne che per le misure di SO_2 misurate nela centralina Ferrera nel 2004.

Tuttavia il valore di background, calcolato escludendo il contributo della raffineria, è già molto prossimo al valore limite e il superamento del valore limite è estremamente basso. Pertanto si può affermare che anche il secondo criterio di valutazione è rispettato.

4.3 Calcolo dei livelli differenziali

Infine, sono stati calcolati i livelli differenziali per poter definire i benefici ambientali che si otterrebbero dall'adozione della modifica impiantistica prevista dal Case Study.

Tali valori, riportati in Tabella 4-5 sono stati calcolati come la differenza tra la media annuale case study e la media annuale BAT Modifiche Programmate, calcolati sull'intero dominio di calcolo (cfr. dati riportati in Tabella 3-1 e in Tabella 3-2).

Dal momento che l'unica variazione, dal punto di vista dell'emissione di inquinanti è una riduzione del tasso di emissione di NO_x , il livello differenziale è stato calcolato unicamente per l' NO_x ed è stato confrontato solamente con i valori rilevati dalla centralina di Sannazzaro, l'unica che rilevi anche la concentrazione di NO_x .

Tabella 4-5: livelli differenziali calcolati

	Δ Ca (μg/m3)	Δ Ca/SQA (μg/m3)
Livello differenziale valori 1997	-0,03	-0,00075
Livello differenziale valori 1998	-0.03	-0,00075

Come si vede dai dati riportati, le differenze di concentrazioni tra il case study e lo scenario BAT Modifiche Programmate sono estremamente esigue. In Tavola 44 e in Tavola 45 sono raffigurate le variazioni di concentrazione calcolate.

4. VERIFICA DEL CRITERIO DI SODDISFAZIONE

Ciò consente di affermare che i benefici ambientali che si possono ottenere dall'applicazione della tecnica non giustificano l'investimento per la sua adozione.

