SCHEDA B - DATI E NOTIZIE SULL'IMPIANTO ATTUALE

b. i. i Consumo di materie prime (parte storica)	3
B.1.2 Consumo di materie prime (alla capacità produttiva)	8
B.2.1 Consumo di risorse idriche (parte storica) *	12
B.2.2 Consumo di risorse idriche (alla capacità produttiva)	13
B. 3.1 Produzione di energia (parte storica) *	14
B.3.2 Produzione di energia (alla capacità produttiva)*	15
B.4.1 Consumo di energia (parte storica) *	16
B.5.1 Combustibili utilizzati (parte storica) *	18
B.5.2 Combustibili utilizzati (alla capacità produttiva)	18
B.6 Fonti di emissione in atmosfera di tipo convogliato	19
B.7.1 Emissioni in atmosfera di tipo convogliato (parte storica) *	21
B.7.2 Emissioni in atmosfera di tipo convogliato (alla capacità produttiva)	22
B.8.1 Fonti di emissioni in atmosfera di tipo non convogliato (parte storica) *	23
B.8.2 Fonti di emissioni in atmosfera di tipo non convogliato (alla capacità produttiva)	24
B.9.1 Scarichi idrici (parte storica) *	25
B.9.2 Scarichi idrici (alla capacità produttiva)	27
B.10.1 Emissioni in acqua (parte storica) *	28
B.10.2 Emissioni in acqua (alla capacità produttiva)	28
B.11.1 Produzione di rifiuti (parte storica) *	29
B.11.2 Produzione di rifiuti (alla capacità produttiva)	33
B.12 Aree di stoccaggio di rifiuti	34
B.13 Aree di stoccaggio di materie prime, prodotti ed intermedi	35

SCHEDA B	IPPC 1.1
COLIEDICE	0

B.14 Rumore	37
B.15 Odori	38
B.16 Altre tipologie di inquinamento	39
B.17 Linee di impatto ambientale	40

SCHEDA B - DATI E NOTIZIE SULL'IMPIANTO ATTUALE

Le schede e gli allegati contrassegnati (*) riguardano solo impianti esistenti.

B.1.1 Consu	B.1.1 Consumo di materie prime (parte storica) * Anno di riferimento: 2005													
					Eventuali	sostanze pericolose cont	enute							
Descrizione	Descrizione Produttore e scheda Tipo F tecnica	Fasi di utilizzo	Stato fisico	N° CAS	Denominazione	% in peso	Frasi R	Frasi S	Classe di pericolosità	Consumo annuo				
Gas naturale	ENI S.p.A.	Combustibi le	Circuito Caldaie	Gas	68410-63-9	Miscela complessa di idrocarburi, metano >80%		12	2, 9, 16,	F+	229.077.130 Stdm ³			
			Galdale		74-82-8	metano	> 80		33		Otam			
Steamate Pas		Deossigen	Circuito		3710-84-7	N,N Dietilidrossilammin a	< 20	36,	26, 28,					
4440	GE Betz S.r.I	ante/Alcali nizzante	Caldaie	Liq.	100-37-8	Dietilaminoetanolo	< 5	38	36, 37,	Xi	8.000 kg			
		mzzanto			108-91-8	Cicloesilammina	2-10		39					
					110-91-8	Morfolina	1-10							
		Deossigen	Circuito		3710-84-7	N,N Dietilidrossilammin a	5-10	10, 34,	26, 28,					
Steamate Pas 6063	GE Betz S.r.I	ante/Alcali	Acqua	Liq.	108-91-8	Cicloesilammina		21,	36, 37,	С	1.870 kg			
			surriscaldata		4-				141-43-5	Etanolammina	< 20	22,	39,	
					109-55-7	Dimetilamino Propilamina	5-10	43	45					

OptisperseSP 8100 E	GE Betz S.r.l	Disperdent e/Alcalinizz ante	Circuiti caldaie e acqua surriscaldata	Liq.			_	_	_		8.000 kg
					29385-43-1	Toliltriazolo	< 25		24,		
			O: " T :		1310-73-2	Sodio idrossido	0.5-2	00	26,		
Continuum AT 3225	GE Betz S.r.I	Disperdent e	CICO	Liq.	55965-84-9	Miscela di : 5-cloro-2-metil-4- isotiazolin-3-one e 2-metil-4- isotiazolin-3-one	0.0015 -0.06	36, 38, 43	28, 36, 37, 39	Xi	10.500 kg
NALCO 4221	NALCO S.p.A.	Deossigen ante		Liq.	497-18-7	Carboidrazide	5-10	43	24, 25	Xi	1.090 kg
	NALCO Alcalinizza Circuito S.p.A. nte Caldaie	i			141-43-5	Etanolammina	30-60		23		
NALCO 72310			Liq.	226-241-3	Metossipropilammin a	5-10	20, 34, 37, 43	C, 24, 25, 26, 36, 37, 39, 45	С	700 kg	
NALCO 72215	NALCO S.p.A.	Disperdent e	Circuito Caldaie	Liq.	1310-73-2	Sodio idrossido	1-5	35	24, 25, 26, 36, 37, 39, 45	С	820 kg

NALCO 8504	NALCO S.p.A.	Disperdent e	Torri evaporative CICO	Liq.				-	24, 25, 37, 39	-	9.800 kg
					108-91-8	Cicloesilammina	5-10		24,		
		Deossigen	Circuito		497-18-7	Carboidrazide	1-5	22,	25,		
NALCO BT-28	NALCO	ante/Alcali	Acqua	Liq.	141-43-5	Etanolammina	10-30	34,	26, 36,	С	3.400 kg
	S.p.A.	nizzante	surriscaldata	·	226-241-3	Metossipropilammi na	10-30	43	37, 39, 45		J
TURB 32	FL Selenia S.p.A.	Olio lubrificante per turbine e compresso ri	CICO	Liq.				-	-	-	7.664 kg
HTF 32	Fuchs Lubrificanti S.p.A.	Olio idraulico	CAP, CMP, AC	Liq.	68649-42-3	Zincodialchilditiofo sfati	< 1	-	-	-	527 kg
HTF 68	Fuchs Lubrificanti S.p.A.	Olio idraulico	CICO, CAP, CMP, AC, TAR	Liq	68649-42-3	Zincodialchilditiofo sfati	< 1	-	-	-	6.398 kg
HTF 80	Fuchs Lubrificanti S.p.A.	Olio idraulico	CAP, CMP, AC, TAR	Liq	68649-42-3	Zincodialchilditiofo sfati	< 1	-	-	-	72 kg
HTF 100	Fuchs Lubrificanti S.p.A.	Olio idraulico	CAP, CMP	Liq	68649-42-3	Zincodialchilditiofo sfati	< 1	-	-	-	424 kg
RENOLIN DTA 46	Fuchs Lubrificanti S.p.A.	Fluido idraulico	CICO, CAP	Liq.				-	-	-	1.540 kg

RENOLIN HTF 220	Fuchs Lubrificanti S.p.A.	Olio idraulico	CICO	Liq.				-	-	-	432 kg	
RENOLIN HTF 320	Fuchs Lubrificanti S.p.A.	Olio idraulico	CICO	Liq.				-	-	-	36 kg	
Freon 22	Guido Tazzetti e C. S.p.A.	Fluido refrigerante	AC	Liq.	000075-45- 6	Clorodifluorometan o	> 99,8	59	59	N	135 kg	
TRA 25	Fuchs Lubrificanti S.p.A.	Fluido dielettrico	SE	Liq.				-	-	-	3.240 kg	
Gasolio	ENI S.p.A.	Carburante	SE	Llq	68476-30-2	Gasolio	90-100	40, 51, 53,	24, 36, 37,	Xn, N	391 ℓ	
trazione	LINI O.P.A.	Carburante	SL	Liq	64742-88-7	Cherosene	0-10	65, 66	61, 62	All, IV	3911	
						7664-93-9	Acido solforico	2-5				
		Disperdent			5995-42-6	Acido fosfonico	5-10	1	26,			
Performax	Ashland	e circuito			26099-09-2	Acido polimaleico	5-10		36,			
3400	S.p.A.	acque raffreddam	AC	Liq.	64665-57-2	4(5)-Metil- benzotriazolo	0.5-2	34	37, 39,	С	6.600 kg	
		ento			37971-36-1	Acido 2- fosfonobutanotrica rbossilico	2-5		45			
Sodio ipoclorito	Guido Tazzetti e C. S.p.A.	Battericida/ Ossidante	CICO, AO	C, Liq.	7681-52-9	Sodio ipoclorito soluzione	12-16	31, 34	1, 2, 28, 45, 50	С	429.500 kg	

Acido cloridrico	Guido Tazzetti e C. S.p.A.	Acido rigenerante resine cationiche	DEMI	Liq.	7647-01-1	Acido cloridrico	30-34	34, 37	1, 2, 26, 45	С	454.000 kg
Sodio idrossido	Guido Tazzetti e C. S.p.A.	Base rigenerante resine anioniche	DEMI	Liq.	1310-73-2	Sodio idrossido	29-31	35	1, 2, 26, 37, 39, 45	С	325.000 kg
Ferro Cloruro Ferrico soluzione	Guido Tazzetti e C. S.p.A.	Flocculante primario	TAR	Liq.	7705-08-0	Cloruro ferrico, soluzione	38-41	22, 24	26, 36, 37, 39	С	347.000 kg
Calce idrata	Romana chimici S.p.A.	Basificante	TAR	Polv.	1305-62-0	Calce idrata	100	41	26, 39	Xi	355.500 kg
Bentonite AGB/P4	Guido Tazzetti e C. S.p.A.	Flocculante secondario	TAR	Polv.				-	-	-	138.000 kg
BETZARBORN AP 1122	G.E. Betz s.r.l.	Coagulante	TAR	Polv.				-	-	-	4.625 kg
Ossigeno liquido refrigerato	Air Liquide Italia S.p.A.	Ossidante	TAR	Liq.	07782-44-7	Ossigeno liquido	100	8	17, 36	0	14.400 kg
Acqua ossigenata sol.130 vol.	Romana chimici S.p.A.	Ossidante	TAR	Liq.	7722-84-1	Acqua ossigenata	34-36	34	1, 2, 3, 28, 36, 39, 45,	С	1.950 kg

B.1.2 Consu	mo di materi	e prime (all	a capacità p	rodutti	va)								
					Eventuali	sostanze pericolose cont	enute						
Descrizione Produttore e scheda tecnica	Tipo	Fasi di utilizzo	Stato fisico	N° CAS	Denominazione	% in peso	Frasi R	Frasi S	Classe di pericolosità	Consumo annuo			
				68410-63-9	Miscela complessa di idrocarburi, metano >80%								
		O a mala a tila i	Circuito Caldaie				74-82-8	metano	> 80		2,		000 004 074
Gas naturale E	ENI S.p.A.	Combustibi le		Gas	1310-73-2	Sodio idrossido	0.5-2	11 12 11	9, 16,	F+	609.921.274 Stdm ³		
					55965-84-9	Miscela di : 5-cloro-2-metil-4- isotiazolin-3-one e 2-metil-4- isotiazolin-3-one	0.0015 -0.06		33				
NALCO 4221	NALCO S.p.A.	Deossigen ante	Circuito Caldaie	Liq.	497-18-7	Carboidrazide	5-10	43	24, 25	Xi	6.773 kg		
					141-43-5	Etanolammina	30-60		23				
NALCO 72310	NALCO S.p.A.	Alcalinizza nte	Circuito Caldaie	Liq.	226-241-3	Metossipropilammin a	5-10	20, 34, 37, 43	C, 24, 25, 26, 36, 37, 39,	С	4.454 kg		

NALCO 72215	NALCO S.p.A.	Disperdent e	Circuito Caldaie	Liq.	1310-73-2	Sodio idrossido	1-5	35	24, 25, 26, 36, 37, 39, 45	С	6.371 kg
NALCO 8504	NALCO S.p.A.	Disperdent e	TE	Liq.				-	24, 25, 37, 39	-	20.977 kg
					108-91-8	Cicloesilammina	5-10		24,		
		Decesion	Oines ite	Liq.	497-18-7	Carboidrazide	1-5	22	25,		
NALCO BT-28	NALCO BT-28 NALCO ant	Deossigen ante/Alcali	Circuito Acqua		141-43-5	Etanolammina	10-30	22, 34,	26, 36,	С	19.762 kg
S.p.A.	S.p.A.	nizzante	surriscaldata	,	226-241-3	Metossinronilammi		43	37, 39, 45		
TURB 32	FL Selenia S.p.A.	Olio lubrificante per turbine e compresso ri	CICO	Liq.				-	-	-	8.000 kg
Freon 22	Guido Tazzetti e C. S.p.A.	Fluido refrigerante	AC	Liq.	000075-45-	Clorodifluorometan o	> 99,8	59	59	N	480 kg
TRA 25	Fuchs Lubrificanti S.p.A.	Fluido dielettrico	SE	Liq.				-	-	-	10.000 kg
Gasolio trazione	ENI S.p.A.	Carburante	SE	Llq	68476-30-2	Gasolio	90-100	40, 51,	24, 36,	Xn, N	391 ₹

						64742-88-7	Cherosene	0-10	53, 65, 66	37, 61, 62		
		Disperdent				7664-93-9	Acido solforico	1-5				
Performax	Ashland	e circuito				5995-42-6	Acido fosfonico	1-10	36,	26,		
3400	S.p.A.	acque raffreddam	AC		Liq.	26099-09-2	Acido polimaleico	10-25	38	28	Xi	23.457 kg
		ento				64665-57-2	Toliltriazolo di sodio	1-10				
Sodio ipoclorito	Guido Tazzetti e C. S.p.A.	Battericida/ Ossidante	TE, A	AC,	Liq.	7681-52-9	Sodio ipoclorito soluzione	12-16	31, 34	1, 2, 28, 45, 50	С	1.653.749 kg* 914.039 kg**
Acido cloridrico	Guido Tazzetti e C. S.p.A.	Acido rigenerante resine cationiche	DEMI		Liq.	7647-01-1	Acido cloridrico	30-34	34, 37	1, 2, 26, 45	С	1.711.259 kg
Sodio idrossido	Guido Tazzetti e C. S.p.A.	Base rigenerante resine anioniche	DEMI		Liq.	1310-73-2	Sodio idrossido	29-31	35	1, 2, 26, 37, 39, 45	С	1.223.672 kg
Ferro Cloruro Ferrico soluzione	Guido Tazzetti e C. S.p.A.	Flocculante primario	TAR		Liq.	7705-08-0	Cloruro ferrico, soluzione	38-41	22, 24	26, 36, 37, 39	С	1.444.048 kg* 722.024 kg**
Calce idrata	Romana chimici S.p.A.	Basificante	TAR		Polv.	1305-62-0	Calce idrata	100	41	26, 39	Xi	1.383.705 kg* 691.853 kg**

Bentonite AGB/P4	Guido Tazzetti e C. S.p.A.	Flocculante secondario	TAR	Polv.				-	-	-	574.290 kg* 287.145 kg**
BETZARBORN AP 1122	G.E. Betz s.r.l.	Coagulante	TAR	Polv.				-	-	-	19.247 kg* 9.624 kg**
Ossigeno liquido refrigerato	Air Liquide Italia S.p.A.	Ossidante	TAR	Liq.	07782-44-7	Ossigeno liquido	100	8	17, 36	0	59.926 kg* 29.963 kg**
Acqua ossigenata sol.130 vol.	Romana chimici S.p.A.	Ossidante	TAR	Liq.	7722-84-1	Acqua ossigenata	34-36	34	1, 2, 3, 28, 36, 39, 45,	С	8.115 kg* 4.057 kg**

^{* =} Consumi dell'impianto di Trattamento Acque Reflue, TAR, calcolati alla potenzialità di progetto

^{** =} Consumi dell'impianto di Trattamento Acque Reflue, TAR, calcolati alla potenzialità autorizzata

B.2	.1 Consumo di riso	rse idric	he (p	arte storic	a) *	-	Anno	o di riferime	nto: 2005				
n.	Approvvigionamento	Fasi di utilizzo		Utilizzo			ne e m³	Consumo giornaliero, m³	Portata oraria di punta, m ³ /h	Presenza contatori	Mesi di punta	Giorni di punta	Ore di punta
		DEMI, CICO,		☐ igienico sanitario									
1	Pozzi C	CAP,		industrials	■ processo	395.406		1.050	150		Gen	-	-
		CMP, AC,	•	■ industriale	■ raffreddamento	941.785		2.600	250		Lug	-	-
		TAR		altro (esplicitare)									
		DEMI, CICO, CAP,		■ igienico sanitario		12.835		35	2		Lug	-	-
0	A			industriala	□ processo								
2	Acquedotto S.M.A.T.	CMP, SE		industriale	□ raffreddamento								
		AC, TAR		altro (esplicitare)									
		DEMI,		igienico sar	nitario								
3	Acquedotto S.A.P.	CICO, CAP,		industriale	processo	389.128		1.050	150		Gen	-	-
5	Acquedotto G.A.I .	CMP, AC,		industriale	raffreddamento	926.837		2.600	350		Lug	-	-
		TAR		altro (esplic	citare)								

Approvvigionamento	Fasi di utilizzo		Utilizzo	Volume totale annuo, m³	Consumo giornaliero, m³	Portata oraria di punta, m³/h	Presenza contatori	Mesi di punta	Giorni di punta	Ore di punta
	DEMI, CICO,	☐ igienico sanitario								
1 Pozzi		in directal at	processo	641.515	1.700	200		Gen	-	-
	CMP,	Industriale	raffreddamento	1.994.725	5.400	500		Lug	-	-
		altro (esp	licitare)							
	DEMI, CICO, CAP, CMP, SE	igienico sai	itario	12.835	35				Lug	-
		☐ industrials	□ processo							
Acquedotto S.M.A.T.		Industria	□ raffreddamento							
	AC, TAR	altro (esplicitare)								
	DEMI,	igienico :	anitario							
	TE	industria	processo	641.515	1.700	200		Gen	-	-
Acquedotto S.A.P.		- industria	raffreddamento	1.994.725	5.400	500		Lug	-	-
	Pozzi Acquedotto S.M.A.T. Acquedotto S.A.P.	Pozzi CICO, TE, CAP, CMP, AC, TAR DEMI, CICO, CAP, CMP, SE AC, TAR DEMI, CICO, CAP, CMP, SE AC, TAR DEMI, CICO, TE	Pozzi CICO, TE, CAP, CMP, AC, TAR DEMI, CICO, CAP, CMP, SE AC, TAR DEMI, CICO, CAP, CMP, SE AC, TAR Acquedotto S.M.A.T. DEMI, CICO, CAP, CMP, SE AC, TAR DEMI, CICO, TE GRACH	Pozzi CICO, TE, CAP, CMP, AC, TAR DEMI, CICO, CAP, CMP, SE AC, TAR DEMI, CICO, CAP, CMP, SE AC, TAR DEMI, CICO, CAP, CMP, SE AC, TAR DEMI, CICO, TE CAP, CMP, SE AC, TAR DEMI, CICO, TE CAP, CMP, TE CAP, CMP, AC industriale indust	Pozzi CICO, TE, CAP, CMP, AC, TAR DEMI, CICO, CAP, CMP, SE AC, TAR Acquedotto S.M.A.T. DEMI, CICO, CAP, CMP, SE AC, TAR DEMI, CICO, TE CAP, CMP, SE AC, TAR DEMI, CICO, TE CAP, CMP, AC. Acquedotto S.A.P. DEMI, CICO, TE industriale industriale processo 641.515 Taffreddamento 1.994.725 Taffreddamento 1.994.725	Pozzi P	Pozzi P	Pozzi	Pozzi P	Pozzi

				ENERGIA TE	RMICA	ENERGIA ELETTRICA				
Fase	Apparecchiatura	Combustibile utilizzato	Potenza termica di combustione (MWt)	Energia prodotta (MWty)	Quota ceduta a terzi (MWty)	Potenza elettrica nominale (MW)	Energia prodotta (MWy)	Quota ceduta a terzi (MWy)		
CAP	3 Caldaie di Alta Pressione 3 Turbine a contropressione	Gas naturale	231	382.243*	301.410,9**	45,46	59.880,75*	41.218,3**		
СМР	4 Caldaie di Media Pressione 3 Turbine a contropressione	Gas naturale	286	13.087*	12.308,2**	14,4	1.735,416*	148,8**		
TG16	2 Turbine a gas 2 Caldaie di Media Pressione	Gas naturale	50.88	8.395*	8.136,4*	39	11.366,08*	9.434,1**		
CICO	2 Gruppi a ciclo combinato	Gas naturale	96	644.880 **	178.515,3*	108	708.420*	637.852,7**		
	TOTALE (Misurato)		663,88	587.910*	500.370,8*	206,86	781.402,246*	688.654*		

^{* =} Quantitativi misurati

^{** =} Quantitativi stimati

				ENERGIA TE	RMICA	ENERGIA ELETTRICA			
Fase	Apparecchiatura	Combustibile utilizzato	Potenza termica di combustione (MWt)	Energia prodotta (MWty)	Quota ceduta a terzi (MWty)	Potenza elettrica nominale (MW)	Energia prodotta (MWy)	Quota ceduta a terzi (MWy)	
CAP	3 Caldaie di Alta Pressione 3 Turbine a contropressione	Gas naturale	231	924.000	747.565	45,46	181.840	122.904	
CMP	4 Caldaie di Media Pressione 3 Turbine a contropressione	Gas naturale	286	1.144.000	1.103.911	14,4	57.600	14.808	
TG16	2 Turbine a gas 2 Caldaie di Media Pressione	Gas naturale	50.88	407.040	404.775	39	312.000	240.073	
CICO	2 Gruppi a ciclo combinato	Gas naturale	96	768.000	218.130	108	864.000	721.174	
	TOTALE		663,88	3.243.040	2.474.381	206,86	1.415.440	1.098.959	

^{* =} Si è considerato che le Centrali di Alta e Media Pressione (CAP, CMP) funzionino per 4.000 h/anno, i Turbogas e i Ciclo-Combinati (TG16 e CICO) 8.000 h/anno. Si sono considerati anche gli impianti connessi alla capacità produttiva. In realtà la CMP e i TG16 funzionano solo in caso di emergenza.

B.4.1 Consumo di e	nergia (parte storica)	*	Anno di riferimento: 20	005	
Fase o gruppi di fasi	Energia termica consumata (MWty)	Energia elettrica consumata (MWy)	Prodotto principale	Consumo termico specifico (MWty/unità)	Consumo elettrico specifico (kWy/unità)
CAP	71.257,95	15.289,688	Energia termica	0.13384	0.1645
СМР	387,96	1.574,425	Energia termica	0.000728	0.01694
TG16	0	1.159,991	Energia elettrica	0	0.0125
CICO	460.694,6	18.374,561	Energia elettrica	0.8653	0.1977
TE	0	3.480,677	Acqua raffreddata	0	0.0726
CD _M	0	6.748	Variazione P metano	0	0.0374
SE	0	703,249	Energia elettrica	0	0.0075
DEMI	10	563,765	Acqua demineralizzata	1.87 *10 ⁻⁵	0.006
AC	0	43.983,207	Aria compressa	0	0.473
TAR	25,1	1.069,731	Depurazione acque reflue	0. 4.7*10 ⁻⁵	0.0115
TOTALE	532.375,61	92.947,294	_	_	_

Fase o gruppi di fasi	Energia termica consumata (MWh)	Energia elettrica consumata (MWh)	Prodotto principale	Consumo termico specifico (kWty/unità)	Consumo elettrico specifico (kWy/unità)
CAP	172.253	46.430	Energia termica	0.2282	0.1416
CMP	33.913	51.840	Energia termica	0.0449	0.158
TG16	0	31.842	Energia elettrica	0	0.097
CICO	548.650	22.410	Energia elettrica	0.727	0.068
TE	0	4.245	Acqua raffreddata	0	0.0129
CD _M	0	8.000	Variazione P metano	0	0.0244
SE	0	1.250	Energia elettrica	0	0.00381
DEMI	10	2.130	Acqua demineralizzata	0.0000132	0.0065
AC	0	156.300	Aria compressa	0	0.4768
TAR	25	3.300	Depurazione acque reflue	0.0000331	0.010
TOTALE			_		

B.5.1 Combustibili utilizzati (parte storica) * Anno di riferimento: 2005									
Combustibile % S Consumo annuo (10³ Stdm³) PCI (GJ/1000Stdm³) Energia (GJ)									
Gas naturale	0	229.077,13	35,32	8.091.004					

B.5.2 Combustibili utilizzati (alla capacità produttiva)								
Combustibile % S		Consumo annuo (10³ Stdm³)	PCI (GJ/1000Stdm³)	Energia (GJ)				
Gas naturale	0	609.921,27	35,32	21.542.419				

B.6 Fonti di	emissione in	atmos	sfera di tipo co	onvogliato				
N° totale camini	<u>5</u>							
n° camino <u>B</u>			Posizione ammir	nistrativa <u>E</u>				
Caratteristich	e del camino							
Altezza dal suolo	Area sez. di uscita		i e dispositivi i di provenienza	Sistemi di trattamento				
95 m	7,55 m ²	2 c	aldaie di CAP	Nessuno				
Monitoraggio ir	n continuo delle	emission	ni: □ și	x no				
n° camino <u>C</u>			Posizione ammir	nistrativa _E_				
Caratteristiche del camino								
Altezza dal suolo	Area sez. di uscita		i e dispositivi i di provenienza	Sistemi di trattamento				
109	10,75 m ²		aldaia di CAP	Nessuno				
103	10,73 111	1 caldaia di CMP		Nessuno				
Monitoraggio ir	n continuo delle	emissior	ıi: □şi	x no				
n° camino <u>D</u>			Posizione ammii	nistrativa <u>E</u>				
Caratteristich	e del camino							
Altezza dal suolo	Area sez. di uscita		i e dispositivi i di provenienza	Sistemi di trattamento				
104 m	12,56 m ²	3 c	aldaie di CMP	Nessuno				
Monitoraggio ii	n continuo delle	emissior	ni: . 🗆 și	x no				

n° camino <u>E</u>			Posizione ammir	nistrativa <u>E</u>					
Caratteristich	e del camino		-						
Altezza dal suolo	Area sez. di uscita		i e dispositivi i di provenienza	Sistemi di trattamento					
40 m	15,2 m ²		TG16						
Monitoraggio in continuo delle emissioni: x și * □ no Analizzatore in continuo di CO e O₂ libero									
n° camino <u>F</u>			Posizione ammir	ministrativa <u>E</u>					
Caratteristich	e del camino								
Altezza dal suolo	Area sez. di uscita		i e dispositivi i di provenienza	Sistemi di trattamento					
60 m	22,06 m ²		CICO	Nebulizzazione acqua demineralizzata					
Monitoraggio in continuo delle emissioni: x şi □ no Analizzatore in continuo di CO, O₂ libero, NO e NOx									

B.7.1 Emissioni in atmosfera di tipo convogliato (parte storica) *

Anno di riferimento: 2005

Camino	Portata Nm³/h	Inquinanti	Flusso di massa, kg/h	Flusso di massa, kg/anno	Concentrazione, mg/Nm³	% O ₂	
В	138.315	CO	11,6	46.400	84	3	
В	130.313	NO_x	31,4	125.600	227	3	
С	172.530	CO	4,5	2.243	26	3	
	172.550	NO _x	49,5	24.758	287	J	
D	157.730	CO	2,2	1.104	14	3	
, o	137.730	NO_x	25	12.540	159	J	
Е	466.990	CO	5,6	560	12	15	
E	400.990	NO_x	71	7.145	153	15	
F	737.420	CO	10,3	82.591	14	15	
Г	131.420	NO _x	260	2.082.474	353	15	

B.7.2 Emissioni in atmosfera di tipo convogliato (alla capacità produttiva)

Camino	Portata Nm³/h	Inquinanti	Flusso di massa, kg/h	Flusso di massa, kg/anno	Concentrazione, mg/Nm³	% O ₂
В	138,3	CO	11,6	46.400	84	3
	130,3	NO _x	31,4	125.600	227	3
С	172,53	CO	4,5	18.000	26	3
	172,55	NO _x	49,5	198.000	287	
D	157,7	CO	2,2	8.800	14	3
U	157,7	NO _x	25	100.000	159	J
E	466,99	CO	5,6	44.800	12	15
E	400,99	NO _x	71	568.000	153	15
F	727.4	CO	10,3	82.591	14	15
г	737,4	NO _x	260	2.082.474	353	15

te storic			atmosfera di tipo non		Anno di riferimento
Fase		issioni gitive o	Descrizione	Inquinan	iti presenti
1 430		fuse	Descrizione	Tipologia	Quantità
CAP	□ x	DIF FUG	Valvole di sfiato	Metano	338 Nm3
CMP	x	DIF FUG	Valvole di sfiato	Metano	376.8 Nm3
TG16	x	DIF FUG	Valvole di sfiato	Metano	199 Nm3
				Metano	576 Nm3
CICO	□ x	DIF FUG	Valvole di sfiato		

B.8.2 Fonti di emissioni in atmosfera di tipo non convogliato (alla capacità produttiva)

Fase	Emissioni	Descrizione	Inquinant	i presenti
rase	fuggitive o diffuse	Descrizione	Tipologia	Quantità
CAP	□ DIF x FUG	Valvole di sfiato	Metano	*
СМР	DIF x FUG	Valvole di sfiato	Metano	*
TG16	DIF x FUG	Valvole di sfiato	Metano	*
CICO	DIF x FUG	Valvole di sfiato	Metano	576 Nm3
	□ DIF □ FUG			

Note:

^{*} Per queste fasi le emissioni di non convogliato non sono determinabili in quanto non si conosce quale sarà l'assetto produttivo delle centrali termiche.

B.9.1 Scarichi idrici (parte storica) * Anno di riferimento: 2005 N° totale punti di scarico finale 4 Portata media annua 1.359.715 m³ M* n° scarico finale SF1 Recettore torrente Sangone Ricircolo UV 414.007 m³ M* Caratteristiche dello scarico **Temperatura** Fase o superficie di Impianti di Scarico % in Superficie relativa, m² Modalità di scarico volume** parziale provenienza trattamento Hq 1 CMP/CAP/TE/DEMI 48 1.000 60°C/9 Canalizzazione TAR AI/AR/MI CICO/TG16/AC_c 9,3 40°C/8 2 AI/MI Canalizzazione 3.000 TAR AC_M **TAR** 30°C/7,5 3 AR 13,3 Canalizzazione Portata media annua 146.550 m³ S n° scarico finale SF2 Recettore Pubblica fognatura Caratteristiche dello scarico* **Temperatura** Fase o superficie di Impianti di Scarico Superficie relativa, m² % in volume Modalità di scarico parziale trattamento pН provenienza 1.000 CMP/CAP/TE/DEMI 5,3 60°C/9 1 AI/AR/MI Canalizzazione

^{*= .} si sono considerati solo gli scarichi industriali, in quanto l'acqua potabile è utilizzata a solo scopo civile

^{** =} in pubblica fognatura va il troppo pieno dello scarico parziale 2

n° scarico finale SF3 Recettore Pubblica fognatura Portata media annua 4.631 m³ M									
Caratteristich	ne dello scarico								
Scarico parziale Fase o superficie di provenienza % in volume Modalità di scarico Superficie relativa, m² Impianti di trattamento pH									
2 AI/MI**	CICO/TG16/AC _c	100	Canalizzazione	3.000			30°C, 7.5		
n° scarico fir	nale <u>SF4</u>	Recettore Pubbli	ca fognatura *		Portata media	a annua <u>165.239 m³</u>	S		
Caratteristich	ne dello scarico								
Scarico parziale	% in volume Modalità di scarico Superficie relativa m'								
4 AR	AC _P	30,4	Canalizzazione				30°C, 7.5		

30°C/7,5

Portata media annua : 10.512.000* m³

TAR

B.9.2 Scarichi idrici (alla capacità produttiva)

8*

16**

N° totale punti di scarico finale 2

n° scarico fin	ale : <u>SF1</u>	Recettore <u>torrer</u>	<u>ite Sangone</u>		5.256.000** m ³				
Caratteristiche dello scarico									
Scarico parziale	Fase o superficie di provenienza	% in volume	Modalità di scarico	Superficie re	elativa, m²	Impianti di trattamento	Temperatura pH		
1 AI/AR/MI	CMP/CAP/TE/DEMI	18* 36**	Canalizzazione	1.00	0	TAR	60°C/ 9		
2 AI/MI	CICO/TG16/AC _c	4,6* 9,3**	Canalizzazione	3.00	0	TAR	40°C/ 8		

n° scarico finale : <u>SF4</u> Recettore : <u>Pubblica fognatura</u> Portata media annua: impossibile stimare	
---	--

Canalizzazione

Caratteristiche dello scarico

3 AR

	Scarico parziale	Fase o superficie di provenienza	% in volume	Modalità di scarico	Superficie relativa, m²	Impianti di trattamento	Temperatura pH
ı	4 AR	AC _P	_	Canalizzazione			30°C, 7.5

^{* =} potenzialità nominale impianto TAR

 AC_M

N.B. Gli scarichi finali SF2 e SF3 sono dovuti ai troppo pieni degli scarichi parziali 1 e 2, in condizioni di funzionamento regolare essi non sussistono, per cui non è possibile quantificarli

^{** =} potenzialità autorizzata impianto TAR

B.10.1 Emissioni in acqua (parte storica) *

Anno di riferimento: 2005

Scarichi parziali	Inquinanti	Sostanza pericolosa	Flusso di massa g/h	Concentrazione mg/l
	Cu	SI,	0,0046	0.04
1	Zn	SI,	0,0345	0.3
	Idrocarburi	SI,	0,92	8
	Cu	SI,	0,0014	0.07
2	Zn	SI,	0,002	0.1
	Idrocarburi	SI,	0,12	6
3	Zn	SI,	0,00189	0.07
	Cu	SI,	0,00057	0.03
4	Zn	SI,	0,0019	0.1
	Idrocarburi	SI,	0,114	6

B.10.2 Emissioni in acqua (alla capacità produttiva)

Scarichi parziali	Inquinanti	Sostanza pericolosa	Flusso di massa g/h	Concentrazione mg/l
	Cu	SI,	75	0.04
1	Zn	SI,	563	0.3
	Idrocarburi	SI,	15.029	8
	Cu	SI,	34	0.07
2	Zn	SI,	49	0.1
	Idrocarburi	SI,	2.943	6
3	Zn	SI,	59	0.07
	Cu	SI,	17,6	0.03
4	Zn	SI,	58,7	0.1
	Idrocarburi	SI,	3.523	6

	Descrizione	Stato fisico	Quantità annua	Fase di		Stoccaggio		
Codice CER	Descrizione	Stato IISICO	prodotta	provenienza	N° area	Modalità	Destinazione	
06.05.02*	Fanghi prodotti dal trattamento in loco degli effluenti, contenenti sostanze pericolose	Solido non polverulent o	22.160 kg	TAR		Container	D15	
06.05.03	Fanghi prodotti dal trattamento in loco degli effluenti, diversi da quelli di cui alla voce 06.05.02	Solido non polverulent o	264.440 kg	TAR		Container	D15	
06.05.03	Fanghi prodotti dal trattamento in loco degli effluenti, diversi da quelli di cui alla voce 06.05.02	Solido non polverulent o	1.057.690 kg	TAR		Container	D1	
13.01.10*	Oli minerali per circuiti idraulici, non clorurati	Liquido	4.200 kg	СТ	1	Fusti	R13	
13.03.07*	Oli minerali isolanti e termoconduttori, non clorurati	Liquido	10.000 kg	СТ	1	Fusti	R13	
13.05.02*	Fanghi prodotti di separazione olio/acqua	Fangoso palabile	58.810 kg	TAR		Vasca	D15	
13.08.02*	Altre emulsioni	Liquido	28.820 kg	СТ	1	Fusti	D15	

15.01.03	Imballaggi in legno	Solido non polverulent o	2.740 kg	ст	1	Sfuso	R13
15.01.06	Imballaggi in materiale misto	Solido non polverulent o	16.980 kg	ст	1	Sfuso	D1
15.01.06	Imballaggi in materiale misto	Solido non polverulent o	32.220 kg	ст	1	Sfuso	R13
15.01.06	Imballaggi in materiale misto	Solido non polverulent o	2.880 kg	TAR	1	Sfuso	R13
15.01.10*	Imballaggi contenenti residui di sostanze pericolose e contaminati da tali sostanze	Solido non polverulent o	8.940 kg	ст	1	Cassone	D15
15.01.10*	Imballaggi contenenti residui di sostanze pericolose e contaminati da tali sostanze	Solido non polverulent o	190 kg	TAR	1	Cassone	D15
15.02.02*	Assorbenti, materiali filtranti (inclusi filtri dell'olio non specificati altrimenti), stracci e indumenti protettivi contaminati da sostanze pericolose	Solido non polverulent o	660 kg	ст	1	Cassone	D15

15.02.02*	Assorbenti, materiali filtranti (inclusi filtri dell'olio non specificati altrimenti), stracci e indumenti protettivi contaminati da sostanze pericolose	Solido non polverulent o	300 kg	TAR	1	Cassone	D15
15.02.03	Assorbenti, materiali filtranti, stracci e indumenti protettivi, diversi da quelli di cui alla voce 15.02.02	Solido non polverulent o	1.260 kg	ст	1	Cassone	D1
15.02.03	Assorbenti, materiali filtranti, stracci e indumenti protettivi, diversi da quelli di cui alla voce 15.02.02	Solido non polverulent o	33.100 kg	ст	1	Container	D15
16.02.13*	Apparecchiature fuori uso, contenenti componenti pericolosi diversi da quelli di cui alle voci 16.02.09 e 16.02.12	Solido non polverulent o	200	СТ	1	Cassone	R13
16.02.14	Apparecchiature fuori uso, diversi da quelli di cui alle voci 16.02.09 e 16.02.13	Solido non polverulent o	81.980 kg	ст	1	Cassone	R13

16.03.03*	Rifiuti inorganici, contenenti sostanze pericolose	Solido non polverulent o	1.940 kg	ст	1	Fusti	D15
16.03.06	Rifiuti organici, diversi di quelli di cui alla voce 16.03.05	Liquido	60 kg	ст	1	Fusti	D15
16.06.01*	Batterie al Piombo	Solido non polverulent o	11.700 kg	СТ	1	Sfuso	R13
17.04.05	Ferro e acciaio	Solido non polverulent o	345.880 kg	СТ	1	Sfuso	R13
17.04.05	Ferro e acciaio	Solido non polverulent o	650 kg	TAR	1	Sfuso	R13
17.04.07	Metalli misti	Solido non polverulent o	4.560 kg	СТ	1	Sfuso	R13
17.05.04	Terra e rocce, diverse da quelle di cui alla voce 17.05.03	Solido polverulent o	13.660 kg	СТ	1	Big-bag	D15
20.01.21*	Tubi fluorescenti ed altri rifiuti contenenti mercurio	Solido non polverulent o	180 kg	СТ	1	Sfuso	D15

B.11.2 Produzione di rifiuti (alla capacità produttiva)

Codice CER	Descrizione	Stato fisico	Quantità annua Fase di			Stoccaggio	
304.00 02.1	2 00011210110	Ctato noice	prodotta	provenienza	N° area	Modalità	Destinazione
06.05.03	Fanghi prodotti dal trattamento in loco degli effluenti, diversi da quelli di cui alla voce 06.05.02	Solido non polverulent o	5.502.900 kg	TAR		Conteneir	D1

Non è possibile fare delle previsioni sulla produzione degli altri codici CER.

B.12 Aree di stoccaggio di rifiuti

Il complesso intende avvalersi delle disposizioni sul deposito temporaneo previste dall'art. 6 del D.Lgs. 22/97? no **x** si

Indicare la **capacità di stoccaggio** complessiva (m³):

-	rifiuti pericolosi destinati allo smaltimento	<u>34</u>
-	rifiuti non pericolosi destinati allo smaltimento	<u>50</u>
-	rifiuti pericolosi destinati al recupero	<u>6</u>
-	rifiuti non pericolosi destinati al recupero	<u>310</u>
-	rifiuti pericolosi e non pericolosi destinati al recupero interno	0

N° area	Identificazione area	Capacità di stoccaggio	Superficie	Caratteristiche	Tipologia rifiuti stoccati
			Superficie 1.000 m ²	2 tettoie pavimentazione impermeabilizzata	\$toccati CER: 20.01.02 16.06.04 16.06.02* 16.06.01* 16.02.13* 16.02.14 20.01.01* 15.02.02* 13.01.10* 13.03.07* 08.01.11* 12.01.09* 13.08.02* 15.01.03 17.04.11
					17.04.02 17.04.05 15.01.10*
					15.02.03 Assimilabili RSAU

B.13 Aree di stoccaggio di materie prime, prodotti ed intermedi

N°	Identificazione	Capacità di	0	Caratteristiche			
area	area	stoccaggio	Superficie	Modalità	Capacità cad m³	Materiale stoccato	
				5 Serbatoi acciaio ebanitato	57	acqua demineralizz ata	
				2 Serbatoi vetroresina	37	acqua demineralizz ata	
				1 Serbatoio vetroresina	3	Ipoclorito di Sodio	
Centrali Termoelettricl	Centrali Termoelettriche			2 Serbatoi vetroresina	3	Disperdente torri evaporative Nalco 8504	
				3 Serbatoi acciaio inox	1.2	Alcalinizzan e/deossigen nte circuito caldaie Nalco 4224 Nalco 72310	
				3 Serbatoi acciaio inox	1.2	Disperdente circuito caldaie Nalco 72215	
	Impianto Demi			1 Serbatoio acciaio inox	1.2	Alcalinizzan e/deossigen nte circuito acqua surriscaldata Nalco BT-28	
				2 Serbatoi vetro resina	15	Acido cloridrico	
				2 Serbatoi acciaio	15	Idrossido di Sodio	
	Aria Compresso			1 Serbatoio plastica	1	Ipoclorito di Sodio torre evaporativa	
Aria Compressa Carrozzeria			1 Serbatoio plastica	1	Antincrostar e torre evaporativa Performax 3400		

Aria Compressa			1 Serbatoio plastica	1	Ipoclorito di Sodio torre evaporativa
Aria Compressa Presse			1 Serbatoio plastica	1	Antincrostant e torre evaporativa Performax 3400
			2 Serbatoi vetroresina	25	Cloruro ferrico
			2 Serbatoi vetro resina	25	Ipoclorito di Sodio
TAR			1 Serbatoio acciaio inox	10	Ossigeno liquido
			1 Silos	45	Calce idrata
			1 Silos	45	Bentonite
			Modalità	Capacità cad kg	Materiale stoccato
			Fusti	180	TRA 25
			Fusti Fusti	180	TRA 25 TURB 32
			Fusti	174	TURB 32 Renolin DTA
Deposito oli	8.000 kg	25 m²	Fusti Fusti	174	TURB 32 Renolin DTA 46
Deposito oli	8.000 kg	25 m²	Fusti Fusti	174 150	TURB 32 Renolin DTA 46 HTF 32 Renolin HTF
Deposito oli	8.000 kg	25 m²	Fusti Fustini Fustini	174 150 17 18	TURB 32 Renolin DTA 46 HTF 32 Renolin HTF 220 Renolin HTF
Deposito oli	8.000 kg	25 m²	Fusti Fustini Fustini Fustini	174 150 17 18 18	TURB 32 Renolin DTA 46 HTF 32 Renolin HTF 220 Renolin HTF 320

B.14 Rumore					
■ Limiti di emis		sificazione acus		ona esclusivamente in interessata dall'impianto 70 dB (A) (giorn	
Sorgenti di rumore	Localizzazione	Pressione sonora massima (dB _A) ad 1 m dalla sorgente giorno notte		Sistemi di contenimento nella sorgente	Capacità di abbattimento (dB _A)

Nota:

La tabella non è stata compilata in quanto gli impianti della C.T. con maggior rilevanza acustica sono di grandi dimensioni, sono posizionati al centro di un vasto comprensorio industriale e distano almeno 500 metri dai ricettori sensibili più prossimi; le emissioni sonore degli impianti sono inoltre schermate dalla presenza di numerosi edifici industriali del comprensorio, a loro volta origine di emissioni sonore.

Si è ritenuto pertanto non significativo il dettaglio richiesto dalla tabella suddetta e si rimanda a quanto riportato nell'allegato D8.

B.15 Odori									
Sorgenti note di odori							□ SI ⊠ NO		
Il Segnalazioni di fastidi da odori nell'area circostante l'impianto						□ SI ⊠ NO			
Descrizione delle sorgenti									
Sorgente	Localizzazione	Tipologia	Persistenza	Intensità		della zona di ettibilità	Sistemi di contenimento		

B.16 Altre tipologie di inquinamento

Amianto

Nell'impianto IPPC 1.1 sono presenti materiali contenenti amianto a livello di talune coibentazioni in CMP, negli interruttori di alcune cabine elettriche e nella coibentazione delle reti di vettoriamento dei fluidi surriscaldati.

I manufatti contenenti amianto posti a coibentazione delle tubazioni e delle caldaie sono in condizioni di incapsulamento e confinamento; tutti i manufatti sono provvisti di etichettatura ed evidenziati da specifica cartellonistica indicante l'esistenza di amianto.

La presenza di amianto è tenuta sotto controllo; periodicamente vengono infatti effettuati monitoraggi per valutare la dispersione delle fibre di amianto ai sensi del Dlgs 277/91 inoltre è stato elaborato un Piano Operativo per riparazioni in emergenza, presentato all'ASL, che prevede la rimozione e l'incapsulamento dei materiali contenenti amianto a seconda del livello di ubicazione

PCB/PCT

La Centrale non possiede trasformatori o altre apparecchiature contenenti PCB: in conformità con il DLgs. 22/05/99 n° 209, tutti gli apparecchi sono stati decontaminati fino ad ottenere un valore < 50 ppm di PCB/PCT.

Elettromagnetismo

Dai rilievi delle componenti di campo elettromagnetico disperso a frequenza industriale (50 Hz) effettuati presso SE, CAP, CMP, CICO, Cabina Elettrica C14F e Cabina Elettrica 54, i valori misurati risultano in tutti i casi inferiori ai valori di azione (e conseguentemente anche a quelli di esposizione) della Direttiva 2004/40/CE, relativa alle prescrizioni minime di sicurezza dei lavoratori.

B.17 Linee di impatto ambientale	
ARIA	
Contributi potenziali all'inquinamento atmosferico locale di macro-inquinanti emessi da sorgenti puntuali	X SI
Contributi potenziali all'inquinamento atmosferico locale da micro-inquinanti emessi da sorgenti puntuali	□ SI X NO
Contributi potenziali ad inquinamenti atmosferici transfrontalieri	□ SI X NO
Rischi di inquinamento atmosferico da sorgenti diffuse	□ SI X NO
Rischio di produzione di cattivi odori	□ SI X NO
Rischio di produzione di aerosol potenzialmente pericolosi	□ SI X NO
Rischi di incidenti con fuoriuscita di nubi tossiche	□ SI X NO
CLIMA	
Potenziali modifiche indesiderate al microclima locale	□ SI X NO
Rischi legati all'emissione di vapor acqueo	□ SI X NO
Potenziali contributi all'emissione di gas-serra	X SI
ACQUE SUPERFICIALI	J1
Consumi di risorse idriche	X SI

Deviazioni permanenti di corsi d'acqua ed impatti conseguenti		SI
· · · · · ·	Х	NO
Rischi di interferenze negative con l'esistente sistema di distribuzione delle		SI
acque	X	NO
Rischio di inquinamento di acque superficiali da scarichi diretti	X	SI
		NO
Rischio di inquinamento di corpi idrici superficiali per dilavamento meteorico di superfici inquinate		SI
	X	NO
Rischi di inquinamenti acuti di acque superficiali da scarichi occasionali	X	SI NO
Rischi di inquinamento di corpi idrici a causa di sversamenti incidentali di sostanze pericolose da automezzi		SI
·	X	NO
ACQUE SOTTERRANEE		
Riduzione della disponibilità di risorse idriche sotterranee	X	SI
		NO
Consumi di risorse idriche sotterranee	X	SI
		NO
Interferenze dei flussi idrici sotterranei (prime falde) da parte di opere sotterranee		SI
otterrance	X	NO
Rischio di inquinamento delle acque di falda da percolazione di sostanze pericolose conseguente ad accumuli temporanei di materiali di processo o a		SI
deposito di rifiuti	X	NO
Rischio di inquinamento delle acque di falda da percolazione di sostanze pericolose attraverso la movimentazione di suoli contaminati		SI
periodiose attraverso la movimentazione di saon contaminati	X	NO
SUOLO, SOTTOSUOLO, ASSETTO IDRO GEOMORFOLOGICO		
Potenziale incremento di rischi idrogeologici conseguenti all'alterazione (diretta o indiretta) dell'assetto idraulico di corsi d'acqua e/o di aree di		SI
pertinenza fluviale	X	NO
Potenziale erosione indiretta di litorali in seguito alle riduzioni del trasporto solido di corsi d'acqua		SI
Solido di colsi di acqua	V	NO

Consumi di risorse del sottosuolo (materiali di cava, minerali)	□ SI
	X NO
Potenziali alterazioni dell'assetto esistente dei suoli	□ SI X NO
Induzione (o rischi di induzione) di subsidenza	□ SI X NO
Rischio di Inquinamento di suoli da parte di depositi di materiali con sostanze pericolose	X SI
'	□ NO
RUMORE	
Potenziali impatti diretti da rumore su ricettori sensibili in fase di esercizio	□ SI
	X NO
Potenziali impatti da rumore su ricettori sensibili in fase di esercizio da traffico indotto	□ SI
transco macato	X NO
VIBRAZIONI	
Possibili danni a edifici e/o infrastrutture derivanti da vibrazioni in fase di esercizio	□ SI
656161216	X NO
Possibili danni a edifici e/o infrastrutture derivanti da vibrazioni in fase di	□ SI
esercizio prodotte dal traffico indotto	X NO
RADIAZIONI NON IONIZZANTI	
Introduzione sul territorio di sorgenti di radiazioni elettromagnetiche, con potenziali rischi conseguenti	□ SI
	X NO
Rischio di modifica dell'attuale distribuzione delle sorgenti di onde elettromagnetiche, con potenziali rischi conseguenti	□ SI
-	X NO
Potenziale produzione di luce notturna in ambienti sensibili	□ SI
	X NO