

Roma, Febbraio 2010

Allegato 4

Nota Integrativa – Allegato D.15 "Confronto con le BAT" (rif. Nota prot. DSA/2009/33503 del 11 Dicembre 2009)

Richiesta DSA/2009/12643 Allegato D.15 "Confronto con le BAT"

In riferimento alla pagina 7 si chiede un documento riassuntivo recante l'esito della campagna di monitoraggio delle emissioni fuggitive del 2006 e se sono state svolte raccolta dati negli anni successivi.

00000000000

1. CAMPAGNA DI MISURA DELLE EMISSIONI FUGGITIVE DI VOC

Nel Dicembre 2006 la Raffineria ha eseguito una campagna di monitoraggio delle emissioni fuggitive di VOC relative ai propri impianti di processo. In particolare tale campagna è stata eseguita sulle seguenti unità:

- Unifining
- Plaforming
- HDS
- LPG
- Visbreaking
- Vacuum
- DEA/SRU
- Preflash
- Topping
- TIP
- Bensat
- Hot Oil

In totale sono state identificate 100 perdite attraverso entrambi i 2 strumenti utilizzati, 85 attraverso la "camera" e 96 con l'aiuto del FID (4 perdite sono state individuate con la sola camera poichè risultavano inaccessibili con il FID e 15 perdite sono state individuate con il solo FID perché non potevano essere valutate con la camera). Di seguito si riporta il dettaglio per singola unità di processo.

- 55 perdite su Bensat e TIP
- 11 perdite sull'Unità LPG
- 3 perdite sull'Unità Platforming
- 11 perdite sull' Unità Topping
- 16 perdite sull'Unità Unifinng
- 1 perdita sull' Unità Vacuum
- 2 perdite sull' Unità Visbreaking
- 1 perdita sull' Unità HDS

Il metodo ottico, utilizzato durante tale studio, è di tipo qualitativo; tuttavia, i recenti sviluppi del Gruppo di Ricerca "SMART LDAR" dell'American Petroleum Institute (API) pemettono di disporre di fattori di emissione associati all'utilizzo degli strumenti ottici.

E' stato dunque effettuato un tentativo di quantificazione a titolo indicativo e sperimentale. E' stato inoltre realizzato un confronto tra i risultati di questo nuovo metodo e il metodo di quantificazione dell'EPA che utilizza i fattori di emissione stratificati.

Le emissioni provenienti dagli elementi perdenti individuati attraverso la camera e il FID, escludendo le perdite individuate solo attraverso la camera, (96 perdite totali) sono state pertanto quantificate attraverso i 3 metodi seguenti:

- Il metodo che utilizza i nuovi fattori di emissione "perdenti/non perdenti" (leak/no leak)
- Il metodo che utilizza i fattori stratificati dell'EPA
- Il metodo che utilizza le equazioni di correlazione della raffinazione dell'EPA US.

Relativamente alle 96 perdite, sono state stimate 94 860 kg/anno di COV mediante curve di correlazione della raffinazione, di cui 39 878 kg/anno con i fattori di emissione "perdenti/non perdenti", e 59 742 kg/anno con i fattori di emissione stratificati.

Per maggiori dettagli in merito alle attività precedentemente descritte si rimanda allo studio completo riportato come Allegato I al presente documento.

E' importante sottolineare che le emissioni di COV stimate mediante tale campagna di monitoraggio sono risultate inferiori rispetto a quelle che vengono generalmente calcolate con il metodo EPA.

Allegato I Campagna di monitoraggio delle emissioni diffuse

Campagne de mesures d'émissions fugitives de COV :

TOTAL, Raffinerie de Rome, Italie

Campagne de mesures d'émissions fugitives de COV

TOTAL,

Raffinerie de Rome, Italie

Mars 2007

Projet: GMS 0059366

Pour le compte d'ERM France

Approved by: Gauthiof BELHOMME

Signed: ___

Position: Associé, Directeur Grands Comptes

Date:

29 Mars 2007

Ce rapport a été préparé par ERM France avec toute la compétence, le soin et la diligence raisonnables selon les termes du Contrat avec le client, qui incorpore les Conditions Générales de Fourniture de Services et prend en compte les ressources allouées à ce travail par accord avec le Client.

Nous déclinons toute responsabilité envers le Client et tout tiers pour tout ce qui ne fait pas partie du domaine ci-dessus.

Ce rapport est confidentiel et destiné au Client aussi nous n'acceptons aucune responsabilité de quelque nature que ce soit envers des tiers auxquels ce rapport aurait été communiqué en tout ou en partie. Ces tiers utiliseraient ce rapport à leurs propres risques.

RESUME

Le but de la présente étude est de détecter les émissions fugitives de Composés Organiques Volatils (COV) grâce à une caméra passive infrarouge (IR) et d'un détecteur en mode FID. La campagne de mesures a été réalisée sur le site de la Raffinerie de Rome les 18 et 19 Décembre 2006.

ECS était chargé de la mesure des concentrations des fuites grâce à un analyseur de COV (TVA 1000 de FOXBORO, en mode FID) qui mesurait la concentration de fuite à l'interface de l'élément fuyard.

LSI, supervisé par ERM, était chargé de la détection des fuites au moyen d'une caméra GasFindIRTM, système imageur spectral IR permettant de visualiser les propriétés d'absorption et d'émission des gaz/vapeurs et donnant à l'usager la possibilité de discerner le gaz de son environnement.

La présente étude s'est focalisée sur les émissions fugitives d'unités sélectionnées en fonction du contenu des fluides qui y circulent et donc de leur capacité à émettre des COV.

Au total, 100 fuites ont été repérées par les deux instruments, dont 85 par la caméra et 96 à l'aide du FID (4 fuites ont été détectées par la caméra alors qu'elles étaient inaccessibles au FID et 15 fuites n'ont pu être détectées par la caméra alors qu'elles l'ont été par le FID): 55 fuites sur les Unités Bensat et TIP, 11 fuites sur l'Unité LPG, 3 fuites sur l'Unité Platforming, 11 fuites sur l'Unité Topping, 16 fuites sur l'Unité Unifining, 1 fuite sur l'Unité Vacuum, 2 fuites sur l'Unité Visbreaking, 1 fuite sur l'Unité HDS.

14 fuites ont été identifiées sur des fins de ligne (bouchon, évent, purge), 1 fuite sur une pompe, 84 sur des vannes, et 1 sur une bride.

Durant la campagne de mesures, le technicien utilisant le FID a détecté des fuites qui ne furent pas identifiées par la caméra: 10 car la valeur de l'émission était en dessous du seuil de détection de la caméra, et 5 fuites par manque de luminosité, ce qui montre que des conditions de luminosité suffisantes sont nécessaires pour que la caméra soit efficace et puisse détecter les fuites.

Par ailleurs, la caméra a recensé 4 fuites, qui n'ont pas été localisées par le FID de l'équipe ECS car étant trop en hauteur. Un des points forts de la caméra est donc de détecter des fuites dans des endroits qui ne pourraient pas être atteints avec un FID. Cependant, afin d'identifier efficacement les fuites et de guider de manière plus efficace les mesures, le rôle d'une troisième personne encadrant les techniciens sur site est important pour s'assurer que toutes les zones du procédé ont bien été visionnées par la caméra.

La méthode optique utilisée durant cette étude est **qualitative** : toutefois, les développements récents du Groupe de Recherche « smart LDAR » de l'American Petroleum Institue (API) permettent de disposer de facteurs

1

d'émission associés à l'utilisation d'outils optiques. Un essai de quantification est donc effectué dans la présente étude à titre indicatif et expérimental. Une comparaison des résultats de cette nouvelle méthode avec la méthode de quantification de l'EPA utilisant les facteurs d'émission stratifiés ainsi que la méthode utilisant les équations de corrélation raffinage a aussi été réalisée.

Ainsi, les émissions provenant des éléments fuyards identifiées par la caméra et le FID, excluant les fuites détectés par la caméra seule (donc 96 fuites au total) ont été quantifiées au moyen de trois méthodes:

- La méthode utilisant les nouveaux facteurs d'émission « fuite/non fuite » (Leak/no leak).
- La méthode utilisant les facteurs stratifiés de l'EPA.
- La méthode utilisant les équations de corrélation raffinage de l'US EPA.

Un bilan des émissions totales de la raffinerie a ainsi été établi pour tous les composés pour chaque unité.

Pour ces 96 fuites, les émissions de COVT sont estimées à **94 860 kg/an** avec les courbes de corrélation raffinage, **39 878 kg/an** avec les facteurs d'émission « fuite/non fuite », et **59 742 kg/an** avec les facteurs d'émission stratifiés.

Les valeurs trouvées par quantification sont données ici à titre **indicatif et expérimental.** Des études plus poussées devraient permettre d'affiner l'utilisation des facteurs d'émission et de trouver une quantification encore plus juste des émissions fugitives de COVT d'une raffinerie.

TABLE DES MATIERES

RESUME

1	INTRODUCTION	6
1.1	CONTEXTE DE L'ETUDE	6
1.2	STRUCTURE DU RAPPORT	7
2	PRINCIPE DU SMART LDAR	8
3	PRINCIPE DE LA CAMERA PASSIVE INFRAROUGE	10
3.1	DEFINITIONS PRELIMINAIRES	10
3.2	PRINCIPE DE LA CAMERA PASSIVE INFRAROUGE	11
3.3	LA CAMERA FLIR GASFINDIR	12
4	DETECTION DES FUITES DANS LES UNITES SELECTIONNEES	14
4.1	DEROULEMENT DE L'ETUDE	14
4.2	REPERAGE DES FUITES AVEC LA CAMERA IR ET LE DETECTEUR FID	14
4.3	REMARQUES SUR LA DETECTION DES FUITES DURANT L'ETUDE	19
5	METHODE UTILISEE POUR DETECTER LES FUITES SUR LES UNITES	20
5.1	PROTOCOLE D'UTILISATION DE LA CAMERA PASSIVE GASFINDIR.	20
5.2	TYPES DE LENTILLES ET DISTANCE D'OBSERVATION	21
6	QUANTIFICATION DES EMISSIONS FUGITIVES DE LA RAFFINERIE	22
6.1	QUANTIFICATION A L'AIDE DES NOUVEAUX FACTEURS D'EMISSION LEAK/NO LI	EAK22
6.2	QUANTIFICATION A L'AIDE DES FACTEURS D'EMISSION STRATIFIES	<i>30</i>
6.3	QUANTIFICATION A L'AIDE DES EQUATIONS DE CORRELATION RAFFINAGE	33
6.4	BILAN DES ESTIMATIONS DES EMISSIONS DE COVT.	43
7	CONCLUSION	46
8	REFERENCES	48
	ANNEXES	

Liste des tableaux :

Tableau 1 : Caractéristiques de la caméra.

Tableau 2 : Bilan des fuites repérées le 18 Décembre sur les Unités Unifining, Platforming, HDS, LPG, Visbreaking.

Tableau 3 : Bilan des fuites repérées le 19 Décembre sur les Unités Topping, Bensat et TIP

Tableau 4 : Fuites recensées par le FID et non détectées par la caméra.

Tableau 5 : Fuites recensées sur les différentes unités et somme des fuites par élément fuyard et par unité.

Tableau 6: Niveau de sensibilité de détection de la caméra FLIR

Tableau 7 : Données analytiques fournies par ECS

Tableau 8 : Débit massique de définition de fuite: E_{dic} (g/h)

Tableau 9: Nouveaux facteurs d'émission fuite/non fuite

Tableau 10 : Estimation des émissions des composés identifiés et des COVT avec les facteurs d'émission fuite/non fuite

Tableau 11: Facteurs d'émission stratifiés de l'USEPA

Tableau 12 : Estimation des émissions des composés identifiés et des COVT avec les facteurs d'émission stratifiés de l'USEPA.

Tableau 13 : Flux d'émissions de la méthode par corrélation - Raffinerie

Tableau 14 : Estimation des émissions des COVT avec les courbes de corrélation « Petroleum Industries »

Tableau 15 : Débit des composés identifiés par FID sur les Unités Bensat et TIP

Tableau 16: Débit des composés identifiés par FID sur l'Unité LPG

Tableau 17: Débit des composés identifiés par FID sur l'Unité Platforming

Tableau 18: Débit des composés identifiés par FID sur l'Unité Topping

Tableau 19 : Débit des composés identifiés par FID sur l'Unité Unifining

Tableau 20 : Débit des composés identifiés par FID sur l'Unité Vacuum

Tableau 21 : Débit des composés identifiés par FID sur l'Unité Visbreaking

Tableau 23 : Bilan des émissions de COVT calculées avec les 3 méthodes de quantification pour les 96 fuites mesurées avec le FID

Tableau 24 : Comparaison des facteurs utilisés pour les composés saturés dans les équations de corrélation avec les facteurs stratifiés pour une concentration supérieure à $10\,000~\rm ppm$

Tableau 25 : Comparaison des facteurs d'émission « fuite/non fuite » et stratifiés

Mars 2007

1 INTRODUCTION

1.1 CONTEXTE DE L'ETUDE

Le but de la présente étude est de détecter les émissions fugitives de Composés Organiques Volatils (COV) grâce à l'utilisation d'une caméra passive infrarouge (IR) et de comparer à celles détectées grâce à un appareil FID. La campagne de mesures des émissions fugitives a été réalisée sur le site de la Raffinerie de Rome les 18 et 19 Décembre 2006.

ECS était chargé de la mesure des concentrations des fuites grâce à un analyseur de COV (TVA 1000 de FOXBORO, en mode FID), qui quantifiait en flux massique les émissions de COV détectées.

LSI, supervisé par ERM, était chargé de la détection des fuites au moyen d'une caméra GasFindIRTM, système imageur spectral IR ayant pour but de visualiser les propriétés d'absorption et d'émission des gaz/vapeurs et permettant à l'usager de discerner le gaz de son environnement.

La présente étude s'est focalisée sur les émissions fugitives des unités suivantes :

- Unifining
- Platforming
- HDS
- LPG
- Visbreaking
- Vacuum
- DEA/SRU
- Preflash
- Topping
- TIP
- Bensat
- Hot Oil

Ces unités avaient été préalablement choisies par TOTAL afin de réaliser une campagne de mesures efficace sur les unités associées essentiellement aux produits légers, donc plus enclins à émettre des COV. Une liste des zones à étudier ainsi que la caractérisation de leur flux avait ainsi été préalablement fournie aux Sociétés ERM et ECS afin d'optimiser la campagne de mesures.

Deux équipes étaient présentes sur le site de la Raffinerie de Rome:

- L'équipe ECS représentée par M. Jonathan Martinez, chargée de détecter les émissions fugitives de COV au moyen d'un détecteur FID ; et
- L'équipe ERM/LSI, chargée de la détection des émissions fugitives au moyen d'une caméra IR. Mrs Stephen Tiemann et Earl Birlbrey de la Société Leak Surveys Inc. (LSI) étaient les opérateurs de la caméra. Melle Virginie Vitiello de la Société ERM était chargée de coordonner le projet.

Ils étaient accompagnés par M. Roberto Titta, responsable du Service QSE de la raffinerie, de M. Vincenzo Micheli, ingénieur au Service QSE, et de M^{me} Marie-France Bénassy, responsable du Pôle Air du Centre de Recherche du CReS.

1.2 STRUCTURE DU RAPPORT

Ce rapport comprend les chapitres suivants, qui décrivent :

Chapitre 2 le principe du smart LDAR

Chapitre 3 le principe de la caméra Infrarouge

Chapitre 4 l'évolution de l'étude sur le terrain ainsi que les fuites identifiées

Chapitre 5 la méthode utilisée pour détecter les fuites fugitives sur les unités

Chapitre 6 la quantification des fuites au moyen des facteurs d'émission et des courbes de corrélation raffinage

Les annexes contiennent :

Annexe A : Liste des éléments fuyards repérés par le FID et la caméra

Annexe B : Liste des éléments fuyards repérés par le FID

Annexe C: Caractérisation des fluides identifiés

Annexe D : Détail des calculs de quantification des fuites

Annexe E: Conditions météorologiques les 18 et 19 Décembre 2006

Annexe F: Vidéo des fuites repérées

2 PRINCIPE DU SMART LDAR

Sur un site chimique ou pétrochimique, les joints d'étanchéité des milliers de vannes, robinets, pompes, brides et autres connexions sont soumis à des pressions élevées et à une forte corrosion. Ces points de défaillance potentielle sont nombreux, par exemple 50 000 sur un site pétrochimique ou une raffinerie. Le pourcentage des "fuyards" oscille entre 0,5 et 3%. Chez les pétroliers, cela représente une perte annuelle de 10 à 500 tonnes de produit.

Une campagne de mesures réalisée au moyen de la Méthode 21 de l'USEPA et d'un appareil de mesure FID dans une raffinerie peut coûter jusqu'à \$1M par an. Du fait de la complexité de la méthode et des interprétations diverses pour l'appliquer, des désaccords existent continuellement au sujet de la bonne utilisation de cette méthode et de la technologie la mieux adaptée pour la caractériser.

Le principe du smart LDAR repose sur le fait qu'il existe des options moins chères et plus efficaces pour contrôler les émissions fugitives d'un site pétrochimique ou d'une raffinerie. Depuis presque 10 ans, l'American Petroleum Institute (API) a pris l'initiative d'identifier de telles options. L'étape initiale fut de comprendre la provenance des fuites des raffineries. Des analyses sur des données provenant de 7 raffineries sur une durée de 5 ans ont montré que plus de 90% des émissions contrôlables proviennent d'un petit nombre d'éléments : 0,13% seulement.

La Figure 1 ci-dessous montre la distribution du nombre d'éléments et les émissions totales en fonction des valeurs détectées par la Méthode 21.

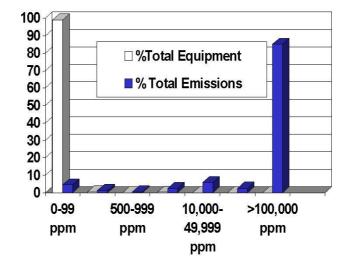


Figure 1: Nombre d'éléments et émissions totales en fonction des valeurs détectées

Presque tous les éléments fuyards correspondaient à des émissions comprises entre 0 et 99 ppm, et donc où la contribution massique des émissions est négligeable.^{1,2} La majorité des émissions provient cependant d'un petit

-

MARS 2007

⁽¹⁾ Hal Taback Company *Analysis of Refinery Screening Data*, American Petroleum Institute, Publication Number 310, November 1997.

nombre d'éléments caractérisés par des concentrations supérieures à 100 000 ppm. Plus de 92% des émissions réductibles proviennent donc de seulement 0,13% des éléments potentiellement fuyards. L'apparition de ces grosses fuites est très aléatoire et peu d'entre elles proviennent de fuites répétées.

L'imagerie optique permet de voir en temps réel une fuite (en noir ou blanc) avec un débit massique en moyenne supérieur à 10 000 ppm, à l'aide d'un écran vidéo. Plusieurs approches de ces imageries optiques ont été développées et quelques-unes d'entres elles sont maintenant commercialement disponibles.

La caméra IR utilisée durant cette étude est une caméra FLIR GasFindIR. Plus de détails sur la technologie IR sont fournis dans le chapitre suivant.

⁽²⁾ Taback, H. J.; Siegell, J. H.; Ritter, K. *Los Angeles Refinery Fugitive Emissions, Have They Changed After Six Years of LDAR?*, AWMA/EPA Specialty Conference, The Emissions Inventory: Planning for the Future, Research Triangle Park, NC, October 1997.

3 PRINCIPE DE LA CAMERA PASSIVE INFRAROUGE

3.1 DEFINITIONS PRELIMINAIRES

<u>Infrarouge:</u>

Le rayonnement infrarouge (IR) est un rayonnement électromagnétique d'une longueur d'onde supérieure à celle de la lumière visible mais plus courte que celle des micro-ondes. Le nom signifie « en-deçà du rouge », le rouge étant la couleur de longueur d'onde la plus longue de la lumière visible, comprise entre 700 nm et 1 mm. Les IR sont souvent subdivisés en IR proches (0,7-5 μ m), IR moyens (5-30 μ m), et IR lointains (30-1 000 μ m).

Les IR sont souvent associés à la chaleur car, à température normale, les objets émettent spontanément des radiations dans le domaine des IR, la relation exacte étant donnée par la loi du rayonnement du corps noir ; par ailleurs, le rayonnement IR met en vibration les atomes du corps qui les absorbe et donc élève sa température (transfert de chaleur par rayonnement).

Emission : Phénomène de libération d'énergie rayonnante.

<u>Absorption</u>: Transformation d'énergie rayonnante en une autre forme d'énergie par interaction avec la matière.

<u>Réflexion</u>: Phénomène par lequel une onde tombant sur la surface de séparation de deux milieux de propagation ayant des propriétés différentes, retourne dans le milieu d'où elle provient.

<u>Diffusion</u>: Changement de la répartition spatiale d'un faisceau de rayonnement qui est dévié dans de multiples directions par une surface ou par un milieu, sans changement de fréquence des rayonnements monochromatiques qui le composent.

<u>Scène</u>: Surface couverte lors de l'enregistrement d'une image et dont le gabarit résulte des conditions d'observation et des propriétés du capteur utilisé.

<u>Emissivité</u>: Rapport de l'existence énergétique thermique du corps à celle du corps noir de même température.

<u>Corps Noir</u>: En physique, le corps noir est un modèle utilisé pour représenter le rayonnement électromagnétique (IR, lumière) d'un objet en fonction de sa température. Il est défini comme étant un objet absorbant totalement la lumière à toutes les longueurs d'ondes.

0.2

3.2.1 L'imagerie passive

Les passifs IR détectent un contraste thermique dans les champs analysés. La détection avec une caméra passive est basée sur une relation complexe entre émission, absorption, réflexion, et diffusion. La caméra passive utilisée dans cette étude utilise la technologie de détection de photons qui est sensible à la radiation IR et forme une image de la scène de sorte que l'intensité est directement liée au nombre de photons qui atteignent le détecteur. Les photons émis, réfléchis et diffusés dans la scène subissent un phénomène complexe de transfert radiatif. Les COVs en phase vapeur ont des propriétés spectrales uniques d'émission et d'absorption. En mesurant ces propriétés, le type de gaz peut être identifié de façon exclusive. La caméra passive accorde la réponse spectrale de l'instrument à l'unique région spectrale des COVs. En utilisant cette capacité de réglage, l'instrument mesure les propriétés du spectre d'émission, d'absorption, de réflexion, et de diffusion des gaz comme moyen principal de détection du signal.

Si l'éventail de fréquence optique de la caméra est correctement choisi, la caméra peut réaliser une image du nuage gazeux. L'intensité de l'image dépend de plusieurs facteurs: la longueur du cheminement de la concentration, la température du gaz, la température du gaz de la surface située derrière le nuage gazeux, l'émissivité de la surface située derrière le nuage gazeux. La visibilité du gaz dépend d'un phénomène complexe qui est dépendant de l'émission spectrale, de l'absorption, de la réflexion, de la diffusion du gaz et de l'arrière-plan, de la concentration du gaz à l'intérieur du champ de vision du spectre du système imageur, et des conditions environnementales.

3.2.2 L'imagerie infrarouge passive

Tandis que les phénomènes derrière l'imagerie passive du gaz sont assez complexes, le principe de base de l'imagerie IR passive du gaz tient au fait que la matière réfléchit la radiation incidente (par exemple la radiation solaire) et de plus, émet des radiations de corps noirs d'IR à température ambiante. Ainsi, la camera IR peut voir dans la nuit à cause des surfaces qui irradient suffisamment d'IR pour réaliser une image d'elles. L'intensité de la radiation dépend principalement de quatre facteurs :

.

⁽³⁾ TCET and Mike Smylie of Environ, "Development of emissions factors and/or correlation equations for Gas Leak Detection, and the Development of an EPA protocol for the use of a Gas Imaging device as an Alternative or supplement to current Leak Detection and Evaluation Methods,".

- 1- La radiation incidente réfléchie de l'arrière-plan,
- 2- L'émission thermique de l'arrière-plan,
- 3- L'émission thermique du gaz, et
- 4- Les composés de l'arrière-plan absorbés par le gaz.

Les températures et émissivités de l'arrière-plan et du gaz établissent un rapport entre les composés thermiques ayant une intensité dans l'IR et la caméra. Lorsque les photons thermiques sont les composés d'intensité dominants et que l'émissivité de l'arrière-plan est proche de celle du gaz, alors le contraste entre le gaz et l'arrière-plan est proportionnel à la différence de température entre le gaz et l'arrière-plan (Delta T). Il se peut alors que Delta T soit égal à zéro et donc que la caméra ne puisse plus détecter le gaz. Plusieurs études ont été effectuées pour montrer l'importance de la différence de température entre un gaz et l'arrière-plan, lorsque le but est la détection du gaz dans la zone du spectre IR. Il est clair que lorsque ΔT =0, il n'existe pas de différence radia-métrique et donc pas d'image de fuite de gaz. Cependant, en aucun cas dans l'angle de vue qui couvre l'image du gaz, ce ΔT ne doit être uniforme. Dans l'environnement changeant d'une raffinerie, l'arrière-plan est en mouvement constant ainsi que le gaz. Ainsi, la probabilité d'avoir un ΔT égal à zéro est quasi nulle.

3.3 LA CAMERA FLIR GASFINDIR⁴

La caméra GasFindIRTM est un système imageur spectral IR ayant pour but de visualiser les propriétés d'absorption et d'émission des gaz/vapeurs et de permettre à l'usager de discerner le gaz de son environnement. La caméra utilise un filtre spectral pour transmettre dans une région du spectre IR qui coïncide en longueur d'onde avec des vibrations/rotations de transition d'énergie, des liaisons moléculaires des COV. Ces transitions sont généralement très fortement couplées aux champs via des changements de moment dipolaire dans la molécule et sont fréquentes pour beaucoup de types de gaz et vapeurs.

La sensibilité de détection de la caméra pour une grande variété de gaz et vapeurs est extrêmement petite. Thermiquement, la sensibilité de la caméra est inférieure à 35 mK lorsque le filtre temporel de FLIR est utilisé.

⁽⁴⁾ FLIR systems, "Standoff passive optical leak detection of volatile organic compounds using a cooled InSB Based Infrared Imager" extended abstract # 06-A-131-AWM

<u>Tableau 1 : Caractéristiques de la caméra</u>

Performance de l'image	
Angle de vue	22° avec la lentille de 25 mm
Focus	< 0,2m
Sensitivité thermique	<35 mK @ 30°C
Nombre f ⁵	2,3
Détecteur	
Туре	Réseaux Plan Focal (FPA), InSb, 320x240 pixels
Gamme spectrale	3-5 μm
Temps d'intégration	16 ms, utilisation pouvant être sélectionnée
Puissance	
Voltage	6V
Consommation	< 6 W typiquement
Caractéristiques physiques	
Poids (avec lentille et batterie)	2 kg ou moins
Couleur	noir
Taille	254x132x145 mm
Lentilles	
	25 mm (22°)
Angle de vue	50 mm (11°)
	100 mm (5,5°)
Environnement	1 1500 500
Températures de fonctionnement	de -15°C à +50°C
Températures de stockage	de -40°C à +70°C
Résistance	40g, MIL-STD- 810F
Vibration	7,15g; MIL-STD- 810F
EMC (Compatibilité	EN 50081-2 (Emissions génériques)
électromagnétique)	EN 50082-2 (Immunité Générique)
Humidité	20 à 80% (non condensé) IEC 359
Spécifications de l'image	
Stockage de l'image	enregistrement portable (en sup.)
Sortie image	NTSC/RS-170, S-vidéo
Contrôle de la caméra	RS-232, bouton installé sur la caméra
Fonction connexion	C-vidéo, PAL, NTSC, S-vidéo et série RS-232

⁽⁵⁾ Le nombre f est égal à la longueur focale divisée par le diamètre de l'ouverture

4 DETECTION DES FUITES DANS LES UNITES SELECTIONNEES

4.1 DEROULEMENT DE L'ETUDE

L'étude a été réalisée les 18 et 19 Décembre 2006 sur le site de la Raffinerie de Rome. Les conditions météorologiques étaient plutôt favorables, avec des vents faibles proches de 0 km/h. Toutefois, des vents forts ont été aussi observés lorsque les éléments potentiellement fuyards ont été contrôlés en haut de la plateforme de l'Unité TIP. L'utilisation d'un anémomètre aurait permis de connaître la vitesse du vent localement au moment où une fuite est identifiée par la caméra. Le vent est en effet un paramètre important à prendre en compte dans l'évaluation de la sensibilité de la caméra (cf. Tableau 4). Les conditions météorologiques sont présentées en Annexe E.

Comme la caméra n'est pas antidéflagrante - ADF (elle doit pouvoir s'ouvrir pour recharger les batteries), l'opérateur de la caméra était aussi muni, durant toute la durée de l'étude, d'une balise explosimètre.

4.2 REPERAGE DES FUITES AVEC LA CAMERA IR ET LE DETECTEUR FID

Durant toute la durée de l'étude, les équipes ERM/LSI et ECS ont travaillé sur les mêmes unités au même moment. L'ensemble des fuites repérées représente celles repérées à l'aide du détecteur FID ainsi que celles identifiées avec la caméra IR.

4.2.1 Fuites repérées avec la caméra IR

Le 18 Décembre, 29 fuites ont été découvertes par la caméra IR et sont présentées dans le Tableau 2 :

<u>Tableau 2 : Bilan des fuites repérées le 18 Décembre sur les Unités Unifining, Platorming, HDS, LPG, Visbreaking.</u>

	LPG	Platforming	Unifining	Visbreaking	HDS (fuite détectée par la caméra mais non détectée par FID)	Somme par type d'élément fuyard
Fin de ligne (bouchon, évent,						
purge)	1		1			2
Vanne	10	3	10	2	1	26
Bride			1			1
Somme des fuites	11	3	12	2	1	29

Le 19 Décembre, 56 fuites ont été découvertes par la caméra IR et sont présentées dans le Tableau 3.

<u>Tableau 3 : Bilan des fuites repérées le 19 Décembre sur les Unités Topping,</u> <u>Bensat et TIP</u>

	Bensat	Topping	TIP	Somme par type d'élément fuyard
Fin de ligne (bouchon, évent, purge)	11			11
pompe		1		1
vanne	7	8	29	44
Somme des fuites	18	9	29	56

Ainsi, en seulement deux jours sur site, les techniciens ont recensé avec la caméra IR 85 fuites sur les unités sélectionnées. 85% des fuites provenaient de vannes (22% de ces vannes sont automatiques et 28% manuelles). Les fuites provenant des évents, des bouchons et des purges (fuites type « fin de ligne ») représentent 13 % de la totalité du nombre de fuites.

4.2.2 Fuites repérées avec le FID et non par la caméra

Durant la campagne de mesures, 10 fuites ont été recensées par le FID et correspondaient à des débits de fuite compris entre 0,63 g/h et 2,56 g/h. Comme la limite de détection de la caméra est égale à 3 g/h (cf. § 6 dans ce rapport), ces émissions n'ont pu être visionnées par la caméra.

De plus, 5 fuites sur les Unités Topping et TIP (correspondant à une concentration de 300 000 ppm, soit un débit de 140 g/h), se situaient pour la plupart dans des endroits peu éclairés par la lumière du jour et se trouvant face au vent, et n'ont pu être détectées par la caméra. La composition du fluide de l'Unité Topping étant C6-C8 65%; C9-C12 35%, cette fuite aurait dû être identifiée par la caméra, car sa sensibilité pour un tel fluide est inférieure à 3 g/h (cf. § 6.1.2.1 ci-après). De même pour l'Unité TIP, la caméra aurait dû identifier les 4 fuites étant donné que le fluide correspondant aux éléments fuyards consiste en C3-C4 0,4%; C5 32%; C6-C8 67,5%, et que la sensibilité de la caméra pour ce fluide est aussi inférieure à 3 g/h.

Ces observations montrent que, pour que la caméra soit efficace et puisse détecter les fuites, des conditions de luminosité suffisante doivent être présentes.

Ces fuites sont recensées dans le Tableau 4 ci-après avec la concentration respective de chaque fuite.

Tableau 4 : Fuites recensées par le FID et non détectées par la caméra

Numéro Etiquette	Localisation de l'unité	Fluide	Partie fuyarde	Description de la fuite	Concentration corrigée par le facteur de réponse (calculé par ECS)	Débit (g/h)	Remarque
							inférieure à la limite de détection de
6	Unifining	Fuel Gaz	vanne	vanne 3/4 aval de TV 2303	4 111 ppm	1,14 g/h	la caméra
							inférieure à la limite de détection de
10	Unifining	Essence	vanne	vanne amont de P2213A	4 049 ppm	1,12 g/h	la caméra
							inférieure à la limite de détection de
12	Unifining	Essence	vanne	vanne aval de P2213B	1 850 ppm	0,63 g/h	la caméra
							inférieure à la limite de détection de
14	Unifining	Essence	vanne	vanne aval P2213A	2 540 ppm	0 ,79 g/h	la caméra
							inférieure à la limite de détection de
19	Vacuum	Fuel Gaz	vanne	vanne amont PV2054	3 432 ppm	0,99 g/h	la caméra
							inférieure à la limite de détection de
21	Topping	Fuel Gaz	vanne	vanne aval PV 2711B	3 125 ppm	0,93 g/h	la caméra
	_						inférieure à la limite de détection de
34	Bensat	Essence	vanne	refoulement P 2970B	3 577 ppm	1,03 g/h	la caméra
						0 = 10 //	inférieure à la limite de détection de
37	Bensat	Essence	purge	aspiration pompe P2970A	3 902 ppm	0,742 g/h	la caméra
				Vanne manuelle aspiration P		0.600 //	inférieure à la limite de détection de
42	Bensat	Essence	vanne	2901B	2 113 ppm	0,692 g/h	la caméra
							problème de contraste: la vanne est
46	Bensat	Essence	vanne	petite vanne P 2904B	12 193 ppm	2,56 g/h	située dans l'ombre
				vanne refoulement de la			non vu par la caméra car pas assez
26	Topping	Essence	vanne	pompe P2709B	300 000 ppm	140 g/h	de contraste
							non vu par la caméra car pas assez
58	TIP	Essence	vanne	vanne automatique 2905/4	300 000 ppm	140 g/h	de contraste
							non vu par la caméra car pas assez
66	TIP	Essence	vanne	vanne FT 2925B	300 000 ppm	140 g/h	de contraste
							non vu par la caméra car trop de
68	TIP	Essence	vanne	vanne en haut du ballon 2906	300 000 ppm	140 g/h	vent
							non vu par la caméra car trop de
76	TIP	Essence	vanne	vanne du mano PSV 2904	300 000 ppm	140 g/h	vent en haut de la plateforme

4.2.3 Fuites repérées avec la caméra et non par le FID

La caméra a recensé 4 fuites qui ne furent pas observées par l'équipe ECS :

- Une fuite d'une bride localisée sous le Calorifuge S 2252 dans l'Unité Unifining (cf. première vidéo à t=11 ")
- Une fuite située au niveau de la vanne automatique PC 24076 A, sur l'Unité HDS (cf. vidéo à t=7'15 ")
- Une fuite située au niveau de la vanne d'injection du Bruleur E6 du Four 1 dans l'Unité Topping (cf. vidéo à t= 13'26'')
- Une fuite située au niveau de la purge du FV 29073 dans l'Unité Bensat (cf. vidéo à t= 23'07")

Ces fuites n'ont pu être quantifiées car elles se situaient dans des endroits inaccessibles par l'opérateur utilisant le détecteur FID. Un des points forts de la caméra est donc de pouvoir détecter des fuites dans des endroits qui ne peuvent pas être atteints avec un FID.

4.2.4 Bilan des fuites repérées durant l'étude

Au total, 100 fuites ont été repérées sur les unités sélectionnées; parmi elles, 85 ont été identifiées par la caméra, et 96 à l'aide du FID. Les fuites non identifiées par la caméra sont pour la plupart des fuites qui avaient des concentrations en dessous de son seuil de détection. La caméra a permis d'identifier 4 fuites qui ne pouvaient pas être mesurées par le FID à cause de leur accessibilité difficile.

Le bilan des fuites repérées durant l'étude à l'aide de la caméra et du FID est présenté dans le Tableau 5.

ERM FRANCE 17

<u>Tableau 5</u>: Fuites recensées sur les différentes unités et somme des fuites par élément fuyard et par unité

	Bensat		Т	TP .			To	pping	Uni	fining	Vacuum			
	Fuites détectées par caméra	Fuites non vues par la caméra mais détectées par FID	Fuites détectées par caméra	Fuites non vues par la caméra mais détectées par FID	LPG	Platfor -ming	Fuites détecté es par camér a	Fuites non vues par la caméra mais détectées par FID	Fuites détectée s par caméra	Fuites non vues par caméra mais détectées par FID	Fuite non vues par la caméra mais détectées par FID	Vis- breaki ng	HDS Fuites détectées par la caméra mais non détectées par le FID	Somme par type de fuite
Fin de ligne (bouchon,						-						3		
évent, purge)	11	1			1				1					14
Pompe							1							1
Vanne	7	3	29	4	10	3	8	2	10	4	1	2	1	84
Bride									1					1
Somme des fuites	18	4	29	4	11	3	9	2	12	4	1	2	1	100

Un des points forts de la caméra est donc de pouvoir détecter des émissions dans des endroits qui ne peuvent pas être atteints avec un FID. Cependant, afin d'identifier efficacement les fuites et de guider de manière plus efficace les mesures, le rôle d'une troisième personne encadrant les techniciens sur site est important pour s'assurer que toutes les zones du procédé ont bien été visionnées par la caméra.

Ces paramètres sont en effet très difficilement contrôlables du fait de la masse d'informations et de leur caractère qualitatif. Ils sont pourtant également déterminants sur les résultats du repérage des fuites. Ils dépendent de la compétence technique des opérateurs réalisant ces estimations. Leur niveau de formation sur ces techniques et leur connaissance des procédés industriels sont des facteurs clé à prendre en compte dans l'évaluation des résultats d'une campagne de mesure. Ainsi le nom de l'opérateur de la caméra doit être renseigné pour chaque fuite afin de prendre en compte le niveau de l'opérateur (expérience et connaissance du procédé) dans l'exploitation des résultats de la campagne de mesure.

Etant donné qu'il n'existe pas encore de méthodologie standard quant à l'utilisation d'une caméra pour détecter des fuites, il devient donc très utile de développer un tel standard pour s'assurer une qualité de service. Un logiciel vient d'être développé par LSI et permet d'identifier les unités en les associant à un système de référentiel GPS. Un tel outil peut servir dans le futur pour s'assurer que tous les éléments ont été détectés par l'opérateur de la caméra. Pour plus d'information à propos de ce logiciel, le lecteur peut se référer à la page web suivante :

http://www.leaksurveysinc.com/taglessinfo.html

La liste des éléments repérés est fournie dans l'Annexe A.

La liste des éléments fuyards repérés par le FID est fournie en Annexe B.

Une caractérisation des fluides identifiés est fournie en Annexe C.

5 METHODE UTILISEE POUR DETECTER LES FUITES SUR LES UNITES

5.1 Protocole d'utilisation de la camera passive GasfindIR.

5.1.1 Positionnement de l'opérateur

L'opérateur regarde d'abord à l'œil nu les éléments du procédé pouvant être fuyards. Typiquement, l'opérateur a porté son attention sur :

- Les vannes
- Les brides
- Les scellés de pompes, de compresseurs et d'agitateurs
- Les conduites ouvertes
- Les soupapes de sûreté

5.1.2 Visionnage avec la caméra

Après avoir détecté les éléments potentiellement fuyards, l'opérateur balaie sa caméra sur ces éléments. Une attention particulière durant l'étude a été portée sur la manière dont l'opérateur visionne les fuites avec sa caméra. Les remarques suivantes ont été rapportées :

- L'opérateur ne regarde pas une vue d'ensemble car l'angle de la caméra ne lui permet pas de réaliser une telle manipulation, de plus le niveau de gris de la caméra est changeant lorsqu'il balaye la scène sans lever l'œil de son objectif. Ainsi il ne sait plus ce qu'il regarde et perd ses repères.
- L'opérateur regarde seulement point par point, il peut de ce fait manquer des éléments et donc manquer des fuites.
- A la nuit tombante, le contraste n'est plus suffisant pour assurer une détection optimale des fuites. Seules les fuites apparaissant dans des zones chaudes comme des fours sont visibles de nuit.

Le chef de projet chargé de diriger les opérateurs doit pouvoir repérer les endroits où l'opérateur n'a pas repéré les fuites et bien le guider dans le choix des équipements à visionner. Il doit également s'assurer que chaque élément est visionné sous deux angles de vues différents afin de ne pas manquer de fuites. Enfin, la caméra dispose de plusieurs objectifs qui peuvent et doivent être utilisés en alternance en fonction de l'étendue ou de la distance des zones à observer.

5.2 TYPES DE LENTILLES ET DISTANCE D'OBSERVATION

La lentille utilisée durant la majorité de l'étude pour observer les unités de la raffinerie est une lentille de 25 mm car les distances d'observation sont de 1 à 5 m (moyenne de visée à 1 m). Elle permet un angle de vue de 22x16 degrés avec un nombre f de 2,3 (le nombre f est égal à la longueur focale divisée par le diamètre de l'ouverture).

La lentille utilisée pour observer les soupapes de sécurité en haut des réacteurs est une lentille de 50 mm car les distances moyennes d'observation sont de 10 à 50 m (moyenne de visée à 40 m). Elle permet un angle de vue de 11x8 degrés avec un nombre focal f de 2,3.

QUANTIFICATION DES EMISSIONS FUGITIVES DE LA RAFFINERIE

La méthode optique utilisée durant cette étude est qualitative : toutefois, les développements récents du Groupe de Recherche « smart LDAR » de l'American Petroleum Institue (API) permettent de disposer de facteurs d'émission associés à l'utilisation d'outils optiques. Un essai de quantification est donc effectué dans la présente étude à titre indicatif et expérimental. Une comparaison des résultats de cette nouvelle méthode avec la méthode de quantification de l'EPA utilisant les facteurs d'émission stratifiés ainsi que la méthode utilisant les équations de corrélation raffinage a aussi été réalisée. Dans cette étude, afin de comparer efficacement ces trois méthodes, seules les 96 fuites qui ont pu être mesurées par le détecteur FID sont prises en compte.

6.1 QUANTIFICATION A L'AIDE DES NOUVEAUX FACTEURS D'EMISSION LEAK/NO LEAK

L'utilisation des nouveaux facteurs d'émission fuite/non-fuite (leak/no leak) a été développée récemment (2006) pour estimer les émissions fugitives détectées par une caméra passive IR. Ces facteurs d'émission concernent les vannes, les pompes, les connecteurs et brides pour une gamme d'instruments optiques ayant une définition de fuite entre 3 et 60 g/h. Ils sont destinés à être utilisés à la place du protocole datant de 1995 de l'US EPA qui est basé sur la Méthode 21 (méthode dite de « sniffing ») pour surveiller les fuites (et qui définissait, dans les méthodes de quantification, des facteurs d'émission fuite/non fuite ou des facteurs d'émission stratifiés).

Différentes méthodes pour traiter les données des émissions fugitives d'une raffinerie modèle ont été comparées en utilisant ces nouveaux facteurs d'émission avec les méthodes d'estimation existantes provenant du protocole de l'USEPA de 1995. Les résultats ont démontré, par la simulation Monte Carlo, qu'utiliser ces nouveaux facteurs d'émissions engendre une estimation qui est plus proche de celle qui est obtenue à partir de la détermination directe des émissions totales.6

6.1.1 Détermination du niveau de sensibilité de la caméra en fonction de la vitesse du vent.

Le Tableau 6 recense les niveaux de sensibilité de la caméra pour différents composés en fonction de la vitesse du vent. Durant toute la durée de l'étude, des vents faibles proches de 0 km/h soufflaient sur le site de la Raffinerie de Rome.

A noter toutefois que des vents forts ont été observés lorsque les éléments potentiellement fuyards ont été contrôlés en haut de la plateforme de l'unité TIP. L'utilisation d'un anémomètre aurait permis de connaître la vitesse du

-

⁽⁶⁾ Nouveaux facteurs d'émission publiés dans « Derivation of new emissions factors for quantification of mass emissions when using optical gas imaging for detecting leaks »- Miriam Lev-On, David Epperson, Jeffrey Siegell, Karin Ritter.

vent localement au moment où une fuite est identifiée par la caméra. Comme aucune mesure n'a été réalisée localement, une valeur globale de la vitesse du vent est prise en compte pour le choix des niveaux de sensibilité de la caméra. Les facteurs considérés pour le calcul du débit massique de définition de fuite de la caméra $E_{\rm dic}$ (g/h) sont donc ceux correspondant à un vent de 0 km/h.

Tableau 6 : Niveau de sensibilité de détection de la caméra FLIR7

	Vitesse du	ı vent ⁸	
	0 km/h	3,2 km/h	8 km/h
Sensibilité pour			
différents composés	g/h	g/h	g/h
Benzène	3,5	17,5	38,6
Ethanol	0,7	3,5	14
Ethylbenzène	1,5	7,6	17,5
Heptane	1,8	4,8	8,4
Hexane	1,7	3,5	8,7
Isoprène	8,1	14,3	38,8
Méthanol	3,8	7,3	24,3
Méthyle, éthyle cétone	3,5	17,7	31,8
Méthyle, butyle, iso			
cétone	2,1	4,9	13,3
Octane	1,2	3,4	8,7
Pentane	3,0	6,1	17,7
1-Pantène	5,6	19,7	43,8
Toluène	3,8	5,3	14,3
Xylène	1,9	9,1	18,9
Butane	0,4	1,5	4,2
Ethane	0,6	1,9	3,5
Méthane	0,8	2	6
Propane	0,4	1,3	1,3
Ethylène	4,4	7,3	13,9
Propylène	2,9	8,9	15,9

⁽⁷⁾ Testé dans le laboratoire de BP Naperville du 10/17/05 au 10/21/05 par le Groupe API-Smart Ldar

⁽⁸⁾ Les valeurs prisent durant l'étude réalisée par le Groupe API- smart LDAR sont de 0, 2 et 5 mph. Ces valeurs sont converties en km/h

6.1.2 Détermination du débit massique de définition de fuite de la caméra

A l'aide des données expérimentales apportées par le niveau de sensibilité de détection de la caméra FLIR (cf. Tableau 6), le débit massique de définition de fuite est calculé à l'aide de l'équation suivante⁹:

$$E_{dic} = (E_{sds}) \sum_{i=1}^{k} X_{i}$$
 Équation (1)

 E_{dic} = débit massique de définition de fuite de la caméra (g/h)

 X_i = fraction massique du composé i détecté avec l'instrument optique au niveau ou en dessous du niveau de sensibilité de détection E_{sds}

E_{sds}= niveau de sensibilité de détection d'après le Tableau 6 (g/h)

k= nombre total de composés chimiques provenant de l'équipement fuyard et repéré par l'instrument optique.

6.1.2.1 Calcul du débit massique de définition de fuite: E_{dic} (g/h)

Le débit massique de définition de fuite représente la sensibilité de la caméra pour un fluide donné. Afin de calculer le débit massique de définition de fuite $E_{\rm dic}$, le niveau de sensibilité de détection $E_{\rm sds}$ est choisi pour chaque composé détecté par la caméra pour un vent égal à $0 \, \text{km/h}$.

Le pourcentage massique du composé i détecté avec l'instrument optique est calculé pour chaque fluide représenté dans chaque unité grâce aux données analytiques fournies par le site pour chaque fluide (cf. Annexe C). Par exemple, pour une coupe pétrolière C6-C8, les composés caractéristiques de cette coupe pris en compte pour calculer la sensibilité de la caméra sont le Benzène, l'Octane et l'Heptane.

La sensibilité relative, ainsi que le pourcentage massique, des composés caractéristiques des coupes pétrolières pour chaque unité analysée sont représentés dans le Tableau 7 ci-après.

⁽⁷⁾ Equation proposée dans EPA Federal Register Vol. 71, N° 66, Thursday, April 6, 2006. 40 CFR Part 60 "Alternative work Practice to Detect Leaks from Equipment."

Tableau 7: pourcentage massique des coupes pétrolières des fluides et sensibilité relative de la caméra. Données analytiques fournies par ECS

			Visbreaking Bensat Feed C3-		LPG+ Platforming + Topping LPG C1-C2 1%;C3- C4 98% C5 1%		Top Unif vac Fuel G 42%;C	orming + oping+ coum az C1-C2 3-C4 56% 2 2%	Uni Essen	ping + fining ce C6-C8 0-C12 35%	H2 recy 44%;C	reaking cle C1-C2 3-C4 30% ; H2 22%
		Sensibilité 0 km/h (g/h)	% masse	Sensibilité relative g/h	% masse	Sensibilité relative g/h	% masse	Sensibilité relative g/h	% masse	Sensibilité relative g/h	% masse	Sensibilité relative g/h
	Ethane	0,6		U ⁿ	0,005	0,003	0,21	0,126		O.	0,22	0,132
C1-C2	Méthane	0,8			0,005	0,004	0,21	0,168			0,22	0,176
C3	Propane	0,4	0,002	0,0008	0,49	0,196	0,28	0,112			0,15	0,06
C4	Butane	0,4	0,002	0,0008	0,49	0,196	0,28	0,112			0,15	0,06
C5	Pentane	3	0,32	0,96	0,01	0,03					0,04	0,12
	Benzène	3,5	0,225	0,7875					0,217	0,76		
	Heptane	1,8	0,225	0,405					0,217	0,39		
C6-C8	Octane	1,2	0,225	0,27					0,217	0,26		
1	Somme		1,00	2,42	1,0	0,429	0,98	0,518	0,65	1,408	0,78	0,548

RAPPORT FINAL 0059366

En appliquant l'Equation (1), les débits massiques de définition de fuite de la caméra (E_{dic}) pour chaque fluide peuvent ainsi être calculés. Les résultats sont présentés dans le Tableau 8 ci-dessous.

Tableau 8 : Débit massique de définition de fuite: Edic (g/h)

Unité	Bensat + TIP + Visbreaking	LPG+ Platforming + Topping	platforming + Topping+ Unifining+ vaccuum	Topping + Unifining	Visbreaking
Composition du fluide:	Bensat Feed C3- C4 0,4% C5 32%; C6-C8 67,5%	LPG C1-C2 1%;C3-C4 98% C5 1%	Fuel Gaz C1-C2 42%;C3-C4 56% H2 2%	Essence C6-C8 65%;C9-C12 35%	H2 recycle C1- C2 44%;C3-C4 30% C5 4%; H2 22%
Débit massique de définition de fuite: E _{dic} (g/h)	2,427	0,429	0,529	2,167	0,703

6.1.3 Estimation des émissions des composés et de COVT (en kg/an)

Pour déterminer les émissions des coupes pétrolières C1-C2, C3, C5, C6-C8 et C9-C12 des unités identifiées, les nouveaux facteurs d'émission fuite/non fuite sont considérés (cf. Tableau 9). Ces facteurs sont les premiers facteurs développés par le groupe de recherche de l'American Petroleum Institute (API) pour estimer des émissions détectées par imagerie optique. Il reste encore à valider ces facteurs par des études terrain plus poussées. L'utilisation de ces facteurs donne néanmoins une première approximation des émissions de chaque composé.

Tableau 9: Nouveaux facteurs d'émission fuites/non fuites¹⁰

		Facteur d'émission (g/h/élément) pour la définition spécifique de fuite (g/h)							
		3	6	30	60				
	non								
	fuite	0,019	0,043	0,17	0,27				
Vanne	fuite	55	73	140	200				
	non								
	fuite	0,096	0,13	0,59	0,75				
Pompe	fuite	140	160	310	350				
	non								
	fuite	0,0026	0,0041	0,01	0,014				
Bride	fuite	29	45	88	120				
	non								
	fuite	0,007 0,014 0,051 0,0							
Tout élément	fuite	56	75	150	210				

Selon les caractéristiques de l'élément fuyard, un facteur est attribué pour chaque définition spécifique de fuite E_{dic} (g/h) déterminé durant l'étape précédente (cf. Tableau 8)

Les facteurs d'émission « fuite » sont choisis pour correspondre au débit massique de définition de fuite E_{dic} (g/h) le plus proche. Ainsi, le facteur d'émission « fuite » pris en compte pour l'Unité Topping (un débit massique de définition de fuite E_{dic} égal à **0,80 g/h)**, est celui qui correspond à la définition de fuite définie dans le Tableau 10 à **3 g/h.** De même, le facteur d'émission « fuite » pris en compte pour tout type d'élément est **56**.

La fraction massique de chaque composé contenue dans le fluide est prise en compte pour quantifier les émissions de chaque composé. Celles-ci sont donc calculées avec l'équation suivante :

Q composé (kg/an) = Fraction massique du composé X facteur d'émission « fuite » X nombre d'heures par an

(Equation 2)

ERM FRANCE

⁽⁹⁾ Facteurs d'émission publiés dans « derivation of new emissions factors for quantification of mass emissions when using optical gas imaging for detecting leaks »- Miriam Lev-On, David Epperson, Jeffrey Siegell, Karin Ritter.

Le calcul des émissions de *COVT* se réalise de deux manières :

• Soit en appliquant l'Equation (3) ci-dessous :

Q COVT (kg/an) = facteur d'émission « fuite » X nombre d'heures par an (Equation 3)

• Soit en faisant la somme des émissions de chaque composé fuyard. Cette somme est corrigée pour un pourcentage massique égal à 1 lorsque la somme des pourcentages massiques détectés par la caméra n'est pas égale à 1.

Le nombre d'heure par an considéré dans les Equations (2) et (3) est de 8 760.

Les résultats sont présentés dans le Tableau 10.

Tableau 10 : Estimation des émissions des composés identifiés et des COVT avec les facteurs d'émission fuite/ non fuite

	Ве	ensat	Т	TIP	LPG	platf	orming			Toppin	ıg			Unifi	ning		Vacuum	Visbrea	aking
	Fuite détect é par camér a et FID	Fuites non vue par la camera mais détecté par FID	Fuite détecté par caméra et FID	Fuites non vue par la camera mais détecté par FID	Fuite détecté par caméra et FID		étecté par ra et FID	Fuite détect é par camér a et FID	Fuites non vue par la camer a mais détect é par FID	Fuite détect é par camér a et FID	Fuites non vue par la camera mais détecté par FID	Fuite détecté par caméra et FID	Fuite détect é par camér a et FID	Fuites non vue par la camera mais détecté par FID	Fuite détect é par camér a et FID	Fuites non vue par la camer a mais détect é par FID	Fuites non vue par la camera mais détecté par FID	Fuite détecté par caméra et FID	Fuite détect é par camér a et FID
Composition du fluide:	Bensat I C4 0,4% C5 32%; 67,5%		Essence C C5 32%; C	3-C4 0,4% 26-C8 67,5%	LPG C1-C2 1%;C3- C4 98% C5 1%	LPG C1-C2 1%;C3 -C4 98% C5 1%	Fuel Gaz C1- C2 42%;C3- C4 56% H2 2%	65%;C	e C6-C8 C9-C12 5%	42%;0	Gaz C1-C2 C3-C4 56% I2 2%	LPG C1-C2 1%;C3- C4 98% C5 1%		ce C6-C8 -C12 35%	42%;C3	az C1-C2 C4 56% 2 2%	Fuel Gaz C1- C2 42%;C3- C4 56% H2 2%	H2 recycle C1-C2 44%;C3- C4 30% C5 4%; H2 22%	Essen ce C3- C4 0,4% C5 32%; C6-C8 67,5%
Estimation des émissions de C1-C2(kg/an)					53	10	202			809	0,070	5			408	0,07	0,07	212	
Estimation des émissions de C3-C4(kg/an)	33	0,00	56	0,0027	5202	944	270			1079	0,093	472			545	0,09	0,09	145	2
Estimation des émissions de C5 (kg/an)	2649	0,18	4471	0,21	53	10						5						19	154
Estimation des émissions de C6-C8 (kg/an)	5588	0,38	9431	0,45				1424	0,108				2819	0,325					325
Estimation des émissions de C9-C12 (kg/an)								767	0,058				1518	0,175					
Somme des émissions estimées des composés (kg/an)	8270	0,56	13958	0,67	5309	964	472	2190	0,17	1889	0,16	482	4336	0,499	953	0,16	0,16	376	481
Estimation des émissions de COVT (kg/an)	8278	0,56	13972	0,67	5309	964	482	2190	0,17	1927	0,17	482	4336	0,499	972	0,17	0,17	482	482

6.2 QUANTIFICATION A L'AIDE DES FACTEURS D'EMISSION STRATIFIES

Dans cette étude, à titre de comparaison avec les nouveaux facteurs Leak/no Leak, la quantification des émissions à l'aide des facteurs d'émission stratifiés de l'USEPA (cf. Tableau 11) fut également réalisée. Les facteurs d'émission stratifiés divisent les sources en trois gammes de valeurs distinctes :

- Entre 0 et 1 000 ppmv
- Entre 1 001 et 10 000 ppmv
- Supérieure à 10 000 ppmv

Tableau 11 : Facteurs d'émission stratifiés de l'USEPA

		Facteur d'émission (kg/h/source)								
		Série de va	leurs visionr	nées (ppmv)						
Type d'équipement	Service	0 – 1,000	1,001 to 10,000	Over 10,000						
Vannes	Gaz/Vapeur	0,00014	0,00165	0,0451						
	Liquide léger	0,00028	0,00963	0,0852						
	Liquide lourd	0,00023	0,00023	0,00023						
Pompes	Liquide léger	0,00198	0,0335	0,437						
	Liquide lourd	0,0038	0,0926	0,3885						
Compresseur	Gaz/Vapeur	0,01132	0,264	1,608						
Limiteur de pressions	Gaz/Vapeur	0,0114	0,279	1,691						
Brides connecteur	Tout type	0,00002	0,00875	0,0375						
Lignes d'extrémité ouverte	Tout type	0,00013	0,00876	0,01195						

Selon les caractéristiques de l'élément fuyard (bride, ligne d'extrémité, vanne, pompe...), un facteur est attribué. Dans cette étude, les facteurs d'émissions seront pris supérieurs à 10 000 ppm lorsque la caméra a pu détecter la fuite, et seront compris entre 1 000 ppm et 10 000 ppm lorsque la fuite a été détectée par le FID seul. Etant donné que la majorité des fuites détectées par la caméra étaient de l'ordre de 300 000 ppm, il est raisonnable de penser que telle est la concentration de ces fuites lorsque celles-ci n'ont pu être détectées par le FID.

ERM FRANCE

Les émissions sont estimées de la même manière que celles calculées à l'aide des facteurs d'émission « leak/no leak ». La fraction massique de chaque composé contenue dans le fluide est prise en compte pour quantifier les émissions de chaque composé. Celles-ci sont donc calculées avec l'Equation (2).

Le calcul des émissions de *COVT* se réalise de deux manières :

- Soit en appliquant l'Equation (3)
- Soit en faisant la somme des émissions de chaque composé fuyard. Cette somme est corrigée pour un pourcentage massique égal à 1 lorsque la somme des pourcentages massiques détectés par la caméra n'est pas égale à 1.

Les résultats sont présentés dans le Tableau 12.

Tableau 12: Estimation des émissions des composés identifiés et des COVT avec les facteurs d'émission stratifiés de l'USEPA.

	Bensat TIP		LPG	platf	orming			Toppir	ıg			Unifin	ing		Vacuum	Visbrea	ıking		
	Fuite détect é par camér a et FID	Fuites non vue par la camera mais détecté par FID	Fuite détecté par caméra et FID	Fuites non vue par la camera mais détecté par FID	Fuite détecté par caméra et FID		étecté par ra et FID	Fuite détect é par camér a et FID	Fuites non vue par la camer a mais détect é par FID	Fuite détect é par camér a et FID	Fuites non vue par la camera mais détecté par FID	Fuite détecté par caméra et FID	Fuite détecté par caméra et FID	Fuites non vue par la camera mais détecté par FID	Fuite détect é par camér a et FID	Fuites non vue par la camer a mais détect é par FID	Fuites non vue par la camera mais détecté par FID	Fuite détecté par caméra et FID	Fuite détect é par camér a et FID
Composition du fluide:	Bensat 1 C4 0,4% C5 32%, 67,5%			3-C4 0,4% C6-C8 67,5%	LPG C1-C2 1%;C3- C4 98% C5 1%	LPG C1-C2 1%;C3 -C4 98% C5 1%	Fuel Gaz C1- C2 42%;C3- C4 56% H2 2%		e C6-C8 C9-C12 5%	42%;0	Gaz C1-C2 C3-C4 56%	LPG C1-C2 1%;C3- C4 98% C5 1%		e C6-C8 C12 35%	42%;C3	nz C1-C2 -C4 56% 2 2%	Fuel Gaz C1- C2 42%;C3- C4 56% H2 2%	H2 recycle C1-C2 44%;C3- C4 30% C5 4%; H2 22%	Essen ce C3-C4 0,4% C5 32%; C6-C8 67,5%
Estimation des émissions de C1- C2(kg/an)					76	15	313			1254	35	7			357	35	35	328	
Estimation des émissions de C3 - C4 (kg/an)	25	1	87	12	7417	1463	418			1672	47	731			477	47	47	224	3
Estimation des émissions de C5 (kg/an)	2007	106	6926	955	76	15	0					7						30	239
Estimation des émissions de C6- C8 (kg/an)	4233	223	14610	2015		0	0	3459	55				4366	164					504
Estimation des émissions de C9- C12 (kg/an)								1862	30				2351	89					
Somme des émissions estimées des composés (kg/an) Estimation des	6265	329	21623	2982	7568	1493	731	5321	84	2926	83	746	6717	253	834	83	83	582	746
émissions de COVT (kg/an)	6271	330	21644	2985	7568	1493	746	5321	84	2985	84	746	6717	253	851	84	84	746	746

6.3 QUANTIFICATION A L'AIDE DES EQUATIONS DE CORRELATION RAFFINAGE

Le matériel utilisé par ECS pour effectuer la campagne de mesure est un analyseur de COV TVA 1000 de FOXBORO, utilisé en mode FID. Seules les émissions détectées par le FID ont été quantifiées (96 fuites). Celles-ci sont répertoriées dans l'Annexe B.

Pour effectuer ces calculs de quantification, ECS a utilisé les équations de corrélation raffinage présentées dans le Tableau 13.

Tableau 13: Flux d'émissions de la méthode par corrélation - Raffinerie¹¹

Equipement	Fluide	Flux d'émission (kg / h / source)b					
		Zérod	Corrélation ^a	Satur	ation		
				10 000 ppm°	100 000 ppm		
Vannes	Tout fluide	7,8.10-6	f = 2,29.10 ⁻⁶ x C ^{0.746}	0,064	0,140		
Joints de pompe	Tout fluide	2,4.10-5	f = 5,03.10 ⁻⁵ x C ^{0.610}	0,074	0,160f		
Autres		4,0.10-6	f = 1,36.10-5 x C ^{0.589}	0,073	0,110		
Connecteurs	Tout fluide	7,5.10-6	f = 1,53.10 ⁻⁶ x C ^{0.735}	0,028	0,030		
Brides	Tout fluide	3,1.10-7	f = 4,61.10 ⁻⁶ x C ^{0.703}	0,085	0,084		
Conduites ouvertes	Tout fluide	2,0.10-6	f = 2,20.10-6 x C ^{0.704}	0,030	0,079		

a: f = flux d'émission (kg de COV/h/point); C = concentration de fuite mesurée (ppm de COV).

Les résultats de l'estimation des émissions par les courbes de corrélation « Petroleum Industries » sont présentés dans le Tableau 14 ci-après.

b : Flux de COV méthane et non méthane

c: Déterminés à partir des données concernant l'instrumentation, les bras de chargement, les vannes de surpression, les ventilations.... Ces flux moyens sont applicables à tous les équipements autres que ceux donnés dans ce tableau.

d : Ces flux d'émission ont été déterminés sur la combinaison des données de 1993 concernant le raffinage et les terminaux de distribution.

e : Le flux d'émission à 10 000 ppm s'applique uniquement lorsqu'un système de dilution ne peut être utilisé ou dans le cas où de précédentes mesures ont révélé des concentrations de saturation de 10 000 ppm. Le flux d'émission à 10 000 ppm provient d'équipements dont la concentration de fuite était supérieure ou égale à 10 000 ppm. Cependant, dans certain cas les données peuvent provenir d'équipements dont la concentration de fuite se situait au-dessus de 100 000 ppm. Ceci conduit à des flux à saturation similaires pour 10 000 ou 100 000 ppm (exemple : connecteurs et brides).

f: Seuls deux données étaient disponibles pour déterminer le flux d'émission à saturation des joints de pompes à $100\ 000\ ppm$. Il a donc été estimé en multipliant le flux d'émission à saturation à $100\ 000\ ppm$ de tous les équipements par le rapport du flux d'émission à saturation à $10\ 000\ ppm$ des joints de pompes sur le flux d'émission à saturation à $10\ 000\ ppm$ de tous les équipments.

 $^{(11) \} Donn\'ees \ disponibles \ dans \ le \ « \ Guide \ d'application \ de \ la \ m\'ethode \ d'estimation \ des \ \'emissions \ fugitives \ de \ COV \ aux \ \'equipements \ et \ canalisations \ » \ de \ L'INERIS$

Tableau 14: Estimation des émissions des COVT avec les courbes de corrélation raffinage

Unités	Débit des fuites (en kg/an)
Bensat	53 444
LPG	12 264
Platforming	3 679
Topping	10 023
Unifining	12 988
Vacuum	9
Visbreaking	2 453
TOTAL	94 859

Le débit de COV des fuites détectées est de 94 859 kg/an

Le débit par produit de chaque unité est représenté dans les Tableaux 16 à 22. Le Tableau 23 établit un bilan des émissions pour chaque composé repéré par le FID.

Le produit le plus émis sur l'ensemble des 96 fuites identifiées avec le FID est le **Benzène** (35,3 t/an). Il représente 38% des émissions mesurées.

Les Tableaux 15 à 22 représentent les émissions par type de composés et par unités. Ces émissions ont été calculées à l'aide du logiciel de la Société ECS. Par exemple, les fluides correspondant aux Unités TIP et Bensat concernent les données analytiques suivantes : C3-C4 0,4%, C5 32%; C6-C8 67,5%. A titre indicatif, les émissions de la coupe pétrolière C6-C8 ont été identifiées au Benzène. Ainsi les émissions sont exprimés en fonction des composés de façon arbitraire en fonction des analyses des coupes pétrolières fournies par TOTAL.

RAPPORT FINAL 0059366

Tableau 15: Débit des composés identifiés par FID sur les Unités Bensat et TIP

Débit par produit

Bensat

1 : Mesure avant réparation

Nom du produit	Débit de l'échantillon
Benzène	35299
Butane	448
Ethane	270
Méthane	270
Pentane	16710
Propane	448
Total	53444

Logiciel GEF tous droits réservés àCCS

Document du 03/01/2007

1 sur 10

35 RAPPORT FINAL 0059366 Mars 2007

Tableau 16: Débit des composés identifiés par FID sur l'Unité LPG

Débit par produit

LPG

1 : Mesure avant réparation

Nom du produit	Débit de l'échantillon
Butane	6009
Ethane	61
Méthane	61
Pentane	123
Propane	6009
Total	12264

Logiciel GEF tous droits réservés àECS

Document du 03/01/2007

2 sur 10

ERM FRANCE

CAMPAGNE DE MESURES, RAFFINERIE DE ROME

RAPPORT FINAL 0059366

Tableau 17: Débit des composés identifiés par FID sur l'Unité Platforming

Débit par produit

Platforming

1 : Mesure avant réparation

Nom du produit	Débit de l'échantillon
Butane	1545
Ethane	282
Méthane	282
Pentane	25
Propane	1545
Total	3679

Logiciel GEF tous droits réservés àCCS

Document du 03/01/2007

3 sur 10

ERM FRANCE

CAMPAGNE DE MESURES, RAFFINERIE DE ROME

MARS 2007

37

Tableau 18: Débit des composés identifiés par FID sur l'Unité Topping

Débit par produit

Topping

1 : Mesure avant réparation

Nom du produit	Débit de l'échantillon
Butane	1641
Cyclohexane	1270
Décane	457
Dodécane	457
Ethane	824
Heptane	1016
Méthane	824
Nonane	432
Octane	1016
Pentane	12
Propane	1641
Undécane	432
Total	10023

Logiciel GEF tous droits réservés àCCS

Document du 03/01/2007

Tableau 19: Débit des composés identifiés par FID sur l'Unité Unifining

Débit par produit

Unifining

1 : Mesure avant réparation

Nom du produit	Débit de l'échantillon
Butane	1141
Cyclohexane	2458
Décane	885
Dodécane	885
Ethane	430
Heptane	1967
Méthane	430
Nonane	836
Octane	1967
Pentane	12
Propane	1141
Undécane	836
Total	12988

Logiciel GEF tous droits réservés àCCS

Document du 03/01/2007

Tableau 20 : Débit des composés identifiés par FID sur l'Unité Vacuum

Débit par produit CCS Vacuum 1: Mesure avant réparation

Nom du produit	Débit de l'échantillon
Butane	2
Ethane	2
Méthane	2
Propane	2
Total	9

Logiciel GCF tous droits réservés àCCS Document du 03/01/2007

6 sur 10

ERM FRANCE
RAPPORT FINAL 0059366

CAMPAGNE DE MESURES, RAFFINERIE DE ROME

40

Tableau 21: Débit des composés identifiés par FID sur l'Unité Visbreaking

Débit par produit

Visbreaking

1 : Mesure avant réparation

Nom du produit	Débit de l'échantillon		
Butane	687		
Ethane	540		
Méthane	540		
Propane	687		
Total	2453		

Logiciel GEF tous droits réservés àECS

Document du 03/01/2007

7 sur 10

ERM FRANCE

CAMPAGNE DE MESURES, RAFFINERIE DE ROME

MARS 2007

41

Tableau 22 : Débit des composés identifiés par FID durant la campagne de mesure

Débit par produit

TOTAL

1 : Mesure avant réparation

Nom du produit	Débit de l'échantillon
Benzène	35299
Butane	11474
Cyclohexane	3729
Décane	1342
Dodécane	1342
Ethane	2409
Heptane	2983
Méthane	2409
Nonane	1268
Octane	2983
Pentane	16881
Propane	11474
Undécane	1268
Total	94859

Logiciel GEF tous droits réservés àECS

Document du 03/01/2007

6.4

Les émissions des composants qui ont pu être analysés par le FID ont été quantifiées à l'aide des nouveaux facteurs d'émission « fuite/non fuite », des facteurs d'émission stratifiés de l'USEPA et des équations de corrélation (96 fuites au total).Un bilan des émissions totales de la raffinerie peut ainsi être établi.

Seule la comparaison des résultats concernant les COVT est établie dans cette étude. La quantification des émissions estimées avec les trois méthodes est présentée dans le Tableau 23.

Tableau 23: Bilan des émissions de COVT (kg/an) calculées avec les 3 méthodes de quantification pour les 96 fuites mesurées avec le FID

Méthodes de Quantification	Unité Bensat et TIP	Unité LPG	Unité Platforming	Unité Topping	Unité Unifining	Unité Vacuum	Unité Visbreaking	Somme
Facteurs "fuite /non fuite"	22 252	5309	1445	4599	5309	0,166	964	39 878
Equations de corrélation	53 444	12 264	3 679	10 023	12 988	9	2 453	94 860
Facteurs stratifiés	31 231	7568	2239	9221	7906	84	1493	59 742

Les émissions de COVT sont estimées à 94 860 kg/an avec les courbes de corrélation raffinage, 39 878 kg/an avec les facteurs d'émission « fuite/non fuite », et 59 742 kg/an avec les facteurs d'émission stratifiés.

La majorité des fuites détectées avec la caméra puis mesurées par le FID sont des flux d'émissions arrivés à saturation (pegged value). Ainsi, sur les 96 fuites mesurées par le FID, 83 ont des concentrations supérieures à 300 000 ppm . L'utilisation des équations de corrélation revient alors à appliquer un facteur du même type que les facteurs « fuite/non fuite » ou les facteurs d'émission stratifiés.

Aux Etats-Unis, où a été développée la Méthode 21 qui utilise les équations de corrélation et les facteurs associés, la plupart des émissions mesurées par FID n'atteignaient pas les seuils de saturation. Pour cette étude où plus de la moitié des émissions détectées par le FID dépassent le seuil de saturation, l'utilisation de facteurs d'émission, certes moins précise, engendre donc des estimations plus faibles.

Les émissions trouvées par les courbes de corrélation raffinage sont donc supérieures aux émissions trouvées à l'aide des facteurs d'émission stratifiés pour les 96 fuites détectés par le FID. Le Tableau 24 recense les facteurs utilisés pour les composés saturés dans les équations de corrélation et les facteurs stratifiés pour une concentration supérieure à 10 000 ppm. Le nombre de fuites est également indiqué.

Tableau 24 : Comparaison des facteurs utilisés pour les composés saturés dans les équations de corrélation avec les facteurs stratifiés pour une concentration supérieure à 10 000 ppm

Type d'équipement	Service	Facteur d'émission stratifié (kg/h) (source > 10 000 ppmv)	Facteur utilisé lorsque le FID est à saturation (corrélation raffinage)	Nombre de fuites au dessus de 300 000 ppmv
Vannes	Gaz/Vapeur	0,0451		
	Liquide léger	0,0852	0,14	71
	Liquide lourd	0,00023		
Pompes	Liquide léger	0,437	0,16	1
	Liquide lourd	0,3885	0,10	1
Compresseur	Gaz/Vapeur	1,608	0,11	
Limiteur de pressions	Gaz/Vapeur	1,691	0,11	
Brides	Tout type	0,0375	0,084	
Connecteur	Tout type	0,0375	0,03	
Extrémités de Ligne Ouverte	Tout type	0,01195	0,079	11

D'après le Tableau 24, les facteurs « saturation » sont supérieurs aux facteurs d'émission stratifiés pour les vannes, et les extrémités de ligne ouverte. Ce sont les types de fuites qui ont été identifiées au-dessus de 300 000 ppmv durant l'étude (82 fuites).

Cette remarque est d'autant plus importante que durant cette étude, 84% des fuites provenaient de vannes. Les fuites provenant des évents, des bouchons,

et des purges (fuites type « fin de ligne ») représentent 14 % de la totalité du nombre de fuites.

Ainsi, les émissions trouvées par les courbes de corrélation raffinage sont supérieures aux émissions trouvées à l'aide des facteurs d'émission stratifiés pour les 96 fuites détectées par le FID.

De la même manière, les facteurs d'émission stratifiés et les facteurs « fuite/non fuite » peuvent être comparés pour expliquer les différences de résultats entre ces deux méthodes (Tableau 25 ci-dessous).

<u>Tableau 25: Comparaison des facteurs d'émission « fuite » et stratifiés</u>

		Facteur d'émission (g/h/élément) pour la	Quantification avec
		définition spécifique de	les facteurs d'émission
		fuite 3 g/h	stratifiés (g/h)
	non fuite	0,019	9,63
Vanne	fuite	55	85,2
	non fuite	0,096	33,5
Pompe	fuite	140	437
D: J a	non fuite	0,0026	8,75
Bride	fuite	29	37,5
Tout	non fuite	0,007	8,76
élément	fuite	56	11,95

D'après le Tableau 25, les facteurs d'émission stratifiés sont supérieurs aux facteurs d'émission « fuite/non fuite » pour les vannes, les brides, et les pompes. Sur les 96 fuites identifiées, 71 correspondent à des vannes. Ainsi les émissions calculées à l'aide des facteurs d'émission stratifiés sont supérieures aux émissions calculées à l'aide de la méthode « fuite / non fuite » .

7 CONCLUSION

L'étude a été réalisée les 18 et 19 Décembre 2006 sur le site de la Raffinerie de Rome. La présente étude s'est efforcée de détecter les émissions fugitives des unités suivantes:

- Unifining
- Platforming
- HDS
- LPG
- Visbreaking
- Vacuum
- DEA/SRU
- Preflash
- Topping
- TIP
- Bensat
- Hot Oil

Au total, 100 fuites ont été repérées par les deux instruments, dont 85 par la caméra et 96 à l'aide du FID (4 fuites ont été détectées par la caméra alors qu'elles étaient inaccessibles avec le FID et 15 fuites n'ont pu être détectées par la caméra alors qu'elles ont été détectées par le FID): 55 fuites sur les Unités Bensat et TIP, 11 fuites sur l'Unité LPG, 3 fuites sur l'Unité Platforming, 11 fuites sur l'Unité Topping, 16 fuites sur l'Unité Unifining, 1 fuite sur l'Unité Vacuum, 2 fuites sur l'Unité Visbreaking, 1 fuite sur l'Unité HDS.

La méthode optique utilisée durant cette étude est **qualitative**: toutefois, les développements récents du Groupe de Recherche « smart LDAR » de l'American Petroleum Institue (API) permettent de disposer de facteurs d'émission associés à l'utilisation d'outils optiques. Un essai de quantification est donc effectué dans la présente étude à titre indicatif et expérimental. Une comparaison des résultats de cette nouvelle méthode avec la méthode de quantification de l'EPA utilisant les facteurs d'émission stratifiés a aussi été réalisée.

Ainsi, les émissions provenant des éléments fuyards identifiées par la caméra et le FID, excluant les fuites détectés par la caméra seule, (96 fuites au total) ont été quantifiées au moyen de trois méthodes:

- La méthode utilisant les nouveaux facteurs d'émission « fuite/non fuite » (Leak/no leak).
- La méthode utilisant les facteurs stratifiés de l'EPA.
- La méthode utilisant les équations de corrélation raffinage de l'US EPA.

Pour ces 96 fuites, les émissions de COVT sont estimées à **94 860 kg/an** avec les courbes de corrélation raffinage, **39 878 kg/an** avec les facteurs d'émission « fuite/non fuite », et **59 742 kg/an** avec les facteurs d'émission stratifiés.

Les valeurs trouvées par quantification sont données ici à titre **indicatif et expérimental.** Des études plus poussées devraient permettre d'affiner l'utilisation des facteurs d'émission et de trouver une quantification encore plus juste des émissions fugitives de COVT d'une raffinerie.

- 1- Hal Taback Company "Analysis of Refinery Screening Data", American Petroleum Institute, Publication Number 310, November 1997
- 2- Taback, H. J.; Siegell, J. H.; Ritter, K. "Los Angeles Refinery Fugitive Emissions, Have They Changed After Six Years of LDAR?," AWMA/EPA Specialty Conference, The Emissions Inventory: Planning for the Future, Research Triangle Park, NC, October 1997
- 3- TCET & M. Smylie, "Development of emissions factors and/or correlation equations for Gas Leak Detection, and the Development of and EPA protocol for the use of a Gas Imaging device as an Alternative or supplement to current Leak Detection and Evaluation Methods" Environ.
- 4- FLIR systems, "Standoff passive optical leak detection of volatile organic compounds using a cooled InSB Based Infrared Imager" extended abstract # 06-A-131-AWM
- 5- EPA Federal Register Vol. 71, N° 66,. 40 CFR Part 60 "Alternative work Practice to Detect Leaks from Equipment." Thursday, April 6, 2006
- 6- Groupe API-Smart Ldar « *Niveau de sensibilité de détection de la caméra FLIR Testé dans le laboratoire de BP Naperville* », du 10/17/05 au 10/21/05
- 7- Miriam Lev-On, David Epperson, Jeffrey Siegell, Karin Ritter, Nouveaux facteurs d'émission publiés dans « *Derivation of new emissions factors for quantification of mass emissions when using optical gas imaging for detecting leaks »*.
- 8- INERIS, « Guide d'application de la méthode d'estimation des émissions fugitives de COV aux équipements et canalisations »

Mars 2007

ANNEXE A

Liste des éléments fuyards repérés par le FID et la caméra

Annexe A: Listing des fuites repérés par la caméra et le FID

Campagne de mesure Raffinerie de Rome du 18/12/2006 au 19/12/2006

		du 18/12/2006 au 19	/12/2006				
	Localisation de			Partie			
numéro vidéo	l'unité	composition du flux	Fluide	fuyarde	description de la fuite	concentration ECS	Débit (kg/an)
		C1-C2 44%;C3-C4 30%					
1	Unifining	C5 4%; H2 22%	Essence	vanne	vanne de niveau FCV 2207B (by-pass)	300 000ppm	1226,4
		C1-C2 44%;C3-C4					
2	Unifining	C5 4%; H2 22%	Essence	vanne	vanne amont LCV 2207B	300 000ppm	1226,4
		C1-C2 44%;C3-C4					
3	Unifining	30% C5 4%; H2 22%	Essence	vanne	vanne automatique FCV 2217	300 000ppm	1226,4
		C1-C2 42%;C3-C4					,
	Unifining	56% H2 2%	Fuel Gaz	vanne	vanne PCV 2305	300 000ppm	1226,4
4	Offilling	C1-C2 42%;C3-C4	i del Gaz	varine	Value 1 GV 2303	Зоо ооорріп	1220,4
_		56%	- 10		() TOOPS	000 000	4000.4
5	Unifining	H2 2% C1-C2 42%;C3-C4	Fuel Gaz	fin de ligne	échantillonneur amont T2305	300 000ppm	1226,4
		56%					
	Unifining	H2 2%	Fuel Gaz	vanne	vanne 3/4 aval de TV 2303	4 111ppm	9,96
		C1-C2 44%;C3-C4 30%					
9	Unifining	C5 4%; H2 22%	Essence	vanne	vanne P2213B aspiration (en bas)	300 000ppm	1226,4
		C1-C2 44%;C3-C4 30%					
10	Unifining	C5 4%; H2 22%	Essence	vanne	grosse vanne aspiration de P2213A	300 000ppm	1226,4
		C1-C2 44%;C3-C4					
10	Unifining	30% C5 4%; H2 22%	Essence	vanne	petite vanne 1/2 pouce refoulement de P2213A	300 000ppm	1226,4
		C1-C2 44%;C3-C4					
	Unifining	30% C5 4%; H2 22%	Essence	vanne	vanne amont de P2213A	4049ppm	9,85
	g	C1-C2 44%;C3-C4		· ca.mo	and the control of th	готоррин	0,00
	Unifining	30% C5 4%: H2 22%	Faccina	wonn-	venne evel P2212A	200 000	1226,4
10	Uniffning	C1-C2 44%;C3-C4	Essence	vanne	vanne aval P2213A	300 000ppm	1226,4
		30%					
	Unifining	C5 4%; H2 22% C1-C2 44%;C3-C4	Essence	vanne	vanne aval de P2213B	1850ppm	5,49
		30%					
11	Unifining	C5 4%; H2 22%	Essence	vanne	vanne amont P2213A	300 000ppm	1226,4
		C1-C2 44%;C3-C4 30%					
	Unifining	C5 4%; H2 22%	Essence	vanne	vanne aval P2213A	2540 ppm	6,96
		C1-C2 44%;C3-C4					
1	Unifining	C5 4%; H2 22%	Essence	vanne	vanne aval P2213A	300 000ppm	1226,4
6	Platforming	C1-C2 1%;C3-C4 98% C5 1%	LPG	vanne	vanne de régulation F2302	300 000ppm	1226,4
						200 200 pp	,
_	Platforming	C1-C2 1%;C3-C4 98% C5 1%	LPG	wanna	venne ECV2221	300 000ppm	1226,4
,	Fiationning	C1-C2 42%;C3-C4	LFG	vanne	vanne FCV2321	300 000ppiii	1220,4
		56%					
8	Platforming	H2 2% C1-C2 42%;C3-C4	Fuel Gaz	vanne	PCV 2391C	300 000ppm	1226,4
		56%					
	Vacuum	H2 2%	Fuel Gaz	vanne	vanne amont PV2054	3432ppm	8,71
		C1-C2 42%;C3-C4 56%					
34	Topping	H2 2%	Fuel Gaz	vanne	vanne amont du brûleur du four H2701	300 000ppm	1226,4
		C1-C2 42%;C3-C4 56%					
	Topping	H2 2%	Fuel Gaz	vanne	vanne aval PV 2711B	3 125ppm	8,12
0.5		C6-C8 65%;C9-C12	Fuel Gaz	vanna	vanne PV 2713	16444ppm	29.00
35	Topping	35% C1-C2 42%;C3-C4	Fuel Gaz	vanne	vario I V 2/ IO	то ччч ррП	28,02
	_	56%	F 10		FOV 9700	000.05	100-
36	Topping	H2 2% C1-C2 42%;C3-C4	Fuel Gaz	vanne	FCV 2729	300 000ppm	1226,4
		56%					
37	Topping	H2 2%	Fuel Gaz	vanne	vanne de R 2751 à H2701 en aval de FCV 2729	300 000ppm	1226,4
38	Topping	C6-C8 65%;C9-C12 35%	Essence	pompe	vanne garniture de la pompe P2709B	300 000ppm	1226,4
		C6-C8 65%;C9-C12					
	Topping	35%	Essence	vanne	vanne refoulement de la pompe P2709B	300 000ppm	1226,4
		C1-C2 1%;C3-C4 98%					
1	Topping	C5 1%	LPG	vanne	vanne sortie de la pompe P 2710 B	300 000ppm	1226,4
41	Topping	C6-C8 65%;C9-C12 35%	Essence	vanne	FCV 2730	300 000ppm	1226,4
		C6-C8 65%;C9-C12					
42	Topping	35% C3-C4 0,4%	Essence	vanne	vanne FV 2752	300 000ppm	1226,4
		C5 32%; C6-C8					
42	Bensat	67,5%	Bensat Feed	vanne	vanne manuelle en bas du P 2910	300 000ppm	1226,4
		C3-C4 0,4% C5 32%; C6-C8					
43	Bensat	67,5%	Bensat Feed	vanne	presse étoupe P 2910	300 000ppm	1226,4
		C3-C4 0,4%					
44	Bensat	C5 32%; C6-C8 67,5%	Bensat Feed	purge	vanne du bas aspiration P 2970B	300 000ppm	1226,4
		C3-C4 0,4%					
44	Bensat	C5 32%; C6-C8 67,5%	Bensat Feed	purge	corps P 2970B	300 000ppm	1226,4
. 44	Sonau	107,070	Donati deu	puige	50.p0 . 2070b	ооо оооррпп	1220,4

1 Ber 45 Ber 46 Ber 47 Ber 49 Ber 51 Ber	nsat nsat nsat	67,5% C3-C4 0,4% C3-C4 0,4% C5 32%; C6-C8 67,5% C3-C4 0,4% C5 32%; C6-C8 67,5% C3-C4 0,4% C3-C4 0,4% C5 32%; C6-C8 67,5%	Bensat Feed Bensat Feed Bensat Feed	vanne	refoulement P 2970B petite vanne en bas de la jauge de pression P 2970A	3577 ppm 300 000ppm	8,98 1226,4
45 Ber 46 Ber 47 Ber 51 Ber	nsat nsat nsat	67,5% C3-C4 0,4% C5 32%; C6-C8 67,5% C3-C4 0,4% C5 32%; C6-C8 67,5%		vanne	petite vanne en bas de la jauge de pression P 2970A	300 000ppm	1226,4
46 Ber 47 Ber 51 Ber	nsat	C5 32%; C6-C8 67,5% C3-C4 0,4% C5 32%; C6-C8 67,5%	Bensat Feed				
46 Ber 47 Ber 51 Ber	nsat	C3-C4 0,4% C5 32%; C6-C8 67,5%	Bensat Feed				
46 Ber 47 Ber 51 Ber	nsat	C5 32%; C6-C8 67,5%		purge	Purge pompe P 2970 A	300 000ppm	1226,4
46 Ber 47 Ber 51 Ber	nsat		Bensat Feed	purge	aspiration pompe P2970A	3902 ppm	6,5
47 Ber 49 Ber 51 Ber		C3-C4 0,4%	Delisat i eeu	purge	aspiration pumper 2970A	овог ррпп	0,5
49 Ber 51 Ber		C5 32%; C6-C8 67,5%	Bensat Feed	purge	purge de pompe P 2972	300 000ppm	1226,4
49 Ber 51 Ber		C3-C4 0,4% C5 32%; C6-C8					
51 Ber	nsat	67,5% C3-C4 0,4%	Bensat Feed	purge	purge pompe P 2901B	300 000ppm	1226,4
	nsat	C5 32%; C6-C8 67,5%	Bensat Feed	vanne	vanne manuelle refoulement P 2901B	300 000ppm	1226,4
		C3-C4 0,4% C5 32%; C6-C8					
Ber		67,5%	Bensat Feed	vanne	vanne refoulement de la pompe P2901B	9 266 ppm	
Ber		C3-C4 0,4% C5 32%; C6-C8					
1	nsat	67,5% C3-C4 0,4%	Bensat Feed	vanne	Vanne manuelle aspiration P 2901B	2113 ppm	6,06
50 Ber	nsat	C5 32%; C6-C8 67,5%	Bensat Feed	purge	purge P 2901A	300 000ppm	1226,4
		C3-C4 0,4% C5 32%; C6-C8					
51 Ber	nsat	67,5% C3-C4 0,4%	Bensat Feed	purge	purge P2904B	300 000ppm	1226,4
50.0		C5 32%; C6-C8				000 000	4000.4
52 Ber	nsat	67,5% C3-C4 0,4%	Bensat Feed	vanne	vanne de purge au refoulement de la pompe P 2904B	300 000ppm	1226,4
Ber	nsat	C5 32%; C6-C8 67,5%	Bensat Feed	vanne	petite vanne P 2904B	12 193ppm	22,42
		C3-C4 0,4% C5 32%; C6-C8					
56 Ber	nsat	67,5% C3-C4 0,4%	Bensat Feed	évent	corps P2904A	300 000ppm	1226,4
55 Ber		C5 32%; C6-C8 67,5%	Bensat Feed	vanne	vanne aspiration P 2901A	300 000ppm	1226,4
35 Bei		C3-C4 0,4%	Delisal Feed	varine	varine aspiration P 2901A	300 оборріп	1220,4
56 Ber		C5 32%; C6-C8 67,5%	Bensat Feed	purge	purge P 2904A	300 000ppm	1226,4
		C3-C4 0,4% C5 32%; C6-C8					
57 Ber	nsat	67,5% C3-C4 0,4%	Bensat Feed	évent	FCV 2941	300 000ppm	1226,4
50 710		C5 32%; C6-C8	_			000 000	4000 4
59 TIP	,	67,5% C3-C4 0,4%	Essence	vanne	vanne automatique 2901	300 000ppm	1226,4
58 TIP		C5 32%; C6-C8 67,5%	Essence	vanne	vanne automatique 2903/4	300 000ppm	1226,4
		C3-C4 0,4% C5 32%; C6-C8					
59 TIP)	67,5%	Essence	vanne	vanne automatique 2903/2	300 000ppm	1226,4
		C3-C4 0,4% C5 32%; C6-C8					
60 TIP	•	67,5% C3-C4 0,4%	Essence	vanne	vanne automatique 2903/6	300 000ppm	1226,4
61 TIP		C5 32%; C6-C8 67,5%	Essence	vanne	vanne automatique 2904/4	300 000ppm	1226,4
01 111		C3-C4 0,4%	LSSEIICE	varine	varine automatique 2904/4	300 оборріп	1220,4
62 TIP)	C5 32%; C6-C8 67,5%	Essence	vanne	vanne automatique 2904/2	300 000ppm	1226,4
		C3-C4 0,4% C5 32%; C6-C8					
63 TIP		67,5%	Essence	vanne	vanne automatique 2904/6	300 000ppm	1226,4
		C3-C4 0,4% C5 32%; C6-C8	_			200 000	4000 4
TIP		C3-C4 0,4%	Essence	vanne	vanne automatique 2905/4	300 000ppm	1226,4
64 TIP		C5 32%; C6-C8 67,5%	Essence	vanne	vanne automatique 2905/2	300 000ppm	1226,4
		C3-C4 0,4% C5 32%; C6-C8					
66 TIP		67,5%	Essence	vanne	vanne automatique 2905/6	300 000ppm	1226,4
		C3-C4 0,4% C5 32%; C6-C8					
67 TIP	,	67,5% C3-C4 0,4%	Essence	vanne	vanne automatique 2906/4	300 000ppm	1226,4
69 TIP	.	C5 32%; C6-C8 67,5%	Essence	vanne	vanne automatique 2906/2	300 000ppm	1226,4
		C3-C4 0,4% C5 32%; C6-C8					
70 TIP)	67,5%	Essence	vanne	vanne automatique 2906/6	300 000ppm	1226,4
		C3-C4 0,4% C5 32%; C6-C8					
71 TIP	•	67,5% C3-C4 0,4%	Essence	vanne	vanne de droite de FC 2925B vers FC 2925A	300 000ppm	1226,4
72 TIP	.	C5 32%; C6-C8 67,5%	Essence	vanne	vanne de gauche de FC 2925B vers FC 2925A	300 000ppm	1226,4
/ E I F		C3-C4 0,4%	_3301100	varille	Talino do gasono do 1 O ESESE VOIS I O ESESE	осо осоррии	1220,4
TIP		C5 32%; C6-C8 67,5%	Essence	vanne	vanne FT 2925B	300 000ppm	1226,4
		C3-C4 0,4% C5 32%; C6-C8					
		67,5%	Essence	vanne	vanne automatique PV2910	300 000ppm	1226,4
73 TIP		67,5% C3-C4 0,4%					

		C3-C4 0,4%					
	TIP	C5 32%; C6-C8	_			000.000	4000.4
/4	TIP	67,5% C3-C4 0,4%	Essence	vanne	vanne piquage du pipe vers B 2906	300 000ppm	1226,4
		C5 32%; C6-C8					
75	TIP	67,5%	Essence	vanne	vanne automatique 2901/4 plateforme du haut	300 000ppm	1226,4
		C3-C4 0,4%					
76	TIP	C5 32%; C6-C8 67,5%	Essence	vanno	vanne automatique 2901/5 plateforme du haut	300 000ppm	1226,4
76	IIF	C3-C4 0,4%	Essence	vanne	varine automatique 2901/5 piaterornie du naut	зоо ооорріп	1220,4
		C5 32%; C6-C8					
77	TIP	67,5%	Essence	vanne	vanne automatique 2901/3 plateforme du haut	300 000ppm	1226,4
		C3-C4 0,4%					
70	TIP	C5 32%; C6-C8 67,5%	Essence	vanne	vanne automatique 2905/1 plateforme du haut	300 000ppm	1226,4
15		C3-C4 0,4%	LSSEIICE	varine	varine automatique 2303/1 plateronne du naut	Зоо ооорріп	1220,4
		C5 32%; C6-C8					
80	TIP	67,5%	Essence	vanne	vanne automatique 2905/5 plateforme du haut	300 000ppm	1226,4
		C3-C4 0,4%					
81	TIP	C5 32%; C6-C8 67,5%	Essence	vanne	vanne automatique 2905/3 plateforme du haut	300 000ppm	1226,4
		C3-C4 0,4%				000 000	
		C5 32%; C6-C8					
	TIP	67,5%	Essence	vanne	vanne du mano PSV 2904	300 000ppm	1226,4
		C3-C4 0,4% C5 32%; C6-C8					
82	TIP	67,5%	Essence	vanne	vanne automatique 2904/1 plateforme du haut	300 000ppm	1226,4
		C3-C4 0,4%			, , , , , , , , , , , , , , , , , , , ,		
		C5 32%; C6-C8					
83	TIP	67,5%	Essence	vanne	vanne automatique 2904/5 plateforme du haut	300 000ppm	1226,4
		C3-C4 0,4% C5 32%; C6-C8					
84	TIP	67,5%	Essence	vanne	vanne automatique 2904/3 plateforme du haut	300 000ppm	1226,4
		C3-C4 0,4%					
	TID	C5 32%; C6-C8	Faccione	want -	venne automotique 2002/1 rl-t-f du ht	200.000	1000.4
85	TIP	67,5% C3-C4 0,4%	Essence	vanne	vanne automatique 2903/1 plateforme du haut	300 000ppm	1226,4
		C5 32%; C6-C8					
86	TIP	67,5%	Essence	vanne	vanne automatique 2903/5 plateforme du haut	300 000ppm	1226,4
		C3-C4 0,4%					
97	TIP	C5 32%; C6-C8 67,5%	Essence	vanne	vanne automatique 2903/3 plateforme du haut	300 000ppm	1226,4
67	111	C3-C4 0,4%	LSSCIICE	varine	varine automatique 2503/3 piateronne du naut	300 оборріп	1220,4
		C5 32%; C6-C8					
88	TIP	67,5%	Essence	vanne	Vanne PV 2948	300 000ppm	1226,4
		04 00 40/ 00 04 000/					
89	LPG	C1-C2 1%;C3-C4 98% C5 1%	LPG	vanne	vanne LT0609	300 000ppm	1226,4
- 05	Li O	00 170	LIO	variio	Value E10003	ооо оооррии	1220,4
		C1-C2 1%;C3-C4 98%					
18	LPG	C5 1%	LPG	vanne	vanne purge R0604	300 000ppm	1226,4
		04 00 40/-00 04 000/					
19	LPG	C1-C2 1%;C3-C4 98% C5 1%	LPG	vanne	vanne S 2553A	300 000ppm	1226,4
		55.75				303 COSPP	
		C1-C2 1%;C3-C4 98%					
20	LPG	C5 1%	LPG	vanne	vanne en bas du LV 2503	300 000ppm	1226,4
		C1-C2 1%;C3-C4 98%					
21	LPG	C5 1%	LPG	vanne	Vanne amont du LV 2501A	300 000ppm	1226,4
	. 50	C1-C2 1%;C3-C4 98%	. 50		V Torox	000.000	4000 4
22	LPG	C5 1%	LPG	vanne	Vanne du T2501	300 000ppm	1226,4
		C1-C2 1%;C3-C4 98%					
23	LPG	C5 1%	LPG	vanne	Vanne avale du FC 2504	300 000ppm	1226,4
				1			
	LPG	C1-C2 1%;C3-C4 98%	I PG	varre	Vanno amont du EC 2504	300 000=	1006 4
24	Li G	C5 1%	LPG	vanne	Vanne amont du FC 2504	300 000ppm Pas de mesure avant	1226,4
		C1-C2 1%;C3-C4 98%				réparation du bouchon.	
25	LPG	C5 1%	LPG	bouchon	bouchon du S 2504 au pied du R 2502	Après réparation: 0ppm	0
		04 00 40/-00 04 5					
96	LPG	C1-C2 1%;C3-C4 98% C5 1%	LPG	vanne	vanne à droite du S 2510	300 000ppm	1226,4
20		//	- ~			осс соорріп	,
		C1-C2 1%;C3-C4 98%					
27	LPG	C5 1%	LPG	vanne	vanne du bas du T 2502. Isolamiento n°4	300 000ppm	1226,4
		C3-C4 0,4% C5 32%; C6-C8					
28	visbreaking	67,5%	Essence	vanne	vanne en haut du PV2003	300 000ppm	1226,4
	,	C1-C2 44%;C3-C4					-,
	., ,.	30%				000.05-	1005
29	visbreaking	C5 4%; H2 22%	H2 recycle	vanne	vanne bleu au dessus du K 2051B	300 000ppm	1226,4
		C1-C2 44%;C3-C4 30%					
0	Unifining	C5 4%; H2 22%	Essence	bride	bride sous calorifuge S 2252	non mesuré	
		C6-C8 65%;C9-C12			évent du ballon de la pompe P 2710 A: Réparé par	Pas de mesure FID car	
29	Topping	35%	Essence	évent	l'opérateur	réparé par l'opérateur	
		C1-C2 44%;C3-C4 30%					
15	HDS	C5 4%; H2 22%	H2 recycle	vanne	vanne automatique PC 24076 A	non mesuré	
		C1-C2 42%;C3-C4					
		56%					
33	Topping	H2 2%	Fuel Gaz	vanne	Vanne d'injection du bruleur E6 du four 1	pas accessible par ECS	
		C3-C4 0,4% C5 32%; C6-C8					
58	Bensat	67,5%	Bensat Feed	purge	purge FV 29073	pas de mesure	

ANNEXE B

Liste des éléments fuyards repérés par le FID

ANNEXE B: LISTE DES ELEMENTS FUYARDS REPERES PAR LE FID

Liste des fuites résiduelles de l'unité Bensat

6	-

ection	Numéro d'étiquette	N" de plan	Type de sou	Emplaceme	Equipement	Localisation	Diamètre (pouces)	C (ppmv)	Date mesure	Remarqu
9ensat	030	Virtuel Folio 1	Presse-é tou pe	1	Vanne manuelle	Pres fv2910	0.75	300 000	22/12/2006	
9ensat	031	Virtuel Folio 1	Presse-é tou pe	,	Vanne automatiqu	Fv2910	3	300 000	22/12/2006	
ensat (032	Virtuel Folio 1	Fin de ligne	Autres	Fin de ligne ouverl	Aspi p2970b	0,75	300 000	22/12/2006	
lensat	033	Virtuel Folio 1	Fin de ligne	Autres	Fin de ligne ouverl	Corps p2970b	0,75	300 000	22/12/2006	
lensat	034	Virtuel Folio 1	Presse-é tou pe	ž	Vanne manuelle	Refo p2970b	0,75	3 577	22/12/2006	
ensat	035	Virtuel Folio 1	Presse-é tou pe	×	Vanne manuelle	Refo p2970a	0,75	300 000	22/12/2006	
lensat	036	Virtuel Folio 1	Fin de ligne	Autres	Fin de ligne ouverl	Aspi p2970a	0,75	300 000	22/12/2006	
lensat	037	Virtuel Folio 1	Fin de ligne	Autres	Fin de ligne ouverl	Aspi p2970a	0,25	3 902	22/12/2006	
lensat	038	Virtuel Folio 1	Fin de ligne	Autres	Fin de ligne ouver	Aspi p2972	1	300 000	22/12/2006	
ensat	039	Virtuel Folio 1	Fin de ligne	Autres	Fin de ligne ouverl	Aspi p2901b	1	300 000	22/12/2006	
lensat	040	Virtuel Folio 1	Presse-é tou pe	1	Vanne manuelle	Refo p2901b	0,5	9 266	22/12/2006	
lensat	041	Virtuel Folio 1	Presse-é tou pe	7	Vanne manuelle	Refo p2901b	0,5	300 000	22/12/2006	
Bensat	042	Virtuel Folio 1	Presse-é tou pe	1	Vanne manuelle	Aspi p2901b	6	2 113	22/12/2006	
∃ensat	043	Virtuel Folio 1	Fin de ligne	Autres	Fin de lígne ouverl	Aspi p2901a	0,75	1 626	22/12/2006	
Bensat	044	Virtuel Folio 1	Fin de ligne	Autres	Fin de ligne ouverl	Corps p2904b	0,75	300 000	22/12/2006	LIQ

Logiciel GEF tous droits réservés àECS

Document du 03/01/2007 Seuil de fuite : 0 ppmv

Nombre de fuites : 54

Liste des fuites résiduelles de l'unité Bensat

ection	Numéro d'étiquette	N" de plan	Type de soui	Emplaceme	Equipement	Localisation	Diamètre (pouces)	C (ppmv)	Date mesure	Remarqu
ensat	045	Virtuel Folio 1	Presse-étou pe	1	Vanne manuelle	Refo p2904b	0,75	300 000	22/12/2006	
ensat	046	Virtuel Folio 1	Presse-é tou pe	1	Vanne manuelle	Aspi p2904b	6	12 193	22/12/2006	
ensat	047	Virtuel Folio 1	Presse-é tou pe	1	Vanne manuelle	Refo p2904a	0,5	300 000	22/12/2006	
ensat	048	Virtuel Folio 1	Presse-é tou pe	1	Vanne manuelle	Corps p2904a	0,75	300,000	22/12/2006	
ensat	049	Virtuel Folio 1	Fin de ligne	Autres	Fin de ligne ouverl	Corps p2904a	0,75	300 000	22/12/2006	
ensat	050	Virtuel Folio 1	Fin de ligne	Autres	Fin de ligne ouved	Fcv2941	1	300 000	22/12/2006	LIQ
ensat	051	Virtuel Folio 1	Presse-é tou pe	7	Vanne automatiqu	Rov2901	10	300 000	22/12/2006	
ensat	052	Virtuel Folio 1	Presse-é tou pe	1	Vanne automatiqu	Rov2903/4	10	300 000	22/12/2006	
ensat	053	Virtuel Folio 1	Presse-é tou pe	,	Vanne automatiqu	Rov2903/2	10	300 000	22/12/2006	
ensat	054	Virtuel Folio 1	Presse-é tou pe	,	Vanne automatiqu	Rov2903/6	10	300 000	22/12/2006	
ensat	055	Virtuel Folio 1	Presse-é tou pe	7	Vanne automatiqu	Rov2904/4	10	300 000	22/12/2006	
ensat	056	Virtuel Folio 1	Presse-étou pe	7	Vanne automatiqu	Rov2904/2	10	300 000	22/12/2006	
ensat	057	Virtuel Folio 1	Presse-étou pe	1	Vanne automatiqu	Rov2904/6	10	300,000	22/12/2006	
ensat	058	Virtuel Folio 1	Presse-é tou pe	1	Vanne automatiqu	Rov2905/4	10	300 000	22/12/2006	
ensat	059	Virtuel Folio 1	Presse-é tou pe	37	Vanne automatiqu	Rov2905/2	10	300 000	22/12/2006	

Logiciel GEF tous droits réservés àECS

Document du 03/01/2007 Seuil de fuite : 0 ppmv

Nombre de fuites : 54

Liste des fuites résiduelles de l'unité Bensat

ection	Numéro d'étiquette	N" de plan	Type de soui	Emplaceme	Equipement	Localisation	Diamètre (pouces)	C (ppmv)	Date mesure	Remarqu
ensat (060	Virtuel Folio 1	Presse-étou pe	1	Vanne automatiqu	Rov2905/6	10	300 000	22/12/2006	
9ensat	061	Virtuel Folio 1	Presse-é tou pe	7	Vanne automatiqu	Rov2906/4	10	300 000	22/12/2006	
ensat :	062	Virtuel Folio 1	Presse-étou pe		Vanne automatiqu	Rov2906/2	10	300 000	22/12/2006	
ensat	063	Virtuel Folio 1	Presse-é tou pe	i	Vanne automatiqu	Rov2906/6	10	300 000	22/12/2006	
ensat .	064	Virtuel Folio 1	Presse-é tou pe	1	Vanne manuelle	Ft2925b	0,5	5 365	22/12/2006	
ensat	065	Virtuel Folio 1	Presse-é tou pe	1	Vanne manuelle	Ft2925b	0,5	300 000	22/12/2006	
lensat	066	Virtuel Folio 1	Presse-é tou pe	7	Vanne manuelle	Ft2925b	0,5	300 000	22/12/2006	
ensat	067	Virtuel Folio 1	Presse-é tou pe	1	Vanne automatiqu	Fv2910	10	300 000	22/12/2006	
ensat	068	Virtuel Folio 1	Presse-étou pe	7	Vanne manuelle	Pres psv2906	0,5	300 000	22/12/2006	
lensat	069	Virtuel Folio 1	Presse-é tou pe	7	Vanne manuelle	Pres psv2906	0,5	300 000	22/12/2006	
ensat	070	Virtuel Folio 1	Presse-é tou pe	7	Vanne automatiqu	Rov2901/1	10	300 000	22/12/2006	
9ensat	071	Virtuel Folio 1	Presse-é tou pe	1	Vanne automatiqu	Rov2901/5	10	300 000	22/12/2006	
ensat	072	Virtuel Folio 1	Presse-é tou pe	i	Vanne automatiqu	Rov2901/3	10	300 000	22/12/2006	
lensat	073	Virtuel Folio 1	Presse-é tou pe	1	Vanne automatiqu	Rov2905/1	10	300 000	22/12/2006	
ensat	074	Virtuel Folio 1	Presse-é tou pe	7	Vanne automatiqu	Rov2905/5	10	300 000	22/12/2006	

Logiciel GEF tous droits réservés àECS

Document du 03/01/2007 Seuil de fuite : 0 ppmv

Nombre de fuites : 54

Liste des fuites résiduelles de l'unité Bensat

ection	Numéro d'étiquette	N" de plan	Type de soui	Emplaceme	Equipement	Localisation	Diamètre (pouces)	C (ppmv)	Date mesure	Remarque
ensat	075	Virtuel Folio 1	Presse-étoupe	7	Vanne automatiqu	Rov2905/3	10	300 000	22/12/2006	
ensat	076	Virtuel Folio 1	Presse-é tou pe	7	Vanne manuelle	Pres psv2904	0,5	300 000	22/12/2006	
ensat	077	Virtuel Folio 1	Presse-é tou pe	1	Vanne automatiqu	Rov2904/1	10	300 000	22/12/2006	
ensat	078	Virtuel Folio 1	Presse-étou pe	1	Vanne automatiqu	Rov2904/5	10	300 000	22/12/2006	
Bensat	079	Virtuel Folio 1	Presse-étou pe	3	Vanne automatiqu	Rov2904/3	10	300 000	22/12/2006	
ensat	080	Virtuel Folio 1	Presse-étou pe	Ж	Vanne automatiqu	Rov2903/1	10	300 000	22/12/2006	
Bensat	081	Virtuel Folio 1	Presse-é tou pe	ž	Vanne automatiqu	Rov/2903/5	10	300 000	22/12/2008	
ensat	082	Virtuel Folio 1	Presse-étou pe	À	Vanne automatiqu	Rov2903/3	10	300 000	22/12/2006	
ensat	083	Virtuel Folio 1	Presse-étoupe	j	Vanne automatiqu	Fv2948	2	300 000	22/12/2006	

Logiciel GEF tous droits réservés àECS

Document du 03/01/2007 Seuil de fuite : 0 ppmv

Nombre de fuites : 54

Liste des fuites résiduelles de l'unité LPG

Section	Numéro d'étiquette	N" de plan	Type de sou	Emplaceme	Equipement	Localisation	Diamètre (pouces)	C (ppmv)	Date mesure	Remarqu
LPG	084	Virtuel Folio 1	Presse-é tou pe	1	Vanne manuelle	Vanne It0609	0,75	300 000	22/12/2006	
LPG	085	Virtuel Folio 1	Presse-étou pe	1	Vanne manuelle	Vanne purge ro604	0,75	300 000	22/12/2006	
LPG	086	Virtuel Folio 1	Presse-é tou pe	1	Vanne manuelle	Vanne s2553a	2	300 000	22/12/2006	LIQ
LPG	087	Virtuel Folio 1	Presse-étoupe	1	Vanne manuelle	Vanne Iv2503	2	300 000	22/12/2006	
LPG	088	Virtuel Folio 1	Presse-étoupe	7	Vanne manuelle	Vanne amont Iv2501a	0,75	300 000	22/12/2006	LIQ
LPG	089	Virtuel Folio 1	Presse-é tou pe	I	Vanne manuelle	Vanne t2501	2	300 000	22/12/2006	
LPG	090	Virtuel Folio 1	Presse-étou pe	1	Vanne manuelle	Vanne aval fc2504	2	300 000	22/12/2006	
LPG	091	Virtuel Folio 1	Presse-é tou pe	1	Vanne manuelle	Vanne amont fc2504	2	300 000	22/12/2006	Liq
LPG	092	Virtuel Folio 1	Fin de ligne	Autres	Fin de ligne ouverl	Bouchon 2504	0,75	0	22/12/2006	
LPG	093	Virtuel Folio 1	Presse-étoupe	i	Vanne manuelle	Vanne a droite 2510	2	300 000	22/12/2006	
LPG	094	Virtuel Folio 1	Presse-é tou pe	7	Vanne manuelle	Vanne en bas t2502	2	300 000	22/12/2006	
alciel GEF	tous droits r	éservés à €CS	Dog	ument du 03/	01/2007 Seuil	de fuite : 0 ppmv	Ni	ombre de fuites	: 11	1

Liste des fuites résiduelles de l'unité Platforming

Section	Numéro d'étiquette	N" de plan	Type de soui	Emplaceme	Equipement	Localisation	Diamètre (pouces)	C (ppmv)	Date mesure	Remarque
Platforming	016	Virtuel Folio 1	Presse-é tou pe	1	Vanne manuelle	Bypass fv2302	1,5	300 000	22/12/2006	
Platforming	017	Virtuel Folio 1	Presse-é tou pe	1	Vanne automatiqu	Fov2321	1,5	300 000	22/12/2006	
Platforming	018	Virtuel Folio 1	Presse-étoupe	1	Vanne automatiqu	Pv2391c	1,5	300 000	22/12/2006	
ogiciel G EF	tous droits re	éservés à €CS	Docu	iment du 03/0	01/2007 Seuil d	e fuite ; 0 ppmv	No	mbre de fuites	; 3	1 sur

Liste des fuites résiduelles de l'unité Topping

ection	Numéro d'étiquette	N" de plan	Type de sou	Emplaceme	Equipement	Localisation	Diamètre (pouces)	C (ppmv)	Date mesure	Remarque
opping	020	Virtuel Folio 1	Presse-é tou pe	7	Vanne manuelle	Amont bruleur four h270	3	300 000	22/12/2006	
opping	021	Virtuel Folio 1	Presse-é tou pe	1	Vanne manuelle	Aval pv2711b	2	3 125	22/12/2006	
opping	022	Virtuel Folio 1	Presse-é tou pe	ž.	Vanne automatiqu	Pv2713	2	16 444	22/12/2006	
opping	023	Virtuel Folio 1	Presse-étoupe	1	Vanne automatiqu	Fov2729	2	300 000	22/12/2006	
opping	024	Virtuel Folio 1	Presse-étoupe	3	Vanne manuelle	Aval fov2729	3	300 000	22/12/2006	
opping	025	Virtuel Folio 1	Garniture	×	Pompe	Gam p2709b	0	300 000	22/12/2006	LIQ
opping	026	Virtuel Folio 1	Presse-étoupe	ž	Vanne manuelle	Refo p2709b	6	300 000	22/12/2006	
opping	027	Virtuel Folio 1	Presse-é tou pe	Ž	Vanne manuelle	Refo p2710b	4	300 000	22/12/2006	
opping	028	Virtuel Folio 1	Presse-é tou pe	i	Vanne automatiqu	Fav2730	4	300 000	22/12/2006	LIQ
opping	029	Virtuel Folio 1	Presse-é tou pe	i	Vanne automatiqu	Fv2752	3	300 000	22/12/2006	LIQ

Logiciel G€F tous droits réservés à€CS

Document du 03/01/2007

Seuil de fuite : 0 ppmv

Nombre de fuites : 10

Liste des fuites résiduelles de l'unité Unifining

Section	Numéro d'étiquette	N" de plan	Type de sou	Emplaceme	Equipement	Localisation	Diamètre (pouces)	C (ppmv)	Date mesure	Remarque
Unifining	001	Virtuel Folio 1	Presse-é tou pe	1	Vanne manuelle	Lav2207	2	300 000	22/12/2006	LIQ
Unifining	002	Virtuel Folio 1	Presse-é tou pe	7	Vanne manuelle	Lov2207 amont	2	300 000	22/12/2006	
Unifining	003	Virtuel Folio 1	Presse-é tou pe	1	Vanne automatiqu	Fav2217	1,5	300 000	22/12/2006	LIQ
Unifining	004	Virtuel Folio 1	Fin de ligne	Autres	Fin de ligne ouver	Pres pov2305	0,25	300 000	22/12/2008	
Unifining	005	Virtuel Folio 1	Presse-étou pe	7	Vanne manuelle	Pres pov2305	3	300 000	22/12/2006	
Unifining	006	Virtuel Folio 1	Presse-é tou pe	I	Vanne manuelle	Aval tv2303	0,75	4 111	22/12/2006	
Unifining	007	Virtuel Folio 1	Presse-é tou pe	t	Vanne manuelle	Aspi p2213b	3	300 000	22/12/2006	
Unifining	008	Virtuel Folio 1	Presse-é tou pe	1	Vanne manuelle	Aspi p2213a	3	300 000	22/12/2006	
Unifining	009	Virtuel Folio 1	Presse-é tou pe	1	Vanne manuelle	Refo p2213a	0,5	300 000	22/12/2006	LIQ
Jnifining.	010	Virtuel Folio 1	Presse-étou pe	i	Vanne manuelle	Amont p2213a	3	4 049	22/12/2006	
Jnifining	011	Virtuel Folio 1	Presse-é tou pe	1	Vanne manuelle	Aval p2213a	0,75	300 000	22/12/2006	
Unifining	012	Virtuel Folio 1	Presse-étou pe	1	Vanne manuelle	Aval p2213b	0,75	1 850	22/12/2006	
Unifining	013	Virtuel Folio 1	Presse-é tou pe	1	Vanne manuelle	Amont p2213a	3	300 000	22/12/2006	
Jnifining	014	Virtuel Folio 1	Presse-étou pe	7	Vanne manuelle	Aval p2213a	3	2 540	22/12/2006	
Jnifining	015	Virtuel Folio 1	Presse-é tou pe	1	Vanne manuelle	Aval p2213a	2	300 000	22/12/2006	
oaldiel GE	tous droits	réservés à ccs	. Do	cument du 03	3/01/2007 Seuil	de fuite : 0 ppmv	N	lombre de fuite	s:15	1 s

Liste des fuites résiduelles de l'unité Vacuum

Section	Numéro d'étiauette	N" de plan	Type de soui	Emplaceme	Equipem	ent Localisation	Diamètre (pouces)	C (ppmv)	Date mesure	Remarque
Vacuum	019	Virtuel Folio 1	Presse-é tou pe	İ	Vanne manu	elle Amont pv2054	4	3 432	22/12/2006	
Logiciel G e	EF tous droits	réservés à cc	s Do	ocument du 03	3/01/2007	Seuil de fuite ; 0 ppmv	e.	Nombre de fuit	es : 1	1 sur

Liste des fuites résiduelles de l'unité Visbreaking

Section	Numéro d'étiquette	N" de plan	Type de sou	Emplaceme	Equipeme	nt Localisation	Diamètre (pouces)	C (ppmv)	Date mesure	Remarque
Visbreaking	095	Virtuel Folio 1	Presse-étou pe	X	Vanne automat	tiqu Vanne pv2003 en hau	2	300 000	22/12/2006	
Visbreaking	096	Virtuel Folio 1	Presse-étoupe	7	Vanne manue	lle H2051	2	300 000	22/12/2006	
Logiciei G €F	tous droits	réservés à єcs	Do	cument du 03	V01/2007	Seuil de fuite : 0 ppmv	ħ	Nombre de fuite	es : 2	1 sur 1

VALEURS CORRESPONDANTES AUX EMISSIONS DES FUITES DETECTEES

Numéro de la fuite	Valeur brute (non corrigée par facteur de réponse)	Valeur corrigée par facteur de réponse	Debit (en Kg/an)	Numéro de la fuite	Valeur brute (non corrigée par facteur de réponse)	Valeur corrigée par facteur de réponse	Debit (en Kg/an)	Numéro de la fuite	Valeur brute (non corrigée par facteur de réponse)	Valeur corrigée par facteur de réponse	Debit (en Kg/an)
001	300 000	300 000	1226,40	034	22 000	3 577	8,98	067	300 000	300 000	1226,40
002	300 000	300 000	1226,40	035	300 000	300 000	1226,40	068	300 000	300 000	1226,40
003	300 000	300 000	1226,40	036	300 000	300 000	692,04	069	300 000	300 000	1226,40
004	300 000	300 000	692,04	037	24 000	3 902	6,50	070	300 000	300 000	1226,40
005	300 000	300 000	1226,40	038	300 000	300 000	692,04	071	300 000	300 000	1226,40
006	10 250	4 111	9,96	039	300 000	300 000	692,04	072	300 000	300 000	1226,40
007	300 000	300 000	1226,40	040	57 000	9 266	18,27	073	300 000	300 000	1226,40
008	300 000	300 000	1226,40	041	300 000	300 000	1226,40	074	300 000	300 000	1226,40
009	300 000	300 000	1226,40	042	13 000	2 113	6,06	075	300 000	300 000	1226,40
010	17 000	4 049	9,85	043	10 000	1 626	3,51	076	300 000	300 000	1226,40
011	300 000	300 000	1226,40	044	300 000	300 000	692,04	077	300 000	300 000	1226,40
012	5 900	1 850	5,49	045	300.000	300.000	1226,40	078	300.000	300 000	1226,40
013	300 000	300 000	1226,40	046	75 000	12 193	22,42	079	300 000	300 000	1226,40
014	8 100	2 540	6,96	047	300 000	300 000	1226,40	080	300 000	300 000	1226,40
015	300 000	300 000	1226,40	048	300 000	300 000	1226,40	081	300 000	300 000	1226,40
016	300 000	300 000	1226,40	049	300 000	300 000	692,04	082	300 000	300 000	1226,40
017	300 000	300 000	1226,40	050	300 000	300 000	692,04	083	300 000	300 000	1226,40
018	300 000	300 000	1226,40	051	300 000	300 000	1226,40	084	300 000	300 000	1226,40
019	6 700	3 432	8,71	052	300 000	300 000	1226,40	085	300 000	300 000	1226,40
020	300 000	300 000	1226,40	053	300 000	300 000	1226,40	086	300 000	300 000	1226,40
021	6 100	3 125	8,12	054	300.000	300.000	1226,40	087	300.000	300 000	1226,40
022	41 000	16 444	28,02	055	300 000	300 000	1226,40	088	300 000	300 000	1226,40
023	300 000	300 000	1226,40	056	300 000	300 000	1226,40	089	300 000	300 000	1226,40
024	300 000	300 000	1226,40	057	300 000	300 000	1226,40	090	300 000	300 000	1226,40
025	300 000	300 000	1401,60	058	300 000	300 000	1226,40	091	300 000	300 000	1226,40
026	300 000	300 000	1226,40	059	300 000	300 000	1226,40	092	0	0	0,02
027	300 000	300 000	1226,40	060	300 000	300 000	1226,40	093	300 000	300 000	1226,40
028	300 000	300 000	1226,40	061	300 000	300 000	1226,40	094	300 000	300 000	1226,40
029	300 000	300 000	1226,40	062	300.000	300 000	1226,40	095	300 000	300 000	1226,40
030	300 000	300 000	1226,40	063	300 000	300 000	1226,40	096	300 000	300 000	1226,40
031	300 000	300 000	1226,40	064	33 000	5 365	12,15		TOTAL		94859,38
032	300 000	300 000	692,04	065	300 000	300 000	1226,40		000100000000000000000000000000000000000		
033	300 000	300 000	692,04	066	300 000	300 000	1226,40				

ANNEXE C

Caractérisation des fluides identifiés

Caractérisation des fluides identifiés.

Fluid reference	1	2	3	4	5
Tidia reference	<u> </u>	Fluid data		4	<u>J</u>
	Desulphurized		I		
Fluid name	Naphta	H2 Recycle	Fuel gas	LPG	Bensat Feed
Equipements reference	FROM P2301 TO H2 RECYCLE INJECTION	FROM K2301 TO STREAM 1	FROM R2302 TO FUEL GAS	FROM T2302 TO STORAGE	T2203
pH type	neutral	neutral	neutral	neutral	
Representative fluid	C6-C8	H2	C1-C2	C3-C4	C5
	Fluid	composition (%WT.)			
C1-C2		44,0%	42,0%	1,0%	
C3-C4		30,0%	56,0%	98,0%	0,4%
C5		4,0%	00,070	1,0%	32,0%
C6-C8	65,0%	1,070		1,070	67,6%
C9-C12	35,0%				07,076
	35,0%				
C13-C16					
C17-C25					
C25+					
H2		22,0%	2,0%		
H2O					
H2S					
DEA					
Methanol					
DEA (or MDEA or MEA)					
H2SO4					
Air					
Nitrogen (N2)					
NaOH					
CO2					
CO					
	Fluid con	taminant (%WT or PPN	M)		
H2					
H2S			7 ppm	3 ppm	
H2O	1 ppm	15 ppm			
CI-	1 ppm	8 ppm	20 ppm		
NH3					
O2					
Air					
Nitrogen (N2)					
CO2					
CO					
CN-					
Other sulfide (RSH, RSR)	0,5 ppm				
DEA (or MDEA or MEA)	υ,υ ρριτι				
NaOH					
INd∪⊓					
	specific data				
PPH2 (bar)		30	40,0%		
Acid gas loading (mol/mol)					
HSAS-DEA / MEA / MDEA					
-	ng conditions				
Flow rate (m3/h)	110	2800	8200,0%	900,0%	
PH(*)					
Note					

Plant	Equipment		Emissions	
Unifining	PT2251	H ₂	Gasoline	
Unifining	Valves around FT2251	H ₂	Gasoline	
Unifining	H2251	FG		
Unifining	H2301A	FG		
Unifining	H2301B	FG		
Unifining	H2303	FG		
Unifining	H2201	FG		
Unifining	FCV2204	H ₂		
Unifining	R2201	H ₂	FG	
Unifining	R2202	H ₂	FG	
Unifining	R2252	H ₂	FG	
Unifining	R2251	H ₂	FG	
Unifining	FCV2217	LPG	FG	
Unifining	PCV2217	FG		
Unifining	PC2305	FG		
Platforming	PC2316	FG		
Platforming	FV2302	LPG		
Platforming	FCV2321	LPG		
Platforming	R2301	H ₂		
Platforming	PV2301	H ₂		
Platforming	PCV2391A	FG		
Platforming	PCV2391C	FG		
Platforming	Gruppo H2 vicino a K2301	H ₂		
Platforming	FCV2301	Gasoline		
Platforming	PSV PLT R2301	H ₂		
Platforming	Analyzer cabin	H ₂		
HDS	Corridor K2401C	H ₂		
HDS	Platform compressor HDS	H ₂		
HDS	PG 24076A	H ₂		
HDS	R2482 + PSV	H ₂		
HDS	R2452 - AP	H ₂		
HDS	R2453 - BP	H ₂		
HDS	Platform R2453	H_2		
LPG	Entire Unit	LPG		
Visbreaking	K2051 A/B	H2		
Visbreaking	PCV 2023A	H2		
Visbreaking	Head stabilizer R2003	H ₂	Gasoline	FG
Visbreaking	FCV 2026	LPG		
Visbreaking	Platform R2053	H ₂	Gasoline	H_2S
Visbreaking	R2062	FG		
Visbreaking	H2051	FG		
Vacuum	R22077 - Vacuum Furnace	FG		
Vacuum	R2014	FG		
Vacuum	H2101	FG		
Vacuum	H2102	FG		
DEA/SRU	DEA - Entire Unit	FG		
DEA/SRU	DEA+SRU (Sniffer)	H₂S	Mercaptanes	
Preflash	PSV atmospheric discharge line - vacuum tower			
Preflash	FCV2754			

Preflash	PV2720	FG		
Preflash	HCV2703	FG		
Preflash	PCV2720A	FG		
Topping	PSV topping - column head			
Topping	PSV stabilizer - column head			
Topping	Topping furnace	FG	Gasoline	
Topping	I st & II nd floor R2702	FG	LPG	Gasoline
Topping	main corridor + surrounding area	FG	Gasoline	
TIP	Entire floor area	H ₂	Gasoline	
TIP	Entire Unit			
TIP	Absorber - all valves on 1st and 1Ind floor			
Bensat	Entire Unit	H ₂	Benzene	
HOT Oil	FCVV	FG		
Tank Farm	Sleep way	LPG		
Tank Farm	Gasoline pumps	Gasoline		
Tank Farm	Sphere 186	Butane		
Tank Farm	Sphere 184	Propane		
Tank Farm	3 sphere	LPG		
Tank Farm	PdC	LPG		
Tank Farm	Crude Oil Tanks			

ANNEXE D

Détail des calculs de quantification des fuites

Quantification avec les nouveaux facteurs Fuite/non fuite

			d'émission (
		3	6	30	60
	non fuite	0,019	0,043	0,17	0,27
vanne	fuite	55	73	140	200
	non fuite	0,096	0,13	0,59	0,75
Pompe	fuite	140	160	310	350
	non fuite	0,0026	0,0041	0,01	0,014
bride	fuite	29	45	88	120
	non fuite	0,007	0,014	0,051	0,081
tout élément	fuite	56	75	150	210

	Unité Bensat et TIP	Unité LPG	Unité Platform ing	Unité Topping	Unité Unifining	Unité Vacuum	Unité Visbreakin g
Composi tion du fluide:	Essence: C3-C4 0,4% C5 32%; C6-C8 67,5%	LPG:C1- C2 1%;C3- C4 98% C5 1%	Fuel gaz:C1- C2 42%;C3- C4 56% H2 2%	Fuel Gaz:C6- C8 65%;C9- C12 35%	Essence:C1 C2 44%;C3- C4 30% C5 4%; H2 22%	Fuel Gaz:C1- C2 42%;C3- C4 56% H2 2%	Essence:C 1-C2 44%;C3- C4 30% C5 4%; H2 22%
massiqu e de définition de fuite:	3 230	0.429	0.464	0.796	1 031	0.550	0.005

	-	ensat		TP.		at + TiP	LPG		rmina			Ŧ					finina		B. /	Visbre	data a	
	BE	nsat		IP	Bensa	at + HP	LPG	piatro	irming			Topp	ing			Uni	rining		Vacuum	VISDre	aking	4
				TIP:							Fuites		Fuites						Fuites			
		Fuites non		Fuites non		Fuites non					non vue		non vue			Fuites non			non vue			
	Fuite		Fuite	vue par la		vue par la				Fuite		Fuite	par la		Fuite	vue par la	Fuite	Fuites non	par la		Fuite	
	détecté		détecté		détecté		détecté			détecté	camera	détecté			détecté	camera	détecté	vue par la	camera		détecté	
	par	mais	par	mais	par	mais	par			par	mais	par	mais	détecté par	par	mais	par	camera mais		Fuite détecté		Somme
	caméra e		caméra et		caméra et		caméra	Fuite dé		caméra		caméra			caméra		caméra			par caméra el		par type
	FID	par FID	FID	par FID	FID	par FID	et FID	camér		et FID	par FID	et FID	par FID	FID	et FID	FID	et FID	FID	par FID		FID	de fuite
									Fuei											H2 recycle		
									Gaz C1-										Fuel Gaz		C3-C4	
		eed C3-C4					C2	C2	C2					LPG C1-C2					C1-C2	44%;C3-C4	0,4%	
				C3-C4 0,4%		4 0,4%	1%;C3-		42%;C3-				az C1-C2					Gaz C1-C2	42%;C3-	30%	C5 32%;	
			C5 32%; (C6-C8		6; C6-C8	C4 98%		C4 56%	Essenc	e C6-C8	42%;C	3-C4 56%			ce C6-C8		C3-C4 56%	C4 56%	C5 4%; H2	C6-C8	
Nature du fluide	67	7,5%	67,5%		67	,5%	C5 1%	C5 1%	H2 2%	65%;C9-	C12 35%	н	2 2%	C5 1%	65%;C9	9-C12 35%		H2 2%	H2 2%	22%	67,5%	
fin de ligne (bouchon,																						
évent, purge)	10	1			10	1	1			L.							1		1			13
pompe						_				1									<u> </u>			1
vanne	7	3	29	4	36	7	10	2	1	2	1	4	- 1	1	9	3	1	1	1	1	1	82
Somme des fuites	17	4	29	4	46	8	11	2	1	3	1	4	1	1	9	3	2		1	1	1	96

	Re	nsat	т т	IP	LPG	platfo	rmina			Topping				Unif	ining		Vacuum	Visbrea	akina	
	Fuite détecté par caméra et FID	Fuites non vue par la camera mais	Fuite détecté par	TIP: Fuites non vue par la camera mais détecté par FID	Fuite détecté par caméra et FID	Fuite dél caméra	lecté par	Fuite détecté par caméra et FID	Fuites non vue par la camera mais détecté par FID	Fuite détecté par caméra et FID	Fuites non vue par la camera mais détecté par FID	Fuite détecté par caméra et FID	Fuite détecté par caméra et FID	Fuites non vue par la camera mais	Fuite détecté par caméra et FID	Fuites non vue par la camera mais détecté par	Fuites non vue par la camera mais détecté par FID	Fuite détecté par caméra el FID	Fuite détecté par	
fraction massique de C1-	Bensat Fo 0,4% C5 32%; 67,5%	eed C3-C4 C6-C8	Essence C C5 32%; C 67,5%	3-C4 0,4% 06-C8	C4 98% C5 1%	LPG C1- C2 1%;C3- C4 98% C5 1%	Fuel Gaz C1-C2 42%;C3- C4 56% H2 2%	Essenc 65%;C9-	e C6-C8 -C12 35%	42%;C3- H2	C4 56% 2%	LPG C1 C2 1%;C3- C4 98% C5 1%		ce C6-C8 3-C12 35%	42%;C H	iaz C1-C2 3-C4 56% 12 2%	Fuel Gaz C1- C2 42%;C3- C4 56% H2 2%	H2 recycle C1-C2 44%;C3-C4 30% C5 4%; H2 22%	Essence C3-C4 0,4% C5 32%; C6-C8 67,5%	
C2 .					0,010	0,010	0,420			0,4	120	0,010			0	,420	0,420	0,44		
fraction massique C3-C4 fraction massique C5		320	0,0		0,980	0,980	0,560			0,5	60	0,980			0	,560	0,560	0,3	0,004	
		.675	0.6		0,0.0	0,010			05				.					0,04		
fraction massique C6-C8	0.	,0/0	0,6	3/5					,65),65					0,675	
fraction massique C9-C12 Somme des fractions								0,	,35				(),35						
massiques Estimation des	0,	999	0,9	999	1,0	1,0	1,0		1	0,5	60	1,000	1.	0000	0,	9800	0,980	0,7800	0,999	
émissions de C1- C2(kg/an) avec le facteur " fuite" Estimation des					53	10	202			809	0,070	5			408	0,07	0,07	212		1 700
émissions de C3- C4(kg/an) avec le facteur " fuite" Estimation des	33	0,00	56	0,0027	5202	944	270			1079	0,093	472			545	0,09	0,09	145	2	8 748
émissions de C5 (kg/an) avec le facteur " fuite"	2649	0,18	4471	0,21	53	10						5						19	154	7 362
Estimation des émissions de C6-C8 (kg/an) avec le																				
facteur " fuite" Estimation des émissions de C9-C12 (kg/an) avec le facteur " fuite"	5588	0,38	9431	0,45				767	0,108				2819 1518	0,325					325	19 58 2 284
emissions estimés des composés (kg/an)	8270	0,56	13958	0,67	5309	964	472	2190	0,17	1889	0,16	482	4336	0,499	953	0,16	0,16	376	481	39 68
Estimation des émissions de COV (kg/an)	8278	0,56	13972	0,67	5309	964	482	2190	0,17	1927	0,17	482	4336	0,499	972	0,17	0,17	482	482	39 87

1 1 1 1 1 1 1 1 1

d'heure par an 8760

 Bensat
 TIP
 LPG
 ng
 Topping
 Unifining
 Vacuum
 king

 Estimation das demissions de COV (kg/ari)
 8279
 13973
 5309
 1445
 4599
 5309
 0,166
 964

Estimation des	
émissions de C1-	
C2(kg/an) avec le	
facteur " fuite"	1 700
Estimation des	
émissions de C3-	
C4(kg/an) avec le	
facteur " fuite"	8 748
Estimation des	
émissions de C5	
(kg/an) avec le	
facteur " fuite"	7 362
Estimation des	
émissions de C6-C8	
(kg/an) avec le	
facteur " fuite"	19 588
Estimation des	
émissions de C9-C12	
(kg/an) avec le	
facteur " fuite"	2 284
Somme des	
emissions estimés	
des composés	
(kg/an)	39 682
Estimation des	
émissions de COV	
(ka/an)	39 878

Calcul de la sensibilité de la caméra Edic

 $\boldsymbol{E}_{dic} = \left(\,\boldsymbol{E}_{sds}\,\right) \sum_{i=1}^{k} \boldsymbol{x}_{i}$

Where:

Equipment and the state of the daily instrument check, grams per hour. X; Mass fraction of detectable chemical(s) i seen by the optical gas imaging instrument, within the distance to be used in paragraph (i)(2)(1)() of this section, at or below the standard detection at or below the standard detection sensitivity level, Esds.

E_{otts} = Standard detection sensitivity from Table A, grams per hour.

k = Total number of detectable chemicals emitted from the leaking equipment and seen by the optical gas imaging instrument.

fréquence de	fréquence en	détection (g/h))
surveillance	jours	Standard	minimum
bimestrielle	60	60	6
semi- trimestrielle	45	85	8,5
mensuelle	30	100	10

			Ben	sat	Т	IP	LF.	G		platfe	orming				Тор	pina				Unifi	nina		Vacu	uum		Visbre	eaking	
			Bensat F C4 0 C5 32%;	,4% C6-C8	Essence C C5 32%; C 67,5%		LPG C1-0 C4 9 C5	98%	LPG C1-C2 1%;C3-C4 Fuel 0 98% C5 1%		Fuel Gaz C1 C4: H2			6-C8 65%;C9 2 35%	- C4	C1-C2 42%;C3 1 56% 12 2%	C4	C2 1%;C3- 98% 1%	Essence 65%;C9-		Fuel Ga 42%;C3- H2	-C4 56%	Fuel Ga: 42%;C3- H2	C4 56%	H2 recyc 44%;C3- C5 4%;	C4 30%	Essence C C5 32%;	C6-C8
		Sensibilité 0 km/h (g/h)	% masse	g/h	% masse	g/h	% masse	g/h	% masse	g/h	% masse	g/h	% masse	g/h	% masse	g/h	% masse	g/h	% masse	g/h	% masse	g/h	% masse	g/h	% masse	g/h	% masse	g/h
	Ethane	0,6		- 0		0	0,005	0,003	0,005	0,003	0,21	0,126		Ū.	0,21	0,126	0,005	0,003		0.	0,21	0,126	0,21	0,126	0,22	0,132		0-
C1-C2	Méthane	0,8					0,005	0,004	0,005	0,004	0,21	0,168			0,21	0,168	0,005	0,004			0,21	0,168	0,21	0,168	0,22	0,176		
C3	Propane	0,4	0,002	0,0008	0,002	0,00	0,49	0,196	0,49	0,196	0,28	0,112			0,28	0,112	0,49	0,196			0,28	0,112	0,28	0,112	0,15	0,06	0,002	0,001
C4	Butane	0,4	0,002	0,0008	0,002	0,00	0,49	0,196	0,49	0,196	0,28	0,112			0,28	0,112	0,49	0,196		0	0,28	0,112	0,28	0,112	0,15	0,06	0,002	0,001
C5	Pentane	3	0,32	0,96	0,32	0,96	0,01	0,03	0,01	0,03							0,01	0,03		0					0,04	0,12	0,32	0,960
1	Benzène	3,5	0,225	0,7875	0,225	0,79							0,217	0,758					0,217	0,758							0,225	0,788
	Heptane	1,8	0,225	0,405	0,225	0,41							0,217	0,390					0,217	0,390							0,225	0,405
C6-C8	Octane	1,2	0,225	0,27	0,225	0,27							0,217	0,26					0,217	0,260							0,225	0,270
	Somme		1,0	2,42	1,00	2,42	1,0	0,43	1	0,43	0,98	0,52	0,65	1,41	0,98	0,518	1	0,429	0,65	1,41	0,98	0,518	0,98	0,518	0,78	0,548	1,00	2,4

	Bensat	TIP	LPG	platforming	platforming		Topping		Unifi	ning	Vacuum	Visbr	eaking
Composi tion du fluide:	C5 32%; C6-C8	Essence C3-C4 0,4% C5 32%; C6-C8 67,5%	LPG C1-C2 1%;C3-C4 98% C5 1%	LPG C1-C2 1%;C3-C4 98% C5 1%	Fuel Gaz C1-C2 42%;C3 C4 56% H2 2%	Essence C6-C8 65%;C9- C12 35%	Fuel Gaz C1-C2 42%;C3-C4 56% H2 2%	LPG C1-C2 1%;C3- C4 98% C5 1%	Essence C6-C8 65%;C9-C12 35%	Fuel Gaz C1-C2 42%;C3-C4 56% H2 2%	Fuel Gaz C1-C2 42%;C3-C4 56% H2 2%	H2 recycle C1-C2 44%;C3-C4 30% C5 4%; H2 22%	Essence C3-C4 0,4% C5 32%; C6-C8 67,5%
Débit massiqu e de définition de fuite:													
E _{dic} (g/h)	2,43	2,43	0,43	0,43	0,53	2,17	0,53	0,43	2,17	0,53	0,53	0,70	2,43

Calcul de la sensibilité de la caméra Edic Simplification

			Bensat + Visbreaki	-		tforming + oping	Topping+	rming + Unifining+ cuum		- Unifining	Visbr	eaking
			C4 (C5 32%	Feed C3- 0,4% ; C6-C8 5%	98	2 1%;C3-C4 8% 5 1%	42%;C3	az C1-C2 I-C4 56% I 2%		e C6-C8 C12 35%	C4	1-C2 44%;C3- 30% H2 22%
		Sensibilité 0 km/h (g/h)	% masse	Sensibilit é relative g/h		Sensibilité relative g/h	% masse	Sensibilité relative g/h	% masse	Sensibilité relative g/h	% masse	Sensibilité relative g/h
	Ethane	0.6		Ü	0,005	0,003	0,21	0,126		Ū,	0,22	0,132
C1-C2	Méthane	0,8			0,005	0,004	0,21	0,168			0,22	0,176
C3	Propane	0,4	0,002	0,0008	0,49	0,196	0,28	0,112			0,15	0,06
C4	Butane	0,4	0,002	0,0008	0,49	0,196	0,28	0,112			0,15	0,06
C5	Pentane	3	0,32	0,96	0,01	0,03					0,04	0,12
	Benzène	3,5	0,225	0,7875					0,217	0,76		
	Heptane	1,8	0,225	0,405					0,217	0,39		
C6-C8	Octane Somme	1,2	0,225 1,00	0,27 2,42	1,0	0,429	0,98	0,518	0,217 0,65	0,26 1,408	0,78	0,548

Unité	Bensat + TIP +	LPG+ Platforming +	platforming +	Topping + Unifining	Visbreaking
Composit ion du fluide:	Bensat Feed C3-C4 0,4% C5 32%; C6-C8 67,5%	LPG C1-C2 1%;C3-C4 98% C5 1%	Fuel Gaz C1-C2 42%;C3-C4 56% H2 2%	Essence C6-C8 65%;C9-C12 35%	H2 recycle C1-C2 44%;C3- C4 30% C5 4%; H2 22%
Débit massique de définition de fuite: E _{dic} (g/h)		0,429	0,529	2,167	0,703

			Bensat + TIP +		LPG+ Pla	tforming +	platfo	rming +	Topping -	- Unifining	Visbr	eaking
			Bensat F	eed C3-	LPG C1-C	2 1%;C3-C4	Fuel Ga	z C1-C2	Essend	e C6-C8	H2 recycle C	1-C2 44%;C3-
		Sensibilité 0 km/h (g/h)	% masse	Sensibilit é relative g/h		Sensibilité relative g/h	% masse	Sensibilité relative g/h	% masse	Sensibilité relative g/h	% masse	Sensibilité relative g/h
	Ethane	0,6			0,005	0,003	0,21	0,126			0,22	0,132
C1-C2	Méthane	0,8			0,005	0,004	0,21	0,168			0,22	0,176
C3	Propane	0,4	0,002	0,0008	0,49	0,196	0,28	0,112			0,15	0,06
C4	Butane	0,4	0,002	0,0008	0,49	0,196	0,28	0,112			0,15	0,06
C5	Pentane	3	0,32	0,96	0,01	0,03					0,04	0,12
	Benzène	3,5	0,225	0,7875					0,217	0,76		
	Heptane	1,8	0,225	0,405					0,217	0,39		
C6-C8	Octane	1,2	0,225	0,27					0,217	0,26		
	Somme		1,00	2,42	1,0	0,429	0,98	0,518	0,65	1,408	0,78	0,548

Unité	Bensat + TIP +	LPG+ Platforming +	platforming +	Topping + Unifining	Visbreaking
Composit ion du fluide:	Bensat Feed C3-C4 0,4% C5 32%; C6-C8 67,5%	LPG C1-C2 1%;C3-C4 98% C5 1%	Fuel Gaz C1-C2 42%;C3-C4 56% H2 2%	Essence C6-C8 65%;C9-C12 35%	H2 recycle C1-C2 44%;C3- C4 30% C5 4%; H2 22%
Débit massique de définition de fuite: E _{dic} (g/h)		0,429	0,529	2,167	0,703

Quantification avec les facteurs d'émission stratifiés

		Facteur	Facteur d'émissions (kg/h/source								
		série de v	aleurs visionnées(ppmv)							
Type d'équipement	Service	0 - 1,000	1,001 à 10,000	> 10,000							
Vannes	Gaz/Vapeur	0,00014	0,00165	0,0451							
	Liquide léger	0,00028	0,00963	0,0852							
	Liquide lourd	0,00023	0,00023	0,00023							
Pompes	Liquide léger	0,00198	0,0335	0,437							
	Liquide lourd	0,0038	0,0926	0,3885							
Compresseur	Gaz/Vapeur	0,01132	0,264	1,608							
limiteur de pressions	Gaz/Vapeur	0,0114	0,279	1,691							
brides connecteur	Tout type	0,00002	0,00875	0,0375							
lignes d'extrémité ouverte	Tout type	0,00013	0,00876	0,01195							

	Bensat TIP				Bensat + TiP LPG																	
	Ben	ısat	TIP		Bensa	at + TiP	LPG	platfo	rming			Topping				Un	ifining		Vacuum	Visbr	eaking	
	Fuite détecté par caméra et FID		Fuite détecté par caméra et FID	TIP: Fuites non vue par la camera mais détecté par FID	détecté par caméra et	Fuites non vue par la camera mais détecté par FID	Fuite détecté par caméra et FID	Fuite dé camér	tecté par	Fuite détecté par caméra et FID	camera mais	Fuite détecté par caméra et FID		détecté par	Fuite détecté par caméra et FID	Fuites non vue par la camera mais détecté par FID		Fuites non vue par la camera mais détecté par FID	Fuites non vue par la camera mais détecté par	Fuite détecté par	Fuite détecté par caméra et FID	Somme par type
Nature du fluide	Bensat Feed C5 32%; Ci		Essence C3-C4 0, C5 32%; C6-C8 67		C5 32%	4 0,4% 6; C6-C8 7,5%	LPG C1-C2 1%;C3-C4 98% C5 1%	LPG C1- C2 1%;C3	Fuel Gaz C1-C2 42%;C3- C4 56% H2 2%		e C6-C8 -C12 35%	42%;C3	3-C4 56%	LPG C1- C2 1%;C3- C4 98% C5 1%	Essenc	e C6-C8 C12 35%	42%;C	az C1-C2	Fuel Gaz C1-C2 42%;C3-C4 56% H2 2%	recycle C1-C2 44%;C3- C4 30% C5 4%; H2 22%	Essence C3-C4 0,4% C5 32%; C6-C8 67,5%	de fuite
fin de ligne (bouchon, évent, purge)	10	1			10	1	1										1					13
pompe										1												1
vanne	7	3	29	4	36	7	10	2	1	2	1	4	1	1	9	3	1	1	1	1	1	82
Somme des fuites	17	4	29	4	46	8	11	2	1	3	1	4	1	1	9	3	2	,	1	1	1	96

	Ben	ısat	TIP.		LPG	pla	tformina			Topping				Uni	ining		Vacuum	Visbre	eaking	1
	Fuite détecté par caméra et FID	Fuites non vue par la camera mais détecté par FID	Fuite détecté par caméra et FID	Fuites non vue par la camera mais détecté par FID	Fuite détecté par caméra et FID	Fuite déter		Fuite détecté par	camera mais détecté		camera mais	Fuite détecté par	Fuite détecté par caméra et FID	Fuites non vue par la camera mais détecté par FID	Fuite détecté par caméra et FID	Fuites non vue par la camera mais détecté par FID	Fuites non vue par la camera mais détecté par FID	Fuite détecté par caméra et FID	Fuite détecté par caméra et FID	
	Bensat Feed C3 C5 32%; C6-C8		Essence C3-C4 0, C5 32%; C6-C8 67		C4 98% C5 1%	C4 98% C5 1%	Fuel Gaz C1- C2 42%;C3-C4 56% H2 2%	Essenc 65%;C9-		42%;C3	az C1-C2 I-C4 56% 2 2%	LPG C1- C2 1%;C3- C4 98% C5 1%	Essenc 65%;C9-	e C6-C8 -C12 35%	42%;C3	az C1-C2 3-C4 56% 2 2%	Fuel Gaz C1-C2 42%;C3- C4 56% H2 2%	44%;C3-C4 30% C5 4%; H2 22%	Essence C3 C4 0,4% C5 32%; C6 C8 67,5%	
fraction massique de C1-C2						0,010 0,010 0,420					420	0,010				420	0,420	0,44		1
fraction massique C3-C4	0,0		0,004		0,980	0,980	0,560			0,	560	0,980			0,	560	0,560	0,3	0,004	1
fraction massique C5	0,3		0,320		0,010	0,010						0,010						0,04	0,32	1
fraction massique C6-C8	0,6	75	0,675					0,						.65					0,675	1
fraction massique C9-C12								0,	35					35						1
Somme des fractions massiques	0,9	99	0,999		1,0	1,0	1,0			0,	560	1,000	1,0	1000	0,9	9800	0,980	0,7800	0,999	1
Estimation des émissions de C1-C2(kg/an)					76	15	313			1254	35	7			357	35	35	328		2 45
Estimation des émissions de C3-C4(kg/an)	25	1	87	12	7417	1463	418			1672	47	731			477	47	47	224	3	12 6
Estimation des émissions de C5 (kg/an)	2007	106	6926	955	76	15	0					7						30	239	10 3
Estimation des émissions de C6-C8 (kg/an)	4233	223	14610	2015		0	0	3459	55				4366	164					504	29 6
Estimation des émissions de C9-C12 (kg/an)								1862	30				2351	89						4 33
Somme des emissions estimes des composés (kg/an)	6265	329	21623	2982	7568	1493	731	5321	84	2926	83	746	6717	253	834	83	83	582	746	59 4
			21644	2985			746	5321	84	2985		746	6717	253	851	84	84			59 7

nombre d'heure par an 8760

				platformi				Visbreaki
_	Bensat	TIP	LPG	ng	Topping	Unifining	Vacuum	ng
Estimation des émissions de COV (kg/an)	6601	24630	7568	2239	9221	7906	84	1493

Estimation des émissions de C1-C2(kg/an)	
avec le facteur " fuite"	2 458
Estimation des émissions de C3-C4(kg/an)	
avec le facteur " fuite"	12 671
Estimation des émissions de C5 (kg/an) avec	
le facteur " fuite"	10 361
Estimation des émissions de C6-C8 (kg/an)	
avec le facteur " fuite"	29 629
Estimation des émissions de C9-C12 (kg/an)	
avec le facteur " fuite"	4 331
Somme des emissions estimés des	
composés (kg/an)	59 449
Estimation des émissions de COV (kg/an)	
Estimation des emissions de CC+ (rigidit)	59 742

Bilan Emissions

Estimation des émissions de COV Calculé avec les facteurs "fuites /non fuites" (kg/an)

	_		* DC	platformi				Vi alama laima	C
_	Bensat	TIP	LPG	ng	Topping	Unifining	Vacuum	Visbreaking	Somme
Estimation des									
émissions de COVT									
(kg/an)	8279	13973	5309	1445	4599	5309	0,166	964	39 878

22252

Estimation des émissions de COV Calculé avec les facteurs stratifiés (kg/an)

				platformi					
	Bensat	TIP	LPG	ng	Topping	Unifining	Vacuum	Visbreaking	Somme
Estimation des									
émissions de COVT									
(kg/an)	6601	24630	7568	2239	9221	7906	84	1493	59 742

31231

Estimation des émissions de COV Calculé avec les équations de corrélations (kg/an)

	Unité Bensat et TIP	Unité LPG	Unitè Platformin g		Unité Unifining	Unité Vacuum	Unité Visbreaking	Somme
Estimation des émissions de COVT (kg/an)	53 444	12 264	3 679	10 023	12 988	9	2 453	94 860

Bilan des émissions de COVT calculés avec les 3 méthodes (kg/an)

	Unité Bensat et TIP	Unité LPG	Unité Platformi ng	Unité Topping	Unité Unifining	Unité Vacuum	Unité Visbreaking	Somme
Estimation des émissions de COV Calculé avec les facteurs "fuites /non fuites" (kg/an)	22 252	5309	1445	4599	5309	0,166	964	39 878
Quantification avec les équations de corrélations (kg/an)	53 444	12 264	3 679	10 023	12 988	9	2 453	94 860
Estimation des émissions de COV Calculé avec les facteurs stratifiés (kg/an)	31 231	7568	2239	9221	7906	84	1493	59 742

ANNEXE E

Conditions météorologiques les 18 et 19 Décembre 2006

Annexe E: Données météorologiques

Relevées le 18 décembre 2006

Time	Temperature[°C]	Wind Speed[m/s]	Wind direction[°N]	Pressure[hPa]	Rain[mm/h]	Umidity[%]	Heat radiation[W/m2]
1	8	<1	0	1014	0	46	0
2	7	<1	0	1013	0	53	0
3	7	<1	0	1013	0	54	0
4	7	<1	0	1012	1	59	0
5	7	<1	36	1012	1	64	0
6	7	1	27	1011	6	66	0
7	7	1	33	1011	0	62	0
8	7	no wind	29	1011	0	60	0
9	7	no wind	0	1011	0	60	27
10	7	1	49	1010	0	58	116
11	8	1	26	1010	0	54	243
12	9	1	55	1010	0	46	222
13	10	<1	0	1010	0	41	421
14	11	<1	0	1009	0	34	322
15	11	<1	0	1009	0	32	117
16	10	<1	0	1008	0	45	21
17	10	<1	0	1008	0	52	0
18	8	<1	0	1008	0	59	0
19	8	<1	0	1008	0	64	0
20	8	<1	0	1008	0	67	0
21	8	<1	0	1008	0	66	0
22	8	<1	0	1008	0	63	0
23	8	<1	0	1009	0	61	0
24	7	<1	0	1008	0	55	0

Relevées le 19 décembre 2006

Time	Temperature[°C]	Wind Speed[m/s]	Wind direction[°N]	Pressure[hPa]	Rain[mm/h]	Umidity[%]	Heat radiation[W/m2]
1	7	<1	*	1008	0	52	0
2	7	<1	*	1008	0	56	0
3	6	<1	*	1008	0	57	0
4	6	<1	*	1008	0	56	0
5	6	1	32	1008	0	55	0
6	6	1	27	1007	0	55	0
7	5	1	34	1008	0	53	0
8	5	1	38	1008	0	53	0
9	5	2	29	1009	0	53	89
10	7	3	20	1009	0	40	298
11	8	3	16	1010	0	28	397
12	9	2	20	1010	0	27	431
13	10	3	16	1010	0	32	395
14	10	2	20	1009	0	35	267
15	10	1	26	1010	0	35	168
16	9	<1	27	1010	0	33	58
17	8	1	22	1010	0	32	2
18	8	1	44	1011	0	34	0
19	7	1	43	1011	0	38	0
20	6	1	30	1012	0	38	0
21	6	1	17	1013	0	38	0
22	5	1	22	1013	0	39	0
23	5	1	28	1014	0	39	0
24	4	2	28	1014	0	38	0