Impianto a ciclo combinato "G. Ferraris" di Leri

Nota sulle sostanze inquinanti pertinenti

Sulla base delle considerazioni tecnologiche e di processo, nonché delle certificazioni analitiche di controllo eseguite ai sensi della normativa vigente e delle metodologie ufficiali, si dichiara che, ai punti di controllo delle emissioni in atmosfera e degli scarichi di cui si richiede autorizzazione, si ritengono pertinenti le sostanze inquinanti riportate rispettivamente nel seguito (rif. allegato III al D.lgs.59/05).

Non è evidente la presenza di altre sostanze inquinanti, in particolare di sostanze classificabili come pericolose.

La significatività delle emissioni delle sostanze e composti individuati, riguardo agli effetti ambientali prodotti, è valutata sperimentalmente tramite i sistemi di monitoraggio attualmente attivi ed ai monitoraggi ambientali eseguiti:

- rete di rilevamento della qualità dell'aria (vedi descrizione della rete e dati di sintesi rilevati in allegato B.18);
- ➤ campagne di monitoraggio ambientale eseguite in base alle prescrizioni contenute nel decreto MAB di pronuncia di compatibilità ambientale DEC/VIA/727 dell'11.4.1991 (in **allegato 1** è riportato l'elenco delle indagini ambientali eseguite).

Aria

Analiti potenzialmente presenti in concentrazioni rilevabili nel flusso in uscita al camino:

- Ossidi di azoto e altri composti dell'azoto *
- Monossido di carbonio *
- Composti organici volatili
- Polveri
- *) parametri monitorati in continuo all'emissione come medie orarie (con temperatura, pressione, %O2)

Il processo di produzione di un gruppo a ciclo combinato è costituito da due cicli termodinamici in cascata, dove il calore in uscita dal primo costituisce quello di ingresso del secondo.

Nel primo ciclo termodinamico a gas (Brayton) la miscela gassosa ad alta temperatura prodotta a seguito della combustione del gas naturale viene fatta espandere nella turbina a gas.

Il combustibile è gas naturale introdotto in camera di combustione con l'aria comburente prelevata dall'ambiente mediante un sistema di aspirazione, costituito da condotti, filtri e silenziatori. Il sistema di combustione in turbina è costituito da una serie di combustori del tipo a secco (senza iniezione di acqua/vapore), adatti al contenimento della formazione di NO_X e CO.

I gas in uscita dalla turbina a gas viene convogliato nel generatore di vapore a recupero (GVR) nel quale avviene lo scambio termico tra i gas e l'acqua del ciclo termico a vapore (Rankine).

In atmosfera, tramite il camino posto all'interno delle torri di raffreddamento a secco, vengono dunque emessi i gas esausti dalla combustione del gas naturale con aria.

Gli inquinanti principali presenti nei fumi sono dunque ossidi di azoto NO_X (reazioni di ossidazione dell'azoto atmosferico) e monossido di carbonio CO (combustione incompleta degli idrocarburi presenti nel gas naturale a CO_2).

Non possono essere considerate tipiche di un impianto a Ciclo Combinato le altre emissioni inquinanti, tipiche e normate generalmente per i processi di produzione termoelettrica tradizionale, ovvero SO₂, particolato, e microinquinanti inorganici.

Le concentrazioni di particolato nell'emissione vengono peraltro monitorate tramite misure annuali, che attestano concentrazioni di un ordine di grandezza inferiore al limite autorizzato di 5 mg/Nm³.

Le caratteristiche del combustibile sono garantite dal fornitore e segnalate all'impianto mensilmente (in **allegato 2** è riportato a titolo esemplificativo il verbale di misura del dicembre 2005).

Quanto sopra è confermato dalle campagne di misura delle emissioni seguite nel 1997 e 1999 ai sensi del DPR 12.7.90 a seguito della messa a regime dell'impianto, per la verifica delle concentrazioni di IPA e metalli. (rapporti di prova in **allegati 3 e 4**)

Dal punto di vista teorico, l'indicazione degli inquinanti ritenuti "pertinenti" è avvalorata dagli esiti della procedura di VIA (DEC/VIA/727 del 1991), oltre che da quanto riportato nel documento di riferimento per l'applicazione delle migliori tecniche disponibili per grandi impianti di combustione, emanato nel luglio 2006 dalla Commissione Europea (BREF LCP p.to 2.5 Combined Cycle; p.to 7.1.7 Control of emission to air from gas-fired turbine and combined cycles), che per gli impianti a ciclo combinato a gas naturale fornito da rete considera pertinenti i soli livelli emissivi do NO_X e CO.

Acqua

Analiti potenzialmente rilevabili (in concentrazioni medie almeno superiori 10⁻² volte il limite) allo scarico in acque superficiali:

- Materiali in sospensione (SST e TDS) *
- Sostanze degradabili con richiesta di ossigeno (misurabili come BOD, COD)
- Idrocarburi (oli minerali) *
- Cloruri
- Metalli (Fe)
- Sostanze eutrofizzanti (nitriti, nitrati)
- *) parametri monitorati in continuo allo scarico (con conducibilità, O₂, pH, temperatura)

La sorgente fredda del ciclo a vapore è costituita dall'acqua prelevata attraverso il circuito acqua di circolazione e che viene restituita senza alterazione delle caratteristiche chimiche, subendo il solo incremento termico.

La temperatura del recettore è controllata periodicamente a valle della restituzione ed il valore massimo rilevato è sempre risultato inferiore a 21 °C.

Le acque reflue dell'impianto, avviate a trattamento, sono costituite dalle seguenti tipologie:

- Acque potenzialmente inquinabili da oli
 - Tali scarichi derivano principalmente dagli spurghi e dai lavaggi di aree coperte inquinabili da oli (essenzialmente di edifici dove è dislocato il macchinario principale) e dalla raccolta delle acque meteoriche di aree quali i bacini serbatoi gasolio, la stazione decompressione metano, il deposito oli, le zone GVR e trasformatori.
- Acque acide o alcaline
 - Sono costituite solo dai reflui dal controlavaggio dell'impianto di filtrazione del condensato, dall'impianto di produzione acqua demineralizzata, da lavaggi del ciclo acqua vapore e del GVR. Tali reflui subiscono un trattamento chimico/fisico nell'impianto repente in Centrale (disoleazione, neutralizzazione con latte di calce e acido cloridrico, chiarificazione con uso di cloruro ferrino e polielettrolita) prima dello scarico nella Roggia.
- Acque sanitarie
 - Sono costituite dagli effluenti provenienti dai servizi igienici, dalle docce degli spogliatoi e dalla mensa di Centrale.
 - L'impianto di trattamento consiste nella fase di ossidazione aerobica, sedimentazione e sterilizzazione con UV, per il successivo ricircolo al trattamento acque acide/alcaline.

In linea teorica possono confluire al trattamento acque tutte le sostanze utilizzate in impianto, come additivi o reagenti in forma solida o liguida riportati nella scheda B1.1_rev1.

Su tali basi, allo scarico autorizzato nel recettore vengono mensilmente effettuate analisi complete dei parametri normati dal D.lgs.152/06 solo potenzialmente rilevabili che, oltre a quelli effettivamente rilevabili e pertanto indicati come pertinenti, sono:

- Metalli (Cr, Cu)
- solfati
- fluoruri

- azoto ammoniacale
- tensioattivi
- inquinanti biologici (escherichia coli coliformi totali / fecali streptococchi)

In **allegato 5** sono riportate le analisi eseguite da ARPA nel corso del 2005 e due esempi del bollettino di analisi mensili eseguite dal laboratorio chimico di centrale.

Centrale di Leri

Monitoraggi ambientali eseguiti a seguito delle prescrizioni contenute nel Decreto VIA di autorizzazione alla costruzione della Centrale (DEC/VIA/727 dell'11.4.1991)

Determinazione di microinquinanti organici ed inorganici nelle emissioni gassose

Rapporti di prova per la determinazione della concentrazione di IPA e metalli nei flussi gassosi convogliati.

1. **Titolo:** Determinazione di microinquinanti inorganici ed organici (IPA) nelle emissioni gassose del Modulo 1 (doc. 700E100006)

Autore: ENEL – Divisione Produzione – PIN/SPL Laboratorio di Piacenza

Data: 1 ottobre 1997

Trasmissione: inviata a Min. Industria, Min, Ambiente, Regione Piemonte, Provincia di Vercelli e Comune di Trino con lettera del 10.03.2000 prot. 0002957

2. Titolo: Determinazione di microinquinanti inorganici ed organici nelle emissioni gassose del Modulo 2 (doc. 700E100080)

Autore: ENEL - Divisione Produzione/Supporto Tecnico Specialistico di Piacenza

Data: 15 novembre 1999

Trasmissione: inviata a Min. Industria, Min, Ambiente, Regione Piemonte, Provincia di Vercelli e Comune di Trino con lettera del 10.03.2000 prot. 0002957

• Campagne di misura della qualità dell'aria

Sono state eseguite, mediante postazioni mobili, campagne di indagine stagionali per la rilevazione dello stato della qualità dell'aria nella zona circostante la Centrale durante le fasi di cantiere, prima dell'avviamento dell'impianto e con Centrale a regime.

1. Titolo: Indagine della qualità dell'aria in fase preoperazionale (doc. TR00317TSIPE175)

Autore: ENEL – Divisione Produzione/Supporto Tecnico Specialistico di Piacenza

Data: 11 marzo 1994

Trasmissione: inviata a Min. Industria, Min, Ambiente, Regione Piemonte, Provincia di Vercelli e Comune di Trino con lettera del 27.06.1994 prot. P94005803

2. Titolo: Misura di più parametri di qualità dell'aria con stazioni rilocabili dotate di strumentazione automatica presso Lamporo e Casanova Elvo (Trino V.se) - Campagna postoperazionale autunno 1998 (n. 4 relazioni doc. 700E2000064/67/68/69)

Autore: ENEL - Divisione Produzione/Supporto Tecnico Specialistico di Piacenza

Data: febbraio 1999

Trasmissione: inviata a Min. Industria, Min, Ambiente, Regione Piemonte, Provincia di Vercelli e Comune di Trino con lettera del 04.10.1999 prot. 7705

3. Titolo: Misura di più parametri di qualità dell'aria con stazioni rilocabili dotate di strumentazione automatica presso Lamporo e Casanova Elvo (Trino V.se) - Campagna postoperazionale primavera 1999 (n. 4 relazioni doc. 700E2000075/76/78/80)

Autore: ENEL – Divisione Produzione/Supporto Tecnico Specialistico di Piacenza

Data: marzo e aprile 1999

Trasmissione: inviata a Min. Industria, Min, Ambiente, Regione Piemonte, Provincia di Vercelli e Comune di Trino con lettera del 04.10.1999 prot. 7705

4. Titolo: Misura di più parametri di qualità dell'aria con stazioni rilocabili dotate di strumentazione automatica presso Lamporo e Casanova Elvo (Trino V.se) - Campagna postoperazionale autunno-inverno 2003 (relazione R880.00.00.224.0)

Autore: EnelGreenPower – Laboratori di Larderello

Data: 12 gennaio 2004

Trasmissione: inviata a Min. Industria, Min, Ambiente, Regione Piemonte, Provincia di Vercelli e Comune di Trino con lettera del 10.02.2004 prot. 17/04

5. Titolo: Misura di più parametri di qualità dell'aria con stazioni rilocabili dotate di strumentazione automatica presso Lamporo e Casanova Elvo (Trino V.se) - Campagna postoperazionale primavera-estate 2004 (doc. R880.00.00.271.0

Autore: ENEL - Divisione Generazione ed Energy Management PGeotermica Laboratori

Data: agosto 2004

Trasmissione: inviata a Min. Industria, Min, Ambiente, Regione Piemonte, Provincia di Vercelli e Comune

di Trino con lettera del 21.09.2004 prot. 244/04

• Monitoraggio dell'acidità dei suoli

Sono stati rilevati annualmente, alla fine della stagione vegetativa in alcune postazioni poste sottovento, i livelli di acidità dei suoli a partire da un anno prima dell'avviamento della Centrale e per tre anni successivi alla sua completa messa in esercizio.

1. **Titolo:** Piano di monitoraggio ai sensi del provvedimento di compatibilità ambientale (DEC/VIA/727) – Acidità dei suoli: – Fase preoperazionale (doc. TR00317TSIPE483)

Autore: ENEL – Direzione Costruzioni/Unità Laboratorio Centrale

Data: 4 gennaio 1996

Trasmissione: inviata a Min. Industria, Min, Ambiente, Regione Piemonte, Provincia di Vercelli e Comune di Trino con lettera del 01.03.1996 prot. P96001204

2. Titolo: Piano di monitoraggio ai sensi del provvedimento di compatibilità ambientale (DEC/VIA/727) – Acidità dei suoli: - Fase operazionale anno 1997 e 1998 (n. 2 relazioni doc. 512TR20506 e 512TR20538)

Autore: ENEL – Divisione Produzione/Supporto Tecnico Specialistico di Piacenza

Data: 27 aprile 1999

Trasmissione: inviata a Min. Industria, Min, Ambiente, Regione Piemonte, Provincia di Vercelli e Comune di Trino con lettera del 07.01.1999 prot. 0049

3. Titolo: Piano di monitoraggio ai sensi del provvedimento di compatibilità ambientale (DEC/VIA/727) – Acidità dei suoli: relazione conclusiva (doc. 512TR20548)

Autore: ENEL Produzione – Unità Supporto Tecnico Specialistico di Piacenza

Data: 19 gennaio 2000

Trasmissione: inviata a Min. Industria, Min, Ambiente, Regione Piemonte, Provincia di Vercelli e Comune di

Trino con lettera del 27.03.2000 prot. 3636

• Monitoraggio della vegetazione spontanea

Per analizzare eventuali possibili effetti della Centrale sulla vegetazione spontanea della zona circostante (Bosco della Partecipanza) sono state effettuate, durante il periodo vegetativo, due campagne di monitoraggio prima dell'avviamento dell'impianto e quattro con Centrale in esercizio.

1. Titolo: Piano di monitoraggio sulla vegetazione spontanea – Fase preoperazionale anno 1993

Autore: IPLA S.p.A. – Istituto per le Piante da Legno e l'Ambiente

Trasmissione: inviata a Min. Industria, Min, Ambiente, Regione Piemonte, Provincia di Vercelli e Comune di Trino con lettera del 09.02.1994 prot. P94001071

2. Titolo: Piano di monitoraggio sulla vegetazione spontanea – Fase preoperazionale anno 1994

Autore: IPLA S.p.A. – Istituto per le Piante da Legno e l'Ambiente

Trasmissione: inviata a Min. Industria, Min, Ambiente, Regione Piemonte, Provincia di Vercelli e Comune di Trino con lettera del 27.05.1995 prot. P95005383

3. Titolo: Piano di monitoraggio ambientale della vegetazione spontanea – Anno 1998

Autore: IPLA S.p.A. – Istituto per le Piante da Legno e l'Ambiente

Trasmissione: inviata a Min. Industria, Min, Ambiente, Regione Piemonte, Provincia di Vercelli e Comune di Trino con lettera del 11.05.1999 prot. 3704

4. Titolo: Monitoraggio ambientale della vegetazione spontanea –Anno 1999

Autore: IPLA S.p.A. – Istituto per le Piante da Legno e l'Ambiente

Trasmissione: inviata a Min. Industria, Min, Ambiente, Regione Piemonte, Provincia di Vercelli e Comune di Trino con lettera del 27.03.2000 prot. 3636

5. Titolo: Monitoraggio ambientale della vegetazione spontanea – Anno 2003

Autore: IPLA S.p.A. – Istituto per le Piante da Legno e l'Ambiente

Trasmissione: inviata a Min. Industria, Min, Ambiente, Regione Piemonte, Provincia di Vercelli e Comune di Trino con lettera del 29.01.2004 prot. 0009

6. Titolo: Monitoraggio ambientale della vegetazione spontanea – Anno 2004

Autore: IPLA S.p.A. – Istituto per le Piante da Legno e l'Ambiente

Trasmissione: inviata a Min. Industria, Min, Ambiente, Regione Piemonte, Provincia di Vercelli e Comune di Trino con lettera del 07.06.2005 prot. 0132

• Monitoraggio dei principali coltivi

Per analizzare eventuali possibili effetti della Centrale sulle coltivazioni principali della zona (riso e mais) sono state effettuate due campagne di monitoraggio prima dell'avviamento dell'impianto ed una con Centrale in esercizio.

1. Titolo: Monitoraggio dei coltivi – Fase preoperazionale anno 1994

Autore: ENEL/DCO e IPLA S.p.A. – Istituto per le Piante da Legno e l'Ambiente

Trasmissione: inviata a Min. Industria, Min, Ambiente, Regione Piemonte, Provincia di Vercelli e Comune di Trino con lettera del 27.07.1995 prot. P95005383

2. **Titolo:** Monitoraggio dei coltivi – Fase preoperazionale anno 1995 (ripetizione di quella del 1994 a causa di grandinate che hanno causato la perdita parziale del raccolto)

Autore: ENEL/DCO e IPLA S.p.A. – Istituto per le Piante da Legno e l'Ambiente

Trasmissione: inviata a Min. Industria, Min, Ambiente, Regione Piemonte, Provincia di Vercelli e Comune di Trino con lettera del 22.10.1996 prot. P96005634

3. Titolo: Monitoraggio dei coltivi – Fase operazionale anno 1998

Autore: ENEL/Divisione Produzione e IPLA S.p.A. – Istituto per le Piante da Legno e l'Ambiente

Data: febbraio 1999

Trasmissione: inviata a Min. Industria, Min, Ambiente, Regione Piemonte, Provincia di Vercelli e Comune di

Trino con lettera del 11.05.1999 prot. 3704

• Monitoraggio del corpo idrico ricettore

Il piano di monitoraggio ha previsto il controllo degli scarichi liquidi delle Centrale, mediante il controllo della qualità del corpo idrico ricettore (roggia Acquanera) e della falda superficiale; è stata eseguita una campagna di monitoraggio in fase preoperazionale e due dopo la completa messa in esercizio della Centrale.

1. Titolo: Monitoraggio ai sensi del provvedimento di compatibilità ambientale (DEC/VIA/727) – Controllo degli scarichi liquidi – Fase preoperazionale (doc. TR00317TSIPE453)

Autore: ENEL – Direzione Costruzioni/Unità Laboratorio Centrale

Data: 28 gennaio 1995

Trasmissione: inviata a Min. Industria, Min, Ambiente, Regione Piemonte, Provincia di Vercelli e Comune di Trino con lettera del 20.05.1996 prot. P96002794

2. Titolo: Piano di monitoraggio ai sensi del provvedimento di compatibilità ambientale (DEC/VIA/727) – Controllo degli scarichi liquidi: fase operazionale: novembre 1997-novembre 1998 (doc. 512TR20530)

Autore: ENEL – Divisione Produzione/Unità Misure e Laboratorio di Piacenza

Data: 1999

Trasmissione: inviata a Min. Industria, Min, Ambiente, Regione Piemonte, Provincia di Vercelli e Comune di Trino con lettera del 11.05.1999 prot. 3707

3. Titolo: Monitoraggio ai sensi del provvedimento di compatibilità ambientale (DEC/VIA/727) – Controllo degli scarichi liquidi: fase operazionale: febbraio 1999-settembre 2000 (doc. 512TR20557) **Autore:** ENEL Produzione/Servizi Integrati per la Generazione – Laboratorio di Piacenza

Data: 06 dicembre 2000

Trasmissione: inviata a Min. Industria, Min, Ambiente, Regione Piemonte, Provincia di Vercelli e Comune di

Trino con lettera del 29.01.2000 prot. 42/01

Caratterizzazione della rumorosità ambientale

Il monitoraggio rileva la rumorosità nella zona circostante la centrale nel periodo precedente la costruzione (livello sonoro di fondo) e con impianto in normale assetto di esercizio.

1. Titolo: Centrale nucleare Piemonte-Trino - Caratterizzazione della rumorosità ambientale nel periodo precedente la costruzione (doc. aAtm/40/85)

Autore: ENEL – DCO Unità Laboratorio di Piacenza

Data: 20 dicembre 1985

Trasmissione: invio non richiesto dal DEC/VIA (documento archiviato in centrale e disponibile alla consultazione)

2. Titolo: Caratterizzazione del rumore ambientale esterno – Verifica del rispetto dei limiti di legge e delle prescrizioni DEC/VIA (doc. 512TR20524)

Autore: ENEL – Divisione Produzione/Supporto Tecnico Specialistico di Piacenza

Data: 19 gennaio 1999

Trasmissione: invio non richiesto dal DEC/VIA (documento archiviato in centrale e disponibile alla

consultazione)

Piazza Santa Barbara, 7 20097 San Donato Milanese (MI) Tel. Centralino: 02 5201

www.snamretegas.it

Società per Azioni con Sede Legale in San Donato Milanese Piazza Santa Barbara, 7 Capitale Sociale Euro 1.955.608.200 i.v. Codice Fiscale e numero di iscrizione al Registro Imprese di Milano n. 13271390158 R.E.A. Milano n. 1632413- Partita IVA 13271390158 Società soggetta all'attività di direzione e coordinamento dell' Eni S.p.A.

ESERCIZIO MISURA
Tel. 02 52048547
Fax 02 52058001
e-mail esermi@snamretegas.it

35841901

VERBALE DI MISURA RELATIVO AL GAS NATURALE PRELEVATO NEL MESE DI DICEMBRE 2005

Stampato in data 02-01-2006

Unita' emittente : CENTRO DI CASALE MONFERRATO FRAZ. POPOLO- 2º RONDO', 78/A 15033 CASALE MONFERRATO AL Telefono 0142-561303 Spett.le
Enel Produzione
c.a. sig. Antonio Roselli
loc. Leri Cavour
13039 TRINO VC

Impianto REMI 35841901 (EX 0462401)
Trino VC termoelettrico

RIEPILOGO PRELIEVI

dal	al	VOLUME	ENERGIA	PCS
01-12-2005 06	01-01-2006 06	85.092.258	m3.273.244,9 GJ	38.467 kJ/m3

VALORI GIORNALIERI MISURATI

d	PCS/d	m3/d	GJ/d	m3/h d	PCS/d	m3/d	GJ/d	m3/h
1	38.334	3.807.053	145.939,6	165.576 17	38.564	2.780.227	107.216,7	161.116
2	38.369	3.219.143	123.515,3	165.262 18	38.604	1.562.600	60.322,6	163.550
3	38.338	678.595	26.016,0	69.950 19	38.463	3.802.450	146.253,6	165.106
4	38.431	502.831	19.324,3	108.116 20	38.331	3.833.776	146.952,5	164.162
5	38.424	3.571.185	137.219,2	161.444 21	38.371	3.814.787	146.377,2	164.824
6	38.512	3.235.968	124.623,6	161.250 22	38.459	3.562.438	137.007,8	164.840
7	38.491	3.196.827	123.049,1	162.380 23	38.295	1.980.614	75.847,6	0
8	38.483	3.672.785	141.339,8	163.954 24	38.283	219	8,4	0
9	38.409	3.711.278	142.546,5	164.414 25	38.541	36	1,4	58
10	38.450	3.218.755	123.761,1	164.454 26	38.698	116.731	4.517,3	52.426
11	38.374	3.360.728	128.964,6	164.490 27	38.730	2.074.582	80.348,6	162.562
12	38.724	3.836.649	148.570,4	166.032+28	38.560	3.154.648	121.643,2	160.788
13	38.497	3.856.698+	148.471,3	164.856 29	38.513	3.061.868	117.921,7	159.436
14	38.542	3.843.583	148.139,4	165.296 30	38.345	3.031.261	116.233,7	164.294
15	38.535	3.349.300	129.065,3	163.530 31	38.290	1.711.661	65.539,5	80.362
16	38.529	3.542.982	136.507,6	161.082				

I m3 sono riferiti a 15 °C e 1,01325 bar (condizioni standard).

Il Potere Calorifico superiore mensile è calcolato come rapporto tra totale ENERGIA e tota le VOLUME.

Piazza Santa Barbara, 7 20097 San Donato Milanese (MI) Tel. Centralino: 02 5201

www.snamretegas.it

Società per Azioni con Sede Legale in San Donato Milanese Piazza Santa Barbara, 7 Capitale Sociale Euro 1.955.608.200 i.v. Codice Fiscale e numero di iscrizione al Registro Imprese di Milano n. 13271390158 R.E.A. Milano n. 1633443 - Partita IVA 13271390158 Società soggetta all'attività di direzione e coordinamento dell' Eni S.p.A.

ESERCIZIO MISURA Tel. 02 52048547 Fax 02 52058001 e-mail esermi@snamretegas.it

,026 ,034 ,75341 38459 34697 0,99771

BOLLETTINO DI ANALISI RELATIVO AL GAS NATURALE DEL MESE DI DICEMBRE 2005

Impianto REMI 35841901 Trino VC termoelettrico

Unita' emittente: ESERCIZIO MISURA

Tel. 02 52058744

Vi riportiamo, relativamente al Vostro impianto, le composizioni medie giornaliere e mensile oltre ai parametri chimico-fisici calcolati sulla base dei dati rilevati nell'area(nelle aree) di prelievo:

0001 CASCINA NEIROLE (CAB. 126) x DA GASCROMATOGRAFO IN CAMPO

							- % mol						Kg/m3	kJ/m3	kJ/m3	
GG	AOP	Не	N2	CH4	CO2	C6H14	С2Н6	С3Н8	NC4H10	IC4H10	NC5H12	IC5H12	m.vol.	PCS	PCI	ZS
	0001	,030		90,427	1,163	,049	4,270	,874	,139	,135	,026	,033	,75169	38334		0,99773
	0001	,034		90,231	1,168	,049	4,386	,896	,143	,139	,026	,034	,75305	38369		0,99772
	0001	,034	,	90,484	1,160	,046	4,286	,868	,136	,129	,024	,031	,75104	38338		0,99773
	0001	,033		90,693	1,156	,049	4,281	,862	,136	,139	,025	,033	,75019	38431		0,99772
5	0001	,034	2,523	90,768	1,178	,046	4,279	,858	,132	,127	,024	,031	,74958	38424	34662	0,99772
6	0001	,017	2,538	90,725	1,121	,045	4,280	,932	,142	,142	,026	,032	,75045	38512	34743	0,99771
7	0001	,034	2,700	90,191	1,245	,048	4,453	,964	,151	,150	,028	,036	,75461	38491	34727	0,99770
8	0001	,034	2,690	90,114	1,285	,046	4,519	,956	,152	,141	,028	,035	,75510	38483	34720	0,99770
9	0001	,031	2,734	90,220	1,277	,044	4,431	,924	,147	,132	,027	,033	,75395	38409	34652	0,99771
10	0001	,029	2,540	90,559	1,255	,045	4,331	,907	,142	,133	,026	,033	,75185	38450	34688	0,99771
11	0001	,029	2,606	90,599	1,255	,046	4,290	,853	,133	,132	,025	,032	,75110	38374	34617	0,99772
12	0001	,031	2,572	90,508	1,227	,047	4,350	,920	,146	,138	,027	,034	,75221	38473	34709	0,99771
13	0001	,029	2,542	90,851	1,094	,055	4,161	,917	,150	,137	,029	,035	,74969	38497	34729	0,99772
14	0001	,033	2,486	90,691	1,146	,050	4,310	,932	,150	,140	,027	,035	,75093	38542	34771	0,99771
15	0001	,034	2,432	90,722	1,164	,048	4,369	,892	,143	,136	,026	,034	,75044	38535	34764	0,99771
16	0001	,034	2,384	90,712	1,226	,050	4,368	,889	,142	,134	,027	,034	,75092	38529	34759	0,99771
17	0001	,033	2,267	90,731	1,258	,046	4,458	,889	,136	,126	,025	,031	,75076	38564	34791	0,99770
18	0001	,029	2,180	90,885	1,234	,045	4,393	,912	,139	,127	,025	,031	,74998	38604	34826	0,99770
19	0001	,030	2,624	90,273	1,261	,044	4,536	,911	,139	,126	,025	,031	,75334	38463	34701	0,99771
20	0001	,030	2.932	90,096	1,226	,046	4,456	,890	,140	,127	,025	,032	,75387	38331	34581	0,99772
21	0001	,029	,	90,005	1,252	,049	4,511	,907	,143	,135	,026	,033	,75494	38371		0,99771
22	0001	,030	2,716	90,137	1,275	,050	4,517	,930	,145	,139	,027	,034	,75472	38459		0,99770
23	0001	,034		90,118	1,262	,052	4,396	,869	,134	,136	,025	,033	,75397	38295		0,99772
	0001	,035		90,106	1,262	,052	4,420	,851	,130	,136	,024	,033	,75385	38283		0,99772
	0001	,039		89,292	1,363	,055	4,883	1,058	,157	,148	,028	,035	,76116	38541		0,99767
	0001	,041		89,591	1,282	,056	4,910	1,056	,164	,159	,029	,037	,75940	38698		0,99766
	0001	,041		89,995	1,322	,052	4,827	1,012	,156	,155	,028	,036	,75696	38730		0,99767
	0001	,041		89,872	1,317	,055	4,680	,984	,153	,153	,028	,037	,75724	38560		0,99768
	0001	,037		90,130	1,260	,053	4,573	,942	,143	,145	,026	,034	,75483	38513		0,99770
	0001	,037		89,668	1,260	,053	4,583	,942	,143	,145	,026	,034	,75403	38345		0,99770
	0001	,035		89,659	1,235	,053	4,571	,911	,139	,144	,026	,034	,75667	38290		0,99771
91	0001	,030	3,170	00,000	1,233	,052	1,3,1	, , , , , ,	, 139	, 1 10	,020	,033	, , , , , , , , , , , , , , , , , , , ,	30270	31310	0,00112

Kcal = kJ / 4,1868

MEDIA

Il simbolo ~ indica che sono presenti concentrazioni del componente inferiori allo 0,001%

,033 2,679 90,292 1,232 ,049 4,454 ,920 ,143 ,138

PCI, PCS, RHO, ZS sono calcolati dalla media mensile delle percentuali molari dei componenti.

I dati sono riferiti a 15 °C e 1,01325 bar (condizioni standard)

Piazza Santa Barbara, 7 20097 San Donato Milanese (MI) Tel. Centralino: 02 5201

www.snamretegas.it

Società per Azioni con Sede Legale in San Donato Milanese Piazza Santa Barbara, 7 Capitale Sociale Euro 1.955.608.200 i.v. Codice Fiscale e numero di iscrizione al Registro Imprese di Milano n. 13271390158 R.E.A. Milano n. 1633443 - Partita IVA 13271390158 Società soggetta all'attività di direzione e coordinamento dell' Eni S.p.A.

ESERCIZIO MISURA Tel. 02 52048547 Fax 02 52058001 e-mail esermi@snamretegas.it

INFORMAZIONI TECNICHE RELATIVE ALLA MISURA DEL GAS PRELEVATO NEL MESE DI DICEMBRE 200 Impianto REMI 35841901 Enel Produzione Trino VC termoelettrico Unita' emittente:CENTRO DI CASALE MONFERRATO Tel. 0142-561303

PERIODO dal 01-12-2005 06 al 01-01-2006 06 CAUSALE FV EVENTO Fine verbale

DATI CARATTERISTICI DELL'IMPIANTO DI MISURA LINEA - 1

VOLUMI DA STRUTTURA 1660 TL FE FF FP G DH DL P T CO

Pressione barometrica ,99478 bar

" di calcolo 47,001 bar

KTve di calcolo 7,26870

TL: impianto teleleggibile

FE: diametro tubazione 324,620 mm prese di pressione SU FLANGI romativa di misura UNI 1002

FF: elaboratore FIORENTINI FIOMEC 22 valore unità 1 m3

FP: stampante integrata

G: densimetro riferimento SOLARTRON NT3096

----- fondo scala -----

DP: trasmettitore dp alta ROSEMOUNT 3051PD $\,$ 500,00 mbar 181206 m3/h

100,00 mbar 81284 m3/h

" dp bassa ROSEMOUNT 3051PD

P: trasmettitore pressione ROSEMOUNT 3051CG campo scala 0/80,00 bar

T: trasmettitore temperatura TERMOSONDA PT1 campo scala -10,00/ 40,00 °C

campo scala -10,00/ 40,00 °C
----- fondo scala ----- altezza

CO: registratore di alta FIMIGAS 10148

500,00 mbar 181206 m3/h 100 mm 20 mm/h

" pressione

campo scala 0/ 100,00 bar

" temperatura

campo scala -10,00/ 40,00 °C

ELABORAZIONE DA STAMPANTE

m3	d	m3	d	m3	d
3807053	1	3836649	12	1980614	23
3219143	2	3856698	13	219	24
678595	3	3843583	14	36	25
502831	4	3349300	15	116731	26
3571185	5	3542982	16	2074582	27
3235968	6	2780227	17	3154648	28
3196827	7	1562600	18	3061868	29
3672785	8	3802450	19	3031261	30
3711278	9	3833776	20	1711661	31
3218755	10	3814787	21		
3360728	11	3562438	22		
Totale	85092258				

DIVISIONE PRODUZIONE

DETERMINAZIONE DI MICROINQUINANTI INORGANICI ED ORGANICI (IPA) NELLE EMISSIONI GASSOSE DEL MODULO 1 - CENTRALE DI TRINO LERI

SERVIZI SPECIALISTICI E LABORATORI

UNITA' MISURE E LABORATORIO DI PIACENZA

Via N. Bixio n. 39 29100 Piacenza Tel. 0523/5251 Telefax: 0523/525387

Unità Misure e Laboratorio di Piacenza

RAPPORTO DI PROVA

Documento nº 700E100006

Pag. 1 di

Oggetto:

DETERMINAZIONE DI MICROINQUINANTI INORGANICI ED ORGANICI (IPA) NELLE EMISSIONI GASSOSE DEL MODULO 1 - CENTRALE DI TRINO LERI

Committente:

PDT NORD OVEST

Ordine:

Commessa di lavoro:

30/94

Periodo di conservazione di questo documento: 5 anni.

VINCOLI DI RISERVATEZZA

Ogni riproduzione parziale del presente Rapporto di Prova, deve essere esplicitamente autorizzata da ENEL - PIN/SPL - UML PC.

I risultati riportati nel presente Rapporto di Prova si riferiscono esclusivamente ai campioni in oggetto.

Estrapolazioni dei suddetti risultati esulano dallo scopo di questo documento.

01.10.97

I G I/GIC

DATA

IL RESPONSABILE DI LABORATORIO

Documento nº 700E100006

Paq.

Il presente rapporto contiene i risultati di n° 2 prove di "Determinazione della concentrazione di IPA nei flussi gassosi convogliati" e n° 3 prove di "Determinazione della concentrazione di metalli in fase gassosa e nel particolato in flussi gassosi convogliati", eseguite sul Modulo 1 della Centrale a ciclo combinato di Trino Leri nel periodo 21.03.97 + 27.03.97.

Il prelievo del gas è stato eseguito in conformità con la Procedura Tecnica 700QT00306 "Misura della concentrazione e della portata massica di polvere nei flussi gassosi convogliati emessi da una sorgente stazionaria secondo la norma ISO 9096".

Nelle tabelle 1 ÷ 2 sono riportati i risultati delle concentrazioni di IPA, nelle tabelle 3 ÷ 5 sono riportati i risultati dei microinquinanti inorganici.

Allegati n° 3 FRD e n° 1 Rapporto di Prova

In conformità con la procedura tecnica succitata, le informazioni dettagliate relative all'esecuzione delle prove, alla strumentazione utilizzata e alle condizioni di prova sono contenute nei fogli raccolta dati (FRD) allegati.

I risultati delle determinazioni analitiche eseguite sui campioni raccolti sono riportati nel Rapporto di Prova nº 700C100233 allegato.

Tabella 1: Risultati della prova eseguita il 25.03.97

Concentrazione espressa ir	n ng/Nm³ riferita	al gas secco a	0°C, 101.325 kP	a ed alla
Concentrazione	concentrazione de Particolato	Condensa	Incondensabili	Totale ng/Nm³
COMPOSTO	ng/Nm³	ng/Nm³	ng/Nm³	7,41
Naftalene 2-Metilnaftalene 1-Metilnaftalene 1,1'- Bifenile 2,6 - Dimetiinaftalene Acenaftilene Acenaftene 2,3,5 - Trimetilnaftalene Fluorene Fenantrene Antracene 1- Metilfenantrene Fluorantene Pirene Benzo(a)antracene Crisene Benzo(b)fluorantene Benzo(k)fluorantene Benzo(c)pirene Benzo(a)pirene Perilene Indeno 1,2,3-(c,d)pirene Dibenzo(a,h)antracene Benzo(g,h,i)perilene Dibenzo(a,i)pirene	0,94 1,32 0,42 0,42 0,42 0,27 < 0,1 < 0,1 0,27 < 0,1 4,08 0,56 1,08 4,05 2,33 1,13 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1	0,28 0,25 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 0,90 < 0,1 0,14 0,32 0,15 0,16 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1	6,19 26,11 9,64 9,98 6,58 < 0,1 < 0,1 1,32 7,22 12,46 1,25 2,16 1,41 0,54 0,69 0,59 0,33 0,34 < 0,1 < 0,1 0,12 < 0,1 0,33 < 0,2 88.47	27,67 10,07 10,40 6,85 < 0,1 < 0,1 1,59 7,22 17,44 1,77 2,47 6,53 3,89 1,83 0,69 0,59 0,59 0,33 < 0,1 < 0,1 < 0,1 0,12 < 0,1 0,33 < 0,1
Somma	16,87	2,13		

DIVISIONE PRODUZIONE INGEGNERIA / SPL

Unità Misure e Laboratorio di Placenza

RAPPORTO DI PROVA

Documento nº 700E100006

Pag. 3 di

Tabella 2:

Risultati della prova eseguita il 27.03.97

Concentrazione espressa in ng/Nm³ riferita al gas secco a 0°C, 101.325 kPa ed alla							
	concentrazione di O₂ del 15%.						
COMPOSTO	Particolato ng/Nm³	Condensa ng/Nm³	Incondensabili ng/Nm ³	Totale ng/Nm³			
Naftalene	0,43	< 0.0	< 0,1	0,43			
2-Metilnaftalene	0,30	< 0,1	< 0,1	0,30			
1-Metilnaftalene	0,13	< 0,1	< 0,1	0,13			
1,1'- Bifenile	< 0,1	< 0,1	< 0,1	< 0,1			
2,6 - Dimetilnaftalene	< 0,1	< 0,1	< 0,1	< 0,1			
Acenaftilene	< 0,1	< 0,1	< 0,1	< 0,1			
Acenaftene	< 0,1	< 0,1	< 0,1	< 0,1			
2,3,5 - Trimetilnaftalene	< 0,1	< 0,1	< 0,1	< 0,1			
Fluorene	< 0,1	0,14	< 0,1	0,14			
Fenantrene	2,36	0,65	5,18	8,20			
Antracene	6,20	0,30	16,34	22,84			
1- Metilfenantrene	0,38	< 0,1	0,79	1,18			
Fluorantene	0,91	0,21	0,76	1,88			
Pirene	0,64	< 0,1	1,65	2,29			
Benzo(a)antracene	0,17	< 0,1	3,21	3,39			
Crisene	0,32	< 0,1	1,73	2,06			
Benzo(b)fluorantene	0,13	< 0,1	0,20	0,34			
Benzo(k)fluorantene	0,13	< 0,1	0,20	0,34			
Benzo(e)pirene	< 0,1	< 0,1	< 0,1	. < 0,1			
Benzo(a)pirene	< 0, i	< 0,1	< 0,1	< 0,1			
Perilene	< 0,1	< 0,1	< 0,1	< 0,1			
Indeno 1,2,3-(c,d)pirene	< 0,1	< 0,1	0,14	0,14			
Dibenzo(a,h)antracene	< 0,1	< 0,1	< 0,1	< 0,1			
Benzo(g,h,i)perilene	< 0,1	< 0,1	0,56	0,56			
Dibenzo(a,i)pirene	< 0,1	< 0,1	< 0,1	< 0,1			
Somma	12,11	1,30	30,79	44,20			

Documento π° 700E100006

Pag. 4 di 5

Tabella 3:: Risultati della prova eseguita il 21.03.97

· Parametro	Particolato µg/Nm³	Condensa µg/Nm³	Totale µg/Nm³
Arsenico	0,07	0,02	0,09
Berillio	0,04		0,04
Cadmio	<0,01	<0,01	<0,01
Cromo	0,87		0,87
Rame	0,10		0,10
Mercurio	<0,01	<0,01	<0,01
Nichel (*)	0,39		0,39
Piombo	0,20	<0,05	,020
Vanadio	1,09		1,09
Zinco	1,50		1,50
Calcio	171,01		171,01
Sodio	144,79		144,79
Potassio	31,78		31,78
Somma	351,83	0,02	351,85

(*) Inteso come Nichel totale

Tabella 4: Risultati della prova eseguita il 25.03.97

Concentrazione espre	essa in µg/Nm³ riferita al ç concentrazione di O		325 kPa ed alla
Parametro	Part. μg/Nm³	Cond. µg/Nm³	Totale µg/Nm³
Arsenico	0,09	0,03	0,12
Berillio	0,06		0,06
Cadmio	<0,01	<0,01	<0,01
Cromo	0,78		0,78
Rame	0,17		0,17
Mercurio	<0,01	<0,01	<0,01
Nichel (*)	<1		<1
Piombo	0,08	<0,05	0,08
Vanadio	1,50		1,50
Zinco	1,96		1,96
Calcio	167,53		167,53
Sodio	251,40		251,40
Potassio	34,12		34,12
Somma	457,70	0,03	457,73

(*) Inteso come Nichel totale

Unità Misure e Laboratorio di Piacenza

Documento nº 700E100006

Pag. 5 di 5

Tabella 5:

Risultati della prova eseguita il 27.03.97

Concentrazione espre	ssa in µg/Nm³ riferita al ç concentrazione di O	gas secco a 0°C, 101.3 ₂ del 15%.	25 kPa ed alla
Parametro	Part. µg/Nm³	Cond. µg/Nm³	Totale µg/Nm³
Arsenico	<0,1	0,05	0,05
Berillio	. 0,07		0,07
Cadmio	<0,01	<0,01	<0,01
Cromo	1,42		1,42
Rame	0,14		0,14
Mercurio	<0,01	<0,01	<0,01
Nichel (*)	0,55		0,55
Piombo	0,35	<0,05	. 0,35
Vanadio	2,25		2,25
Zinco	5,79		5,79
Calcio	181,23		181,23
Sodio	230,32		230,32
Potassio	39,44		39,44
Somma	461,47	0,05	461,52

^(*) Inteso come Nichel totale

Oomua ul Filot	
N. matricola:	119604
lunghezza (m):	3,50
modello:	PF 20375/28
coefficiente Cp	0.72
Filtro tipo:	P1200 1.1
Sonda prelievo	:
M mandalanta	110400

N. matricola: lunghezza (m): Pf 20375/28. modello: Ver. riscald.(se previsto) ☐ OK Condens. mod.:

USO36 N. matricola: N. matricola: 0-99 scala (mmH2O): modello : Cont. volumetrico √ N. matricola : modello:

11.26.04.. Coefficiente K_c: ...4 .3.50 Manometro Verifica □ OK Ver. riscald. (se previsto)

OK

140 € Calibrazione ☑ OK Flow Tes. 5 Termocoppia mod.: .L4.O.C... Verifica 図 OK ラ6.31.8.Q.6.4 Pompa aspirazione 台1.Q.Q. 引いら N. matricola: .15.6 Verifica ☑ OK Termometro mod.: 1400

Verifica ☑ OK Portafiltro mod.: Plane..... Flussimetro mod.: Coefficiente K_f: □ OK

Unità Laboratorio Centrale di Piacenza FOGLIO RACCOLTA DATI PER LA DETERMINAZIONE DELLA CONCENTRAZIONE E DELLA PORTATA MASSICA DI POLVERE NEI FLUSSI GASSOSI CONVOGLIATI 30/94 Commessa: 1.21:03-97 Prova N.: CONDIZIONI DI ESERCIZIO DELL'IMPIANTO (da strumentazione di impianto): Tipo e portata di combustibile liquido : solido: gassoso: portata:.....t/h portata:t/h portata: .74.6..... Nm3/h Portate materiali di processo Materiale Unità di misura Valore inizio prova Valore fine prova Potenza MW 76.3 73.9 Portara Na/h 357 347 Composizione del gas Componente x_i M $x_i . M_i$ CO2 02 N₂ 0.93 <u>∂0</u> 27.90 H₂O 0.07 18 1.26 x_i . M_i 29.16 Determinazione della pressione del gas (Pg): 96.800... Determinazione della temperatura ambiente : .296..... °K densità dell'acqua : .1900.... Kg/m³ RISULTATI DELLE MISURE Verifica dell'accettabilità della sezione di misura ed esecuzione del reticolo di velocità preliminare d_g g . i-1 v_i m . s⁻¹ Dh Bocchello N. Affondamento, m Angolo & mmH_2O 2.42 90 115 48.5 0.91 27.2 4 1.46 90 115 0.91 47.5 22 4 0.79 90 115 47.A 0.91 9.15 4 0.25 90 115 50.1 0.91 Z2.5 4 2.42 85 115 54 19.0 23.4 4 1.46 85 118 55.2 0.91 43.6 4 0.19 90 115 53.6 0.91 23.3 4 0.25 90 116 51 72.8 0.91 2 2-42 85 117 22.4 0.91 15.1 2 1.46 85 116 13.7 0.91 11.8 0.79 2 85 117 12.8 0.91 11.4 2 0.25 85 117 12.4 0.91 11.2 3 2.42 90 50.5 0.91 Z 2. 6 3 1.46 00 117 48.9 0.91 22.3 00 3 0.19 49.4 0.91 22.4 0 65 90 117 0.91 49.3 ZZ- 4

Pag. 2 di 3

ENEL S.p.A. \ DCO

NEL S.			trale di	Diacen.	72										Pag. 3 d
	GLIO R	ACCO PORT	LTA DA	ATI PER	R LA DI					CONCEI OSI CO	NVOG				3-97
/ledia de	ei valori	assoluti	dell'ang	= 2 olo	<u>88</u> .	v _{ma}	assima =	238	m/s	v _{minim}	ıa=	4.4 m	√s (V _m	_{lax} /v _{mir}	₁₎₌ 2,0
										inima ⁼ .					Δτ=3.
Accet	abilità (della se	ezione d	di misur	a:		⊠-SI								
Ugelio	da ado	ottare =	=≉	4	mm		□ NO								
		dı	ırata mist	ire			letture al o	cont. volu	netr. (C\	<i>/</i>)					02, %
Bocch. N.	Aff., m	durata progr.	ora inizio	ora fine	CV 1/min	litri inizio	litri fine	litri totali	T _C V	PCV mmH ₂	.¢	Dh mmH ₂	g'tal	v _i m.s ⁻¹	scarico pompa
4	2.42	30	915	945	13.1	ø	395	395	33	10332	115	48.5	0.91	22.2	15.5
1	1.46	60	945	10,2	12.7	395	778	383	34	10332	115	47.8	0.91	2z. (15.5
	0.79	90		1045	12.9	778	1165	387	3 3	10335	115	41.3	0.91	21-9	15.5
<u> </u>	0.25	120	1045	1115	12.8	1165	1550	385	36	10332	115	49.5	0.91	22.4	15.6
4	2.42	150	1117	1147	12.9	1550	1959	389	36	10332	115	54	0.91	23.4	15.5
4	1.46	180	1147	1217	13.3	1939	2356	399	30	(0332	118	55.7	0.91	23.8	12.5
41	0.79	210	1217	1241	13.5	<u> </u>	2745	407	25	60334	li5	53.8	0.91	23.4	15.5
4	0.25	240	1247	1317	13.1	2/35	3141	396	25	60332	116	51.1	0.91	22.8	15.5
2	2.42	270	1420	1519	9.1	0	275	275	23	(0304	117	22.4	0.91	15.1	15.5
2	1.46	300	15 ^{.9}	1540	6.8	275	480	205	23	10304	116	139	0.01	11.9	15.5
2	C.79	330	1549	1619	6	480	660	180	26	10304	117	12.8	0.01	11.4	15.5
	0.25			16 29	6	€60	842	182	26	(0,04	117	12.3	0.0	11.2	15.5
3	2.42	390	16 30	1724	11.3	842	1130	33 <i>E</i>	26	y0304	117	50.2	6.01	26.6	15.5
3	 	420	1724	17 54	13	1180	1570	350	27	10332	117	48.5	0.91	26.5	15.5
3	 	450	1750	15.50	13.4	:570	1974	404	27	10345	117	19.6		200	15.5
3	0.25	480	1824	1827	13.3	1914	2373	390	27	w 345	117	50	0.01	22.5	15.5
								<u> </u>		<u> </u>					
iltro	1		Residu	0		l Va	ol. cam	pionato			Cor	ıc. polv	eri	<u> </u>	
	_	!	secco									,			
tara	: Q.3s	<u>ec.s</u>		tara :			3 secchi		<u>5.</u>	486					0.18
lordo		058		lordo :			n ³ secci		****	.950	. [12: mg/	Nm ³ all'(%]	O ₂ di rife	r.	0.22
pes polveri	° <0.0	201	peso res	. secco			³ alle co	nd. del g		<i>58</i> 7			mg	_{3/m³}	0.13
	pione s			320	سعا	ىغا0.	٠ ۲	888	:4					1	
	erifica stazionarietà $\sum_{i} V_{i} = \frac{20.03 \text{ m.s}^{-1}}{\sum_{i} V_{i}} = \frac{20.03 \text{ m.s}^{-1}}{\sum_{i} V_{i}}$														
rileva			colo prei		ata il	olie:	. m.o.		te durar	nte il cam	pionan	nento			
.,			azionar		ite ii pr	elleV0) (causa				**********	•••••	
	-		i tenut			_		(□ Neg	.8					
Data	e firma	.RP:	≥/:	3-26	χŌ	0-1/ <i>0%</i> •-1/ <i>0%</i>	2								

į

, i

.

ENEL S.p.A. \ DCO Pag. 1 di 3 Unità Laboratorio Centrale di Piacenza FOGLIO RACCOLTA DATI PER LA DETERMINAZIONE DELLA CONCENTRAZIONE E DELLA PORTATA MASSICA DI POLVERE NEI FLUSSI GASSOSI CONVOGLIATI 2000 10 10 C Responsabile di prova : Data e firma RL: ころノロンノタ/ 21115.C. Incaricati di prova: CARATTERISTICHE SEZIONE DI PRELIEVO Posizione sezione: verticale orizzontale inclinato Idonea SI Giacitura condotto: NO Distanza dall'ultimo ostacolo a monte :/.Z............De con riserva Distanza dal primo ostacolo a valle : x m² (se rettangolare) Dimensioni sezioni di prelievo: De: m Diametro : A.S. m (se circolare) Spazio morto "Z": schizzo della posizione dei bocchelli con relativa numerazione Relievo organto a o 22 m. e fole pe 17A 3 14.4 IDENTIFICAZIONE E CARATTERISTICHE DELLA STRUMENTAZIONE Sonda di Pitot Micromanometro Barometro 119.60.4. N. matricola: U.90.3.6. N. matricola: N. matricola: 1400 Calibrazione S OK
FIGH. Test. Termocoppia mod.: 1404 lunghezza (m): .వి.వం.... scala (mmH₂O) : PF 29375/28 modello: modello: coefficiente Cp Cont. volumetrico Verifica ☑ OK Filtro tipo: ટ્રેમ્ડ્રિસ્તાર્વા ... N. matricola : 56318064 Pompa aspirazione 6100 PIUS Sonda prelievo: modello: N. matricola: 1.4.0C /1.5 C 14960A... Coefficiente Kc: N. matricola: Verifica ☑ OK lunghezza (m): ..ವಿ.ವಿ.C..... Manometro Termometro mod.: .l.A.Q..C.... PF20375./28 modello: Verifica ☑ OK Verifica □ OK Ver. riscald.(se previsto) ☐ OK Portafiltro mod.: Pt.2.00...

Condens. mod.: Pt 8016...

Ver. riscald. (se previsto) ☐ OK Portafiltro mod.: Pussimetro mod.: Coefficiente K_f: □ OK

ENEL S.p.A. \ DCO Pag. 2 di 3 Unità Laboratorio Centrale di Piacenza FOGLIO RACCOLTA DATI PER LA DETERMINAZIONE DELLA CONCENTRAZIONE E DELLA PORTATA MASSICA DI POLVERE NEI FLUSSI GASSOSI CONVOGLIATI 25-3-91 Prova N. : 4 CONDIZIONI DI ESERCIZIO DELL'IMPIANTO (da strumentazione di impianto) : Tipo e portata di combustibile liquido: portata :t/h portata: ...7.4.5.... Nm³/h portata: t/h Portate materiali di processo Unità di misura Materiale Valore inizio prova Valore fine prova עוח Potenza 354 346 Mmi/h Portuta Gas H 76.1 73.9 Composizione del gas Componente x_i.M_i CO2 02 N_2 0.93 27.90 3.0 H₂O 0.07 1.26 18 x_i . M_i 24.10 Determinazione della pressione del gas (Pg): 96.600 Рa Determinazione della temperatura ambiente : 298... °K densità dell'acqua : 1000... Kg/m³ RISULTATI DELLE MISURE Verifica dell'accettabilità della sezione di misura ed esecuzione del reticolo di velocità preliminare T_g Dh d_g g . l⁻¹ v_i m.s⁻¹ Bocchello N. Affondamento, m Angolo ß mmH_2O 2.42 90 114 0.91 48.5 22.2 90 4 1.46 115 0.41 49.6 22.5 0.79 90 0.91 117 50.3 22.0 90 3 0.25 0.91 115 48.4 22. Z 2 2.42 85 115 0.91 25.6 16.1 85 1.46 115 0.91 12.3 11.2 2 85 0.79 115 0.91 13.2 4.7 2 0.25 85 115 17.8 0.91 20.9 2.42 90 118 47.8 0.91 22 ŧ 1.46 90 52.4 119 0.91 23.1 0.79 90 52.8 23.2 119 0.91 0.25 90 121 53.4 0.91 23.5 4 2.42 د ع 121 54.3 0.91 23.5 1.46 85 4 120 54.1 0.91 شجر بحرت 0.79 90 4 21.5 118 54.5 5.61 40 0.25 4 116 54.1 C. C. 20.4

	ENEL S.p.A. \ DCO Pag. 3 di 3 Unità Laboratorio Centrale di Piacenza														
			trale di I LTA DA			ETERN	/INAZIO	ONE DE	-ι 1 Δ	CONCE	NTPA7	ZIONE I	E DELI	Δ	
		PORT	ATA MA							SOSI CO	NVOG	ΙΔΤΙ			
Comme	ssa: -	30./ <u>S</u>	24.	·····				· ,,			Pı	rova N.	<u>: と:</u>	· 25·	3-91
Media d	ei valori	assoluti	dell'ang	olo ß =									vs (V _π	_{nax} /v _{min})= 2.1.6
Media de	lla temp	eratura	=		11.7	T _{mas}	sima =	l.L.B •(СТ	minima=	<i>1.1.Д</i> ф. °	С			ΔT=.\$°C
Accet	tahilità i	della se	ezione d	li misur	.a ·		⊠sı								
Accel	(dDille 1	uciia st					□ NO								
Ugello	o da ado	ottare =	·	4	mm										
		dı	urata misu	ге		ı i	etture al c	ont volu	metr. (CVI	T	I	I	Γ	02, %
0															
Bocch.	Aff., m	durata progr.	ora inizio	ora fine	CV 1/min	litri inizio	litri fine	litri totali	1.5c/	/ Pcy mmH ₂	Ţg.	mmH ₂	d _{g,i} g ₁	m.s-1	scarico pompa
3		3.0	900	950			275	-2 -2 -	2.0	_ 0 -	<u> </u>	0 -			
े ज	2.42	30			12.5	 	375	375	30		T	48.7			15.6
3_	1.46		950	1020	13.6	1		490			 	T	1		15.7
भी भू	0.19		620	1050	12.6		1164	 	30			1		1	15.8
4	0.25	<u> </u>	10°50	محاا	12.7	1104	1546	382	27	<u> /0332</u>	115	48.	0.91	22.1	15.7
2	2.42	150	1124	1154	9.5	1546	1831	285	22	10364	115	Z5.4	0.91	16.1	15.7
2	1.46	180	عاتما	1764	6.3	1831	2020	189	2.2	1 Caro	115	12.3	0.91	11.2	15.6
2	0.19	210	1.224	1250	ó.:	2525	2003	183	2 3	10302	115	13.2	0.91	11.7	15.7
2	0.25	240	د تدر	1 2 4 4	ć	220.5	2384	181	20				0.91	10.9	15. €
1	2.42	270	1515		12.5	C?	377	377	2 :-		118	47.8		22	15.7
	1.46	300		1014	129	37/	· · · · · · · · · · · · · · · · · · ·	388	2.5		119	52.4	1	23.1	15.7
	0./9	230	1, 14	10 22	 	† · · · · ·	4160	·	23		119	52.8	† 	23.2	-
	0.25	† 	1 2 42	107	13.1	1	1	393	2.3			1	- · · · · ·		
1 4	-	300	1715	1/45		ljëc	1		1		1'	53	0.91	23.2	
1		420	1745	<u> </u>	13.1		1941		25			54.1	0.91	23.4	15.7
4				21.5	13.4		2365		25		1	64.7			15.7
4	0.19	+	18.5	1845		_	27,80		25		_	54.5		23.5	
14	C. 25	3.	1832	1015	13.6	2180	31 <i>8</i> 8	304	24	10 334	116	54.1	0.91	23.4	15.8
				ļ <u>.</u>	<u> </u>	ļ					-		ļ	<u> </u>	
	<u> </u>					<u> </u>	<u> </u>	<u></u>				ŀ			
Filtro			Residu		1	IV.	ol. cam	-:			Con			I	
Fillio			residu Secco	J		,	Ji. Caili	bionate	,		Cor	ıc. polv	/eri		
tara	1:0.26	دجم		tara :			³ secchi			5.572					cc./8
lorde	: Q.26	5053		lordo :		l l	n ³ secci	ni:		5.093	mg/	Nm ³ all'0 %]	0 ₂ di rife	er.	0.22
pes	50						3 alle co	nd. del g	as	**					
	i: k.o.		peso res	:	ļ					7.833.			m(g/m ³ .	.c.(3
	pione s a stazio			3.2.1.	ىنف	به الله عام	<i>y</i>	88	25						
Vernic	a Stazit				2 ා.3	m e-1						2	20. 3	m s-1	
rileva	$\sum_{i} V_{i} = \frac{20.3. \text{ m.s}^{-1}}{\text{rilevate durante il reticolo preliminare}} \sum_{i} V_{i} = \frac{20.3. \text{ m.s}^{-1}}{\text{rilevate durante il campionamento}} \text{ m.s}^{-1}$														
1	Condizioni stazionarie durante il prelievo : □ SI														
V	erifica p	orova d	i tenut	а	-		□ N(caus □ Ne		**********		**********	•••••	
Data	e firma	RP:	د5:0	-94	بر جنتهائد	:20:'	-		_						
1				,											

i

NEL S.p.A. \ DCO Pag. 1 di 3	3
Inità Laboratorio Centrale di Piacenza	4
FOGLIO RACCOLTA DATI PER LA DETERMINAZIONE DELLA CONCENTRAZIONE E DELLA	
PORTATA MASSICA DI POLVERE NEI FLUSSI GASSOSI CONVOGLIATI	-
Commessa: 4.6.4.4. Impianto: 24/454.4.4. Unità: 19544. Prova N.:4	
Responsabile di prova :	i
Data e firma RL: ADATA ATAM	
ncaricati di prova:	
CARATTERISTICHE SEZIONE DI PRELIEVO	
Posizione sezione :	
verticale orizzontale inclinato Idonea (ŠÍ	
Giacitura condotto : NO	
Distanza dall'ultimo ostacolo a monte :	
con riserva	
Distanza dal primo ostacolo a valle : De	
Dimensioni sezioni di prelievo : x m² (se rettangolare)	
De: m	
Diametro : m (se circolare)	
Spazio morto "Z":	
schizzo della posizione dei bocchelli con relativa numerazione Pulisco seguit. ap. 24 m	
schizzo della posizione dei bocchelli con relativa numerazione Pelisco seguit. a p. 24 m L. Ciuse con Deur ota.	
10 / 0 / 0 /	
troco per IPA	
$\frac{1}{2}$	
3 d	
A.	
\mathbb{N}	
IDENTIFICAZIONE E CARATTERISTICHE DELLA STRUMENTAZIONE	
IDENTIFICAZIONE E CARATTERISTICHE DELLA STRUMENTAZIONE Sonda di Pitot Micromanometro Barometro	
N. matricola: 119604. N. matricola: 119036. N. matricola: 140.6	
lunghezza (m): 2.50, scala (mmH ₂ O): Q52 Calibrazione \(\omega\) OK	
modello: PF 20375(2.8. modello: Flow.Test. Termocoppia mod.: 140.6	
coefficiente Cp Cont. volumetrico Verifica S OK	
Filtro tipo: Santa prolingo i Santa prol	
Sonda prelievo: modello: N. matricola: ムラム Verifica B OK	
lunghezza (m) : せんぜん Manometro Termometro mod. : ルルん	
Modello : Venitica OK OK Venitica OK OK OK OK OK OK OK O	
Condens. mod.: Ver. riscald. (se previsto) ☐ OK Coefficiente K _f : ☐ OK	

ENEL S.p.A. \ DC(o .						Pag. 2 di 3
Unità Laboratorio	Centrale di Piacenza	A DETEDIA	INIA ZIONI		CONCENTE	AZIONE E DE	= 1 A
FOGLIO RAC	COLTA DATI PER I DRTATA MASSICA [TA DETEKN	INAZIONI NELELII	SSI GAS	CONCENTR)(+i) IA. I I	
Commessa: 30	DRTATA MASSICA L		. 14211 20	00.000	000,00,00	Prova N.: 4	-263-91
CONDIZIONI DI E	SERCIZIO DELL'IMP	PIANTO (da :	strumenta	zione di i	mpianto) :		
Tipo e nortata	di combustibile	, , , , , , , , , , , , , , , , , , ,	_ ,				
liquido :		solido :			gassoso:		
portata:	t/h	portata:	t/	h	portata:.		n ³ /h
	iali di processo						
Materiale	l	Jnità di misu	ra Va	lore inizio		Valore fine pr	rova
Potenz	ي ي	NW_		76.4		<u>78.9 </u>	
	2 625 H.	1 m3/h		<u>328</u>		341	
17.							
Composizion	e del nas		I		<u> </u>		
COMPOSIZION	Componen	te	x _i	M;	x _i . M _i		
	CO ₂			1			
	O ₂		002	3 ^	22.00		
	N ₂		0.93	3√0	21.90		
	H ₂ O		0.07	18	1.66		
					2.5		
			Į	x _i . M _i	24.16		
	della pressione del g		1000	Pa			
RISULTATI DE	della temperatura an <u>ELLE MISURE</u> ccettabilità della sezio		ı ed esecu	zione de	l reticolo di ve	elocità prelimir	nare
Bocchello N.	Affondamento, m	Angolo ß	1 0	g	Dh mmH ₂ O	d _g g . 1-1	v _i m . s ⁻¹
ı.L	2.42	90	116	1	52	0.91	23
-3.	1.46	90°	114		53.5	0.91	23.3
-3	0.79	90	117		52.1	0.91	2.3
1	- 	90	115		51.4	0-91	22.8
	0.25 2.42	85	118		23.8	0.91	75.5
	(3 /	100	118		12.7	0.91	15.5 11.4 11.5
1	1.46	85	1110		12 2		1,75
1 2	C	85	118		13.2	0.91	11.~
2	0.25	85	118		12.4	0.91	11.2
3	0.25 2.42 1.46	90	119		46.8	0.91	21.3
3	1.46	90	118		50	0.91	22.5
3	1 10	90	119		50.2	6.91	22-6
2 2 2 3 3 3 3	0.25 2.42 1-46	90	114		49.7	0.91	22.5
4	2 42	85		8	51.8	0.91	22.9
	1.46	85	1 1 1	<u> </u>	53	0.91	23.2
4	1-40				7	0.4	53.2
4	0.79	90	118		54.3		
1 4	0.25	90	<u> </u>	₩ <u></u>	53	0.91	53.5
1 1	1	1	1		1	1	1

ln:42 _i	NEL S.p.A. \ DCO nità Laboratorio Centrale di Piacenza														
FOG	LIO RA	ACCOL PORTA	AG AT. AM AT.	TI PER	LA DE	TERM VERE	INAZIO NEI FL	NE DE USSI (LLA (GASS	CONCEN OSI COI	NVOGI	_IA I I			
Commes						-		., .				ova N.			
Media de	i valori a	assoluti	deil'ango	olo ß = å	88•	v _{ma}	ssima =	د≯' ' تِ	. m/s	v _{minim}	ıa [≕] '	(./	/s (V _m	ax /v _{min})= <:. <u>i</u>
/ledia del	la tempe	eratura =	=	,	1.1.7•	T _{mass}	sima =	11.9 °C	T _m	inima= (.	.14 °0				∆T=.ౘ °
Accetta	abilità d	lella se	zione d	i misura	1:		⊠ SI □ NO								
Ugello	da add	ttare =		4	mm										
		du	rata misu	re		10	etture al c	ont. volun	netr. (C	V)		<u> </u>			02, %
Bocch. N.	Aff., m	durata progr.	ora inizio	ora fine	CV I / min	· litri inizio	litri fine	litri totali	ŢĢV	P _{CV} mmH ₂	T _Q	Dh mmH ₂ O	d ₉₁	m.s ⁻¹	scarico pompa
l (2-42	30			13.6	Ç.	408	408	24	10318	114	52	0.91	23	15.7
1,4	t	60		905	;3.5	408	814	406	25	10332		53.5			15.7
1	6uq	90		1015	13.4		1218	404		10332			0.91	23	15.7
	٤, ٤٤	120	1015			1218	1		29	<i>6</i> 0332		120	+3	1	15.7
2	2.42	150	1355			Ø	237	237	30		1	23.8			15.7
2	1-46	180	1425	1455	6-6	23/	435	198	31		118			11.4	15./
12	0.19	200	14.55	15 25	6.0	435	6/5	180	32		1	13.2	1 - · ·	11.5	15.7
2	0.25	20	تتن سر. مه	15 55		615	797	182	32	10318	1	12.4	0.91		
3	2.42		1600	16:30		Ø		342	32			46.8		-	
2	1.46		1630		13.1	342		3.23	32		118	<u>고</u>	0.91		15.7
ئتم	+		11		13.6	735		410	32	_			0.91		
3		ರ್≎೧	1730	18"	13.3	1/45		400	32		16				
A		39 <u>0</u>	100,		T	1	1961		32	10349		51.8		22.5	
4		420	E37		124		238		32		118	53	 -		1.0.1
4		450	1907	17				382			1118		0.9		12.7
41	7.35	480	1001	ړه ده	14	260	3 222	144	29	(0357	118	53	- 1	1.3 . 4	!E".7
						ļ	-	<u> </u>	-						
L		<u> </u>			<u> </u>	1	1	1							
Filtro			Residu secco	10		V	ol. cam	pionat	0		Co	nc. pol	veri		
tara	a : <i>C</i> , , , z	60.56		tara :		*****	1 ³ secch			5.61.6		/Nm³			0.26
lord	o : <i>i</i>	6.215		lordo :		N	lm ³ seco	hi:		5./66	mg [.l.;	/Nm³ all 5%]	'O ₂ di ri	fer.	0.33
pe polve	so		peso re	s. secco	·	r	n ³ alle c	ond. del	gas :	7.94	3		n	ng/m ³	0./9
N can	nione	sul RP	CIE	8221	<u> </u>			D.c	ر ر <u>.</u> د					<u>!</u> _	
Verific	N. campione sul RRC .88.2.2														
Mostle Malaine Mississis Property															
	Condizioni stazionarie durante il prelievo : 囚SI □ NO causa :														
		-			,		中分			eg.ø					
Data	a e firm	a RP :	27:	3.9/		 	ہے جید								

Documento nº 700C100233

Pag. 1

di

5

Oggetto:

PCT TRINO VERCELLESE - CARATTERIZZAZIONE INQUINANTI IN EMISSIONE

Committente:

AAP

Commessa di lavoro:

30/94

Periodo di conservazione di questo documento: 10 anni.

VINCOLI DI RISERVATEZZA

Ogni riproduzione parziale del presente Rapporto di Prova, deve essere esplicitamente autorizzata da ENEL - PIN/SPL - UML PC.

I risultati riportati nel presente Rapporto di Prova si riferiscono esclusivamente ai campioni in oggetto.

Estrapolazioni dei suddetti risultati esulano dallo scopo di questo documento.

	limberto Beroni		Spoto	אטיבא
17.06.97	CAI: UB		CAI	CA
DATA	INCARICATO/I	COLLABORAZIONI	SDA	REE
				<u> </u>

ENEL - PIN/SPL - Unità Misure e Laboratorio - PC Via N.Bixio, 39 29100 Piacenza - ITALIA

Documento nº 700C100233

Pag. 2

di

5

Tipologia dei campioni	Filtri piani in fibra di vetro Condense Fiale in XAD-2
Data di ricevimento dei campioni	02.04.97
Data di effettuazione della prova	14.04.97 - 13.05.97
Riferimento cartella di lavoro	77 CH 97

Prova	Procedura	Strumentazione	IP
Filtri			
Dissoluzione del campione	QT000415	Forno a microonde Milestone MLS 1200 - matr. 115500	Roberti
V-Pb-As-Be-Cd- Cr-Cu-Ni	ICP-MS	Spettrometro di massa al plasma ICP-MS Perkin Elmer ELAN 5000 - matr. 73438	Baroni
Na-K-Ca-Zn	ICP-AES	Spettrometro di emissione atomica al plasma Perkin Elmer OPTIMA 3000 - matr. 124088	Roberti
Hg	FI-HGAAS	Spettrometro di Assorbimento Atomico con generazione di idruri e sistema di iniezione in flusso - matr. 73434	Roberti
PA •	QT00458	Spettrometro di massa HP 5989 - matr. 120693	Medici
Condense			
As-Cd-Pb	QT00031	Spettrometro di massa al plasma ICP-MS Perkin Elmer ELAN 5000 - matr. 73438	Baroni
lg	QT00035	Spettrometro di Assorbimento Atomico con generazione di idruri e sistema di iniezione in flusso - matr. 73434	Roberti
PA	QT00458	Spettrometro di massa HP 5989 - matr. 120693	Medici
iale in XAD-2			
PA	QT00458	Spettrometro di massa HP 5989 - matr. 120693	Medici

RAPPORTO [DI PROVA
------------	----------

Documento nº 700C100233

Pag. 3

5

Tab.1 - PCT Trino V. - Caratterizzazione inquinanti in emissione

	SQ 8820	SQ 8821	SQ 8822	SQ 8824	SQ 8825	SQ 8826	SQ 8830	SQ 8831
	Filtro	Filtro	Filtro	Cond.	Cond.	Cond.	XAD-2	XAD-2
Data prelievo	21.3.97	25.3.97	27.3.97	21.3.97	25.3.97	27.3.97	25.3.97	27.3.97
Vol.camp.m ³	5.406	5.572	5.616	5.406	5.572	5.616	5.572	5.616
ml.campione				195	59	65		0.070
U.di M.	μg tot.							
PARAMETRI							i	
As	0.31	0.41	<0.1	0.085	0.14	0.24		
Be	0.16	0.26	0.33			·		
Cd	<0.01	0.01	0.02	<0.01	<0.01	<0.01		
Cr	3.93	3.50	6,49					
Cu	0.45	0.78	0.66					
Hg	<0.01	<0.01	<0.01	0.017	<0.01	<0.01		
Ni	1.76	<1.0	2.51					
Pb	0.93	0.38	1.61	<0.05	<0.05	<0.05		
Λ ,	4.95	6.76	10.29					
Zn	6.8	8.8	26.4					
Ca	775.5	753.7	827					
Na	657	1131	1051					
K	144.2	153.5	179.5					

RP Spesie

IP NB Robers

RL Zzz

Documento nº 700C100233

Pag. 4

di

5

	Partic	Ca=-3	1	1
	SQ 8821	Cond SQ 8825	Incond SQ 8830	Totali
IPA	[ng]	[ng]	[ng]	[ng]
				- 01
Naftalene	4,22	1,27	27,83	33,32
2-Metilnaftalene	5,92	1,12	117,46	124,50
1-Metilnaftalene	1,91	< 0,5	43,39	45,30
1,1'-Bifenile	1,90	< 0,5	44,90	46,80
2,6-Dimetilnaftalene	1,23	< 0,5	29,60	30,83
Acenaftilene	< 0,5	< 0,5	< 0,5	< 0,5
Acenaftene	< 0,5	< 0,5	< 0,5	< 0,5
2,3,5-Trimetilnaftalene	1,20	< 0,5	5,95	7,15
Fluorene	< 0,5	< 0,5	32,48	32,48
Fenantrene	18,35	4,07	56,05	78,47
Antracene	2,53	< 0,5	5,43	7,96
1-Metilfenantrene	4,87	0,61	5,63	11,12
Fluorantene	18,21	1,43	9,72	29,36
Pirene	10,47	0.66	6,35	17,48
Benzo(a)antracene	5,10	0,70	2,43	8,23
Crisene	< 0,5	< 0,5	3,10	3,10
Benzo(b)fluorantene	< 0,5	< 0,5	2,67	2,67
Benzo(k)fluorantene	< 0,5	< 0,5	1,49	1,49
Bepzo(e)pirene	< 0,5	< 0,5	1,53	1,53
Benzo(a)pirene	< 0,5	< 0,5	< 0,5	< 0,5
Perilene	< 0,5	< 0,5	< 0,5	< 0,5
Indeno1,2,3-c,d)pirene	< 0,5	< 0,5	0,54	0,54
Dibenzo(a,h)antracene	< 0,5	< 0,5	< 0,5	< 0,5
Вепzo(g,h,i)perilene	< 0,5	< 0,5	1,47	1,47
Dibenzo(a,i)pirene	< 0,5	< 0,5	< 0,5	< 0,5
Totali [ng]	75,92	11,53	398,04	485,49

Tab. 2 - Idrocarburi Policiclici aromatici alle emissioni del 25.03.97

RP All IP RMOGE KRL JUST

Documento n° 700C100233

Pag. 5

di

5

1]

	Partic	Cond	1 1	
	SQ 8822	SQ 8826	Incond SQ 8831	Totali
IPA	[ng]	[ng]	[ng]	[ng]
	. 31	1.31	191	131
Naftalene	1,95	< 0,5	< 0,5	1,95
2-Metilnaftalene	1,35	< 0,5	< 0,5	1,35
1-Metilnaftalene	0,58	< 0,5	< 0,5	0,58
1,1'-Bifenile	< 0,5	< 0,5	< 0,5	< 0,5
2,6-Dimețilnaftalene	< 0,5	< 0,5	< 0,5	< 0,5
Acenaftilene	< 0,5	< 0,5	< 0,5	< 0,5
Acenaftene	< 0,5	< 0,5	< 0,5	< 0,5
2,3,5-Trimetilnaftalene	< 0,5	< 0,5	< 0,5	< 0,5
Fluorene	< 0,5	0,62	< 0,5	0,62
Fenantrene	10,78	2,98	23,64	37,39
Antracene	28,30	1,36	74,58	104,24
1-Metilfenantrene	1,75	< 0,5	3,62	5,37
Fluorantene	4,15	0,95	3,48	8,58
Pirene	2,94	< 0,5	7,53	10,46
Benzo(a)antracene	0,79	< 0,5	14,66	15,45
Crisene	1,47	< 0,5	7,91	9,38
Benzo(b)fluorantene	0,61	< 0,5	0,93	1,53
Benzo(k)fluorantene	0,61	< 0,5	0,93	1,53
Benzo(e)pirene	< 0,5	< 0,5	< 0,5	< 0,5
Benzo(a)pirene	< 0,5	< 0,5	< 0,5	< 0,5
Perilene	< 0,5	< 0,5	< 0,5	< 0,5
Indeno1,2,3-c,d)pirene	< 0,5	< 0,5	0,64	0,64
Dibenzo(a,h)antracene	< 0,5	< 0,5	< 0,5	< 0,5
Benzo(g,h,i)perilene	< 0,5	< 0,5	2,57	2,57
Dibenzo(a,i)pirene	< 0,5	< 0,5	< 0,5	< 0,5
Totali [ng]	55,26	7,10	140,49	202,85

Tab. 3 - Idrocarburi Policiclici aromatici alle emissioni del 27.03.97

RP H. IP Cillelia. SEL JUT

· ... 5 ...

DIVISIONE PRODUZIONE INGEGNERIA

CENTRALE DI TRINO LERI CAVOUR

DETERMINAZIONE DI INQUINANTI INORGANICI ED ORGANICI NELLE EMISSIONI GASSOSE DEL MODULO 2 NEL PERIODO 29.03.99 ÷ 01.04.99

SUPPORTO TECNICO SPECIALISTICO

POLO AMBIENTE, MATERIALI E LABORATORIO CHIMICO

Documento nº 700E100080

Pag. 1 di (

Laboratorio di prova: Combustione e processi di trattamento effluenti gassosi

LG

Oggetto:

CENTRALE DI TRINO LERI CAVOUR

DETERMINAZIONE DI INQUINANTI INORGANICI ED ORGANICI NELLE EMISSIONI GASSOSE DEL MODULO 2 NEL PERIODO 29.03.99 ÷ 01.04.99

Committente:

PDT / NOV

Ordine:

ENEL PDT/NOV del 24.11.97

Commessa di lavoro:

420/97

Periodo di conservazione di questo documento: 5 anni.

VINCOLI DI RISERVATEZZA

Ogni riproduzione parziale del presente Rapporto di Prova, deve essere esplicitamente autorizzata da ENEL – Polo AML .

I risultati riportati nel presente Rapporto di Prova si riferiscono esclusivamente ai campioni in oggetto. Estrapolazioni dei suddetti risultati esulano dallo scopo di questo documento.

15 NOV 1999	LG : GIC	Ales I Ine
DATA	RESPONSABILE DEL LABORATORIO DI PROVA	FIRMA

Documento nº 700E100080

Pag. 2 di

Il presente Rapporto di Prova contiene i risultati delle sottoelencate prove eseguite sull'unità 3 della Centrale a Ciclo Combinato di Trino Leri Cavour nel periodo dal 29.03.1999 al 01.04.1999

- 2 prove di " Determinazione della concentrazione di metalli nei flussi gassosi convogliati"
- 2 prove di " Determinazione di IPA nei flussi gassosi convogliati "

Il campionamento dell'effluente gassoso in emissione per la determinazione dei metalli in tracce è stato effettuato mediante prelievi isocinetici in accordo alla norma VDI n° 3868 (Determinazione dei metalli totali nelle emissioni). In particolare per quanto riguarda la determinazione della concentrazione di Hg è stata aggiunta una trappola finale come da norma prEN 13211 (draft, 1998).

L'analisi dei metalli è stata effettuata, sulle soluzioni di assorbimento e sulle condense, mediante l'applicazione delle Procedure Tecniche n°700QT00031 e n°700QT00035 (entrambe accreditate SINAL) che prevedono l'utilizzo della spettrometria di massa con sorgente al plasma (ICP-MS) e della spettrometria di assorbimento atomico con generazione di idruri (FI/HG/AAS). L'analisi dei metalli sulla polvere è stata effettuata in analogia a quanto sopra descritto, previa dissoluzione del campione secondo il metodo UNICHIM 723 (contenuto nel Manuale UNICHIM N. 122, parte III).

Il campionamento dell'effluente gassoso in emissione per la determinazione degli IPA è stato effettuato mediante prelievi isocinetici applicando la Procedura Tecnica 700QT00306 "Determinazione della concentrazione e della portata massica di polvere nei flussi gassosi convogliati emessi da una sorgente stazionaria secondo la norma ISO 9096", per la quale è stato ottenuto l'accreditamento da SINAL.

Il trattamento dei campioni prelevati e l'analisi è stata effettuata applicando la norma UNICHIM 825.

I risultati delle analisi chimiche, unitamente alla incertezza di misura di dette determinazioni per ogni analita, sono riportati negli allegati Rapporti di Prova. n° 700C101000 del Laboratorio di prova Analitica Organica e n° 700C101026 del Laboratorio di prova Analitica Inorganica e Oli.

l risultati delle prove unitamente alla incertezza totale di misura sono di seguito riportati nelle tabelle 1 - 4.

I valori sono espressi nelle unità di misura esplicitate nelle tabelle e sono riferiti a gas secchi a 0° C, 101.325 kPa e alla concentrazione di O, del 15%.

Relativamente ai valori misurati i giorni 31.03 e 01.04.99, si nota una discordanza notevole per Cromo e Potassio. La ragione di tale discordanza è descritta nell'allegato "Rapporto di non Conformità".

Come previsto dalla Procedura Tecnica di Prova, le informazioni di dettaglio relative alle prove, ai materiali di riferimento e alle apparecchiature utilizzate unitamente alle condizioni di prova, sono riportate nei Fogli Raccolta Dati (FRD) allegati.

Documento nº 700E100080

Pag. 3 di 6

Tabella 1: Risultati delle prove IPA eseguite il 29.03.99

		Pati identificativi			•
Commessa	420/97	Sezione di misura	camino	Carico MV	V 358
Centrale	Trino	Prova	IPA	Combustibile	Gas Naturale
Unità	Modulo 2		29/03/99	Combactione	Odo Naturali
		Risultati	20,00,35		
	Conce	ntrazione		U (k=2)	INCERTERIA
Composto		/Nm³		ng/Nm³	MICCE (CE)
Naftalene		.45			
2-Metilnaftalene	8.89		1.57		
1-Metilnaftalene	1.00				
2,6-Dimetilnaftalene	0.40				
Acenaftilene		.04	0.52 0.14		
Acenaftene	, , , , , , , , , , , , , , , , , , ,				
2,3,5-Trimetiinaftalene	3.94		0.67		
Fluorene	7.31		0.51 1.02		
Fenantrene	·4.72		0.63		
Anatracene	17.24		2.33		
1-Metilfenantrene	17.24		2.33		
Fluorantene	18.39		2.36		
Pirene	9.00		1.19		
Ciclopenta(c,d)pirene	0.08 0.01				
Benzo(a)antracene		39	0.06		
Crisene	1.	97	0.03		
Σ Benzofluorantene (b,k,j)	1.	74 ·	0.26		
Benzo(e)pirene	0.	87	0.12		
Benzo(a)pirene	1.	15	0.15		
Perilene	0.	42	0.08		
Indeno(1,2,3-c,d)pirene	0.	76	0.13		
Dibenzo(a,h)antracene	0.	45	0.07		
Benzo(g,h,i)perilene	2.	17	0.40		
Dibenzo(a,i)pirene	0.08 · 0.01				
Dibenzo(a,e)pirene	0.08		0.01		
Dibenzo(a,i)pirene	0.08				
Dibenzo(a,h)pirene	0.0	08	0.01		
IPA normati	3.	63		0.31	
IPA totali	116	.94		4.46	

Documento nº 700E100080

Pag. 4 di 6

Tabella 2: Risultati delle prove IPA eseguite il 30.03.99

Commessa	420/97	Sezione di misura	camino	Carico	MW	356
Centrale	Trino	Prova	IPA	Combustib	ile	Gas Naturale
Unità	Modulo 2	Data	30/03/99			
		Risultati				
0	Conce	entrazione		U (k	:=2)	
Composto	ng	g/Nm³		ng/N	lm³	
Naftalene		1.59		6.2		
2-Metilnaftalene	1	3.74		1.8		
1-Metilnaftalene		9.26		1.4	4 1	
2,6-Dimetilnaftalene	1	0.57		1.8		
Acenaftilene		1.51		0.2		
Acenaftene	1	6.09		2.4	48	
2,3,5-Trimetilnaftalene		5.40		0.8	30	
Fluorene	$ $ ϵ	2.13		9.4	1 1	
Fenantrene Antracene	4	6.04	6.56			
1-Metilfenantrene	2	.0.93	3.18			
Fluorantene	2	.0.93	3.18			
Pirene	1	1.16		1.6	61	
Ciclopenta(c,d)pirene		6.80		1.0)3	
Benzo(a)antracene Crisene	l	0.09	***************************************	0.0	01	
Σ Benzofluorantene (b,k,j)		1.96		0.3	30	
Benzo(e)pirene		1.72		0.3	31	
Benzo(a)pirene		0.83		0.1	12	
Perilene	, (0.09		0.0)1	
Indeno(1,2,3-c,d)pirene		0.09		0.0	01	•
Dibenzo(a,h)antracene		0.09		0.0	01	,
Benzo(g,h,i)perilene		0.09		0.0)1	
Díbenzo(a,I)pirene		0.09		0.0)1	
Dibenzo(a,e)pirene		0.09		0.0	01	
Dibenzo(a,i)pirene	!	0.09		0.0	01	1
Dibenzo(a,h)pirene		0.09	0.01			
IPA normati		3.24	0.33			
IPA totali	2	71.48		14.	47	

Documento nº 700E100080

Pag. 5 di

Tabella 3: Risultati della prova di campionamento dei metalli n° 1 eseguita il 31.03.99

			Dati ide	ntificativi				
Comme	ssa 42	0/97	Sezione	di misura	camino	Carico	MW	355
Centrale	Trino Le	eri Cavour	Prova		METALLI			Gas Naturale
Unità	MOD	ULO 2	Data		31/03/99			Ods Mainale
				ultati	01/03/99			
	Singolo eleme	nto		- Tati				
	Concentrazione .							
Elemento) 	U (k	:=2)					
	μg/Nm ³	hg/l	Nm³					
As	25.27	2.6	30		···			
Be	0.18	0.0	03					
Ca	242.30	. 25.	68					
Cd	0.12	0.0)2					
Со	0.26	0.0	14					
Сг	5.92	0.5	6					
Cu	5.66	0.5	io l		•			
Hg	2.06	0.1	2					
K	92.23	7.5	0					
Mn	1.52	0.1	9					
Na	406.17	52.5	54					
Ni (*)	8.65	0.7	3					
Pb	1.93	0.2	5					İ
Pd	0.09	3.9	1					
Pt	0.06	0.0	o					
Rh	0.06	0.0	o					
Sb	0.12	· 0.0	2					
Se	0.06	0.0	o				1	
Sn	0.52	0.0	•				•	
Те	0.06	0.00	o					
TI	0.20	0.03	3					
V	24.44	2.3	5					
Zn	64.92 me Nichel totale	5.99	•					İ

Documento nº 700E100080

Pag. di

Tabella 4: Risultati della prova di campionamento dei metalli n° 2 eseguita il 01.04.99

			Dati ide	ntificativi		<u> </u>		
Commess	sa 420	420/97			camino	Carico	MW	355
Centrale	Trino Le	ri Cavour	Ргоча		METALLI	Combustibile		Gas Naturale
Unità	MOD	ULO 2	Data	4	01/04/99			
			Risı	ultati				
	Singolo eleme	nto				anamana a		
	Concentrazione .	U(I	(=2)			1		
Elemento	μg/Nm³		۷m³					
As	27.78	2.	72			······································		
Be	0.20	0.0	04					
Ca	124.65	. 22	.08					
Cd	0.06	0.0	00					
Co	0.09	0.0	01					
Cr(°)	449.72	50.	.63					
Cu	3.42	0.:	30					
Hg	2.25	0.	10					
K(°)	450.11	46.	22					
Mn	15.71	1.:	26					
Na	1278.20	124	.29					
Ni(*)	3.53	0.3	39					
Pb	0.78	0.0	08					
Pd	0.16	0.0	02					•
Pt	0.06	0.0	00					
Rh	0.06	0.0	00					
Sb	0.09	- 0.0	01					
Se	0.06	0.0	00					,
Sn	0.48	0.0	9					٠
Те	0.06	0.0	00					
Τι	0.06	0.0	00					
٧	24.10	2.4	1 7					
Zn	24.28	1.6	32					

Allegati:

n° 2 Rapporti di Prova (n° 700C11000, n° 700C11026)

n° 4 Fogli raccolta dati

^(*) Inteso come Nichel totale (°) Valori non attendibili. Vedi Rapporto di Non Conformità

n° 1 Rapporto di non conformità

Distanza dall'ultimo ostacolo a monte :

Distanza dal primo ostacolo a valle :

Dimensioni sezioni di prelievo :

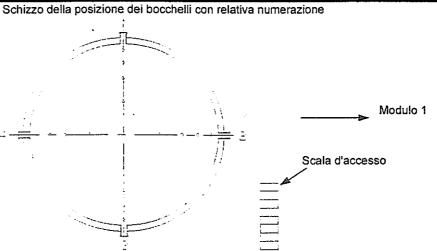
FOGLIO RACCOLTA DATI PER LA DETERMINAZIONE DELLA CONCENTRAZIONE E DELLA PORTATA MASSICA DI POLVERE NEI FLUSSI GASSOSI CONVOGLIATI

P.T. 700QT00306

Pag. 1 di 3

⊠ SI

□NO


☐ con riserva

idonea

Commessa n°: 420/97	Impianto: TRINO	Unità MOD.2	Prova n°.: IPA(1)
Responsabile di prova :	Casarola L.		
Incaricati di prova :	Chiarini R.	Data e firma RL:	29.03.99 / Lieby by
	CARATTERISTICHE SE	ZIONE DI PRELIEVO	<u></u>
Posizione sezione :			
Giacitura condotto :	☑ verticale	□ orizzontale	☐ inclinato

1.6 Ø eq. 10 Ø eq.x m (se rettangolare)

Ø sezione 7.5 m
Spazio morto "Z": 0.6 m

IDENTIFICAZIONE E CARATTERISTICHE DELLA STRUMENTAZIONE

Sonde di Pitot	Micromanometro		Barometro	
Matricola n°: 1013	Matricola n° :	LG-408	Matricola n° :	LG - 235
Lunghezza (m) : Comp.	" scala (mmH ₂ O) :	0 - 250	Calibrazione	⊠OK
Modello: Tecora	 Modello :	Air Flow	Termocoppia mod.:	"K"
Coefficiente Cp 0.84	"Cont. volumetrico 1	100144001440144018400000000000000000000	 Verifica	⊠OK '
Filtro tipo: Piano	"Matricola n° :	56343804	Pompa aspirazione 1	Zambelli 6100 plus
Sonde prelievo	Modello :	Ariete	Matricola nº :	LG - 111
Matricola n°: 1013	Coefficiente Kc:	1	 Verifica	⊠OK
Lunghezza (m): Comp.	Cont. volumetrico 2	***************************************	Pompa aspirazione 2	Zambelli ZB2
Modello: Tecora	Matricola n° :	LG-206	Matricola nº:	***************************************
Ver. riscald. (se previsto)	Modello :	Ariete	Verifica	□ОК
□ ок	Coefficiente Kc:	1	Termometro 1 mod.:	
Filtro tipo :	Flussimetro 1	***************************************	Verifica	⊠OK
Ver. riscald, se previsto	Coefficiente Kf:	9	Termometro 2 mod. :	
□ок	Flussimetro 2		Verifica	□ОК
Frigo. mod. FF 18012	Coefficiente Kf:	100000000000000000000000000000000000000	Bilancia Sartorius	A2005
- *************************************	T	141010000000000000000000000000000000000	Matricola nº : i/e 73952)
Analizz. O₂ LG-300			***************************************	

FOGLIO RACCOLTA DATI PER LA DETERMINAZIONE DELLA CONCENTRAZIONE E DELLA PORTATA MASSICA DI POLVERE NEI FLUSSI GASSOSI CONVOGLIATI

P.T. 700QT00306

Pag. 2 di 3

Commessa nº:

420/97

Prova n°.: IPA(1)

CONDIZIONI DI ESERCIZIO DELL'IMPIANTO (da strumentazione di impianto) :

TIPO E PORTATE COMBUSTIBILE

liquido: portata: t/h **solido :** portata : t/h

gassoso ; portata : 75 Nm³/h

PORTATE E MATERIALI DI PROCESSO

Materiale	Unità di misura	VI CESSO	
Carico elettrico		Valore inizio prova	Valore fine prova
	MW	358	364
Gas Naturale	· Nm³/h	75	76
			70

COMPOSIZIONE DEL GAS

		DEL GAS	
Componente	×i	M _i	x _i -M _i
Componente secca	0.935	30	28.05
H₂O nei fumi	0.065	18	1.17
		an an	
	-	$\sum x_i \cdot M_i$	29 22

Pressione relativa del gas

394 Pa

Pressione ambiente

99100 Pa

Determinazione della pressione del gas (Pg) : Determinazione della temperatura ambiente :

98706 _{Ра} 308 к

densità H₂O: 1000

Kg/m³

Ø ugello da adottare :

4 mm

1000 Kg

RISULTATI DELLE MISURE

Verifica dell'accettabilità della sezione di misura ed esecuzione del reticolo di velocità preliminare

Bocchello nº	A 65 + 1			ie dei reticolo di v	elocita prelimir	nare	
1	Affond., m	Angolo ß	Tg ℃	∆h, mmH₂O	.dg, g.i ⁻¹	vi, m.s ⁻¹	Q. l.min ⁻¹
	2.42	90	126	50.0	0.87	28.2	15,4
<u> </u>	1.46	90	126	54.0	0.87	29.3	16.0
<u>l</u>	0.79	90	126	54.0	0.87	29.3	16.0
1	0.24	90	126	54.0 ·	0.87	29.3	16.0
2	2.42	90	125	45.0	0.87	26.7	
2	1.46	90	125	44.0	0.87	26.4	14.6
2	0.79	90	125	45.0	0.87		14.4
2	0.24	90	125	46.0		26.7	14.6
3	2.42	90	126	33.0	0.87	27.0	14.7
3	1.46	90	126		0.87	22.9	12.5
3	0.79	90	126	25.0	0.87	20.0	10.9
3	0.24	90	125	22.0	0.87	18.7	10.2
4	2.42	90		20.0	0.87	17.8	9.7
4	1.46	90	125	51.0	0.87	28.5	15.5
4	0.79	1	125	52.0	0.87	28.7	15.6
4		90	123	53.0	0.88	28.9	15.8
	0.24	90	125	51.0	0.87	28.5	15.5
		3					
<u></u>							

T00306

FOGLIO RACCOLTA DATI PER LA DETERMINAZIONE DELLA CONCENTRAZIONE E DELLA PORTATA MASSICA DI POLVERE NEI FLUSSI GASSOSI CONVOGLIATI

P.T. 700QT00306

Pag. 3 di 3

Commessa nº:...420/97

Prova nº.

IPA(1) -

Media val.assoluti di B= Media della temperatura

 \boldsymbol{V} max

m/s T max 127 °C V min 18 m/s T min 125 °C

Vmax/Vmin 1.7 ΔT 2 °C

Accettabilità della sezione di misura :

⊠SI

□NO

Ugello da adottare = 4 mm

CAMPIONAMENTO PARTICOLATO

			Dur	ata mis	иге	Portata	Lettur	e al conta	tore volu	ımetric	o (CV)					Pom.	Cam.
	Bocch.	Affond.	Durata	Ora	Ora	progr.	Litri	Litri	Litri	Tcv	Pcv	Tg	Δh	dg	v _i	02	02
l	Π°	m	progr.	inizio	fine	al CV	inizio	fine	aspirati	ပ္	mbar	ပ္	mmH₂O	g.l ⁻¹	m.s ⁻¹	%	%
	l	2.42	20	23.20	23.40	14.6	600709	601000	291	27	991	127	50.0	0.87	28.3		
	1	1.46	20	23.40	0.00	14.6	601000	601292	292	27	991	126	54.0	0.87	29.3	15.6	15.6
	1	0.79	20	0.00	0.20	15.0	601292	601591	299	27	991	126	54.0	0.87	29.3		
Į	ı	0.24	20	0.20	0.40	15.1	601591	601892	301	27	991	126	55.0	0.87	29.6	15.6	15.6
	2	2.42	20	0.55	1.15	13.0	601892	602152	260	27	991	126	45.0	0.87	26.8		
	2	1.46	20	1.15	1.35	14.1	602152	602433	281	26	991	125	44.0	0.87	26.4	15.6	15.6
	2	0.79	20	1.35	1.55	14.1	602433	602715	282	26	991	126	45.0	0.87	26.8		
l	2	0.24	20	1.55	2.15	13.9	602715	602993	278	25	991	125	46.0	0.87	27.0		
ļ	3	2.42	20	2.25	2.45	11.3	602993	603218	225	26	991	125	32.0	0.87	22.5	15.6	15.6
	3	1.46	20	2.45	3.05	11.7	603218	603452	234	26	991	125	25.0	0.87	19.9		
L	3	0.79	20	3.05	3.25	9.8	603452	603648	196	25	991	125	22.0	0.87	18.7	15.6	15.6
	3	0.24	20	3.25	3.45	9.9	603648	603845	197	25	991	125	20.0	0.87	17.8		
ļ	4	2.42	20	3.50	4.10	14.7	603845	604138	293	25	992	125	53.0	0.87	29.0	15.6	15.6
ļ	4	1.46	20	4.10	4.30	14.7	604138	604432	294	24	992	125	52.0	0.87	28.7		
ļ	4	0.79	20	4.30	4.50	15.0	604432	604731	299	23	992	125	52.0	0.87	28.7	15.6	15.6
ļ	4	0.24	20	4.50	5.10	15.3	604731	605037	306	23	992	125	51.0	0.87	28.5		
		`															
ļ																	
1																	
l										•							

Filtri						
Tara	0.1425	g				
Lordo	0.1431	g				
Peso polveri	0.0006	g				

Volume totale campionato					
m³ secchi al CV	4.328				
Nm³ secchi	3.872				
m³ alle condizioni del gas	6.204				

Concentrazione polveri									
mg/Nm³	0.15								
mg/Nm ³ 15% O ₂ riferimento	0.17								
mg/m³	0.10								

n°	campione	sul	RRC
----	----------	-----	-----

829

830

831 832

Verifica stazionarietà

N.B.:

 $\sum v_{\parallel}$ nel reticolo preliminare

 $\sum v_i$ nel reticolo di campionamento

418 m/s

Condizioni stazionarie durante il prelievo:

⊠SI

□NO causa:

Data e firma RP:

29.03.99

FOGLIO RACCOLTA DATI PER LA DETERMINAZIONE DELLA CONCENTRAZIONE E DELLA PORTATA MASSICA DI POLVERE NEI FLUSSI GASSOSI CONVOGLIATI

P.T. 700QT00306

Pag. 1 di 3

420/97 Commessa n°: Impianto: TRINO MOD.2 Prova n°.: Responsabile di prova: Casarola L. Incaricati di prova: Chiarini R. Data e firma RL:

CARATTERISTICHE SEZIONE DI PRELIEVO

Posizione sezione:

Giacitura condotto:

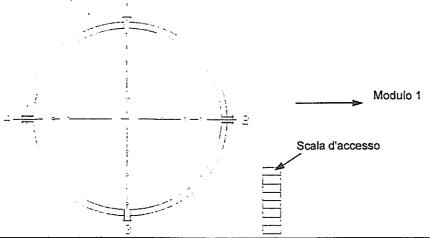
verticale

□ orizzontale

☐ inclinato

Distanza dall'ultimo ostacolo a monte :

.....Ø eq.


⊠ SI idonea

Distanza dal primo ostacolo a valle : Dimensioni sezioni di prelievo :

10 Ø eq. m (se rettangolare)

□NO ☐ con riserva

Schizzo della posizione dei bocchelli con relativa numerazione

IDENTIFICAZIONE E CARATTERISTICHE DELLA STRUMENTAZIONE

Sonde di Pitot	Micromanometro		'Barometro	
Matricola n°: 1013	Matricola n°:	LG-408	Matricola n°:	LG - 235
Lunghezza (m): Comp.	scala (mmH ₂ O) :	0 - 250	Calibrazione	⊠OK
Modello: Tecora	Modello :	Air Flow	Termocoppia mod.:	"K"
Coefficiente Cp 0.84	Cont. volumetrico 1	***************************************	 Verifica	⊠OK
Filtro tipo: Piano	Matricola n° :	56343804	Pompa aspirazione 1	Zambelli 6100 plus
Sonde prelievo	Modello :	Ariete	Matricola n° :	LG - 111
Matricola n°: 1013	Coefficiente Kc:	1	Verifica	⊠OK
Lunghezza (m): Comp.	Cont. volumetrico 2	·····	"Pompa aspirazione 2	Zambelli ZB2
Modello: Tecora	Matricola n° :	LG-206	Matricola n° :	******************
Ver. riscald. (se previsto)	Modello :	Ariete	Verifica	□ок
□ОК	Coefficiente Kc:	1	Termometro 1 mod.:	
Filtro tipo :	Flussimetro 1	***************************************	Verifica	⊠OK
Ver. riscald. se previsto	Coefficiente Kf :	***************************************	Termometro 2 mod.:	181454199495444944444
□ок	Flussimetro 2		Verifica	□OK
Frigo. mod. FF 1801:	2 Coefficiente Kf :	*************************	Bilancia Sartorius	A2005
	·····		Matricola nº : i/e 73952	2
Analizz. O ₂ LG-300	••••			

FOGLIO RACCOLTA DATI PER LA DETERMINAZIONE DELLA CONCENTRAZIONE E DELLA PORTATA MASSICA DI POLVERE NEI FLUSSI GASSOSI CONVOGLIATI

P.T. 700QT00306

Pag. 2 di 3

Commessa nº:

420/97

Prova n°.: IPA(1)

CONDIZIONI DI ESERCIZIO DELL'IMPIANTO (da strumentazione di impianto) :

TIPO E PORTATE COMBUSTIBILE

liquido: portata: t/h

solido : portata: t/h

gassoso: portata: 75 Nm³/h

PORTATE E MATERIALI DI PROCESSO

Materiale	Unità di misura	TALI DI PROCESSO	
Carico elettrico		Valore inizio prova	Valore fine prova
Gas Naturale	MW	356	365
Oas Naturale	. Nm³/h	74	76
 			10
·			· · · · · · · · · · · · · · · · · · ·

COMPOSIZIONE DEL GAS

Composite		<u> </u>	
Componente	X,	Mi	x _i -M _i
Componente secca	0.935	30	28.05
H₂O nei fumi	0.065	18	1.17
			
		$\sum x_i \cdot M_i$	29.22

Pressione relativa del gas Determinazione della pressione del gas (Pg) : Pressione ambiente 99700 99306 Determinazione della temperatura ambiente : densità H₂O : 1000 Kg/m³

Ø ugello da adottare :

RISULTATI DELLE MISURE

Verifica dell'accettabilità della sezione di misura ed esecuzione del reticolo di

Bocchello n°	Affond., m	Angolo ß	Tg °C	ne del reticolo di v			
1	2.42	90		Δh, mmH₂O	dg, g.l ⁻¹	vi. m.s ⁻¹	Q. l.min
1	1.46		127	52.0	0.87	28.7	15.6
1		90	127	54.0	0.87	29.3	15.9
1	0.79	90	- 127	54.0	0.87	29.3	15.9
2	0.24	90	127	54.0	0.87	29.3	15.9
2	2.42	90	127	46.0	0.87	27.0	14.7
1	1.46	90	127	47.0	0.87	27.3	14.8
2	0.79	90	127	45.0	0.87	26.7	
2	0.24	90	127	46.0	0.87	27.0	14.5
3	2.42	90	127	33.0	0.87	22.9	14.7
3	1.46	90	127	25.0	0.87	19.9	12.4
3	0.79	90	127	22.0	0.87		10.8
3	0.24	90	127	20.0		18.7	10.1
4	2.42	90	· 127		0.87	17.8	9.7
4	1.46	90	125	51.0	0.87	28.5	15.4
4	0.79	90	125	53.0	0.88	28.9	15.7
4	0.24	90		53.0	0.88	28.9	15.7
			125	51.0	0.88	28.4	15.4
	<u></u>	<u></u>					

T00306

di 3

->

FOGLIO RACCOLTA DATI PER LA DETERMINAZIONE DELLA CONCENTRAZIONE E DELLA PORTATA MASSICA DI POLVERE NEI FLUSSI GASSOSI CONVOGLIATI

P.T. 700QT00306

Pag. 3 di 3

Commessa n°:...420/97 Prova n°. IPA(1)

 Media val.assoluti di β=
 90 °
 V max
 29 m/s
 V min
 18 m/s
 V max/Vmin
 1.6

 Media della temperatura
 127 °C
 T max
 127 °C
 T min
 125 °C
 ΔT 2
 °C

Accettabilità della sezione di misura :

Ugeilo da adottare = 4 mm

⊠SI

□NO

CAMPIONAMENTO PARTICOLATO

		•••										- T			I	
	1	Dura	ata misi	ure	Portata	Lettur	e al conta	tore volu							1	Cam.
Bocch.	Affond.	Durata	Ora	Ora [,]	progr.	Litri	Litri	Litri	Tcv	Pcv	Tg	Δh	dg	Vi	O ₂	O ₂
n°	m	progr.	inizio	fine	al CV	inizio	fine	aspirati	°C	mbar	ပိ	mmH ₂ O	g.r¹	m.s 1	%	%
ì	2.42	20	23.10	23.30	16.4	605125	605453	328	30	997	127	52.0	0.87	28.7	16.0	15.6
T	1.46	20	23.30	23.50	15.1	605453	605754	301	30	997	127	54.0	0.87	29.3		
1	0.79	20	23.50	0.10	15.3	605754	606060	306	29	997	127	54.0	0.87	29.3		
1	0.24	20	0.10	0.30	14.7	606060	606354	294	29	997	127	54.0	0.87	29.3	16.0	15.6
2	2.42	20	0.40	1.00	13.4	606354	606621	267	28	997	127	46.0	0.87	27.0		
2	1.46	20	1.00	1.20	14.0	606621	606900	279	27	997	127	47.0	0.87	27.3		
2	0.79	20	1.20	1.40	13.7	606900	607174	274	27	997	127	45.0	0.87	26.7		
2	0.24	20	1.40	2.00	14.0	607174	607454	280	27	997	127	46.0	0.87	27.0	15.8	15.6
3	2.42	20	2.05	2.25	11.2	607454	607678	224	26	997	127	33.0	0.87	22.9		
3	1.46	20	2.25	2.45	11.2	607678	607901	223	26	997	127	25.0	0.87	19.9		
3	0.79	20	2.45	3.05	9.9	607901	608099	198	26	997	127	22.0	0.87	18.7	15.9	15.6
3	0.24	20	3.05	3.25	10.1	608099	608300	201	26	997	127	20.0	0.87	17.8	ļ	
4	2.42	20	3.30	3.50	13.9	608300	608578	278	26	997	127	51.0	0.87	28.5	16.0	15.6
4	1.46	20	3.50	4.10	15.4	608578	608885	307	26	997	125	53.0	0.88	28.9		
4	0.79	20	4.10	4.30	14.7	608885	609179	294	25	997	125	53.0	0.88	28.9		
4	0.24	20	4.30	4.50	15.1	609179	609480	301	25	997	125	51.0	0.88	28.4		
		į		1												
			1													

Filtri				
Tara	0.1425	g		
Lordo	0.1429	g		
Peso polveri	0.0004	g		

Volume totale campionato				
m³ secchi al CV	4.355			
Nm³ secchi	3.899			
m³ alle condizioni del gas	6.228			

Concentrazione polveri				
mg/Nm³			0.10	
mg/Nm ³	15%	O ₂ riferimento	0.12	
mg/m³			0.06	

n° (campione	sul RRC	
------	----------	---------	--

833 834 835 836

Verifica stazionarietà

N.B.:

 $\sum v_i$ nel reticolo preliminare

419 m/s

∑ v_i nel reticolo di campionamento

419 m/s

Condizioni stazionarie durante il prelievo:

⊠SI

□NO causa:

Data e firma RP:

30.03.99

Frigo. mod.

Analizz. O2

FF 12012 Coefficiente Kf:

LG-300

FOGLIO RACCOLTA DATI PER LA DETERMINAZIONE DELLA CONCENTRAZIONE E DELLA PORTATA MASSICA DI POLVERE NEI

P.T. 700QT00306

□OK

Sartorius A2005

Bilancia

Matricola nº : i/e 73952

Supporto Tecnico Specialistico di Piacen	za FLI	USSI GASSOSI CONVO	3LIATI	Pag. 1 di 4
Commessa n°: 420/97 Responsabile di prova : Incaricati di prova :	Impianto : TRINO Casarola L. Chiarini R.	Unità MOD. 2 Data e firma RL :	2 Prova n°. :	Metalli (1)
				in the same of the same
	CARATTERISTICHE	SEZIONE DI PRELIEVO		
Posizione sezione :				
Giacitura condotto: Distanza dall'ultimo ostacolo Distanza dal primo ostacolo Dimensioni sezioni di prelie Ø sezione 7.5 Spazio morto "Z": 0.6	***	□ orizzontale Ø eq. Ø eq. m (se rettangolare)		⊠ SI □NO □ con riserva
Schi	zzo della posizione dei bo	occhelli con relativa numera:	zione	
<u> -</u> <u></u> -		· · · · · · · · · · · · · · · · · · ·	^	Modulo 1
		ij	013	
	!		Scala d'accesso)
IDENTIFIC	AZIONE E CADATTEDI	<u> </u>		
IDENTIFIC	AZIONE E CARATTERI	STICHE DELLA STRUMEN	TAZIONE	
Sonde di Pitot Matricola n° : 1013	Micromanometro Matricola nº :	Barometro		I.C. 225
Lunghezza (m): Comp.	scala (mmH ₂ O) :	0 - 250 Calibrazion		LG - 235 ⊠OK
Modello: Tecora	Modello :	Air Flow Termocop		"K"
Coefficiente Cp 0.84	Cont. volumetrico 1	Verifica	****	N
Filtro tipo: Piano	Matricola n° :	56343804 Pompa as	pirazione 1 Z	ambelli 6100 plus
Sonde prelievo	Modello :	Ariete Matricola n	°: I	LG - 111
Matricola nº : 1013	Coefficiente Kc:	1 Verifica	D	⊠OK
Lunghezza (m) : Comp. Modello : Tecora	Cont. volumetrico 2 Matricola nº :			ambelli ZB2
Ver. riscald. (se previsto)	_ Modello :	LG-206 Matricola n Ariete Verifica	1040	
□OK	Coefficiente Kc:	***************************************		JOK
Filtro tipo :	Flussimetro 1	***************************************		**************************************
Ver. riscald. se previsto	Coefficiente Kf :	Verifica Termomete		⊠OK
□OK	Flussimetro 2	Verifica		

FOGLIO RACCOLTA DATI PER LA DETERMINAZIONE DELLA CONCENTRAZIONE E DELLA PORTATA MASSICA DI POLVERE NEI FLUSSI GASSOSI CONVOGLIATI

P.T. 700QT00306

Pag. 2 di 4

Commessa nº:

420/97

Prova nº.: Metalli (1)

CONDIZIONI DI ESERCIZIO DELL'IMPIANTO (da strumentazione di impianto):

TIPO E PORTATE COMBUSTIBILE liquido: solido : gassoso: portata: t/h portata: t/h portata: 74 Nm³/h

PORTATE E MATERIALI DI PROCESSO

Materiale	Unità di misura	Valore inizio prova	Valore fine prova
Carico elettrico .	MW	352	360
Gas Naturale	. Nm³/h	74	75

COMPOSIZIONE DEL GAS

Componente	Xi	Mi	x _i -M _i
Componente secca	0.935	30	28.05
H₂O nei fumi	0.065	18	1.17
		Σ xM.	29 22

	đ			~~.~~	
ĺ	Pressione relativa del gas	394	Pa	Pressione ambiente	99800 Pa
	Determinazione della pressione del gas (Pg) :	99406	Pa		***************************************
	Determinazione della temperatura ambiente :	315	ĸ	densità H ₂ O : 1000	Kg/m³
	Ø ugello da adottare : 4 mm	***************************************		***************************************	•

RISULTATI DELLE MISURE

Verifica dell'accettabilità della sezione di misura ed esecuzione del reticolo di velocità preliminare

Bocchello n°	Affond., m	Angolo ß	Tg ℃	∆h, mmH₂O	' dg, g.l ⁻¹	vi, m.s ⁻¹	Q. l.min ⁻¹
1	2.42	90	127	52.0	0.87	28.7	15.9
1	1.46	90	127	54.0	0.87	29.3	16.2
11	0.79	90	127	54.0	0.87	29.3	16.2
11	0.24	90	127	54.0	0.87	29.3	16.2
2	2.42	90	127	46.0	0.87	27.0	15.0
2	1.46	90	127	47.0	0.87	27.3	15.2
2	0.79	90	127	45.0	0.87	26.7	14.8
2	0.24	90	127	46.0	0.87	27.0	15.0
3	2.42	90	127	33.0	0.87	22.9	12.7
3	1.46	90	127	25.0	0.87	19.9	11.1
3	0.79	90	127	22.0	0.87	18.7	10.4
3	0.24	90	. 127	20.0	0.87	17.8	9.9
4	2.42	90	127	51.0	0.87	28.4	15.8
4	1.46	90	127	53.0	0.87	29.0	16.1
4	0.79	90	127	53.0	0.87	29.0	16.1
4	0.24	90	127	51.0	0.87	28.4	15.8

10306

FOGLIO RACCOLTA DATI PER LA DETERMINAZIONE DELLA CONCENTRAZIONE E DELLA PORTATA MASSICA DI POLVERE NEI FLUSSI GASSOSI CONVOGLIATI

P.T. 700QT00306

Pag. 3 di 4

Supporto Tecnico Specializtico di Piacenza

Comme	essa n°:	.420/97								······································		Prova	n°.	Meta	lli (1)	
Media va	al.assoluti ella tempe	di ß=	90	•	V max	29	m/s °C	V min	18	m/s	Vmax/	Vmin	1.6			
Media de	ella tempe	eratura	127	°C	T max	127	°C	V min T min	127	.°C	ΔΤ	0	.°C	•		
Accetta	bilità del	la sezio	ne di n	nisura		⊠SI										
						□ио										
Ugello (da adotta	ire =	4	mm												
					CAI	/IPION/	MENT	O PAR	TICO	LATO						
		Dur	ata mis	ure	Portata	Lettur	e al conta	tore vol	umetric	o (CV)	1	 		1	Pom.	Can
Bocch.	Affond.	Durata	Ora	Ora	progr.	Litri	Litri	Litri	Tcv	Pcv	Tg	Δh	dg	V _i	O ₂	0
n°	m	progr.	inizio	fine	al CV	inizio	fine	aspirati	°C	mbar	°C	mmH ₂ O	g.r¹	m.s ⁻¹	%	%
1	2.42	20	23.30	23.50	13.2	609571	609835	264	30	998	127	54.0	0.87	29.3	15.8	15.
1	1.46	20	23.50	0.10	12.8	609835	610090	255	29	998	127	54.0	0.87	29.3		
1	0.79	20	0.10	0.30	13.2	610090		264	29	998	127	54.0	0.87	29.3	15.8	15.
I	0.24	20	0.30	0.50	12.8	610354		256	28	998	127	46.0	0.87	27.0		
2	2.42	20	1.00	1.20	11.7		610843	233	28	998	127	47.0	0.87	27.3	ļ	
2	1.46	20	1.20	1.40	12.2	610843		244	29	998	127	45.0	0.87	26.7	15.8	15.
2	0.79 0.24	20	2.00	2.00	11.6 12.1	611087		231	27	998	127	46.0	0.87	27.0		
3	2.42	20	2.25	2.45	9.7		611559 611753	241 194	27	998	127	33.0	0.87	22.9		
3	1.46	20	2.45	3.05	9.5		611943	194	27 27	998 998	127 127	25.0	0.87	19.9	15 0	15
3	0.79	20	3.05	3.25	9.6	611943		191	27	998	127	22.0	0.87	18.7 17.8	15.8	15.
3	0.24	20	3.25	3.45	8.0	612134		160	26	998	127	51.0	0.87	28.4	<u> </u>	
4	2.42	20	3.50	4.10	12.0	612294		240	26	998	127	53.0	0.87	29.0	15.8	15.
4	1.46	20	4.10	4.30	11.9	612534	612772	238	26	998	127	53.0	0.87	29.0	.0.0	
4	0.79	20	4.30	4.50	11.5	612772	613001	229	26	998	127	51.0	0.87	28.4		
4	0.24	20	4.50	5.10	12.1	613001	613242	241	26	998	127	51.0	0.87	28.4	15.8	15.
							<u> </u>									
		Filtri				V	olume to	tale can	piona	ło.]	Cor	ncentra	zione	noive	
Tara		0.14	45	g		m³ secch			-р	4.319		mg/Nm ³		AZIOSIC	p0148	0.0
Lordo		0.14		g		Nm³ seco				3.866		mg/Nm³		Osriferi	mento	0.0
Peso pol	veri	0.00		g		m³ alle co	ondizioni d	del gas		6.176		mg/m ³	.070	O Zi ii Ci i	Tierrio	0.0
					•						3 1					
	n° camp	ione sul	RRC		•			840								
	Verifica	staziona	arietà		N.B.:											
	ς.								_							
	∑ v _i nel	reticolo p	relimin	are ,	419	m/s			∠ , v, n	el reticol	o di cam _l	oionamer	nto	418	m/s	
	Condizio	ni stazi	onarie	durant	te il preli	evo:		⊠SI								
	•							□NO	causa	:						

31.03.99

Data e firma RP:

FOGLIO RACCOLTA DATI PER LA DETERMINAZIONE DELLA CONCENTRAZIONE E DELLA PORTATA MASSICA DI POLVERE NEI FLUSSI GASSOSI CONVOGLIATI

P.T. 700QT00306

Pag. 4 di 4

	Comme	essa n°:	.420/97	, 									Prova	n°.	Meta	lli (1)	
		al.assoluti ella tempe	di ß= eratura	127	°C	V max T max	29 127	m/s °C	V min T min	18 127	.m/s .°C	Vmax/ ∆T	Vmin				
	Accetta	bilità del	la sezio	ne di n	misura	:	⊠SI □NO										
	Ugello d	da adotta	re =	4	.mm												
						(CAMPIC	ONAME	NTO N	/IETA	LLI						
			Dur	ata mis	ure '	Portata	Lettu	re al conta	atore vol	umetric	:o (CV)		1	Ī	T	Pom.	Cam.
۱.	Bocch.	Affond.	Durata	Ora	Ога	progr.	Litri	Litri	Litri	Tcv	Pcv	Tg	Δh	da	l v _i	02	02
L	n°	m	progr.	inizio	fine	al CV	inizio	fine	aspirati	l •c	mbar	l °c	mmH ₂ O	g.r¹	m.s ⁻¹	%	%
Į	1	2.42	20	23.30	23.50	2.0	534125	534165	40	30	998	127	54.0	0.87	29.3	15.8	
l	ı	1.46	20	23.50	0.10	2.0	534165	534205	40	29	998	127	54.0	0.87	29.3		
	1	0.7 9	20	0.10	0.30	2.0	534205	534245	40	29	998	127	54.0	0.87	29.3	15.8	15.5
L	1	0.24	20	0.30	0.50	2.1 '	534245	534286	41	28	998	127	46.0	0.87	27.0		
L	2	2.42	20	1.00	15.30	2.1	534286	534328	42	28	998	127	47.0	0.87	27.3		
L	2	1.46	20	1.20	1.40	2.0	534328	534367	39	29	998	127	45.0	0.87	26.7	15.8	15.5
L	2	0.79	20	1.40	2.00	2.1	534367	534408	41	27	998	127	46.0	0.87	27.0		
L	2	0.24	20	2.00	2.20	2.2	534408	534451	43	27	998	127	33.0	0.87	22.9		
	3	2.42	20	2.25	2.45	2.0	534451	534491	40	27	998	127	25.0	0.87	19.9		
L	3	1.46	20	2.45	3.05	2.0	534491	534531	40	27	998	127	22.0	0.87	18.7	15.8	15.5
L	3	0.79	20	3.05	3.25	2.1	534531	534572	41	27	998	127	20.0	0.87	17.8		
L	3	0.24	20	3.25	3.45	2.1	534572	534613	41	26	998	127	51.0	0.87	28.4		
	4	2.42	20	3.50	4.10	2.1	534613	534654	41	26	998	127	53.0	0.87	29.0	15.8	15.5
	4	1.46	20	4.10	4.30	2.0	534654	534694	40	26	998	127	53.0	0.87	29.0		
	4	0.79	20	4.30	4.50	2.0	534694	534734	40	26	998	127	51.0	0.87	28.4		
	4	0.24	20	4.50	5.10	2.0	534734	534773	39	26	998	127	51.0	0.87	28.4	15.8	15.5
F																	
ŀ							-										
1	i i	I		1												i I	

Volume totale campionato					
m³ secchi al CV	0.648				
Nm³ secchi	0.580				
m³ alle condizioni del gas	0.927				

n° i	campione sul RRC	837	838	83

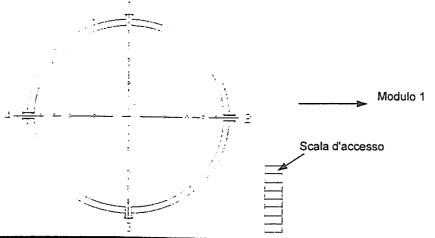
Condizioni stazionarie durante il prelievo :	⊠SI
	□NO causa :
£ ,	

Data e firma RP : 31.03.99

Ø sezione Spazio morto "Z" :

FOGLIO RACCOLTA DATI PER LA DETERMINAZIONE DELLA CONCENTRAZIONE E DELLA PORTATA MASSICA DI POLVERE NEI FLUSSI GASSOSI CONVOGLIATI

P.T. 700QT00306


Pag. 1 di 4

Commessa n°: 420/97 Impianto: TRINO Unità MOD. 2 Prova n°.: Metalli (2)+Hg
Responsabile di prova: Casarola L.
Incaricati di prova: Chiarini R. Data e firma RL: 01.04.99

CARATTERISTICHE SEZIONE DI PRELIEVO

Posizione sezione :					
Giacitura condotto :	☑ verticale	١.	☐ orizzontale	□ inclinato	
Distanza dall'ultimo ostad	colo a monte :	1.6	Ø eq.	idonea	⊠ SI
Distanza dal primo ostac	olo a valle :	10	 Ø eq.		□NO
Dimensioni sezioni di pre	lievo :		. m (se rettangolare)		□ con riserva

Schizzo della posizione dei bocchelli con relativa numerazione

IDENTIFICAZIONE E CARATTERISTICHE DELLA STRUMENTAZIONE

Sonde di Pitot		Micromanometro		Barometro	
Matricola n°:	1013	Matricola n° ;	LG-408	Matricola n° :	LG - 235
Lunghezza (m):	Comp.	scala (mmH ₂ O) :	0 - 250	 Calibrazione	⊠OK
Modello:	Tecora	Modello :	Air Flow	Termocoppia mod.:	"K"
Coefficiente Cp	0.84	Cont. volumetrico 1	**********************	 Verifica	⊠OK
Filtro tipo :	Piano	Matricola n° :	56343804	Pompa aspirazione 1	Zambelli 6100 plus
Sonde prelievo)	Modello :	Ariete	Matricola n° :	LG - 111
Matricola n°:	1013	Coefficiente Kc:	1	 Verifica	⊠OK
Lunghezza (m):	Comp.	Cont. volumetrico 2	***************************************	"Pompa aspirazione 2	Zambelli ZB2
Modello:	Тесога	Matricola n° :	LG-206	Matricola n° :	***************************************
Ver. riscald. (se		Modello :	Ariete	 Verifica	□OK
	□OK	Coefficiente Kc:	1	Termometro 1 mod. :	
Filtro tipo :		Flussimetro 1	********************	Verifica	⊠OK
Ver. riscald, se j	previsto	Coefficiente Kf:	*************************	Termometro 2 mod.:	
	□ок	Flussimetro 2	**********************	Verifica	□ОК
Frigo. mod.	FF 18012	Coefficiente Kf:	**************************	Bilancia Sartorius	A2005
	******************	•	***************************************	Matricola nº : i/e 73952	2
Analizz. O ₂	LG-300			101010161016409181044444	•

FOGLIO RACCOLTA DATI PER LA DETERMINAZIONE DELLA CONCENTRAZIONE E DELLA PORTATA MASSICA DI POLVERE NEI FLUSSI GASSOSI CONVOGLIATI

P.T. 700QT00306

Pag. 2 di 4

Commessa nº:

420/97

Prova nº.: Metalli (2)+Hg

CONDIZIONI DI ESERCIZIO DELL'IMPIANTO (da strumentazione di impianto):

TIPO E PORTATE COMBUSTIBILE

liquido: t∕h portata:

solido: portata: t/h

gassoso: portata: 75 Nm³/h

PORTATE E MATERIALI DI PROCESSO

Unità di misura	Valore inizio prova	Valore fine prova
MW	353	361
、 Nm³/h	74	76
	MW	MW 353

COMPOSIZIONE DEL GAS

Componente	X _i	Mi	x _i ·M _i
Componente secca	0.935	30	28.05
H₂O nei fumi	0.065	18	1.17
	•		
	1		1
		Z ~ M	20.22

Pressione relativa del gas Determinazione della pressione del gas (Pg):

Pa 99306 Pa Pressione ambiente

99700

Determinazione della temperatura ambiente :

313

densità H₂O : 1000

Kg/m³

Ø ugello da adottare :

RISULTATI DELLE MISURE

Verifica dell'accettabilità della sezione di misura ed esecuzione del reticolo di velocità preliminare

Bocchello n°	Affond., m	Angolo ß	Tg ℃	∆h, mmH₂O	dg, g.l ⁻¹	vi, m.s ⁻¹	Q. I.min ⁻¹
1	2.42	90	127	52.0	0.87	28.7	15.8
1	1.46	90	127	54.0	0.87	29.3	16.2
1	0.79	90	127	54.0	0.87	29.3	16.2
1	0.24	90	127	54.0	0.87	29.3	16.2
2	2.42	90	127	46.0	0.87	27.0	14.9
2	1.46	90	127	47.0	0.87	27.3	15.1
2	0.79	90 .	127	45.0	0.87	26.7	14.7
2	0.24	90	127	46.0	0.87	27.0	14.9
3	2.42	90	127	33.0	0.87	22.9	12.6
3	1.46	90	127	25.0	0.87	19.9	11.0
3	0.79	90	127	22.0	0.87	18.7	10.3
3	0.24	90	127	20.0	0.87	17.8	9.8
4	2.42	90	127	51.0	0.87	28.5	15.7
4	1.46	90	127	53.0	0.87	29.0	16.0
4	0.79	90	127	53.0	0.87	29.0	16.0
4	0.24	90	127	51.0	0.87	28.5	15.7
				ļ	1	<u> </u>	

Commessa nº:...420/97

FOGLIO RACCOLTA DATI PER LA DETERMINAZIONE DELLA CONCENTRAZIONE E DELLA PORTATA MASSICA DI POLVERE NEI FLUSSI GASSOSI CONVOGLIATI

P.T. 700QT00306

Pag. 3 di 4

Metalli (2)+Hg

Prova n°.

	ella tempe		127	•		***************************************	m/s °C	T min	127	m/s °C	ΔΤ	0	1.6 °C	••		
Accetta	bilità del	la sezio	ne di n	nisura :		⊠SI □NO										
Unello d	da adotta	re =	4	mm		UNO										
ugunu (ia adomo															
					CAI	MPION	AMENT	O PAR	RTICC	LATO						
		Dur	ata mis	ure	Portata	Lettur	e al conta	atore vol	umetric	o (CV)	J				Pom.	Cam
Bocch.	Affond.	Durata	Ora	Ora	progr.	Litri	Litri	Litri	Tov	P _{cv}	Tg	Δh	dg	v _i	O ₂	0
n°	m	progr.	inizio		al CV	inizio	fine	aspirati	°C	mbar	°C	mmH ₂ O	g.l ⁻¹	m.s ⁻¹	%	%
1	2.42	20	23.15		13.4	613241	613509	268	29	997	127	52.0	0.87	28.7	15.8	15
<u>l</u>	1.46	20	23.35		12.4		613757	248	29	997	127	54.0	0.87	29.3		
1	0.79	20	23.55		13.1		614019	262	30	997	127	54.0	0.87	29.3		
l a	0.24	20	0.15	0.35	12.8		614274	255	30	997	127	54.0	0.87	29.3	15.8	15
2	2.42 1.46	20	0.45	1.05	11.8		614510	236	31	997	127	46.0	0.87	27.0		
2	0.79	20	1.05	1.25	11.6		614741	231	31	997	127	47.0	0.87	27.3	15.8	15
2	0.79	20	1.25	2.05	12.0	614741		240	31	997	127	45.0	0.87	26.7		<u> </u>
3	2.42	20	2.25	2.45	10.0	614981		241	31	997	127	46.0	0.87	27.0		
3	1,46	20	2.45	3.05	7.9	615222	615422 615580	200 158	30	997	127	33.0	0.87	22.9	15.8	15
3	0.79	20	3.05	3.25	8.0		615740	160	28	997	127	25.0	0.87	19.9		
3	0.24	20	3.25	3.45	7.9		615898	158	27 27	997 997	127	22.0	0.87	18.7	45.0	4.5
4	2.42	20	3.45	20.00	13.2	615898		263	27	997	127 127	20.0	0.87	17.8	15.8	15.
4	1.46	20		21.00	12.8	616161		256	27	997	127	51.0 53.0	0.87	28.5		
4	0.79	20		22.00	12.9	616417		258	27	997	127	53.0	0.87 0.87	29.0	15.8	16
4	0.24	20	22.00	23.00	12.9	616675		257	27	997	127	51.0	0.87	28.5	10.6	15.
												01.0	0.07	20.0		
												,				
									1							
		Filtri				. V	olume to	tale cam	pionat	0		Co	ncentr	azione	polve	eri
Тага		0.14		g		m³ secch	i al CV			4.325		mg/Nm³				0.0
_ordo		0.14		g		Nm³ seco				3.849		mg/Nm³	15%	O ₂ riferi	mento	0.0
eso pol	veri	0.00	003	g		m³ alle co	ondizioni e	del gas		6.154		mg/m³				0.0
	n° camp	ione sul	RRC		848											
	Verifica	staziona	arietà		N.B.;											
	$\sum v_i$ nel	reticolo p	orelimin	are .	419	m/s			∑ v _i n	el reticolo	o di cam	pionamer	nto	419	m/s	
	Condizio	ni stazi	∩narie	durant	a il proli	avo .		⊠SI								
		J.(AZ)	Juane	uurdiik	= 11 breile	. UV		□NO	Calico							
								,,	∪¤u5đ	٠,	*************	*************		**********	•••••	

FOGLIO RACCOLTA DATI PER LA DETERMINAZIONE DELLA CONCENTRAZIONE E DELLA PORTATA MASSICA DI POLVERE NEI FLUSSI GASSOSI CONVOGLIATI

P.T. 700QT00306

Pag. 4 di 4

Commessa nº:... 420/97 Prova n°. Metalli (2)+Hg V max 29 m/s T max 127 °C Media val.assoluti di ß= V min __18 _ m/s Vmax/Vmin T min 127 °C 127 °C Δ**T** 0 Media della temperatura Accettabilità della sezione di misura : ⊠SI □NO Ugello da adottare = 4 mm CAMPIONAMENTO METALLI Portata Durata misure Letture al contatore volumetrico (CV) Pom. Cam. Bocch. Affond. Ora progr. Litri Litri Litri T_{cv} Pcv Δh Τg dg V_{i} 02 O_2 n° progr. inizio fine al CV inizio fine aspirati °C °C g.ľ1 m.s⁻¹ % % mbar mmH₂O 1 2.42 23.35 23.15 2.2 534773 534816 43 29 997 127 52.0 28.7 15.8 15.5 0.87 1 1.46 20 23.35 23.55 2.0 534816 534856 40 997 127 54.0 0.87 29.3 1 0.79 20 23.55 0.15 2.0 534856 534896 40 30 54.0 997 127 0.87 29.3 0.24 20 0.15 0.35 2.0 534896 534935 39 30 997 127 15.8 15.5 10.2 0.87 29.3 2.42 20 0.45 15.30 2.1 534945 534987 42 31 997 127 46.0 0.87 27.0 2 1 46 20 1.05 1.25 1.9 534987 535024 37 19 997 127 47.0 0.87 27.3 15.8 15.5 2 0.79 20 1.25 1.45 2.0 535024 535064 40 31 997 127 45.0 0.87 26.7 2 0.24 20 2.05 1.45 2.0 535064 535104 40 31 997 127 46.0 0.87 27.0 3 2.42 20 2.45 2.25 1.9 535120 535158 38 30 997 127 15.5 33.0 0.87 22.9 15.8 3 1.46 20 2.45 3.05 1.9 535158 535195 37 28 997 127 25.0 0.87 19.9 3 0.79 20 3.05 3.25 20 535195 535235 40 27 997 127 22.0 0.87 18.7 3 0.24 20 3.25 3.45 1.8 535235 535271 36 27 997 127 20.0 0.87 17.8 15.8 15.5 2,42 20 20.00 3.45 2.0 535280 | 535319 39 27 997 127 51.0 0.87 28.5 4 1.46 20 20.00 21.00 2.1 535319 535360 41 27 997 127 53.0 0.87 29.0 4 0.79 20 22.00 21.00 2.1 535360 535401 41 27 997 127 53.0 0.87 29.0 15.8 15.5 4 0.24 20 22.00 23.00 2.1 535401 535442 41 27 997 127 51.0 0.87 28.5 Volume Sol.A-B Volume K2Cr2O7-KMnO4(1) Volume K₂Cr₂O₇-KMnO₄(2) m3 secchi al CV 0.634 m³ secchi al CV 0.321 m³ secchi al CV 0.313 Nm3 secchi 0.566 Nm3 secchi Nm³ secchi 0.286 0.279 m3 alle condizioni del gas 0.904 m3 alle condizioni del gas 0.457 m3 alle condizioni del gas 0.447 n° campione sul RRC 841 842 843 844 845 846 847 Condizioni stazionarie durante il prelievo: ⊠SI □NO causa: 01.04.99 - ---Data e firma RP:

Documento nº 700C101000

Pag. 1 di

Laboratorio di prova: Analitica organica LO

Oggetto:

PCT TRINO IPA alle emissioni

Committente: AA

Ordine:

;

3

Commessa di lavoro: 420/97

Periodo di conservazione di questo documento: 5 anni.

VINCOLI DI RISERVATEZZA

Ogni riproduzione parziale del presente Rapporto di Prova, deve essere esplicitamente autorizzata da ENEL - PIN/STS - PC.

I risultati riportati nel presente Rapporto di Prova si riferiscono esclusivamente ai campioni in oggetto. Estrapolazioni dei suddetti risultati esulano dallo scopo di questo

documento.

11.05.99	ATTILIO LUCCHI	m
DATA	RESPONSABILE DEL LABORATORIO DI PROVA	FIRMA

Documento n° 700C101000

Pag. 2 di

Il presente Rapporto di Prova contiene i risultati delle prove di determinazione IPA alle emissioni su campioni prelevati a cura STS-PC presso PCT Trino.

	Riferimenti	
Data di ricevimento campioni	31.03.99	
Data di effettuazione prove	08.04.99 ÷ 10.05.99	
Riferimento lavoro (cartella)	101 CA 99	

Determinazioni analitiche					
Prova	. Procedura				
IPA alle emissioni	700QT00458 Estrazione con solvente organico - Analisi GC/MS				

Documento nº 700C101000

Pag. 3 di 4

IP	A alle emissi	oni [ng/campio	ne] ^(*)	•
Riferimento AA (camp. del 29.03.99)	G_0832	G_0829 + G_0830	G_0831	
Riferimento CA	L_8872 ·	L_8869 + L_8870	L_8871	Totale
Naftalene	21,1	4,0	1,4	26,5
2-Metilnaftalene	17,1	7,6	6,9	31,6
1-Metilnaftalene	5,6	2,8	3,1	11,4
2,6-Dimetilnaftalene	6,0	4,7	1,0	11,7
Acenaftilene	1,2	1,4	1,1	3,7
Acenaftene	5,2	8,7	3,4	17,3
2,3,5-Trimetilnaftalene	2,5	6,3	5,2	13,9
Fluorene	1,8	9,9	14,3	26,0
Fenantrene	28,9	50,6	96,2	175,7
Antracene	2,8	5,0	9,0	16,8
1-Metilfenantrene	8,1	32,9	20,3	61,2
Fluorantene	16,0	22,7	26,7	65,4
Pirene	10,6	12,5	8,9	31,9
Ciclopenta(c,d)pirene	< 0,1	< 0,1	< 0,1	< 0,3
Benzo(a)antracene	0,7	0,5	0,2	1,3
Crisene	2,9	2,3	1,8	7,0
Benzo(j)fluorantene Benzo(b)fluorantene Benzo(k)fluorantene	0,7	4,2	1,3	6,2
Benzo(e)pirene	1,1	1,4	0,6	3,2
Benzo(a)pirene	1,1	1,6	1,4	4,0
Perilene	< 0,1	1,3	< 0,1	1,3
Indeno(1,2,3-c,d)pirene	0,5	< 0,1	2,1	2,5
Dibenzo(a,h)antracene	0,5	< 0,1	1,0	1,5
Benzo(g,h,i)perilene	0,9	< 0,1	6,7	7,6
Dibenzo(a,l)pirene	< 0,1	< 0,1	< 0,1	< 0,3
Dibenzo(a,e)pirene	< 0,1	< 0,1	< 0,1	< 0,3
Dibenzo(a,i)pirene	< 0,1	< 0,1	< 0,1	< 0,3
Dibenzo(a,h)pirene	< 0,1	< 0,1	< 0,1	< 0,3
Totali	135,0	180,2	212,5	527,7

^(*) L'incertezza è stimata \pm 20 % per ogni analita

Documento nº 700C101000

Pag. 4 di 4

IP	A alle emissi	oni [ng/campio	ne] ^(*)	•
Riferimento AA (camp. del 30.03.99)	G_0836	G_0833 + G_0834	G_0835	
Riferimento CA	L_8876	L_8873 + L_8874	L_8875	Totale
Naftalene	52,6	10,8	76,7	140,1
2-Metilnaftalene	49,4	18,2	24,1	91,7
1-Metilnaftalene	16,4	6,4	8,4	31,2
2,6-Dimetilnaftalene	17,8	8,9	8,9	35,6
Acenaftilene	3,2	1,8	< 0,1	5,0
Acenaftene	19,0	32,6	2,6	54,1
2,3,5-Trimetilnaftalene	8,7	6,7	2,8	18,2
Fluorene	95,5	18,3	95,5	209,2
Fenantrene				155,1
Antracene	44,0	88,7	22,4	155,1
1-Metilfenantrene	17,8	46,1	6,6	70,5
Fluorantene	14,9.	18,0	4,7	37,6
Pirene	9,4	11,9	1,6	22,9
Ciclopenta(c,d)pirene	< 0,1	< 0,1	< 0,1	< 0,3
Benzo(a)antracene	3,5	2,1	1,0	6,6
Crisene	5,5	۷,۱	1,0	0,0
Benzo(j)fluorantene Benzo(b)fluorantene Benzo(k)fluorantene	< 0,1	4,9	2,6	7,4
Benzo(e)pirene	< 0,1	1.7	0,8	2,5
Benzo(a)pirene	< 0,1	< 0,1	1,0	1,0
Perilene	< 0,1	< 0,1	< 0,1	< 0,3
Indeno(1,2,3-c,d)pirene	< 0,1	< 0,1	< 0.1	< 0,3
Dibenzo(a,h)antracene	< 0,1	< 0,1	< 0,1	< 0,3
Benzo(g,h,i)perilene	< 0,1	< 0,1	< 0.1	< 0,3
Dibenzo(a,l)pirene	< 0,1	< 0,1	< 0,1	< 0,3
Dibenzo(a,e)pirene	< 0,1	< 0,1	< 0,1	< 0,3
Dibenzo(a,i)pirene	< 0,1	< 0,1	< 0,1	< 0,3
Dibenzo(a,h)pirene	< 0,1	< 0,1	< 0,1	< 0,3
Totali	352,3	276,9	259,4	888,7

^(*) L'incertezza è stimata \pm 20 % per ogni analita

Documento nº 700C101026

Pag. 1 di 10

Laboratorio di prova: Analitica Inorganica e Oli

Oggetto:

PCT Trino Vercellese - Analisi di metalli alle emissioni

Committente:

PDT NOV

Ordine:

Commessa di lavoro:

420/97

Periodo di conservazione di questo documento: 5 anni.

VINCOLI DI RISERVATEZZA

Ogni riproduzione parziale del presente Rapporto di Prova, deve essere esplicitamente autorizzata da ENEL - PIN/STS - PC.

I risultati riportati nel presente Rapporto di Prova si riferiscono esclusivamente ai campioni in oggetto.

Estrapolazioni dei suddetti risultati esulano dallo scopo di questo documento.

12.5.99	SANDRO SPEZIA	Sandw Grein
DATA	RESPONSABILE DEL LABORATORIO DI PROVA	FIRMA

Documento nº 700C101026

Pag. 2 di 10

Il presente Rapporto di Prova contiene i risultati delle prove relative alla caratterizzazione di metalli alle emissioni prelevate presso la centrale di trino Vercellese e relative informazioni al contorno rilevanti ai fini della garanzia di qualità. (Rif. Cartella 101 CA 99)

Le determinazioni analitiche sono state effettuate in accordo alle seguenti procedure: (PT = procedura interna STS-PC)

 As Be Cd Co Cr Cu Mn Ni Pb Pd Pt Rh Sb Sn Te TI V Zn PT 043 - Determinazione mediante ICP-MS dopo attacco acido in forno a microonde (ÉPA 3052)

Hg Se

PT 502 - Determinazione mediante ass. atomico con generazione di idruri dopo attacco acido in forno a microonde (EPA 3052)

Ca K Na

PT 507 - Determinazione mediante ICP-AES dopo attacco acido in forno a microonde (EPA 3052)

Descrizione campione:

Metalli H2O + lavaggi 31.3.99 (G_837)

Sigla identificazione LI:

L_8877

Data di ricevimento del campione:

6.4.99

Data di effettuazione delle prove:

19/4/99 - 7/5/99

Volume soluzione (mL)

Elemento	U.d.M.	Valore	Inc. estesa U (K=2)	Elemento	U.d.M.	Valore	Inc. estesa U (K=2)
As	μg tot.	0,06	0,01	Pb	μg tot.	0,54	0,11
Be	μg tot.	< 0,01	~	Pd	μg tot.	< 0,01	-
Ca	μg tot.	75,5	7,55	Pt	μg tot.	< 0,01	-
Cd	μg tot.	0,04	0,01	Rh	μg tot.	< 0,01	-
Co	μg tot.	0,10	0,02	Sb	μg tot.	< 0,01	-
Cr	μg tot.	0,52	. 0,10	Se	μg tot.	< 0,01	-
Cu	μg tot.	2,03	0,20	Sn	μg tot.	0,02	0,01
Hg	μg tot.	0,04	0,01	Te	μg tot.	< 0,01	
K	μg tot.	24,1	2,41	TI	μg tot.	0,02	0,01
 Mn	μg tot.	0,42	0,08	V	µg tot.	1,55	0,16
Na	μg tot.	31,7	3,17	Zn	μg tot.	26,3	2,63
Ni	μg tot.	2,74	0,27				:

Documento nº 700C101026

Pag. 3 di 10

Descrizione campione :

Metalli Sol. A + lavaggi 31.3.99 (G_838)

Sigla identificazione LI:

L_8878

Data di ricevimento del campione:

6.4.99

Data di effettuazione delle prove:

19/4/99 - 7/5/99

Volume soluzione (mL)

Elemento	U.d.M.	Valore	Inc. estesa U (K=2)	Elemento	U.d.M.	Valore	Inc. estesa U (K=2)
As	μg tot.	11,25	1,13	Pb	μg tot.	0,25	0,05
Ве	μg tot.	< 0,01	-	Pd	μg tot.	0,10	0,02
Ca	μg tot.	3,03	0,30	Pt	μg tot.	< 0,01	-
Cd	μg tot.	< 0,01		Rh	μg tot.	< 0,01	-
Co	μg tot.	< 0,01	-	Sb	μg tot.	0,02	0,01
Cr	µg tot.	1,29	0,13	Se	μg tot.	< 0,01	-
Cu	μg tot.	0,33	0,07	Sn	μg tot.	0,21	0,04
Hg	μg tot.	0,22	0,04	Te	μg tot.	< 0,01	-
K	μg tot.	1,91	0,19	TI	μg tot.	0,07	0,01
Mn	µg tot.	0,11	0,02	V	µg tot.	10,32	1,03
Na	µg tot.	16,5	1,65	Zn	µg tot.	3,06	0,31
Ni	µg tot.	0,59	0,12				

Documento nº 700C101026

Pag. 4 di 10

Descrizione campione:

Metalli Sol. B + lavaggi 31.3.99 (G_839)

Sigla identificazione LI:

L_8879

Data di ricevimento del campione:

6.4.99

Data di effettuazione delle prove:

19/4/99 - 7/5/99

Volume soluzione (mL)

Elemento	U.d.M.	Valore	Inc. estesa U (K=2)	Elemento	U.d.M.	Valore	Inc. estesa U (K=2)
As	μg tot.	0,19	0,04	Pb	μg tot.	0,07	0,01
Be	μg tot.	< 0,01	-	Pd	μg tot.	< 0,01	-
Ca	μg tot.	0,14	0,03	Pt	μg tot.	< 0,01	•
Cd	μg tot.	< 0,01		Rh	μg tot.	< 0,01	-
Co	μg tot.	< 0,01	-	Sb	μg tot.	< 0,01	-
Cr	μg tot.	0,22	0,04	Se	μg tot.	< 0,01	-
Cu	μg tot.	0,37	0,07	Sn	μg tot.	0,02	0,01
Hg	μg tot.	0,04	0,01	Те	μg tot.	< 0,01	-
K	μg tot.	10,2	1,0	TI	μg tot.	< 0,01	-
Mn	μg tot.	0,06	0,01	٧	μg tot.	0,62	0,12
Na	μg tot.	39,8	4,0	Zn	μg tot.	2,54	0,25
Ni	μg tot.	0,58	0,12				
				,			

Documento nº 700C101026

Pag. 5 di 10

Descrizione campione :

Metalli particolato 31.3.99 (G_840)

Sigla identificazione LI:

L_8880

Data di ricevimento del campione:

6.4.99

Data di effettuazione delle prove:

19/4/99 - 7/5/99

Elemento	U.d.M.	Valore	Inc. estesa U (K=2)	Elemento	U.d.M.	Valore	Inc. estesa U (K=2)
As	μg tot.	9,43	0,94	Pb	μg tot.	0,83	0,17
Be	μg tot.	0,42	0,08	Pd	μg tot.	0,09	0,02
Ca	μg tot.	301	30	Pt	μg tot.	< 0,01	-
Cd	μg tot.	< 0,01	. -	Rh	μg tot.	< 0,01	-
Co	μg tot.	0,10	0,02	Sb	μg tot.	0,15	0,03
Cr	μg tot.	6,65	0,67	Se	μg tot.	< 0,01	
Cu	μg tot.	1,10	0,11	Sn	μg tot.	0,11	0,02
Hg	μg tot.	0,02	0,01	Te	µg tot.	< 0,01	-
K	µg tot.	72,8	7,28	TI	μg tot.	< 0,01	-
Mn	μg tot.	1,24	0,12	٧	μg tot.	< 0,01	-
Na	μg tot.	797	80	Zn	μg tot.	8,50	0,85
Ni	μg tot.	3,39	0,34				

Documento nº 700C101026

Pag. 6 di 10

Descrizione campione:

Metalli H2O + lavaggi 1.4.99 (G_841)

Sigla identificazione LI:

L_8881

Data di ricevimento del campione:

6.4.99

Data di effettuazione delle prove:

19/4/99 - 7/5/99

Volume soluzione (mL)

Elemento	U.d.M.	Valore	Inc. estesa U (K=2)	Elemento	U.d.M.	Valore	Inc. estesa U (K=2)
As	μg tot.	0,06	0,01	Pb	μg tot.	0,07	0,01
Be	µg tot.	< 0,01	-	Pd	μg tot.	< 0,01	-
Ca	μg tot.	< 0,1	-	Pt	µg tot.	< 0,01	-
Cd	μg tot.	< 0,01	~	Rh	μg tot.	< 0,01	-
Co	µg tot.	< 0,01	-	Sb	μg tot.	< 0,01	-
Cr	μg tot.	0,68	0,14	Se	μg tot.	< 0,01	-
Cu	μg tot.	0,25	0,05	Sn	μg tot.	< 0,01	-
Hg	μg tot.	0,02	0,01	Те	μg tot.	< 0,01	-
κ	μg tot.	10,7	1,07	TI	μg tot.	< 0,01	-
Mn	μg tot.	5,01	0,50	V	μg tot.	0,52	0,10
Na	μg tot.	17,1	1,7	Zn	μg tot.	3,62	0,36
Ni	μg tot.	0,41	0,08				-

Documento nº 700C101026

Pag. 7 di 10

Descrizione campione :

Metalli Sol. A + lavaggi 1.4.99 (G_842)

Sigla identificazione LI:

L_8882

Data di ricevimento del campione:

6.4.99

Data di effettuazione delle prove:

19/4/99 - 7/5/99

Volume soluzione (mL)

Elemento	U.d.M.	Valore	Inc. estesa U (K=2)	Elemento	U.d.M.	Valore	Inc. estesa U (K=2)
As	μg tot.	11,19	1,12	Pb	μg tot.	0,11	0,02
Be	μg tot.	< 0,01	-	Pd	μg tot.	0,05	0,01
Са	μg tot.	< 0,1		Pt	μg tot.	< 0,01	-
Cd	μg tot.	< 0,01	-	Rh	μg tot.	< 0,01	-
Co	μg tot.	< 0,01	-	Sb	μg tot.	< 0,01	-
Cr	μg tot.	1,11	0,11	Se	μg tot.	< 0,01	-
Cu	μg tot.	0,19	0,04	Sn	μg tot.	0,19	0,04
Hg	μg tot.	0,29	0,01	Te	μg tot.	< 0,01	-
K	μg tot.	3,90	0,39	TI	μg tot.	< 0,01	-
Mn	μg tot.	0,67	0,13	٧	μg tot.	10,61	1,06
Na	μg tot.	8,25	0,83	Zn	μg tot.	3,85	0,39
Ni	μg tot.	0,42	0,08				
				•			

Documento nº 700C101026

Pag. 8 di 10

Descrizione campione :

Metalli Sol. B + lavaggi 1.4.99 (G_843)

Sigla identificazione LI:

L_8883

Data di ricevimento del campione:

6.4.99

Data di effettuazione delle prove:

19/4/99 - 7/5/99

Volume soluzione (mL)

Elemento	U.d.M.	Valore	Inc. estesa U (K=2)	Elemento	U.d.M.	Valore	Inc. estesa U (K=2)
As	μg tot.	0,19	0,04	Pb	μg tot.	0,11	0,02
Be	μg tot.	< 0,01		Pd	μg tot.	< 0,01	_
Ca	μg tot.	12,0	1,2	Pt	μg tot.	< 0,01	-
Cd	μg tot.	< 0,01		Rh	μg tot.	< 0,01	-
Co	μg tot.	< 0,01	-	Sb	μg tot.	< 0,01	-
Cr	μg tot.	221	22	Se	μg tot.	< 0,01	-
Cu	μg tot.	1,06	0,11	Sn	μg tot.	0,02	0,01
Hg	μg tot.	0,06	0,01	Te	μg tot.	< 0,01	-
K	μg tot.	196	20	TI	μg tot.	< 0,01	-
Mn	μg tot.	1,94	0,19	V	μg tot.	0,88	0,18
Na	μg tot.	493	49	Zn	μg tot.	2,66	0,27
Ni	μg tot.	0,28	0,06				

Documento nº 700C101026

Pag. 9 di 10

Descrizione campione:

Metalli particolato 1.4.99 (G_848)

Sigla identificazione Ll:

L_8888

Data di ricevimento del campione:

6.4.99

Data di effettuazione delle prove:

19/4/99 - 7/5/99

Elemento	U.d.M.	Valore	Inc. estesa U (K=2)	Elemento	U.d.M.	Valore	Inc. estesa U (K=2)
As	μg tot.	11,54	1,15	Pb	μg tot.	0,68	0,14
Be	μg tot.	0,47	0,09	Pd	μg tot.	0,07	0,01
Ca	μg tot.	341	34	Pt	μg tot.	< 0,01	-
Cd	µg tot.	< 0,01	-	Rh	μg tot.	< 0,01	-
Co	μg tot.	0,11	0,02	Sb	μg tot.	0,11	0,02
Cr	µg tot.	9,07	. 0,91	Se	μg tot.	< 0,01	-
Cu	μg tot.	1,40	0,14	Sn	µg tot.	0,12	0,02
Hg	μg tot.	0,02	0,01	Te	μg tot.	< 0,01	-
K	μg tot.	93,5	9,4	TI	μg tot.	< 0,01	-
Mn	μg tot.	1,41	0,14	V	μg tot.	< 0,01	-
Na	μg tot.	809	81	Zn	µg tot.	13,43	1,34
Ni	μg tot.	4,44	0,44				

Descrizione campione:

Metalli Bicromato di K(1) + lavaggi 1.4.99 (G_844)

Sigla identificazione LI:

L_8884

Data di ricevimento del campione:

6.4.99

Data di effettuazione delle prove:

19/4/99 - 7/5/99

Volume soluzione (mL)

Elemento	U.d.M.	Valore	Inc. estesa U (K=2)
Hg	μg tot.	0,46	0,09

Documento nº 700C101026

Pag. 10 di 10

Descrizione campione :

Metalli Bicromato di K(2) + lavaggi 1.4.99 (G_845)

Sigla identificazione LI:

L_8885

Data di ricevimento del campione:

6.4.99

Data di effettuazione delle prove:

19/4/99 - 7/5/99

Volume soluzione (mL)

70

Elemento	U.d.M.	Valore	Inc. estesa U (K=2)
Hg	μg tot.	0,29	0,06

Descrizione campione :

. Metalli Permanganato di K(1) + lavaggi 1.4.99 (G_846)

Sigla identificazione LI:

L_8886

Data di ricevimento del campione:

6.4.99

Data di effettuazione delle prove:

19/4/99 - 7/5/99

Volume soluzione (mL)

90

Elemento	U.d.M.	Valore	Inc. estesa U (K=2)
Hg	μg tot.	0,05	0,01

Descrizione campione :

Metalli Permanganato di K(2) + lavaggi 1.4.99 (G_847)

Sigla identificazione LI:

L_8887

Data di ricevimento del campione:

6.4.99

Data di effettuazione delle prove:

19/4/99 - 7/5/99

Volume soluzione (mL)

U (K=2)		Elemento
0,01	μg tot.	Hg
	μg tot.	Hg

RAPPORTO DI NON CONFORMITA'

(RNC)

10700QG00003

allegato 1

n° progr. 34

pag. 1 di 3

Gruppo:AA laboratorio: LG Disciplina: AAP

NC rilevata da: Fiore/Casarola

in data: 4 giugno 1999.

Sezione A: Tipologia della Non Conformità

Rif. commessa: 420/97 - Prelievo Metalli rif. VDI 3868 e prEN 13211 " Determinazione dei metalli totali nelle emissioni "

Sono stati effettuati due campionamenti di metalli nei giorni 31.03 e 01.04.99 ottenendo risultati molto discordanti tra loro limitatamente alle concentrazioni di Potassio, Manganese, e Cromo, mentre le concentrazioni degli altri metalli sono risultate riproducibili nell'ambito di una variabilità compresa entro 3:1.

Data:31.3 - Cromo=5.39 μg/Nm³; Potassio=83.87 μg/Nm³; Manganese=1.38 μg/Nm³ Data:01.4 - Cromo=399.13 μg/Nm³; Potassio=399.98 μg/Nm³; Manganese=13.95 μg/Nm³

Il metodo di campionamento prevede che il gas aspirato e depolverato dopo essere stato deumidificato, sia fatto gorgogliare attraverso soluzioni acide ed ossidanti, costituite da $K_2Cr_2O_7$ e KMnO₄, così da garantire il trattenimento dei metalli presenti nella fase gassosa. Si è pertanto ipotizzato che, per cause accidentali in occasione della prova del 1 aprile, aliquote delle soluzioni di assorbimento contenenti Mn, K e Cr siano state travasate nelle condense poste a monte delle soluzioni di gorgogliamento e che quindi l'ultima prova in realtà raccolga Mn, K e Cr derivante non dalle emissioni reali dell'impianto ma dalle soluzioni di assorbimento.

A conferma di questa ipotesi è stato calcolato il rapporto molare K/Cr a partire dall'incremento dei suddetti metalli registrato tra le due prove:

 $K/Cr = [(399.98-83.87)/39] / [(399.13-5.39)/52] = 8.1 / 7.6 \approx 1$

E' possibile osservare che il rapporto molare è dello stesso ordine di grandezza di quello corrispondente alla molecola $K_2Cr_2O_7$ a conferma che l'ipotesi avanzata è fondata. Per quanto riguarda l'anomala variazione di Mn registrata tra le due prove (corrispondente a circa $0.2~\mu\text{mol/Nm}^3$) si ritiene che la variazione di concentrazione sia in termini assoluti estremamente bassa tale da non giustificare l'avanzamento di ipotesi fondate.

Note:		 	

acquisizione della NC: RL/RG data: 04/06/99

RAPPORTO DI NON CONFORMITA'

(RNC)

IO700QG00003

allegato 1

n° progr. 31

2

named a second link, the contract of	VA Jabo uffic	the same of the state of the st	
	CONTRACTOR OF THE PROPERTY OF		
1911111111 M			
	AND AND PROPERTY OF THE PARTY O		The same of the sa
Fr with the second second		the second of th	Committee of the Commit
The second secon	ないません ひというしょう ファー・バス・スペーニー・		
2. 1	Company of the Compan	/ // roo (- ost	INNSIEL SEME
A Sale sale Call Contract a last	49-12-24 (2004-10) (10	::::::::::::::::::::::::::::::::::::::	
2. a. \ a. d			

Sezione B1: Proposta di Risoluzione della Non Conformità

Si propone di non considerare attendibile le concentrazioni di Cromo e Potassio nelle emissioni determinate il 1 aprile '99.

Per le successive analoghe attività viene proposto di seguire la seguente procedura di installazione dei gorgogliatori:

- 1. introduzione dell'ultimo gorgogliatore (quello immediatamente prossimo alla pompa di aspirazione) nelle vasche termostatate;
- 2. collegamento pneumatico del gorgogliatore alla pompa;
- 3. accensione della pompa di campionamento ed aspirazione di aria ambiente;
- 4. collegamento in sequenza di tutti gli altri gorgogliatori;

Al termine delle attività, al fine di evitare travasi di soluzioni ed inquinamento da Mn, K, Cr, viene proposto di seguire la seguente procedura:

- 1. scollegamento pneumatico del primo gorgogliatore (quello immediatamente prossimo alla sonda di prelievo);
- 2. scollegamento in sequenza di tutti gli altri gorgogliatori;
- 3. arresto della pompa di aspirazione;

Risoluzione proposta da: Approvazione RL / RG: Benestare RFT	FIOI .//}	RE / CASAROLA	in data: 4 giugno '99
Notifica al Committente:	[] NO [X] SI	in data:	protocollo n°:

RAPPORTO DI NON CONFORMITA'

(RNC)

10700QG00003

ellegeto 1

n° progr. 34

3 dl 3 pag.

(Gruppo:AA	aboratorio (Area Tecnica): LG ufficio (Area Gestionale): - AAP	
Sezione C1: Risoluz	ione della Non Conformità	
	· · · · · · · · · · · · · · · · · · ·	
	•	1
•		
Sezione C2: Applica	zione della Deroga	
	,	
Risoluzione / Deroga attu Approvazione RL / RG: Presa d'atto RFT	ata da:	in data:
Notifica al Committente:	[] NO [] SI in data:	protocollo nº:

AGENZIA REGIONALE PER LA PROTEZIONE AMBIENTALE DEL PIEMONTE

CODICE FISCALE/PARTITA IVA: 07176380017
Via della Rocca, n.49 10123 TORINO

Direttore Tecnico: Anna Maria Gaffodio

Area regionale di indirizzo e coordinamento ambientale

Responsabile: Claudia Giuliana Occelli Struttura n. 02.10: Laboratorio del Quadrante Nord-Est Sede di Vercelli - Via Bruzza 4 - 13100 VERCELLI Tel: 0161-2698211 Fax: 0161-2698230

Laboratorio accreditato dal SINAL n. 203

RAPPORTO DI PROVA

NUMERO CAMPIONE: VC05/02468 NUMERO RAPPORTO DI PROVA: VC05/02277

CAMPIONE DI: ACQUA DI SCARICO INDUSTRIALE ACQUA DI SCARICO

PRELEVATO A: TRINO - LERI CAVOUR PRESSO....: CENTRALE ENEL SPA

PERVENUTO IL: 13-09-2005

PRELEVATO DA: ARPA PIEMONTE - SS 13.01 TUTELA E VIGILANZA - VERCELLI

VERBALE: AO 59/VC 05 DEL: 13-09-2005

PROVE INIZIATE IL: 13-09-2005

TERMINATE II: 05-10-2005

Vercelli, 05-10-2005

Il presente Rapporto di prova NON può essere riprodotto parzialmente.

I risultati riportati sul presente Rapporto di prova sono rappresentativi del solo campione sottoposto a prova.

ARPA PIEMONTE - Struttura n. 02.10: Laboratorio del Quadrante Nord-Est

NUMERO CAMPIONE: VC05/02468

NUMERO RAPPORTO DI PROVA: VC05/02277

PARAMETRI CHIMICI

* Esame obiettivo....: INCOLORE IN DILUIZIONE 1:20
ODORE NON MOLESTO

				RIF. MET.
	pH	6.88	unità pH	0293
	c.o.p	10	mg02/1	0294
*	Azoto ammoniacale (come ione Ammonio)	< 0.5	mg/l	0295
*	Azoto nitroso (come N)	0.069	mg/l	0297
	Azoto nitrico (come N)	4.1	mg/l	0298
	Cloruri (come Cl)	334.0	mg/l	0298
	Solfati (come ione Solfato)	59.8	mg/1	0298
*	Cromo VI (come Cr)	< 0.02	mg/l	0300
4 3 2	Ferro (come Fe)	< 0.05	mg/l	0301
*	Piombo (come Pb)	< 0.0016	mg/l	0303
	Rame (come Cu)	< 0.01	mg/l	0304
*	Zinco (come Zn)	0.010	mg/l	0305
*	Oli minerali	< 0.1	mg/l	0307
*	Tensioattivi anionici (MBAS) (come Laurilsolfato).	0.14 .	mg/l	0308
*	Materiali sedimentabili in 2 ore	< 0.1	m1/1	0310
	Materiali in sospensione totali	0.8	mg/l	0311
*	Fosforo totale (come P)	0.20	mg/l	0313
*	Tensioattivi non ionici (come Nonilfenolo)	< 0.2	mg/l	0314
*	Cloro attivo libero	< 0.05	mg/l	0315
*	Cadmio (come Cd)	0.00023	mg/l	0318
*	Nichel (come Ni)	0.0037	mg/1/	0319
*	Mercurio (come Hg)	< 0.0002	mg/l	0321
*	1,1,1-Tricloroetano	< 0.50	μg/l	0326
	Bromodiclorometano	< 0.50	μg/l	0326
*	Bromoformio	< 0.50	μ g/l	0326
*	Cloroformio	< 0.50	μg/l	0326
10.0	Dibromoclorometano	< 0.50	μ g/l	0326
	Diclorometano	< 2.50	μ g/l	0326
	Tetracloroetilene	< 0.50	μ g/l	0326
	Tetracloruro di carbonio	< 0.50	μg/l	0326
*	Tricloroetilene	< 0.50	μ g/l	0326
	Colore percettibile in diluizione 1:20	INCOLORE		0416
100	Odore non molesto	NON MOLE		0417
	Cromo totale (come Cr)	0.0024	mg/l	0531
*	Manganese (come Mn)	0.0021	mg/l	0533
	1962年中国的大学的 1977年,1977年,1977年,1977年,1978年,1978年,1978年,1978年,1978年,1978年,1978年,1978年,1978年,1978年,1978年,1978年,19	化二氯化物 化二氯化物 化二氯化物	- アイロスないない しょうしょ だましょごり	and the control of th

NOTE:

Ogni metodo di prova è identificato da un codice interno alfanumerico, riportato dopo la descrizione del metodo, quale riferimento al catalogo dell'Agenzia.

METODI DI PROVA UTILIZZATI:

: ·	(0293) APAT CNR-IRSA Metodo 2060 Man. 29/2003 - U.RP	.M559
	(0294) APHA Standard Methods 20th Ed. Met. 5220AB: 1998 - U.T2	M041
٠.	(0295) CNR-IRSA Quaderno 100 Met. 4010C: 1994 - U.RP	.M261
	(0297) APAT CNR-IRSA Metodo 4050 Man. 29/2003 - U.RP	.M568
	(0298) UNICHIM UNI 9813: 1991	.M020

^{*} Prova NON accreditata dal SINAL

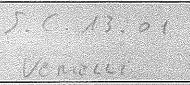
ARPA PIEMONTE - Struttura n. 02.10: Laboratorio del Quadrante Nord-Est

NUMERO CAMPIONE: VC05/02468 NUMERO RAPPORTO DI PROVA: VC05/02277 (0300) Quaderno 100 CNR IRSA Met. 3080 B1: 1994 - U.RP.M260 (0301) APHA Standard Methods 20th Ed. Met. 3111B: 1998 U.RP.M284 (0303) APAT CNR-IRSA 3010 M29/03+EPA 200.8-1 5.5: 1996 - U.RP.M314 (0304) APAT CNR-IRSA 3010 M29/03+EPA 200.8-1 5.5: 1996 U.RP.M314 (0305) APAT CNR-IRSA 3010 M29/03+EPA 200.8-1 5.5: 1996 U.RP.M314 (0307) APAT IRSA CNR 5160 B U.RP.M267 (0308) CNR-IRSA Quaderno 100 Met. 5150: 1994 U.RP.M268 (0310) CNR-IRSA Quaderno 100 Met. 2060: 1994 U.RP.M258 (0311) CNR-IRSA Quaderno 100 Met. 2050: 1994 - U.RP.M257 (0313) CNR-IRSA Quaderno 100 Met. 4090: 1994 U.T2.M022 (0314) CNR-IRSA Quaderno 100 Met. 5160: 1994 - U.RP.M303 ... (0315) Kit colorimetrico A Cloro U.RP.M593 (0318) APAT CNR-IRSA 3010 M29/03+EPA 200.8-1 5.5: 1996 - U.RP.M314 (0319) APAT CNR-IRSA 3010 M29/03+EPA 200.8-1 5.5: 1996 U.RP.M314 (0321) APAT CNR-IRSA 3010 M29/03+EPA 200.8-L 5.5: 1996 U.RP.M314 (0326) APAT CNR-IRSA Metodo 5150 Man. 29/2003 U.T2.M185 (0416) CNR-IRSA Quaderno 100 Met. 2020: 1994 U.RP.M256 (0417) CNR-IRSA Quaderno 100 Met. 2070: 1994 - U.RP.M347 (0531) EPA 200.8-1 5.5 1996 U.T2.M120 (0533) EPA 200.8-1 5.5 1996 U.T2.M120 DOTT, VALERIO ROSSINO IL CHIMICO PARAMETRI BIOLOGICI RIF. MET. Daphnia magna, tossicità acuta - Inibizione..... 5 1358 Vibrio fischeri, tossicità acuta - Inibizione.... 10.9 1360 NOTE: * Prova NON accreditata dal SINAL Ogni metodo di prova è identificato da un codice interno alfanumerico, riportato dopo la descrizione del metodo, quale riferimento al catalogo dell'Agenzia. METODI DI PROVA UTILIZZATI: (1358) Metodo interno (R01):2003 U.RP.M020 (1360) Metodo interno (R02):2004 U.RP.M015 DOTT.SSA ROMANA AZARIO COZET IL BIOLOGO R. ALENEO GER IL RESPONSABILE DELLA STRUTTURA 02.10 Agostino Profeta

VERBALE DI PRELEVAMENTO

Acque di scarico

N. AO. 53 1465


5. (13. 01) VE ALE CCC

Progetto A Data				Codice punto	1 agma 1/2
Il giorno .4.3. del mese di					
in qualità di				o como de la sejenda.	
a seguito disi è / sono recat presso l'in					
si è / sono recat presso l'in	sediamento produtti	vo:		A.M. A.M.A.A.A.	
sito nel Comune di	t on Elizabeth ender South	in via			
ove rese note le ragioni del	la visita. hanno invit	ato il Sig	10.0		
<u> </u>	nato a		A	() il/././././	and Arthur
e residente a		() III V	ld		
ispezione e prelievo renden					
rechi pregiudizio all'immed					
Interpellato in proposito ha Responsabile dello scarico	è il Sig	rener	nato il	7// Ca	(()
residente in via	althala.A.a.ga.	n'	Comune) in qualità di:
Lo scarico è costituito da:					
	1:	manto ntima dalle	scarico	 acque di raffreddame 	nto
 acque reflue industria acque reflue industria 					
• altro					••••••
Tale scarico è da considerar	si:				
• periodico	• dur	ata inferiore alle	3 ore • du	rata superiore alle 3 ore	
E' stato eseguito un campio	namento presso:				
🌬 pozzetto di ispezione					
• altro					
prima dello scarico in:	• fognatura:		• S	uolo:	
	corpo idrico:	(0,1,4,1,4),(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1	<i>MajidaAMA</i> a	Itro:	
Eventuali rilevazioni di para					
Rilevazione della tempe Altro					a valle°C
Il campionamento, rapprese	ntativo di tutta la sez	tione di scarico, è	stato eseguito in mod	o 🗆 manuale 🖫	automatico
con inizio alle ore	del . <i></i>	e terr	nine alle ore	del	
Il campione è da considerar	vam di si: □ camp	ione istantaneo	campione me	dio (5 MPS) 🖘	
Tale metodo di campioname	ento è stato adottato	poiché: 🗵 prev	visto dalle norme vige:	nti 🗆 altro (desc	rizione):
				I_ Verbalizzant_	
	nte / i al prelievo C LO: C OMBINIATO	ALTEUNO		1 verbanzzant_	

VERBALE DI PRELEVAMENTO

Acque di scarico

Pagina 2/2

Il campione prelevato, opportunamente omogene	izzato, è stato suddi	viso in n°	aliquote re	golamentari	costituite da:
n° 1 contenitori in vetro della capacità		di litti – 1	cadauno deno	minato/i	Aliquota A
☐ n° A. contenitori in polietilene della capacità			cadauno deno		Aliquota B
☐ n° contenitori in vetro della capacità			cadauno deno		Aliquota C
n° .f. contenitori in polietilene della capacità	6 4 6025 kG (55) (27 (3)		cadauno deno		Aliquota D
n° contenitori in ponetnete dena capacita					Aliquota E
□ n° contenitori in			cadauno deno		Aliquota
□ n° contenitori in.			cadauno deno		Aliquota
☐ Prelievo n° aliquot /campione, in mo				OR SET NEW YORK	<u></u>
di litti, per'l'analisi batteriologica. T Prelievo n°aliquot_/campione, in ml, per l'analisi dei solventi. Tal aliqu	modo istantaneo,	direttamente in	contenitore di v	etro/vials, c	lella capacità di
Le aliquote, chiuse O con sigillo dell'ARPA F di °C , verranno consegnate per le Provinciale/Subprovinciale A.R.P.A. di	analisi, nel più	breve tempo n sede in via A. 11 Co. 6.1	possibile, ai la	aboratori d	el dipartimento n°
Ai sensi dell'art. 223 del D.Lgs. n° 271 del 28/07 l'apertura e l'analisi del campione avverrà pi in data	7/89, con il presente resso i laboratori de	verbale, si dà fo I dipartimento di	rmale avviso allo	stesso che :	
in data	Parallel O No	ranicallanica		nicrobiol microbiol	ogica mento A.R.P.A
di	gramma / Iax ai II .	ora dell'anertura	dei campioni pre	. uar urparin levati ed inia	rio delle analisi
Si rende noto che sarà facoltà del responsabile di potrà avvalersi della presenza di un consulente te	lello scarico presen:	ziare alle operaz	ioni di apertura e	d analisi del	
Note de verbalizzant:				01.499 	: + ME10
Autorizzazione allo scarico nºdel	rilasci	ata da	rinka saka ay	scad	enza
	dal Sig				il responsabile
che 🗖 ritira 🗆 non ritira copia del prese dello scarico, il rappresentante legale ed ogni altr	o soggetto eventual	mente interessat	0.	La Lagronie	
Presente / i al prelievo	subject to		I Verbaliz	zzant	TE AUSTON PROBLEM STATES
ENEL C.Ia CICLO COMBINATO	di TRINO) h	
Località Leri Cavoi			9 00 0 0 0	2020	
13039 TRINO (VC)					

REGIONE PIEMONTE

AGENZIA REGIONALE PER LA PROTEZIONE AMBIENTALE DEL PIEMONTE

Costituita con Decreto del Presidente della Giunta Regionale n.3057 del 31.7.1996

Via della Rocca, n.49 10123 TORINO

CODICE FISCALE/PARTITA IVA: 07176380017

Dipartimento Provinciale di Vercelli

Direttore: Dott. Luciana Fracchia Via Bruzza, 4 - 13100 VERCELLI Tel: 0161-269811 Fax: 0161-2698230 E-mail: dip.vercelli@arpa.piemonte.it

Laboratorio accreditato dal SINAL n. 203

RAPPORTO DI PROVA

NUMERO CAMPIONE: VC05/00116

NUMERO RAPPORTO DI PROVA: VC05/00171

CAMPIONE DI: ACQUA DI SCARICO INDUSTRIALE

ACQUA DI SCARICO

PRELEVATO A: TRINO - LERI CAVOUR PRESSO....: CENTRALE ENEL SPA

PERVENUTO IL: 20-01-2005

PRELEVATO DA: ARPA PIEMONTE - SERVIZI TERRITORIALI - U.O. DI VERCELLI

VERBALE: AO 03/VC 05 DEL: 20-01-2005

PROVE INIZIATE IL: 21-01-2005

TERMINATE IL: 23-02-2005

Il presente Rapporto di prova NON può essere riprodotto parzialmente.

I risultati riportati sul presente Rapporto di prova sono rappresentativi del solo campione sottoposto a prova.

Vercelli, 23-02-2005

A.R.P.A. PIEMONTE - Dipartimento Provinciale di Vercelli

NUMERO CAMPIONE: VC05/00116

NUMERO RAPPORTO DI PROVA: VC05/00171

PARAMETRI CHIMICI

* Esame objettivo....: INCOLORE IN DILUIZIONE 1:20 ODORE NON MOLESTO

				RIF.	MET.
	pH	7.63	unità pH	029	3
	C.O.D	10	mg02/l	029	4
*	Azoto ammoniacale (come ione Ammonio)	< 0.05	mg/l	029	6
	Azoto nítroso (come N)	0.07	mg/l	029	7
	Azoto nitrico (come N)	3.5	mg/l	029	8
	Cloruri (come Cl)	145.0	mg/l	029	8
	Solfati (come ione Solfato)	40.3	mg/l	029	8
	Cromo III (come Cr)	< 0.0012	mg/l	029	9
	Ferro (come Fe)	0.07	mg/1	030	1
	Piombo (come Pb)	< 0.0016	mg/l	030	3
	Rame (come Cu)	< 0.01	mg/l	030	4
	Zinco (come Zn)	0.037	mg/l	030	5
	Oli minerali	< 0.1	mg/l	030	7
	Tensioattivi anionici (MBAS) (come Laurilsolfato).	0.14	mg/l	030	8
	Materiali sedimentabili in 2 ore	< 0.1	m1/1	031	0
	Materiali in sospensione totali	4.8	mg/l	031	1
*	B.O.D. 5	2	mg02/1	031	2
	Fosforo totale (come P)	0.21	mg/l	031	3
	Tensioattivi non ionici (come Nonilfenolo)	< 0.2	mg/l	031	4
	Cloro attivo libero	< 0.05	mg/l	031	5
	Cadmio (come Cd)	< 0.0002	mg/l	031	8
	Nichel (come Ni)	0.003	mg/l	031	9
	Mercurio (come Hg)	< 0.0002	mg/l	032	1
	Colore percettibile in diluizione 1:20	INCOLORE		041	5
	Odore non molesto	NON MOLE		041	7
*	Cromo totale (come Cr)	< 0.0012	mg/l	053	1.
*	Manganese (come Mn)	0.006	mg/l	0533	3

NOTE:

Ogni metodo di prova è identificato da un codice interno alfanumerico, riportato dopo la descrizione del metodo, quale riferimento al catalogo dell'Agenzia.

METODI DI PROVA UTILIZZATI:

(0293)	APAT CNR-IRSA Metodo 2060 Man. 29/2003	_	U.RP.M559
(0294)	APHA Standard Methods 20th Ed. Met. 5220AB: 1998		U.T2.M041
(0296)	CNR-IRSA Quaderno 100 Met. 4010A: 1994	_	U.RP.M262
(0297)	APAT CNR-IRSA Metodo 4050 Man. 29/2003	-	U.RP.M568
(0298)	UNICHIM UNI 9813: 1991	_	U.T2.M020
(0299)	CALCOLO	-	U.T2.M120
(0301)	APHA Standard Methods 20th Ed. Met. 3111B: 1998	-	U.RP.M284
	APAT CNR-IRSA 3010 M29/03+EPA 200.8-1 5.5: 1996	-	U.RP.M314
	APAT CNR-IRSA 3010 M29/03+EPA 200.8-1 5.5: 1996	-	U.RP.M314
(0305)	APAT CNR-IRSA 3010 M29/03+EPA 200.8-1 5.5: 1996	-	U.RP.M314
(0307)	CNR-IRSA Quaderno 100 Met. 5140; 1994		U.RP.M267
(0308)	CNR-IRSA Quaderno 100 Met. 5150: 1994	_	U.RP.M268
(0310)	CNR-IRSA Quaderno 100 Met. 2060: 1994		U.RP.M258

Pag. 2 di 3

^{*} Prova NON accreditata dal SINAL

A.R.P.A. PIEMONTE - Dipartimento Provinciale di Vercelli

NUMERO CAMPIONE: VC05/00116	NUMERO	RAPPORTO DI	PROVA: VC05/00171
(0311) CNR-IRSA Quaderno 100 Met. 2050: 1994 (0312) Metodo Respirometrico (0313) CNR-IRSA Quaderno 100 Met. 4090: 1994 (0314) CNR-IRSA Quaderno 100 Met. 5160: 1994 (0315) Kit colorimetrico A Cloro (0318) APAT CNR-IRSA 3010 M29/03+EPA 200.8-1 (0319) APAT CNR-IRSA 3010 M29/03+EPA 200.8-1 (0321) APAT CNR-IRSA 3010 M29/03+EPA 200.8-1 (0416) CNR-IRSA Quaderno 100 Met. 2020: 1994 (0531) EPA 200.8-1 5.5 1996 (0533) EPA 200.8-1 5.5 1996	5.5: 1996 5.5: 1996	- U.RP.M25 - U.RP.M47 - U.T2.M02 - U.RP.M30 - U.RP.M31 - U.RP.M31 - U.RP.M31 - U.RP.M31 - U.RP.M34 - U.T2.M12 - U.T2.M12	2 2 3 3 4 4 4 6 7
IL CHIMICO	DOTT. VALI	ERIO ROSSINO	
Daphnia magna, tossicità acuta - Inibizione			RIF. MET.
Daphnia magna, tossicità acuta - EC50		§ 1	1358 1359
Vibrio fischeri, tossicità acuta - Inibizio Vibrio fischeri, tossicità acuta - EC50	ne 0	ofo	1359 1360 1361
NOTE: * Prova NON accreditata dal SINAL Per il parametro Daphnia magna il campione è in camera termostatata a 20°+-2°C in data 24/		lato in data 2:	1/01/05 e scongelato
Ogni metodo di prova è identificato da un co descrizione del metodo, quale riferimento al	dice interno catalogo de	o alfanumerico ll'Agenzia.	, riportato dopo la
METODI DI PROVA UTILIZZATI: (1358) Metodo interno (R01):2003 (1359) UNI EN ISO 6341:1999 (1360) Metodo interno (R01):2003 (1361) Metodo interno (R01):2003		- U.RP.M020 - U.T2.M163 - U.RP.M019 - U.RP.M019	2
IL BIOLOGO & A Harris Grev	DOTESSA ROI	MANA AZARIO COZET	

IL DIRETTORE DEL DIPARTIMENTO

VERBALE DI PRELEVAMENTO

Acque di scarico

N. AO 03/VC05

DIPARTIMENTO DI VERCELLI SEDE OPERATIVA DI VERCELLI VIa Trino 89 - 13100 VERCELLI Telef. 0161 269830**0** - Fax 0161 2698230

Pagina 2/2

Il campione prelevato, opportunamente omogeneizzato, è stato suddivi	iso in n° aliquote regolamentari costituite da:
□ n° contenitori in vetro della capacità □ n° contenitori in polietilene della capacità □ n° contenitori in vetro della capacità □ n° contenitori in polietilene della capacità □ n° contenitori in vetro con tappo a vite / smeriglio della capaci □ n° contenitori in	di litri cadauno denominato/i Aliquota A di litri cadauno denominato/i Aliquota B di litri cadauno denominato/i Aliquota C di litri cadauno denominato/i Aliquota D ità di litri cadauno denominato/i Aliquota E di litri cadauno denominato/i Aliquota
□ n° contenitori in	di litri cadauno denominato/i Aliquota
□ Prelievo n° aliquot_/campione, in modo istantaneo, direttar di litri, per l'analisi batteriologica. Tal_aliquot_/campione □ Prelievo n° aliquot_/campione, in modo istantaneo, di ml, per l'analisi dei solventi. Tal_aliquot_/campione viene	ione viene contraddistinta con la lettera F lirettamente in contenitore di vetro/vials, della capacità di
Le aliquote, chiuse O con sigillo dell'ARPA Piemonte O altro, ide di 4°C, verranno consegnate per le analisi, nel più b Provinciale/Subprovinciale A.R.P.A. di V.E.R. A.L.L. con Comune: V.C.A. C.L.L. (V.C.); Il Sig. A.L.L. B.A.L.L. dichiara: M.V.L.A.	breve tempo possibile, ai laboratori del dipartimento i sede in via
Ai sensi dell'art. 223 del D.Lgs. n° 271 del 28/07/89, con il presente v l'apertura e l'analisi del campione avverrà presso i laboratori del c in data	verbale, si dà formale avviso allo stesso che: dipartimento di VERCELLI VIA BRUZZA, LA nica + Brovas, Le CO fisica O fisica O microbiologica dal dipartimento A.R.P.A. ra dell'apertura dei campioni prelevati ed inizio delle analisi. lare alle operazioni di apertura ed analisi del campione e che iscritto con formale atto di nomina.
Autorizzazione allo scarico nº 9.13.cdel. [3.10.2]rilasciat	ta da
Di quanto precede si è redatto il presente verbale in n° copie,	chiuso alle ore 12.22, che dopo lettura:
Presente / i al prelievo HIEL OLA CIC/O COMBNATO/di TRINO Località Leri Cavour 13039 TRINO (VC)	[Verbalizzant }

403 correct 423

VERBALE DI PRELEVAMENTO

Acque di scarico

N. AO 23/14/05

DIPARTIMENTO DI VERCELLI SEDE OPERATIVA DI VERCELLI Via Trino 89 - 13100 VERCELLI Telef. 0161 2698300 - Fax 0161 2698230

nove volucies and go 🖛 or operations.	Pagina 1/2
Progetto AA E AA Il giorno . 2.0 del mese di	Codice punto
Il giorno . ¿ Odel mese di «	بري وروي المرين المرين المرين المرين المرين المرين المرين المرين المرين المرين المرين المرين المرين المرين الم
ANTONIO in qualità di COLLIS PROFIC	
a posmita di Salaha a Adula	
si è / sono recat presso l'insediamento produttivo: £, V.E. L	LENTTANA
sito nel Comune di	LERI CAVOUR
abo avolga attività di	
ove, rese note le ragioni della visita, hanno invitato il Sig	HICTOLOGICAL TO THE TOTAL TO TH
nato a	((0.) il. (45./44/4/4.k
e residente a	2. N 2. , 2
in qualità di	mento dell'accesso, a presenziare alle operazioni d
ispezione e prelievo rendendol. edott. edella facoltà di far verbalizzare quals	siasi osservazione ritenga opportuna purche cio noi
rechi pregiudizio all'immediatezza delle operazioni. Interpellato in proposito ha dichiarato quanto segue:	
n = - kil dalla seggios à il Circ Roll 1 de 1 de 1 de 1	. nato il 1914 La . 1216 140 (Te
residente in via) (a. A. A. J	une) in qualità di:
TARO CRASILALE	
Lo scarico è costituito da:	
acque reflue industriali senza alcun trattamento prima dello scarico	 acque di raffreddamento
• acque reflue industriali / domestiche da depuratore di tipo: • chimic	o fisico • biologico
e altro.	
Tale scarico è da considerarsi:	
	durata superiore alle 3 ore
periodico continuo discontinuo	inuo
accidentale	
• altro	
E' stato eseguito un campionamento presso:	
pozzetto di ispezione • ultir	no punto accessibile
altro	# 1
prima dello scarico in: • fognatura:	• suolo:
ocorpo idrico:h. 2.40 r. A	11.26 ● altro:
Eventuali rilevazioni di parametri chimico-fisici effettuate in loco:	german i travita de la companya de l
• Rilevazione della temperatura: allo scarico°C a monte.	°C a valle°C
Il campionamento, rappresentativo di tutta la sezione di scarico, è stato esegui	to in modo manuale automatico
con inizio alle ore	
effettuando prelievi ad intervalli di	0
Il campione è da considerarsi: 🗆 campione istantaneo 🖳 cam	ipione medio
Tale metodo di campionamento è stato adottato poiché: "previsto dalle no	orme vigenti 🔲 altro (descrizione):
<u></u>	
Presente / i al prelievo	I <u></u> Verbalizzant <u></u> €
Localita Lon Cavour	and the same of th

RAPPORTO DI PROVA ANALISI SCARICHI ACQUE REFLUE

PRODUZIONE società per azioni C.Id: GALILEO FERRARIS TRINO

BOLLETTINO n° = H22/05

LABORATORIO CHIMICO

DATA PRELIEVO = 25/05/2005

ORA -

8,45

DATA ANALISI = 25-26/05/05

PUNTO DI PRELIEVO = POZZETTO VASCA FINALE ITAR

PORTATA SCARICO =

<u>50</u>

m³/h

PARAMETRO	METODICA	UNITA' DI MISURA	RISULTATO ANALISI	INGERTEZZA	LIMITE
рН	metodo interno TO 02 rev. 0		7,7	± 0,1	5.5 // 9.5
CONDUCIBILITA'	metodo interno TO 03 rev. 0	uS/cm	316	± 2%	
COLORE	APAT IRSA-CNR met 2020 ediz. 2003		ASSENTE		ASSENTE DILUIZIONE 1/29
ODORE	APAT IRSA-CNR met 2050 ediz 2003		NON MOLESTO		NON MOLESTO
MATERIALI GROSSOLANI	D.L. 152 11/05/99		ASSENTI		ASSENTI
MATERIALI SEDIMENTABILI	APAT IRSA-CNR met 2090 ediz 2003	ml/l	< 0,1		0,5
MATERIALI IN SOSPENSIONE TOTALI	APAT IRSA-CNR met 2090 ed/z, 2003	mg/l	<1		80
COD	met int TO 04 rev. 0	mg/l	23	±5	160
CROMO Totale come Cr	njetsau interno TO 05 rev. 0	mg/l	< 0,05	Di Antologi mongaya ilayi ma ki kilibi na ki kamada na kana sadahi	2
CROMO VI come Cr	metodo interno TO 06 rev. 0	mg/I	< 0,02	0.00	0,2
FERRO come Fe	metodo interno TO 07 rev. 0	mg/1	0,153	± 0,05	2
RAME come Cu	metodo interno TO 08 rev. 0	mg/I	< 0,001		0,1
CLORO ATTIVO come CI2	metodo interno TO 09 rev. 1	mg/l	< 0,03	Michael Cellista (Anna San Anna San An	0,2
SOLFATI comeSO4 -	metoda interno TO 10 rev. 0	mg / I	32	± 30	1000
CLORURI come Cl ⁻	met, int. TO 10 rev. 0	mg/I	44	± 20	1200
FLUORURI come F	metodo interno TO 10 rev. 0	mg / l	< 0,1		6 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
FOSFORO Totale come P	met, int, TO 12 rev. 1	mg / l	< 0,5	W	10
AMMONIACA Totale come NH4 *	metodo interno TO 13 rav. 0	mg / I	0,55	± 0,1	15
AZOTO Nitroso come N	metodo interno TO 14 rev. 0	mg / I	0,305	± 0,05	0,6
AZOTO Nitrico come N	metodo inter (o (O 10 rev: 0	mg//	1,307	± 0,5	20
GRASSI E OLI ANIMALI E VEGETALI	met. Int. TO 15 rev. 1	mg / l	< 0,5		20
IDROCARBURI TOTALI	met, Int. TO 16 rev. 1	mg / I	< 0,5		5
TENSIOATTIVI	met, Int. TO 17 rev. 0 met, Int. TO 18 rev. 0	mg/1	< 0,3	MATERIAL STATE OF A SECURITION OF SECURITION	2
ESCHERICCHIA COLI	metodo interna TO 23 rev. 0	UFC/100 ml	< 100		5000
TEMPERATURA MEDIA *	metodo interno TO 01 rev. 1	°C	*		35

	NOTE: * MISURATA NELLA ROGGIA ACQUA NERA A VALLE DEL PUNTO DI IMMISSIONE SCARICHI
	NOTE: ANALISI MENSILE
SOSSERVAZIONI :	TENSIOATTIVI NON IONICI = < 0,3 ANIONICI = <0,3

ESECUTORI Mandic Bance

IL PREPOSTO AL LABORATORIO CHIMICO

PRODUZIONE società per azioni C.le GALILEO FERRARIS TRINO

RAPPORTO DI PROVA ANALISI SCARICHI ACQUE REFLUE

BOLLETTINO n° = H55/05

LABORATORIO CHIMICO

DATA PRELIEVO = 14/12/2005

ORA :

9,30

DATA ANALISI = 14-15/12/05

PUNTO DI PRELIEVO = POZZETTO VASCA FINALE ITAR

PORTATA SCARICO =

<u>30</u>

m³/h

PARAMETRO	METODICA	UNITA' DI MISURA	RISULTATO ANALISI	INCERTEZZA	LIMITE
рН	APAT IRSA-CNR met 2050 ediz. 2003		7,21	±0,05	5.5 / 9.5
CONDUCIBILITA'	APAT IRSA-CNR met 2030 ediz: 2003	uS/cm	2420	± 1%	
COLORE	APAT IRSA-CNR met 2020 ediz, 2003	e demandra e securito de entrenti de división permitibilità e el històrio de est	ASSENTE	 A minute de Arabanino E E Order (E O De Arabando de Climate) A como antigo de constituir de Constitui	ASSENTE DILUIZIONE 1/20
ODORE	APAT IRSA-CNR met 2050 ediz, 2003		NON MOLESTO		NON MOLESTO
MATERIALI GROSSOLANI	D.L. 152 11/05/99		ASSENTI		ASSENTI
MATERIALI SEDIMENTABILI	APAT IRSA-CNR met 2090 ediz, 2003	ml/l	< 0,1		0,5
MATERIALI IN SOSPENSIONE TOTALI	APAT IRSA-CNR met 2000 ediz, 2003	mg/l	<1		80
COD	met Int TO 04 rev. 0	mg/l	< 5		160
CROMO Totale come Cr	metodo interno TO 05 rev. D	mg/l	< 0,05		2
CROMO VI come Cr	metodo interno TO 06 rev. 0	mg/I	< 0,02		0,2
FERRO come Fe	metodo interno TO 07 rev. 0	mg/l	< 0,05		2
RAME come Cu	metodo interno TO 08 rev. 0	mg/l	< 0,001		0,1
CLORO ATTIVO come CI2	melodo interno TO 09 rev. 1	mg/I	< 0,03	y de mende et en militar en generaleur en en en en en trime la vez (melle ente est des	0,2
SOLFATI comeSO4 **	metodo interna TO 10 rev. 0	mg/II	125	± 30	1000
CLORURI come Cl	met, int. TO:10 rev. 0	mg / l	837	± 20	1200
FLUORURI come F*	metodo interno TO 10 rev. 0	mg/I	< 0,1	0.4 5.5 5.6 7	6
FOSFORO Totale come P	met. Int. TO 12 rev. 1	mg / I	< 0,5		10
AMMONIACA Totale come NH4 *	metodo interno TO 13 rev. 0	mg/I	1,39	±:0,1	15
AZOTO Nitroso come N	metodo interno TO 14 rev. 0	mg/l	0,265	± 0,05	0,6
AZOTO Nitrico come N	metodo interno TO 10 rev. 0	mg/1	8,44	±0,5	20
GRASSI E OLI ANIMALI E VEGETALI	met. Int. TO 15 rev. 1	mg / l	< 0,5	par compress propriet (A. S.	20
IDROĆARBURI TOTALI	met Int TO 16 rev. 1	mg/l	< 0,5		5
TENSIOATTIVI	met, Int. TO 17 rev. 0 met, Int. TO 18 rev. 0	mg/l	< 0,3	NN to the Control of	2
ESCHERICCHIA COLI	melodo interno TO 23 rev. 0	UFC/100 ml	< 100		5000
TEMPERATURA MEDIA *	per Varianting (continuing)), Oranja kang Malifolis (2000 ang Cana cana). In	°C	e o glesse glesse o open klastic signitude o ingilia	t program i de train e me de seram de la ligita de la distribución de la maria de la distribución de la dist	35 /

NOTE: * MISURATA NELLA ROGGI	A ACQUA NERA A VALLE DEL PUNTO DI IMMISSIONE SCARICHI
NOTE: ANALISI MENSILE	
OSSERVAZIONI: TENSIOATTIVI NON IONICI = < 0,3	3 ANIONICI = <0,3

ESECUTORI HOUND BOUND

IL PREPOSTO AL LABORATORIO CHIMICO

Pah-ii