

GESTIONE IMPIANTIASSISTENZA SPECIALISTICA

POLO TERMICO E IDRAULICO

Unità di Milano

ITE AUGUSTA GR.2

PROVE DI COMBUSTIONE rev.3

RAPPORTO DI PROVA

ASP-MI-RP-004 /01 - rev.3

MILANO, dicembre 2001

Pagina 2 di 8

Gestione Impianti ASSISTENZA SPECIALISTICA POLO TERMICO E IDRAULICO

OGGETTO:	ITE AUGUSTA GR.2 – PROVE DI COMBUSTIONE –	ASP-MI-RP-004 / 01

SOMMARIO:

Le prove di combustione condotte sul gruppo 2 dell'impianto di Augusta hanno permesso di verificare il rispetto dei limiti sulle emissioni.

In queste condizioni le emissioni medie di particolato solido sono risultate essere di ~35-40mg/Nm³.

Data: dicembre 2001

LISTA DI DISTRIBUZIONE	
Destinatari	Numero Copie
UBT PRIOLO	1
ITE AUGUSTA	1
ASP Santa Barbara	1

ESEGUITO	VISTO	APPROVATO
Ing. Eduardo Leonardis	Ing. Davide D'Angelo	Ing. Paolo Magneschi

INDICE

Pagina 3 di 8

Gestione Impianti ASSISTENZA SPECIALISTICA POLO TERMICO E IDRAULICO

1. PREMESSA	······································
2. SISTEMA DI COMBUSTIONE	4
3. DESCRIZIONE DELLE PROVE	4
3.1 PROGRAMMA PROVE	4 5
4. RISULTATI DELLE PROVE	
4.1 BASELINE CON GLI ATOMIZZATORI Y JET	5
5. CAPTABILITA' DELLE CENERI CON I PRECIPITATORI MECCANICI	6
6. COMBUSTIBILE UTILIZZATO	6
7. CONSIDERAZIONI	6
8. TABELLA RIEPILOGATIVA DELLE PROVE (POLVERI E GAS)	7
9. TABELLA RIEPILOGATIVA DATI DI FUNZIONAMENTO	8

Pagina 4 di 8

Gestione Impianti
ASSISTENZA SPECIALISTICA
POLO TERMICO E IDRAULICO

1. PREMESSA

La presente relazione descrive i risultati delle prove di combustione condotte dal 20 al 30 agosto '01 presso il Gr.2 dell'impianto termoelettrico di Augusta.

Scopo delle prove in oggetto era quello di valutare le emissioni solide e gassose per verificare il rispetto dei seguenti limiti di legge, in vigore dal 01/01/2003:

- NOx <= 650 mg/Nm³@3%O2;
- CO <= 250 mg/Nm³@3%O2;
- SO2 <= 1700 mg/Nm³@3%O2;
- Particolato solido <= 50 mg/Nm³@3%O2.

I limiti di legge riportati sono riferiti a valori medi sulle 720 ore.

La sperimentazione è stata condotta congiuntamente dall'Assistenza Specialistica Polo Termico e Idraulico Unità di Milano e di Santa Barbara con la costante collaborazione del personale d'impianto.

2. SISTEMA DI COMBUSTIONE

Le prove di verifica delle emissioni sono state condotte sul Gr.2.

La caldaia è di tipo tangenziale formata da 8 bruciatori disposti su due piani.

Ogni bruciatore è realizzato da un diffusore dell'aria primaria, da due diffusori dell'aria secondaria e da un impeller per la combustione ad olio.

L'atomizzatore di progetto è un Y-jet tipo JT8-90-22-IG-4749.

3. DESCRIZIONE DELLE PROVE

Il programma delle prove era mirato a verificare le emissioni al camino con combustibile BTZ (l'unico che permette il rispetto dei 1700 mg/Nm³ di SO2).

Per il controllo delle emissioni solide sono stati approntati dei nuovi atomizzatori realizzati da PSI/Ricerca tipo A Y Mix con controtestina CT 1-11-10-2,4 e testina T5 10-4,2-90°.

Le prove prevedevano dunque di verificare le emissioni al camino e l'efficacia dei nuovi atomizzatori per la riduzione del particolato solido (incombusti).

3.1 Programma prove

Le prove sono state condotte con combustibile BTZ secondo il seguente programma:

- baseline con gli atomizzatori Y jet;
- baseline con i nuovi atomizzatori A Y Mix;
- variazione della pressione di atomizzazione con gli atomizzatori A Y Mix;
- verifica emissioni al minimo tecnico (35 MW).

Pagina 5 di 8

Gestione Impianti ASSISTENZA SPECIALISTICA POLO TERMICO E IDRAULICO

3.2 Misure

Nel corso della campagna di prove sono state analizzate, mediante reticolo gas realizzato sui condotti uscita economizzatore (8 p.ti per condotto), le seguenti specie chimiche:

- O₂;
- CO;
- NOx;
- SO₂.

Sono stati effettuati prelievi isocinetici di particolato su entrambi i condotti mediante reticolo (24p.ti per condotto) valle precipitatore meccanico.

Sono state effettuate le analisi chimiche dei combustibili utilizzati.

Per ogni prova condotta sono stati rilevati i dati di esercizio.

Tutte le misure gas e particolato sono state effettuate da PGI/ASP Unità di Santa Barbara, le analisi dei combustibili sono state effettuate dal laboratorio chimico di centrale.

4. RISULTATI DELLE PROVE

Nei paragrafi seguenti vengono riportati i risultati delle emissioni solide in quanto era l'unico parametro critico. Gli NOx infatti variavano da ~380mg/Nm³ a massimo carico a ~480 mg/Nm³ a minimo carico.

4.1 Baseline con gli atomizzatori Y jet

Le prime prove condotte con gli atomizzatori Y jet sono state condotte effettuando il prelievo di particolato monte precipitatore meccanico per verificare l'effettive emissioni. Queste misure però non sono da considerarsi attendibili in quanto durante l'esecuzione delle prove le velocità dei fumi erano altamente variabili (da ~0m/s a ~40m/s). Il valore medio delle polveri condotte valle precipitatori meccanici (cicloni) è di ~30-35mg/Nm³.

4.2 Atomizzatori A Y Mix

Durante queste prove sono stati caratterizzati i nuovi atomizzatori forniti dalla Ricerca. Le prove erano mirate ad ottimizzare l'uso degli atomizzatori. Durante le prove sono state variate le pressioni del vapore di atomizzazione. I risultati migliori sono stati ottenuti con pressione del vapore di atomizzazione di ~9,5bar, pressione dell'olio combustibile di ~10,5bar e portata dell'o.c.d. di ~2000kg/h.

Con questi atomizzatori il valore medio delle polveri era di ~30-35mg/Nm³.

4.3 Verifica emissioni al minimo tecnico (35MW)

Le prove condotte al minimo tecnico con i nuovi atomizzatori hanno dimostrato di poter contenere le emissioni di particolato sotto i 50mg/Nm3 (~40mg/Nm³) impostando il brandeggio bruciatori in posizione orizzontale (~50%). Questo assetto ha però ridotto la temperatura in uscita RH.

Pagina 6 di 8

L'utilizzo di un brandeggio di ~65% permette di mantenere la temperatura RH più alta con probabile incremento delle polveri.

5. CAPTABILITA' DELLE CENERI CON I PRECIPITATORI MECCANICI

Mediante un calcolo indiretto (ceneri evacuate dalla tramoggia dei cicloni e combustibile bruciato) è stato stimata un'efficienza dei cicloni di circa il 20-25%.

6. COMBUSTIBILE UTILIZZATO

Il combustibile utilizzato per le prove è un BTZ avente le seguenti caratteristiche medie:

	1	1	1
Descrizione analisi			
Data dei campioni di o.c.d.		20 agosto '01	
Densità a 15°C (ASTM D 4052)	Kg/dm ³	0.981	
Acqua (ASTM D 95)	% vol.		
PCS (ASTM D 240)	Kcal/kg	10290	
PCI (ASTM D 240)	Kcal/kg	9733	
Viscosità a 50° (ASTM D 445)	°E	48.8	
Viscosità a 100° (ASTM D 445)	°E	4.1	
Sedimenti per estraz.(ASTM D473)	% peso	0.01	
Zolfo (ASTM D 1552)	% peso	0.99	
Vanadio (DIR AA)	ppm	8	
Nichel (DIR AA)	ppm	3	
Sodio (ASTM D 1318)	ppm	2	
Idrogeno (An. Elementare)	% peso	10.7	
Azoto (An. Elementare)	% peso	0.35	
Carbonio (An. Elementare)	% peso	87.7	
Asfalteni (I.P. 143)	% peso	1.9	
Sedimenti totali HFT (I.P. 375)	% peso	0.012	
Ceneri (ASTM D 482)	% peso	0.011	

Dalla tabella si nota come il combustibile presenti buone caratteristiche per quanto riguarda la percentuale di asfalteni (1,9%) e di ceneri (0,011).

Questo comporta che il contenuto di ceneri nelle polveri, uscita caldaia, è pari a ~8 mg/Nm³.

7. CONSIDERAZIONI

Le prove di combustione condotte sul gruppo 2 dell'impianto di Augusta hanno permesso di verificare il rispetto dei limiti sulle emissioni.

In queste condizioni (stato di pulizia dei bruciatori e atomizzatori, verifica degli appostamenti, combustibile utilizzato, ecc.) le emissioni medie di particolato solido sono risultate essere di ~35-40mg/Nm³.

Pagina 7 di 8

8. Tabella riepilogativa delle prove (polveri e gas)

CENTRALE di AUGUSTA

TABELLA RIEPILOGATIVA DELLE PROVE POLVERI e GAS

GRUPPO: 2

									Reticolo valle economizzatore				
ID Data		a Note	Cond.	O2	Concentrazione di particolato Media ponderale					O2	CO	SO2	
ID	Data	Note	Collu.	%	mg/m3 t.q.	mg/Nm3	mg/Nm3*	mg/m3 t.q.	mg/Nm3*	%		mg/Nm3	
			nord Ag	7.80	7.25	11.95	16.30			3.23	17	352	1564
1	21/08/01	70MW	Sud Sr	9.00	14.23	23.57	35.35			2.75	4	368	1540
	m. Cicloni		tot.	8.40	11.34	18.75	26.79	11.33	27.45	2.99	11	360	1552
			nord Ag	7.60	16.04	26.98	36.24			3.13	13	356	1565
2	22/08/01	70MW	Sud Sr	7.90	13.60	22.80	31.33			2.38	3	362	1532
	m. Cicloni		tot.	7.75	14.71	24.70	33.56	14.69	33.53	2.76	8	359	1549
			nord Ag	8.20	14.74	24.28	34.14			2.88	31	683	1546
3	22/08/01	70MW	Sud Sr	7.90	14.63	23.97	32.94			2.31	3	351	1551
	m. Cicloni		tot.	8.05	14.68	24.12	33.53	14.68	33.49	2.60	17	517	1549
		10 Y	nord Ag	7.20	11.20	18.48	24.11			4.71	3	359	1542
4	23/08/01	70MW	Sud Sr	7.90	11.53	20.50	28.17			5.15	13	345	1506
			tot.	7.55	7.71	13.00	17.40	11.33	25.70	4.93	8	352	1524
		10 Y	nord Ag	7.10	11.21	18.59	24.08			4.63	40	345	1550
5	23/08/01	70MW	Sud Sr	7.30	20.91	33.65	44.21			4.34	3	361	1537
			tot.	7.20	14.13	23.22	30.28	18.39	38.97	4.49	22	353	1544
		Y mix	nord Ag	7.60	13.81	21.07	28.31			3.62	5	355	1491
6	24/08/01	70MW	Sud Sr	8.20	9.25	15.43	21.69			2.93	3	347	1515
		pvap~8,5	tot.	7.90	10.75	17.40	23.90	11.17	24.48	3.28	4	351	1503
		Y mix	nord Ag	8.13	18.89	32.33	45.22			3.58	5	401	1648
9	28/08/01	70MW	Sud Sr	7.60	13.53	22.00	29.55			2.88	3	410	1645
		pvap~8,6	tot.	7.87	16.12	26.86	36.81	16.15	37.20	3.23	4	406	1647
		Y mix	nord Ag	8.22	17.42	30.12	42.43			3.61	4	387	1650
10	29/08/01	70MW	Sud Sr	7.85	12.74	19.71	26.98			2.95	3	388	1650
		pvap~9,3	tot.	8.04	15.07	24.61	34.17	15.15	34.93	3.28	4	388	1650
		Y mix	nord Ag	8.10	13.80	23.59	32.91			3.9	3	395	1635
11	29/08/01	70MW	Sud Sr	7.85	7.69	12.32	16.86			3.03	3	389	1647
		pvap~9,3	tot.	7.98	10.85	17.96	24.82	13.17	31.26	3.47	3	392	1641
		Y mix	nord Ag	7.95	23.47	40.10	55.31			3.47	4	390	1639
12	29/08/01	70MW	Sud Sr	7.68	15.00	23.94	32.36			2.82	3	391	1653
		pvap~8,3	tot.	7.82	19.22	31.73	43.32	19.24	43.85	3.15	4	391	1646
		Y Mix	nord Ag	11.20	12.20	19.55	35.92			7.52	0	485	1604
14	30/08/01	35MW	Sud Sr	10.60	15.75	23.45	40.59			6.99	0	485	1622
		pvap~9,5	tot.	10.90	14.24	21.87	38.98	14.16	38.50	7.26	0	485	1613

Pagina 8 di 8

9. Tabella riepilogativa dati di funzionamento

C.le Augusta Gr.2		21-900	22-900	22-900	23-900	23-200	24-ago	28-200	29-200	29-200	29-200	30-200
N° prova		21-ago	22-ago	22-ago	4	23-ag0	2 1- ag0	7	8	27-ago	10	11
Atomizzatore		Y-iet	Y-iet	Y-jet	Y-iet		AYMix					
Carico elettrico	[MW]	68	68	68	68	67	67	66	66	66	66	35
O2 S.M. condotto nord	[%]	0.95	0.83	1.25	1.30	1.20	0,					- 55
O2 S.M. condotto sud	[%]	1.48	1.25	1.25	1.30	1.20	1.6	1.5	1.7	1.7	1.7	5.2
Ossigeno medio S.M. (%)	[%]	1.2	1.0	1.3	1.3	1.2	0.8	0.8		1.7	1.,	0.2
Pos. Brandeggio bruciatori	[%]	45		47			40	46	46		40	50
	0-off; 1-o		8	8	8	8	8	8	8	8	8	8
Serranda aria aux	pos.	2	2	2	2	2	2	2	2	2	2	2
Serranda aria primaria	pos.	5	5	5	5	5	5	5	5	5	5	5
Regolazione aspirazione VA1	[%]	60-82	58-78	59-80	58-79	60-80		62-80	65-82	65-82	65-82	56-80
Assorbimento VA1/VA2	[Amp]	43-46	43-46	42-45	42-45	41-46		44-45	45-46	45-46	45-46	19-20
Temperatura olio combustibile denso loca		107	94	110	112	118						
Temperatura olio combustibile denso	[°C]	112	99	116	118			116	117	117	117	116
Portata olio combustibile denso	[t/h]	16.3	16.2		16.2	16.1		16.0	16.1	16.1	16.1	9.2
Pressione olio combustibile denso colletto		8.8	8.9	8.8	8.8			10.5	11.0	11.0	10.8	8.5
Pressione vapore atomizzazione collettore	[bar]	6.5	6.6	6.6	6.5			9.6	9.9	10.0	9.4	10.5
Portata aria totale	[Nm3/h]	203	199	200	200	200		200	204	205	204	146
Pressione mandata VA1-2	[mm c.a.	250	250	250	250	250			270	270	270	148
Pressione media cassa aria	[mm c.a.]	160	160	160	160	160					185	70
Dp c.a./c.c.	[mm c.a.]		166	165	166				170	170	170	75
*	[mm c.a.]	-0.8	-6.0	-5.0	-6.0				-5	-5	-5	
Pressione camera di combustione (4°piano	_	-10		-9	-15				0			-4
Pressione gas ingresso ECO	[mm c.a.]	-65	-60	-58	-58				-60	-60	-62	-34
Pressione gas uscita ECO	[mm c.a.]	-100	-95	-98	-96				-100	-97	-98	-67
P ingresso LJU dex	[mm c.a.]	-160	-150	-150	-148				-160	-158		-98
•	[mm c.a.]	-155	-152	-150	-155				-160		-170	-100
Temp. aria ingresso LJU dex	[°C]	33.9	32.9		31.5			34.0	34.5			35.0
Temp. aria ingresso LJU six	[°C]	34.0	33.0		31.0			34.0	34.4			35.5
Temp. aria uscita LJU dex	[°C]	243	244		240			236	241			213
Temp. aria uscita LJU six	[°C]	222	225		246			231	228			205
Temp. fumi uscita LJU dex	[°C]	130	130	100	95							
Temp. fumi uscita LJU six	[°C]	136	134	134	136			140	138			124
Portata acqua alimento ingresso ECO	[t/h]	215	211	212	210			211	213	212	215	114
Temp. acqua ingresso ECO	[°C]	193	195	191	195			193				168
Temp. vap. SH uscita caldaia	[°C]	508	507	509	508			505				515
Temp. Condensato	[°C]	42	41		41			42	41			37
Temp. vap. RH freddo	[°C]	350	349	352	353				347			301
Vuoto al condensatore	[mmHg]	-705	-708	-704	-705				-700			-715
Temp. vap. RH usc. caldaia	[°C]	540	540	543	544				541			493
Press. SH uscita caldaia	[ate]	102	105	100	99				99	98	99	87
Press. RH uscita caldaia	[ate]	25.8	25.5	25.7	26.0				25.0			12.7
Particolato lato nord	mg/Nm3	16.3	36.2	34.1	24.1	24.1	28.3	45.2	42.4	32.9	55.3	35.9
Particolato lato sud	mg/Nm3		31.3	32.9	28.2	44.1	21.7	29.6	27	16.9	32.4	40.6
Particolato media ponderale	mg/Nm3		33.5	33.5	25.7	39	24.5	37.2	34.9	31.3	43.9	38.5
O2 lato nord	%	3.23	3.13	2.88	4.71	4.63	3.62	3.58	3.61	3.90	3.47	7.52
O2 lato sud	%	2.75	2.38	2.31	5.15	4.34	2.93	2.88	2.95	3.03	2.82	6.99
O2 medio	%	2.99	2.76	2.60	4.93	4.49	3.28	3.23	3.28	3.47	3.15	7.26
CO lato nord	mg/Nm3		13	31	3	40	5	5	4	3	4	0
CO lato sud	mg/Nm3		3	3	13	3	3	3	3	3	3	0
CO medio	mg/Nm3		8	17	8	22	4	4	4	3	4	0
SO2 lato nord	mg/Nm3		1565	1546	1542	1550	1491	1648	1650	1635	1639	1604
SO2 lato sud	mg/Nm3	l	1532	1551	1506	1537	1515	1645	1650	1647	1653	1622
SO2 medio	mg/Nm3	l	1549	1549	1524	1544	1503	1647	1650	1641	1646	1613
NOx lato Nord	mg/Nm3	l	356	683	359	345	355	401	387	395	390	485
	mg/Nm3	ı	362	351	345	361	347	410	388	389	391	485
NOx lato sud												

File: B18.2 Sistemi trattamento inquinanti giugno 2008.doc