

## **ERG RAFFINERIE MEDITERRANEE S.p.A.**

Raffineria ISAB – Impianti Sud Priolo Gargallo (SR)

# DOMANDA DI AUTORIZZAZIONE INTEGRATA AMBIENTALE

**ALLEGATO D15** 

RELAZIONE SULLA SOLUZIONE MTD SODDISFACENTE (GAP ANALYSIS)



CLIENTE: ERG MED
PROGETTO: ADEGUAMENTO BAT pro IPPC

N° Progetto Rev.

0

Progetto I

## **INDICE**

| 1 | UN  | NITA' 100 DISTILLAZIONE ATMOSFERICA E DISSALAZIONE GREZZO                             |    |
|---|-----|---------------------------------------------------------------------------------------|----|
|   | 1.1 | Organizzazione                                                                        |    |
|   | 1.2 | Descrizione del Processo                                                              |    |
|   | 1.3 | Capacità di Produzione e Trattamento delle Sostanze in Ingresso ed Uscita             | 2  |
|   | 1.4 | Schema di processo semplificato                                                       |    |
|   | 1.5 | Confronto consumi specifici con IPPC-Chapter 3-Emission and consumption level         | 3  |
|   | 1.6 | Distillazione Atmosferica                                                             |    |
|   | 1.7 | Dissalazione Grezzo                                                                   |    |
|   | 1.8 | Stato di applicazione delle BAT competenti                                            |    |
|   | 1.8 | ••                                                                                    |    |
| 2 |     | NITA' 200 A DESOLFORAZIONE GASOLIO                                                    |    |
| _ | 2.1 | Organizzazione                                                                        |    |
|   | 2.2 | Descrizione del Processo                                                              |    |
|   | 2.3 | Capacità di Produzione e Trattamento delle Sostanze in Ingresso ed Uscita             |    |
|   | 2.3 | Schema di processo semplificato                                                       |    |
|   | 2.4 | Confronto consumi specifici con IPPC–Chapter 3– <i>Emission and consumption level</i> |    |
|   |     |                                                                                       |    |
|   | 2.6 | Stato di applicazione delle BAT competenti                                            |    |
| _ | 2.6 |                                                                                       |    |
| 3 |     | NITA' 200 DESOLFORAZIONE NAFTA                                                        |    |
|   | 3.1 | Organizzazione                                                                        |    |
|   | 3.2 | Descrizione del Processo                                                              |    |
|   | 3.3 | Capacità di Produzione e Trattamento delle Sostanze in Ingresso ed Uscita             |    |
|   | 3.4 | Schema di processo semplificato                                                       |    |
|   | 3.5 | Confronto consumi specifici con IPPC-Chapter 3-Emission and consumption level         |    |
|   | 3.6 | Stato di applicazione delle BAT competenti                                            | 17 |
|   |     | 5.1 Allegati                                                                          |    |
| 4 | UN  | NITA' 300 DESOLFORAZIONE KEROSENE                                                     | 19 |
|   | 4.1 | Organizzazione                                                                        | 19 |
|   | 4.2 | Descrizione del Processo                                                              |    |
|   | 4.3 | Capacità di Produzione e Trattamento delle Sostanze in Ingresso ed Uscita             |    |
|   | 4.4 | Schema di processo semplificato                                                       |    |
|   | 4.5 | Confronto consumi specifici con IPPC–Chapter 3– <i>Emission and consumption level</i> |    |
|   | 4.6 | Stato di applicazione delle BAT competenti                                            |    |
|   | 4.6 | <u> </u>                                                                              |    |
| 5 |     | NITA' 400 DESOLFORAZIONE GASOLIO                                                      |    |
| J | 5.1 | Organizzazione                                                                        |    |
|   | 5.2 |                                                                                       |    |
|   |     | Descrizione del Processo                                                              |    |
|   | 5.3 | Capacità di Produzione e Trattamento delle Sostanze in Ingresso ed Uscita             |    |
|   | 5.4 | Schema di processo semplificato                                                       |    |
|   | 5.5 | Confronto consumi specifici con IPPC-Chapter 3-Emission and consumption level         |    |
|   | 5.6 | Stato di applicazione delle BAT competenti                                            |    |
|   | 5.6 | $\boldsymbol{\mathcal{E}}$                                                            |    |
| 6 | UN  | NITA' 500 POWERFORMER                                                                 |    |
|   | 6.1 | Organizzazione                                                                        |    |
|   | 6.2 | Descrizione del Processo                                                              |    |
|   | 6.3 | Capacità di Produzione e Trattamento delle Sostanze in Ingresso ed Uscita             | 30 |
|   | 6.4 | Schema di processo semplificato                                                       | 30 |
|   | 6.5 | Confronto consumi specifici con IPPC-Chapter 3-Emission and consumption level         | 31 |
|   | 6.6 | Stato di applicazione delle BAT competenti                                            |    |
|   | 6.6 |                                                                                       |    |
| 7 |     | NITA' 600 DISTILLAZIONE SOTTO VUOTO                                                   | 34 |
|   | 7.1 | Organizzazione                                                                        |    |
|   |     |                                                                                       |    |



CLIENTE: ERG MED

PROGETTO: ADEGUAMENTO BAT pro IPPC

N° Progetto Rev.
A621 0

|    | 7.2          | Descrizione del Processo                                                             | 34       |
|----|--------------|--------------------------------------------------------------------------------------|----------|
|    | 7.3          | Capacità di Produzione e Trattamento delle Sostanze in Ingresso ed Uscita            |          |
|    | 7.4          | Schema di processo semplificato                                                      |          |
|    | 7.5          | Confronto consumi specifici con IPPC-Chapter 3-Emission and consumption level        | 36       |
|    | 7.6          | Stato di applicazione delle BAT competenti                                           | 37       |
|    | 7.6          |                                                                                      |          |
| 8  | UN           | NITA' 700/700 A GOFINER/SPLITTING GOFINATO                                           |          |
|    | 8.1          | Organizzazione                                                                       |          |
|    | 8.2          | Descrizione del Processo                                                             |          |
|    | 8.3          | Capacità di Produzione e Trattamento delle Sostanze in Ingresso ed Uscita            |          |
|    | 8.4          | Schema di processo semplificato                                                      |          |
|    | 8.5          | Confronto consumi specifici con IPPC-Chapter 3-Emission and consumption level        |          |
|    | 8.6          | Stato di applicazione delle BAT competenti                                           |          |
|    | 8.6          |                                                                                      |          |
| 9  | UN           | NITA' 800 IMPIANTO PRODUZIONE IDROGENO                                               |          |
|    | 9.1          | Organizzazione                                                                       |          |
|    | 9.2          | Descrizione del Processo                                                             |          |
|    | 9.3          | Capacità di Produzione e Trattamento delle Sostanze in Ingresso ed Uscita            |          |
|    | 9.4          | Schema di processo semplificato                                                      |          |
|    | 9.5          | Confronto consumi specifici con IPPC-Chapter 3-Emission and consumption level        |          |
|    | 9.6          | Stato di applicazione delle BAT competenti                                           |          |
|    | 9.6          | · · · · · · · · · · · · · · · · · · ·                                                |          |
| 1( | 0            | UNITA' 1000 ISOMERIZZAZIONE                                                          |          |
|    | 10.1         | Organizzazione                                                                       |          |
|    | 10.2         | Descrizione del Processo                                                             |          |
|    | 10.3         | Capacità di Produzione e Trattamento delle Sostanze in Ingresso ed Uscita            |          |
|    | 10.4         | Schema di processo semplificato                                                      |          |
|    | 10.5         | Confronto consumi specifici con IPPC-Chapter 3-Emission and consumption level        |          |
|    | 10.6         | Stato di applicazione delle BAT competenti                                           |          |
|    |              | .6.1 Allegati                                                                        |          |
| 1  | 1            | UNITA' 1100 LAVAGGIO AMMINICO E DI RIGENERAZIONE MDEA                                |          |
|    | 11.1         | Organizzazione                                                                       |          |
|    | 11.2         | Descrizione del Processo                                                             |          |
|    | 11.3         | Capacità di Produzione e Trattamento delle Sostanze in Ingresso ed Uscita            |          |
|    |              | 3.1 Lavaggio Amminico                                                                |          |
|    |              | 3.2 Rigenerazione MDEA Schema di processo semplificato                               |          |
|    | 11.4<br>11.5 | Confronto consumi specifici con IPPC–Chapter 4– <i>Techniques to Consider in the</i> | 33       |
|    |              | rmination of BAT                                                                     | 55       |
|    | 11.6         | Stato di applicazione delle BAT competenti                                           | 55<br>56 |
|    |              | .6.1 Allegati                                                                        | 50<br>57 |
| 12 |              | UNITA' 1200/1200 M CLAUS E MAXISULF                                                  |          |
| 1. | 12.1         | Organizzazione                                                                       |          |
|    | 12.1         | Descrizione del Processo.                                                            |          |
|    | 12.2         | Capacità di Produzione e Trattamento delle Sostanze in Ingresso ed Uscita            |          |
|    | 12.4         | Confronto consumi specifici con IPPC–Chapter 3–Emission and consumption level        |          |
|    | 12.5         | Stato di applicazione delle BAT competenti                                           |          |
| 1. |              | UNITA' 1400 IMPIANTO SWS                                                             |          |
|    | 13.1         | Organizzazione                                                                       |          |
|    | 13.2         | Descrizione del Processo.                                                            |          |
|    | 13.3         | Capacità di Produzione e Trattamento delle Sostanze in Ingresso ed Uscita            |          |
|    | 13.4         | Schema di processo semplificato                                                      |          |
|    | 13.5         | Confronto consumi specifici con IPPC–Chapter 4– <i>Techniques to Consider in the</i> |          |
|    |              | rmination of BAT                                                                     | 64       |
|    | 13.6         | Stato di applicazione delle BAT competenti                                           |          |
|    |              | .6.1 Allegati                                                                        |          |
|    |              | <u> </u>                                                                             | _        |



CLIENTE: ERG MED

PROGETTO: ADEGUAMENTO BAT pro IPPC

N° Progetto Rev.
A621 0

| 14   | UNITA' 1600 A THERMAL CRACKING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 14.1 | Organizzazione                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 66  |
| 14.2 | Descrizione del Processo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| 14.3 | Capacità di Produzione e Trattamento delle Sostanze in Ingresso ed Uscita                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 67  |
| 14.4 | Schema di processo semplificato                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67  |
| 14.5 | Confronto consumi specifici con IPPC-Chapter 3-Emission and consumption level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 68  |
| 14.6 | Stato di applicazione delle BAT competenti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
| 14   | .6.1 Allegati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| 15   | UNITA' 1600 VISBREAKING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| 15.1 | Organizzazione                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| 15.2 | Descrizione del Processo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| 15.3 | Capacità di Produzione e Trattamento delle Sostanze in Ingresso ed Uscita                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
| 15.4 | Schema di processo semplificato                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| 15.5 | Confronto consumi specifici con IPPC–Chapter 3–Emission and consumption level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| 15.6 | Stato di applicazione delle BAT competenti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
|      | .6.1 Allegati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| 16   | UNITA' 1800 DESOLFORAZIONE GASOLIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
| 16.1 | Organizzazione                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
|      | Descrizione del Processo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| 16.2 | Capacità di Produzione e Trattamento delle Sostanze in Ingresso ed Uscita                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
| 16.3 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| 16.4 | Schema a blocchi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| 16.5 | Confronto consumi specifici con IPPC–Chapter 3–Emission and consumption level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| 16.6 | Stato di applicazione delle BAT competenti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
| 17   | UNITA' 2800 TRATTAMENTO ACQUE OLEOSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 17.1 | Organizzazione                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| 17.2 | Descrizione del Processo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| 17.3 | Capacità di Produzione e Trattamento delle Sostanze in Ingresso ed Uscita                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
| 17.4 | Confronto consumi specifici con IPPC-Chapter 3-Emission and consumption level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| 17   | .4.1 Stato di applicazione delle BAT competenti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80  |
|      | .4.2 Confronto emissioni con IPPC – Charter 4 – Techniques to consider in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| de   | termination of BAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
| 18   | UNITA' 2500 IMPIANTO ACQUA MARE RAFFREDDAMENTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| 18.1 | Organizzazione                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| 18.2 | Descrizione del Processo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| 18.3 | Capacità di Produzione e Trattamento delle Sostanze in Ingresso ed Uscita                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 85  |
|      | .3.1 Confronto consumi specifici con IPPC-Chapter 3-Environmental Aspects of Indus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
| Co   | ooling Systems and Applied Prevention and Reduction Techniques                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 86  |
| 18.4 | Stato di applicazione delle BAT competenti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 87  |
| 19   | UNITA' STOCCAGGIO E TRASFERIMENTO FLUIDI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 91  |
| 19.1 | Organizzazione                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 91  |
| 19.2 | Descrizione del Processo e Capacità                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
| 19   | .2.1 Stoccaggi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 91  |
| 19   | .2.2 Sistema di Pesatura                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 93  |
| 19   | .2.3 Sistema di Trasferimento                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 93  |
| 19   | .2.4 Sistema di Carico                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 93  |
| 19   | .2.5 Schema di processo semplificato                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 93  |
|      | .2.6 Planimetria e sezioni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
| 19.3 | Confronto emissioni con IPPC–Chapter 3–Applied Storage, Tranfer and Handling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
|      | niques                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 94  |
| 19.4 | Stato di applicazione delle BAT competenti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
| 19.5 | Stoccaggio di Liquidi e Gas Liquefatti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
| 19.6 | Trasferimento e Trattamento di Liquidi e Gas Liquefatti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| 19.7 | Allegati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| 20   | PRODUZIONE DI ENERGIA TERMICA - FORNI DI RAFFINERIA-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 20.1 | Descrizione Descri |     |
| 20.1 | Confronto emisisoni con IPPC–Chapter 3–Emission and consumption level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
| ۷٠.۷ | Comfond Chilstoni Con it i C—Chapter 3—Emission una consumption tevet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 114 |



CLIENTE: ERG MED ADEGUAMENTO BAT pro IPPC PROGETTO: N° Progetto Rev.

0

A621

| 20.2.1 | 2 COME WOMEN WILLIAM INCOME.                                                                |        |
|--------|---------------------------------------------------------------------------------------------|--------|
| 20.2.2 |                                                                                             |        |
| Le en  | nissioni totali, ricavabili dalle tabelle di cui sopra, ed il loro confronto con quanto inc | dicato |
| nelle  | IPPC è di seguito riportato:                                                                | 117    |
| 20.3   | Stato di applicazione delle BAT competenti                                                  | 118    |
| 21 A   | DDENDUM ALLE BAT                                                                            | 125    |
| 21.1   | Unità U-100                                                                                 | 125    |
| 21.2   | Unità U-200                                                                                 | 126    |
| 21.3   | Unità U-200 A                                                                               | 127    |
| 21.4   | Unità U-300                                                                                 | 128    |
| 21.5   | Unità U-400                                                                                 | 129    |
| 21.6   | Unità U-500                                                                                 | 130    |
| 21.7   | Unità U-600                                                                                 | 131    |
| 21.8   | Unità U-700/U-700 A                                                                         |        |
| 21.8.1 | 1 Unità 700                                                                                 | 132    |
| 21.8.2 | 2 Unità 700 A                                                                               | 132    |
| 21.9   | Unità U-800                                                                                 | 134    |
| 21.10  | Unità U-1000                                                                                | 134    |
| 21.11  | Unità U-1200/U-1200 M                                                                       | 135    |
| 21.12  | Unità U-1600                                                                                | 135    |
| 21.13  | Unità U-1600 A                                                                              | 136    |
| 21.14  | Unità U-1800                                                                                | 137    |
|        |                                                                                             |        |

#### Allegati:

- Schema di processo semplificato Impianto 100
- Schema di processo semplificato Impianto 200A
- Schema di processo semplificato Impianto 200 Schema di processo semplificato Impianto 300 Schema di processo semplificato Impianto 400
- Schema di processo semplificato Impianto 500
- Schema di processo semplificato Impianto 600
- Schema di processo semplificato Impianto 700/700A
- Schema di processo semplificato Impianto 800
- Schema di processo semplificato Impianto 1000
- Schema di processo semplificato Impianto 1100
- Schema di processo semplificato Impianto 1400
- Schema di processo semplificato Impianto 1600A
- Schema di processo semplificato Impianto 1600



| CLIENTE:    | ERG MED                  |  |  |
|-------------|--------------------------|--|--|
| PROGETTO:   | ADEGUAMENTO BAT pro IPPC |  |  |
| N° Progetto | Rev.                     |  |  |
| A621        | 0                        |  |  |

## 1 <u>UNITA' 100 DISTILLAZIONE ATMOSFERICA E</u> <u>DISSALAZIONE GREZZO</u>

#### 1.1 Organizzazione

La gestione dell'unità è affidata alla funzione

GEST 1

#### 1.2 Descrizione del Processo

L'impianto lavora grezzi e residui ad una pressione di poco superiore alla pressione atmosferica. Ha lo scopo di realizzare il frazionamento del grezzo in una serie di prodotti intermedi da destinarsi alla preparazione di prodotti finiti.

Il greggio, dopo una processo di dissalaggio ed un preriscaldamento, arriva al forno di carica passando quindi nella colonna di distillazione atmosferica, dalla quale provengono essenzialmente i seguenti tagli:

- Gas e GPL
- Virgin nafta (benzina grezza)
- Kerosene leggero
- Kerosene pesante
- Gasolio leggero
- Gasolio medio
- Gasolio pesante
- Residuo atmosferico

Questi prodotti sono inviati a stoccaggio o in cascata ad altri impianti per essere ulteriormente rilavorati.

Per ulteriori informazioni si faccia riferimento al manuale operativo disponibile presso il reparto.



| CLIENTE:    | ERG MED  |                   |  |
|-------------|----------|-------------------|--|
| PROGETTO:   | ADEGUAMI | ENTO BAT pro IPPC |  |
| N° Progetto | Rev.     |                   |  |
| A621        | 0        |                   |  |

## 1.3 Capacità di Produzione e Trattamento delle Sostanze in Ingresso ed Uscita

## Carica

| Nome                          | Lavorato 2005 (ton / anno) |
|-------------------------------|----------------------------|
| Grezzo                        | 11854305                   |
| Rilavorazione di nafte e slop | 475529                     |

## Prodotti / semilavorati in uscita

| Nome                | Lavorato 2005 (ton / anno) |
|---------------------|----------------------------|
| Gas e GPL           | 14542                      |
| Benzina Topping     | 1794415                    |
| Kerosene leggero    | 771098                     |
| Kerosene pesante    | 873166                     |
| Gasolio Leggero     | 1872482                    |
| Gasolio medio       | 579947                     |
| Gasolio Pesante     | 267586                     |
| Residuo atmosferico | 6156598                    |

Capacità di progetto: 36.000 t/g (di grezzo trattato)

## 1.4 Schema di processo semplificato

In allegato si riporta lo schema di processo semplificato.



| CLIENTE:<br>PROGETTO: | ERG MED ADEGUAMENTO BAT pro IPPC |  |
|-----------------------|----------------------------------|--|
| N° Progetto A621      | Rev.                             |  |

## 1.5 Confronto consumi specifici con IPPC-Chapter 3-Emission and consumption level

#### 1.6 Distillazione Atmosferica

L'unità di distillazione atmosferica è una unità convenzionale progettata per trattare una capacità massima di 12.000.000 ton/anno di grezzo. Il recupero di calore viene normalmente massimizzato al fine di contenere i consumi di combustibile e limitare i consumi di acqua di raffreddamento.

Per quanto riguarda i consumi per l'unita di distillazione atmosferica la seguente tabella confronta quanto riportato nel Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries (paragrafo 3.19 – consumption-) con quanto ottenuto operativamente nell'unità di distillazione atmosferica della raffineria ISAB SUD

|                                           | IPPC    | Distillazione atmosferica |
|-------------------------------------------|---------|---------------------------|
| Fuel MJ/ton                               | 400-680 | 520                       |
| Electricity kwh/t                         | 4-6     | 6.4                       |
| Steam consumed (kg/ton)                   | 25-30   | 24                        |
| Cooling water (m3/t H2O, $\Delta$ T=17°C) | 4.0     | 0.86                      |

#### 1.7 Dissalazione Grezzo

Per quanto riguarda i consumi per la sezione di dissalazione la seguente tabella confronta quanto riportato nel Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries (paragrafo 3.19 – consumption-) con quanto ottenuto operativamente nell'unità di distillazione atmosferica della raffineria ISAB SUD.

| IPPC       |         |                | Distillazione Atmosferica |        |                |
|------------|---------|----------------|---------------------------|--------|----------------|
| Water Wash | T (°C)  | Densità grezzo | Water Wash                | T (°C) | Densità grezzo |
| (% vv)     |         | (Kg/m3)        | (% vv)                    |        | (Kg/m3)        |
| 3-4        | 115-125 | <825           |                           |        |                |
| 4-7        | 125-140 | 825-875        | 4.0                       | 124    | 871            |
| 7-10       | 140-150 | >875           |                           |        |                |



|  | CLIENTE:<br>PROGETTO: | ERG MED ADEGUAMENTO BAT pro IPPC |  |  |
|--|-----------------------|----------------------------------|--|--|
|  | N° Progetto A621      | Rev.<br><b>0</b>                 |  |  |

#### 1.8 Stato di applicazione delle BAT competenti

Le BAT relative all'unità di dissalazione grezzo e all'unità di distillazione atmosferica sono riportate ai punti 9 e 19 del paragrafo 5.2 del nel Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.

Nei prospetti di seguito riportati viene mostrato lo stato di applicazione delle BAT citate con riferimento all'assetto della raffineria ISAB SUD.

Nei prospetti, per semplicità e per rendere più facile il confronto, ove indicato nello stesso paragrafo 5.2 delle IPPC, viene riportato il riferimento alla tecnica presente nel capitolo 4 della stessa Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.

Dall'analisi del prospetto si evince che la raffineria adotta per l'unità in oggetto un insieme di tecniche in linea con le migliori disponibili al momento.



CLIENTE: ERG MED
PROGETTO: ADEGUAMENTO BAT pro IPPC

N° Progetto Rev.
A621 0

## **Dissalazione Grezzo**

| TECNICA | INDICAZIONE                                                                                                                        | STATO         | COMMENTO                                                                                                                                                                                                                                                                                        | Note |
|---------|------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 4.9.1   | Uso di desalter<br>multistadio per le nuove<br>installazioni                                                                       | Non richiesto | Il grado di dissolvenza<br>raggiunto è soddisfacente con<br>il rapporto H <sub>2</sub> O/HC al minimo<br>previsto da IPPC                                                                                                                                                                       |      |
| 4.9.1-3 | Applicazione di buone<br>tecniche di desalting allo<br>scopo di ottimizzare i<br>processi a valle e la<br>quantità di acque reflue | Applicata     | Sono utilizzati agenti demulsificanti classificati non pericolosi per l'ambiente.  L'acqua effluente dal desalter è inviata ad un settling drum per rimozione idrocarburi; inoltre l'acqua, prima di essere inviata al Waste Water Treatment, viene ulteriormente trattata in un separatore API |      |
| 4.9.4   | Massimizzazione del<br>riutilizzo di acqua di<br>raffineria come acqua di<br>desalting                                             | Applicata     | Sono utilizzate le acque da<br>Sour Water Stripper                                                                                                                                                                                                                                              |      |



CLIENTE: ERG MED
PROGETTO: ADEGUAMENTO BAT pro IPPC

N° Progetto Rev.
A621 0

## Distillazione atmosferica

| TECNICA  | INDICAZIONE                                                                                            | STATO                     | COMMENTO                                                                                                                                                                                                                                                                                                                                                                           | Note |
|----------|--------------------------------------------------------------------------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|          | Massimizzazione della integrazione termica mediante una selezione tra:                                 | Applicata                 |                                                                                                                                                                                                                                                                                                                                                                                    |      |
| 4.19.1   | Considerare un'unita<br>basata sulla tecnologia<br>della distillazione<br>progressiva                  | Non Applicabile           | L'unita dell'ISAB SUD utilizza la tecnologia classica della distillazione realizzata in una sola colonna.  Non è possibile trasformare l'unità in una unità a distillazione progressiva.                                                                                                                                                                                           |      |
| 4.19.2-3 | Aumento del recupero termico tra la distillazione atmosferica e l'unità vacuum o altre unità mediante: | Applicata                 |                                                                                                                                                                                                                                                                                                                                                                                    |      |
|          | > Ottimizzazione energetica al treno di preriscaldo carica ("pinch analysis")                          | Applicata                 | Pur non avendo sviluppato l'analisi del "pinch" tuttavia l'unità di distillazione atmosferica è integrata termicamente con l'unità di vuoto (recupero termico con il fondo vacuum e con il pump around inferiore della colonna di vuoto). L'unità è inoltre integrata termicamente con le seguenti altre unità di raffineria:  500 – Reforming catalitico 200 – HDS 1600 A – TH/CR |      |
|          | <ul> <li>Aumentare il<br/>numero di<br/>pumparound da due<br/>a quattro-</li> </ul>                    | Parzialmente<br>applicata | I pumparound sono tre. Aumentare ulteriormente il numero di pumparound non è possibile in quanto cambierebbe tutto lo schema di recupero termico ed il frazionamento dei prodotti verrebbe ad esserne influenzato negativamente.                                                                                                                                                   |      |



CLIENTE: ERG MED
PROGETTO: ADEGUAMENTO BAT pro IPPC

N° Progetto Rev.
A621 0

| TECNICA | INDICAZIONE                                                                                                                                                | STATO                     | COMMENTO                                                                                                                                                                                                                                                                              | Note                                                                               |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
|         | > ribollire gli stripper<br>laterali con un<br>ribollitore a recupero<br>di calore piuttosto<br>che con vapore                                             | Non Applicabile           | Gli stripper laterali utilizzano vapore a bassa pressione. Non è conveniente sostituire il vapore di stripping, poiché non c'è posto per i ribollitori. Inoltre nella raffineria ci sono molti recuperi di calore di basso livello termico con produzione di vapore a bassa pressione |                                                                                    |
|         | <ul> <li>Utilizzo di composti<br/>antisporcamento per<br/>aumerntare i<br/>coefficenti di<br/>trasferimento di<br/>calore negli<br/>scambiatori</li> </ul> | Applicata                 | I composti anti sporcamento vengono utilizzati per aumentare l'efficienza del recupero termico.                                                                                                                                                                                       |                                                                                    |
|         | <ul> <li>Applicazione di<br/>controlli di processo<br/>avanzati</li> </ul>                                                                                 | Applicata                 | Sistemi di controllo avanzato sono già utilizzati per ottimizzare l'operazione della colonna di distillazione primaria.                                                                                                                                                               |                                                                                    |
| 4.19.4  | Massimizzare l'uso di pompe da vuoto ad anello liquido e di condensatori a superficie per la sezione di testa delle colonne da vuoto                       | Non Applicabile           | Applicabile alle sezioni sotto vuoto che non sono presenti in questa unità.                                                                                                                                                                                                           |                                                                                    |
| 4.19.8  | Altre tecniche da considerare                                                                                                                              |                           |                                                                                                                                                                                                                                                                                       |                                                                                    |
|         | <ul> <li>Riciclo degli slop e<br/>dei fanghi al topping</li> </ul>                                                                                         | Applicata                 | La possibilità di trattare<br>nell'unità di distillazione del<br>greggio gli slop è già prevista                                                                                                                                                                                      |                                                                                    |
|         | ➤ Invio degli scarichi<br>delle valvole di<br>sicurezza di testa<br>topping a torcia                                                                       | Parzialmente<br>applicata | Le PSV di testa colonna topping, con $P_{\text{SET}} = 3.5 \text{ Kg/cm}^2$ , scaricano all'atmosfera. Ci sono altre tre PSV sulla vapor line, collettate a B.D. con                                                                                                                  | Per tutti gli<br>scenari di<br>sovrappressione<br>della colonna<br>aventi maggiore |



| CLIENTE:    | ERG MED                  |  |
|-------------|--------------------------|--|
| PROGETTO:   | ADEGUAMENTO BAT pro IPPC |  |
| N° Progetto | Rev.                     |  |
| A621        | 0                        |  |

|        |                                                                                                                                         |           | P <sub>SET</sub> = 3.3 Kg/cm², per anticipare l'azione delle altre                                                  | frequenza, gli scarichi sono collettati a Blow-Down; per frequenza inferiore gli scarichi fino ad una certa portata scaricano a B.D.; portate superiori sono scaricate in Atm in posizione di sicurezza. |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | ➤ Il sistema di<br>decoking deve essere<br>provvisto di un<br>adeguato K.O. drum<br>e da un sistema di<br>eliminazione delle<br>polveri | Applicata | Il sistema esistente utilizza un K.O. drum che abbatte anche le polveri                                             |                                                                                                                                                                                                          |
| 4.19.7 | Trattamento e riutilizzo delle acque acide                                                                                              | Applicata | L'acqua acida raccolta<br>nell'accumulatore di testa<br>viene riutilizzata al dissalatore<br>dopo trattamento a SWS |                                                                                                                                                                                                          |

## 1.8.1 Allegati

Schema di processo



| CLIENTE:    | ERG MED                  |  |
|-------------|--------------------------|--|
| PROGETTO:   | ADEGUAMENTO BAT pro IPPC |  |
| N° Progetto | Rev.                     |  |
| A621        | 0                        |  |

## 2 UNITA' 200 A DESOLFORAZIONE GASOLIO

#### 2.1 Organizzazione

La gestione dell'unità è affidata alla funzione

GEST 1

#### 2.2 Descrizione del Processo

L'impianto ha il compito di desolforare il gasolio leggero da Topping e da Visbreaking, tramite un'azione di idrogenazione catalitica in presenza di idrogeno in operazione ONCE THROUGH.

L'effluente reattore viene raffreddato ed inviato in una coppia di separatori (caldo/freddo) dove il gas viene separato dal liquido.

Il liquido viene inviato in uno stripper e successivamente a stoccaggio.

Il gas ricco in  $H_2$  viene lavato in un assorbitore amminico e successivamente inviato alle unità di desolforazione a valle.

Per ulteriori dettagli si rimanda al manuale operativo dell'unità.



| CLIENTE:<br>PROGETTO: | ERG MED ADEGUAMENTO BAT pro IPPC |  |
|-----------------------|----------------------------------|--|
| N° Progetto A621      | Rev.                             |  |

## 2.3 Capacità di Produzione e Trattamento delle Sostanze in Ingresso ed Uscita

| Nome                           | Lavorato 2005 (ton / anno) |
|--------------------------------|----------------------------|
| Gasolio da Visbreaking/Topping | 1997529                    |

## Prodotti / semilavorati in uscita

| Nome                 | Lavorato 2005 (ton / anno) |
|----------------------|----------------------------|
| Gasolio Desolforato  | 1966670                    |
| Benzina semilavorata | 24497                      |
| Fuel Gas             | 26008                      |

Capacità di progetto: 6.120 t/g (di gasolio)

## 2.4 Schema di processo semplificato

In allegato si riporta lo schema di processo semplificato



| CLIENTE:<br>PROGETTO: | ERG MED ADEGUAMENTO BAT pro IPPC |  |
|-----------------------|----------------------------------|--|
| N° Progetto A621      | Rev.                             |  |

## 2.5 Confronto consumi specifici con IPPC-Chapter 3-Emission and consumption level

L'unità di desolforazione gasolio 200 A è progettata per trattare una capacità massima di 2234000 ton/anno.di gasolio al fine di ridurre il contenuto di zolfo sino a 10 ppm. L'unità è alimentata con il gasolio proveniente dall'impianto di topping e dall'impianto di Visbreaking. Per quanto riguarda i consumi per l'unità di desolforazione gasolio, la seguente tabella confronta quanto riportato nel Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries (paragrafo 3.13 –Hydrogen consuming processes - distillate processed) con quanto ottenuto operativamente nell'unità di desolforazione gasolio 200 A.

|                                              | IPCC    | HDS G.O. U-200 A |
|----------------------------------------------|---------|------------------|
| Kg H2 per ton of feed                        | 1-15    | 5.2              |
| Fuel MJ/ton                                  | 300-500 | 178              |
| Electricity kwh/t                            | 10-20   | 5.3              |
| Steam consumed (kg/ton)                      | 60-150  | 11               |
| Cooling water (m3/t $\Delta T=10^{\circ}$ C) | 2-3     | 0.37             |
| Wash water (kg/ton)                          | 30-40   | 0                |



| CLIENTE:         | ERG MED                  |  |
|------------------|--------------------------|--|
| PROGETTO:        | ADEGUAMENTO BAT pro IPPC |  |
| N° Progetto A621 | Rev.                     |  |

#### 2.6 Stato di applicazione delle BAT competenti

Le BAT relative alle unità che consumano idrogeno sono riportate nel punto 13 del paragrafo 5.2 del Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.

Nel prospetto di seguito riportato viene mostrato lo stato di applicazione delle BAT citate con riferimento all'assetto della raffineria ISAB SUD.

Nel prospetto, per semplicità e per rendere più facile il confronto, ove indicato nello stesso paragrafo 5.2 delle IPPC, viene riportato il riferimento alla tecnica presente nel capitolo 4 della stessa Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.

Dall'analisi del prospetto si evince che la raffineria adotta per l'unità in oggetto un insieme di tecniche in linea con le migliori disponibili al momento.



| CLIENTE:    | ERG MED                  |  |
|-------------|--------------------------|--|
| PROGETTO:   | ADEGUAMENTO BAT pro IPPC |  |
| N° Progetto | Rev.                     |  |
| A621        | 0                        |  |

| TECN.            | INDICAZIONE                                                                                                                                                                                                                     | STATO              | COMMENTO                                                                                                                                                                                                                                                                                                     | NOTE |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 4.13.6           | Progettare e modificare ove possibile l'unità di hydrocracker (sezione reazione e frazionamento) con sistema ad elevata integrazione termica applicando analisi di ottimizzazione energetica e sistemi di separazione a 4 stadi | Non<br>applicabile | L'unità 200 A non è un hydrocracker, ma una Unità di desolforazione con idrogeno. I recuperi termici sono stati massimizzati sia con recuperi interni all'unità sia con recuperi esterni                                                                                                                     |      |
| 4.13.1,2,6,7     | Utilizzare il recupero termico da correnti di processo ad alta temperatura in WHB e il recupero energetico nelle unità ad alta pressione.(letting down liquid)                                                                  | Non<br>applicabile | L'unità 200 A lavora ad una Pressione pari a circa 40 kg/cm2g all' ingresso reattore. Il recupero di potenza per riduzione di pressione del liquido non è giustificato in termini di investimento/benefici sia nel sistema di lavaggio MDEA sia nell'espansione del gasolio dal separatore ad alta pressione |      |
| 4.23.5.1         | Inviare gli off gas che<br>contengono H2S al<br>sistema ammine e<br>recupero zolfo                                                                                                                                              | Applicata          | I gas acidi vengono assorbiti<br>con una soluzione di MDEA                                                                                                                                                                                                                                                   |      |
| 4.24.1<br>4.15.6 | Inviare le acque acide<br>contenenti H2S e<br>NH3all'appropiato<br>trattamento                                                                                                                                                  | Applicata          | Le acque acide vengono inviate ad un sistema centralizzato di strippaggio                                                                                                                                                                                                                                    |      |
| 4.13.4           | Utilizzare il rimpiazzo<br>del catalizzatore on<br>stream per cariche ad<br>alto contenuto di<br>metalli                                                                                                                        | Non<br>applicabile | Le cariche all'impianto hanno<br>un basso contenuto di metalli                                                                                                                                                                                                                                               |      |
| 4.25.3           | Promuovere opzioni<br>per la rigenerazione<br>del catalizzatore in<br>accordo con il<br>fornitore stesso                                                                                                                        | Applicata          | Il catalizzatore quando<br>esaurito viene sostituito e<br>viene rigenerato off-site da<br>società specializzate                                                                                                                                                                                              |      |

## 2.6.1 Allegati

Schema di processo



| CLIENTE:<br>PROGETTO:   | ERG MED ADEGUAMENTO BAT pro IPPC |  |
|-------------------------|----------------------------------|--|
| N° Progetto <b>A621</b> | Rev.                             |  |

#### 3 UNITA' 200 DESOLFORAZIONE NAFTA

#### 3.1 Organizzazione

La gestione dell'unità è affidata alla funzione

GEST 1

#### 3.2 Descrizione del Processo

L'impianto di desolforazione della Virgin Nafta svolge la funzione di ridurre, mediante un processo catalitico di idrogenazione selettiva, lo zolfo contenuto nella frazione di nafta prodotta dall'impianto Topping.

La carica, in presenza di un gas ricco di idrogeno (Treat Gas) proveniente dall'impianto Powerformer, è fatta passare alla temperatura di reazione attraverso due reattori in serie, all'interno dei quali avvengono le reazioni di desolforazione.

Il prodotto liquido desolforato è successivamente sottoposto a deetanizzazione, debutanizzazione e splitaggio nei tagli Virgin Nafta Leggera, Virgin Nafta Media, Virgin Nafta Pesante.

È prevista una sezione dedicata al lavaggio del GPL prodotto dalla debutananizzatrice con soluzione amminica di MDEA, allo scopo di rimuovere l'idrogeno solforato.

Per ulteriori dettagli si rimanda al manuale operativo dell'unità.



| CLIENTE:    | ERG MED  |                   |
|-------------|----------|-------------------|
| PROGETTO:   | ADEGUAMI | ENTO BAT pro IPPC |
| N° Progetto | Rev.     |                   |
| A621        | 0        |                   |

## 3.3 Capacità di Produzione e Trattamento delle Sostanze in Ingresso ed Uscita

## Carica

| Nome            | Lavorato 2005 (ton / anno) |
|-----------------|----------------------------|
| Nafta di carica | 2400942                    |

## Prodotti / semilavorati in uscita

| Nome                                   | Lavorato 2005 (ton / anno) |
|----------------------------------------|----------------------------|
| Benzina Stabilizzata (carica Splitter) | 2174194                    |
| GPL                                    | 241392                     |
| Fuel Gas                               | 78288                      |

Capacità di progetto: 7.430 t/g (di nafta)

## 3.4 Schema di processo semplificato

In allegato si riporta lo schema di processo semplificato



| CLIENTE:<br>PROGETTO: | ERG MED<br>ADEGUAMI | ENTO BAT pro IPPC |
|-----------------------|---------------------|-------------------|
| N° Progetto A621      | Rev.                |                   |

## 3.5 Confronto consumi specifici con IPPC-Chapter 3-Emission and consumption level

L'unità di desolforazione nafta 200 è progettata per trattare una capacità massima di 2.712.000 ton/anno di nafta. L'unità è alimentata principalmente con la nafta proveniente dall'impianto di topping. Per quanto riguarda i consumi per l'unità di desolforazione nafta, la seguente tabella confronta quanto riportato nel Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries (paragrafo 3.13 –Hydrogen consuming processes – Naphta Processed) con quanto ottenuto operativamente nell'unità di desolforazione nafta 200.

|                                              | IPCC    | HDS NAFTA U-200 |
|----------------------------------------------|---------|-----------------|
| Kg H2 per ton of feed                        | 1-15    | 1.3             |
| Fuel MJ/ton                                  | 200-350 | 237             |
| Electricity kwh/t                            | 5-10    | 2.6             |
| Steam consumed (kg/ton)                      | 10-60   | 5 (1)           |
| Cooling water (m3/t $\Delta T=10^{\circ}$ C) | 2-3     | 8.83            |
| Wash water (kg/ton)                          | 40-50   | 0               |

Nota (1): L'unità produce vapore a bassa pressione per 19 kg/ton feed, consuma vapore ad alta pressione per 24 kg/ton feed.



| CLIENTE:<br>PROGETTO: | ERG MED ADEGUAMI | ENTO BAT pro IPPC |
|-----------------------|------------------|-------------------|
| N° Progetto A621      | Rev.             |                   |

#### 3.6 Stato di applicazione delle BAT competenti

Le BAT relative alle unità che consumano idrogeno sono riportate nel punto 13 del paragrafo 5.2 del Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.

Nel prospetto di seguito riportato viene mostrato lo stato di applicazione delle BAT citate con riferimento all'assetto della raffineria ISAB SUD.

Nel prospetto, per semplicità e per rendere più facile il confronto, ove indicato nello stesso paragrafo 5.2 delle IPPC, viene riportato il riferimento alla tecnica presente nel capitolo 4 della stessa Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.

Dall'analisi del prospetto si evince che la raffineria adotta per l'unità in oggetto un insieme di tecniche in linea con le migliori disponibili al momento.



| CLIENTE:    | ERG MED                  |  |
|-------------|--------------------------|--|
| PROGETTO:   | ADEGUAMENTO BAT pro IPPC |  |
| N° Progetto | Rev.                     |  |
| A621        | 0                        |  |

| TECN.            | INDICAZIONE                                                                                                                                                                                                                      | STATO              | COMMENTO                                                                                                                                                                                                                                                                                                     | NOTE |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 4.13.6           | Progettare e modificare ove possibile l'unità di hydro-cracker (sezione reazione e frazionamento) con sistema ad elevata integrazione termica applicando analisi di ottimizzazione energetica e sistemi di separazione a 4 stadi | Non<br>applicabile | L'unità 200 non è un hydrocracking, ma una Unità di desolforazione con idrogeno.  I recuperi termici sono stati massimizzati sia con recuperi interni all'unità sia con recuperi esterni                                                                                                                     | NOIE |
| 4.13.1,2,6,7     | Utilizzare il recupero termico da correnti di processo ad alta temperatura in WHB e il recupero energetico nelle unità ad alta pressione (letting down liquid)                                                                   | Non<br>applicabile | L'unità 200 lavora ad una pressione pari a circa 40 kg/cm2(g) nella sezione di reazione.  Il recupero di potenza per riduzione di pressione del liquido non è giustificato in termini di investimento/benefici sia nel sistema di lavaggio amminico, sia nell'espansione della nafta di carica Deetanatrice. |      |
| 4.23.5.1         | Inviare gli off gas che<br>contengono H2S al<br>sistema ammine e<br>recupero zolfo                                                                                                                                               | Applicata          | I gas acidi vengono lavati con una soluzione MDEA.                                                                                                                                                                                                                                                           |      |
| 4.24.1<br>4.15.6 | Inviare le acque acide<br>contenenti H2S e NH3<br>all'appropriato<br>trattamento                                                                                                                                                 | Applicata          | Le acque acide vengono inviate ad un sistema centralizzato di strippaggio.                                                                                                                                                                                                                                   |      |
| 4.13.4           | Utilizzare il rimpiazzo<br>del catalizzatore on<br>stream per cariche ad<br>alto contenuto di<br>metalli                                                                                                                         | Non<br>applicabile | Le cariche all'impianto hanno un basso contenuto di metalli.                                                                                                                                                                                                                                                 |      |
| 4.25.3           | Promuovere opzioni<br>per la rigenerazione<br>del catalizzatore in<br>accordo con il<br>fornitore stesso                                                                                                                         | Applicata          | Il catalizzatore, quando esaurito, viene sostituito e rigenerato off-site da società specializzate.                                                                                                                                                                                                          |      |

## 3.6.1 Allegati

Schema di processo



| CLIENTE:<br>PROGETTO:      | ERG MED ADEGUAMENTO BAT pro IPPC |  |
|----------------------------|----------------------------------|--|
| N° Progetto<br><b>A621</b> | Rev.                             |  |

## 4 <u>UNITA' 300 DESOLFORAZIONE KEROSENE</u>

#### 4.1 Organizzazione

La gestione dell'unità è affidata alla funzione

GEST 1

#### 4.2 Descrizione del Processo

L'impianto ha il compito di desolforare il kerosene (KEL + KEP) proveniente dal Topping, tramite un'azione di idrogenazione catalitica in presenza di idrogeno in operazione "ONE THROUGH".

L'effluente reattore viene raffreddato ed inviato ad una coppia di separatori (caldo/freddo) dove il gas viene separato da liquido.

Il liquido viene inviato in un stripper e successivamente a stoccaggio.

Il gas ricco in H<sub>2</sub> viene inviato in un successivo lavaggio amminico e successivamente immesso nel circuito idrogeno di Raffineria. Per ulteriori dettagli si rimanda al manuale operativo dell'unità



| CLIENTE:    | ERG MED  |                   |
|-------------|----------|-------------------|
| PROGETTO:   | ADEGUAMI | ENTO BAT pro IPPC |
| N° Progetto | Rev.     |                   |
| A621        | 0        |                   |

## 4.3 Capacità di Produzione e Trattamento delle Sostanze in Ingresso ed Uscita

## Carica

| Nome                | Lavorato 2005 (ton / anno) |
|---------------------|----------------------------|
| Kerosene da Topping | 1019068                    |

## Prodotti / semilavorati in uscita

| Nome                 | Lavorato 2005 (ton / anno) |
|----------------------|----------------------------|
| Kerosene desolforato | 965721                     |
| Benzina semilavorata | 62427                      |
| Fuel-Gas             | 6598                       |

Capacità di progetto: 4416 t/g (di kerosene)

## 4.4 Schema di processo semplificato

In allegato si riporta lo schema di processo semplificato



| CLIENTE:<br>PROGETTO:      | ERG MED<br>ADEGUAMI | ENTO BAT pro IPPC |
|----------------------------|---------------------|-------------------|
| N° Progetto<br><b>A621</b> | Rev.                |                   |

## 4.5 Confronto consumi specifici con IPPC-Chapter 3-Emission and consumption level

L'unità di desolforazione kerosene 300 è progettata per trattare una capacità massima di 1.600.000 ton/anno di kerosene. L'unità è alimentata con il kerosene proveniente dall'impianto di topping .Per quanto riguarda i consumi per l'unità di desolforazione kerosene, la seguente tabella confronta quanto riportato nel Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries (paragrafo 3.13 –Hydrogen consuming processes – Distillate Processed) con quanto ottenuto operativamente nell'unità di desolforazione kerosene 300

|                                      | IPPC    | HDS KERO U-300 |
|--------------------------------------|---------|----------------|
| Kg H2 per ton of feed                | 1-15    | 1              |
| Fuel MJ/ton                          | 300-500 | 277            |
| Electricity kwh/t                    | 10-20   | 2.7            |
| Steam consumed (kg/ton)              | 60-150  | 22             |
| Cooling water (m3/t $\Delta$ T=10°C) | 2-3     | 1.43           |
| Wash water (kg/ton)                  | 30-40   | 0              |



| CLIENTE:         | ERG MED  |                   |
|------------------|----------|-------------------|
| PROGETTO:        | ADEGUAMI | ENTO BAT pro IPPC |
| N° Progetto A621 | Rev.     |                   |

#### 4.6 Stato di applicazione delle BAT competenti

Le BAT relative alle unità che consumano idrogeno sono riportate nel punto 13 del paragrafo 5.2 del Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.

Nel prospetto di seguito riportato viene mostrato lo stato di applicazione delle BAT citate con riferimento all'assetto della raffineria ISAB SUD.

Nel prospetto, per semplicità e per rendere più facile il confronto, ove indicato nello stesso paragrafo 5.2 delle IPPC, viene riportato il riferimento alla tecnica presente nel capitolo 4 della stessa Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.

Dall'analisi del prospetto si evince che la raffineria adotta per l'unità in oggetto un insieme di tecniche in linea con le migliori disponibili al momento.



| CLIENTE:    | ERG MED  |                   |
|-------------|----------|-------------------|
| PROGETTO:   | ADEGUAMI | ENTO BAT pro IPPC |
| N° Progetto | Rev.     |                   |
| A621        | 0        |                   |

| TECN.            | INDICAZIONE                                                                                                                                                                                                                      | STATO              | COMMENTO                                                                                                                                                                                                                                                                                                            | NOTE |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 4.13.6           | Progettare e modificare ove possibile l'unità di hydro-cracker (sezione reazione e frazionamento) con sistema ad elevata integrazione termica applicando analisi di ottimizzazione energetica e sistemi di separazione a 4 stadi | Non<br>applicabile | L'unità 300 non è un hydrocracking, ma una Unità di desolforazione con idrogeno  I recuperi termici sono stati massimizzati sia con recuperi interni all'unità sia con recuperi esterni                                                                                                                             | HOLE |
| 4.13.1,2, 6,7    | Utilizzare il recupero termico da correnti di processo ad alta temperatura in WHB e il recupero energetico nelle unità ad alta pressione (letting down liquid)                                                                   | Non<br>Applicabile | L'unità 300 lavora ad una pressione pari a circa 30 kg/cm2(g) nella sezione di reazione.  Il recupero di potenza per riduzione di pressione del liquido non è giustificato in termini di investimento/benefici sia nel sistema di lavaggio MDEA, che nell'espansione del kerosene tra separatore freddo e stripper. |      |
| 4.23.5.1         | Inviare gli off gas che<br>contengono H2S al<br>sistema ammine e<br>recupero zolfo                                                                                                                                               | Applicata          | I gas acidi vengono assorbiti con una soluzione MDEA.                                                                                                                                                                                                                                                               |      |
| 4.24.1<br>4.15.6 | Inviare le acque acide<br>contenenti H2S e NH3<br>all'appropriato<br>trattamento                                                                                                                                                 | Applicata          | Le acque acide vengono inviate ad un sistema centralizzato di strippaggio.                                                                                                                                                                                                                                          |      |
| 4.13.4           | Utilizzare il rimpiazzo<br>del catalizzatore on<br>stream per cariche ad<br>alto contenuto di<br>metalli                                                                                                                         | Non<br>applicabile | Le cariche all'impianto hanno un basso contenuto di metalli.                                                                                                                                                                                                                                                        |      |
| 4.25.3           | Promuovere opzioni<br>per la rigenerazione<br>del catalizzatore in<br>accordo con il<br>fornitore stesso                                                                                                                         | Applicata          | Il catalizzatore, quando esaurito, viene sostituito e rigenerato off-site da società specializzate.                                                                                                                                                                                                                 |      |

## 4.6.1 Allegati

Schema di processo



| CLIENTE:    | ERG MED  |                   |
|-------------|----------|-------------------|
| PROGETTO:   | ADEGUAMI | ENTO BAT pro IPPC |
| N° Progetto | Rev.     |                   |
| A621        | 0        |                   |

## 5 <u>UNITA' 400 DESOLFORAZIONE GASOLIO</u>

#### 5.1 Organizzazione

La gestione dell'unità è affidata alla funzione

GEST 1

#### 5.2 Descrizione del Processo

L'impianto ha il compito di desolforare il gasolio medio + gasolio pesante + testa vacuum tramite un'azione di idrogenazione catalitica in presenza di idrogeno in operazione "ONE THROUGH".

L'effluente reattore viene raffreddato ed inviato ad una coppia di separatori (caldo/freddo) dove il gas viene separato da liquido.

Il liquido viene inviato in un stripper e successivamente a stoccaggio.

Il gas ricco in H<sub>2</sub> viene inviato in un successivo lavaggio amminico e successivamente immesso nel circuito idrogeno di Raffineria. Per ulteriori dettagli si rimanda al manuale operativo dell'unità



| CLIENTE:         | ERG MED  |                   |
|------------------|----------|-------------------|
| PROGETTO:        | ADEGUAMI | ENTO BAT pro IPPC |
| N° Progetto A621 | Rev.     |                   |

## 5.3 Capacità di Produzione e Trattamento delle Sostanze in Ingresso ed Uscita

## Carica

| Nome               | Lavorato 2005 (ton / anno) |
|--------------------|----------------------------|
| Gasolio da Topping | 1004236                    |

## Prodotti / semilavorati in uscita

| Nome                 | Lavorato 2005 (ton / anno) |
|----------------------|----------------------------|
| Gasolio Desolforato  | 934215                     |
| Benzina semilavorata | 56086                      |
| Fuel-gas             | 3680                       |

Capacità di progetto: 3.870 t/g (di gasolio da topping)

## 5.4 Schema di processo semplificato

In allegato si riporta lo schema di processo semplificato



| CLIENTE:<br>PROGETTO:      | ERG MED ADEGUAMENTO BAT pro IP |  |
|----------------------------|--------------------------------|--|
| N° Progetto<br><b>A621</b> | Rev.                           |  |

## 5.5 Confronto consumi specifici con IPPC-Chapter 3-Emission and consumption level

L'unità di desolforazione gasolio 400 è progettata per trattare una capacità massima di 1.412.000 ton/anno.di gasolio al fine di ridurre il contenuto di zolfo sino a 200 ppm. L'unità è alimentata principalmente con il gasolio proveniente dall'impianto di distillazione atmosferica e vuoto. Per quanto riguarda i consumi per l'unità di desolforazione gasolio, la seguente tabella confronta quanto riportato nel Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries (paragrafo 3.13 –Hydrogen consuming processes distillate processed) con quanto ottenuto operativamente nell'unità di desolforazione gasolio 400

|                                              | IPPC    | HDS G.O. U-400 |
|----------------------------------------------|---------|----------------|
| Kg H2 per ton of feed                        | 1-15    | 5              |
| Fuel MJ/ton                                  | 300-500 | 326            |
| Electricity kwh/t                            | 10-20   | 18             |
| Steam consumed (kg/ton)                      | 60-150  | 19             |
| Cooling water (m3/t $\Delta T=10^{\circ}$ C) | 2-3     | 2.2            |
| Wash water (kg/ton)                          | 30-40   | 14             |



| CLIENTE:<br>PROGETTO: | ERG MED ADEGUAMENTO BAT pro IPPC |  |
|-----------------------|----------------------------------|--|
| N° Progetto A621      | Rev.                             |  |

#### 5.6 Stato di applicazione delle BAT competenti

Le BAT relative alle unità che consumano idrogeno sono riportate nel punto 13 del paragrafo 5.2 del Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.

Nel prospetto di seguito riportato viene mostrato lo stato di applicazione delle BAT citate con riferimento all'assetto della raffineria ISAB SUD.

Nel prospetto, per semplicità e per rendere più facile il confronto, ove indicato nello stesso paragrafo 5.2 delle IPPC, viene riportato il riferimento alla tecnica presente nel capitolo 4 della stessa Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.

Dall'analisi del prospetto si evince che la raffineria adotta per l'unità in oggetto un insieme di tecniche in linea con le migliori disponibili al momento.



| CLIENTE:    | ERG MED  |                   |
|-------------|----------|-------------------|
| PROGETTO:   | ADEGUAMI | ENTO BAT pro IPPC |
| N° Progetto | Rev.     |                   |
| A621        | 0        |                   |

| TECN.            | INDICAZIONE                                                                                                                                                                                               | STATO              | COMMENTO                                                                                                                                                                                                                                                                                                       | NOTE |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| TECN. 4.13.6     | Progettare e modificare ove possibile l'unità di hydrocracker (sezione reazione e frazionamento) con sistema ad elevata integrazione termica applicando analisi di ottimizzazione energetica e sistemi di | Non applicabile    | COMMENTO  L'unità 400 non è un hydrocracking, ma una unità di desolforazione con idrogeno. I recuperi termici sono stati massimizzati sia con recuperi interni all'unità sia con recuperi esterni                                                                                                              | NOTE |
| 4.13.1,2, 6,7    | separazione a 4 stadi Utilizzare il recupero termico da correnti di processo ad alta temperatura in WHB e il recupero energetico nelle unità ad alta pressione.(letting down liquid)                      | Non<br>applicabile | L'unità 400 lavora ad una Pressione pari a circa 22 kg/cm2g all' ingresso reattore. Il recupero di potenza per riduzione di pressione del liquido non è giustificato in termini di investimento/benefici sia nel sistema di lavaggio amminico sia nell'espansione del gasolio dal separatore ad alta pressione |      |
| 4.23.5.1         | Inviare gli off gas che<br>contengono H2S al<br>sistema ammine e<br>recupero zolfo                                                                                                                        | Applicata          | I gas acidi vengono assorbiti<br>con una soluzione amminica                                                                                                                                                                                                                                                    |      |
| 4.24.1<br>4.15.6 | Inviare le acque acide<br>contenenti H2S e<br>NH3all'appropiato<br>trattamento                                                                                                                            | Applicata          | Le acque acide vengono inviate ad un sistema centralizzato di strippaggio                                                                                                                                                                                                                                      |      |
| 4.13.4           | Utilizzare il rimpiazzo<br>del catalizzatore on<br>stream per cariche ad<br>alto contenuto di<br>metalli                                                                                                  | Non<br>applicabile | Le cariche all'impianto hanno<br>un basso contenuto di metalli                                                                                                                                                                                                                                                 |      |
| 4.25.3           | Promuovere opzioni<br>per la rigenerazione<br>del catalizzatore in<br>accordo con il<br>fornitore stesso                                                                                                  | Applicata          | Il catalizzatore quando<br>esaurito viene sostituito e<br>viene rigenerato off-site da<br>società specializzate                                                                                                                                                                                                |      |

## 5.6.1 Allegati

Schema di processo



#### Unità 500 Powerformer

| CLIENTE:         | ERG MED                  |  |
|------------------|--------------------------|--|
| PROGETTO:        | ADEGUAMENTO BAT pro IPPC |  |
| N° Progetto A621 | Rev.                     |  |

## 6 <u>UNITA' 500 POWERFORMER</u>

#### 6.1 Organizzazione

La gestione dell'unità è affidata alla funzione

GEST 1

#### 6.2 Descrizione del Processo

L'impianto di Reforming è del tipo a rigenerazione continua. L'impianto è attraversato con la benzina pesante desolforata proveniente

dall'Unità 200 e produce i seguenti prodotti principali:

- Fuel Gas
- H<sub>2</sub>
- GPL
- Benzina reformata

Per ulteriori dettagli si rimanda al manuale operativo dell'unità.



#### Unità 500 Powerformer

| CLIENTE:    | ERG MED                 |  |
|-------------|-------------------------|--|
| PROGETTO:   | ADEGUAMENTO BAT pro IPP |  |
| N° Progetto | Rev.                    |  |
| A621        | 0                       |  |

## 6.3 Capacità di Produzione e Trattamento delle Sostanze in Ingresso ed Uscita

## Carica

| Nome                        | Lavorato 2005 (ton / anno) |
|-----------------------------|----------------------------|
| Benzina pesante desolforata | 1534087                    |

## Prodotti / semilavorati in uscita

| Nome                      | Lavorato 2005 (ton / anno) |
|---------------------------|----------------------------|
| Fuel Gas                  | 14152                      |
| GPL                       | 36987                      |
| Benzina reformata         | 1309197                    |
| Gas a rete H <sub>2</sub> | 173753                     |

Capacità di progetto: 4860 t/g (di benzina pesante desolforata)

## 6.4 Schema di processo semplificato

In allegato si riporta lo schema di processo semplificato



#### Unità 500 Powerformer

| CLIENTE:         | ERG MED             |  |
|------------------|---------------------|--|
| PROGETTO:        | ADEGUAMENTO BAT pro |  |
| N° Progetto A621 | Rev.                |  |

## 6.5 Confronto consumi specifici con IPPC-Chapter 3-Emission and consumption level

L'unità di Powerforming 500 è una unità di tipo ciclico, progettata per trattare una capacità massima di 1773900 ton/anno.di benzina pesante desolforata proveniente dallo splitter benzina al fine di aumentarne il RON. Per quanto riguarda i consumi per l'unità di powerformer, la seguente tabella confronta quanto riportato nel Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries (paragrafo 3.6 –Catalytic Reforming -) con quanto ottenuto operativamente nell'unità di powerformer 5000

|                      | IPPC (1)  |                   | Unità 500 |
|----------------------|-----------|-------------------|-----------|
|                      | Reforming | Semi-Regenerative |           |
|                      |           | process           |           |
| Fuel MJ/ton          | 1400-2900 | 71.5 t/kt         | 2524      |
| Electricity kwh/t    | 25-50     | 55                | 28        |
| H.P. Steam generated | 50-90     | 64-90             | 52        |
| (kg/ton)             |           |                   |           |
| Cooling water (m3/t  | 1-3       | 0.12-3            | 19.4      |
| ΔT=10°C)             |           |                   |           |

Nota 1: La prima colonna indica i range applicabili per tutte le tipologie di reforming



## Unità 500 Powerformer

| CLIENTE:         | ERG MED  |                   |
|------------------|----------|-------------------|
| PROGETTO:        | ADEGUAMI | ENTO BAT pro IPPC |
| N° Progetto A621 | Rev.     |                   |

## 6.6 Stato di applicazione delle BAT competenti

Le BAT relative alle unità di reforming catalitico sono riportate nel punto 6 del paragrafo 5.2 del Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.

Nel prospetto di seguito riportato viene mostrato lo stato di applicazione delle BAT citate con riferimento all'assetto della raffineria ISAB SUD.

Nel prospetto, per semplicità e per rendere più facile il confronto, ove indicato nello stesso paragrafo 5.2 delle IPPC, viene riportato il riferimento alla tecnica presente nel capitolo 4 della stessa Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.



# Unità 500 Powerformer

| CLIENTE:    | ERG MED  |                   |
|-------------|----------|-------------------|
| PROGETTO:   | ADEGUAMI | ENTO BAT pro IPPC |
| N° Progetto | Rev.     |                   |
| A621        | 0        |                   |

| TECN. | INDICAZIONE                                                                                                                                                                            | STATO            | COMMENTO                                                                                                                                                                                        | NOTE                                                                                              |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| 4.6.2 | Integrazione termica<br>dell'unità utilizzando<br>scambiatori carica<br>effluente                                                                                                      | Applicata        | Installati scambiatori carica effluente per migliorare il recupero termico                                                                                                                      |                                                                                                   |
| 4.6.3 | Ottimizzare l'utilizzo<br>di sostanze clorurate<br>per l'attivazione del<br>catalizzatore                                                                                              | Applicata        | Per l'attivazione del catalizzatore viene usato percloroetilene L'uso del chemical è ottimizzato ed avviene in circuito chiuso minimizzando i rilasci all'atmosfera e la formazione di diossina | È prevista l'installazione di un analizzatore in linea sul gas per monitorare il contenuto di HCl |
| 4.6.4 | Inviare il gas prodotto<br>durante la<br>rigenerazione del<br>catalizzatore ad uno<br>scrubber                                                                                         | Non<br>Applicata | Non è previsto lo scrubber sui gas di rigenerazione                                                                                                                                             |                                                                                                   |
| 4.6.5 | Installare un precipitatore elettrostatico per trattare il gas prodotto durante la rigenerazione del catalizzatore al fine di minimizzare il trascinamento di polveri di catalizzatore | Non<br>Applicata | Non è previsto il precipitare elettrostatico sui gas di rigenerazione                                                                                                                           |                                                                                                   |
| 4.6.6 | Quantificare le<br>emissioni di diossina a<br>fronte della<br>rigenerazione del<br>catalizzatore                                                                                       | Non<br>Applicata |                                                                                                                                                                                                 |                                                                                                   |

| 6.6.1 | Allegati |
|-------|----------|
|-------|----------|

Schema di processo



| CLIENTE:    | ERG MED  |                   |
|-------------|----------|-------------------|
| PROGETTO:   | ADEGUAMI | ENTO BAT pro IPPC |
| N° Progetto | Rev.     |                   |
| A621        | 0        |                   |

# 7 <u>UNITA' 600 DISTILLAZIONE SOTTO VUOTO</u>

#### 7.1 Organizzazione

La gestione dell'unità è affidata alla funzione

GEST 1

#### 7.2 Descrizione del Processo

Lo scopo dell'impianto è quello di estrarre dei gasoli ad alto punto di ebollizione dal residuo atmosferico. Per fare ciò l'impianto distilla in condizioni di vuoto spinto in modo da evitare temperature troppo elevate che potrebbero generare fenomeni di cracking.

La carica preriscaldata, passa al forno e quindi alla colonna di distillazione sotto vuoto (vacuum), che produce:

- Gasolio di testa vacuum
- Gasolio da vuoto leggero (LVGO)
- Gasolio da vuoto pesante (HVGO)
- Residuo vuoto

Il prodotto di testa segue il corso del gasolio pesante da topping. I tagli laterali (LVGO + HVGO) vanno in carica all'impianto Gofiner (U700) dove vengono desolforati. Il prodotto di fondo colonna costituisce la carica all'impianto Visbreaking.

Per ulteriori dettagli si rimanda al manuale operativo dell'unità.



| CLIENTE:         | ERG MED  |                   |
|------------------|----------|-------------------|
| PROGETTO:        | ADEGUAMI | ENTO BAT pro IPPC |
| N° Progetto A621 | Rev.     |                   |

# 7.3 Capacità di Produzione e Trattamento delle Sostanze in Ingresso ed Uscita

# Carica

| Nome                        | Lavorato 2005 (ton / anno) |
|-----------------------------|----------------------------|
| Residuo atmosferico         | 6068248                    |
| Gasolio pesante atmosferico | 192109                     |

# Prodotti / semilavorati in uscita

| Nome                               | Lavorato 2005 (ton / anno) |  |
|------------------------------------|----------------------------|--|
| Residuo da Vuoto                   | 2559776                    |  |
| Gasolio Pesante / Leggero da vuoto | 3242507                    |  |
| Gas di testa                       | 5576                       |  |
| Distillato testa vuoto             | 452498                     |  |

Capacità di progetto: 18200 t/g (di residuo da topping)

# 7.4 Schema di processo semplificato

In allegato si riporta lo schema di processo semplificato



| CLIENTE:<br>PROGETTO: | ERG MED ADEGUAMENTO BAT pro IPPC |  |
|-----------------------|----------------------------------|--|
| N° Progetto A621      | Rev.                             |  |

# 7.5 Confronto consumi specifici con IPPC-Chapter 3-Emission and consumption level

L'unità di distillazione sottovuoto è un'unità di tipo convenzionale progettata per trattare una capacità massima di 6640000 ton/anno di residuo da topping. Il recupero di calore viene massimizzato integrando l'unità con gli impianti 100 (topping), 700 (Gofiner), 900, 1600 (Visbreaking) al fine di contenere i consumi di combustibile e limitare i consumi di acqua di raffreddamento. Per quanto riguarda i consumi per l'unita di distillazione sottovuoto la seguente tabella confronta quanto riportato nel Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries (paragrafo 3.19 – consumption) con quanto ottenuto operativamente nell'unità di distillazione sottovuoto della raffineria ISAB SUD

|                                   | IPPC    | Distillazione sotto vuoto |
|-----------------------------------|---------|---------------------------|
| Fuel MJ/ton                       | 400-800 | 448                       |
| Electricity kwh/t                 | 1.5-4.5 | 3.3                       |
| Steam consumed (kg/ton)           | 20-60   | 0 (nota 1)                |
| Cooling water (m3/t H2O, ΔT=17°C) | 3-5     | 4.31                      |

Nota (1): globalmente l'unità produce vapore in quanto ne consuma 4 kg/t feed a bassa pressione e ne produce 35 kg/t feed a media pressione.



| CLIENTE:         | ERG MED  |                   |
|------------------|----------|-------------------|
| PROGETTO:        | ADEGUAMI | ENTO BAT pro IPPC |
| N° Progetto A621 | Rev.     |                   |

## 7.6 Stato di applicazione delle BAT competenti

Le BAT relative all'unità di distillazione sottovuoto sono riportate nel punto 19 del paragrafo 5.2 del Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.

Nel prospetto di seguito riportato viene mostrato lo stato di applicazione delle BAT citate con riferimento all'assetto della raffineria ISAB SUD.

Nel prospetto, per semplicità e per rendere più facile il confronto, ove indicato nello stesso paragrafo 5.2 delle IPPC, viene riportato il riferimento alla tecnica presente nel capitolo 4 della stessa Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.

Sulla base di quanto descritto nei paragrafi precedenti viene riportata una tabella in cui vengono paragonate le BAT citate nel Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries per l'unità di distillazione sotto vuoto.



CLIENTE: ERG MED
PROGETTO: ADEGUAMENTO BAT pro IPPC

N° Progetto Rev.
A621 0

| TECN.                                                               | INDICAZIONE                                                                                                                                            | STATO              | COMMENTO                                                                                                                                                                                                                                                                                                                                             | NOTE |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 4.19.1                                                              | Unità basata sulla<br>tecnologia della<br>distillazione<br>progressiva                                                                                 | Non<br>Applicabile | Applicabile alla distillazione primaria (topping).                                                                                                                                                                                                                                                                                                   |      |
| 4.19.3 Integrazione termica dell'Unità di distillazione sotto vuoto |                                                                                                                                                        | Applicata          | L'unità è integrata termicamente con i seguenti impianti: 100-Topping 200-HDT nafta 700-Gofiner (cariche calde) 1600A/1600  Inoltre calore viene utilizzato per la produzione di vapore.                                                                                                                                                             |      |
| 4.19.4                                                              | Massimizzare l'uso di<br>pompe da vuoto ad<br>anello liquido e di<br>condensatori a<br>superficie per la<br>sezione di testa delle<br>colonne da vuoto | Non<br>Applicabile | Il sistema di testa prevede un sistema a 3 eiettori in serie con precondensatore, intercondensatori e postcondensatore. Il vapore di compressione utilizzato è in parte auto-prodotto nell'unità stessa.  La scelta di utilizzare un sistema ad eiettori è il risultato di un'analisi di tipo tecnico-economica.                                     |      |
| 4.19.5                                                              | Riduzione della<br>pressione operativa di<br>testa colonna di<br>vacuum al di sotto di<br>20-25 mmHg                                                   |                    | La pressione di testa colonna è pari a 68 mm Hg per poter inserire il precondensatore e minimizzare il consumo di vapore agli eiettori.  La pressione di testa viene ottimizzata in automatico dagli operatori in funzione della effettiva temperatura dell'acqua di raffreddamento che condiziona la temperatura di condensazione nel condensatore. |      |



| CLIENTE:            | ERG MED                 |  |
|---------------------|-------------------------|--|
| PROGETTO:           | ADEGUAMENTO BAT pro IPP |  |
| N° Progetto<br>A621 | Rev.                    |  |
|                     |                         |  |

| TECN.  | INDICAZIONE                                                                   | STATO     | COMMENTO                                                                                                                   | NOTE |
|--------|-------------------------------------------------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------|------|
| 4.19.6 | Trattamento degli<br>incondensabili<br>provenienti dagli<br>ejettori da vuoto | Applicata | I gas incondensabili di testa<br>vuoto subiscono un lavaggio<br>amminico prima del loro invio<br>ai bruciatori             |      |
| 4.19.7 | Riutilizzo acque acide                                                        | Applicata | Le acque acide, raccolte nell'accumulatore di testa, vengono inviate al SWS e successivamente riutilizzate al dissalatore. |      |

# 7.6.1 Allegati

Schema di processo



| CLIENTE:            | ERG MED                 |  |
|---------------------|-------------------------|--|
| PROGETTO:           | ADEGUAMENTO BAT pro IPP |  |
| N° Progetto<br>A621 | Rev.                    |  |
|                     |                         |  |

# 8 <u>UNITA' 700/700 A GOFINER/SPLITTING GOFINATO</u>

#### 8.1 Organizzazione

La gestione dell'unità è affidata alla funzione

GEST 2

#### 8.2 Descrizione del Processo

L'impianto ha il compito di effettuare un duplice trattamento su una carica costituita da gasolio vuoto.

Il duplice trattamento consiste sia in un'azione di desolforazione, che in un'azione di "Mild Hydrocracking", effettuate entrambe in presenza di idrogeno su catalizzatore specifico.

L'impianto prevede una corrente di gas di riciclo opportunamente lavato in una colonna di assorbimento amminico.

L'effluente reattore viene gradualmente raffreddato ed inviato a tre separatori operanti a diverse temperature e pressioni.

Il gas ricco in idrogeno viene riciclato, il liquido viene alimentato ad un frazionatore dove si ottiene un gasolio da inviare a stoccaggio e un fondo desolforato da inviare allo splitting gofinato operante sotto vuoto.

Dallo splitting si ottengono dei distillati da vuoto, da inviare a stoccaggio, mentre il residuo si invia in carico Th/Cr oppure FCC.

Per ulteriori dettagli si rimanda al manuale operativo dell'unità.



| CLIENTE:    | ERG MED                  |  |
|-------------|--------------------------|--|
| PROGETTO:   | ADEGUAMENTO BAT pro IPPC |  |
| N° Progetto | Rev.                     |  |
| A621        | 0                        |  |

# 8.3 Capacità di Produzione e Trattamento delle Sostanze in Ingresso ed Uscita

# Carica

| Nome                    | Lavorato 2005 (ton / anno) |
|-------------------------|----------------------------|
| Gasolio da unità Vacuum | 3.258.171                  |

# Prodotti / semilavorati in uscita

| Nome                                   | Lavorato 2005 (ton / anno) |
|----------------------------------------|----------------------------|
| Gasolio Desolforato leggero            | 723105                     |
| Gasolio Desolforato pesante (gofinato) | 2197687                    |
| Benzina semilavorata                   | 242081                     |
| Off-gas                                | 61883                      |

Capacità di progetto: 9600 t/g (di gasolio da unità vuoto)

# 8.4 Schema di processo semplificato

In allegato si riporta lo schema di processo semplificato



| CLIENTE:<br>PROGETTO: | ERG MED<br>ADEGUAMI | ENTO BAT pro IPPC |  |
|-----------------------|---------------------|-------------------|--|
| N° Progetto A621      | Rev.                |                   |  |

# 8.5 Confronto consumi specifici con IPPC-Chapter 3-Emission and consumption level

L'unità di Gofiner è una unità di desolforazione gasoli progettata per trattare il gasolio leggero ed il gasolio pesante provenienti dall'unità vacuum.

Il Gofiner di ERG MED è suddiviso nell'unità 700 - Sezione di reazione e frazionamento – dove avviene la reazione di desolforazione lo strippaggio del gasolio desolforato ed il lavaggio off-gas con ammina e nell'unità 700 A - Splitting Gofinato – dove il gasolio desolforato proveniente dall'unità 700 viene frazionato in un'apposita colonna di distillazione in vuoto, in un taglio leggero ed in un taglio pesante

L'unità Gofiner è progettata nel suo insieme per trattare una capacità massima di 3504000 ton/anno.di gasolio . Per quanto riguarda i consumi per l'unita di desolforazione gasolio, la seguente tabella confronta quanto riportato nel Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries (paragrafo 3.13 –Hydrogen consuming processes distillate processed) con quanto ottenuto operativamente nell'unità di GOFINER

I valori riportati nella tabella seguente si riferiscono alla somma dei consumi delle unità 700 e 700-A

|                                      | IPCC    | Unità 700 e 700 A |
|--------------------------------------|---------|-------------------|
| Kg H2 per ton of feed                | 1-15    | 5                 |
| Fuel MJ/ton                          | 300-500 | 226               |
| Electricity kwh/t                    | 10-20   | 11.5              |
| Steam consumed (kg/ton)              | 60-150  | 0 (Nota 1)        |
| Cooling water (m3/t $\Delta$ T=10°C) | 2-3     | 3.13              |
| Wash water (kg/ton)                  | 30-40   | 16.0              |

Nota (1): globalmente l'unità produce vapore grazie a recuperi interni di calore nelle seguenti quantità: vapore a bassa pressione 7 kg/t alimentazione, vapore a media pressione 41 kg/t alimentazione



| CLIENTE:    | ERG MED                  |  |
|-------------|--------------------------|--|
| PROGETTO:   | ADEGUAMENTO BAT pro IPPC |  |
| N° Progetto | Rev.                     |  |
| A621        | 0                        |  |

## 8.6 Stato di applicazione delle BAT competenti

Le BAT relative alle unità che consumano idrogeno sono riportate nel punto 13 del paragrafo 5.2 del Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.

Per quanto concerne l'unità 700-A di splitting del gofinato non esistono BAT specifiche. Le BAT che più si avvicinano alla tipologia di unità in oggetto sono quelle riportate al punto 19 del paragrafo 5.2 Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries. e relative all'unità vacuum

Nel prospetto di seguito riportato viene mostrato lo stato di applicazione delle BAT citate con riferimento all'assetto della raffineria ISAB SUD.

Nel prospetto, per semplicità e per rendere più facile il confronto, ove indicato nello stesso paragrafo 5.2 delle IPPC, viene riportato il riferimento alla tecnica presente nel capitolo 4 della stessa Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.



CLIENTE: ERG MED
PROGETTO: ADEGUAMENTO BAT pro IPPC

N° Progetto Rev.
A621 0

# Unità 700 - Sezione di reazione e frazionamento

| TECN.            | INDICAZIONE                                                                                                                                                                                                                     | STATO              | COMMENTO                                                                                                                                                                                                                                                                                                          | NOTE                                                                                                                                                                                                |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.13.6           |                                                                                                                                                                                                                                 |                    |                                                                                                                                                                                                                                                                                                                   | L'unità 700 non                                                                                                                                                                                     |
| 4.13.6           | Progettare e modificare ove possibile l'unità di hydrocracker (sezione reazione e frazionamento) con sistema ad elevata integrazione termica applicando analisi di ottimizzazione energetica e sistemi di separazione a 4 stadi | Applicata          | L'Unità 700 può essere considerata equivalente ad un MILD HYDROCRACKING. L'unità prevede una serie di flash a temperatura variabile sull'effluente reattori, la cui gestione massimizza la carica entalpica al frazionatore, fruttando nel miglior modo possibile il calore di processo.                          | L'unità 700 non è un hydrocracking. I recuperi termici sono stati massimizzati sia con recuperi interni all'unità sia con recuperi esterni                                                          |
| 4.13.1,2,<br>6,7 | Utilizzare il recupero termico da correnti di processo ad alta temperatura in WHB e il recupero energetico nelle unità ad alta pressione.(letting down liquid)                                                                  | Applicata          | L'unità 700 lavora ad una Pressione pari a circa 50 kg/cm2g all' ingresso reattore.  Il recupero di potenza per riduzione di pressione del liquido non è giustificato in termini di investimento/benefici sia nel sistema di lavaggio amminico sia nell'espansione del gasolio dal separatore ad alta temperatura | Viene prodotto vapore in caldaie a recupero sfruttando il calore del gasolio pesante inviato a stoccaggio ed il calore di raffreddamento del pump-around della colonna di frazionamento unità 700-A |
| 4.23.5.1         | Inviare gli off gas che<br>contengono H2S al<br>sistema ammine e<br>recupero zolfo                                                                                                                                              | Applicata          | I gas acidi vengono lavati con una soluzione amminica                                                                                                                                                                                                                                                             |                                                                                                                                                                                                     |
| 4.24.1<br>4.15.6 | Inviare le acque acide<br>contenenti H2S e<br>NH3all'appropiato<br>trattamento                                                                                                                                                  | Applicata          | Le acque acide vengono inviate ad un sistema centralizzato di strippaggio                                                                                                                                                                                                                                         |                                                                                                                                                                                                     |
| 4.13.4           | Utilizzare il rimpiazzo<br>del catalizzatore on<br>stream per cariche ad<br>alto contenuto di<br>metalli                                                                                                                        | Non<br>applicabile | Le cariche all'impianto<br>hanno un basso contenuto di<br>metalli                                                                                                                                                                                                                                                 |                                                                                                                                                                                                     |
| 4.25.3           | Promuovere opzioni<br>per la rigenerazione<br>del catalizzatore in<br>accordo con il<br>fornitore stesso                                                                                                                        | Applicata          | Il catalizzatore quando<br>esaurito viene sostituito e<br>viene rigenerato off-site da<br>società specializzate                                                                                                                                                                                                   |                                                                                                                                                                                                     |



CLIENTE: ERG MED
PROGETTO: ADEGUAMENTO BAT pro IPPC

N° Progetto Rev.
A621 0

3.2 Unità 700 A - Splitting gofinato -

|        | TECN INDICAZIONE STATO COMMENTO NOTE                                                                                                                   |                    |                                                                                                                                                                                                                                                                                                                                                      | NOTE |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| TECN.  | INDICAZIONE                                                                                                                                            | STATO              | COMMENTO                                                                                                                                                                                                                                                                                                                                             | NOTE |
| 4.19.1 | Unità basata sulla<br>tecnologia della<br>distillazione<br>progressiva                                                                                 | Non<br>Applicabile | Applicabile alla distillazione primaria (topping).                                                                                                                                                                                                                                                                                                   |      |
| 4 19.3 | Integrazione termica<br>dell'Unità di<br>distillazione sotto<br>vuoto                                                                                  | Applicata          | Il calore dei prodotti caldi<br>viene utilizzato per la<br>produzione di vapore.                                                                                                                                                                                                                                                                     |      |
| 4.19.4 | Massimizzare l'uso di<br>pompe da vuoto ad<br>anello liquido e di<br>condensatori a<br>superficie per la<br>sezione di testa delle<br>colonne da vuoto | Non<br>Applicabile | Il sistema di testa prevede un sistema a 3 eiettori in serie con precondensatore, intercondensatori e postcondensatore. Il vapore di compressione utilizzato è in parte auto-prodotto nell'unità stessa.  La scelta di utilizzare un sistema ad eiettori è il risultato di un'analisi Erg di tipo tecnico-economica.                                 |      |
| 4.19.5 | Riduzione della<br>pressione operativa di<br>testa colonna di<br>vacuum al di sotto di<br>20-25 mmHg                                                   | Non<br>Applicabile | La pressione di testa colonna è pari a 75 mm Hg per poter inserire il precondensatore e minimizzare il consumo di vapore agli eiettori.  La pressione di testa viene ottimizzata in automatico dagli operatori in funzione della effettiva temperatura dell'acqua di raffreddamento che condiziona la temperatura di condensazione nel condensatore. |      |



| CLIENTE:            | ERG MED                  |  |
|---------------------|--------------------------|--|
| PROGETTO:           | ADEGUAMENTO BAT pro IPPC |  |
| N° Progetto<br>A621 | Rev.                     |  |
| A021                | U                        |  |

| TECN.  | INDICAZIONE                                                                    | STATO     | COMMENTO                                                                                                                                     | NOTE |
|--------|--------------------------------------------------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------|------|
| 4.19.6 | Trattamento degli<br>incondensabili<br>provenienti dagli<br>iniettori da vuoto | Applicata | Il gas viene inviato a<br>blowdown, dove esiste un<br>sistema di recupero gas<br>(GARO), che a sua volta invia<br>il gas a lavaggio amminico |      |
| 4.19.7 | Riutilizzo acque acide                                                         | Applicata | Le acque acide, raccolte nell'accumulatore di testa, vengono inviate al SWS e successivamente riutilizzate nel dissalatore.                  |      |

# 8.6.1 Allegati

Schema di processo



## Unità 800 Impianto produzione idrogeno

| CLIENTE:<br>PROGETTO: | ERG MED ADEGUAMENTO BAT pro IPPO |  |
|-----------------------|----------------------------------|--|
| N° Progetto A621      | Rev.                             |  |

# 9 <u>UNITA' 800 IMPIANTO PRODUZIONE IDROGENO</u>

#### 9.1 Organizzazione

La gestione dell'unità è affidata alla funzione

GEST 2

#### 9.2 Descrizione del Processo

L'impianto è un steam reforming che utilizza come carica una miscela di steam e HC che reagiscono cataliticamente per produrre H<sub>2</sub> e CO/CO<sub>2</sub>. Successivamente la CO viene ossidata cataliticamente (Shift converter) a CO<sub>2</sub>. La purificazione da CO<sub>2</sub> avviene attraverso una sezione di metanazione.

Per ulteriori dettagli si rimanda la manuale operativo dell'unità.

## 9.3 Capacità di Produzione e Trattamento delle Sostanze in Ingresso ed Uscita

#### Carica

| Nome                        | Lavorato 2005 (ton / anno) |
|-----------------------------|----------------------------|
| Fuel Gas / Butano / Pentano | 26046                      |

#### Prodotti / semilavorati in uscita

| Nome           | Lavorato 2005 (ton / anno) |
|----------------|----------------------------|
| Idrogeno (95%) | 18427                      |
|                |                            |
|                |                            |

Capacità di progetto: 42.1 t/g di H<sub>2</sub> prodotto

#### 9.4 Schema di processo semplificato

In allegato si riporta lo schema di processo semplificato



## Unità 800 Impianto produzione idrogeno

| CLIENTE:<br>PROGETTO: | ERG MED ADEGUAMENTO BAT pro IPPO |  |
|-----------------------|----------------------------------|--|
| N° Progetto A621      | Rev.                             |  |

# 9.5 Confronto consumi specifici con IPPC-Chapter 3-Emission and consumption level

L'unità di Produzione idrogeno 800 è progettata per una capacità massima di produzione idrogeno pari a 15365 ton/anno. L'idrogeno prodotto in tale unità viene utilizzato nei processi di idro-conversione interni alla raffineria. Per quanto riguarda i consumi per l'unità di produzione idrogeno , la seguente tabella confronta quanto riportato nel Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries (paragrafo 3.14 – Hydrogen production -) con quanto ottenuto operativamente nell'unità di produzione idrogeno 800

|                                              | IPPC        | Unità 800 |
|----------------------------------------------|-------------|-----------|
| Fuel MJ/ton H2                               | 35000-80000 | 38100     |
| Electricity kwh/t                            | 200-800     | 450       |
| Steam produced (kg/ton)                      | 2000-8000   | 1430      |
| Cooling water (m3/t $\Delta T=10^{\circ}$ C) | 50-300      | 40        |

#### 9.6 Stato di applicazione delle BAT competenti

Le BAT relative alle unità di produzione idrogeno sono riportate nel punto 14 del paragrafo 5.2 del Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.

Nel prospetto di seguito riportato viene mostrato lo stato di applicazione delle BAT citate con riferimento all'assetto della raffineria ISAB SUD.

Nel prospetto, per semplicità e per rendere più facile il confronto, ove indicato nello stesso paragrafo 5.2 delle IPPC, viene riportato il riferimento alla tecnica presente nel capitolo 4 della stessa Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.



# Unità 800 Impianto produzione idrogeno

| CLIENTE:    | ERG MED  |                   |
|-------------|----------|-------------------|
| PROGETTO:   | ADEGUAMI | ENTO BAT pro IPPC |
| N° Progetto | Rev.     |                   |
| A621        | 0        |                   |

| TECN.  | INDICAZIONE              | STATO       | COMMENTO                       | NOTE |
|--------|--------------------------|-------------|--------------------------------|------|
| 4.14.1 | Considerare l'uso della  | Non         | L'impianto della raffineria    |      |
|        | tecnologia di steam      | applicabile | ISAB SUD utilizza la           |      |
|        | reforming con gas        |             | tecnologia tradizionale di     |      |
|        | caldo per impianti       |             | steam reforming.               |      |
|        | nuovi, includendo        |             |                                |      |
|        | recupero di calore dai   |             |                                |      |
|        | gas dello steam          |             |                                |      |
|        | reformer e sistemi di    |             |                                |      |
|        | integrazione termica     |             |                                |      |
|        | intorno all'assorbitore  |             |                                |      |
|        | e al metanatore          |             |                                |      |
| 4.14.2 | Recuperare idrogeno      | Non         |                                |      |
|        | dai processi di          | applicabile |                                |      |
|        | gassificazione di oli    |             |                                |      |
|        | pesanti e da carbone se  |             |                                |      |
|        | la tecnologia è          |             |                                |      |
|        | applicata in rafffineria |             |                                |      |
| 4.14.3 | Utilizzare il gas di     | Non         | La purificazione dell'idrogeno | _    |
|        | spurgo del PSA come      | applicabile | non avviene a mezzo            |      |
|        | fuel gas all'interno     |             | tecnologia PSA ma a mezzo      |      |
|        | della raffineria         |             | CATA-CARB. Il gas di           |      |
|        |                          |             | spurgo, contenente solo CO2,   |      |
|        |                          |             | viene immesso in atmosfera     | _    |

# 9.6.1 Allegati

Schema di processo



| CLIENTE:    | ERG MED  |                   |
|-------------|----------|-------------------|
| PROGETTO:   | ADEGUAMI | ENTO BAT pro IPPC |
| N° Progetto | Rev.     |                   |
| A621        | 0        |                   |

# 10 UNITA' 1000 ISOMERIZZAZIONE

## 10.1 Organizzazione

La gestione dell'unità è affidata alla funzione

GEST 1

#### 10.2 Descrizione del Processo

Il Penex UOP è un processo di isomerizzazione catalitica che consente di convertire le normal-paraffine a basso numero di ottano, nel caso specifico pentani ed esani, in iso-parafine ad alto numero di ottano.

La carica di n-paraffine è trattata su un catalizzatore al platino supportato su allumina in presenza di idrogeno ed in determinate condizioni di temperature e pressioni.

La carica all'impianto viene alimentata in cascata dal fondo della colonna 900-T103 (deisopentanizzatrice) ed, ad integrazione o esclusivamente, dalla testa 1000-T103 (splitter benzine).

Non è previsto che l'unità possa essere alimentata da stoccaggio.

Per ulteriori dettagli si rimanda al manuale operativo dell'unità.



| CLIENTE:<br>PROGETTO: | ERG MED ADEGUAMENTO BAT pro IPPO |  |
|-----------------------|----------------------------------|--|
| N° Progetto A621      | Rev.                             |  |

# 10.3 Capacità di Produzione e Trattamento delle Sostanze in Ingresso ed Uscita

# Carica

| Nome                        | Lavorato 2005 (ton / anno) |
|-----------------------------|----------------------------|
| Benzina leggera desolforata | 456195                     |

# Prodotti / semilavorati in uscita

| Nome            | Lavorato 2005 (ton / anno) |
|-----------------|----------------------------|
| Benzina leggera | 428411                     |
| Fuel Gas        | 11065                      |
|                 |                            |

Capacità di progetto: 1320 t/g (di benzina leggera desolforata)

# 10.4 Schema di processo semplificato

In allegato si riporta lo schema di processo semplificato



| CLIENTE:         | ERG MED                  |  |
|------------------|--------------------------|--|
| PROGETTO:        | ADEGUAMENTO BAT pro IPPC |  |
| N° Progetto A621 | Rev.                     |  |

# 10.5 Confronto consumi specifici con IPPC-Chapter 3-Emission and consumption level

L'unità di Isomerizzazione 1000 è progettata per trattare una capacità massima di 481800 ton/anno di benzina leggera desolforata proveniente dallo splitter benzina al fine di aumentarne il RON. Per quanto riguarda i consumi per l'unità di isomerizzazione , la seguente tabella confronta quanto riportato nel Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries (paragrafo 3.16 – Isomerisation -) con quanto ottenuto operativamente nell'unità di isomerizzazione 1000

|                                              | IPPC    | Isomerizzazione |
|----------------------------------------------|---------|-----------------|
| Electricity kwh/t                            | 20-30   | 30              |
| Steam consumed (kg/ton)                      | 300-600 | 694             |
| Cooling water (m3/t $\Delta T=10^{\circ}$ C) | 10-15   | 5               |

## 10.6 Stato di applicazione delle BAT competenti

Le BAT relative alle unità di isomerizzazione sono riportate nel punto 16 del paragrafo 5.2 del Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.

Nel prospetto di seguito riportato viene mostrato lo stato di applicazione delle BAT citate con riferimento all'assetto della raffineria ISAB SUD.

Nel prospetto, per semplicità e per rendere più facile il confronto, ove indicato nello stesso paragrafo 5.2 delle IPPC, viene riportato il riferimento alla tecnica presente nel capitolo 4 della stessa Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.



| CLIENTE:    | ERG MED                  |  |
|-------------|--------------------------|--|
| PROGETTO:   | ADEGUAMENTO BAT pro IPPC |  |
| N° Progetto | Rev.                     |  |
| A621        | 0                        |  |

| TECN.  | INDICAZIONE              | STATO     | COMMENTO                                                    | NOTE |
|--------|--------------------------|-----------|-------------------------------------------------------------|------|
| 4.16.1 | Utilizzare una           | Applicata | L'unità utilizza una tecnologia                             |      |
| 4.16.2 | tecnologia con           |           | con attivazione del                                         |      |
|        | attivazione del          |           | catalizzatore con percloro                                  |      |
|        | catalizzatore a base di  |           | etilene                                                     |      |
|        | clorurati se esistono    |           |                                                             |      |
|        | sufficienti garanzie     |           |                                                             |      |
|        | sulla qualità della      |           |                                                             |      |
|        | carica. Qualora non      |           |                                                             |      |
|        | fosse possibile          |           |                                                             |      |
|        | utilizzare altri sistemi |           |                                                             |      |
|        | catalitici (zeoliti)     |           |                                                             |      |
| 4.16.1 | Ottimizzare l'utilizzo   | Applicata | Il dosaggio del percloro                                    |      |
|        | dei composti organici    |           | etilene viene ottimizzato e                                 |      |
|        | clorurati impiegati per  |           | costantmente controllato                                    |      |
|        | il mantenimento          |           | secondo le indicazioni del                                  |      |
|        | dell'attività del        |           | licenziatario                                               |      |
| 4463   | catalizzatore            | A 7.      | 71 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                      |      |
| 4.16.3 | Aumento del contenuto    | Applicata | Il ciclo di produzione delle                                |      |
|        | di esani in carica       |           | benzine (splitter benzine, unità                            |      |
|        | all'impianto di          |           | di reforming ed unità di                                    |      |
|        | isomerizzazione in       |           | isomerizzazione) sono                                       |      |
|        | modo da minimizzare      |           | altamente integrati al fine di                              |      |
|        | la formazione di         |           | minimizzare il contenuto di                                 |      |
|        | benzene nell'impianto    |           | benzene nel pool benzine.<br>Diversi assetti di marcia sono |      |
|        | di Reforming             |           |                                                             |      |
|        |                          |           | previsti a tale scopo come di seguito elencato:             |      |
|        |                          |           | Rimozione in apposita                                       |      |
|        |                          |           | colonna dei precursori                                      |      |
|        |                          |           | del benzene prima                                           |      |
|        |                          |           | dell'alimentazione al                                       |      |
|        |                          |           | reforming                                                   |      |
|        |                          |           | <ul><li>Rimozione in apposita</li></ul>                     |      |
|        |                          |           | colonna a valle del                                         |      |
|        |                          |           | reforming del benzene                                       |      |
|        |                          |           | prodotto attraverso                                         |      |
|        |                          |           | prelievo di un taglio                                       |      |
|        |                          |           | ad alto contenuto di                                        |      |
|        |                          |           | benzene                                                     |      |
|        |                          |           |                                                             |      |
|        |                          |           |                                                             |      |
|        |                          |           |                                                             |      |

10.6.1 Allegati

Schema di processo



| CLIENTE:         | ERG MED                  |  |
|------------------|--------------------------|--|
| PROGETTO:        | ADEGUAMENTO BAT pro IPPC |  |
| N° Progetto A621 | Rev.                     |  |

# 11 <u>UNITA' 1100 LAVAGGIO AMMINICO E DI RIGENERAZIONE</u> MDEA

## 11.1 Organizzazione

La gestione dell'unità è affidata alla funzione

GEST 2

#### 11.2 Descrizione del Processo

L'impianto è costituito da: due colonne di lavaggio gas a bassa pressione operanti in parallelo, e da due rigeneratori che trattano tutte le ammine ricche provenienti dagli assorbitori e dagli impianti di processo.

Per ulteriori dettagli di rimanda al manuale operativo dell'unità.

#### 11.3 Capacità di Produzione e Trattamento delle Sostanze in Ingresso ed Uscita

## 11.3.1 Lavaggio Amminico

| $\sim$ |      |           |
|--------|------|-----------|
| ( '6   | 111  | Ca        |
|        | 11 I | $-\alpha$ |

| Nome             | Lavorato 2005 (ton / anno) |  |
|------------------|----------------------------|--|
| H2S da abbattere | 131.400                    |  |

#### Prodotti / semilavorati in uscita

| Nome               | Lavorato 2005 (ton / anno) |
|--------------------|----------------------------|
| MDEA da Rigenerare | 3.635.400                  |

Capacità di progetto: 410 t/g (di H2S)

#### 11.3.2 Rigenerazione MDEA

#### Carica

| Nome               | Lavorato 2005 (ton / anno) |
|--------------------|----------------------------|
| MDEA da Rigenerare | 3.516.000                  |



| CLIENTE:         | ERG MED                          |  |
|------------------|----------------------------------|--|
| PROGETTO:        | ADEGUAMENTO BAT pro IPPC  Rev. 0 |  |
| N° Progetto A621 |                                  |  |

## Prodotti / semilavorati in uscita

| Nome                       | Lavorato 2005 (ton / anno) |  |
|----------------------------|----------------------------|--|
| MDEA rigenerato            | 3.504.000                  |  |
| Gas Acido a Impianto Zolfo | 131.400                    |  |

Capacità di progetto: 9870 t/g (di soluzione al 40 % di MDEA)

## 11.4 Schema di processo semplificato

In allegato si riporta lo schema di processo semplificato

# 11.5 Confronto consumi specifici con IPPC-Chapter 4-Techniques to Consider in the Determination of BAT

Il sistema di Lavaggio Amminico è costituito da una serie di colonne dislocate presso le unità di desolforazione della raffineria ISAB SUD, che inviano la MDEA da rigenerare nell'unità 1100.

Il sistema di Lavaggio Amminico è progettata per trattare una capacità massima di 149650 ton/anno di H2S. L'unità di Rigenerazione MDEA 1100 è progettata per trattare una capacità massima di 3.869.000 ton/anno di MDEA. La seguente tabella confronta quanto riportato nel Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries (paragrafo 4.23.5.1 – Amine treating) con quanto ottenuto operativamente nell'unità di Rigenerazione MDEA 1100

|                                                  | IPPC      | Unità 1100 |
|--------------------------------------------------|-----------|------------|
| Electricity kWh/ton H2S                          | 70-80     | 69         |
| Steam consumed (kg/ton H2S)                      | 1500-3000 | 2960       |
| Cooling water (m3/t H2S $\Delta T=10^{\circ}$ C) | 25-35     | 0.13       |



| CLIENTE:<br>PROGETTO: | ERG MED<br>ADEGUAMI | ENTO BAT pro IPPC |
|-----------------------|---------------------|-------------------|
| N° Progetto A621      | Rev.                |                   |

## 11.6 Stato di applicazione delle BAT competenti

Le BAT relative alle unità di trattamento amminico sono riportate nel punto 23 del paragrafo 5.2 del Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.

Nel prospetto di seguito riportato viene mostrato lo stato di applicazione delle BAT citate con riferimento all'assetto della raffineria ISAB SUD.

Nel prospetto, per semplicità e per rendere più facile il confronto, ove indicato nello stesso paragrafo 5.23 delle IPPC, viene riportato il riferimento alla tecnica presente nel capitolo 4 della stessa Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.



| CLIENTE:    | ERG MED                  |  |
|-------------|--------------------------|--|
| PROGETTO:   | ADEGUAMENTO BAT pro IPPC |  |
| N° Progetto | Rev.                     |  |
| A621        | 0                        |  |

| TECN.    | INDICAZIONE                                    | STATO        | COMMENTO                                             | NOTE              |
|----------|------------------------------------------------|--------------|------------------------------------------------------|-------------------|
| 4.23.5.1 | Utilizzare un processo                         | Applicata    | La raffineria rigenera la                            |                   |
|          | rigenerativo ammine                            |              | MDEA.                                                |                   |
| 4.23.5.1 | Riutilizzare, quando                           | Applicata    | La raffineria rigenera la                            |                   |
|          | possibile, le soluzioni                        |              | MDEA riutilizzandola per i                           |                   |
|          | di ammine                                      |              | lavaggi.                                             |                   |
| 4.23.5.1 | Ridurre la                                     | Applicata    | Il fuel gas in uscita dalle                          |                   |
|          | concentrazione di H2S                          |              | colonne di lavaggio con                              |                   |
|          | nel gas di raffineria a                        |              | MDEA ha valori di H2S                                |                   |
|          | livelli di 20-150                              |              | inferiori a 100 ppm.                                 |                   |
|          | mg/Nm3                                         |              |                                                      |                   |
| 4.23.5.1 | Prevedere una                                  | Parzialmente | Le pompe e le colonne di                             | Sono in corso     |
|          | sufficiente capacità da                        | applicata    | rigenerazione sono installate                        | di installazione  |
|          | permettere operazioni                          |              | con relative riserve.                                | scambiatori di    |
|          | di manutenzione e far                          |              | Sono presenti sistemi di                             | riserva sul       |
|          | fronte agli upsets                             |              | interlock.                                           | servizio          |
|          | (avere apparecchiature                         |              | Sono previsti margini sulle                          | carica/fondo      |
|          | di riserva, possibilità                        |              | apparecchiature.                                     | per               |
|          | di eliminazione del                            |              | Il fattore di servizio                               | raggiungere la    |
|          | carico elettrico,                              |              | dell'impianto è 98%                                  | piena             |
|          | scrubber ammine di                             |              |                                                      | affidabilità      |
|          | emergenza, sistemi                             |              |                                                      | senza perdita     |
|          | multipli di scrubber)                          |              |                                                      | di produzione.    |
|          |                                                |              |                                                      | Nel transitorio,  |
|          |                                                |              |                                                      | in caso di up-    |
|          |                                                |              |                                                      | set la raffineria |
|          |                                                |              |                                                      | cambia il suo     |
|          |                                                |              |                                                      | assetto           |
|          |                                                |              |                                                      | produttivo e si   |
|          |                                                |              |                                                      | adegua alla       |
|          |                                                |              |                                                      | capacità          |
| 4.23.5.1 | Hiliggono un tonte di                          | Appliants    | Non ci sono effluenti al                             | disponibile.      |
| 4.23.3.1 | Utilizzare un tank di                          | Applicata    |                                                      |                   |
|          | stoccaggio o un piano                          |              | Į                                                    |                   |
|          | di produzione per                              |              | quanto sono previsti                                 |                   |
|          | controllare gli effluenti                      |              | trattamenti periodici effettuati da ditte esterne.   |                   |
|          | generati ed evitare up-<br>set del trattamento |              |                                                      |                   |
|          |                                                |              | Nel futuro sarà installato un sistema di filtrazione |                   |
|          | biologico                                      |              | meccanico e a carboni attivi                         |                   |
|          |                                                |              | ineccanico e a carboni attivi                        |                   |
|          |                                                |              |                                                      |                   |

# 11.6.1 Allegati

Schema di processo



| CL | JENTE:           | ERG MED                  |  |
|----|------------------|--------------------------|--|
| PR | OGETTO:          | ADEGUAMENTO BAT pro IPPC |  |
| N  | o Progetto  A621 | Rev.                     |  |

## 12 UNITA' 1200/1200 M CLAUS E MAXISULF

#### 12.1 Organizzazione

La gestione dell'unità è affidata alla funzione

GEST 2

#### 12.2 Descrizione del Processo

L'impianto è costituito da quattro linee CLAUS di capacità unitaria pari a 120 T/g di H2S trattato (U-1200), con una linea di trattamento gas di coda comune avente una capacità di 480 T/g di H2S trattato (U-1200 M). A valle del Maxisulf ci sono quattro combustori finali.

Per ulteriori dettagli si rimanda al manuale operativo dell'unità.

#### 12.3 Capacità di Produzione e Trattamento delle Sostanze in Ingresso ed Uscita

#### Carica

| Nome                        | Lavorato 2005 (ton / anno) |
|-----------------------------|----------------------------|
| Gas acidi di raffineria (1) | 131400                     |

<sup>1)</sup> Portata espressa in t/anno di H2S trattato

#### Prodotti / semilavorati in uscita

| Nome  | Lavorato 2005 (ton / anno) |
|-------|----------------------------|
| Zolfo | 123052                     |

Capacità di progetto: 480 t/g (di H2S)



| CLIENTE:<br>PROGETTO:      | ERG MED<br>ADEGUAMI | ENTO BAT pro IPPC |
|----------------------------|---------------------|-------------------|
| N° Progetto<br><b>A621</b> | Rev.                |                   |

# 12.4 Confronto consumi specifici con IPPC-Chapter 3-Emission and consumption level

Le unità di recupero zolfo 1200 e 1200 M sono progettate per trattare una capacità massima di 172200 ton/anno.di gas acidi di raffineria (come  $H_2S$ ) provenienti dagli impianti di lavaggio ammine e SWS al fine di minimizzare le emissioni in atmosfera di H2S ed SO2 . Per quanto riguarda i consumi per le unità di recupero zolfo , la seguente tabella confronta quanto riportato nel Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries (paragrafo 4.23.5.2. –Sulphur recovery units -) con quanto ottenuto operativamente nelle unità di 1200/1200 M

|                                      | IPPC      | Unità 1200/1200 M |
|--------------------------------------|-----------|-------------------|
| Fuel MJ/ton                          | 1000-1600 | 2323 (1)          |
| Electricity kwh/t                    | 60-75     | 54.3 (1)          |
| Steam produced (kg/ton)              | 1500-2000 | 2260 (1)          |
| Cooling water (m3/t $\Delta$ T=10°C) | 0-20      | 0.9 (1)           |

Nota 1: valori riferiti a tonnellata di H2S trattato

# 12.5 Stato di applicazione delle BAT competenti

Le BAT relative alle unità di recupero zolfo sono riportate nel punto 23 del paragrafo 5.2 del Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.

Nel prospetto di seguito riportato viene mostrato lo stato di applicazione delle BAT citate con riferimento all'assetto della raffineria ISAB SUD.

Nel prospetto, per semplicità e per rendere più facile il confronto, ove indicato nello stesso paragrafo 5.2 delle IPPC, viene riportato il riferimento alla tecnica presente nel capitolo 4 della stessa Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.



CLIENTE: ERG MED
PROGETTO: ADEGUAMENTO BAT pro IPPC

N° Progetto Rev.
A621 0

| TECN. | INDICAZIONE                                                                                                                                                                                                                                        | STATO     | COMMENTO                                                                                                                                                                                                  | NOTE                                                                                                                                                    |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | Installare un'unità a<br>più stadi, dotata di<br>trattamento dei gas di<br>coda, con un'efficienza<br>totale di recupero pari<br>al 99.5 – 99.9 %.                                                                                                 | Applicata | L'efficienza totale (unità 1200 ed unità 1200 M), calcolata come quantità di zolfo prodotto rispetto allo zolfo in ingresso all'unità (come H <sub>2</sub> S) è pari al 99,5%.                            | Da consuntivi<br>operativi il<br>recupero<br>risulta<br>superiore a<br>99,5%                                                                            |
|       | Avere una configurazione dell'impianto SRU con capacità sufficiente a trattare tutto l'H <sub>2</sub> S in ingresso, ad esempio avere almeno due linee in parallelo di capacità sufficiente a coprire tutti gli scenari operativi della Raffineria | Applicata | La capacità delle unità Claus e<br>Maxisulf è tale da garantire<br>l'abbattimento di tutto H2S<br>prodotto anche nel peggior<br>assetto operativo (trattamento<br>di crudi ad alto contenuto di<br>zolfo) | La capacità<br>installata è del<br>15% superiore<br>all'assetto<br>operativo più<br>gravoso                                                             |
|       | Avere una capacità di recupero zolfo sufficiente a consentire le operazioni di manutenzione, da effettuare ogni due anni, senza incrementi significativi delle emissioni di zolfo                                                                  | Applicata | Il piano di manutenzione di<br>raffineria prevede la fermata<br>biennale degli impianti di<br>desolforazione, con associata<br>manutenzione delle linee zolfo                                             | Le procedure di raffineria prevedono assetti operativi tali da evitare l'invio di H <sub>2</sub> S in torcia per qualunque scenario operativo possibile |
|       | Avere un fattore di<br>utilizzazione almeno<br>del 96% (incluse le<br>fermate per<br>manutenzione<br>programmata)                                                                                                                                  | Applicata |                                                                                                                                                                                                           | Le procedure di raffineria prevedono assetti operativi tali da evitare l'invio di H <sub>2</sub> S in torcia per qualunque scenario operativo possibile |



CLIENTE: ERG MED
PROGETTO: ADEGUAMENTO BAT pro IPPC

N° Progetto Rev.
A621 0

| TECN. | INDICAZIONE                                                                                                                                                                                                  |           | COMMENTO                                                                                                                                                 | NOTE |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|       | Utilizzare un sistema<br>avanzato di controllo<br>delle emissioni; usare<br>un analizzatore dei gas<br>di coda connesso con il<br>sistema di controllo del<br>processo.                                      | Applicata |                                                                                                                                                          |      |
|       | Ottimizzare i parametri di processo in modo da rendere possibile anche il trattamento termico dell'ammoniaca contenuta nei gas da SWS, che può formare sali (carbonati/solfati) lesivi per il catalizzatore. | Applicata | La linea ammoniacale da<br>SWS viene immessa nei<br>forni in opportune zone<br>dedicate per consentire<br>l'abbattimento termico<br>dell'NH <sub>3</sub> |      |
|       | Applicare tecniche alternative per il recupero/rimozione di H <sub>2</sub> S/SO <sub>2</sub> nelle installazioni in cui la produzione di H <sub>2</sub> S è ridotta                                          | Applicata | Questa prescrizione si applica<br>unicamente a piccole unità e<br>non alle raffinerie                                                                    |      |



| CLIENTE:    | ERG MED                  |  |
|-------------|--------------------------|--|
| PROGETTO:   | ADEGUAMENTO BAT pro IPPC |  |
| N° Progetto | Rev.                     |  |
| A621        | 0                        |  |

## 13 <u>UNITA' 1400 IMPIANTO SWS</u>

#### 13.1 Organizzazione

La gestione dell'unità è affidata alla funzione GEST2

#### 13.2 Descrizione del Processo

L'unità 1400 SWS ha la funzione di trattare le acque acide provenienti dalle varie unità di processo della raffineria strippando H2S in esse contenuto e rendendole di qualità idonea a poter essere inviata al WWT

L'unità è costituita dalle seguenti colonne di strippaggio ad iniezione diretta di vapore:

T-103: Dedicata al trattamento delle acque acide provenienti dall'unità 700

T-101/T-102/T-105: Dedicate al trattamento delle acque acide provenienti dalle altre unità di processo della raffineria. Nell'assetto operativo di raffineria la colonna T-105 è utilizzata come riserva delle colonne T-101/T-102

H2S recuperato sotto forma gassosa dalla testa colonna viene inviato agli impianti di produzione zolfo, mentre l'acqua del fondo colonna è inviata al WWT

Per ulteriori dettagli si faccia riferimento al manuale operativo dell'unità



| CLIENTE:    | ERG MED                  |  |
|-------------|--------------------------|--|
| PROGETTO:   | ADEGUAMENTO BAT pro IPPO |  |
| N° Progetto | Rev.                     |  |
| A621        | 0                        |  |

# 13.3 Capacità di Produzione e Trattamento delle Sostanze in Ingresso ed Uscita

# Carica

| Nome        | Lavorato 2005 (ton / anno) |
|-------------|----------------------------|
| Acqua Acida | 903525                     |

# Prodotti / semilavorati in uscita

| Nome                         | Lavorato 2005 (ton / anno) |
|------------------------------|----------------------------|
| Acqua Trattata               | 894728                     |
| Gas Acido (a Impianto Zolfo) | 8797                       |

Capacità di progetto: 4.300 t/g (di acqua)

# 13.4 Schema di processo semplificato

In allegato si riporta lo schema di processo semplificato.



| CLIENTE:<br>PROGETTO: | ERG MED ADEGUAMI | ENTO BAT pro IPPC |
|-----------------------|------------------|-------------------|
| N° Progetto A621      | Rev.             |                   |

# 13.5 Confronto consumi specifici con IPPC-Chapter 4-Techniques to Consider in the Determination of BAT

L'unità di trattamento acque acide 1400 è progettata per trattare una capacità massima di 1.553.805 ton/anno di acqua. L'unità è alimentata dalle acque acide della raffineria ISAB SUD. Per quanto riguarda i consumi per l'unita SWS, la seguente tabella confronta quanto riportato nel Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries (paragrafo 4.24.2 –Sour Water Stripping (SWS)) con quanto ottenuto operativamente nell'unità di trattamento acque acide 1400.

|                                    | IPPC    | Unità 1400 |
|------------------------------------|---------|------------|
| Electricity kWh/ton H2O            | 2-3     | 1.04       |
| Steam consumed (kg/ton H2O)        | 100-200 | 152        |
| Cooling water (m3/ton H2O ΔT=10°C) | -       | 2.2        |

## 13.6 Stato di applicazione delle BAT competenti

Le BAT relative alle unità di trattamento acque acide sono riportate nel paragrafo 5.1 del Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.

Nel prospetto di seguito riportato viene mostrato lo stato di applicazione delle BAT citate con riferimento all'assetto della raffineria ISAB SUD.

Nel prospetto, per semplicità e per rendere più facile il confronto, ove indicato nello stesso paragrafo 5.1 delle IPPC, viene riportato il riferimento alla tecnica presente nel capitolo 4 della stessa Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.



| CLIENTE:    | ERG MED  |                   |
|-------------|----------|-------------------|
| PROGETTO:   | ADEGUAMI | ENTO BAT pro IPPC |
| N° Progetto | Rev.     |                   |
| A621        | 0        |                   |

| TECN.  | INDICAZIONE                                                                                                                                                                                           | STATO     | COMMENTO                                                                                                                                                   | NOTE |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 4.24.2 | Trattamento acque acide                                                                                                                                                                               | Applicata | Tutte le acque acide prodotte<br>in raffineria vengono trattate<br>attraverso un impianto di<br>stripping per ridurne il<br>contenuto acido                |      |
| 4.24.2 | Il SWS produce off-gas acidi ed effluenti strippati che devono essere inviati a trattamenti a valle, cioè:  Off Gas acidi all'unità SRU di produzione zolfo.  Effluenti Liquidi al desalter come wash | Applicata | Gli effluenti gassosi vengono inviati all'impianto CLAUS di produzione zolfo. Gli effluenti liquidi vengono inviato al desalter, quelli in eccesso al WWT. |      |
| 4.24.2 | water o al WWT Ridurre il contenuto di NH3 nell'effluente liquido inviato a bio- trattamento, utilizzando un sistema di strippaggio che utlizza o un elevato numero di stadi o a doppio stadio.       | Applicata | Il numero di stadi nella<br>sezione di stripping è<br>sufficiente ad avere un<br>contenuto di NH3 idoneo per<br>il trattamento WWT.                        |      |

# 13.6.1 Allegati

Schema di processo.



#### Unità 1600 A Thermal Cracking

| CLIENTE:    | ERG MED  |                   |
|-------------|----------|-------------------|
| PROGETTO:   | ADEGUAMI | ENTO BAT pro IPPC |
| N° Progetto | Rev.     |                   |
| A621        | 0        |                   |

# 14 UNITA' 1600 A THERMAL CRACKING

## 14.1 Organizzazione

La gestione dell'unità è affidata alla funzione

GEST 1

#### 14.2 Descrizione del Processo

L'impianto è alimentato con il gofinato proveniente dalla U-700 / 700 A. Il processo di cracking termico, composto da due linee operanti in parallelo, si completa nei soaker drum e, successivamente, l'effluente viene frazionato in due colonne atmosferiche ed una sotto vuoto, dove si producono i seguenti prodotti:

- Gas
- Nafta
- Gasolio atmosferico
- Gasolio da vuoto
- Tar

Per ulteriori dettagli si rimanda al manuale dell'unità.



## Unità 1600 A Thermal Cracking

| CLIENTE:    | ERG MED  |                   |
|-------------|----------|-------------------|
| PROGETTO:   | ADEGUAMI | ENTO BAT pro IPPC |
| N° Progetto | Rev.     |                   |
| A621        | 0        |                   |

# 14.3 Capacità di Produzione e Trattamento delle Sostanze in Ingresso ed Uscita

# Carica

| Nome                     | Lavorato 2005 (ton / anno)       |
|--------------------------|----------------------------------|
| Gasoli da impianto vuoto | 2118571 (al netto del flussante) |

# Prodotti / semilavorati in uscita

| Nome                 | Lavorato 2005 (ton / anno)      |
|----------------------|---------------------------------|
| Fuel Gas             | 66807                           |
| Benzina semilavorata | 425038                          |
| Gasolio              | 987292 (al netto dei flussanti) |
| Taglio Vuoto         | 11473                           |
| Residuo              | 627958                          |

Capacità di progetto: 6180 t/g (di gasoli da vacuum)

# 14.4 Schema di processo semplificato

In allegato si riporta lo schema di processo semplificato.



#### Unità 1600 A Thermal Cracking

| CLIENTE:<br>PROGETTO: | IENTE: <b>ERG MED</b> OGETTO: <b>ADEGUAMENTO BA</b> |  |
|-----------------------|-----------------------------------------------------|--|
| N° Progetto A621      | Rev.                                                |  |

# 14.5 Confronto consumi specifici con IPPC-Chapter 3-Emission and consumption level

L'unità di Thermal cracking è progettata per trattare una capacità massima di 2255700 ton/anno di gasoli provenienti dall'unità vacuum di raffineria al fine di massimizzare la resa in distillati "pregiati". Per quanto riguarda i consumi per l'unita di thermal cracking, non esistono termini di paragone specifici nelle IPPC. Le IPPC suggeriscono per le unità in oggetto di far riferimento, per analogia, alle unità di visbreaking. Per tale motivo la seguente tabella confronta quanto riportato nel Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries (paragrafo 3.22 –Visbreaking) con quanto ottenuto operativamente nell'unità di Thermal cracking

|                                              | IPPC (VSB)       | Thermal cracking |
|----------------------------------------------|------------------|------------------|
| Fuel MJ/ton                                  | 400-800 (Nota 1) | 1176 (Nota 3)    |
| Electricity kwh/t                            | 10-15            | 11.4             |
| Steam consumed (kg/ton)                      | 5-30             | - 124 (Nota 2)   |
| Cooling water (m3/t $\Delta T=10^{\circ}$ C) | 2-10             | 6.5              |

Nota 1: I valori indicati si riferiscono al consumo dei forni dedicati alla sezione di reazione e non includono pertanto i forni del vacuum flash.

Nota 2: L'unità globalmente produce vapore

Nota 3: Include consumo di fuel del forno di vacuum flash

## 14.6 Stato di applicazione delle BAT competenti

Non esistono BAT specifiche relative alle unità di thermal cracking. Per tali unità il documento Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries suggerisce di far riferimento alle BAT relative alle unità di visbreaking riportate nel punto 22 del paragrafo 5.2 del sù citato documento..

Nel prospetto di seguito riportato viene mostrato lo stato di applicazione delle BAT citate con riferimento all'assetto della raffineria ISAB SUD.

Nel prospetto, per semplicità e per rendere più facile il confronto, ove indicato nello stesso paragrafo 5.2 delle IPPC, viene riportato il riferimento alla tecnica presente nel capitolo 4 della stessa Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.

Dall'analisi del prospetto si evince che la raffineria adotta per l'unità in oggetto un insieme di tecniche in linea con le migliori disponibili al momento.



# Unità 1600 A Thermal Cracking

| CLIENTE:    | ERG MED                  |  |
|-------------|--------------------------|--|
| PROGETTO:   | ADEGUAMENTO BAT pro IPPC |  |
| N° Progetto | Rev.                     |  |
| A621        | 0                        |  |

| TECN.    | INDICAZIONE                             | STATO     | COMMENTO                                                 | NOTE |
|----------|-----------------------------------------|-----------|----------------------------------------------------------|------|
| 4.22.1-3 | Applicare una conversione termica       | Applicata | La conversione termica è spinta al massimo allo scopo    |      |
|          | spinta utilizzando:<br>Hydrovisbreaking |           | massimizzare la resa in                                  |      |
|          |                                         |           | distillati.                                              |      |
|          | Soaker visbreaker                       |           | I soaker drum sono installati                            |      |
| 4.22.4   | Addolcimento del gas                    | Applicata | Il gas generato viene inviato                            |      |
|          | prodotto da                             |           | alla compressione gas per                                |      |
|          | visbreaking e gestione                  |           | recuperare i componenti più                              |      |
|          | delle acque acide                       |           | pesanti da inviare alla desolforazione delle benzine     |      |
|          |                                         |           | mentre la fase gassosa viene                             |      |
|          |                                         |           | lavata con soluzione di                                  |      |
|          |                                         |           | MDEA. Le acque acide                                     |      |
|          |                                         |           | vengono inviate allo stripper                            |      |
|          |                                         |           | acque acide                                              |      |
| 4.22.5   | Riduzione della                         | Applicata | Il contenuto di sodio                                    |      |
|          | formazione di coke                      |           | nell'alimentazione, che è un catalizzatore per la        |      |
|          |                                         |           | formazione di coke, viene                                |      |
|          |                                         |           | minimizzato tenendo sotto                                |      |
|          |                                         |           | controllo l'aggiunta di soda                             |      |
|          |                                         |           | nell'unità di distillazione                              |      |
|          |                                         |           | atmosferica, dove sono                                   |      |
|          |                                         |           | installate anche unità di                                |      |
|          |                                         |           | dissalaggio.                                             |      |
|          |                                         |           | Un sistema di decoking è previsto all'interno dell'unità |      |
|          |                                         |           | La presenza dei soaker drum                              |      |
|          |                                         |           | consente temperature più                                 |      |
|          |                                         |           | basse di uscita forno, con                               |      |
|          |                                         |           | conseguente riduzione della                              |      |
|          |                                         |           | formazione di coke                                       |      |

# 14.6.1 Allegati

Schema di processo.



| CLIENTE:    | ERG MED                  |  |
|-------------|--------------------------|--|
| PROGETTO:   | ADEGUAMENTO BAT pro IPPC |  |
| N° Progetto | Rev.                     |  |
| A621        | 0                        |  |

# 15 <u>UNITA' 1600 VISBREAKING</u>

# 15.1 Organizzazione

La gestione dell'unità è affidata alla funzione

GEST 1

## 15.2 Descrizione del Processo

L'unità viene alimentata con una portata di residuo vuoto che subisce un'azione di cracking termico, esaltato dalla presenza di un soaker drum.

Il prodotto viene successivamente frazionato in una colonna atmosferica ed in una sottovuoto.

I prodotti sono:

- Gas
- Nafta
- Gasolio atmosferico
- Gasolio vuoto
- Tar VSB

Per ulteriori dettagli di rimanda al manuale operativo dell'unità.



| CLIENTE:    | ERG MED ADEGUAMENTO BAT pro IPPC |  |
|-------------|----------------------------------|--|
| PROGETTO:   |                                  |  |
| N° Progetto | Rev.                             |  |
| A621        | 0                                |  |

# 15.3 Capacità di Produzione e Trattamento delle Sostanze in Ingresso ed Uscita

# Carica

| Nome              | Lavorato 2005 (ton / anno)       |
|-------------------|----------------------------------|
| Residuo da Vacuum | 2575862 (al netto dei flussaggi) |

# Prodotti / semilavorati in uscita

| Nome                 | Lavorato 2005 (ton / anno)      |  |
|----------------------|---------------------------------|--|
| Fuel Gas             | 36980                           |  |
| Benzina semilavorata | 120158                          |  |
| Gasolio atmosferico  | 206085                          |  |
| Gasolio vuoto        | 253157 (al netto dei flussaggi) |  |
| Residuo              | 1959483                         |  |

Capacità di progetto: 7640 t/g (di residuo da vacuum)

# 15.4 Schema di processo semplificato

In allegato si riporta lo schema di processo semplificato



| CLIENTE:         | ERG MED             |  |
|------------------|---------------------|--|
| PROGETTO:        | ADEGUAMENTO BAT pro |  |
| N° Progetto A621 | Rev.                |  |

# 15.5 Confronto consumi specifici con IPPC-Chapter 3-Emission and consumption level

L'unità di Visbreaking è progettata per trattare una capacità massima di 2722900 ton/anno di residuo proveniente dall'unità vacuum di raffineria al fine di massimizzare la resa in distillati e produrre un residuo da inviare all'unità di gassificazione.. Per quanto riguarda i consumi per l'unità di visbreaking, la seguente tabella confronta quanto riportato nel Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries (paragrafo 3.22 –Visbreaking -) con quanto ottenuto operativamente nell'unità di Visbreaking.

|                                      | IPPC    | Visbreaking   |
|--------------------------------------|---------|---------------|
| Fuel MJ/ton (Nota1)                  | 400-800 | 558           |
| Electricity kwh/t                    | 10-15   | 8.7           |
| Steam consumed (kg/ton)              | 5-30    | -2.5 (Nota 2) |
| Cooling water (m3/t $\Delta$ T=10°C) | 2-10    | 4             |

Nota 1: I valori indicati si riferiscono al consumo dei forni dedicati alla sezione di reazione e non includono pertanto i forni del vacuum flash (se presenti)

Nota 2: L'unità globalmente produce vapore

#### 15.6 Stato di applicazione delle BAT competenti

Le BAT relative alle unità di visbreaking sono riportate nel punto 22 del paragrafo 5.2 del Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.

Nel prospetto di seguito riportato viene mostrato lo stato di applicazione delle BAT citate con riferimento all'assetto della raffineria ISAB SUD.

Nel prospetto, per semplicità e per rendere più facile il confronto, ove indicato nello stesso paragrafo 5.2 delle IPPC, viene riportato il riferimento alla tecnica presente nel capitolo 4 della stessa Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.

Dall'analisi del prospetto si evince che la raffineria adotta per l'unità in oggetto un insieme di tecniche in linea con le migliori disponibili al momento.



| CLIENTE:    | ERG MED                  |  |
|-------------|--------------------------|--|
| PROGETTO:   | ADEGUAMENTO BAT pro IPPC |  |
| N° Progetto | Rev.                     |  |
| A621        | 0                        |  |

| TECN.    | INDICAZIONE                                                                              | STATO     | COMMENTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NOTE                                     |
|----------|------------------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| 4.22.1-3 | Applicare una conversione termica spinta utilizzando: Hydrovisbreaking Soaker visbreaker | Applicata | La conversione termica è spinta al massimo allo scopo di avere un residuo stabile. Il residuo del visbreaker è completamente esaurito nella sezione di vacuum flash al fine di massimizzare la resa in distillati                                                                                                                                                                                                                                                                                            | L'unità è<br>dotata di un<br>soaker drum |
| 4.22.4   | Addolcimento del gas<br>prodotto da<br>visbreaking e gestione<br>delle acque acide       | Applicata | Il gas generato viene inviato alla compressione gas per recuperare i componenti più pesanti da inviare alla desolforazione delle benzine mentre la fase gassosa viene lavata con soluzione di MDEA. Le acque acide vengono inviate allo stripper acque acide                                                                                                                                                                                                                                                 |                                          |
| 4.22.5   | Riduzione della formazione di coke                                                       | Applicata | Il contenuto di sodio nell'alimentazione, che è un catalizzatore per la formazione di coke, viene minimizzato tenendo sotto controllo l'aggiunta di soda nell'unità di distillazione atmosferica, dove sono installate anche unità di dissalaggio. Gli additivi per ridurre la formazione di coke sono utilizzati Un sistema di decoking è previsto all'interno dell'unità. La presenza di un soaker drum consente temperature più basse di uscita forno, con conseguente riduzione della formazione di coke | Verificare con<br>ERG                    |

# 15.6.1 Allegati

Schema di processo.



| CLIENTE:         | ERG MED ADEGUAMENTO BAT pro IPPC |  |
|------------------|----------------------------------|--|
| PROGETTO:        |                                  |  |
| N° Progetto A621 | Rev.                             |  |

# 16 UNITA' 1800 DESOLFORAZIONE GASOLIO

## 16.1 Organizzazione

La gestione dell'unità è affidata alla funzione

GEST 2

#### 16.2 Descrizione del Processo

L'impianto ha il compito di desolforare il gasolio(medio + pesante + testa vuoto) proveniente dal: Topping, Vuoto e Cracking termici, tramite un'azione di idrogenazione catalitica in presenza di idrogeno.

L'impianto prevede una corrente di gas di riciclo opportunamente lavata in una colonna di assorbimento amminico.

L'effluente reattore viene raffreddato ed inviato ad una coppia di separatori (alta/bassa pressione) dove il gas viene separato dal liquido.

Il liquido viene inviato in un stripper, ad un essiccatore sotto vuoto e successivamente a stoccaggio.

Per ulteriori dettagli si rimanda al manuale operativo dell'unità.

#### 16.3 Capacità di Produzione e Trattamento delle Sostanze in Ingresso ed Uscita

#### Carica

| Nome              | Lavorazione prevista |
|-------------------|----------------------|
| Gasolio di carica | 1660000              |

## Prodotti / semilavorati in uscita

| Nome                 | Lavorato 2005 (ton / anno) |
|----------------------|----------------------------|
| Gasolio Desolforato  | 1584000                    |
| Benzina semilavorata | 48900                      |
| Fuel-gas             | 18900                      |

Capacità di progetto: 4644 t/g (di gasolio di carica)



| CLIENTE:<br>PROGETTO: | ERG MED<br>ADEGUAMI | ENTO BAT pro IPPC |
|-----------------------|---------------------|-------------------|
| N° Progetto A621      | Rev.                |                   |

#### 16.4 Schema a blocchi

In allegato si riporta lo schema a blocchi dell'unità 1800.

# 16.5 Confronto consumi specifici con IPPC-Chapter 3-Emission and consumption level

L'unità di desolforazione gasolio 1800 è progettata per trattare una capacità massima di 1660000 ton/anno.di gasolio al fine di ridurre il contenuto di zolfo sino a 10 ppm. L'unità è alimentata principalmente con il gasolio proveniente dall'impianto di distillazione atmosferica + vacuum + TC. Per quanto riguarda i consumi per l'unità di desolforazione gasolio, la seguente tabella confronta quanto riportato nel Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries (paragrafo 3.13 –Hydrogen consuming processes distillate processed) con quanto previsto di ottenere operativamente nell'unità di desolforazione gasolio 1800

|                                      | IPPC    | HDS G.O. U-1800 |
|--------------------------------------|---------|-----------------|
| Kg H2 per ton of feed                | 1-15    | 7               |
| Fuel MJ/ton                          | 300-500 | 190             |
| Electricity kwh/t                    | 10-20   | 16              |
| Steam consumed (kg/ton)              | 60-150  | 131             |
| Cooling water (m3/t $\Delta$ T=10°C) | 2-3     | 5 (*)           |
| Wash water (kg/ton)                  | 30-40   | 59 (**)         |

- (\*) è incluso, nei consumi, il fabbisogno del condensatore del turbocompressore gas di riciclo
- (\*\*) tale consumo è dovuto all' elevata pressione dell' Unità, ed alle caratteristiche della carica (presenza di gasolio da thermal cracker)



| CLIENTE:<br>PROGETTO: | ERG MED ADEGUAMENTO BAT pro |  |
|-----------------------|-----------------------------|--|
| N° Progetto A621      | Rev.                        |  |

## 16.6 Stato di applicazione delle BAT competenti

Le BAT relative alle unità che consumano idrogeno sono riportate nel punto 13 del paragrafo 5.2 del Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.

Nel prospetto di seguito riportato viene mostrato lo stato di applicazione delle BAT citate con riferimento all'assetto della raffineria ISAB SUD.

Nel prospetto, per semplicità e per rendere più facile il confronto, ove indicato nello stesso paragrafo 5.2 delle IPPC, viene riportato il riferimento alla tecnica presente nel capitolo 4 della stessa Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.

Dall'analisi del prospetto si evince che la raffineria adotta per l'unità in oggetto un insieme di tecniche in linea con le migliori disponibili al momento.



CLIENTE: ERG MED
PROGETTO: ADEGUAMENTO BAT pro IPPC

N° Progetto Rev.
A621 0

| TECN.            | INDICAZIONE                                                                                                                                                                                                                     | STATO              | COMMENTO                                                                                                                                                                                                                                                                                                       | NOTE |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| TECN.<br>4.13.6  | Progettare e modificare ove possibile l'unità di hydrocracker (sezione reazione e frazionamento) con sistema ad elevata integrazione termica applicando analisi di ottimizzazione energetica e sistemi di separazione a 4 stadi | Non<br>applicabile | L'unità 1800 non è un hydrocracking, ma una unità di idrodesolforazione. I recuperi termici sono stati massimizzati sia con recuperi interni all'unità sia con recuperi esterni                                                                                                                                | NOTE |
| 4.13.1,2, 6,7    | Utilizzare il recupero termico da correnti di processo ad alta temperatura in WHB e il recupero energetico nelle unità ad alta pressione.(letting down liquid)                                                                  | Non<br>applicabile | L'unità 1800 lavora ad una Pressione pari a circa 70 barg all' ingresso reattore.  Il recupero di potenza per riduzione di pressione del liquido non è giustificato in termini di investimento/ benefici sia nel sistema di lavaggio amminico sia nell'espansione del gasolio dal separatore ad alta pressione |      |
| 4.23.5.1         | Inviare gli off gas che<br>contengono H2S al<br>sistema ammine e<br>recupero zolfo                                                                                                                                              | Applicata          | I gas acidi vengono assorbiti<br>con una soluzione amminica                                                                                                                                                                                                                                                    |      |
| 4.24.1<br>4.15.6 | Inviare le acque acide<br>contenenti H2S e<br>NH3all'appropiato<br>trattamento                                                                                                                                                  | Applicata          | Le acque acide vengono inviate ad un sistema centralizzato di strippaggio                                                                                                                                                                                                                                      |      |
| 4.13.4           | Utilizzare il rimpiazzo<br>del catalizzatore on<br>stream per cariche ad<br>alto contenuto di<br>metalli                                                                                                                        | Non<br>applicabile | Le cariche all'impianto hanno<br>un basso contenuto di metalli                                                                                                                                                                                                                                                 |      |
| 4.25.3           | Promuovere opzioni<br>per la rigenerazione<br>del catalizzatore in<br>accordo con il<br>fornitore stesso                                                                                                                        | Applicata          | Il catalizzatore quando<br>esaurito viene sostituito e<br>viene rigenerato off-site da<br>società specializzate                                                                                                                                                                                                |      |



| CLIENTE:<br>PROGETTO: | ERG MED ADEGUAMENTO BAT pro IPPC |        |
|-----------------------|----------------------------------|--------|
| N° Progetto A621      | Rev.                             | Foglio |

# 17 UNITA' 2800 TRATTAMENTO ACQUE OLEOSE

#### 17.1 Organizzazione

La gestione dell'unità è affidata alla funzione

GEST 2

## 17.2 Descrizione del Processo

Le acque oleose vengono raccolte nei serbatoi TK-140 A/B.

Da qui vengono inviate alle vasche API (2 in parallelo) per la separazione fisica degli idrocarburi, che vengono recuperati come slop e rilavorati.

L'acqua viene inviata a WWT che prevede:

- Bacini di flocculazione (1 bacino)
- 2 bacini di flottazione
- 2 vasche di ossidazione biologica
- 2 chiarificatori a gravità
- TK-108 di accumulo finale

I fanghi separati vengono accumulati per l'ispessimento e successivamente trattati.

Per ulteriori dettagli si rimanda al manuale operativo dell'unità.



| CLIENTE:    | ERG MED  |                   |
|-------------|----------|-------------------|
| PROGETTO:   | ADEGUAMI | ENTO BAT pro IPPC |
| N° Progetto | Rev.     | Foglio            |
| A621        | 0        |                   |

# 17.3 Capacità di Produzione e Trattamento delle Sostanze in Ingresso ed Uscita

# Carica

| Nome              | Valori di progetto |
|-------------------|--------------------|
| Acqua da trattare | 300 m³/h           |

# **Effluenti**

| Nome            | Valori di progetto |
|-----------------|--------------------|
| Acqua Trattata  | 264 m³/h           |
| Fanghi Prodotti | 97.5 m³/g          |



| CLIENTE:<br>PROGETTO: | ERG MED ADEGUAMENTO BAT pro IPPC |        |
|-----------------------|----------------------------------|--------|
| N° Progetto A621      | Rev.                             | Foglio |

# 17.4 Confronto consumi specifici con IPPC-Chapter 3-Emission and consumption level

L'unità 2800 è progettata per trattare le acque oleose prodotte nella raffineria ISAB SUD per una capacità massima di 300 m<sup>3</sup>/h.

Per quanto riguarda i volumi per l'unita di trattamento acque oleose la seguente tabella confronta quanto riportato nel Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries (paragrafo 3.24 – consumption-) con quanto ottenuto operativamente nell'unità 2800 della raffineria ISAB SUD.

|                                                    | IPPC       | Unità 2800 |
|----------------------------------------------------|------------|------------|
| ACQUE EFFLUENTI                                    |            |            |
| Valore Medio, 10 <sup>6</sup> m <sup>3</sup> /anno | 3.6        | 2.33       |
| Range, $10^6$ m <sup>3</sup> /anno                 | 0.07 - 21  |            |
| ACQUE EFFLUENTI PER TON. DI GREZZO                 |            |            |
| Valore Medio, m <sup>3</sup> /ton grezzo           | 0.53       | 0.194      |
| Range, m <sup>3</sup> /ton grezzo                  | 0.09 - 1.6 |            |
|                                                    |            |            |

# 17.4.1 Stato di applicazione delle BAT competenti

Le BAT relative all'unità di trattamento acque sono riportate al punto 24 del paragrafo 5.2 nel Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries, che rimanda al punto relativo al WWT del paragrafo 5.1, Generic BAT.

Nei prospetti di seguito riportati viene mostrato lo stato di applicazione delle BAT citate con riferimento all'assetto della raffineria ISAB SUD.

Nei prospetti, per semplicità e per rendere più facile il confronto, ove indicato nello stesso paragrafo 5.2 delle IPPC, viene riportato il riferimento alla tecnica presente nel capitolo 4 della stessa Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.

Dall'analisi del prospetto si evince che la raffineria adotta per l'unità in oggetto un insieme di tecniche in linea con le migliori disponibili al momento.



CLIENTE: ERG MED

PROGETTO: ADEGUAMENTO BAT pro IPPC

N° Progetto Rev. Foglio

A621 0

| TECN.    | INDICAZIONE                                                                                                                                                | STATO              | COMMENTO                                                                                                               | Note |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------|------|
|          | Applicare uno schema di<br>gestione acque (come parte<br>del sistema di gestione<br>integrato) indirizzato alla<br>riduzione di:                           |                    |                                                                                                                        |      |
|          | □ Volume di acqua<br>utilizzata in raffineria<br>attraverso:                                                                                               |                    |                                                                                                                        |      |
| 4.15.7.1 | - Integrazione dell'uso di<br>correnti d'acqua sulla<br>base di studi<br>ottimizzazione.                                                                   | Applicata          | La Raffineria massimizza il riutilizzo delle acque acide strippate. Inoltre le condense vengono recuperate             |      |
| 4.15.8.1 | - Riutilizzo dell'acqua<br>trattata al massimo<br>livello possibile                                                                                        | Applicata          | La raffineria riutilizza le<br>acque effluenti, per il<br>sistema antincendio e<br>servizi                             |      |
|          | - Applicazione di<br>tecniche per ridurre<br>l'acqua reflua generata a<br>partire da ciascuna unità<br>di processo                                         | Applicata          | La Raffineria massimizza<br>il riutilizzo delle acque<br>acide strippate. Inoltre le<br>condense vengono<br>recuperate |      |
| 4.15.6   | ☐ Contaminazione dell'acqua da:                                                                                                                            |                    |                                                                                                                        |      |
| 4.24.1   | - Segregazione di acque contaminate, poco contaminate, non contaminate e ove possibile dei sistemi di drenaggio.                                           | Applicata          | In Raffineria esistono sistemi di segregazione delle acque: oleose, semioleose, meteoriche                             |      |
| 4.8.1    | - Segregazione delle acque di raffreddamento a circuito aperto (once through) dalle altre acque di processo sino a quando queste non siano stati trattati. | Non<br>applicabile | Il sistema di<br>raffreddamento della<br>Raffineria è a circuito<br>chiuso                                             |      |



CLIENTE: ERG MED
PROGETTO: ADEGUAMENTO BAT pro IPPC

N° Progetto Rev. Foglio
A621 0

| 4 15 2   |                                                                                                                           |                    |                                                                                                                                                            | 1 |
|----------|---------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 4.15.3   | - Operazione di buon<br>housekeeping durante<br>l'esercizio e le<br>manutenzioni delle<br>installazioni esistenti         | Applicata          | E' prassi di Raffineria<br>minimizzare gli scarichi di<br>acque in fogna durante le<br>manutenzioni                                                        |   |
| 4.25.1   | - Prevenzione di perdite e controllo                                                                                      | Applicata          | Gli impianti sono soggetti<br>ad ispezione visiva<br>rutinaria da parte degli<br>operatori                                                                 |   |
| 4.24.8   | Raggiungimento dei seguenti parametri di tabella a paragrafo 4.0 mediante un'appropriata combinazione delle seguenti:     |                    |                                                                                                                                                            |   |
| 4.24.4-6 | □ WWT a tre stadi<br>consistenti in separazione<br>per gravità, separazione<br>fisica e biologico                         | Applicata          |                                                                                                                                                            |   |
| 4.24.6   | □ Processi di nitrificazione / denitrificazione                                                                           | Non<br>Applicabile | Il contenuto di composti<br>ammoniacali all'ingresso<br>del WWT consente già di<br>ottemperare ai limiti di<br>scarico di nitriti, nitrati e<br>ammoniaca. |   |
| 4.24.1   |                                                                                                                           |                    |                                                                                                                                                            |   |
|          | □ Assicurare che la progettazione del WWT preveda una sufficiente capacità atta a prevenire carichi tossici al biologico. | Applicata          | Presenti tank e bacini che assicurano hold-up ed equalizzazione adeguati.                                                                                  |   |
| 4.24.1   | □ Buone pratiche di<br>processo e housekeeping<br>per prevenire la<br>contaminazione                                      | Applicata          | E' prassi di Raffineria<br>minimizzare gli scarichi di<br>acque in fogna durante le<br>manutenzioni                                                        |   |



| CLIENTE:<br>PROGETTO: | ERG MED<br>ADEGUAMI | ENTO BAT pro IPPC |
|-----------------------|---------------------|-------------------|
| N° Progetto A621      | Rev.                | Foglio            |

| dell'acqua effluente.                                                                                                         |           |                                                                                               |  |
|-------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------------------------------------------------------------------------|--|
| □ Combinazioni di acque effluenti da diverse unità di processo con comparabili qualità per il sistema di trattamento primario | Applicata | Previsti segregazione e<br>pre-trattamenti allo scopo<br>di omogeneizzare il carico<br>al WWT |  |

# 17.4.2 Confronto emissioni con IPPC – Charter 4 – Techniques to consider in the determination of BAT

Per quanto riguarda le emissioni, la seguente tabella confronta quanto riportato nell'IPPC paragrafo 4.24.8) con quanto ottenuto operativamente nell'unità di WWT Disoleazione Sud.



| CLIENTE:    | ERG MED  |                   |  |
|-------------|----------|-------------------|--|
| PROGETTO:   | ADEGUAMI | ENTO BAT pro IPPC |  |
| N° Progetto | Rev.     | Foglio            |  |
| A621        | 0        |                   |  |

|                                                      | BAT 4.24.8 Tab. 4.50  |                                                  |                                  |
|------------------------------------------------------|-----------------------|--------------------------------------------------|----------------------------------|
|                                                      | Concentrazione (mg/l) | Carico Totale<br>(g/ton grezzo)<br>media annuale | Acque reflue<br>totali           |
| Temperature                                          | 30 – 35               |                                                  |                                  |
| pH                                                   | 6.5 – 8.5             |                                                  |                                  |
| Total Hydrocarbon                                    | 0.05 - 5              | 0.01 - 3                                         |                                  |
| Biochemical Oxygen Demand<br>(5 days @ 20°C)         | 2 – 30                | 0.5 - 25                                         | 7                                |
| Chemical Oxygen Demand                               |                       |                                                  |                                  |
| (2 hours)                                            | 30 – 160              | 3 – 125                                          |                                  |
| Ammoniacal Nitrogen                                  | 0.25 – 15             | 0.1 – 20                                         |                                  |
| (as N)                                               |                       |                                                  |                                  |
| Total Nitrogen                                       | 1 – 100               | 0.5 – 60                                         |                                  |
| Suspended Solids<br>(dried @ 105°C)                  | 2 – 80                | 1 – 50                                           |                                  |
| Cyanides                                             | 0.03 -0.1             | 0.06                                             |                                  |
| Fluor                                                | 1 – 10                |                                                  |                                  |
| (refineries using HF alkylation)                     |                       |                                                  |                                  |
| Nitrates                                             | 2 – 35                |                                                  |                                  |
| Nitrites                                             | 2 – 20                |                                                  |                                  |
| Phosphates (as P)                                    | 0.1 - 1.5             |                                                  | 66/                              |
| Total P                                              |                       |                                                  | 152                              |
| (as P)                                               | 1 – 2                 | 0.6 - 1.2                                        | E E                              |
| Sulphides                                            | 0.01 - 0.6            | 0.3                                              | EG                               |
| Sulphite                                             | < 2                   |                                                  |                                  |
| AOX<br>(as Cl)                                       | < 0.1                 | < 0.06                                           |                                  |
| Benzene                                              | < 0.001 – 0.05        |                                                  | - IA                             |
| Benzo(a)pyrene                                       | < 0.05                |                                                  |                                  |
| BTEX                                                 | < 0.001 – 0.1         | 0.001 - 0.005                                    | - KI                             |
| MTBE (lower level for refineries not producing MTBE) | < 0.001 – 0.1         |                                                  | IN ACCORDO AI LIMIT LEGGE 152/99 |
| Phenols                                              | 0.03 - 0.4            | 0.01 - 0.25                                      |                                  |
| Tensioactives (ionic and anionic)                    | < 2                   |                                                  |                                  |
| As                                                   | 0.00055 - 0.1         |                                                  |                                  |
| Cd                                                   | 0.0009 - 0.05         |                                                  |                                  |
| Total Cr                                             | < 0.5                 |                                                  |                                  |
| Cr (VI)                                              |                       |                                                  |                                  |
| (as Cr)                                              | < 0.1                 |                                                  |                                  |
| Со                                                   | < 0.5                 |                                                  |                                  |
| Zn                                                   | < 0.5 – 1             |                                                  |                                  |
| Pb                                                   | 0.024 - 0.5           |                                                  |                                  |
| Fe                                                   | < 3 – 5               |                                                  |                                  |
| Cu                                                   | 0.003 - 0.5           |                                                  |                                  |
| Ni                                                   | 0.006 - 0.5           |                                                  |                                  |
| Hg                                                   | < 0.0001 - 0.05       |                                                  |                                  |
| V                                                    | < 1                   |                                                  |                                  |



| CLIENTE:    | ERG MED  |                   |  |
|-------------|----------|-------------------|--|
| PROGETTO:   | ADEGUAMI | ENTO BAT pro IPPC |  |
| N° Progetto | Rev.     | Foglio            |  |
| A621        | 0        |                   |  |

# 18 UNITA' 2500 IMPIANTO ACQUA MARE RAFFREDDAMENTO

#### 18.1 Organizzazione

La gestione dell'unità è affidata alla funzione

GEST 2

#### 18.2 Descrizione del Processo

La maggior parte del sistema di raffreddamento e condensazione dei vari streams della Raffineria avviene mediante l'utilizzo di acqua mare (Cooling Water, CW).

Per **Sistema Acqua Mare** si intende il complesso di circolazione e raffreddamento della stessa; esso consiste prevalentemente in una circolazione forzata dell'acqua mare attraverso i vari impianti di processo e del suo raffreddamento in apposite torri (Cooling Towers).

Un appropriato reintegro di acqua mare (SW, Sea Water di make up) viene utilizzato per contenere il grado di salinità (entro un rapporto di concentrazione dei Sali fra l'acqua circolante e di reintegro pari a ca. 1.2) e per ripristinare le perdite di evaporazione.

La potenzialità del sistema risulta limitante soprattutto nelle condizioni più severe di esercizio (periodo estivo).

La temperatura dell'Acqua Mare in ingresso Torri mediamente risulta pari a 28°C nel periodo invernale e 33°C in quello estivo; quella in uscita Torri è 21°C in inverno e 26 in estate.

## 18.3 Capacità di Produzione e Trattamento delle Sostanze in Ingresso ed Uscita

#### Capacità

Capacità di progetto totale: 25000 m<sup>3</sup>/h (di acqua)



| CLIENTE:<br>PROGETTO: | ERG MED ADEGUAMENTO BAT pro IPPO |        |
|-----------------------|----------------------------------|--------|
| N° Progetto A621      | Rev.                             | Foglio |

# 18.3.1 Confronto consumi specifici con IPPC-Chapter 3-Environmental Aspects of Industrial Cooling Systems and Applied Prevention and Reduction Techniques

Per quanto riguarda i consumi specifici, la seguente tabella confronta quanto riportato nel capitolo 3 del Reference Document on the Application of Best Available Techniques to Industrial Cooling Systems con quanto ottenuto operativamente nell'unita 2500 di raffreddamento acqua mare

| Cooling System                  | Tota | al Energy Consumption (kWe/MWth) |
|---------------------------------|------|----------------------------------|
|                                 | IPPC |                                  |
| Once-Through - Direct           | 10   |                                  |
| Once-Through - <u>In</u> direct | 22   |                                  |
| Open Wet Cooling Tower          | 27   |                                  |
| Hybrid Cooling                  | 30   |                                  |
| Closed Circuit Cooling Tower    | > 34 | 26.7                             |
| Dry air Cooling                 | 48   |                                  |



| CLIENTE:<br>PROGETTO: | ERG MED<br>ADEGUAMI | ENTO BAT pro IPPC |
|-----------------------|---------------------|-------------------|
| N° Progetto A621      | Rev.                | Foglio            |

# 18.4 Stato di applicazione delle BAT competenti

Le BAT relative alle unità di trattamento acque di raffreddamento sono riportate nel capitolo 4 del Reference Document on the Application of Best Available Techniques to Industrial Cooling Systems.

Nel prospetto di seguito riportato viene mostrato lo stato di applicazione delle BAT citate con riferimento all'assetto della raffineria ISAB Sud.

Dall'analisi del prospetto si evince che la raffineria adotta per l'unità in oggetto un insieme di tecniche in linea con le migliori disponibili al momento.

| TECN.   | INDICAZIONE                                                                                                                                        | STATO     | COMMENTO                                                                                                                                                                                                      | NOTE |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 4.2.1.1 | Gestione del sistema di raffreddamento inquadrandolo nel sistema di gestione energetico generale attraverso:                                       | Applicata | Per tutte le unità è stato applicato un criterio di gestione del calore che privilegia i recuperi termici sia interni, che esterni alle varie unità minimizzando il calore perso all'atmosfera, ed            |      |
| 4.2.1.1 | raffreddamento industriale = Gestione del calore.                                                                                                  | Applicata | attraverso il sistema acqua di<br>raffreddamento                                                                                                                                                              |      |
| 4.2.1.2 | □ Riduzione del livello di calore disperso mediante ottimizzazione dei recuperi termici                                                            | Applicata |                                                                                                                                                                                                               |      |
| 4.2.1.3 | □ Scelta di un adeguato sistema di raffreddamento sulla base di esigenze di processo (nuove installazioni). Vedi tabella 4.1                       | Applicata | Il consumi di acqua di raffreddamento viene minimizzato utilizzando, ove possibile, il raffreddamento con aria.                                                                                               |      |
| 4.2.1.4 | Scelta di un adeguato sistema di raffreddamento sulla base delle caratteristiche del sito di installazione (nuove installazioni). Vedi tabella 4.2 | Applicata | La Raffineria, pur essendo costiera, utilizza un sistema di raffreddamento a circuito acqua chiuso, minimzzando il prelievo e lo scarico di acqua mare calda riducendo considerevolmente l'impatto ambientale |      |



CLIENTE: ERG MED

PROGETTO: ADEGUAMENTO BAT pro IPPC

N° Progetto Rev. Foglio

A621 0

|       | Riduzione del consumo energetico attraverso (vedi tab. 4.3):  Progettazione che consideri: - Riduzione della resistenza al flusso di acqua e di aria - Scelta apparecchiature ad alta efficienza - Riduzione del numero di apparecchiature con elevata richiesta energetica - Ottimizzazione dei                                                                                                                               | Applicata          | La progettazione delle apparecchiature del sistema C.W. è stata effettuata con l'obiettivo di minimizzare le perdite di carico, e contemporaneamente per garantire una velocità minima per ridurre i depositi e lo sporcamento. Si utilizzano |  |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|       | □ Progettazione che consideri:  - Riduzione della resistenza al flusso di acqua e di aria  - Scelta apparecchiature ad alta efficienza  - Riduzione del numero di apparecchiature con elevata richiesta energetica                                                                                                                                                                                                             | Applicata          | apparecchiature del sistema C.W. è stata effettuata con l'obiettivo di minimizzare le perdite di carico, e contemporaneamente per garantire una velocità minima per ridurre i depositi e lo                                                   |  |
| 4.3.1 | consideri: - Riduzione della resistenza al flusso di acqua e di aria - Scelta apparecchiature ad alta efficienza - Riduzione del numero di apparecchiature con elevata richiesta energetica                                                                                                                                                                                                                                    | Applicata          | apparecchiature del sistema C.W. è stata effettuata con l'obiettivo di minimizzare le perdite di carico, e contemporaneamente per garantire una velocità minima per ridurre i depositi e lo                                                   |  |
|       | trattamenti della CW per<br>ridurre lo sporcamento e<br>la corrosione nelle<br>apparecchiature                                                                                                                                                                                                                                                                                                                                 |                    | trattamenti antifouling e anticorrosione.                                                                                                                                                                                                     |  |
| 4.3.2 | □ Utilizzo di un sistema once through per alte capacità di raffreddamento >10MWth. Nel caso di fiumi e/o estuari tale sistema è applicabile se:  - L'estensione della plume calda nella superficie dell'acqua consente la migrazione della fauna ittica  - Le prese di acqua mare sono progettate per ridurre il trascinamento di fauna ittica  - Il carico termico sia tale da non interferire con altre utenze di acqua mare | Non<br>Applicabile |                                                                                                                                                                                                                                               |  |
|       | Riduzione delle richieste di<br>acqua di raffreddamento<br>(tab.4.4)                                                                                                                                                                                                                                                                                                                                                           | Applicata          | Sono stati massimizzati i recuperi termici, l'utilizzo di sistemi di circolazione chiusi e l'ottimizzazione dei cicli di concentrazione                                                                                                       |  |



CLIENTE: ERG MED

PROGETTO: ADEGUAMENTO BAT pro IPPC

N° Progetto Rev. Foglio

A621 0

|                     | organismi (tab. 4.5)                                                                         |           | massimo la possibilità di                                                                                                                                                                                                                                                                                                  |                                                                                                                      |
|---------------------|----------------------------------------------------------------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
|                     |                                                                                              |           | presenza di organismi viventi<br>nel sistema di raffreddamento                                                                                                                                                                                                                                                             |                                                                                                                      |
| 4.6.1-<br>4.6.1.1-2 | Riduzione delle emissioni di<br>calore e delle emissioni<br>chimiche in acqua<br>attraverso: |           |                                                                                                                                                                                                                                                                                                                            |                                                                                                                      |
| 4.6.3.1             | □ Prevenzione tramite progettazione e manutenzione (tab. 4.6)                                | Applicata | Il sistema di raffreddamento è stato progettato selezionando opportunamente i materiali e garantendo le necessarie velocità tali da minimizzare fouling nelle apparecchiature.                                                                                                                                             |                                                                                                                      |
| 4.6.3.2             | □ Controllo tramite ottimizzazione sistemi di trattamento (tab.4.7)                          | 1.1       | Il controllo del microbiocida è effettuato in continuo con monitoraggio dei massimi livelli raggiungibili (consentiti dalla legge). Composti a base di cromo, mercurio e organo-stannicie trattamenti shock non vengono utilizzati. Viene effettuato il controllo del macro-fouling per ottimizzare l'utilizzo di biocida. |                                                                                                                      |
| 4.7                 | Riduzioni di emissioni in aria (tab. 4.8)                                                    | Applicata | Gli interni in legno sono stati sostituiti nel tempo con quelli in materiale plastico. Sono stati installati <i>drift eliminator</i> ad alta efficienza                                                                                                                                                                    |                                                                                                                      |
| 4.8                 | Riduzione di emissioni<br>rumorose (tab. 4.9)                                                | Applicata | Il livello di rumorosità è inferiore a 85 dB                                                                                                                                                                                                                                                                               |                                                                                                                      |
| 4.9                 | Riduzione rischio di perdite (tab. 4.10)                                                     | Applicata | Tramite un continuo monitoraggio, tutti gli scambiatori lavorano nelle proprie condizioni di design. Per ridurre fenomeni di deposizione/corrosione la temperatura dell'acqua è sempre < 60°C.                                                                                                                             | Il circuito chiuso è un ulteriore garanzia nei confronti di eventuali perdite di emissioni di sostanze inquinanti in |



| CLIENTE:    | ERG MED  |                   |  |  |
|-------------|----------|-------------------|--|--|
| PROGETTO:   | ADEGUAMI | ENTO BAT pro IPPC |  |  |
| N° Progetto | Rev.     | Foglio            |  |  |
| A621        | 0        |                   |  |  |

|      |                                         |           |                                                                                                   | mare |
|------|-----------------------------------------|-----------|---------------------------------------------------------------------------------------------------|------|
| 4.10 | Riduzione rischio biologico (tab. 4.11) | Applicata | L'acqua è opportunamente trattata in continuo per evitare la proliferazione di colture batteriche |      |



| CLIENTE:    | ERG MED                  |        |  |  |
|-------------|--------------------------|--------|--|--|
| PROGETTO:   | ADEGUAMENTO BAT pro IPPC |        |  |  |
| N° Progetto | Rev.                     | Foglio |  |  |
| A621        | 0                        |        |  |  |

# 19 <u>UNITA' STOCCAGGIO E TRASFERIMENTO FLUIDI</u>

## 19.1 Organizzazione

La gestione dell'unità è affidata alla funzione GEST 3, suddivisa in due reparti (Blending – CVT e Pontile)

## 19.2 Descrizione del Processo e Capacità

#### 19.2.1 Stoccaggi

Il parco serbatoi è costituito da 79 Serbatoi a Tetto Galleggiante, da 7 serbatoi a tetto Fisso (+3 di Nuce), 10 sfere, 4 Ortosfere, 5 sfere orizzontali, 3 serbatoio di zolfo liquido, 7 serbatoi per additivi.

### Capacità:

- Tetti Galleggianti Volume Nominali: 2134500M3 (escluso Zavorra 901-904);
- Tetti Fissi Volume Nominali: 135000 M3;
- Sfere Volumi Nominali: 27000 M3;
- Ortosfere Volumi Nominali: 14000 M3;
- Sfere Orizzontali Volumi Nominali: 2500.

Di seguito si riporta un riepilogativo generale del parco stoccaggi che comprende serbatoi di prodotti petroliferi finiti, semilavorati, grezzi, GPL e altre sostanze:

| UBICAZIONE | PRODOTTO  |                   | N°       | CAPACITA'<br>TOTALE | CARATTERISTICHE                               |
|------------|-----------|-------------------|----------|---------------------|-----------------------------------------------|
|            | CATEGORIA | TIPOLOGIA         | SERBATOI | (m <sup>3</sup> )   |                                               |
| SUD        | A         | GREZZO/RESI.      | 9        | 83500               | A Tetto galleggiante con doppie tenute        |
| SUD        | С         | Olio Combustibile | 3        | 11000               | A tetto fisso gestite da Nuce                 |
| SUD        | С         | Olio Combustibile | 7        | 135000              | A tetto Fisso                                 |
| SUD        | С         | Olio Combustibile | 4        | 200000              | A tetto galleggiante con sola tenuta primaria |
| SUD        | С         | Olio Combustibile | 2        | 35000               | 2 Tetto Galleggiante con tenuta primaria      |



| CLIENTE:<br>PROGETTO: | ERG MED ADEGUAMENTO BAT pro IPPC |        |  |
|-----------------------|----------------------------------|--------|--|
| N° Progetto A621      | Rev.                             | Foglio |  |

| SUD | A | GASOLIO<br>FINITO–SEMILAV. | 20 | 535500 | 19 Tetto Galleggiante con<br>tenuta primaria<br>1 con doppia tenuta |
|-----|---|----------------------------|----|--------|---------------------------------------------------------------------|
| SUD | С | Gasolio                    | 1  | 50000  | Tetto Galleggiante con tenuta primaria                              |
| SUD | A | DAO+LCO                    | 4  | 40000  | Tetto Galleggiante con tenuta primaria                              |
| SUD | С | Gofinato                   | 1  | 50000  | Tetto Galleggiante con tenuta primaria                              |
| SUD | A | BENZINA<br>FINITA/SEMILAV. | 24 | 300000 | Tetto Galleggiante con doppie tenute                                |
| SUD | A | V.NAFTA                    | 3  | 65000  | Tetto Galleggiante con doppie tenute                                |
| SUD |   | C3-C4-GPL                  | 15 | 29500  | Sfere                                                               |
| SUD |   | IC5                        | 4  | 14000  | Ortosfere                                                           |
| SUD | С | SLOP                       | 6  | 14000  | 3 Tetto Galleggiante con<br>doppie tenute<br>3 senza doppia tenuta  |

Nel dettaglio, per ogni categoria di fluido si hanno in raffineria i seguenti serbatoi:

# Serbatoi contenenti prodotti di categoria A

Vedi Allegato

# Serbatoi contenenti prodotti di categoria B

Non è previsto alcuno stoccaggio di Cat. B

# Serbatoi contenenti prodotti di categoria C

Vedi Allegato

# Serbatoi contenenti prodotti di GPL

Vedi Allegato

# Serbatoi contenenti altri prodotti

Vedi Allegato



| CLIENTE:<br>PROGETTO: | ERG MED ADEGUAMENTO BAT pro IPPC |        |  |
|-----------------------|----------------------------------|--------|--|
| N° Progetto A621      | Rev.                             | Foglio |  |

#### 19.2.2 Sistema di Pesatura

Per la determinazione delle quantità movimentate si utilizza un sistema di calcolo (DCS in linea, stocchino per Bilancio di materia e consuntivazione fiscale);

Per i prodotti solidi si utilizza la pesa (zolfo).

#### 19.2.3 Sistema di Trasferimento

L'area Movimentazione include 5 sale pompe dislocate nelle varie zone della raffineria.

In relazione ai prodotti movimentati ed alle azioni espletate, le Sale Pompe si classificano:

- Sala Pompe Grezzi (Sala No. 2)
- Sala Pompe GPL e benzine (Sala No. 3)
- Sala Pompe Blending (Sala No. 1)
- Sala Pompe Gasoli e Oli combustibili (Sala No. 5)
- Sala Pompe Carico autobotti (Sala No. 4)

#### 19.2.4 Sistema di Carico

CVT: 6 Baie di carico per Gasolio e Benzine + 2 Baie di carico per C3 e GPL; PONTILE: Costituito da 5 Piattaforme con 5-6 bracci di carico. Gli oleodotti utilizzati per movimentazione sono 24 Vedi Allegato schema Oleodotti;

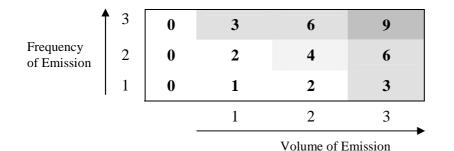
## 19.2.5 Schema di processo semplificato

Gli schemi di processo delle movimentazioni sono contenuti nel manuale operativo disponibile presso il reparto.

#### 19.2.6 Planimetria e sezioni

Uno schema planimetrico relativo agli stoccaggi ed ai trasferimenti è disponibile all'interno dei manuali operativi presso la funzione interessata.




| CLIENTE:         | ERG MED  |                   |  |
|------------------|----------|-------------------|--|
| PROGETTO:        | ADEGUAMI | ENTO BAT pro IPPC |  |
| N° Progetto A621 | Rev.     | Foglio            |  |

# 19.3 Confronto emissioni con IPPC-Chapter 3-Applied Storage, Tranfer and Handling Techniques

Un'analisi quantitativa delle emissioni non viene fatta nelle relative IPPC.

Ciò deriva dalla difficoltà di non possedere dei dati certi e sicuri dai vari siti produttivi, solamente in SVEZIA è in uso un metodo di quantificazione delle emissioni da serbatoi attraverso una tecnologia laser (metodo DIAL), ma non ci sono ancora necessarie informazioni sull'utilizzo di tale metodo in altri siti e nazioni.

Le IPPC, comunque, fanno un'analisi qualitativa delle emissioni caratterizzandone le possibili fonti ed analizzandole in termini di possibile entità del rilascio con la seguente matrice dei rischi:



| Frequency 3 = frequent (at least daily) 1 = infrequent (once per few years) |
|-----------------------------------------------------------------------------|
| Volume 3 = (relatively) large 1 = little 0 = zero/negligible                |

Dalla matrice di cui sopra è possibile calcolare l'*Emission Score* moltiplicando la frequenza di emissione con il volume di emissione. L'*Emission Score* è il parametro che caratterizza in termini di pericolosità per l'ambiente una possibile fonte di emissione.

Il capitolo 3 del "Reference Document on Best Available Techniques on Emissions from Storage" analizza, per tipologia di stoccaggio e tipo di trasferimento / trattamento del fluido, tutte le possibili fonti di emissioni, assegnando ad ognuna un relativo *emission score*.

Le fonti con  $Emission\ Score \geq 3$  sono considerate critiche e sono state analizzate nelle BAT riportate del Reference Document on Best Available Techniques on Emissions from Storage.



| CLIENTE:<br>PROGETTO: | ERG MED<br>ADEGUAMI | ENTO BAT pro IPPC |  |
|-----------------------|---------------------|-------------------|--|
| N° Progetto A621      | Rev.                | Foglio            |  |

## 19.4 Stato di applicazione delle BAT competenti

Le BAT relative all'unità di stoccaggio e trasferimento fluidi sono riportate nel capitolo 5 del Reference Document on Best Available Techniques on Emissions from Storage.

Nel prospetto di seguito riportato viene mostrato lo stato di applicazione delle BAT citate con riferimento all'assetto della raffineria ISAB.

Nel prospetto, per semplicità e per rendere più facile il confronto, ove indicato nello stesso capitolo 5 delle IPPC, viene riportato il riferimento alla tecnica presente nel capitolo 4 della stessa Reference Document on Best Available Techniques on Emissions from Storage.

Dall'analisi del prospetto si evince che la raffineria adotta per l'unità in oggetto un insieme di tecniche in linea con le migliori disponibili al momento.



| CLIENTE:         | ERG MED  |                   |  |
|------------------|----------|-------------------|--|
| PROGETTO:        | ADEGUAMI | ENTO BAT pro IPPC |  |
| N° Progetto A621 | Rev.     | Foglio            |  |

# 19.5 Stoccaggio di Liquidi e Gas Liquefatti

| TECN        | INDICAZIONE                                                                                                                                                                                                                                                                                                                                                                                                                                 | STATO              | COMMENTO                                                                                                                                                                                                                                  | NOTE |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|             | Principi generali per<br>prevenire e ridurre le<br>emissioni:                                                                                                                                                                                                                                                                                                                                                                               |                    |                                                                                                                                                                                                                                           |      |
|             | □ Un'appropriata progettazione che consideri almeno:  - Proprietà chimico-fisiche sostanze stoccate  - Appropriata conduzione dello stoccaggio  - Protezione e Controllo dalle deviazioni dalle normali condizioni operative (Istruzioni di sicurezza, interlock, allarmi,)  - Tipo di apparecchiature installate sulla base delle esperienze regresse  - Piano manutentivo ed ispettivo  - Comportamento in condizioni di emergenza (piano | Applicata          | La scelta del tipo stoccaggio è stata effettuata in fase di progettazione considerando le tipologie di fluidi da stoccare, le procedure operative, sistemi di sicurezza, piano di sicurezza nel caso di emergenze e piano di manutenzione |      |
|             | d'emergenza)                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                           |      |
| 4.1.2.2.1-2 | □ Piano d'ispezione e<br>manutenzione                                                                                                                                                                                                                                                                                                                                                                                                       | Applicata          | La Raffineria ha un piano di ispezione manutenzione che dipende dalla tipologia dello stoccaggio (triennale/decennale)                                                                                                                    |      |
| 4.1.2.3     | □ Scelta posizione e lay-out<br>di installazione per nuovi<br>stoccaggi                                                                                                                                                                                                                                                                                                                                                                     | Non<br>Applicabile | Installazioni esistenti, non si<br>prevedono ulteriori stoccaggi<br>in futuro                                                                                                                                                             |      |



| CLIENTE:<br>PROGETTO: | ERG MED ADEGUAMENTO BAT pro IPPC |        |
|-----------------------|----------------------------------|--------|
| N° Progetto           | Rev.                             | Foglio |
| A621                  | 0                                |        |

|                               |                                                                                                                                                          |                    |                                                                                                                                                 | 1 |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 4.1.3.6-7                     | □ Scelta del colore più appropriato per i tank                                                                                                           | Applicata          | Vernice bianca termoriflettente per benzine e V. Nafta in ottemperanza al D.M. 107/2000                                                         |   |
| 4.1.3.1                       | □ Adozione di principi di riduzione emissioni                                                                                                            | Applicata          | La Raffineria ha provveduto<br>ad installare un sistema di<br>recupero dei vapori per i<br>bracci di carico via terra dei<br>prodotti volatili. |   |
| 4.1.2.2.3                     | ☐ Monitoraggio emissioni di<br>COV calcolandone<br>regolarmente i valori                                                                                 | Applicata          | Sono previsti campionamenti semestrali delle emissioni COV provenienti dal sistema recupero vapori dei bracci di carico via terra.              |   |
| 4.1.4.4                       | □ Sistemi di stoccaggio e<br>apparecchiature dedicati a<br>gruppi di prodotti<br>compatibili                                                             | Applicato          | I prodotti vengono stoccati in<br>serbatoi adeguati alle<br>caratteristiche in accordo a<br>quanto previsto da R.D. n°<br>1303 del 20/7/1934    |   |
|                               | Considerazioni specifiche sui tank:                                                                                                                      |                    |                                                                                                                                                 |   |
| 4.1.3.2<br>4.1.3.3<br>4.1.3.4 | □ Open top tank. Se ci sono emissioni all'aria, bisogna coprire il tank con: - Copertura flottante - Copertura flessibile - Copertura rigida             | Non<br>Applicabile | Non ci sono stoccaggi a tetto aperto                                                                                                            |   |
| 4.1.3.15                      | In aggiunta, per i tank coperti con coperture flessibili o rigide, i vapori possono essere trattati per ottenere un'ulteriore riduzione delle emissioni. |                    |                                                                                                                                                 |   |
| 4.1.5.1                       | Per prevenire depositi che richiederebbero un                                                                                                            |                    |                                                                                                                                                 |   |



| CLIENTE:    | ERG MED  |                   |  |
|-------------|----------|-------------------|--|
| PROGETTO:   | ADEGUAMI | ENTO BAT pro IPPC |  |
| N° Progetto | Rev.     | Foglio            |  |
| A621        | 0        |                   |  |

|             | T                                                                                                                                                                                                     |                                                   |                                                                                                                                                                                                                   |  |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 4.1.3.9     | External floating roof tank. Ridurre la distanza tra tetto e parete al di sotto di 3.2 mm, adottando un sistema di tenuta a liquido o meccanica per ridurre le emissioni almeno del 97%)              | Parzialmente<br>Applicata                         | I serbatoi di Cat. A sono dotati di tenuta doppia secondo le migliori tecnologie. Prevista l' installazione di tenuta doppia anche sui serbatoi di slop (si veda elenco allegato)                                 |  |
| 4.1.3.9.2   | Misure addizionali di riduzione emissioni sono l'utilizzo di: - galleggianti nelle guide a pali scanalati - manicotti sulle guide a pali scanalati e/o - Coprire i supporti del tetto                 | Non<br>applicata<br>Non<br>applicata<br>applicata |                                                                                                                                                                                                                   |  |
| 4.1.5.1     | Per prevenire depositi che richiederebbero uno step di pulizia ulteriore, nel caso di liquidi con un alto contenuto di particelle, bisogna mescolare le sostanze stoccate                             | Parzialmente<br>Applicata                         | La Raffineria adotta dei criteri di stoccaggio e di preparazione prodotti che evitano la miscelazione di incompatibili per evitare la precipitazione di asfalteni. Si dispone, inoltre, di jet-mixer nei serbatoi |  |
| 4.1.3.15    | ☐ Fixed roof tank.  Adottare un sistema di trattamento vapori per stoccaggi di sostanze tossiche (T), altamente tossiche (T+) e cancerogene, mutagene, tossico-riproduttive (CMR) di categoria 1 e 2. | Non<br>Applicabile                                | Esistono tali tipi di sostanze<br>in raffineria (CFPP ed<br>additivi); esse sono stoccate<br>in quantità molto limitate,<br>pertanto non è giustificato<br>un sistema di abbattimento<br>vapori                   |  |
| 4.1.3.10-15 | Per le restanti sostanze                                                                                                                                                                              | Non<br>Applicabile                                | Le sostanze stoccate in serbatoi a tetto fisso non sono di categoria A e, di conseguenza, non producono quantitativi apprezzabili di vapore                                                                       |  |
| 4.1.3.11    | - Valvola di respirazione                                                                                                                                                                             | Applicata                                         |                                                                                                                                                                                                                   |  |



| CLIENTE:<br>PROGETTO: | ERG MED ADEGUAMENTO BAT pro IPPC |        |
|-----------------------|----------------------------------|--------|
| N° Progetto           | Rev.                             | Foglio |
| A621                  | 0                                |        |

|          | - Set superiore della<br>valvola PVSV pari a 56<br>mbar                                                                                                                                                                            | Applicata          | Le pressioni di set delle<br>PVSV sono fissate in<br>accordo alle massime<br>condizioni meccaniche<br>sostenibili              |  |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------|--|
| 4.1.3.13 | - Recupero vapori di out-<br>breathing attraverso un<br>bilanciamento tra il tank<br>che trasferisce liquido e<br>quello che lo riceve                                                                                             | Non<br>applicabile | Le sostanze stoccate in serbatoi a tetto non sono di categoria A e, di conseguenza, non producono quantitativi apprezzabili di |  |
| 4.1.3.14 | <ul> <li>Holding tank per il sistema di bilanciamento vapori, o</li> <li>Trattamento vapori</li> </ul>                                                                                                                             |                    | vapori                                                                                                                         |  |
|          |                                                                                                                                                                                                                                    |                    |                                                                                                                                |  |
| 4.1.3.15 | Atmospheric horizontal tank.  Adottare un sistema di trattamento vapori per sostanze tossiche (T), altamente tossiche (T+) e CMR di categoria 1 e 2.  Per le restanti sostanze, devono essere applicate tutte, o una combinazione, | Non<br>Applicabile | Non ci sono tali serbatoi in raffineria                                                                                        |  |
|          | a seconda della sostanza stoccata, delle seguenti tecniche:                                                                                                                                                                        |                    |                                                                                                                                |  |
| 4.1.3.11 | - Valvola di respirazione                                                                                                                                                                                                          |                    |                                                                                                                                |  |
|          | - Set superiore della<br>valvola PVSV pari a 56<br>mbar                                                                                                                                                                            |                    |                                                                                                                                |  |
| 4.1.3.13 | - Recupero vapori di out-<br>breathing attraverso un                                                                                                                                                                               |                    |                                                                                                                                |  |



| CLIENTE:    | ERG MED  |                   |
|-------------|----------|-------------------|
| PROGETTO:   | ADEGUAMI | ENTO BAT pro IPPC |
| N° Progetto | Rev.     | Foglio            |
| A621        | 0        |                   |

| 4.1.3.15             | sistema di bilanciamento<br>vapori, o<br>- Trattamento vapori                                                                                                               |                    |                                                                                                                                                                       |  |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 4.1.3.13             | - Trattamento vapori                                                                                                                                                        |                    |                                                                                                                                                                       |  |
| 4.1.3.15             | Underground and mounded tank.  Adottare un sistema di trattamento vapori per sostanze tossiche (T), altamente tossiche (T+) e CMR di categoria 1 e 2.                       | Non<br>Applicabile | Non esistono tali serbatoi in raffineria                                                                                                                              |  |
|                      | Per le restanti sostanze,<br>devono essere applicate<br>tutte, o una combinazione,<br>a seconda della sostanza<br>stoccata, delle seguenti<br>tecniche:                     |                    |                                                                                                                                                                       |  |
| 4.1.3.11<br>4.1.3.13 | <ul> <li>Valvola di respirazione</li> <li>Recupero vapori di outbreathing attraverso un bilanciamento tra il tank che trasferisce liquido e quello che lo riceve</li> </ul> |                    |                                                                                                                                                                       |  |
| 4.1.3.14             | - Holding tank per il<br>sistema di bilanciamento<br>vapori, o                                                                                                              |                    |                                                                                                                                                                       |  |
| 4.1.3.15             | - Trattamento vapori                                                                                                                                                        |                    |                                                                                                                                                                       |  |
|                      | Prevenzione Incidenti                                                                                                                                                       |                    |                                                                                                                                                                       |  |
| 4.1.6.1              | □ Definizione ed<br>applicazione di un piano di<br>gestione delle emergenze                                                                                                 | Applicata          | La Raffineria dispone di un<br>piano di emergenza specifico<br>nell'ambito del sistema di<br>gestione della sicurezza per<br>prevenzione degli incindenti<br>rilevati |  |
| 4.1.6.1.1            | <ul> <li>□ Prevenire la corrosione attraverso:</li> <li>- Selezione di materiali appropriati</li> <li>- Appropriate tecniche di costruzione delle</li> </ul>                | Applicata          | Il problema della corrosione è abitualmente considerato sia nella fase di progettazione (scelta dei materiali, tecnologie costruttive,), che nella                    |  |



CLIENTE: ERG MED

PROGETTO: ADEGUAMENTO BAT pro IPPC

N° Progetto Rev. Foglio

A621 0

|           | apparecchiature                                      |           | fase di gestione operativa.     |  |
|-----------|------------------------------------------------------|-----------|---------------------------------|--|
|           | - Prevenire l'entrata di                             |           | Sono previsti sistemi di        |  |
|           | acqua nei tank e, se                                 |           | drenaggio, raccolta e           |  |
|           | necessario rimuoverla                                |           | convogliamento delle acque      |  |
|           | dai tank                                             |           | meteoriche.                     |  |
|           | - Assicurare corretta                                |           | E' previsto un piano di         |  |
|           | gestione delle acque                                 |           | manutenzione preventivo dei     |  |
|           | piovane per avere                                    |           | singoli stoccaggi.              |  |
|           | drenaggi efficaci                                    |           |                                 |  |
|           | - Manutenzione preventiva                            |           |                                 |  |
|           | e,                                                   |           |                                 |  |
|           | - Dove applicabile,                                  |           |                                 |  |
|           | aggiungere inibitori di                              |           |                                 |  |
|           | corrosione o protezioni                              |           |                                 |  |
|           | catodiche all'interno dei                            |           |                                 |  |
|           | tank                                                 |           |                                 |  |
|           | - Rivestimento resistente                            |           |                                 |  |
|           | alla corrosione, come                                |           |                                 |  |
|           | bitume (valido per tank                              |           |                                 |  |
|           | interrati)                                           |           |                                 |  |
|           | - Placcatura (valido per                             |           |                                 |  |
|           | tank interrati)                                      |           |                                 |  |
|           | - Protezione catodica                                |           |                                 |  |
|           |                                                      |           |                                 |  |
|           | (valido per tank interrati)                          |           |                                 |  |
|           | □ Prevenire lo Stress                                | Applicata | Ove necessario, sono stati      |  |
|           | Corrosion Craking (SCC)                              | Аррпсаца  | adottati trattamenti post-      |  |
|           | attraverso:                                          |           | saldatura e regolari ispezioni  |  |
| 4.1.6.1.1 |                                                      |           |                                 |  |
| 4.1.0.1.1 | - Trattamenti termici post-<br>saldatura             |           | sono previste                   |  |
| 4.1.2.2.1 |                                                      |           |                                 |  |
| 4.1.2.2.1 | - Ispezioni basate su<br>un'analisi dei rischi       |           |                                 |  |
|           | un anansi dei fiscin                                 |           |                                 |  |
| 4.1.6.1.2 | ☐ Implementare o definire                            | Applicata | I a amanazioni di               |  |
| 4.1.0.1.2 | *                                                    | Аррпсата  | Le operazioni di                |  |
|           | procedure operative che                              |           | trasferimento e riempimento     |  |
|           | permettano di prevenire                              |           | vengono gestite attraverso      |  |
|           | l'overfill come segue:                               |           | procedure operative. In tutti i |  |
|           | - monitorare alta pressione ed alto livello nei tank |           | tank vengono monitorati i       |  |
|           |                                                      |           | livelli e, ove necessario, le   |  |
|           | con relativi allarmi e/o                             |           | pressioni di massima            |  |
|           | chiusura automatica delle                            |           |                                 |  |
|           | valvole                                              |           | Den marte de 1 1                |  |
|           | - Appropriate istruzioni                             |           | Per quanto riguarda lo          |  |
|           | operative che                                        |           | stoccaggio del GPL, è in fase   |  |
|           | prevengano l'overfill                                |           | di completamento un sistema     |  |
|           | durante le operazioni di                             |           | automatico di blocco e          |  |
|           | riempimento                                          |           | derivazione per alto livello    |  |
|           | - sufficiente capacità per                           |           |                                 |  |
|           | ricevere il batch                                    |           |                                 |  |
| 41614     | - D'Il                                               | A 1*      | L. D.C.                         |  |
| 4.1.6.1.4 | □ Rilevare perdite dai tank                          | Applicata | La Raffineria prevede delle     |  |



CLIENTE: ERG MED

PROGETTO: ADEGUAMENTO BAT pro IPPC

N° Progetto Rev. Foglio

A621 0

|                                       | che contegano liquidi in grado di causare potenziale inquinamento del suolo attraverso:  - Realizzazione barriere preventive  - Check list  - Metodo emissioni acustiche  - Monitoraggio vapori emessi dal terreno                                                                                                                                                         |           | ispezioni visive periodiche<br>ed attività di ispezione e<br>manutenzione preventiva<br>programmata                                                            |  |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 4.1.6.1.5                             | □ Avere un rischio di inquinamento del suolo dal fondo dei serbatoi trascurabile (analisi dei rischi)                                                                                                                                                                                                                                                                      | Applicata | Il programma di<br>manutenzione preventiva è<br>stato elaborato sulla base<br>della stima della vita media<br>in relazione alla natura dei<br>fluidi stoccati. |  |
| 4.1.6.1.8<br>4.1.6.1.10<br>4.1.6.1.11 | □ Per evitare inquinamento del terreno, prevedere per i tank che contengono liquidi infiammabili o inquinanti un ulteriore contenimento come:  - Diga intorno ogni tank  - Tank a doppia parete  - Cup-tank (costruzione di un nuovo tank intorno al tank a singola parete ad una distanza di circa 1.5 m)  - Tank a doppia parete con monitoraggio dello scarico di fondo | Applicata | Per tank che stoccano tali sostante sono previsti bacini di contenimento                                                                                       |  |
| 4.1.6.2.1                             | □ Verificare la classificazione delle aree con la direttiva ATEX 1999/92/EC                                                                                                                                                                                                                                                                                                | Applicata | Le nuove installazioni sono<br>in accordo alla direttiva<br>ATEX 1999/92/EC                                                                                    |  |
| 4.1.6.2.2                             | □ Prevedere nel caso di mancanza delle distanze di sicurezza, misure di protezione dal fuoco quali: - Rivestimento o copertura resistente al fuoco - Muri tagliafuoco (solo per piccoli tank) e/o - Sistema di acqua di raffreddamento                                                                                                                                     | Applicata | Tali misure sono state<br>adottate nell'ambito del<br>sistema di gestione della<br>sicurezza per la prevenzione<br>degli incidenti rilevati                    |  |



| CLIENTE:    | ERG MED                  |        |  |
|-------------|--------------------------|--------|--|
| PROGETTO:   | ADEGUAMENTO BAT pro IPPC |        |  |
| N° Progetto | Rev.                     | Foglio |  |
| A621        | 0                        |        |  |

| 4.1.6.2.4 Preveder contenimento dei materiali estinguenti contaminati che permetta isolamento dalla rete dei drenaggi |  | Tutti i dreni dell'area<br>stoccaggi sono convogliati in<br>fogna oleosa |  |
|-----------------------------------------------------------------------------------------------------------------------|--|--------------------------------------------------------------------------|--|
|-----------------------------------------------------------------------------------------------------------------------|--|--------------------------------------------------------------------------|--|



| CLIENTE:         | ERG MED                  |        |  |  |
|------------------|--------------------------|--------|--|--|
| PROGETTO:        | ADEGUAMENTO BAT pro IPPC |        |  |  |
| N° Progetto A621 | Rev.                     | Foglio |  |  |

### 19.6 Trasferimento e Trattamento di Liquidi e Gas Liquefatti

| TECN      | INDICAZIONE                                                                                                  | STATO | COMMENTO                                                                                                                                | NOTE |
|-----------|--------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------|------|
| 4.1.2.2.1 | Principi generali per prevenire e ridurre le emissioni:                                                      |       | E' previsto un programma di ispezione e manutenzione preventivo differenziato per tipologia di prodotto                                 |      |
| 7.1.2.2.1 | gestisca la manutenzione<br>preventiva e sviluppi<br>un'analisi dei rischi basata<br>su un piano d'ispezioni |       |                                                                                                                                         |      |
| 4.2.1.3   | □ Prevedere un programma<br>di rilevazione perdite e<br>riparazioni                                          |       | Le attrezzature vengono regolarmente ispezionate visivamente dagli operatori di impianto su base rutinaria                              |      |
| 4.1.6.1   | ☐ Prevedere un sistema di<br>gestione delle emergenze                                                        |       | La Raffineria dispone di<br>piani di emergenza<br>nell'ambito dell'SGS                                                                  |      |
|           | Considerazioni sulle tecniche di trasferimento e trattamento:                                                |       |                                                                                                                                         |      |
|           | □ Relativamente al piping                                                                                    |       | Il sistema di trasferimento e                                                                                                           |      |
| 4.1.2.2.1 | prevedere quanto segue: - Applicare una realistica manutenzione sulle tubazioni esitenti interrate           |       | gestione fluidi è stato<br>realizzato attraverso una<br>progettazione che ha tenuto<br>conto di tutte le<br>problematiche relative alla |      |
| 4.2.2.1   | - Minimizzare il numero<br>di flange rimpiazzandole<br>con connessioni saldate                               |       | minimizzazione delle fughe<br>(minimizzare le connessioni<br>frangiate, scelta opportuni                                                |      |
| 4.2.2.2   | - Utilizzare tappi e non valvole sulle linee aperte                                                          |       | materiali,). Inoltre, viene continuamente monitorato                                                                                    |      |
| 4.2.2.2   | - Assicurarsi che le guarnizioni siano idonee al servizio richiesto                                          |       | sulla base di un piano di<br>manutenzione preventivo                                                                                    |      |
| 4.2.2.2   | - Assicurarsi della corretta installazione delle guarnizioni                                                 |       |                                                                                                                                         |      |
| 4.2.2.2   | - Assicurarsi che i giunti flangiati siano assemblati e caricati correttamente                               |       |                                                                                                                                         |      |
| 4.2.2.2   | - Utilizzare guarnizioni ad<br>alta integrità (spiral<br>wound, kammprofile o<br>ring joint) per tubazioni   |       |                                                                                                                                         |      |



| CLIENTE:    | ERG MED                  |        |  |  |  |
|-------------|--------------------------|--------|--|--|--|
| PROGETTO:   | ADEGUAMENTO BAT pro IPPO |        |  |  |  |
| N° Progetto | Rev.                     | Foglio |  |  |  |
| A621        | 0                        |        |  |  |  |

| 4.2.3.1 | che veicolano fluidi tossici, cancerogeni, comunque pericolosi - Prevenire la corrosione interna selezionando accuratamente i materiali, utilizzando metodi di costruzione                                                                      |                    |                                                                                                                                                    |  |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 4.2.3.2 | appropriati, con manutenzione preventiva e quando applicabile con rivestimento interno o con l'aggiunta di inibitori  - Prevenire la corrosione esterna applicando 1, 2 o 3 strati (in relazione alle caratteristiche del sito) di rivestimento |                    |                                                                                                                                                    |  |
| 4.2.8   | Prevedere recupero dei<br>vapori durante le<br>operazioni di carico e<br>scarico di sostanze volatili<br>da camion, chiatte o navi                                                                                                              | Applicata          | Il carico via terra è dotato di<br>un sistema di recupero<br>vapori                                                                                |  |
| 4.2.9   | □ Relativamente alle valvole prevedere quanto segue: - Corretta scelta del materiale e del processo di costruzione                                                                                                                              | Applicata          |                                                                                                                                                    |  |
|         | - Utilizzo di valvole di controllo rotanti o pompe con variazione di velocità in luogo di valvole di controllo con stelo verticale                                                                                                              | Non<br>Applicabile | La Raffineria non considera<br>affidabile l'utilizzo di pompe<br>a velocità variabile                                                              |  |
|         | - Utilizzo di valvole a diaframma, con soffietto o a doppia parete per il maneggaimento di sostanze tossiche ed inquinanti                                                                                                                      | Non<br>Applicabile | Le valvole di controllo sono di tipo convenzionale l'integrità della tenuta verso l'esterno è garantita dall'ispezione visiva e dalla manutenzione |  |
|         | - Collettare le valvole di sicurezza                                                                                                                                                                                                            | Applicata          |                                                                                                                                                    |  |
|         | □ Relativamente alle pompe<br>ed ai compressori<br>prevedere quanto segue:<br>- Verifica corretto<br>fissaggio alla propria                                                                                                                     | Applicata          | La scelta delle macchine è stata effettuata sulla base dei requisiti del processo, inoltre check e continuo                                        |  |



| CLIENTE:<br>PROGETTO: | ERG MED<br>ADEGUAMI | ENTO BAT pro IPPC |
|-----------------------|---------------------|-------------------|
| N° Progetto A621      | Rev.                | Foglio            |

| _              | <del>,</del>                  |           |                                |  |
|----------------|-------------------------------|-----------|--------------------------------|--|
|                | base                          |           | monitoraggio, regolati dal     |  |
|                | - Verifica dei carichi sulle  |           | piano di manutenzione,         |  |
|                | connessioni con le            |           | vengono effettuati di          |  |
|                | tubazioni con i valori        |           | continuo per verificare sia la |  |
|                | raccomandati dal              |           | corretta installazione, che il |  |
|                | costruttore                   |           | corretto funzionamento         |  |
|                | - Opportuna progettazione     |           |                                |  |
|                | della linea di aspirazione    |           |                                |  |
|                | tale da minimizzare gli       |           |                                |  |
|                | sbilanciamenti idraulici      |           |                                |  |
|                | - Allineamento della          |           |                                |  |
|                | macchina secondo le           |           |                                |  |
|                | raccomandazioni del           |           |                                |  |
|                | costruttore                   |           |                                |  |
|                | - Corretto livello di         |           |                                |  |
|                | bilanciamento tra le parti    |           |                                |  |
|                | rotanti                       |           |                                |  |
|                | - Funzionamento della         |           |                                |  |
|                | macchina entro i range        |           |                                |  |
|                | raccomandati dal              |           |                                |  |
|                | costruttore                   |           |                                |  |
|                | - NPSH disponibile            |           |                                |  |
|                | sempre superiore a            |           |                                |  |
|                | quello richiesto dalla        |           |                                |  |
|                | macchina                      |           |                                |  |
| 4.2.9/4.2.9.13 | - Regolare manutenzione       |           |                                |  |
|                | - Corretta scelta del tipo di |           |                                |  |
|                | pompa/compressore e del       |           |                                |  |
|                | tipo di tenuta sulla base     |           |                                |  |
|                | del processo                  |           |                                |  |
|                | dei processo                  |           |                                |  |
| 4.2.9.14       | □ Prevedere per i punti di    | Applicata |                                |  |
|                | campionamento di sostanze     | Пррпсии   |                                |  |
|                | volatili valvole del tipo     |           |                                |  |
|                | ram, o a spillo e valvola di  |           |                                |  |
|                | blocco. Quando è richiesto    |           |                                |  |
|                | uno spurgo su tali linee,     |           |                                |  |
|                | prevedere campionamenti       |           |                                |  |
|                | su linee a loop chiuso        |           |                                |  |
|                | sa finee a roop entuso        |           |                                |  |
|                |                               |           |                                |  |

### 19.7 Allegati

- A seguire si riporta:
   elenco serbatoi per categoria;
   elenco serbatoi dotati di tenuta doppia.



CLIENTE: ERG MED

PROGETTO: ADEGUAMENTO BAT pro IPPC

N° Progetto Rev. Foglio

A621 0

| SERBATOI CHE POSSONO CONTENERE PRODOTTI DI CATEGORIA A |      |                  |        |      |                   |           |                 |             |  |
|--------------------------------------------------------|------|------------------|--------|------|-------------------|-----------|-----------------|-------------|--|
|                                                        |      |                  |        | VERN | CAPACITA'         |           | CARATTERISTICHE |             |  |
| POSIZIO                                                |      | COCTANGA         | TENUTA | TERM | [m <sup>3</sup> ] |           | Diam            | Alt / Lungh |  |
| NE                                                     | ITEM | SOSTANZA         | DOPPIA | OR.  | 100000            | Tipologia | [m]             | [m]         |  |
| SUD                                                    | 101  | GREZZO           | SI     |      | 100000            | TG        | 86,340          | 17,080      |  |
| SUD                                                    | 102  | GREZZO           | SI     |      | 100000            | TG        | 86,340          | 17,080      |  |
| SUD                                                    | 103  | GREZZO           | SI     |      | 100000            | TG        | 86,340          | 17,080      |  |
| SUD                                                    | 104  | GREZZO           | SI     |      | 100000            | TG        | 86,340          | 17,080      |  |
| SUD                                                    | 106  | GREZZO           | SI     |      | 100000            | TG        | 86,340          | 17,080      |  |
| SUD                                                    | 107  | FUEL             |        |      | 100000            | TG        | 86,340          | 17,080      |  |
| SUD                                                    | 108  | FS (GREZZO)      | SI     |      | 100000            | TG        | 86,340          | 17,080      |  |
| SUD                                                    | 109  | GREZZO           | SI     |      | 100000            | TG        | 86,340          | 17,080      |  |
| SUD                                                    | 301  | GASOLIO          |        |      | 50000             | TG        | 61,051          | 17,080      |  |
| SUD                                                    | 302  | GASOLIO          |        |      | 50000             | TG        | 61,051          | 17,080      |  |
| SUD                                                    | 303  | GASOLIO          |        |      | 50000             | TG        | 61,051          | 17,080      |  |
| SUD                                                    | 305  | GASOLIO          | SI     |      | 35000             | TG        | 51,079          | 17,080      |  |
| SUD                                                    | 306  | GASOLIO          |        |      | 35000             | TG        | 51,079          | 17,080      |  |
| SUD                                                    | 307  | GASOLIO          | SI     |      | 35000             | TG        | 51,079          | 17,080      |  |
| SUD                                                    | 309  | GASOLIO          |        |      | 10000             | TG        | 30,125          | 14,030      |  |
| SUD                                                    | 310  | GASOLIO          |        |      | 10000             | TG        | 30,125          | 14,030      |  |
| SUD                                                    | 311  | FS(LCO)          |        |      | 10000             | TG        | 30,125          | 14,030      |  |
| SUD                                                    | 312  | LCO              |        |      | 10000             | TG        | 30,125          | 14,030      |  |
| SUD                                                    | 313  | DAO              |        |      | 10000             | TG        | 30,125          | 14,030      |  |
| SUD                                                    | 314  | DAO              |        |      | 10000             | TG        | 30,125          | 14,030      |  |
| SUD                                                    | 315  | FS(GASOLIO)      |        |      | 10000             | TG        | 30,125          | 14,030      |  |
| SUD                                                    | 401  | GASOLIO          |        |      | 20000             | TG        | 38,612          | 17,080      |  |
| SUD                                                    | 402  | GASOLIO          |        |      | 20000             | TG        | 38,612          | 17,080      |  |
| SUD                                                    | 405  | JP1              | SI     |      | 20000             | TG        | 38,612          | 17,080      |  |
| SUD                                                    | 415  | FS(V.NAFTA)      |        |      | 10000             | TG        | 30,125          | 14,030      |  |
| SUD                                                    | 416  | stream Benzolico | SI     |      | 10000             | TG        | 30,125          | 14,030      |  |
| SUD                                                    | 417  | BENZINA          | SI     | SI   | 5000              | TG        | 21,302          | 14,030      |  |
| SUD                                                    | 508  | POWERFORMATA     | SI     |      | 15000             | TG        | 33,439          | 17,080      |  |
| SUD                                                    | 509  | stream Benzolico | SI     |      | 15000             | TG        | 33,439          | 17,080      |  |
| SUD                                                    | 515  | V.N.             | SI     | SI   | 35000             | TG        | 51,079          | 17,080      |  |
| SUD                                                    | 516  | V.N.             | SI     | SI   | 35000             | TG        | 51,079          | 17,080      |  |
| SUD                                                    | 517  | GASOLIO          | 51     | 51   | 35000             | TG        | 51,079          | 17,080      |  |
| SUD                                                    | 518  | BENZ. FINITA     | SI     | SI   | 35000             | TG        | 51,079          | 17,080      |  |
| SUD                                                    | 520  | BENZ. FINITA     | SI     | SI   | 35000             | TG        | 51,079          | 17,080      |  |
| SUD                                                    | 522  | BENZ. FINITA     | SI     | SI   | 15000             | TG        | 33,439          | 17,080      |  |
| SUD                                                    | 523  | BENZ. FINITA     | SI     | SI   | 15000             | TG        | 33,439          | 17,080      |  |



CLIENTE: **ERG MED**PROGETTO: **ADEGUAMENTO BAT pro IPPC**N° Progetto Rev. Foglio

0

A621

| SUD  | 524 | BENZ. FINITA     | SI   | SI           | 15000       | TG | 33,439 | 17,080 |
|------|-----|------------------|------|--------------|-------------|----|--------|--------|
| SUD  |     |                  | SI   | SI           | 15000       | TG | 33,439 | 17,080 |
| SUD  |     |                  | SI   | SI           | 15000       | TG | 33,439 | 17,080 |
| SUD  | 535 | BENZ. FINITA     | SI   | SI           | 15000       | TG | 33,439 | 17,080 |
| BOD  | 333 | BEIVE. I II VIII | - 51 | mantell      | 13000       | 10 | 33,437 | 17,000 |
| SUD  | 537 | FS(BENZ.FINITA)  | SI   | О            | 6000        | TG | 21,149 | 17,080 |
| CLID | 520 | DENZ FINITA      | CI   | mantell      | <b>6000</b> | TC | 21.140 | 17.000 |
| SUD  | 538 | BENZ. FINITA     | SI   | o<br>mantell | 6000        | TG | 21,149 | 17,080 |
| SUD  | 539 | BENZ. FINITA     | SI   | 0            | 6000        | TG | 21,149 | 17,080 |
|      |     |                  |      | mantell      |             |    |        |        |
| SUD  | 540 | BENZ. FINITA     | SI   | О            | 6000        | TG | 21,149 | 17,080 |
| SUD  | 541 | POWERFORMATA     | SI   |              | 5000        | TG | 21,302 | 14,030 |
| SUD  | 542 | stream Benzolico | SI   |              | 5000        | TG | 21,302 | 14,030 |
| SUD  | 615 | MTBE             | SI   |              | 5000        | TG | 21,302 | 14,030 |
| SUD  | 616 | MTBE             | SI   |              | 5000        | TG | 21,302 | 14,030 |
| SUD  | 701 | GASOLIO          |      |              | 20000       | TG | 38,612 | 17,080 |
| SUD  | 702 | GASOLIO          |      |              | 20000       | TG | 38,612 | 17,080 |
| SUD  | 703 | GASOLIO          |      |              | 20000       | TG | 38,612 | 17,080 |
| SUD  | 704 | KEL              |      |              | 15000       | TG | 33,439 | 17,080 |
| SUD  | 705 | GASOLIO          |      |              | 15000       | TG | 33,439 | 17,080 |
| SUD  | 706 | GASOLIO          |      |              | 15000       | TG | 33,439 | 17,080 |
| SUD  | 707 | FS(GREZZO).      |      |              | 35000       | TG | 51,079 | 17,080 |
| SUD  | 708 | GASOLIO          |      |              | 35000       | TG | 51,079 | 17,080 |
| SUD  | 709 | VIRGIN NAFTA     | SI   |              | 15000       | TG | 33,439 | 17,080 |
| SUD  | 710 | FS(BENZINA)      | SI   | SI           | 15000       | TG | 33,439 | 17,080 |
| SUD  | 711 | GASOLIO          |      |              | 15000       | TG | 33,439 | 17,080 |
| SUD  | 712 | VIRGIN NAFTA     |      |              | 15000       | TG | 33,439 | 17,080 |
| SUD  | 713 | BENZ. FINITA     | SI   | SI           | 35000       | TG | 51,079 | 17,080 |
| SUD  | 801 | GASOLIO V.T.     |      |              | 500         | TG | 8,076  | 9,760  |
| SUD  | 802 | BENZINA V.T.     | SI   | SI           | 500         | TG | 8,076  | 9,760  |
| SUD  | 806 | BENZINA V.T.     | SI   | SI           | 500         | TG | 8,076  | 9,760  |
| SUD  | 910 | SLOP             | SI   |              | 1000        | TG | 11,247 | 10,065 |



CLIENTE: ERG MED

PROGETTO: ADEGUAMENTO BAT pro IPPC

N° Progetto Rev. Foglio

A621 0

|           | SERBATOI CONTENENTI PRODOTTO CATEGORIA C |            |           |           |        |             |  |  |
|-----------|------------------------------------------|------------|-----------|-----------|--------|-------------|--|--|
|           |                                          |            | CAPACITA' | CAF       | СНЕ    |             |  |  |
|           |                                          |            | $[m^3]$   |           | Diam   | Alt / Lungh |  |  |
| POSIZIONE | ITEM                                     | SOSTANZA   |           | Tipologia | [m]    | [m]         |  |  |
| SUD       | 204                                      | GASOLIO    | 50000     | TG        | 61,051 | 17,080      |  |  |
| SUD       | 205                                      | GOF        | 50000     | TG        | 61,051 | 17,080      |  |  |
| SUD       | 206                                      | OLIO COMB  | 50000     | TG        | 61,051 | 17,080      |  |  |
| SUD       | 207                                      | FS x Man.  | 50000     | TG        | 61,051 | 17,080      |  |  |
| SUD       | 208                                      | OLIO COMB  | 50000     | TG        | 61,051 | 17,080      |  |  |
| SUD       | 209                                      | OLIO COMB  | 50000     | TG        | 61,051 | 17,080      |  |  |
| SUD       | 901                                      | ZAVORRA    | 25000     | TG        | 40,823 | 19,100      |  |  |
| SUD       | 902                                      | ZAVORRA    | 21282     | TG        | 43,060 | 14,614      |  |  |
| SUD       | 903                                      | ZAVORRA    | 25000     | TG        | 40,823 | 19,100      |  |  |
| SUD       | 904                                      | ZAVORRA    | 21235     | TG        | 42,938 | 14,665      |  |  |
| SUD       | 905 *                                    | SLOP       | 3000      | TG        | 16,477 | 14,070      |  |  |
| SUD       | 906 *                                    | SLOP       | 3000      | TG        | 16,477 | 14,070      |  |  |
| SUD       | 907 *                                    | SLOP       | 1000      | TG        | 11,247 | 10,065      |  |  |
| SUD       | 908*                                     | SLOP       | 1000      | TG        | 11,247 | 10,065      |  |  |
| SUD       | 909 *                                    | SLOP       | 5000      | TG        | 21,302 | 14,030      |  |  |
| SUD       | 210                                      | OLIO COMB. | 25000     | TF        | 43,170 | 17,080      |  |  |
| SUD       | 211                                      | OLIO COMB. | 25000     | TF        | 43,170 | 17,080      |  |  |
| SUD       | 212                                      | OLIO COMB. | 25000     | TF        | 43,170 | 17,080      |  |  |
| SUD       | 213                                      | OLIO COMB. | 25000     | TF        | 43,170 | 17,080      |  |  |
| SUD       | 214                                      | OLIO COMB. | 10000     | TF        | 30,125 | 14,030      |  |  |
| SUD       | 215                                      | OLIO COMB. | 10000     | TF        | 30,125 | 14,030      |  |  |
| SUD       | 216                                      | OLIO COMB. | 15000     | TF        | 33,439 | 17,080      |  |  |
| SUD       | 291                                      | O.C. INT.  | 5000      | TF        | 21,241 | 14,110      |  |  |
| SUD       | 292                                      | O.C. INT.  | 5000      | TF        | 21,241 | 14,110      |  |  |
| SUD       | 294                                      | O.C. INT.  | 1000      | TF        | 11,247 | 10,065      |  |  |
| SUD       | 981                                      | FS(ZOLFO)  | 1000      | TF        | 10,208 | 12,220      |  |  |
| SUD       | 982                                      | ZOLFO      | 1000      | TF        | 10,208 | 12,220      |  |  |
| SUD       | 983                                      | FS x Man.  | 1000      | TF        | 10,208 | 12,220      |  |  |

<sup>(\*</sup> verrà installata la doppia tenuta nel P.I. 2005/6/7)



CLIENTE: ERG MED

PROGETTO: ADEGUAMENTO BAT pro IPPC

N° Progetto Rev. Foglio

A621 0

| SERBATOI CONTENENTI PRODOTTO GPL |      |          |           |                 |       |             |  |
|----------------------------------|------|----------|-----------|-----------------|-------|-------------|--|
|                                  |      |          | CAPACITA' | CARATTERISTICHE |       |             |  |
|                                  |      |          | $[m^3]$   |                 | Diam  | Alt / Lungh |  |
| POSIZIONE                        | ITEM | SOSTANZA |           | Tipologia       | [m]   | [m]         |  |
| SUD                              | 601  | C4       | 5000      | SFERE           | 21,2  | 21,2        |  |
| SUD                              | 602  | C4       | 5000      | SFERE           | 21,2  | 21,2        |  |
| SUD                              | 606  | C4       | 2000      | SFERE           | 15,64 | 15,64       |  |
| SUD                              | 607  | C4       | 2000      | SFERE           | 15,64 | 15,64       |  |
| SUD                              | 608  | C4       | 2000      | SFERE           | 15,64 | 15,64       |  |
| SUD                              | 609  | C3       | 3000      | SFERE           | 17,7  | 17,76       |  |
| SUD                              | 610  | C3       | 3000      | SFERE           | 17,8  | 17,8        |  |
| SUD                              | 611  | C3       | 3000      | SFERE           | 17,7  | 17,75       |  |
| SUD                              | 613  | C3       | 1000      | SFERE           | 12,4  | 12,4        |  |
| SUD                              | 614  | C3       | 1000      | SFERE           | 12,4  | 12,4        |  |
| SUD                              | 617  | IC5      | 2000      | ORTOSF.         | 14,6  | 15,17       |  |
| SUD                              | 618  | IC5      | 2000      | ORTOSF.         | 14,6  | 15,17       |  |
| SUD                              | 619  | C4       | 500       | SFERE. OR       | 4,7   | 4,85        |  |
| SUD                              | 620  | C4       | 500       | SFERE. OR       | 4,7   | 4,85        |  |
| SUD                              | 621  | GPL      | 500       | SFERE. OR       | 4,7   | 4,85        |  |
| SUD                              | 622  | GPL      | 500       | SFERE. OR       | 4,7   | 4,85        |  |
| SUD                              | 623  | GPL      | 500       | SFERE. OR       | 4,7   | 4,85        |  |
| SUD                              | 624  | IC5      | 5000      | ORTOSF.         | 18,0  | 18,75       |  |
| SUD                              | 625  | IC5      | 5000      | ORTOSF.         | 18,0  | 18,75       |  |



| CLIENTE:    | ERG MED                 |        |  |  |  |
|-------------|-------------------------|--------|--|--|--|
| PROGETTO:   | ADEGUAMENTO BAT pro IPP |        |  |  |  |
| N° Progetto | Rev.                    | Foglio |  |  |  |
| A621        | 0                       |        |  |  |  |

| SERBATOI CONTENENTI PRODOTTI ALTRO |      |           |           |           |            |             |  |  |
|------------------------------------|------|-----------|-----------|-----------|------------|-------------|--|--|
|                                    |      |           | CAPACITA' | CAR       | ATTERISTIC | НЕ          |  |  |
|                                    |      |           | $[m^3]$   |           | Diam       | Alt / Lungh |  |  |
|                                    | ITEM | SOSTANZA  |           | Tipologia | [m]        | [m]         |  |  |
| SUD                                | 981  | ZOLFO     | 1000      | FT        | 12         | 10          |  |  |
| SUD                                | 982  | ZOLFO     | 1000      | FT        | 12         | 10          |  |  |
| SUD                                | 983  | ZOLFO     | 1000      | FT        | 2,6        | 10          |  |  |
| SUD                                | 591  | TEL(F.S)  | 55,34     | SFERA OR  | 2,6        | 2,6         |  |  |
| SUD                                | 592  | TEL(F.S)  | 55,34     | SFERA OR  | 2,6        | 2,6         |  |  |
| SUD                                | 593  | TEL(F.S)  | 55,34     | SFERA OR  | 4          | 2,6         |  |  |
| SUD                                | 281  | CFPP      | 50,2      | TF        | 3,6        | 4           |  |  |
| SUD                                | 282  | LUBRICITY | 25        | TF        | 5          | 3           |  |  |
| SUD                                | 283  | CFPP      | 141,3     | TF        | 3,2        | 5           |  |  |
| SUD                                | 391  | LUBRICITY | 40,7      | TF        | 7,3        | 4           |  |  |
| SUD                                | 492  | CETANO    | 121,5     | TF        | 4,4        | 4,6         |  |  |
| SUD                                | 595  | LUBRICITY | 50,7      | TF        | 4,4        | 3,8         |  |  |
| SUD                                | 496  | NEW       | 50,7      | TF        |            |             |  |  |



CLIENTE: ERG MED

PROGETTO: ADEGUAMENTO BAT pro IPPC

N° Progetto Rev. Foglio

A621 0

|      | Se             | rbatoi Do      | oppie Teni     | ute              | D.M. 107    | -2000        | e API 2517           | e Verniciat  | ura ad alta                  | Rifl      | ettanza      |              |           |             |
|------|----------------|----------------|----------------|------------------|-------------|--------------|----------------------|--------------|------------------------------|-----------|--------------|--------------|-----------|-------------|
|      | - 00           | ibatoi be      | ppic rein      |                  | D.M. 107    | 1            | C AITZOIT            | C VOITIIOIAI | dia da ana                   | 1         | Citariza     |              |           |             |
| N    | Serbatoi       | Diametro       | Altezza        | Volume           | Com.ssa     | Anno         | Costruttore          |              | Prodotto                     |           | Vernice      | ad alta l    | Riflett   | anza        |
|      |                | mm             | mm             | m3               |             |              |                      |              |                              |           |              |              |           |             |
|      | S101           | 86340          | 17080          | 100000           | FS Impianti | 2000         | Somefi               | GSPH         | grezzo                       |           |              |              |           |             |
| -    | S102           | 86340          | 17080          | 100000           |             | 1997         | Somefi               | GSPH         | grezzo                       |           |              |              |           |             |
| -    | S103           | 86340          | 17080          | 100000           |             | 2004         | Somefi               | GSPH         | grezzo                       |           |              |              |           |             |
| -    | S104           | 86340<br>86340 | 17080<br>17080 | 100000<br>100000 |             | 1997<br>1995 | Somefi               | GSPH<br>GSPH | grezzo                       |           |              |              |           |             |
| -    | S106<br>S108   | 86340          | 17080          | 100000           |             |              | Somefi<br>Somefi     | GSPH         | fuel<br>grezzo               |           |              |              |           |             |
|      | S109           | 86340          | 17080          | 100000           |             | 1998         | Somefi               | GSPH         | grezzo                       |           |              |              |           |             |
| -    |                | 30120          | 14030          | 10000            |             | 1994         |                      | GSPH         | Stream Benz                  |           |              |              |           |             |
| 9    | S416           | 30110          | 14030          | 10000            |             | 1996         | Somefi               | GSPH         | chero                        |           |              |              |           |             |
|      | S416           | 30110          | 14030          | 10000            |             | 2003         | Somefi               | GSPH         | chero                        |           |              |              |           |             |
| -    | S417           | 21300          | 14030          | 5000             | GB/40786    | 1998         | Somefi               | GSPH         | VN T152                      |           |              | 2001         |           |             |
|      | S508           | 33430          | 17080          | 15000            | GB/41053    | 1998         |                      | GSPH         | Powerform                    |           |              |              |           |             |
| _    | S509           | 33430          | 17080          | 15000            |             | 1999         |                      | GSPH         | Powerform                    |           |              | 2001         |           |             |
| _    | S515<br>S516   | 51080<br>51080 | 17080<br>17080 | 35000<br>35000   |             | 96/2001      | Somefi<br>Somefi     | GSPH<br>GSPH | Virgin Nafta<br>Virgin Nafta |           |              | 2001<br>2001 |           |             |
| -    | S517           | 51080          | 17080          | 35000            |             | 1991         | Somefi               | GSPH         | gasolio                      |           |              | 2001         |           |             |
|      | S518           | 51080          | .,,000         | 35000            |             | 1993         | Somefi               | GSPH         | benz.verde                   |           |              | 2001         |           |             |
| -    | S520           | 51080          |                | 35000            | 1           | 1992         | Somefi               | GSPH         | chiara.                      |           |              | 2002         |           |             |
|      | S520           | 51080          |                | 35000            |             | 2002         | Somefi               | GSPH         | chiara.                      |           |              | 2002         |           |             |
| 18   | S 522          | 33430          | 17080          | 15000            |             | 1991         | Somefi               | GSPH         | benz.etil.                   |           |              | 2001         |           |             |
| Щ    | S 522          | 33430          | 17080          | 15000            |             | 2003         | Somefi               | GSPH         | benz.etil.                   |           |              |              |           |             |
| 19   | S 523          | 33430          | 17080          | 15000            |             | 1992         | Somefi               | GSPH         |                              |           |              |              |           |             |
|      | S 523          | 33430          | 17080          | 15000            |             | 2003         | Somefi               | GSPH         |                              |           |              | 2003         |           |             |
| -    | S 524          | 33430          | 17080          | 15000            |             |              | Somefi               | GSPH         | benz.etil.                   |           |              | 2001<br>2001 |           |             |
|      | S 533<br>S 534 | 33430<br>33430 | 17080<br>17080 | 15000<br>15000   |             | 1991         | Somefi<br>Somefi     | GSPH<br>GSPH | benz.verde<br>benz.etil.     |           |              | 2001         |           |             |
|      | S535           | 33430          | 17080          | 15000            |             | 1990         |                      | GSPH         | benz.etil.                   |           |              | 2002         |           |             |
|      | S535           | 33430          | 17080          | 15000            |             | 2002         | Somefi               | GSPH         | benz.etil.                   |           |              | 2002         |           |             |
| 24   |                | 21140          | 17080          | 6000             |             | 1995         |                      | GSPH         | riform. Avio                 |           | Verniciatura |              | antello(e | escl.tetto) |
|      |                |                |                |                  |             |              |                      |              |                              |           |              | 2000         |           |             |
| 25   | S 538          | 21040          | 17080          | 6000             |             | 1997         | Somefi               | GSPH         | benz.verde                   |           | Verniciatura | del solo ma  | antello(e | escl.tetto) |
|      |                |                |                |                  |             |              |                      |              |                              |           |              | 2000         |           |             |
| 26   | S 539          | 21040          | 17080          | 6000             |             | 1995         | Somefi               | GSPH         | Benz.Etilata                 |           | Verniciatura |              | antello(e | escl.tetto) |
| 07   | C 540          | 24040          | 47000          | 0000             |             | 4000         | Comofi               | CCDLI        |                              |           |              | 2000         |           | 1           |
| 27   | S 540          | 21040          | 17080          | 6000             |             | 1996         | Somefi               | GSPH         | Benz.Etilata.                |           | Verniciatura |              | antello(e | escl.tetto) |
| 28   | S541           | 21300          | 14030          | 5000             |             | 1996         | Somefi               | GSPH         | Stream Benz                  |           |              | 2000         |           |             |
| 20   | S541           | 21300          | 14030          | 5000             |             |              | Somefi               | GSPH         | Stream Benz                  |           |              |              |           |             |
| 29   | S542           | 21300          | 14030          | 5000             |             |              | Somefi               | GSPH         | Stream Benz                  |           |              |              |           |             |
|      | S542           | 21300          | 14030          | 5000             |             |              | Somefi               | GSPH         | Stream Benz                  |           |              |              |           |             |
| 30   | S615           | 21300          | 14030          | 5000             |             | 1995         | Somefi               | GSPH         | MTBE                         |           |              |              |           |             |
|      | S615           | 21300          | 14030          | 5000             |             | 2004         | Somefi               | GSPH         | MTBE                         |           |              |              |           |             |
| 31   | S616           | 21300          | 14030          | 5000             |             | 1991         | Somefi               | GSPH         | MTBE                         | Щ         |              |              |           |             |
| بيا  | S616           | 21300          | 14030          | 5000             |             | 2003         | o "                  | GSPH         | MTBE                         |           |              |              |           |             |
|      | S 709          | 33430<br>51080 |                | 15000<br>35000   | -           |              | Someti               | GSPH         | HVN<br>Grozzo                | Н         |              |              |           |             |
|      | S 707<br>S 710 | 33430          |                | 15000            | +           | 2001<br>1997 | Installare<br>Somefi | GSPH         | Grezzo<br>LVN                |           |              | 2002         |           |             |
|      | S 710          | 33430          |                | 15000            | +           |              | Somefi               | GSPH         | LVN                          | =         |              | 2002         |           |             |
|      | S713           | 51080          |                | 35000            | 1           |              | Somefi               | GSPH         | isomerata                    | $\exists$ |              |              |           |             |
| ۱Ť   | S713           | 51080          |                | 35000            | 1           |              | Somefi               | GSPH         | isomerata                    |           |              |              |           |             |
| 36   | S 802          | 8100           |                | 500              |             |              | Somefi               | GSPH         | Benz.etil                    |           | Verniciatura | completa     | (mant+    | tetto)      |
|      |                |                |                |                  |             |              |                      |              |                              |           |              | 2000         |           |             |
| 37   | S 806          | 8100           |                | 500              |             |              | Somefi               | GSPH         | Benz. Verde                  |           | Verniciatura | completa     | (mant+    | tetto)      |
| لِيا | 0045           |                |                |                  |             |              |                      | 005::        |                              | Щ         |              | 2000         |           |             |
| _    | S910           | 11300          | 10000          | 1000             | 1           |              | Somefi               | GSPH         | Slop                         |           |              |              |           |             |
|      | S207           | 61050          |                | 50.000<br>50.000 | +           |              | Somefi               | GSPH<br>GSPH | Olio Comb<br>Gasolio         | $\vdash$  |              |              |           |             |
| _    | S301<br>S311   | 61050<br>30120 |                | 10.000           |             |              | Somefi<br>Somefi     | GSPH         | Jasuliu                      |           |              |              |           |             |
|      | S303           | 61050          |                | 50.000           | 1           |              | Somefi               | GSPH         | Gasolio                      |           |              |              |           |             |
|      | S305           | 51080          |                | 35.000           | 1           |              | Somefi               | GSPH         | Gasolio                      |           |              |              |           |             |
| -    | S307           | 51080          |                | 35.000           |             |              | Somefi               | GSPH         | Gasolio                      |           |              |              |           |             |
| _    | S708           | 51080          |                | 35.000           |             |              | Somefi               | GSPH         | Gasolio                      |           |              |              |           |             |
|      | S905           | 16.500         |                | 3.000            |             |              | Somefi               | GSPH         | Slop                         |           |              |              |           |             |
| 47   | S906           | 16.500         |                | 3.000            |             | 2002         | Somefi               | GSPH         | Slop                         |           |              |              |           |             |



| CLIENTE:         | ERG MED                  |        |  |  |
|------------------|--------------------------|--------|--|--|
| PROGETTO:        | ADEGUAMENTO BAT pro IPPC |        |  |  |
| N° Progetto A621 | Rev.                     | Foglio |  |  |

# 20 PRODUZIONE DI ENERGIA TERMICA - FORNI DI RAFFINERIA-

#### 20.1 Descrizione

L'energia termica necessaria alla Raffineria viene prodotta direttamente nei punti di richiesta tramite forni alimentati da combustibile liquido o gassoso.

La lista dei forni di raffineria, le caratteristiche dei combustibili utilizzati e le emissioni generate sono riportate al para 2.0

I forni della raffineria ISAB SUD sono progettati per poter bruciare il fuel-gas di raffineria od olio combustibile. Le emissioni derivanti dall'utilizzo dei due diversi tipi di combustibile sono molto diverse in termini di contenuto e concentrazione di componenti inquinanti (SO2, NOX, CO, particolato) a causa della diversa qualità del combustibile.

Alcuni forni di raffineria hanno i bruciatori di tipo "dual-fire" in grado cioè di poter bruciare sia fuel-gas che olio combustibile.

L'elenco di tali forni con il rapporto dei combustibili bruciati (Kcal gas/Kcal olio) per l'anno 2005 è stato il seguente:

| Impianto | Rapporto gas/olio (2005) |  |  |  |
|----------|--------------------------|--|--|--|
| U-100    | 82 / 18                  |  |  |  |
| U-600    | 91.5 / 8.5               |  |  |  |



| CLIENTE:         | ERG MED                  |        |  |  |  |  |
|------------------|--------------------------|--------|--|--|--|--|
| PROGETTO:        | ADEGUAMENTO BAT pro IPPC |        |  |  |  |  |
| N° Progetto A621 | Rev.                     | Foglio |  |  |  |  |

#### 20.2 Confronto emisisoni con IPPC-Chapter 3-Emission and consumption level

Per quanto riguarda le emissioni generate dai forni della raffineria ISAB SUD, il presente paragrafo confronta quanto riportato nel Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries (paragrafo 3.10 –Energy System -) con quanto ottenuto operativamente nella raffineria.

#### 20.2.1 Combustibili utilizzati

I combustibili utilizzati hanno le seguenti caratteristiche:

#### GAS COMBUSTIBILE

|                                            | <u>IPPC</u> | Gas raffineria |  |  |
|--------------------------------------------|-------------|----------------|--|--|
| P.C.I., MJ/Kg                              | 29-49       | 48.1           |  |  |
| Sulphur mgH <sub>2</sub> S/Nm <sup>3</sup> | 20-1700     | 150 max        |  |  |

#### **OLIO COMBUSTIBILE**

| Proprietà      | High sulphur<br>IPCC | Olio comb.<br>Raffineria |
|----------------|----------------------|--------------------------|
| Sulphur, % wt  | 2.2                  | 0.9 - 1.9                |
| Carbon, % wt   | 86.25                |                          |
| Hydrogen, % wt | 11.03                |                          |
| Nitrogen, % wt | 0.41                 |                          |
| Ash, %         | 0.08                 |                          |
| Vanadium (ppm) | 350                  |                          |
| Nickel (ppm)   | 41                   |                          |
| Sodium (ppm)   | 25                   |                          |
| Iron (ppm)     | 13                   |                          |
| P.C.I. MJ/Kg   |                      | 40.8 MJ/Kg               |

#### 20.2.2 Emissioni

Per quanto riguarda le emissioni, si fa riferimento alle Tabelle 2.2 A e 2.2 B, che rappresentano il futuro scenario che si avrà in seguito alla messa in esercizio della nuova unità 1800 (UDS).



| CLIENTE:                   | ERG MED                  |        |  |  |  |
|----------------------------|--------------------------|--------|--|--|--|
| PROGETTO:                  | ADEGUAMENTO BAT pro IPPC |        |  |  |  |
| N° Progetto<br><b>A621</b> | Rev.                     | Foglio |  |  |  |

Emissioni forni con combustione mista olio/gas

|   | IMPIANTO    | SIGLE FORNI | EMISSIONI MEDIE    |       |                    |          |                    |         |                    |       |        |
|---|-------------|-------------|--------------------|-------|--------------------|----------|--------------------|---------|--------------------|-------|--------|
|   |             |             | С                  | 0     | SO2                |          | NOX                |         | PM10               |       | Fumi   |
| Ì |             |             | mg/Nm <sup>3</sup> | Ton/a | mg/Nm <sup>3</sup> | Ton/a    | mg/Nm <sup>3</sup> | Ton/a   | mg/Nm <sup>3</sup> | Ton/a | Nm3/h  |
|   | 100-Topping | 100-F-101   |                    |       | 3200               | 6822,0   | 340,00             | 724,8   | 140,00             | 298,5 | 243366 |
|   | 600-Vacuum  | 600-F-101   |                    |       | 3200               | 3198,6   | 340,0              | 339,8   | 140,00             | 139,9 | 114104 |
|   |             |             |                    |       |                    |          |                    |         |                    |       |        |
|   |             |             |                    |       |                    |          |                    |         |                    |       |        |
|   |             |             |                    |       |                    |          |                    |         |                    |       |        |
| Į |             |             |                    |       |                    |          |                    |         |                    |       |        |
|   |             |             |                    |       |                    |          |                    |         |                    |       |        |
|   |             |             |                    | N.D.  |                    | 10020,58 |                    | 1064,63 |                    | 438,4 | 357470 |



| CLIENTE: ERG MED |                          |        |  |  |  |
|------------------|--------------------------|--------|--|--|--|
| PROGETTO:        | ADEGUAMENTO BAT pro IPPC |        |  |  |  |
| N° Progetto A621 | Rev.                     | Foglio |  |  |  |

Tabella 2.2.B: Forni con combustione a gas

| IMPIANTO                 | SIGLE FORNI            |                    | EMISSIONI MEDIE |        |        |        |        |                    |       |        |
|--------------------------|------------------------|--------------------|-----------------|--------|--------|--------|--------|--------------------|-------|--------|
|                          |                        | CC                 | )               | SO     | 2      | NOX    |        | PM10               |       | Fumi   |
|                          |                        | mg/Nm <sup>3</sup> | Ton/a           | mg/Nm³ | Ton/a  | mg/Nm³ | Ton/a  | mg/Nm <sup>3</sup> | Ton/a | Nm3/h  |
| 200-Desolforazione Nafta | 200-F-101/F-102        |                    |                 | 51,7   | 19,3   | 500    | 186,6  | 0                  | 0     | 42653  |
| 200-A Desolforazione GO  | 200-F-301              |                    |                 | 44,7   | 4,9    | 168    | 18,4   | 0                  | 0     | 12600  |
| 300-Desolforazione Kero  | 300-F-101              |                    |                 | 51,7   | 5,1    | 500    | 49,1   | 0                  | 0     | 11281  |
| 400-Desolforazione GO    | 400-F-101              |                    |                 | 51,7   | 5,7    | 500    | 55,2   | 0                  | 0     | 12600  |
| 500-Powerformer          | 500-F-101/4 F-301/2    |                    |                 | 881,5  | 961,1  | 500    | 545,2  | 0                  | 0     | 124465 |
| 500-Powerformer          | 500-F-106              |                    |                 | 51,7   | 2,5    | 500    | 23,7   | 0                  | 0     | 5490   |
| 1000-Isomerizzazione     | 1000-F-101/F-102       |                    |                 | 51,7   | 3,8    | 500    | 36,8   | 0                  | 0     | 8478   |
| 1600 A-Thermal Cracking  | 1600-F-201/F-501/F-502 |                    |                 | 51,7   | 41,4   | 500    | 401,2  | 0                  | 0     | 91431  |
| 1600 Visbreaking         | 1600-F-101             |                    |                 | 253,1  | 84,1   | 500    | 166,1  | 0                  | 0     | 37920  |
| 1600 Visbreaking         | 1600-F-301             |                    |                 | 51,7   | 7,8    | 300    | 45,6   | 0                  | 0     | 17193  |
| 700 Gofiner              | 700-F-101/F-102        |                    |                 | 51,7   | 17,6   | 500    | 169,9  | 0                  | 0     | 38778  |
| 800 Produzione H2        | 800-F-101              |                    |                 | 44,7   | 19,9   | 500    | 222,5  | 0                  | 0     | 50727  |
| 1800 UDS Gasolio         |                        |                    |                 | 44.7   | 6.1    | 156    | 21.0   | 0                  | 0     | 15125  |
|                          |                        |                    | N.D.            |        | 1179,3 |        | 1941,2 |                    | 0     | 468741 |



| CLIENTE:         | ERG MED  |                   |  |  |
|------------------|----------|-------------------|--|--|
| PROGETTO:        | ADEGUAMI | ENTO BAT pro IPPC |  |  |
| N° Progetto A621 | Rev.     | Foglio            |  |  |

Le emissioni totali, ricavabili dalle tabelle di cui sopra, ed il loro confronto con quanto indicato nelle IPPC è di seguito riportato:

| mg/Nm <sup>3</sup> (3%<br>O <sub>2</sub> ) | Combusti   | ione mista | Combus     | Emissioni<br>totali<br>Raffineria |      |  |
|--------------------------------------------|------------|------------|------------|-----------------------------------|------|--|
|                                            | Raffineria | IPPC       | Raffineria | IPPC                              |      |  |
| СО                                         |            | 20-100     |            | 5-80                              |      |  |
| NO <sub>x</sub>                            | 340        | 280-1000   | 473        | 70-1300                           | 415  |  |
| $PM_{10}$                                  | 140        | 5-1000     | <5         | <5                                | 60.5 |  |
| $SO_2$                                     | 3200       | 50-7000    | 287        | 3-1700                            | 1547 |  |



| CLIENTE:         | ERG MED  |                   |
|------------------|----------|-------------------|
| PROGETTO:        | ADEGUAMI | ENTO BAT pro IPPC |
| N° Progetto A621 | Rev.     | Foglio            |

#### 20.3 Stato di applicazione delle BAT competenti

Le BAT relative ai forni di raffineria sono riportate nel punto 10 del paragrafo 5.2 del Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.

Nel prospetto di seguito riportato viene mostrato lo stato di applicazione delle BAT citate con riferimento all'assetto della raffineria ISAB SUD.

Nel prospetto, per semplicità e per rendere più facile il confronto, ove indicato nello stesso paragrafo 5.2 delle IPPC, viene riportato il riferimento alla tecnica presente nel capitolo 4 della stessa Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.



| CLIENTE:<br>PROGETTO: | ERG MED ADEGUAMENTO BAT pro IPPC |        |
|-----------------------|----------------------------------|--------|
| N° Progetto           | Rev.                             | Foglio |
| A621                  | 0                                |        |

| TECN.    | INDICAZIONE                                                                                                                                                                                            | STATO     | COMMENTO                                                                                                                                                               | NOTE |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 4.10.1.2 | Applicazione di<br>campagne per il<br>miglioramento delle<br>qualità di combustione                                                                                                                    | Applicata | Viene monitorata l'efficienza<br>dei forni di processo e<br>confrontata con i valori target                                                                            |      |
| 4.10.1.3 | Far corrispondere la<br>produzione di calore<br>con i consumi tramite<br>sistemi di controllo<br>computerizzato                                                                                        | Applicata | La Raffineria ha adottato<br>sistemi di controllo avanzato<br>che ottimizzano la gestione<br>operativa dei principali forni<br>di raffineria                           |      |
| 4.10.1.4 | Ottimizzare l'uso del<br>vapore nei processi di<br>stripping e ridurre lo<br>spreco con l'utilizzo<br>degli steam-traps                                                                                |           | L'utilizzo del vapore di<br>stripping è ottimizzato in<br>funzione della qualità minima<br>richiesta ai prodotti.Steam<br>traps sono installati sulla rete<br>condense |      |
| 4.10.1.3 | Aumentare il livello di<br>integrazione termica<br>tra i vari processi di<br>raffineria aumentando<br>il recupero di calore                                                                            |           | Le principali unità di processo<br>della raffineria sono tra di loro<br>integrate termicamente                                                                         |      |
| 4.10.1.3 | Utilizzo di WHB per<br>ridurre l'uso di<br>combustibile nella<br>produzione di vapore                                                                                                                  |           | In varie unità di processo sono installate caldaie a recupero per la produzione di vapore                                                                              |      |
| 4.10.2.1 | Utilizzare RFG purificato e, se necessario per fornire la restante richiesta di energia, combustibili liquidi associati a tecniche di controllo e abbattimento o altri Fuel Gas come natural gas o LPG | Applicata | Viene utilizzato RFG per l'alimentazione di buona parte dei forni di processo. La ulteriore richiesta di combustibile viene soddisfatta utilizzando olio combustibile. |      |



| CLIENTE:    | ERG MED  |                   |
|-------------|----------|-------------------|
| PROGETTO:   | ADEGUAMI | ENTO BAT pro IPPC |
| N° Progetto | Rev.     | Foglio            |
| A621        | 0        |                   |

| TECN.    | INDICAZIONE                                          | STATO     | COMMENTO                                                       | NOTE |
|----------|------------------------------------------------------|-----------|----------------------------------------------------------------|------|
|          | Massimizzare la                                      |           |                                                                |      |
|          | quantità di<br>combustibili "puliti"                 |           |                                                                |      |
|          | utilizzata attraverso:                               |           |                                                                |      |
|          | Massimizzazion                                       | Applicata | Tutto il RFG viene lavato con                                  |      |
|          | e dell'utilizzo di                                   |           | ammina garantendo un                                           |      |
|          | RFG a basso<br>tenore di H2S                         |           | contenuto massimo di H <sub>2</sub> S di 100 ppm.              |      |
|          | (20-150                                              |           | тоо ррш.                                                       |      |
|          | mg/Nm3)                                              |           |                                                                |      |
| 4.10.2.1 | Controllo e                                          |           | Come reintegro di fuel si                                      |      |
|          | bilanciamento<br>del sistema RFG                     |           | utilizza metano oppure, occasionalmente, GPL                   |      |
|          | tra opportuni                                        |           | occusionamiente, GI E                                          |      |
|          | valori di                                            |           |                                                                |      |
|          | pressione per<br>aumentarne la                       |           |                                                                |      |
|          | flessibilità e                                       |           |                                                                |      |
|          | ricorso a gas di                                     |           |                                                                |      |
|          | reintegro a                                          |           |                                                                |      |
|          | basso tenore in zolfo (GPL o                         |           |                                                                |      |
|          | gas da rete                                          |           |                                                                |      |
|          | esterna)                                             |           |                                                                |      |
| 4.10.11. | Utilizzare controlli                                 | Applicata | Tutti i controllori installati sulla rete RFG ed i controllori |      |
| 3        | avanzati per                                         |           | sulla regolazione                                              |      |
|          | ottimizzare le                                       |           | dell'alimentazione ai forni                                    |      |
|          | performance del                                      |           | sono di ultima generazione e                                   |      |
|          | sistema RFG                                          |           | consentono il recupero totale del RFG come fuel                |      |
|          |                                                      |           | del Ri o come fuer                                             |      |
| 4.23.7   | ➤ Inviare a torcia                                   | Applicata | Il fuel gas prodotto viene                                     |      |
|          | il fuel-gas solo<br>nelle fasi di                    |           | totalmente recuperato come combustibile                        |      |
|          | avviamento/fer                                       |           | Compustione                                                    |      |
|          | mata impianti o                                      |           |                                                                |      |
|          | in presenza di                                       |           |                                                                |      |
|          | up-set In caso di<br>eccesso                         |           |                                                                |      |
|          | considerare la                                       |           |                                                                |      |
|          | vendita                                              |           |                                                                |      |
| 4 10 2 2 | all'esterno                                          | A m. 1:   | Lo muodumiana di alta                                          |      |
| 4.10.2.3 | <ul><li>Upgrading degli<br/>oli pesanti in</li></ul> | Applicata | La produzione di olio combustibile ATZ viene                   |      |
|          | combustibile a                                       |           | venduta a ERG-POWER                                            |      |
|          | basso tenore di                                      |           | AND GAS, per la produzione                                     |      |
|          | zolfo;                                               |           | di energia elettrica (IGCC)                                    |      |



| CLIENTE:<br>PROGETTO: | ERG MED ADEGUAMENTO BAT pro IPPC |        |
|-----------------------|----------------------------------|--------|
| N° Progetto           | Rev.                             | Foglio |

| TECN.     | INDICAZIONE                                                                                                        | STATO     | COMMENTO                                                                                                                                                          | NOTE |
|-----------|--------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|           | Ridurre la quantità di CO2 emessa attraverso:  Aumentare l'integrazione termica della raffineria                   | Applicata | Le unità di processo della raffineria sono tra di loro integrate termicamente                                                                                     |      |
| 4.10.2.1  | Aumentare l'utilizzo di combustibili gassosi a più alto rapporto idrogeno- carbonio                                | Applicata | Viene utilizzato RFG per l'alimentazione di buona parte dei forni di processo.                                                                                    |      |
|           | Ridurre la quantità di<br>CO emessa applicando<br>tecniche di<br>combustione efficiente<br>Ridurre le emissioni di | Applicata | L'efficienza della combustione nei forni è adeguata, e tenuta sotto controllo con un sistema di controllo avanzato                                                |      |
|           | NOx attraverso:                                                                                                    |           |                                                                                                                                                                   |      |
|           | Riduzione dell'utilizzo di combustibile                                                                            | Applicata | Le unità di processo della raffineria sono tra di loro integrate termicamente, inoltre l'efficienza della combustione viene monitorata e massimizzata in continuo |      |
| 4.10.4.1. | Sostituzione dei bruciatori tradizionali con bruciatori a bassa emissione di Nox                                   | Applicata | Tutti i forni di Raffineria, con esclusione della U-800, sono datati di bruciatori a basso NOx                                                                    |      |



| CLIENTE:    | ERG MED  |                   |
|-------------|----------|-------------------|
| PROGETTO:   | ADEGUAMI | ENTO BAT pro IPPC |
| N° Progetto | Rev.     | Foglio            |
| A621        | 0        |                   |

| TECN.    | INDICAZIONE                                                                                                                                                                 | STATO              | COMMENTO                                                                                                                                  | NOTE |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------|
|          | ➤ Traguardare per forni che utilizzano fuel gas valori di emissioni pari a 20-150 mg/m3 di NOx e per forni che utilizzano combustibili liquidi di 55-300 mg/Nm³ attraverso: |                    |                                                                                                                                           |      |
| 4.10.3.1 | Alta efficienza<br>termica con un buon<br>sistema di controllo                                                                                                              | Applicata          |                                                                                                                                           |      |
| 4.10.4.1 | <ul><li>Bruciatori a<br/>basse emissioni di<br/>NOx</li></ul>                                                                                                               | Applicata          |                                                                                                                                           |      |
| 4.10.4.3 | Invio dei fumi di combustione in caldaie a vapore per abbassare la temperatura dei fumi di combustione                                                                      | Non<br>applicabile | Non applicabili per forni di processo esistenti in quanto il contenuto entalpico dei fumi non giustifica economicamente tale applicazione |      |
| 4.10.4.5 | <ul><li>Utilizzo di<br/>tecniche di<br/>ricombustione</li></ul>                                                                                                             | Non<br>applicabile |                                                                                                                                           |      |
| 4.10.4.6 | ➤ Utilizzo delle<br>tecnologie<br>SCR/SNCR per<br>l'eliminazione degli<br>NOx dai gas<br>combusti                                                                           | Non<br>Applicabile | Non applicabili per forni di processo esistenti  L'attuale livello di emissioni di NOx non giustifica l'adozione di tecnologie SCR/SNCR   |      |



| CLIENTE:    | ERG MED  |                   |
|-------------|----------|-------------------|
| PROGETTO:   | ADEGUAMI | ENTO BAT pro IPPC |
| N° Progetto | Rev.     | Foglio            |
| A621        | 0        |                   |



| CLIENTE:    | ERG MED  |                   |
|-------------|----------|-------------------|
| PROGETTO:   | ADEGUAMI | ENTO BAT pro IPPC |
| N° Progetto | Rev.     | Foglio            |
| A621        | 0        |                   |

| TECN.    | INDICAZIONE                                                                                                                                          | STATO              | COMMENTO                                                                          | NOTE |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------------------------------------------------------|------|
|          | Riduzione delle emissioni di SO2 attraverso  > Riduzione dei consumi di combustibile                                                                 | Applicata          | La raffineria ha un buon grado<br>di integrazione termica                         |      |
|          | attraverso integrazioni termiche  Traguardare il valore di emissione di 5-20 mg/m3 utilizzando RFG purificato a basso tenore in H2S (20- 150 mg/Nm3) | Applicata          | Tutto il gas combustibile<br>subisce un lavaggio amminico                         |      |
|          | ➤ Traguardare il valore di emissione di 50-850 mg/m3 utilizzando combustibili liquidi attraverso                                                     |                    |                                                                                   |      |
| 4.10.2.3 | <ul><li>Desolforazione<br/>del combustibile<br/>liquido</li></ul>                                                                                    | Applicabile        | Si utilizza solo combustibile liquido con un contenuto di zolfo inferiore al 2.0% |      |
| 4.5.10   | Applicazione di tecniche di desolforazione dei fumi di combustione                                                                                   | Non<br>Applicabile | Non necessaria per quanto al punto precedente                                     |      |



| CLIENTE:         | ERG MED                  |        |  |
|------------------|--------------------------|--------|--|
| PROGETTO:        | ADEGUAMENTO BAT pro IPPC |        |  |
| N° Progetto A621 | Rev.                     | Foglio |  |

#### 21 ADDENDUM ALLE BAT

Nel presente documento sono confrontate le emissioni delle unità di processo della raffineria ISAB SUD con quanto riportato nell'IPPC.

#### 21.1 Unità U-100

Per quanto riguarda le emissioni, la seguente tabella confronta quanto riportato nell' IPPC (paragrafo 3.19) con quanto ottenuto operativamente nell'unità di distillazione atmosferica:

|                        | IPPC      | BAT        |         | Distillazione |
|------------------------|-----------|------------|---------|---------------|
|                        | OMV-      | (paragrafo | 5.2.10) | Atmosferica   |
|                        | Schwechat | FG         | FO      |               |
|                        | 8200000   |            |         |               |
|                        | ton/anno  |            |         |               |
| SO2mg/m3               | 46        | 20         | 850     | 3200          |
| SO2kg/t feed           | 0.009     |            |         | 0.53          |
| NOxmg/m3               | 107       | 150        | 300     | 340           |
| NOxkg/t feed           | 0.02      |            |         | 0.056         |
| COmg/m3                | 6         |            |         |               |
| COkg/t feed            | 0.001     |            |         |               |
| CO2mg/m3               |           |            |         |               |
| Co2kg/t feed           | 36        |            |         |               |
| Particulates mg/m3     | 1         | -          | 20      | 140           |
| Particulates kg/t feed | 0         |            |         | 0.02          |



| CLIENTE:         | ERG MED                  |        |  |
|------------------|--------------------------|--------|--|
| PROGETTO:        | ADEGUAMENTO BAT pro IPPC |        |  |
| N° Progetto A621 | Rev.                     | Foglio |  |

#### 21.2 Unità U-200

Per quanto riguarda le emissioni, la seguente tabella confronta quanto riportato nell'IPPC (paragrafo 3.13) con quanto ottenuto operativamente nell'unità di desolforazione nafta 200:

|                        | IPPC           | BA        | <b>A</b> T |           |
|------------------------|----------------|-----------|------------|-----------|
|                        | 1500000        | (paragraf | o 5.2.10)  | Unità 200 |
|                        | ton/year Nafta | FG        | FO         |           |
|                        | Mider          |           |            |           |
| SO2mg/m3               | 35             | 20        | 850        | 51.7      |
| SO2kg/t feed           | 0.005          |           |            | 0.0072    |
| NOxmg/m3               | 100            | 150       | 300        | 500       |
| NOxkg/t feed           | 0.014          |           |            | 0.070     |
| COmg/m3                | 100            |           |            |           |
| COkg/t feed            | 0.014          |           |            |           |
| CO2mg/m3               |                |           |            |           |
| CO2kg/t feed           | 27             |           |            |           |
| Particulates mg/m3     | 5              | -         | 20         |           |
| Particulates kg/t feed | 0.001          |           |            |           |

Nota (1): I valori dell'unità sono relativi alle emissioni dovute ai forni 200-F101/F102.



| CLIENTE:         | ERG MED                  |        |  |
|------------------|--------------------------|--------|--|
| PROGETTO:        | ADEGUAMENTO BAT pro IPPC |        |  |
| N° Progetto A621 | Rev.                     | Foglio |  |

#### 21.3 Unità U-200 A

Per quanto riguarda le emissioni, la seguente tabella confronta quanto riportato nell'IPPC (paragrafo 3.13) con quanto ottenuto operativamente nell'unità di desolforazione gasoli 200 A:

|                        | IPPC           | BA        | AT        |             |
|------------------------|----------------|-----------|-----------|-------------|
|                        | 3000000        | (paragraf | o 5.2.10) | Unità 200 A |
|                        | ton/year Nafta | FG        | FO        |             |
|                        | GO Mider       |           |           |             |
| SO2mg/m3               | 35             | 20        | 850       | 44.7        |
| SO2kg/t feed           | 0.002          |           |           | 0.0025      |
| NOxmg/m3               | 100            | 150       | 300       | 168         |
| NOxkg/t feed           | 0.007          |           |           | 0.0088      |
| COmg/m3                | 100            |           |           |             |
| COkg/t feed            | 0.007          |           |           |             |
| CO2mg/m3               |                |           |           |             |
| Co2kg/t feed           | 13             |           |           |             |
| Particulates mg/m3     | 5              | -         | 20        |             |
| Particulates kg/t feed | 0              |           |           |             |

Le acque acide generate dall'unità di desolforazione gasolio 200 A, sono inviate all'unità SWS. La portata di tali acque acide è pari a circa 2.6 ton/hr (corrispondenti a circa 121 per tonnellata di gasolio in carica) e rientra nei valori di 30-55 l/t specificati dall'IPPC.



| CLIENTE:         | ERG MED                  |        |  |
|------------------|--------------------------|--------|--|
| PROGETTO:        | ADEGUAMENTO BAT pro IPPC |        |  |
| N° Progetto A621 | Rev.                     | Foglio |  |

#### 21.4 Unità U-300

Per quanto riguarda le emissioni, la seguente tabella confronta quanto riportato nell'IPPC (paragrafo 3.13) con quanto ottenuto operativamente nell'unità di desolforazione Kerosene 300:

|                        | IPPC        |           | AT         |           |
|------------------------|-------------|-----------|------------|-----------|
|                        | 3000000     | (paragraf | (o 5.2.10) | Unità 300 |
|                        | ton/year GO | FG        | FO         |           |
|                        | Mider       |           |            |           |
| SO2mg/m3               | 35          | 20        | 850        | 51.7      |
| SO2kg/t feed           | 0.002       |           |            | 0.0035    |
| NOxmg/m3               | 100         | 150       | 300        | 500       |
| NOxkg/t feed           | 0.007       |           |            | 0.012     |
| COmg/m3                | 100         |           |            |           |
| COkg/t feed            | 0.007       |           |            |           |
| CO2mg/m3               |             |           |            |           |
| Co2kg/t feed           | 13          |           |            |           |
| Particulates mg/m3     | 5           | -         | 20         | -         |
| Particulates kg/t feed | 0           |           |            | -         |

Le acque acide generate dall'unità di desolforazione kerosene 300, sono inviate all'unità SWS. La portata di tali acque acide è pari a circa 3.6 ton/h (corrispondenti a circa 22 1 per tonnellata di kerosene in carica) e rientra nei valori di 30-55 1/t specificati dall' IPPC.



| CLIENTE:         | ERG MED                  |        |  |
|------------------|--------------------------|--------|--|
| PROGETTO:        | ADEGUAMENTO BAT pro IPPC |        |  |
| N° Progetto A621 | Rev.                     | Foglio |  |

#### 21.5 Unità U-400

Per quanto riguarda le emissioni, la seguente tabella confronta quanto riportato nell'IPPC (paragrafo 3.13) con quanto ottenuto operativamente nell'unità di desolforazione gasoli 400:

|                        | IPPC<br>2000000        |                 | AT (5.2.10) | I.I., 100 |
|------------------------|------------------------|-----------------|-------------|-----------|
|                        | 3000000<br>ton/year of | (paragrai<br>FG | FO 5.2.10)  | Unità 400 |
|                        | GO Mider               | 10              | 10          |           |
|                        |                        |                 |             |           |
| SO2mg/m3               | 35                     | 20              | 850         | 51.7      |
| SO2kg/t feed           | 0.002                  |                 |             | 0.0043    |
| NOxmg/m3               | 100                    | 150             | 300         | 500       |
| NOxkg/t feed           | 0.007                  |                 |             | 0.039     |
| COmg/m3                | 100                    |                 |             |           |
| COkg/t feed            | 0.007                  |                 |             |           |
| CO2mg/m3               |                        |                 |             |           |
| Co2kg/t feed           | 13                     |                 |             |           |
| Particulates mg/m3     | 5                      | -               | 20          | -         |
| Particulates kg/t feed | 0                      |                 |             | -         |

Le acque acide generate dall'unità di desolforazione gasolio 400, sono inviate all'unità SWS.La portata di tali acque acide è pari a circa 5.3 ton/h (indicare valore a cura erg) (corrispondenti a circa 33 l per tonnellata di gasolio in carica) e rientra nei valori di 30-55 l/t specificati dall'IPPC.



| CLIENTE:<br>PROGETTO: | ERG MED ADEGUAMENTO BAT pro IPPC |        |  |
|-----------------------|----------------------------------|--------|--|
| N° Progetto A621      | Rev.                             | Foglio |  |

#### 21.6 Unità U-500

Per quanto riguarda le emissioni, la seguente tabella confronta quanto riportato nell'IPPC (paragrafo 3.6) con quanto ottenuto operativamente nell'unità di powerforming:

|                        | IPPC Platforming Mider | Powerformer<br>U-500 |
|------------------------|------------------------|----------------------|
| SO2mg/m3               | 35                     | 881.5                |
| SO2kg/t feed           | 0.024                  | 0.59                 |
| NOxmg/m3               | 100                    | 500                  |
| NOxkg/t feed           | 0.069                  | 0.33                 |
| COmg/m3                | 100                    |                      |
| COkg/t feed            | 0.069                  |                      |
| CO2mg/m3               |                        |                      |
| Co2kg/t feed           | 146                    |                      |
| Particulates mg/m3     | 5                      | 60.9                 |
| Particulates kg/t feed | 0.003                  | 0.04                 |



| CLIENTE:         | ERG MED                  |        |  |
|------------------|--------------------------|--------|--|
| PROGETTO:        | ADEGUAMENTO BAT pro IPPC |        |  |
| N° Progetto A621 | Rev.                     | Foglio |  |

#### 21.7 Unità U-600

Per quanto riguarda le emissioni, la seguente tabella confronta quanto riportato nell'IPPC (paragrafo 3.19) con quanto ottenuto operativamente nell'unità di distillazione sotto vuoto:

|                        | IPPC<br>Mider | BAT (paragrafo 5.2.10) |     | Distillazione sottovuoto |
|------------------------|---------------|------------------------|-----|--------------------------|
|                        |               | FG                     | FO  |                          |
| SO2mg/m3               | 35            | 20                     | 850 | 3.200                    |
| SO2 kg/t feed          | 0.004         |                        |     | 0.48                     |
| NOx mg/m3              | 100           | 150                    | 300 | 340                      |
| NOx kg/t feed          | 0.013         |                        |     | 0.051                    |
| CO mg/m3               | 100           |                        |     |                          |
| CO kg/t feed           | 0.013         |                        |     |                          |
| CO2 mg/m3              |               |                        |     |                          |
| CO2 kg/t feed          | 41            |                        |     |                          |
| Particulates mg/m3     | 5             | -                      | 20  | 140                      |
| Particulates kg/t feed | 0.001         |                        |     | 0.0211                   |



| CLIENTE:         | ERG MED                  |        |  |
|------------------|--------------------------|--------|--|
| PROGETTO:        | ADEGUAMENTO BAT pro IPPC |        |  |
| N° Progetto A621 | Rev.                     | Foglio |  |

#### 21.8 Unità U-700/U-700 A

#### 21.8.1 Unità 700

Per quanto riguarda le emissioni, la seguente tabella confronta quanto riportato nell'IPPC (paragrafo 3.13) con quanto ottenuto operativamente nell'unità di Gofiner 700:

|                        | IPPC<br>3000000         | BAT (paragrafo 5.2.10) |     | Unità 700 |
|------------------------|-------------------------|------------------------|-----|-----------|
|                        | ton/year of<br>GO Mider | FG                     | FO  |           |
| SO2mg/m3               | 35                      | 20                     | 850 | 51.7      |
| SO2kg/t feed           | 0.002                   |                        |     | 0.002     |
| NOxmg/m3               | 100                     | 150                    | 300 | 500       |
| NOxkg/t feed           | 0.007                   |                        |     | 0.02      |
| COmg/m3                | 100                     |                        |     |           |
| COkg/t feed            | 0.007                   |                        |     |           |
| CO2mg/m3               |                         |                        |     |           |
| Co2kg/t feed           | 13                      |                        |     |           |
| Particulates mg/m3     | 5                       | -                      | 20  | -         |
| Particulates kg/t feed | 0                       |                        |     | -         |

#### 21.8.2 Unità 700 A

Per quanto riguarda l'unità 700-A non esiste nessun riferimento specifico nell'IPPC. Il riferimento IPPC che più si avvicina alla tipologia di unità in oggetto è quello riportato al paragrafo 3.19 relativo alle unità di vuoto primario.



| CLIENTE:    | ERG MED                  |        |  |
|-------------|--------------------------|--------|--|
| PROGETTO:   | ADEGUAMENTO BAT pro IPPC |        |  |
| N° Progetto | Rev.                     | Foglio |  |
| A621        | 0                        |        |  |

|                        | IPPC<br>Mider | BAT (paragrafo 5.2.10) |     | Unità 700 A |
|------------------------|---------------|------------------------|-----|-------------|
|                        |               | FG                     | FO  |             |
| SO2mg/m3               | 35            | 20                     | 850 | 51.7        |
| SO2kg/t feed           | 0.004         |                        |     | 0.004       |
| NOxmg/m3               | 100           | 150                    | 300 | 500         |
| NOxkg/t feed           | 0.013         |                        |     | 0.04        |
| COmg/m3                | 100           |                        |     |             |
| COkg/t feed            | 0.013         |                        |     |             |
| CO2mg/m3               |               |                        |     |             |
| Co2kg/t feed           | 41            |                        |     |             |
| Particulates mg/m3     | 5             | -                      | 20  | -           |
| Particulates kg/t feed | 0.001         |                        |     | -           |



| CLIENTE:<br>PROGETTO:      | ERG MED ADEGUAMENTO BAT pro IPPC |        |  |
|----------------------------|----------------------------------|--------|--|
| N° Progetto<br><b>A621</b> | Rev.                             | Foglio |  |

#### 21.9 Unità U-800

Per quanto riguarda le emissioni delle unità di produzione idrogeno via steam reforming di fuel gas o distillati leggeri, le IPPC (paragrafo 3.14) non riportano nessun dato di riferimento. Le IPPC riportano tuttavia valori operativi tipici di emissioni per impianti di produzione idrogeno da purificazione del gas di sintesi ottenuto attraverso la gassificazione di olii pesanti. Tali valori sono riportati nella tabella seguente e confrontati con le emissioni dell'unità 800:

|                        | IPPC  |                                               | AT         | TI 10 000 |
|------------------------|-------|-----------------------------------------------|------------|-----------|
|                        | Mider | <u>,                                     </u> | fo 5.2.10) | Unità 800 |
|                        |       | FG                                            | FO         |           |
| SO2mg/m3               | 35    | 20                                            | 850        | 44.7      |
| SO2kg/t feed           | 0.363 |                                               |            | 0.57      |
| NOxmg/m3               | 158   | 150                                           | 300        | 500       |
| NOxkg/t feed           | 1.64  |                                               |            | 6.35      |
| COmg/m3                | 100   |                                               |            |           |
| COkg/t feed            | 1.038 |                                               |            |           |
| CO2mg/m3               |       |                                               |            |           |
| Co2kg/t feed           | 710   |                                               |            |           |
| Particulates mg/m3     | 5     | -                                             | 20         | -         |
| Particulates kg/t feed | 0.052 |                                               |            | -         |

#### 21.10 Unità U-1000

Per quanto riguarda le emissioni avendo scelto la tecnologia basata sui catalizzatori attivati con percloroetilene non ci sono forni dedicati al processo di isomerizzazione (l'unità è dotata di un forno utilizzato come ribollitore della colonna di stabilizzazione della benzina isomerata che non rientra pertanto nella valutazione IPPC del processo di isomerizzazione) e quindi non ci sono emissioni all'atmosfera di SO2, NOx, CO, CO2 e particelle solide.

Il fuel gas prodotto (testa stabilizzatrice) è trattato con soda. La soda esausta ricca in NaCl viene inviata al trattamento sode spente.



| CLIENTE:         | ERG MED  |                   |  |  |
|------------------|----------|-------------------|--|--|
| PROGETTO:        | ADEGUAMI | ENTO BAT pro IPPC |  |  |
| N° Progetto A621 | Rev.     | Foglio            |  |  |

#### 21.11 Unità U-1200/U-1200 M

Per quanto riguarda le emissioni, la seguente tabella confronta quanto riportato nell'IPPC (paragrafo 4.23.5.2) con quanto ottenuto operativamente nelle unità 1200/1200 M:

|                               | IPPC           | Unità 1200/1200 M |
|-------------------------------|----------------|-------------------|
| SO2mg/m3                      | 1500           | 5750              |
| SO2% of total H2S load to SRU | 0.2%           | 0.012%            |
| Waste water m3/hr (1)         | 0.02           |                   |
| Spent catalyst t/a            | Plant specific |                   |

Nota 1: valore relativo ad una unità SRU da 200.000 t/a

#### 21.12 Unità U-1600

Per quanto riguarda le emissioni, la seguente tabella confronta quanto riportato nell'IPPC (paragrafo 3.22) con quanto ottenuto operativamente nell'unità di visbreaking:

|                        | IPPC<br>Mider | BAT (paragrafo 5.2.10) |     | Visbreaking  |
|------------------------|---------------|------------------------|-----|--------------|
|                        | 1/11001       | FG                     | FO  | , isoreaning |
| SO2mg/m3               | 35            | 20                     | 850 | 51.7         |
| SO2kg/t feed           | 0.011         |                        |     | 0.0065       |
| NOxmg/m3               | 100           | 150                    | 300 | 500          |
| NOxkg/t feed           | 0.042         |                        |     | 0.063        |
| COmg/m3                | 100           |                        |     |              |
| COkg/t feed            | 0.001         |                        |     |              |
| CO2mg/m3               |               |                        |     |              |
| Co2kg/t feed           | 50            |                        |     |              |
| Particulates mg/m3     | 5             | -                      | 20  | -            |
| Particulates kg/t feed | 0             |                        |     | -            |



| CLIENTE:<br>PROGETTO: | ERG MED ADEGUAMENTO BAT pro IPPC |        |  |
|-----------------------|----------------------------------|--------|--|
| N° Progetto A621      | Rev.                             | Foglio |  |

#### 21.13 Unità U-1600 A

Per quanto riguarda le emissioni delle unità di thermal cracking non esistono termini di riferimento specifici nelle IPPC che suggeriscono per tali unità di far riferimento alle emissioni delle unità di visbreaking. Per tale motivo la seguente tabella confronta quanto riportato nell'IPPC (paragrafo 3.22) con quanto ottenuto operativamente nell'unità di thermal cracking. Le emissioni di seguito riportate includono anche il frono di vacuum flash:

|                        | IPPC<br>Mider |     |     | Visbreaking |  |
|------------------------|---------------|-----|-----|-------------|--|
|                        |               | FG  | FO  |             |  |
| SO2mg/m3               | 35            | 20  | 850 | 51.7        |  |
| SO2kg/t feed           | 0.011         |     |     | 0.014       |  |
| NOxmg/m3               | 100           | 150 | 300 | 500         |  |
| NOxkg/t feed           | 0.042         |     |     | 0.17        |  |
| COmg/m3                | 100           |     |     |             |  |
| COkg/t feed            | 0.001         |     |     |             |  |
| CO2mg/m3               |               |     |     |             |  |
| Co2kg/t feed           | 50            |     |     |             |  |
| Particulates mg/m3     | 5             | -   | 20  | -           |  |
| Particulates kg/t feed | 0             |     |     | -           |  |



| CLIENTE:<br>PROGETTO: | ERG MED ADEGUAMENTO BAT pro IPPC |        |  |
|-----------------------|----------------------------------|--------|--|
| N° Progetto A621      | Rev.                             | Foglio |  |

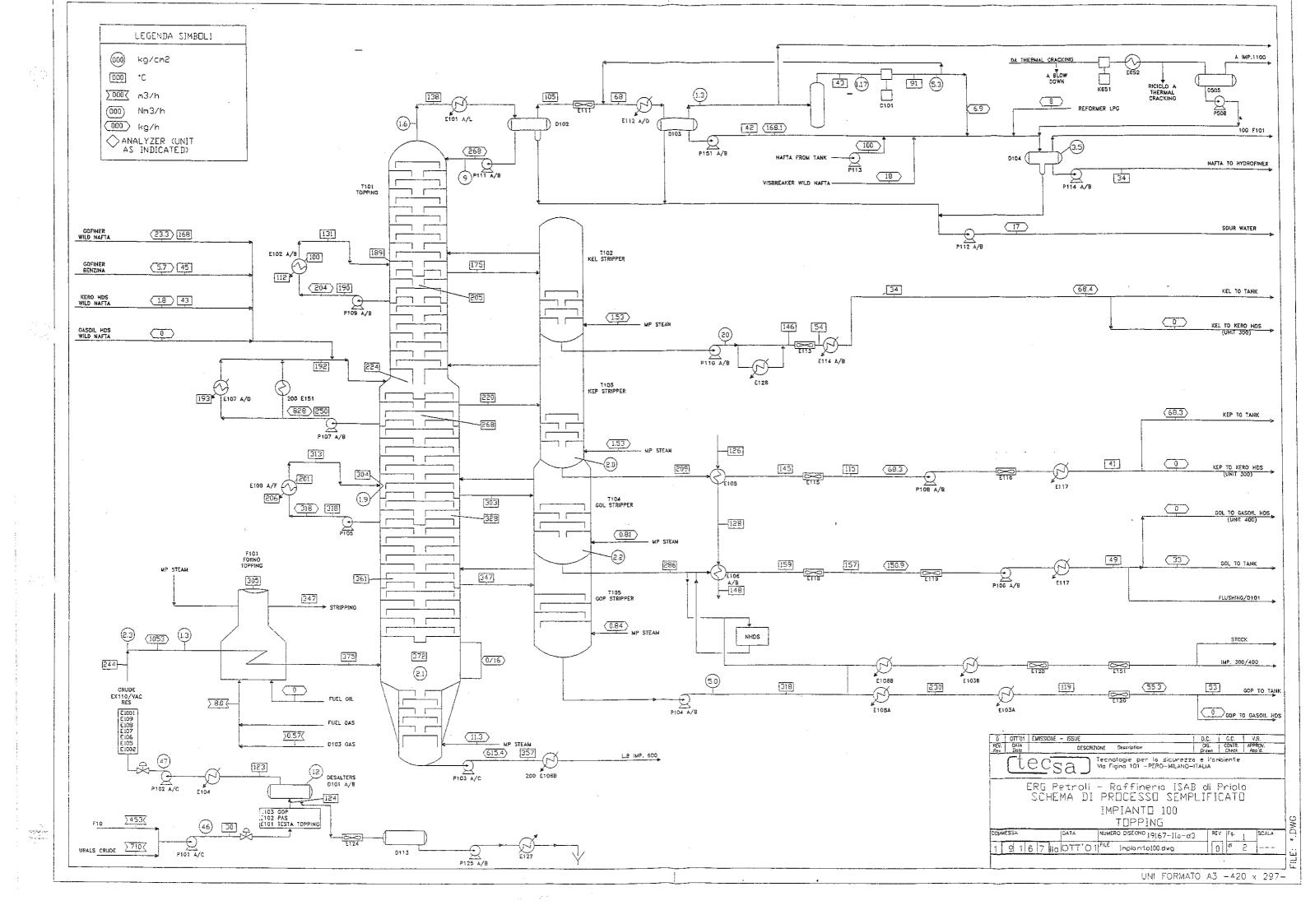
#### 21.14 Unità U-1800

Per quanto riguarda le emissioni, la seguente tabella confronta quanto riportato nell'IPPC (paragrafo 3.13) con quanto ottenuto operativamente nell'unità di desolforazione gasoli 1800:

|                        | IPPC        | BAT |            | II :/> 400 |
|------------------------|-------------|-----|------------|------------|
|                        | 3000000     | ,   | To 5.2.10) | Unità 400  |
|                        | ton/year of | FG  | FO         |            |
|                        | GO Mider    |     |            |            |
|                        |             |     |            |            |
| SO2mg/m3               | 35          | 20  | 850        | 44.7       |
| SO2kg/t feed           | 0.002       |     |            | 0.0036     |
| NOxmg/m3               | 100         | 150 | 300        | 156        |
| NOxkg/t feed           | 0.007       |     |            | 0.012      |
| COmg/m3                | 100         |     |            |            |
| COkg/t feed            | 0.007       |     |            |            |
| CO2mg/m3               |             |     |            |            |
| Co2kg/t feed           | 13          |     |            |            |
| Particulates mg/m3     | 5           | -   | 20         | -          |
| Particulates kg/t feed | 0           |     |            | -          |

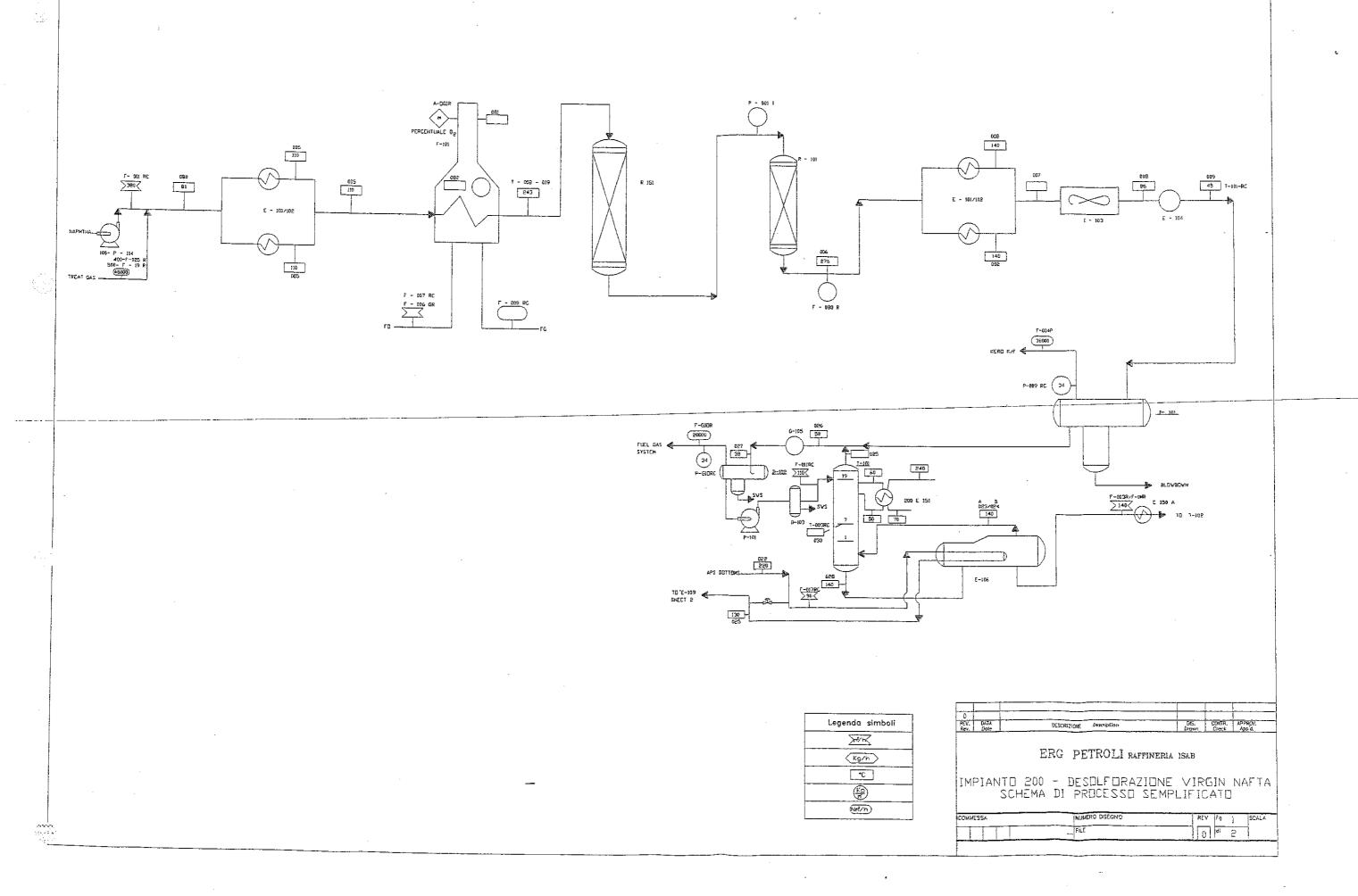
Le acque acide generate dall'unità di desolforazione gasolio 1800, sono inviate all'unità SWS. La portata di tali acque acide è pari a circa 12.5 ton/hr (corrispondenti a circa 64 l per tonnellata di gasolio in carica) rispetto ai valori di 30-55 l/t specificati dall'IPPC.

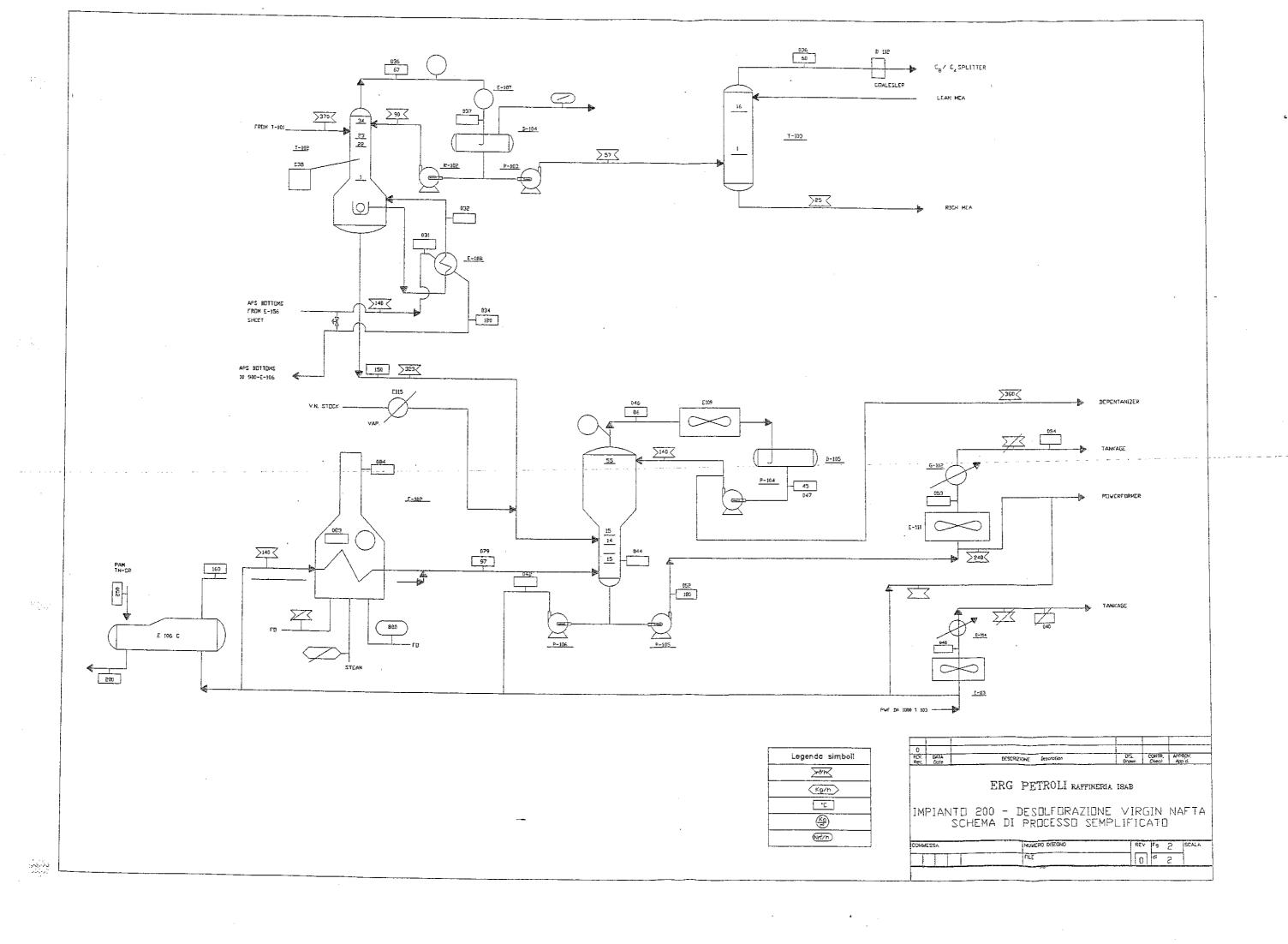
L'elevata produzione di acqua acida è legata alla richiesta di acqua di lavaggio (10 m3/h) connessa con l'alto livello di NH3 nell'effluente reattore, essendo l'unità 1800 un impinato di ultra desolforazione di cariche pesanti.



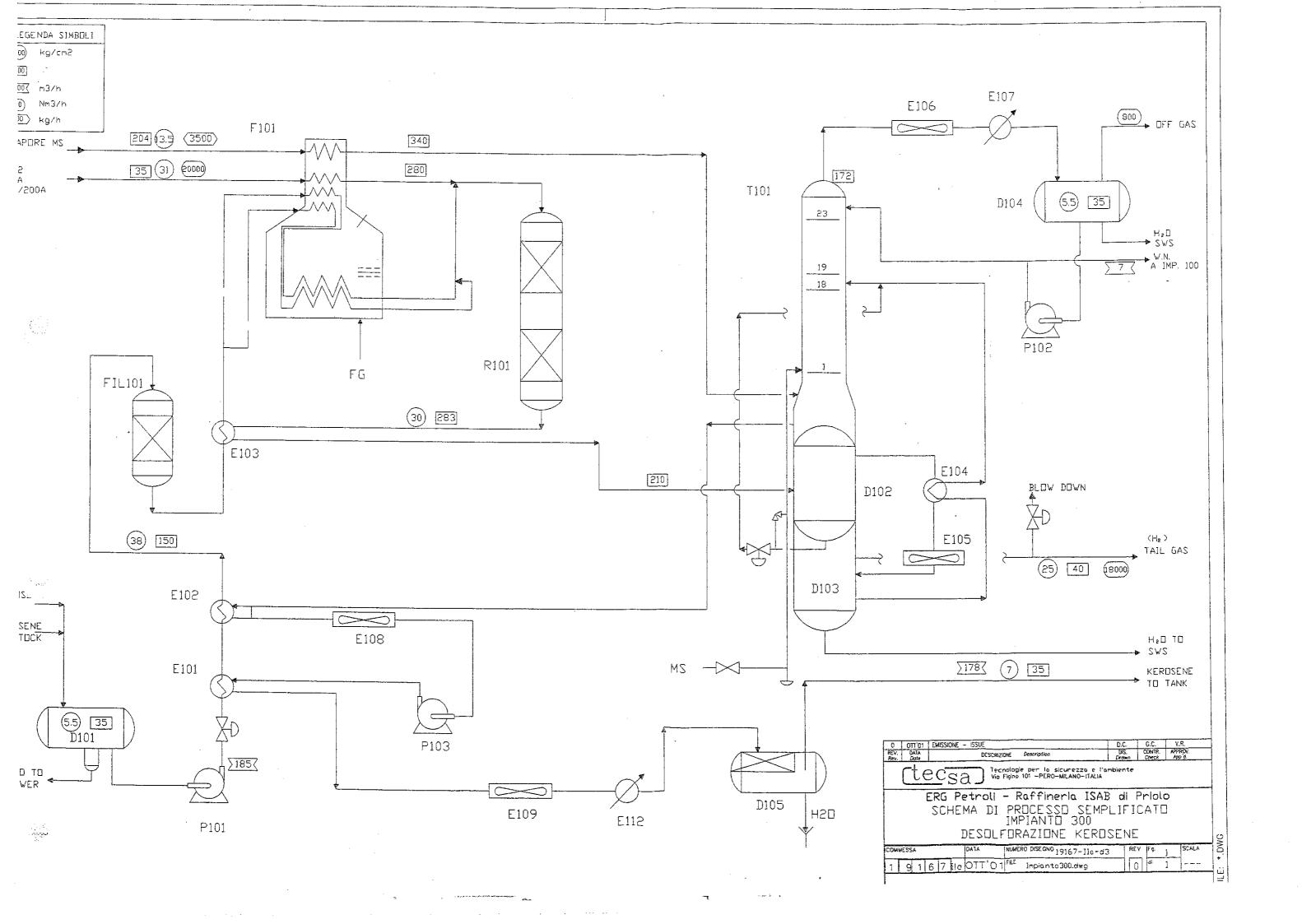


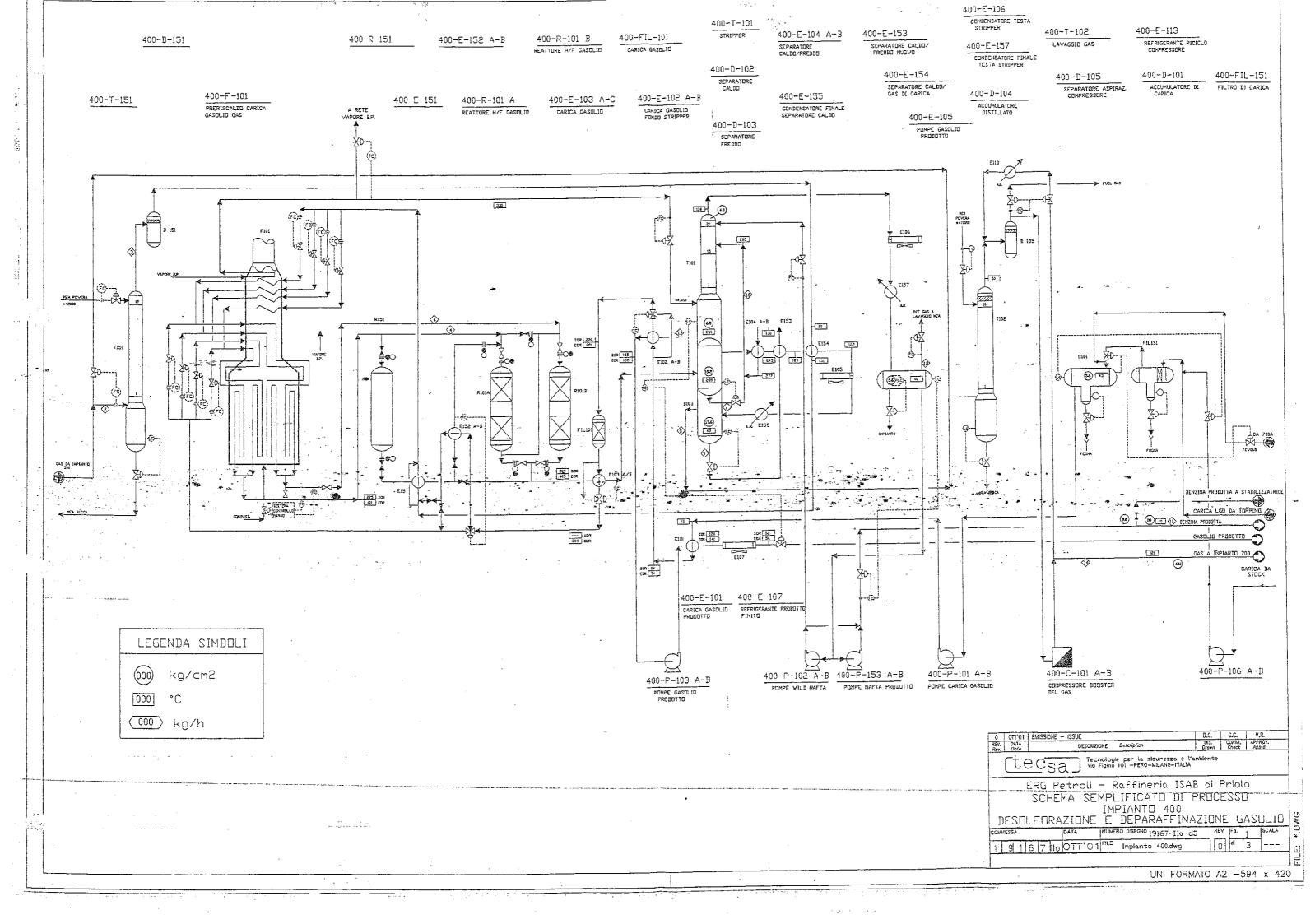
#### ALLEGATI Schemi di processo

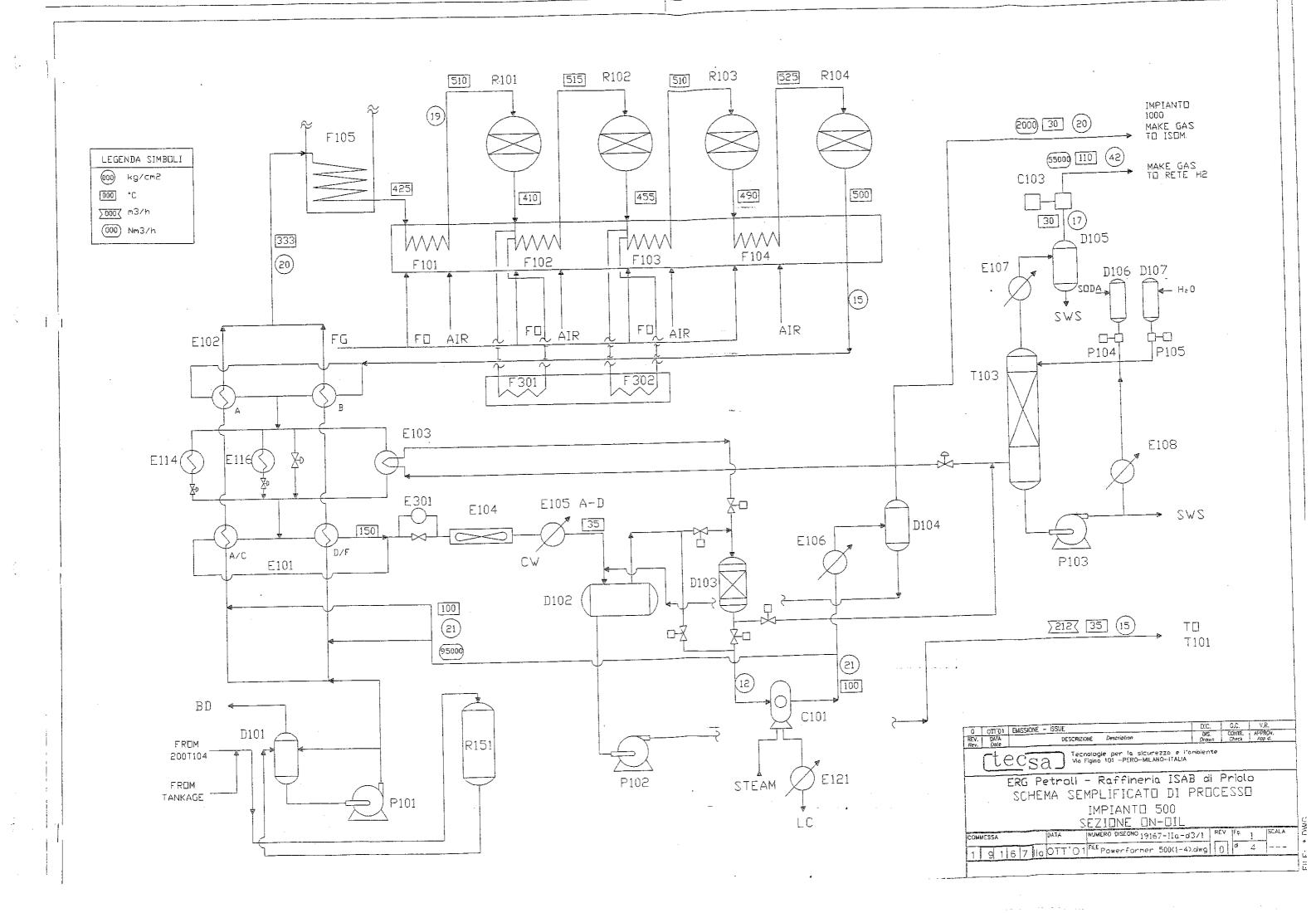

| CLIENTE:<br>PROGETTO: | ERG MED ADEGUAMENTO BAT pro IPPC |        |  |
|-----------------------|----------------------------------|--------|--|
| N° Progetto A621      | Rev.                             | Foglio |  |

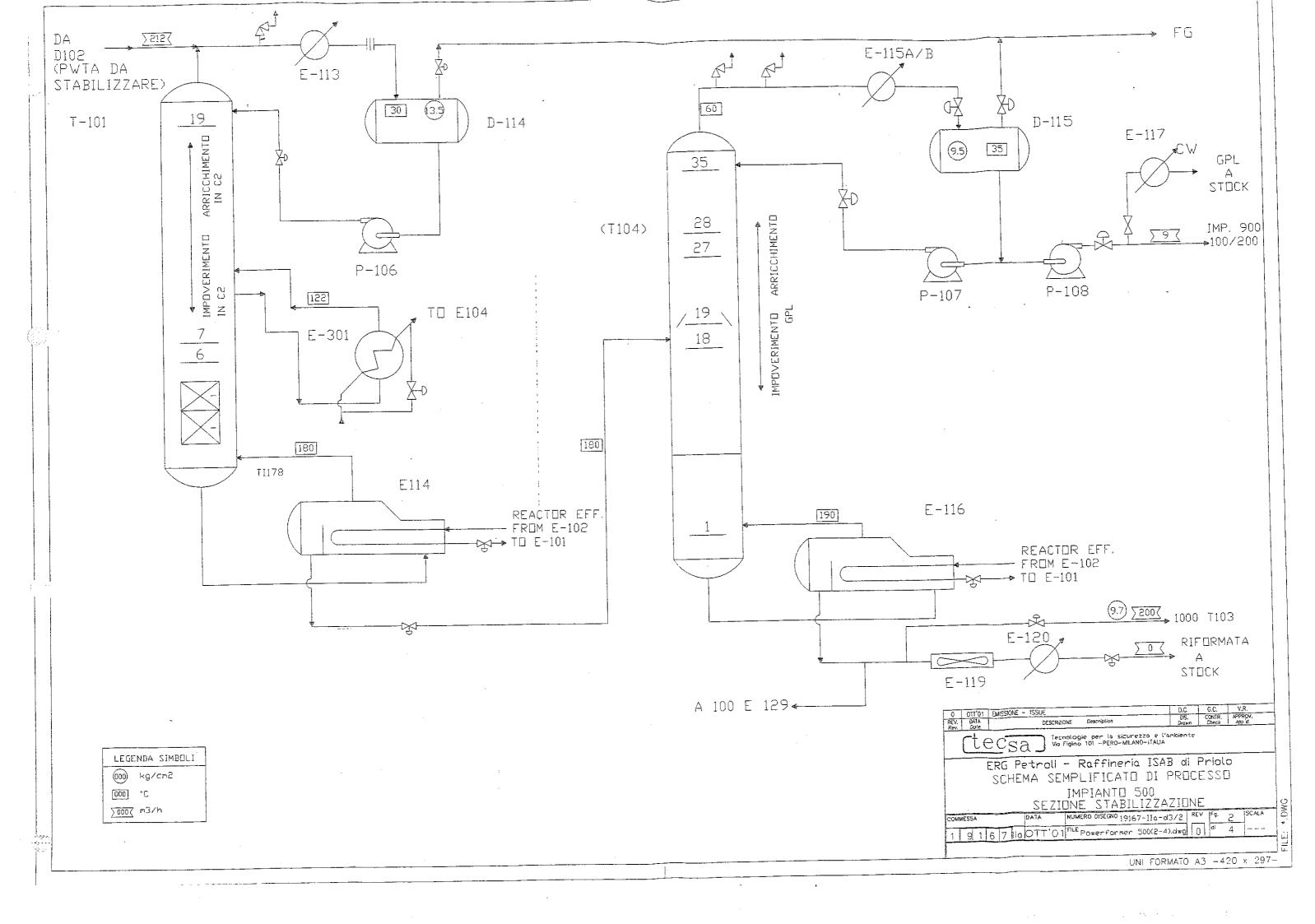

| Δ | I | I | $F_{i}$ | G | 17 | $\Gamma I$ |
|---|---|---|---------|---|----|------------|

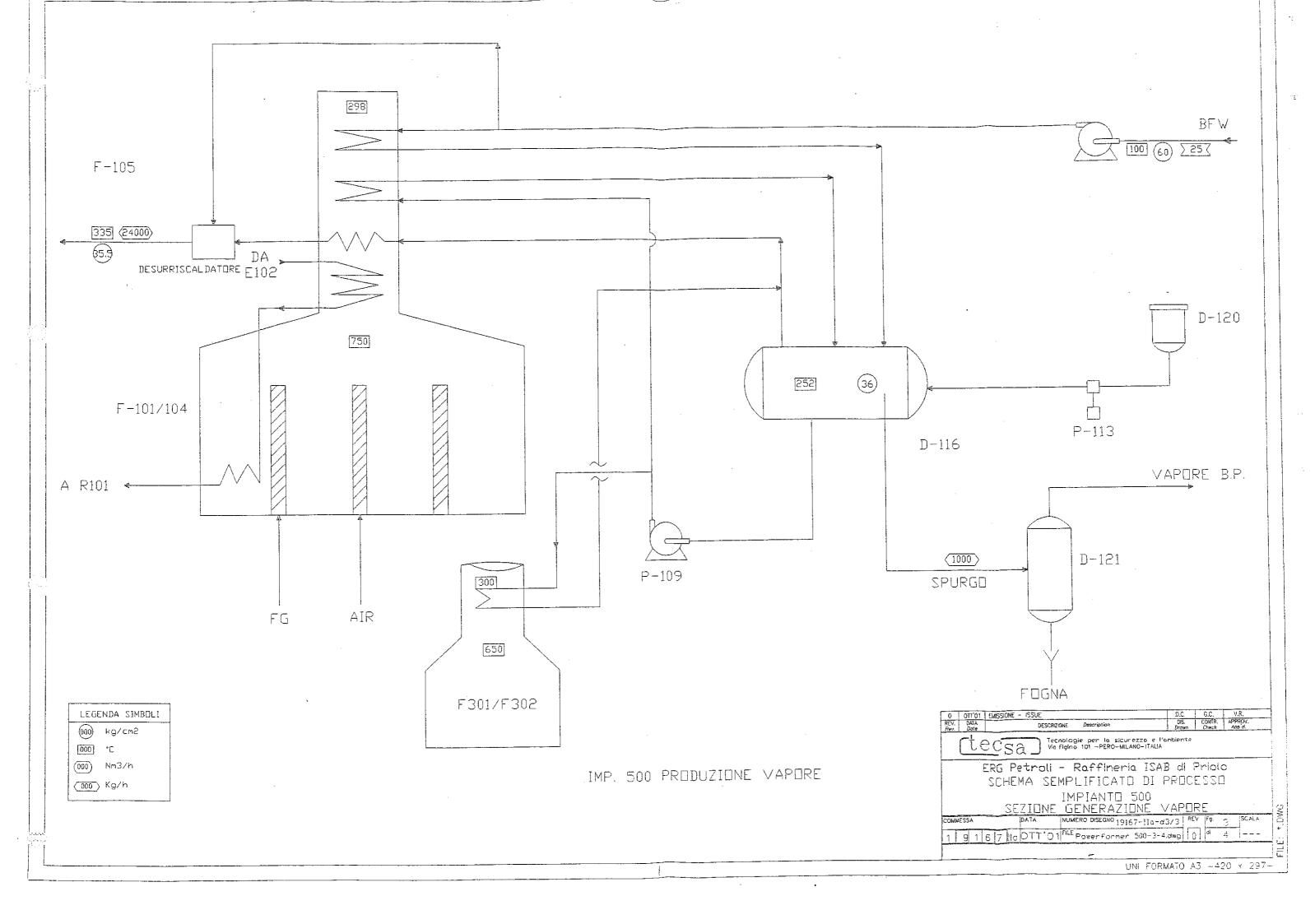

SCHEMI DI PROCESSO SEMPLIFICATI

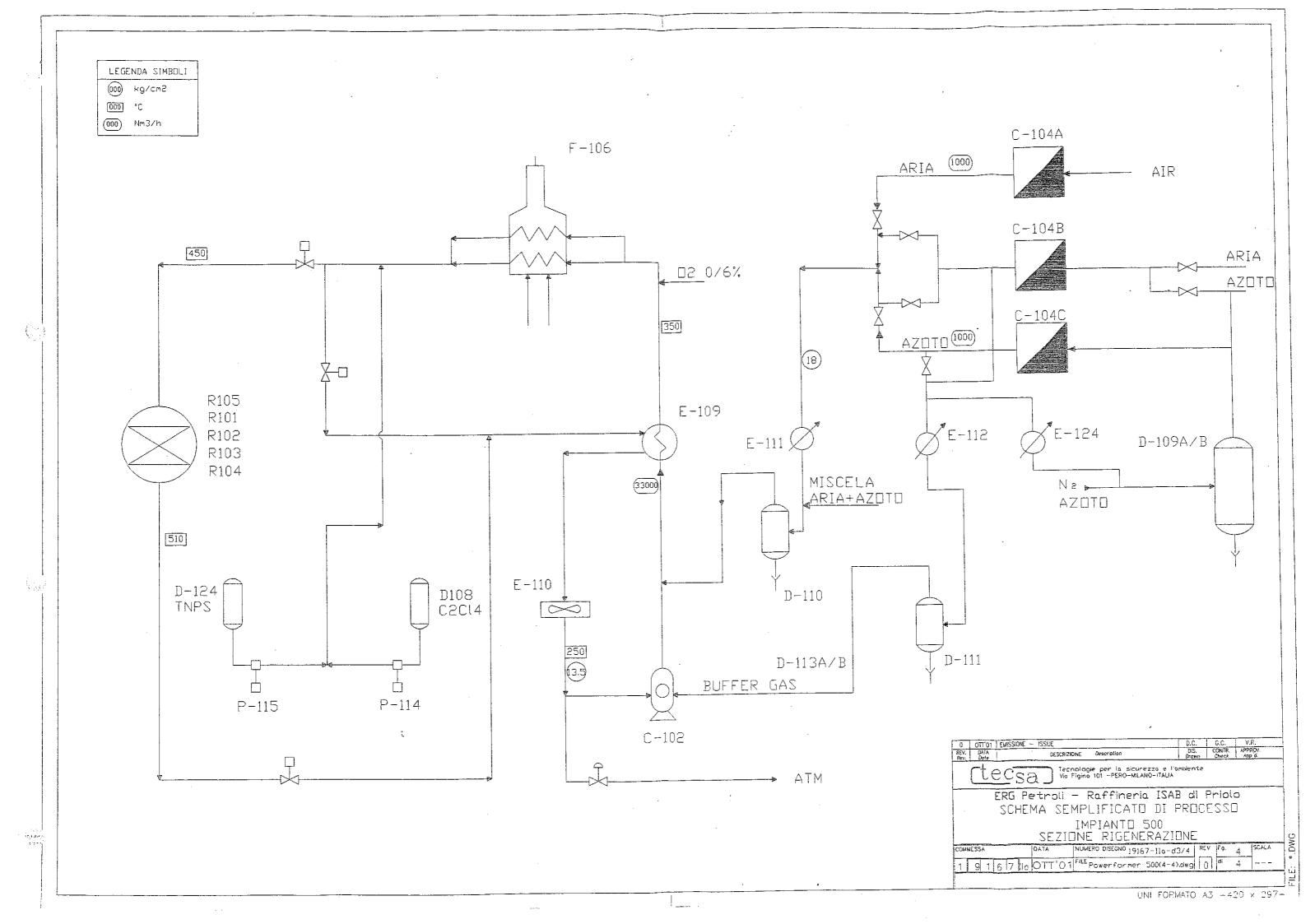


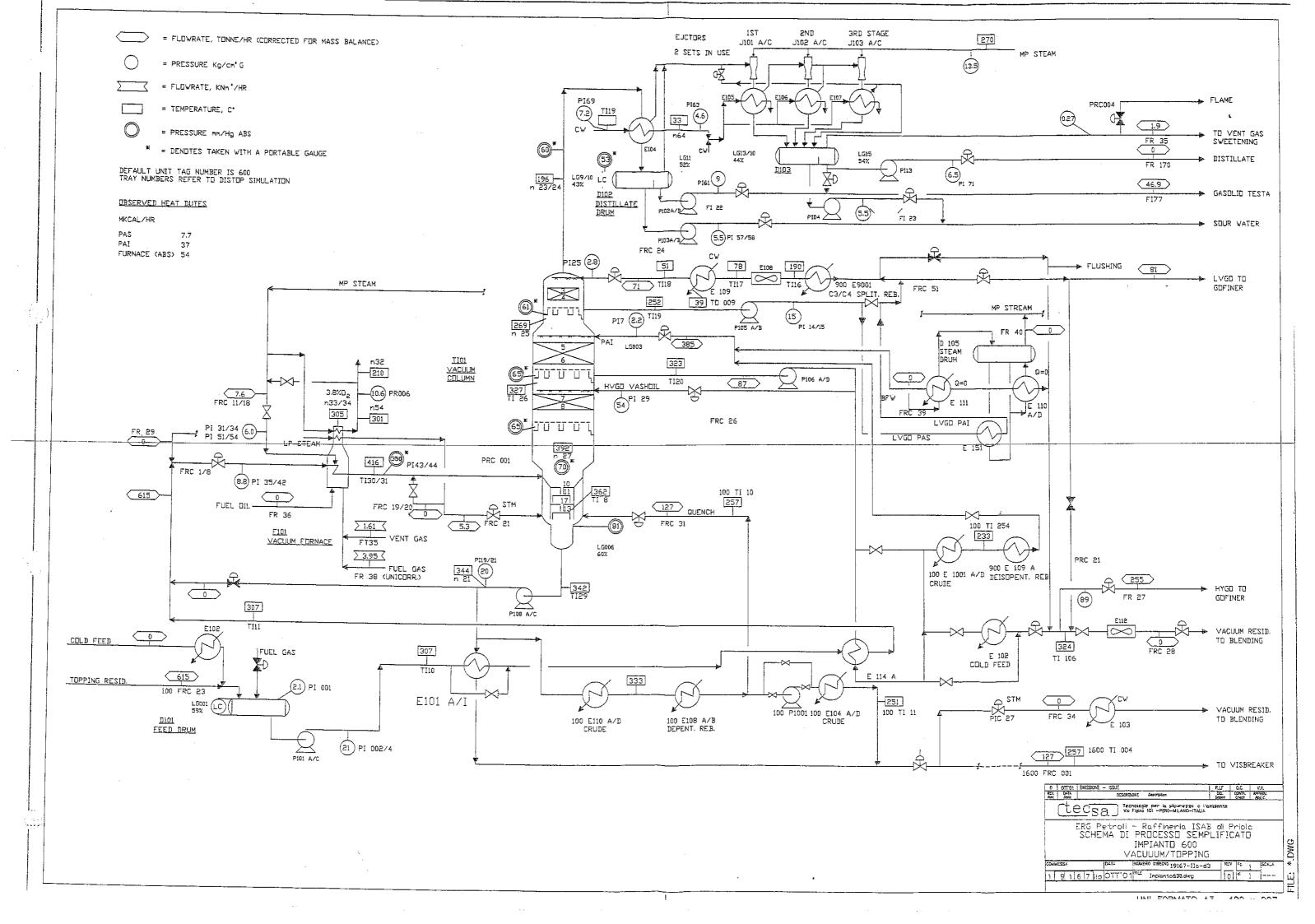



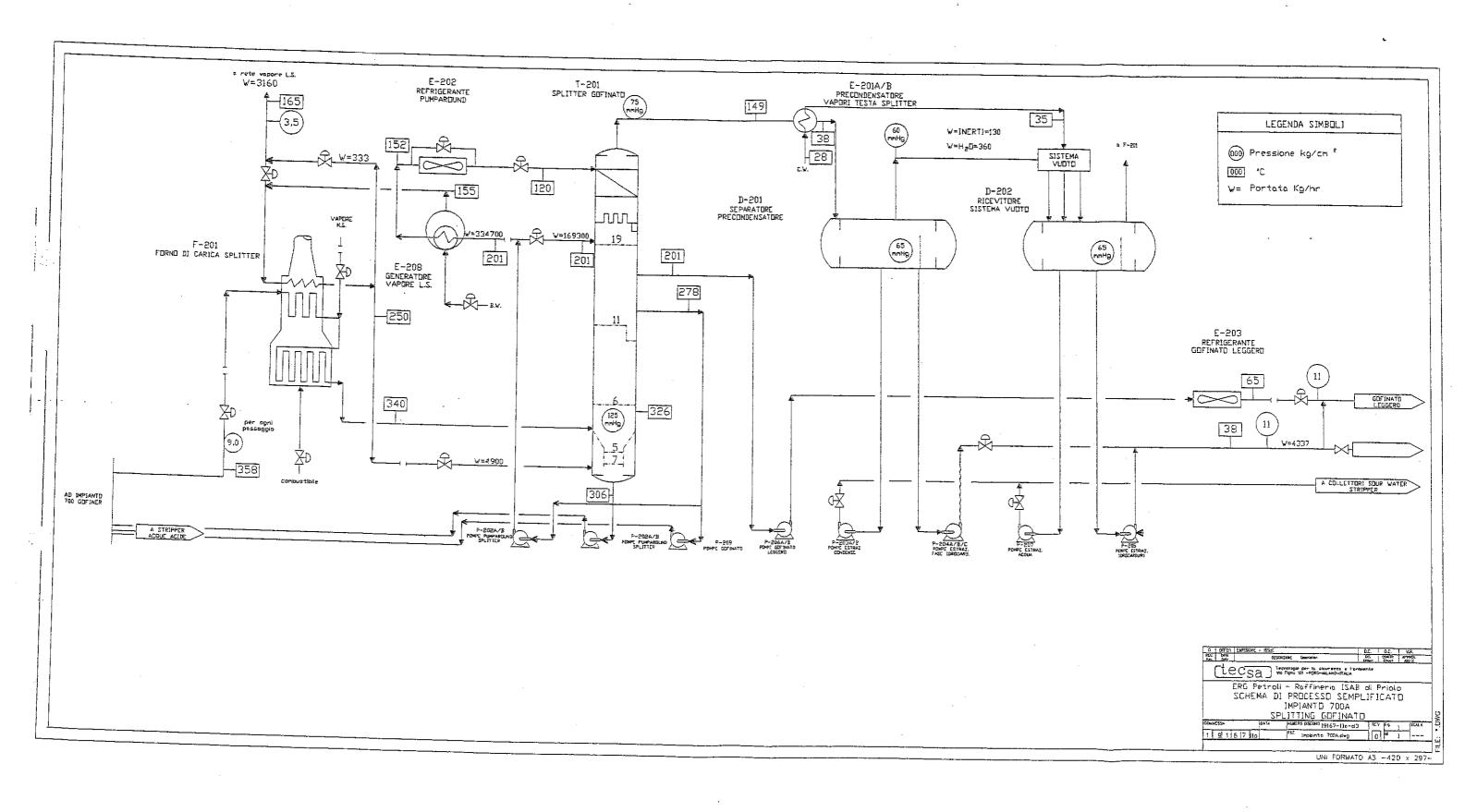



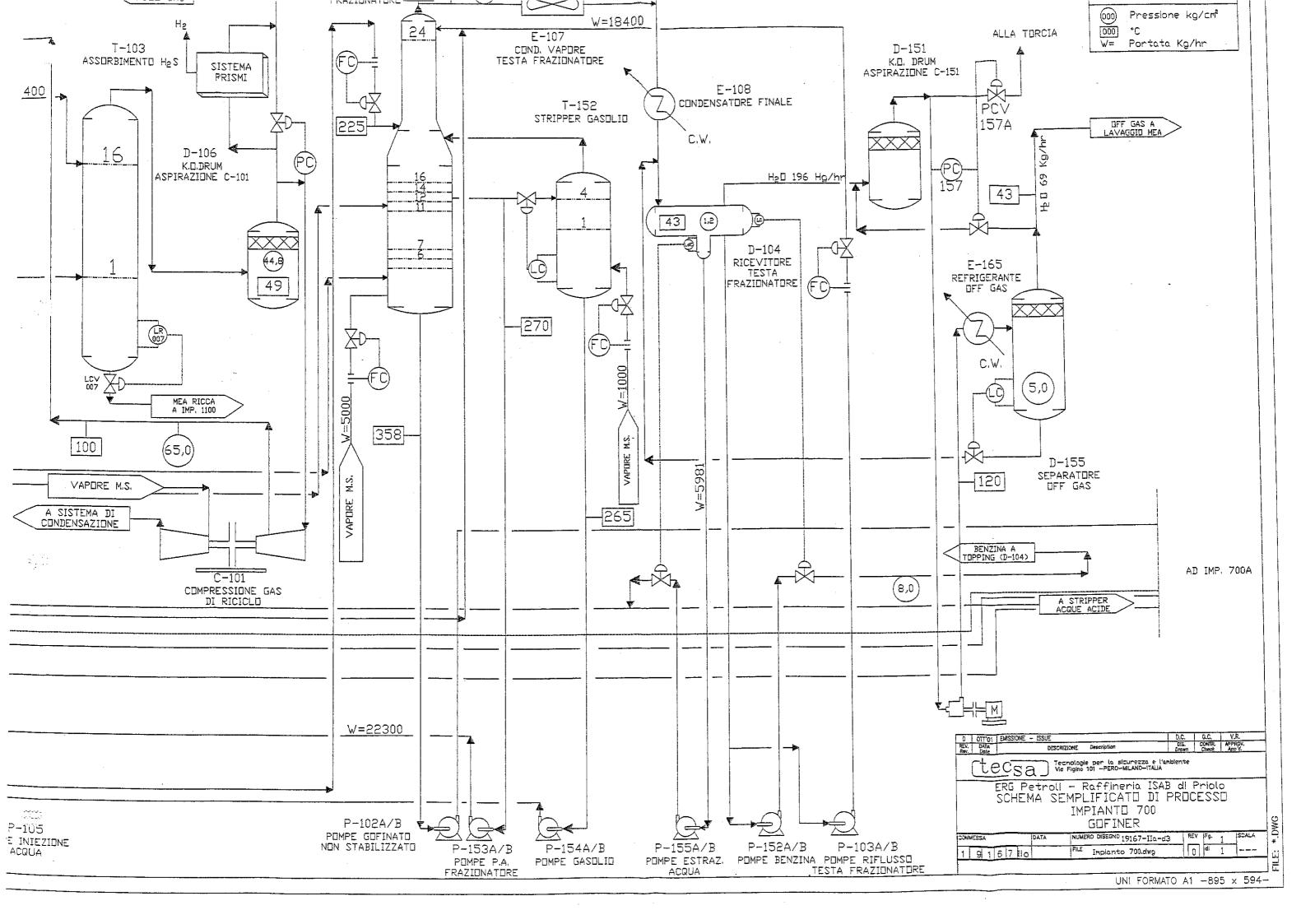



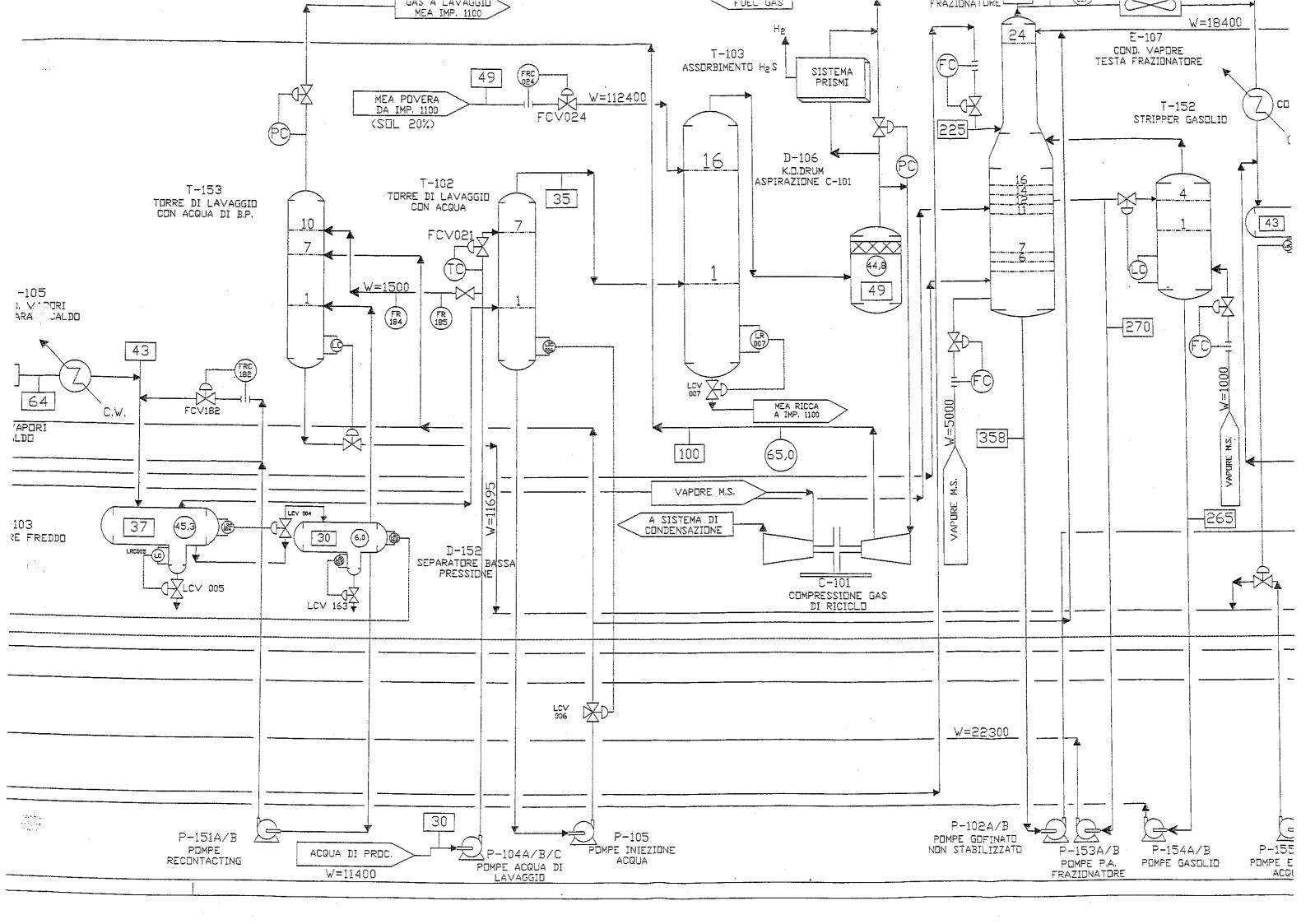



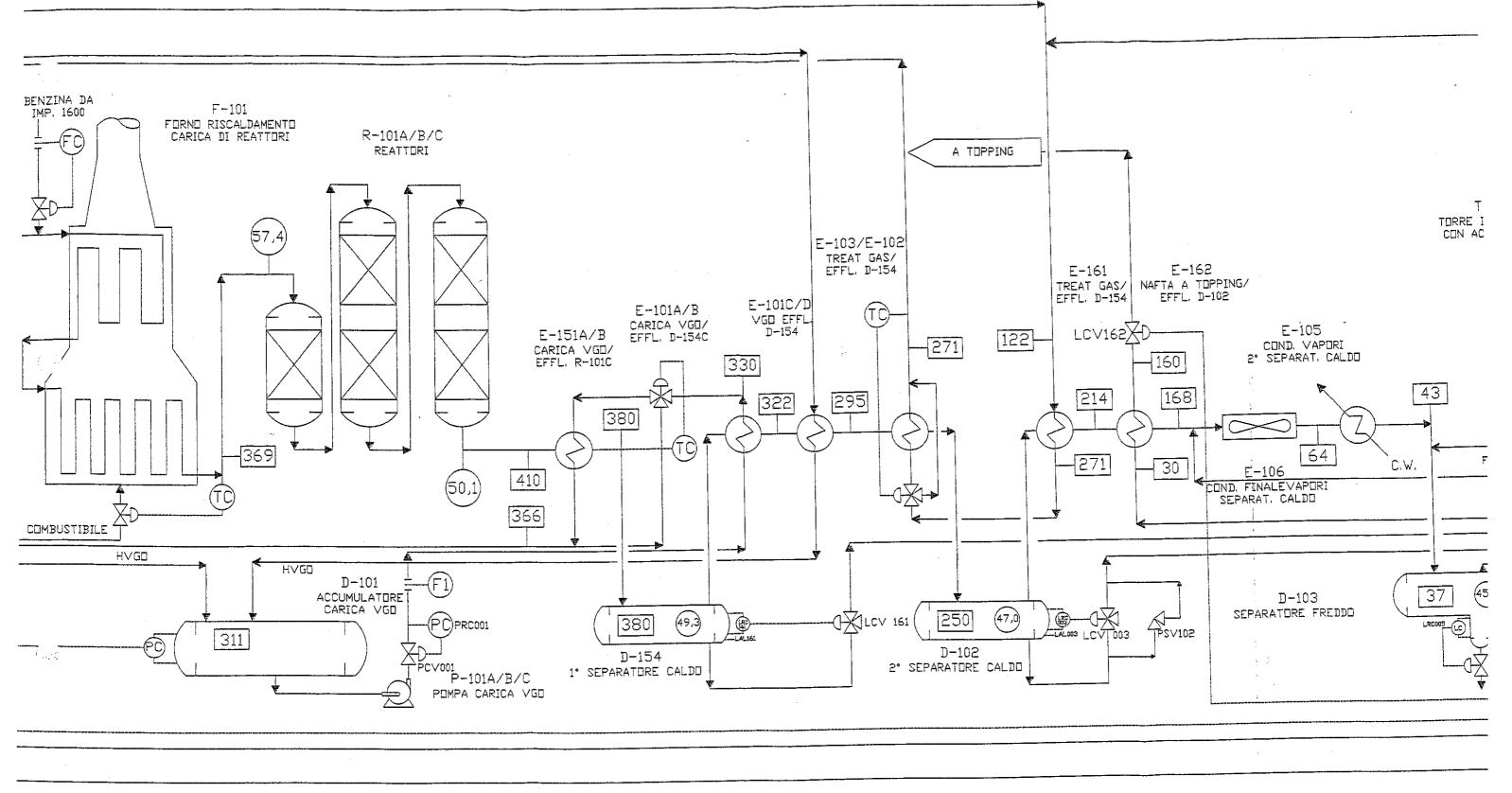



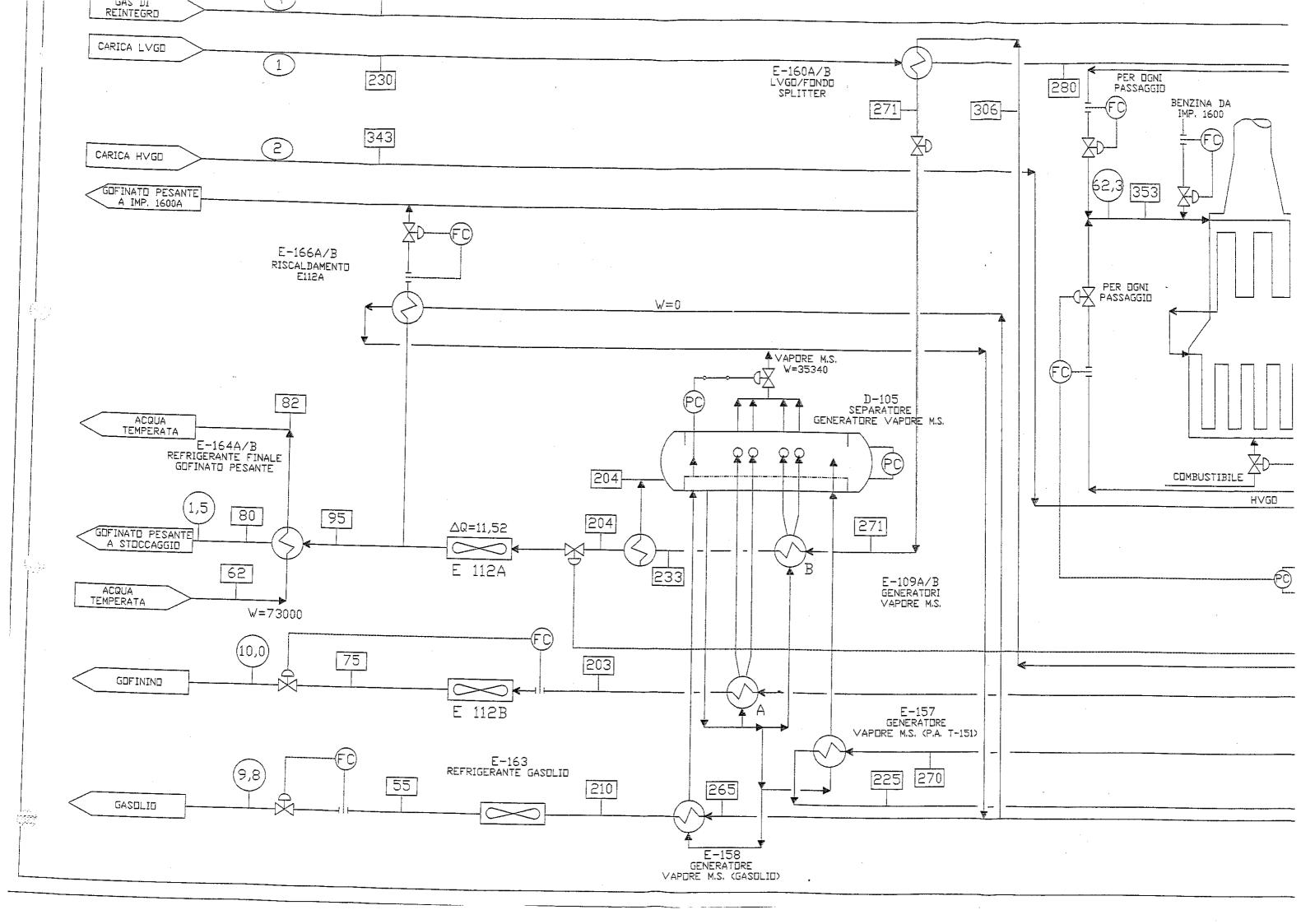



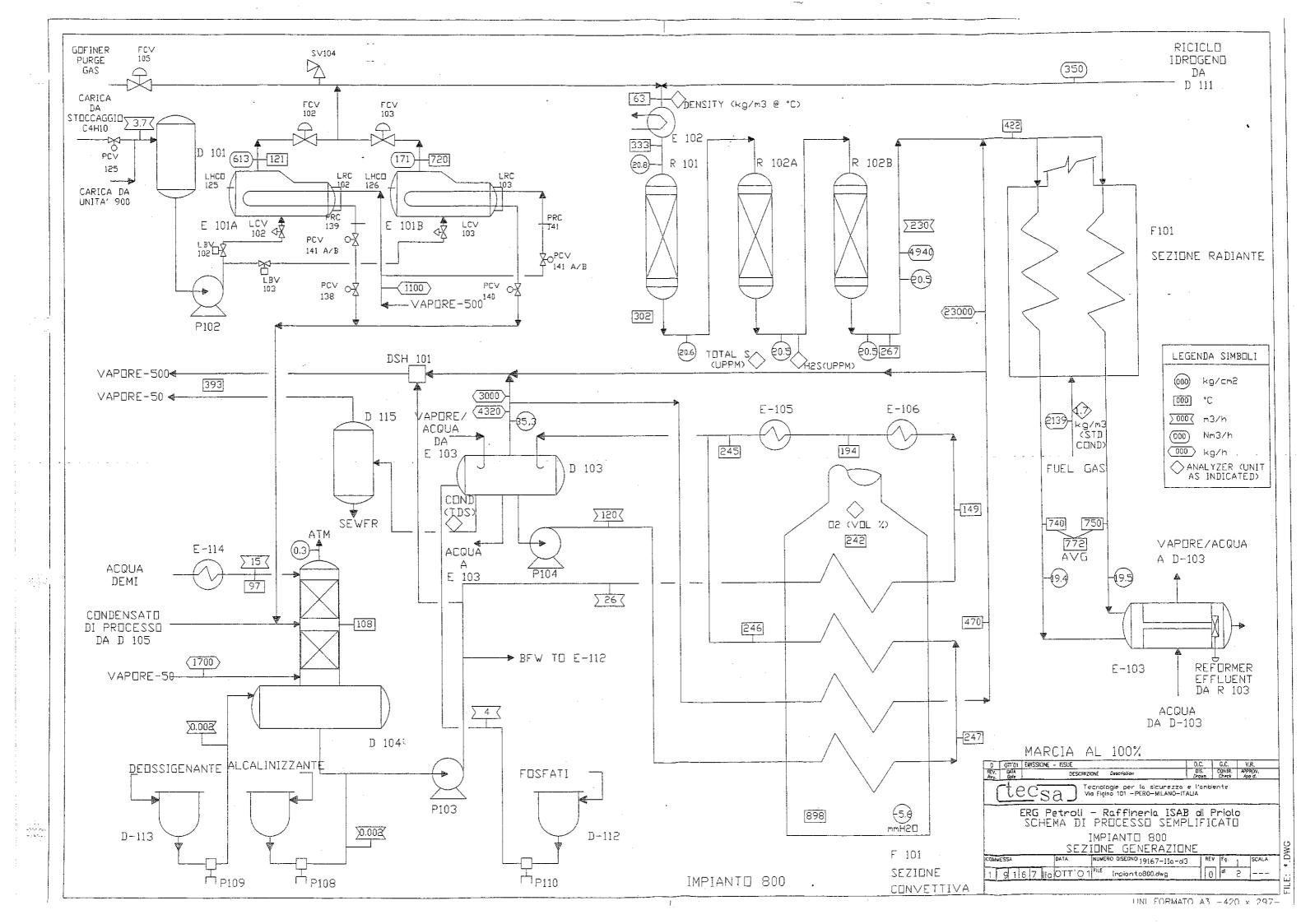



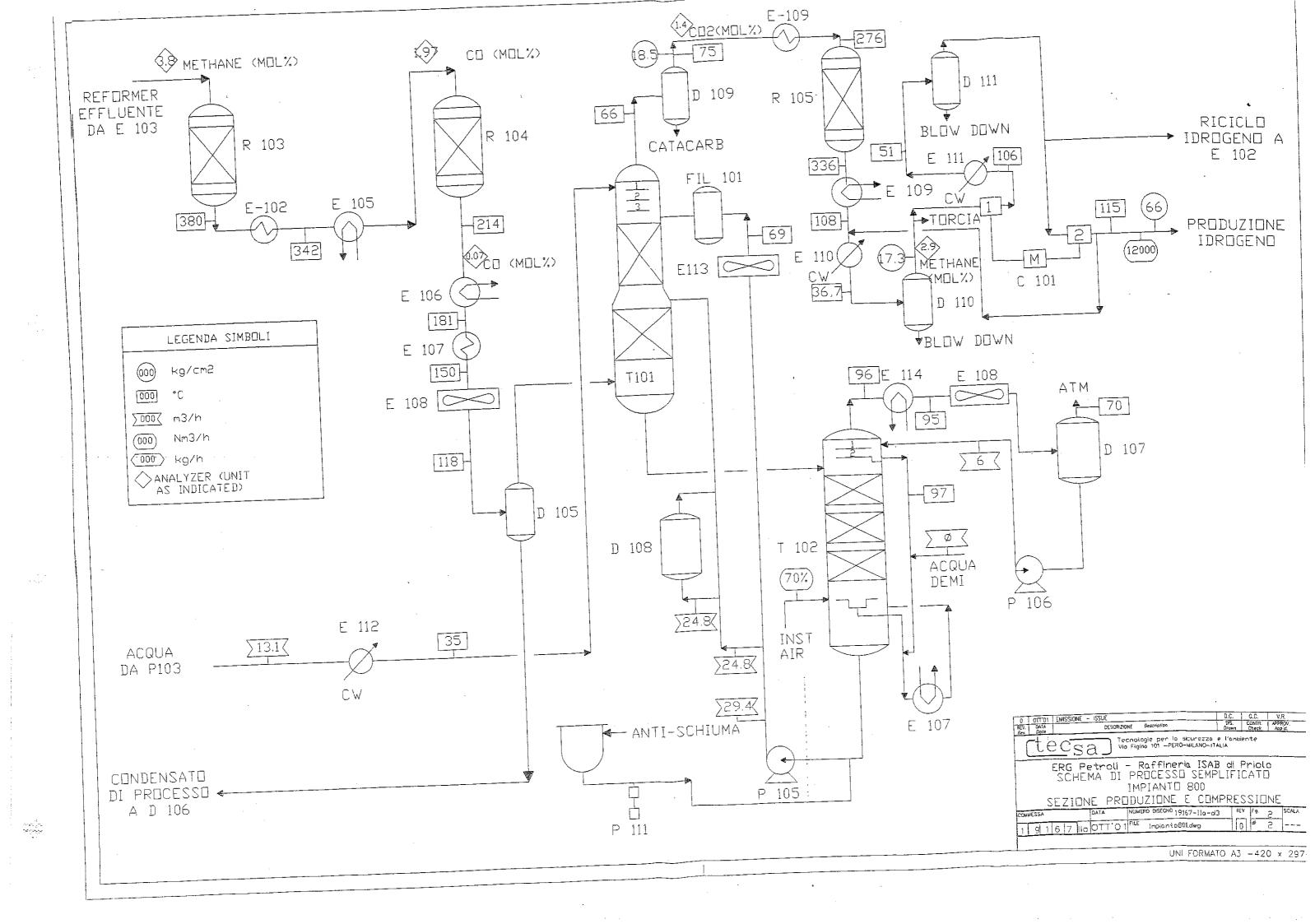



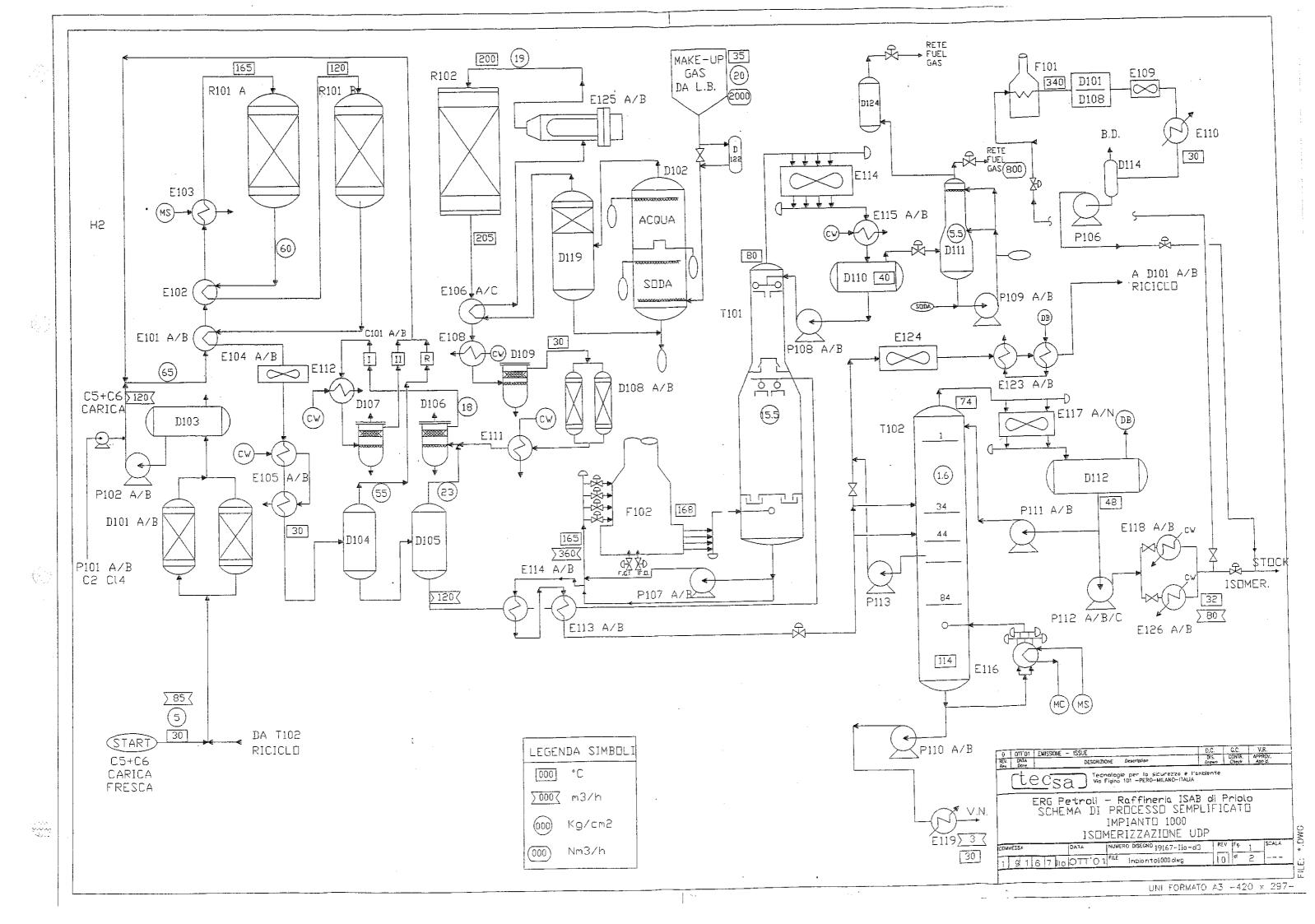



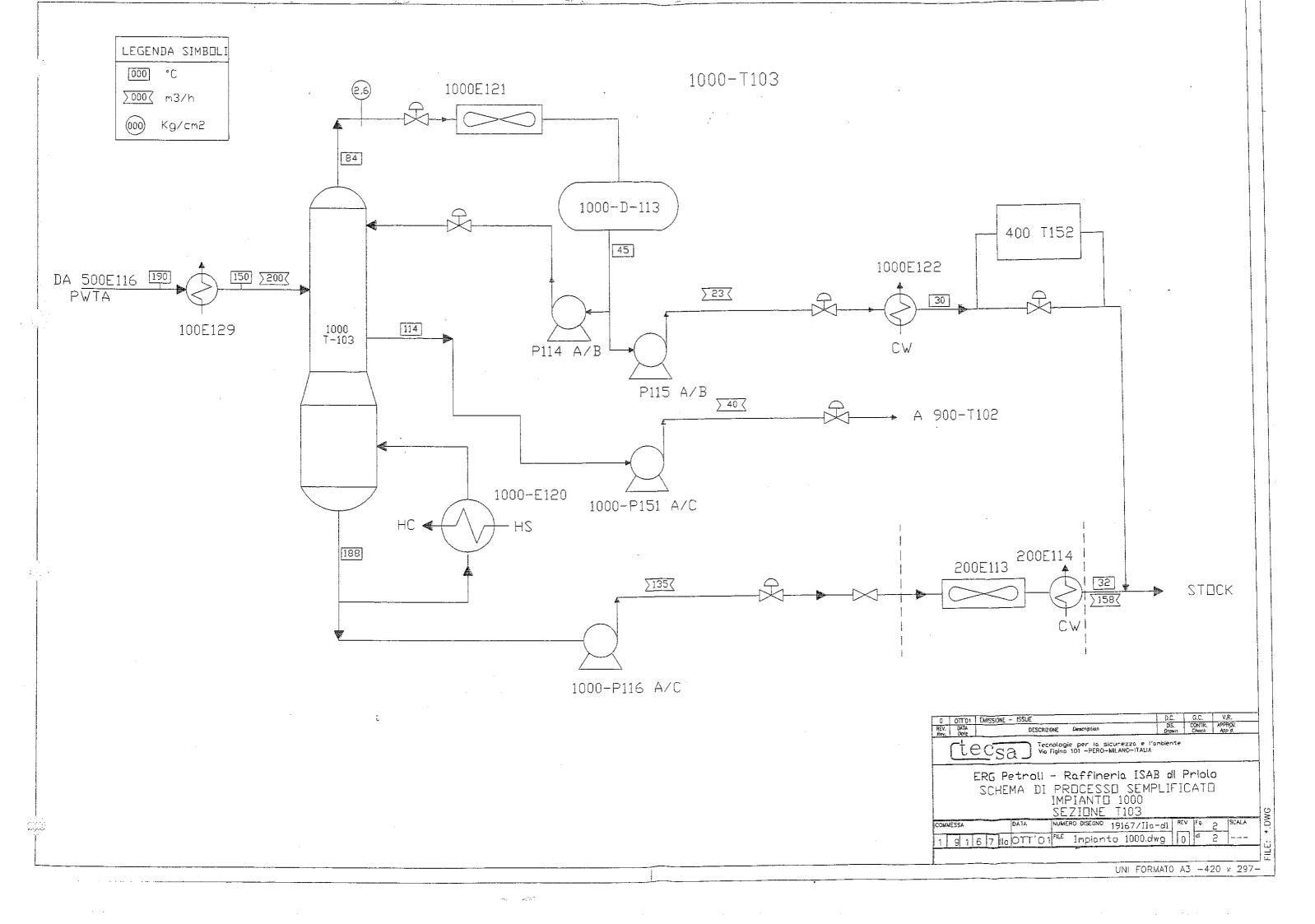



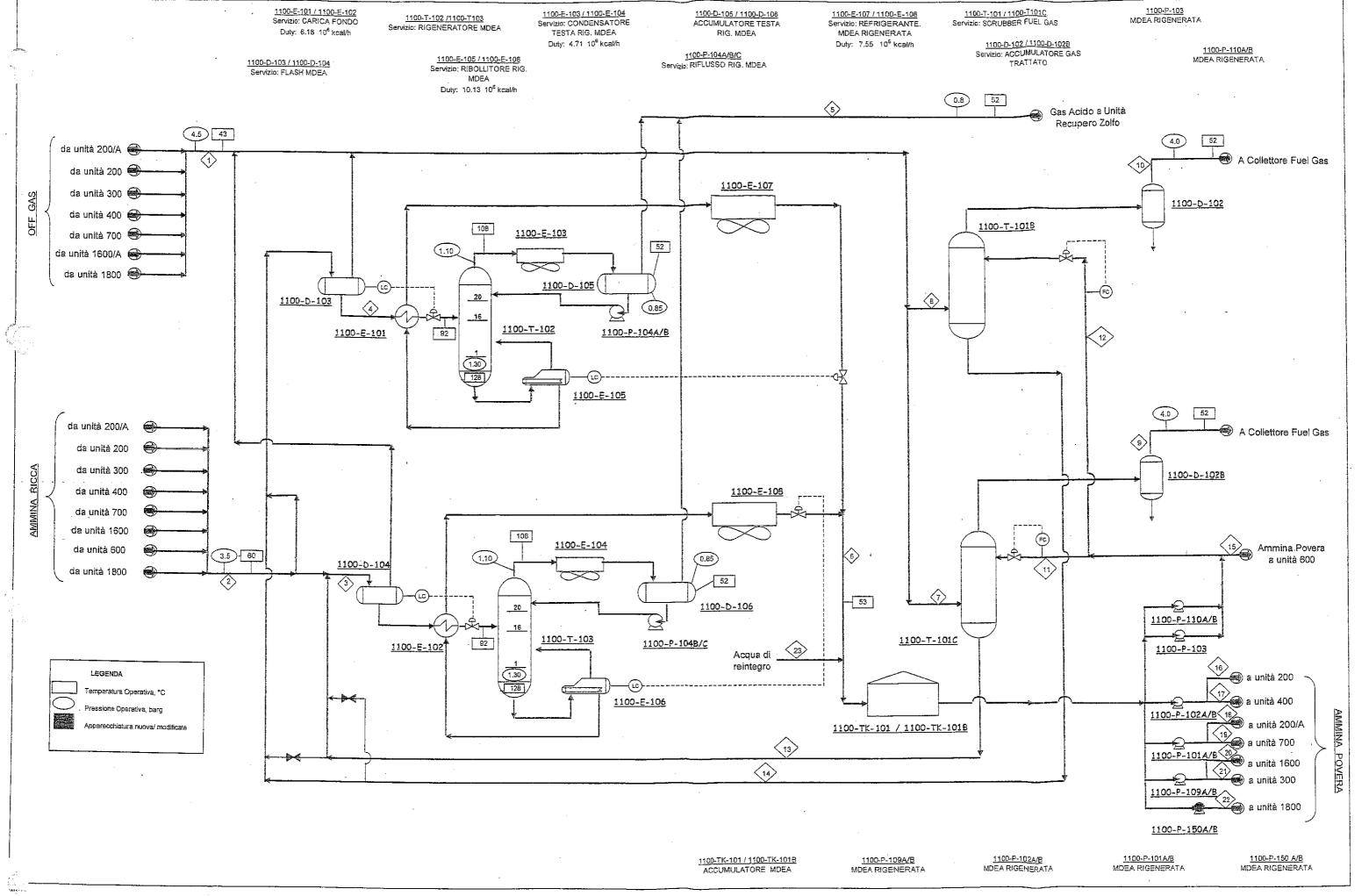



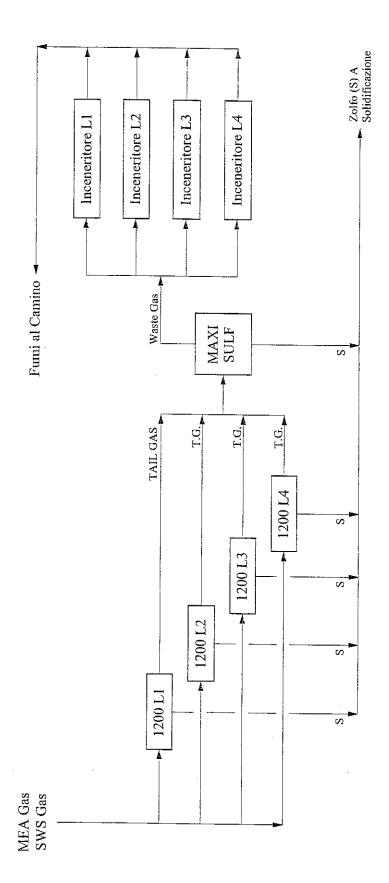



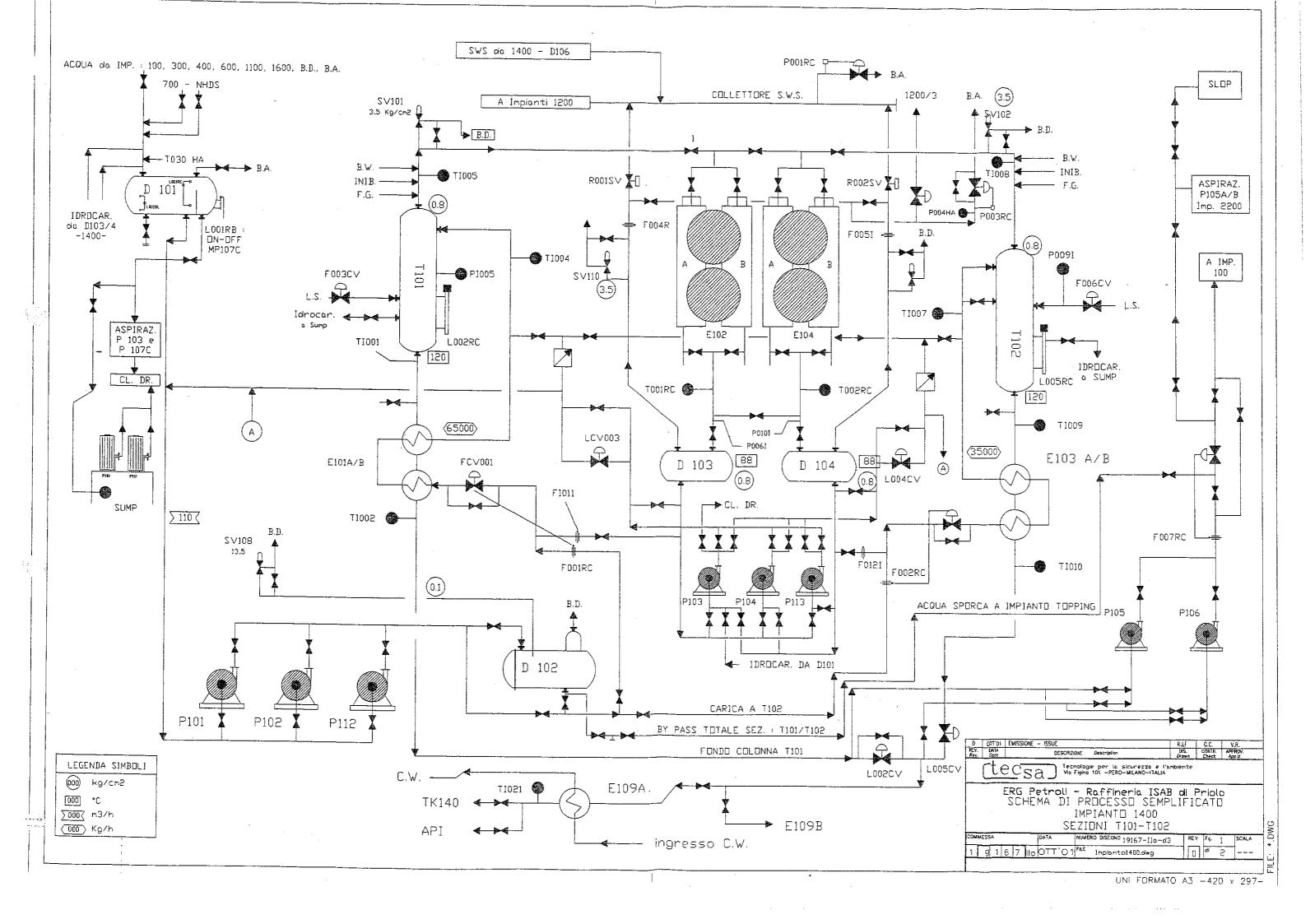



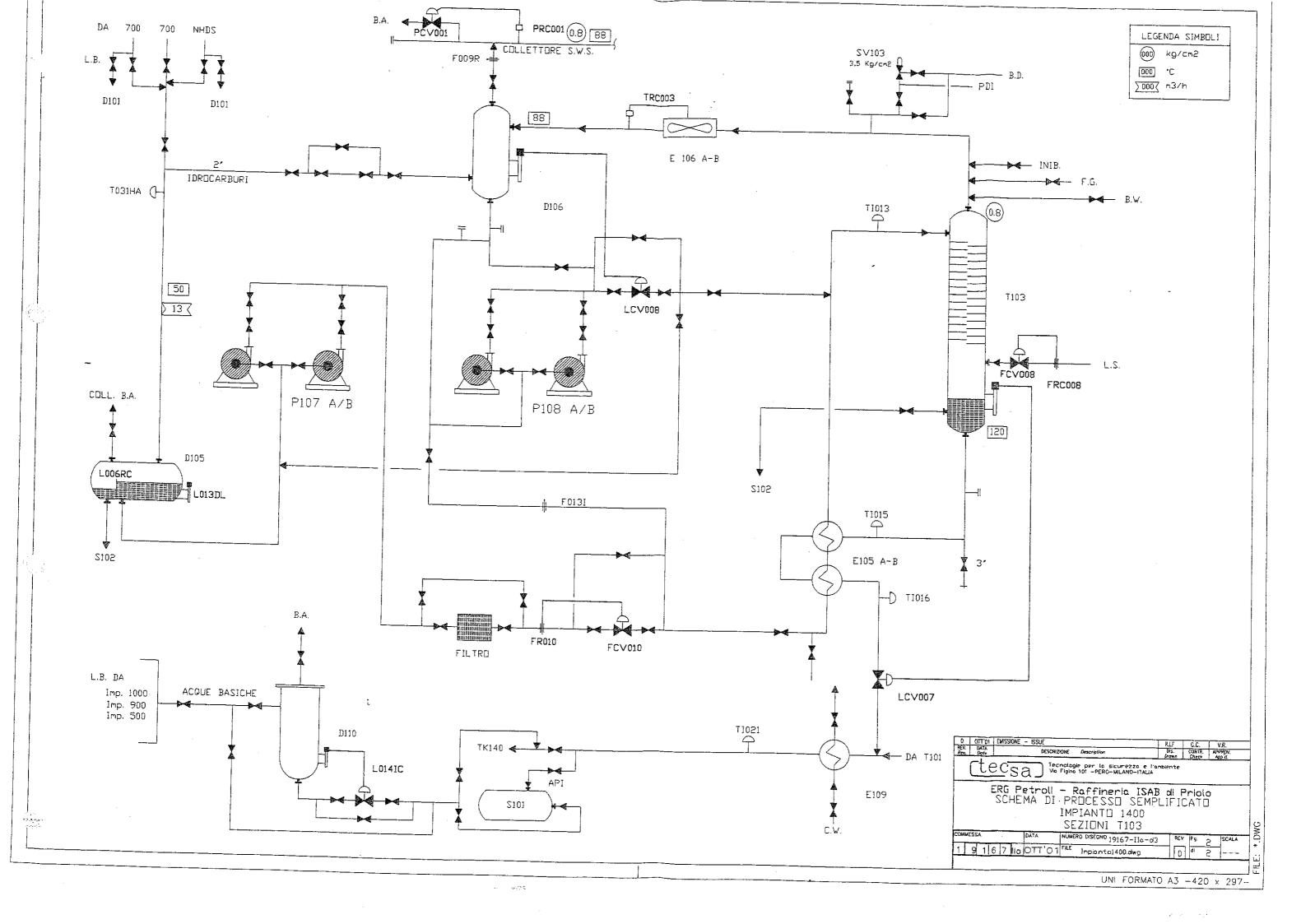



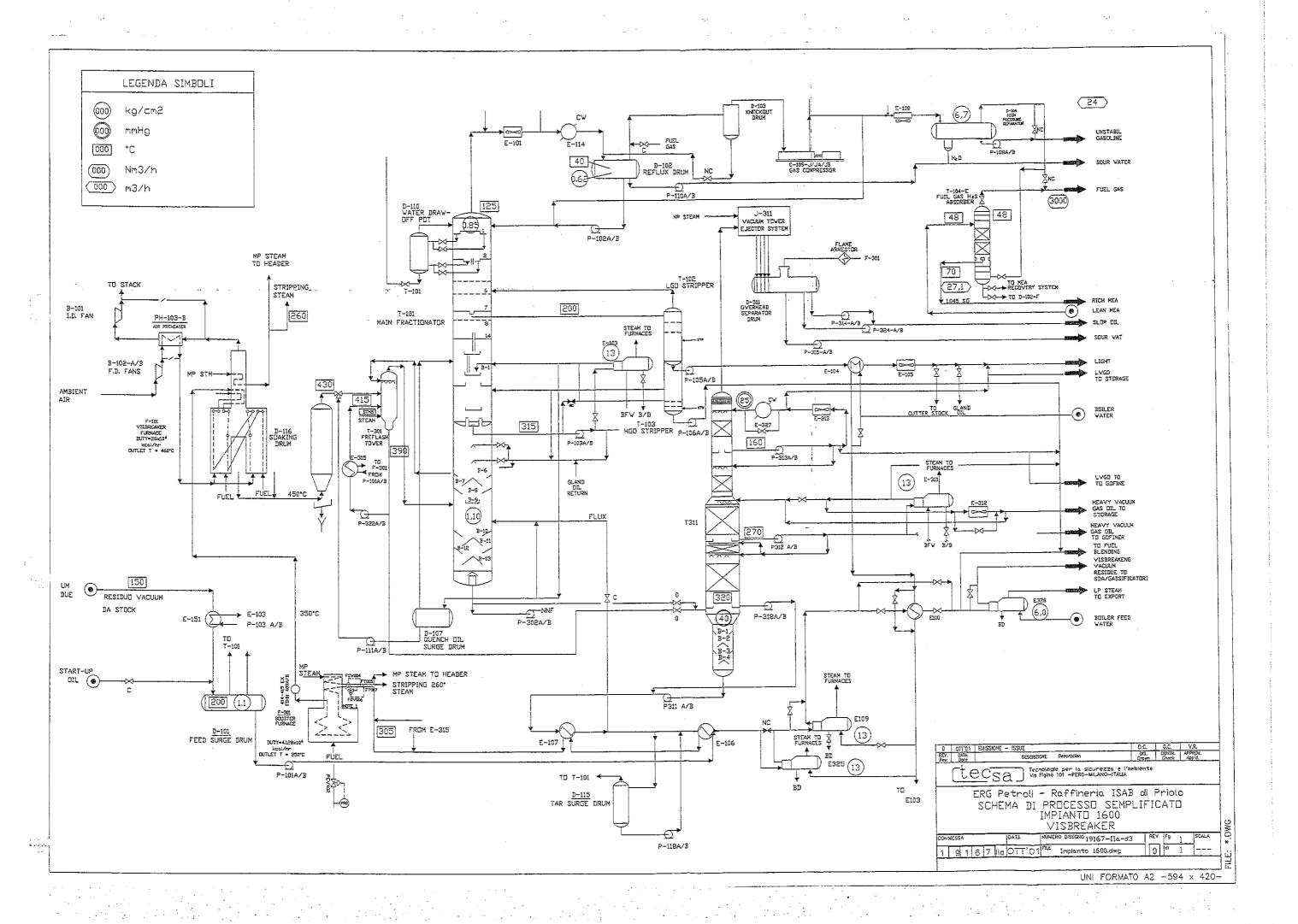



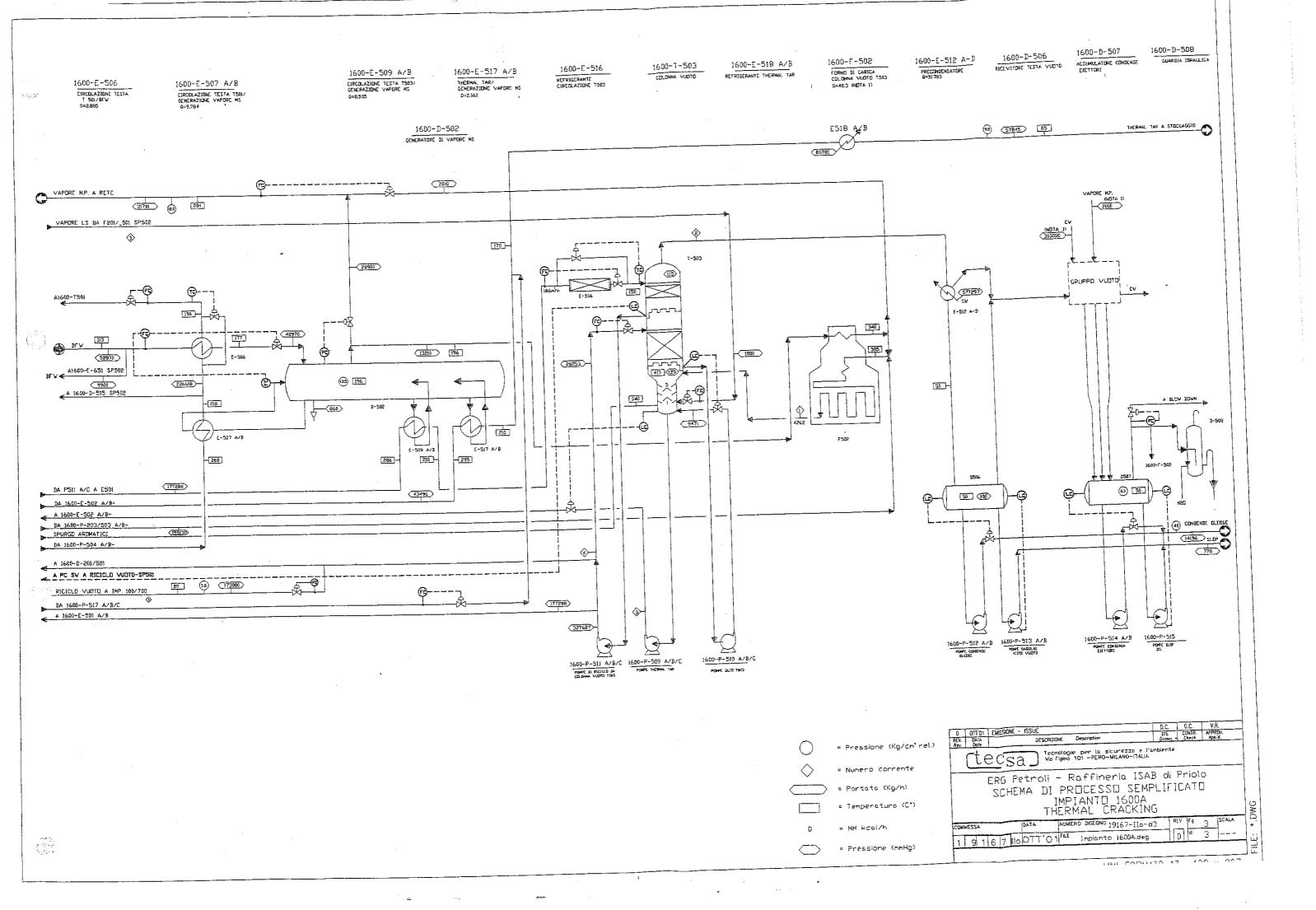


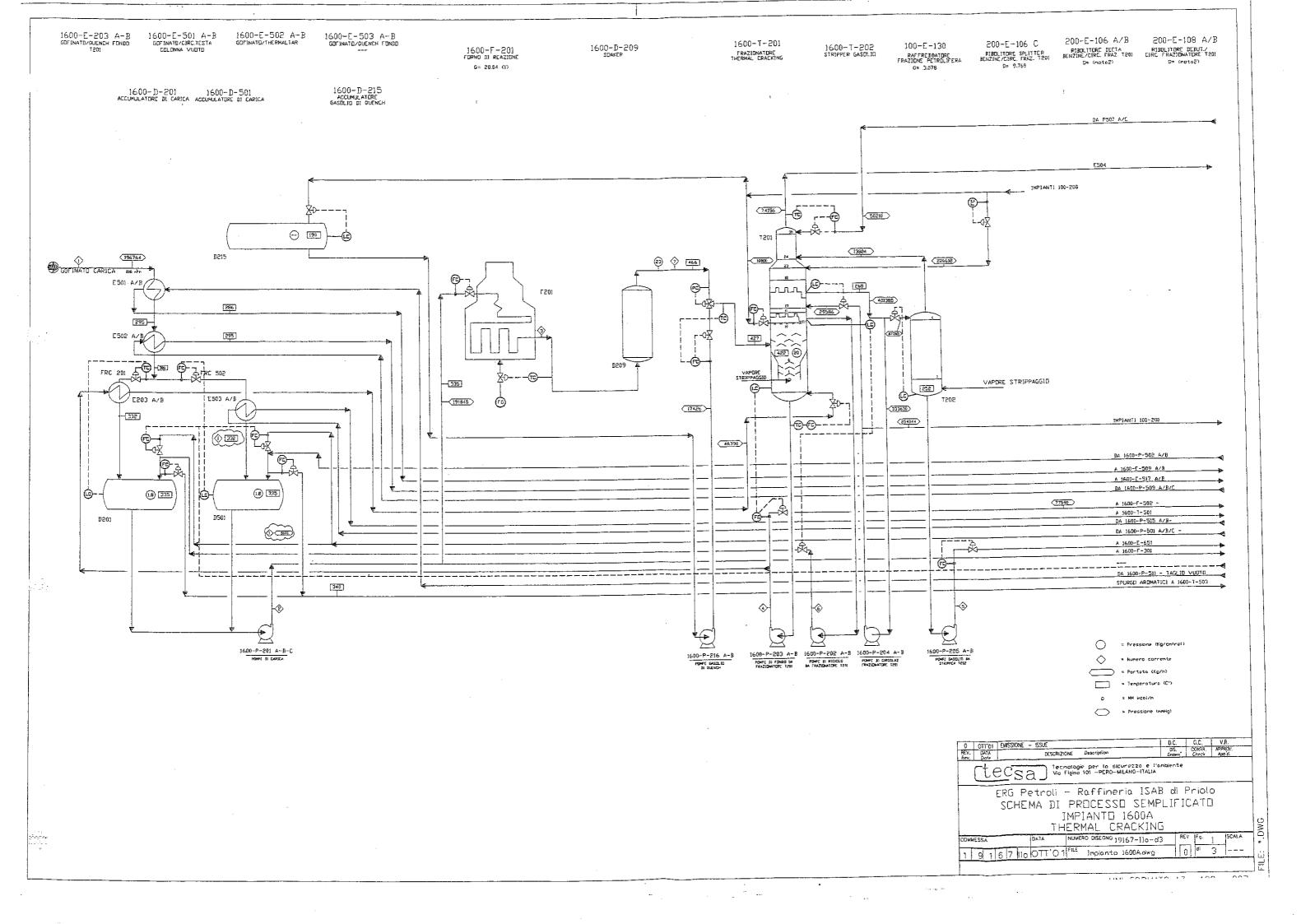





UNITA' 1200 IMPIANTI DI PRODUZIONE ZOLFO












1600-E-211 A/B
REFRIGERANTE GASOLIO
A STOCCAGGIO
0= 726 1600-E-651
GASDLID/GENERATURE VAPORE LS
D= 6.303 1600-T-502 1600-F-501 1600-E-504 A/F 1600-E-505 A/B FRAZIONATORE THERMAL CRACKING CDNDENSATBRE FINALE VAPORI TESTA T201/ T501 D= 1.786 CONDENSATORE
VAPOR) TESTA 1201/ 1501
P= 19.681 FORNO DI REAZIONE Q= 28.04 (1) 1600-D-515 1600-D-509 ACCUMULATORE
GASOLIO DI DUENCH 1600-D-503 SDAKÉR ACCUMULATORE DA 1600 - T- 201 SP301 74156 -[55] 01505 (27)20 T501 A 1600 T-201 (13804) A IMPIANTO 100 DA 1600-E506 23 466 402991 1945 - 268 ES07 A/B 67755 335 D509 427 40 (11) → □ → ← 79586 (E)-(422 (B)) F-501 127 c 049a) <u> 5157</u> 19032 -⊕ ⋳-€ A 1600-D-501 46390 164 A 1600-E651 A 1600-F502 DA 1600-9-203 A/B 1600-E507 A/B BA 1600-E-503 A/B (25,5650) 77590 € A 1600-E-503 A/B E-A 115-3 (650000) (65042) (65042) CV FLUSSAGGIE TAR-SP503 185 n/h -€> 1600-P-517 A/B/C PDMPA FLUSSAGGID TAR 1600-P-505 A/B PDMPA GASDLID DA 1502 1600-P-504 A/B PDMPA CIRCOLAZIONE FRAZIONATORE 1501 1600-P-503 A/B PDMPA FONDO FRAZIONATORE 1501 1600-P-516 A/B 1600-P-502 A/B P 507 A/C POMPA DI RICICLO DA POMPA GASOLIO FRAZIONATURE TSOI FRAZIONATORI T201/501 0 OTT'D1 EMISSIONE - ISSUE
REV. DATA
Rev. Date
Dete DESCRIZIONE Description = Pressione (Kg/cm' rel.) Tecnologie per la sicurezza e l'ambiente Via Figino 101 —PERO-MILANO-ITALIA (tecsa) = Numero corrente ERG Petroli - Raffineria ISAB di Priolo SCHEMA DI PROCESSO SEMPLIFICATO = Portata (Kg/h) IMPIANTO 1600A THERMAL CRACKING = Temperatura (C\*) NUMERO DISEGNO 19167-11a-d3 = MM kcal/h COMMESSA 1 9 16 7 10 OTT'O 1 FILE Impionto 1600A.dwg = Pressione (mmHg) UNI FORMATO A3 -420 x 297-

1600-T-501

