

Erg Raffinerie Mediterranee S.p.A. Raffineria Isab Impianti Nord

Domanda di autorizzazione integrata ambientale

ALLEGATO D15

GAP ANALYSIS DELLA PROPOSTA IMPIANTISTICA PER LA QUALE SI RICHIEDE L'AUTORIZZAZIONE RISPETTO ALLE MIGLIORI TECNICHE DISPONIBILI

ERG Raffinerie Mediterranee S.p.A. Isab Impianti Nord

ADEGUAMENTO BAT pro IPPC

Rev.

Foglio
2 di 139

<u>Indice</u>

Premessa	3
UNITA' CR-20. DISTILLAZIONE ATMOSFERICA E DISSALAZIONE GREZZO	4
UNITA' CR/26 DISTILLAZIONE SOTTO VUOTO	12
UNITA' CR 27 - FCC	18
UNITA' 29/29BIS	25
UNITA' CR-30. DISTILLAZIONE ATMOSFERICA E DISSALAZIONE GREZZO	26
UNITA' CR-31. DESOLFORAZIONE GASOLIO	34
UNITA' CR-32 IMPIANTO SWS	39
UNITA' CR-33 VISBREAKING	44
UNITA' CR/34 e CR/41 CLAUS	49
UNITA' CR 35 MTBE	55
UNITA' CR 36 ALCHILAZIONE	60
UNITA' CR37 LAVAGGIO AMMINICO E DI RIGENERAZIONE DEA	65
UNITA' CR-37 A – RIGENERAZIONE ACIDO SOLFORICO	70
UNITA' CR-40 DAO Gofiner	73
UNITA' CR/41 CLAUS	78
UNITA' CR42 LAVAGGIO AMMINICO E RIGENERAZIONE DEA	84
UNITA' CR-43 IMPIANTO SWS	89
UNITA' PR1	94
DISOLEAZIONE NORD. TRATTAMENTO ACQUE OLEOSE	97
UNITA' STOCCAGGIO E TRASFERIMENTO FLUIDI	
PRODUZIONE DI ENERGIA TERMICA -FORNI DI RAFFINERIA	120
IMPIANTO ACOUA MARE RAFFREDDAMENTO	133

ERG Raffinerie	ADEGUAMENTO BAT pro	Rev.	Foglio
Mediterranee S.p.A. Isab Impianti Nord	IPPC	0	3 di 139

Premessa

La presente relazione costituisce una gap analysis dell'impianto della Raffineria Nord di Erg Raffinerie Mediterranee S.p.A. rispetto alle migliori tecnologie disponibili. In particolare, lo studio prende in considerazione tutte le unità rilevanti che costituiscono il processo nell'impianto, confrontate con il"*Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries*" e, ove pertinenti, con i:

- Reference Document on the Application of Best Available Techniques to Industrial Cooling Systems.
- Reference Document on Best Available Techniques in the Large Volume Organic Chemical Industry
- Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals

CLIENTE:	ERG MED			
PROGETTO:	ADEGUAMI	ADEGUAMENTO BAT pro IPPC		
N° Progetto	Rev.	Foglio		
A621	0	4 di 139		

<u>UNITA' CR-20. DISTILLAZIONE ATMOSFERICA E DISSALAZIONE</u> <u>GREZZO</u>

1.0 Organizzazione

La gestione dell'unità è affidata alla funzione GEST 4

1.1 Descrizione del Processo

L'impianto lavora grezzi e residui ad una pressione di poco superiore alla pressione atmosferica. Ha lo scopo di realizzare il frazionamento del grezzo in una serie di prodotti intermedi da destinarsi alla preparazione di prodotti finiti.

Il greggio, dopo un processo di dissalaggio ed un preriscaldamento, arriva al forno di carica passando quindi nella colonna di distillazione atmosferica, dalla quale provengono essenzialmente i seguenti tagli:

- ➤ Gas e GPL
- Virgin Nafta (recuperata in n°3 tagli)
- > Acqua Ragia
- > Kerosene
- ➤ Gasolio leggero
- ➤ Gasolio pesante
- > Residuo atmosferico

Questi prodotti sono inviati a stoccaggio o in cascata ad altri impianti per essere ulteriormente lavorati.

Per ulteriori informazioni si faccia riferimento al manuale operativo disponibile presso il reparto.

CI	LIENTE:	ERG MED		
PF	ROGETTO:	ADEGUAMENTO BAT pro IPPC		
1	N° Progetto	Rev.	Foglio	
	A621	0	5 di 139	

1.2 Capacità di Produzione e Trattamento delle Sostanze in Ingresso ed Uscita

Carica

Nome	Lavorato 2005 (ton / anno)
Grezzo	1.140.138
Slop rilavorati	66.181

Prodotti / semilavorati in uscita

Nome	Lavorato 2005 (ton / anno)
Gas e GPL	6.746
Benzina Topping	202.727
Ragia Minerale	137.912
Kerosene	93.478
Gasolio Leggero	176.498
Gasolio Pesante	100.953
Residuo atmosferico	488.147

Capacità di progetto: 12.000 t/g (di grezzo trattato)

CLIENTE: PROGETTO:	ERG MED ADEGUAMENTO BAT pro IPPC		
N° Progetto A621	Rev.	Foglio 6 di 139	

2.0 Confronto consumi specifici con IPPC-Chapter 3-Emission and consumption level

2.1 Distillazione Atmosferica

L'unità di distillazione atmosferica è una unità convenzionale progettata per trattare una capacità massima di 4.000.000 ton/anno di grezzo. Il recupero di calore viene normalmente massimizzato al fine di contenere i consumi di combustibile e limitare i consumi di acqua di raffreddamento.

Per quanto riguarda i consumi per l'unita di distillazione atmosferica la seguente tabella confronta quanto riportato nel Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries (paragrafo 3.19 – consumption-) con quanto ottenuto operativamente nell'unità di distillazione atmosferica CR-20 della raffineria ISAB NORD

	IPPC	Unità CR-20
Fuel MJ/ton	400-680	630
Electricity kWh/t	4-6	11.50
Steam consumed (kg/ton)	25-30	85
Cooling water (m3/t H2O, ΔT=17°C)	4.0	4.40

2.2 Dissalazione Grezzo

Per quanto riguarda i consumi per la sezione di dissalazione la seguente tabella confronta quanto riportato nel Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries (paragrafo 3.19 – consumption-) con quanto ottenuto operativamente nell'unità di distillazione atmosferica CR-20 della raffineria ISAB NORD

	IPPC			Unità CR-20	
Water Wash (% vv)	T (°C)	Densità grezzo (Kg/m3)	Water Wash	T (°C)	Densità grezzo (Kg/m3)
3-4	115-125	<825	4	130	<825
4-7	125-140	825-875	4	130	840
7-10	140-150	>875			

CLIENTE:	ERG MED		
PROGETTO:	ADEGUAMENTO BAT pro IPP		
N° Progetto	Rev.	Foglio	
A621	0	7 di 139	

3.0 Stato di applicazione delle BAT competenti

Le BAT relative all'unità di dissalazione grezzo e all'unità di distillazione atmosferica sono riportate ai punti 9 e 19 del paragrafo 5.2 del nel Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.

Nei prospetti di seguito riportati viene mostrato lo stato di applicazione delle BAT citate con riferimento all'assetto della raffineria ISAB NORD.

Nei prospetti, per semplicità e per rendere più facile il confronto, ove indicato nello stesso paragrafo 5.2 delle IPPC, viene riportato il riferimento alla tecnica presente nel capitolo 4 della stessa Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.

Dall'analisi del prospetto si evince che la raffineria adotta per l'unità in oggetto un insieme di tecniche in linea con le migliori disponibili al momento.

 CLIENTE:
 ERG MED

 PROGETTO:
 ADEGUAMENTO BAT pro IPPC

 N° Progetto
 Rev.
 Foglio

 A621
 0
 8 di 139

3.1 Dissalazione Grezzo

TECNICA	INDICAZIONE	STATO	COMMENTO	Note
4.9.1	Uso di desalter multistadio per le nuove installazioni	Applicata		
4.9.1-3	Applicazione di buone tecniche di desalting allo scopo di ottimizzare i processi a valle e la quantità di acque reflue	Applicata	Sono utilizzati agenti demulsificanti classificati di tipo non pericoloso per l'ambiente Acqua effluente dal desalter non è inviata ad un settling drum per rimozione idrocarburi in quanto la raffineria dispone di un separatore API, e di un flocculatore, installati a monte del trattamento biologico (esterno alla raffineria).Gli oli separati vengono rilavorati	
4.9.4	Massimizzazione del riutilizzo di acqua di raffineria come acqua di desalting	Applicata	Sono utilizzate le acque di testa topping	

CLIENTE:	ERG MED	
PROGETTO:	ADEGUAMENTO BAT pro IPPC	
N° Progetto	Rev.	Foglio
A621	0	9 di 139

3.2 Distillazione atmosferica

TECNICA	INDICAZIONE	STATO	COMMENTO	Note
	Massimizzazione della integrazione termica mediante una selezione tra:	Applicata		
4.19.1	Considerare un'unità basata sulla tecnologia della distillazione progressiva.	Non Applicabile	L'unità CR-20 dell'ISAB NORD utilizza la tecnologia classica della distillazione realizzata in una sola colonna. Non è possibile trasformare l'unità in un'unità a distillazione progressiva.	
4.19.2-3	Aumento del recupero termico tra la distillazione atmosferica e l'unità vacuum o altre unità mediante:	Applicata		
	> Ottimizzazione energetica al treno di preriscaldo carica ("pinch analysis")	Applicata	I recuperi termici sono stati massimizzati con recuperi interni e con l'integrazione termica con l'unità vuoto	
	Aumentare il numero di pumparound da due a quattro	Non Applicabile	Aumentare il numero di pumparound non è possibile in quanto cambierebbe tutto lo schema di recupero termico ed il frazionamento dei prodotti verrebbe ad esserne influenzato negativamente.	
	ribollire gli stripper laterali con un ribollitore a recupero di calore piuttosto che con vapore	Non Applicabile	Gli stripper laterali utilizzano vapore a bassa pressione. Non è conveniente sostituire il vapore di stripping, poichè non c'è posto per i ribollitori. Inoltre nella raffineria ci sono molti recuperi di calore di basso livello termico con produzione di vapore a bassa pressione	

CLIENTE:	ERG MED	
PROGETTO:	ADEGUAMENTO BAT pro IPPO	
N° Progetto	Rev.	Foglio
A621	0	10 di 139

TECNICA	INDICAZIONE	STATO	COMMENTO	Note
	 Utilizzo di composti anti-sporcamento per aumentare i coefficienti di trasferimento di calore negli scambiatori 	Applicata	I composti anti sporcamento vengono utilizzati per aumentare l'efficenza del recupero termico.	
	> Applicazione di controlli di processo avanzati	Non Applicata	Dato che l' impianto marcia a campagna, questa applicazione applicazione non si giustifica.	
4.19.4	Massimizzare l'uso di pompe da vuoto ad anello liquido e di condensatori a superficie per la sezione di testa delle colonne da vuoto	Non Applicabile	Applicabile alle sezioni sotto vuoto che non sono presenti in questa unità.	
4.19.8	Altre tecniche da			
	considerare:Riciclo degli slop e dei fanghi al topping	Applicata	La possibilità di trattare nell'unità di distillazione del greggio gli slop è già prevista	
	➤ Invio degli scarichi delle valvole di sicurezza di testa colonna a torcia	Applicata	Le valvole di sicurezza di testa colonna sono collettate a torcia	
	➤ Il sistema di decoking deve essere provvisto di un adeguato K.O. drum e di un sistema di eliminazione delle polveri	Applicata	Il sistema esistente utilizza un K.O. drum	
4.19.7	Trattamento e riutilizzo delle acque acide	Applicata	Le acque acide raccolte nell'accumulatore di testa vengono riutilizzate al dissalatore e successivamente inviate al separatore API e allo stripper acque acide	

CLIENTE: ERG MED

PROGETTO: ADEGUAMENTO BAT pro IPPC

N° Progetto Rev. Foglio

A621 0 11 di 139

CLIENTE:	ERG MED ADEGUAMENTO BAT pro IPPC	
PROGETTO:		
N° Progetto	Rev.	Foglio
A621	0	12 di 139

UNITA' CR/26 DISTILLAZIONE SOTTO VUOTO

1.0 Organizzazione

La gestione dell'unità è affidata alla funzione GEST 4

1.1 Descrizione del Processo

Lo scopo dell'impianto è quello di estrarre dei gasoli ad alto punto di ebollizione del residuo atmosferico. Per fare ciò l'impianto distilla in condizioni di vuoto spinto in modo da evitare temperature tropo elevate che potrebbero generare fenomeni di cracking.

La carica preriscaldata, passa al forno e quindi alla colonna di distillazione sotto vuoto (vacuum), che produce:

- ➤ Diesel
- > LVGO
- > HVGO
- Residuo vuoto

Il prodotto Diesel viene inviato a stoccaggio, LVGO ed HVGO sono inviati all'unità CR-40 di desolforazione gasoli e quindi all'unità CR-27 di cracking catalitico. Il residuo da vuoto costituisce l'alimentazione all'impianti CR-33 di Visbreaking.

Per ulteriori dettagli si rimanda al manuale operativo dell'unità.

CLIENTE:	ERG MED ADEGUAMENTO BAT pro IPPC	
PROGETTO:		
N° Progetto	Rev.	Foglio
A621	0	13 di 139

1.2 Capacità di Produzione e Trattamento delle Sostanze in Ingresso ed Uscita

Carica

Nome	Lavorato 2005 (ton / anno)	
Residuo da distillazione primaria	1.754.622	

Prodotti / semilavorati in uscita

Nome	Lavorato 2005 (ton / anno)
Diesel	92.837
LVGO	99.736
HVGO	781.830
Residuo da Vuoto	780.219

Capacità di progetto: 7.440 t/g (di residuo da topping)

CLIENTE: PROGETTO:	ERG MED ADEGUAMI	ENTO BAT pro IPPC
N° Progetto A621	Rev.	Foglio 14 di 139

2.0 Confronto consumi specifici con IPPC-Chapter 3-Emission and consumption level

L'unità di distillazione sottovuoto è un'unità di tipo convenzionale progettata per trattare una capacità massima di 2.480.000 ton/anno di residuo da topping. Il recupero di calore viene massimizzato integrando l'unità con gli impianti FCC e Visbreaking al fine di contenere i consumi di combustibile e limitare i consumi di acqua di raffreddamento.

Per quanto riguarda i consumi per l'unita di distillazione sottovuoto la seguente tabella confronta quanto riportato nel Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries (paragrafo 3.19 – consumption) con quanto ottenuto operativamente nell'unità di distillazione sottovuoto della raffineria ISAB NORD

	IPPC	Distillazione sotto vuoto
Fuel MJ/ton	400-800	669
Electricity kwh/t	1.5-4.5	4
Steam consumed (kg/ton)	20-60	53 (nota 1)
Cooling water (m3/t H2O, ΔT=17°C)	3-5	6

Nota (1): il consumo si riferisce al vapore a media pressione. L'unità produce vapore a bassa nel quantitativo di 75 Kg/t di alimentazione

CONSER SpA – Via Domenico Sansotta, 100 – 00144 ROMA

CLIENTE:	ERG MED ADEGUAMENTO BAT pro IPPC	
PROGETTO:		
N° Progetto	Rev.	Foglio
A621	0	15 di 139

3.0 Stato di applicazione delle BAT competenti

Le BAT relative all'unità di distillazione sottovuoto sono riportate nel punto 19 del paragrafo 5.2 del Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.

Nel prospetto di seguito riportato viene mostrato lo stato di applicazione delle BAT citate con riferimento all'assetto della raffineria ISAB NORD.

Nel prospetto, per semplicità e per rendere più facile il confronto, ove indicato nello stesso paragrafo 5.2 delle IPPC, viene riportato il riferimento alla tecnica presente nel capitolo 4 della stessa Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.

Sulla base di quanto descritto nei paragrafi precedenti viene riportata una tabella in cui vengono paragonate le BAT citate nel Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries per l'unità di distillazione sotto vuoto.

Dall'analisi del prospetto si evince che la raffineria adotta per l'unità in oggetto un insieme di tecniche in linea con le migliori disponibili al momento.

CLIENTE:	ERG MED	
PROGETTO:	ADEGUAMENTO BAT pro IPPO	
N° Progetto	Rev.	Foglio
A621	0	16 di 139

TECN.	INDICAZIONE	STATO	COMMENTO	NOTE
4.19.1	Unità basata sulla tecnologia della distillazione progressiva	Non Applicabile	Applicabile alla distillazione primaria (topping).	
4.19.3	Integrazione termica dell'Unità di distillazione sotto vuoto	Applicata	L'unità è integrata termicamente con i seguenti impianti: CR-27 FCC CR-33 Visbreaking Inoltre calore viene utilizzato per la produzione di vapore.	
4.19.4	Massimizzare l'uso di pompe da vuoto ad anello liquido e di condensatori a superficie per la sezione di testa delle colonne da vuoto	Applicata	Il sistema di testa è a 3 stadi di cui 2 con eiettori ed 1 con pompa da vuoto. Il vapore di compressione utilizzato è in parte auto-prodotto nell'unità stessa. La scelta di utilizzare un sistema misto ad eiettori e pompe da vuoto è il risultato di un'analisi Erg di tipo tecnico-economica.	
4.19.5	Riduzione della pressione operativa di testa colonna di vacuum al di sotto di 20-25 mmHg	Applicata	La pressione di testa colonna è pari a 10 mm Hg	

CLIENTE:	ERG MED	
PROGETTO:	ADEGUAMI	ENTO BAT pro IPPC
N° Progetto	Rev.	Foglio
A621	0	17 di 139

TECN.	INDICAZIONE	STATO	COMMENTO	NOTE
4.19.6	Trattamento degli incondensabili provenienti dagli eiettori da vuoto	Applicata	Gli incondensabili vengono inviati a blowdown e da qui ripresi con un compressore di recupero, inviati al lavaggio amminico e quindi alla rete fuel gas.	
4.19.7	Riutilizzo acque acide	Applicata	Le acque acide, raccolte nell'accumulatore di testa, vengono riutilizzate come acque di lavaggio FCC	

CONSER SpA – Via Domenico Sansotta, 100 – 00144 ROMA

CLIENTE: PROGETTO:	ERG MED ADEGUAMENTO BAT pro IPPC	
N° Progetto A621	Rev.	Foglio 18 di 139

UNITA' CR 27 - FCC

1.0 Organizzazione

La gestione dell'unità è affidata alla funzione GEST 4

1.1 Descrizione del Processo

L'impianto è un cracking catalitico con rigenerazione del catalizzatore in continuo.

L'impianto viene alimentato con i gasoli LVGO ed HVGO provenienti dall'impianto vuoto (nell'assetto futuro di raffineria tali gasoli saranno desolforati nella nuova unità CR-40 prima di essere alimentati ad FCC) e da particolari residui provenienti da impianto di distillazione primaria

L'impianto produce i seguenti prodotti:

- > Fuel gas
- ➤ Olefine C3/C4
- > Pentano
- > Benzina (suddivisa in 3 tagli)
- ➤ Gasolio da FCC
- > Coke

Le olefine C3/C4 sono inviate all'impianto di alchilazione, mentre la benzina viene in parte inviata al pool benzine ed in parte inviata al pool gasoli

L'impianto è costituito dalle seguenti sezioni principali:

- > Sezione di reazione e rigenerazione catalizzatore
- > Sezione conversione CO in CO2 e produzione vapore
- > Sezione di frazionamento primario dei prodotti di cracking
- > Sezione di assorbimento e separazione gas
- > Sezione di separazione C3/C4
- > Sezione frazionamento benzine

Per ulteriori dettagli si faccia riferimento al manuale operativo dell'unità

CLIENTE: PROGETTO:	ERG MED ADEGUAMENTO BAT pro IPPC	
N° Progetto A621	Rev.	Foglio 19 di 139

1.2 Capacità di Produzione e Trattamento delle Sostanze in Ingresso ed Uscita

Carica

Nome	Lavorato 2005 (ton / anno)
Gasoli da impianto vuoto	1.401.758
Residuo distillazione primaria	90.836

Prodotti / semilavorati in uscita

Nome	Lavorato 2005 (ton / anno)
Fuel Gas	87.680
C3/C4 ad impianto alchilazione	313.867
Pentano	169.543
Benzina	519.527
Gasolio da FCC	322.537
Coke	79.440

Capacità di progetto: 5280 t/g (di gasoli da vacuum)

CLIENTE: PROGETTO:	ERG MED ADEGUAMENTO BAT pro IPPC	
N° Progetto A621	Rev.	Foglio 20 di 139

2.0 Confronto consumi specifici con IPPC-Chapter 3-Emission and consumption level

L'unità di FCC è progettata per trattare una capacità massima di 1.888.700 ton/anno di gasoli provenienti dall'unità vacuum e di particolari residui da impianto topping/ vuoto di raffineria al fine di massimizzare la resa in distillati "pregiati". Per quanto riguarda i consumi per l'unità di FCC, la seguente tabella confronta quanto riportato nel Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries (paragrafo 3.5 – Catalytic Cracking -) con quanto ottenuto operativamente nell'unità CR 27

	IPPC	Unità CR 27
	FCC	
Fuel MJ/ton	120-2000	2214
Electricity kwh/t	8-50	12
Steam consumed (kg/ton)	30-90	107
Steam produced (kg/ton)	40-60	70
Cooling water (m3/t Δ T=17°C)	5-20	35
Catalyst make-up Kg/t	0.4-5	0.55

CLIENTE: PROGETTO:	ERG MED ADEGUAMENTO BAT pro IPPC	
N° Progetto A621	Rev.	Foglio 21 di 139

3.0 Stato di applicazione delle BAT competenti

Le BAT relative alle unità di cracking catalitico sono riportate nel punto 5 del paragrafo 5.2 del Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.

Nel prospetto di seguito riportato viene mostrato lo stato di applicazione delle BAT citate con riferimento all'assetto della raffineria ISAB NORD.

Nel prospetto, per semplicità e per rendere più facile il confronto, ove indicato nello stesso paragrafo 5.2 delle IPPC, viene riportato il riferimento alla tecnica presente nel capitolo 4 della stessa Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.

Dall'analisi del prospetto si evince che la raffineria adotta per l'unità in oggetto un insieme di tecniche in linea con le migliori disponibili al momento.

CLIENTE: ERG MED

PROGETTO: ADEGUAMENTO BAT pro IPPC

N° Progetto Rev. Foglio

A621 0 22 di 139

TECN.	INDICAZIONE	STATO	COMMENTO	NOTE
4.5.3	Prevedere "CO- Boiler" sui gas	Applicata		
	effluenti dal rigeneratore qualora			
	quest'ultimo operi in			
	regime di combustione parziale			
4.5.1	Nelle unità in cui il rigeneratore opera in regime di combustione totale monitorare e controllare la quantità di ossigeno in eccesso in modo che sia intorno al 2% al fine di minimizzare la quantità di CO nei gas	Applicata	Il rigeneratore opera in regime di combustione parziale spinta. Il contenuto di CO nel flue gas in uscita dal rigeneratore è circa 1% Vol. e viene ulteriormente ossidato a CO2 nel CO boiler	
4.5.4	di scarico Desolforazione delle cariche inviate ad FCC al fine di limitare emissioni di SO2 ed NOX dal rigeneratore	Applicata	La carica inviata ad FCC verrà desolforata nella nuova unità CR-40 che verrà messa in servizio entro il 2006. L'impianto inoltre attualmente tratta gasoli desolforati provenienti dagli impianti SUD	
4.5.5	Massimizzare il recupero energetico attraverso: > Installazione di un turbo-expander sui fumi in uscita dal rigeneratore al fine di massimizzare	Non applicata	Questa indicazione non è tecnicamente ed economicamente giustificata in unità piccole e/o operanti a bassa pressione	
	massimizzare il recupero di potenza Installazione di una caldaia a recupero sui fumi dal rigeneratore	Applicata		

CLIENTE: PROGETTO:	ERG MED ADEGUAMENTO BAT pro IPPC	
N° Progetto A621	Rev.	Foglio 23 di 139

TECN.	INDICAZIONE	STATO	COMMENTO	NOTE
	Minimizzare le emissioni di NOX nei fumi dal rigeneratore (40-150 mg/Nm3)	Applicata		
	attraverso una			
	combinazione di:	A 1:	G: 1 4.5.4	
4.5.4	> Trattamento con idrogeno della carica	Applicata	Si veda punto 4.5.4.	
4.5.8.2	> Abbattimento degli NOX	Non Applicata	Si veda punto 4.5.4.	
4.5.8.1	prodotti con processi non catalitici > Abbattimento			
illoidi	degli NOX prodotti con processi catalitici	Non Applicata	Si veda punto 4.5.4.	
	Minimizzare il contenuto di polveri nei fumi dal catalizzatore (10-40		Il contenuto di polveri nel flue-gas inferiore a 10 mg/Nm3	
4.5.9.1	mg/Nm3) attraverso una combinazione di: > Installazione	Applicata		
	di cicloni multistadio			
4.5.9.2 4.5.10-2	Installazione di un precipitatore	Applicata	Installato precipitatore elettrostatico	
456	elettrostatico o di uno scrubber	Applicata		
4.5.6	Utilizzo di un catalizzatore resistente all'attrito	rippheata		

CLIENTE:	ERG MED		
PROGETTO:	ADEGUAMI	ENTO BAT pro IPPC	
N° Progetto	Rev.	Foglio	
A621	0	24 di 139	

TECN.	INDICAZIONE	STATO	COMMENTO	NOTE
	Minimizzare le emissioni di SO2 nei fumi dal rigeneratore (10-350 mg/Nm3) attraverso una combinazione di:	Applicata		
4.5.4	> Trattamento con idrogeno della carica	Applicata	Si veda punto 4.5.4	
4.5.10.1	> Abbattimento della SO2 in impianti catalitici	Non Applicata	Si veda punto 4.5.4	
4.5.10.2 -6	(DeSOX) > Abbattimento della SO2 con processi non catalitici	Non Applicata	Si veda punto 4.5.4	
4.5.7	Riutilizzare acqua generata nel processo all'interno della raffineria	Non Applicata	Le acque acide sono inviate al SWS e da qui al WWT	
	Ridurre l'impatto ambientale legato alla gestione del catalizzatore			
4.5.12	attraverso: > Gestione del catalizzatore esausto e delle emissioni legate alle operazioni di carico/scarico	Applicata	Lo scarico del catalizzatore avviene in circuito chiuso senza contatto con l'atmosfera	
4.5.6	carico/scarico del catalizzatore > Utilizzo di un catalizzatore resistente all'attrito	Applicata		

CONSER SpA – Via Domenico Sansotta, 100 – 00144 ROMA

	CLIENTE: PROGETTO:	ERG MED ADEGUAMI	ENTO BAT pro IPPC
	N° Progetto A621	Rev.	Foglio 25 di 139

<u>UNITA' 29/29BIS</u>

Si rimanda al trattamento relativo alle unità di topping.

CLIENTE: PROGETTO:	ERG MED ADEGUAMENTO BAT pro IPPC		
N° Progetto A621	Rev.	Foglio 26 di 139	

UNITA' CR-30. DISTILLAZIONE ATMOSFERICA E DISSALAZIONE GREZZO

1.0 Organizzazione

La gestione dell'unità è affidata alla funzione GEST 4

1.1 Descrizione del Processo

L'impianto lavora grezzi e residui ad una pressione di poco superiore alla pressione atmosferica. Ha lo scopo di realizzare il frazionamento del grezzo in una serie di prodotti intermedi da destinarsi alla preparazione di prodotti finiti.

Il greggio, dopo un processo di dissalaggio ed un preriscaldamento ,arriva al forno di carica passando quindi nella colonna di distillazione atmosferica, dalla quale provengono essenzialmente i seguenti tagli:

- ➤ Gas e GPL
- Virgin Nafta (suddivisa in n°3 tagli)
- > Acqua Ragia
- > Kerosene
- ➤ Gasolio Leggero
- ➤ Gasolio Medio
- ➤ Gasolio Pesante
- Residuo Atmosferico

Questi prodotti sono inviati a stoccaggio o in cascata ad altri impianti per essere ulteriormente rilavorati.

Per ulteriori informazioni si faccia riferimento al manuale operativo disponibile presso il reparto.

CLIENTE:	ERG MED		
PROGETTO:	ADEGUAMI	ENTO BAT pro IPPC	
N° Progetto	Rev.	Foglio	
A621	0	27 di 139	

1.2 Capacità di Produzione e Trattamento delle Sostanze in Ingresso ed Uscita

Carica

Nome	Lavorato 2005 (ton / anno)
Grezzo	5.265.115
Slop Rilavorati	79.225

Prodotti / semilavorati in uscita

Nome	Lavorato 2005 (ton / anno)
Gas e GPL	65.201
Virgin Nafta	1.065.042
Acqua Ragia	381.335
Kerosene	455.817
Gasolio Leggero	1.006.766
Gasolio Medio	-
Gasolio Pesante	349.811
Residuo atmosferico	2.020.368

Capacità di progetto: 27.000 t/g (di grezzo trattato)

1.3 Schema di processo semplificato

In allegato si riporta lo schema di processo semplificato.

CLIENTE: PROGETTO:	ERG MED ADEGUAMENTO BAT pro IPPC	
N° Progetto A621	Rev.	Foglio 28 di 139

2.0 Confronto consumi specifici con IPPC-Chapter 3-Emission and consumption level

2.1 Distillazione Atmosferica

L'unità di distillazione atmosferica è una unità convenzionale progettata per trattare una capacità massima di 9.855.000 ton/anno di grezzo. Il recupero di calore viene normalmente massimizzato al fine di contenere i consumi di combustibile e limitare i consumi di acqua di raffreddamento.

Per quanto riguarda i consumi per l'unita di distillazione atmosferica la seguente tabella confronta quanto riportato nel Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries (paragrafo 3.19 – consumption-) con quanto ottenuto operativamente nell'unità di distillazione atmosferica CR-30 della raffineria ISAB NORD

	IPPC	Unità CR-30
Fuel MJ/ton	400-680	490
Electricity kWh/t	4-6	8.63
Steam consumed (kg/ton)	25-30	21
Cooling water (m3/t H2O, ΔT=17°C)	4.0	5.20

2.2 Dissalazione Grezzo

Per quanto riguarda i consumi per la sezione di dissalazione la seguente tabella confronta quanto riportato nel Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries (paragrafo 3.19 – consumption-) con quanto ottenuto operativamente nell'unità di distillazione atmosferica CR-30 della raffineria ISAB NORD

IPPC			Unità CR-20		
Water Wash (% vv)	T (°C)	Densità grezzo (Kg/m3)	Water Wash (% vv)	T (°C)	Densità grezzo (Kg/m3)
3-4	115-125	<825	3.5	130	<825
4-7	125-140	825-875	4	130	870
7-10	140-150	>875			

CLIENTE:	ERG MED		
PROGETTO:	ADEGUAMI	ENTO BAT pro IPPC	
N° Progetto	Rev.	Foglio	
A621	0	29 di 139	

3.0 Stato di applicazione delle BAT competenti

Le BAT relative all'unità di dissalazione grezzo e all'unità di distillazione atmosferica sono riportate ai punti 9 e 19 del paragrafo 5.2 del nel Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.

Nei prospetti di seguito riportati viene mostrato lo stato di applicazione delle BAT citate con riferimento all'assetto della raffineria ISAB NORD.

Nei prospetti, per semplicità e per rendere più facile il confronto, ove indicato nello stesso paragrafo 5.2 delle IPPC, viene riportato il riferimento alla tecnica presente nel capitolo 4 della stessa Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.

Dall'analisi del prospetto si evince che la raffineria adotta per l'unità in oggetto un insieme di tecniche in linea con le migliori disponibili al momento.

CLIENTE: ERG MED

PROGETTO: ADEGUAMENTO BAT pro IPPC

N° Progetto Rev. Foglio
A621 0 30 di 139

3.1 Dissalazione Grezzo

TECNICA	INDICAZIONE	STATO	COMMENTO	Note
4.9.1	Uso di desalter multistadio per le nuove installazioni	Non richiesto per le installazioni esistenti	Il grado di dissalazione raggiunto è soddisfacente con il rapporto wash water/ grezzo al minimo previsto da IPPC.	
4.9.1-3	Applicazione di buone tecniche di desalting allo scopo di ottimizzare i processi a valle e la quantità di acque reflue	Applicata	Sono utilizzati agenti demulsificanti classificati di tipo non pericoloso per l'ambiente. Acqua effluente dal desalter non è inviata ad un settling drum per rimozione idrocarburi in quanto la raffineria dispone di un separatore API installato a monte del trattamento biologico (esterno alla raffineria). Gli oli recuperati nel separatore API vengono rilavorati	
4.9.4	Massimizzazione del riutilizzo di acqua di raffineria come acqua di desalting	Applicata	Sono utilizzate le acque di testa topping	

CLIENTE:	ERG MED	
PROGETTO:	ADEGUAMI	ENTO BAT pro IPPC
N° Progetto	Rev.	Foglio
A621	0	31 di 139

3.2 Distillazione atmosferica

TECNICA	INDICAZIONE	STATO	COMMENTO	Note
	Massimizzazione della integrazione termica mediante una selezione tra:	Applicata		
4.19.1	Considerare un'unità basata sulla tecnologia della distillazione progressiva.	Non Applicabile	L'unità CR-30 dell'ISAB NORD utilizza la tecnologia classica della distillazione realizzata in una sola colonna. Non è possibile trasformare l'unità in un'unità a distillazione progressiva.	
4.19.2-3	Aumento del recupero termico tra la distillazione atmosferica e l'unità vacuum o altre unità mediante:	Applicata		
	> Ottimizzazione energetica al treno di preriscaldo carica ("pinch analysis")	Applicata	I recuperi termici sono stati massimizzati con recuperi interni all'unità. Inoltre il gasolio leggero prodotto nell'unità viene utilizzato per preriscaldare l'aria di combustione dei forni aumentando l'efficienza della combustione stessa	
	Aumentare il numero di pumparound da due a quattro	Parzialmente Applicata	La colonna di topping è dotata di n°3 pumparound Aumentare il numero di pumparound non è possibile in quanto cambierebbe tutto lo schema di recupero termico ed il frazionamento dei prodotti verrebbe ad esserne influenzato negativamente.	
	ribollire gli stripper laterali con un ribollitore a recupero di calore piuttosto che con vapore	Non Applicabile	Gli stripper laterali utilizzano vapore a bassa pressione. Non è conveniente sostituire il vapore di stripping, poichè non c'è posto per i ribollitori. Inoltre nella raffineria ci sono molti recuperi di calore di basso livello termico con produzione di vapore a bassa pressione	

CLIENTE:	ERG MED	
PROGETTO:	ADEGUAMI	ENTO BAT pro IPPC
N° Progetto	Rev.	Foglio
A621	0	32 di 139

TECNICA	INDICAZIONE	STATO	COMMENTO	Note
	 Utilizzo di composti anti-sporcamento per aumentare i coefficienti di trasferimento di calore negli scambiatori Applicazione di 	Applicata Applicata	I composti anti sporcamento vengono utilizzati per aumentare l'efficenza del recupero termico. Sistemi di controllo avanzato sono già utilizzati per	
	controlli di processo avanzati	- PP	ottimizzare l'operazione dell'unità	
4.19.4	Massimizzare l'uso di pompe da vuoto ad anello liquido e di condensatori a superficie per la sezione di testa delle colonne da vuoto	Non Applicabile	Applicabile alle sezioni sotto vuoto che non sono presenti in questa unità.	
4.19.8	Altre tecniche da considerare:			
	 Riciclo degli slop e dei fanghi al topping 	Applicata	La possibilità di trattare nell'unità di distillazione del greggio gli slop è già prevista	
	 Invio degli scarichi delle valvole di sicurezza di testa colonna a torcia 	Applicata	Le valvole di sicurezza di testa colonna sono collettate a torcia	
	Il sistema di decoking deve essere provvisto di un adeguato K.O. drum e di un sistema di eliminazione delle polveri	Applicata	Per i forni non è previsto un sistema di decoking in quanto la raffineria esegue una pulizia meccanica ogni 4 anni	
4.19.7	Trattamento e riutilizzo delle acque acide	Applicata	Le acque acide raccolte nell'accumulatore di testa vengono riutilizzate al dissalatore e successivamente inviate al separatore API ed allo stripper acque acide	

CLIENTE:	ERG MED	
PROGETTO:	ADEGUAMI	ENTO BAT pro IPPC
N° Progetto	Rev.	Foglio
A621	0	33 di 139

Unità CR-31 Desolforazione Gasolio

CLIENTE:	ERG MED	
PROGETTO:	ADEGUAMI	ENTO BAT pro IPPC
N° Progetto	Rev.	Foglio
A621	0	34 di 139

<u>UNITA' CR-31. DESOLFORAZIONE GASOLIO</u>

1.0 Organizzazione

La gestione dell'unità è affidata alla funzione GEST 4

1.1 Descrizione del Processo

L'impianto è alimentato principalmente con gasolio proveniente dalle unità di topping CR-20 e CR-30 (l'impianto può anche essere alimentato con kerosene da topping e gasolio da FCC) ed ha il compito di desolforare la carica tramite idrogenazione catalitica in presenza di idrogeno e gas di riciclo lavato con MDEA

L'effluente dal reattore di idrogenazione previa raffreddamento negli scambiatori carica-effluente, è inviato ad una coppia di separatori di alta e bassa pressione dove il gas viene separato dal liquido e ricircolato, previa lavaggio amminico, al reattore di idrogenazione

Il liquido in uscita dai separatori viene inviato ad uno stripper per la rimozione dei componenti volatili, ad un essiccatore sotto vuoto ed infine a toccaggio

Il gas viene lavato con MDEA a bassa pressione ed inviato alla rete fuel gas

La benzina semi-lavorata viene inviata agli impianti di topping CR-20 e CR-30

Per ulteriori dettagli si rimanda al manuale operativo dell'unità

Unità CR-31 Desolforazione Gasolio

CLIENTE:	ERG MED	
PROGETTO:	ADEGUAMI	ENTO BAT pro IPPC
N° Progetto	Rev.	Foglio
A621	0	35 di 139

1.2 Capacità di Produzione e Trattamento delle Sostanze in Ingresso ed Uscita

Carica

Nome	Lavorato 2005 (ton / anno)
Gasolio /Kerosene	766.885

Prodotti / semilavorati in uscita

Nome	Lavorato 2005 (ton / anno)
Gasolio Desolforato	726.124
Benzina Semilavorata	69.213
Fuel-Gas	2994

Capacità di progetto: 3.120 t/g (di gasolio)

Unità CR-31 Desolforazione Gasolio

CLIENTE: PROGETTO:	ERG MED ADEGUAMI	ENTO BAT pro IPPC
N° Progetto A621	Rev.	Foglio 36 di 139

2.0 Confronto consumi specifici con IPPC-Chapter 3-Emission and consumption level

L'unità di desolforazione gasolio CR-31 è progettata per trattare una capacità massima di 1.116.000 ton/anno di gasolio al fine di ridurre il contenuto di zolfo. L'unità è alimentata con il gasolio proveniente principalmente dall'impianto di topping. Per quanto riguarda i consumi per l'unità di desolforazione gasolio, la seguente tabella confronta quanto riportato nel Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries (paragrafo 3.13 –Hydrogen consuming processes - distillate processed) con quanto ottenuto operativamente nell'unità di desolforazione gasolio CR-31

	IPPC	HDS CR-31
Kg H2 per ton of feed	1-15	4.2
Fuel MJ/ton	300-500	440
Electricity kWh/t	10-20	18.6
Steam consumed (kg/ton)	60-150	100
Cooling water (m3/t ΔT=10°C)	2-3	4.4
Wash water (kg/ton)	30-40	12

CONSER SpA – *Via Domenico Sansotta, 100* – 00144 ROMA

Unità CR-31 Desolforazione Gasolio

CLIENTE: PROGETTO:	ERG MED ADEGUAMENTO BAT pro IPPC	
N° Progetto A621	Rev.	Foglio 37 di 139

3.0 Stato di applicazione delle BAT competenti

Le BAT relative alle unità che consumano idrogeno sono riportate nel punto 13 del paragrafo 5.2 del Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.

Nel prospetto di seguito riportato viene mostrato lo stato di applicazione delle BAT citate con riferimento all'assetto della raffineria ISAB NORD.

Nel prospetto, per semplicità e per rendere più facile il confronto, ove indicato nello stesso paragrafo 5.2 delle IPPC, viene riportato il riferimento alla tecnica presente nel capitolo 4 della stessa Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.

Dall'analisi del prospetto si evince che la raffineria adotta per l'unità in oggetto un insieme di tecniche in linea con le migliori disponibili al momento.

Unità CR-31 Desolforazione Gasolio

CLIENTE:	ERG MED ADEGUAMENTO BAT pro IPPC	
PROGETTO:		
N° Progetto	Rev.	Foglio
A621	0	38 di 139

TECN.	INDICAZIONE	STATO	COMMENTO	NOTE
4.13.6	Progettare e modificare ove possibile l'unità di hydrocracker (sezione reazione e frazionamento) con sistema ad elevata integrazione termica applicando analisi di ottimizzazione energetica e sistemi di separazione a 4 stadi	Non applicabile	L'unità CR-31 non è un hydrocracking. I recuperi termici sono stati massimizzati con recuperi interni all'unità	
4.13.1,2, 6,7	Utilizzare il recupero termico da correnti di processo ad alta temperatura in WHB e il recupero energetico nelle unità ad alta pressione.(letting down liquid)	Non applicabile	L'unità CR-31 lavora ad una Pressione pari a circa 35 kg/cm2g all' ingresso reattore. Il recupero di potenza per riduzione di pressione del liquido non è giustificato in termini di investimento/benefici sia nel sistema di lavaggio MDEA sia nell'espansione del gasolio dal separatore ad alta pressione al quello a bassa pressione, sino all'unità di stripper	
4.23.5.1	Inviare gli off gas che contengono H2S al sistema ammine e recupero zolfo	Applicata	I gas acidi vengono assorbiti con una soluzione di MDEA	
4.24.1 4.15.6	Inviare le acque acide contenenti H2S e NH3 all'appropriato trattamento	Applicata	Le acque acide vengono inviate ad un sistema centralizzato di SWS	
4.13.4	Utilizzare il rimpiazzo del catalizzatore on stream per cariche ad alto contenuto di metalli	Non applicabile	Le cariche all'impianto hanno un basso contenuto di metalli	
4.25.3	Promuovere opzioni per la rigenerazione del catalizzatore in accordo con il fornitore stesso	Applicata	Il catalizzatore quando esaurito viene sostituito e viene rigenerato off-site da società specializzate	

Unità CR-32 Impianto SWS

CLIENTE:	ERG MED	
PROGETTO:	ADEGUAMENTO BAT pro IPPC	
N° Progetto	Rev.	Foglio
A 621	0	39 di 139

UNITA' CR-32 IMPIANTO SWS

1.0 Organizzazione

La gestione dell'unità è affidata alla funzione GEST4

1.1 Descrizione del Processo

L'unità CR-32 SWS ha la funzione di trattare le acque acide provenienti dalle varie unità di processo della raffineria strippando H2S in esse contenuto e rendendole di qualità idonea a poter essere inviata al WWT

L'unità consiste essenzialmente in una colonna di strippaggio ribollita con vapore.

H2S recuperato sotto forma gassosa dalla testa colonna viene inviato agli impianti di produzione zolfo, mentre l'acqua del fondo colonna è inviata al WWT

Per ulteriori dettagli si faccia riferimento al manuale operativo dell'unità

Unità CR-32 *Impianto SWS*

CLIENTE:	ERG MED ADEGUAMENTO BAT pro IPPC	
PROGETTO:		
N° Progetto	Rev.	Foglio
A 621	0	40 di 139

1.2 Capacità di Produzione e Trattamento delle Sostanze in Ingresso ed Uscita

Carica

Nome	Lavorato 2005 (ton / anno)
Acqua Acida	156000

Prodotti / semilavorati in uscita

Nome	Lavorato 2005 (ton / anno)	
Acqua Trattata (Desalter + LB)	156000	
Gas Acido	1308	

Capacità di progetto: 600 t/g (di acqua)

Unità CR-32 Impianto SWS

CLIENTE: PROGETTO:	ERG MED ADEGUAMI	ENTO BAT pro IPPC
N° Progetto A 621	Rev.	Foglio 41 di 139

2.0 Confronto consumi specifici con IPPC-Chapter 4-Techniques to Consider in the Determination of BAT

L'unità di trattamento acque acide CR-32 è progettata per trattare una capacità massima di 174,324 ton/anno di acqua. L'unità è alimentata dalle acque acide della raffineria ISAB NORD. Per quanto riguarda i consumi per l'unita SWS, la seguente tabella confronta quanto riportato nel Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries (paragrafo 4.24.2 –Sour Water Stripping (SWS)) con quanto ottenuto operativamente nell'unità di trattamento CR-32

	IPPC	Unità CR-32
Electricity kWh/ton H2O	2-3	5
Steam consumed (kg/ton H2O)	100-200	170
Cooling water (m3/ton H2O ΔT=10°C)	-	-

CONSER SpA – Via Domenico Sansotta, 100 – 00144 ROMA

Unità CR-32 Impianto SWS

CLIENTE: PROGETTO:	ERG MED ADEGUAMENTO BAT pro IPPC	
N° Progetto A 621	Rev.	Foglio 42 di 139

3.0 Stato di applicazione delle BAT competenti

Le BAT relative alle unità di trattamento acque acide sono riportate nel paragrafo 5.1 del Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.

Nel prospetto di seguito riportato viene mostrato lo stato di applicazione delle BAT citate con riferimento all'assetto della raffineria ISAB NORD.

Nel prospetto, per semplicità e per rendere più facile il confronto, ove indicato nello stesso paragrafo 5.1 delle IPPC, viene riportato il riferimento alla tecnica presente nel capitolo 4 della stessa Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.

Dall'analisi del prospetto si evince che la raffineria adotta per l'unità in oggetto un insieme di tecniche in linea con le migliori disponibili al momento.

Unità CR-32 *Impianto SWS*

 CLIENTE:
 ERG MED

 PROGETTO:
 ADEGUAMENTO BAT pro IPPC

 N° Progetto
 Rev.
 Foglio

 A 621
 0
 43 di 139

TECN.	INDICAZIONE	STATO	COMMENTO	NOTE
4.24.2	Trattamento acque acide	Applicata	Tutte le acque acide prodotte in raffineria vengono trattate attraverso un impianto di stripping per ridurne il contenuto acido	
4.24.2	Il SWS produce off-gas acidi ed effluenti strippati che devono essere inviati a trattamenti a valle, cioè: Off Gas acidi all'unità SRU di produzione zolfo. Effluenti Liquidi al desalter come wash water o al WWT	Applicata	Gli effluenti gassosi vengono inviati all'impianto di recupero zolfo. Gli effluenti liquidi vengono inviato al desalter, quelli in eccesso al WWT.	
4.24.2	Ridurre il contenuto di NH3 nell'effluente liquido inviato a biotrattamento, utilizzando un sistema di strippaggio che utlizza o un elevato numero di stadi o a doppio stadio.	Applicata	Il numero di stadi nella sezione di stripping è sufficiente ad avere un contenuto di NH3 idoneo per il trattamento WWT.	

CLIENTE: PROGETTO:	ERG MED ADEGUAMENTO BAT pro IPPO	
N° Progetto A621	Rev.	Foglio 44 di 139

UNITA' CR-33 VISBREAKING

1.0 Organizzazione

La gestione dell'unità è affidata alla funzione GEST 4

1.1 Descrizione del Processo

L'impianto di Visbreaking è un impianto di blando cracking termico la cui funzione è quella di stabilizzare il residuo del vacuum di raffineria riducendone la viscosità

L'impianto viene alimentato con il residuo delle unità vuoto e di distillazione primaria e produce i seguenti prodotti:

- > Fuel gas
- Benzina
- > Kerosene
- ➤ Gasolio
- > Residuo da Visbreaking

L'impianto è composto dalle seguenti sezioni:

- > Preriscaldo carica e forni di visbreaking
- > Frazionamento prodotti
- > Compressione gas e recontacting
- > Stabilizzazione benzina
- ➤ Lavaggio caustico

Per ulteriori dettagli si rimanda al manuale operativo dell'unità

CLIENTE: PROGETTO:	ERG MED ADEGUAMI	ENTO BAT pro IPPC
N° Progetto A621	Rev.	Foglio 45 di 139

1.2 Capacità di Produzione e Trattamento delle Sostanze in Ingresso ed Uscita

Carica

Nome	Lavorato 2005 (ton / anno)
Residuo da Vacuum/Topping	711.998

Prodotti / semilavorati in uscita

Nome	Lavorato 2005 (ton / anno)
Fuel Gas	18.150
Benzina semilavorata	22.087
Kerosene	48.268
Gasolio	36.773
Residuo	586.720

Capacità di progetto: 4.080 t/g (di residuo da vacuum/topping)

CLIENTE:	ERG MED	
PROGETTO:	ADEGUAMI	ENTO BAT pro IPPC
N° Progetto	Rev.	Foglio
A621	0	46 di 139

2.0 Confronto consumi specifici con IPPC-Chapter 3-Emission and consumption level

L'unità di Visbreaking è progettata per trattare una capacità massima di 1.460.000 ton/anno di residuo proveniente dall'unità vacuum e topping di raffineria al fine di massimizzare la resa in distillati e produrre un residuo stabilizzato. Per quanto riguarda i consumi per l'unità di visbreaking, la seguente tabella confronta quanto riportato nel Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries (paragrafo 3.22 – Visbreaking) con quanto ottenuto operativamente nell'unità di Visbreaking CR-33

	IPPC	CR-33 Visbreaking
Fuel MJ/ton (Nota1)	400-800	660
Electricity kWh/t	10-15	14.0
Steam consumed (kg/ton)	5-30	-133 (Nota 1)
Cooling water (m3/t ΔT=10°C)	2-10	6.51

Nota 1: L'unità globalmente produce vapore

CLIENTE: PROGETTO:	ERG MED ADEGUAMENTO BAT pro IPPC	
N° Progetto A621	Rev.	Foglio 47 di 139

3.0 Stato di applicazione delle BAT competenti

Le BAT relative alle unità di visbreaking sono riportate nel punto 22 del paragrafo 5.2 del Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.

Nel prospetto di seguito riportato viene mostrato lo stato di applicazione delle BAT citate con riferimento all'assetto della raffineria ISAB NORD.

Nel prospetto, per semplicità e per rendere più facile il confronto, ove indicato nello stesso paragrafo 5.2 delle IPPC, viene riportato il riferimento alla tecnica presente nel capitolo 4 della stessa Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.

Dall'analisi del prospetto si evince che la raffineria adotta per l'unità in oggetto un insieme di tecniche in linea con le migliori disponibili al momento.

CLIENTE:	ERG MED	
PROGETTO:	ADEGUAMI	ENTO BAT pro IPPC
N° Progetto	Rev.	Foglio
A621	0	48 di 139

TECN.	INDICAZIONE	STATO	COMMENTO	NOTE
4.22.1-3	Applicare una conversione termica spinta utilizzando: - Hydrovisbreaking - Soaker visbreaker	Non Applicata		
4.22.4	Addolcimento del gas prodotto da visbreaking e gestione delle acque acide	Applicata	Il gas generato viene inviato alla compressione gas per recuperare i componenti più pesanti da inviare alla desolforazione delle benzine mentre la fase gassosa viene lavata con soluzione caustica Le acque acide vengono inviate allo stripper acque acide	
4.22.5	Riduzione della formazione di coke	Applicata	Il contenuto di sodio nell'alimentazione, che è un catalizzatore per la formazione di coke, viene minimizzato tenendo sotto controllo l'aggiunta di soda nell'unità di distillazione atmosferica. Gli additivi per ridurre la formazione di coke sono utilizzati. Un sistema di decoking è previsto all'interno dell'unità.	

CLIENTE: PROGETTO:	ERG MED ADEGUAMENTO BAT pro IPPC	
N° Progetto A621	Rev.	Foglio 49 di 139

UNITA' CR/34 e CR/41 CLAUS

1.0 Organizzazione

La gestione dell'unità è affidata alla funzione GEST 4

1.1 Descrizione del Processo

L'impianto è costituito da una linea di recupero zolfo con tre stadi di conversione ed un combustore finale per il trattamento del gas di coda

Per ulteriori dettagli si rimanda al manuale operativo dell'unità

CLIENTE:	ERG MED	
PROGETTO:	ADEGUAMI	ENTO BAT pro IPPC
N° Progetto	Rev.	Foglio
A621	0	50 di 139

1.2 Capacità di Produzione e Trattamento delle Sostanze in Ingresso ed Uscita

Carica

Nome	Lavorato 2005 (ton / anno)
Gas acidi di raffineria	11.725 (1)

1) Portata espressa in t/anno di H2S trattato

Prodotti / semilavorati in uscita

Nome	Lavorato 2005 (ton / anno)
Zolfo	10.594

Capacità di progetto: 45 t/g (di zolfo prodotto)

CLIENTE:	ERG MED	
PROGETTO:	ADEGUAMENTO BAT pro IPPC	
N° Progetto A621	Rev.	Foglio 51 di 139

2.0 Confronto consumi specifici con IPPC-Chapter 3-Emission and consumption level

L' unità di recupero zolfo CR/34 è progettata per produrre una quantità di zolfo pari a 16.096 ton/anno trattando i gas acidi di raffineria provenienti dagli impianti di lavaggio ammine e SWS al fine di minimizzare le emissioni in atmosfera di H2S ed SO2 . Per quanto riguarda i consumi per le unità di recupero zolfo , la seguente tabella confronta quanto riportato nel Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries (paragrafo 4.23.5.2. —Sulphur recovery units -) con quanto ottenuto operativamente nell' unità CR 34

	IPPC	Unità CR /34 (1)
Fuel MJ/ton	1000-1600	13 (2)
Electricity kwh/t	60-75	300
Steam produced (kg/ton)	1500-2000	2500
Cooling water (m3/t ΔT=10°C)	0-20	0

Nota 1: valori riferiti a tonnellata di H2S trattato

Nota 2 non include consumo di fuel al combustore finale

CLIENTE: PROGETTO:	ERG MED ADEGUAMENTO BAT pro IPPC	
N° Progetto A621	Rev.	Foglio 52 di 139

3.0 Stato di applicazione delle BAT competenti

Le BAT relative alle unità di recupero zolfo sono riportate nel punto 23 del paragrafo 5.2 del Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.

Nel prospetto di seguito riportato viene mostrato lo stato di applicazione delle BAT citate con riferimento all'assetto della raffineria ISAB NORD.

Nel prospetto, per semplicità e per rendere più facile il confronto, ove indicato nello stesso paragrafo 5.2 delle IPPC, viene riportato il riferimento alla tecnica presente nel capitolo 4 della stessa Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.

CLIENTE: ERG MED

PROGETTO: ADEGUAMENTO BAT pro IPPC

N° Progetto Rev. Foglio

A621 0 53 di 139

TECN.	INDICAZIONE	STATO	COMMENTO	NOTE
	Installare un'unità a	Non		L'unità, essendo di
	più stadi, dotata di	Applicabile		capacità inferiore a 50
	trattamento dei gas di			t/d, rispetta la
	coda, con un'efficienza			conversione minima
	totale di recupero pari			richiesta del 96%
	al 99.5 – 99.9 %.			
	Avere una	Applicata		La raffineria dispone
	configurazione			di n° 3 linee Claus (n°
	dell'impianto SRU con			$2 CR/41 + n^{\circ} 1 CR/34$
	capacità sufficiente a			
	trattare tutto l'H ₂ S in			
	ingresso, ad esempio			
	avere almeno due linee			
	in parallelo di capacità			
	sufficiente a coprire			
	tutti gli scenari			
	operativi della			
	Raffineria			
	Avere una capacità di	Non		La raffineria dispone
	recupero zolfo	Applicabile		di n° 3 linee Claus (n°
	sufficiente a consentire			$2 \text{ CR}/41 + \text{n}^{\circ} 1 \text{ CR}/34$
	le operazioni di			
	manutenzione, da			
	effettuare ogni due			
	anni, senza incrementi			
	significativi delle			
	emissioni di zolfo			
				27 11
	Avere un fattore di	Non		La raffineria dispone
	utilizzazione almeno	Applicabile		di n° 3 linee Claus (n°
	del 96% (incluse le			$2 \text{ CR}/41 + \text{n}^{\circ} 1 \text{ CR}/34$
	fermate per			
	manutenzione			
	programmata)			
	TT/OIL	N		I CC : 1:
	Utilizzare un sistema	Non		La raffineria dispone
	avanzato di controllo	Applicabile		di n° 3 linee Claus (n°
	delle emissioni; usare			$2 \text{ CR}/41 + \text{n}^{\circ} 1 \text{ CR}/34$
	un analizzatore dei gas			
	di coda connesso con il			
	sistema di controllo del			
	processo			

CLIENTE:	ERG MED	
PROGETTO:	ADEGUAMI	ENTO BAT pro IPPC
N° Progetto	Rev.	Foglio
A621	0	54 di 139

TECN.	INDICAZIONE	STATO	COMMENTO	NOTE
	Ottimizzare i	Non	Non sono trattati i	I gas da SWS sono
	parametri di processo	applicabile	gas provenienti da	trattati nelle altre due
	in modo da rendere		SWS	linee (CR/41)
	possibile anche il		~ ~	
	trattamento termico			
	dell'ammoniaca			
	contenuta nei gas da			
	SWS, che può formare			
	sali (carbonati/solfati)			
	lesivi per il			
	catalizzatore.			
	Applicare tecniche	Non	Questa prescrizione si	
	alternative per il	applicabile	applica unicamente	
	recupero/rimozione di		piccole unità e non alle	
	H ₂ S/SO ₂ nelle		raffinerie	
	installazioni in cui la			
	produzione di H ₂ S è			
	ridotta			

CLIENTE: PROGETTO:	ERG MED ADEGUAMI	ENTO BAT pro IPPC
N° Progetto A621	Rev.	Foglio 55 di 139

UNITA' CR 35 MTBE

1.0 Organizzazione

La gestione dell'unità è affidata alla funzione GEST 4

1.1 Descrizione del Processo

L'impianto produce MTBE partendo da isobutene e metanolo attraverso una reazione di tipo catalitico.

L'effluente dalle sezione di reazione è inviato ad una sezione di frazionamento dove avviene la purificazione di MTBE ed il recupero dell'isobutene e del metanolo che non hanno reagito

Per ulteriori dettagli si faccia riferimento al manuale operativo dell'unità

CLIENTE: PROGETTO:	ERG MED ADEGUAMI	ENTO BAT pro IPPC
N° Progetto A621	Rev.	Foglio 56 di 139

1.2 Capacità di Produzione e Trattamento delle Sostanze in Ingresso ed Uscita

Carica

Nome	Lavorato 2005 (ton / anno)
Isobutene	183.091
Metanolo	15.517

Prodotti / semilavorati in uscita

Nome	Lavorato 2005 (ton / anno)
MTBE	45.309
Isobutene non reagito	153.300

Capacità di progetto: 192 t/g (di MTBE prodotto)

CLIENTE: PROGETTO:	ERG MED ADEGUAMI	ENTO BAT pro IPPC
N° Progetto A621	Rev.	Foglio 57 di 139

2.0 Confronto consumi specifici con IPPC-Chapter 3-Emission and consumption level

L'unità di produzione MTBE CR 35 è progettata per produrre una quantità massima di 68.958 ton/anno di MTBE partendo da isobutene (provenienti dall'impianto di cracking catalitico e dall'impianto di produzione MTBE) e di metanolo. Per quanto riguarda i consumi per l'unità di produzione MTBE, la seguente tabella confronta quanto riportato nel Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries (paragrafo 3.11 – Etherification -) con quanto ottenuto operativamente nell'unità di CR-35

	IPPC (1)	Unità CR-35 (1)
Utilities		
Electricity kwh/t	12-20	20-26
Steam consumed (kg/ton)	1000-2000	1200-1550
Cooling water (m3/t Δ T=10°C)	2-8	125-205
Fuel MJ/ton	n.a.	'-

Nota 1: Valori relativi a ton di MTBE prodotto

CLIENTE: PROGETTO:	ERG MED ADEGUAMENTO BAT pro I	
N° Progetto A621	Rev.	Foglio 58 di 139

3.0 Stato di applicazione delle BAT competenti

Le BAT relative alle unità di produzione MTBE sono riportate nel punto 11 del paragrafo 5.2 del Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.

Nel prospetto di seguito riportato viene mostrato lo stato di applicazione delle BAT citate con riferimento all'assetto della raffineria ISAB NORD.

Nel prospetto, per semplicità e per rendere più facile il confronto, ove indicato nello stesso paragrafo 5.2 delle IPPC, viene riportato il riferimento alla tecnica presente nel capitolo 4 della stessa Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.

Dall'analisi del prospetto si evince che la raffineria adotta per l'unità in oggetto un insieme di tecniche in linea con le migliori disponibili al momento.

CLIENTE: PROGETTO:	ERG MED ADEGUAMENTO BAT pro IPPC	
N° Progetto A621	Rev.	Foglio 59 di 139

TECN.	INDICAZIONE	STATO	COMMENTO	NOTE
4.11.1	Aumentare l'efficienza di conversione attraverso l'utilizzo della distillazione catalitica	Non Applicata	La conversione media ottenuta nell'unità è del 85%	
4.11.2	Prevenire upset nel trattamento biologico	Applicata	Le acque effluenti dall'unità (fondo colonna di lavaggio C4), che potrebbero contenere metanolo, sono analizzate frequentemente per controllarne il contenuto di metanolo	

CLIENTE:	ERG MED	
PROGETTO:	ADEGUAMENTO BAT pro IPPC	
N° Progetto A621	Rev.	Foglio 60 di 139

UNITA' CR 36 ALCHILAZIONE

1.0 Organizzazione

La gestione dell'unità è affidata alla funzione GEST 4

1.1 Descrizione del Processo

L'impianto di alchilazione è di tipo catalitico ad acido solforico ed ha la funzione di produrre benzina alchilata ad alto numero di ottano partendo da olefine C4 provenienti dagli impianti FCC/MTBE e da isobutano

L'impianto è costituito dalle seguenti sezioni:

- > Sezione di reazione
- > Sezione di refrigerazione
- > Lavaggio effluenti reazione
- > Sezione di distillazione

L'impianto produce i seguenti prodotti:

- > Propano e butano
- > Benzina alchilata
- > Acido solforico da rigenerare

Per ulteriori dettagli si faccia riferimento al manuale operativo dell'unità

CLIENTE: PROGETTO:	ERG MED ADEGUAMI	ENTO BAT pro IPPC
N° Progetto A621	Rev.	Foglio 61 di 139

1.2 Capacità di Produzione e Trattamento delle Sostanze in Ingresso ed Uscita

Carica

Nome	Lavorato 2005 (ton / anno)
Olefine a basso peso molecolare+Isobutano	204.927

Prodotti / semilavorati in uscita

Nome	Lavorato 2005 (ton / anno)
Benzina alchilata	157.500
Propano/Butano	45.838

Capacità di progetto: 550 t/g (di benzina alchilata prodotta)

CLIENTE: PROGETTO:	ERG MED ADEGUAMI	ENTO BAT pro IPPC	
N° Progetto A621	Rev.	Foglio 62 di 139	

2.0 Confronto consumi specifici con IPPC-Chapter 3-Emission and consumption level

L'unità di Alchilazione CR 36 è progettata per produrre una quantità massima di 197.339 ton/anno di benzina alchilata partendo da olefine a basso peso molecolare (provenienti dall'impianto di cracking catalitico e dall'impianto di produzione MTBE) e di isobutano. L'unità di alchilazione CR 36 utilizza la tecnologia ad acido solforico. Per quanto riguarda i consumi per l'unità di alchilazione, la seguente tabella confronta quanto riportato nel Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries (paragrafo 3.2 –Alkylation -) con quanto ottenuto operativamente nell'unità di isomerizzazione CR-36

	IPPC (1)	Unità CR-36 (1)
	Sulphuric Acid	
	Technique	
Utilities		
Electricity kwh/t	4	148
Steam consumed (kg/ton)	830	1000
Cooling water (m3/t Δ T=11°C)	72	167
Fuel MJ/ton	n.a.	0
Chemicals		
Fresh acid (kg/ton)	78-120	90

Nota 1: Valori relativi a ton di benzina alchilata prodotta

CLIENTE: PROGETTO:	ERG MED ADEGUAMI	ENTO BAT pro IPPC	
N° Progetto A621	Rev.	Foglio 63 di 139	

3.0 Stato di applicazione delle BAT competenti

Le BAT relative alle unità di isomerizzazione sono riportate nel punto 2 del paragrafo 5.2 del Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.

Nel prospetto di seguito riportato viene mostrato lo stato di applicazione delle BAT citate con riferimento all'assetto della raffineria ISAB NORD.

Nel prospetto, per semplicità e per rendere più facile il confronto, ove indicato nello stesso paragrafo 5.2 delle IPPC, viene riportato il riferimento alla tecnica presente nel capitolo 4 della stessa Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.

Dall'analisi del prospetto si evince che la raffineria adotta per l'unità in oggetto un insieme di tecniche in linea con le migliori disponibili al momento.

CLIENTE:	ERG MED ADEGUAMENTO BAT pro IPPC	
PROGETTO:		
N° Progetto	Rev.	Foglio
A621	0	64 di 139

TECN.	INDICAZIONE	STATO	COMMENTO	NOTE
4.2.1	Riduzione delle	Non	L'unità utilizza il processo ad	
	emissioni di HF nelle	Applicabile	acido solforico	
	unità che utilizzano			
	processi ad HF a livelli			
	inferiori a 20-40 ppm			
4.2.2	Minimizzazione e	Applicata	L'acido solforico esausto	
	rigenerazione		viene inviato in carica	
	dell'acido solforico		all'impianto di produzione	
	esausto. Le acque di		acido solforico CR-37 e le	
	scarico generate dal		acque generate dal processo	
	processo devono essere		vengono neutralizzate	
	neutralizzate prima di			
	essere inviate			
	all'impianto di			
	trattamento acque			
4.2.3	Migliorare la qualità	Non	L'installazione di unità di	La quantità di
	della carica all'unità di	Applicata	idrogenazione e	dieni in carica
	alchilazione attraverso		isomerizzazione non sono	è trascurabile
	l'idrogenazione		tecnicamente ed	
	selettiva e		economicamente giustificate	
	l'isomerizzazione dei		vista la bassa capacità	
	dieni al fine di limitare		dell'unità di alchilazione CR-	
	i consumi di acido e		36	
	soda			

CONSER SpA – Via Domenico Sansotta, 100 – 00144 ROMA

CLIENTE:	ERG MED ADEGUAMENTO BAT pro IPPC	
PROGETTO:		
N° Progetto	Rev.	Foglio
A621	0	65 di 139

UNITA' CR37 LAVAGGIO AMMINICO E DI RIGENERAZIONE DEA

1.0 Organizzazione

La gestione dell'unità è affidata alla funzione GEST 4

1.1 Descrizione del Processo

Il sistema di Lavaggio Amminico è costituito da n°2 colonne, C-201 a bassa pressione e C-202 ad alta pressione, site nell'unità CR-37, che inviano la MDEA da rigenerare, insieme a quella proveniente dalla C-301, al rigeneratore C-203.

Per ulteriori dettagli si faccia riferimento al manuale operativo dell'unità

CONSER SpA – Via Domenico Sansotta, 100 – 00144 ROMA

CLIENTE:	ERG MED ADEGUAMENTO BAT pro IPPC	
PROGETTO:		
N° Progetto	Rev.	Foglio
A621	0	66 di 139

1.2 Capacità di Produzione e Trattamento delle Sostanze in Ingresso ed Uscita

1.2.1 Lavaggio Amminico

Carica

Nome	Lavorato 2005 (ton / anno)
H2S da abbattere	11.078

Prodotti / semilavorati in uscita

Nome	Lavorato 2005 (ton / anno)	
MDEA da Rigenerare	799.478	

Capacità di progetto: 30 t/g (di H2S)

1.2.2 Rigenerazione MDEA

Carica

Nome	Lavorato 2005 (ton / anno)
MDEA da Rigenerare	799.478

Prodotti / semilavorati in uscita

Nome	Lavorato 2005 (ton / anno)
MDEA a Lavaggio amminico	788.400
Gas Acido a Impianto Zolfo	11.078

Capacità di progetto: 2190 t/g (di MDEA)

CLIENTE: PROGETTO:	ERG MED ADEGUAMI	ENTO BAT pro IPPC
N° Progetto A621	Rev.	Foglio 67 di 139

2.0 Confronto consumi specifici con IPPC-Chapter 4-Techniques to Consider in the Determination of BAT

La seguente tabella confronta quanto riportato nel Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries (paragrafo 4.23.5.1 – Amine treating) con quanto ottenuto operativamente nell'unità di trattamento ammine

	IPPC	Unità CR-37
Electricity kWh/ton H2S	70-80	143
Steam consumed (kg/ton H2S)	1500-3000	5587
Cooling water (m3/t H2S ΔT=10°C)	25-35	429

CLIENTE: PROGETTO:	ERG MED ADEGUAMI	ENTO BAT pro IPPC
N° Progetto A621	Rev.	Foglio 68 di 139

3.0 Stato di applicazione delle BAT competenti

Le BAT relative alle unità di trattamento amminico sono riportate nel punto 23 del paragrafo 5.2 del Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.

Nel prospetto di seguito riportato viene mostrato lo stato di applicazione delle BAT citate con riferimento all'assetto della raffineria ISAB NORD.

Nel prospetto, per semplicità e per rendere più facile il confronto, ove indicato nello stesso paragrafo 5.23 delle IPPC, viene riportato il riferimento alla tecnica presente nel capitolo 4 della stessa Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.

Dall'analisi del prospetto si evince che la raffineria adotta per l'unità in oggetto un insieme di tecniche in linea con le migliori disponibili al momento.

CLIENTE:	ERG MED	
PROGETTO:	ADEGUAMENTO BAT pro IPPC	
N° Progetto	Rev.	Foglio
A621	0	69 di 139

TECN.	INDICAZIONE	STATO	COMMENTO	NOTE
4.23.5.1	Utilizzare un processo	Applicata	La raffineria rigenera la	
	rigenerativo ammine		MDEA.	
4.23.5.1	Riutilizzare, quando	Applicata	La raffineria rigenera la	
	possibile, le soluzioni		MDEA riutilizzandola per i	
	di ammine		lavaggi.	
4.23.5.1	Ridurre la	Applicata	Il fuel gas in uscita dalle	
	concentrazione di H2S		colonne di lavaggio con	
	nel gas di raffineria a		MDEA ha valori di H2S	
	livelli di 20-150		inferiori a 100 ppm.	
	mg/Nm3			
4.23.5.1	Prevedere una	Applicata	Le pompe sono installate con	
	sufficiente capacità da		relative riserve.	
	permettere operazioni		Sono presenti sistemi di	
	di manutenzione e far		interlock.	
	fronte agli upsets		Sono previsti margini sulle	
	(avere apparecchiature		apparecchiature	
	di riserva, possibilità		Il fattore di servizio	
	di eliminazione del		dell'impianto è del 98%	
	carico elettrico,			
	scrubber ammine di			
	emergenza, sistemi			
	multipli di scrubber)			
4.23.5.1	Utilizzare un tank di	Applicata	Non ci sono effluenti al	
	stoccaggio o un piano		trattamento biologico in	
	di produzione per		quanto sono previsti	
	controllare gli effluenti		trattamenti periodici effettuati	
	generati ed evitare up-		da ditte esterne.	
	set del trattamento		Nel futuro sarà installato un	
	biologico		sistema di filtrazione	
			meccanico e a carboni attivi	

CR-37 A Rigenerazione acido solforico

PROGETTO:	ADEGUAMENTO BAT pro IPPC		
N° Progetto	Rev.	Foglio	
A621	0	70 di 139	

<u>UNITA' CR-37 A – RIGENERAZIONE ACIDO SOLFORICO</u>

1.0 Organizzazione

La gestione dell'unità è affidata alla funzione GEST 4

1.1 Descrizione del Processo

L' impianto rigenera l'acido solforico spento da alchilazione, con l' ausilio di zolfo liquido; può essere alimentato anche l' H2S proveniente dall' unità di lavaggio gas CR/37-acido. Il processo, licenziato da Outokumpu, è del tipo wet/dry catalysis, con doppio stadio di conversione e di assorbimento; esso si articola in tre sezioni:

- 1. generazione SO2;
- 2. conversione dell' SO2 in SO3;
- 3. assorbimento dell' SO3 in acido solforico.

La generazione dell' SO2 avviene in un forno di scissione, al quale viene alimentato l' acido spento, lo zolfo liquido, proveniente dall' unità recupero zolfo, e l' eventuale H2S, in presenza di aria comburente.

Il gas in uscita forno viene raffreddato in una caldaia a recupero, depolverato nell' elettrofiltro, e inviato al primo stadio di conversione, costituito da due letti catalitici, in cui avviene la prima (e più consistente) conversione dell' SO2 in SO3. L' SO3 viene assorbita nella prima colonna di assorbimento; il gas in uscita da questa colonna viene preriscaldato, a spese del gas uscente dal primo stadio catalitico, e inviato al secondo stadio di catalisi, dove avviene il completamento della conversione dell' SO2 in SO3. Dopo il secondo assorbimento il gas viene inviato al camino, previo, ulteriore lavaggio con acqua acidula, per eliminare le tracce di aerosol residue.

Per ulteriori dettagli si faccia riferimento al manuale operativo dell'unità

CR-37 A				
Rigenerazione acido solforico				

PROGETTO:	ADEGUAMENTO BAT pro IPPC		
N° Progetto	Rev.	Foglio	
A621	0	71 di 139	

1.2 Capacità di Produzione e Trattamento delle Sostanze in Ingresso ed Uscita

Capacità di progetto:

- acido spento da alchilazione in carica: 72 t/g;
- acido fresco prodotto: 187 t/g.

2.0 Stato di applicazione delle BAT competenti

In mancanza di BAT specifiche per l' unità CR/37-acido, si è fatto riferimento alle BAT specifiche contenute nel documento "Reference Document on BAT for the Manifacture of Large Volume Inorganic Chemicals (Ottobre 2006) Capitolo 4.

Nel prospetto di seguito riportato viene mostrato lo stato di applicazione delle BAT citate con riferimento all'assetto della raffineria ISAB NORD.

Dall'analisi del prospetto si evince che la raffineria adotta per l'unità in oggetto un insieme di tecniche in linea con le migliori disponibili al momento.

TECN.	INDICAZIONE	STATO	COMMENTO	NOTE
4.4.2	Utilizzare un processo con due stadi di catalisi e due stadi di assorbimento, allo scopo di massimizzare la conversione	Applicata		
4.4.12	Purificare adeguatamente il gas in ingresso reattore per prevenire lo sporcamente del catalizzatore	Applicata	In uscita dalla caldaia a recupero è installato un elettrofiltro che rimuove le polveri trascinate dal gas, rallentando lo sporcamente del catalizzatore	
	Attuare regolarmente la vagliatura / sostituzione del primo letto catalitico per garantire un buon livello di conversione	Applicata	Il primo letto catalitico viene sottoposto a vagliatura con frequenza annuale, e a sostituzione integrale ogni 2 anni. Gli altri 3 letti catalitici vengono sostituiti con frequenza biennale/quadriennale.	
4.4.6	Utilizzo di convertitori in acciaio inox (anziché	Applicata	-	

CR-37 A
Rigenerazione acido solforico

PROGETTO:	ADEGUAMENTO BAT pro IPPC		
N° Progetto	Rev.	Foglio	
A621	0	72 di 139	

TECN.	INDICAZIONE	STATO	COMMENTO	NOTE
	in mattoni refrattari in modo da ridurre la probabilità di by-pass dell' assorbitore intermedio			
	Monitorare in continuo l' SO2 nel tail gas	Applicata	L' impianto è dotato di un analizzatore che registra la concentrazione di SO2 nel tail gas al camino. Un altro analizzatore continuo è installato sulla linea di uscita dell' assorbitore intermedio, allo scopo di controllare la conversione del primo stadio di catalisi.	
4.4.13	Mantenere efficienti gli scambiatori di calore, allo scopo di massimizzare l' attività catalitica	Applicata	Gli scambiatori vengono ispezionati, puliti e manutenzionati con cadenza biennale.	
4.4.16	Minimizzazione e abbattimento delle nebbie	Applicata	E' installato un sistema di filtri a candela per l' abbattimento dell' aerosol dal gas in uscita dall' assorbitore secondario. Valle dei filtri a candela è presente uno scrabber per il lavaggio dei fumi con acqua acidula.	

CLIENTE:	ERG MED	
PROGETTO:	ADEGUAMI	ENTO BAT pro IPPC
N° Progetto	Rev. Foglio	
A621	0	73 di 139

UNITA' CR-40 DAO Gofiner

1.0 Organizzazione

La gestione dell'unità è affidata alla funzione GEST 4

1.1 Descrizione del Processo

L'impianto entrerà in servizio entro la fine del 2006 ed avrà la funzione di effettuare un duplice trattamento su una carica costituita da gasoli da vuoto.

Il duplice trattamento consiste sia in un'azione di desolforazione che in un'azione di "mild hydrocracking" effettuate entrambe in presenza di idrogeno su catalizzatori specifici.

L'impianto prevede una corrente di gas di riciclo opportunamente lavata in una colonna di assorbimento amminico.

L'effluente dalla sezione di reazione viene gradualmente raffreddato ed inviato a quattro separatori operanti a temperatura e pressione diverse.

Il gas, ricco in idrogeno, viene riciclato alla sezione di reazione, il liquido viene alimentato ad un frazionatore dove si ottiene un gasolio da inviare a stoccaggio ed un fondo desolforato da inviare in carica all'impianto CR-27 FCC.

Per ulteriori dettagli si faccia riferimento al manuale operativo dell'unità

CLIENTE:	ERG MED		
PROGETTO:	ADEGUAMENTO BAT pro IPPC		
N° Progetto	Rev.	Foglio	
A621	0	74 di 139	

1.2 Capacità di Produzione e Trattamento delle Sostanze in Ingresso ed Uscita

Carica

Nome	(ton / anno)
Gasolio da unità Vacuum/ DAO	1.345.667

Prodotti / semilavorati in uscita

Nome	(ton / anno)
Gasolio	167.191
Gofinato	1.141.559
Benzina	12.334
Off-gas	5.481

Capacità di progetto: 4.060 t/g (di gasolio da unità vuoto/DAO)

1.3 Schema di processo semplificato

In allegato si riporta lo schema di processo semplificato.

CLIENTE: PROGETTO:	ERG MED ADEGUAMENTO BAT pro IP	
N° Progetto A621	Rev.	Foglio 75 di 139

2.0 Confronto consumi specifici con IPPC-Chapter 3-Emission and consumption level

L'unità di CR-40 è una unità di desolforazione gasoli progettata per trattare il gasolio proveniente dall'unità vacuum ed il DAO

L'unità è progettata per trattare una capacità massima di 1.452.262 ton/anno.di gasolio/ DAO . Per quanto riguarda i consumi per l'unita di desolforazione gasolio, la seguente tabella confronta quanto riportato nel Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries (paragrafo 3.13 –Hydrogen consuming processes distillate processed) con quanto ottenuto operativamente nell'unità di CR-40

	IPPC	Unità CR-40
Kg H2 per ton of feed	1-15	18.39
Fuel MJ/ton	300-500	294
Electricity kwh/t	10-20	23.4
Steam consumed (kg/ton)	60-150	185
Cooling water (m3/t ΔT=10°C)	2-3	15.6
Wash water (kg/ton)	30-40	51

CONSER SpA – Via Domenico Sansotta, 100 – 00144 ROMA

CLIENTE: PROGETTO:	ERG MED ADEGUAMENTO BAT pro IP	
N° Progetto A621	Rev.	Foglio 76 di 139

3.0 Stato di applicazione delle BAT competenti

Le BAT relative alle unità che consumano idrogeno sono riportate nel punto 13 del paragrafo 5.2 del Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.

Nel prospetto di seguito riportato viene mostrato lo stato di applicazione delle BAT citate con riferimento all'assetto della raffineria ISAB NORD.

Nel prospetto, per semplicità e per rendere più facile il confronto, ove indicato nello stesso paragrafo 5.2 delle IPPC, viene riportato il riferimento alla tecnica presente nel capitolo 4 della stessa Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.

Dall'analisi del prospetto si evince che la raffineria adotta per l'unità in oggetto un insieme di tecniche in linea con le migliori disponibili al momento.

CLIENTE:	ERG MED		
PROGETTO:	ADEGUAMI	ENTO BAT pro IPPC	
N° Progetto	Rev.	Foglio	
A621	0	77 di 139	

TECN.	INDICAZIONE	STATO	COMMENTO	NOTE
4.13.6	Progettare e modificare ove possibile l'unità di hydrocracker (sezione reazione e frazionamento) con sistema ad elevata integrazione termica applicando analisi di ottimizzazione energetica e sistemi di separazione a 4 stadi	Applicata	L'unità CR-40 non è un hydrocracking. Sono previsti 4 separatori ed è stata applicata, in sede di progettazione, la pinch analysis per l'ottimizzazione dei recuperi termici	
4.13.1,2,6,7	Utilizzare il recupero termico da correnti di processo ad alta temperatura in WHB e il recupero energetico nelle unità ad alta pressione.(letting down liquid)	Non Applicabile	L'unità CR-40 lavora ad una Pressione pari a circa 80 kg/cm2g all' ingresso reattore. Il recupero di potenza per riduzione di pressione del liquido non è giustificato in termini di investimento/benefici sia nel sistema di lavaggio MDEA sia nell'espansione del gasolio dal separatore ad alta temperatura	L'ottimizzazione energetica a mezzo pinch analysis eseguita in sede di progettazione ha fatto venire meno la necessità di installare WHB
4.23.5.1	Inviare gli off gas che contengono H2S al sistema ammine e recupero zolfo	Applicata	I gas acidi vengono assorbiti con una soluzione di MDEA	
4.24.1 4.15.6	Inviare le acque acide contenenti H2S e NH3all'appropiato trattamento	Applicata	Le acque acide vengono inviate ad un sistema centralizzato di strippaggio	
4.13.4	Utilizzare il rimpiazzo del catalizzatore on stream per cariche ad alto contenuto di metalli	Non applicabile	Le cariche all'impianto hanno un contenuto medio di metalli che non giustifica questa tecnologia	
4.25.3	Promuovere opzioni per la rigenerazione del catalizzatore in accordo con il fornitore stesso	Applicata	Il catalizzatore quando esaurito viene sostituito e viene rigenerato off-site da società specializzate	

CLIENTE:	ERG MED	
PROGETTO:	ADEGUAMENTO BAT pro IPPC	
N° Progetto A621	Rev.	Foglio 78 di 139

UNITA' CR/41 CLAUS

1.0 Organizzazione

La gestione dell'unità è affidata alla funzione GEST 4

1.1 Descrizione del Processo

L'impianto è costituito da due linee di recupero zolfo ciascuna di capacità pari a 75 ton/g di zolfo prodotto con un'unità di trattamento dei gas di coda che utilizza una tecnologia di tipo Scott.

A valle del trattamento dei gas di coda è installato un combustore finale.

Per ulteriori dettagli si rimanda al manuale operativo dell'unità

CLIENTE: PROGETTO:	ERG MED ADEGUAMENTO BAT pro IPPC	
N° Progetto A621	Rev.	Foglio 79 di 139

1.2 Capacità di Produzione e Trattamento delle Sostanze in Ingresso ed Uscita

Carica

Nome	Progetto (ton / anno)
Gas acidi di raffineria	57008

1) Portata espressa in t/anno di H2S trattato

Prodotti / semilavorati in uscita

Nome	Progetto (ton / anno)
Zolfo	53655

Capacità di progetto: 150 t/g (di zolfo prodotto)

CLIENTE: PROGETTO:	ERG MED ADEGUAMENTO BAT pro IPPC	
N° Progetto A621	Rev.	Foglio 80 di 139

2.0 Confronto consumi specifici con IPPC-Chapter 3-Emission and consumption level

L' unità di recupero zolfo CR-41 è progettata per produrre una quantità di zolfo pari a 53.655 ton/anno trattando i gas acidi di raffineria provenienti dagli impianti di lavaggio ammine e SWS al fine di minimizzare le emissioni in atmosfera di H2S ed SO2 . Per quanto riguarda i consumi per le unità di recupero zolfo , la seguente tabella confronta quanto riportato nel Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries (paragrafo 4.23.5.2. —Sulphur recovery units -) con quanto ottenuto operativamente nell' unità CR 41

	IPPC	Unità CR –41 (1,2)
Fuel MJ/ton	1000-1600	2341
Electricity kwh/t	60-75	98
Steam produced (kg/ton)	1500-2000	2921
Cooling water (m3/t ΔT=10°C)	0-20	0

Nota 1: valori riferiti a tonnellata di H2S trattato

Nota 2 Sono esclusi i consumi dell'impianto di trattamento del gas di coda

CLIENTE: PROGETTO:	ERG MED ADEGUAMI	ENTO BAT pro IPPC
N° Progetto A621	Rev.	Foglio 81 di 139

3.0 Stato di applicazione delle BAT competenti

Le BAT relative alle unità di recupero zolfo sono riportate nel punto 23 del paragrafo 5.2 del Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.

Nel prospetto di seguito riportato viene mostrato lo stato di applicazione delle BAT citate con riferimento all'assetto della raffineria ISAB NORD.

Nel prospetto, per semplicità e per rendere più facile il confronto, ove indicato nello stesso paragrafo 5.2 delle IPPC, viene riportato il riferimento alla tecnica presente nel capitolo 4 della stessa Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.

CLIENTE:	ERG MED	
PROGETTO:	ADEGUAMI	ENTO BAT pro IPPC
N° Progetto	Rev.	Foglio
A621	0	82 di 139

TECN.	INDICAZIONE	STATO	COMMENTO	NOTE
	Installare un'unità a più stadi, dotata di trattamento dei gas di coda, con un'efficienza totale di recupero pari al 99.5 – 99.9 %.	Applicata	L'unità è provvista di un impianto di trattamento dei gas di coda	
	Avere una configurazione dell'impianto SRU con capacità sufficiente a trattare tutto l'H ₂ S in ingresso, ad esempio avere almeno due linee in parallelo di capacità sufficiente a coprire tutti gli scenari operativi della Raffineria	Applicata	La capacità delle unità è tale da garantire l'abbattimento di tutto H2S prodotto anche nel peggior assetto operativo (trattamento di crudi ad alto contenuto di zolfo)	Si fa presente che la raffineria dispone di un'unità SRU CR-34 mantenuta in conservazione e pronta ad essere utilizzata come spare di una delle linee dell'unità CR-41
	Avere una capacità di recupero zolfo sufficiente a consentire le operazioni di manutenzione, da effettuare ogni due anni, senza incrementi significativi delle emissioni di zolfo	Applicata	Il piano di manutenzione della raffineria prevede una fermata biennale delle unità di desolforazione con associata manutenzione delle unità SRU	Le procedure di Raffineria prevedono assetti operativi tali da evitare l'invio in torcia di H ₂ S per scenario operativo possibile
	Avere un fattore di utilizzazione almeno del 96% (incluse le fermate per manutenzione programmata)	Applicata		Le procedure di Raffineria prevedono assetti operativi tali da evitare l'invio in torcia di H ₂ S per scenario operativo possibile
	Utilizzare un sistema avanzato di controllo delle emissioni; usare un analizzatore dei gas di coda connesso con il sistema di controllo del processo	Applicata		

CLIENTE:	ERG MED	
PROGETTO:	ADEGUAMI	ENTO BAT pro IPPC
N° Progetto	Rev.	Foglio
A621	0	83 di 139

TECN.	INDICAZIONE	STATO	COMMENTO	NOTE
TECH	Ottimizzare i parametri di processo in modo da rendere possibile anche il trattamento termico dell'ammoniaca	Applicata	La linea ammoniacale viene immessa nei forni in opportune zone dedicate per	NOTE
	contenuta nei gas da SWS, che può formare sali (carbonati/solfati) lesivi per il catalizzatore.		l'abbattimento termico di NH ₃	
	Applicare tecniche	Non	Questa prescrizione si	
	alternative per il recupero/rimozione di	applicabile	applica unicamente piccole unità e non alle	
	H ₂ S/SO ₂ nelle installazioni in cui la produzione di H ₂ S è ridotta		raffinerie	

CLIENTE:	ERG MED	
PROGETTO:	ADEGUAMENTO BAT pro IPPC	
N° Progetto	Rev.	Foglio
A621	0	84 di 139

UNITA' CR42 LAVAGGIO AMMINICO E RIGENERAZIONE DEA

1.0 Organizzazione

La gestione dell'unità è affidata alla funzione GEST 4

1.1 Descrizione del Processo

L'unità sarà installata entro la fine del 2006

L'unità è costituita da una colonna di rigenerazione della MDEA esausta proveniente dalle colonne di lavaggio gas acidi installate nelle unità di processo CR-40 e CR-41

Per ulteriori dettagli si faccia riferimento al manuale operativo dell'unità

CONSER SpA – Via Domenico Sansotta, 100 – 00144 ROMA

CLIENTE:	ERG MED	
PROGETTO:	ADEGUAMI	ENTO BAT pro IPPC
N° Progetto	Rev.	Foglio
A621	0	85 di 139

1.2 Capacità di Produzione e Trattamento delle Sostanze in Ingresso ed Uscita

Carica

Nome	(ton / anno)
MDEA da Rigenerare	1.348.000

Prodotti / semilavorati in uscita

Nome	(ton / anno)
MDEA a Lavaggio amminico	1.296.730
Gas Acido a Impianto Zolfo	39.826

Capacità di progetto: 3.768 t/g (di MDEA)

CLIENTE: PROGETTO:	ERG MED ADEGUAMI	ENTO BAT pro IPPC
N° Progetto A621	Rev.	Foglio 86 di 139

2.0 Confronto consumi specifici con IPPC-Chapter 4-Techniques to Consider in the Determination of BAT

La seguente tabella confronta quanto riportato nel Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries (paragrafo 4.23.5.1 – Amine treating) con quanto ottenuto operativamente nell'unità di trattamento ammine

	IPPC	Unità CR-42
Electricity kWh/ton H2S	70-80	122 (1)
Steam consumed (kg/ton H2S)	1500-3000	4764
Cooling water (m3/t H2S ΔT=10°C)	25-35	0

Nota 1: MDEA rigenerata è resa disponibile ai L.B. ad una pressione pari a 72 bar

CLIENTE: PROGETTO:	ERG MED ADEGUAMI	ENTO BAT pro IPPC
N° Progetto A621	Rev.	Foglio 87 di 139

3.0 Stato di applicazione delle BAT competenti

Le BAT relative alle unità di trattamento amminico sono riportate nel punto 23 del paragrafo 5.2 del Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.

Nel prospetto di seguito riportato viene mostrato lo stato di applicazione delle BAT citate con riferimento all'assetto della raffineria ISAB NORD.

Nel prospetto, per semplicità e per rendere più facile il confronto, ove indicato nello stesso paragrafo 5.23 delle IPPC, viene riportato il riferimento alla tecnica presente nel capitolo 4 della stessa Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.

Dall'analisi del prospetto si evince che la raffineria adotta per l'unità in oggetto un insieme di tecniche in linea con le migliori disponibili al momento.

CLIENTE:	ERG MED	
PROGETTO:	ADEGUAMI	ENTO BAT pro IPPC
N° Progetto	Rev.	Foglio
A621	0	88 di 139

TECN.	INDICAZIONE	STATO	COMMENTO	NOTE
4.23.5.1	Utilizzare un processo	Applicata	La raffineria rigenera la	
	rigenerativo ammine		MDEA.	
4.23.5.1	Riutilizzare, quando	Applicata	La raffineria rigenera la	
	possibile, le soluzioni		MDEA riutilizzandola per i	
	di ammine		lavaggi.	
4.23.5.1	Ridurre la	Applicata	Il fuel gas in uscita dalle	
	concentrazione di H2S		colonne di lavaggio con	
	nel gas di raffineria a		MDEA ha valori di H2S	
	livelli di 20-150		inferiori a 100 ppm.	
	mg/Nm3			
4.23.5.1	Prevedere una	Applicata	Le pompe sono installate con	
	sufficiente capacità da		relative riserve.	
	permettere operazioni		Sono presenti sistemi di	
	di manutenzione e far		interlock.	
	fronte agli upsets		Sono previsti margini sulle	
	(avere apparecchiature		apparecchiature	
	di riserva, possibilità		Il fattore di servizio	
	di eliminazione del		dell'impianto è del 98%	
	carico elettrico,			
	scrubber ammine di			
	emergenza, sistemi			
4.23.5.1	multipli di scrubber) Utilizzare un tank di	Applicata	Non ci sono effluenti al	
4.23.5.1		Аррпсата		
	stoccaggio o un piano di produzione per		trattamento biologico in quanto MDEA viene filtrata	
	di produzione per controllare gli effluenti		su carboni attivi	
	generati ed evitare up-		Su carooni attivi	
	set del trattamento			
	biologico			
	niologico			

Unità CR-43 *Impianto SWS*

CLIENTE:	ERG MED	
PROGETTO:	ADEGUAMI	ENTO BAT pro IPPC
N° Progetto	Rev.	Foglio
A 621	0	89 di 139

UNITA' CR-43 IMPIANTO SWS

1.0 Organizzazione

La gestione dell'unità è affidata alla funzione GEST4

1.1 Descrizione del Processo

L'unità CR-43 SWS entrerà in servizio entro la fine del 2006 ed avrà la funzione di trattare le acque acide provenienti dalle varie unità di processo della raffineria strippando H2S in esse contenuto e rendendole di qualità idonea a poter essere inviata al WWT

L'unità consiste essenzialmente in una colonna di strippaggio ribollita con vapore.

H2S recuperato sotto forma gassosa dalla testa colonna viene inviato agli impianti di produzione zolfo, mentre l'acqua del fondo colonna è inviata al WWT

Per ulteriori dettagli si faccia riferimento al manuale operativo dell'unità

Unità CR-43 *Impianto SWS*

CLIENTE:	ERG MED	
PROGETTO:	ADEGUAMI	ENTO BAT pro IPPC
N° Progetto	Rev.	Foglio
A 621	0	90 di 139

1.2 Capacità di Produzione e Trattamento delle Sostanze in Ingresso ed Uscita

Carica

Nome	(ton / anno)
Acqua Acida	607,000

Prodotti / semilavorati in uscita

Nome	(ton / anno)
Acqua Trattata (Desalter + LB)	596,720
Gas Acido (a Impianto Zolfo)	10,280

Capacità di progetto: 1680 t/g (di acqua)

Unità CR-43 Impianto SWS

CLIENTE: PROGETTO:	ERG MED ADEGUAMENTO BAT pro IPPO	
N° Progetto A 621	Rev.	Foglio 91 di 139

2.0 Confronto consumi specifici con IPPC-Chapter 4-Techniques to Consider in the Determination of BAT

L'unità di trattamento acque acide CR-43 è progettata per trattare una capacità massima di 607,000 ton/anno di acqua. L'unità è alimentata dalle acque acide della raffineria ISAB NORD. Per quanto riguarda i consumi per l'unita SWS, la seguente tabella confronta quanto riportato nel Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries (paragrafo 4.24.2 –Sour Water Stripping (SWS)) con quanto ottenuto operativamente nell'unità di trattamento acque acide CR-43

	IPPC	Unità CR-43
Electricity kWh/ton H2O	2-3	1.84
Steam consumed (kg/ton H2O)	100-200	181
Cooling water (m3/ton H2O ΔT=10°C)	-	-

CONSER SpA – Via Domenico Sansotta, 100 – 00144 ROMA

Unità CR-43 *Impianto SWS*

CLIENTE: PROGETTO:	ERG MED ADEGUAMENTO BAT pro I	
N° Progetto A 621	Rev.	Foglio 92 di 139

3.0 Stato di applicazione delle BAT competenti

Le BAT relative alle unità di trattamento acque acide sono riportate nel paragrafo 5.1 del Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.

Nel prospetto di seguito riportato viene mostrato lo stato di applicazione delle BAT citate con riferimento all'assetto della raffineria ISAB NORD.

Nel prospetto, per semplicità e per rendere più facile il confronto, ove indicato nello stesso paragrafo 5.1 delle IPPC, viene riportato il riferimento alla tecnica presente nel capitolo 4 della stessa Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.

Dall'analisi del prospetto si evince che la raffineria adotta per l'unità in oggetto un insieme di tecniche in linea con le migliori disponibili al momento.

Unità CR-43 *Impianto SWS*

 CLIENTE:
 ERG MED

 PROGETTO:
 ADEGUAMENTO BAT pro IPPC

 N° Progetto
 Rev.
 Foglio

 A 621
 0
 93 di 139

TECN.	INDICAZIONE	STATO	COMMENTO	NOTE
4.24.2	Trattamento acque acide	Applicata	Tutte le acque acide prodotte in raffineria vengono trattate attraverso un impianto di stripping per ridurne il contenuto acido	
4.24.2	Il SWS produce off-gas acidi ed effluenti strippati che devono essere inviati a trattamenti a valle, cioè: Off Gas acidi all'unità SRU di produzione zolfo. Effluenti Liquidi al desalter come wash water o al WWT	Applicata	Gli effluenti gassosi vengono inviati all'impianto CLAUS di produzione zolfo. Gli effluenti liquidi vengono inviati al desalter, quelli in eccesso al WWT.	
4.24.2	Ridurre il contenuto di NH3 nell'effluente liquido inviato a biotrattamento, utilizzando un sistema di strippaggio che utlizza o un elevato numero di stadi o a doppio stadio.	Applicata	Il numero di stadi nella sezione di stripping è sufficiente ad avere un contenuto di NH3 idoneo per il trattamento WWT.	

	PROGETTO:	ADEGUAMI	ENTO BAT pro IPPC
PR1 Cumene	N° Progetto A621	Rev.	Foglio 94 di 139

UNITA' PR1

1.0 Organizzazione

La gestione dell'unità è affidata alla funzione GEST 4

1.1 Descrizione del Processo

Si tratta di un processo di alchilazione catalitica, che converte propilene e benzene in cumene, in 4 reattori a letto fisso (operanti in parallelo), riempiti con catalizzatore tradizionale a base di acido ortofosforico.

L'impianto viene alimentato con il mix propano/propilene proveniente dal CR/27. Il benzene viene acquistato dall' esterno.

Gli effluenti di reazione subiscono un primo flash nella colonna C2001 per la separazione di eventuali trascinamento di acido fosforico. Successivamente sono alimentati alla sezione di separazione e riciclo benzolo, in cui vengono separati: propano saturo non convertito, inviato a stoccaggio per preparazione GPL, benzene di riciclo, reimmesso nella sezione reazione, previa integrazione di benzene fresco (i reattori lavorano con eccesso di benzene). Dalla sezione viene, inoltre, estratto uno stream di "benzene di spurgo", che viene venduto come carica petrolchimica, allo scopo di eliminare i sottoprodotti di reazione che ridurrebbero la purezza del cumene. Lo stream contenente i prodotti di reazione (cumene e DIPB) viene inviato alla colonna di separazione finale C1006, da cui vengono estratti cumene di testa e DIPB di fondo. Il cumene viene venduto come carica petrolchimica, mentre il DIPB viene inviato a pool benzine. Il calore necessario al processo viene fornito da un circuito ad "olio diatermico"

L'impianto produce i seguenti prodotti:

- C3
- > Stream benzene di spurgo
- Cumene
- > DIPB

Per ulteriori dettagli si faccia riferimento al manuale operativo dell'unità

	PROGETTO:	ADEGUAM	ENTO BAT pro IPPC
PR1 Cumene	N° Progetto A621	Rev.	Foglio 95 di 139

1.2 Capacità di Produzione e Trattamento delle Sostanze in Ingresso ed Uscita

Carica

Nome	Lavorato 2005 (ton / anno)
Propilene da CR/27 e PEUR	114.021
Benzene	177.626

Prodotti / semilavorati in uscita

Nome	Lavorato 2005 (ton / anno)
C3 a stoccaggio	20.797
Benzene di spurgo	13.208
DIPB	12.080
Cumene	245.562

Capacità di progetto: 920 t/g (cumene prodotto)

3.0 Stato di applicazione delle BAT competenti

In mancanza di BAT specifiche per l'unità cumene, si è fatto riferimento alle BAT generiche contenute nel documento "Reference Document on BAT in the Large Volume Organic Chemical Industry February 2003, Capitolo 6.

Nel prospetto di seguito riportato viene mostrato lo stato di applicazione delle BAT citate con riferimento all'assetto della raffineria ISAB NORD.

Dall'analisi del prospetto si evince che la raffineria adotta per l'unità in oggetto un insieme di tecniche in linea con le migliori disponibili al momento.

	PROGETTO:	ADEGUAMI	ENTO BAT pro IPPC
PR1 Cumene	N° Progetto A621	Rev.	Foglio 96 di 139

TECN.	INDICAZIONE	STATO	COMMENTO	NOTE
	Utilizzo di bruciatori low-NOx nei forni del	Applicata		
	circuito olio diatermico Riduzione delle emissioni fuggitive di VOC mediante:	Applicata		
	. utilizzo di doppie tenute nelle pompe del benzene; . utilizzo di prese campione a circuito chiuso; . utilizzo di closed drain per le operazioni di bonifica			
	apparecchiature Riduzione dello sporcamento da polimeri di colonne e ribollitori, con conseguente minimizzazione delle bonifiche e della produzione di waste water	Applicata	La raffineria adotta un trattamento disperdente e antipolimerizzante nei circuiti di fondocolonne C1005-C1006.	
	Massimizzare il recupero energetico attraverso integrazione termica	Applicata		
	Altre tecniche da considerare: collettamento degli scarichi delle valvole di sicurezza al sistema torcia di raffineria	Applicata		

CLIENTE:	ERG MED ADEGUAMENTO BAT pro IPPC		
PROGETTO:			
N° Progetto	Rev.	Foglio	
A621	0	97 di 139	

DISOLEAZIONE NORD. TRATTAMENTO ACQUE OLEOSE

1.0 Organizzazione

La gestione dell'unità è affidata alla funzione GEST 4

1.1 Descrizione del Processo

Il sistema consiste in una decantazione in separatori API ed in un trattamento di flottazione.

L'olio recuperato viene inviato a slop e rilavorato negli impianti di topping, le acque reflue sono inviate al trattamento biologico consortile esterno alla raffineria

Per ulteriori dettagli si rimanda al manuale operativo dell'unità

CLIENTE:	ERG MED ADEGUAMENTO BAT pro IPPC		
PROGETTO:			
N° Progetto	Rev.	Foglio	
A621	0	98 di 139	

1.2 Capacità di Produzione e Trattamento delle Sostanze in Ingresso ed Uscita

Carica

Nome	Lavorato 2005 (m ³ / anno)
Acqua da fogna oleosa	5629599

Effluenti

Nome	Lavorato 2005 (m ³ / anno)
Acqua reflua a trattamento consortile	5580096
Olio a Slop	49503

CLIENTE: PROGETTO:	ERG MED ADEGUAMENTO BAT pro IPPC	
N° Progetto A621	Rev.	Foglio 99 di 139

2.0 Confronto consumi specifici con IPPC-Chapter 3-Emission and consumption level

L'unità di Disoleazione Nord è progettata per trattare le acque oleose prodotte nella raffineria ISAB NORD per una capacità massima di 1000 m³/h

Per quanto riguarda i volumi per l'unita di trattamento acque oleose la seguente tabella confronta quanto riportato nel Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries (paragrafo 3.24 – consumption-) con quanto ottenuto operativamente nell'unità Disoleazione Nord della raffineria ISAB NORD

	IPPC	Disoleazione Nord
ACQUE EFFLUENTI		
Valore Medio, 10 ⁶ m ³ /anno	3.6	5.6
Range, 10 ⁶ m ³ /anno	0.07 - 21	
ACQUE EFFLUENTI PER TON. DI GREZZO		
Valore Medio, m ³ /ton grezzo	0.53	0.88
Range, m ³ /ton grezzo	0.09 - 1.6	

CLIENTE: PROGETTO:	ERG MED ADEGUAMI	ENTO BAT pro IPPC
N° Progetto A621	Rev.	Foglio 100 di 139

3.0 Stato di applicazione delle BAT competenti

Le BAT relative all'unità di trattamento acque sono riportate al punto 24 del paragrafo 5.2 nel Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries, che rimanda al punto relativo al WWT del paragrafo 5.1, Generic BAT.

Nei prospetti di seguito riportati viene mostrato lo stato di applicazione delle BAT citate con riferimento all'assetto della raffineria ISAB NORD.

Nei prospetti, per semplicità e per rendere più facile il confronto, ove indicato nello stesso paragrafo 5.2 delle IPPC, viene riportato il riferimento alla tecnica presente nel capitolo 4 della stessa Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.

Dall'analisi del prospetto si evince che la raffineria adotta per l'unità in oggetto un insieme di tecniche in linea con le migliori disponibili al momento.

CLIENTE:	ERG MED	
PROGETTO:	ADEGUAMI	ENTO BAT pro IPPC
N° Progetto	Rev.	Foglio
A621	0	101 di 139

TECN.	INDICAZIONE	STATO	COMMENTO	Note
	Applicare uno schema di gestione acque (come parte del sistema di gestione integrato) indirizzato alla riduzione di:			
	□ Volume di acqua utilizzata in raffineria attraverso:			
4.15.7.1	- Integrazione dell'uso di correnti d'acqua sulla base di studi ottimizzazione.	Applicata	Sono stati effettuati studi per l'ottimizzazione della gestione delle acque.	
4.15.8.1	- Riutilizzo dell'acqua trattata al massimo livello possibile	Non Applicabile	Le acque effluentivengono inviate all' Impianto Biologico Consortile, esterno alla raffineria, per il trattamento finale	
	- Applicazione di tecniche per ridurre l'acqua reflua generata a partire da ciascuna unità di processo	Applicata	Vedi BAT unità processo	
	□ Contaminazione dell'acqua da:			
4.15.6 4.24.1	- Segregazione di acque contaminate, poco contaminate, non contaminate e ove possibile dei sistemi di drenaggio.	Applicata	La segregazione è applicata ove possibile.	
4.8.1	- Segregazione delle acque di raffreddamento a circuito aperto (once through) dagli effluenti di processo sino a quando questi non siano stati trattati.	Applicata	Il sistema acqua di raffreddamento della raffineria è di tipo once through. Acqua di raffreddamento è scaricata a fogna bianca	
4.15.3	- Operazione di buon housekeeping durante l'esercizio e le	Applicata		

CLIENTE:	ERG MED	
PROGETTO:	ADEGUAMI	ENTO BAT pro IPPC
N° Progetto	Rev.	Foglio
A621	0	102 di 139

4.25.1	manutenzioni delle installazioni esistenti - Prevenzione di perdite e controllo	Applicata	Considerato nel sistema di gestione della raffineria Considerato nel sistema di gestione della raffineria	
4.24.8	Raggiungimento dei seguenti parametri (vedi paragrafo 4.0) mediante un'appropriata combinazione delle seguenti:	Applicata	Il trattamento biologico è esterno alla raffineria. La raffineria deve traguardare i valori indicati nel paragrafo 4.0 per poter scaricare nel trattamento consortile	
4.24.4-6	□ WWT a tre stadi consistenti in separazione per gravità, separazione física e biologico	Applicata	Il biologico è esterno Tale processo si effettua	
4.24.6	□ Processi di nitrificazione / denitrificazione	Non Applicata	nell' Impianto Biologico Consortile	
4.24.1	☐ Assicurare che la progettazione del WWT preveda una sufficiente capacità atta a prevenire carichi tossici al biologico.	Applicata	Presenti tank e bacini che assicurano hold-up ed equalizzazione adeguati.	
	□ Buone pratiche di processo e housekeeping per prevenire la contaminazione dell'acqua effluente.	Applicata	Considerato nel sistema di gestione della raffineria	
4.24.1	Combinazioni di acque effluenti da diverse unità di processo con comparabili qualità per il sistema di trattamento primario	Applicata		

CLIENTE: PROGETTO:	ERG MED ADEGUAMENTO BAT pro IPPC	
N° Progetto A621	Rev.	Foglio 103 di 139

4.0 Confronto emissioni con IPPC-Chapter 4-Techniques to Consider in the Determination of BAT

Per quanto riguarda le emissioni, la seguente tabella confronta quanto riportato nell'IPPC (paragrafo 4.24.8) con quanto ottenuto operativamente nell'unità di WWT Disoleazione Nord

	BAT 4.24.	8 Tab. 4.50	
	Concentrazione (mg/l)	Carico Totale (g/ton grezzo) media annuale	
Temperature	30 - 35		
рН	6.5 - 8.5		
Total Hydrocarbon	0.05 - 5	0.01 - 3	
Biochemical Oxygen Demand (5 days @ 20°C)	2-30	0.5 – 25	
Chemical Oxygen Demand (2 hours)	30 – 160	3 – 125	
Ammoniacal Nitrogen (as N)	0.25 – 15	0.1 – 20	
Total Nitrogen	1 – 100	0.5 - 60	
Suspended Solids (dried @ 105°C)	2 – 80	1 – 50	5
Cyanides	0.03 -0.1	0.06	<u> </u>
Fluor (refineries using HF alkylation)	1 – 10		
Nitrates	2 – 35		1 5
Nitrites	2-20] 🗒
Phosphates (as P)	0.1 – 1.5		
Total P (as P)	1 – 2	0.6 – 1.2	
Sulphides	0.01 - 0.6	0.3	1 à
Sulphite	< 2		1 8
AOX (as Cl)	< 0.1	< 0.06	IN ACCORDO ALLMITI DILEGGE 15299
Benzene	< 0.001 - 0.05		Ž
Benzo(a)pyrene	< 0.05]
BTEX	< 0.001 – 0.1	0.001 - 0.005	1
MTBE (lower level for refineries not producing MTBE)	< 0.001 - 0.1		
Phenols	0.03 - 0.4	0.01 - 0.25	
Tensioactives (ionic and anionic)	< 2]
As	0.00055 - 0.1		
Cd	0.0009 - 0.05		
Total Cr	< 0.5		1
Cr (VI) (as Cr)	< 0.1		1
Co	< 0.5		1
Zn	< 0.5 – 1		1
	1		1

CLIENTE:	ERG MED	
PROGETTO:	ADEGUAMI	ENTO BAT pro IPPC
N° Progetto	Rev.	Foglio
A621	0	104 di 139

Pb	0.024 - 0.5	
Fe	< 3 – 5	
Cu	0.003 - 0.5	
Ni	0.006 - 0.5	
Hg	< 0.0001 - 0.05	
V	< 1	

Unità Stoccaggio e Trasferimento Fluidi ISAB NORD

CLIENTE:	ERG MED		
PROGETTO:	ADEGUAMENTO BAT pro IPPC		
N° Progetto	Rev.	Foglio	
A621	0	106 di 139	

<u>UNITA' STOCCAGGIO E TRASFERIMENTO FLUIDI</u>

1.0 Organizzazione

La gestione dell'unità è affidata alla funzione GEST 4

1.1 Descrizione del Processo e Capacità

1.1.1 Stoccaggi

Si riporta in allegato una tabella riepilogativa di tutti i serbatoi presenti in raffineria.

UBICAZIONE	PRODOTTO	Nº SERBATOI	CAPACITA' TOTALE (mo)	CARATTERISTICHE
NORD	Grezzo	12	1207000	Tetto galloggiante
Norte	Grazeo	1	250	Tetto fisse
MORID	Residuo	, 2	annoc	Totto fixso
MORU	ტ‼a Combustibila	20	78500	Tollo lisao
NORO	Ota Combustible	5	264000	Tetto galleggiante
NORD	Slep	1	5560	Tetto faso
NORD	Slop) 6	40500	Tollo gallegg äfte
NORD	Gasolie-GOP	6	16090	Tello fass
NORD	Gasein GOP	12	250000	Terto galleggtante
NORD	V30		25000	Tetto risso
NCRID	JPI- Jet fuci	2	4000	Totto fisso
PSC RC	JP1- Jei fael	4	60000	Tello galleggianté
NO30	Bendits / BCR	25	297850	Tetto galleggiante
NORD	Virgin naita	9	186000	Totte galleggiante
NORP	Kerosena	2	20000	Telto galleggianto
NORD	Acide solfories	2	2000	Tetto feed
NORD	Benzelo	2	2000	Totto galleggiante
HORD	Acqua	3	1500	Letto fisac
NORD	Aegua	2	4000	Yotza gulleggianie
NORG	Zavotra	1	29003	Tetto galleggiantic
NORS	Metanolo	3	3000	Tetro fisso
NORD	XIIali	1	10000	Tetta gallnegignile
NORD	Platformata		20000	Totto galleggiante
NORD	DAC	2	20000	Tetto galleggianta
NORD	Alahikto		10300	Tetto gelloggiante
NORD	GPL	4	20000	Testo fitso
NORD	Add Gaselie	3	1000	Tello fisso

Unità Stoccaggio e Trasferimento Fluidi ISAB NORD

CLIENTE: PROGETTO:	ERG MED ADEGUAMENTO BAT pro IPPC		
N° Progetto A621	Rev.	Foglio 107 di 139	

1.1.2 <u>Sistema di Pesatura</u>

Per la determinazione delle quantità movimentate si utilizzano misure di livello,contatori e pesatura

1.1.3 Sistema di Trasferimento/Caricamento

E' costituito da:

Caricamento via terra

- ➤ N° 4 bracci per propano e GPL
- ➤ N° 10 bracci per benzina
- ➤ N° 11 bracci per gasolio
- ➤ N° 1 braccio per Jet-fuel
- ➤ N° 6 bracci per olio combustibile
- ➤ N° 2 bracci per propano e propilene via ferrocisterna

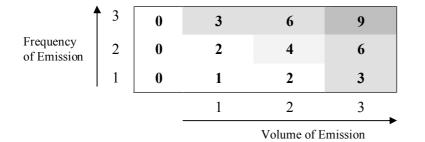
Vengono effettuati trasferimenti di prodotto via oleodotto come di seguito elencato

- ➤ N° 2 oleodotti di interconnessione con impianto SASOL per trasferimento kerosene
- ➤ N°1 oleodotto per trasferimento gasolio al pontile NATO
- ➤ N°5 oleodotti di interconnessione tra impianti NORD e SUD (Grezzo,GPL,benzina,Gasolio, Carica FCC)

Caricamento via mare

Sono presenti due pontili per un totale di undici banchine per il caricamento su nave dei seguenti prodotti:

- ➤ Grezzo
- Benzina
- ➤ Jet-fuel
- ➤ Gasolio
- ➤ Olio Combustibile
- Prodotti chimici e petrolchimici


CLIENTE: PROGETTO:	ERG MED ADEGUAMENTO BAT pro	
N° Progetto A621	Rev.	Foglio 108 di 139

2.0 Confronto emissioni con IPPC-Chapter 3-Applied Storage, Tranfer and Handling Techniques

Un'analisi quantitativa delle emissioni non viene fatta nelle relative IPPC.

Ciò deriva dalla difficoltà di non possedere dei dati certi e sicuri dai vari siti produttivi, solamente in SVEZIA è in uso un metodo di quantificazione delle emissioni da serbatoi attraverso una tecnologia laser (metodo DIAL), ma non ci sono ancora necessarie informazioni sull'utilizzo di tale metodo in altri siti e nazioni.

Le IPPC, comunque, fanno un'analisi qualitativa delle emissioni caratterizzandone le possibili fonti ed analizzandole in termini di possibile entità del rilascio con la seguente matrice dei rischi:

<u>Frequency</u>
3 = frequent (at least daily)
1 = infrequent (once per few years)
Volume
$\overline{3}$ = (relatively) large
1 = little
0 = zero/negligible

Dalla matrice di cui sopra è possibile calcolare l'*Emission Score* moltiplicando la frequenza di emissione con il volume di emissione. L'*Emission Score* è il parametro che caratterizza in termini di pericolosità per l'ambiente una possibile fonte di emissione.

Il capitolo 3 del "Reference Document on Best Available Techniques on Emissions from Storage" analizza, per tipologia di stoccaggio e tipo di trasferimento / trattamento del fluido, tutte le possibili fonti di emissioni, assegnando ad ognuna un relativo *emission score*.

Le fonti con $Emission\ Score \ge 3$ sono considerate critiche e sono state analizzate nelle BAT riportate del Reference Document on Best Available Techniques on Emissions from Storage.

CLIENTE: PROGETTO:	ERG MED ADEGUAMI	ENTO BAT pro IPPC
N° Progetto A621	Rev.	Foglio 109 di 139

3.0 Stato di applicazione delle BAT competenti

Le BAT relative all'unità di stoccaggio e trasferimento fluidi sono riportate nel capitolo 5 del Reference Document on Best Available Techniques on Emissions from Storage.

Nel prospetto di seguito riportato viene mostrato lo stato di applicazione delle BAT citate con riferimento all'assetto della raffineria ISAB.

Nel prospetto, per semplicità e per rendere più facile il confronto, ove indicato nello stesso capitolo 5 delle IPPC, viene riportato il riferimento alla tecnica presente nel capitolo 4 della stessa Reference Document on Best Available Techniques on Emissions from Storage.

Dall'analisi del prospetto si evince che la raffineria adotta per l'unità in oggetto un insieme di tecniche in linea con le migliori disponibili al momento.

CLIENTE: PROGETTO:	ERG MED ADEGUAMENTO BAT pro I	
N° Progetto A621	Rev.	Foglio 110 di 139

3.1 Stoccaggio di Liquidi e Gas Liquefatti

TECN	INDICAZIONE	STATO	COMMENTO	NOTE
	Principi generali per prevenire e ridurre le emissioni:			
	 □ Un'appropriata progettazione che consideri almeno: Proprietà chimico-fisiche sostanze stoccate Appropriata conduzione dello stoccaggio Protezione e Controllo dalle deviazioni dalle normali condizioni operative (Istruzioni di 	Applicata	La scelta del tipo stoccaggio è stata effettuata in fase di progettazione considerando le tipologie di fluidi da stoccare, le procedure operative, sistemi di sicurezza, piano di sicurezza nel caso di emergenze e piano di manutenzione Tutti i serbatoi sono dotati di misure di livello con relativi allarmi per prevenire fuori uscite di prodotto. Esistono procedure operative e piano	
	sicurezza, interlock, allarmi,) - Tipo di apparecchiature installate sulla base delle esperienze regresse		di emergenza	
	- Piano manutentivo ed ispettivo			
	- Comportamento in condizioni di emergenza (piano d'emergenza)			
4.1.2.2.1-2	□ Piano d'ispezione e manutenzione	Applicata	La raffineria ha un piano di ispezione e manutenzione che dipende dalla tipologia di stoccaggio (triennale/decennale)	
4.1.2.3	□ Scelta posizione e lay-out di installazione per nuovi stoccaggi	Non Applicabile	Non si prevedono ulteriori stoccaggi	

CLIENTE:	ERG MED		
PROGETTO:	ADEGUAMENTO BAT pro IPPC		
N° Progetto	Rev.	Foglio	
A621	0	111 di 139	

4.1.3.6-7	□ Scelta del colore più appropriato per i tank	Applicata	I serbatoi sono tutti di colore bianco. I serbatoi di benzina sono verniciati con vernice termo-riflettente in accordo a DM 107 del 2000	
4.1.3.1	□ Adozione di principi di riduzione emissioni	Applicata	Tutti i serbatoi contenenti prodotti volatili (gasolio incluso) sono a tetto galleggiante con doppia tenuta. Inoltre per i sistemi di caricamento via terra dei prodotti volatili è previsto un sistema di recupero vapori	
4.1.2.2.3	□ Monitoraggio emissioni di COV calcolandone regolarmente i valori	Applicata	I COV emessi da VRU vengono monitorati con frequenza semestrale da una Società specializzata.	
4.1.4.4	□ Sistemi di stoccaggio e apparecchiature dedicati a gruppi di prodotti compatibili	Applicata	I prodotti vengono stoccati in serbatoi adeguati alle loro caratteristiche in accordo a R.D. n° 1303 del 20/7/1934	
	Considerazioni specifiche sui tank:			
4.1.3.2 4.1.3.3 4.1.3.4	 Open top tank. Se ci sono emissioni all'aria, bisogna coprire il tank con: Copertura flottante Copertura flessibile Copertura rigida 	Non Applicabile	Non ci sono stoccaggi a tetto aperto	
4.1.3.15	In aggiunta, per i tank coperti con coperture flessibili o rigide, i vapori possono essere trattati per ottenere un'ulteriore riduzione delle emissioni.			
4.1.5.1	Per prevenire depositi che richiederebbero un ulteriore step di pulizia, le sostanze stoccate devono			

CLIENTE:	ERG MED	
PROGETTO:	ADEGUAMENTO BAT pro IPPC	
N° Progetto	Rev.	Foglio
A621	0	112 di 139

	essere mescolate (residuo)			
4.1.3.9	External floating roof tank. Ridurre la distanza tra tetto e parete al di sotto di 3.2 mm, adottando un sistema di tenuta a liquido o meccanica per ridurre le emissioni almeno del 97%)	Applicata	Tutti i serbatoi con prodotti ad elevata volatilità (gasolio incluso) sono dotati di tenuta doppia	
4.1.3.9.2	Misure addizionali di riduzione emissioni sono l'utilizzo di: - galleggianti nelle guide a pali scanalati - manicotti sulle guide a pali scanalati e/o - Coprire i supporti del tetto	Non Applicata		
4.1.5.1	Per prevenire depositi che richiederebbero uno step di pulizia ulteriore, nel caso di liquidi con un alto contenuto di particelle (grezzo), bisogna mescolare le sostanze stoccate	Non Applicata	I grezzi lavorati non hanno un contenuto di articolato tale da giustificare il rimescolamento	
4.1.3.15	Fixed roof tank. Adottare un sistema di trattamento vapori per stoccaggi di sostanze tossiche (T), altamente tossiche (T+) e cancerogene, mutagene, tossico-riproduttive (CMR) di categoria 1 e 2.	Non Applicabile	Sostanza di tale tipo è, nella raffineria,, unicamente il benzolo che è stoccato in serbatoi a tetto galleggiante, con doppia tenuta	
4.1.3.10-15	Per le restanti sostanze adottare un sistema di trattamento vapori o un tetto flottante interno	Non Applicabile	Le sostanze stoccate in serbatoi a tetto fisso non sono di categoria A e pertanto non producono quantità apprezzabili di vapori	
4.1.5.1	Per prevenire depositi che richiederebbero uno step di pulizia ulteriore, bisogna, nel caso di liquidi	Non Applicata	Dalle ispezioni non risultano sporcamenti	La raffineria adotta criteri di stoccaggio e preparazione

CLIENTE:	ERG MED	
PROGETTO:	ADEGUAMENTO BAT pro IPPC	
N° Progetto	Rev.	Foglio
A621	0	113 di 139

4.1.3.11 4.1.3.13 4.1.3.14 4.1.3.15	con un alto numero di particelle, mescolare le sostanze stoccate - Valvola di respirazione - Set superiore della valvola PVSV pari a 56 mbar - Recupero vapori di outbreathing attraverso un bilanciamento tra il tank che trasferisce liquido e quello che lo riceve - Holding tank per il sistema di bilanciamento vapori, o - Trattamento vapori	Applicata Non Applicabile Non Applicabile Non Applicabile	Le pressioni di set sono fissate in accordo alle massime condizioni meccaniche sostenibili Le sostanze stoccate in serbatoi a tetto fisso non sono di categoria A e pertanto non producono quantità apprezzabili di vapori	prodotti tali da evitare la miscelazione di composti incompatibili con precipitazione di asfalteni
	□ Atmospheric horizontal tank	Non Applicabile	Non esistono tali tipologie di serbatoi in raffineria	
	☐ Underground and mounded tank	Non Applicabile	Non sono presenti tali tipologie di serbatoi	
	Prevenzione Incidenti			
4.1.6.1	□ Definizione ed applicazione di un piano di gestione delle emergenze	Applicata	La raffineria dispone di un piano di emergenza specifico nell'ambito del sistema di gestione della sicurezza (S.G.S.) per la prevenzione degli incidenti rilevanti	
4.1.6.1.1	□ Prevenire la corrosione attraverso: - Selezione di materiali appropriati - Appropriate tecniche di costruzione delle apparecchiature - Prevenire l'entrata di acqua nei tank e, se	Applicata Applicata	Il problema della corrosione è abitualmente considerato sia nella fase di progettazione (scelta dei materiali, tecnologie costruttive,), che nella fase di gestione operativa	

CLIENTE:	ERG MED		
PROGETTO:	ADEGUAMENTO BAT pro IPPC		
N° Progetto	Rev.	Foglio	
A621	0	114 di 139	

	necessario rimuoverla dai tank - Assicurare corretta gestione delle acque piovane per avere drenaggi efficaci - Manutenzione preventiva	Applicata	I tetti galleggianti sono provvisti di drenaggi per il deflusso dell'acqua piovana	
	e, - Dove applicabile, aggiungere inibitori di corrosione o protezioni catodiche all'interno dei tank	Applicata	Dove è presente il rischio di corrosione sono installati anodi sacrificali. In tali serbatoi sono previste verniciature interne sino ad 1 metro di altezza	
	 Rivestimento resistente alla corrosione, come bitume (valido per tank interrati) Placcatura (valido per tank interrati) Protezione catodica (valido per tank interrati) 	Non Applicabile	Non ci sono tali tipologie di serbatoio in raffineria	
4.1.6.1.1 4.1.2.2.1	□ Prevenire lo Stress Corrosion Craking (SCC) attraverso: - Trattamenti termici post- saldatura - Ispezioni basate su un'analisi dei rischi	Applicata	Ove necessario, sono stati adottati trattamenti post- saldatura e regolari ispezioni sono previste	
4.1.6.1.2	□ Implementare o definire procedure operative che permettano di prevenire l'overfill come segue: - monitorare alta pressione ed alto livello nei tank con relativi allarmi e/o chiusura automatica delle valvole - Appropriate istruzione operative che prevengano l'overfill durante le operazioni di riempimento - sufficiente capacità per ricevere il batch	Applicata	Le operazioni di trasferimento e riempimento vengono gestite attraverso procedure operative. Parte dei tank, quelli che stoccano sostanze a maggior impatto ambientale, vengono monitorati i livelli e le pressioni di massima	Al fine di aumentare la sicurezza, la raffineria sta implementand o per tutti i serbatoi l'installazione di livellostati per allarme di alto livello indipendenti dalla misura di livello
4.1.6.1.4	Rilevare perdite dai tank che contegano liquidi in grado di causare potenziale	Applicata		

CLIENTE:	ERG MED		
PROGETTO:	ADEGUAMI	ENTO BAT pro IPPC	
N° Progetto	Rev.	Foglio	
A621	0	115 di 139	

	inquinamento del suolo attraverso: - Realizzazione barriere preventive - Check list - Metodo emissioni	Parzialmente Applicata Applicata	La raffineria dispone di pozzi di monitoraggio per rilevazione di eventuali perdite La raffineria ha eseguito una	
	acustiche Monitoraggio vapori emessi dal terreno	Applicata	campagna di analisi con emissioni acustiche Sono state eseguite campagne di rilevazione	
4.1.6.1.5	□ Avere un rischio di inquinamento del suolo dal fondo dei serbatoi trascurabile (analisi dei rischi)	Applicata		
	Per evitare inquinamento del terreno, prevedere per i tank che contengono liquidi infiammabili o inquinanti un ulteriore contenimento come:	Applicata	Il programma di manutenzione preventiva è stato elaborato sulla stima della vita media dei serbatoi in relazione alla natura dei fluidi stoccati	
4.1.6.1.8 4.1.6.1.10 4.1.6.1.11	 Diga intorno ogni tank Tank a doppia parete Cup-tank (costruzione di un nuovo tank intorno al tank a singola parete ad una distanza di circa 1.5 m) 	Applicata		
4.1.6.1.12	- Tank a doppia parete con monitoraggio dello scarico di fondo			
4.1.6.2.1	□ Verificare la classificazione delle aree con la direttiva ATEX 1999/92/EC	Applicata	Le nuove installazioni sono in accordo alla direttiva ATEX 1999/92/EC	
4.1.6.2.2	□ Prevedere nel caso di mancanza delle distanze di sicurezza, misure di protezione dal fuoco quali: - Rivestimento o copertura resistente al fuoco - Muri tagliafuoco (solo per piccoli tank) e/o - Sistema di acqua di raffreddamento	Applicata	Tali misure sono state adottate nell'ambito di S.G.S. per la prevenzione di incidenti rilevanti	
4.1.6.2.4	□ Preveder contenimento dei	Applicata	I materiali estinguenti	

CLIENTE:	ERG MED		
PROGETTO:	ADEGUAMI	ENTO BAT pro IPPC	
N° Progetto	Rev.	Foglio	
A621	0	116 di 139	

materiali estinguenti contaminati che permetta isolamento dalla rete dei drenaggi	segregandoli dalla rete di	
--	----------------------------	--

CLIENTE: PROGETTO:	ERG MED ADEGUAMENTO BAT pro IPPC	
N° Progetto A621	Rev.	Foglio 117 di 139

3.2 Trasferimento e Trattamento di Liquidi e Gas Liquefatti

TECN	INDICAZIONE	STATO	COMMENTO	NOTE
4.1.2.2.1	Principi generali per prevenire e ridurre le emissioni: Prevedere un sistema che gestisca la manutenzione preventiva e sviluppi un'analisi dei rischi basata su un piano d'ispezioni	Applicata	E previsto un programma di manutenzione preventiva differenziata per tipologia di prodotto.	
4.2.1.3	□ Prevedere un programma di rilevazione perdite e riparazioni	Applicata	Le attrezzature vengono ispezionate visivamente su base routinaria	
4.1.6.1	□ Prevedere un sistema di gestione delle emergenze	Applicata	La raffineria dispone di piani di emergenza nell'amito di S.G.S.	
	Considerazioni sulle tecniche di trasferimento e trattamento:			
4.1.2.2.1	□ Relativamente al piping prevedere quanto segue: - Applicare una realistica manutenzione sulle tubazioni esitenti interrate	Applicata Applicata	Il sistema di trasferimento e gestione fluidi è stato realizzato attraverso una progettazione che ha tenuto conto di tutte le problematiche relative alla	Per tubazioni interrate è prevista la protezione
4.2.2.1	- Minimizzare il numero di flange rimpiazzandole con connessioni saldate	Applicata	minimizzazione delle fughe (minimizzare le connessioni frangiate, scelta opportuni	catodica
4.2.2.2	- Utilizzare tappi e non valvole sulle linee aperte	Applicata	materiali,). Inoltre, viene continuamente monitorato	Le flange sono
4.2.2.2	- Assicurarsi che le guarnizioni siano idonee al servizio richiesto	Applicata	sulla base di un piano di manutenzione preventivo	ridotte al minimo
4.2.2.2	- Assicurarsi della corretta installazione delle guarnizioni	Applicata		
4.2.2.2	- Assicurarsi che i giunti flangiati siano assemblati e caricati correttamente	Applicata		

CLIENTE:	ERG MED	
PROGETTO:	ADEGUAMI	ENTO BAT pro IPPC
N° Progetto	Rev.	Foglio
A621	0	118 di 139

	r			Γ
4.2.2.2	- Utilizzare guarnizioni ad	Applicata		
	alta integrità (spiral			
	wound, kammprofile o			
	ring joint) per tubazioni			
	che veicolano fluidi			
	tossici, cancerogeni,			
	comunque pericolosi			
4.2.3.1	- Prevenire la corrosione	Applicata		
	interna selezionando			
	accuratamente i			
	materiali, utilizzando			
	metodi di costruzione			
	appropriati, con			
	manutenzione preventiva			
	e quando applicabile con			
	rivestimento interno o			
	con l'aggiunta di			
	inibitori			
4.2.3.2	- Prevenire la corrosione	Applicata		
	esterna applicando 1, 2 o			
	3 strati (in relazione alle			
	caratteristiche del sito) di			
	rivestimento			
1.26		4		
4.2.8	□ Prevedere recupero dei	Applicata	Per il sistema di caricamento	
	vapori durante le		via terra dei prodotti volatili	
	operazioni di carico e			
	scarico di sostanze volatili			
	da camion, chiatte o navi			
4.2.9	□ Relativamente alle valvole			
4.4.3	prevedere quanto segue:			
	- Corretta scelta del	Applicata		
	materiale e del processo	дрисата		
	di costruzione			
	- Utilizzo di valvole di	Non	La raffineria non considera	
	controllo rotanti o pompe	Applicabile	affidabile l'utilizzo di pompe	
	con variazione di	rippiicuone	a velocità variabile	
	velocità in luogo di		a , crootta , arraorio	
	valvole di controllo con			
	stelo verticale			
	- Utilizzo di valvole a	Applicata	Le valvole sono di tipo	
	diaframma, con soffietto	P. P	tradizionale la bontà della	
	o a doppia parete per il		tenuta è garantita dalla	
	maneggaimento di		regolarità dell'ispezione e	
	sostanze tossiche ed		manutenzione	
	inquinanti			
	- Collettare le valvole di	Applicata		
	sicurezza	1.1		

CONSER SpA – Via Domenico Sansotta, 100 – 00144 ROMA

CLIENTE:	ERG MED	
PROGETTO:	ADEGUAMI	ENTO BAT pro IPPC
N° Progetto	Rev.	Foglio
A621	0	119 di 139

4.2.9/4.2.9.13	□ Relativamente alle pompe ed ai compressori prevedere quanto segue: - Verifica corretto fissaggio alla propria base - Verifica dei carichi sulle connessioni con le tubazioni con i valori raccomandati dal costruttore - Opportuna progettazione della linea di aspirazione tale da minimizzare gli sbilanciamenti idraulici - Allineamento della macchina secondo le raccomandazioni del costruttore - Corretto livello di bilanciamento tra le parti rotanti - Funzionamento della macchina entro i range raccomandati dal costruttore - NPSH disponibile sempre superiore a quello richiesto dalla macchina - Regolare manutenzione - Corretta scelta del tipo di pompa/compressore e del tipo di tenuta sulla base del processo □ Prevedere per i punti di campionamento di sostanze volatili valvole del tipo ram, o a spillo e valvola di blocco. Quando è richiesto un purgino su tali linee, prevedere campionamenti	Applicata	La scelta delle macchine è stata effettuata sulla base dei requisiti del processo, inoltre check e continuo monitoraggio, regolati dal piano di manutenzione, vengono effettuati di continuo per verificare sia la corretta installazione, che il corretto funzionamento	
	su linee a loop chiuso			

CLIENTE: PROGETTO:	ERG MED ADEGUAMENTO BAT pro IPPC	
N° Progetto A621	Rev.	Foglio 120 di 139

PRODUZIONE DI ENERGIA TERMICA -FORNI DI RAFFINERIA-

1.0 Descrizione

L'energia termica necessaria alla Raffineria viene prodotta direttamente nei punti di richiesta tramite forni alimentati da combustibile liquido o gassoso.

La lista dei forni di raffineria, le caratteristiche dei combustibili utilizzati e le emissioni generate sono riportate al para 2.0

I forni della raffineria ISAB NORD sono progettati per poter bruciare il fuelgas di raffineria od olio combustibile. Le emissioni derivanti dall'utilizzo dei due diversi tipi di combustibile sono molto diverse in termini di contenuto e concentrazione di componenti inquinanti (SO2,NOX,CO,particolato) a causa della diversa qualità del combustibile.

Alcuni forni di raffineria hanno i bruciatori di tipo "dual-fire" in grado cioè di poter bruciare sia fuel-gas che olio combustibile.

L'elenco di tali forni con il rapporto dei combustibili bruciati (Kcal gas/Kcal olio) per l'anno 2005 è stato il seguente:

Impianto	Rapporto gas/olio
CR-20 Topping	1.64
CR-30 Topping	1.64
CR-26 Vacuum	1.85
PR ½ Cumene	Solo gas
CR-37 Acido Solforico	Solo zolfo liquido

CLIENTE: PROGETTO	ERG MED : ADEGUAM	ENTO BAT pro IPPC
N° Progetto A621	Rev.	Foglio 121 di 139

2.0 Confronto emisisoni con IPPC-Chapter 3-Emission and consumption level

Per quanto riguarda le emissioni generate dai forni della raffineria ISAB NORD, il presente paragrafo confronta quanto riportato nel Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries (paragrafo 3.10 –Energy System -) con quanto ottenuto operativamente nella raffineria

2.1 Combustibili utilizzati

I combustibili utilizzati hanno le seguenti caratteristiche:

GAS COMBUSTIBILE

	<u>IPPC</u> .	Gas raffineria
P.C.I., MJ/Kg	29-49	44.4
Sulphur mgH ₂ S/Nm ³	20-1700	150

OLIO COMBUSTIBILE

Proprietà	High sulphur IPCC	Olio comb. Raffineria
Sulphur, % wt Carbon, % wt Hydrogen, % wt Nitrogen, % wt Ash, % Vanadium (ppm) Nickel (ppm)	2.2 86.25 11.03 0.41 0.08 350 41	<1
Sodium (ppm) Iron (ppm)	25 13	

CLIENTE: PROGETTO:	ERG MED ADEGUAMI	ENTO BAT pro IPPC
N° Progetto A621	Rev.	Foglio 122 di 139

2.2 Emissioni

Per quanto concerne le emissioni si fa riferimento alla tabelle Tab. 2.2.A e Tab. 2.2.B che rappresentano lo scenario futuro che si verrà a creare con l'entrata in servizio dell'unità CR-40

ADECUAMENTO BAT pro IPPC ERC MED PROGETTO: CLEVIE

ž N Property

1621

123 di 139 Ioglic

Tabella 2.2.A. Emissioni forni con combustione mista olio/gas

IMPIANTO	SIGLE FORNI				Ш	EMISSIONI MEDIE	¥			
		00		802	2	NON	~	PM10		Fumi
		mg/Nm3	Ton/a	mg/Nm [≈]	Ton/a	mg/Nm [™]	Ton/a	mg/Nm"	Ton/a	Nm3/h
CR 20 -Topping	B1 A/B	55	42.2	3000	2302.1	585	448.9	190	145.8	87630
CR 30-Topping	B 101 A/B	55	93.5	3000	5098.3	585	994.2	95	161.4	194300
CR 26-Vacuum	B 101 A/B	55	14.6	1700	452.7	585	155.8	130	34.6	30400
PR 1/2 - Cumene	B 1021 A/B	55	19.5	1700	601.6	585	207.0	130	46.0	40400
CR 37-Acido Solforico	B 101	55	7.4	1830	219.2	200	26.9	50	5.7	15350
			177.2		8674.0		1.832.8		394.6	367.750

CONSER
_

di Energia nica affineria N Progetto Rev AORD AG21 0

CHEVIE: RRG MED
PROXITIO: ADECUAMENTO BAT pro IPPC

Rev.

Toglio 124 di 139

Tabella 2.2.B. Form con combustione a gas

IMPIANTO	SIGLE FORNI				EME	EMISSIONI MEDIE	ш			
		8		205	61	XON		PM10	0	Fumi
		mg/Nm"	Ton/a	mg/Nm"	Ton/a	mg/Nm3	Ton/a	mg/Nm³	Ton/a	Nm3/h
CR33-Visbreaking	B920/R	55	20	50	18.2	300	109.3	80	2.9	41600
CR31-HDS	B101	55	5,0	50	ro, ro	150	16.4	0	0:0	12500
Nuova unità CR-40		55	9,6	50	60 60	150	26.3	0	0.0	20000
			ი მ		32.5		152.0		o N	74.100

CLIENTE: PROGETTO:	ERG MED ADEGUAMI	ENTO BAT pro IPPC
N° Progetto A621	Rev.	Foglio 125 di 139

Le emissioni totali, ricavabili dalle tabelle di cui sopra, ed il loro confronto con quanto indicato nelle IPPC è di seguito riportato:

mg/Nm ³ (3% O ₂)	Combusti	one mista	Combus	tione gas	Emissioni totali Raffineria
	Raffineria	IPPC	Raffineria	IPPC	
СО	55	20-100	54	5-80	97
NO _x	569	280-1000	234	70-1300	513
PM ₁₀	122	5-1000	4,5	<5	104
SO_2	2693	50-7000	50	3-1700	2249

CLIENTE: PROGETTO:	ERG MED ADEGUAMI	ENTO BAT pro IPPC
N° Progetto A621	Rev.	Foglio 126 di 139

3.0 Stato di applicazione delle BAT competenti

Le BAT relative ai forni di raffineria sono riportate nel punto 10 del paragrafo 5.2 del Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.

Nel prospetto di seguito riportato viene mostrato lo stato di applicazione delle BAT citate con riferimento all'assetto della raffineria ISAB NORD.

Nel prospetto, per semplicità e per rendere più facile il confronto, ove indicato nello stesso paragrafo 5.2 delle IPPC, viene riportato il riferimento alla tecnica presente nel capitolo 4 della stessa Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries.

CLIENTE:	ERG MED ADEGUAMENTO BAT pro IPP		
PROGETTO:			
N° Progetto	Rev.	Foglio	
A621	0	127 di 139	

TECN.	INDICAZIONE	STATO	COMMENTO	NOTE
4.10.1.2	Applicazione di	Applicata	Viene monitorata l'efficienza	
	campagne per il		dei forni di processo e	
	miglioramento delle		confrontata con i valori target	
	qualità di combustione			
4.10.1.3	Far corrispondere la	Applicata	La Raffineria ha adottato	
	produzione di calore		sistemi di controllo che	
	con i consumi tramite		ottimizzano la gestione	
	sistemi di controllo		operativa dei principali forni	
4 10 1 4	computerizzato	A 1° /	di raffineria L'utilizzo del vapore di	
4.10.1.4	Ottimizzare l'uso del	Applicata		
	vapore nei processi di stripping e ridurre lo		stripping è ottimizzato in funzione della qualità minima	
	stripping e ridurre io spreco con l'utilizzo		richiesta ai prodotti.Steam	
	degli steam-traps		traps sono installati al fine di	
	ucgii stcaiii-ti aps		evitare spurghi continui di	
			vapore dalla rete	
			vaporo dana rete	
4.10.1.3	Aumentare il livello di	Applicata	Le principali unità di processo	
	integrazione termica		della raffineria sono tra di loro	
	tra i vari processi di		ed al loro interno integrate	
	raffineria aumentando		termicamente	
	il recupero di calore			
4.10.1.3	Utilizzo di WHB per	Applicata	In varie unità di processo sono	
	ridurre l'uso di		installate caldaie a recupero	
	combustibile nella		per la produzione di vapore	
4.10.2.1	produzione di vapore	A 1.	DEC 7 (1)	
4.10.2.1	Utilizzare RFG	Applicata	RFG è utilizzato al massimo,	
	purificato e, se		olio combustibile viene	
	necessario per fornire la restante richiesta di		utilizzato per i fabbisogni	
			energetici non coperti da RFG	
	energia, combustibili liquidi associati a			
	tecniche di controllo e			
	abbattimento o altri			
	Fuel Gas come natural			
	gas o LPG			
	5 0 E.I. O		<u>I</u>	

CONSER SpA – Via Domenico Sansotta, 100 – 00144 ROMA

CLIENTE: PROGETTO:	ERG MED ADEGUAMI	ENTO BAT pro IPPC
N° Progetto A621	Rev.	Foglio 128 di 139

TECN.	INDICAZIONE	STATO	COMMENTO	NOTE
	Massimizzare la			
quantità di				
	combustibili "puliti"			
	utilizzata attraverso:		T	
	➤ Massimizzazion	Applicata	Tutto RFG è lavato con	
	e dell'utilizzo di		ammina sino ad un tenore	
	RFG a basso tenore di H2S		residuo di H2S<100 ppm	
	(20-150			
	mg/Nm3)			
4.10.2.1	Controllo e	Applicata	Come gas di reintegro viene	
	bilanciamento	i ippii uu	utilizzato metano e	
	del sistema RFG		saltuariamente propano	
	tra opportuni			
	valori di			
	pressione per			
	aumentarne la			
	flessibilità e			
	ricorso a gas di			
	reintegro a basso tenore in			
	zolfo (GPL o			
	gas da rete			
	esterna)			
	Utilizzare	Applicata	La procedura operativa	
4.10.11.	controlli		prevede la massimizzazione,	
3	avanzati per		attraverso DCS, dell'uso di	
	ottimizzare le		RFG come combustibile	
	performance del			
	sistema RFG Inviare a torcia	Annlicate	Il fuel cos prodetto viene	
	il fuel-gas solo	Applicata	Il fuel gas prodotto viene totalmente utilizzato come	
4.23.7	nelle fasi di		combustibile	
1.25.7	avviamento/fer		- Como do Homo	
	mata impianti o			
	in presenza di			
	up-set In caso di			
	eccesso			
	considerare la			
		Annlianta	Nall'aggetta futura di	
		Аррисата.		
4 10 2 3				
7.10.2.3				
4.10.2.3	vendita all'esterno Upgrading degli oli pesanti in combustibile a basso tenore di zolfo;	Applicata.	Nell'assetto futuro di integrazione tra gli impianti Nord e Sud l'olio combustibile ATZ verrà esportato	

CONSER SpA – Via Domenico Sansotta, 100 – 00144 ROMA

CLIENTE:	ERG MED ADEGUAMENTO BAT pro IPPO		
PROGETTO:			
N° Progetto	Rev.	Foglio	
A621	0	129 di 139	

TECN.	INDICAZIONE	STATO	COMMENTO	NOTE
4.10.2.1	Ridurre la quantità di CO2 emessa attraverso: Aumentare l'integrazione termica della raffineria Aumentare l'utilizzo di combustibili gassosi a più alto rapporto idrogeno- carbonio	Applicata Applicata	Le unità di processo della raffineria sono tra di loro ed al loro interno integrate termicamente Viene utilizzato RFG per l'alimentazione di buona parte dei forni di processo.	
	Ridurre la quantità di CO emessa applicando tecniche di combustione efficiente Ridurre le emissioni di Nox attraverso:	Applicata	L'efficienza della combustione è adeguata e tenuta sotto controllo attraverso il DCS	
	> Riduzione dell'utilizzo di combustibile	Applicata	Le unità di processo della raffineria sono tra di loro ed al loro interno integrate termicamente	
4.10.4.1.	Sostituzione dei bruciatori tradizionali con bruciatori a bassa emissione di Nox	Applicata	I principali forni della raffineria sono equipaggiati con bruciatori a bassa emissione di NOx	

CLIENTE:	ERG MED		
PROGETTO:	ADEGUAMI	ENTO BAT pro IPPC	
N° Progetto	Rev.	Foglio	
A621	0	130 di 139	

TECN.	INDICAZIONE	STATO	COMMENTO	NOTE
4.10.3.1	➤ Traguardare per forni che utilizzano fuel gas valori di emissioni pari a 20-150 mg/m3 di NOx e per forni che utilizzano combustibili liquidi di 55-300 mg/m3 attraverso: ➤ Alta efficienza	Applicata		
	termica con un buon sistema di controllo	11		
4.10.4.1	 Bruciatori a basse emissioni di Nox 	Applicata	I principali forni della raffineria sono equipaggiati con bruciatori a bassa emissione di NOx	
4.10.4.3	➤ Invio dei fumi di combustione in caldaie a vapore per abbassare la temperatura dei fumi	Applicata	I forni principali sono dotati, nella sezione convettiva, di banchi di surriscaldamento vapore, con minimizzazione della temperatura fumi in atmosfera	
4.10.4.5	Utilizzo di tecniche di	Non applicabile		
4.10.4.6	ricombustione > Utilizzo delle tecnologie SCR/SNCR per l'eliminazione degli NOx dai gas combusti	Non Applicata	Non applicabile su forni esistenti L'attuale livello di emissioni di Nox non giustifica l'adozione di tecnologie SCR/SNCR	

CLIENTE:	ERG MED		
PROGETTO:	ADEGUAMENTO BAT pro IP		
N° Progetto	Rev.	Foglio	
A621	0	131 di 139	

TECN.	INDICAZIONE	STATO	COMMENTO	NOTE
	Riduzione delle emissioni di particolato per forni alimentati a combustibile liquido a 5-20 mg/m3 attraverso			
	 Riduzione dei consumi di combustibile 	Applicata		
4.10.5.1	 Massimizzazion e dell'utilizzo di combustibili gassosi 	Applicata	L'assetto attuale della raffineria massimizza l'utilizzo di RFG	
4.10.5.2	Atomizzazione con vapore del combustibile	Applicata		
4.10.5.3	➤ Filtri elettrostatici sui fumi di combustione	Non applicata	I livelli di polveri nei fumi sono nei limiti	

CLIENTE: PROGETTO:	ERG MED ADEGUAMI	ENTO BAT pro IPPC
N° Progetto A621	Rev.	Foglio 132 di 139

TECN.	INDICAZIONE	STATO	COMMENTO	NOTE
	Riduzione delle emissioni di SO2 attraverso			
	➤ Riduzione dei consumi di combustibile attraverso integrazioni termiche	Applicata	La raffineria ha un buon grado di integrazione termica	
	➤ Traguardare il valore di emissione di 5-20 mg/m3 utilizzando RFG purificato a basso tenore in H2S (20-150 mg/Nm3)	Applicata	Tutti i fuel gas di raffineria subiscono un trattamento di lavaggio amminico	
	Traguardare il valore di emissione di 50-850 mg/m3 utilizzando combustibili liquidi attraverso			
4.10.2.3	Desolforazione del combustibile liquido	Applicata	Olio BTZ ha un contenuto in zolfo < 1 % peso	
4.5.10	 Applicazione di tecniche di desolforazione dei fumi di combustione 	Non Applicabile	L'attuale livello di emissioni di SO2 non giustifica l'adozione di tecniche di desolforazione dei fumi	

CLIENTE: PROGETTO:	ERG MED ADEGUAMI	ENTO BAT pro IPPC
N° Progetto A621	Rev.	Foglio 133 di 139

IMPIANTO ACQUA MARE RAFFREDDAMENTO

1.0 Organizzazione

La gestione dell'unità è affidata alla funzione

GEST 4

1.1 Descrizione del Processo

Il sistema è "ONCE THROUGH" diretto che prevede 3 prese acqua mare con 4 stazioni di pompaggio e due di rilancio, inoltre è dotato da una rete di distribuzione unica per tutto il complesso industriale (Raffineria più impianti di terzi).

Per ulteriori informazioni si rimanda al manuale operativo dell'unità.

CLIENTE:	ERG MED	RG MED	
PROGETTO:	ADEGUAMI	DEGUAMENTO BAT pro IPPC	
N° Progetto A621	Rev.		

1.2 Capacità di Produzione e Trattamento delle Sostanze in Ingresso ed Uscita

Capacità

Capacità totale di Raffineria : 27500 m³/h (di acqua)

CLIENTE: PROGETTO:	ERG MED D: ADEGUAMENTO BAT pro II	
N° Progetto A621	Rev.	Foglio 135 di 139

2.0 Confronto consumi specifici con IPPC-Chapter 3-Environmental Aspects of Industrial Cooling Systems and Applied Prevention and Reduction **Techniques**

Per quanto riguarda i consumi specifici, la seguente tabella confronta quanto riportato nel capitolo 3 del Reference Document on the Application of Best Available Techniques to Industrial Cooling Systems con quanto ottenuto operativamente nell'unita di acqua mare

Cooling System	Total Energy Consumption (kW _e /MW _{th})		
	IPPC		
Once-Through - Direct	10	15.3 (cond. Design)	
Once-Through - <u>In</u> direct	22		
Open Wet Cooling Tower	27		
Hybrid Cooling	30		
Closed Circuit Cooling Tower	> 34		
Dry air Cooling	48		

CLIENTE:	ERG MED	IED	
PROGETTO:	ADEGUAMI	UAMENTO BAT pro IPPC	
N° Progetto A621	Rev.		

3.0 Stato di applicazione delle BAT competenti

Le BAT relative alle unità di trattamento acque di raffreddamento sono riportate nel capitolo 4 del Reference Document on the Application of Best Available Techniques to Industrial Cooling Systems.

Nel prospetto di seguito riportato viene mostrato lo stato di applicazione delle BAT citate con riferimento all'assetto della raffineria ISAB NORD.

Dall'analisi del prospetto si evince che la raffineria adotta per l'unità in oggetto un insieme di tecniche in linea con le migliori disponibili al momento.

CLIENTE: ERG MED

PROGETTO: ADEGUAMENTO BAT pro IPPC

N° Progetto Rev. Foglio

A621 0 137 di 139

TECN.	INDICAZIONE	STATO	COMMENTO	NOTE
4.21	Gestione del sistema di raffreddamento inquadrandolo nel sistema di gestione energetico generale attraverso:	Applicata	Per tutte le unità è stato applicato un criterio di gestione del calore che privilegia i recuperi termici interni alle varie unità, minimizzando il calore perso	
4.2.1.1	☐ Concetto che raffreddamento industriale = Gestione del calore.	Applicata	all'atmosfera ed attraverso il sistema di acqua di raffreddamento	
4.2.1.2	Riduzione del livello di calore disperso mediante ottimizzazione dei recuperi termici	Applicata		
4.2.1.3	Scelta di un adeguato sistema di raffreddamento sulla base di esigenze di processo (nuove installazioni). Vedi tabella 4.1	Applicata	Il consumo di C.W. viene minimizzato utilizzando, ove possibile, il raffreddamento con aria	
4.2.1.4	Scelta di un adeguato sistema di raffreddamento sulla base delle caratteristiche del sito di installazione (nuove installazioni). Vedi tabella 4.2	Applicata	Trattandosi di raffineria costiera il sistema di C.W. è "ONCE THROUGH" diretto	
4.3	Riduzione del consumo energetico attraverso (vedi tab. 4.3):			
4.3.1	□ Progettazione che consideri: - Riduzione della resistenza al flusso di acqua e di aria - Scelta apparecchiature ad alta efficienza - Riduzione del numero di apparecchiature con elevata richiesta energetica - Ottimizzazione dei trattamenti della CW per ridurre lo sporcamento e la corrosione nelle apparecchiature	Applicata	La progettazione delle apparecchiature del sistema C.W. è stata effettuata con l'obiettivo di minimizzare le perdite di carico, e contemporaneamente per garantire una velocità minima per ridurre i depositi e lo sporcamento. Si utilizzano trattamento antifouling e anticorrosione	

CLIENTE:	ERG MED	
PROGETTO:	ADEGUAMI	ENTO BAT pro IPPC
N° Progetto	Rev.	Foglio
A621	0	138 di 139

	Ţ T			
4.3.2	□ Utilizzo di un sistema once through per alte capacità di raffreddamento >10MWth. Nel caso di fiumi e/o estuari tale sistema è applicabile se: - L'estensione della plume calda nella superficie dell'acqua consente la migrazione della fauna ittica - Le prese di acqua mare sono progettate per ridurre il trascinamento di fauna ittica - Il carico termico sia tale da non interferire con altre utenze di acqua mare	Applicata Applicata	Ritorno distante dalle prese	
4.4	Riduzione delle richieste di acqua di raffreddamento (tab.4.4)	Applicata	Sono stati massimizzati i recuperi termici.	
4.5	Riduzione trascinamenti di organismi (tab. 4.5)	Applicata	Le prese di acqua limitano al massimo la possibilità di presenza di organismi viventi nel sistema di raffreddamento	
4.6.1- 4.6.1.1-2	Riduzione delle emissioni di calore e delle emissioni chimiche in acqua attraverso:			
4.6.3.1	□ Prevenzione tramite progettazione e manutenzione (tab. 4.6)	Applicata	Il sistema di raffreddamento è stato progettato selezionando opportunamente i materiali e garantendo le necessarie velocità tali da minimizzare il fouling nelle apparecchiature.	
4.6.3.2	□ Controllo tramite ottimizzazione sistemi di trattamento (tab.4.7)	Applicata	Il controllo del microbiocida è effettuato in continuo con monitoraggio dei massimi livelli raggiungibili (consentiti dalla legge). Composti a base di cromo, mercurio e organo-stannici non vengono utilizzati, mentre	

CLIENTE:	ERG MED	
PROGETTO:	ADEGUAMI	ENTO BAT pro IPPC
N° Progetto	Rev.	Foglio
A621	0	139 di 139

			trattamenti di shock vengono effettuati con composti compatibili con la legge. Viene effettuato il controllo del macro-fouling per ottimizzare l'utilizzo di biocida.	
4.7	Riduzioni di emissioni in aria (tab. 4.8)	Applicata	Non ci sono torri di raffreddamento	
4.8	Riduzione di emissioni rumorose (tab. 4.9)	Applicata	Non ci sono torri di raffreddamento	
4.9	Riduzione rischio di perdite (tab. 4.10)	Applicata	Tramite un continuo monitoraggio visivo dello scarico finale, tutti gli scambiatori lavorano nelle proprie condizioni di design. Per ridurre fenomeni di deposizione/corrosione la temperatura dell'acqua è sempre < 60°C.	
4.10	Riduzione rischio biologico (tab. 4.11)	Non Applicabile	Il sistema aperto elimina i rischi di proliferazione di colonie batteriche	