Cliente ENEL S.p.A.

Oggetto Centrale di Piombino Gr. 3 – Caratterizzazione emissioni aerodisperse anno 2006

Rapporto di SINTESI

Ordine AQ 6000010956 – Attingimento Nr. 4000121498 del 10.11.2006

Note L49928A

La parziale riproduzione di questo documento è permessa solo con l'autorizzazione scritta del CESI.

N. pagine 8 N. pagine fuori testo 0

Data 26.02.2007

Elaborato BU AMB – Cesarina Terni

Verificato BU AMB – Marcello Rusconi

Approvato BU AMB – Davide Sanavio

Indice

1	1 PREMESSA E SCOPI	3
2	2 QUADRO NORMATIVO DI RIFERIMENTO	3
3	3 PIANO SPERIMENTALE	3
	3.1 Prove eseguite	
	3.2 Modalità di campionamento e analisi	4
	3.2.1 Metalli	4
	3.2.2 Nichel respirabile ed insolubile	4
	3.2.3 IPA	5
	3.2.4 Ammoniaca, alogenuri e SOV	5
4	4 RISULTATI	6
	4.1 Metalli e Nichel respirabile ed insolubile	6
	4.2 IPA (idrocarburi policiclici aromatici)	
	4.3 Alogenuri (HF, HCl, HBr)	
	4.4 Ammoniaca	7
	4.5 SOV (sostanze organiche volatili)	
	4.6 Sommatorie	8
5	5 CONCLUSIONI	8

Pag. 3/8

STORIA DELLE REVISIONI

Numero revisione	Data	Protocollo	Lista delle modifiche e/o dei paragrafi modificati
0	26.02.2007	A7005668	Prima emissione

1 PREMESSA E SCOPI

ENEL ha incaricato CESI per l'esecuzione delle attività di caratterizzazione delle emissioni aerodisperse al gruppo 3 della centrale termoelettrica di Piombino. Le attività su impianto sono iniziate il 27.11.2006. Durante il periodo di misura l' Unità termoelettrica è stata condotta secondo il normale programma di esercizio che è stato definito in accordo a quanto richiesto dal GRTN. La caldaia era alimentata con olio combustibile.

Nel seguito viene descritto il piano sperimentale e vengono presentati i risultati delle prove eseguite.

2 QUADRO NORMATIVO DI RIFERIMENTO

I riferimenti normativi che permettono di definire per le emissioni in esame i valori limite applicabili, i metodi di misura e di verifica del rispetto degli stessi limiti, sono i seguenti:

- D.P.R. 203 del 24.05.88;
- Decreto del Ministero dell'Ambiente 12.07.90 "Linee Guida per il contenimento delle Emissioni" e successive modifiche e integrazioni;
- Decreto del Ministero dell'Ambiente 21.12.95 "Disciplina dei metodi di controllo delle emissioni in atmosfera dagli impianti industriali";
- Decreto del Ministero dell'Ambiente 25.09.92 "Disciplina delle emissioni di nichel";
- Decreto del Ministero dell'Ambiente 25.08.2000 "Aggiornamento dei metodi di campionamento, analisi e valutazione degli inquinanti ai sensi del decreto del Presidente della Repubblica 24 maggio 1988, n.203".
- Decreto Legislativo 03.04.2006 n° 152 "Norme in materia ambientale"
- Rapporti ISTISAN 04/15 "Trattamento dei dati inferiori al limite di rilevabilità nel calcolo dei risultati analitici".

3 PIANO SPERIMENTALE

3.1 Prove eseguite

Il piano di caratterizzazione dei microinquinanti organici ed inorganici ha previsto l'effettuazione delle seguenti misure:

- Metalli: As, Be, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Pd, Pt, Rh, Sb, Se, Sn, Te, Tl, V
- Nichel nella forma respirabile ed insolubile
- IPA (idrocarburi policiclici aromatici)
- Alogenuri (HCl, HF, HBr)
- Ammoniaca
- SOV (sostanze organiche volatili)

Per ciascun composto o classe di composti sono state eseguite due prove (due campionamenti e analisi).

Il prelievo e l'analisi dei fumi al fine della determinazione delle concentrazioni degli inquinanti convenzionali: biossido di zolfo (SO₂), ossidi di azoto (NOx), monossido di carbonio (CO), particolato,

oltre che dell'ossigeno (O2) necessario alla loro normalizzazione, sono invece effettuati in continuo dal Sistema di Misura delle Emissioni (SME) in dotazione alla Centrale, realizzato e tarato in conformità a quanto previsto nel DM 21.12.95 "Disciplina dei metodi di controllo delle emissioni in atmosfera dagli impianti industriali" e a quanto previsto ai punti 3 e 4 dell'Allegato VI alla Parte Quinta del DLgs 3 aprile 2006 n°152.

3.2 MODALITÀ DI CAMPIONAMENTO E ANALISI

3.2.1 Metalli

Il campionamento dell'effluente gassoso in emissione per la determinazione dei metalli in tracce è stato effettuato mediante prelievi isocinetici in accordo alla norma VDI n° 3868 parti I e II (Determinazione dei metalli totali nelle emissioni convogliate) integrata, per quanto riguarda il mercurio, con la norma UNI EN 13211. Lo schema adottato è conforme anche alla norma UNI EN 14385 Il gas aspirato e depolverato è fatto gorgogliare attraverso soluzioni acide ed ossidanti che garantiscono il trattenimento dei metalli presenti anche nella fase gassosa.

Il sistema di campionamento è costituito da un ugello di prelievo disposto parallelamente alla direzione del flusso e, in serie ad esso, da un filtro piano in fibra di vetro termostatato a 125 °C montato in coda alla sonda di campionamento. Ugelli e sonda sono in Titanio, mentre il portafiltro è in vetro. All'uscita dalla filtrazione, la linea di prelievo è suddivisa, tramite raccordi, in tre parti: due linee prevedono i sistemi di assorbimento (il primo per il solo mercurio, il secondo per gli altri metalli) e sono entrambe costituite da gorgogliatori in vetro ad alta efficienza, un separatore d'umidità (colonna di gel di silice) e, per ognuna delle due linee da una pompa di aspirazione seguita da un contatore volumetrico del gas campionato; sulla terza linea è posizionato il solo sistema di aspirazione preceduto da un separatore di umidità. La portata di aspirazione al filtro è quindi determinata dalla somma delle tre portate; con questo sistema è pertanto possibile mantenere la portata attraverso il sistema degli assorbitori relativamente bassa, così da ottenere un buon tempo di permanenza del gas a contatto con le soluzioni assorbenti sufficiente alla completa solubilizzazione dei composti inorganici, e permettere contemporaneamente il mantenimento di condizioni isocinetiche di prelievo.

Lo schema del sistema di campionamento garantisce l'integrità del campione per le seguenti ragioni:

- la sonda è inerte perché essendo completamente realizzata in titanio esclude contaminazione dell'effluente campionato;
- all'uscita del sistema filtrante termostatato a 125 °C, l'umidità contenuta nei fumi (ancora allo stato gassoso) viene ripartita uniformemente nelle 3 derivazioni;
- al termine del prelievo tutto il treno di campionamento è lavato e le soluzioni di lavaggio sono raccolte e analizzate.

Durante il campionamento viene mantenuta sotto controllo la velocità e la temperatura dei fumi nel condotto, tramite un tubo di Darcy e termocoppia posti in prossimità del punto di prelievo.

L'analisi dei metalli è stata effettuata sul particolato raccolto, sulle soluzioni di assorbimento e di lavaggio, mediante l'utilizzo della spettrometria di massa con sorgente al plasma (ICP-MS) e della spettrometria di assorbimento atomico con generazione di idruri (FI/HG/AAS).

L'analisi dei metalli sulle polveri raccolte (filtro e parte solida contenuta nei lavaggi linea) viene effettuata in analogia a quanto sopra descritto, previa dissoluzione del campione secondo il metodo UNICHIM 723 (contenuto nel Manuale UNICHIM N. 122, parte III).

3.2.2 Nichel respirabile ed insolubile

Metodo di riferimento: Metodo per la determinazione della concentrazione del Nichel presente in forma respirabile ed insolubile nelle emissioni aerodisperse – ENEL PIN/SPL UML Piacenza.

Il metodo citato, non esistendo norme di riferimento specifiche, prevede un campionamento con una sonda costituita da un separatore inerziale (ciclone) che separa la frazione avente un diametro aerodinamico equivalente (Dae)50 superiore a 4.25 mm. A tale primo frazionamento segue un filtro a porosità di 0.3 mm in fibra di quarzo (Whatman QMA) che trattiene la frazione di interesse (tra 4.25 e 0.3 mm). L'intero sistema fino al filtro è realizzato in titanio.

Rapporto

Il criterio con cui è stato selezionato il sistema utilizzato parte dalla norma ISO 7708-1995 "Air quality -Particle size fraction definitions for health-related sampling"; tale norma definisce la frazione di massa del particolato inalato che penetra attraverso le vie aeree non ciliate; la norma definisce altresì convenzionalmente la curva di separazione ideale di un apparecchio idoneo al campionamento della suddetta frazione respirabile per adulti sani.

Le operazioni preliminari al campionamento da effettuare in sequenza sono le seguenti:

- misure di velocità dei fumi nei diversi punti del reticolo di campionamento;
- fissazione del volume di fumi necessario e sufficiente per le determinazioni analitiche del Nichel;
- calcolo del diametro dell'ugello di campionamento da inserire in testa alla sonda;
- calcolo della portata fissa di campionamento:
- calcolo dei diversi tempi di aspirazione per ogni punto del reticolo di campionamento;

La determinazione analitica del nichel respirabile ed insolubile è effettuata per trattamento del filtro ottenuto dal campionamento. Per questo motivo il filtro su cui è stato campionato il particolato della frazione di interesse viene prima sottoposto ad eluizione, mediante trattamento con soluzione di ammonio acetato/acido citrico a pH 4.4 in bagno a ultrasuoni per 60 minuti, ottenendo il tal modo la separazione della frazione di Ni respirabile solubile. Sul residuo dell'eluizione si effettua una digestione totale con miscela di acido nitrico/acido perclorico/acido fluoridrico per la determinazione del Ni respirabile insolubile. La misura strumentale del Ni respirabile insolubile viene eseguita mediante spettrometria al plasma (ICP-MS).

3.2.3 IPA

Il campionamento e l'analisi per la determinazione degli IPA sono stati effettuati in conformità all'Allegato 3 del DM del 25/08/2000.

Il campionamento dell'effluente gassoso in emissione viene effettuato mediante prelievi isocinetici. Il treno di campionamento è costituito da un ugello di prelievo disposto parallelamente alla direzione del flusso e, in serie ad esso, da un filtro piano in fibra di vetro montato all'altra estremità di una sonda di lunghezza adeguata all'esplorazione dell'intera sezione del condotto. La sonda è collegata ad un separatore d'umidità integrato da fiale adsorbenti, e da una pompa di aspirazione seguita da un contatore volumetrico del gas campionato.

Tale assetto strumentale consente di campionare simultaneamente le diverse fasi di interesse:

- polveri : su filtro piano in fibra di quarzo alla temperatura termostatata di 125 °C;
- vapor d'acqua: per condensazione a 5°C;
- fase incondensabile: su fiale di resina adsorbente XAD-2;
- al termine del campionamento l'intero treno di prelievo è lavato con acetone, il solvente viene recuperato ed anch'esso destinato alle analisi.

Per IPA e Nitro IPA non sono stati eseguiti campionamenti con tracciatura dei supporti.

I campioni sono successivamente trattati in accordo a quanto previsto dall'Allegato 3 del DM del

In sunto, il trattamento eseguito è stato il seguente: le varie parti del treno di prelievo (filtro, condensa, lavaggi e resine XAD-2) sono state estratte con diclorometano e concentrate a piccolo volume; gli estratti sono stati riuniti in un unico campione e analizzati in GC/MS-SIM.

3.2.4 Ammoniaca, alogenuri e SOV

La determinazione di ammoniaca è stata effettuata in accordo alla norma UNICHIM: M.U.632. La determinazione di alogenuri è stata effettuata in accordo all' Allegato 2 del DM del 25/08/2000. La determinazione di SOV è stata effettuata in accordo all' Allegato 5 del DM del 25/08/2000.

RISULTATI

Nei prospetti seguenti si riportano le concentrazioni riferite ai fumi secchi, 0°C, 101.3 kPa e riportate al 3% di O₂.

Laddove siano calcolate sommatorie delle concentrazioni di più composti, i valori di concentrazione inferiori ai limiti di rilevabilità, concorrono alla sommatoria in misura della metà del limite di rilevabilità, in conformità a quanto indicato nel rapporto ISTISAN 04/15 e nelle tabelle che seguono ove tale caso si presenti sono già riportati come metà del limite di rilevabilità.

Per i metalli, il nichel respirabile e insolubile e gli IPA il confronto con i limiti è evidenziato nella tabella Sommatoria.

4.1 METALLI E NICHEL RESPIRABILE ED INSOLUBILE

Ni in forma di polvere

	Identificativo Prova	Prova 1	Prova 2
	Data Prova	29-nov-06	29-nov-06
	Composto	mg/Nm ³ 3% O2	mg/Nm ³ 3% O2
As		0.000914	0.000265
Ве		0.0000518	0.000053
Cd		0.0000518	0.000053
Co		0.000417	0.00039
Cr		0.00762	0.00614
Cu		0.000345	0.000905
Hg		0.000293	0.000301
Mn		0.0973	0.0206
Ni		0.0169	0.0159
Pb		0.00327	0.00102
Pd		0.0000567	0.0000672
Pt		0.0000518	0.000053
Rh		0.000156	0.000159
Sb		0.0000774	0.00013
Se		0.00266	0.00257
Sn		0.000311	0.000318
Те		0.000467	0.000477
Tl		0.0000518	0.000053
V		0.0125	0.0118

Identificativo Prova	Prova 1	Prova 2
Data Prova	28-nov-06	29-nov-06

0.00411

0.00341

iaeniijicaiivo r rova	rrova i	Frova 2	
Data Prova	28-nov-06	29-nov-06	
Composto	mg/Nm ³ 3% O2	mg/Nm ³ 3% O2	
Ni respirabile insolubile	0.0145	0.0000711	

Bozza

4.2 IPA (IDROCARBURI POLICICLICI AROMATICI)

Identificativo Prova	Prova 1	Prova 2
Data Prova	28-nov-06	30-nov-06
	mg/Nm ³ 3% O2	mg/Nm ³ 3% O2
Composto	DM 152/06	DM 152/06
Benzo(a)Pirene	0.00000758	0.0000064
Dibenzo(a,h)Antracene	0.0000189	0.000016
Benzo(a)Antracene	0.00000379	0.0000032
Benzo(b+J)Fluorantene	0.00000379	0.0000032
Benzo(k)Fluorantene	0.00000379	0.0000032
Dibenzo(a,h)Acridina	0.0000189	0.000016
Dibenzo(a,J)Acridina	0.0000189	0.000016
Dibenzo(a,l)pirene	0.0000189	0.000016
Dibenzo(a,e)pirene	0.0000189	0.000016
Dibenzo(a,i)pirene	0.0000189	0.000016
Dibenzo(a,h)pirene	0.0000189	0.000016
5-Nitroacenaftene	0.00000758	0.0000064
2-Nitronaftalene	0.00000758	0.0000064
Indeno[1,2,3-cd]pirene	0.00000379	0.0000032
Somma IPA	0.00017	0.000144

4.3 ALOGENURI (HF, HCl, HBr)

Identificativo Prova	Prova 1	Prova 2	
Data Prova	29-nov-06	29-nov-06	Limiti
Composto	mg/Nm ³ 3% O2	mg/Nm ³ 3% O2	mg/Nm ³ 3% O2
HF	0.0295	0.0308	5
HCl	1.9	1.83	100
HBr	0.0283	0.0296	5

4.4 AMMONIACA

Identificativo Prova	Prova 1	Prova 2		
Data Prova	29-nov-06	29-nov-06	Limite	
Composto	mg/Nm ³ 3% O2	mg/Nm ³ 3% O2	mg/Nm ³ 3% O2	
NH3	0.0287	0.0314	100	

4.5 SOV (SOSTANZE ORGANICHE VOLATILI)

Data Prova	28-nov-06	Limite	
Composto	mg/Nm ³ 3% O2	mg/Nm ³ 3% O2	
SOV espresse come C tot	2.30	300	

Bozza

4.6 SOMMATORIE

Composto	Tabella - Classe	Limite	Prova 1	Prova 2
		mg/Nm³	mg/Nm³	mg/Nm³
Be	A1 - I	0.1	0.0000518	0.000053
Somma IPA	A1 - I	0.1	0.00017	0.000144
As	A1 - II	1	0.000914	0.000265
Cr VI (vedi nota)	A1 - II	1	0.00762	0.00614
Со	A1 - II	1	0.000417	0.00039
Ni respirabile insolubile	A1 - II	1	0.0145	0.0000711
Cd	B - I	0.2	0.0000518	0.000053
Hg	B - I	0.2	0.000293	0.000301
Т1	B - I	0.2	0.0000518	0.000053
Se	B - II	2	0.00266	0.00257
Те	B - II	2	0.000467	0.000477
Ni in forma di polvere	B - II	2	0.0169	0.0159
Sb	B - III	10	0.0000774	0.00013
Cr III (vedi nota)	B - III	10	0.00762	0.00614
Mn	B - III	10	0.0973	0.0206
Pd	B - III	10	0.0000567	0.0000672
Pb	B - III	10	0.00327	0.00102
Pt	B - III	10	0.0000518	0.000053
Cu	B - III	10	0.000345	0.000905
Rh	B - III	10	0.000156	0.000159
Sn	B - III	10	0.000311	0.000318
V	B - III	10	0.0125	0.0118
Somma composti Tab. A1 - I		0.1	0.000222	0.000197
Somma composti Tab. A1 - II		1	0.0235	0.00687
Somma composti Tab. A1 - I+II		1	0.0237	0.00707
Somma composti Tab. B - I		0.2	0.000397	0.000407
Somma composti Tab. B - II		2	0.02	0.0189
Somma composti Tab. B - III		10	0.122	0.0412
Somma composti Tab. B - I+II		2	0.0204	0.0193
Somma composti Tab. B - I+II+III		10	0.142	0.0605

Nota: Il valore del Cromo è riferito al totale, pertanto rappresenta una stima per eccesso sia della frazione esavalente che di quella trivalente

5 CONCLUSIONI

I risultati delle prove eseguite confermano il pieno rispetto dei valori limite di emissione in atmosfera per l' unità termoelettrica 3 della centrale di Piombino.