Allegato D10

Analisi Energetica per la Proposta Impiantistica per la quale si richiede l'Autorizzazione

D10 1 INTRODUZIONE

Nel Presente *Allegato* sono descritti i principali strumenti internazionali e nazionali di pianificazione energetica al fine di valutare le attuali linee strategiche adottate e la coerenza tra queste e l'attuale assetto produttivo dello *Stabilimento Polimeri Europa* di Porto Torres.

In particolare, sono stati valutati gli attuali orientamenti della politica comunitaria e nazionale in materia di efficienza energetica e le tecnologie attualmente adottate dallo *Stabilimento*, per valutarne la coerenza con le attuali necessità prioritarie del sistema energetico nazionale.

D10 1.1 Scenario Energetico Attuale

D10 1.1.1 Strumenti Locali, Nazionali ed Internazionali di Pianificazione Energetica

Le linee generali dell'attuale strategia energetica dell'Unione Europea sono state delineate nel Libro Bianco "*Una politica energetica per l'Europa*" - COM(1995) 682Def, pubblicato nel 1995, sulla base di un accurato studio della situazione energetica comunitaria e mondiale e dei possibili scenari futuri.

L'analisi presentata all'interno del documento è stata sviluppata intorno ai seguenti punti principali:

- la crescente dipendenza energetica dell'Unione da paesi terzi;
- l'impatto dei consumi energetici sull'ambiente con particolare riferimento ai cambiamenti climatici;
- l'aumento complessivo dei consumi energetici mondiali, in particolare nelle economie in via di sviluppo.

Sulla base degli scenari delineati, gli obiettivi assunti dal *Libro Bianco* ed in generale dalla politica energetica dell'Unione Europea riguardano essenzialmente: l'incentivo all'impiego di tecnologie ad alto rendimento energetico, l'incentivo alla riconversione e alla riqualificazione degli impianti energetici esistenti, la protezione ambientale.

Con *Decisione n.* 1230/2003/CE, il Consiglio Europeo ha adottato un programma pluriennale di azioni nel settore dell'energia denominato "Energia intelligente per l'Europa" (2003-2006). Il nuovo programma attua linee direttrici per la sicurezza nell'approvvigionamento energetico ed in particolare promuove sistemi e strumentazioni per accelerare la penetrazione nei mercati delle migliori tecnologie disponibili.

Anche in ambito nazionale, il quadro energetico è stato caratterizzato negli ultimi anni da una serie di provvedimenti legislativi miranti alla diversificazione delle fonti energetiche, ad un maggior sviluppo della concorrenza ed una maggiore protezione dell'ambiente (*L'Accordo del 5 settembre 2002* tra Governo, Regioni, Province, Comuni e Comunità Montane,

sancito dalla Conferenza Unificata Stato-Regioni e Stato-Città ed Autonomie Locali; *Il Decreto Legge 18 Febbraio 2003, n° 25 "Disposizioni urgenti in materia di oneri generali del sistema elettrico",* convertito con Legge 17 aprile 2003 n°83, recante disposizioni per la valutazione di impatto ambientale di nuove installazioni e il potenziamento di impianti di produzione di energia elettrica con potenza superiore a 300 MW termici).

La linea strategica adottata a livello nazionale si pone quindi come obiettivo l'aumento dell'efficienza energetica e la riduzione del costo dell'energia.

Le attuali tecnologie di protezione dell'ambiente consentiranno il contenimento delle emissioni di inquinanti derivanti dall'impiego dei combustibili nei vari settori industriale, civile e dei trasporti.

Localmente, inoltre, la Regione Sardegna con *Delibera n. 34/13* del 2/08/06 ha adottato un *Piano Energetico Ambientale Regionale (PEAR)* il cui obbiettivo è la diversificazione delle fonti, l'autonomia energetica e il rispetto dei vincoli internazionali in materia di tutela ambientale, il tutto attraverso le seguenti linee di intervento:

- metanizzazione dell'Isola;
- attivazione della filiera miniera-centrale nel polo del Sulcis;
- sviluppo delle fonti rinnovabili e promozione del risparmio e dell'efficienza energetica.

D10 1.1.2 Lo Stabilimento di Porto Torres

Il complesso industriale, realizzato nei primi anni '60, è stato integrato energeticamente con successivi interventi effettuati sugli impianti mirati a implementare tecnologie che consentano di raggiungere le seguenti performance:

- Risparmio energetico mediante il recupero del calore di condensazione delle distillazioni attraverso generazione di vapore di recupero, o mediante operazioni di distillazione "in cascata";
- Interscambio di calore con fluidi a livelli energetici compatibili e con minimizzazione degli approcci termici mediante utilizzo di ampie superfici di scambio e/o scambiatori a piastre;
- Aumento dell'efficienza dei forni di processo mediante il recupero di calore dai fumi o mediante preriscaldo dell'aria con recuperi di calore.