

CENTRALE TERMOELETTRICA DI MONCALIERI

AUTORIZZAZIONE INTEGRATA AMBIENTALE D.LGS 18/02/2005 N. 59

TITOLO ELABORATO

ANALISI ENERGETICA DEGLI IMPIANTI

ELABORATO n°	SCALA	DATA	REDATTO	M. Montrucchio	
D.10	-	OTTOBRE 2008	CONTROLLATO	A. Rossi	
			APPROVATO	C. Tripodi	
NOME FILE	D10.doc				
REVISIONE N³	DATA	DESCRIZIONE REVISIONE E RIFERIMENTI DOCUMENTI SOSTITUTIVI			
	28/10/2008	Emissione			

PROPONENTE

CONSULENTE

INDICE

1	PREMESSA
2	VALUTAZIONE ENERGETICA DEGLI IMPIANTI

1 PREMESSA

La realizzazione di cicli combinati, costituiti dall'abbinamento del ciclo di Brayton (turbina a gas) con il ciclo di Rankine (turbina a vapore), ha trovato sviluppo, in particolar modo negli ultimi anni, in relazione agli elevati rendimenti ottenibili dall'energia del combustibile utilizzato.

In effetti un processo termodinamico risulta tanto più efficiente quanto più alta è la temperatura della fase in cui il calore viene fornito al sistema, e quanto più bassa invece la temperatura della fase in cui il calore viene ceduto dal sistema verso l'esterno. Il ciclo a vapore opera con una temperatura media relativamente bassa durante la fase di apporto di calore (circa 400°C per temperature massime di circa 550°C) e per converso presenta una temperatura molto bassa, molto vicina a quella ambiente, nella fase di cessione all'esterno del calore residuo. Ciò comporta da un lato rendimenti massimi che, anche a costo di notevoli complicazioni impiantistiche, non superano il 40% circa e dall'altro il trasferimento all'esterno di una quota di energia pari a circa il 60% di quella totale fornita con il combustibile, ad una temperatura così bassa da non consentirne praticamente il recupero.

Il ciclo di una turbina a gas presenta invece una situazione inversa e complementare; la temperatura media, durante la fase di combustione, è ben più alta che nel caso precedente (circa 800°C con temperature massime di circa 1250°C), ma anche la temperatura di rimozione del calore residuo è molto elevata (circa 600°C), con rendimenti dell'ordine del 33–38%.

Nello stesso tempo però l'energia che viene ceduta all'esterno con i gas di scarico, pari a circa i due terzi di quella fornita con il combustibile, proprio per la sua elevata temperatura, può essere riutilizzata per produrre vapore da far operare in un ciclo di Rankine, realizzando così la "combinazione" fra i due cicli. Si realizza, quindi, in questo modo un processo complessivo che impiega il calore del combustibile alla temperatura elevata del turbogas e cede il calore residuo all'ambiente alla bassa temperatura corrispondente al condensatore della turbina a vapore, determinando le condizioni ottimali per rendimenti lordi anche dell'ordine del 55–57%.

2 VALUTAZIONE ENERGETICA DEGLI IMPIANTI

La seguente tabella¹ riporta i rendimenti di impianti nuovi o già esistenti.

I valori di rendimento delle turbine a gas sono riferiti alle condizioni ISO (15 °C; 60% u.r.; 1013 mbar), macchine nuove, pulite e che lavorano a pieno carico.

Per i cicli combinati le riduzioni di carico sono fortemente penalizzanti per il rendimento. Inoltre è da considerare il rendimento medio nell'arco di un anno, che incorpora le perdite dovute a depositi, sporcamenti, transitori di avviamento, possono portare a valori di rendimento inferiori anche del 2% rispetto a quelli indicati nella tabella riportata.

Tipologia di Impianto	Taglia massima d'impianto o sezione (MW elettrici)	Efficienza elettrica in pura condensazione (%) (*)		Efficienza termica in cogenerazione (%) (**)	
		Nuovo	Esistente	Nuovo	Esistente
Centrali elettriche con caldaie tradizionali		40÷42	38+40		
Turbine a gas ciclo semplice		38+42	32+35		
Cicli combinati con turbine a gas	fino a 150	50+52	44+48	75+85	70+85
Cicli combinati con turbine a gas	fino a 250	51+52	45+49	75+85	70+85
Cicli combinati con turbine a gas	fino a 400	54÷57	46+49	75+85	70÷85

^(*) il range di rendimento dipende molto dalla sorgente fredda di raffreddamento del condensatore (condensatori once trough; circuiti di raffreddamento a torre evaporativa; condensatore ad aria) (**) valore indicativo; dipende dal livello di potenza termica fornita.

Nel caso del 3° Gruppo Termoelettrico (3° GT) e del Repowering del 2° Gruppo Termoelettrico (RPW 2° GT) della Centrale di Moncalieri l'efficienza elettrica in pura condensazione (come rapporto tra la potenza elettrica nominale e la potenza termica di combustione in assetto solo elettrico), risulta in entrambi i casi pari al 58 %, ovvero superiore al livello più elevato riportato in tabella.

¹ Linee guida recanti i criteri per l'individuazione e l'utilizzazione delle migliori tecniche disponibili ex articolo 3, comma n2 del Decreto Legislativo 372/99; Grandi impianti di combustione – Linee guida per le migliori tecniche disponibili - Decreto Legislativo 59/2005 (Elaborato predisposto nel giugno 2006 – Bozza non ancora pubblicata sulla Gazzetta Ufficiale); paragrafo 5.2 Grandi impianti di combustione alimentati a gas naturale, punto 5.2.4 Rendimenti.

In assetto cogenerativo, sia per il 3° Gruppo Termoelettrico (3° GT) che il Repowering del 2° Gruppo Termoelettrico (RPW 2° GT) si prevede un'efficienza termica totale pari all'88%, ovvero un valore che si colloca a un livello superiore a quelli indicati nelle linee guida citate.