

Società Consortile per Azioni con sede legale in Milazzo (ME) 98057 - Contrada Mangiavacca
Capitale Sociale Euro 171.143.000,00 interamente versato
Codice Fiscale e Partita IVA: 04966251003
C.C.I.A.A. di Messina - R.E.A. nº 171213

Casella Postale n.178 Telefax: 090 9232200

Telefono: 090 9232,1 (selezione passante)

Riferimenti da citare nella risposta

Prot. 077/DIRGE/GD/ab

Milazzo, 10.07.2013

RACCOMANDATA A/R

Ministero dell'Ambiente e della Tutela del Territorio (del Mare — Direzione Generale Valutazioni Ambienta

E.prot DVA - 2013 - 0017230 del 23/07/2013

Spett.le

Ministero dell'Ambiente e della Tutela del Territorio e del Mare

Direzione Generale per le Valutazioni Ambientali Via Cristoforo Colombo, 44 00147 ROMA

Oggetto: Raffineria di Milazzo S.C.p.A – Decreto di Compatibilità Ambientale/Autorizzazione Integrata Ambientale [DVA-DEC-2011-0000255 del 16/05/2011] per l'esercizio della Raffineria sita nel Comune di Milazzo (ME) - Comunicazione di modifica non sostanziale ai sensi art.29-nonies, comma 1 del D.Lgs. 152/06 e s.m.i.

La Raffineria di Milazzo S.C.p.A. è intestataria del Decreto di Compatibilità Ambientale/Autorizzazione Integrata Ambientale (Decreto AlA/VIA) Prot. DVA DEC-2011-0000255 del 16/05/2011 rilasciata dal Ministero dell'Ambiente e della Tutela del Territorio e del Mare. Tale Decreto prescrive all'art. 1 c. 20 che la Raffineria è comunque tenuta al rispetto di tutte le prescrizioni contenute nel Decreto di Autorizzazione Integrata Ambientale (Decreto AlA) prot. DVA DEC-2011-0000042 del 14/02/2011.

Con la presente si informa codesto spettabile Ministero che la scrivente intende realizzare un intervento impiantistico presso l'unità di cracking catalitico a letto fluido (FCC) esistente in Raffineria, al fine di garantire il completo allineamento alle Migliori Tecniche Disponibili (MTD) di settore attualmente non applicate.

L'intervento in oggetto si rende necessario al fine di ottemperare ad una specifica prescrizione contenuta nel Decreto AIA, di cui a pag.59 del Parere Istruttorio Conclusivo, che richiede quanto di seguito riportato:

"Unità FCC Entro 24 mesi presentare all'AC uno studio per la verifica e la conformità alle MTD. Nel caso lo studio dovesse evidenziare disallineamenti, il Gestore dovrà realizzare interventi di adeguamento entro i successivi 36 mesi".

La Raffineria ha trasmesso lo "Studio per la verifica e la conformità alle MTD dell'unità di cracking catalitico a letto fluido (FCC)" con nota prot.029/DIRGE/GD/ab del 08/03/2013. Lo studio ha evidenziato la necessità di realizzare gli interventi oggetti della presente istanza al fine di garantire il completo allineamento alle Migliori Tecniche Disponibili (MTD) di settore attualmente non applicate.

La scrivente ritiene che le modifiche illustrate nella nota tecnica allegata alla presente siano da considerarsi non sostanziali ai sensi dell'art.5, comma 1, lettera l-bis) del D.Lgs. 152/06 e s.m.i.

La nota tecnica è stata redatta secondo le indicazioni emanate dal Ministero dell'Ambiente e per la Tutela del Territorio e del Mare, mediante nota Prot. DVA-2011-0031502 del 19/12/2011 "Contenuti minimi delle istanze di modifica non sostanziale alle autorizzazioni integrate ambientali rilasciate - chiarimenti".

Si allega alla presente comunicazione l'originale del bollettino di versamento di 2.000 €, come indicato nell'Allegato III del Decreto Ministeriale del 24 aprile 2008.

Distinti saluti.

Raffineria di Milazzo S.C.p.: Il Direttore Generale

iaetano De⊿S**ántis**

Allegati:

Relazione Tecnica (3 copie cartacee + 3 copie informatiche) Originale del bollettino di versamento di 2000 €, relativo al pagamento della tariffa istruttoria

Relazione tecnica a supporto della Richiesta di Modifica Non Sostanziale del Decreto AIA/VIA) Prot. DVA DEC-2011-0000255 del 16/05/2011, regolante l'esercizio della Raffineria di Milazzo S.C.p.A. sita nei comuni di Milazzo e San Filippo del Mela (ME).

INDICE

I١	ITR	ROD	UZIO	ONE	1
1		INF	ORN	MAZIONI SULLO STABILIMENTO – ELEMENTI IDENTIFICATIVI	3
2		UN	ITA'	FCC- STATO ATTUALE	4
	2.1		CRA	CKING CATALITICO A LETTO FLUIDO (FCC)	4
	2.2		FRAZ	ZIONAMENTO PRODOTTI	8
	2.3		LAVA	AGGIO AMMINICO GAS/GPL	9
3		UN	ITA'	FCC - DESCRIZIONE DELLA MODIFICA	11
4		EFF	ETT	TI AMBIENTALI DELLA MODIFICA	13
	4.1		CON	SUMO DI MATERIE PRIME ED AUSILIARIE	13
	4.2		BILA	ANCIO ENERGETICO	13
	4.3		BILA	ANCIO IDRICO	14
		4.3	.1	Approvvigionamento idrico	14
		4.3	.2	Scarichi idrici	15
	4.4		EMI	SSIONI IN ATMOSFERA	15
		4.4	.1	Emissioni convogliate	15
		4.4.	.2	Emissioni diffuse	16
	4.5		RIFI	UTI	16
	4.6		RUN	MORE	17
5		NO	N SC	OSTANZIALITA' DELLA MODIFICA	18
6		CR	ONC	PROGRAMMA DEGLI INTERVENTI	20
7		AS	sog	GETTABILITA' A VALUTAZIONE D'IMPATTO AMBIENTALE	21
8		AT	ΓEST	TAZIONE DI VERSAMENTO DELLA TARIFFA ISTRUTTORIA	22

Allegati

Allegato 1: Aggiornamento schede AIA

Allegato 2: Attestazione del versamento della tariffa istruttoria

INTRODUZIONE

La Raffineria di Milazzo S.C.p.A. (nel seguito "la Raffineria") è intestataria del Provvedimento di Compatibilità Ambientale/Autorizzazione Integrata Ambientale (Decreto VIA/AIA), prot. DVA DEC-2011-0000255 del 16/05/2011, rilasciata dal Ministero dell'Ambiente e della Tutela del Territorio e del Mare (MATTM), che sostituirà il Decreto prot. DVA-2011-000042 del 14/02/2011 (Decreto AIA) vigente per la configurazione attuale della Raffineria una volta che il nuovo impianto HMU3 sarà messo in esercizio.

Il Decreto VIA/AIA, al comma 20 dell'art.1, prevede il rispetto di tutte le prescrizioni contenute nel Decreto AIA.

Il presente documento descrive gli interventi di adeguamento che si intendono realizzare presso l'unità di cracking catalitico a letto fluido (FCC) presente in Raffineria, al fine di garantire il completo allineamento alle Migliori Tecniche Disponibili (MTD) di settore attualmente non applicate. La Raffineria a tale scopo intende pertanto:

- Installare un Turbo-Expander in cui sfruttare il salto entalpico dei fumi prodotti nel rigeneratore per la produzione di energia elettrica;
- Installare cicloni multistadio per l'abbattimento delle emissioni di polveri.

L'intervento in oggetto si rende necessario al fine di ottemperare ad una specifica prescrizione contenuta nel Decreto AIA, di cui a pag.59 del Parere Istruttorio Conclusivo, che richiede quanto di seguito riportato:

"Unità FCC Entro 24 mesi presentare all'AC uno studio per la verifica e la conformità alle MTD. Nel caso lo studio dovesse evidenziare disallineamenti, il Gestore dovrà realizzare interventi di adeguamento entro i successivi 36 mesi".

La Raffineria ha ottemperato a tale prescrizione trasmettendo lo "Studio per la verifica e la conformità alle MTD dell'unità di cracking catalitico a letto fluido (FCC)", con nota prot.029/DIRGE/GD/ab del 08/03/2013.

Con il presente documento, in conformità a quanto indicato nella nota MATTM DVA-2011-31502 del 19/12/2011, la Raffineria intende pertanto presentare un'istanza di modifica non sostanziale per la realizzazione degli interventi di adeguamento sopra citati.

Le modifiche impiantistiche che si intendono apportare vengono illustrate nella presente istanza che, a tale scopo, è stato articolata come segue:

Raffineria di Milazzo S.C.p.A.

- Capitolo 1:Informazioni sullo stabilimento elementi identificativi;
- Capitolo 2: Unità FCC Stato attuale;
- Capitolo 3: Unità FCC Descrizione della modifica;
- Capitolo 4: Effetti ambientali della modifica;
- Capitolo 5: Non sostanzialità della modifica;
- Capitolo 6: Cronoprogramma degli interventi;
- Capitolo 7: Assoggettabilità a Valutazione d'Impatto Ambientale;
- Capitolo 8: Attestazione di versamento della tariffa istruttoria.

1 INFORMAZIONI SULLO STABILIMENTO – ELEMENTI IDENTIFICATIVI

Ragione Sociale: Raffineria di Milazzo S.C.p.A.

Sede operativa: Contrada Mangiavacca – 98057 Milazzo (ME)

Sede legale: Contrada Mangiavacca – 98057 Milazzo (ME)

Referente IPPC: Dott. Ing. Antonio Buccarelli

Definizione modifica richiesta: Intervento di adeguamento dell'impianto FCC alle MTD

specifiche di settore

2 UNITA' FCC- STATO ATTUALE

L'impianto FCC opera in modo da produrre una rottura (cracking) delle molecole di idrocarburi pesanti, in presenza di un catalizzatore, che viene mantenuto in fase fluida (Fluid Catalytic Cracking). La capacità di trattamento dell'impianto può essere spinta fino a 7.000 t/g (circa 2 milioni di t/anno), massimizzando i distillati di carica.

Si tratta di un impianto complesso nel quale si possono distinguere le seguenti sezioni principali:

- 1. Cracking catalitico a letto fluido (FCC):
 - a. reattore e rigeneratore;
 - b. frazionatrice principale;
 - c. CO Boiler;
 - d. sezione compressione ed assorbimento;
- 2. Frazionamento prodotti:
 - a. frazionamento benzine:
 - b. frazionamento GPL;
- 3. Lavaggio con soluzione amminica del gas/GPL.

2.1 CRACKING CATALITICO A LETTO FLUIDO (FCC)

Reattore e Rigeneratore

La carica fresca dell'impianto, costituita da gasoli da vacuum o da particolari gasoli da topping in miscela o meno ai primi, è inviata, dopo preriscaldamento a spese dei prodotti più pesanti della frazionatrice principale 30 C-101 e dopo riscaldamento nel forno 30 F-102, al reattore 30 R-101. Quest'ultimo è dotato di un tubo verticale di adduzione (riser attraverso il quale viene introdotta la carica fresca).

Alla base dei riser la carica fresca viene in contatto con il catalizzatore rigenerato caldo che scende dal rigeneratore 30 R-102 attraverso un tubo verticale (stands-pipe) con portata regolata da valvola a slitta (slide valve).

A contatto con il catalizzatore caldo, la carica fresca evapora istantaneamente. Si creano così delle condizioni di trasporto pneumatico del catalizzatore che fluisce al reattore attraverso il riser trasportato da vapori di idrocarburi.

Il catalizzatore rigenerato fornisce anche il calore richiesto dall'endotermicità della reazione di cracking e la quantità che circola, dal rigeneratore al reattore, è funzione della temperatura di reazione richiesta. La reazione di cracking della carica fresca avviene totalmente nel riser.

L'ingresso del riser della carica fresca nel reattore avviene al di sopra del letto di catalizzatore in fase densa.

Il reattore, serve principalmente a realizzare la separazione tra catalizzatore e prodotti di reazione, separazione resa più spinta mediante cicloni posti all'uscita del reattore ed un separatore balistico in uscita riser. Mentre i vapori vanno alla frazionatrice principale, il catalizzatore cade sul fondo del reattore e fluisce allo stripper sottostante.

Nello stripper gli idrocarburi adsorbiti sul catalizzatore vengono strippati con vapore. Dal fondo dello stripper il catalizzatore fluisce nel rigeneratore attraverso una slide valve azionata dal controllore di livello dello stripper.

Nel rigeneratore 30-R-102 si effettua la rigenerazione del catalizzatore spento mediante la combustione del coke depositatosi durante le reazioni di cracking.

La combustione viene realizzata insufflando aria dalla base del rigeneratore mediante la soffiante assiale 30 MK301.

I gas della combustione (flue gas) abbandonano il rigeneratore attraverso una doppia serie di cicloni (sette cicloni per serie) nei quali vengono recuperati i fini di catalizzatore trascinato.

Dal rigeneratore, attraverso la linea di flue gas, i gas della combustione, vengono convogliati al camino o al CO-Boiler, dove si sfrutta il calore di combustione, per produrre vapore ad alta pressione (51 ATE).

Il catalizzatore separatosi dai fumi della combustione si raccoglie al fondo del rigeneratore da dove viene convogliato, come detto, alla base del riser con portata regolata da slide valve comandata dal controllore di temperatura di reazione.

Frazionatrice principale 30 C-101

Nella frazionatrice principale 30 C-101 si effettua il raffreddamento dei vapori provenienti dal reattore 30 R-101 e si inizia la loro separazione.

Dalla frazionatrice principale si estraggono:

 tre tagli di gasoli (uno dalla coda e due da prelievi laterali, cui uno costituisce un pumparound);

- un taglio (prelievo laterale) di benzina pesante (HCN);
- un prodotto di testa costituito da benzine leggere, GPL e gas incondensabili.

I tre tagli di gasoli vengono suddivisi, dal basso verso l'alto della colonna in:

- HGCO (gasolio pesante da cracking) che viene raffreddato in E101 A/B (preriscaldo carica fresca), E-111 A/B (produzione vapore), E-209 (ribollitore col. debutanizzatrice), E-280 (preriscaldo forno HDT2), E223 (ribollitore splitter benzina). In parte viene riciclato in colonna come riflusso di coda ed in parte inviato a stoccaggio previo ulteriore raffreddamento in E-116 N;
- IGCO (gasolio intermedio da cracking) che viene raffreddato in E-109 (preriscaldo carica),
 E-207 (ribollitore stripper), E-104 (generatore di vapore) e riflussato in colonna come riflusso intermedio;
- LGCO (gasolio leggero da cracking) che viene in parte strippato con vapore (la fase vapore separata in C-102 è riciclata in colonna) e quindi inviata a stoccaggio previo raffreddamento in E-105 ed EA-106. Un altro flusso di HCN, raffreddato in E253 ed EA-108, viene impiegato per l'assorbimento dei gas in C-202 (sez. assorbimento) e da qui ritorna in C-101 previo raffreddamento nel E283.

Il taglio di benzina pesante (HCN) dopo strippaggio con vapore in C-151 e refrigerazione in E-151 ed E-152 è inviato a stoccaggio.

Infine, in prossimità della testa della C-101, viene prelevato un flusso di pump around, che, dopo raffreddamento in EA 117, E3 A/B/C, E 255, viene inviato ad un polmone di separazione dell'acqua D280 e riciclato in testa colonna.

I vapori di idrocarburi uscenti dalla testa della colonna (insieme ai vapori provenienti dalla unità HDT2) vengono raffreddati e parzialmente condensati in EA-102 ed E-160 A/B e E161 A/B, quindi inviati all'accumulatore/separatore D-110 dove si separano tre fasi, una vapore idrocarburica, una liquida idrocarburica e una acquosa.

La fase vapore viene aspirata dal compressore centrifugo 50 K-201.

La fase liquida idrocarburica WCN (whole cracking naphta = benzina totale da cracking) viene in parte riflussata in testa alla colonna C-101 e in parte inviata all'assorbitore primario 50 C-201 della sezione gas concentration.

La fase acquosa proveniente dalla condensazione del vapore d'acqua viene usata per lo

strippaggio degli idrocarburi nello stripper del reattore come vapore di fluffing, come vapore di dispersione alla base dei riser ed H₂O di lavaggio alla vapor line, si raccoglie nella parte inferiore dell'accumulatore e da qui inviata al SWS.

CO-Boiler

I gas della combustione realizzata nel rigeneratore del catalizzatore spento contengono una certa percentuale di ossido di carbonio. Inoltre l'elevata temperatura di questa corrente si presta ad un notevole recupero termico.

Ciò viene realizzato nel CO-Boiler che è sostanzialmente una caldaia in cui si completa la combustione del CO utilizzando il calore sviluppato da tale combustione che avviene nel rigeneratore assieme a quello generato eventualmente da combustibile ausiliario per la produzione di vapore a 50 kg/cm².

Non tutta l'energia posseduta dai fumi della combustione viene in questo modo recuperata in quanto all'uscita dal rigeneratore, prima dell'ingresso al CO-Boiler, i fumi devono essere necessariamente laminati, perdendo in questo modo l'energia di pressione.

Compressione ed assorbimento

I vapori aspirati in D-110 vengono compressi dal compressore centrifugo a due stadi K-201, munito di intercoolers E-251 A/B.

All'uscita del secondo stadio i vapori vengono miscelati con benzina ricca in idrocarburi leggeri (proveniente dal fondo di C-201).

La miscela è raffreddata in EA-202 ed E-203 N A/B ed inviata al ricevitore ad alta pressione D-203 nel quale si separano una fase vapore, inviata poi all'assorbitore primario C-201 ed una fase liquida (benzina di carica stripper).

In C-201 si effettua l'assorbimento preferenziale dei composti più pesanti del vapore di idrocarburi in WCN proveniente da D-110.

Il vapore non assorbito, che esce dalla testa di C-201 viene ulteriormente lavato con LCGO nell'assorbitore secondario C-202.

Il gasolio arricchito in leggeri viene riciclato a C-101.

I gas non assorbiti escono dalla testa di C-202 e sono inviati alla sezione lavaggio amminico.

La fase liquida dal ricevitore D-203 viene pompata, previo riscaldamento in E-252 ed E-253 ad

alimentare lo stripper C-204, in cui le frazioni più leggere, soprattutto C1 e C2, vengono separate come vapore di testa e riciclate sulla linea di mandata del compressore K-201.

2.2 FRAZIONAMENTO PRODOTTI

Frazionamento benzine

La WCN accumulatasi nell'accumulatore di testa della frazionatrice primaria viene in parte riflussata in colonna e in parte inviata all'assorbitore primario 50 C-201. Quindi continua l'operazione di assorbimento dei componenti più pesanti dei gas in mandata al 2° stadio del compressore 50 K-201 per miscelazione con questi in refrigeranti ad aria ed ad acqua.

Viene quindi inviata alla colonna deetanizzatrice 50 C-204 in cui vengono eliminate le frazioni più leggere come C1 e C2 (metano e etano) e in parte anche C3 (propano) che ritornano sulla mandata del secondo stadio del compressore per aumentare la pressione parziale di questi componenti e favorirne l'assorbimento.

La benzina deetanizzata viene inviata per differenza di pressione dal fondo della colonna 50 C-204 alla colonna stabilizzatrice 50 C-205 N .

Il prodotto di coda, raffreddato in E-208 ed E-252, può essere inviato in alternativa in carica all'impianto HDT2 o allo splitter benzine 50 C-210, che fornisce come prodotto di coda benzina media (MCN) e come prodotto di testa benzina leggera (LCN), a sua volta condensata in EA-227 e raccolta nell'accumulatore splitter D-208.

La benzina media e la benzina leggera sono inviate a stoccaggio, dopo essere state raffreddate in E-252, EA-224 ed E-225, per la MCN ed in E-226 per la LCN.

I vapori di testa della colonna C-205 N sono condensati in EA-210 ed E-5 N A/B e raccolti in D-204.

Il GPL raccolto allo stato liquido viene in parte riflussato in C-205 N, in parte ulteriormente raffreddati in E-211 N e inviato alla sezione lavaggio amminico e da qui all'impianto Merox-GPL per la rimozione dei mercaptani.

Frazionamento GPL

II GPL proveniente dall'impianto Merox GPL è inviato in carica alla colonna 50-C-207 (splitter GPL), previo riscaldamento in E-212; nella colonna viene separato un prodotto di testa, costituito essenzialmente da C3 e C3- (propano e propilene) e uno di fondo costituito essenzialmente da C4

e C4- (butano e butilene).

Il prodotto di testa è inviato, dopo condensazione in EA-214 ed E-20N A/B, in carica alla colonna 50 C-208 (splitter propani) in cui il propilene (prodotto di testa) viene separato dal propano (coda).

Il propano, dopo raffreddamento in E-216 è inviato a stoccaggio; il propilene è invece condensato in EA-217 ed E-261 N e quindi pompato all'essiccatore, purificatore e poi a stoccaggio.

I butani vengono inviati in carica alla colonna 50 C-209 (splitter butani) dove vengono separati in un prodotto di testa, costituito da una miscela di butileni e isobutano in proporzione adatta ad essere inviata in carica all'impianto di alchilazione e in un prodotto di fondo costituito da una miscela di butani e butileni con prevalenza di questi ultimi.

2.3 LAVAGGIO AMMINICO GAS/GPL

Il GPL proveniente dalla testa della colonna C-205 N ed accumulato nel recipiente D-204 viene inviato mediante le pompe P-206 A/B, sotto controllo di livello, alla colonna di lavaggio con DEA C-206, dopo un ulteriore raffreddamento nel refrigerante ad acqua E-211 N.

Nella colonna di lavaggio C-206 viene lavato in controcorrente con un flusso di DEA soluzione, con lo scopo di rimuovere $l'H_2S$ presente.

Analogamente al GPL suddetto, anche il Fuel-gas, proveniente dalla colonna C-202 è inviato nella colonna di lavaggio con soluzione di DEA C-203.

Il lavaggio del GPL all'interno della C-206 avviene esclusivamente in fase liquida.

La colonna C-206 risulta infatti tutta piena di liquido, con i GPL che salgono per differenza di densità verso l'alto, gorgogliando attraverso la soluzione acquosa di DEA che a sua volta scende verso il basso.

L'intimo contatto fra le due correnti di liquido è assicurato da 4 riempimenti di anelli della colonna C-206.

La DEA esausta ricca di H₂S, proveniente dalle colonne di lavaggio suddette (separata nel fondo colonna), viene inviata per differenza di pressione al recipiente di flash D-212.

Dal recipiente di flash la DEA viene inviata alle due colonne di rigenerazione delle DEA C-211/1 e C-211/2, operanti in parallelo ed aventi caratteristiche del tutto analoghe. Dalla testa delle colonne di rigenerazione suddette si libera H₂S che viene inviata alle unità di recupero zolfo.

La DEA rigenerata, prelevata dal fondo delle colonne suddette viene quindi trasferita tramite le

pompe P-216 A-B-C alle colonne di lavaggio , previa refrigerazione negli scambiatori E-233A (DEA1) e E-233B (DEA2).

I GPL lavati che escono dall'alto della C-206 sono a loro volta inviati ad un sistema di lavaggio con acqua D-291 per la rimozione di tracce di ammina sfuggita dalla colonna e successivamente, per differenza di pressione, inviati all'impianto Merox GPL dal quale ritorna all'impianto FCC gas concentration dopo la rimozione dei mercaptani, come carica alla colonna depropanizzatrice C-207.

3 UNITA' FCC - DESCRIZIONE DELLA MODIFICA

La Raffineria intende realizzare una serie di interventi di adeguamento presso l'unità di cracking catalitico a letto fluido (FCC), al fine di garantire il completo allineamento alle Migliori Tecniche Disponibili (MTD) di settore attualmente non applicate. Tali interventi consistono in particolare nella:

- Installazione di un Turbo-Expander in cui viene sfruttato il calore dei fumi prodotti nel rigeneratore per la produzione di energia elettrica;
- Installazione di cicloni multistadio per l'abbattimento delle emissioni di polveri.

In particolare, la nuova sezione Turbo-Expander viene installata tra il rigeneratore 30-R-102 e l'esistente Orifice Chamber. In tale sezione, oltre a produrre energia elettrica, viene effettuata un'ulteriore separazione delle polveri di catalizzatore trascinate, mediante la realizzazione di cicloni multistadio.

I gas di combustione generati durante la rigenerazione del catalizzatore vengono inviati al nuovo Separatore Terzo Stadio 30-D-120 (Third Stage Separator, TSS), in cui avviene la rimozione della maggior parte di catalizzatore presente in tale corrente, al fine di proteggere le pale della successiva Turbo-Expander 30-K-120.

I gas in uscita dalla testa del TSS vengono quindi alimentati alla Turbo-Expander, in cui viene sfruttata la pressione residua del gas per produrre energia elettrica, e successivamente fluiscono a valle dell'esistente Orifice Chamber per essere poi inviati al CO-Boiler. L'avviamento (inclusa la sincronizzazione con la rete elettrica) ed il controllo della Turbo-Expander è effettuato dal Power Recovery Control System, che ha il compito di mantenere la pressione differenziale tra il rigeneratore 30-R-102 e il reattore 30-R-101, tramite valvole di controllo poste in ingresso alla Turbo-Expander e sul bypass dello stesso.

La corrente di gas ricca di catalizzatore separato, in uscita dal fondo del TSS, viene inviata al nuovo Ciclone Separatore Quarto Stadio 30-D-121, dove la separazione della polvere di catalizzatore è maggiormente spinta. La polvere separata, depositata sul fondo di quest'ultimo, viene quindi inviata periodicamente ad un silos di raccolta polveri 30-D-188, tramite trasporto pneumatico.

La corrente gassosa uscente dalla testa del Ciclone Separatore Quarto Stadio, ormai privata del catalizzatore, si riunisce a quella proveniente dal Turbo-Expander, prima di fluire al CO-Boiler.

Raffineria di Milazzo S.C.p.A.

Ciò permette di ottenere una riduzione, rispetto alla configurazione esistente, di circa il 40% del quantitativo di polveri trascinate dal gas in atmosfera.

Rimane comunque possibile bypassare completamente il Turbo-Expander in caso di blocco dello stesso: dal Separatore di Terzo Stadio la corrente priva di polveri viene inviata all'ingresso della Orifice Chamber esistente, passando attraverso la valvola di bypass.

4 EFFETTI AMBIENTALI DELLA MODIFICA

Nel presente capitolo vengono presentati gli effetti ambientali generati dall'unità FCC in seguito alle modifiche presentate nel capitolo precedente, confrontati con gli attuali, autorizzati dal Decreto AIA.

4.1 CONSUMO DI MATERIE PRIME ED AUSILIARIE

La realizzazione degli interventi di adeguamento presso l'unità FCC non comporterà alcun incremento nei consumi di materie prime ed ausiliarie rispetto a quanto previsto nella Configurazione Attuale dichiarata in AIA.

4.2 BILANCIO ENERGETICO

Le produzione ed i consumi energetici complessivi relativi all'unità FCC vengono riportati nella seguente tabella riepilogativa.

Tabella 1. Confronto bilancio energetico Configurazione Attuale e Futura alla MCP

Descrizione	U.d.M	Configurazione Attuale (MCP)	Configurazione futura (MCP)	Variazione		
Consumo di combustibili						
Fuel Oil	t/a	46.650	46.650	0%		
Fuel Gas	t/a	19.669	19.669	0%		
		Produzione di ene	ergia			
Energia termica	MWh	769.119	769.119	0%		
Energia elettrica	MWh	0	102.492	+ 100%		
		Consumo di ener	gia			
Energia termica	MWh	595.251	595.251	0%		
Energia elettrica	MWh	121.266	121.774	+ 0,4%		
Consumo di vapore						
Vapore B.P.	t/a	61.604	61.604	0%		
Vapore M.P.	t/a	382.468	265.610	- 30,5%		

Vapore A.P.	t/a	484.102	626.978	+ 29,5%					
	Produzione di vapore								
Vapore B.P.	t/a	204.017	204.017	0%					
Vapore A.P.	t/a	631.790	631.790	0%					

Per quanto riguarda la produzione di energia elettrica, attualmente questa non viene prodotta dall'unità FCC. In seguito all'installazione della Turbo-Expander sarà possibile produrre energia elettrica, sfruttando la pressione residua dei gas di combustione generati dal rigeneratore.

L'installazione della Turbo-Expander comporta inoltre un aumento dei consumi di energia elettrica relativi all'unità FCC del tutto trascurabile (circa lo 0,4%) rispetto agli attuali consumi di tale unità.

4.3 BILANCIO IDRICO

4.3.1 Approvvigionamento idrico

I consumi idrici relativi all'unità FCC vengono riportati nella seguente Tabella.

Tabella 2. Confronto consumo risorse idriche Configurazione Attuale e Futura alla MCP

Descrizione	U.d.M	Configurazione Attuale (MCP)	Configurazione futura (MCP)	Variazione
Acqua di raffreddamento	m³/a	39.481.320	41.671.320	+ 5,5%
Acqua demineralizzata	m³/a	730.482	730.482	0%

Come si evince dalla Tabella sopra riportata, in seguito all'installazione della nuova Turbo-Expander, viene stimato un incremento nei consumi di acqua di raffreddamento.

La Raffineria è tuttavia dotata di un circuito di raffreddamento chiuso con torri di raffreddamento ad evaporazione. Pertanto i dati indicati in Tabella 2 si intendono riferiti all'acqua circolante nell'intero sistema. Una volta riempita la nuova sezione del circuito, in condizioni a regime, si avrà unicamente un maggior consumo di acqua di reintegro pari a circa 18,6 m³/h. Tale contributo

aggiuntivo verrà compensato da un incremento del recupero delle acque trattate presso l'impianto TAS.

La realizzazione delle modifiche all'unità FCC non comporterà pertanto alcun incremento di prelievi idrici dall'esterno rispetto alla Configurazione Attuale della Raffineria alla MCP.

4.3.2 Scarichi idrici

Gli effluenti idrici prodotti dall'unità FCC sono costituiti essenzialmente dalle acque acide. Tali acque vengono pretrattate negli impianti di strippaggio (SWS1 e SWS2) e successivamente inviate all'impianto di trattamento acque di processo (TAP).

La realizzazione degli interventi di adeguamento presso l'unità FCC non comporterà alcun incremento di reflui idrici scaricati a mare rispetto alla Configurazione Attuale della Raffineria alla MCP.

4.4 EMISSIONI IN ATMOSFERA

4.4.1 Emissioni convogliate

Le emissioni convogliate in atmosfera, costituenti la bolla di raffineria, attualmente generate dall'unità FCC sono le seguenti:

- Camino E6, a cui vengono convogliati i fumi generati dal forno 30-F-102. La realizzazione
 degli interventi di adeguamento presso l'unità FCC non comporterà alcuna variazione né
 quantitativa né qualitativa nelle emissioni generate dal Camino E6 rispetto alla
 Configurazione Attuale della Raffineria alla MCP;
- Camino E7, a cui vengono convogliati i fumi generati dal CO-Boiler. Per quanto riguarda tali emissioni l'installazione dei nuovi Separatori Terzo e Quarto Stadio consente di ottenere una migliore separazione delle polveri di catalizzatore dai gas di combustione, rispetto alla configurazione attuale. Ciò consente pertanto di ridurre le emissioni di polveri generate dal Camino E7, come viene riportato nella seguente Tabella.

Tabella 3. Confronto emissioni in atmosfera dal camino E7 Configurazione Attuale e Futura alla MCP

Parametro	U.d.M	Configurazione Attuale (MCP)	Configurazione futura (MCP)	Variazione
SO ₂	kg/h	346,34	346,34	0%
NOx	kg/h	109,67	109,67	0%
Polveri	kg/h	19,63	11,54	- 41,2%
со	kg/h	57,72	57,72	0%

4.4.2 Emissioni diffuse

Per quanto riguarda le emissioni diffuse (derivanti da flange, pompe, valvole, ecc.) non sono previste variazioni rispetto alla configurazione attuale dell'unità FCC. Il progetto LDAR per il monitoraggio e la riduzione delle emissioni diffuse verrà comunque esteso anche alle nuove apparecchiature, così come previsto dalle autorizzazioni esistenti.

4.5 RIFIUTI

In seguito all'intervento di adeguamento all'unità FCC, si prevede un aumento nella produzione di rifiuti, in particolare dei catalizzatori esausti utilizzati in tale impianto. La realizzazione di due nuove fasi di separazione (i nuovi Separatori Terzo e Quarto Stadio) permette infatti di ottenere una migliore separazione delle polveri di catalizzatore dai gas di combustione, riducendo di conseguenza i quantitativi di polveri emesse in atmosfera. La polvere di catalizzatore recuperata viene raccolta in un silos e successivamente inviata a recupero o smaltita.

Nella seguente Tabella è riportato il confronto tra la produzione di catalizzatori esausti dall'impianto FCC in seguito all'intervento di adeguamento rispetto alla configurazione attuale.

Tabella 4. Confronto produzione di catalizzatore esausto Configurazione Attuale e Futura alla MCP

Tipologia di rifiuto	U.d.M	Configurazione Attuale (MCP)	Configurazione futura (MCP)	Variazione
CER: 160804 - Catalizzatori esausti da cracking catalitico fluido	t/a	1.775	1.846	+ 4%

4.6 RUMORE

Tutte le apparecchiature installate o sostituite nell'ambito del presente intervento di adeguamento avranno caratteristiche tali da garantire, compatibilmente con gli attuali limiti della tecnologia, il minimo livello di pressione sonora nell'ambiente. Inoltre la progettazione delle apparecchiature e la loro disposizione impiantistica, oltre ad assicurare il rispetto dei limiti di esposizione al rumore del personale operante nell'area di produzione, garantirà il livello di rumore al perimetro esterno della Raffineria.

Si prevede pertanto che la realizzazione degli interventi di adeguamento presso l'unità FCC non comporterà alcuna variazione sull'impatto acustico rispetto alla Configurazione Attuale della Raffineria.

5 NON SOSTANZIALITA' DELLA MODIFICA

Le modifiche impiantistiche che la Raffineria intende realizzare presso l'unità FCC non risultano legate ad esigenze di aumento di capacità di lavorazione della Raffineria, che rimarrà pertanto inalterata rispetto a quella già autorizzata. Tali modifiche rientrano infatti in un progetto di innovazione tecnologica finalizzato all'adeguamento completo alle MTD previste per l'unità FCC, in conformità a quanto viene prescritto nel Parere Istruttorio Conclusivo al paragrafo 8.2 "Emissioni in aria", pag. 59.

Gli interventi previsti non introdurranno pertanto sostanziali variazioni con effetti negativi e significativi sull'ambiente rispetto alla configurazione attuale della Raffineria, come viene dimostrato nel precedente Capitolo 4.

Rispetto alla configurazione attuale, le modifiche previste all'unità FCC non comporteranno di fatto alcuna variazione:

- della capacità di lavorazione dell'impianto FCC e complessivamente della Raffineria;
- · dei consumi di materie prime ed ausiliarie;
- dei quantitativi delle acque prelevate dall'esterno;
- dei reflui scaricati a mare sia in termini quantitativi che qualitativi;
- dei consumi di combustibili alimentati a forni e caldaie:
- delle emissioni in atmosfera diffuse;
- del livello di esposizione al rumore del personale operante nell'area di produzione.

L'intervento di adeguamento previsto all'unità FCC comporterà rispetto alla configurazione attuale:

- un aumento del consumo e della produzione di energia elettrica;
- un miglioramento nella qualità delle emissioni in atmosfera convogliate;
- un aumento del quantitativo di rifiuti prodotti.

Si sottolinea come l'incremento dei consumi di energia elettrica e della produzione di rifiuti risulti comunque del tutto trascurabile rispetto ai relativi consumi/produzioni complessivi della Raffineria.

Si evidenzia infine che in seguito alle modifiche apportate, l'unità FCC risulterà totalmente allineata alle Migliori Tecniche Disponibili (MTD) di settore applicabili a tale impianto.

Raffineria di Milazzo S.C.p.A.

Per maggiori dettagli in merito a quanto sopra illustrato si rimanda alle Schede AIA aggiornate riportate nell'Allegato 1 alla presente relazione. Le modifiche previste rispetto alla configurazione attuale della Raffineria sono state opportunamente evidenziate.

Sulla base di quanto sopra esposto, le modifiche introdotte dall'intervento di adeguamento all'unità FCC possono essere considerate come non sostanziali, ai sensi dell'art. 5 comma 1, lettera I-bis) del D.Lgs 152/06 e s.m.i.

6 CRONOPROGRAMMA DEGLI INTERVENTI

La realizzazione delle modifiche illustrate nel presente documento prevede lo sviluppo di attività preparatorie a partire dal mese di ottobre 2013, mentre il completamento e la messa in esercizio avverrà a seguito della fermata generale di manutenzione impianto attualmente prevista nel periodo marzo-aprile 2015.

7 ASSOGGETTABILITA' A VALUTAZIONE D'IMPATTO AMBIENTALE

In relazione a quanto esposto in precedenza, si sottolinea che la modifica proposta:

- non comporta incrementi di potenzialità della Raffineria;
- non provoca effetti significativi e negativi sull'ambiente.

pertanto in accordo all'art.20 comma 1 lettera b) del D.Lgs. 152/06 e s.m.i. non risulta soggetta alla procedura di verifica di assoggettabilità a Valutazione di Impatto Ambientale (VIA).

8 ATTESTAZIONE DI VERSAMENTO DELLA TARIFFA ISTRUTTORIA

In Allegato 2 alla presente relazione è incluso l'originale della quietanza di versamento della tariffa istruttoria, nell'importo previsto dall'art. 2 comma 5 del DM 24 aprile 2008.

ALLEGATO 1

AGGIORNAMENTO SCHEDE AIA

RAFFINERIA DI MILAZZO S.C.P.A.

PARTE COCTIES: DATI E NOTIZIE SULL'IMPIANTO DA AUTORIZZARE

RAFFINERIA DI MILAZZO S.C.P.A.

SCHEDA C octies - DATI E NOTIZIE SULL'IMPIANTO DA AUTORIZZARE

C octies.1 Impianto da autorizzare	_2
C octies.2 Sintesi delle variazioni	3
C octies.3 Consumi ed emissioni (alla capacità produttiva) dell'impianto da autorizzare	4

SCHEDA C octies - DATI E NOTIZIE SULL'IMPIANTO DA AUTORIZZARE

C octies.1 Impianto da autorizzare

Indicare se l'impianto da autorizzare:

- □ Coincide con l'assetto attuale → non compilare la scheda C
- ✓ Nuovo assetto → compilare tutte le sezioni seguenti

La Raffineria intende realizzare una serie di interventi di adeguamento presso l'unità di cracking catalitico a letto fluido (FCC), al fine di garantire il completo allineamento alle Migliori Tecniche Disponibili (MTD) di settore attualmente non applicate. Tali interventi consistono in particolare nella:

- Installazione di un Turbo-Expander in cui viene sfruttato il calore dei fumi prodotti nel rigeneratore per la produzione di energia elettrica;
- Installazione di cicloni multistadio per l'abbattimento delle emissioni di polveri.

C octies.2 Sintesi delle variazioni						
Temi ambientali	Variazioni					
Consumo di materie prime	NO					
Consumo di risorse idriche	NO					
Produzione di energia	SI					
Consumo di energia	SI					
Combustibili utilizzati	NO					
Fonti di emissioni in atmosfera di tipo convogliato	NO					
Emissioni in atmosfera di tipo convogliato	SI					
Fonti di emissioni in atmosfera di tipo non convogliato	NO					
Scarichi idrici	NO					
Emissioni in acqua	NO					
Produzione di rifiuti	SI					
Aree di stoccaggio di rifiuti	NO					
Aree di stoccaggio di materie prime, prodotti ed intermedi	NO					
Rumore	NO					
Odori	NO					
Altre tipologie di inquinamento	NO					

C octies.3 Consumi ed emissioni (alla capacità produttiva) dell'impianto da autorizzare					
Riferimento a Schede B, Addendum C, Cbis, Cter, Cquater, Cquinquies, Csexies e Csepties	Variazioni	Descrizione delle variazioni			
Addendum Cquinquies.1	NO	La realizzazione delle modifiche presso l'impianto FCC non comporta una variazione rispetto all'assetto della Raffineria alla Massima Capacità Produttiva autorizzato con Decreto VIA/AIA (Decreto prot. DVA DEC-2011-0000255 del 16/05/2011).			
B.2.2	NO	La realizzazione delle modifiche presso l'impianto FCC non comporta una variazione rispetto all'assetto della Raffineria alla Massima Capacità Produttiva autorizzato con Decreto VIA/AIA (Decreto prot. DVA DEC-2011-0000255 del 16/05/2011).			
Addendum Cquinquies.3	SI	L'installazione della nuova Turbo-Expander comporterà un aumento della produzione di energia elettrica pari a circa 102.492 MWh rispetto all'assetto della Raffineria alla Massima Capacità Produttiva autorizzato con Decreto VIA/AIA (Decreto prot. DVA DEC-2011-0000255 del 16/05/2011). Si veda Addendum Cocties.3.			
Addendum Csepties.4	SI	La realizzazione delle modifiche presso l'impianto FCC comporterà un aumento del tutto trascurabile (circa lo 0,07%) del consumo di energia elettrica rispetto all'assetto della Raffineria alla Massima Capacità Produttiva autorizzato con Decreto VIA/AIA (Decreto prot. DVA DEC-2011-0000255 del 16/05/2011). Si veda Addendum Cocties.4.			
Addendum Csepties.5	NO	La realizzazione delle modifiche presso l'impianto FCC non comporta una variazione rispetto all'assetto della Raffineria alla Massima Capacità Produttiva autorizzato con Decreto VIA/AIA (Decreto prot. DVA DEC-2011-0000255 del 16/05/2011).			
Addendum Cquinquies.6	NO	La realizzazione delle modifiche presso l'impianto FCC non comporta una variazione rispetto all'assetto della Raffineria alla Massima Capacità Produttiva autorizzato con Decreto VIA/AIA (Decreto prot. DVA DEC-2011-0000255 del 16/05/2011).			
Addendum Csexies.7	SI	L'installazione dei nuovi Separatori Terzo e Quarto Stadio permetterà di ottenere una riduzione di circa il 40% del quantitativo di polveri emesse dal Camino E7 rispetto all'assetto della Raffineria alla Massima Capacità Produttiva autorizzato con Decreto VIA/AIA (Decreto prot. DVA DEC-2011-0000255 del 16/05/2011). Si veda Addendum Cocties.7.			
B.8.2	NO	La realizzazione delle modifiche presso l'impianto FCC non comporta una variazione rispetto all'assetto della Raffineria alla Massima Capacità Produttiva autorizzato con Decreto VIA/AIA (Decreto prot. DVA DEC-2011-0000255 del 16/05/2011).			
B.9.2	NO	La realizzazione delle modifiche presso l'impianto FCC non comporta una variazione rispetto all'assetto della Raffineria alla Massima Capacità Produttiva autorizzato con Decreto VIA/AIA (Decreto prot. DVA DEC-2011-0000255 del 16/05/2011).			

Addendum Cquater.10	NO	La realizzazione delle modifiche presso l'impianto FCC non comporta una variazione rispetto all'assetto della Raffineria alla Massima Capacità Produttiva autorizzato con Decreto VIA/AIA (Decreto prot. DVA DEC-2011-0000255 del 16/05/2011).
Addendum Cquinquies.11	SI	La realizzazione delle modifiche presso l'impianto FCC comporterà un aumento della produzione di catalizzatori esauriti da FCC (CER: 160804) del tutto trascurabile (circa lo 0,6%) rispetto al produzione complessiva di rifiuti relativa all'assetto della Raffineria alla Massima Capacità Produttiva autorizzato con Decreto VIA/AIA (Decreto prot. DVA DEC-2011-0000255 del 16/05/2011). Si veda Addendum Cocties.11.
B.12	NO	La realizzazione delle modifiche presso l'impianto FCC non comporta una variazione rispetto all'assetto della Raffineria alla Massima Capacità Produttiva autorizzato con Decreto VIA/AIA (Decreto prot. DVA DEC-2011-0000255 del 16/05/2011).
B.13	NO	La realizzazione delle modifiche presso l'impianto FCC non comporta una variazione rispetto all'assetto della Raffineria alla Massima Capacità Produttiva autorizzato con Decreto VIA/AIA (Decreto prot. DVA DEC-2011-0000255 del 16/05/2011).
B.14	NO	La realizzazione delle modifiche presso l'impianto FCC non comporta una variazione rispetto all'assetto della Raffineria alla Massima Capacità Produttiva autorizzato con Decreto VIA/AIA (Decreto prot. DVA DEC-2011-0000255 del 16/05/2011).
B.15	NO	La realizzazione delle modifiche presso l'impianto FCC non comporta una variazione rispetto all'assetto della Raffineria alla Massima Capacità Produttiva autorizzato con Decreto VIA/AIA (Decreto prot. DVA DEC-2011-0000255 del 16/05/2011).
B.16	NO	La realizzazione delle modifiche presso l'impianto FCC non comporta una variazione rispetto all'assetto della Raffineria alla Massima Capacità Produttiva autorizzato con Decreto VIA/AIA (Decreto prot. DVA DEC-2011-0000255 del 16/05/2011).

ADDENDUM COCTIES

RAFFINERIA DI MILAZZO S.C.P.A.

C octie	C octies.3 Produzione di energia (alla capacità produttiva)							
			EN	IERGIA TERMIC	A	E	NERGIA ELETTI	RICA
Fase	Apparecchiatura	Combustibile utilizzato	Potenza termica di combustione nominale (kW)	Energia prodotta (MWh)	Quota ceduta a terzi (MWh)	Potenza elettrica nominale (kVA)	Energia prodotta (MWh)	Quota ceduta a terzi (MWh)
1	Forno F-1 Topping 3	Fuel oil Fuel gas GPL	163.000	686.136				
		Gas Naturale						
1	Forno F-1 Topping 4	Fuel oil Fuel gas GPL	163.000	1.129.553				
		Gas Naturale						
1	Forno F-201 HDT	Fuel gas GPL Gas Naturale	6.300	79.705				
1	Forno F-301, F-302, F-303- Reforming	Fuel gas GPL Gas Naturale	53.800	489.614				
1	Forno F-102-FCC	Fuel oil Fuel gas GPL	36.000	263.019				
		Gas Naturale						
1	Forno F-01, F-02A, F-02B- HDC	Fuel gas GPL	55.000	326.762				
	1 025 1150	Gas naturale						
1	Forno F-201- HDT2	Fuel gas GPL Gas naturale	17.430	197.608				
1	Forno F-101, F-102, F-201, F-301- LC Finer	Fuel oil Fuel gas GPL Gas Naturale	40.000	227.789				
1	Forno F-101- Idrogeno 1	Fuel gas GPL Gas naturale	83.000	744.320				

Fuel oil Fuel gas GPL			Fire Land		T	ı	Г	1
1	1	Forno F-1 Vacuum	Fuel gas GPL	83.000	548.518			
1 Rig H2SO4 – F302 GPL Gas naturale 1.200 11.824 1 Forno F-101 HDS2 Fuel gas GPL Gas naturale 11.000 108.094 1 Forno F-151 HDS Fuel gas GPL Gas naturale 8.100 90.929 1 Zolfo 1 (SRU 1) Fuel gas GPL Gas naturale 12.440 1 Zolfo 2 (SRU 2) Fuel gas GPL Gas naturale 131.666 1 Zolfo 3 (SRU3) Fuel Gas Gas Naturale 5.750 1 Steam Reformer HMU3 (018F01) Gas naturale 50.700 76.651 2 Caldaia C5 Fuel oil Fuel gas GPL Gas naturale 109.000 260.644 Fuel oil Fuel orge Fuel oil Fuel gas GPL Gas naturale 109.000 260.644								
Cas naturale Fuel gas GPL Gas naturale	4	D:= 110004 F000		4.000	44.004			
1	1	Rig H2SO4 - F302		1.200	11.824			
1								
Cas naturale	1	1 Forno F-101 HDS2		11 000	109.004			
1	1	F01110 F-101 HD32		11.000	100.094			
1 Forno F-151 HDS GPL Gas naturale 8.100 90.929 1 Zolfo 1 (SRU 1) Fuel gas GPL Gas naturale 12.440 1 Zolfo 2 (SRU 2) GPL Gas naturale 13.950 1 Zolfo 3 (SRU3) Fuel Gas Gas Naturale 5.750 1 Steam Reformer HMU3 (018F01) Gas naturale 50.700 76.651 2 Caldaia C5 Fuel oil Fuel gas GPL Gas naturale 109.000 260.644 Fuel oil Fuel oil Fuel oil Fuel oil Fuel oil Fuel oil Fuel oil Fuel oil Fuel oil Fuel oil 109.000 260.644								
Cas naturale	1	Forno F-151 HDS		8 100	90 929			
Tolfo 1 (SRU 1)	'	101101-1311103		0.100	90.929			
1 Zolfo 1 (SRU 1) GPL Gas naturale 1 Zolfo 2 (SRU 2) Fuel gas GPL Gas naturale 131.666 1 Zolfo 3 (SRU3) Fuel Gas Gas Naturale 5.750 1 Steam Reformer HMU3 (018F01) Gas naturale 50.700 76.651 2 Caldaia C5 Fuel oil Fuel gas GPL Gas naturale 109.000 260.644 Euel oil Fuel gas GPL Gas naturale Fuel oil Fuel gas GPL Gas naturale 109.000 260.644								
Gas naturale Fuel gas Gas naturale 131.666	1	Zolfo 1 (SRU 1)		12 440				
1 Zolfo 2 (SRU 2)		20110 1 (0110 1)		12.110				
1 Zolfo 2 (SRU 2) GPL Gas naturale 1 Zolfo 3 (SRU3) Fuel Gas Gas Naturale 1 Steam Reformer HMU3 (018F01) Gas naturale 2 Caldaia C5 Fuel gas GPL Gas naturale Fuel oil Fuel gas GPL Gas naturale Fuel oil Fuel gas GPL Gas naturale Fuel oil Fuel oil Fuel oil Fuel oil Fuel gas GPL Gas naturale Fuel oil Fuel								
Gas naturale	1	Zolfo 2 (SRU 2)		13.950	131.666			
1 Zolfo 3 (SRU3) Fuel Gas Gas Naturale 5.750 1 Steam Reformer HMU3 (018F01) Gas naturale 50.700 76.651 2 Caldaia C5 Fuel oil Fuel gas GPL Gas naturale 109.000 260.644 Fuel oil Fuel oil Fuel gas GPL Gas naturale Fuel oil Fuel gas GPL Gas naturale Fuel oil Fuel gas GPL Gas naturale		(,						
Steam Reformer Gas naturale 50.700 76.651		- W - (05115)						
1 HMU3 (018F01) Gas naturale 50.700 76.651 2 Caldaia C5 Fuel gas GPL Gas naturale Fuel oil Fuel gas	1	Zolfo 3 (SRU3)	Gas Naturale	5.750				
2 Caldaia C5 Fuel gas GPL Gas naturale Fuel oil Fuel gas GPL Gas naturale	1		Gas naturale	50.700	76.651			
Gas naturale Fuel oil Fuel gas			Fuel oil					
Fuel oil Fuel gas	2	Caldaia C5		109.000	260.644			
Fuel das			Gas naturale					
2 Coldeia C 201 Fuel gas 71 000 253 504			Fuel oil					
2 Caldala C-201 GPL 71.000 252.594	2	Caldaia C-201		71.000	252.594			
Gas naturale								
Fuel oil								
Caldaia CO Roiler Fuel das		Caldaia CO Boiler						
2 FCC GPL 106.000 506.100	2			106.000	506.100			
Gas naturale								

2	Turbogas TGG	Fuel gas GPL Gas naturale	91.000	875.255	25.000	234.640	
2	Turbina a vapore TGV	Vapore (fluido motore)	0	0	18.000	140.710	
2	Turbina a vapore TGV4	Vapore (fluido motore)	0	0	3.700	20.680	
2	Turbo-Expander 30-K-120	Gas di combustione da rigeneratore FCC	0	0	<mark>4.625</mark>	102.492	
	TOTALE		1.180.670	7.006.781	<mark>51.325</mark>	<mark>498.522</mark>	

Addendum C.octies 4 Consumo di energia (alla capacità produttiva)									
Fase o gruppi di fasi	Energia termica consumata (MWh)	Energia elettrica consumata (MWh) Prodotto principale		Consumo termico specifico (kWh/unità)	Consumo elettrico specifico (kWh/unità)				
1 - Raffinazione	5.080.000 ⁽¹⁾	599.245	10.625.374 t ⁽²⁾	478	56,4				
2 – Gestione Utilities	900.000 ⁽³⁾	94.508	1.710.913.148 kWh ⁽⁴⁾	0,5	<mark>0,055</mark>				
3 – Stoccaggio e Movimentazione	0	13.000	10.625.374 t ⁽²⁾	0	1,22				
4 – Trattamento Reflui	0	15.890	5.250.000 t ⁽⁵⁾	0	3,03				
5 – Trattamento Rifiuti	0	0	12.146 t ⁽⁶⁾	0	0				
TOTALE	5.980.000	<mark>722.643⁽⁷⁾</mark>		484,5	60,7				

Note:

- (1): Energia termica consumata = Energia termica combustibili + vapore importato dall'esterno;
- (2): Prodotto principale: Greggio + semilavorati+additivi+H2;
- (3): Energia termica consumata: Energia termica combustibili energia termica per produzione EE;
- (4): Prodotto principale: Energia elettrica e vapore tecnologico ad uso interno;
- (5): Prodotto principale: Acque reflue scaricate a mare;
- (6): Prodotto principale: Rifiuti prodotti;
- (7): A meno delle perdite stimate per il 2007 in 7.960.000 kWh.

Cocties.7 Emissioni in atmosfera di tipo convogliato (alla capacità produttiva)

Camino	Portata Nm³/h ⁽¹⁾	Inquinanti	Flusso di massa, kg/h	Flusso di massa, kg/anno	Concentrazione, mg/Nm³	% O ₂
		SO ₂	150,55	722.627	1.044,00	
		NOx	57,67	276.815	400,00	
		Polveri	6,63	31.834	46,00	
		CO	1,44	6.920	10,00	
		CO ₂	35.786	171.772.000	248.211	
		Arsenico	0,14	692	1,00	
		Benzene	0,72	3.460	5,00	
		Cadmio	0,04	208	0,30	
		Cloro	4,33	20.761	30,00	
E1 -	444475	COV	1,44	6.920	10,00	2
Topping 3 - F1	144.175	Cromo	0,14	692	1,00	3
		Rame	1,44	6.920	10,00	
		NH ₃	4,33	20.761	30,00	
		IPA	0,01	69	0,10	
		Nichel	0,14	692	1,00	
			1,44	6.920	10,00	
		Piombo	5,05	24.221	35,00	
		PM10	0,43	2.076	3,00	
		Selenio	,			
		Zinco	1,44	6.920	10,00	
		SO ₂	124,86	1.032.738	907,00	
		NOx	47,50	392.828	345,00	
		Polveri CO	6,88 2,48	56.932 20.495	50,00 18,00	
		CO ₂	33.635,35	278.198.000	244.327	
		Arsenico	0,14	1.139	1,00	
		Benzene	0,69	5.693	5,00	
		Cadmio	0,04	342	0,30	
E3 - Topping 4 - F1		Cloro	4,13	34.159	30,00	
	137.665	COV	0,69	5.693	5,00	3
	107.000	Cromo	0,14	1.139	1,00	
		Rame	1,38	11.386	10,00	
		NH₃	4,13	34.159	30,00	
		IPA	0,01	114	0,10	
		Nichel	0,14	1.139	1,00	
		Piombo	1,38	11.386	10,00	
		PM10	4,13	34.159	30,00	
		Selenio	0,41	3.416	3,00	
		Zinco	1,38	11.386	10,00	

SO2	Camino	Portata Nm³/h ⁽¹⁾	Inquinanti	Flusso di massa, kg/h	Flusso di massa, kg/anno	Concentrazione, mg/Nm³	% O ₂
Poliveri 3,78 27,664 50,00 CO 0,76 5.532 10 CO 0,76 5.532 10 CO 18,761 137,319,000 248,211 Arsenico 0,14 692 1,00 Benzene 0,72 3,460 5,00 Cadmio 0,04 208 0,30 Cloro 4,33 20,761 30,00 Cloro 4,33 20,761 30,00 Cloro 0,14 692 1,00 Rame 1,44 6,920 10,00 Rame 1,44 6,920 10,00 Piombo 2,274 19,922 75,000 Piombo 2,274 19,922 75,000 CO 13,37 99,604 375,000 CO 2,787 68,216,000 256,828 Arsenico 0,030 266 1,000 Piombo 1,940 7,968 30,000 Cloro 0,910 7,968 30,000 Cloro 0,910 7,968 30,000 Cromo 0,030 266 1,000 Rame 0,303 2,656 10,000 Piombo Nichel 0,030 266 1,000 Piombo Nichel 0,030 266 1,000 Piombo 0,303 2,656 10,000 Piombo 0,303 2			SO ₂			1.044,00	
CO		l [
CO2		l [
Arsenico		l -					
Paramete Paramete		l -		_			
Total Paris		l -	Arsenico	,		· · · · · · · · · · · · · · · · · · ·	
Total Parameter Total Para			Benzene				
Total Part		l [Cadmio	· · ·			
Vacuum - F1		l <u>[</u>	Cloro	4,33	20.761	30,00	
Como	_	75 584	COV	1,44	6.920	5,00	3
NH ₃	Vacuum - F1	70.004	Cromo	0,14	692	1,00	O
PA		[Rame	1,44	6.920	10,00	
Nichel		1	NH ₃	4,33	20.761	30,00	
Nichel		1 [IPA	0,01	69	0,10	
Piombo		l [0,14	692	1,00	
PM10 5,05 24.221 30,00 Selenio 0,43 2.076 3,00 Zinco 1,44 6.920 10,00 SO ₂ 40,88 358.108 1.348,000 NOx 10,31 90.308 340,000 Polveri 2,274 19.922 75,000 CO 13,37 99.604 375,000 CO ₂ 7.787 68.216.000 256.828 Arsenico 0,030 266 1,000 Benzene 0,152 1.328 5,000 Cloro 0,910 7.968 30,000 Cloro 0,910 7.968 30,000 Cloro 0,910 7.968 30,000 Rame 0,303 2.656 10,000 Rame 0,303 2.656 10,000 NH ₃ 0,910 7.968 30,000 NH ₃ 0,910 7.968 10,000 Nichel 0,030 266 1,000 Piombo 0,303 2.656 10,000 PM10 1,213 10.624 40,000				1,44	6.920	10,00	
Selenio				5,05	24.221	30,00	
Science 1,44 6,920 10,00		l 1		0.43	2.076	3.00	
SO2		l 1		1.44	6.920	10.00	
NOx 10,31 90.308 340,000		1		40,88	358.108	· ·	
Polveri 2,274 19.922 75,000 CO			=	-	90.308	· ·	
CO							
Arsenico 0,030 266 1,000 Benzene 0,152 1.328 5,000 Cadmio 0,009 80 0,300 Cloro 0,910 7.968 30,000 Cromo 0,030 266 1,000 Rame 0,303 2.656 10,000 NH ₃ 0,910 7.968 30,000 IPA 0,003 27 0,100 Nichel 0,030 266 1,000 Piombo 0,303 2.656 10,000 Piombo 0,303 2.656 10,000 Piombo 0,303 2.656 10,000 Piombo 1,213 10.624 40,000			CO	_	99.604		
Benzene 0,152 1.328 5,000			CO ₂	7.787	68.216.000	256.828	
Cadmio		l [Arsenico	0,030	266	, , , , , , , , , , , , , , , , , , ,	
Cloro 0,910 7.968 30,000 3		[Benzene	0,152	1.328	·	
E6 FCC F102 FCC F102 COV 0,910 7.968 30,000 Cromo 0,030 266 1,000 Rame 0,303 2.656 10,000 NH ₃ 0,910 7.968 30,000 IPA 0,003 27 0,100 Nichel 0,030 266 1,000 Piombo 0,303 2.656 10,000 PM10 1,213 10.624 40,000		[Cadmio	0,009	80	0,300	
FCC F102 Cromo		l	Cloro	0,910	7.968	30,000	
Cromo 0,030 266 1,000 Rame 0,303 2.656 10,000 NH ₃ 0,910 7.968 30,000 IPA 0,003 27 0,100 Nichel 0,030 266 1,000 Piombo 0,303 2.656 10,000 PM10 1,213 10.624 40,000		30.321	COV	0,910	7.968	30,000	3
Rame 0,303 2.656 10,000 NH3 0,910 7.968 30,000 IPA 0,003 27 0,100 Nichel 0,030 266 1,000 Piombo 0,303 2.656 10,000 PM10 1,213 10.624 40,000		00.02	Cromo	0.030	266	1,000	· ·
NH ₃ 0,910 7.968 30,000 IPA 0,003 27 0,100 Nichel 0,030 266 1,000 Piombo 0,303 2.656 10,000 PM10 1,213 10.624 40,000						10,000	
IPA 0,003 27 0,100 Nichel 0,030 266 1,000 Piombo 0,303 2.656 10,000 PM10 1,213 10.624 40,000						30,000	
Nichel 0,030 266 1,000 Piombo 0,303 2.656 10,000 PM10 1,213 10.624 40,000				<u> </u>			
Piombo 0,303 2.656 10,000 PM10 1,213 10.624 40,000				· ·			
PM10 1,213 10.624 40,000				· ·		· · · · · · · · · · · · · · · · · · ·	
1,310				<u> </u>		, ·	
				1 1		· · · · · · · · · · · · · · · · · · ·	
Zinco 0,303 2.656 10,000				<u> </u>			

Camino	Portata Nm³/h ⁽¹⁾	Inquinanti	Flusso di massa, kg/h	Flusso di massa, kg/anno	Concentrazione, mg/Nm³	% O ₂		
		SO ₂	346,34	3.033.918	1500,00			
		NOx	109,67	960.741	475,00			
		Polveri	<mark>11,54</mark>	<mark>101.090</mark>	<mark>50,00</mark>			
		CO	57,72	505.653	250,00			
		CO ₂	15.848	138.828.000	68.638			
		Arsenico	0,23	2.023	1,00			
	L	Benzene	1,15	10.113	5,00			
	L	Cadmio	0,07	607	0,30			
E7 CO Boiler	L	Cloro	6,93	60.678	30,00			
- FCC	230.892	COV	2,31	20.226	10,00	3		
		Cromo	0,23	2.023	1,00			
	L	Rame	2,31	20.226	10,00			
	L	NH₃	6,93	60.678	30,00			
	<u> </u>	IPA	0,02	202	0,10			
	L	Nichel	0,23	2.023	1,00			
		Piombo	2,31	20.226	10,00			
	<u> </u>	PM10	6,93	60.678	30,00			
	_	Selenio	0,69	6.068	3,00			
		Zinco	2,31	20.226	10,00			
	<u> </u>	SO ₂	9,34	81.811	143,00			
	<u> </u>	NOx	16,33	143.026	250,00			
		Polveri	0,33	2.861	5,00			
		CO	1,31	11.442	20,00			
		CO ₂	14.542,12	127.389.000	222.667			
	L	Arsenico	NA	NA	NA			
		Benzene	0,33	2.861	5,00			
		Cadmio	NA	NA	NA			
E8 HDT F201 Ref. Cat. F301/302/303		Cloro	1,96	17.163	30,00			
	65.309	COV	0,33	2.861	5,00	3		
	05.509	Cromo	NA	NA	NA	3		
	Ī	Rame	NA	NA	NA			
	Ī	NH₃	1,96	17.163	30,00			
		IPA	NA	NA	NA			
		Nichel	NA	NA	NA			
		Piombo	NA	NA	NA			
		PM10	0,33	2.861	5,00			
		Selenio	NA	NA	NA			
	Γ	Zinco	NA	NA	NA			

Note:

Camino	Portata Nm³/h ⁽¹⁾	Inquinanti	Flusso di massa, kg/h	Flusso di massa, kg/anno	Concentrazione, mg/Nm³	% O ₂
		SO ₂	1,492	13.067	143,00	
		NOx	1,669	14.620	160,00	
		Polveri	0,209	1.827	20,00	
		CO	1,043	9.137	100,00	
		CO ₂	2.322,603	20.346.000	222.666	
		Arsenico	NA	NA	NA	
		Benzene	0,052	457	5,00	
		Cadmio	NA	NA	NA	
E0.11D04		Cloro	0,313	2.741	30,00	
E9 HDS1 - F151	10.431	COV	0,209	1.827	20,00	3
- F131		Cromo	NA	NA	NA	
		Rame	NA	NA	NA	
		NH ₃	0,313	2.741	30,00	
		IPA	NA	NA	NA	
		Nichel	NA	NA	NA	
		Piombo	NA	NA	NA	
	_	PM10	0,052	457	5,00	
		Selenio	NA	NA	NA	
	_	Zinco	NA	NA	NA	
		SO ₂	338,81	2.968.000	8897	
		NOx	5,37	47.000	141	
		Polveri	0,34	3.000	9	
	_	CO	19,18	168.000	504	
		CO_2	3363,24	29.462.000	88317	
		Arsenico	NA	NA	NA	
		Benzene	NA	NA	NA	
	_	Cadmio	NA	NA	NA	
E10		Cloro	NA	NA	NA	
Zolfo 1 e	00.004	COV	0,00	0,00	0,00	•
2– SRU1 e 2	38.081	Cromo	NA	NA	NA	3
		Rame	NA	NA	NA	
		Fluoro	NA	NA	NA	
		NH ₃	1,14	10.008	30	
		IPĂ	ŇA	NA	NA	
		Nichel	NA	NA	NA	
		Piombo	NA	NA	NA	
		PM10	0,00	0,00	0,00	
		Selenio	NA	NA	NA	
	 	Zinco	NA	NA	NA	

Camino	Portata Nm³/h ⁽¹⁾	Inquinanti	Flusso di massa, kg/h	Flusso di massa, kg/anno	Concentrazione, mg/Nm³	% O ₂
		SO ₂	0,119	1.699	143,00	
		NOx	0,226	1.901	160,00	
		Polveri	0,014	119	10,00	
		CO	0,423	3.565	300,00	
		CO ₂	314,364	2.646.000	222.690	
		Arsenico	NA	NA	NA	
		Benzene	0,007	59	5,00	
		Cadmio	NA	NA	NA	
E12		Cloro	0,042	356	30,00	
Rig.	1.412	COV	0,071	594	50,00	3
Acido		Cromo	NA	NA	NA	
		Rame	NA	NA	NA	
		NH ₃	0,042	356	30,00	
		IPA	NA	NA	NA	
		Nichel	NA	NA	NA	
		Piombo	NA	NA	NA	
		PM10	0,007	59	5,00	
		Selenio	NA	NA	NA	
		Zinco	NA	NA	NA	
		SO ₂	0,2216	1.942	57,75	
		NOx	NA	NA	NA	
		Polveri	NA	NA	NA	
		CO	NA	NA	NA	
		CO ₂	NA	NA	NA	
		Arsenico	NA	NA	NA	
		Benzene	NA	NA	NA	
		Cadmio	NA	NA	NA	
E13		Cloro	NA	NA	NA	
Vent Rig.	3.995	COV	NA	NA	NA	3
Acido		Cromo	NA	NA	NA	
		Rame	NA	NA	NA	
		Mercurio	NA	NA	NA	
		IPA	NA	NA	NA	
		Nichel	NA	NA	NA	
		Piombo	NA	NA	NA	
		PM10	NA	NA	NA	
		Selenio	NA	NA	NA	
		Zinco	NA	NA	NA	

Camino	Portata Nm³/h ⁽¹⁾	Inquinanti	Flusso di massa, kg/h	Flusso di massa, kg/anno	Concentrazione, mg/Nm³	% O ₂
		SO ₂	50,11	439.000	108,77	
		NOx	119,52	1.047.000	259,42	
		Polveri	8,68	76.000	18,83	
		CO	43,38	380.000	94,15	
		CO ₂	29.685	260.038.000	64429,82	
		Arsenico	0,39	3.404	0,84	
	_	Benzene	1,94	17.020	4,22	
		Cadmio	0,12	1.021	0,25	
E14 -	400 700	Cloro	11,66	102.118	25,30	40.5
CTE	460.729	COV	15,54	136.160	33,74	13,5
	_	Cromo	0,39	3.404	0,84	
	_	Rame	3,89	34.039	8,43	
	-	NH ₃	11,66	102.118	25,30	
	_	IPA Nichel	0,04 0,39	340 3.404	0,084 0,84	
		Piombo	3,89	34.039	8,43	
		PM10	1,94	17.020	4,22	
	-	Selenio	1,17	10.212	2,53	
	-	Zinco	3,89	34.039	8,43	
		SO ₂	ND	ND	ND	
		NOx	ND	ND	ND	
		Polveri	ND ND	ND	ND ND	
		CO	ND	ND	ND	
		CO ₂	ND	ND	ND	
		Arsenico	ND	ND	ND	
		Benzene	ND	ND	ND	
		Cadmio	ND	ND	ND	
		Cloro	ND	ND	ND	
E17		COV	ND	ND	ND	
Camino emerg. FCC	ND	Cromo	ND	ND	ND	3
		Rame	ND	ND	ND	
		Fluoro	ND	ND	ND	
		Mercurio	ND	ND	ND	
		IPA	ND	ND	ND	
		Nichel	ND	ND	ND	
		Piombo	ND	ND	ND	
		PM10	ND	ND	ND	
		Selenio	ND	ND	ND	
		Zinco	ND	ND	ND	

Camino	Portata Nm³/h ⁽¹⁾	Inquinanti	Flusso di massa, kg/h	Flusso di massa, kg/anno	Concentrazione, mg/Nm³	% O ₂
		SO ₂	53,77	471.000	343,50	
		NOx	31,39	275.000	200,56	
		Polveri	2,05	18.000	13,13	
		CO	15,64	137.000	99,91	
		CO ₂	24.243,26	212.371.000	154882	
		Arsenico	0,16	1.371	1,00	
		Benzene	0,78	6.856	5,00	
		Cadmio	0,05	411	0,30	
E25 - HDC F01,F02A,F02B		Cloro	4,70	41.135	30,00	
H 1 F101	156.527	COV	4,70	41.135	30,00	3
LC Finer F101-		Cromo	0,16	1.371	1,00	
102-201-301		Rame	1,57	13.712	10,00	
		NH ₃	4,70	41.135	30,00	
		IPA	0,02	137	0,10	
		Nichel	0,16	1.371	1,00	
		Piombo	1,57	13.712	10,00	
			1,57	13.712	10,00	
		PM10 Selenio	0,47	4.113	3,00	
		Zinco	1,57	13.712	10,00	
		SO ₂	1,773	15.533	143,00	
		NOx	3,720	32.587	300,00	
		Polveri	0,992	8.690	80,00	
		CO	3,100	27.156	250,00	
		CO ₂	2.761,073	24.187.000	222.669	
		Arsenico	NA	NA	NA	
E26 HDS2 – F101		Benzene	0,062	543	5,00	
		Cadmio	NA 0.070	NA 0.050	NA 20.00	
	40.400	Cloro COV	0,372	3.259 2.172	30,00	2
	12.400	Cromo	0,248 NA	2.172 NA	20,00 NA	3
		Rame	NA NA	NA NA	NA NA	
		NH ₃	0.372	3.259	30.00	
		IPA	NA	NA	NA	
		Nichel	NA	NA	NA	
		Piombo	NA	NA	NA	
		PM10	0,062	543	5,00	
		Selenio	NA	NA	NA	
		Zinco	NA	NA	NA	

Camino	Portata Nm³/h ⁽¹⁾	Inquinanti	Flusso di massa, kg/h	Flusso di massa, kg/anno	Concentrazione, mg/Nm³	% O ₂
		SO ₂	3,241	28.395	143,00	
		NOx	4,534	39.714	200,00	
		Polveri	0,907	7.942,76	40	
		CO	5,667	49.642	250	
		CO ₂	5.047,374	44.215.000	222668,10	
		Arsenico	NA	NA	NA	
		Benzene	0,113	993	5,00	
		Cadmio	NA	NA	ŇA	
	l	Cloro	0,680	5.957	30,00	
E27 – HDT	22.668	COV	0,000	3.971	20,00	3
2 – F201	l	Cromo	NA	NA	NA NA	
	l	Rame	NA	NA	NA	
		NH ₃	0,680	5.957	30,00	
		IPA	NA	NA	NA	
		Nichel	NA	NA	NA NA	
		Piombo	NA	NA	NA NA	
		PM10	0,113	993	5,00	
		Selenio	NA	NA	NA	
		Zinco	NA	NA	NA	
		SO ₂	ND	ND	ND	
	ND	NOx	ND	ND	ND	
Torcia		Polveri	ND	ND	ND	ND
		CO	ND	ND	ND	
		CO ₂	ND	68.187.120	ND	
C		Benzene	ND	ND	ND	
Cappe laboratorio	ND	COV	ND	ND	ND	ND
1-35	IND	IPA	ND	ND	ND ND	ND
		IFA	ND	IND	ND	
E22 - URV caric. Autobotti benzine	312	COV	0,17	480	550	ND
E23 - URV pontile navi	ND	COV	ND	ND	ND	ND
E29 -		Benzene	ND	ND	ND	
Impianto TAZ	ND	COV	ND	ND	ND	ND

Note:

Camino	Portata Nm³/h ⁽¹⁾	Inquinanti	Flusso di massa, kg/h	Flusso di massa, kg/anno	Concentrazione, mg/Nm ³	% O ₂
		SO ₂	1,73	15.193	35	
		NOx	9,91	86.816	200	
		Polveri	0,25	2.170	5	
		CO	3,96	34.727	80	
		CO_2	21.158	185.340.000	426.971	
		Arsenico	NA	NA	NA	
		Benzene	0,25	2.170	5	
		Cadmio	NA	NA	NA	
E30 -		Cloro	1,49	13.023	30	
HMU3 – 18F01	49.553	COV	0,99	8.682	20	3
		Cromo	NA	NA	NA	
		Rame	NA	NA	NA	
		NH₃	1,49	13.023	30	
		IPA	NA	NA	NA	
		Nichel	NA	NA	NA	
		Piombo	NA	NA	NA	
		PM10	0,25	2.170	5	
		Selenio	NA	NA	NA	
		Zinco	NA	NA	NA	
E31- VRU- 2 Unità		COV	21,30	N.D.	10.000	
Recupero Vapori	2.130	Benzene	0,0106	N.D.	5	3
pontile navi n°2		1,3-Butadiene	0,0106	N.D.	5	

Nota:

1 Valore medio anno di fumi secchi al 3% di O_2 con l'unica eccezione dei fumi del camino E14 calcolati al 13,5% ND: Non Disponibile.

NA: Non Applicabile.

I valori riportati nella scheda sono da considerarsi indicativi delle emissioni medie al camino nel rispetto dei limiti applicabili all'intera Raffineria in base alla normativa vigente (Allegato I -Parte IV - Sezione 1 alla PARTE QUINTA del D. Lgs152/06).

Addendum Cocties.11 Produzione di rifiuti (alla capacità produttiva)

Codice CER	Descrizione	Stato fisico	Quantità annua prodotta (ton)	Fase di provenienza	Stoccaggio		
					N° area	Modalità	Destinazione
050103	Morchie depositate sui fondi dei serbatoi	Fangoso Palabile	448,70	1-3	1-2-3-4	Fusti	D9/D15
050106	Fanghi oleosi prodotti dalla manutenzione di impianti o apparecc.	Fangoso palabile	216,47	1-3	1-2-3-4	Fusti	D15/D1/D9
050109	Fanghi prodotti dal trattamento in loco degli effluenti contenenti sostanze pericolose	Fangoso palabile	611,58	4	1-2-3-4	Big bags/Cassone scarrabile	D9/D1
050114	Rifiuti prodotti dalle torri di raffreddamento	Fangoso palabile	16,1	3	1-2-3	Fusti	D9/D1
050115	Filtri di argilla esauriti	Solido polverulento	78,06	1	1-2-3-4	Big bags	D9
050702	Rifiuti contenenti zolfo	Solido polverulento	122,85	1	1-2-3	Big bags	D1
060101	Acido solforico ed acido solforoso	Liquido	355,32	1-2	1-2-3	Autobotte	R6
060313	Sali e loro soluzioni contenenti metalli pesanti	Solido polverulento	25,84	1-2	1-2-3-4	Big bags	D1
060314	Sali e loro soluzioni diversi da quelli di cui alle voci 060311 e 060313	Solido polverulento	110,49	1	1-2-3	Fusti	D9/D1
060315	Ossidi metallici contenenti metalli pesanti	Solido polverulento	16,36	1-2	1-2-3	Fusti	D9
060316	Ossidi metallici diversi da quelli di cui alla voce 060315	Solido polverulento	3,02	1-2	1-2-3	Fusti	D15/D1/D9
060405	Rifiuti contenenti altri metalli pesanti	Solido non polverulento	2,66	1-2	1-2-3	Fusti	D9/D15
061302	Carbone attivato esaurito (tranne 060702)	Solido polverulento	45	1-2	1-2-3-4	Fusti	D1/D9
070104	Altri solventi organici, soluzioni di lavaggio ed acque madri	Liquido	0,02	1-2-3	1-2-3	Fusti	D9
080410	Adesivi e sigillanti di scarto, diversi da quelli di cui alla voce 080409	Liquido	0,08	1-2-3	1-2-3	Fusti	D9
100117	Ceneri leggere prodotte dal coincerimento, diverse da quelle di cui alla voce 100116	Solido polverulento	1,74	1-2	1-2-3	Fusti	D1

120117	Materiale abrasivo di scarto, diverso da quello di cui alla voce 120116	Solido polverulento	200,41	1-2-3	1-2-3	Big bags	D1
130205	Scarti di olio minerale per motori, ingranaggi e lubrificazione non clorurati	Liquido	71,80	1-2-3	1-2-3	Autobotte	R13
130301	Oli isolanti e termoconduttori contenenti PCB	Liquido	13,64	1-2-3	4	Contenitori ADR	D9
130802	Altre emulsioni	Liquido	0,20	1-2-3	1-2-3	Fusti	D9
150102	Imballaggi in plastica	Solido non polverulento	0,98	1-2-3	1-2-3-4	Sfuso	D1/D9
150103	Imballaggi in legno	Solido non polverulento	129,99	1-2-3-5	1-2-3	Sfuso in cassoni	R13
150104	Imballaggi metallici	Solido non polverulento	4,46	1-2-3-5	1-2-3-4	Sfuso in cassoni/Big bags	D1
150106	Imballaggi in materiali misti	Solido non polverulento	7,86	1-2-3-5	1-2-3	Sfuso in cassoni/Sfusi	D9
150107	Imballaggi in vetro	Solido non polverulento	5,37	1-2-3-5	1-2-3-4	Big bags	D1
150202	Assorbenti, materiali filtranti, stracci e indumenti protettivi	Solido non polverulento	38,05	1-2-3-5	1-2-3	Fusti/Big bags	D1/D15
150203	Assorbenti, materiali filtranti, stracci e indumenti protettivi, diversi da quelli di cui alla voce 150202	Solido polverulento	16,21	1-2-3-5	1-2-3-4	Big-bags	D1
160103	Pneumatici fuori uso	Solido non polverulento	1,08	3	1-2-3	Fusti/Sfuso	R13
160209	Trasformatori e condensatori contenenti PCB	Solido non polverulento	38,87	1-2-3-5	4	Contenitori idonei	D9
160214	Apparecchiature fuori uso diverse da cui alle voci 160209 e 160213	Solido non polverulento	1,99	1-2-3-5	1-2-3-4	Big bags	R13
160303	Rifiuti inorganici, contenenti sostanze pericolose	Solido polverulento	0,06	1-2-3	1-2-3	Fusti, big bags	D1/D9
160304	Rifiuti inorganici, contenenti sostanze pericolose, diversi da quelli di cui alla voce 160303	Solido non polvirulento	13,48	1-2-3	1-2-3-4	Big bag/-Fusti	D1
160305	Rifiuti organici, contenenti sostanze pericolose	Solido polvirulento	2,22	1-2-3	1-2-3	Fusti, big bags	D1/D9
160306	Rifiuti organici, diversi da quelli di cui alla voce 160305	Fangoso palabile	0,07	1-2-3-4-5	1-2-3	Fusti/Cassone	D9

160506	Sostanze chimiche di laboratorio contenenti sostanze pericolose	Liquido	0,81	1-2	1-2-3	Fusti	D9
160601	Batterie al piombo	Solido non polverulento	2,3	1-2	4	Contenitori in polietilene	R13
160602	Batterie al nichel-cadmio	Solido non polverulento	0,5	1-2-3	4	Contenitori in polietilene	R13
160802	Catalizzatori esauriti contenenti metalli di tranzizione	Solido non polverulento	2.417,77	1	1-2-3-4	Fusti/Cassone scarrabile	D15/D9/R13
160803	Catalizzatori esauriti contenenti metalli di transizione o composti di metalli di transizione, non specificati altrim	Solido non polverulento	193,19	1	1-2-3-4	Fusti/Big bags	D15/D1/D9
160804	Catalizzatori esauriti da cracking catalitico fluido (tranne 16 08 07)	Solido polverulento	1.846	1	1-2-3-4	Silos/Big bags	R13/D1
161105	Rivestimenti e materiali refrattari provenienti da lavorazioni non metallurgiche	Solido non polverulento	30,97	1-2-3	1-2-3	Fusti	D15
161106	Rivestimenti e materiali refrattari provenienti da lavorazioni non metallurgiche, diversi da quelli di cui alla voce da 161105.	Solido polverulento	174,70	1-2-3	1-2-3-4	Cassone scarrabile	D1
170101	Cemento	Solido non polverulento	2,36	1-2-3-4-5	1-2-3	Cassone scarrabile	D1
170201	Legno	Solido non polverulento	56,95	1-2-3-4-5	1-2-3	Sfuso/Cassoni scarrabili	D1
170202	Vetro	Solido non polverulento	0,7	1-2-3-4-5	1-2-3	Sfuso/Cassoni scarrabili	D1
170203	Plastica	Solido non polverulento	31,23	1-2-3-4-5	1-2-3	Big bags	D1
170405	Ferro e acciaio	Solido non polverulento	1.592,44	1-2-3-4-5	1-2-3	Sfusi	R4/R13

170411	Cavi, diversi da quelli di cui alla voce 17 04 10	Solido non polverulento	21,18	1-2-3-4-5	1-2-3-4	Big bags	R13
170503	Terra, rocce contenenti sostanze pericolose	Fangoso palabile	585,55	2-3	1-2-3-4	Big-bags/Cassone scarrabile/Big bags/Fusti	D1/D9
170504	Terra, rocce contenenti sostanze pericolose, diverse da 170503	Solido polverulento	982,69	2-3	1-2-3	Big bags	D1
170601	Materiali isolanti contenenti amianto	Solido non polverulento	2,59	1-2-3-4-5	1-2-3-4	Glove bags/Big bags	D15
170603	Materiali isolanti contenenti o costituite da sostanze pericolose	Solido polverulento	48,37	1-2-3-4-5	4	Big bags	D1
170604	Materiali isolanti diversi da 170601 e 170603	Solido polverulento	20,98	1-2-3-4-5	1-2-3	Big bags	D1
170605	Materiali da costruzione contenenti amianto	Solido non polverulento	2,61	1-2-3-4-5	1-2-3-4	Big bags	D1/D9
170904	Rifiuti misti dell'attività di costruzione e demolizione	Solido polverulento	1.723,3	1-2-3-4-5	1-2-3	Cassone scarrabile	D1
180103	Rifiuti che devono essere raccolti e smaltiti con precauzione per evitare infezioni	Solido non polverulento	0,02	1-2-3-4-5	1-2-3	Contenitori dedicati	D9
190905	Resine a scambio ionico sature o esaurite	Solido polverulento	9,13	1-2-3-4-5	1-2-3-4	Big bags	D1
200121	Tubi fluorescenti ed altri rifiuti contenenti mercurio	Solido non polverulento	2,21	1-2-3-4-5	1-2-3-4	Bulk	R13
200139	Plastica	Solido non polverulento	4,87	1-2-3-4-5	1-2-3-4	Big bags	R13

AUTORIZZAZIONE INTEGRATA AMBIENTALE

PARTE DOCTIES: INDIVIDUAZIONE

DELLA PROPOSTA IMPIANTISTICA ED

EFFETTI AMBIENTALI

RAFFINERIA DI MILAZZO S.C.P.A.

Docties.3.1 - Metodo basato su criteri di soddisfazione

Docties 3.1 - Confronto fasi rilevanti - LG nazionali

LG nazionali – Elenco MTD di settore	Tecniche adottate dalla Raffineria
Tecniche di ottimizzazione combustione forni	Applicata Il Forno F102 dell'unità FCC è dotato di un sistema di monitoraggio dell'eccesso di aria e della Temperatura dei fumi con conseguente possibilità di controllare la portata di aria comburente, ottimizzando il tal modo il processo di combustione. Inoltre la combustione nel rigeneratore avviene in condizioni controllate con attento monitoraggio dei parametri di combustione (O ₂ , CO, CO ₂ , T, etc.).
 Tecniche di miglioramento dell'efficienza energetica Riduzione del consumo di energia: Applicando il recupero di energia, inviando il gas proveniente dal rigeneratore in una turbina (expander) prima del suo ingresso nel CO Boiler, dove viene sfruttato il calore dei fumi. Utilizzando una caldaia a recupero, per recuperare parte dell'energia contenuta nel gas effluente dal rigeneratore. 	L'unità FCC è dotata di una caldaia (CO boiler) dove avviene l'ossidazione completa del CO contenuto nei fumi provenienti dal rigeneratore. Il calore generato dalla combustione realizzata in tale caldaia ed il calore sensibile dei fumi di rigenerazione in essa convogliati vengono utilizzati per la produzione di vapore ad alta pressione (AP). L'unità FCC produce inoltre vapore a media e bassa pressione (MP e BP) sfruttando il calore del gasolio pesante da cracking (HCGO) separato nella frazionatrice principale dell'unità. La corrente di HCGO viene inoltre utilizzata per preriscaldare la carica al forno F-201 dell'unità HDT2. Nell'ambito del presente intervento di adeguamento la Raffineria intente installare un Turbo-Expander in cui viene sfruttato il calore dei gas di combustione prodotti nel rigeneratore per la produzione di energia elettrica.

Raffineria di Milazzo S.C.p.A.

Luglio 2013

LG nazionali – Elenco MTD di settore	Tecniche adottate dalla Raffineria
Invio dei gas prodotti al trattamento/recupero dello zolfo.	Applicata Il gas idrocarburico separato nella sezione di frazionamento dell'unità FCC, grazie al sistema di recontacting ed alla colonna di frazionamento C-101, viene inviato ad una colonna di lavaggio amminico (colonna C-203) per un trattamento di rimozione dell'H ₂ S prima dell'immissione nella rete Fuel Gas (FG). L'ammina ricca proveniente dal lavaggio amminico viene rigenerata liberando uno stream gassoso ricco di H ₂ S. Tale stream viene inviato alle Unità di Recupero Zolfo per l'adeguato trattamento.
Inserimento di una caldaia o di un forno per CO per le condizioni FCC di combustione parziale.	Applicata L'unità è dotata di una caldaia denominata CO boiler in cui viene completata la combustione del CO contenuto nei fumi provenienti dal rigeneratore, quando quest'ultimo viene esercito a combustione parziale. Il calore sviluppato in tale caldaia, unitamente al calore sensibile dei fumi di rigenerazione ad essa convogliati, vengono utilizzati per la produzione di vapore ad alta pressione (AP).
Monitoraggio dell'ossigeno (tipicamente al 2%) per gli impianti FCC a rigenerazione full burn, per ridurre le emissioni di CO.	Applicata L'unità FCC è dotata di una sezione di rigenerazione che può essere esercita sia a combustione parziale che totale. La combustione nel rigeneratore avviene in condizioni controllate con attento monitoraggio dei parametri di combustione (O ₂ , CO, CO ₂ , T, etc.).

LG nazionali – Elenco MTD di settore	Tecniche adottate dalla Raffineria
 Riduzione delle emissioni di NOx attraverso un'opportuna combinazione delle seguenti tecniche: Modifica della geometria e delle operazioni del rigeneratore, soprattutto per evitare alti picchi di temperatura; questa tecnica può produrre un aumento delle emissioni di CO. SNCR su gas di scarico. SCR su gas di scarico. 	Non Applicabile L'unità FCC non ha subito rilevanti modifiche dalla sua originale costruzione (1970) e la sezione di rigenerazione è originaria dell'impianto. La modifica della geometria e delle operazioni del rigeneratore non risulta classificabile come MTD per la Raffineria. Non sono implementati sistemi di tipo SCR e SNCR per la rimozione degli NOx dai gas di scarico del rigeneratore. Le tecniche di trattamento secondario dei fumi (SCR e SNCR) non risultano classificabili come MTD per la Raffineria.
	Applicata Applicata
 Riduzione delle emissioni di particolato attraverso la combinazione di: Cicloni terziari e multistadio; Applicazione di un precipitatore elettrostatico (ESP) o uno scrubber al gas dal rigeneratore (dopo il CO boiler); Contenimento delle perdite dal catalizzatore durante le fasi di carico/ scarico. Selezione di catalizzatori resistenti all'attrito per abbassare la frequenza di sostituzione e ridurre le emissioni. 	La sezione di rigenerazione del catalizzatore è seguita da un sistema di cicloni a 2 stadi. Inoltre a valle del CO boiler risulta in servizio una sezione di precipitatori elettrostatici (ESP) per un ulteriore abbattimento delle polveri presenti nei fumi di rigenerazione. Le fasi di carico e scarico del catalizzatore nel reattore avvengono a partire dai silos di stoccaggio mediante un sistema chiuso che viene mantenuto pressurizzato e analogamente il carico completo del catalizzatore, ad avviamento impianto, avviene con le stesse modalità. Lo scarico delle polveri di catalizzatore raccolte nella sezione del precipitatore elettrostatico avviene mediante tramogge che scaricano direttamente in big bags poste in collegamento con le tramogge. Il catalizzatore utilizzato è Grace Nektor, caratterizzato da un una resistenza meccanica (definito mediante il GDI, che nel caso specifico risulta pari a 5 in una scala da 1 a 20) buona rispetto alla media dei catalizzatori disponibili sul mercato e quindi risulta tra i più resistenti all'attrito.

LG nazionali – Elenco MTD di settore	Tecniche adottate dalla Raffineria
	Nell'ambito del presente intervento di adeguamento la Raffineria intente installare dei cicloni multistadio (Separatore Terzo Stadio e Ciclone Separatore Quarto Stadio), al fine di ottimizzare l'efficienza di abbattimento delle polveri di catalizzatore, riducendone di conseguenza le relative emissioni al Camino E7.
Riduzione delle emissioni di SO ₂ attraverso la combinazione di: Utilizzo di De SOx catalitico. Utilizzo di un sistema di desolforazione fumi (FGD). Idrotrattamento della carica FCC.	Non Applicabile La carica all'unità FCC è costituita da miscela di correnti idrocarburiche, di cui parte viene preventivamente trattata in unità che operano un trattamento di desolforazione (VGO da LC Finer e VGO da HDC). La rimanente quota di carica è costituita da residuo BTZ da Topping, residuo BTZ da Buattifel e gasoli pesanti di importazione. L'unità FCC non è servita da specifiche unità di desolforazione catalitica dei fumi di rigenerazione. L'unità FCC non è inoltre servita da altre specifiche unità di desolforazione di tipo FGD. Tuttavia tali tecniche non risultano classificabili come MTD per la Raffineria. Per maggiori dettagli in merito si rimanda al capitolo 3 del presente studio.
Minimizzazione dell'uso di acqua aumentando il ricircolo della stessa; in particolare, riutilizzo dell'acqua nei desalter o invio all'impianto di trattamento alla fine del processo.	Applicata Le acque reflue separate nel circuito di testa della colonna di frazionamento principale vengono inviate per trattamento all'unità SWS per l'opportuno trattamento. Anche le acque provenienti dai separatori di recontacting (D202/D203) vengono parzialmente riciclate all'interno dell'unità e quindi inviate alle unità SWS. Va osservato che l'unità utilizza per l'iniezione specifica di acqua ai fini di controllo della corrosione acqua trattata proveniente dall'impianto SWS. Tale acqua viene anche utilizzata quale acqua di lavaggio per l'unità LCF e ai desalter di entrambe le unità di distillazione atmosferica.

LG nazionali – Elenco MTD di settore	Tecniche adottate dalla Raffineria
	<u>Applicata</u>
 Riduzione della generazione di rifiuti solidi, attraverso: Riduzione delle perdite incontrollate durante la gestione del catalizzatore esausto; Selezione di catalizzatori resistenti all'attrito per ridurre la frequenza di sostituzione e le emissioni di particolato; questo accorgimento potrebbe influenzare negativamente la performance dell'unità di cracking. 	La sezione di rigenerazione è dotata di un sistema di captazione delle polveri mediante filtro elettrostatico posto a valle del CO Boiler. Le polveri recuperate a valle del precipitatore elettrostatico vengono raccolte in speciali tramogge e quindi rimosse mediante big bags ad esse collegate che vengono periodicamente sostituite una volta piene. Il catalizzatore attualmente utilizzato è caratterizzato da una buona resistenza meccanica alla produzione delle polveri. L'indice GDI (utilizzato dalla società Grace) per valutare la resistenza meccanica alla produzione di polveri è 5, potendo variare tra 1 (massima resistenza) e 20 (minima) e quindi risulta tra i più resistenti all'attrito.

ALLEGATO 2

CONTI CORRENTI POSTALI · Attestazione di Versamento

871012

di Euro

2000,00

IMPORTO DEHILA OO

P8

INTESTATO A TE SOMERIA PROJUNCIALE DI STATO ROMA

VERSIMEUTO SU CAPO 32 CAPITOLO 2592 ART. 20

ISTAUZA MODIFICA NON SOSTANZIALE INPANTO FCC

37/106 04 10-07-13 P 0052 VCYL 0138 €*2.000,00*

ESEGUITO DA RAFFINERIA SI HILAZZO S.C. VIA. PIAZZA CONTRADA HANGIAVACEA CAP 88057 LOCALITÀ MILAZZO