

ALLEGATO B.18

DOMANDA DI RINNOVO AUTORIZZAZIONE INTEGRATA AMBIENTALE ai sensi del D.Lgs. n.152/2006 e s.m.i.

Attività IPPC 1.2

Relazione tecnica dei processi produttivi

Novembre 2013

INDICE

1.	DESCRIZIONE DEL CICLO PRODUTTIVO	3
1.1	DISTILLAZIONE ATMOSFERICA (TOPPING – U100)	5
1.2	UNITÀ UNIFINING (U200)	9
1.3	UNITÀ PLATFORMING (U300)	14
1.4	UNITÀ PENEX (U400)	18
1.5	TRATTAMENTO GPL (U500 – U600)	22
1.6	UNITÀ DI DESOLFORAZIONE GASOLIO 1 (HDS1 - U700)	25
1.7	UNITÀ DI DESOLFORAZIONE GASOLIO 3 (HDS3 – U1300)	29
1.8	UNITÀ DI DESOLFORAZIONE KEROSENE (U760)	32
1.9	LAVAGGIO GAS UNITÀ 2 ARU2 (U1800)	35
1.10	LAVAGGIO GAS UNITÀ 3 ARU3 (U2800)	38
1.11	UNITÀ DI RECUPERO ZOLFO 2 SRU2 (U1900) – IMPIANTO FERMO PRONTO PARTIRE	
1.12	UNITÀ DI RECUPERO ZOLFO 3 SRU3 (U2900)	45
1.13	UNITÀ DI TRATTAMENTO DI GAS DI CODA TGCU (U3900)	48
1.14	SISTEMA BLOW DOWN E TORCIA	50
1.15	IMPIANTO SWS (U150)	54
1.16	IMPIANTO SEAL OIL	57
1.17	IMPIANTO TELERISCALDAMENTO (U2000)	59
1.18	IMPIANTO VISBREAKING (U1400)	61
1.19	IMPIANTO DISTILLAZIONE SOTTO VUOTO (U1100)	65
1.20	IMPIANTO THERMAL CRACKING (U1200)	69
1.21	MILD HYDROCRACKING (U1500)	72
2.	SISTEMI DI IMPIANTO AUSILIARI	77
2.1	SISTEMA HOT OIL	77
2.2	RETE GAS	79
2.3	CENTRALE TERMOELETTRICA (CTE)	79
2	2.3.1 Produzione vapore	79

	2.3.2	Produzione di energia elettrica
	2.3.3	Aspetti ambientali associati
2.4	SER	8VIZI8
	2.4.1	Distribuzione vapore
	2.4.2	Distribuzione energia elettrica
	2.4.3	Distribuzione aria servizi e strumenti
	2.4.4	Circuito acqua per raffreddamento
	2.4.5 P	roduzione acqua demineralizzata
2.5	TRA	ATTAMENTO ACQUE EFFLUENTI8
	2.5.1	TAS Descrizione semplificata del processo
	2.5.2	Aspetti ambientali legati all'operatività dell'impianto
2.6	TAI	F TRATTAMENTO ACQUE DI FALDA8
3.	PEI	RIODICITÀ, DURATA E MODALITÀ DI MANUTENZIONE PROGRAMMATA
4.	NII	MERO E DESCRIZIONE DI BLOCCHI NON PROGRAMMATI VERIFICATIS
₹.		GLI ULTIMI ANNI
_		
5.		GISTICA DI APPROVIGIONAMENTO MATERIE PRIME, STOCCAGGIO I
	SPE	EDIZIONE PRODOTTI FINITI8
5.1	API	PROVIGIONAMENTO MATERIE PRIME8
5.2	STC	OCCAGGIO8
	5.2.1	Parco serbatoi a pressione atmosferica8
	5.2.2	Parco serbatoi stoccaggio GPL9
	5.2.3	Deposito Nazionale (ex Deposito Libero)9
5.3	SPE	DIZIONE PRODOTTI FINITI9
	5.3.1	Pensiline di carico autobotti9
	5.3.2	Pensiline di carico ferrocisterne9
	5.3.3	Pontile fluviale9
6.	SIS	TEMI DI REGOLAZIONE, CONTROLLO, SISTEMI DI SICUREZZA, MISURI
		PREVENZIONE RELATIVI AGLI ASPETTI AMBIENTALI9
7.	A NT	ALISI DEI MALFUNZIONAMENTI E DEGLI EVENTUALI INCIDENT
<i>'</i> •		BIENTALI AVVENUTI9
	LYTAI	.D.1.L.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1

1. DESCRIZIONE DEL CICLO PRODUTTIVO

Il ciclo produttivo della Raffineria IES di Mantova è suddivisibile in n°17 fasi produttive corrispondenti ai seguenti impianti/sezioni di processo.

- 1. Distillazione Atmosferica (Topping U100)
- 2. Unità Unifining (U200)
- 3. Unità Platforming (U300)
- 4. Unità PENEX (U400)
- 5. Trattamento GPL (U500 U600)
- 6. Unità di Desolforazione Gasolio 1 (HDS1 U700)
- 7. Unità di Desolforazione Gasolio 2 (HDS2 U1700) Impianto Fuori Servizio
- 8. Unità di Desolforazione Gasolio 3 (HDS3 U1300)
- 9. Unità di Desolforazione Kerosene (U760)
- 10. Lavaggio Gas 1 (ARU1 U800) Impianto Fuori Servizio
- 11. Lavaggio Gas 2 (ARU2 U1800)
- 12. Lavaggio Gas 3 (ARU3 U2800)
- 13. Recupero Zolfo 1 (SRU1 U900) Impianto Demolito
- 14. Recupero Zolfo 2 (SRU2 U1900)
- 15. Recupero Zolfo 3 (SRU3 U2900)
- 16. Unità d Trattamento Gas di Coda (TGCU U3900)
- 17. Impianto SWS
- 18. Sistema Blow Down e Torcia (U5000)
- 19. Impianto Visbreaking (U1400)
- 20. Impianto Distillazione sotto Vuoto (U1100)
- 21. Impianto Thermal Cracking (U1200)
- 22. Mild Hydrocracking (U1500)
- 23. Impianto Teleriscaldamento (U2000)

La capacità di lavorazione della Raffineria è pari a 2.600.000 t/a di olio greggio, la potenzialità consolidata è attestata ad un valore pari a circa 2.500.000 t/a di olio greggio.

Nei seguenti paragrafi si riportano, per ciascuna fase produttiva unitamente ad una descrizione sintetica del processo, le seguenti informazioni:

- identificazione,
- anno di avviamento,
- modifiche sostanziali eventualmente intervenute,
- elenco e caratteristiche delle principali apparecchiature,
- informazioni relative alle materie prime, ai prodotti, ai chemicals e ai combustibili utilizzati,
- condizioni di funzionamento e tempistiche di avviamento ed arresto,
- ove possibile e pertinente per la singola fase, dati riguardanti gli aspetti ambientali rilevanti

(consumi energetici e idrici, emissioni, produzione rifiuti, ecc.) e il bilancio energetico,

- condizioni di avviamento e transitorio,
- dispositivi di contenimento / limitazione degli impatti ambientali eventualmente presenti per la specifica fase.

1.1 DISTILLAZIONE ATMOSFERICA (TOPPING – U100)

ID. FASE PRODUTTIVA				
NOME	Topping			
SIGLA ID.	U100			
COSTRUTTORE/PROGETTISTA	Foster Wheeler Italiana			
ANNO DI AVVIAMENTO	1962			

ELENCO E	ELENCO E CARATTERISTICHE APPARECCHIATURE PRINCIPALI						
Tipologia	Identificativo	Principali caratteristiche					
Colonne		Funzione		zioni di ento (T, P)	Flussi di materia		
	C 101	Colonna di	T fondo: 3	70°C	In: greggio carica		
		frazionamento	P: 1-2 bar		In: vapore		
					Out: kerosene + idrocarb. leggeri		
					Out: gasolio leggero +		
					idrocarb. leggeri		
					Out: gasolio pesante +		
					idrocarb. leggeri		
					Out: residuo di fondo		
	C 102 A	Colonna di strippaggio	T: 200°C	(flusso in	In: kerosene + idrocarb.		
		laterale	entrata)		leggeri		
			,		In: vapore		
					Out: kerosene		
					Out: vapore + idrocarb.		
	C 102 D	Colonno di strinnoggio	T 2000C	(CI :	leggeri In: gasolio leggero +		
	C 102 B	Colonna di strippaggio laterale	T: 300°C entrata)	(flusso in	idrocarb. leggeri		
					In: vapore		
					Out: Gasolio leggero		
					Out: vapore + idrocarb. leggeri		
	C 102 C	Colonna di strippaggio	T: 365°C (flusso in		In: Gasolio pesante +		
		laterale	entrata)		idrocarb. leggeri		
			Condizioni di funzionamento (T) T in: 250° C T out: 380°C-390°C		In: vapore		
					Out: Gasolio pesante		
					Out: vapore + idrocarb. leggeri		
Forni		Tipo/i di combustibile			Flussi di energia		
Form		Tipo/Tur combustione			Trussi di chergia		
	H 101	Fuel Gas			42,32 Mkcal/h		
					,		
Vessels	ls Funzione		ı	Sostanze co	ntenute		
(*)	V 101			Greggio, acq	ua, impurità		
	V 102			vapore, fuel	gas, benzina		
	V 109	Accumulatore benzina	Accumulatore benzina acqua, f		as, benzina		
	V 153	Accumulatore acque acide		acque acide			

^(*): sono indicati unicamente i vessels essenziali alla descrizione sintetica del processo riportata nel seguito

PROCESSO					
Materie prime	Tipo	Imp. di provenienza / destinazione	Portata		
	Greggio	Stoccaggio	330 t/h		
Prodotti	Benzina	Unifining (U200)	60 t/h		
	Kerosene	Desolforazioni (U700, U760 U1300)	50 t/h		
	Gasolio leggero	Desolforazioni HDS (U700, U1300)	60 t/h		
	Gasolio pesante Mild Hydrocracking 2 (U1500)		28 t/h		
	Residuo di fondo	Visbreaking (U1400)	132 t/h		
Chemicals utilizzati	Tipo /funzione	Apparecchiatura/e interessate	Quantità utilizzata		
	Disemulsionante	V101	0,5 t/giorno (max)		
	Soda caustica + Antifouling	Linea di carica a valle di V101	0,5 t/giorno (max)		
	Neutralizzante	V109, V102	0,5 t/giorno (max)		
	Inibitore di corrosione	nibitore di corrosione V109, V102			
Combustibili	Fuel gas	da rete FG di Raffineria	40 t/giorno		
Condizioni di funzionamento (in ingresso apparecchiatura princ.)					
Tempistiche di	di avviamento: 12 h arresto: 12 h				

Il grezzo, proveniente dai serbatoi di stoccaggio viene pre-riscaldato ricevendo calore dai vapori di testa della frazionatrice principale C101, dal residuo freddo e dal pumparound superiore. In questa fase è prevista l'immissione di acqua proveniente da V153 (il quale raccoglie le acque acide provenienti dall'accumulatore V102 e dagli impianti neri). La carica perviene poi al Dissalatore V101 che ha la funzione di rimuovere i sali, i sedimenti e le altre impurità che potrebbero compromettere l'efficienza dei processi e l'integrità stessa degli impianti. A valle del dissalatore prosegue il processo di pre-riscaldamento della carica a spese del pumparound inferiore, dei tagli gasolio 2 e gasolio 1, provenienti dagli stripper laterali, e del prodotto di fondo della C101.

La carica perviene dunque al forno H101, dove viene raggiunta la temperatura di processo, per poi essere immessa nella colonna frazionatrice principale C101.

I vapori di testa vengono condensati (in parte scaldando acqua di teleriscaldamento) ed inviati ad un accumulatore di riflusso (V109), la fase gassosa uscente subisce un ulteriore raffreddamento e perviene all'accumulatore V102; il gas uscente da quest'ultimo viene inviato all'unità di lavaggio gas, mentre la fase liquida (benzina) viene inviata all'Impianto Unifining (U200).

Le acque sono raccolte in V153 per essere reimmesse, come visto, a monte del dissalatore, o, in alternativa, inviate a S.W.S.

Dalla frazionatrice principale C101 vengono prelevati 3 tagli laterali: kerosene (petrolio) come taglio superiore, gasolio 1 come taglio medio e gasolio 2 come taglio inferiore. Queste tre correnti fluiscono nelle torri di strippaggio C102 A/B/C dove vengono liberati dai prodotti più volatili con vapore, surriscaldato in un apposito serpentino situato nella sezione convettiva del forno H101.

Il kerosene da C102A viene inviato agli impianti di desolforazione, dopo aver ceduto calore al circuito del teleriscaldamento.

Il gasolio 1 dal fondo della torre di strippaggio C102B viene inviato a produrre vapore in una Kettle e a preriscaldare l'aria di combustione del forno; infine, previo ulteriore raffreddamento con aircooler, viene inviato all'unità di desolforazione con idrogeno (HDS1 – U700 - **HDS3- U1300**).

Il gasolio 2 dal fondo della torre di strippaggio C102C viene inviato a preriscaldare la carica dell'impianto e l'acqua di lavaggio che viene inviata al dissalatore; infine, previo ulteriore raffreddamento con aircooler, viene inviato all'unità di hydrocracking (MHC – U1500).

Come anticipato, per asportare calore dalla frazionatrice principale C101, sono previste, oltre al sistema di condensazione dei prodotti di testa, due correnti di pumparound che vengono utilizzate per cedere calore alla carica e per controllare la qualità dei tagli.

Il residuo atmosferico, dopo essere stato strippato con vapore sul fondo della frazionatrice principale, viene utilizzato come principale corrente di pre-riscaldo della carica ed infine destinato al Visbreaker, oppure raffreddato, scambiando calore con acqua demi e con aria, per essere inviato ai limiti di batteria dopo eventuale miscelazione con prodotti più leggeri, se l'impianto Visbreaking é fermo.

Il forno del Topping é dotato di un impianto di recupero calore, che consente un elevato rendimento di combustione. I fumi vengono aspirati dal camino con un ventilatore, quindi passano in uno scambiatore fumi-aria comburente denominato DEKA e immessi di nuovo nel camino **Attualmente** il **DEKA è fuori servizio (è ciecato) per manutenzione.**

L'aria viene compressa con un altro ventilatore attraverso uno scambiatore dove si preriscalda a spese del gasolio.

Aspetto		Condizioni Normali		Condizioni Anomale	Note
		Quantità	Frequenza		
	Consumo risorse energetiche	-	•		
1	energia elettrica	1131 kW	continua		
1	vapore M.P.	6,2 t/h	continua	14 t/h	consumo in occasione esercizio pompa P109E – P103B
	vapore B.P.	2,2 t/h	continua		
2	Consumo acqua				vi è inoltre un consumo di acqua demi per produzione vapore M.P pari a 5,8 m³/h
2	Processo (acqua da Impianti Neri)	14 m ³ /h	continua		
	raffreddamento	$150 \text{ m}^3/\text{h}$	continua		
	Emissioni in atmosfera (E1)				DEKA ESCLUSO
3	Portata fumi	64.512 Nm3/h			
3	flusso di massa SOx	1,17 kg/h	continua		
	flusso di massa NOx	6,45 kg/h	continua		
	flusso di massa CO	5,16 kg/h	continua		
	flusso di massa PM	0,32 kg/h	continua		
4	Scarichi idrici				
-	Portata a SWS	5,3 m ³ /h	continua		
5	Utilizzo chemicals (sommatoria da tab. precedente)	max 2 t/g	continua		
	Produzione rifiuti	CER	quantità	frequenza	smaltimento (D) / recupero ®
	Fanghi oleosi prodotti dalla manutenzione di impianti e apparecchiature	05 01 06*	-	episodica	D
	Scarti di olio minerale per motori, ingranaggi e lubrificazione, non clorurati	13 02 05*	-	episodica	R
6	Assorbenti, materiali filtranti, stracci i indumenti protettivi, contaminati da sostanze pericolose	15 02 02*	-	episodica	D
	Sostanze chimiche di laboratorio contenenti o costituite da sostanze pericolose, comprese le miscele di sostanze chimiche di laboratorio	16 05 06*	-	episodica	D
	Tubi fluorescenti ed altri rifiuti contenenti mercurio	20 01 21*	_	episodica	R

1.2 UNITÀ UNIFINING (U200)

ID. FASE PRODUTTIVA				
NOME	Unifining			
SIGLA ID.	U200			
COSTRUTTORE/PROGETTISTA	Foster Wheeler Italiana / U.O.P.			
ANNO DI AVVIAMENTO	1968			

PRINCIPALI MODIFICHE				
Anno	1988			
Descrizione	Aggiunta reattore R203			

ELENCO E	CARATTERIST	ICHE APPARECCHI	ATURE P	RINCIPAL	I
Tipologia	Identificativo	P	rincipali ca	ratteristich	ne
Colonne		Funzione	Condiz	zioni di	Flussi di materia
			funzionam	ento (T, P)	
	C201	Colonna stabilizzatrice	T: 220 – 76°	С	In: benz. non stab (tracce di
		<u> </u>	P=14.5 bar g	g	H2S)
					Out: Fuel Gas, H ₂ S
		ļ			Out: GPL non stabilizzato
				~	Out: benz. stabilizzata
	C202	Colonna splitter benzine	T: 157 – 74°0	C	In: benz. stabilizzata
			P= 1,1 bar g		Out: benzina leggera
					Out: VN = Cicloesano e comp. limitrofi (precursori Benzene)
					Out: benzina pesante
	C203	Colonna stripper taglio	T· 109°C		In: VN = Cicloesano e comp.
	C203	laterale	P= 1,1 bar g		limitrofi (precursori Benzene)
		laterale	r – 1,1 bai g		Out: benzina leggera
					Out: VN = Cicloesano e comp.
					limitrofi (precursori Benzene)
	C251	Colonna de-		! ;	In: benzina leggera
		isopentanizzatrice	P= 1,2 bar g		Out: isopentano
					Out: benzina leggera (a Penex)
					In: gas
					In: ammina povera
			T= 35°C		Out: gas lavato
	~ .==.				Out: ammina ricca
	C 1751	Colonna di	P= 27kg/c	rm²	
		lavaggio amminico			
Reattori		Funzione		zioni di	Flussi di materia
			funzionam	ento (T, P)	
	R 201	desolforazione e	T=31	15 °C	In: benzina – H ₂
		saturazione dei legami	P= 36	bar g	Out: Prod. di reazione
	R 203	olefinici e diolefinici	T= 27	75 °C	In: Prod. di reazione
	10 200		P= 35.	5 bar g	Out: Prod. di reazione
Forni		Tipo/i di combustibile	Condiz	zioni di	Flussi di energia
			funzionar	mento (T)	
	H201	Fuel Gas	Lato proce	esso: 275-	5,5MKcal/h
			300°C		,
			Lato fumi: 550°C		
Vessels		Funzione	Sostanze co		ntenute
(*)	V202	Separatore di alta pression			stab. / H ₂ S, H ₂ , C1 – C4
	V 202	beparatore at alta pression		(spurgo episo	
	V203	Separatore di bassa pression	one		stab. / Fuel Gas, H ₂ S

(*): sono indicati unicamente i vessels essenziali alla descrizione sintetica del processo riportata nel seguito

PROCESSO						
Materie prime	Tipo	Imp. di provenienza / destinazione	Portata			
	Benzina	Topping (U100)	60 t/h			
	Benzina	Visbreaking (U1400) Th. Cracking (U1200) MHC (U1500)	17,08t/h			
Prodotti	GPL non stab.	Platforming (U300)	4 t/h			
	Isopentano	Stoccaggio	4 t/h			
	Fuel Gas	Lav Gas. (U2800 - U1800)	1 t/h circa			
	Benzina leggera	Penex (U400)	14 t/h			
	Virgin nafta	Stoccaggio	4 t/h			
	Benzina di fondo	na di fondo Platforming (U300)				
Chemicals utilizzati	Tipo /funzione	Apparecchiatura/e interessate	Quantità utilizzata			
	Filmante	C201	190 kg/mese			
Combustibili	Fuel gas H201		478 kg/h			
Condizioni di funzionamento	o T: 290 -315°C					
(in ingresso a reattore R201)	P: 32- 36 bar g					
Tempistiche di	avviamento: 1 giorno arresto: 1,5 giorni					

L'alimentazione dell'impianto é costituita da benzina Topping e da benzina proveniente dalle unità Visbreaking, Thermal Craking e Mild Hydrocracking, che può essere immessa in punti diversi rispetto al treno di preriscaldo. La benzina é mescolata con il gas ricco in idrogeno proveniente dal separatore ad alta pressione V202 e dall'Unità Platforming; viene preriscaldata dall'effluente dei reattori ed entra nel forno H201.

Di seguito avviene il passaggio nei due reattori in serie R201 ed R203 contenenti il catalizzatore (tipo Nikel-Molibdeno) necessario ad attivare le reazioni chimiche di desolforazione e di saturazione dei legami olefinici e diolefinici. La temperatura dello stream in entrata in R203 è regolata tramite la possibilità di immissione di benzina fredda prelevata in mandata della pompa di carica; questo reattore è dotato inoltre di un setaccio molecolare per l'abbattimento dell'acido cloridrico.

Il prodotto di reazione in uscita dall'R203, dopo aver preriscaldato l'alimentazione, viene ulteriormente raffreddato e quindi parzialmente condensato in due scambiatori (uno ad aria ed uno ad acqua), giungendo infine nel separatore ad alta pressione V202, dove avviene la prima separazione fra la fase gassosa e quella liquida, l' idrogeno viene inviato, previo passaggio nel V1707 (abbattitore di liquido), alla colonna C1751, per il lavaggio con soluzione amminica in modo da essere depurati dell'acido solfidrico; la relativa fase gassosa viene raffreddata in scambiatori ad acqua, subisce un ulteriore abbattimento di liquido nel V1711, il gas viene aspirato da compressori (o saltuariamente sfiorato, per regolazione, a rete gas combustibile) mentre le fasi liquide della C1751 e del V1711 costituite da soluzione amminica vengono inviate alle rigenerazione (U2800 – U1800). I compressori hanno la funzione di ricircolare il gas in impianto; esiste la possibilità di invio come gas di make-up agli impianti di desolforazione gasolio (U700 e U1300).

Per ridurre lo sporcamento dei condensatori ad aria e ad acqua si inietta nell'effluente del reattore, in un tratto intermedio del treno di scambio, una piccola quantità di acqua.

L'acqua acida, raccolta nel pozzetto del separatore ad alta pressione, é spurgata alla unità di trattamento acque (SWS).

Gli idrocarburi liquidi vengono poi inviati nel separatore a bassa pressione V203, dove, causa la diminuzione di pressione, si sviluppano vapori che vengono inviati alla rete di gas combustibile, previa rimozione dell'Idrogeno solforato negli impianti di lavaggio (U2800 e U1800). Il liquido che proviene dal separatore a bassa pressione é inviato alla colonna stabilizzatrice (C201), dopo essersi preriscaldato con il fondo delle C201 e C202.

La stabilizzazione in C201 (estrazione butano) genera incondensabili inviati alla rete Fuel gas di Raffineria, previo lavaggio da Idrogeno solforato (**U2800** e U1800), mentre il liquido é inviato in parte come riflusso in colonna ed in parte come prodotto di testa al serbatoio di carica della detanatrice C302 nell'Unità di Platforming.

Il prodotto di fondo della debutanizzatrice é inviato allo splitter C202.

Dalla colonna splitter benzine (C202) i vapori di testa condensati e raccolti in un accumulatore costituiscono la benzina leggera che viene pompata in parte allo splitter stesso come riflusso e in parte alla colonna deisopentanizzatrice C251.

Dalla C202 viene estratto un taglio intermedio che viene strippato nella colonna C203 tramite ribollimento effettuato con il ribollitore di fondo ad hot oil. Questo taglio (Virgin nafta), estratto al fine di evitare l'invio di composti precursori del Benzene al Platforming, viene inviato, previo raffreddamento, a stoccaggio.

Il prodotto di fondo di C202 (benzina intermedia) può essere inviato direttamente in carica all'Unità di Platforming, oppure in minima parte a stoccaggio, dopo essere stato raffreddato.

La benzina leggera alimentata alla colonna C251 viene qui fatta frazionare con l'utilizzo alternativo di due ribollitori di fondo (che impiegano come fluido riscaldante rispettivamente benzina platformata e acqua surriscaldata del circuito di teleriscaldamento). I vapori di testa vengono condensati, adoperati come riflusso e come prodotto finito, costituito in massima parte da isopentano, da inviare a stoccaggio. Il prodotto di fondo colonna, previo ulteriore raffreddamento su refrigerante ad acqua, viene inviato in carica all'Impianto Penex (U400) oppure a stoccaggio.

ASPI	ASPETTI AMBIENTALI					
Aspe	tto	Condizioni Normali		Condizioni Anomale	Note	
		Quantità	Frequenza			
1	Consumo risorse energetiche					
1	energia elettrica vapore	558,9 kW	continua			
	Consumo acqua				+	
2	1					
2	processo	-	-			
	raffreddamento	$532,5 \text{ m}^3/\text{h}$	continua			
	Emissioni in atmosfera (E2)				Sono stati sostituiti i vecchi bruciatori con nuovi a low- NOx	
3	Portata fumi	7.975 Nm3/h	continua			
	flusso di massa SOx	0,10 kg/h	continua			
	flusso di massa NOx	0,27 kg/h	continua			
	flusso di massa CO	0,24 kg/h	continua			
	flusso di massa PM	0,04 kg/h	continua			
	Scarichi idrici (inviati a SWS)					
4	Portata V202	0,5 m ³ /h circa	Spurgo: una volta ogni 8 ore			
	Portata V203	trascurabile	spurgo episodico			
	Portata V204	trascurabile	spurgo episodico			
5	Utilizzo chemicals (sommatoria da tab. precedente)	Vd. Tab precedente				
	Produzione rifiuti	CER	quantità	frequenza	smaltimento (D) / recupero ®	
	Fanghi oleosi prodotti dalla manutenzione di impianti e apparecchiature	05 01 06*	-	episodica	D	
	Scarti di olio minerale per motori, ingranaggi e lubrificazione, non clorurati	13 02 05*	-	episodica	R	
6	Assorbenti, materiali filtranti, stracci i indumenti protettivi, contaminati da sostanze pericolose	15 02 02*	-	episodica	D	
	Sostanze chimiche di laboratorio contenenti o costituite da sostanze pericolose, comprese le miscele di sostanze chimiche di laboratorio	16 05 06*	-	episodica	D	

Catalizzatori esauriti contenenti metalli di transizione pericolosi o composti di metalli di transizione pericolosi	16 08 02*	26,5 t	Una volta ogni 10 anni	R
Catalizzatori esauriti contaminati da sostanze pericolose	16 08 07*	5,4 t	Una volta ogni 18 mesi	R
Tubi fluorescenti ed altri rifiuti contenenti mercurio	20 01 21*	-	episodica	R

1.3 UNITÀ PLATFORMING (U300)

ID. FASE PRODUTTIVA		
NOME	Platforming	
SIGLA ID.	U300	
COSTRUTTORE/PROGETTISTA	Foster Wheeler Italiana / U.O.P.	
ANNO DI AVVIAMENTO	1968	

PRINCIPALI MODIFICHE	
Anno	1992
Descrizione	Inserimento scambiatore a piastre (alto rendimento) in carica al processo

Tipologia	Identificativo	P	rincipali ca	ratteristicl	ne
Colonne		Funzione		zioni di	Flussi di materia
	C301	Colonna stabilizzatrice	T= 165 – 90° P= 15 bar g		In: GPL; benzina da stab. Out: GPL Out: benzina riformata
	C302	Colonna de-etanatrice	T= 120 – 55° P= 26 bar g	^P C	In: GPL (H ₂ S) Out: gas ricco in H ₂ S Out: C3 – C4
Reattori		Funzione	Condiz funzionam		Flussi di materia
	R 301		T in = 500 °C T out = 430 °C P = 21 bar g	C - 516°C C	In: carica; Idrogeno di riciclo
	R 302	De-idrogenazione della carica	T in = 500° C T out = 465° P = 20.5 bar	C	Out: benzina da stabilizzare (ricca in
	R 303		T in = 500 °C T out = 480 °C P = 20 bar g		aromatici)
Forni		Tipo/i di combustibile Condizioni di funzionamento (T)		Flussi di energia	
	H301	Fuel Gas – Virgin Nafta	Lato proc.: 516°C Lato fumi: 65		13,34MKcal/h
	H302	Fuel Gas – Virgin Nafta	Lato proc.: 516°C Lato fumi: 83		5,08MKcal/h
	H303	Fuel Gas	Lato proc.: 516°C Lato fumi: 85		5,192MKcal/h
Vessels		Funzione		Sostanze con	ntenute
(*)	V301	Separatore di alta pressione GPL;		GPL; benzin	a da stabilizzare / Idrogeno

^(*): sono indicati unicamente i vessels essenziali alla descrizione sintetica del processo riportata nel seguito

PROCESSO				
Materie prime	Tipo	Imp. di pro destinazione		Portata
	Benzina	Unifining (U	200)	38 t/h
Prodotti	Idrogeno	Vari impianti	utilizzatori	760 kg/h
	Fuel gas	Rete Fuel Ga	S	300 kg/h
	GPL	Trattam. GP U600)	L (U500 –	1.5 t/h
	Benzina riformata	Stoccaggio		35.5 t/h
Chemicals utilizzati	Tipo /funzione	Apparecchiatura/e interessate		Quantità utilizzata
	Percloroetano	Pompe di carica reattori		0.5 kg/giorno di Cloro
	Acqua demi			5 kg/giorno
Combustibili	Fuel gas	H301-H302-I	H303	1200 kg/h
	Virgin Nafta	H301-H302		500 kg/h
Condizioni di funzionamento	490-516°C			
(in ingresso primo reattore.)	P: 20.5 bar g			
Tempistiche di	avviamento: 12 ore		arresto: 12	2 ore

La benzina intermedia, prodotto di fondo della colonna C202 (Unifining - U200), viene filtrata e mescolata con gas di riciclo; tale alimentazione, preriscaldata dall'effluente dei reattori, é portata alla temperatura di reazione nel forno H302, poi passa attraverso tre reattori a letto fisso, posti in serie, R301, R302 e R303 dopo essere stata riscaldata all'uscita dai primi due rispettivamente nei forni H301 e H303. Ciò è necessario in relazione all'endotermicità della reazione che richiede di fornire nuovamente calore all'effluente da un reattore per raggiungere la temperatura necessaria alla reazione seguente. Il calore dei forni viene anche utilizzato per produzione di vapore a media pressione (acqua in serpentino posto nella zona convettiva, comune ai tre forni, posta sopra H301). Il catalizzatore al Platino utilizzato viene rigenerato periodicamente (1/2 anni) con apposita procedura.

Il prodotto uscente dall'ultimo reattore, preriscalda l'alimentazione, si raffredda e parzialmente condensa in due scambiatori, rispettivamente ad aria e ad acqua ed infine si raccoglie nel separatore V301.

Il gas prodotto, ricco in idrogeno, viene sia ricircolato in carica, sia inviato agli impianti Unifining (U200) e Penex (U400).

Il liquido é alimentato nella colonna stabilizzatrice C301, preriscaldato dal prodotto di fondo della colonna stessa.

Il prodotto di fondo della stabilizzatrice (benzina riformata) é inviato a stoccaggio, cedendo calore, come detto, alla carica ed ulteriormente raffreddato in uno scambiatore ad acqua.

La fase gas di C301 é parzialmente condensata (condensatori ad aria ed acqua) e raccolta nell'accumulatore di testa da é inviata alla rete di gas combustibile.

Il liquido invece é inviato in parte come riflusso in colonna e in parte nell'accumulatore di carica V305 (gas liquido) della colonna C302, dove si mescola con il prodotto proveniente dalla Unità Unifining.

I vapori si testa della colonna C302 (de-etanatrice) sono parzialmente condensati; la miscela

liquido-vapore ottenuta si raccoglie in un accumulatore, da dove la fase gas é inviata alla rete del gas combustibile, previo lavaggio per estrazione dell'Idrogeno solforato (nelle unità U800—U2800 e U1800), mentre il liquido, costituente il riflusso, é rimandato in colonna.

Il prodotto di fondo di C302 é inviato all'Unità di trattamento GPL (U500 - U600) dopo essere stato raffreddato in uno scambiatore ad acqua.

ASPI	ETTI AMBIENTALI				
Aspe	tto	Condizion	i Normali	Condizioni Anomale	Note
_		Quantità	Frequenza		
	Consumo risorse energetiche			1,5 t/h di MP	consumo in occasione esercizio pompa P308/B
1	energia elettrica	953 kW	continuo	1 t/h di MP	consumo in occasione esercizio pompa P306/B
	vapore B.P	$21,4 \text{ m}^3/\text{h}$	continuo		recuperato come acqua demi da condensazione
	Consumo acqua				
2	processo	5 m ³ /h	continuo		acqua demi utilizzata per produz. vapore M.P.
	raffreddamento	991,4 m ³ /h	continuo		
	Emissioni in atmosfera (E3)				
3	Portata fumi	34.237 Nm3/h	continua		
3	flusso di massa SOx	0,54 kg/h	continua		
	flusso di massa NOx	3,42 kg/h	continua		
	flusso di massa CO	2,74 kg/h	continua		
	flusso di massa PM	0,17 kg/h	continua		
	Scarichi idrici (inviati a SWS)				
4	Portata V304	trascurabile	spurgo episodico		
	Portata V305	trascurabile	spurgo episodico		
	Portata V306	trascurabile	spurgo episodico		
5	Utilizzo chemicals (da tab. precedente)	0,5 kg/g di cloro	continuo		
	Produzione rifiuti	CER	quantità	frequenza	smaltimento (D) / recupero ®
	Fanghi oleosi prodotti dalla manutenzione di impianti e apparecchiature	05 01 06*	-	episodica	D
6	Scarti di olio minerale per motori, ingranaggi e lubrificazione, non clorurati	13 02 05*	-	episodica	R
	Assorbenti, materiali filtranti, stracci i indumenti protettivi, contaminati da sostanze pericolose	15 02 02*	-	episodica	D

Sostanze chimiche di laboratorio contenenti o costituite da sostanze pericolose, comprese le miscele di sostanze chimiche di laboratorio	16 05 06*	-	episodica	D
Catalizzatori esauriti contenenti oro, argento, renio,rodio, palladio, iridio o platino (tranne 160807)	16.08.01*	41 m ³	Una volta ogni 10 anni	R
Tubi fluorescenti ed altri rifiuti contenenti mercurio	20 01 21*	-	episodica	R

1.4 UNITÀ PENEX (**U400**)

ID. FASE PRODUTTIVA		
NOME	Penex	
SIGLA ID.	U400	
COSTRUTTORE/PROGETTISTA	Foster Wheeler Italiana / U.O.P.	
ANNO DI AVVIAMENTO	1968	

PRINCIPALI MODIFICHE		
Anno	1996	
Descrizione	Inserimento colonna C351 (riciclo prodotto ai fini aumento del	
	numero di ottani)	

ELENCO E (ELENCO E CARATTERISTICHE APPARECCHIATURE PRINCIPALI				
Tipologia	Identificativo	Principali caratteristiche			
Colonne		Funzione	Condizioni di		Flussi di materia
ļ				ento (T, P)	
	C401		P: 9÷10 barg		In: benzina non stab. (C1-C6)
		debutanizzazione	T: $140^{\circ} / 70^{\circ}$	°C	Out: FG (C1-C4)
					Out: benzina stabilizzata
	C402	Colonna scrubber		g	In: Fuel gas, HCl (tracce)
		lavaggio gas	T: 40° C		In: soda
					Out: Fuel gas
					Out: soda arricchita
	C351	Colonna splitter (de-	, ,- ,		In: benzina stabilizzata
		isoesanizzatrice)	T: 111° / 73°	°C	Out: N-esano, isomeri Out: benzina isomera
D //		E	C 1'-	zioni di	
Reattori		Funzione			Flussi di materia
		_		ento (T, P)	
	R401	Reattore	P: 55 barg	aria :	In: benzina leggera (da U200)
		(isomerizzazione)	Funzionanti in serie : 1° RX: T in: 140÷160°C		In: gas di riciclo (H2, C1-C5)
					m. gas di ficicio (112, C1 C5)
	R402	Reattore	T out: 170÷180°		
		(isomerizzazione)	2°RX:		Out: Benzina isomera da
			T in: 125÷145°		stabilizzare
			T out: 125÷150°		
Essiccatori		Funzione		zioni di	Flussi di materia
			funzionamento (T, P)		
			marcia	rigeneraz.	
	D401 – D402	Essiccazione carica	P: 3-2 kgf/cm ²	P: 4 kgf/cm ²	In: benzina leggera (da U200)
		liquida	T: 40°C ca.	T: 240°C ca.	Out: benz legg., H ₂ O, S tracce
	D403 - D404	Essiccazione gas	P: 35 kgf/cm ²	P: 4 kgf/cm ²	In: HC leggeri, Idrogeno
	D-103 D-104		T: 40°C ca.	T: 240°C ca.	Out: HC legg., H ₂ O, H ₂ S tracce
Forni		Tipo/i di combustibile	Condizioni di		Flussi di energia
roim		Tipo/Tur comsuscione	funzionamento (T)		Trussi di chergia
	H401 (*)	Fuel Gas		` ′	0.6140MIraal/b
	П401 (*)	ruei Gas	Lato processo: 290°C Lato fumi: 450°C		0,6149Mkcal/h
				100 C	
Vessels		Funzione		Sostanze contenute	
(**)	V402	Separatore di alta pressione		Benzina e ga	s di riciclo (H ₂ , C1-C5)
	V406	Separatore di bassa pressione	one Benzina stab		ilizzata e gas leggeri

(*): utilizzato solo per la fase di rigenerazione

(**): sono indicati unicamente i vessels essenziali alla descrizione sintetica del processo riportata nel

PD CCECCO			
PROCESSO			
Materie prime	Tipo	Imp. di provenienza /	Portata (max di
	_	destinazione	progetto)
	Benzina	Unifining – U200	350 t/g
	(Idrogeno)	(Platforming – U300)	$1100 \text{ Nm}^3/\text{h}$
Prodotti	Fuel Gas	Rete Fuel Gas	870 Nm ³ /h
	Benzina isomerizzata	Stoccaggio	260 t/g (considerando
	(fondo C401 e testa C351)		il riciclo)
	Virgin nafta (fondo C351)	Stoccaggio	24 t/g ca.
Chemicals utilizzati	Tipo /funzione	Apparecchiatura/e	Quantità utilizzata
		interessate	
	Percloroetilene	R401 - R402	~1000 kg/mese
	Soda caustica 30-40%	C402	~2 m ³ /settimana
Combustibili	Fuel gas	H401	Funzionamento discontinuo
Condizioni di funzionamento	T: 140÷160°C		
(in ingresso apparecchiatura princ.)	P: 55 barg		
Tempistiche di	avviamento: 1 – 2 giorni arresto: 1 giorno		

La benzina leggera di carica proveniente dalla colonna de-isopentanizzatrice (C251) dell'Unità Unifining (U200) viene essiccata negli essiccatori D401 e D402, due torri riempite di setacci molecolari funzionanti in serie secondo il sistema rigenerativo (la rigenerazione dei setacci viene effettuata n°1 giorno a settimana su ciascuna torre mentre l'altra è regolarmente in funzione).

La benzina essiccata viene addizionata di gas ricco di idrogeno (fresco e di riciclo, proveniente dal separatore V402) e la miscela preriscaldata a spese degli effluenti dai reattori, poi completamente vaporizzata e portata alla temperatura richiesta dalla reazione per mezzo di scambio di calore con una corrente di vapore a media pressione.

La carica passa attraverso i reattori R401 e R402 operanti in serie e l'effluente, dopo aver preriscaldato la carica, viene ulteriormente raffreddato, parzialmente condensato in refrigeranti ad aria e ad acqua, e quindi inviato all'accumulatore V402, dove avviene la separazione fra fase gassosa e quella liquida.

Il gas uscente dal V402 viene compresso e addizionato, assieme al gas fresco proveniente dall'Unità di Platforming (U300), alla carica liquida a monte dei reattori.

Il gas fresco, prima di essere compresso, viene essiccato, analogamente alla carica liquida, negli essiccatori D403 e D404, che funzionano secondo il medesimo sistema rigenerativo delle apparecchiature D401 e D402.

La fase liquida uscente dal V402 viene inviata nel separatore a bassa pressione V406 dove avviene la separazione della fase gassosa prodotta per effetto della riduzione di pressione.

Il liquido uscente da tale separatore viene trasferito nella colonna di debutanizzazione C401.

La fase gas di V406 viene mescolata con il gas di testa della C401 e la miscela inviata alla colonna di lavaggio alcalino C402 per l'eliminazione delle tracce di acido cloridrico. Il gas lavato (esente da H2S) che proviene dalla testa della C402 viene inviato nella rete del gas combustibile.

Il prodotto di fondo della C401, costituente la benzina isomerizzata, può essere inviato alla colonna splitter C351, dopo essere stata raffreddato nel preriscaldatore della carica alla debutanizzatrice; oppure alternativa viene ulteriormente raffreddato (in scambiatori ad aria e ad acqua) per essere inviato a stoccaggio.

Da C351 vengono estratti tre prodotti (Cfr. schema Unità Platforming – U300): il distillato di testa

(privo di N-esano) quello di fondo (virgin nafta) e un taglio laterale, costituito in prevalenza da N-esano) che viene riciclato sulla carica Penex a monte degli essiccatori D401 e D402.

La colonna è dotata di ribollitori (hot oil, oppure nella stagione estiva, acqua di teleriscaldamento); il prodotto di fondo viene inviato a stoccaggio previo raffreddamento in refrigeranti ad acqua.

Il taglio laterale viene inviato a riciclo previa refrigerazione (in scambiatori ad aria e ad acqua). I vapori di testa vengono condensati in un refrigerante ad aria ed in parte riflussati, in parte inviati a stoccaggio, previo raffreddamento con acqua.

I vapori uscenti dalla testa della C401 vengono parzialmente condensati in refrigeranti ad aria e ad acqua. Il liquido raccolto nell'accumulatore di testa viene riflussato in colonna, mentre il gas viene inviato alla colonna di lavaggio caustico C402, insieme, come visto, al gas uscente dal separatore a bassa pressione V406.

Una parte del prodotto a stoccaggio viene saltuariamente utilizzata per la rigenerazione dei setacci molecolari contenuti negli essiccatori.

Per questo un flusso di benzina viene preriscaldato per mezzo del gas di rigenerazione uscente dall'essiccatore in fase di rigenerazione, e quindi completamente vaporizzato nel forno H401.

La benzina vaporizzata e surriscaldata attraversa l'essiccatore in rigenerazione dall'alto verso il basso (mentre l'essiccamento avviene con flusso dal basso verso l'alto).

All'uscita dall'essiccatore viene prima raffreddata con il flusso di fondo di C401 e quindi condensata nei refrigeranti ad aria e ad acqua. Il liquido viene infine rimandato nella linea di invio a stoccaggio della benzina isomerizzata.

ASPI	ASPETTI AMBIENTALI				
Aspe	spetto Condizioni Normali		ni Normali	Condizioni Anomale	Note
		Quantità	Frequenza		
1	Consumo risorse energetiche				
1	energia elettrica	216 kW	continua		
	Vapore M.P.	1 t/h	continua		
2	Consumo acqua				
2	processo	-			
	raffreddamento	$41,2 \text{ m}^3/\text{h}$	continua		
	Emissioni in atmosfera (E4)				
2	Portata fumi	892 Nm3/h			12h per ogni operazione di rigenerazione per
3	flusso di massa SOx	0,003 kg/h		İ	
	flusso di massa NOx	0,27 kg/h	discontinua		
	flusso di massa CO	0,07 kg/h			complessive
	flusso di massa PM	0,004 kg/h	-		24h/settimana
4	Scarichi idrici				
	-	-			
5	Utilizzo chemicals (sommatoria da tab. precedente)	Vd. tab. precedente			
	Produzione rifiuti	CER	quantità	frequenza	smaltimento (D) / recupero ®
	Fanghi oleosi prodotti dalla manutenzione di impianti e apparecchiature	05 01 06*	-	episodica	D
	Scarti di olio minerale per motori, ingranaggi e lubrificazione, non clorurati	13 02 05*	-	episodica	R
6	Assorbenti, materiali filtranti, stracci i indumenti protettivi, contaminati da sostanze pericolose	15 02 02*	-	episodica	D
	Catalizzatori esauriti contenenti oro, argento, renio, rodio, palladio, iridio o platino (tranne 160807)	16 08 01*	Una volta ogni 4 anni per i	4 anni per i	R
	Catalizzatori esauriti contaminati da sostanze pericolose	16 08 07*		catalizzatori ed i setacci molecolari	R
	Tubi fluorescenti ed altri rifiuti contenenti mercurio	20 01 21*	-	episodica	R

1.5 TRATTAMENTO GPL (U500 – U600)

ID. FASE PRODUTTIVA		
NOME	Trattamento GPL	
SIGLA ID.	U500 – U600	
COSTRUTTORE/PROGETTISTA	Foster Wheeler Italiana / U.O.P.	
ANNO DI AVVIAMENTO	1968	

ELENCO E	ELENCO E CARATTERISTICHE APPARECCHIATURE PRINCIPALI						
Tipologia	Identificativo	P	Principali caratteristiche				
Colonne		Funzione	Condizioni di		Flussi di materia		
			funzionamento (T, P)				
	C601	Colonna	$T: 45 - 83^{\circ}C$		In: GPL (C3 – C4)		
		depropanizzatrice	P: 12 barg		Out: C3 95% (Propano)		
					Out: C4 96% (Butano)		
Assorbitori		Funzione	Condizioni di		Flussi di materia		
			funzionam	ento (T, P)			
	V501 A/B	Setacci molecolari	T: 40°C		In: GPL (C3 – C4);		
		rimozione idrogeno	P: 27 barg		tracce H ₂ S		
		solforato e umidità	1.27 0415		Out: GPL		
					Out: effluente da rigenerazione (ricco in H ₂ S)		
Vessels		Funzione Sostanze co		Sostanze con	. 2 /		
	V601	Accumulatore di testa colo	nna	C3, sfioro	Fuel Gas pulito		

PROCESSO				
Materie prime	Tipo	Imp. di provenienza / destinazione	Portata (di progetto)	
	GPL	Platforming (U300)	9.9 t/h	
Prodotti	Propano (C3)	Stoccaggio	1.97 t/h	
	Butano (C4)	Stoccaggio	5 t/h	
	Miscela GPL	Stoccaggio	2.9 t/h	
Chemicals utilizzati	Tipo /funzione	Apparecchiatura/e interessate	Quantità utilizzata	
	-	-	-	
Combustibili			-	
Condizioni di funzionamento	T:77°C			
(in ingresso colonna)	P: 12 barg			
Tempistiche di	avviamento: 6 ore arresto: 6 ore			

Il gas liquido proveniente dall'accumulatore di carica dell'Unità Platforming (U300) colonna deetanatrice C302, viene inviato ai setacci molecolari V501 A/B, dei quali uno é in esercizio e l'altro è in attesa per produzione propellente Spray oppure in rigenerazione, allo scopo di eliminare l'idrogeno solforato residuo (e umidità).

La rigenerazione del setaccio, ogni 750 ore circa, in funzione produzione di propellente Spray, viene effettuata con gas liquido vaporizzato in un ribollitore ad hot oil in controcorrente. L'effluente della rigenerazione, ricco di acido solfidrico, viene condensato, refrigerato in uno scambiatore ad

acqua ed inviato in un serbatoio di GPL slop per essere rilavorato in carica alle stabilizzatrici C201 (U200) o C301 (U300).

Il gas liquido depurato in V501 A/B viene inviato alla colonna C601 dove viene frazionato in due tagli, testa (più ricco in propano) e fondo (più ricco in butano).

L'alimentazione alla colonna viene preriscaldata scambiando calore col prodotto di fondo della colonna stessa. Quest'ultimo viene poi ulteriormente raffreddato mediante uno scambiatore ad acqua prima di essere inviato a stoccaggio.

I vapori di testa colonna vengono condensati in scambiatore ad acqua, e raccolti in fase liquida in V601. Parte del liquido viene riflussato in colonna e parte inviato a stoccaggio. Il ribollimento del prodotto di fondo viene ottenuto utilizzando vapore a bassa pressione.

É prevista infine la possibilità di spillare una quota di miscela o propano o butano per produrre spray, effettuando un ulteriore passaggio su uno dei due setacci molecolari V501 A/B per eliminare eventuali tracce di H₂S.

ASP	ETTI AMBIENTALI				
Aspe	etto	Condizioni Normali		Condizioni Anomale	Note
		Quantità	Frequenza		
1	Consumo risorse energetiche				
1	energia elettrica	22 kW	continua		
	vapore B.P.	$1,5 \text{ m}^3/\text{h}$	continua		
2	Consumo acqua				
2	processo raffreddamento	- 113,5 m ³ /h	continua		
3	Emissioni in atmosfera				
4	Scarichi idrici (inviati a SWS)				
	Portata	-	-		
5	Utilizzo chemicals	-	-		
	Produzione rifiuti	CER	quantità	frequenza	smaltimento (D) recupero ®
	Fanghi oleosi prodotti dalla manutenzione di impianti e apparecchiature	05 01 06*	-	episodica	D
6	Scarti di olio minerale per motori, ingranaggi e lubrificazione, non clorurati	13 02 05*	-	episodica	R
	Assorbenti, materiali filtranti, stracci i indumenti protettivi, contaminati da sostanze pericolose	15 02 02*	-	episodica	D
	Catalizzatori esauriti contaminati da sostanze pericolose	16 08 07*	8,2 t	Una volta ogni 5 anni	R

Tubi fluorescenti ed altri rifiuti contenenti mercurio 20 01 21* - episodica R

1.6 UNITÀ DI DESOLFORAZIONE GASOLIO 1 (HDS1 - U700)

ID. FASE PRODUTTIVA				
NOME	Desolforazione 1 (HDS1)			
SIGLA ID.	U700			
COSTRUTTORE/PROGETTISTA	FOSTER WHEELER			
ANNO DI AVVIAMENTO	2008			

ELENCO E	CARATTERIST	ICHE APPARECCHI	ATURE P	RINCIPAI	I
Tipologia	Identificativo	P	rincipali ca	ratteristicl	ne
Colonne		Funzione		zioni di	Flussi di materia
	C 701	COLONNA STRIPPER	T=200 °C		In: gasolio carica
			P=0.8 kg/c	m²r	In: vapore mp
			1 010 118/0		In: benzina riflusso
					Out: gasolio strippato
					Out: benzina slop
					Out: Acqua acida
					Out: vapori testa
	C 751	COLONNA	T=45 °C		In: gas riciclo
		ASSORBITORE ALTA	P=53.4 kg/cm²r		In: ammina povera
		PRESSIONE			Out: gas lavato
					Out: ammina ricca
	C 752 (*)	COLONNA	T=46 °C		In: vapori testa stripper
	` ,	EX-ASSORBITORE	P=0.3 kg/cm ² r		
		BASSA PRESSIONE	1 –0.3 kg/cm 1		Out: gas lavato
	C 753	COLONNA	T=121 °C		In gasolio umido
		ESSICATORE	P=80 mm	Ησ	Out: gasolio anidro
			1 00 11111	8	Out: vapori testa
Reattori		Funzione	Condiz funzionam	zioni di ento (T, P)	Flussi di materia
	R 751N	desolforazione	T=340÷41	0°C	In: gasolio, treat gas
			P=63.5 bar		Out: prodotti reazione
	R 752	desolforazione	T=320÷41		In: gasolio, treat gas
			P=65.5 bar		Out: prodotti reazione
Forni		Tipo/i di combustibile	Condia	zioni di	Flussi di energia
			funzionamento (T)		
	H 701N	Fuel gas	T processo=320÷410		6,377MKcal/h
			°C		
Vessels		Funzione Sostanzo		Sostanze con	ntenute
(**)	V 704	SEPARATORE ALTA PR	RESSIONE Idrogeno, gasolio		C1, C2, C3, C4, H ₂ S
					, , , , , 2-
	V 705	SEPARATORE BASSA P	RESSIONE	C	C1, C2, C3, C4, H ₂ S
	. , 50			gasolio	22, 22, 23, 21, 1120
		gasono		5000110	

(*): attualmente non in funzione

(**): sono indicati unicamente i vessels essenziali alla descrizione sintetica del processo riportata nel seguito

PROCESSO			
Materie prime	Tipo	Imp. di provenienza / destinazione	Portata (di progetto)
	Carica Totale		58,33 t/h
	Kerosene	erosene U100-1200-1400 2	
	Gasolio U100		36,46 t/h
Prodotti	Gasolio desolforato Stoccaggio		54.58 t/h
Chemicals utilizzati	Tipo /funzione	Apparecchiatura/e interessate	Quantità utilizzata
	MDEA (40%)	C751	10t/h
Combustibili	Fuel gas H 701N		450 kg/h
Condizioni di funzionamento	T°C 320÷410		
(in ingresso reattori)	P barg 62.3		
Tempistiche di	avviamento: 5 gg (a 1	regime) arresto: 2	gg

L'Unità di Desolforazione Gasolio 1 (HDS1) effettua l'operazione di desolforazione mediante un processo di reazione, su catalizzatore Nichel-Molibdeno / Cobalto-Molibdeno, di un flusso di alimentazione costituito da kerosene e gasolio da Topping (U100), da impianti neri (U1100, U1400 e U1200) e reintegrando da serbatoio di gasolio semifinito; l'alimentazione è addizionata con gas ricco in idrogeno.

L'impianto è dotato di una sezione di assorbimento amminico.

Da due accumulatori di carica in parallelo, il flusso in ingresso, addizionato di gas ricco in idrogeno, viene preriscaldato in scambiatori a spese dell'effluente di reazione, in seguito passa nel forno H701N.

Nei reattori R752 e R751N posti in serie avviene la reazione principale di desolforazione, accompagnata da deazotazione e dalla saturazione dei doppi legami delle molecole idrocarburiche. Le correnti in uscita dal fondo dei due reattori cedono calore, come visto, all'alimentazione e alla unità 760, dopo ulteriore raffreddamento (aircooler e scambiatori ad acqua di torre), pervengono ad un separatore ad alta pressione (V704).

I vapori uscenti da tale separatore, unitamente con i vapori provenienti dall'unità di desolforazione kerosene (U760), sono alimentati, previa separazione delle particelle di liquido trascinate, alla colonna di lavaggio con soluzione amminica C751, dove viene rimossa la quasi totalità dell'idrogeno solforato.

I gas di testa di C751 vengono sottoposti ad ulteriore separazione prima di essere riciclati assieme a quantità opportune di gas di reintegro.

La soluzione amminica viene inviata a rigenerazione all'impianto di lavaggio gas 2 - U1800.

A valle del separatore ad alta pressione è posto un separatore a bassa pressione (V705) che invia la fase liquida, risultante dal flash, alla colonna di strippaggio con vapore (C701), previo riscaldamento in scambiatori con il residuo di fondo della medesima colonna ed il gasolio di fondo della colonna essiccatrice C753.

I vapori di testa di C701 vengono condensati e di conseguenza in parte riflussati in colonna, in parte ricircolati a Topping o Visbreaking; la fase acquosa viene inviata a SWS, mentre la restante fase gassosa viene invece inviata a lavaggio amminico tramite un compressore di rilancio.

Il residuo di fondo della C701 è inviato alla colonna di essiccazione C753, che opera in condizioni

di vuoto mediante l'azione di un sistema di eiettori. Gli incondensabili vengono inviati al forno H304 (Hot oil), le acque a SWS e le frazioni idrocarburiche liquide a slop per essere recuperate. Il prodotto di fondo di C753 è costituito da gasolio desolforato ed essiccato che viene inviato a stoccaggio.

ASPI	ETTI AMBIENTALI				
Aspet	tto	Condizion	i Normali	Condizioni Anomale	Note
•		Quantità	Frequenza		
	Consumo risorse energetiche				
1	energia elettrica	1256 Kw	continuo		
	vapore M.P.	950 kg/h	continuo		
	vapore B.P.	600 kg/h	continuo		
	Consumo acqua				
2	processo	-	-		
	raffreddamento	$200 \text{ m}^3/\text{h}$	continuo		
	Emissioni in				
	atmosfera (E5)				
•	Portata fumi	9.101 Nm3/h	continuo		
3	flusso di massa SOx	0,13 kg/h	continuo		
	flusso di massa NOx	0,91 kg/h	continuo		
	flusso di massa CO	0,91 kg/h	continuo		
	flusso di massa PM	0,05 kg/h	continuo		
	Scarichi idrici (inviati a SWS)				
4	Portata V704	4661 /	continuo		
	Portata V705	466 kg/h	Continuo		
	Portata V754	800 kg/h	continuo		
5	Utilizzo chemicals (sommatoria da tab. precedente)	Vd. tab. precedente			
	Produzione rifiuti	CER	quantità	frequenza	smaltimento (D) / recupero ®
	Fanghi oleosi prodotti dalla manutenzione di impianti e apparecchiature	05 01 06*	-	episodica	D
	Scarti di olio minerale per motori, ingranaggi e lubrificazione, non clorurati	13 02 05*	-	episodica	R
6	Assorbenti, materiali filtranti, stracci i indumenti protettivi, contaminati da sostanze pericolose	15 02 02*	-	episodica	D
	Sostanze chimiche di laboratorio contenenti o costituite da sostanze pericolose, comprese le miscele di sostanze chimiche di laboratorio	16 05 06*	-	episodica	D

Catalizzatori esauriti contenenti metalli di transizione pericolosi o composti di metalli di transizione pericolosi	16 08 02*	80 t	Una volta ogni 3 anni	R
Tubi fluorescenti ed altri rifiuti contenenti mercurio	20 01 21*	-	episodica	R

1.7 UNITÀ DI DESOLFORAZIONE GASOLIO 3 (HDS3 – U1300)

ID. FASE PRODUTTIVA			
NOME	Desolforazione 3 (HDS3)		
SIGLA ID.	U1300		
COSTRUTTORE/PROGETTISTA	FOSTER WHEELER		
ANNO DI AVVIAMENTO	2009		

ELENCO E	CARATTERIST	ICHE APPARECCHI	IATURE PI	RINCIPAI	I		
Tipologia	Identificativo	P	Principali caratteristiche				
Colonne		Funzione	Condiz funzionam		Flussi di materia		
	C 1301	COLONNA STRIPPER	$T = 180 ^{\circ}C$		In: gasolio carica		
			P = 7 barg		In: vapore mp		
					In: benzina riflusso		
					Out: gasolio strippato		
					Out: benzina slop		
					Out: Acqua acida		
					Out: vapori testa		
	C 1302	COLONNA	T = 45 °C		In: gas riciclo		
		ASSORBITORE ALTA	P = 47 barg	<u>r</u>	In: ammina povera		
		PRESSIONE	1 17 ours		Out: gas lavato		
					Out: ammina ricca		
	C 1303	COLONNA	T = 120 °C		In gasolio umido		
		ESSICATORE	P = -0.8bar	·g	Out: gasolio anidro		
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	8	Out: vapori testa		
Reattori		Funzione	Condiz funzionam		Flussi di materia		
	R1301	desolforazione	$T = 310 \div 41$	10°C	In: gasolio, treat gas		
			P = 55 barg	o .	Out: prodotti reazione		
			1 00 0418	>	Out: prodotti reazione		
Forni		Tipo/i di combustibile	Condiz funzionan		Flussi di energia		
	H 1301	Fuel gas	T processo = 310 ÷ 410 °C		8,738MKcal/h		
Vessels		Funzione Sostanze		Sostanze con	ntenute		
(**)	V 1302	SEPARATORE ALTA PR			C1, C2, C3, C4, H ₂ S		
	V 1303	SEPARATORE BASSA P	PRESSIONE	Idrogeno, gasolio	C1, C2, C3, C4, H ₂ S		

(*): attualmente non in funzione

(**): sono indicati unicamente i vessels essenziali alla descrizione sintetica del processo riportata nel seguito

PROCESSO	PROCESSO					
Materie prime	Tipo	Imp. di provenienza /	Portata (di progetto)			
		destinazione				
	Carica Totale		83,33 t/h			
	Kerosene	U1200-1400	5,71 t/h			
	Gasolio	U1500	34,04 t/h			
	Gasolio	U100	23,79 t/h			
	Gasolio U1100-1200-1400 1		19,79 t/h			
Prodotti	Gasolio desolforato Stoccaggio		79,2 t/h			
Chemicals utilizzati	Tipo /funzione Apparecchiatura/e interessate		Quantità utilizzata			
	MDEA (40%)	C 1302	20 t/h			
Combustibili	Fuel gas H 1301		450 kg/h			
			\mathcal{C}			
Condizioni di funzionamento	T°C 320÷410					
Condizioni di funzionamento (in ingresso reattori)						

L'Unità di Desolforazione Gasolio 3 (HDS3) effettua l'operazione di desolforazione mediante un processo di reazione, su catalizzatore Nichel-Molibdeno / Cobalto-Molibdeno, di un flusso di alimentazione costituito da gasolio da Topping (U100), da impianti neri (U1100, U1400 e U1200), da Mild Hydrocracking (U1500) e reintegrando da serbatoio di gasolio semifinito; l'alimentazione è addizionata con gas ricco in idrogeno.

L'impianto è dotato di una sezione di assorbimento amminico.

Dal accumulatore di carica il flusso in ingresso, addizionato di gas ricco in idrogeno, viene preriscaldato in scambiatori a spese dell'effluente di reazione, in seguito passa nel forno H1301. Nel reattore R1301 composto da 3 letti catalitici avviene la reazione principale di desolforazione, accompagnata da deazotazione e dalla saturazione dei doppi legami delle molecole idrocarburiche.

Le correnti in uscita dal fondo del reattore cedono calore, come visto, all'alimentazione e giunge al separatore di alta pressione caldo (V1302) dove avviene una prima separazione tra la fase vapore e il gasolio da stabilizzare.

La fase vapore viene raffreddata da uno scambiatore di preriscaldo del gas di trattamento ricco in H2 e da due aircooler per poi pervenire al separatore di alta freddo (V1303).

I vapori uscenti da quest'ultimo separatore, sono alimentati, previa separazione delle particelle di liquido trascinate, alla colonna di lavaggio con soluzione amminica C1302, dove viene rimossa la quasi totalità dell'idrogeno solforato.

I gas di testa di C1302 vengono sottoposti ad ulteriore separazione prima di essere riciclati assieme a quantità opportune di gas di reintegro.

La soluzione amminica viene inviata a rigenerazione all'impianto di lavaggio gas 3 – U2800.

Il liquido in uscita ai due separatori ad alta pressione viene inmesso direttamente nella colonna di strippaggio con vapore (C1301).

I vapori di testa della C1301 vengono condensati e di conseguenza in parte riflussati in colonna, in parte ricircolati a Topping; la fase acquosa viene inviata a SWS, mentre la restante fase gassosa viene invece inviata a lavaggio amminico (U1800 – U2800)

Il residuo di fondo della C1301 è inviato alla colonna di essiccazione C1303, che opera in condizioni di vuoto mediante l'azione del sistema di eiettori appartenente al MHC (U1500). Il prodotto di fondo di C1303 è costituito da gasolio desolforato ed essiccato che viene inviato a stoccaggio.

ASPI	ETTI AMBIENTALI	[
Aspetto		Condizion	Condizioni Normali		Note
-		Quantità	Frequenza		
1	Consumo risorse energetiche				
1	energia elettrica vapore M.P.	2347 Kw 1500 kg/h	continuo continuo		
	Consumo acqua	1300 kg/II	Continuo		
2	processo	740 kg/h	continuo		
_	raffreddamento	$67 \text{ m}^3/\text{h}$	continuo		
	Emissioni in	07 III 7 II	Continuo		
	atmosfera (E11)				
3	Portata fumi	12.442 Nm3/h	continuo		
3	flusso di massa SOx	0,18 kg/h	continuo		
	flusso di massa NOx	1,24 kg/h	continuo		
	flusso di massa CO	1,24 kg/h	continuo		
	flusso di massa PM	0,06 kg/h	continuo		
	Scarichi idrici				
4	(inviati a SWS)				
	Portata V1303	2020 kg/h	continuo		
	Portata V1304	2020 Kg/II	• • • • • • • • • • • • • • • • • • • •		
_	Utilizzo chemicals	Vd. tab.			
5	(sommatoria da tab. precedente)	precedente			
	Produzione rifiuti	CER	quantità	frequenza	smaltimento (D) / recupero ®
	Fanghi oleosi prodotti dalla manutenzione di impianti e apparecchiature	05 01 06*	-	episodica	D
	Scarti di olio minerale per motori, ingranaggi e lubrificazione, non clorurati	13 02 05*	-	episodica	R
	Assorbenti, materiali filtranti, stracci i indumenti protettivi, contaminati da sostanze pericolose	15 02 02*	-	episodica	D
6	Sostanze chimiche di laboratorio contenenti o costituite da sostanze pericolose, comprese le miscele di sostanze chimiche di laboratorio	16 05 06*	-	episodica	D
	Catalizzatori esauriti contenenti metalli di transizione pericolosi o composti di metalli di transizione pericolosi	16 08 02*	200 t	Una volta ogni 5 anni	R
	Tubi fluorescenti ed altri rifiuti contenenti mercurio	20 01 21*	-	episodica	R

1.8 UNITÀ DI DESOLFORAZIONE KEROSENE (U760)

ID. FASE PRODUTTIVA			
NOME	Desolforazione Kerosene (HDSK)		
SIGLA ID.	U760		
COSTRUTTORE/PROGETTISTA	THESI / CONSER		
ANNO DI AVVIAMENTO	1991		

ELENCO E CARATTERISTICHE APPARECCHIATURE PRINCIPALI						
Tipologia	Identificativo	Principali caratteristiche				
Colonne		Funzione	Condizioni di funzionamento (T, P)		Flussi di materia	
	C 761	COLONNA STRIPPER	T= 220 °C alla base P= 1.4 kg/cm²r		In: kerosene, H ₂ S, HC leggeri Out: slop oil Out: kerosene desolforato Out: vapori testa	
Reattori		Funzione	Condizioni di funzionamento (T, P)		Flussi di materia	
	R 701	desolforazione	T=320÷360 °C P=60 barg		In: kerosene, treat gas Out: prodotti reazione	
Vessels		Funzione		Sostanze contenute		
(*)	V 762	SEPARATORE ALTA PR	RESSIONE	Idrogeno, Kerosene	C1, C2, C3, C4, H ₂ S,	
	V 763	SEPARATORE BASSA P	RESSIONE	Idrogeno, Kerosene	C1, C2, C3, C4, H ₂ S,	

^{(*):} sono indicati unicamente i vessels essenziali alla descrizione sintetica del processo riportata nel seguito

PROCESSO					
Materie prime	Tipo	Imp. di provenienza / destinazione	Portata (di progetto)		
	Kerosene	U100	900 t/g		
	Kerosene	U1200-1400			
Prodotti	Kerosene desolforato	Stoccaggio	833 t/g		
Chemicals utilizzati	Tipo /funzione	Apparecchiatura/e interessate	Quantità utilizzata		
	-	-	-		
Combustibili	1	-			
Condizioni di funzionamento	T: 320÷360°C				
(in ingresso reattore)	P: 60 barg				
Tempistiche di	arresto: 2 giorni arresto: 2 giorni				

L'Unità di Desolforazione Kerosene (HDSK) effettua l'operazione di desolforazione mediante un processo di reazione, su catalizzatore tipo Nichel-Molibdeno / Cobalto-Molibdeno, di un flusso di alimentazione costituito da kerosene da Topping (U100), da Visbreaking (U1400) e Thermal Cracking (U1200); l'alimentazione è addizionata con gas ricco in idrogeno (proveniente dall'Impianto U700).

Le correnti di kerosene entrano già miscelate nell'impianto, andando ad alimentare l'accumulatore di carica.

A monte del sistema di preriscaldamento avviene la miscelazione con gas di trattamento proveniente dal compressore dell'impianto HDS1 (U700).

La carica viene preriscaldata in sistemi di scambio termico posti in serie: il calore è fornito dall'effluente del reattore R701 di desolforazione kerosene e di seguito dall'effluente della sezione di reazione dell'adiacente impianto HDS1.

L'effluente dal reattore di desolforazione R701 viene raffreddato cedendo calore alla carica e successivamente in un refrigerante ad aria ed in uno ad acqua. All'uscita di questo effluente entra nel separatore ad alta pressione V762 dove si separano una fase vapore ricca in idrogeno, che viene inviata, unitamente al gas di riciclo di HDS1, all'unità di trattamento amminico dell'Impianto HDS1 (colonna C751), ed una fase liquida alimentata al separatore a bassa pressione V763.

In questo si realizza un'ulteriore separazione tra una fase gassosa inviata alle unità di lavaggio amminico del gas combustibile (U1800 e U2800) ed una fase liquida costituita dal kerosene desolforato, contenente ancora un elevato tenore di gas e composti leggeri.

Questo liquido, preriscaldato all'interno di uno scambiatore con il kerosene prodotto nella colonna di strippaggio, va ad alimentare lo stripper medesimo C761, al quale viene fornito calore in un ribollitore ad hot oil.

La fase gas di C761 viene condensata per mezzo di un aircooler e inviata in un accumulatore di testa dal quale i gas rimanenti sono inviati a lavaggio amminico (U1800 e U2800) insieme ai gas di testa dell'unità adiacente HDS1 tramite un compressore di rilancio, mentre la fase liquida è parzialmente riflussata in colonna e parzialmente inviata al Topping (U100).

Il prodotto di fondo della colonna C761 (kerosene desolforato) viene inviato a stoccaggio previo raffreddamento in scambiatori ad aria e ad acqua.

ASPETTI AMBIENTALI Aspetto		Condizioni Normali		Condizioni Anomale	Note
p-		Quantità	Frequenza		
1	Consumo risorse energetiche		1		
1	energia elettrica vapore	115 kW	continuo -		
	Consumo acqua				
2	processo raffreddamento	- 10 m ³ /h	- continuo		
3	Emissioni in atmosfera				
4	Scarichi idrici (inviati a SWS)				
7	Portata		Scarico non continuo		
5	Utilizzo chemicals	-	-		
	Produzione rifiuti	CER	quantità	frequenza	smaltimento (D) / recupero ®
	Fanghi oleosi prodotti dalla manutenzione di impianti e apparecchiature	05 01 06*	-	episodica	D
	Scarti di olio minerale per motori, ingranaggi e lubrificazione, non clorurati	13 02 05*	-	episodica	R
6	Assorbenti, materiali filtranti, stracci i indumenti protettivi, contaminati da sostanze pericolose	15 02 02*	-	episodica	D
	Sostanze chimiche di laboratorio contenenti o costituite da sostanze pericolose, comprese le miscele di sostanze chimiche di laboratorio	16 05 06*	-	episodica	D
	Catalizzatori esauriti contenenti metalli di transizione pericolosi o composti di metalli di transizione pericolosi	16 08 02*	11,6 t	Una volta ogni 2 anni	R
	Tubi fluorescenti ed altri rifiuti contenenti mercurio	20 01 21*	-	episodica	R

1.9 LAVAGGIO GAS UNITÀ 2 ARU2 (U1800)

ID. FASE PRODUTTIVA			
NOME	Lavaggio gas 2		
SIGLA ID.	U1800		
COSTRUTTORE/PROGETTISTA	T.P.L.		
ANNO DI AVVIAMENTO	1984		

ELENCO E CARATTERISTICHE APPARECCHIATURE PRINCIPALI						
Tipologia	Identificativo	Principali caratteristiche				
Colonne		Funzione	Condizioni di funzionamento (T, P)		Flussi di materia	
	C 1801		T = 45 - 61	l°C	In: ammina povera	
		ASSORBIMENTO	$P = 4.5 \div 5 \text{ t}$	oarg	In: gas acido	
			,	υ	Out: ammina ricca	
					Out: fuel gas	
	C 1802		T= 103÷107 °C P= 0,8 barg		In: ammina ricca	
		RIGENERAZIONE			Out: ammina rigenerata	
					Out: idrogeno solforato	
Vessels		Funzione	Sostanze con		ntenute	
(*)						
	V 1851		MMINA AD	soluzione	soluzione amminica "ricca"	
		ALTA PRESSIONE				
	V 1853	ACCUMULATORE DI C	CARICA	gas acido		
	V 1801	SEPARATORE GAS TR	ATTATO	fuel gas		
				tracce di se	oluzione amminica	

(*): sono indicati unicamente i vessels essenziali alla descrizione sintetica del processo riportata nel seguito

PROCESSO				
Materie prime	Tipo	Imp. di provenienza / destinazione	Portata (di progetto)	
	gas acido	Impianti di processo	$7200 \text{ Nm}^3/\text{h}$	
Prodotti	fuel gas desolforato	Rete fuel gas		
	ammina rigenerata	U700 – C1751		
	idrogeno solforato	U1900 – U2900		
Chemicals utilizzati	Tipo /funzione	Apparecchiatura/e interessate	Quantità utilizzata	
	MDEA	U1800 / U2800	Circa 30 lt/d	
	anticorrosivo	U1800 / U2800	Circa 1lt/d	
	antischiuma	U1800 / U2800	Circa 1lt/d	
Combustibili	-	-	-	
Condizioni di funzionamento	T: 61°C			
(in ingresso C1801)	P:5barg			
Tempistiche di	arresto: 4 h			

Il gas da lavare (costituito da idrocarburi leggeri ed idrogeno contenente acido solfidrico) proveniente dagli impianti di processo viene immesso nell'accumulatore di carica V1803, viene fatto confluire nella colonna di assorbimento C1801. Nella C1801 viene sottoposto a lavaggio in controcorrente con una soluzione amminica (MDEA), in grado di assorbire l'

acido solfidrico. Il gas lavato, che esce dalla testa della colonna di assorbimento, viene immesso nella rete Fuel gas di Raffineria, previo passaggio nel separatore V1801 (dotato di "demister"), per l'abbattimento dell'eventuale liquido trascinato.

La soluzione amminica arricchita, uscente dal fondo di C1801, viene alimentata alla colonna di rigenerazione C1802 unitamente al flusso proveniente dalle colonne di assorbimento degli impianto HDS1 (U700). Tale flusso, che proviene dagli assorbitori ad alta pressione degli impianti, viene prima fatto espandere nel serbatoio V1851 per ridurre al minimo i trascinamenti di idrocarburi, per poi essere immesso nella linea di alimentazione alla colonna di rigenerazione; la soluzione ricca viene preriscaldata in scambiatori a spese della soluzione rigenerata.

Dalla testa colonna C1802 escono essenzialmente vapore d'acqua privo di ammina e idrogeno solforato. Il vapore viene condensato ed entra quindi nell'accumulatore di riflusso di testa; di qui l'idrogeno solforato viene inviato agli impianto di recupero zolfo U2900 oppure U1900. L'acqua che si raccoglie nell'accumulatore di riflusso viene rimandata alla testa colonna.

Il calore necessario al processo viene fornito alla colonna con ribollimento di fondo, realizzato mediante una Kettle che utilizza vapore a bassa pressione.

La soluzione uscente dal fondo della colonna di rigenerazione e l'ammina di reintegro eventualmente immessa, dopo avere preriscaldato la soluzione ricca, viene in parte reinviata alla colonna di assorbimento C1801, previo eventuale raffreddamento in scambiatori ad acqua, ed in parte alle sezioni di assorbimento degli impianti HDS.

Allo scopo di mantenere pulita la soluzione, la quale è soggetta a sporcamento per la formazione di solfuro di ferro, parte della soluzione in circolazione viene fatta passare in n°2 filtri di cui uno a cartucce ed uno a carboni attivi.

ASPI	ETTI AMBIENTALI				
Aspetto		Condizioni Normali		Condizioni Anomale	Note
		Quantità	Frequenza		
1	Consumo risorse energetiche				
1	energia elettrica	22 kW/h	continuo		
	vapore B.P.	3,7 t/h	continuo		
	Consumo acqua				
2	processo	-	-		
	raffreddamento	$204 \text{ m}^3/\text{h}$	continuo		
3	Emissioni in				
	atmosfera				
4	Scarichi idrici (inviati a SWS)				
	Portata	-	-		
5	Utilizzo chemicals (sommatoria da tab. precedente)	Vd.tab. Precedente			
	Produzione rifiuti	CER	quantità	frequenza	smaltimento (D) / recupero ®
	Fanghi oleosi prodotti dalla manutenzione di impianti e apparecchiature	05 01 06*	-	episodica	D
6	Scarti di olio minerale per motori, ingranaggi e lubrificazione, non clorurati	13 02 05*	-	episodica	R
	Assorbenti, materiali filtranti, stracci i indumenti protettivi, contaminati da sostanze pericolose	15 02 02*	-	episodica	D
	Carboni attivi da filtri	06 13 02*	500kg	2 anni	R
	Tubi fluorescenti ed altri rifiuti contenenti mercurio	20 01 21*	-	episodica	R

1.10 LAVAGGIO GAS UNITÀ 3 ARU3 (U2800)

ID. FASE PRODUTTIVA				
NOME	Lavaggio gas 3 ARU3			
SIGLA ID.	U2800			
COSTRUTTORE/PROGETTISTA	Foster Wheeler			
ANNO DI AVVIAMENTO	2009			

ELENCO E	CARATTERIST	ICHE APPARECCH	IATURE P	RINCIPAI	LI	
Tipologia	Identificativo	Principali caratteristiche				
Colonne		Funzione	Condizioni di funzionamento (T, P)		Flussi di materia	
	C 2801		T= 45 °C		In: ammina povera	
		ASSORBIMENTO	$P = 4.5 \div 5 \text{ t}$	oarg	In: gas acido	
			,	\mathcal{S}	Out: ammina ricca	
					Out: fuel gas	
	C 2802		$T = 115 \div 12$	27 °C	In: ammina ricca	
		RIGENERAZIONE	$P=1,1\div0,9$	barg barg	Out: ammina rigenerata	
			, , ,		Out: idrogeno solforato	
Vessels		Funzione		Sostanze contenute		
(*)						
	V 2803	ACCUMULATORE FLA	SH	soluzione	ne amminica "ricca"	
	V 2801	ACCUMULATORE DI C	ARICA	gas acido		
	V 2805	SEPARATORE GAS TRA	raci gas			
					oluzione amminica	
	V 2802	ACCUMULATORE DI R	IFLUSO	H_2S		
				Acqua Ac	ida	

^{(*):} sono indicati unicamente i vessels essenziali alla descrizione sintetica del processo riportata nel seguito

PROCESSO					
Materie prime	Tipo	Imp. di provenienza / destinazione	Portata (di progetto)		
	gas acido	Impianti di processo	3527 Nm ³ /h		
Prodotti	fuel gas desolforato	Rete fuel gas			
	ammina rigenerata	U1300 / C1751 /			
		U3900 / U1800			
		(occassionalmente)			
	idrogeno solforato	U2900 / U1900			
Chemicals utilizzati	Tipo /funzione	Apparecchiatura/e interessate	Quantità utilizzata		
	MDEA	U1800 / U2800	Circa 30 lt/d		
	anticorrosivo	U1800 / U2800	Circa 3lt/d		
	antischiuma	U1800 / U2800	Circa 1lt/d		
Combustibili	-	-	-		
Condizioni di funzionamento	T: 45°C				
(in ingresso C2801)	P:5barg				
Tempistiche di	avviamento: 12 h	arresto: 8	h		

Il gas da lavare (costituito da idrocarburi leggeri ed idrogeno contenente acido solfidrico) proveniente dagli impianti di processo viene immesso nell'accumulatore di carica V2801, viene fatto confluire nella colonna di assorbimento C2801. Nella C2801 viene sottoposto a lavaggio in controcorrente con una soluzione amminica (MDEA), in grado di assorbire l'acido solfidrico.

Il gas lavato, che esce dalla testa della colonna di assorbimento, viene immesso nella rete Fuel gas di Raffineria, previo passaggio nel separatore V2805 (dotato di "demister"), per l'abbattimento dell'eventuale liquido trascinato, recuperato nel circuito amminico.

La soluzione amminica arricchita, uscente dal fondo di C2801, viene fatta espandere nel accumulatore V2803 insieme alle ammine ricche provenienti dagli impianti HDS3(U1300), C1751(U200), TGCU(U3900), e occasionalmente ARU2 (U1800), così faccendo vengono ridotti al minimo i trascinamenti di idrocarburi, per poi essere immesso nella colonna di rigenerazione; la soluzione ricca viene preriscaldata in scambiatori a spese della soluzione rigenerata.

Dalla testa colonna C2802 escono essenzialmente vapore d'acqua privo di ammina e idrogeno solforato. Il vapore viene condensato ed entra quindi nell'accumulatore di riflusso di testa; di qui l'idrogeno solforato viene inviato agli impianto di recupero zolfo U2900 oppure U1900 in caso di fuori servizio prolungato del altro. L'acqua che si raccoglie nell'accumulatore di riflusso viene rimandata alla testa colonna e in parte spurgata a SWS.

Il calore necessario al processo viene fornito alla colonna con ribollimento di fondo, realizzato mediante una Kettle che utilizza vapore a bassa pressione.

La soluzione uscente dal fondo della colonna di rigenerazione e l'ammina di reintegro eventualmente immessa, dopo avere preriscaldato la soluzione ricca, viene in parte inviata alla colonna di assorbimento C2801, previo eventuale raffreddamento in scambiatori ad aria, ed in parte alle sezioni di assorbimento degli impianti HDS3, TGCU, C1751.

Allo scopo di mantenere pulita la soluzione, la quale è soggetta a sporcamento per la formazione di solfuro di ferro, parte della soluzione in circolazione viene fatta passare in n°3 filtri di cui due a cartucce ed uno a carboni attivi.

ASPE	ASPETTI AMBIENTALI					
Aspetto		Condizioni Normali		Condizioni Anomale	Note	
		Quantità	Frequenza			
1	Consumo risorse energetiche					
1	energia elettrica	193 kW/h	continuo			
	vapore B.P.	15 t/h	-			
	Consumo acqua					
2	processo	428 kg/h	continuo			
	raffreddamento	$18 \text{ m}^3/\text{h}$	continuo			
3	Emissioni in atmosfera					
4	Scarichi idrici (inviati a SWS)					
	Portata	405 kg/h	-			
5	Utilizzo chemicals (sommatoria da tab. precedente)	Vd. Tab. precedente				

	Produzione rifiuti	CER	quantità	frequenza	smaltimento (D) / recupero ®
	Fanghi oleosi prodotti dalla manutenzione di impianti e apparecchiature	05 01 06*	-	episodica	D
6	Scarti di olio minerale per motori, ingranaggi e lubrificazione, non clorurati	13 02 05*	-	episodica	R
	Assorbenti, materiali filtranti, stracci i indumenti protettivi, contaminati da sostanze pericolose	15 02 02*	-	episodica	D
	Carboni attivi da filtri	06 13 02*	500kg	2 anni	R
	Tubi fluorescenti ed altri rifiuti contenenti mercurio	20 01 21*	-	episodica	R

1.11 UNITÀ DI RECUPERO ZOLFO 2 SRU2 (U1900) – IMPIANTO FERMO PRONTO A PARTIRE

ID. FASE PRODUTTIVA				
NOME	Recupero Zolfo 2			
SIGLA ID.	U1900			
COSTRUTTORE/PROGETTISTA	K.T.I.			
ANNO DI AVVIAMENTO	1985			

PRINCIPALI MODIFICHE				
Anno	1995			
Descrizione	Inserimento reattore R1903			
Anno	2004			
Descrizione	- Sostituzione caldaia H1901 con H1951: combustione con aria			
	arricchita di ossigeno finalizzata alla riduzione dei quantitativi			
	di gas di coda			
	- Inserimento V1952 per convogliamento gas acido da unità			
	SWS			

ELENCO E	CARATTERIST	ICHE APPARECCHI	ATURE P	RINCIPAI	I
Tipologia	Identificativo	P	rincipali ca	ratteristicl	he
Caldaie		Funzione	Condizioni di		Flussi di materia
			funzionam	ento (T, P)	
	H 1951		$T=167^{\circ}C$		In: gas acido
		combustione	P=0.5 kgf	/cm ²	In: aria, ossigeno
					Out: zolfo
					Out: miscela non reagita
					(gas acido)
	H 1902	Riscaldatore in linea	$T=240^{\circ}C$	2	In: gas acido
			P = 0.16 kg	f/cm ²	In: aria, fuel gas
					Out: miscela di reazione
	H 1903	Riscaldatore in linea	$T=205^{\circ}C$	2	In: gas acido
			P = 0.09 kg	f/cm ²	In: aria, fuel gas
					Out: miscela di reazione
Reattori	R 1901	Reattore Claus	T=230°C	2	In: miscela di reazione
			$P=0.4 \text{ kgf/cm}^2$		Out: zolfo fase gas, gas
	R 1902	Reattore Claus	T= 210°C		In: miscela di reazione
			$P=0.25 \text{ kgf/cm}^2$		Out: zolfo fase gas, gas
	R 1903	Reattore Claus	T= 200°C		In: miscela di reazione
			$P=0.15 \text{ kgf/cm}^2$		Out: zolfo fase gas, gas
Forni	H 1904	Post combustore Zolfo	T processo	=390 °C	In: gas di coda, fuel gas
			_		Out: prodotti di
					combustione
Vessels		Funzione		Sostanze co	ntenute
(*)	V 1901	K.O. DRUM GAS ACIDO	da MHC	Gas acido	
	V 1903			Tracce di z	zolfo, gas di coda
	V 1905	VASCA ACCUMULO LIQUIDO		zolfo	
	V 1951	K.O. DRUM GAS ACIDO	da SWS	Gas acido	

V 1952 GAS ACIDO da SWS Gas acido

(*): sono indicati unicamente i vessels essenziali alla descrizione sintetica del processo riportata nel seguito

PROCESSO			
Materie prime	Tipo	Imp. di provenienza / destinazione	Portata (di progetto)
	gas acido	U150, U1500, U1800, U2800	1840 kg/h
Prodotti	Zolfo liquido	Stoccaggio	62 t/g
Chemicals utilizzati	Tipo /funzione	Apparecchiatura/e interessate	Quantità utilizzata
	-	-	-
Combustibili	Fuel gas		
Condizioni di funzionamento			
(in ingresso primo reattore)	P: 0.45 barg		
Tempistiche di	avviamento: 12 h	arresto: 4	8 h

Il gas acido proveniente dagli impianti U2800, U1800 e U1500 cede eventuali trascinamenti liquidi nel separatore V1901; tale funzione è assolta per il gas proveniente dall'unità SWS (U150) dal separatore V1951. A seguito della separazione, il gas viene inviato al bruciatore della caldaia H1951, che viene utilizzata anche per la produzione di vapore a bassa pressione; lo zolfo condensato è scaricato attraverso un primo sifone Zolfo, nella vasca V1905.

La corrente di processo passa poi nel riscaldatore in linea H1902 per raggiungere la temperatura ottimale ai fini della conversione catalitica che avviene nel primo reattore R1901 (catalizzatore ad allumina); al suo interno la reazione tra H₂S ed SO₂ continua fino al raggiungimento dell'equilibrio. Il gas uscente dal primo reattore passa in un primo condensatore dove lo zolfo viene condensato e scaricato attraverso un sifone nella vasca V1905. Il calore trascinato dal flusso del gas di processo, passando attraverso i condensatori, é utilizzato per produrre vapore nella caldaia.

Il flusso del gas di processo passa nel secondo riscaldatore in linea (H1903) e di qui nel reattore R1902; analogamente a quanto avvenuto in precedenza, lo Zolfo viene condensato in un secondo condensatore e di qui inviato, attraverso un sifone, nella vasca V1905.

Nei canali di uscita della caldaia recupero calore e dei condensatori zolfo, sono presenti dei demister per recuperare lo zolfo trattenuto sotto forma di nebbia nel gas di processo.

Il gas di processo viene a questo punto riscaldato in un riscaldatore elettrico e quindi alimentato al 3° reattore catalitico R1903. Il gas uscente da questo reattore viene inviato ad un condensatore finale dove si raffredda cedendo calore all'acqua del circuito di teleriscaldamento; lo zolfo liquido viene poi separato dal gas di coda nel separatore V1903, quindi scaricato come di consueto nella vasca zolfo V1905 attraverso una guardia idraulica. Il gas di coda (tail gas) uscente da V1903, dopo essersi unito al gas di coda proveniente dall'Unità Recupero Zolfo 1 (U900), viene infine alimentato al termocombustore H1904.

Dopo essere entrato nel termocombustore, il tail gas é scaldato alla temperatura di combustione totale, miscelandolo con gas combusto caldo ottenuto dalla combustione di fuel gas e aria nella parte inferiore di H1904.

Da tutti i sifoni lo zolfo fluisce, attraverso una comune linea di scorrimento, nella vasca V1905

dalla quale eventualmente viene trasferito in un serbatoio di stoccaggio aggiuntivo; tale serbatoio è inertizzato con azoto e dispone inoltre di un eiettore con convogliamento al forno termocombustore H1904.

ASPI	ASPETTI AMBIENTALI					
Aspetto		Condizioni Normali		Condizioni Anomale	Note	
_		Quantità	Frequenza			
1	Consumo risorse energetiche					
1	energia elettrica	12 kW	continuo			
	vapore M.P.	-	-			
	Consumo acqua					
2	processo	8.5 t/h	continuo		Per produzione vapore	
	raffreddamento	-	-			
3	Emissioni in atmosfera	Emissione convogliata al punto di emissione E6 (vedi SRU3)				
4	Scarichi idrici (inviati a SWS)					
T	Portata da V1951 V1952	40 kg/h	Spurgo discontinuo			
6	Utilizzo chemicals	-	-			

	Produzione rifiuti	CER	quantità	frequenza	smaltimento (D) / recupero ®
	Fanghi oleosi prodotti dalla manutenzione di impianti e apparecchiature	05 01 06*	-	episodica	D
	Rifiuti contenenti zolfo prodotti dalla desolforazione del petrolio	05 01 16	-	episodica	D
6	Scarti di olio minerale per motori, ingranaggi e lubrificazione, non clorurati	13 02 05*	-	episodica	R
	Assorbenti, materiali filtranti, stracci i indumenti protettivi, contaminati da sostanze pericolose	15 02 02*	-	episodica	D
	Catalizzatori esauriti contaminati da sostanze pericolose	16 08 07*	11000 kg	Una volta ogni 4 anni	R
	Tubi fluorescenti ed altri rifiuti contenenti mercurio	20 01 21*	-	episodica	R

1.12 UNITÀ DI RECUPERO ZOLFO 3 SRU3 (U2900)

ID. FASE PRODUTTIVA				
NOME	Recupero Zolfo 3 SRU3			
SIGLA ID.	U2900			
COSTRUTTORE/PROGETTISTA	SINI			
ANNO DI AVVIAMENTO	2010			

ELENCO E	CARATTERIST	ICHE APPARECCHI	ATURE PRINCIPAL	I		
Tipologia	Identificativo	Principali caratteristiche				
Reattori		Funzione	Condizioni di funzionamento (T, P)	Flussi di materia		
	R 2901	Reattore di Claus Camera di Combustione $T=1425\div1354^{\circ}C$ $P=0,59$ barg		In: gas acido In: aria Out: zolfo Out: SO ₂ Out: H ₂ S		
	R 2902	Claus	T= 230°C P= 0,486 barg	In: gas acido In: aria, fuel gas Out: miscela di reazione		
	R 2903	Reattore Catalitico di Claus	T= 205°C P=0,386 barg	In: gas acido In: aria, fuel gas Out: miscela di reazione		
Caldaie	E 2901/V 2907	Caldaia di recupero calore	T= 260°C P= 48 barg	In: Acqua alimento caldaie Out: Vapore		
	E 2902	Condensatore zolfo liquido	T= 150°C P= 4barg	In: Acqua alimento caldaie Out: Vapore		
	E 2906	Caldaia di recupero calore	T= 200°C P= 14,5 barg	In: miscela di reazione Out: zolfo fase gas, gas		
Forni	H 2901	Post combustore Tail Gas	T=900÷700 °C	In: gas di coda, fuel gas Out: prodotti di combustione		
Vessels		Funzione	Sostanze con	ntenute		
(*)	V 2901	AMMINA	ACIDO DI GAS ACII			
	V 2902	K.O. DRUM GAS ACIDO	011011011	DO H ₂ S, NH ₃		
ļ	V 2906	COALESCER		N ₂ , ZOLFO		
	V 2908	VASCA ZOLFO	ZOLFO			

^{(*):} sono indicati unicamente i vessels essenziali alla descrizione sintetica del processo riportata nel seguito

PROCESSO				
Materie prime	Tipo	Imp. di provenienza / destinazione	Portata (di progetto)	
	Gas Acido di ammina	U1500, U1800, U2800	4603 kg/h	
	Gas Acido da SWS	U150	1092 kg/h	
Prodotti	Zolfo liquido	Stoccaggio	105 t/d	
	Tail Gas	TGCU		
Chemicals utilizzati	Tipo /funzione	Apparecchiatura/e interessate	Quantità utilizzata	
	1	-	-	
Combustibili	Fuel gas	H2901	250kg/h	
Condizioni di funzionamento	T: 1452÷1354°C			
(in camera di combustione R2901)	P: 0,59 barg			
Tempistiche di	avviamento: 12 h	arresto: 4	8 h	

Il gas acido proveniente dagli impianti U1800, U2800 e U1500 cede eventuali trascinamenti liquidi nel separatore V2901; tale funzione è assolta per il gas proveniente dall'unità SWS (U150) dal separatore V2902. A seguito della separazione, il gas viene inviato al bruciatore del reattore termico R2901, i gas di scarico del reattore passano attraverso una caldaia di recupero calore per a produzione di vapore di alta pressione, che verrà riutilizzato per il preriscaldo dei reattore catalitici. Lo zolfo condensato in uscita al E2901 è scaricato attraverso un primo sifone Zolfo, nella vasca V2908.

I gas continuano nel condensatore E2902, dover producono vapore di bassa pressione e lo zolfo viene raccolto attraverso il secondo sifone nella vasca V2908.

La corrente di processo passa poi nel riscaldatore a vapore di alta pressione E2903 per raggiungere la temperatura ottimale ai fini della conversione catalitica che avviene nel secondo reattore R2902 (catalizzatore ad allumina); al suo interno la reazione tra H_2S ed SO_2 continua fino al raggiungimento dell'equilibrio. Il gas uscente dal secondo reattore passa nel condensatore dove lo zolfo viene condensato e scaricato attraverso il terzo sifone nella vasca V2908.

Il flusso del gas di processo passa nel riscaldatore a vapore di alta pressione E2904 e di qui nel reattore R2903; analogamente a quanto avvenuto in precedenza, lo Zolfo viene condensato nel condensatore E2902 e quindi raccolto attraverso il quarto un sifone, nella vasca V2908.

Nei canali di uscita del condensatore, sono presenti dei demister per recuperare lo zolfo trattenuto sotto forma di nebbia nel gas di processo.

Il gas di processo viene a questo punto inviato nel coalescer V2906, per poi essere inviato sezione 3900 TGCU.

In caso di fuori servizio di quest'ultima viene inviato direttamente nel Post combustore H2901.

Il gas di coda (tail gas) uscente da V2906 oppure dal V3902 viene alimentato al post combustore H2901.

Dopo essere entrato nel H2901, viene scaldato con una fiamma di gas combusto fino a raggiungere i 700°C in seconda camera di combustione. I fumi passano attraverso una caldaia di recupero calore e giungono nel camino E6.

Da tutti i sifoni lo zolfo fluisce, attraverso una comune linea di scorrimento, nella vasca V2908 nella quale passa attraverso la sezione di degassaggio e poi vieni inviato al serbatoio di accumulo.

ASPI	ETTI AMBIENTALI				
Aspetto		Condizioni Normali		Condizioni Anomale	Note
		Quantità	Frequenza		
1	Consumo risorse energetiche				
1	energia elettrica	452 kW	continuo		
	vapore	1	-		
	Consumo acqua				
2	processo	18715 kg/h	continuo		Per produzione vapore
	raffreddamento	-	-		
	Emissioni in atmosfera (E6)				
	Portata fumi	13.824 Nm3/h	continuo		
3	flusso di massa SOx	0,03 kg/h	continuo		
	flusso di massa NOx	2,76 kg/h	continuo		
	flusso di massa CO	1,11 kg/h	continuo		
	flusso di massa PM	0,07 kg/h	continuo		
4	Scarichi idrici (inviati a SWS)				
	Portata da V2902	40 kg/h	Spurgo discontinuo		
5	Utilizzo chemicals	-	-		
	Produzione rifiuti	CER	quantità	frequenza	smaltimento (D) recupero ®
	Fanghi oleosi prodotti dalla manutenzione di impianti e apparecchiature	05 01 06*	-	episodica	D
	Rifiuti contenenti zolfo prodotti dalla desolforazione del petrolio	05 01 16	-	episodica	D
6	Assorbenti, materiali filtranti, stracci e indumenti protettivi, contaminati da sostanze pericolose	15 02 02*	-	episodica	D
	Scarti di olio minerale per motori, ingranaggi e lubrificazione, non clorurati	13 02 05*	-	episodica	R
	Catalizzatori esauriti contaminati da sostanze pericolose (*)	16 08 07*	19000 kg	Una volta ogni 2 anni	R
	Tubi fluorescenti ed altri rifiuti contenenti mercurio	20 01 21*	-	episodica	R

1.13 UNITÀ DI TRATTAMENTO DI GAS DI CODA TGCU (U3900)

ID. FASE PRODUTTIVA				
NOME	Trattamento gas di coda TGCU			
SIGLA ID.	U3900			
COSTRUTTORE/PROGETTISTA	SINI			
ANNO DI AVVIAMENTO	2010			

ELENCO E	ELENCO E CARATTERISTICHE APPARECCHIATURE PRINCIPALI					
Tipologia	Identificativo	P	rincipali caratteristi	che		
Reattori		Funzione	Condizioni di funzionamento (T, P)	Flussi di materia		
	R 3901	Reattore di idrogenazione	T= 240÷245 °C	In: H ₂		
			P= 0,281 barg	In: Tail Gas H ₂ S, SO ₂ , N ₂ Out: H ₂ O, N ₂ , H ₂ S		
Colonne	C 3901	Colonna di rimozione	T= 30÷45 °C	In: H ₂ O, N ₂ , H ₂ S, H ₂		
		acqua	P= 0,13 barg	Out: Acqua Out: N ₂ , H ₂ S, H ₂		
	C 3902	Assorbitore amminico	T= 45 °C	In: N ₂ , H ₂ S, H ₂		
			P= 0.02 barg	In: Ammina povera		
			- 0,0-00-5	Out: N ₂ , H ₂ , H ₂ S trace		
				Out: ammina ricca		
Vessels		Funzione Sos		ontenute		
(*)	V 3902	K.O. DRUM TAIL GAS	N ₂ , H ₂ , H ₂ S	Strace		

(*): sono indicati unicamente i vessels essenziali alla descrizione sintetica del processo riportata nel seguito

PROCESSO			
Materie prime	Tipo	Imp. di provenienza / destinazione	Portata (di progetto)
	Tail Gas	U2900	13526 kg/h
	Idrogeno	K1502 A/B/C	3 kg/h
Prodotti	Tail Gas	H2901	10193 kg/h
Chemicals utilizzati	Tipo /funzione	Apparecchiatura/e interessate	Quantità utilizzata
	-	-	-
Combustibili	-	-	-
Condizioni di funzionamento			
(in camera di combustione R2901)	P: 0,59 barg		
Tempistiche di	avviamento: 12 h	arresto: 4	8 h

Il tail gas proveniente dal recupero zolfo 3 (U2900) viene adizionato di una corrente di idrogeno puro per poi essere inviato nel reattore di riduzione R3901 previo passaggio nel riscaldatore E3901 a vapore di alta per raggiungere la temperatura di reazione.

Il gas in uscita al reattore passa attraverso una colonna di recupero dell'acqua C3901 che va a raffreddare i gas in ingresso.

Il condensato viene inviato in continuo al impianto di strippaggio delle acque acide SWS (U150) mentre i gas vengono inviati nella colonna di assorbimento.

Nella colonna di assorbimento C3902, viene sottoposto a lavaggio in controcorrente con una soluzione amminica (MDEA), in grado di assorbire l'acido solfidrico.

I gas di testa passano attraverso il V3902 dotato da demister per l'abbattimento di eventuali nebbie.

Il gas viene inviato direttamente al post combustore con un quantitativo di H₂S ridotto.

ASPE	ETTI AMBIENTALI				
Aspetto		Condizioni Normali		Condizioni Anomale	Note
		Quantità	Frequenza		
1	Consumo risorse energetiche				
1	energia elettrica	153 kW	continuo		
	vapore	-	-		
	Consumo acqua				
2					
_	processo	-	continuo		
	raffreddamento	-	-		
3	Emissioni in atmosfera				
4	Scarichi idrici (inviati a SWS)				
	Da C3901	3057 kg/h	continuo		
5	Utilizzo chemicals	-	-		
	Produzione rifiuti	CER	quantità	frequenza	smaltimento (D) / recupero ®
	Fanghi oleosi prodotti dalla manutenzione di impianti e apparecchiature	05 01 06*	-	episodica	D
6	Scarti di olio minerale per motori, ingranaggi e lubrificazione, non clorurati	13 02 05*	-	episodica	R
	Assorbenti, materiali filtranti, stracci i indumenti protettivi, contaminati da sostanze pericolose	15 02 02*	-	episodica	D
	Catalizzatori esauriti contaminati da sostanze pericolose (*)	16 08 07*	10000 kg	Una volta ogni 2 anni	R

Tubi rifiut	fluorescenti ed altri i contenenti mercurio	20 01 21*	-	episodica	R
----------------	--	-----------	---	-----------	---

1.14 SISTEMA BLOW DOWN E TORCIA

ID. FASE PRODUTTIVA				
NOME	Sistema Blow Down e Torcia			
SIGLA ID.	U5000			
COSTRUTTORE/PROGETTISTA	FOSTER WHEELER			
ANNO DI AVVIAMENTO	2009			

PRINCIPALI MODIFICHE		
Anno		
Descrizione		

ELENCO E	ELENCO E CARATTERISTICHE APPARECCHIATURE PRINCIPALI				
Tipologia	Identificativo	Principali caratteristiche			
Torcia		Funzione		zioni di ento (T, P)	Flussi di materia
	X 5001	TORCIA IDROCARBURICA	800° C mir <0,5 barg	n	In: gas da blow down Out: prodotti d combustione
	X 5002	TORCIA ACIDA	800° C mir <0,5 barg	n	In: gas da acido a BD Out: prodotti d combustione
Vessels		Funzione		Sostanze co	ntenute
	V 5001	ACCUMULATORE BLOW DOWN TORCIA IDROCARBURICA		Idrocarbur	i e acqua acida
	V 5003	GUARDIA IDRAULICA TORCIA IDROCARBURICA		Acque acio	de
	V 5004	SIGILLO GUARDIA IDR	AULICA	Acque acio	de
	V 5005	GUARDIA IDRAULICACIDA	A TORCIA	Acque acio	de
	V 113	SEPARATORE GAS/LIQ	UIDO	Idrocarbur	i e acqua acida
Compressore	K 103	RECUPERO E RICICLO BLOW DOWN	O GAS DA	Idrocarbur	i gassosi

PROCESSO			
Materie prime	Tipo	Imp. di provenienza / destinazione	Portata (di progetto)
	idrocarburi liquidi e gassosi	Impianti di processo	
Prodotti	acque acide	SWS	
	prodotti di combustione	Scarico in aria	
	idrocarburi gassosi	Rete Fuel Gas	
Chemicals utilizzati	Tipo /funzione	Apparecchiatura/e interessate	Quantità utilizzata
Combustibili			-
Condizioni di funzionamento	T: 800°C (combustione in torcia)		
(in ingresso sistema di BD)	P: 30 mbar		
Tempistiche di	avviamento: - arresto: -		

La rete definita di Blow-Down, è costituita da una serie di linee che raccolgono gli scarichi di tutte le valvole di sicurezza convogliate, scarichi liquidi e gassosi a bassa pressione, scarico pacchi di tenuta compressori, collettandoli nel recipiente V5001. Quest'ultimo ha le funzioni di separatore liquido/gas, in quanto i prodotti scaricati delle valvole di sicurezza possono essere gassosi e liquidi. I prodotti liquidi vengono inviati in un serbatoio di slop per essere successivamente rilavorati. I gas vengono convogliati in torcia attraverso una guardia idraulica posizionata sul V5003.

Al fine di minimizzare il più possibile la quantità di gas leggeri e/o incondensabili inviata a torcia è presente una stazione di compressione costituita da un compressore volumetrico ad anello liquido a due stadi (K103), e da un separatore di mandata. Il gas viene prelevato da tra il V5001 e il V5003, compresso ed inviato, assieme all'acqua che costituisce l'anello liquido, nel separatore V113, dove vengono separate le 3 fasi presenti (gas, idrocarburi liquidi ed acqua). Il gas viene inviato alla rete fuel gas di Raffineria, mentre l'acqua separata nel V113 ritorna in circolazione all'anello liquido. Invece la fase idrocarburica viene inviata al SWS. In tal modo si ottiene una sensibile riduzione dell'impatto delle emissioni da torcia sull'ambiente circostante.

La torcia idrocarburica X5001 è costituita da una tubazione di 36"di diametro, alta 80 m. La guardia idraulica è predisposta a garanzia di pericolose immissioni di aria all'interno della rete blow-down.

Il sigillo di acqua si ottiene mantenendo un livello di acqua sul fondo del V-5003 tale per cui il collettore di ingresso del gas rimane annegato sotto tale livello.

Il livello viene mantenuto fisso da uno stramazzo e da una immissione continua di acqua. L'immissione di acqua è mantenuta costante attraverso un orifizio calibrato. Il make-up è fatto con acqua strippata da SWS. In caso di abbassamento del livello un sistema di emergenza interviene aprendo un grande flusso di acqua servizi (acqua antincendio) tramite una valvola on/off (XV-001). A livello ripristinato la valvola viene richiusa. L'azione on/off della valvola è anche possibile tramite pulsanti locali.

Lo scarico dell'acqua della guardia idraulica viene recuperata attraverso l'accumulatore V5004 per essere inviato al sistema trattamento acque acide (SWS).

(continua)

Sulla sommità della tubazione è posizionato il combustore dei gas scaricati: esso ha caratteristiche smokeless (antifumo), funzione che assolve grazie all'immissione di vapore a media pressione convogliato in prossimità della fiamma, da appositi ugelli. La garanzia della presenza della fiamma è realizzata con tre bruciatori pilota alimentati a metano. Il combustore mantiene una elevata temperatura di fiamma sopra 800° C) per consentire la combustione dell'idrogeno solforato, anche se convogliato insieme ad altri idrocarburi.

Per quanto riguarda la torcia acida, la rete di blow down acido raccoglie i flussi di scarico ricco di H₂S, la rete normalmente non presenta flusso.

I flussi principali provengono dagli impianti di lavaggio amminico dei gas e dal impianto di strippaggio delle acque acide. Per la torcia acida non c'è recipiente di separazione ed accumulo del liquido separato essendo esclusivamente dedicata a flusso gassoso.

Il collettore dei flussi gassosi contenenti H2S giungono la V-5005 che è il recipiente della guardia idraulica. Funzionante come la guardia idraulica idrocarburica.

La torcia acida X5002 è costituita da una tubazione di diametro 10", alta sempre 80m.

La garanzia della presenza della fiamma è realizzata con tre bruciatori pilota alimentati a metano. Il combustore mantiene una elevata temperatura di fiamma sopra 800°C) per consentire la combustione dell'idrogeno solforato.

ASPI	ETTI AMBIENTALI				
Aspet	tto	Condizioni Normali		Condizioni Anomale	Note
		Quantità	Frequenza		
	Consumo risorse energetiche				
1	energia elettrica	225 kW	costante	240kW	In caso di svuotamento V5001
	vapore M.P.	500 kg/h	costante		
2	Consumo acqua				
2	processo (vapore)	1000 kg/h	costante		
	raffreddamento	$30 \text{ m}^3/\text{h}$	costante		
3	Emissioni in atmosfera				
4	Scarichi idrici (inviati a SWS)				
4	Portata da K103 Portata da V5004	$0.5 \text{ m}^3/\text{h}$ $1.3 \text{ m}^3/\text{h}$			
5	Utilizzo chemicals (sommatoria da tab. precedente)				
	Produzione rifiuti	CER	quantità	frequenza	smaltimento (D) / recupero ®
	Fanghi oleosi prodotti dalla manutenzione di impianti e apparecchiature	05 01 06*	-	episodica	D
6	Scarti di olio minerale per motori, ingranaggi e lubrificazione, non clorurati	13 02 05*	-	episodica	R
	Assorbenti, materiali filtranti, stracci i indumenti protettivi, contaminati da sostanze pericolose	15 02 02*	-	episodica	D

1.15 IMPIANTO SWS (U150)

ID. FASE PRODUTTIVA		
NOME	Sour Water Stripper	
SIGLA ID.	U150	
COSTRUTTORE/PROGETTISTA	AGRAL	
ANNO DI AVVIAMENTO	1992	

ELENCO E	ELENCO E CARATTERISTICHE APPARECCHIATURE PRINCIPALI				I
Tipologia	Identificativo	I	Principali ca	aratteristic	he
Colonne		Funzione		zioni di nento (T, P)	Flussi di materia
	C 151	COLONNA DI STRIPPAGGIO A VAPORE	T= 110°C P= 1 bar		In: acque acide In: vapore B.P. Out: acqua strippata Out: gas acido
Vessels		Funzione		Sostanze co	ntenute
(*)	V151N	ACCUMULATORE DI C	CARICA	acque acid	le
	V 152	RIFLUSSO		acque acido gas acido	le

(*): sono indicati unicamente i vessels essenziali alla descrizione sintetica del processo riportata nel seguito

PROCESSO			
Materie prime	Tipo	Imp. di provenienza / destinazione	Portata (di progetto)
	acque acide	Impianti di processo Serb. 7 "slop acquosi"	40.6 t/h
Prodotti	acque strippate	Sistema fognario	48.8 t/h
	Sour gas	U1900- U2900	0.9 t/h
Chemicals utilizzati	Tipo /funzione	Apparecchiatura/e interessate	Quantità utilizzata
	disperdente	Ingresso preriscaldo carica a C151	15-20 kg/g
Combustibili			-
Condizioni di funzionamento	T: 105°C		
(in ingresso C151)	P: 1.5 barg		
Tempistiche di	avviamento: circa 3 h arresto: circa 3 h		

Le acque acide provenienti dagli impianti Vacuum (U1100), Visbreaker (U1400), Thermalcracking (U1200) transitano attraverso l'accumulatore V153 e nel sistema di desalificazione greggio V101, all'interno dell'Impianto Topping (U100). L'acqua effluente dall'V101 viene inviata all'unità di trattamento acque acide.

Le acque provenienti dagli impianti "bianchi", dalla zona di stoccaggio slop (serbatoio 7) e dall'impianto Mild Hydrocracking (U1500) vengono invece inviate direttamente all'accumulatore **principale V151N**.

L'accumulatore V151N é stato dimensionato in modo tale da fornire un adeguato tempo di stazionamento alle varie correnti e da separare l'eventuale olio trascinato, che viene inviato a slop

oppure in carica al topping.

Le acque acide provenienti dal V151N che compongono la carica impianto vengono inviate in testa alla C151 insieme al riflusso proveniente dal condensatore di testa V152, mentre i vapori separati dall'accumulatore V152 vengono inviati all'impianto U 2900 (in alternativa a Blow down o al forno H101 oppure all'U1900).

Il recipiente V152 é stato progettato in modo da impedire la miscelazione della fase vapore proveniente dalla testa dello stripper.

La carica dell'impianto **parzializzata viene** riscaldata in uno scambiatore a spese delle acque strippate ed inviata in testa alla colonna C151.

Nella colonna C151 si realizza lo strippaggio dell'idrogeno solforato e dell'ammoniaca mediante vapore a bassa pressione immesso al primo piatto.

I vapori di testa vengono parzialmente condensati in un condensatore ad aria ed inviati, come visto, all'accumulatore riflusso V152.

Le acque strippate vengono raffreddate dapprima scambiando calore con la carica e, successivamente, mediante un refrigerante ad aria ed un refrigerante ad acqua, per poi essere inviate nel sistema fognario (Impianto trattamento acque) alla temperatura di 40°C.

ASPI	ASPETTI AMBIENTALI				
Aspetto		Condizioni Normali		Condizioni Anomale	Note
		Quantità	Frequenza		
1	Consumo risorse energetiche				
1	energia elettrica	76.4 kW	continuo		
	vapore	-	-		
	Consumo acqua				
2	processo (vapore)	9 t/h	continuo		
	raffreddamento	61 m ³ /h	continuo		
3	Emissioni in atmosfera				
4	Scarichi idrici (a trattamento acque)				
	Portata	$48,76 \text{ m}^3/\text{h}$			
5	Utilizzo chemicals	(Vd. tab. precedente)			

	Produzione rifiuti	CER	quantità	frequenza	smaltimento (D) / recupero ®
	Fanghi oleosi prodotti dalla manutenzione di impianti e apparecchiature	05 01 06*	-	episodica (*)	D
	Soluzioni acquose di lavaggio ed acque madri	07 01 01*	-	episodica	D/R
6	Scarti di olio minerale per motori, ingranaggi e lubrificazione, non clorurati	13 02 05*	1	episodica	R
	Assorbenti, materiali filtranti, stracci i indumenti protettivi, contaminati da sostanze pericolose	15 02 02*	-	episodica	D
	Tubi fluorescenti ed altri rifiuti contenenti mercurio	20 01 21*	-	episodica	R

^{(*):} manutenzione ordinaria e straordinaria (una volta ogni due anni)

1.16 IMPIANTO SEAL OIL

ID. FASE PRODUTTIVA		
NOME	SEAL OIL	
SIGLA ID.	U100	
COSTRUTTORE/PROGETTISTA		
ANNO DI AVVIAMENTO	2007	

Tipologia	Identificativo	P	Principali caratteristiche		
Vessels		Funzione	Condizioni di funzionamento (T, P	Sostanze contenute	
	V114	ACCUMULATORE DI CARICA	T= 25 °C P= 3.9 bar	GASOLIO MHC	
				GASOLIO HDS1	
PROCESSO					
	Materie prime	Tipo	Imp. di provenienza destinazione	a / Portata (di progetto)	
		GASOLIO	Impianti di processo		
	Prodott	i IDROGENO	PENEX - B/D		
Cl	nemicals utilizzat	Tipo /funzione	Apparecchiatura/e interessate	Quantità utilizzata	
	Combustibil	i	_	_	
Condizioni di funzionamento		T: 25°C			
		P: 3.9barg			
	Tempistiche d	i avviamento: circa 2	h arresto	: circa 2 h	

Il SEAL OIL è un sistema di flussaggio esterno delle tenute delle pompe centrifughe degli impianti che elaborato prodotti a temperature superiori al punto di infiammabilità, è stato realizzato per risolvere sostanzialmente due problemi:

- il surriscaldamento della tenuta, con conseguente usura;
- il rilascio verso l'esterno di prodotto.

Per evitare che essi si manifestino si è costruito un sistema di circolazione di gasolio a circuito chiuso, che garantisce sia il raffreddamento della tenuta, che l'immissione del medesimo gasolio in aspirazione alla pompa, attraverso la tenuta, nel caso che quest'ultima non assolva piu' correttamente la sua funzione, evitando quindi fuoriuscita di prodotto.

Elemento centrale dell'unità è il recipiente d'accumulo V114 in quanto esso deve garantire la costante presenza di prodotto che costituisce appunto il flussante delle tenute. Come detto in precedenza il flussante, in caso di perdita della tenuta, defluisce all'interno della pompa stessa generando quindi un consumo di prodotto. A tale scopo è stato previsto un sistema di reintegro manuale (si ritiene che le tenute funzionino correttamente, dato il raffreddamento esterno e che quindi il consumo sia di modesta entità) con prodotto prelevato da due correnti : stoccaggio HDS 1, dopo essiccamento e stoccaggio gasolio MHC anch'esso dopo essiccamento. Le due correnti sono una di scorta all'altra, nel caso in cui uno dei due impianti sia fermo e vi fosse la necessità di

reintegrare.

Il recipiente è altresì polmonato con gas anidro per garantire una pressione costante in aspirazione alle pompe di circolazione garantiscono il mantenimento della portata del fluido di flussaggio. La pompa trascinata da motore elettrico P181/A è alimentata dalla cabina 10 ed è avviabile da Sala Controllo direttamente da DCS. La pompa trascinata dalla turbina TP181/B (vapore motore da Media Pressione, vapore esausto in Bassa Pressione) è avviabile anch'essa da Sala Controllo via DCS. E' stata realizzata una logica software su DCS che rende le pompe una titolare e l'altra riserva per scelta operativa. Da tener presente che il collettore di media pressione (vapore motore) è alimentato dagli Impianti Neri, mentre la linea del vapore esausto si immette sul collettore di bassa pressione dell'area SWS.. Il gas di pressurizzazione è privo di umidità e viene prelevato a valle degli essiccatori del gas di make-up del Penex: Il sistema di regolazione di pressione previsto basato sul principio del reintegro/sfioro (a rete torcia) garantisce il mantenimento di una pressione pressocchè invariata al variare del livello.

ASPI	ETTI AMBIENTALI				
Aspet	tto	Condizioni Normali		Condizioni Anomale	Note
		Quantità	Frequenza		
	Consumo risorse energetiche				
1	energia elettrica	45 kW	continuo		
	Vapore M.P.	-	-	1.5 t/h	consumo in occasione esercizio pompa TP181/B
	Consumo acqua				
2	processo (vapore) raffreddamento	100 m ³ /h	continuo continuo		
		100 III /II	Continuo		
3	Emissioni in atmosfera				
4	Scarichi idrici (a trattamento acque)				
	Portata				
5	Utilizzo chemicals				
	Produzione rifiuti	CER	quantità	frequenza	smaltimento (D) / recupero ®
	Fanghi oleosi prodotti dalla manutenzione di impianti e apparecchiature	05 01 06*	-	episodica (*)	D
6	Scarti di olio minerale per motori, ingranaggi e lubrificazione, non clorurati	13 02 05*	-	episodica	R
	Assorbenti, materiali filtranti, stracci i indumenti protettivi, contaminati da sostanze pericolose	15 02 02*	-	episodica	D
	Tubi fluorescenti ed altri rifiuti contenenti mercurio	20 01 21*	-	episodica	R

1.17 IMPIANTO TELERISCALDAMENTO (U2000)

ID. FASE PRODUTTIVA		
NOME	Impianto Teleriscaldamento	
SIGLA ID.	U2000	
COSTRUTTORE/PROGETTISTA		
ANNO DI AVVIAMENTO	1989	

ELENCO E	ELENCO E CARATTERISTICHE APPARECCHIATURE PRINCIPALI						
Tipologia	Identificativo	P	Principali caratteristiche				
Scambiatori		Tipo	Funzione		Temp. (lato processo)		
					in	out	
	E 2001 A/B			calore da erno a cte ettrica)			
	E 2001/ C		trasferimento calore da circuito interno a esterno raffredd. flusso in caso di basso utilizzo telerisc.				
	E 2002 A/B	Aircooler					
	E 2003		preriscaldo a	cqua			
	E 2004 A/B		trasferimento circuito inter	no a esterno			
	E 2005		preriscaldo a	cqua			
Vessels		Funzione		Sostanze con	ntenute		
	V 2001	ACCUMULATORE ACC	QUA circuito	acqua			
	V 2002	ACCUMULATORE CON					

PROCESSO						
Chemicals utilizzati	Tipo /funzione		Apparecchiatura/e interessate		Quantità utilizzata	
	polifunzionale					
	deiossigenare		In E1215 A/B			
Combustibili	-		-		-	
Condizioni di funzionamento		in		out		
(circuito esterno)	T (°C)	60	120			
	P (kg/cm ²)	10		9		
Tempistiche di	avviamento	:		arrest	:0:	

Lo scopo dell'impianto è quello di recuperare calore a livelli termici non più utilizzabili per il processo e trasferirlo alla rete cittadina di teleriscaldamento. Il processo, esclusivamente fisico, utilizza come mezzo di trasporto del calore, acqua surriscaldata in pressione, mantenuta in circolazione chiusa.

I flussi di processo interessati dal prelievo di calore sono i seguenti:

- corrente di fondo C1201 e fumi di combustione del forno H1201 (Impianto Thermal Cracking U1200),
- corrente di fondo colonna C1151 (Impianto Vacuum U1100),
- vapori testa colonna di distillazione atmosferica C101 e corrente di kerosene effluente dalla frazionatrice laterale C102A (Impianto Topping U100),
- corrente di gasolio (pumparound intermedio) della colonna di frazionamento C1401 (Impianto Visbreaking U1400),
- vapore di bassa media pressione nello scambiatore E2003.

L'acqua così preriscaldata cede calore negli scambiatori E2004 A/B e E2001 A al circuito di teleriscaldamento cittadino(CET) mentre gli E2001A/B preriscaldano il circuito BFW (preriscaldo acqua alla CTE).

La pressione del circuito è garantita costante dal vaso di espansione V2001 polmonato con aria compressa dalla rete di Raffineria.

1.18 IMPIANTO VISBREAKING (U1400)

ID. FASE PRODUTTIVA				
NOME	Visbreaking			
SIGLA ID.	U1400			
COSTRUTTORE/PROGETTISTA	GDM Costruzioni e montaggi industriali S.p.A.			
ANNO DI AVVIAMENTO	1979			

PRINCIPALI MODIFICHE					
Anno	1986				
Descrizione	Aggiunta Soaker e altri interventi di redditività e ottimizzazione				
	(TPL Technipetrol S.p.A)				
Anno	2011				
Descrizione	Preriscaldo aria combustione con acqua CIT				

ELENCO E	CARATTERIST	TICHE DELLE APPA	RECCHIATURE PRI	NCIPALI	
Tipologia	Identificativo	Principali caratteristiche			
Colonne Reattori		Funzione	Condizioni di funzionamento (T, P)	Flussi di materia (condizioni operative medie)	
	C 1401	colonna di frazionamento	P = 1,2 bar T testa = 105°C T flash = 375°C T fondo = 355°C	In Effluenti R1401 125 t/h Out Fuel gas 1 t/h Benzina 5 t/h Kerosene 4 t/h Gasolio 15 t/h Residuo visbreaking 100 t/h	
	R 1401	soaker	P = 10 bar T = 435°C	In Residuo atmosferico 125 t/h Out Effluenti R1401 125 t/h	
Forni		Tipo/i di combustibile	Condizioni di funzionamento (T)	Flussi di energia	
	H 1401	Fuel Gas	Tingresso=260÷320°C T uscita = 435÷460°C	Duty = 30,772MKcal/h	

DESCRIZIONE PROCESSO	DESCRIZIONE PROCESSO				
Materie prime	Tipo	Imp. di provenienza / destinazione	Portata		
	Residuo da distillazione atmosferica	Topping (U100)	125 t/h (145 t/h da progetto); 2600÷3500t/d		
Prodotti	Benzina	Reforming (U200)	5 t/h		
	Petrolio (kerosene)	Desolfor. (HDS1/K – U700-U760)	4 t/h		
	Gasolio pesante	Desolfor. (HDS1 – U700) Desolfor. (HDS3 – U1300)	6t/h		
	Gasolio pesante	Desolfor. (HDS1 – U700) Desolfor. (HDS3 – U1300)	6 t/h		
	Residuo di fondo	Vacuum (U1100)	100 t/h		
Chemicals utilizzati	Tipo /funzione	Apparecchiatura/e interessate	Quantità utilizzata		
	Antifouling	H 1401	trascurabile		
	Antifouling	E 1412 A/B	trascurabile		
	Antifouling	E 1412 C/D	trascurabile		
	Anticorrosivo	C 1401	trascurabile		
Combustibili	Fuel gas	H 1401	2,2 t/h		
Condizioni di funzionamento	T = 375°C				
(in ingresso apparecchiatura princ.)					
Tempistiche di avviamento:	3 – 4 giorni	arresto: 1 –2	2 giorni		

L'Impianto U1400 è alimentato con residuo di fondo della distillazione atmosferica (Topping), direttamente dalla colonna C101 ed eventualmente anche da un serbatoio di stoccaggio intermedio. L'alimentazione viene preriscaldata in scambiatori, sia con l'utilizzo del residuo di fondo e tagli laterali della colonna di frazionamento C1401, sia mediante recupero di calore da flussi dell'Impianto Vacuum (U1100).

Il flusso di alimentazione attraversa il forno H1401 in due serpentine separate (l'aria di combustione viene preriscaldata con acqua CIT);dopo il forno, la carica, che ha iniziato la sua reazione di cracking termico, entra nel Soaker R 1401 dove permane il tempo opportuno per ottenere il grado di conversione desiderato.

All'uscita del Soaker, la carica viene raffreddata da un quench costituito da una corrente di residuo Visbreaker, per poi entrare nella zona flash della colonna di frazionamento C1401.

I vapori di testa colonna vengono condensati in n°4 refrigeranti ad acqua, inviati ad un serbatoio di riflusso, dove avviene la separazione della fase acquosa (inviata a trattamento acque acide, previo invio all'accumulatore area "neri"), e conseguentemente inviati ad una sezione di abbattimento costituita da n°3 serbatoi abbattitori e un compressore a due stadi. Da questa sezione si ottengono Fuel gas (inviato a lavaggio amminico – U2800 e U1800) e benzina (inviata all'impianto Unifining – U200)

Due ulteriori tagli della C1401 sono estratti dalla colonna ed inviati a n°2 stripper dedicati, nei quali vapore surriscaldato a bassa pressione effettua l'azione di strippaggio; le frazioni di testa vengono riflussate alla C1401, mentre le fasi liquide, costituite rispettivamente da kerosene e gasolio, vengono inviate agli impianti di desolforazione (U700, U1300 e U760). Il gasolio viene utilizzato

per cedere calore ai fini del preriscaldo della carica, della produzione vapore e del teleriscaldamento.

Il residuo di fondo della C1401 viene in parte inviato a preriscaldo della carica e produzione vapore a media pressione in $n^{\circ}2$ scambiatori tipo kettle; conseguentemente tale flusso viene inviato ad un accumulatore di fondo per essere utilizzato per il raffreddamento (quench) a valle del Soaker.

La parte di residuo di fondo non utilizzata ai fini di cui sopra viene direttamente inviata in carica all'impianto di distillazione sotto vuoto (U1100).

		Condizion	i Normali	Condizioni	Note
Aspetto				Anomale	11000
	10	Quantità	Frequenza		
1	Consumo risorse energetiche				
1	energia elettrica	827 kW			
	Vapore B.P.	3 t/h			
2	Consumo acqua				
2	processo	5,9 t/h			
	raffreddamento				
	Emissioni in				
	atmosfera (E7)				
	Portata fumi	44.619 Nm3/h			
3	flusso di massa SOx	0,79 kg/h			
	flusso di massa NOx	1,52 kg/h			
	flusso di massa CO	1,34 kg/h			
	flusso di massa PM	0,22 kg/h			
	Scarichi idrici (inviati a SWS)				
4	Portata	Circa 2 m ³ /h			
5	Utilizzo chemicals	trascurabile	continuo		
	Produzione rifiuti	CER	quantità	frequenza	smaltimento (D) / recupero ®
	Fanghi oleosi prodotti dalla manutenzione di impianti e apparecchiature	05 01 06*	-	episodica	D
	Scarti di olio minerale per motori, ingranaggi e lubrificazione, non clorurati	13 02 05*	-	episodica	R
6	Assorbenti, materiali filtranti, stracci i indumenti protettivi, contaminati da sostanze pericolose	15 02 02*	-	episodica	D
	Rifiuti organici, contenenti sostanze pericolose	16 03 05*	-	episodica	R
	Sostanze chimiche di laboratorio contenenti o costituite da sostanze pericolose, comprese le miscele di sostanze chimiche	16 05 06*	-	episodica	D
	di laboratorio				

1.19 IMPIANTO DISTILLAZIONE SOTTO VUOTO (U1100)

ID. FASE PRODUTTIVA				
NOME	Vacuum			
SIGLA ID.	U1100			
COSTRUTTORE/PROGETTISTA				
ANNO DI AVVIAMENTO	1967			

PRINCIPALI MODIFICHE	
Anno	1984
Descrizione	Inserimento colonna C1151; la colonna C1101 viene adibita a
	trattamento sotto vuoto del Thermal TAR
Anno	1986
Descrizione	Introduzione della colonna di strippaggio C1170 per la
	lavorazione del residuo da vuoto (fondo C1151)
Anno	2004
Descrizione	Introduzione della colonna di pre-flash C1150
Anno	2012
Descrizione	Revamping interni e nuove tenute e regolazioni pompe fondo
	colonna C1101

ELENCO E	CARATTERIST	ICHE DELLE APPA	RECCHIA'	TURE PRI	INCIPALI	
Tipologia	Identificativo	Principali caratteristiche				
Colonne Reattori		Funzione	Condizioni di funzionamento (T, P)		Flussi di materia (condizioni operative medie)	
	C 1150	Colonna pre-flash	T = 375°C		In Carica: residuo Visbreaking	
		per separazione	P = 68 mm	ıHg (a)		
		gasolio / bitume			Out Gasolio da frazionare	
					Bitume	
		Colonna di	T = 345-75	5°C	In	
		distillazione	P = 20 mm	Hg (a)	Gasolio da testa C1150	
		sottovuoto	P = 46 mm		Out	
	C 1151		zona flash	228 (4)	Incondensabili / vapore	
	0 110 1		Zona nasn		Gasolio leggero	
					Gasolio pesante 1	
					Gasolio pesante 2 Gasolio pesante 3	
		Colonna di	T - 270°C	(fonds)	Tn	
			$T = 270^{\circ}C$, ,	Residuo C1150	
	C 1170	strippaggio	P = 100 m	mHg (a)	Vapore	
	C 1170				Out	
					Bitume Vapori ricchi in H2S	
Forni		Tipo/i di combustibile	Condia	zioni di	Flussi di energia	
		_	funzionai	mento (T)	<u> </u>	
	H 1151	Fuel Gas	370÷390°C		7,2MKcal/h	
Vessels		Funzione		Sostanze co	ntenute	
(*)	V 1151	Accumulatore condensati testa	circuito di	Gasolio legg	gero, acque acide, gas	

(*): sono indicati unicamente i vessels essenziali alla descrizione sintetica del processo riportata nel seguito

DESCRIZIONE PROCESSO						
Materie prime	Tipo	Imp. di provenienza / destinazione	Portata			
	Residuo di fondo colonna (C1401)	Visbreaking (U1400)	130 t/h			
Prodotti	Gas	Lavaggi gas (U800–U1800)				
	Gasolio leggero	MHC (U1500) – HDS3 (U1300)				
	Gasolio pesante 1	MHC (U1500)				
	Gasolio pesante 2	MHC (U1500)				
	Residuo	produzione bitumi o O.C.				

L'impianto è alimentato dalla corrente di fondo del Visbreaking, la quale viene addizionata con vapore a media pressione (per ridurre fenomeni indesiderati di cracking termico) ed immessa nel forno H1151.

La corrente uscente dal forno si immette nella colonna di distillazione sottovuoto C1150 (preflash), dalla quale i vapori di testa della C1150 vengono estratti dal sistema di Vuoto (più oltre descritto) ed inviati nella colonna di distillazione sotto vuoto C1151.

Il prodotto di fondo della C1150 è inviato, dopo aver ceduto calore alla carica del Visbreaking, allo stripper C1170 che effettua uno strippaggio con vapore (surriscaldato nel forno H1151).

I vapori di testa dello stripper C1170 rientrano nella colonna principale C1151 al di sopra della zona flash.

Il residuo di vuoto estratto dal fondo dello stripper C1170 che inviano a produrre vapore a media pressione in una kettle, a seguito della quale una parte del residuo torna al C1170.

Una volta raffreddato, cedendo ulteriormente calore all'acqua del circuito di teleriscaldamento e se necessario ai fini del preriscaldo dell'eventuale carica dell'impianto da stoccaggio, il residuo Vuoto può essere destinato alla produzione bitume e/o, dopo opportuno flussaggio, alla produzione di olio combustibile.

Nella colonna principale C1151 avviene il processo di distillazione sotto vuoto.

I vapori di testa vengono estratti dal sistema di vuoto a 3 stadi (che utilizza vapore a bassa e media pressione come fluido motore), ciascuno costituito da un eiettore associato ad un condensatore ad acqua. I condensati vengono raccolti nel V1151 da dove la frazione idrocarburica viene inviata a desolforazione, mentre le acque acide (qui raccolte insieme a flussi provenienti da Visbreaking e Thermal Cracking) vengono inviate a SWS o all'Impianto Topping per reintegro a monte della sezione di Desalting.

Gli incondensabili vengono di norma inviati a lavaggio gas, previa aspirazione alle sezioni di compressione degli impianti Visbreaking e Thermal Cracking.

I gasoli, estratti in tre tagli (gasolio leggero, gasolio pesante 1 e gasolio pesante 2), vengono in parte riflussati in colonna, in parte inviati alla Sezione MHC (U1500) dell'Impianto Thermal Craking. Il gasolio pesante 1 viene utilizzato anche per produrre vapore a media pressione in una kettle; il gasolio pesante 2 viene utilizzato per il preriscaldo della carica all'Impianto Visbreaking.

Il residuo di fondo viene in parte reimmesso nella colonna preflash (C1150) ed in parte inviato a stoccaggio (come gasolio pesante 3), dopo aver ceduto vapore per produzione di vapore a media

pressione ed al circuito di teleriscaldamento.

Sezione C1101

Nella colonna C1101 viene inviato il TAR (fondo C1201) dall'impianto Thermal Cracker, in cui subisce un flash per l'abbassamento di pressione e viene sottoposto, nella fase vapore così estratto, a frazionamento.

I vapori di testa colonna vengono inviati nella parte sottostante il riflusso del taglio HVGO1 della frazionatrice vuoto C1151.

Una parte del liquido estratto, costituito da gasolio pesante (Taglio Laterale), viene reinviato in colonna, in parte come lavaggio sotto il piatto di estrazione, in parte come riflusso freddo in testa colonna, previa produzione di vapore di bassa pressione in una kettle. La restante quota viene reimmessa in carica all'impianto TC, oppure, in carica MHC o direttamente a stock. Il Taglio Laterale e/o il fondo TAR flashato possono preriscaldare la carica Visbreaking (o la carica Thermal Cracking in caso di alimentazione da serbatoio), l'acqua demineralizzata all'interno di kettle-reboilers e l'acqua del teleriscaldamento.

Il prodotto liquido di fondo TAR flashato viene infine inviato a stoccaggio come olio combustibile o come flussante in bitume (BITUMELLA).

ASPI	ETTI AMBIENTALI				
Aspetto		Condizioni Normali		Condizioni Anomale	Note
		Quantità	Frequenza		
1	Consumo risorse energetiche				
1	energia elettrica vapore				
	Consumo acqua				
2	processo raffreddamento				
	Emissioni in atmosfera (E8)				
_	Portata fumi	10.440 Nm3/h		1	<u> </u>
3	flusso di massa SOx	0,19 kg/h			
	flusso di massa NOx	0,35 kg/h			
	flusso di massa CO flusso di massa PM	0,31 kg/h 0,31 kg/h			
	Scarichi idrici	0,51 kg/II			
	(inviati a SWS)				
4	Portata da V1152				
5	Utilizzo chemicals	trascurabile	continuo		
	Produzione rifiuti	CER	quantità	frequenza	smaltimento (D) recupero ®
	Fanghi oleosi prodotti dalla manutenzione di impianti e apparecchiature	05 01 06*	-	episodica	D
6	Scarti di olio minerale per motori, ingranaggi e lubrificazione, non clorurati	13 02 05*	-	episodica	R
	Assorbenti, materiali filtranti, stracci i indumenti protettivi, contaminati da sostanze pericolose	15 02 02*	-	episodica	D
	Rifiuti organici, contenenti sostanze pericolose	16 03 05*	-	episodica	R
	Tubi fluorescenti ed altri rifiuti contenenti mercurio	20 01 21*	-	episodica	R

1.20 IMPIANTO THERMAL CRACKING (U1200)

ID. FASE PRODUTTIVA			
NOME	Thermal Cracking		
SIGLA ID.	U1200		
COSTRUTTORE/PROGETTISTA	T.P.L.		
ANNO DI AVVIAMENTO	1984		

ELENCO E	ELENCO E CARATTERISTICHE DELLE APPARECCHIATURE PRINCIPALI						
Tipologia	Identificativo	Principali caratteristiche					
Colonne Reattori		Funzione	Condizioni di funzionamento (T, P)	Flussi di materia (condizioni operative medie)			
	C 1201	Colonna di frazionamento	$T_{in} = 425^{\circ}C$ $T_{flash} = 380^{\circ}C$ $T_{fondo} = 340^{\circ}C$ P atmosferica	In Carica da V1202 Out Fuel gas a trattamento benzina kerosene gasolio TAR a C1101			
	Colonna do strippaggio kerosene C 1202		T _{in} = 170°C P atmosferica	In Kerosene da strippare vapore surriscaldato Out kerosene Vapori leggeri a C1201			
	C 1203	Colonna di strippaggio gasolio	$T_{in} = 270^{\circ}C$ P atmosferica	In gasolio da strippare vapore surriscaldato Out gasolio Vapori leggeri a C1201			
	V 1202	Soaker	T = 425°C P = 15 barg	In Carica da H1201 Out Carica a C1201			
	C 1101	Colonna di distillazione sottovuoto		In TAR da C1201 Out Vapori a C1151 Gasolio a riflusso TAR strippato a stocc.			
Forni		Tipo/i di combustibile	Condizioni di funzionamento (T)	Flussi di energia			
	Н 1201	Fuel Gas	T _{in} carica=270÷280°C T _{out} carica=475÷495°C	17,6MKcal/h			

DESCRIZIONE PROCESSO						
Materie prime	Tipo	Imp. di provenienza / destinazione	Portata: 700÷1500t/d			
	Residuo di fondo da Hydrocracking	MHC (U1500)				
	Gasolio da vuoto	Colonna C1101				
Prodotti	Gas di testa	Impianti di lavaggio (U2800 e U1800)				
	Benzina	Unifining (U200)				
	Kerosene	Desolforazione HDSK (U760)				
	Gasolio leggero	Desolforazione HDS1 (U700) o HDS3 (U1300)				
	Residuo di fondo (TAR)	Colonna C1101				
Chemicals utilizzati	Tipo /funzione Apparecchiatura/e interessate		Quantità utilizzata			
Combustibili	Fuel gas					
Tempistiche di avviamento:	8 ore	re				

L'unità è alimentata dall'olio non convertito proveniente dal fondo della sezione Mild Hydrocracking, da gasolio proveniente dalla colonna di flash C1101 e da stoccaggio. Normalmente la carica viene preriscaldata con una corrente dell'impianto Vacuum (U1100) e riscaldata nel forno H1201; esiste tuttavia la possibilità di alimentare l'impianto da stoccaggio con preriscaldo a spese dell'effluente da C1101.

In uscita dal forno la carica procede nel Soaker (V1202) dove permane per il tempo necessario a fare avvenire le reazioni di rottura dei legami Carbonio. La carica viene di seguito immessa nella colonna principale C1201, previo quench con gasolio pesante estratto dalla colonna stessa.

I vapori di testa vengono immessi in un circuito di condensazione a due stadi che permette il recupero di frazioni idrocarburiche, in parte riflussate in colonna, in parte (benzina) inviati all'impianto Unifining (U200) previo ricontatto in un separatore ad alta pressione. I gas residui vengono inviati alle unità di lavaggio amminico (U2800 e U1800), mentre le acque sono inviate a Sour Water Stripper (SWS).

I tagli laterali vengono trattati in due colonne di strippaggio con vapore: C1202 per il kerosene e C1203 per il gasolio leggero, entrambi inviati alle rispettive unità di desolforazione. Tali correnti laterali possono essere utilizzate per il preriscaldo della carica del Visbreaking o della colonna C1201 stessa (nel caso del kerosene) e per produrre vapore (nel caso del gasolio).

Un taglio di gasolio più pesante si raccoglie in un piatto posto sopra la zona flash della C1201 e viene utilizzato per molteplici finalità: preriscaldo carica Thermal Cracking, preriscaldo carica Visbreaking, produzione vapore, re-immissione in colonna con funzioni di "lavaggio" finalizzato al miglioramento qualitativo dei prodotti, quench a valle del Soaker; infine una parte della corrente viene ricircolata nell'accumulatore di carica (a monte del forno).

Il residuo di fondo (TAR) viene inviato alla sezione di strippaggio sotto vuoto costituita dalla colonna C1101 collegata col sistema vuoto della C1151 (U1100).

ASPETTI AMBIENTALI							
Aspetto		Condizioni Normali		Condizioni Anomale	Note		
_		Quantità	Frequenza				
1	Consumo risorse energetiche						
	energia elettrica	Circa 810 kW	continuo				
	Vapore surr. B.P.	1,1 m ³ /h	continuo				
	Consumo acqua						
2	processo	8.2 m3/h	-				
	raffreddamento	$273,5 \text{ m}^3/\text{h}$	continuo				
3	Emissioni in atmosfera (E9)						
	Portata fumi	25.520 Nm3/h					
	flusso di massa SOx	0,33 kg/h					
	flusso di massa NOx	0,87 kg/h					
	flusso di massa CO	0,77 kg/h					
	flusso di massa PM	0,77 kg/h					
4	Scarichi idrici (inviati a SWS)						
	Portata	circa 1 m ³ /h	continuo				
5	Utilizzo chemicals (sommatoria da tab. precedente)	trascurabile	continuo				
6	Produzione rifiuti	CER	quantità	frequenza	smaltimento (D) recupero ®		
	Fanghi oleosi prodotti dalla manutenzione di impianti e apparecchiature	05 01 06*	-	episodica	D		
	Scarti di olio minerale per motori, ingranaggi e lubrificazione, non clorurati	13 02 05*	-	episodica	R		
	Assorbenti, materiali filtranti, stracci i indumenti protettivi, contaminati da sostanze pericolose	15 02 02*	-	episodica	D		
	Rifiuti organici, contenenti sostanze pericolose	16 03 05*	-	episodica	R		
	Tubi fluorescenti ed altri rifiuti contenenti mercurio	20 01 21*	-	episodica	R		

1.21 MILD HYDROCRACKING (U1500)

ID. FASE PRODUTTIVA				
NOME	Mild Hydrocraking			
SIGLA ID.	U1500			
COSTRUTTORE/PROGETTIST	TA Litwin / KBR			
ANNO DI AVVIAMENTO	2004			
PRINCIPALI MODIFICHE				
Anno 2	0 2012			
Descrizione A	Aggiunta caldaia kettle sul pumparound gasolio della C1501.			

ELENCO E CARATTERISTICHE DELLE APPARECCHIATURE PRINCIPALI				
Tipologia	Identificativo	Principali caratteristiche		
		Funzione	Condizioni di	Flussi di materia
Colonne			funzionamento (T, P)	
Colonne	C 1501	colonna di	in ingresso	In: fase liquida da C1506

	1			
				In: vapore MP surriscaldato
				Out: benzina stabilizzata
				Out: gasolio a strippaggio
				laterale
				Out: olio non convertito
	C 1502	aalamma di	T: 220°C (testa colonna)	In: gasolio da
	C 1302			frazionamento
		strippaggio laterale	P: 0,9 barg	In: vapore MP
				surriscaldato
				Out: gasolio a stoccaggio
	C 1503	colonna di assorb.	T · 54 52°C	In: gas acido
	C 1505			In: ammina povera
		amminico ad alta	P: /0 barg	Out: fuel gas
		pressione		Out: ammina ricca
	C 1504	colonna di assorb.	T : 59°C	In: gas acido
	C 1304			In: ammina povera
			P: 9 barg	Out: fuel gas
		pressione		Out: ammina ricca
	C 1505	colonna di	T: 129°C	In: ammina ricca
	C 1303			Out: ammina povera
		rigenerazione	P : 1,5 barg	Out: gas acido a recupero
		ammina		zolfo
	C 1506	colonna di	T:203°C	In: carica liquida da
	C 1300	strippaggio	P: 9,8 barg	separazioni HP
		surppaggio	F. 9,6 barg	In: vapore MP
				Out: fase liquida a
				frazionamento
				Out: gas acido ad
				assorbim. amminico
	C1507	Dryer del diesel	T: 145	In: diesel
		J	P: 120 mbar assoluti	Out: diesel disidratato
Reattori	R 1501	reattore di	T _{in} : 340÷420°C	In: carica (miscela di gasolio
1.Cattoff	1. 1.001	desolforazione	T _{out} : 360÷450°C	pesante da vuoto 1 e 2, gasolio
		ucsonorazione		leggero da vuoto e gasolio
			P _{in} : 78 barg	pesante atmosferico) + idrogeno di riciclo
			P _{out} : 75 barg	In: idrogeno di quench
				Out: miscela reagita
Forni		Tipo/i di combustibile	Condizioni di	Flussi di energia
FOITH		Tipo/I di combustibile	funzionamento (T)	riussi ui ciicigia
	H 1501	fuel gas	340÷420°C	3,88MKcal/h
	H 1502	fuel gas	360÷380°C	12,5MKcal/h
	11 1302	ruci gas	300-300 C	12,51VIIXCa1/11

DESCRIZIONE PROCESSO	DESCRIZIONE PROCESSO				
Materie prime	Tipo	Imp. di provenienza / destinazione	Portata 900÷1900t/d		
	Gasolio atmosferico pesante	Topping (U100)			
	Gasolio leggero da vuoto	Vacuum (U1100)			
	Gasolio pesante vuoto 1	Vacuum (U1100)			
	Gasolio pesante vuoto 2	Vacuum (U1100)			
	Gasolio pesante	Visbreaker (U1400)			
	Gasolio da vuoto	Thermal Cracking (U1200)			
Prodotti	Benzina	Idrodesolforazione (U760)			
	Gasolio	Stoccaggio			
	Olio non convertito	Thermal Cracking (U1200)			
Chemicals utilizzati	Tipo /funzione	Apparecchiatura/e interessate	Quantità utilizzata		
	Inibitore di corrosione	Accumulatore di testa di T1506	trascurabile		
Combustibili	Fuel gas				
Condizioni di funzionamento	T: 381°C				
(in ingresso reattore)	P: 78 barg				
Tempistiche di avviamento:	2 – 3 giorni	arresto: 1 gi	orno		

Scopo della sezione è quello di convertire i gasoli pesanti di carica in distillati di benzina e gasolio, a ridotto contenuto di zolfo. Le quattro diverse correnti di carica vengono miscelate in un unico flusso che viene filtrato, addizionato con idrogeno di riciclo e preriscaldato con l'effluente di fondo del reattore R1501. La carica, previo passaggio nel forno H1501, è alimentata al reattore a letto catalitico R1501, dove lo zolfo reagisce con l'idrogeno presente trasformandosi in idrogeno solforato mediante una reazione esotermica; contemporaneamente gli idrocarburi con catene più lunghe si scindono trasformandosi in idrocarburi più leggeri.

Il reattore R1501 è costituito da n°3 letti catalitici in serie, due dei quali con catalizzatore Cobalto-Molibdeno, il terzo con catalizzatore Cobalto-Nichel-Molibdeno; l'incremento di temperatura dovuto all'esotermicità delle reazioni di desolforazione ed hydrocracking viene controllato tramite l'iniezione di idrogeno di "quench" (gas di riciclo).

L'effluente dal reattore, previo raffreddamento in controcorrente con la carica fredda, è alimentato ad un separatore ad alta temperatura (pressione > 70 barg) dal quale i vapori passano, previo raffreddamento, ad un separatore a bassa temperatura; i gas vengono inviati alla colonna di lavaggio amminico ad alta pressione (C1503), mentre la fase liquida viene alimentata allo stripper C1506.

I vapori di testa dello stripper sono inviati alla colonna di assorbimento amminico a bassa pressione C1504 per l'eliminazione del H_2S presente

Dalle correnti gassose acide, lavate in controcorrente con soluzione amminica nelle colonne C1503 e C1504, si ottengono rispettivamente il gas di riciclo e gas destinato alla rete combustibile.

(continua)

La fase liquida di C1506 viene inviata, previo riscaldamento nel forno H1502, alla colonna di frazionamento C1501, che ha lo scopo di ottenere benzina, gasolio desolforato e olio non convertito.

La benzina stabilizzata è ottenuta dalla testa della colonna, mentre il gasolio viene estratto dallo stripper laterale C1502 ed inviato a stoccaggio, previo raffreddamento (preriscaldo della corrente di benzina ad Unifining e aircooler).

Il residuo di C1501 (olio non convertito) viene inviato all'Impianto Thermal Cracking (U1200) dopo aver ceduto calore nel ribollitore della colonna C1502.

La colonna C1501 è dotata inoltre di un pumparound finalizzato al controllo dei tagli benzina e gasolio che viene utilizzato anche per recupero calore ai fini della produzione di vapore a media pressione (installata nuova kettle E1526).

La soluzione amminica ricca raccolta sul fondo delle colonne C1503 e C1504 è inviata a un flash-drum dove sono separati gli eventuali idrocarburi leggeri assorbiti e tracce di H₂S; anche tale fase gassosa è lavata con la soluzione amminica povera, in modo da eliminare l'H₂S.

La soluzione amminica ricca è trasferita alla colonna di rigenerazione amminica C1505 dove avviene la rimozione dell'H₂S e NH₃.

Dalla testa della colonna si ottiene una corrente di gas acido ricca in H₂S ed NH₃ che è inviata alle esistenti unità di recupero zolfo. La corrente di fondo colonna (ammina povera) viene sfruttata per riscaldare l'alimentazione alla colonna stessa.

ADII	ETTI AMBIENTALI				
Aspe	tto	Condizion	i Normali	Condizioni Anomale	Note
-		Quantità	Frequenza		
1	Consumo risorse energetiche				
1	energia elettrica	4200 kW	continuo		
	vapore	7400 kg/h	continuo		
	Consumo acqua				
2	processo raffreddamento	2,8 kg/h 634 m3/h			
	Emissioni in atmosfera (E10)				
	Portata fumi	22.550 Nm3/h			
3	flusso di massa SOx	0,35 kg/h			
	flusso di massa NOx	2,14 kg/h			
	flusso di massa CO	2,26 kg/h			
	flusso di massa PM	0,11 kg/h			
4	Scarichi idrici (inviati a SWS)				
	Portata	6,0 m3/h			
5	Utilizzo chemical	Trascurabile	Continuo		
	Produzione rifiuti	CER	quantità	frequenza	smaltimento (D) / recupero ®
	Fanghi oleosi prodotti dalla manutenzione di impianti e apparecchiature	05 01 06*	-	episodica	D
	Soluzioni acquose di lavaggio ed acque madri	07 01 01*	-	episodica	D/R
	Scarti di olio minerale per motori, ingranaggi e lubrificazione, non clorurati	13 02 05*	-	episodica	R
	Assorbenti, materiali filtranti, stracci i indumenti protettivi, contaminati da sostanze pericolose	15 02 02*	-	episodica	D
6	Sostanze chimiche di laboratorio contenenti o costituite da sostanze pericolose, comprese le miscele di sostanze chimiche di laboratorio	16 05 06*	-	episodica	D
	Catalizzatori esauriti contenenti metalli di transizione pericolosi o composti di metalli di transizione pericolosi	16 08 02*	30 t	Ogni 3 anni	R
	Carbone attivato esaurito	06 13 02*	785,6 kg	Ogni 18 mesi	
	Tubi fluorescenti ed altri	20 01 21*	-	episodica	R

2. SISTEMI DI IMPIANTO AUSILIARI

2.1 SISTEMA HOT OIL

ID. FASE			
NOME	Sistema Hot Oil		
SIGLA ID.	-		
COSTRUTTORE/PROGETTISTA	F.W.I.		
ANNO DI AVVIAMENTO	1967		

ELENCO E	ELENCO E CARATTERISTICHE APPARECCHIATURE PRINCIPALI				
Tipologia	Identificativo	Principali caratteristiche			
Forni		Tipo/i di combustibile	Condizioni di funzionamento (T)		Flussi di energia
	H304	Fuel Gas / Virgin Nafta	Tin: 230°C-2 Tout: 305°C		31,11MKcal/h
Vessels		Funzione		Sostanze con	ntenute
	V307	SERBATOIO POLMONE		Gasolio pesa	nte (non commerciale)

PROCESSO					
Chemicals utilizzati	Tipo /funzione		Apparecchiatura/e interessate		Quantità utilizzata
Combustibili	Fuel Gas / Virgin Nafta		-		-
Condizioni di funzionamento	T lato processo in uscita forno		305°C		
	P serbatoio polmone		3,2 bai	rg	
Tempistiche di	avviamento: 10 h			arrest	o: 10 h

Il sistema hot-oil è finalizzato a fornire calore ai ribollitori di numerose unità di raffineria ai fini di processo.

Esso è costituito da un forno di preriscaldo H304, da un serbatoio di accumulo pressurizzato con gas, V 307, e da due pompe di circolazione, una di riserva all'altra. Il prodotto alimentato al forno è costituito da gasolio pesante proveniente dal fondo della colonna C1501 (impianto MHC – U1500), che viene immesso nel serbatoio polmone V 307. Le pompe di circolazione spingono il prodotto nei passi del forno H304 e in uscita da esso, lo convogliano alle varie utenze (ribollitori di fondo colonna).

Sui collettori di alimentazione dei ribollitori a servizio degli impianti Unifinig (U200) e Platforming (U300) è presente uno stacco dalla linea hot-oil che va ad alimentare un circuito secondario per il riscaldamento parco bitumi.

ASPI	ETTI AMBIENTALI				
Aspe	Condizioni Normali		Condizioni Anomale	Note	
		Quantità	Frequenza		
1	Consumo risorse energetiche				
1	energia elettrica				
	vapore				
	Consumo acqua				
2					
<i>L</i>	processo (vapore)				
	raffreddamento				
	Emissioni in				
	atmosfera (E2)				
3	Portata fumi	45.109 Nm3/h			
3	flusso di massa SOx	0,67 kg/h			
	flusso di massa NOx	4,51 kg/h			
	flusso di massa CO	3,61 kg/h			
	flusso di massa PM	0,23 kg/h			
4	Scarichi idrici (inviati a SWS)				
	Portata	-	-		
5	Utilizzo chemicals (sommatoria da tab. precedente)				
	Produzione rifiuti	CER	quantità	frequenza	smaltimento (D) / recupero ®
6	Assorbenti, materiali filtranti, stracci i indumenti protettivi, contaminati da sostanze pericolose	15 02 02*	-	episodica	D
	Fanghi oleosi prodotti dalla manutenzione di impianti e apparecchiature	05 01 06*	-	episodica	D

2.2 RETE GAS

La rete gas di Raffineria è costituita da una serie di tubazioni che convogliano il gas incondensabile (essenzialmente idrogeno, metano, etano), prodotto dagli impianti, nel V112, recipiente principale con funzioni di abbattimento di eventuali trascinamenti i liquidi.

I gas prodotti infatti possono contenere acqua, se lavati, oppure essere saturi di idrocarburi liquidi se provenienti da impianti che non producono idrogeno solforato.

I gas raccolti hanno le seguenti provenienze :

- Platforming (U300);
- Penex (U400);
- Produzione GPL (U500 U600);
- impianti di lavaggio gas 2 e 3 (U1800 e U2800);
- reintegro rete SNAM.

Dal V112 i liquidi vengono convogliati nell'accumulatore di riflusso del Topping, mentre il gas viene distribuito in rete. Il reintegro di gas metano dalla rete Snam viene realizzato mediante controllo automatico di pressione che agisce su due valvole autoriduttrici, le quali abbattono la pressione della rete Snam da 1,2 a 0,4 MPa, valore normalmente tenuto dalla rete interna di Raffineria.

Il gas in uscita dal V112 viene convogliato ai forni di Raffineria per l'utilizzazione, previo ulteriore abbattimento della fase liquida eventualmente trascinata, in K.O. Drum predisposti allo scopo.

2.3 CENTRALE TERMOELETTRICA (CTE)

In C.T.E. si producono:

- 1) vapore
- 2) energia elettrica
- 3) aria strumenti e aria servizi
- 4) acqua demineralizzata

per il corretto funzionamento della Raffineria.

Vengono, inoltre, gestiti gli impianti del circuito acqua di raffreddamento.

2.3.1 Produzione vapore

Il vapore viene distribuito agli utilizzatori da tre reti che vengono mantenute ad una pressione fissa:

- rete di alta pressione a 50 bar

- rete di media pressione a 13 bar
- rete di bassa pressione a 3.2 bar

Le tre reti vapore vengono alimentate dai generatori di vapore.

La rete di alta pressione (50 barg) viene prodotta da tre caldaie ("AN","BN","C") che utilizzano il calore fornito dalla combustione di gas metano, gas di raffineria e/o da olio combustibile a bassissimo tenore di zolfo. Il vapore prodotto a 50 bar è di tipo surriscaldato ad una temperatura di 430° C e viene fatto passare attraverso a due turboalternatori (TA 1 e TA 2) che producono energia elettrica e scaricano il vapore processato, dopo il lavoro in turbina, sulla rete di bassa pressione a 3,2 bar e 200° C fornendo così alla Raffineria potenza elettrica autoprodotta.

La rete di vapore a media pressione (13 barg) è principalmente alimentata da una serie di caldaie a recupero (KETTLE) installate sugli impianti di produzione. Integrata e mantenuta costante mediante delle valvole riduttrici (PCV 1043 A/B/C) che attingono dalla rete di alta pressione e riducono il vapore a 13 barg ed alla temperatura di 250 °C attraverso una iniezione controllata di acqua demineralizzata.

L'acqua demineralizzata per il funzionamento delle KETTLE è in parte acqua di recupero condense e in parte fornita dagli impianti di demineralizzazione della CTE

La rete di bassa pressione (3,2 bar) è quella a maggior domanda di vapore e viene alimentata dallo scarico dei turboaltenatori e dal bilanciatore di pressione PCV1067 A e B della rete di media pressione.

2.3.2 Produzione di energia elettrica

La richiesta totale di energia elettrica della Raffineria si attesta ad un valore compreso tra i 16 ed i 17Mwe.

L'energia elettrica è autoprodotta da due gruppi turboalternatori della capacità di 7.000 kVA e di 6.400 kVA a 6.000 V.

Ulteriore energia elettrica è prelevata attraverso la rete ENEL a 132.000 Volt e trasformata a 15.000 Volt in 2 trasformatori da 16.000 kVA.

2.3.3 Aspetti ambientali associati

ASPI	ASPETTI AMBIENTALI				
Aspe	tto	Condizioni Normali Quantità Frequenza		Condizioni Anomale	Note
1	Consumo risorse energetiche				
1	energia elettrica	1000 KW/h			
	vapore				
2	Consumo acqua				
	processo (vapore)	4 m3/h			

	raffreddamento				
	Emissioni in atmosfera (E6)				
3	Portata fumi	97.920 Nm3/h			
	flusso di massa SOx	38,27 kg/h			
	flusso di massa NOx	19,58 kg/h			
	flusso di massa CO	9,79 kg/h			
	flusso di massa PM	0,49 kg/h			
	Produzione rifiuti	CER	quantità	frequenza	smaltimento (D) / recupero ®
	Fanghi oleosi prodotti dalla manutenzione di impianti e apparecchiature	05 01 06*	-	episodica	D
	Scarti di olio minerale per motori, ingranaggi e lubrificazione, non clorurati	13 02 05*	1	episodica	R
	Assorbenti, materiali filtranti, stracci i indumenti protettivi, contaminati da sostanze pericolose	15 02 02*	1	episodica	D
4	Sostanze chimiche di laboratorio contenenti o costituite da sostanze pericolose, comprese le miscele di sostanze chimiche di laboratorio	16 05 06*	-	episodica	D
	Resine a scambio ionico saturate o esaurite	19 09 05	-	episodica	D
	Soluzione e fanghi di rigenerazione delle resine a scambio ionico	19 09 06	-	episodica	D
	Tubi fluorescenti ed altri rifiuti contenenti mercurio	20 01 21*	-	episodica	R

2.4 SERVIZI

All'interno della Raffineria sono presenti Utilities finalizzate alla fornitura di servizi ausiliari, quali:

- distribuzione vapore,
- energia elettrica,
- aria servizi e strumenti,
- acqua per il raffreddamento degli impianti di produzione
- produzione di acqua demineralizzata.

2.4.1 Distribuzione vapore

Il vapore per le necessità della Raffineria è principalmente prodotto dalla centrale termoelettrica (CTE – Par. 2.3.1).

Un'ulteriore quota di vapore è prodotta all'interno delle caldaie degli Impianti di Recupero Zolfo (U1900 – U2900) e in alcuni scambiatori dell'area impianti..

Il vapore viene laminato e distribuito agli impianti utilizzatori nelle reti a bassa pressione (3,2 bar) e media pressione (13 bar).

2.4.2 Distribuzione energia elettrica

L'energia elettrica è autoprodotta dai 2 turboalternatori alla tensione di 6.000 Volt.

Ulteriore energia elettrica è prelevata attraverso la rete ENEL a 132 Kv e viene trasformata a 15.000 V da due trasformatori da 16.000 kVA cadauno e inviata , attraverso cavi interrati , in Raffineria dove viene alimentata una cabina di distribuzione a 15.000 V.

Successivamente viene convertita a 6000 V da 2 trasformatori da 12.000 kVA cadauno.

Le due reti ENEL e autoproduzione possono essere congiunte in parallelo. Altri 15 trasformatori di varia potenzialità e distribuiti vicino alle utenze riducono la tensione da 6.000 a 380 Volt.

La Raffineria è dotata di una adeguata rete di distribuzione dell'energia elettrica. In caso di manutenzione vengono utilizzati generatori diesel da campo che forniscono energia elettrica a 380 Volt. Un Diesel alternatore da 100 kVA (DA3) ed uno da 1500 kVA (DA 1) forniscono, in caso di emergenza elettrica ai gruppi alternatori o all'ENEL, l'energia elettrica necessaria per il parziale funzionamento della Centrale Termo Elettrica e della strumentazione degli impianti. Tutta la distribuzione dell'energia elettrica è centralizzata in un unico sistema informatico SCADA di super visione e comando posto in CTE.

2.4.3 Distribuzione aria servizi e strumenti

L'aria compressa , per la strumentazione e l'aria servizi per gli utilizzi di Raffineria, è prodotta presso la centrale CTE (Par. 2.3)

L'aria viene utilizzata in una rete di servizio mantenuta alla pressione di 7,5 bar, e in due reti separate di aria strumenti dove la pressione è di 3 e 6 bar.

I gruppi di compressione e trattamento dell'aria compressa sono collocati in CTE. L'aria viene portata dai compressori MK1015, MK1016 e MK1017 (due in marcia e uno spare) alla pressione di circa 7,5 bar nei serbatoi V 1014 e V 1010.

Il flusso necessario alla rete strumenti viene spillato da un polmone V1014, per poi passare al ciclo di essiccazione SINERGIA e quindi, dopo ulteriore filtrazione (0,1 micron), l'aria viene ridotta alle pressioni di 3 e 6 bar tramite le pneumatiche PCV 1065 e PCV 1064

Il sistema di essicamento lavora alternativamente con un ciclo di assorbimento dell'acqua presente nell'aria compressa e uno di rigenerazione mediante riscaldamento con termoresistenze, con cadenza di rotazione determinata dai controlli in automatico del punto di rugiada dell'aria in uscita (- 50 / -70).

In caso di problemi sul ciclo principale è possibile integrare dalla rete aria servizi o immettere azoto gassoso.

2.4.4 Circuito acqua per raffreddamento

Alla C.T.E. fanno capo anche i 2 circuiti di acqua di raffreddamento, a circuito chiuso, che asserviscono tutti gli Impianti di Produzione.

La potenzialità massima del circuito FAVRA è di 4500 m³/h per 3 torri di raffreddamento di tipo evaporativo a ventilazione forzata.

Inoltre sono state installate ulteriori 2 torri di raffreddamento HAMON da 1500 m3/h totali.

I due sistemi sono comunicanti ma possono funzionare anche in maniera separata.

In caso di arresto delle pompe di circolazione dell'acqua di raffreddamento, per garantire almeno in parte il fabbisogno di smaltimento di calore degli Impianti, esistono due turbopompe TP 1019 e TP

1020 (a partenza automatica con sistema idraulico) capaci di garantire una portata di circa 1000 m³/ora di acqua. Le pompe aspirano da un serbatoio di acqua, mantenuto costantemente pieno con acqua da pozzo, avente una capacità di circa 1500 m³ consentendo in tal modo, una autonomia di 1,5 ora circa, per dar modo agli Impianti di fermarsi in sicurezza.

La circolazione di acqua è garantita da n°5 pompe mosse da motore elettrico, delle quali n°4 sono solitamente sempre in marcia ed una è di riserva a seconda della configurazione dell'esercizio

2.4.5 Produzione acqua demineralizzata

Per produrre acqua demineralizzata, per l'alimento caldaie, si utilizza l'acqua prelevata, tramite pozzi di emungimento, dalle falde freatiche tra i 150 e 200 metri di profondità.

L'acqua di falda subisce un pre - trattamento in un impianto (SIDA) di strippaggio con aria e di filtrazione a sabbia della capacità di 180 m3/h e viene raccolta in una vasca sotterranea.

L'acqua pretrattata entra in due impianti a scambio ionico, ITALBA da 65 m3/h e UNIDRO da 95 m3/h dove, per scambio ionico con resine, vengono eliminati tutti gli ioni presenti.

Entrambi gli impianti sono costituiti da filtro cationico a doppio letto (elimina i cationi), da un decarbonatatore (elimina CO2 tramite flussaggio di aria), da un filtro anionico (elimina gli anioni) e da un filtro a letto misto che garantisce la qualità finale dell'acqua e serve a guardia per eventuali up-set dei filtri a monte del processo.

L'acqua prodotta viene stoccata nei serbatoi S 1010 per l'esercizio ordinario ed i S 76 e S 77 per la scorta di emergenza.

Il personale operativo esegue controlli sistematici di pH, conducibilità, alcalinità e concentrazione silice sull'acqua demi in uscita dai letti misti per garantirne la qualità prima dell'utilizzo.

L'acqua prelevata da S 1010 viene inviata in un circuito di preriscaldo ove si riscalda sfruttando il calore di alcuni fluidi d'impianto. Ritorna in CTE alla temperatura di 110 ° C circa ed entra nel degasatore V 1001 A dove vengono strippati i componenti volatili (O2,CO2,N2) prima di essere pompata nel corpo cilindrico delle caldaie ad alta pressione.

Il recupero delle condense , integrato con l'acqua demi da S 1010 , viene degasato al V 1001 B e utilizzato come alimento alle caldaie KETTLES di Raffineria.

2.5 TRATTAMENTO ACQUE EFFLUENTI

La raffineria è dotata di un doppio sistema fognario:

- Fogne bianche: in cui convergono le acque di processo, le condense del vapore e le acque di raccolta meteoriche;
 - Il collettore fognario si immette nell'impianto di depurazione dell'acqua TAS che si differenzia nella sezione fisica, chimica e biologica.
- Fogne oleose: in cui convergono le acque cariche di idrocarburi e gli spurghi provenienti dalle aree impianti. Sono fognature di recente costruzione realizzate con tubazioni segregate e visivamente ispezionabili. Il refluo viene raccolto all'interno di un serbatoio dedicato.

2.5.1 TAS Descrizione semplificata del processo

a) Separatore a gravità "API": è costituito da due vasche in parallelo che permettono la

- separazione delle particelle in sospensione nell'acqua. In esso si separano, per effetto della diversa densità, in superficie le particelle più leggere di idrocarburi, sul fondo quelle più pesanti.
- b) **Serbatoi di accumulo:** sono serbatoi dedicati all'accumulo delle acque in caso di forti eventi meteorici. Attraverso un sistema di pompaggio dedicato, viene garantita la corretta gestione delle acque; successivamente l'acqua viene ripresa e trattata prima dello scarico.
- c) **Bacini 3 e 5**: sono vasche di accumulo e di raccolta delle acque e vengono utilizzati solo in caso di emergenza, specialmente in caso di picchi di pioggia particolarmente elevati o di upset degli impianti imprevisti. Successivamente l'acqua viene ripresa e trattata prima dello scarico.
- d) **Sezione di flocculazione** : qui vengono aggiunti all'acqua da trattare un polielettrolita che serve ad aggregare in fiocchi le particelle rimaste in sospensione, l'acido solforico e/o la soda caustica per correggere il valore di pH e per migliorare l'efficienza di reazione.
- e) **Sezione di flottazione**: è costituita da una vasca circolare con stramazzo periferico in cui viene ricircolata una portata d'acqua saturata con aria compressa al fine di produrre microbolle di aria che, aderendo alle particelle rimaste in sospensione, ne provocano la flottazione.
- f) **Sezione di ispessimento fanghi**: è costituita da una vasca circolare con stramazzo periferico in cui vengono inviati tutti i fanghi dell'impianto di trattamento acque effluenti al fine di ispessirli prima di rilavorarli perché ricchi di idrocarburi. L'acqua viene reimmessa nel ciclo di depurazione.
- g) Sezione di depurazione biologica: è costituita da 2 filtri percolatori con un riempimento in PVC sul quale vive una biomassa selezionata che si nutre delle sostanze presenti nell'acqua di scarico. Sono entrambi a forma di parallelepipedo e possono trattare l'acqua proveniente dai sistemi a monte sia singolarmente, per permettere la manutenzione di uno dei due continuando a garantire il rispetto dei parametri dell'acqua allo scarico, sia in parallelo.
- h) **Sezione di decantazione finale**: è costituita da una vasca circolare in cui si ottiene il deposito dei fanghi che si staccano dal biologico per semplice sedimentazione. L'acqua così depurata viene convogliata al fiume Mincio e in parte riutilizzata per reintegro della rete antincendio. I fanghi vengono conferiti all'ispessitore.

2.5.2 Aspetti ambientali legati all'operatività dell'impianto

I consumi dell'impianto trattamento effluenti sono i seguenti:

aria strumenti	50 Nm ³ /h	circa 440.000 Nm³/anno
aria servizi	170 Nm ³ /h	circa 1.500.000 Nm ³ /anno
energia elettrica	350 kWA/g	circa 128 MWA/anno

I consumi di chemicals ed agenti biologici sono i seguenti :

polielettrolita	10 kg/g	circa 3700 kg/anno
soda caustica	saltuario	circa 2000 kg/anno
acido solforico	saltuario	circa 1000 kg/anno
batteri liofilizzati	30 kg ogni 7 mesi	

2.6 TAF TRATTAMENTO ACQUE DI FALDA

Su tutta la superficie di Raffineria sono dislocati pozzi di emungimento della prima falda legati alle attività di

bonifica (64 pozzi in totale). Ogni pozzo è dotato di sistema di pompaggio delle acque e specifico collettamento all'impianto TAF di trattamento.

L'impianto TAF è costituito da 3 sezioni principali:

- Sezione Biologica: composta da un percolatore biologico a tetto chiuso con estrazione forzata dell'aria e trattamento della stessa con filtri a carbone attivo;
- Sezione di filtrazione: Composta da una batteria di filtri (filtri a sabbia, filtri a cartuccia e filtri a Carbone attivo);
- Sezione fanghi: Composta da una serie di apparecchiature per trattare e minimizzare la produzione del rifiuto prima del suo smaltimento.

Lo scarico delle acque, verso il fiume Mincio, è monitorato settimanalmente ed avviene attraverso un pozzetto dedicato ed ispezionabile.

3. PERIODICITÀ, DURATA E MODALITÀ DI MANUTENZIONE PROGRAMMATA

La manutenzione degli impianti viene programmata in base ad una serie di informazioni sul rendimento fornite dal servizio tecnologico e dall'operativo.

Gli impianti Visbreaking, Vuoto e Thermal Cracking (Impianti "neri") vengono normalmente fermati per manutenzione generale ogni circa 12 mesi, che consiste di solito, in relazione alla tipologia di lavorazione (prodotti pesanti), nella pulitura delle colonne e degli scambiatori e per eventuali attività di manutenzione programmata.

I rimanenti impianti (Impianti "bianchi" per la tipologia di prodotti lavorati), vengono fermati con una cadenza di circa 24 mesi per interventi di pulizia e attività di manutenzione programmata.

4. NUMERO E DESCRIZIONE DI BLOCCHI NON PROGRAMMATI VERIFICATISI NEGLI ULTIMI ANNI

Di seguito si riporta un elenco sintetico degli episodi di blocco impianti non programmati, che si sono verificati in Raffineria dal 2000 al 2012:

Data: 19/06/2012

Descrizione: Blocco impianto TGCU.

Data: 11/04/2012

Descrizione: Blocco caldaia C della Centrale Termoelettrica.

Data: 06/04/2012

Descrizione: Blocco compressore K1502/C dell'impianto Mild Hydrocracking.

Data: 28/03/2012

Descrizione: Emissione di fumo bianco al camino della Centrale Termoelettrica.

Data: 19/03/2012

Descrizione: Blocco impianti SRU3 e TGCU.

Data: 11/02/2012

Descrizione: Emissione al camino della CTE di CO, causato da una combustione in difetto di aria

alla caldaia BN della Centrale Termoelettrica.

Data: 30/01/2012

Descrizione: Blocco compressore K1502/C dell'impianto Mild Hydrocracking.

Data: 18/11/2011

Descrizione: Blocco impianti SRU3, TGCU e H2901.

Data: 09/11/2011

Descrizione: Blocco impianto TGCU.

Data: 06/11/2011

Descrizione: Blocco caldaia BN della Centrale Termoelettrica.

Data: 12/10/2011

Descrizione: Blocco caldaia AN della Centrale Termoelettrica.

Data: 12/08/2011

Descrizione: Fermata impianti Mild Hydrocracking e HDS3 per mancanza di Idrogeno fornito da

Sapio.

Data: 11/08/2011

Descrizione: Fermata impianto TGCU per mancanza di Idrogeno fornito da Sapio.

Data: 24/01/2011

Descrizione: Blocco compressore HDS1.

Data: 21/12/2010

Descrizione: Blocco compressore impianto Mild Hydrocracking.

Data: 29/11/2010

Descrizione: Sovrapressione S.103.

Data: 19/10/2010

Descrizione: Blocco bruciatore Olio Combustibile e Fuel Gas.

Data: 21/08/2010

Descrizione: Blocco compressore K1502-C.

Data: 14/08/2010

Descrizione: Incendio trasformatore TRC10B.

Data: 08/08/2010

Descrizione: Fuori servizio compressore K103.

Data: 29/06/2010

Descrizione: Blocco compressore impianto HDS1.

Data: 28/05/2010

Descrizione: Blocco postcombustore H1904.

Mancano gli eventi dal 26/04/2006 al 2009, credo che sia opportuno chiedere ai capi fabbrica/relazioni istituzionali/Ponti quali eventi sono stati comunicati alle autorità e agli enti di controllo.

Data: 26/04/2006

Descrizione: Fermata di emergenza Impianto Topping (U100) per incendio alla pompa P109B.

Data: 19/04/2006

Descrizione: Upset al compressore Impianto MHC (U1500).

Data: 26/01/2006

Descrizione: Upset al compressore Impianto MHC (U1500).

Data: 03/09/2005

Descrizione: Upset per black out della rete di alimentazione energia elettrica del fornitore esterno.

Data: 10/06/2005

Descrizione: Upset al compressore Impianto Thermal Cracking (U1200).

Data: 25/04/2005

Descrizione: Upset al DCS (Impianti Bianchi U100 e U200).

Data: 02/04/2005

Descrizione: Upset al compressore Impianto MHC (U1500).

Data: 14/03/2005

Descrizione: Upset sulla rete di distribuzione aria strumenti.

Data: 25/09/2004

Descrizione: Fermata di emergenza per incendio su accoppiamento flangiato C1503 presso

Impianto MHC (U1500).

Data: 28/07/2004

Descrizione: Upset ad un controllore di pressione del vessel V202 (Impianto Unifining U200).

Data: 28/09/2003

Descrizione: Upset per black out della rete nazionale energia elettrica.

Data: 10/09/2003

Descrizione: Fermata di emergenza Impianto Vacuum (U1100) per incendio su accoppiamento

flangiato E1152A/B.

Data: 05/08/2003

Descrizione: Upset per black out della rete di alimentazione energia elettrica del fornitore esterno.

Data: 30/05/2000

Descrizione: Fermata di emergenza Impianto Topping (U100) per incendio su accoppiamento

flangiato E110C

5. LOGISTICA DI APPROVIGIONAMENTO MATERIE PRIME, STOCCAGGIO E SPEDIZIONE PRODOTTI FINITI

5.1 APPROVIGIONAMENTO MATERIE PRIME

Il petrolio grezzo, che costituisce la materia prima dell'intero ciclo produttivo, entra in Raffineria tramite un oleodotto proveniente dal deposito costiero IES di Porto Marghera (VE).

5.2 STOCCAGGIO

Le aree di stoccaggio di competenza della Raffineria sono:

- Parco serbatoi a pressione atmosferica
- Parco serbatoi stoccaggio GPL
- Deposito Nazionale (ex Deposito Libero)

5.2.1 Parco serbatoi a pressione atmosferica

Il parco serbatoi è composto come descritto nel seguente prospetto.

Sigla Serbatoio	Tipo Serbatoio	Prodotto contenuto	Categoria Serbatoio	Diametro Serbatoio m	Altezza Serbatoio m	Capacità Serbatoio m ³
1	TG	benzina	A	27.527	12.192	7000
2	TG	Benzina	A	27.527	12.192	7000
3	TG	Benzina	A	27.527	12.192	7000
4	TG	Benzina	A	27.527	12.192	7000
5	TG	Benzina	A	38.40	9.144	10000
6	TG	Benzina	A	38.40	9.144	10000
7	TG	Slop/acqua meteorica in emergenza	A	39.00	12.60	15000
8	TG	Slop	A	50.00	15.00	28000
9	TG	Greggio	A	50.00	15.00	28000
13	TG	Benzina	A	12.290	9.14	1000
14	TG	Etere	A	15.250	10.70	2000
15	TG	Benzina rec vapori	A	12.290	9.14	1000
16	TF	acqua meteorica	A	15.250	10.70	2000
17	TF	acqua meteorica	A	12.290	9.14	1000
18	TF	acqua meteorica	A	15.250	10.70	2000
19	TG	Acque di processo	A	29.908	14.63	7500

Sigla	Tipo	Prodotto contenuto	Categoria	Diametro	Altezza	Capacità
Serbatoio	Serbatoio		Serbatoio	Serbatoio m	Serbatoio m	Serbatoio m ³
20	TG	Virgin naptha	A	21.340	15.00	5000

Sigla Serbatoio	Tipo Serbatoio	Prodotto contenuto	Categoria Serbatoio	Diametro Serbatoio m	Altezza Serbatoio m	Capacità Serbatoio m ³
22	TG	Benzina isomera	A	21.340	15.00	5000
23	TG	Etere	A	13.716	15.24	2250
24*	TF	Bitume	С	13.716	15.24	2250
25	TG	Benzina Alkilata	A	13.716	10.20	2250
26*	TF	Bitume	С	13.716	15.24	2250
27	TG	Benzina	A	12.290	9.14	1000
28	TG	Benzina Virgin Naphtha	A	21.340	15.00	5000
30	TG	Benzina	A	21.340	15.00	5000
31	TF	Biodiesel	С	15.250	10.70	2000
32	TF	Gasolio	С	24.00	12.778	5750
33	TF	Gasolio	С	15.250	10.70	2000
34	TF	Gasolio	С	24.00	12.778	5750
35	TF	Gasolio	С	15.250	10.70	2000
36	TF	Gasolio	С	24.00	12.778	5750
37	TF	Gasolio	С	15.250	10.70	2000
38	TF	Gasolio	С	24.00	12.778	5750
39	TF	Gasolio	С	15.250	10.70	2000
40	TF	Gasoli pesanti	С	30.500	14.40	10000
41	TF	Gasoli pesanti	С	30.500	14.40	10000
42	TF	O.C. (BTZ)	С	12.290	9.14	1000
43	TF	O.C. (BTZ)	С	12.290	9.14	1000
44	TF	Gasolio	В	12.290	9.14	1000
45	TF	kerosene	В	12.290	9.14	1000
46	TF	kerosene	В	12.290	9.14	1000
47	TF	acque di processo	С	12.290	9.14	1000
65	TF	Paraflu MDFI	С	4.490	6.30	100
66 *	TF	LCA300 Lubricity	С	4.490	6.30	100
67 *	TF	Zolfo liquido	С	4.490	6.30	100
68 *	TF	fuori servizio	С	4.490	6.30	100

Sigla Serbatoio	Tipo Serbatoio	Prodotto contenuto	Categoria Serbatoio	Diametro Serbatoio m	Altezza Serbatoio m	Capacità Serbatoio m ³
69 *	TF	fuori servizio	С	4.490	6.30	100
70 *	TF	fuori servizio	С	4.490	6.30	100
2901*	TF	Zolfo Liquido	С	8.000	11.500	500

Sigla Serbatoio	Tipo Serbatoio	Prodotto contenuto	Categoria Serbatoio	Diametro Serbatoio m	Altezza Serbatoio m	Capacità Serbatoio m ³
71 *	TF	O.C.	С	4.490	6.30	100
72 *	TF	O.C.	С	4.490	6.30	100
78 (**)	TF	Fuori servizio	A	6.50	11.60	350
79 (**)	TF	Fuori servizio	A	4.490	6.30	100
81 *	TF	Fuori servizio	В	4.490	6.30	100
96	TF	Acqua di condensa	A	4.490	6.30	100
97	TF	PSV oleodotto	A	8.00	10.00	500
101 **	TG	Kerosene	A	27.527	12.192	7000
102 *	TF	(HVGO)	С	22.86	15.00	6000
103 *	TF	fuori servizio	С	27.43	15.00	8000
104 *	TF	Bitume	С	29.50	15.00	10000
105 *	TF	Bitume	С	29.50	15.00	10000
106 *	TF	Bitume	С	29.50	15.00	10000
107 *	TF	Bitume	С	29.50	15.00	10000
108 *	TF	Bitume	С	36.576	15.00	15000
109	TG	Greggio	A	60.960	15.00	40000
110	TG	Greggio	A	60.960	15.00	40000
111	TG	Greggio	A	73.152	15.00	60000
141	TG	Gasolio	С	36.576	15.00	15000
142	TF	Gasolio	С	36.576	15.00	15000
143	TF	Gasolio	С	36.576	15.00	15000
144	TF	Gasolio	С	36.576	15.00	15000
145	TF	Gasolio	С	36.576	15.00	15000
146	TF	Gasolio	С	36.576	15.00	15000
147 *	TF	O.C.	С	36.576	15.00	15000
148 *	TF	O.C. Residuo atmosferico	С	36.576	15.00	15000
149	TF	Gasolio	С	36.5	15.00	15000
150	TG	kerosene	В	48.768	16.60	30000
151 *	TF	Bitume	С	48.768	16.60	30000
171 *	TF	Bitume	С	7.30	12.00	500
172 *	TF	Bitume	С	7.30	12.00	500

Sigla Serbatoio	Tipo Serbatoio	Prodotto contenuto	Categoria Serbatoio	Diametro Serbatoio m	Altezza Serbatoio m	Capacità Serbatoio m ³
173 *	TF	Bitume	С	7.30	12.00	500
174 *	TF	Bitume	С	7.30	12.00	500
175 *	TF	Bitume	С	12.60	12.00	1500
176 *	TF	Bitume	С	12.60	12.00	1500
177 *	TF	Bitume	С	21.34	15.00	5000
FO1 *	TF	fuori servizio	С	3.80	5.40	60
FO2 *	TF	fuori servizio	С	3.80	5.40	60

NOTE:

(*) Serbatoi coibentati

(**) Attualmente fuori servizio per manutenzione.

5.2.2 Parco serbatoi stoccaggio GPL

Lo stoccaggio GPL è attualmente costituito da n. 8 serbatoi tumulati di tipo cilindrico orizzontale per lo stoccaggio del prodotto, le cui caratteristiche sono riportate nella seguente tabella:

Sigla Serbatoio	Capacità Serbatoio (m³)	Prodotto contenuto	Lunghezza (m)	Diametro (m)	Pressione di bollo (kg/cm ²)	Temp. min/max (°C)
S122	250	Slop	24.6	3.7	18	-42 ÷ 50
S123	250	GPL	24.6	3.7	18	-42 ÷ 50
S124	250	GPL	24.6	3.7	18	-42 ÷ 50
S125	250	GPL	24.6	3.7	18	-42 ÷ 50
S126	250	GPL	24.6	3.7	18	-42 ÷ 50
S137	600	GPL	32.5	5.0	18	-42 ÷ 50
S138	600	GPL	32.5	5.0	18	-42 ÷ 50
S139	600	GPL	32.5	5.0	18	-42 ÷ 50

5.2.3 Deposito Nazionale (ex Deposito Libero)

L'area di stoccaggio denominata Deposito Nazionale è collegata con la Raffineria a mezzo di n° 10 pipelines di lunghezza di circa 500 m cadauna ed è composta come descritto nel seguente prospetto.

Sigla Serbatoio	Tipo Serbatoio	Prodotto contenuto	Categoria Serbatoio	Diametro Serbatoio m	Altezza Serbatoio m	Capacità Serbatoio m³
201	TF	Gasolio	C	15	12.00	2200
202	TG	Benzina	A	13.7	11.00	1500
203	TG	Benzina	A	13.7	11.00	1500
204	TG	Benzina	A	13.7	11.00	1500
205	TF	Gasolio	С	15	12.00	2200
206	TF	Gasolio	С	15.7	13.00	2500
207	TF	Gasolio	С	15.7	13.00	2500
208*	TF	Gasolio	С	15.7	13.00	2500
209*	TF	Gasolio	С	15.7	13.00	2500
210	TF	Gasolio	С	15	12.00	2200
211*	TF	Bitume	С	6.2	6.70	200
212*	TF	Bitume	С	6.2	6.70	200
213*	TF	Bitume	С	4.5	6.30	100
214*	TF	Bitume	С	4.5	6.30	100
215scoib.	TF	Acque meteoriche	С	4.5	6.30	100
216scoib.	TF	Acque meteoriche	С	4.5	6.70	200
217scoib.	TF	Acque meteoriche	С	4.5	6.70	200
218scoib.	TF	Acque meteoriche	С	4.5	6.70	200
219scoib.	TF	Acque meteoriche	С	4.5	6.70	200
220*	TF	Bitume modif.	С	3.2	6.70	50
221*	TF	Bitume modif.	С	3.2	6.20	50
222scoib.	TF	Bitume	С	3.2	6.20	50
223scoib	TF	Acque meteoriche	С	3.2	6.20	50
224scoib.	TF	Acque meteoriche	С	3.2	6.20	50
225*	TF	Gasolio	С	3.2	6.20	50
226	TF	Gasolio	С	6.2	6.70	200
227*	TF	Bitume	С	6.2	6.70	200

^{*} Serbatoi coibentati

Sono inoltre presenti n°6 serbatoi interrati della capacità di 15 m³ ciascuno, dei quali 5 fuori servizio, destinati alla raccolta delle miscele accidentali. È presente un serbatoio interrato della capacità di circa 10 m³ contenente il gasolio per il riscaldamento uffici del Deposito. Per la raccolta degli slop è infine presente un serbatoio (n. 235) fuori terra della capacità di 30 m³.

5.3 SPEDIZIONE PRODOTTI FINITI

La spedizione dei prodotti finiti avviene attraverso i seguenti canali:

- rete stradale;
- rete ferroviaria;
- rete fluviale.

5.3.1 Pensiline di carico autobotti

In raffineria sono presenti 5 aree di carico delle autobotti per la spedizione dei prodotti, di seguito descritte:

- Area 1: composta da 8 piste in grado di caricare gasolio, olio combustibile, bitume, virgin nafta e benzina. Sono presenti n°30 bracci di carico dall'alto, n°7 bracci di carico dal basso e n° 25 sistemi di recupero/abbattimento vapori.
 La gestione ed il controllo del caricamento sono effettuati in automatico tramite un sistema DCS installato in sala controllo. A servizio delle piste di carico, in area remota, sono installate l'Unità Recupero Vapori e l'Unità Abbattimento Fumi. Tali unità sono connesse tramite due collettori distinti alle reti di recupero vapori dislocati dal carico benzina e di aspirazione fumi captati sopra i bocca porti di carico bitume/olio combustibile
- Area 2: composta da 2 piste con predeterminazione del carico, in grado di caricare bitume. Sono presenti n°4 bracci di carico dall'alto e n° 4 sistemi di recupero/abbattimento vapori. L'operatore da sala Controllo imposta il tipo di prodotto da trasferire e predetermina la quantità di prodotto da caricare.
- Area 3: composta da 4 piste in grado di caricare GPL. Sono presenti n°4 bracci di carico del liquido e 4 bracci per il ritorno della fase gas. Le piste possono funzionare contemporaneamente, con tutti i bracci in funzione, per il carico simultaneo di tutti i prodotti stoccati. Le procedure di carico sono gestite dal PC-1 & DCS con la supervisione dell'addetto in sala controllo in collaborazione con l'operatore in campo. Tutti i drenaggi e gli sfiati dei punti di carico sono collegati all'impianto di Blow Down.
- Area 4: composta da 1 pista in grado di caricare zolfo. Sono presenti n°1 bracci di carico dall'alto e n° 1 sistemi di recupero/abbattimento vapori. Per il trasferimento dello zolfo fuso dalla vasca all'autobotte, viene utilizzato un braccio di carico rigido.
- Area 5: Nell'area del Deposito Nazionale sono infine installate n° 9 pensiline di carico autobotti, comprendenti n°16 corsie, 10 delle quali attrezzate per il carico dall'alto, 5 per il carico dal basso e 1 per lo scarico bitume. Le corsie numerate dalla 1 alla 8 sono dotate di 3 bracci di carico ciascuna ed adibite al carico di benzina e gasolio, tutte con carico a ciclo chiuso afferente all'impianto per il recupero dei vapori; 5 di queste con carico dal basso e le 3 rimanenti con carico dall'alto. Le corsie numerate dalla 9 alla 14 sono adibite al carico di gasolio e tutte con carico dall'alto. La corsia n. 15 è adibita al carico di bitume modificato,

la n. 16 allo scarico autobotti di bitume. Tutte le piste di carico sono dotate di contatore predeterminatore e, ad esclusione della n. 15, l'autorizzazione al carico viene effettuata tramite introduzione di scheda elettronica, collegata a computer, consegnata ai soli autisti autorizzati. L'area è dotata di una propria unità per il recupero dei vapori di benzina/gasolio, del tipo "Adsorbimento-Assorbimento con carboni attivi".

5.3.2 Pensiline di carico ferrocisterne

L'area di carico delle ferrocisterne è composta da 2 piste (binario 3 e 4) per un totale di n°9 bracci per il carico dall'alto:

- 1 braccio per carico bitume;
- 1 braccio per carico Olio Combustibile;
- 7 bracci per carico gasolio;
- 2 bracci per il carico dal basso di virgin nafta con recupero vapori.

Le aree di carico sono fornite di dispositivi fissi antincendio.

Il carico delle ferrocisterne avviene in automatico mediante pesatura, e per l'intera durata delle operazioni di carico.

Tutte le operazioni di caricamento sono indicate su computer e, nel caso di blocco per mancanza di consensi, ne viene indicata la causa.

Le aree interessate al carico sono pavimentate e dotate di opportune pendenze per il convogliamento, attraverso caditoia.

5.3.3 Pontile fluviale

Il Pontile fluviale è autorizzato per il trasferimento e ricevimento mediante bettoline di Olio Combustibile, benzina e virgin nafta.

Le massime quantità di prodotto caricabili vengono definite in base allo stato dei livelli delle acque. La darsena utilizzata per il carico delle bettoline fluviali è composta da due punti di attracco e carico (pontile lato sud e lato nord) che permettono di caricare le due tipologie di prodotto tramite tubi flessibili da collegare alle chiatte della bettolina.

L'area è dotata di una doppia cintura di panne galleggianti con relativo natante per le operazioni di apertura e chiusura.

È presente inoltre una linea di convogliamento dei vapori all'impianto di recupero vapori delle pensiline di Raffineria.

Le operazioni di carico avvengono mediante sistema di predeterminazione del carico; al raggiungimento della quantità programmata (verificabile con apposito misuratore volumetrico) da trasferire, il sistema computerizzato ferma l'erogazione del prodotto tramite segnale di chiusura alle valvole automatiche e arresto delle pompe di carica.

6. SISTEMI DI REGOLAZIONE, CONTROLLO, SISTEMI DI SICUREZZA, MISURE DI PREVENZIONE RELATIVI AGLI ASPETTI AMBIENTALI

Emissioni convogliate

- 1. Il controllo del rapporto aria / combustibile nella gestione dei forni avviene tramite analizzatore di ossigeno sui forni il quale permette di regolare l'efficienza della combustione.
- 2. Ogni partita di oli combustibili viene analizzata per il contenuto di zolfo e di metalli quali nichel e vanadio; nella rete fuel gas di raffineria è controllata la quantità di H2S quotidianamente.
- 3. Il rapporto H₂S/SO₂ nel impianto di recupero zolfo viene monitorato in continuo con un controllore garantisce i rapporti ottimali di conversione e poi inviato in carica al impianto di trattamento dei gas di coda. Inoltre sono stati installati 3 analizzatori sui gas in ingresso e in uscita che permettono di monitorare continuamente l'efficienza di abbattimento dello zolfo stesso.
- 4. Ogni impianto è collegato al sistema di blow-down della torcia per ragioni di sicurezza. E' stato installato un compressore di recupero dei gas a torcia.
- 5. Analizzatori SO2, NOx e polveri su Topping e CTE

Emissioni diffuse

- 1. Sulle sorgenti di emissioni fuggitive si programmano periodiche campagne di monitoraggio per il controllo dei VOC. . I componenti da sottoporre a monitoraggio per il controllo delle emissioni fuggitive e la frequenza con la quale eseguire il loro monitoraggio sono indicati nella tabella n°5 del Piano di monitoraggio e controllo (PMC) allegato all'AIA.
- 2. Ogni anno si prepara un programma dettagliato di manutenzione in cui si sostituiscono parti di apparecchiature o di componenti di impianto; si verifica lo stato delle doppie guarnizioni del tetti dei serbatoi contenenti prodotti leggeri.
- 3. E' in corso un programma di sostituzione delle tenute con doppie su alcune pompe di processo.

Emissioni in acqua

- 1. Gli upset al trattamento acque vengono gestire mediante deviazione ai serbatoi dedicati. In caso di necessità sono disponibili anche i bacini di accumulo 3 e 5 con ulteriori 9500 mc.
- 2. Vengono riutilizzate la acque di scarico per alimentare il circuito di antincendio.
- 3. In programma il totale reuse di acqua da prima falda, depurata, come reintegro al circuito di raffreddamento dello stabilimento.
- 4. Le acque di condensa per un una portata media di 43 t/h vengono recuperate e reimpiegate nel sistema di alimento kettles di raffineria.
- 5. Il sistema di raffreddamento è a circuito chiuso. E' un sistema evaporativo a cinque celle evaporative. La potenzialità massima complessiva è di circa 60 milioni di calorie.

Protezione del suolo e rifiuti

- 1. A protezione del suolo, la pavimentazione è presente sotto tutti gli impianti di produzione, sotto le piste di carico ATB della raffineria e del deposito nazionale. Solo una parte dei bacini di stoccaggio dei serbatoi è pavimentata mentre il rimanente è su terra. In tutti i casi comunque è presente canalina di recupero delle acque piovane circonferenziali ai serbatoi collettate in fognatura e quindi al trattamento acque.
- 2. Nel rapporto di sicurezza viene analizzata l'ipotesi, per i prodotti R51/53, di interessamento del terreno e della falda da sversamento di prodotto.

3. La raffineria è autorizzata allo stoccaggio dei rifiuti in quattro zone definite e ben strutturate, con pavimentazione in calcestruzzo e raccolta di eventuali scoli liquidi in canalette convogliate in fognatura. Nel 2013 è iniziata la realizzazione di una piazzola unica per la gestione di tutti i rifiuti prodotti dalla Raffineria, pavimentata ed impermeabilizzata, con pendenze e raccolta dei possibili percolati e/o scoli in pozzetti di separazione olio / acqua. Una parte della piazzola sarà coperta per proteggere i rifiuti dalla pioggia ed escludere il dilavamento. In questo modo la raccolta differenziata sarà gestita in modo ottimale e consentendo la riduzione di produzione di rifiuti pericolosi.

Rumore

1. E' stata fatta la valutazione del rischio con verifiche degli impatti acustici delle varie apparecchiature, macchinari e parti di impianto, ai sensi del D. Lgs. 81/2008. È stata effettuata una valutazione per il piano di risanamento acustico della Raffineria, ai fini della mitigazione del rumore. Sono state analizzate le posizioni lavorative più critiche e sono stati eseguiti interventi per mitigare l'impatto acustico, andando a realizzare strutture fonoassorbenti o acquistando apparecchiature con minore emissione acustica. In ogni area è presente la cartellonistica di avviso di utilizzo dei DPI a protezione dell'udito.

Consumi

- 1. Viene gestita, controllata e ottimizzata l'efficienza energetica con recupero di calore di alcuni forni quali H301, H1201, H1151, H1502, H1401.
- 2. L'aria di combustione viene preriscaldata nei forni del Topping con gasolio e Deka e nel Visbreaking con acqua del circuito CIT.
- 3. La efficienza degli scambi temici vengono verificate nel corso della marcia impianti allo scopo di mirare la pulizia delle apparecchiature
- 4. Viene adottata ad ognuna delle tre caldaie di produzione vapore. (Tutte e 3 con economizzatore fumi-acqua di alimento), al forno H 101 ed al forno dedicato all'impianto visbreaking.
- 5. L'acqua di alimento caldaie viene preriscaldata con l'acqua caldaie del circuito CIT al fine di minimizzare il consumo di vapore al degasatore.
- 6. Platforming Sostituito il sistema di scambio carica / refluo dei reattori, con analogo. a più elevata efficienza.
- 7. Ad ogni manutenzione si pratica una approfondita pulizia dei treni di scambio.
- 8. In atto anche una verifica dello stato di efficienza degli scambiatori critici, per ottimizzarne la gestione e programmarne la manutenzione.
- 9. I treni di scambio energeticamente più importanti vengono trattati con sistemi antifouling per ritardare il degrado durante la marcia del coefficiente di scambio termico (topping, Visbreaking, circuito di raffreddamento e circuito di teleriscaldamento).

7. ANALISI DEI MALFUNZIONAMENTI E DEGLI EVENTUALI INCIDENTI AMBIENTALI AVVENUTI

Nell'esperienza storica della Raffineria IES di Mantova si sono verificati i seguenti casi di malfunzionamento comportanti conseguenze sull'ambiente:

Episodi di emissione massiva di sostanze in atmosfera.

Gli episodi di emissione massiva di sostanze in atmosfera sono essenzialmente collegabili all'invio di prodotti in lavorazione al sistema di blow-down e torcia a seguito di upset degli impianti. L'emissione in atmosfera consiste quindi in prodotti da combustione di idrocarburi. L'elenco e la descrizione sintetica di tali episodi sono riportati nel precedente Cap. 4.

Episodi di flussi anomali in carico all'Impianto Trattamento Acque Effluenti.

I flussi anomali potenzialmente eccedenti la capacità di trattamento dell'Impianto Trattamento Acque Effluenti, (cfr. descrizione Par. 2.5.1) che potrebbero comportare anomalie qualitative e quantitative presso lo scarico finale, sono gestiti mediante invio a serbatoi dedicati ed eventualmente alle vasche di accumulo dell'acqua piovana (bacini 3 e 5). Tale invio è assicurato dalla presenza di stramazzi a monte ed a valle del separatore API e da un sistema di pompe dedicato.

I quantitativi accumulati vengono successivamente re-immessi in carica all'impianto per il normale ciclo di trattamento chimico-fisico-biologico, prima della regolare immissione nel Mincio. Non si registrano pertanto episodi di scarico anomalo in corpo idrico superficiale.

Episodi di sversamento sul suolo di sostanze pericolose per l'ambiente.

Data: Gennaio 1994

Descrizione: perdita di benzina da una tubazione interrata nella zona di carico del Deposito Nazionale.

Interventi attuati:

- rilascio individuato dalla rete di monitoraggio piezometrico;
- interventi nell'ambito delle attività di bonifica globali del sito di Raffineria.

Data: 25/12/1994

Descrizione: fuoriuscita di benzina (stimata in alcune decine di metri cubi) per sovrariempimento del serbatoio del serbatoio S13, accumulo all'interno del bacino di contenimento non pavimentato e infiltrazione nel sottosuolo. L'area interessata dallo sversamento presentava un'estensione di circa $300 \, \mathrm{m}^2$.

Interventi attuati:

• interventi nell'ambito delle attività di bonifica globali del sito di Raffineria.

Data: 25/06/1999

Descrizione: perdita di kerosene da accoppiamento flangiato posizionato su una tubazione da

4" all'interno del bacino di contenimento pavimentato del serbatoio n. 150. La pozza di prodotto presentava un'estensione di circa 100 m^2 .

Interventi attuati:

- immediata interruzione del flusso mediante intercettazione del tratto di linea interessato;
- asportazione del prodotto mediante botte a vuoto;
- immediata messa in sicurezza della linea mediante sostituzione della guarnizione della flangia;
- controllo, durante il periodo successivo, dell'eventuale presenza di idrocarburi all'interno del piezometro in falda superficiale posto idrogeologicamente a valle rispetto al luogo del rilascio (nessun elemento rinvenuto);
- comunicazione dell'evento alle Autorità competenti;
- attivazione delle procedure di bonifica secondo la legislazione vigente.

Data: 19/01/2002

Descrizione: veniva rinvenuta una perdita di petrolio greggio dall'oleodotto di proprietà IES Venezia – Mantova, all'interno del territorio del Comune di Casale di Scodosia (PD). Il rilascio di prodotto ha interessato una superficie di circa 200 m².

Interventi attuati:

- individuazione e riparazione della perdita in condizioni di sicurezza della linea;
- comunicazione dell'evento alle Autorità competenti;
- asportazione del terreno interessato dallo spandimento e abbancamento del medesimo in attesa dello smaltimento a discarica autorizzata;
- messa a giorno e depressione della falda freatica per limitazione della migrazione e recupero del prodotto;
- effettuazione di analisi su acqua di falda prelevata da un pozzo esistente nelle vicinanze per la verifica precoce dell'eventuale stato di contaminazione (negativa);
- attivazione delle procedure di bonifica (comprendenti misure integrative di messa in sicurezza del sito) secondo la legislazione vigente.

Data: 03/10/2002

Descrizione: durante interventi di manutenzione programmata dell'oleodotto di proprietà IES Venezia – Mantova, all'interno del territorio del Comune di Camponogara (VE), veniva rinvenuto nel terreno uno stato di contaminazione da residui di petrolio greggio, relativo ad un'area di circa 10 metri quadrati.

Interventi attuati:

- verifica dell'integrità della linea tramite prova di pressurizzazione;
- comunicazione del rinvenimento alle Autorità competenti;
- attivazione delle procedure di messa in sicurezza e bonifica del sito secondo la legislazione vigente.

Data: 04/11/2005

Descrizione: durante interventi di manutenzione programmata della valvola di intercettazione dell'oleodotto Venezia – Mantova di proprietà IES, sita nel Comune di Este (VE), si verificava la fuoriuscita di prodotto.

Interventi attuati:

- Comunicazioni agli enti
- Messa in sicurezza di emergenza mediante asportazione del terreno contaminato, agottamento da trincee drenanti.

Data: 13/09/2008

Descrizione: a seguito delle eccezionali e improvvise precipitazioni meteoriche della giornata di sabato 13 Settembre u.s., i bacini di accumulo si sono riempiti in tempi così rapidi che hanno messo in crisi il sistema di trattamento delle acque causando la tracimazione dal sistema di separazione API che ha interessato alcuni bacini di contenimento.

Interventi attuati:

- Comunicazioni agli enti
- Re-immissione nel sistema fognario delle acque fuoriuscite attraverso l'uso di pompe fisse e moto-pompe carrellate.
- Rimozione meccanica dello strato superficiale erboso dell'area interessata e successivo smaltimento.

Data: 07/04/2010

Descrizione: perdita in corrispondenza di un tratto di tubazione interrata fra i bacini dei serbatoi no. 5 e no. 7. Tale tratto interrato, della lunghezza di circa sei metri, appartiene a una tubazione dia 8" dismessa, a suo tempo depressata, in attesa di bonifica e smantellamento.

Interventi attuati:

- Comunicazioni agli enti
- Isolamento e bonifica del tratto, asportazione del terreno contaminato e ripristino finale dell'area.

Data: 10/02/2011

Descrizione: (Porto Marghera - VE) perdita di contenuta quantità di acqua e grezzo dal serbatoio di stoccaggio S10 all'interno del Deposito di Porto Marghera. Il liquido è trafilato tra il fondo interno del serbatoio ed il fondo sottostante realizzato in acciaio e cemento fino a raggiungere la canalina circonferenziale attorno al serbatoio.

Interventi attuati:

- Comunicazioni agli enti
- Messa fuori servizio del serbatoio, recupero di prodotto mediante materiali adsorbenti, scorticamento manuale/meccanico del terreno superficiale interessato e smaltimento.

Data: 08/08/2012

Descrizione: durante le operazioni di pulizia del serbatoio S.39 (serbatoio dedicato alla raccolta acque piovane collettate in fognatura) effettuate da ditta appaltatrice mediante autospurgo, si è sganciata una giunzione del tubo flessibile con fuoriuscita al suolo di acqua della rete fognaria contenete idrocarburi (circa 0,2 mc).

Interventi attuati:

- Comunicazioni agli enti
- Rimozione meccanica dello strato superficiale dell'area interessata e successivo smaltimento.

Data: 18/04/2013

Descrizione: (Porto Marghera – VE) perdita limitata di petrolio grezzo nel tratto di oleodotto incamiciato posto al di sotto del muro di cinta del Deposito IES di Porto Marghera. Il prodotto è fuoriuscito dalla camicia della tubazione in corrispondenza della banchina finendo in parte nel terreno ed in parte nell'acqua del Canale Ovest situato a ridosso del Deposito.

Interventi attuati:

• Comunicazioni agli enti

Il tratto di oleodotto è stato prontamente intercettato a monte al fine di arrestare la perdita; l'area è stata delimitata con panne ed il grezzo è stato recuperato con materiale assorbente. Rimozione meccanica del terreno contaminato, smaltimento e ripristino dell'area.