



Ministero dell'Ambiente e della Tutela del Territorio e del Mare – D.G. Valutazioni e Autorizzazioni Ambientali

E.prot DVA - 2015 - 0019340 del 23/07/2015

STABILIMENTO DI TARANTO

Spett.le
Ministero dell'Ambiente e della Tutela del Territorio e
del Mare
DG Valutazioni Ambientali
Via C. Colombo, 44
00147 ROMA
aia@pec.minambiente.it

Spett.le Commissione Istruttoria AIA-IPPC Via Vitaliano Brancati, 60 00144 ROMA

Spett.le Istituto Superiore per la Protezione e la Ricerca Ambientale Via V. Brancati, 48 00144 ROMA

Taranto: 17.07.15 Ns. Rif.: DIR 257/15



Oggetto: DVA-DEC-2011-450 del 4/8/2011 di Autorizzazione Integrata Ambientale, come modificato dal Decreto di riesame DVA-DEC-2012-547 del 26/10/2012. Adempimenti previsti dal D.P.C.M. 14 marzo 2014 – prescrizione UA 11/1

In riferimento al D.P.C.M 14 marzo 2014 "Approvazione del piano delle misure e delle attività di tutela ambientale e sanitaria, a norma dell'articolo 1, commi 5 e 7, del decreto-legge 4 giugno 2013, n. 61, convertito, con modificazioni, dalla legge 3 agosto 2013, n. 89" e in particolare a quanto prescritto alla Parte III dell'Allegato "Ulteriori azioni per garantire la conformità alle prescrizioni di Legge e dell'AlA —



STABILIMENTO DI TARANTO

prescrizione UA11", si trasmette con la presente l'elaborato richiesto.

In considerazione dell'estensione del file, l'intero documento sarà trasmesso comunque su supporto informatico.

Distinti saluti

ILVA S.p.A.
In Amministrazione Straordinaria
Stabilimento di Taranto

Direzione Ambiente ILVA Ing. Alessandro Labile Konembro Losi la



ILVA S.p.A

in Amministrazione Straordinaria

# Autorizzazione Integrata Ambientale

DVA – DEC- 2011 – 0000450 DVA – DEC- 2012 – 0000547

Piano di tutela ambientale e sanitaria DPCM 14 marzo 2014

Prescrizione UA 11
Studio di fattibilità e piano degli interventi

Taranto, 9 luglio 2015

Autore:

Ing. F. Rosito

# Sommario

| 1.  | Premessa                                      | 3  |
|-----|-----------------------------------------------|----|
| 2.  | Sostanze pericolose                           | 4  |
| 3.  | BAT Conclusions 2012                          | 7  |
| 4.  | Trattamento dei reflui di cokeria             | 10 |
| 5.  | La rimozione del selenio                      | 13 |
|     | 5.1 Cenni sulla chimica del selenio           |    |
|     | 5.2 Le possibilità di trattamento             | 14 |
|     | 5.3 Costi di trattamento                      | 18 |
|     | 5.4 Considerazioni                            | 20 |
| 6.  | Le proposte di intervento – Reflui di cokeria | 22 |
|     | 6.1 Proposta Bernardinello Engineering        | 22 |
|     | 6.2 Proposta Degremont                        | 23 |
|     | 6.3 Proposta Fisia Italimpianti               | 25 |
|     | 6.4 Proposta Sideridraulic                    | 25 |
|     | 6.5 Proposta Veolia                           | 27 |
| 7.  | Trattamento reflui di altiforni               | 27 |
| 8.  | Proposte di intervento – Reflui di altiforni. | 29 |
|     | 8.1 Proposta Bernardinello Engineering        | 29 |
|     | 8.2 Proposta Dregremont                       | 30 |
|     | 8.3 Proposta Fisia Italimpianti               | 30 |
|     | 8.4 Proposta Sideridraulic                    | 31 |
| -   | 8.5 Proposta Veolia                           | 31 |
| 9.  | Consumi specifici                             | 32 |
| 10  | . Conclusioni                                 | 36 |
| 11. | Piano degli interventi                        | 38 |

#### 1. Premessa

Nell'ambito del "*Piano di delle misure e delle attività di tutela ambientale e sanitaria*", emanato con DPCM 14 marzo 2014 (G.U: n. 105 del 8/5/2014), il punto UA11 riporta la seguente prescrizione:

Per gli scarichi idrici degli impianti, ILVA S.p.A. dovrà predisporre uno studio di fattibilità.... e un Piano degli interventi finalizzati a raggiungere i limiti della Tabella 3, Allegato V alla Parte III del D. Lgs. 152/06 per le sostanze pericolose agli scarichi di processo e per l'applicazione delle BAT Conclusions del 28 febbraio 2012 prima della loro immissione nella rete fognaria." Per definire gli interventi e valutarne la fattibilità, ILVA ha provveduto a:

- verificare la conformità della qualità degli scarichi ai nuovi valori di riferimento in base ai risultati dei controlli previsti dal PMC AIA;
- effettuare una specifica campagna di monitoraggio analitico riferita ai nuovi parametri introdotti dalle BAT Conclusions;
- pianificare ed attuare una campagna di approfondimento riferita alla sostanze pericolose riportate in tabella 5 dell'allegato 3 del D. Lgs152/06 e finalizzata in particolare ad indagare le sostanze non previste dal PMC AIA;
- dopo aver individuato i flussi oggetto di interventi, al coinvolgimento di numerose società specializzate nel trattamento di reflui industriali al fine di definire il potenziamento dell'impiantistica esistente per traguardare gli obiettivi della prescrizione UA11.

Nelle pagine seguenti sono riportate le salienti informazioni, frutto di analisi, valutazioni e approfondimenti, che hanno consentito di stabilire le tipologie e le modalità di intervento.

# 2. Sostanze pericolose

Tutti i processi produttivi dello stabilimento che richiedono acqua, prevalentemente per esigenze di raffreddamento e di lavaggio, sono dotati di impianti di trattamento per la depurazione ed il riutilizzo. Da questi impianti, a valle delle sezioni di trattamento, originano gli scarichi nella rete fognaria di stabilimento che sono necessari per contenere la salinità dell'acqua in circolo. Per massimizzare la qualità degli effluenti, alcuni impianti di ricircolo sono stati dotati di ulteriori sezioni di trattamento dedicate alle portate di scarico.

L'allegato 1 riporta la sintetica descrizione degli impianti di ricircolo e scarico ed i relativi schemi a blocchi; in tabella 1 sono evidenziate le portate medie orarie, su base annua, immesse nella rete fognaria dagli scarichi parziali nell'anno 2014 e rilevate nei punti stabiliti dal piano di monitoraggio e controllo AIA.

| Denominazione punto di misura e origine scarico | Portata media (mc/h) |
|-------------------------------------------------|----------------------|
| 1AI – Sottoprodotti Cokeria                     | 53,17                |
| 6AI – Chiariflocculazione AFO1/2                | 39,77                |
| 8AI – Chiariflocculazione AFO4                  | 42,42                |
| 9AI – Chiariflocculazione AFO5                  | 77,37                |
| 11AI A – Granulazione loppa AFO2/A              | 360                  |
| 11AI B – Granulazione loppa AFO2/B              | 365                  |
| 12AI A – Granulazione loppa AFO4/A              | 551                  |
| 12AI B – Granulazione loppa AFO4/B              | 568                  |
| 16AI – Trattamento acque ACC1                   | 37,14                |
| 17AI – CCO1 trat. acque circuito spruzzi        | 10,39                |
| 18AI – CCO5 trat. acque circuito spruzzi        | 6,79                 |
| 24AI – Treno nastri 2                           | 6,76                 |
| 27AI – Chimico fisico LAF                       | 51,57                |
| 29AI – Ultrafiltrazione LAF                     | 1,20                 |
| 32AI – Tubificio longitudinale 1                | 5,81                 |
| 40AI – Trattamento acque OG ACC2                | 34,72                |
| 41AI – CCO2 trat. acque circuito spruzzi        | 11,26                |

Ilva S.p.A. in A.S. - Stabilimento di Taranto - Via Appia Km. 648

| Tab. 4 – Scarichi parziali di processo anno 2014              |       |  |  |  |  |  |  |  |
|---------------------------------------------------------------|-------|--|--|--|--|--|--|--|
| Denominazione punto di misura e origine scarico Portata media |       |  |  |  |  |  |  |  |
| 42AI – CCO3 trat. acque circuito spruzzi                      | 11,26 |  |  |  |  |  |  |  |
| 43AI – CCO4 trat. acque circuito spruzzi                      | 11,26 |  |  |  |  |  |  |  |
| 47AI – Treno nastri 1                                         | 33,08 |  |  |  |  |  |  |  |
| 48AI – Produzione lamiere                                     | 94,93 |  |  |  |  |  |  |  |
| 51AI – Tubificio longitudinale 2                              | 6,86  |  |  |  |  |  |  |  |
| 58AI – Trattamento percolato                                  | 3,40  |  |  |  |  |  |  |  |

Tutti i punti di controllo sono soggetti a campionamento per la misura giornaliera delle concentrazioni di azoto ammoniacale e nitroso, cianuri totali, fenoli, idrocarburi totali e solidi sospesi e, con frequenza mensile per il controllo di altri parametri, soprattutto i metalli pesanti. Per individuare e definire eventuali interventi atti al rispetto della prescrizione UA11 per le sostanze pericolose, è stato predisposto e attuato un ulteriore programma di monitoraggio degli scarichi di processo dei singoli reparti produttivi.

Il programma è stato definito nella primavera 2014 considerando le sostanze pericolose indicate nella tabella 5 dell'allegato 5 della parte terza del D. Lgs. 152/2006 in cui, oltre a 17 sostanze ben definite, al punto 18 si prescrive che la tabella sia integrata anche con le altre sostanze che risultavano essere classificate contemporaneamente «cancerogene» (R45) e «pericolose per l'ambiente acquatico» (R50 e 51/53) ai sensi del decreto legislativo 3 febbraio 1997, n. 52, e successive modifiche. Alla luce delle norme più recenti che in parte hanno modificato le prescrizioni della tabella 5 citata, (Direttiva 2013/39/UE del 12 agosto 2013 che modifica le direttive 2000/60/CE e 2008/105/CE per quanto riguarda le sostanze prioritarie nel settore della politica delle acque), le sostanze che risultano essere contemporaneamente pericolose per l'ambiente acquatico e cancerogene, probabili cancerogene o possibili cancerogene per l'uomo sono le seguenti: Benzene, Tetracloruro di carbonio, 1,2-Dicloroetano, Diclorometano, Di(2-etilesil)ftalato (DEHP), Esaclorobenzene, Naftalene, Benzo(a)pirene, Benzo(b)fluorantene, Benzo(k)fluorantene, Indeno(1,2,3-cd)pirene, Tetracloroetilene, Tricloroetilene, Triclorometano, Para-para DDT, Eptacloro, Eptacloroepossido, Diclorvos. Tra i parametri elencati non sono stati considerati quelli per i quali si è esclusa la presenza nelle materie prime utilizzate e la possibilità

di formazione durante i processi produttivi, cioè le sostanze utilizzate prevalentemente in agricoltura come pesticidi (Para-para DDT, Eptacloro, Eptacloroepossido).

La lista delle sostanze oggetto di monitoraggio e i relativi risultati sono riportati nelle tabelle in allegato 2 in cui i valori superiori ai limiti sono evidenziati in giallo mentre con il simbolo "<" si intende che il valore misurato è inferiore alla soglia di rilevabilità strumentale.

L'attività, affidata a organizzazione terza qualificata che ha provveduto ai campionamenti, al trasporto dei campioni e alle analisi di laboratorio, si è protratta da aprile 2014 sino ad aprile 2015 ed è stata quindi sviluppata con finalità:

- confermative dei risultati sinora acquisiti per le sostanze pericolose già oggetto di monitoraggio AIA con frequenza mensile;
- progettuali per le altre sostanze pericolose, non oggetto di controlli AIA, i cui limiti sono specificati in tab. 3 del D. Lgs. 152/2006;
- conoscitive circa la presenza o meno delle altre sostanze ritenute contemporaneamente pericolose per l'ambiente acquatico e cancerogene, non oggetto di controlli AIA ed i cui limiti non sono specificati in tab. 3 del D. Lgs. 152/2006.

Il monitoraggio ha interessato tutti gli scarichi di processo attivi; il campionamento è stato effettuato a valle dell'impianto di depurazione dopo aver accertato il regolare andamento dell'attività produttiva ed aver acquisito l'assetto di marcia degli impianti.

Le tabelle di allegato 2 evidenziano che affinché siano rispettati a piè di impianto i limiti di tab. 3 per le sostanze pericolose elencate in tab. 5 del D. Lgs. 152/2006 è necessario potenziare:

- 1) l'impianto scarichi della cokeria (1AI Sottoprodotti Cokeria) a causa della presenza di selenio in concentrazione stabilmente superiore a 0,03 mg/l;
- 2) gli impianti scarichi degli altoforni a causa delle concentrazioni di metalli che non sono stabilmente inferiori ai limiti.

#### 3. BAT Conclusions 2012

La Decisione di esecuzione della Commissione del 28 febbraio 2012 che stabilisce le conclusioni sulle migliori tecniche disponibili (BAT) per la produzione di ferro e acciaio ai sensi della direttiva 201/75/UE del Parlamento europeo e del Consiglio relativa alle emissioni industriali (pubblicate il 8/3/2012 G.U.EU L70/63) ha individuato le BAT applicabili e gli associati livelli di emissione che, in riferimento alle lavorazioni dello stabilimento ILVA di Taranto, riguardano le seguenti aree produttive.

#### Cokeria

Le BAT indicano che per la depurazione delle acque reflue derivanti dal processo di produzione del coke e dalla depurazione del gas di cokeria, dopo lo strippaggio dell'ammoniaca con alcali e vapore, occorre utilizzare un trattamento biologico di denitrificazione/nitrificazione. La tabella 2 riporta le concentrazioni traguardabili con questa tecnologia.

| Tab. 2 – Prestazioni BAT per effluenti da cokeria               | Concentrazione              |  |  |
|-----------------------------------------------------------------|-----------------------------|--|--|
| Domanda chimica di ossigeno, COD                                | < 220 mg/l                  |  |  |
| Domanda biologica di ossigeno a 5 giorni, BOD <sub>5</sub>      | < 20 mg/l                   |  |  |
| Solfuri liberi                                                  | < 0,1 mg/l                  |  |  |
| Tiocianati                                                      | < 4 mg/l                    |  |  |
| Cianuri easily released                                         | < 0,1 mg/l                  |  |  |
| PAH (somma di Fluoranthene, Benzo[b]fluoranthene,               |                             |  |  |
| Benzo[k]fluoranthene, Benzo[a]pyrene, Indeno[1,2,3-cd] pyrene e | < 0,05 mg/l                 |  |  |
| Benzo[g,h,i]perylene)                                           |                             |  |  |
| Fenoli                                                          | < 0,5 mg/l                  |  |  |
| Azoto ammoniacale + Azoto nitroso + Azoto nitrico               | $< 15 \div 50 \text{ mg/l}$ |  |  |

### Altiforni

Secondo le BAT per il trattamento delle acque reflue derivanti dalla depurazione ad umido trattamento del gas di altoforno occorre utilizzare la chiariflocculazione e se necessario, la riduzione dei cianuri liberi. La tabella 3 riporta le concentrazioni raggiungibili nell'effluente.

| Tab.3 – Prestazioni BAT per effluenti da altoforno | Concentrazione |
|----------------------------------------------------|----------------|
| Solidi sospesi                                     | < 30 mg/l      |
| Ferro                                              | < 5 mg/l       |
| Piombo                                             | < 0,5 mg/l     |
| Zinco                                              | < 2 mg/l       |
| Cianuri easily released                            | < 0,4 mg/l     |

# Acciaieria: convertitori a ossigeno e colata continua

E' considerata BAT la minimizzazione dello scarico di acque reflue dalle colate continue mediante una combinazione delle seguenti tecniche:

- rimozione di solidi sospesi mediante flocculazione, sedimentazione e/o filtrazione;
- rimozione dell'olio mediante scrematori con sistemi di raccolta o mediante qualsiasi altro dispositivo efficace;
- ricircolo per quanto possibile dell'acqua di raffreddamento e dell'acqua derivante dalla generazione del vuoto.

Il ricorso a queste soluzioni consente di traguardare le prestazioni indicate in tabella 4.

| Tab.4 – Prestazioni BAT per effluenti da acciaieria ad ossigeno e colata continua | Concentrazione |  |  |
|-----------------------------------------------------------------------------------|----------------|--|--|
| Solidi sospesi                                                                    | < 20 mg/l      |  |  |
| Ferro                                                                             | < 5 mg/l       |  |  |
| Nichel                                                                            | < 0,5 mg/l     |  |  |
| Zinco                                                                             | < 2 mg/l       |  |  |
| Cromo totale                                                                      | < 0,5 mg/l     |  |  |
| Idrocarburi totali                                                                | < 5 mg/l       |  |  |

Per valutare la necessità di potenziamento degli impianti scarichi per il rispetto dei nuovi limiti BAT, i risultati dei monitoraggi AIA sono stati integrati con specifiche attività interne di monitoraggio analitico.

Per l'impianto scarichi della cokeria, i controlli sistematici effettuati hanno evidenziato che l'impianto presenta alcune criticità in relazione ai nuovi parametri introdotti dalle BAT quali:

- BOD<sub>5</sub>;
- tiocianati.

Questi risultati sono imputabili in modo pressoché esclusivo alla depurazione a fanghi attivi perché condizionati dal carico di fango e dai tempi di permanenza. Conseguentemente si è ritenuto necessario prevedere il potenziamento della sezione biologica con la realizzazione di interventi da dimensionare in base alla massima capacità produttiva e, per quanto possibile, aderenti allo schema BAT introducendo un comparto di denitrificazione.

In riferimento alle prestazioni BAT per gli altoforni indicate in tabella 3, mediante i controlli analitici sono state constatate alcune anomale concentrazioni dei metalli e la significativa variabilità dei cianuri liberi. A causa delle anomalie riscontrate per i metalli si è ipotizzato di prevedere almeno il miglioramento delle condizioni operative della filtrazione su sabbia (pH controllato, impiego di prodotti chimici coadiuvanti della filtrazione) mentre per la rimozione dei cianuri easily released bisogna prevedere un trattamento dedicato.

In riferimento agli impianti di trattamento acque a servizio delle acciaierie, la configurazione impiantistica e l'assetto gestionale sono conformi alle BAT e la qualità degli effluenti è tale da rispettare stabilmente i valori indicati in tabella 4.

# 4. Trattamento dei reflui di cokeria

Per quanto riportato precedentemente, bisognerà potenziare l'impianto scarichi della cokeria mediante interventi atti a:

- garantire le prestazioni BAT con qualsivoglia assetto produttivo;
- per il selenio, traguardare il rispetto del limite di tab. 3 del D. Lgs. 152/2006;
- per quanto possibile, configurare l'impiantistica finale in modo conforme alle BAT.

Lo schema attuale dell'impianto ILVA differisce dalle BAT in quanto:

- lo stripping dell'ammoniaca è effettuato a valle del trattamento biologico e non a monte;
- la depurazione biologica non è di tipo nitro/denitro.

Si è pertanto valutata la possibilità di integrare le attuali dotazioni di trattamento con l'obiettivo di assicurare nelle acque di scarico le concentrazioni indicate nella seconda colonna di tabella 5 e prevedendo sezioni aggiuntive, da collocare a monte o a valle dell'esistente impianto biologico, dimensionate in base i carichi di progetto riportati in tabella 6.

Le condizioni delle tabelle 5 e 6 sono state comunicate a società specializzate nel trattamento di acque reflue al fine di valutare la fattibilità dell'intervento e le possibili alternative; alle società è stato richiesto di formulare la proposta prevedendo il massimo utilizzo delle dotazioni di trattamento esistenti senza escludere, se necessario, la dismissione degli impianti esistenti e la costruzione di un impianto sostitutivo.

| Tab. 5 – Valori limite                                  |               |  |  |  |  |  |  |
|---------------------------------------------------------|---------------|--|--|--|--|--|--|
| Parametro                                               | Valore limite |  |  |  |  |  |  |
| COD, mg/l                                               | 220           |  |  |  |  |  |  |
| BOD5, mg/l                                              | 20            |  |  |  |  |  |  |
| Solfuri liberi, mg/l                                    | 0,1           |  |  |  |  |  |  |
| Tiocianati, mg/l                                        | 4             |  |  |  |  |  |  |
| Cianuri easily released, mg/l                           | 0,1           |  |  |  |  |  |  |
| PAH, mg/l                                               | 0,05          |  |  |  |  |  |  |
| Fenoli, mg/l                                            | 0,5           |  |  |  |  |  |  |
| Azoto ammoniacale + Azoto nitroso + Azoto nitrico, mg/l | 15 ÷ 50       |  |  |  |  |  |  |
| Selenio, mg/l                                           | 0,03          |  |  |  |  |  |  |

|                          | Tab. (                             | 6 – condizioni | di ingresso al r | uovo trattam            | ento                      |                           |  |
|--------------------------|------------------------------------|----------------|------------------|-------------------------|---------------------------|---------------------------|--|
| P                        | Parametro Interventi a monte del b |                |                  | Interve                 | nti a valle del biologico |                           |  |
| Parametro                | inferiori                          | medie          | Superiori        | inferiori               | medie                     | superiori                 |  |
| COD, mg/l                | 500 ÷ 2.000                        | 800 ÷ 2.300    | 1.500 ÷ 2.700    | 30 ÷ 300                | 50 ÷ 400                  | 100 ÷ 500                 |  |
| SCN, mg/l                | 60 ÷ 140                           | 120 ÷ 180      | 150 ÷ 320        | 0,1 ÷ 140               | 0,1 ÷ 190                 | 0,1 ÷ 220                 |  |
| CN tot, mg/l             | 1 ÷ 5                              | 2 ÷ 15         | 5 ÷ 30           | 0,1 ÷ 1                 | 0,5 ÷ 4                   | 1 ÷ 15                    |  |
| Fenoli, mg/l             | 50 ÷ 250                           | 80 ÷ 350       | 100 ÷ 550        | 0,01 ÷ 0,1<br>200 ÷ 550 | 0,01 ÷ 0,3                | 0,05 ÷ 0,5<br>900 ÷ 1.400 |  |
| NH <sub>4</sub> -N, mg/l | 150 ÷ 350                          | 350 ÷ 800      | 550 ÷ 1.200      |                         | 650 ÷ 900                 |                           |  |
| NO <sub>2</sub> -N, mg/l | -                                  |                | <u>-</u>         | 0,1 ÷ 2                 | 0,1 ÷ 10                  | 5 ÷ 20                    |  |
| NO <sub>3</sub> -N, mg/l |                                    | -              | -                | 0,1 ÷ 5                 | 0,5 ÷ 20                  | 1 ÷ 30                    |  |
| Portata influente        |                                    | minima         | 60               |                         | mc/ora                    |                           |  |
| 1 Ortala II              | yincine                            | massima        | 150              | )                       | mc/ora                    |                           |  |

Come accennato, le differenze fra la situazione esistente e quella indicata nelle BAT riguarda il posizionamento della sezione di stripping dell'ammoniaca e l'integrazione con una fase di nitrificazione/denitrificazione biologica.

Le soluzioni di trattamento richieste possono ritenersi consolidate perché annoverate tra le Migliori Tecniche Disponibili; nel caso specifico si tratta quindi di valutare le differenti soluzioni impiantistiche in termini di fattibilità perché l'intervento riguarda una zona dello stabilimento caratterizzata da alta densità di impianti.

Diverso è invece lo scenario conseguente all'esigenza di contenere la concentrazione di selenio entro il valore di 0,03 mg/l perché le BAT non affrontano questa problematica e pertanto non indicano alcuna traguardabile concentrazione di riferimento.

E' da osservare come, nell'ambito del provvedimento di Autorizzazione Integrata Ambientale (DVA-DEC 2011 – 000450), la rimozione del selenio dai reflui di cokeria sia stata considerata una problematica innovativa perché la prescrizione indicata nella AIA 2011 (pag. 926 del parere istruttorio IPPC) riporta:

"si prescrive la realizzazione di uno studio di fattibilità finalizzato all'abbattimento del parametro Selenio, a piè d'impianto (n.d.r. impianto di cokeria), anche attraverso impianto sperimentale pilota".

Come evidenziato nelle pagine seguenti, la rimozione del selenio dalle acque reflue è argomento attualmente in fase di studio nell'ambito delle attività nelle quali il selenio è un inquinante caratteristico come quelle del settore minerario ed energetico; il comportamento anfotero dell'elemento rende difficoltoso garantire il raggiungimento delle concentrazioni particolarmente ridotte poste come obiettivo di trattamento (alcuni ppb o alcune decine di ppb) e pertanto sono oggetto di sperimentazione diverse soluzioni di trattamento che sono tutte caratterizzate da significativi investimenti e costi operativi.

Allo stato non è stata ancora individuata una tecnologia d'impiego generale, proponibile in ambito industriale ed economicamente sostenibile.

Suddette condizioni motivano il criterio alla base della prescrizione AIA, che non pone, a priori, indicazioni quantitative.

Pertanto, in assenza di Migliore Tecnica Disponibile, la problematica del selenio è stata oggetto di uno specifico approfondimento allo scopo di evidenziare l'attuale "stato dell'arte" relativo alle possibilità di controllo del tenore di selenio negli scarichi i reflui idrici e di valutare le possibili soluzioni di trattamento proposte dai fornitori, considerando valore guida il limite di 0,03 mg/l riportato in tabella 3 della parte terza dell'allegato 5 al D. Lgs. 152/06.

# 5. La rimozione del selenio

### 5.1 Cenni sulla chimica del selenio

Il selenio è presente in diverse forme chimiche e fisiche correlate a molte trasformazioni biogeochimiche, raggruppabili in quattro principali categorie: (1) selenio inorganico, (2) selenio volatile e metilato, (3) selenio in acidi ammino proteici, (4) selenio in intermedi biochimici non ammino proteici.

Il selenio si ritrova nell'ambiente in quattro stati di ossidazione: esavalente (Se<sup>6+</sup>), tetravalente (Se<sup>4+</sup>), elementare (Se<sup>0</sup>) e come seleniuro (Se<sup>2-</sup>). In ambienti ossidanti si trova sotto forma di seleniato (SeO<sub>4</sub><sup>2-</sup>) e selenito (SeO<sub>3</sub><sup>2-</sup>), mentre come selenio elementare (Se) o seleniuro (HSe<sup>-</sup>) in ambienti anaerobici e nei minerali.

Le forme ridotte (Se<sup>0</sup> e HSe<sup>-</sup>) sono insolubili e nelle acque sono presenti sotto forma di sospensioni colloidali piuttosto che in forma disciolta.

Le condizioni termodinamiche di stabilità dell'elemento sono indicate nel seguente diagramma di Pourbaix

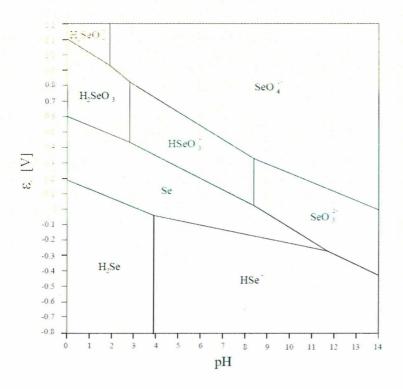



Fig. 1

Nell'intervallo di pH compreso fra 6 e 8 le forme stabili sono la forma elementare (Se<sup>0</sup>), il selenito (SeO<sub>3</sub><sup>2-</sup>), il biselenito (HSeO<sub>3</sub><sup>-</sup>) ed il seleniato (SeO<sub>4</sub><sup>2-</sup>)<sup>1</sup>.

L'ossidazione del selenio è favorita dalla presenza nell'acqua di agenti ossidanti, di elementi di transizione redox attivi come il ferro, di flora batterica ossidante e dalla radiazione ultravioletta.

I principali settori caratterizzati dalla presenza di selenio in specifiche acque reflue di processo sono il minerario (carbone, rame, fosfati, i cui minerali contengono selenio), l'energetico (centrali a carbone), il petrolifero ed il petrolchimico.

#### 5.2 Le tecniche di trattamento

Il North American Metals Council ha costituito un apposito gruppo di lavoro (Selenium Work Group) finalizzato alla valutazione delle possibili tecniche per la riduzione del contenuto di Selenio nelle acque di scarico sino ai valori richiesti dalle più recenti normative.

Il gruppo ha prodotto un rapporto finale nel giugno 2010<sup>2</sup> ed un successivo addendum nel 2013<sup>3</sup>, le conclusioni dei quali rappresentano lo stato conoscitivo attuale, utili per la valutazione di fattibilità.

Di seguito si riportano alcuni delle informazioni riportate nel documento, cui si rimanda per eventuali approfondimenti.

Come riferito in nota<sup>(3)</sup> le tecnologie proponibili per la rimozione del selenio attengono a tre tipologie di processi:

processi di tipo fisico, consistenti nell'applicazione di sistemi di separazione attraverso osmosi inversa: uno studio pilota condotto su reflui di miniere di fosfati, della durata di 2 mesi, ha dimostrato di poter contenere il tenore di selenio nelle acque permeate a livelli inferiori a 1 µg/l. Il concentrato derivante dall'unità ad osmosi inversa, contenente il selenio separato dal permeato, richiede un ulteriore trattamento (di tipo chimico o biologico) al fine di separare il selenio, trasferendolo in fase solida (fanghi chimici o biologici).

Chapman e t al., "Ecological Assessment of selenium in the aquatic environment", 2010, SEETAC Press, Pensacola, FL

<sup>&</sup>lt;sup>2</sup> North American Metals Council "Review of Available Technologies for the Removal of Selenium from Water" – final report, June 2010, CH2M HILL ed.

<sup>&</sup>lt;sup>3</sup> NAMC White Paper Report Addendum, march 2013, CH2M HILL ed

Prima di essere alimentata al sistema ad osmosi inversa, l'acqua da trattare deve essere previamente filtrata ed additivata con agenti anti-incrostanti.

Inoltre l'unità ad osmosi necessita di periodici trattamenti di pulizia chimica.

La sperimentazione è stata condotta con flussi dell'ordine di 0,60 m³/ giorno per m²di superficie filtrante (14,7 gallons/square foot day).

• <u>Processi di tipo chimico</u>, mediante scambio ionico, trattamento con ferro zerovalente (ZVI), utilizzo di sostanze adsorbenti (allumina), co-precipitazione con ione ferrico.

Attraverso lo scambio ionico il selenio, nella forma seleniato, si fissa sulle resine per poi trasferirsi nella soluzione di rigenerazione delle resine stesse, da destinare ad ulteriore trattamento per segregarlo dalla fase liquida.

Il sistema ha trovato applicazioni sia a livello pilota che su scala industriale (miniera di carbone in West Virginia): su scala pilota si è dimostrata la possibilità di rimuovere selenio (nella forma seleniato) da concentrazioni massime di 12  $\mu$ g/l, in presenza di solfati sino a 250 mg/l, producendo acqua trattata con concentrazioni di selenio inferiori a 1  $\mu$ g/l

Il sistema non è efficace nella rimozione di selenito e richiede pretrattamenti dell'acqua, consistenti nella rimozione di solidi sospesi e componenti in grado di dar luogo a precipitati, quali calcio, ferro e manganese, al fine di evitare incrostazioni o intasamenti delle resine a scambio ionico. Le resine esplicano potere di scambio anche nei riguardi di nitrati, solfati e bicarbonati, riducendo di conseguenza l'efficienza nei confronti del seleniato.

La durata attesa delle resine è compresa fra 3 e 5 anni, in funzione della qualità dell'acqua trattata (in particolare in relazione al contenuto di sostanze organiche).

Con l'impiego di ferro zero valente (ZVI) la rimozione del selenio (da selenito e seleniato) avviene a seguito della riduzione a selenio elementare (insolubile) ed alla formazione di complesso di idrossido ferroso-ferrico che coprecipita con il selenio.

Nell'esperienza su scala industriale, relativa all'impianto in West Virginia (portata 36 mc/ora), il tenore di selenio si riduce da valori dell'ordine di 19  $\mu$ g/l sino a valori dell'ordine di 4,7  $\mu$ g/l.

Anche in questo caso è necessario un pretrattamento dell'acqua atto alla rimozione dei solidi sospesi (che inattiverebbero le particelle di ferro) e controllo di pH nell'intervallo da 6,0 a 6,5.

Il processo produce rilevanti concentrazioni di ferro in soluzione, la cui rimozione avviene attraverso ossidazione e precipitazione come idrossido (congiunta alla coprecipitazione del selenio).

Per motivi cinetici, il processo richiede tempi di permanenza elevati, compresi fra 12 e 24 ore.

L'adsorbimento chimico su letto fisso è stato provato con allumina, idrossido ferrico granulare e con altri adsorbenti brevettati.

Lo sviluppo dei sistemi che impiegano allumina attivata e idrossido ferrico è sinora a scala pilota e dimostra la possibilità di rimuovere selenio (sotto forma di selenito e seleniato) a partire da concentrazioni sino a 100 μg/l con rimozioni dell'ordine del 90% (allumina attivata).

Nel caso di impiego di idrossido ferrico granulare è dimostrata la possibilità di rimozione di seleniato, mentre non vi sono evidenze sperimentali per la rimozione di selenito.

Phillips ha brevettato una tecnologia di rimozione di selenio con l'impiego di un prodotto adsorbente a base di carbone attivo (SeRT<sup>TM</sup>), sviluppato in particolare per la rimozione dell'anione selenocianato (SeCN<sup>-</sup>) dagli scarichi di raffineria, ottenendo efficienze di rimozione dal 95% al 100%. Il sistema richiede pretrattamenti finalizzati al controllo del pH ed alla rimozione dei metalli pesanti.

La coprecipitazione del Selenio con idrossido ferrico è stata provata per il trattamento dei reflui derivanti dalla desolforazione dei gas, in ambiente fortemente ossidante.

La coprecipitazione con idrossido ferrico risulta più efficace nei riguardi del selenito e opera a pH leggermente acido  $(5,5 \div 6,0)$  in presenza di fiocchi di idrossido ferrico, caratterizzati da elevata superficie specifica.

Nel test pilota condotto nel periodo 2009 il dosaggio di reagente è stato di 250 kg di Fe per kg di Se, ottenendo rese di trattamento dell'ordine dell'83% (riducendo il tenore di seleniato da 3.900 a 660  $\mu$ g/l), con elevatissimo tempo di permanenza (HRT = 36 giorni).

Nel successivo test pilota, del 2011, condotto con tempi di permanenza analoghi (6 settimane) si è ottenuta una resa di trattamento dell'ordine del 70%, con concentrazioni in ingresso comprese tra 300 e 500  $\mu$ g/l di selenio.

## • Processi biologici, di tipo attivo e passivo.

Nei processi di tipo attivo, la rimozione del selenio avviene a seguito della sua riduzione a selenio metallico nello stadio di denitrificazione biologica, segregandosi all'interno della biomassa denitrificante.

Nelle tecnologie attive si prevede l'impiego di reattori a biomassa supportata su varie tipologie di supporti ed anche su granuli di carbone attivo.

I reattori prevedono tempi di contatto compresi fra 2 e 6 ore in funzione del tenore di nitrati e del potenziale redox dell'ambiente (compreso fra -250 e -350 millivolt).

Il processo richiede l'impiego di sostanze carboniose biodegradabili (con funzione di donatori di elettroni per la crescita della biomassa), quali melasso, ed è stato sperimentato sia con biomassa su letto fisso (percolatore) che su letto sospeso, in singolo o doppio stadio, in funzione del tenore di nitrati da rimuovere.

In presenza di concentrazioni di nitrati comprese fra 5 e 100 mg/l e concentrazioni di selenio comprese fra 20 e 300  $\mu$ g/l, si sono ottenuti effluenti con nitrati inferiori a 0,1 mg/l (come azoto nitrico) e tenori di selenio fra 3 e 10  $\mu$ g/l.

Sono necessari efficienti sistemi di separazione solido —liquido per ottenere la separazione dei fanghi contenenti il selenio metallico che, essendo sottoforma di particelle di piccola dimensione, può rimanere in sospensione in acqua.

In presenza di tenori di selenio superiori a 50  $\mu$ g/l i normali sistemi di separazione (sedimentazione a gravità) non risulterebbero in grado di garantire le efficienze necessarie, per cui è richiesto un successivo stadio di micro o ultrafiltrazione.

Nei sistemi passivi la rimozione del selenio è conseguente a fenomeni naturali di tipo chimico, biologico e fisico, analoghi a quelli dei sistemi attivi, ma realizzati in più ampie superfici di trattamento, senza l'ausilio di nutrienti e miscelazione meccanica.

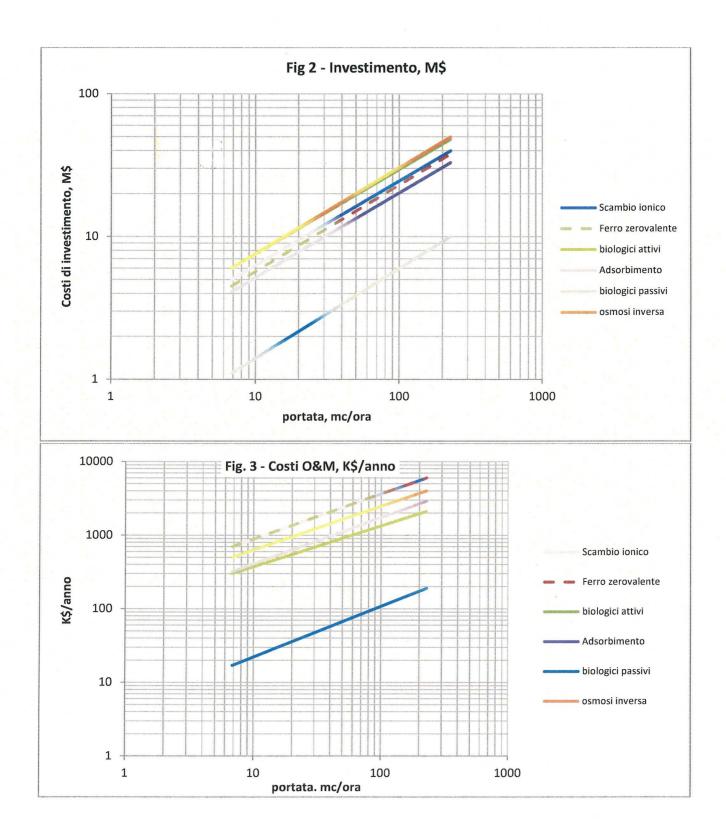
Le forme ossidate del selenio (selenito e seleniato) vengono ridotte a selenio elementare, per effetto microbiologico, quindi inglobate nei sedimenti.

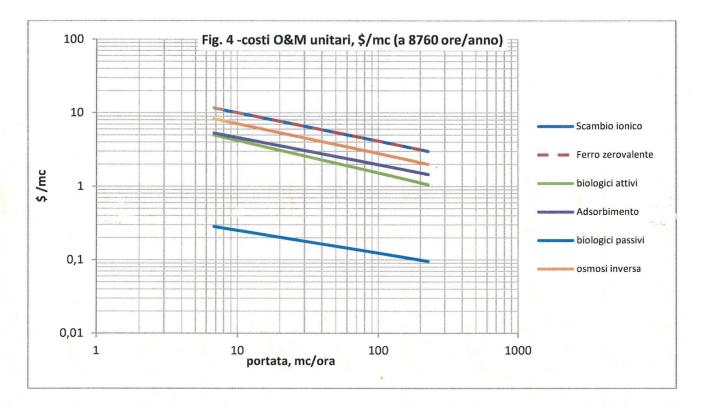
Il processo richiede la preventiva rimozione dei componenti elettron accettori, quali i nitrati e l'ossigeno, mentre il carbonio biodegradabile costituisce il donatore di elettroni necessari per la riduzione del selenio.

In alternativa nelle aree umide il processo può farsi utilizzando substrati lignei annegati nell'acqua da trattare, che fluisce naturalmente in direzione discendente o ascendente; tale disposizione consente la riduzione dei tempi di trattamento rispetto a quelli necessari nel caso di lagunaggio.

Nel caso di impiego di supporti lignei, le acque in uscita dal trattamento richiedono ulteriori stadi di depurazione, conseguenti alla necessità di rimuovere l'eccesso di BOD<sub>5</sub> ( e COD) rilasciato dai supporti.

Esperienze in tal senso hanno dimostrato la possibilità di contenere la concentrazione di selenio nell'acqua a livelli dell'ordine di qualche µg/l a partire da concentrazioni di qualche decina di µg/l, cioè rese di depurazione dell'odine del 90%.


Nel caso di impiego di substrati le efficienze di rimozione sono risultate dell'ordine di 7 mg di Se/mc giorno di substrato (di spessore pari a 1 m circa, con carichi superficiali dell'ordine di 0,11 mc/mq ora). Efficienze più elevate si sono dimostrate, a livello pilota, utilizzando quale substrato una miscela di letame, fieno, segatura, trucioli di legno e pietra calcarea, con tempi di contatto di 2,4 giorni e rese di trattamento dell'ordine del 90% (riferite al selenio).


#### 5.3 Costi di trattamento

Premesso che buona parte delle soluzioni indicate sono ancora a livello di sperimentazione e, peraltro, nessuna di queste è relativa al trattamento di reflui da cokeria, il gruppo di lavoro americano fornisce le indicazioni economiche di seguito rappresentate e riferite all'anno 2013.

In figura 2 è riportato il confronto dell'investimento, in milioni di dollari, fra le diverse soluzioni; la soluzione meno onerosa è rappresentata dai sistemi biologici passivi, ma bisogna considerare che nei costi contabilizzati non è compreso quello della superficie occupata dagli impianti che è decisamente maggiore di quella richiesta per le altre soluzioni di trattamento.

Circa i costi di gestione (O&M) il confronto fra le diverse soluzioni è riportato in figura 3 (migliaia di dollari/anno), mentre in figura 4 è riportato il costo unitario nell'ipotesi di esercizio continuo di 8.760 ore/anno (dollari per metro cubo di acqua trattata).





Anche in riferimento ai costi di gestione, la soluzione più economica è rappresentata dai sistemi biologici passivi perché non comportano significativi consumi di energia e di reagenti; tuttavia bisogna considerare che in questi casi il costo complessivo dipende anche delle ulteriori esigenze di rimozione della componente organica in base alle caratteristiche del refluo trattato.

Per le altre tecnologie si osserva che i costi di trattamento risultano particolarmente elevati, superiori ad 1 dollaro/mc e, in funzione della potenzialità, sino a 10 dollari/mc, e non usuali nel campo della depurazione delle acque reflue industriali

#### 5.4 Considerazioni

Le tecniche di rimozione del selenio sono ancora in fase di studio e al momento non è stata individuata una soluzione adeguata per qualsivoglia tipologia di acqua reflua in relazione alle concentrazioni da traguardare negli scarichi.

Diversi fattori influenzano il risultato quali le forme (grado di ossidazione) del selenio, la presenza di altre specie ioniche che interferiscono con il trattamento, i livelli di concentrazione, la presenza di composti donatori o accettori di elettroni.

Fra i sistemi provati, alcuni trasferiscono l'elemento dal refluo a flussi più concentrati; i sistemi di osmosi inversa, quelli di scambio ionico e quelli di adsorbimento (fisico), non modificando lo

stato di ossidazione dell'elemento, comportano la necessità di destinare il flusso concentrato ad altro trattamento.

La segregazione dell'elemento in fase solida (fanghi) è possibile con tecniche che riducono le forme ossidate a selenio elementare o seleniuro attraverso processi chimici (coprecipitazione o reazione con ferro zero valente) o biologici (attivi o passivi). Anche per tali soluzioni occorre considerare la destinazione finale dei fanghi al fine di impedire la sua reimmissione nell'ambiente: in tale ottica sono da preferire le soluzioni che generano minori quantità di fanghi per i quali comunque è da escluderne il recupero energetico (possibile per i fanghi biologici) per evitare la immissione in atmosfera di selenio in fase gassosa.

Una ulteriore considerazione riguarda il fatto che nella recente letteratura scientifica non risultano applicazioni al trattamento dei reflui di cokeria: diverse esperienze sono ancora a livello di sperimentazione pilota, mentre scarse sono le implementazioni su scala industriale e riferite in particolare al settore minerario ed energetico.

Per quanto sinora riportato, si conclude che le soluzioni di trattamento disponibili non possono essere ritenute, a priori, idonee a garantire con certezza il raggiungimento di un obiettivo di trattamento predefinito; per questo motivo nello studio di fattibilità sono state considerate le proposte formulate dai fornitori interpellati, ai quali è stato richiesto di traguardare concentrazioni di selenio non superiore a 0,03 mg/l, avendo però presente la necessità che tale obiettivo sia suscettibile di verifica effettiva.

# 6. Le proposte di intervento – Reflui di cokeria

Considerata la particolare problematica della rimozione del selenio, la proposizione degli interventi necessari per il trattamento dei reflui di cokeria è stata richiesta a numerose società, di livello internazionale, specializzate nel settore del trattamento delle acque reflue. Tra le aziende interpellate hanno proposto soluzioni le seguenti:

- Bernardinello Engineering S.p.A. che ha prodotto la documentazione in allegato 3;
- Degremont S.p.A. la cui proposta è riportata in allegato 4;
- Fisia Italimpianti S.p.A. con la documentazione in allegato 5;
- Sideridraulic S.p.A. che ha prodotto la documentazione riportata in allegato 6;
- Veolia Water Techhologies Italia S.p.A., documentazione in allegato 7.

Di seguito è riportata la sintesi dei contenuti delle proposte come elaborate nella versione finale dopo aver considerato vincoli ed impedimenti che ne avrebbero complicato significativamente la fattibilità.

# 6.1 Proposta Bernardinello Engineering

La tecnologia proposta si basa sulle indicazioni delle BAT prevedendo lo stripping dell'ammoniaca a monte dell'impianto biologico che sarà potenziato per realizzare la seguente configurazione:

- predenitrificazione (volume 2000 mc);
- ossidazione (volume 1200 mc);
- nitrificazione (volume 1200 mc);
- post-denitrificazione (volume 200 mc);
- post-aerazione (volume 80 mc);
- chiarificazione.

A valle della sezione biologica sono previsti trattamenti terziari finalizzati in particolare alla rimozione del selenio e consistenti in:

- Filtrazione su sabbia;
- Utrafiltrazione mediante membrane in fibra cava;

- Osmosi inversa;
- Precipitazione chimica del selenio dal concentrato dell'osmosi inversa (acidificazione e impiego di specifico prodotto);
- Adsorbimento su carbone attivo;
- Disidratazione fanghi chimici mediante centrifuga.

La sezione di depurazione biologica sarà realizzata su tre linee in parallelo, ciascuna di potenzialità pari a 60 mc/h, per una potenzialità totale di 180 mc/h a fronte dei 150 mc/h richiesti. I volumi necessari per la depurazione biologica saranno ottenuti ricavati modificando le esistenti vasche di trattamento (vasche A, B e C), con la conseguente necessità di realizzare altrove il volume di omogenizzazione/equalizzazione; per lo scopo si potrà utilizzare uno dei tre sedimentatori esistenti.

## 6.2 Proposta Degremont

La società propone due alternative di intervento, di cui la prima (soluzione base) prevede il posizionamento della sezione di strippaggio ammoniaca a monte del trattamento biologico, l'installazione di agitatori meccanici nella vasca di omogeneizzazione esistente, la realizzazione di una nuova stazione di sollevamento dei reflui da inviare al trattamento biologico, la realizzazione di una nuova vasca di ossidazione da 5100 mc a monte di quella ora utilizzata, l'installazione di una nuova rete di insufflazione dell'ossigeno nelle vasche di ossidazione, un secondo stadio di trattamento biologico con denitrificazione, ossidazione e nitrificazione, vasca di degasaggio (tutte di nuova realizzazione), finitura con filtrazione su sabbia e successiva filtrazione su carbone attivo.

Per la disidratazione dei fanghi è proposta l'installazione di una centrifuga, portata nominale di 85 mc/h.

Oltre all'ossigeno, di fornitura ILVA, i reattivi previsti sono acido fosforico, acido solforico (da attrezzare con una nuova postazione di dosaggio), polielettrolita cationico, metanolo (da attrezzare con una nuova postazione di dosaggio).

La volumetria di nuova realizzazione è pari a 7.600 mc.

In alternativa Dregremont ha proposto, in sostituzione del sedimentatore esistente e dei filtri a sabbia riportati nella soluzione base, l'installazione di una unità di filtrazione con membrane immerse nei bacini a fanghi attivi da realizzare su due linee in parallelo.

Ilva S.p.A. in A.S. - Stabilimento di Taranto - Via Appia Km. 648

Non sono state fornite tutte le indicazioni circa i consumi specifici dei prodotti chimici

Circa la rimozione del selenio, la società ritiene di non poter garantire il raggiungimento del valore obiettivo argomentando la sua posizione con le seguenti osservazioni:

"In mancanza di una speciazione del selenio in ingresso, comunque di difficile caratterizzazione, nell'attuale progettazione è stato considerato che tutto il selenio indicato in ingresso sia del tipo "solubile" con stato di ossidazione selenato (selenio VI) e che quindi non sia possibile prevederne l'eliminazione con il processo proposto per l'eliminazione degli altri parametri "BAT Concusions2012".

Nel caso fosse "particolato" o in forma di selenito (selenio IV) la filiera di trattamento proposta potrebbe prevedere un pretrattamento chimico fisico a monte del trattamento biologico e costituito da sedimentazione e filtrazione (anche con idrossido ferrico granulare - GFH). Questo trattamento, la cui applicabilità è comunque soggetta ad una campagna di sperimentazione in laboratorio e con impianto pilota industriale, potrebbe dare buone rimozioni dei seleniti e quindi consentire di avvicinarsi al valore ammesso allo scarico, anche se riteniamo difficile poter garantire il rispetto del valore limite di 30 ppb in quanto la presenza comunque di selenati potrebbe di gran lunga superare il valore limite richiesto.

Anche il trattamento biologico potrebbe dare un abbattimento superiore a quanto attualmente previsto, in quanto è possibile ipotizzare un adsorbimento dei seleniti da parte della biomassa.

Da quanto detto è chiaro che senza una conferma del contenuto di selenio e, soprattutto, la sua speciazione (seliniuro, selenio elementare, selenito, selenato) non è possibile indicare nel pretrattamento chimico-fisico una attendibile soluzione a questa problematica.

Nel caso si rendesse in ogni caso necessario il trattamento del selenio a monte dello scarico finale, considerato che dovrebbe essere nella quasi totalità sotto forma di seleniato, il più efficace sistema di rimozione che è attualmente disponibile è rappresentato dallo scambio ionico, pur premettendo che:

- non esistono resine particolarmente selettive per il selenio e, pertanto, con reflui contenenti basse concentrazioni di selenio e alte concentrazioni di altri ioni (i.e. ioni cloruri e/o solfati) lo scambio ionico può diventare improponibile (la salinità delle acque da trattare è particolarmente elevata);
- lo scambio ionico, genera eluati di rigenerazione che devono essere a loro volta smaltiti all'esterno dello stabilimento come rifiuto speciale;
- potrebbe rendersi necessario un ulteriore stadio di concentrazione ed evaporazione degli eluati di rigenerazione delle resine, particolarmente oneroso sia in termini di investimento che in termini di costi di gestione e che potrebbe essere previsto nell'eventuale successivo sviluppo del progetto che preveda il recupero ed il riutilizzo delle acque reflue trattate in uscita dall'impianto di depurazione degli effluenti di cokeria;
- un nuovo promettente sviluppo è relativo all'impiego di un trattamento biologico specifico per la rimozione dei selenati, brevettato da Degrémont, e denominato iBIO TM . Il processo è stato sviluppato dalla consociata statunitense Infilco Degrémont Inc. facente parte di Degrémont Technologies ed è oggetto

di studio nel trattamento dei reflui da FGD (Flue Gas Desulphurization) delle centrali elettriche alimentate a carbone. In questo caso i selenati sono ridotti in condizioni anaerobiche da specie batteriche solfato riduttrici. "

# 6.3 Proposta Fisia Italimpianti

Fisia propone l'installazione di un nuovo impianto di trattamento che opera sui reflui scaricati dall'impianto esistente, senza interventi relativi a quest'ultimo.

Si propone la realizzazione di bacini di trattamento di pre-denitrificazione, nitrificazione e degasaggio, con opzione di post-denitrificazione (con impiego di acido acetico e fosforico, al fine di ridurre il consumo di vapore nello stadio preliminare di strippaggio dell'ammoniaca).

I nuovi stadi di trattamento biologico sono a biomassa adesa (MBBR con supporto Mutag BioChip ad elevata superficie specifica).

Per la rimozione del selenio è proposto il trattamento biologico con l'impego di biomassa supportata (ambiente riducente per trasformare il Se in forma elementare), successivi stadi di precipitazione chimica con l'impiego di ferro bivalente, aria e successiva chiariflocculazione e separazione dei fanghi chimici.

La volumetria di nuova realizzazione per unità di trattamento è pari a 2.106 mc.

### 6.4 Proposta Sideridraulic

La soluzione proposta si integra nella dotazione di trattamento esistente prevedendo, conformemente alle indicazioni BAT, il posizionamento dell'unità di strippaggio ammoniaca a monte impianto dell'impianto biologico che sarà potenziato mediante la realizzazione del comparto di denitrificazione, e l'ampliamento del comparto aerobico. Quale trattamento terziario, finalizzato soprattutto alla rimozione del selenio, Sideridraulic propone la precipitazione chimica ed uno stadio finale di finitura con filtrazione su sabbia e carbone attivo. Gli interventi previsti sono:

Strippaggio dell'ammoniaca: intervento di intercettazione del piping di alimento e scarico dell'unità di trattamento esistente, per consentire la rimozione dell'ammoniaca a monte del trattamento biologico, e successivo finissaggio mediante nuovo processo a fanghi attivi di nitrificazione/ denitrificazione.

- Derivazione portata influente: predisposizione del nuovo piping e relativa unità di sollevamento, per consentire l'eventuale scarico delle acque in ingresso non compatibili con il trattamento biologico, nell'attuale Vasca "A" contigua al reattore biologico, e successivo ricircolo a monte delle colonne di strippaggio.
- Equalizzazione: intervento di modifica di uno degli attuali sedimentatori secondari,
   convertendo il manufatto in un nuovo bacino di equalizzazione;
- Predenitrificazione: modifica vasca di equalizzazione esistente realizzando un settore anossico dedicato;
- Ossidazione fughe ammoniaca e composti organici biodegradabili (BOD): modifica vasca di equalizzazione esistente realizzando un settore dedicato per un primo stadio di ossidazione aerobica;
- Finissaggio processi ossidativi dell'ammoniaca e composti organici (BOD): ottimizzazione vasca biologica esistente, realizzando il secondo stadio di ossidazione aerobica;
- Sedimentazione secondaria: utilizzazione di due delle unità di sedimentazione esistenti;
- Abbattimento chimico fisico del selenio: realizzazione di nuova sezione;
- Rimozione dei solidi sospesi ed eventuali composti organici residui: realizzazione nuova sezione di filtrazione su sabbia e adsorbimento su carboni attivi;
- Bacini di monitoraggio effluente: realizzazione nuova sezione;
- Ispessimento fanghi: si prevede di riutilizzare gli esistenti ispessitori;
- condizionamento e disidratazione fanghi: è prevista l'installazione di una sezione di condizionamento e disidratazione mediante nastropressa.

Per il trattamento del selenio è proposta la riduzione e la precipitazione chimica mediante l'impiego di metabisolfito di sodio, solfato di rame e solfato ferroso, idrossido di sodio e agente flocculante; il trattamento è suddiviso su due linee in parallelo (ciascuna con portata di 80 mc/ora), con reattore di miscelazione (tempo di permanenza 30'), successivo reattore di flocculazione (tempo di permanenza 30') e separazione con sedimentatore a pacco lamellare (carico idraulico 0,6 mc/mq \* h).

La volumetria di nuova realizzazione sarà pari a 4.200 mc.

#### 6.5 Proposta Veolia

Analogamente a Fisia, Veolia propone un intervento a valle dell'impiantistica esistente e così strutturato:

- Sezione di ozonizzazione per l'abbattimento dei cianuri;
- Equalizzazione con dosaggio di soda;
- Depurazione biologica MBBR;
- Flottazione:
- Filtrazione a sabbia;
- Unità di filtrazione di sicurezza per il selenio;
- Disidratazione fanghi.

Veolia prospetta quindi processi biologici in reattori a biomassa adesa MBBR con separazione fanghi mediante flottazione e trattamento finale dell'effluente in filtri a sabbia in pressione.

Per quanto il selenio, la cui rimozione è affidata all'impianto biologico, la società ha prospettato in opzione un trattamento di finitura in filtri senza fornire indicazioni circa la tipologia di letto filtrante materiale filtrante che si intende utilizzare.

Oltre all'ozono si prevede l'impiego di polielettrolita, cloruro ferrico ed etanolo.

La volumetria di nuova realizzazione è pari a 4.300 mc.

L'offerta indica che solo a seguito di prove pilota sul refluo da trattare si potrà confermare la filiera di trattamento proposta.

# 7. Trattamento reflui di altiforni

Si tratta delle portate di spurgo dei circuiti di depurazione dei gas dei quattro altoforni, denominati AFO 1, AFO 2, AFO 4 e AFO 5, che attualmente, dopo la chiariflocculazione sono sottoposti a e filtrazione su sabbia prima dello scarico.

Le caratteristiche tipiche di queste acque sono riportate in tabella 7.

| Tab. 7 – Caratteristiche effluenti AFO |                         |             |             |             |  |  |  |  |
|----------------------------------------|-------------------------|-------------|-------------|-------------|--|--|--|--|
|                                        | u. m.                   | AFO 1/2     | AFO 4       | AFO 5       |  |  |  |  |
| Portata<br>media                       | mc/ora                  | 200         | 100         | 200         |  |  |  |  |
| Temperatura                            | °C                      | 50 ÷ 60     | 50 ÷ 60     | 50 ÷ 60     |  |  |  |  |
| pН                                     | pН                      | 7,3 ÷ 8,8   | 7,9 ÷ 8,4   | 7,2 ÷ 7,5   |  |  |  |  |
| Conducibilità                          | mS/cm                   | 4 ÷ 7       | 5,5 ÷ 14    | 4,8 ÷ 6,3   |  |  |  |  |
| Alcalinità<br>totale                   | mg CaCO <sub>3</sub> /l | 900 ÷ 1200  | 1000 ÷ 3000 | 1000 ÷ 1200 |  |  |  |  |
| Durezza<br>calcica                     | mg CaCO <sub>3</sub> /l | 300 ÷ 400   | 300 ÷ 500   | 300 ÷ 400   |  |  |  |  |
| Cloruri                                | mg Cl/l                 | 1100 ÷ 1600 | 1200 ÷ 1300 | 1000 ÷ 1300 |  |  |  |  |
| Cianuri liberi                         | mg CN/l                 | 15          | 23          | 20          |  |  |  |  |

Considerata l'esigenza di traguardare stabilmente i limiti di tab. 3 del D. Lgs. 152/06 per piombo e zinco, limiti più restrittivi di quelli BAT, e contenere la concentrazione di cianuri easily released, a valori inferiori a 0,4 mg/l, si è ritenuto opportuno prevedere interventi atti a garantire i valori obiettivo indicati in tabella 8.

| To                      | ab. 8 – Valori limite | 2             |
|-------------------------|-----------------------|---------------|
|                         | и. т.                 | Valore limite |
| Solidi sospesi          | mg/l                  | 30            |
| Ferro                   | mg/l                  | 5             |
| Piombo                  | mg/l                  | 0,2           |
| Zinco                   | mg/l                  | 0,5           |
| Cianuri easily released | mg/l                  | 0,4           |

Le migliori tecnologie disponibili per la riduzione del tenore dei solidi sospesi e dei metalli, disciolti e non, sono la flocculazione e la sedimentazione mentre la rimozione dei cianuri è solitamente utilizzata l'ossidazione chimica; pertanto l'esigenza è definire le condizioni specifiche di progetto, in relazione all'entità dei flussi ed al layout dell'impianto con la necessaria attenzione alla disponibilità di spazi per la realizzazione.

Definite tali condizioni non dovrebbero esserci incertezze circa la possibilità di contenere la concentrazione degli inquinanti entro i valori obiettivo.

# 8. Proposte di intervento – Reflui di altiforni

Tra le società invitate a proporre soluzioni per il trattamento dei reflui da altoforni hanno presentato offerta le seguenti:

- Bernardinello Engineering S.p.A. che ha prodotto la documentazione in allegato 8;
- Degremont S.p.A. la cui proposta è riportata in allegato 9;
- Fisia Italimpianti S.p.A. con la documentazione in allegato 10;
- Sideridraulic S.p.A. che ha prodotto la documentazione riportata in allegato 11;
- Veolia Water Technologies Italia S.p.A., documentazione in allegato 12.

Di seguito è riportata la sintesi dei contenuti delle proposte, tutte riferite alla realizzazione di un impianto centralizzato preposto al trattamento degli effluenti dei quattro altoforni, come elaborate nella versione finale dopo aver considerato vincoli ed impedimenti che ne avrebbero complicato significativamente la fattibilità.

### 8.1 Proposta Bernardinello Engineering

La proposta formulata da Bernardinello consiste nel trattamento congiunto dei reflui derivanti da AFO 1/2, AFO 4 e AFO 5 in un nuovo impianto costituito da:

- chiariflocculazione in due unità in parallelo ciascuna da 500 mc/ora, diametro 18 m,
   altezza tronco cilindrico di 4 m, con dosaggio di cloruro ferrico, soda e polielettrolita;
- filtrazione su sabbia in quattro filtri verticali diametro 5 m e altezza 6 m;
- ossidazione cianuri con ozono, effettuata in due reattori chiusi alimentati in parallelo dotati sugli sfiati di distruttore catalitico; l'ozono è prodotto a partire da ossigeno puro (due ozonizzatori con produzione ciascuno di 28 kg O<sub>3</sub>/h, consumo di ossigeno 163 Nmc/ora e potenza assorbita di 320 kW);
- filtrazione su carbone attivo in tre filtri diametro 5 m e altezza 7 m.

Per il trattamento dei fanghi prodotti è prevista una fase di ispessimento e successiva disidratazione mediante nastropressa.

## 8.2 Proposta Dregremont

Degremont ha proposto un impianto così strutturato:

- omogeneizzazione ed equalizzazione;
- sezione di pretrattamento suddivisa su due linee al 50 %, ciascuna costituita da:
- additivazione di cloruro ferrico;
- correzione del pH con soda sino a valori nell'intervallo 9,5 ÷ 10 unità;
- comparto di flocculazione mediante polielettrolita e sedimentatore a pacchi lamellari con superficie di 27 mq;
- comparto di accumulo con correzione di pH mediante acido solforico 98 %;
- sezione di filtrazione su sabbia;
- due reattori da 250 mc per la ossidazione con ozono (tre generatori di ozono ciascuno in grado di produrre sino a 20 kg/h di ozono al 10 % in peso);
- ispessimento e disidratazione fanghi mediante centrifuga.

La portata di progetto dell'impianto è pari a 750 mc/ h, valore a cui sommare i ricircoli interni come gli effluenti del controlavaggio dei filtri e le acque da disidratazione fanghi.

Non sono state fornite tutte le indicazioni circa i consumi specifici dei prodotti chimici.

# 8.3 Proposta Fisia Italimpianti

La proposta Fisia è stata sviluppata per fornire evidenza della complessa e articolata impiantistica necessaria nel caso in cui si desiderasse dissalare le acque di scarico. Per questo motivo Fisia ha previsto numerose fasi di intervento delle quali è attinente alle finalità della prescrizione UA11 quella che prevede il ricorso a:

- precipitazione chimica mediante solfato ferroso (quattro vasche da 125 mc ciascuna);
- ossidazione con aria (reattori di capacità totale pari a circa 650 mc);
- chiariflocculazione con dosaggio di latte di calce a pH controllato (comparto da circa 1.000 mc);

- filtrazione in pressione su granulato siliceo (cinque filtri verticali);
- ispessimento fanghi e disidratazione mediante nastropressa.

L'impianto è stato concepito su due linee in parallelo ciascuna in grado di depurare portate fino a 500 mc/h.

# 8.4 Proposta Sideridraulic

L'impianto è impostato su due linee in parallelo ciascuna dimensionata per la portata di 500 mc/h.

H. una

Il trattamento è di tipo chimico/fisico con l'impiego di chemicals per la precipitazione dei cianuri e la rimozione dei metalli. Per ogni linea sono previsti tre reattori in serie e un chiariflocculatore. Per la precipitazione dei metalli si è proposto l'impiego del prodotto chimico denominato TMT15<sup>®</sup> (2,4,6 - Trimercapto-s-triazine, trisodium salt).

L'ultimo stadio di trattamento è rappresentato dalla filtrazione in pressione su granulato siliceo. L'impianto è dotato di una linea fanghi basata su ispessimento a gravità e disidratazione meccanica mediante nastropresse.

## 8.5 Proposta Veolia

La proposta VEOLIA prevede il preventivo raffreddamento del flusso da trattare mediante scambiatori a piastre. L'effluente è quindi ripartito in due vasche di precipitazione, ciascuna di volume pari a 150 mc, nelle quali sono dosati idrossido di sodio ed il precipitation agent GE Metclear MR 2405 operando a pH controllato nel campo 8 ÷ 9 unità; nelle vasche sono previsti miscelatori ad asse verticale per mantenere in sospensione i solidi formatisi.

La sospensione è alimentata alla sezione di chiariflocculazione che impiega unità ACTIFLO<sup>®</sup> TURBO la cui efficienza comporta l'impiego di microsabbia.

Dopo la chiariflocculazione, le acque sono alimentato in due reattori di ossidazione, ciascuna di capacità pari a 300 mc, in cui è insufflato ozono prodotto da generatori alimentati ad aria e di potenzialità complessiva pari a 50 kg/h.

L'ozono residuo presente nel off-gas in uscita dai reattori è convertito ad ossigeno mediante un distruttore termocatalitico.

La proposta indica anche una fase di filtrazione su sabbia con possibilità di dosaggio di cloruro ferrico.

Per il trattamento fanghi è previsto l'accumulo in un serbatoio avente fondo troncoconico e la successiva disidratazione con nastropressa.

# 9. Consumi specifici

La fattibilità degli interventi non può prescindere dalla valutazione della disponibilità di utilities e di prodotti chimici nonché da produzione e smaltimento dei rifiuti generati durante l'esercizio degli impianti.

Pertanto, dopo aver analizzato tutte le esigenze indicate in ogni proposta ricevuta, sono state verificate e confermate, nelle zone in cui realizzare i nuovi impianti, le seguenti disponibilità dei servizi di stabilimento:

- energia elettrica;
- ossigeno gassoso;
- acqua di servizio;
- rete trasmissione dati.

Tipologia di prodotti chimici, dosaggi e consumi giornalieri, unitamente alla produzione di fanghi espressa in termini di sostanza secca (SS) e nell'ipotesi di umidità residua nella massa da smaltire pari a 80 %, sono stati riassunti nelle due seguenti tabelle da cui si evince

per il trattamento dei reflui di cokeria:

- la congruità delle soluzioni proposte per l'adeguamento dell'impianto biologico allo schema nitro/denitro;
- le quantità di chemicals necessarie per il trattamento del selenio;
- la significativa quantità di fanghi contenenti selenio generati dalle tecniche biologiche;

per il trattamento dei reflui di altiforni:

• l'apprezzabile consumo di soda caustica necessario per la correzione del pH a causa della elevata concentrazione di bicarbonati nelle acque da trattare;

Ilva S.p.A. in A.S. - Stabilimento di Taranto - Via Appia Km. 648

• la notevole produzione di fanghi dovuta alle tecniche di precipitazione chimica dei cianuri.

Tutti i prodotti chimici previsti sono di normale reperibilità e i consumi stimati sono sostenibili mediante consueti contratti di fornitura.

Per i fanghi bisognerà verificare il tenore di umidità effettivo e le possibilità di smaltimento conseguenti alla loro caratterizzazione.

#### Potenziamento impianto scarichi Cokeria - Chemicals e fanghi

|                                       | Portata = 120 mc/h BERNARDINELLO (dosaggi medi) |       | Portata = 120 mc/h DEGREMONT |        | Portata = 150 mc/h FISIA ITALIMPIANTI |                     | Portata = 120 mc/h<br>SIDERIDRAULIC |        | Portata = 150 mc/h VOELIA WT ITALIA (dosaggi medi) |        |
|---------------------------------------|-------------------------------------------------|-------|------------------------------|--------|---------------------------------------|---------------------|-------------------------------------|--------|----------------------------------------------------|--------|
|                                       |                                                 |       |                              |        |                                       |                     |                                     |        |                                                    |        |
|                                       | kg/mc                                           | kg/d  | kg/mc                        | kg/d   | kg/mc                                 | kg/d                | kg/mc                               | kg/d   | kg/mc                                              | kg/d   |
| Ossigeno gassoso                      | 7,150                                           | 20592 | 6,610                        | 19037  | 4,150                                 | 14940               | 4,150                               | 11952  | 4,150                                              | 14940  |
| Aria                                  | Х                                               | Х     | Х                            | Х      | 69,000                                | 248400              | 72,500                              | 208800 | 29,310                                             | 105516 |
| Glicole 100%                          | 0,165                                           | 475   |                              |        |                                       | , , , , , , , , , , |                                     |        |                                                    |        |
| Metanolo                              |                                                 |       | NI                           | N.I.   |                                       |                     |                                     |        |                                                    |        |
| Acido acetico 100%                    |                                                 |       |                              |        | 0,173                                 | 623                 | 7 1                                 |        | . 1                                                |        |
| COD esterno                           |                                                 |       |                              |        | 55                                    |                     | X                                   | X      |                                                    |        |
| Etanolo 95%                           |                                                 |       |                              | 1,1111 |                                       |                     |                                     |        | 0,005                                              | 18     |
| Acido fosforico riferito a 75 % p     | 0,019                                           | 54    | NL                           | N.I.   | 0,013                                 | 48                  | 0,022                               | 63     | X                                                  | X      |
| Ipoclorito di sodio 15%               | 0,015                                           | 43    | Х                            | Х      | Х                                     | X                   | N.I.                                | NI     | X                                                  | Х      |
| Cloruro ferrico 40%                   | 0,600                                           | 1728  | Х                            | Х      | Х                                     | X                   | X                                   | Х      | 0,275                                              | 990    |
| Polielettrolita 100% (1)              | 0,015                                           | 43    | N.L                          | N.L    | 0,006                                 | 20                  | 0,013                               | 38     | 0,020                                              | 72     |
| Acido solforico 98%                   | 0,065                                           | 187   | NL                           | N.I.   | X                                     | X                   | X                                   | Х      | X                                                  | Х      |
| Idrossido di sodio 50%                | 0,015                                           | 43    | Х                            | Х      | 1,320                                 | 4752                | 1,260                               | 3629   | N.L.                                               | N.I.   |
| Prodotto specifico per Se             | 0,065                                           | 187   | Х                            | X      | X                                     | X                   | X                                   | х      | X                                                  | X      |
| Antiscalant                           | 0,004                                           | 12    | Х                            | Х      | X                                     | X                   | Х                                   | х      | Х                                                  | X      |
| Andscarant                            | 0,004                                           | 12    | Α                            |        |                                       |                     | ^                                   | _ ^    | ^                                                  |        |
| Acido cloridrico riferito a 31 % p    | Х                                               | X     | X                            | X      | 0,328                                 | 1181                | X                                   | Х      | X                                                  | Х      |
| Solfato ferros o eptaidrato           | Х                                               | X     | X                            | Х      | 0,406                                 | 1462                | 0,495                               | 1426   | х                                                  | X      |
| Antischiuma                           | Х                                               | X     | Х                            | Х      | х                                     | Х                   | 0,005                               | 15     | х                                                  | X      |
| Solfato di rame pentaidrato           | Х                                               | х     | Х                            | Х      | Х                                     | х                   | 0,031                               | 89     | х                                                  | Х      |
| Bis olfito di sodio al 30 % p         | Х                                               | х     | X                            | Х      | X                                     | Х                   | 0,222                               | 639    | X                                                  | Х      |
| Ozono                                 | Х                                               | X     | X                            | Х      | X                                     | X                   | X                                   | Х      | 0,060                                              | 216    |
|                                       |                                                 |       |                              |        | 17,117,11                             |                     |                                     |        |                                                    |        |
| Fanghi biologici e chimici (100 % SS) | 0,250                                           | 720   | N.I.                         | NI     | 0,416                                 | 1498                | 0,521                               | 1500   | 0,570                                              | 2052   |
| Fanghi contenenti Se (100 % SS)       | 0,100                                           | 288   | N.I.                         | N.I.   | 0,416                                 | 1498                | 0,151                               | 435    | 0,570                                              | 2052   |
| Fanghi contenenti Se (20 % SS)        | 0,500                                           | 1440  | N.I.                         | N.I.   | 2,080                                 | 7488                | 0,755                               | 2174   | 2,850                                              | 10260  |
| Carbone attivo granulare              | N.I.                                            | N.I.  | 0,071                        | 257    | X                                     | X                   | 0,829                               | 2388   | X                                                  | Х      |
| Smaltimento carbone attivo            | N.I.                                            | N.I.  | 0,071                        | 257    | Х                                     | X                   | 0,829                               | 2388   | X                                                  | X      |

X = Reagente non previsto

N.I. = Dato non riportato in offerta
(1) Consumo comprensivo della disidratazione fanghi

# Potenziamento impianto scarichi Altiforni - Chemicals e fanghi

|                                  | Portata =  | = 500 mc/h          | Portata = | 500 mc/h | Portata =  | 500 mc/h  | Portata = | 500 mc/h | Portata =     | = 500 mc/h         |
|----------------------------------|------------|---------------------|-----------|----------|------------|-----------|-----------|----------|---------------|--------------------|
|                                  | BERNARDINI | ELLO (dosaggi medi) | DEGRI     | EMONT    | FISIA ITAI | LIMPIANTI | SIDERIE   | DRAULIC  | VEOLIA WT ITA | LIA (dosaggi medi) |
|                                  | kg/mc      | kg/d                | kg/mc     | kg/d     | kg/mc      | kg/d      | kg/mc     | kg/d     | kg/mc         | kg/d               |
| Calce idrata                     | X          | X                   | Х         | X        | 0,160      | 1920      | Х         | Х        | X             | Х                  |
| Ipoclorito di sodio 15%          | X          | Х                   | X         | Х        | Х          | X         | Х         | х        | х             | Х                  |
| Cloruro ferrico 40%              | 0,125      | 1500                | 0,050     | 600      | Х          | Х         | X         | х        | 0,070         | 840                |
| Polielettrolita 100% (1)         | 0,002      | 26                  | NI        | N.I.     | 0,002      | 24        | 0,005     | 60       | 0,005         | 60                 |
| Acido solforico 98%              | . X        | Х                   | N.I.      | N.I.     | Х          | X         | 0,487     | 5844     | х             | X                  |
| Idrossido di sodio 50%           | 0,600      | 7200                | N.I.      | N.I.     | 0,120      | 1440      | 0,587     | 7044     | 0,540         | 6480               |
| Prodotto metal removal           | Х          | X                   | Х         | Х        | X          | X         | 0,056     | 672      | 0,017         | 204                |
| Antiscalant                      | 0,004      | 48                  | 0,004     | 48       | 0,004      | 48        | 0,004     | 48       | 0,004         | 48                 |
| Acido cloridrico riferito a 31 % | X          | Х                   | X         | х        | 0,200      | 2400      | Х         | х        | 0,420         | 5040               |
| Solfato ferroso eptaidrato       | Х          | Х                   | X         | Х        | 0,487      | 5844      | 0,150     | 1800     | Х             | Х                  |
| Microsabbia                      | X          | Х                   | X         | Х        | Х          | Х         | X         | Х        | 0,004         | 48                 |
| Perossido di idrogeno 30 %       | Х          | Х                   | X         | Х        | Х          | Х         | Х         | Х        | 0,080         | 960                |
| Ozono                            | 0,056      | 672                 | NI        | N.I.     | Х          | Х         | X         | Х        | 0,085         | 1020               |
| Fanghi chimici (100 % SS)        | 0,250      | 3000                | 0,470     | 10       | 1,085      | 13020     | 0,343     | 4116     | 0,250         | 3000               |
| Fanghi chimici (20 % SS)         | 1,250      | 15000               | 2,350     | 28200    | 5,425      | 65100     | 1,715     | 20580    | 1,250         | 15000              |
| Carbone attivo granulare         | N.I.       | N.I.                | NI        | NL       | X          | X         | X         | Х        | Х             | x                  |
| Smaltimento carbone attivo       | N.I.       | N.I.                |           |          | X          | X         | X         | x        | X             | Х                  |

X = Reagente non previsto

N.I. = Dato non riportato in offerta
(1) Consumo comprensivo della disidratazione fanghi

Ilva

bilime

### 10. Conclusioni

I monitoraggi analitici effettuati per valutare la fattibilità di quanto occorre per traguardare gli obiettivi della prescrizione UA11 del "Piano di delle misure e delle attività di tutela ambientale e sanitaria" (D.P.C.M. 14/3/2014) hanno evidenziato la necessità di adeguare gli impianti di trattamento delle acque di processo derivanti da cokeria e altoforni. L'analisi condotta in base alla letteratura disponibile e alle proposte ricevute da società specializzate ha evidenziato che gli inquinanti su cui intervenire sono annoverabili in tre gruppi così distinti:

- parametri che possono essere ridotti ai livelli di emissione richiesti mediante il ricorso alla tecnologia di riferimento (BAT);
- parametri per i quali, pur in assenza di una BAT, è utilizzabile un tecnologia di consolidato impiego;
- parametri per i quali i valori di prestazione richiesti non sono garantiti da alcuna tecnologia consolidata a livello industriale per i reflui siderurgici.

La valutazione di fattibilità è stata svolta coinvolgendo cinque società, specializzate nella progettazione e costruzione di impianti di trattamento acque reflue industriali, individuate in Bernardinello Engineering, Degremont, Fisia Italimpianti, Sideridraulic e Veolia Water Technologies, che hanno proposto le soluzioni ritenute più adeguate allo scopo. Di seguito sono riportate le conclusioni.

### Cokeria

La esistente configurazione impiantistica di depurazione degli effluenti della cokeria (punto di monitoraggio AIA denominato 1AI) differisce da quanto riportato nei documenti di riferimento BAT perché:

- lo stripping dell'ammoniaca è effettuato a valle del trattamento biologico e non a monte;
- la depurazione biologica non è di tipo nitro/denitro.

Sono necessari interventi per assicurare il rispetto dei nuovi limiti introdotti dalla prescrizione UA11 per i parametri BOD<sub>5</sub>, tiocianati e selenio.

Per BOD<sub>5</sub> e tiocianati le tecniche da applicare sono note e consolidate al punto da essere annoverate tra le BAT.

Per il selenio non esiste alcun riferimento nelle BAT e non è emersa una tecnologia specifica e consolidata atta a garantire stabilmente la prestazione richiesta; infatti anche le società interessate da ILVA a questa problematica hanno fornito soluzioni differenti specificando che la possibilità di traguardare stabilmente il limite indicato richiede una fase di sperimentazione.

Per la rimozione del selenio sono state proposte due differenti soluzioni chimico/fisiche, tecniche biologiche e tecniche combinate (biologiche e chimico/fisiche); le soluzioni chimico/fisiche sono da preferire perché mirate, affidabili e spesso caratterizzate dalla minore produzione di fanghi mentre le tecniche combinate comportano evidenti problemi gestionali.

Per quanto sinora constatato e considerato che una delle due soluzioni chimico/fisiche comporta l'indispensabile additivazione di un prodotto chimico contenente una sostanza elencata in tabella 5 del D. Lgs. 152/06 il cui impiego, oltre a causare possibili upset della qualità dell'effluente, è in evidente contrasto con le finalità della prescrizione UA11, si ritiene opportuno affidare alla società Bernardinello Engineering una attività sperimentale, sinteticamente descritta in allegato 13, finalizzata alla verifica delle prestazioni attese mediante un impianto chimico/fisico pilota da installare presso l'impianto scarichi della cokeria.

In caso di esito positivo sarà avviata la realizzazione dell'impianto proposto; diversamente si potrà valutare un trattamento/tecnologia alternativa.

In base agli ingombri del layout preliminare trasmesso da Bernardinello Engineering, gli approfondimenti e le verifiche effettuate in situ confermano la fattibilità dell'intervento il cui sviluppo comporterà le attività indicate nel piano riportato al cap. 11.

### Altoforno

Per i reflui derivanti dagli altoforni sono necessari interventi per garantire stabilmente il rispetto dei nuovi limiti introdotti dalla prescrizione UA11 per alcuni metalli pesanti e i cianuri liberi.

Le tecniche da utilizzare per la rimozione dei metalli sono consolidate ed annoverate tra le BAT.

Le tecniche di rimozione dei cianuri liberi non hanno riscontro nelle BAT di settore; le società coinvolte da ILVA hanno proposto la tecnica della precipitazione chimica (formazione di sali insolubili contenenti cianuri di ferro) e l'ossidazione chimica mediante ozono.

Dal punto di vista ambientale l'ossidazione dei cianuri è da preferire alla precipitazione chimica perché quest'ultima trasferisce l'inquinante dal liquido al solido generando composti insolubili di non comprovata stabilità e perché comporta maggiore produzione di fanghi da smaltire.

Pertanto ILVA propone la realizzazione di un impianto di trattamento centralizzato costituito da sezioni di chiariflocculazione, filtrazione, ossidazione chimica con ozono e disidratazione fanghi.

Se sarà approvata questa configurazione, ILVA attuerà la soluzione che comporta la migliore integrazione con le strutture esistenti considerato che l'intervento è fattibile in una zona in cui vi sono numerose installazioni. Le principali attività da sviluppare sono indicate nel cap. 11.

# 11.Piano degli interventi

Di seguito sono illustrate le attività da eseguire per la realizzazione degli interventi precedentemente prospettati.

## Potenziamento impianto scarichi cokeria

Nel caso di esito positivo della sperimentazione, il nuovo impianto sarà sviluppato utilizzando in parte le opere esistenti e sarà così configurato:

- colonna per lo strippaggio dell'ammoniaca posizionata a monte del biologico;
- sezione biologica costituita da reattore anossico di predenitrificazione e comparto aerobico di nitrificazione con annessi sedimentatori;
- sezione chimico/fisica per la rimozione del selenio.

Questo nuovo assetto comporta sostanziali modifiche all'impiantistica esistente che bisognerà gestire assicurando il mantenimento della attuale efficienza depurativa durante tutte le fasi realizzative. Questi aspetti sono stati valutati in fase di studio e pertanto parallelamente alle consuete attività di progettazione e costruzione saranno sviluppate altre attività collaterali.

Le principali attività previste per questo intervento sono così schematizzate:

- 1. Modifiche all'impianto di stripping per la rilocazione a monte dell'impianto biologico
- 1.1 Realizzazione del nuovo piping come riportato in allegato 14;
- 1.2 Adeguamento delle pompe di alimentazione e scarico alle nuove condizioni operative;
- 1.3 Adeguamento dell'impianto di raffreddamento alle nuove condizioni operative;
- 1.4 Installazione di dispositivi di additivazione automatica della soda per esercire le due colonne di stripping, limitatamente al transitorio necessario per la regimazione del nuovo impianto biologico, una per la depurazione delle acque in alimentazione al biologico e l'altra per le acque in uscita dal biologico.
- 2. Modifiche all'impianto biologico
- 2.1 Intervento di trasformazione di uno dei tre esistenti sedimentatori in un nuovo bacino di equalizzazione con modifiche alla condotta di alimentazione.
- 2.2 Modifiche, da effettuare in successione, delle esistenti vasche denominate A, B e C, per realizzare gran parte delle volumetrie di progetto.
- 2.3 Costruzione di nuove vasche per completare le volumetrie di progetto.
- 2.4 Installazione, in successione, di macchine e apparecchiature e realizzazione dell'impianto elettro/strumentale.
- 2.5 Realizzazione in successione del piping di distribuzione dell'ossigeno.
- 2.6 Installazione dei nuovi gruppi di dosaggio chemicals.
- 3. Rimozione selenio
- 3.1 Installazione della sezione di rimozione del selenio.
- 3.2 Realizzazione delle interconnessioni con l'impianto biologico.
- 3.3 Modifica del punto di scarico delle acque depurate.

## Impianto scarichi altiforni

Il nuovo impianto tratterà congiuntamente gli effluenti degli altiforni 1, 2, 4 e 5.

Le versioni finali delle proposte ricevute sono state sviluppate considerando una delle poche aree prive di installazioni e di estensione accettabile per la definizione dei layout di impianto; tuttavia la zona individuata è in posizione baricentrica rispetto agli altiforni e ciò consente, a vantaggio dei tempi di realizzazione, l'installazione del piping di interconnessione di minore estensione con la possibilità di utilizzare alcuni rack esistenti. Rispetto al precedente intervento questo è più agevole pur considerando le inevitabili attività collaterali.

Le principali attività previste sono così schematizzate:

- 1. Adeguamento delle pompe di alimentazione alle nuove condizioni operative.
- 2. Verifica rack esistenti, progettazione e montaggio delle tubazioni di interconnessione tra gli esistenti impianti ed il nuovo impianto centralizzato.
- 3. Realizzazione della condotta di adduzione ossigeno con relativa stazione di riduzione della pressione.
- 4. Progettazione ed installazione dell'impianto di raffreddamento da asservire ai generatori di ozono.
- 5. Progettazione e costruzione del nuovo impianto.
- 6. Posa di una nuova condotta di scarico delle acque depurate.

Non si ravvisano particolari problematiche circa le possibili interferenze tra il nuovo impianto e gli impianti scarichi esistenti perché i lavori che riguardano il primo saranno effettuati in modo svincolato dall'esercizio dei secondi. Si potrà quindi operare in completa autonomia anche durante la messa in servizio e il collaudo, dirottando al nuovo impianto una aliquota progressivamente maggiore della portata da scaricare, mentre la restante continuerà ad alimentare gli impianti di trattamento esistenti almeno sino a quando non saranno completate le calibrazioni e messe a punto; ciò assicurerà la massima efficienza depurativa di ogni fase del nuovo trattamento anche durante lo *switch-off* tra l'impiantistica esistente e la nuova.



|                                  |              |        |          |         |                         |         |         |         |                        |         |          |         |         |         |         |         | 1AI -              | IMPIAN             | TO BIOL | ogico   | SOTTO        | OPROD   | ОТТІ               |             |                       |          |         |                       |         |               |            |         |                       |         |          |         |          |         |                                 |
|----------------------------------|--------------|--------|----------|---------|-------------------------|---------|---------|---------|------------------------|---------|----------|---------|---------|---------|---------|---------|--------------------|--------------------|---------|---------|--------------|---------|--------------------|-------------|-----------------------|----------|---------|-----------------------|---------|---------------|------------|---------|-----------------------|---------|----------|---------|----------|---------|---------------------------------|
| Analita                          | Unità        | Limiti | 18/04/20 | 014     | 18/04/2i<br>(field dupl |         | 22/04/2 | 2014    | 22/04/2<br>(field dupl |         | 24/04/20 | 014     | 29/04/2 | 2014    | 30/04/  | 2014    | 30/04<br>(field de | /2014<br>iplicate) | 05/05/2 | 014     | 09/05/2      | 2014    | 03/11/2014         |             | 11/2014<br>duplicate) | 11/1     | 1/2014  | 11/11/2<br>(field dup |         | 14/11/2014    | 19/11/     | 2014    | 19/11/2<br>(field dup |         | 24/11/20 | 014     | 26/11/20 | 014     | 26/11/2014<br>(field duplicate) |
|                                  | di misura    | 152/06 | Valore   | Incert. | Valore                  | Incert. | Valore  | Incert. | Valore                 | Incert. | Valore   | Incert. | Valore  | Incert. | Valore  | Incert. | Valore             | Incert.            | Valore  | Incert. | Valore       | Incert. | Valore Inc         | cert. Valor | e Incert              | . Valore | Incert. | Valore                | Incert. | Valore Ince   | rt. Valore | Incert. | Valore                | Incert. | Valore   | Incert. | Valore   | Incert. | Valore Incert.                  |
| Temperatura                      | °C           |        | 28,4     | 0,2     | 28,4                    | 0,2     | 29,3    | 0,2     | 29,3                   | 0,2     | 33,6     | 0,2     | 28      | 0,2     | 26,9    | 0,2     | 26,9               | 0,2                | 27,2    | 0,2     | 28           | 0,2     | 31,6               | 0,2 31,6    | 0,2                   | 31,6     | 0,2     | 31,6                  | 0,2     | 31,4 0,2      | 32         | 0,2     | 32                    | 0,2     | 30,1     | 0,2     | 31       | 0,2     | 31 0,2                          |
| pH                               |              |        | 9,8      | 0,2     | 9,8                     | 0,2     | 11,6    | 0,2     | 11,6                   | 0,2     | 9,9      | 0,1     | 10,9    | 0,1     | 10,2    | 0,2     | 10,2               | 0,2                | 10,2    | 0,2     | 11,8         | 0,2     | 10,7               | 0,2 10,7    | 0,2                   | 9,5      | 0,2     | 9,5                   | 0,2     | 10,3 0.2      | 10         | 0,2     | 10                    | 0,2     | 10       | 0,2     | 11,5     | 0,2     | 11,5 0,2                        |
| Conducibilità                    | μS/cm        |        | 8550     | 137     | 8550                    | 137     | 10510   | 169     | 10510                  | 169     | 788      | 13      | 8420    | 135     | 7470    | 120     | 7470               | 120                | 7990    | 128     | 12840        | 206     | 8600 1             | 138 8600    | 138                   | 9220     | 148     | 9220                  | 148     | 9110 146      | 9103       | 146     | 9103                  | 146     | 9670     | 155     | 11320    | 182     | 11320 182                       |
| Idrocarburi                      | µg/I         | 5000   | 71       | 20      | 59                      | 21      | 161     | 21      | 142                    | 21      | 56       | 20      | 87      | 21      | 326     | 23      | 311                | 23                 | 402     | 25      | 314          | 23      | 232                | 22 223      |                       | 68       | 20      | 66                    | 20      | 200 21        | 66         | 21      | 71                    | 20      | 191      | 21      | 249      | 22      | 255 22                          |
| Arsenico                         | mg/l         | 0,5    | 0,0279   | 0,0072  | 0,0282                  | 0,0073  | 0,0242  | 0,0063  | 0,0242                 | 0,0062  | 0,026    | 0,0067  | 0,0253  | 0,0065  | 0,0243  | 0,0063  | 0,0231             | 0,006              | 0,0214  | 0,0056  | 0,0255       | 0,0066  | 0,115 0.           | 0,09        | 4                     | 0,111    | 0,022   | 0,093                 | 0,018   | 0,1 0,0       | 2 0,076    | 0,015   | 0,073                 | 0,014   | 0,059    | 0,012   | 0,063    | 0,013   | 0,064 0,013                     |
| Cadmio                           | mg/l         | 0,02   | <        |         | <                       |         | <       |         | <                      |         | <        |         | <       |         | <       |         | <                  |                    | <       |         | <            |         | <                  | <           |                       | <        |         | <                     |         | <             | <          |         | <                     |         | <        |         | <        |         | <                               |
| Cromo VI                         | mg/l         | 0,2    | <        |         | <                       |         | <       |         | <                      |         | <        |         | <       |         | <       |         | <                  |                    | <       |         | <            |         | <                  | <           |                       | <        |         | <                     |         | <             | <          |         | <                     |         | <        |         | <        |         | <                               |
| Cromo totale                     | mg/l         | 2      | 0,00205  | 8000,0  | 0,00188                 | 0,00078 | 0,00283 | 0,00094 | 0,00273                | 0,00092 | 0,00105  | 0,00067 | 0,00191 | 0,00078 | 0,00174 | 0,00075 | 0,00157            | 0,00073            | 0,00254 | 0,00089 | 0,0114       | 0,0029  | 0,0064 0,0         | 0,004       | 15                    | 0,0029   | 0,00095 | 0,00245               | 0,00087 | 0,0047 0.00   | 14 0,0046  | 0,0013  | 0,0045                | 0,0013  | 0,0036   | 0,0011  | 0,0032   | 0,001   | 0,00302 0,00097                 |
| Mercurio                         | mg/l         | 0,005  | <        |         | <                       |         | <       |         | <                      |         | <        |         | <       |         | <       |         | <                  |                    | 0,00032 | 0,00015 | 0,00039      | 0,00016 | <                  | <           |                       | <        |         | <                     |         | 0,00024 0,000 | 0,00022    | 0,00014 | <                     |         | <        |         | <        |         | <                               |
| Nichel                           | mg/l         | 2      | 0,0054   | 0,0011  | 0,00474                 | 0,00097 | 0,0063  | 0,0012  | 0,0058                 | 0,0011  | 0,00279  | 0,00078 | 0,00428 | 0,00092 | 0,00427 | 0,00092 | 0,00423            | 0,00092            | 0,00386 | 0,00088 | 0,0089       | 0,0015  | 0,0087 0,0         | 0,008       | 19                    | 0,0083   | 0,0015  | 0,0071                | 0,0013  | 0,0107 0.00   | 18 0,0099  | 0,0016  | 0,0092                | 0,0016  | 0,0113   | 0,0018  | 0,0107   | 0,0018  | 0,0103 0,0017                   |
| Piombo                           | mg/l         | 0,2    | <        |         | <                       |         | 0,00294 | 0,0008  | 0,0028                 | 0,00078 | <        |         | <       |         | <       |         | <                  |                    | <       |         | 0,00163      | 0,0007  | <                  | <           |                       | <        |         | <                     |         | <             | <          |         | <                     |         | <        |         | <        |         | <                               |
| Rame                             | mg/l         | 0,1    | <        |         | <                       |         | 0,08    | 0,016   | 0,078                  | 0,015   | <        |         | <       |         | <       |         | <                  |                    | 0,00101 | 0,00067 | <            |         | 0,0000             | 0,002       | _                     | 0,0041   | 0,0011  | 0,0038                | 0,0011  | 0,00172 0,000 |            |         | <                     |         | 0,00102  | 0,00067 | 0,00159  | 0,00072 | 0,00145 0,00071                 |
| Selenio                          | mg/l         | 0,03   | 0,427    | 0,083   | 0,451                   | 0,087   | 0,219   | 0,043   | 0,216                  | 0,042   | 0,242    | 0,047   | 0,185   | 0,036   | 0,182   | 0,035   | 0,216              | 0,042              | 0,347   | 0,067   | 0,363        | 0,07    | 0,000              | 0,34        | _                     | 0,256    | _       | 0,24                  | 0,046   | 0,248 0,04    | 0,200      | 0,047   | 0,0054                | 0,047   | 0,285    | 0,056   | 0,306    | 0,059   | 0,31 0,06                       |
| Zinco                            | mg/l         | 0,5    | <        |         | <                       |         | 0,063   | 0,016   | 0,0078                 | 0,0037  | <        |         | 0,006   | 0,0035  | 0,0058  | 0,0034  | 0,0066             | 0,0035             | 0,0172  | 0,0052  | 0,0212       | 0,0061  | .,                 | 0,011       | 5                     | 0,177    | 0,044   | 0,154                 | 0,038   | 0,0155 0,00   | .,,        | 0,0085  | 0,024                 | 0,0066  | 0,0101   | 0,004   | 0,0128   | 0,0044  | 0,0121 0,0043                   |
| Pesticidi Totali                 | mg/l         | 0,05   | <        |         | <                       |         | <       |         | <                      |         | <        |         | <       |         | <       |         | <                  |                    | <       |         | <            |         | <                  | <           |                       | <        |         | <                     |         | <             | <          |         | <                     |         | <        |         | <        |         | <                               |
| Aldrin                           | mg/l         | 0,01   | <        |         | <                       |         | <       |         | <                      |         | <        |         | <       |         | <       |         | <                  |                    | <       |         | <            |         | <                  | <           |                       | <        |         | <                     |         | <             | <          |         | <                     |         | <        |         | <        |         | <                               |
| Dieldrin                         | mg/l         | 0,01   | <        |         | <                       |         | <       |         | <                      |         | <        |         | <       |         | <       |         | <                  |                    | <       |         | <            |         | <                  | <           | _                     | <        |         | <                     |         | <             | <          |         | <                     |         | <        |         | <        |         | <                               |
| Endrin                           | mg/l         | 0,002  | <        |         | <                       |         | <       |         | <                      |         | <        |         | <       |         | <       |         | <                  |                    | <       |         | <            |         | <                  | <           |                       | <        |         | <                     |         | <             | <          |         | <                     |         | <        |         | <        |         | <                               |
| Isodrin                          | mg/l         | 0,002  | <        |         | <                       |         | <       |         | <                      |         | <        |         | <       |         | <       |         | <                  |                    | <       |         | <            |         | <                  | <           |                       | <        |         | <                     |         | <             | <          |         | <                     |         | <        |         | <        |         | <                               |
| Esaclorobenzene (HCB)            | mg/l         |        | <        |         | <                       |         | <       |         | <                      |         | <        |         | <       |         | <       |         | <                  |                    | <       |         | <            |         | <                  | <           |                       | <        | _       | <                     |         | <             | <          |         | <                     | -       | <        |         | <        |         | <                               |
| Dichlorvos                       | µg/I         |        | <        |         | <                       |         | <       |         | <                      |         | <        |         | <       |         | <       |         | <                  |                    | <       |         | <            |         | <                  | <           |                       | <        | -       | <                     |         | <             | <          |         | <                     | -       | <        |         | <        |         | <                               |
| Insetticidi fosforati            | μg/l         |        | 0,103    | 0.02    | <                       | 0.021   | 0,044   | 0.01    | <                      | 0.011   | <        | 0,06    | 0,058   | 0.012   | 0,041   | 0.0098  | <                  | 0.011              | <       | 0,012   | <            | 0.015   | <0,05<br>0,038 0.0 | <0,0        |                       | <0,05    | _       | <0,05                 | 0.018   | <0,05         | <0,05      | 0.012   | <0,05                 | 0.012   | <0,05    | 0.0088  | <0,05    | 0.015   | <0,05                           |
| Naftalene<br>Benzo(b)fluorantene | µg/1<br>µg/1 |        | 0,103    | 0,02    | 0,11                    | 0,021   | 0.261   | 0,068   | 0,05                   | 0,065   | 0,233    | 0,13    | 0,056   | 0,012   | 1.5     | 0,0098  | 0,048              | 0,011              | 0,053   | 0,012   | 0,074<br>6.9 | 1.8     |                    | 0,03        | _                     | 0,097    | 0,019   | 0,093                 | 0,018   | 0,062 0.01    | ,          | 0,012   | 0,054                 | 0,012   | 0,033    | 0,0088  | 0,077    | 0,015   | 0,076 0,015<br>0.4 0,1          |
| Benzo(k)fluorantene              | µд/1         |        | 0,363    | 0.069   | 0,346                   | 0,09    | 0,082   | 0,068   | 0,251                  | 0,012   | 0,186    | 0,044   | 0,78    | 0,065   | 0,63    | 0,15    | 0,63               | 0,15               | 0,81    | 0,47    | 2,23         | 0.53    | -,                 | 0,23        |                       |          | _       | 0,76                  | 0.086   | 0,8 0,1       |            | 0,085   | 0,351                 | 0.084   | 0,55     | 0,064   | 0,172    | 0.041   | 0,17 0,041                      |
| Benzo(a)pirene                   | µд/1         |        | 0,200    | 0.14    | 0,512                   | 0.14    | 0.44    | 0,11    | 0.44                   | 0,012   | 0,100    | 0,11    | 1,2     | 0.3     | 2,41    | 0,59    | _                  | 0.55               | 2,01    | 0,49    | 7,8          | 2       |                    | 0.1 0.40    | _                     | 0,00     |         | 1,15                  | 0,29    | 0,97 0,2      | _          | 0,29    | 1,2                   | 0,3     | 0,82     | 0,004   | 0,772    | 0,18    | 0,72 0,18                       |
| Indeno(1,2,3-cd)pirene           | µg/1         |        | 0,298    | 0,054   | 0,299                   | 0.054   | 0,358   | 0,065   | 0,353                  | 0,064   | 0,468    | 0,085   | 0,6     | 0,11    | 1,27    | 0,23    | 1,23               | 0,22               | 0,493   | 0,089   | 3,39         | 0.62    |                    | 062 0,32    | _                     | _        | 0,17    | 0,92                  | 0,17    | 0,8 0,1       |            | 0,17    | 0,92                  | 0,17    | 0,61     | 0,11    | 0,69     | 0,13    | 0,69 0.13                       |
| Benzene                          | μg/1         |        | <        |         | <                       |         | <       | 0,000   | <                      |         | <        | -,      | <       |         | <       |         |                    |                    | <       | -,      | <            | 0,02    | <                  | 0,02        |                       | <        |         | <                     |         | <             | - 0,04     |         | <                     |         | ٠,٥٠     |         | <        |         | 5,05                            |
| Solventi organici aromatici      | mg/l         | 0,2    | <        |         | <                       |         | <       |         | <                      |         | <        |         | <       |         | <       |         | <                  |                    | <       |         | <            |         | <0,0011            | <0,00       | 11                    | <0,001   | 1       | <0,0011               |         | <0,0011       | <0,0011    |         | <0,0011               |         | <0,0011  |         | <0,0011  |         | <0,0011                         |
| Tetracloruro di carbonio         | µg/I         |        | <        |         | <                       |         | <       |         | <                      |         | <        |         | <       |         | <       |         | <                  |                    | <       |         | <            |         | <                  | <           |                       | <        |         | <                     |         | <             | <          |         | <                     |         | <        |         | <        |         | <                               |
| Cloroformio                      | μд/1         |        | <        |         | <                       |         | <       |         | <                      |         | <        |         | <       |         | <       |         | <                  |                    | <       |         | <            |         | <                  | <           |                       | <        |         | <                     |         | <             | <          |         | <                     |         | <        |         | <        |         | <                               |
| 1,2-dicloroetano                 | µg/I         |        | <        |         | <                       | l       | <       |         | <                      |         | <        |         | <       |         | <       |         | <                  |                    | <       |         | <            |         | <                  | <           |                       | <        |         | <                     |         | <             | <          |         | <                     |         | <        |         | <        |         | <                               |
| Diclorometano                    | μд/1         |        | <        |         | <                       |         | <       |         | <                      |         | <        |         | <       |         | <       |         | <                  |                    | <       |         | <            |         | <                  | <           |                       | <        |         | <                     |         | <             | <          |         | <                     |         | <        |         | <        |         | <                               |
| Tetracloroetilene                | µg/I         |        | <        |         | <                       |         | <       |         | <                      |         | <        |         | <       |         | <       |         | <                  |                    | <       |         | <            |         | <                  | <           |                       | <        |         | <                     |         | <             | <          |         | <                     |         | <        |         | <        |         | <                               |
| Tricloroetilene                  | µg/I         |        | <        |         | <                       |         | <       |         | <                      |         | <        |         | <       |         | <       |         | <                  |                    | <       |         | <            |         | <                  | <           |                       | <        |         | <                     |         | <             | <          |         | <                     |         | <        |         | <        |         | <                               |
| Monobutilstagno                  | µg/l         |        | <        |         | <                       |         | <       |         | <                      |         | <        |         | <       |         | <       |         | <                  |                    | <       |         | <            |         | <                  | <           |                       | <        |         | <                     |         | <             | <          |         | <                     |         | <        |         | <        |         | <                               |
| Dibutilstagno                    | μg/1         |        | <        |         | <                       |         | <       |         | <                      |         | <        |         | <       |         | <       |         | <                  |                    | <       |         | <            |         | <                  | <           |                       | <        |         | <                     |         | <             | <          |         | <                     |         | <        |         | <        |         | <                               |
| Tributilstagno                   | µg/I         |        | <        |         | <                       |         | <       |         | <                      |         | <        |         | <       |         | <       |         | <                  |                    | <       |         | <            |         | <                  | <           |                       | <        |         | <                     |         | <             | <          |         | <                     |         | <        |         | <        |         | <                               |
| Tetrabutilstagno                 | µg/I         |        | <        |         | <                       |         | <       |         | <                      |         | <        |         | <       |         | <       |         | <                  |                    | <       |         | <            |         | <                  | <           |                       | <        |         | <                     |         | <             | <          |         | <                     |         | <        |         | <        |         | <                               |
| Monoottilstagno                  | µg/I         |        | <        |         | <                       |         | <       |         | <                      |         | <        |         | <       |         | <       |         | <                  |                    | <       |         | <            |         | <                  | <           |                       | <        |         | <                     |         | <             | <          |         | <                     |         | <        |         | <        |         | <                               |
| Diottilstagno                    | µg/I         |        | <        |         | <                       |         | <       |         | <                      |         | <        |         | <       |         | <       |         | <                  |                    | <       |         | <            |         | <                  | <           | _                     | <        |         | <                     | $\perp$ | <             | <          |         | <                     |         | <        |         | <        |         | <                               |
| Trifenilstagno                   | µg/I         |        | <        |         | <                       |         | <       |         | <                      |         | <        |         | <       |         | <       |         | <                  |                    | <       |         | <            |         | <                  | <           | _                     | <        |         | <                     |         | <             | <          |         | <                     | 1       | <        |         | <        |         | <                               |
| Tricicloesilstagno               | µg/I         |        | <        |         | <                       |         | <       |         | <                      |         | <        |         | <       |         | <       |         | <                  |                    | <       |         | <            |         | <                  | <           | _                     | <        |         | <                     |         | <             | <          |         | <                     |         | <        |         | <        |         | <                               |
| Bis(2-etilesil)Ftalato           | µg/I         |        | 0,132    | 0,068   | 0,204                   | 0,07    | 0,22    | 0,071   | 0,195                  | 0,07    | 0,133    | 0,068   | 0,148   | 0,068   | 0,17    | 0,069   |                    | 0,068              | 0,105   | 0,067   | <            |         | <                  | <           |                       | 0,108    | 0,067   | 0,116                 | 0,067   | <             | 0,188      | 0,07    | 0,201                 | 0,07    | 0,194    | 0,07    | 0,223    | 0,071   | 0,249 0,073                     |
| Acetonitrile                     | mg/l         |        | <        |         | <                       | -       | <       | 1       | <                      |         | <        |         | <       |         | <       | _       | <                  | +                  | <       |         | <            |         | <                  | <           |                       | <        |         | <                     | +       | <             | <          | -       | <                     |         | <        |         | <        |         | <                               |
| acrilonitrile                    | mg/l         |        | <        |         | <                       | -       | <       | 1       | <                      |         | <        |         | <       |         | <       | _       | <                  | +                  | <       |         | <            |         | <                  | <           | _                     | <        |         | <                     | +       | <             | <          | -       | <                     |         | <        |         | <        |         | <                               |
| Solventi organici azotati        | mg/l         | 0,1    | <        |         | <                       |         | <       |         | <                      |         | <        |         | <       |         | <       |         | <                  |                    | <       |         | <            |         | <0,022             | <0,02       | 22                    | <0,022   | !       | <0,022                |         | <0,022        | <0,022     |         | <0,022                |         | <0,022   |         | <0,022   |         | <0,022                          |

| Impianto Biologico Sottoprodotti (1AI)               | U.M.         | Limiti<br>(D.Lgs<br>.152) | 11/03                                                                                                                                                                     | /2015    | 11/03<br>(B                                                                                                                                     | /2015<br>IS) | 26/03<br>field du                                                                                     | /2015<br>iplicate | 26/03                                                        | 3/2015  | 20/04    | /2015   |
|------------------------------------------------------|--------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------|---------|----------|---------|
| TEMPERATURA (AL PRELIEVO)                            | ° c          | ND                        |                                                                                                                                                                           |          | 28,1                                                                                                                                            | 0,2          | 30,6                                                                                                  | 0,2               | 30,6                                                         | 0,2     | 27,3     | 0,2     |
| Ph (AL PRELIEVO)                                     |              | ND                        |                                                                                                                                                                           |          | 5,6                                                                                                                                             | 0,2          | 4,1                                                                                                   | 0,2               | 4,1                                                          | 0,2     | 9,88     | 0,14    |
| CONDUCIBILITÀ EL. (AL PRELIEVO)                      | μS/cm        | ND                        |                                                                                                                                                                           |          | 6160                                                                                                                                            | 99           | 5750                                                                                                  | 92                | 5750                                                         | 92      | 7440     | 357     |
| IDROCARBURI TOT (C10-C40)                            | μg/l         | 5000                      |                                                                                                                                                                           |          | 390                                                                                                                                             | 24           | 191                                                                                                   | 21                | 184                                                          | 21      | 133      | 21      |
|                                                      |              |                           |                                                                                                                                                                           |          |                                                                                                                                                 |              |                                                                                                       |                   |                                                              |         |          |         |
| ARSENICO                                             | mg/l         | 0,5                       | 0,0236                                                                                                                                                                    | 0,0061   | 0,0236                                                                                                                                          | 0,0061       | 0,0133                                                                                                | 0,0035            | 0,0126                                                       | 0,0033  | 0,0301   | 0,0077  |
| CADMIO                                               | mg/l         | 0,02                      | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td>&lt;</td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<> |          | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td>&lt;</td><td></td></l.r.<></td></l.r.<></td></l.r.<>              |              | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td>&lt;</td><td></td></l.r.<></td></l.r.<>           |                   | <l.r.< td=""><td></td><td>&lt;</td><td></td></l.r.<>         |         | <        |         |
| CROMO ESAVALENTE                                     | mg/l         | 0,2                       |                                                                                                                                                                           |          | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td>&lt;</td><td></td></l.r.<></td></l.r.<></td></l.r.<>              |              | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td>&lt;</td><td></td></l.r.<></td></l.r.<>           |                   | <l.r.< td=""><td></td><td>&lt;</td><td></td></l.r.<>         |         | <        |         |
| CROMO TOT                                            | mg/l         | 2                         | 0,0098                                                                                                                                                                    | 0,0025   | 0,0098                                                                                                                                          | 0,0025       | 0,0121                                                                                                | 0,0031            | 0,01                                                         | 0,0026  | 0,0069   | 0,0018  |
| MERCURIO                                             | mg/l         | 0,005                     |                                                                                                                                                                           |          | 0,00079                                                                                                                                         | 0,00024      | 0,00022                                                                                               | 0,00014           | 0,00023                                                      | 0,00014 | 0,00026  | 0,00014 |
| NICHEL                                               | mg/l         | 2                         | 0,0104                                                                                                                                                                    | 0,0017   | 0,0104                                                                                                                                          | 0,0017       | 0,0095                                                                                                | 0,0016            | 0,0082                                                       | 0,0014  | 0,0067   | 0,0012  |
| PIOMBO                                               | mg/l         | 0,2                       | 0,00138                                                                                                                                                                   | 0,00068  | 0,00138                                                                                                                                         | 0,00068      | 0,00117                                                                                               | 0,00068           | 0,00125                                                      | 0,00068 | 0,00156  | 0,00069 |
| RAME                                                 | mg/l         | 0,1                       | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td>0,00168</td><td>0,00073</td><td>0,00185</td><td>0,00075</td><td>&lt;</td><td></td></l.r.<></td></l.r.<>               |          | <l.r.< td=""><td></td><td>0,00168</td><td>0,00073</td><td>0,00185</td><td>0,00075</td><td>&lt;</td><td></td></l.r.<>                            |              | 0,00168                                                                                               | 0,00073           | 0,00185                                                      | 0,00075 | <        |         |
| SELENIO                                              | mg/l         | 0,03                      | 0,182                                                                                                                                                                     | 0,035    | 0,182                                                                                                                                           | 0,035        | 0,308                                                                                                 | 0,06              | 0,312                                                        | 0,061   | 0,59     | 0,12    |
| ZINCO<br>PESTICIDITOT ESCI FOSFORATI                 | mg/l         | 0,5                       | 0,0219                                                                                                                                                                    | 0,0062   | 0,0219                                                                                                                                          | 0,0062       | 0,0214                                                                                                | 0,0061            | 0,0173                                                       | 0,0052  | 0,0141   | 0,0046  |
| ALDRIN DIELDRIN ENDRIN ISODRIN INSETTICIDI CLORURATI | mg/l         | ND                        |                                                                                                                                                                           |          | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td>&lt;</td><td></td></l.r.<></td></l.r.<></td></l.r.<>              |              | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td>&lt;</td><td></td></l.r.<></td></l.r.<>           |                   | <l.r.< td=""><td></td><td>&lt;</td><td></td></l.r.<>         |         | <        |         |
| Aldrin                                               | mg/l         | ND                        |                                                                                                                                                                           |          | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td>&lt;</td><td></td></l.r.<></td></l.r.<></td></l.r.<>              |              | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td>&lt;</td><td></td></l.r.<></td></l.r.<>           |                   | <l.r.< td=""><td></td><td>&lt;</td><td></td></l.r.<>         |         | <        |         |
| Dieldrin                                             | mg/l         | ND                        |                                                                                                                                                                           |          | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td>&lt;</td><td></td></l.r.<></td></l.r.<></td></l.r.<>              |              | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td>&lt;</td><td></td></l.r.<></td></l.r.<>           |                   | <l.r.< td=""><td></td><td>&lt;</td><td></td></l.r.<>         |         | <        |         |
| Endrin                                               | mg/l         | ND                        |                                                                                                                                                                           |          | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td>&lt;</td><td></td></l.r.<></td></l.r.<></td></l.r.<>              |              | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td>&lt;</td><td></td></l.r.<></td></l.r.<>           |                   | <l.r.< td=""><td></td><td>&lt;</td><td></td></l.r.<>         |         | <        |         |
| Isodrin                                              | mg/l         | ND                        |                                                                                                                                                                           |          | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td>&lt;</td><td></td></l.r.<></td></l.r.<></td></l.r.<>              |              | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td>&lt;</td><td></td></l.r.<></td></l.r.<>           |                   | <l.r.< td=""><td></td><td>&lt;</td><td></td></l.r.<>         |         | <        |         |
| ESACLOROBENZENE (HCB)                                | mg/l         | ND                        |                                                                                                                                                                           |          | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td>&lt;</td><td></td></l.r.<></td></l.r.<></td></l.r.<>              |              | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td>&lt;</td><td></td></l.r.<></td></l.r.<>           |                   | <l.r.< td=""><td></td><td>&lt;</td><td></td></l.r.<>         |         | <        |         |
| INSETTICIDI FOSFORATI                                | 3"           |                           |                                                                                                                                                                           |          |                                                                                                                                                 |              |                                                                                                       |                   |                                                              |         |          |         |
| Dichlorvos                                           | μg/l         | ND                        |                                                                                                                                                                           |          | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td>&lt;</td><td></td></l.r.<></td></l.r.<></td></l.r.<>              |              | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td>&lt;</td><td></td></l.r.<></td></l.r.<>           |                   | <l.r.< td=""><td></td><td>&lt;</td><td></td></l.r.<>         |         | <        |         |
| Insetticidi fosforati Tot                            | μq/I         | ND                        |                                                                                                                                                                           |          | <0.050                                                                                                                                          |              | <0.050                                                                                                |                   | <0.050                                                       |         | <0.05    |         |
| IDROCARBURI POLICICLICI AROMATICI                    | 7.37         |                           |                                                                                                                                                                           |          | .,                                                                                                                                              |              | .,                                                                                                    |                   |                                                              |         |          |         |
| Naftalene                                            | μq/I         | ND                        |                                                                                                                                                                           |          | 0,159                                                                                                                                           | 0.041        | 0,06                                                                                                  | 0,013             | 0,42                                                         | 0,11    | 0.3      | 0.78    |
| Benzo(b)fluorantene                                  | μq/I         | ND                        |                                                                                                                                                                           |          | 2.8                                                                                                                                             | 0.72         | 0,6                                                                                                   | 0.15              | 0.69                                                         | 0.18    | 1.02     | 0.26    |
| Benzo(k)fluorantene                                  | μg/I         | ND                        |                                                                                                                                                                           |          | 1,24                                                                                                                                            | 0,3          | 0,304                                                                                                 | 0,072             | 0,348                                                        | 0,083   | 0,46     | 0,11    |
| Benzo(a)pirene                                       | ua/l         | ND                        |                                                                                                                                                                           |          | 3.59                                                                                                                                            | 0.88         | 0,88                                                                                                  | 0.22              | 0,99                                                         | 0.24    | 1,41     | 0.35    |
| Indeno (1,2,3 cd) pirene                             | μq/I         | ND                        |                                                                                                                                                                           |          | 2,23                                                                                                                                            | 0,4          | 0,78                                                                                                  | 0,14              | 0,9                                                          | 0,16    | 1,03     | 0,19    |
| Benzene                                              | ua/l         | ND                        |                                                                                                                                                                           |          | <l.r.< td=""><td>-,-</td><td><l.r.< td=""><td>-,</td><td><l.r.< td=""><td>0,10</td><td>&lt;</td><td>0,10</td></l.r.<></td></l.r.<></td></l.r.<> | -,-          | <l.r.< td=""><td>-,</td><td><l.r.< td=""><td>0,10</td><td>&lt;</td><td>0,10</td></l.r.<></td></l.r.<> | -,                | <l.r.< td=""><td>0,10</td><td>&lt;</td><td>0,10</td></l.r.<> | 0,10    | <        | 0,10    |
| Solventi organici aromatici                          | mg/l         | ND                        |                                                                                                                                                                           |          | <0,0011                                                                                                                                         |              | <0,0011                                                                                               |                   | <0,0011                                                      |         | <0,001   |         |
| COMPOSTI ORGANICI VOLATILI (VOC)                     | 9/           |                           |                                                                                                                                                                           |          | ,                                                                                                                                               |              | ,                                                                                                     |                   | ,                                                            |         | ,        |         |
| Tetracloruro di carbonio                             | μg/l         | ND                        |                                                                                                                                                                           |          |                                                                                                                                                 |              | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td>&lt;</td><td></td></l.r.<></td></l.r.<>           |                   | <l.r.< td=""><td></td><td>&lt;</td><td></td></l.r.<>         |         | <        |         |
| Cloroformio                                          | μg/I         | ND                        |                                                                                                                                                                           |          | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td>&lt;</td><td></td></l.r.<></td></l.r.<></td></l.r.<>              |              | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td>&lt;</td><td></td></l.r.<></td></l.r.<>           |                   | <l.r.< td=""><td></td><td>&lt;</td><td></td></l.r.<>         |         | <        |         |
| 1 2-dicloroetano                                     | μg/I         | ND<br>ND                  |                                                                                                                                                                           |          | 0.098                                                                                                                                           | 0.037        | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td>-</td><td></td></l.r.<></td></l.r.<>              |                   | <l.r.< td=""><td></td><td>-</td><td></td></l.r.<>            |         | -        |         |
| Diclorometano                                        | μg/I<br>μg/I | ND<br>ND                  | l                                                                                                                                                                         | 1        | 0,096                                                                                                                                           | 0,037        | <l.r.< td=""><td></td><td><l.r.< td=""><td>-</td><td>&lt;</td><td>-</td></l.r.<></td></l.r.<>         |                   | <l.r.< td=""><td>-</td><td>&lt;</td><td>-</td></l.r.<>       | -       | <        | -       |
| Tetracloroetilene                                    | μg/I<br>μg/I | ND<br>ND                  | l                                                                                                                                                                         | -        | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td>-</td><td>&lt;</td><td>-</td></l.r.<></td></l.r.<></td></l.r.<>            |              | <l.r.< td=""><td></td><td><l.r.< td=""><td>-</td><td>&lt;</td><td>-</td></l.r.<></td></l.r.<>         |                   | <l.r.< td=""><td>-</td><td>&lt;</td><td>-</td></l.r.<>       | -       | <        | -       |
| Tricloroetilene                                      | μg/I<br>ua/I | ND<br>ND                  | l                                                                                                                                                                         | -        | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td>-</td><td>&lt;</td><td>-</td></l.r.<></td></l.r.<></td></l.r.<>            |              | <l.r.< td=""><td></td><td><l.r.< td=""><td>-</td><td>&lt;</td><td>-</td></l.r.<></td></l.r.<>         |                   | <l.r.< td=""><td>-</td><td>&lt;</td><td>-</td></l.r.<>       | -       | <        | -       |
| COMPOSTFORGANO-                                      | μς/1         | NU                        |                                                                                                                                                                           | -        | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td>&lt;</td><td></td></l.r.<></td></l.r.<></td></l.r.<>              |              | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td>&lt;</td><td></td></l.r.<></td></l.r.<>           |                   | <l.r.< td=""><td></td><td>&lt;</td><td></td></l.r.<>         |         | <        |         |
| STANNICI                                             | μq/I         | ND                        |                                                                                                                                                                           | -        | <l.r.<br>0.75</l.r.<br>                                                                                                                         | 0.16         | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><u> </u></td><td></td></l.r.<></td></l.r.<>       |                   | <l.r.< td=""><td></td><td><u> </u></td><td></td></l.r.<>     |         | <u> </u> |         |
| Monobutilstagno                                      |              | ND<br>ND                  |                                                                                                                                                                           | -        | -, -                                                                                                                                            | 0,16         |                                                                                                       |                   |                                                              |         | <        |         |
| Dibutilstagno                                        | μg/I         | ND<br>ND                  |                                                                                                                                                                           | -        | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td>&lt;</td><td></td></l.r.<></td></l.r.<></td></l.r.<>              |              | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td>&lt;</td><td></td></l.r.<></td></l.r.<>           |                   | <l.r.< td=""><td></td><td>&lt;</td><td></td></l.r.<>         |         | <        |         |
| Tributilstagno Tetrabutilstagno                      | μg/I         | ND<br>ND                  |                                                                                                                                                                           | -        | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td>&lt;</td><td></td></l.r.<></td></l.r.<></td></l.r.<>              |              | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td>&lt;</td><td></td></l.r.<></td></l.r.<>           |                   | <l.r.< td=""><td></td><td>&lt;</td><td></td></l.r.<>         |         | <        |         |
|                                                      | μg/I         |                           |                                                                                                                                                                           | -        | <l.r.< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></l.r.<>                                                            |              |                                                                                                       |                   |                                                              |         |          |         |
| Monoottilstagno                                      | μg/l         | ND                        | 1                                                                                                                                                                         | -        |                                                                                                                                                 |              | <l.r.< td=""><td></td><td><l.r.< td=""><td>-</td><td>&lt;</td><td></td></l.r.<></td></l.r.<>          |                   | <l.r.< td=""><td>-</td><td>&lt;</td><td></td></l.r.<>        | -       | <        |         |
| Diottilstagno                                        | μg/l         | ND<br>ND                  | 1                                                                                                                                                                         | -        | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td>&lt;</td><td></td></l.r.<></td></l.r.<></td></l.r.<>              |              | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td>&lt;</td><td></td></l.r.<></td></l.r.<>           |                   | <l.r.< td=""><td></td><td>&lt;</td><td></td></l.r.<>         |         | <        |         |
| Trifenilstagno                                       | μg/l         |                           | l                                                                                                                                                                         |          |                                                                                                                                                 |              | <l.r.< td=""><td></td><td><l.r.< td=""><td>-</td><td>&lt;</td><td>-</td></l.r.<></td></l.r.<>         |                   | <l.r.< td=""><td>-</td><td>&lt;</td><td>-</td></l.r.<>       | -       | <        | -       |
| Tricicloesilstagno<br>BIS(2-ETILESIL)FTALATO         | μg/l<br>μg/l | ND<br>ND                  |                                                                                                                                                                           |          | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td>&lt;</td><td></td></l.r.<></td></l.r.<></td></l.r.<>              |              | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td>&lt;</td><td></td></l.r.<></td></l.r.<>           |                   | <l.r.< td=""><td></td><td>&lt;</td><td></td></l.r.<>         |         | <        |         |
| SOLVENTI ORGANICI                                    | μу/1         | IND                       |                                                                                                                                                                           | <b> </b> | <l.k.< td=""><td></td><td><l.k.< td=""><td></td><td><l.k.< td=""><td></td><td>&lt;</td><td></td></l.k.<></td></l.k.<></td></l.k.<>              |              | <l.k.< td=""><td></td><td><l.k.< td=""><td></td><td>&lt;</td><td></td></l.k.<></td></l.k.<>           |                   | <l.k.< td=""><td></td><td>&lt;</td><td></td></l.k.<>         |         | <        |         |
| AZOTATI                                              |              |                           |                                                                                                                                                                           |          |                                                                                                                                                 |              |                                                                                                       |                   |                                                              |         |          |         |
| Acetonitrile<br>acrilonitrile                        | mg/l<br>mg/l | ND<br>ND                  | 1                                                                                                                                                                         | -        | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td>&lt;</td><td></td></l.r.<></td></l.r.<></td></l.r.<>              |              | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td>&lt;</td><td></td></l.r.<></td></l.r.<>           |                   | <l.r.< td=""><td></td><td>&lt;</td><td></td></l.r.<>         |         | <        |         |
| Solventi organici azotati tot                        | mg/l         | ND<br>ND                  | l                                                                                                                                                                         | l        | <0,022                                                                                                                                          |              | <0,022                                                                                                |                   | <0,022                                                       | -       | <0,022   | -       |

|                             |           |        |         |         |         |         |         |         |         |         |        |         | 6       | AI - IN | IPIANTO | DI CH   | HARIFLO | CCULAZ  | IONE AF | O1/2    |                       |         |         |         |         |         |         |         |         |         |         |         |         |         |
|-----------------------------|-----------|--------|---------|---------|---------|---------|---------|---------|---------|---------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|-----------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Analita                     | Unità     | Limiti | 21/04/2 | 014     | 22/04/2 | 014     | 28/04/2 | 2014    | 30/04/2 | 014     | 05/05/ | 2014    | 07/05/2 | 014     | 09/05/2 | 2014    | 04/11/  | 2014    | 14/11/  | 2014    | 14/11/.<br>(FIELD DUI |         | 19/11/  | 2014    | 24/11/  | 2014    | 26/11/  | 2014    | 09/12/  | 2014    | 16/12/  | 2014    | 26/01/2 | 2015    |
| Arianta                     | di misura | 152/06 | Valore  | Incert. | Valore  | Incert. | Valore  | Incert. | Valore  | Incert. | Valore | Incert. | Valore  | Incert. | Valore  | Incert. | Valore  | Incert. | Valore  | Incert. | Valore                | Incert. | Valore  | Incert. | Valore  | Incert. | Valore  | Incert. | Valore  | Incert. | Valore  | Incert. | Valore  | Incert. |
| Temperatura                 | °C        |        |         |         | 40,1    | 0,2     | 43,05   | 0,2     | 43      | 0,2     | 40,3   | 0,2     | 45      | 0,2     | 28,5    | 0,2     | 46,9    | 0,2     | 48,6    | 0,2     | 48,6                  | 0,2     | 51      | 0,2     | 51      | 0,2     | 43      | 0,2     | 49,8    | 0,2     | 49,8    | 0,2     | 41      | 0,2     |
| pH                          |           |        |         |         | 7,7     | 0,2     | 7,8     | 0,2     | 8,3     | 0,2     | 8,3    | 0,2     | 8       | 0,2     | 8,1     | 0,2     | 7,6     | 0,2     | 8       | 0,2     | 8                     | 0,2     | 8,1     | 0,2     | 7,8     | 0,2     | 7,8     | 0,2     | 7,8     | 0,2     | 7,7     | 0,2     | 8,3     | 0,2     |
| Conducibilità               | μS/cm     |        |         |         | 8800    | 141     | 7440    | 119     | 9040    | 145     | 10580  | 170     | 9960    | 160     | 8890    | 143     | 7200    | 115     | 10320   | 166     | 10320                 | 166     | 10318   | 166     | 9810    | 157     | 10070   | 162     | 9440    | 151     | 9473    | 152     | 10230   | 164     |
| Idrocarburi                 | μg/l      | 5000   | 1110    | 160     | 2,15    | 21      | 136     | 21      | 266     | 23      | 266    | 22      | 556     | 28      | 1620    | 230     | 55      | 20      | <       |         | <                     |         | 258     | 22      | 450     | 26      | 169     | 21      | 223     | 22      | 135     | 21      | <       |         |
| Arsenico                    | mg/l      | 0,5    | 0,0152  | 0,004   | 0,0176  | 0,0046  | 0,0066  | 0,0018  | 0,0123  | 0,0032  | 0,0148 | 0,0039  | 0,024   | 0,0062  | 0,024   | 0,0062  | 0,0274  | 0,0071  | 0,0476  | 0,0093  | 0,0488                | 0,0095  | 0,099   | 0,019   | 0,051   | 0,01    | 0,059   | 0,012   | 0,0467  | 0,0091  | 0,0485  | 0,0095  | 0,0364  | 0,0094  |
| Cadmio                      | mg/l      | 0,02   | <       |         | <       |         | <       |         | <       |         | <      |         | <       |         | <       |         | <       |         | <       |         | <                     |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         |
| Cromo VI                    | mg/l      | 0,2    | <       |         | <       |         | <       |         | <       |         | <      |         | <       |         | <       |         | <       |         | <       |         | <                     |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         |
| Cromo totale                | mg/l      | 2      | <       |         | <       |         | <       |         | <       |         | <      |         | 0,00103 | 0,00067 | <       |         | <       |         | <       |         | <                     |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         |
| Mercurio                    | mg/l      | 0,005  | <       |         | <       |         | <       |         | <       |         | 0,0002 | 0,00014 | 0,00044 | 0,00017 | <       |         | <       |         | 0,00035 | 0,00016 | 0,00035               | 0,00016 | <       |         | <       |         | <       |         | <       |         | 0,00025 | 0,00014 | <       |         |
| Nichel                      | mg/l      | 2      | 0,0183  | 0,0029  | 0,068   | 0,013   | 0,0273  | 0,0042  | 0,0451  | 0,0081  | 0,0545 | 0,0099  | 0,044   | 0,0068  | 0,0463  | 0,0084  | 0,0336  | 0,0052  | 0,081   | 0,015   | 0,082                 | 0,015   | 0,06    | 0,011   | 0,0452  | 0,0082  | 0,058   | 0,01    | 0,0385  | 0,0059  | 0,0422  | 0,0064  | 0,0347  | 0,0053  |
| Piombo                      | mg/l      | 0,2    | 0,0092  | 0,0016  | 0,065   | 0,012   | 0,085   | 0,016   | 0,055   | 0,01    | 0,102  | 0,019   | 0,058   | 0,011   | 0,132   | 0,025   | 0,0066  | 0,0012  | 0,0219  | 0,0035  | 0,0217                | 0,0035  | 0,094   | 0,018   | 0,0377  | 0,006   | 0,076   | 0,015   | 0,081   | 0,015   | 0,056   | 0,01    | 0,0307  | 0,0048  |
| Rame                        | mg/l      | 0,1    | 0,06    | 0,012   | 0,0184  | 0,004   | 0,0344  | 0,0074  | 0,058   | 0,011   | 0,0176 | 0,0038  | 0,0084  | 0,0019  | 0,0256  | 0,0055  | 0,014   | 0,0031  | 0,079   | 0,016   | 0,08                  | 0,016   | 0,0312  | 0,0067  | 0,0183  | 0,004   | 0,0314  | 0,0067  | 0,022   | 0,0047  | 0,044   | 0,0094  | 0,072   | 0,014   |
| Selenio                     | mg/l      | 0,03   | 0,0015  | 0,00071 | 0,00359 | 0,00098 | 0,0017  | 0,00073 | 0,0045  | 0,0011  | 0,0067 | 0,0015  | 0,0287  | 0,0061  | 0,0293  | 0,0062  | 0,0035  | 0,00097 | 0,0104  | 0,0023  | 0,0097                | 0,0021  | 0,0223  | 0,0047  | 0,0202  | 0,0043  | 0,0054  | 0,0038  | 0,0112  | 0,0025  | 0,0144  | 0,0031  | 0,0106  | 0,0023  |
| Zinco                       | mg/l      | 0,5    | 6,4     | 1,2     | 0,489   | 0,099   | 26,1    | 5,1     | 0,156   | 0,038   | 0,56   | 0,11    | 0,125   | 0,031   | 0,55    | 0,11    | 1,25    | 0,25    | 0,072   | 0,018   | 0,07                  | 0,017   | 0,294   | 0,065   | 0,098   | 0,024   | 0,121   | 0,03    | 0,074   | 0,018   | 0,111   | 0,027   | 0,149   | 0,036   |
| Pesticidi Totali            | mg/l      | 0,05   | <       |         | <       |         | <       |         | <       |         | <      |         | <       |         | <       |         | <       |         | <       |         | <                     |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       | $\perp$ |
| Aldrin                      | mg/l      | 0,01   | <       |         | <       |         | <       |         | <       |         | <      |         | <       |         | <       |         | <       |         | <       |         | <                     |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         |
| Dieldrin                    | mg/l      | 0,01   | <       |         | <       |         | <       |         | <       |         | <      |         | <       |         | <       |         | <       |         | <       |         | <                     |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         |
| Endrin                      | mg/l      | 0,002  | <       |         | <       |         | <       |         | <       |         | <      |         | <       |         | <       |         | <       |         | <       |         | <                     |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         |
| Isodrin                     | mg/l      | 0,002  | <       |         | <       |         | <       |         | <       |         | <      |         | <       |         | <       |         | <       |         | <       |         | <                     |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         |
| Esaclorobenzene (HCB)       | mg/l      |        | <       |         | <       |         | <       |         | <       |         | <      |         | <       |         | <       |         | <       |         | <       |         | <                     |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         |
| Dichlorvos                  | μg/l      |        | <       |         | <       |         | <       |         | <       |         | <      |         | <       |         | <       |         | <       |         | <       |         | <                     |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         |
| Insetticidi fosforati       | μg/l      |        | <       |         | <       |         | <       |         | <       |         | <      |         | <       |         | <       |         | <0,05   |         | <0,05   |         | <0,05                 |         | <0,05   |         | <0,05   |         | <0,05   |         | <0,05   |         | <0,05   |         | <0,05   |         |
| Naftalene                   | μg/l      |        | 0,6     | 0,16    | 0,11    | 0,021   | 0,63    | 0,17    | 1,9     | 0,49    | <      |         | 1,18    | 0,31    | 2,2     | 0,57    | 0,057   | 0,012   | 0,051   | 0,011   | 0,05                  | 0,011   | 0,029   | 0,0083  | 0,041   | 0,13    | 0,341   | 0,088   | <       |         | 0,052   | 0,011   | 0,49    | 0,13    |
| Benzo(b)fluorantene         | μg/l      |        | <       |         | 0,018   | 0,0072  | <       |         | 0,014   | 0,0069  | 0,012  | 0,0068  | 0,038   | 0,0093  | 0,074   | 0,015   | <       |         | <       |         | <                     |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         |
| Benzo(k)fluorantene         | μg/l      |        | <       |         | <       |         | <       |         | <       |         | <      |         | 0,009   | 0,0035  | 0,017   | 0,0039  | <       |         | <       |         | <                     |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         |
| Benzo(a)pirene              | μg/l      |        | <       |         | 0,01    | 0,0036  | <       |         | 0,009   | 0,0035  | 0,008  | 0,0035  | 0,026   | 0,0052  | 0,051   | 0,0086  | <       |         | <       |         | <                     |         | <       |         | <       |         | 0,006   | 0,0034  | <       |         | <       |         | <       |         |
| Indeno(1,2,3-cd)pirene      | μg/l      |        | <       |         | <       |         | <       |         | <       |         | <      |         | <       |         | 0,011   | 0,0067  | <       |         | <       |         | <                     |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         |
| Benzene                     | μg/l      |        | 0,81    | 0,44    | <       |         | <       |         | <       |         | <      |         | <       |         | 0,97    | 0,5     | <       |         | <       |         | <                     |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         |
| Solventi organici aromatici | mg/l      | 0,2    | 0,00151 | 0,0006  | <       |         | <       |         | <       |         | <      |         | <       |         | 0,00194 | 0,00071 | <0,0011 |         | <0,0011 |         | <0,0011               |         | <0,0011 |         | <0,0011 |         | <0,0011 |         | <0,0011 |         | <0,0011 |         | <0,0011 |         |
| Tetracloruro di carbonio    | μg/l      |        | <       |         | <       |         | <       |         | <       |         | <      |         | <       |         | <       |         | <       |         | <       |         | <                     |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         |
| Cloroformio                 | μg/l      |        | <       |         | <       |         | <       |         | <       |         | <      |         | <       |         | <       |         | <       |         | <       |         | <                     |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         |
| 1,2-dicloroetano            | μg/l      |        | <       |         | <       |         | <       |         | <       |         | <      |         | <       |         | <       |         | <       |         | <       |         | <                     |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         |
| Diclorometano               | μg/l      |        | <       |         | <       |         | <       |         | <       |         | <      |         | <       |         | <       |         | <       |         | <       |         | <                     |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         |
| Tetracloroetilene           | μg/l      |        | <       |         | <       |         | <       |         | <       |         | <      |         | <       |         | <       |         | <       |         | <       |         | <                     |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         |
| Tricloroetilene             | μg/l      |        | <       |         | <       |         | <       |         | <       |         | <      |         | <       |         | <       |         | <       |         | <       |         | <                     |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         |
| Monobutilstagno             | μg/l      |        | <       |         | <       |         | <       |         | <       |         | <      |         | <       |         | <       |         | <       |         | <       |         | <                     |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         |
| Dibutilstagno               | μg/l      |        | ٧       |         | <       |         | <       |         | <       |         | <      |         | <       |         | <       |         | <       |         | <       |         | <                     |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         |
| Tributilstagno              | μg/l      |        | <       |         | <       |         | <       |         | <       |         | <      |         | <       |         | <       |         | <       |         | <       |         | <                     |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         |
|                             |           |        |         |         |         |         |         |         |         |         |        |         |         |         |         |         | <       |         | <       |         | <                     |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         |
| Monoottilstagno             | μg/l      |        | <       |         | <       |         | <       |         | <       |         | <      |         | <       |         | <       |         | <       |         | <       |         | <                     |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         |
| Diottilstagno               | μg/l      |        | <       |         | <       |         | <       |         | <       |         | <      |         | <       |         | <       |         | <       |         | <       |         | <                     |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         |
| Trifenilstagno              | μg/l      |        | <       |         | <       |         | <       |         | <       |         | <      |         | <       |         | <       |         | <       |         | <       |         | <                     |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         |
| Tricicloesilstagno          | μg/l      |        | <       |         | <       |         | <       |         | <       |         | <      |         | <       |         | <       |         | <       |         | <       |         | <                     |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         |
| Bis(2-etilesil)Ftalato      | μg/l      |        | <       |         | 0,167   | 0,069   | 0,222   | 0,071   | <       |         | <      |         | 0,322   | 0,077   | <       |         | <       |         | <       |         | <                     |         | <       |         | 0,102   | 0,067   | <       |         | <       |         | <       |         | 0,267   | 0,074   |
| Dietil ftalato              | μg/l      |        | <       |         | <       |         | <       |         | <       |         | <      |         | 130     | 14      | 90,6    | 9,6     |         |         |         |         |                       |         |         |         |         |         |         |         |         |         |         |         |         |         |
| Acetonitrile                | mg/l      |        | 0,07    | 0,029   | 0,151   | 0,058   | 0,099   | 0,039   | 0,12    | 0,046   | 0,135  | 0,052   | 0,109   | 0,043   | 0,219   | 0,083   | 0,077   | 0,031   | 0,096   | 0,038   | 0,101                 | 0,04    | 0,136   | 0,052   | 0,146   | 0,056   | <       |         | 0,132   | 0,051   | 0,15    | 0,057   | 0,115   | 0,045   |
| Acrilonitrile               | mg/l      |        | <       |         | <       |         | <       |         | <       |         | <      |         | <       |         | <       |         | <       |         | <       |         | <                     |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         |
| Solventi organici azotati   | mg/l      | 0,1    | 0,07    | 0,029   | 0,151   | 0,057   | 0,099   | 0,039   | 0,12    | 0,046   | 0,135  | 0,052   | 0,109   | 0,042   | 0,219   | 0,082   | 0,077   | 0,031   | 0,096   | 0,038   | 0,101                 | 0,039   | 0,136   | 0,052   | 146     | 0,056   | <0,022  |         | 0,132   | 0,051   | 0,15    | 0,057   | 0,115   | 0,045   |

|                             |                    |                                                  |             |          |             |         |           |          |           |          |         |         | 8AI - IN    | IPIAN    | TO DI CI             | HIARIF   | LOCCUL  | AZIOI    | NE AFO4               |         |          |          |                       |         |           |         |                       |         |         |          |         |         |                    |                                                  |
|-----------------------------|--------------------|--------------------------------------------------|-------------|----------|-------------|---------|-----------|----------|-----------|----------|---------|---------|-------------|----------|----------------------|----------|---------|----------|-----------------------|---------|----------|----------|-----------------------|---------|-----------|---------|-----------------------|---------|---------|----------|---------|---------|--------------------|--------------------------------------------------|
| Analita                     | Unità<br>di misura | Limiti<br>152/06                                 | 24/04/2     |          | 30/04/2     |         | 05/05/2   |          | 07/05/2   |          | 09/05/2 |         | 09/12/2     |          | 09/12/<br>(field du) | olicate) | 16/12/2 | _        | 16/12/2<br>(field dup | licate) | 09/02/20 |          | 09/02/2<br>(field dup | icate)  | 11/03/2   |         | 11/03/2<br>(field dup | oicate) |         | V2015    | 20/04   |         | 20/04<br>(field du | uplicate)                                        |
|                             |                    |                                                  | Valore      | Incert.  | Valore      | Incert. | Valore    | Incert.  | Valore    | Incert.  | Valore  | Incert. | Valore      | Incert.  | Valore               | Incert.  | Valore  | Incert.  | Valore                | Incert. | Valore   | Incert.  | Valore                | Incert. | Valore    | Incert. | Valore                | Incert. | Valore  | Incert.  | Valore  | Incert. | Valore             | Incert.                                          |
| Temperatura                 | °C                 |                                                  | 44,8<br>7.3 | 0,2      | 43,6<br>8.1 | 0,2     | 42<br>8.2 | 0,2      | 43,3<br>8 | 0,2      | 29,3    | 0,2     | 49,5<br>7.7 | 0,2      | 49,5<br>7.7          | 0,2      | 49,5    | 0,2      | 49,5<br>7.8           | 0,2     | 49,8     | 0,2      | 49,8                  | 0,2     | 49<br>5.8 | 0,2     | 49                    | 0,2     | 52,1    | 0,3      | 51      | 0,2     | 51                 | 0,2                                              |
| pH                          | 01                 |                                                  | ,,,         |          | - 7         |         |           |          | -         |          | 8,2     |         |             |          |                      |          | 7,8     |          |                       | - ''    | 7,8      |          | 7,8                   | - "     | -,-       | 0,1     | 5,8                   | 0,1     | 7,5     | -,.      | 8,3     | *,      | 8,3                | 0,14                                             |
| Conducibilità               | μS/cm              |                                                  | 5400        | 87       | 7280        | 117     | 7520      | 121      | 7290      | 117      | 6850    | 110     | 8750        | 140      | 8750                 | 140      | 8758    | 140      | 8758                  | 140     | 7510     | 120      | 7510                  | 120     | 5980      | 96      | 5980                  | 96      | 5900    | 95       | 7090    | 340     | 7070               | 339                                              |
| Idrocarburi                 | μg/l               | 5000                                             | 167         | 21       | 94          | 20      | 93        | 20       | 124       | 21       | 478     | 27      | 77          | 21       | 74                   | 20       | 87      | 20       | 82                    | 20      | 65       | 21       | 58                    | 21      | <         |         | <                     |         | <       |          | <       |         | <                  |                                                  |
| Arsenico                    | mg/l               | 0,5                                              | 0,0112      | 0,0029   | 0,0211      | 0,0055  | 0,0237    | 0,0061   | 0,0223    | 0,0058   | 0,0234  | 0,006   | 0,0197      | 0,0051   | 0,021                | 0,0054   | 0,066   | 0,013    | 0,069                 | 0,013   | 0,046    | 0,009    | 0,0454                | 0,0089  | 0,0116    | 0,0031  | 0,0103                | 0,0027  | 0,0103  | 0,0027   | 0,0093  | 0,0025  | 0,009              | 0,0024                                           |
| Cadmio                      | mg/l               | 0,02                                             | <           |          | <           |         | ٧         |          | <         |          | <       |         | <           |          | <                    |          | <       |          | <                     |         | <        |          | <                     |         | <         |         | <                     |         | <       |          | <       |         | <                  |                                                  |
| Cromo VI                    | mg/l               | 0,2                                              | <           |          | <           |         | <         |          | <         |          | <       |         | <           |          | <                    |          | <       |          | <                     |         | <        |          | <                     |         | <         |         | <                     |         | <       |          | <       |         | <                  |                                                  |
| Cromo totale                | mg/l               | 2                                                | <           |          | <           |         | <         |          | <         |          | <       |         | <           |          | <                    |          | <       |          | <                     |         | <        |          | <                     |         | <         |         | <                     |         | <       |          | <       |         | <                  |                                                  |
| Mercurio                    | mg/l               | 0,005                                            | 0,0003      | 0,00015  | 0,00023     | 0,00014 | <         |          | 0,0003    | 0,00015  | <       |         | <           |          | <                    |          | 0,00022 | 0,00014  | 0,00021               | 0,00014 | <        |          | <                     |         | 0,00055   | 0,0002  | <                     |         | <       |          | <       |         | <                  |                                                  |
| Nichel                      | mg/l               | 2                                                | 0,0106      | 0,0018   | 0,0224      | 0,0035  | 0,0185    | 0,0029   | 0,0172    | 0,0027   | 0,0256  | 0,004   | 0,0442      | 0,0067   | 0,0458               | 0,0083   | 0,043   | 0,0066   | 0,0456                | 0,0082  | 0,0339   | 0,0052   | 0,0348                | 0,0054  | 0,0063    | 0,0012  | 0,00292               | 0,0008  | 0,00292 | 0,00079  | 0,007   | 0,0012  | 0,0075             | 0,0013                                           |
| Piombo                      | mg/l               | 0,2                                              | 0,095       | 0,018    | 0,0355      | 0,0056  | 0,067     | 0,013    | 0,069     | 0,013    | 0,105   | 0,02    | 0,0221      | 0,0035   | 0,0218               | 0,0035   | 0,115   | 0,022    | 0,121                 | 0,022   | 0,061    | 0,012    | 0,06                  | 0,011   | 0,067     | 0,012   | 0,471                 | 0,087   | 0,471   | 0,087    | 0,109   | 0,02    | 0,114              | 0,021                                            |
| Rame                        | mg/l               | 0,1                                              | 0,0055      | 0,0014   | 0,0184      | 0,004   | 0,0065    | 0,0015   | <         |          | 0,0093  | 0,0021  | 0,0478      | 0,0094   | 0,053                | 0,011    | 0,0317  | 0,0068   | 0,0294                | 0,0063  |          | 0,0051   | 0,0221                | 0,0048  | <         |         | 0,0047                | 0,0012  |         | 0,0012   | <       |         | <                  |                                                  |
| Selenio                     | mg/l               | 0,03                                             | 0,00338     | 0,00095  | 0,0079      | 0,0018  | 0,0069    | 0,0016   | 0,0062    | 0,0015   | 0,0048  | 0,0012  | 0,00335     | 0,00095  | 0,0038               | 0,0011   | 0,0091  | 0,002    | 0,0097                | 0,0021  | 0,0121   | 0,0026   | 0,0126                | 0,0027  | 0,0054    | 0,0013  | 0,00181               | 0,0007  | 0,00181 | 0,00074  | 0,0041  | 0,0011  | 0,0044             | 0,0012                                           |
| Zinco                       | mg/l               | 0,5                                              | 0,97        | 0,19     | 0,51        | 0,11    | 0,286     | 0,064    | 0,318     | 0,069    | 0,59    | 0,12    | 5,9         | 1,2      | 5,9                  | 1,2      | 0,71    | 0,14     | 0,77                  | 0,15    | 0,362    | 0,077    | 0,364                 | 0,077   | 0,069     | 0,017   | 2,07                  | 0,4     | 2,07    | 0,4      | 0,265   | 0,06    | 0,274              | 0,062                                            |
| Pesticidi Totali            | mg/l               | 0,05                                             | <           |          | <           |         | <         |          | <         |          | <       |         | <           | <u> </u> | <                    | 1        | <       |          | <                     |         | <        |          | <                     |         | <         |         | <                     | T       | <       |          | <       |         | <                  |                                                  |
| Aldrin                      | mg/l               | 0,01                                             | <           |          | <           |         | <         |          | <         |          | <       |         | <           |          | <                    | 1        | <       |          | <                     |         | <        |          | <                     |         | <         |         | <                     |         | <       |          | <       |         | <                  |                                                  |
| Dieldrin                    | mg/l               | 0,01                                             | <           |          | <           |         | <         |          | <         |          | <       |         | <           |          | <                    | 1        | <       |          | <                     |         | <        |          | <                     |         | <         |         | <                     |         | <       |          | <       |         | <                  |                                                  |
| Endrin                      | mg/l               | 0,002                                            | <           |          | <           |         | <         |          | <         |          | <       |         | <           |          | <                    | 1        | <       |          | <                     |         | <        |          | <                     |         | <         |         | <                     |         | <       |          | <       |         | <                  |                                                  |
| Isodrin                     | mg/l               | 0,002                                            | <           |          | <           |         | <         |          | <         |          | <       |         | <           |          | <                    |          | <       |          | <                     |         | <        |          | <                     |         | <         |         | <                     |         | <       |          | <       |         | <                  |                                                  |
| Esaclorobenzene (HCB)       | mg/l               | 0,000                                            | -           |          | -           |         | <         |          |           |          | <       |         | -           |          |                      |          | -       |          | -                     |         | <        |          | -                     |         |           |         | <                     |         | <       |          |         |         | <                  |                                                  |
| Dichlorvos                  | μg/l               |                                                  | <           |          | <           |         | <         |          | <         |          | <       |         | <           |          | <                    | 1        | <       |          | <                     |         | <        |          | <                     |         | <         |         | <                     |         | <       |          | <       |         | <                  |                                                  |
| Insetticidi fosforati       | μg/l               |                                                  | <           |          | <           |         | <         |          | <         |          | <       |         | <0,05       |          | <0,05                | 1        | <0,05   |          | <0,05                 |         | <0,05    |          | <0,05                 |         | <0,05     |         | <0,05                 |         | <0,05   |          | <0,05   |         | <0,05              |                                                  |
| Naftalene                   | μg/l               |                                                  | <           |          | 0,02        | 0.0074  | <         |          | <         |          | 0,186   | 0.048   | <           |          | <                    |          | <       |          | <                     |         | 0,147    | 0.027    | 0,169                 | 0.044   | 0,029     | 0,0083  | 0,026                 | 0,008   | ,       |          | <       |         | <                  |                                                  |
| Benzo(b)fluorantene         | μg/l               |                                                  | <           |          | <           |         | <         |          | <         |          | <       |         | <           |          | <                    |          | 0,01    | 0,0067   | 0,01                  | 0,0067  | <        |          | <                     |         | <         | 0,0000  | <                     | -,      | <       |          | <       |         | <                  |                                                  |
| Benzo(k)fluorantene         | μg/l               |                                                  | <           |          | <           |         | <         |          | <         |          | <       |         | <           |          | <                    |          | <       |          | <                     |         | <        |          | <                     |         | <         |         | <                     |         | <       |          | <       |         | <                  |                                                  |
| Benzo(a)pirene              | μg/l               |                                                  | -           |          | -           |         | <         |          |           |          | 0.006   | 0,0034  | -           |          |                      |          | 0.009   | 0,0035   | 0.009                 | 0,0035  |          |          | -                     |         |           |         | -                     |         | -       |          |         |         | -                  |                                                  |
| Indeno(1,2,3-cd)pirene      | μg/l               |                                                  | <           |          | <           |         | <         |          | <         |          | <       |         | <           |          | <                    |          | <       |          | <                     |         | <        |          | <                     |         | <         |         | <                     |         | <       |          | <       |         | <                  |                                                  |
| Benzene                     | μg/l               |                                                  | <           |          | <           |         | <         |          | <         |          | <       |         | <           |          | <                    |          | <       |          | <                     |         | <        |          | -                     |         | <         |         | <                     |         | <       |          | <       |         | <                  |                                                  |
| Solventi organici aromatici | mg/l               | 0,2                                              | <           |          | <           |         | <         |          | <         |          | <       |         | <0,0011     |          | <0,0011              |          | <0,0011 |          | <0,0011               |         | <0,0011  |          | <0,0011               |         | <0,0011   |         | <0,0011               |         | <0,0011 |          | <0,0011 |         | <0,0011            |                                                  |
| Tetracloruro di carbonio    | μg/l               | -,-                                              | <           |          | <           |         | <         |          | <         |          | <       |         | <           |          | <                    | +        | <       |          | <                     |         | <        |          | <                     |         | <         |         | <                     |         | <       |          | <       |         | <                  | -                                                |
| Cloroformio                 | μg/l               |                                                  | <           |          | <           |         | <         |          | <         |          | <       |         | <           |          | <                    | +        | <       |          | <                     |         | <        |          | <                     |         | <         |         |                       |         | <       |          | <       |         | <                  | -                                                |
| 1,2-dicloroetano            | μg/l               | 1                                                | <           | <b> </b> | <           |         | <         |          | <         |          | <       |         | <           | f        | - <                  | 1-       | <       | <b> </b> | <                     | 1       | <        | <b> </b> | <                     |         | <         | +       | <                     | 1-      | <       |          | <       |         | <                  | <b> </b>                                         |
| Diclorometano               | μg/l               | 1                                                | <           | <b> </b> | <           |         | <         |          | <         |          | <       |         | <           | f        | - <                  | 1-       | <       | <b> </b> | <                     | 1       | <        | <b> </b> | <                     |         | <         | +       | <                     | 1-      | <       |          | <       |         | <                  | <b> </b>                                         |
| Tetracloroetilene           | μg/l               | 1                                                | <           | <b> </b> | <           |         | <         |          | <         |          | <       |         | <           | f        | - <                  | 1-       | <       | <b> </b> | <                     | 1       | <        | <b> </b> | <                     |         | <         | +       | <                     | 1-      | <       |          | <       |         | <                  | <b> </b>                                         |
| Tricloroetilene             | μg/l               | 1                                                | <           | <b> </b> | <           |         | <         |          | <         |          | <       |         | <           | f        | - <                  | 1-       | <       | <b> </b> | <                     | 1       | <        | <b> </b> | <                     |         | <         | +       | <                     | 1-      | <       |          | <       |         | <                  | <b> </b>                                         |
| Monobutilstagno             | μg/l               | 1                                                | <           | <b> </b> | <           |         | <         |          | <         |          | <       |         | <           | f        | <                    | 1-       | <       | <b> </b> | <                     | 1       | <        | <b> </b> | <                     |         | <         | +       | <                     | 1-      | <       |          | <       |         | <                  | <u> </u>                                         |
| Dibutilstagno               | μg/l               |                                                  | <           |          | <           |         | <         | $\vdash$ | <         |          | <       |         | <           |          | - <                  | 1        | <       |          | <                     |         | <        |          | <                     |         | <         | 1       | <                     |         | <       |          | <       |         | <                  | <b> </b>                                         |
| Tributilstagno              | μg/l               | <del>                                     </del> | <           |          | <           |         | <         |          | <         |          | <       |         | <           | -        |                      |          | <       |          | <                     | -       | <        |          | <                     |         | <         | +       | <                     | 1       | <       | <u> </u> |         |         | <                  | <del>                                     </del> |
| Tetrabutilstagno            | μул                | <del>                                     </del> | `           |          | _ `         |         | `         |          |           |          |         |         | <           | -        | <                    |          | <       |          | <                     | -       | <        |          | <                     |         | <         | +       | <                     | 1       | <       | <u> </u> | <       |         | <                  | <del>                                     </del> |
| Monoottilstagno             | pa/l               | <del>                                     </del> | <           |          | <           |         | <         |          | •         | $\vdash$ | <       |         | <           | -        | ٠                    |          | <       |          | <                     | -       | -        |          | -                     |         | <         | +       | <                     | 1       | <       | <u> </u> | <       |         | <                  | <del>                                     </del> |
| Diottilstagno               | μg/l<br>μg/l       |                                                  | <           |          | <           |         | <         | $\vdash$ | <         |          | <       |         | <           | 1        | <                    | +        | <       |          | <                     |         | <        |          | <                     |         | <         | +       | <                     | 1       | <       |          | <       | -       | <                  | <del>                                     </del> |
| Trifenilstagno              | μg/l               | <del>                                     </del> | <           |          | <           |         | <         |          | -         |          |         |         | <           | -        | ٠                    |          | <       |          | <                     | -       | <        |          | -                     |         | <         | +       | -                     | 1       | -       | <u> </u> | <       |         | <                  | <del>                                     </del> |
| Tricicloesilstagno          | μg/I               | 1                                                | <           |          | <           |         | <         | $\vdash$ | < -       |          | <       |         | <           | 1        | <                    | +        | <       |          | <                     | -       | <        |          | <                     |         | < -       | +       | <                     | 1-      | <       |          | <       |         | <                  | <del>                                     </del> |
| Bis(2-etilesil)Ftalato      | μg/I               |                                                  | 0,288       | 0,075    | <           |         | <         |          | 0,225     | 0,071    | 0,166   | 0,069   | <           |          | <                    | 1        | <       |          | <                     | 1       | 2,15     | 0,45     | 2,18                  | 0,45    | 0,86      | 0,19    | 0,95                  | 0,21    | <       |          | <       |         | <                  | <del> </del>                                     |
| Acetonitrile                |                    | 1                                                | 0,129       | 0,075    | 0,109       | 0.043   | 0,154     | 0.059    | 0,225     | 0,071    | 0,100   | 0,069   | 0,179       | 0.068    | 0,22                 | 0.083    | 0,134   | 0.051    | 0,142                 | 0.054   | 0,247    | 0.093    | 0,24                  | 0,45    | 0,086     | 0,19    | 0,056                 | 0,025   |         | 0,025    | 0,076   | 0,031   | 0,075              | 0,031                                            |
| Acetonitrile                | mg/l<br>mg/l       |                                                  |             | 0,05     | -           | 0,043   | -         | 0,059    |           | 0,054    |         | 0,06/   |             | U,U06    |                      | 0,063    |         | 0,051    | -                     | 0,054   |          | 0,093    |                       | 1,091   |           | 0,034   |                       | 0,025   | -       | 0,023    |         | 0,031   | -                  | 0,031                                            |
|                             | -                  | 0.4                                              | <           | 0.05     | <           | 0.045   | < .       | 0.050    | < .       | 0.054    | < .     | 0.00=   | <           | 0.000    | < 0.00               | 0.00-    | < 0.404 | 0.051    | < .                   | 0.05    | < 0.047  | 0.005    | < 0.04                | 0.004   | <         | 0.004   | < 0.050               | 0.00=   | < .     | 0.005    | < 0.70  | 0.004   | < 0.070            | 0.000                                            |
| Solventi organici azotati   | mg/l               | 0,1                                              | 0,129       | 0,05     | 0,109       | 0,042   | 0,154     | 0,059    | 0,141     | 0,054    | 0,177   | 0,067   | 0,179       | 0,068    | 0,22                 | 0,083    | 0,134   | 0,051    | 0,142                 | 0,054   | 0,247    | 0,093    | 0,24                  | 0,091   | 0,086     | 0,034   | 0,056                 | 0,025   | 0,056   | 0,025    | 0,076   | 0,031   | 0,076              | 0,031                                            |

|                             |                    |                  |         |         |                       |          |         |         |         |         | 9       | AI - IM | PIANTO  | DI CH   | HARIFLO               | OCCUL    | AZIONE  | AFO5    |                         |         |         |         |                        |         |         |         |          |                   |                        |                     |         |         |
|-----------------------------|--------------------|------------------|---------|---------|-----------------------|----------|---------|---------|---------|---------|---------|---------|---------|---------|-----------------------|----------|---------|---------|-------------------------|---------|---------|---------|------------------------|---------|---------|---------|----------|-------------------|------------------------|---------------------|---------|---------|
| Analita                     | Unità<br>di misura | Limiti<br>152/06 | 15/04/2 | 2014    | 15/04/2<br>(field dup | licated) | 17/04/2 | 014     | 22/04/2 | 2014    | 24/04/2 | 014     | 29/04/2 | 014     | 29/04/2<br>(field dup | olicate) | 05/05/2 | 014     | 05/05/20<br>(field dupl |         | 07/05/2 | 2014    | 07/05/2<br>(field dup) |         | 09/05/2 | 014     | 04/11/20 |                   | 04/11/2<br>(field dupl |                     | 14/11/2 | 2014    |
|                             |                    |                  | Valore  | Incert. | Valore                | Incert.  | Valore  | Incert. | Valore  | Incert. | Valore  | Incert. | Valore  | Incert. | Valore                | Incert.  | Valore  | Incert. | Valore                  | Incert. | Valore  | Incert. | Valore                 | Incert. | Valore  | Incert. | Valore   | Incert.           | Valore                 | Incert.             | Valore  | Incert. |
| Temperatura                 | °C                 |                  | 48,2    | 0,2     | 48,2                  | 0,2      | 36,5    | 0,2     | 41,6    | 0,2     | 47,5    | 0,2     | 49,8    | 0,2     | 49,8                  | 0,2      | 44,5    | 0,2     | 44,5                    | 0,2     | 47,2    | 0,2     | 47,2                   | 0,2     | 36      | 0,2     | 54       | 0,2               | 54                     | 0,2                 | 47,8    | 0,2     |
| рН                          |                    |                  | 7,8     | 0,1     | 7,8                   | 0,1      | 8       | 0,2     | 7,5     | 0,2     | 7,5     | 0,2     | 8       | 0,2     | 8                     | 0,2      | 8,1     | 0,2     | 8,1                     | 0,2     | 8       | 0,2     | 8                      | 0,2     | 7,8     | 0,2     | 7,8      | 0,2               | 7,8                    | 0,2                 | 7,8     | 0,2     |
| Conducibilità               | μS/cm              |                  | 6010    | 96      | 6010                  | 96       | 5200    | 83      | 5460    | 88      | 5050    | 81      | 5560    | 89      | 5560                  | 89       | 6260    | 100     | 6260                    | 100     | 6050    | 97      | 6050                   | 97      | 5480    | 88      | 5860     | 94                | 5860                   | 94                  | 6020    | 97      |
| Idrocarburi                 | μg/l               | 5000             | <       |         | <                     |          | 44      | 20      | <       |         | 47      | 20      | 58      | 20      | 40                    | 20       | 123     | 21      | 96                      | 20      | 107     | 21      | 92                     | 20      |         |         | <        |                   | <                      |                     | <       |         |
| Arsenico                    | mg/l               | 0,5              | 0,0037  | 0,0012  | 0,0034                | 0,0011   | 0,00282 | 0,00095 | 0,00233 | 0,00086 | 0,00245 | 0,00088 | 0,00172 | 0,00076 | 0,00189               | 0,00078  | 0,0033  | 0,0011  | 0,00299                 | 0,00098 | 0,0047  | 0,0014  | 0,0045                 | 0,0013  | 0,00212 | 0,00082 | 0,0143   | 0,0037            | 0,0141                 | 0,0037              | 0,0088  | 0,0024  |
| Cadmio                      | mg/l               | 0,02             | <       |         | <                     |          | <       |         | <       |         | <       |         | <       |         | <                     |          | <       |         | <                       |         | <       |         | <                      |         | <       |         | <        |                   | <                      |                     | <       |         |
| Cromo VI                    | mg/l               | 0,2              | <       |         | <                     |          | <       |         | <       |         | <       |         | <       |         | <                     |          | <       |         | <                       |         | <       |         | <                      |         | <       |         | <        |                   | <                      |                     | <       |         |
| Cromo totale                | mg/l               | 2                | <       |         | <                     |          | <       |         | <       |         | <       |         | <       |         | <                     |          | <       |         | <                       |         | <       |         | <                      |         | <       |         | <        |                   | <                      |                     | <       |         |
| Mercurio                    | mg/l               | 0,005            | <       |         | <                     |          | <       |         | <       |         | <       |         | <       |         | <                     |          | <       |         | <                       |         | <       |         | <                      |         | <       |         | <        |                   | <                      |                     | <       |         |
| Nichel                      | mg/l               | 2                | 0,0115  | 0,0019  | 0,0116                | 0,0019   | 0,0059  | 0,0011  | 0,0126  | 0,002   | 0,0189  | 0,0029  | 0,0105  | 0,0018  | 0,0111                | 0,0018   | 0,0123  | 0,002   | 0,0108                  | 0,0018  | 0,0082  | 0,0014  | 0,0064                 | 0,0012  | 0,0128  | 0,0021  | 0,0111   | 0,0018            | 0,0105                 | 0,0018              | 0,0191  | 0,003   |
| Piombo                      | mg/l               | 0,2              | 0,0257  | 0.0041  | 0,026                 | 0.0041   | 0,05    | 0.0092  | 0,0507  | 0,0094  | 0,0222  | 0.0036  | 0,0155  | 0.0025  | 0,016                 | 0.0026   | 0,0211  | 0.0034  | 0,0197                  | 0.0032  |         | 0,0039  | 0,0245                 | 0.0039  | 0,0085  | 0.0015  | 0,101    | 0.019             | 0,1                    | 0.019               | 0,065   | 0,012   |
| Rame                        | mg/l               | 0,1              | 0,00158 | 0,00072 | 0,00198               | 0,00076  | <       | -,,     | <       |         | <       | -,      | <       |         | <                     |          | <       | -,,     | <                       | .,,     | <       |         | <                      |         | <       | -,,,,,  | 0,0249   | 0,0053            | 0,0232                 | 0,005               | 0,0502  | 0,0099  |
| Selenio                     | mg/l               | 0,03             | 0.0231  | 0.0049  | 0,0212                | 0.0045   | 0,0108  | 0.0024  | 0,0103  | 0.0023  | 0,0121  | 0.0027  | 0.0082  | 0.0019  | 0,0087                | 0.002    | 0,0161  | 0.0035  | 0,0134                  | 0.0029  | 0,0117  | 0.0026  | 0,0126                 | 0.0028  | 0,00346 | 0.00097 | 0,0245   | 0.0056            | 0,0269                 | 0.0057              | 0,0258  | 0.0055  |
| Zinco                       | mg/l               | 0,5              | 0,336   | 0,072   | 0,334                 | 0,072    | 0,83    | 0,16    | 0,124   | 0,0020  | 0,145   | 0.036   | 0,056   | 0.014   | 0,061                 | 0,015    | 0,06    | 0.015   | 0,042                   | 0.011   | 0,0374  | 0.0096  | 0,0386                 | 0.0099  | 0,0108  | 0.0041  | 0,99     | 0,2               | 0,95                   | 0,19                | 1,53    | 0.3     |
| Pesticidi Totali            | mg/l               | 0,05             | 0,330   | 0,072   | 0,334                 | 0,012    | 0,83    | 0,10    | 0,124   | 0,001   | 0,145   | 0,000   | < <     | 5,514   | <                     | 0,010    | <       | 0,010   | < <                     | 0,011   | <       | 0,0000  | <                      | 3,0003  | 0,0108  | 5,00-1  | < <      | 0,2               | < <                    | - 0,10              | 1,33    | 0,0     |
| Aldrin                      | mg/l               | 0,01             | <       |         | <                     |          | <       |         | <       |         | <       |         | <       |         | <                     |          | <       |         | <                       |         | <       |         | <                      |         | <       |         | <        | -                 | <                      |                     | <       |         |
| Dieldrin                    | mg/l               | 0,01             | <       |         | <                     |          | <       |         | <       |         | <       |         | <       |         | <                     |          | <       |         | <                       |         | <       |         | <                      |         | <       |         | <        |                   | <                      | $\vdash$            | <       |         |
| Endrin                      | mg/l               | 0.002            | <       |         | <                     |          | <       |         | <       |         | <       |         | <       |         | <                     |          | <       |         | <                       |         | <       |         | <                      |         |         |         | <        |                   | <                      | $\vdash$            | - <     |         |
| Isodrin                     | mg/l               | 0,002            | <       |         | <                     |          | <       |         | <       |         | <       |         | <       |         | <                     |          | <       |         | <                       |         | <       |         | <                      |         | <       |         | <        | -                 | <                      |                     | <       |         |
| Esaclorobenzene (HCB)       |                    | 0,002            | -       |         | <                     |          | -       |         | <       |         | -       |         | -       |         |                       | 1        | -       |         | <                       |         | <       |         | -                      |         |         |         | <        | $\vdash$          | -                      | +-+                 | -       | -       |
|                             | mg/l               |                  |         |         | -                     |          |         |         |         |         |         |         |         |         |                       |          |         |         | -                       |         |         |         |                        |         |         |         |          | $\vdash$          |                        |                     |         |         |
| Dichlorvos                  | μg/l               |                  | <       |         | <                     |          | <       |         | <       |         | <       |         | <       |         | <                     |          | <       |         | <                       |         | <       |         | <                      |         | <       |         | <        | $\vdash$          | <                      | -                   | <       |         |
| Insetticidi fosforati       | μg/l               |                  | <       |         | <                     |          | <       |         | <       |         | <       |         | <       |         | <                     | -        | <       |         | <                       |         | <       |         | <                      |         | <       |         | <0,05    | $\vdash$          | <0,05                  |                     | <0,05   |         |
| Dietil ftalato              | μg/l               |                  | 17,5    | 1,9     | 17,1                  | 1,8      | <       |         | <       |         | <       |         | <       |         | <                     |          | <       |         | <                       |         | <       |         | <                      |         | <       |         |          | <del></del>       |                        |                     | -       |         |
| Naftalene                   | μg/l               |                  | 0,011   | 0,0067  | 0,016                 | 0,007    | <       |         | 0,019   | 0,0073  | 0,032   | 0,0087  | 0,135   | 0,025   | 0,126                 | 0,024    | 0,022   | 0,0076  | 0,023                   | 0,0077  | 0,06    | 0,013   | 0,059                  | 0,012   | 0,045   | 0,01    | 0,038    | 0,0094            | 0,036                  | 0,0092              | <       |         |
| Benzo(b)fluorantene         | μg/l               |                  | <       |         | <                     |          | <       |         | <       |         | <       |         | <       |         | <                     |          | <       |         | <                       |         | <       |         | <                      |         | <       |         | <        | +-+               | <                      |                     | <       |         |
| Benzo(k)fluorantene         | μg/l               |                  | <       |         | <                     |          | <       |         | <       |         | <       |         | <       |         | <                     |          | <       |         | <                       |         | <       |         | <                      |         | <       |         | <        | +-+               | <                      |                     | <       |         |
| Benzo(a)pirene              | μg/l               |                  | <       |         | <                     |          | <       |         | <       |         | <       |         | <       |         | <                     |          | <       |         | <                       |         | <       |         | <                      |         | <       |         | <        | $\vdash$          | <                      | $\vdash$            | <       |         |
| Indeno(1,2,3-cd)pirene      | μg/l               |                  | <       |         | <                     |          | <       |         | <       |         | <       |         | <       |         | <                     |          | <       |         | <                       |         | <       |         | <                      |         | <       |         | <        | $\longmapsto$     | <                      | $\perp \perp \perp$ | <       |         |
| Benzene                     | μg/l               | 0,2              | <       |         | <                     |          | <       |         | <       |         | <       |         | <       |         | <                     |          | <       |         | <                       |         | <       |         | <                      |         | <       |         | <        | $\longmapsto$     | <                      | $\perp \perp \perp$ | <       |         |
| Solventi organici aromatici | mg/l               | 0,5              | <       |         | <                     |          | <       |         | <       |         | <       |         | <       |         | <                     |          | <       |         | <                       |         | <       |         | <                      |         | <       |         | <0,0011  | $\longmapsto$     | <0,0011                | $\perp \perp \perp$ | <0,0011 |         |
| Tetracloruro di carbonio    | μg/l               |                  | <       |         | <                     |          | <       |         | <       |         | <       |         | <       |         | <                     |          | <       |         | <                       |         | <       |         | <                      |         | <       |         | <        | $\longrightarrow$ | <                      | $\perp$             | <       |         |
| Cloroformio                 | μg/l               |                  | <       |         | <                     |          | <       |         | <       |         | <       |         | <       |         | <                     |          | <       |         | <                       |         | <       |         | <                      |         | <       |         | <        | $\longrightarrow$ | <                      |                     | <       |         |
| 1,2-dicloroetano            | μg/l               |                  | <       |         | <                     |          | <       |         | <       |         | <       |         | <       |         | <                     |          | <       |         | <                       |         | <       |         | <                      |         | <       |         | <        | $\sqcup$          | <                      | $oxed{oxed}$        | <       |         |
| Diclorometano               | μg/l               |                  | <       |         | <                     |          | <       |         | <       |         | <       |         | <       |         | <                     |          | <       |         | <                       |         | <       |         | <                      |         | <       |         | <        |                   | <                      |                     | <       |         |
| Tetracloroetilene           | μg/l               |                  | <       |         | <                     |          | <       |         | <       |         | <       |         | <       |         | <                     |          | <       |         | <                       |         | <       |         | <                      |         | <       |         | <        |                   | <                      |                     | <       |         |
| Tricloroetilene             | μg/l               |                  | <       |         | <                     |          | <       |         | <       |         | <       |         | <       |         | <                     |          | <       |         | <                       |         | <       |         | <                      |         | <       |         | <        |                   | <                      |                     | <       |         |
| Monobutilstagno             | μg/l               |                  | <       |         | <                     |          | <       |         | <       |         | <       |         | <       |         | <                     |          | <       |         | <                       |         | <       |         | <                      |         | <       |         | <        |                   | <                      |                     | <       |         |
| Dibutilstagno               | μg/l               |                  | <       |         | <                     |          | <       |         | <       |         | <       |         | <       |         | <                     |          | <       |         | <                       |         | <       |         | <                      |         | <       |         | ٧        | шT                | <                      |                     | <       |         |
| Tributilstagno              | μg/l               |                  | <       |         | <                     |          | <       |         | <       |         | <       |         | <       |         | <                     |          | <       |         | <                       |         | <       |         | <                      |         | <       |         | <        | ιП                | <                      |                     | <       |         |
| Tetrabutilstagno            |                    |                  |         |         | <                     |          |         |         |         |         |         |         |         |         |                       |          |         |         |                         |         |         |         |                        |         |         |         | <        |                   | <                      |                     | <       |         |
| Monoottilstagno             | μg/l               |                  | <       |         | <                     |          | <       |         | <       |         | <       |         | <       |         | <                     |          | <       |         | <                       |         | <       |         | <                      |         | <       |         | <        |                   | <                      |                     | <       |         |
| Diottilstagno               | μg/l               |                  | <       |         | <                     |          | <       |         | <       |         | <       |         | <       |         | <                     |          | <       |         | <                       |         | <       |         | <                      |         | <       |         | <        |                   | <                      |                     | <       |         |
| Trifenilstagno              | μg/l               |                  | <       |         | <                     |          | <       |         | <       |         | <       |         | <       |         | <                     |          | <       |         | <                       |         | <       |         | <                      |         | <       |         | <        |                   | <                      |                     | <       |         |
| Tricicloesilstagno          | μg/l               |                  | <       |         | <                     |          | <       |         | <       |         | <       |         | <       |         | <                     |          | <       |         | <                       |         | <       |         | <                      |         | <       |         | <        |                   | <                      |                     | <       |         |
| Bis(2-etilesil)Ftalato      | μg/l               |                  | <       |         | <                     |          | 0,213   | 0,071   | 0,351   | 0,079   | 0,186   | 0,007   | 0,1     | 0,039   | <                     |          | <       |         | <                       |         | 0,246   | 0,073   | 0,222                  | 0,071   | <       |         | 0,113    | 0,067             | 0,111                  | 0,067               | <       |         |
| Acetonitrile                |                    |                  |         |         | l                     |          | 0.040   |         | 0,103   | 0,041   | 0,095   |         |         |         | 0.007                 | 1        |         |         |                         |         | 0.440   | 1       | 0.00                   |         | 0.000   |         | 0.040    | -                 |                        | 1                   | 0,069   | 0,029   |
|                             | mg/l               |                  | <       |         | <                     |          | 0,049   | 0,022   | 0,103   | 0,041   | 0,093   | 0,038   | <       |         | 0,097                 | 0,038    | 0,084   | 0,034   | 0,076                   | 0,031   | 0,148   | 0,056   | 0,09                   | 0,036   | 0,093   | 0,037   | 0,049    | 0,022             | 0,049                  | 0,022               | 0,000   |         |
| Acrilonitrile               | mg/l<br>mg/l       |                  | <       |         | <                     |          | < 0,049 | 0,022   | 0,103   | 0,041   | <       | 0,038   | < <     |         | 0,097                 | 0,038    | 0,084   | 0,034   | 0,076                   | 0,031   | 0,148   | 0,056   | 0,09                   | 0,036   | 0,093   | 0,037   | 0,049    | 0,022             | < 0,049                | 0,022               | <       | -,      |

|                             |                    |                  |         |         |         | 11AI -  | VASCHE  | DI GF   | RANULAZ | ZIONE   | LOPPA A | AFO2    |         |         |         |         |         |         |         |        |
|-----------------------------|--------------------|------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--------|
| Analita                     | Unità<br>di misura | Limiti<br>152/06 | 18/04/2 | 014     | 22/04/2 | 014     | 23/04/2 | 014     | 29/04/2 | 014     | 30/04/2 | 014     | 07/05/2 | 014     | 08/05/2 | 014     | 09/05/2 | 014     | 24/11/2 | 2014   |
|                             |                    | 102/00           | Valore  | Incert. | Valore  | Incert |
| Temperatura                 | °C                 |                  | 25,6    | 0,2     | 37,8    | 0,2     | 36,3    | 0,2     | 30,2    | 0,2     | 38,5    | 0,2     | 44,6    | 0,2     | 42,2    | 0,2     | 41,8    | 0,2     | 37,7    | 0,2    |
| рН                          |                    |                  | 7,9     | 0,2     | 7,8     | 0,2     | 7,8     | 0,2     | 8,2     | 0,2     | 7,9     | 0,2     | 7,9     | 0,2     | 7,7     | 0,2     | 8,4     | 0,1     | 8       | 0,2    |
| Conducibilità               | μS/cm              |                  | 54400   | 873     |         |         |         |         | 55300   | 887     | 53100   | 852     |         |         | 59100   | 948     |         |         | 52400   | 840    |
| Idrocarburi                 | μg/l               | 5000             | <       |         | 52      | 20      | <       |         | <       |         | 50      | 20      | <       |         | <       |         | <       |         | 74      | 20     |
| Arsenico                    | mg/l               | 0,5              | 0,00155 | 0,00074 | 0,0015  | 0,00073 | 0,00186 | 0,00078 | <       |         | 0,00126 | 0,0007  | 0,00157 | 0,00074 | 0,00117 | 0,00069 | 0,00165 | 0,00075 | 0,00198 | 0,0008 |
| Cadmio                      | mg/l               | 0,02             | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |        |
| Cromo VI                    | mg/l               | 0,2              | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |        |
| Cromo totale                | mg/l               | 2                | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |        |
| Mercurio                    | mg/l               | 0,005            | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |        |
| Nichel                      | mg/l               | 2                | 0,00142 | 0,00069 | <       |         | 0,00187 | 0,00071 | 0,00256 | 0,00076 | 0,00161 | 0,0007  | 0,00175 | 0,00071 | 0,00132 | 0,00068 | <       |         | 0,00245 | 0,0007 |
| Piombo                      | mg/l               | 0,2              | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |        |
| Rame                        | mg/l               | 0,1              | 0,00219 | 0,00079 | <       |         | 0,0053  | 0,0013  | 0,00227 | 0,0008  | <       |         | 0,00235 | 0,00081 | <       |         | <       |         | 0,0076  | 0,001  |
| Selenio                     | mg/l               | 0,03             | 0,00138 | 0,0007  | 0,00156 | 0,00072 | 0,00264 | 0,00084 | 0,00128 | 0,00069 | 0,00143 | 0,0007  | 0,00185 | 0,00074 | 0,00282 | 0,00087 | 0,00245 | 0,00082 | 0,00203 | 0,0007 |
| Zinco                       | mg/l               | 0,5              | 0,0059  | 0,0035  | 0,0193  | 0,0056  | <       |         | 0,0209  | 0,006   | <       |         | 0,0078  | 0,0036  | <       |         | <       |         | 0,0063  | 0,003  |
| Pesticidi Totali            | mg/l               | 0,05             | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       | 1      |
| Aldrin                      | mg/l               | 0,01             | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       | 1      |
| Dieldrin                    | mg/l               | 0,01             | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       | t      |
| Endrin                      | mg/l               | 0,002            | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |        |
| Isodrin                     | mg/l               | 0,002            | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |        |
| Esaclorobenzene (HCB)       | mg/l               | -,               | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |        |
| Dichlorvos                  | μg/l               |                  | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |        |
| Insetticidi fosforati       | μg/l               |                  | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <0,05   |        |
| Naftalene                   | μg/l               |                  | 0,014   | 0,0069  | <       |         | 0,011   | 0,0067  | 0,051   | 0,011   | 0,016   | 0,007   | 0,015   | 0,007   | 0,019   | 0,0073  | 0,013   | 0,0068  | 0,018   | 0,007  |
| Benzo(b)fluorantene         | μg/l               |                  | <       | -,      | <       |         | <       | -,      | <       |         | <       |         | <       |         | <       |         | <       | -,      | <       | 1      |
| Benzo(k)fluorantene         | μg/l               |                  | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |        |
| Benzo(a)pirene              | μg/l               |                  | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |        |
| Indeno(1,2,3-cd)pirene      | μg/l               |                  | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |        |
| Benzene                     | μg/l               |                  | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |        |
| Solventi organici aromatici | mg/l               | 0,2              | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <0,0011 |        |
| Tetracloruro di carbonio    | μg/l               | 0,2              | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |        |
| Cloroformio                 | μg/l               |                  | <       |         | <       |         | 1,02    | 0,51    | <       |         | <       |         | <       |         | <       |         | <       |         | <       |        |
| 1,2-dicloroetano            | μg/I<br>μg/I       |                  | <       |         | <       |         | <       | 5,51    | <       |         | <       |         | <       |         | <       |         | <       |         | <       | +      |
| Diclorometano               | μg/I<br>μg/I       |                  | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       | +      |
| Tetracloroetilene           | μg/I<br>μg/I       |                  | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       | +      |
| Tricloroetilene             | μg/I<br>μg/I       |                  | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       | -       | <       |         | <       | +      |
| Monobutilstagno             | μg/I<br>μg/I       |                  | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       | -       | <       |         | <       | +      |
| Dibutilstagno               | μg/I<br>μg/I       |                  | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       | +      |
| Tributilstagno              | μg/I<br>μg/I       |                  | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       | +      |
| Tetrabutilstagno            | ду/і               |                  |         |         | ,       |         | `       |         | ,       |         | ,       |         | ,       |         | <       |         | `       |         | <       | +      |
| Monoottilstagno             | uc/l               |                  | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       | -       | <       |         | <       | +      |
| Diottilstagno               | μg/l<br>μg/l       |                  | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       | -       | <       |         | <       | +      |
|                             |                    |                  | <       |         |         |         |         |         | <       |         | <       |         |         |         |         |         | <       |         | <       | +      |
| Trifenilstagno              | μg/l               |                  |         |         | <       |         | <       |         |         |         |         |         | <       |         | <       |         |         |         |         | +      |
| Tricicloesilstagno          | μg/l               |                  | < 0.000 | 0.070   | < 0.045 | 0.07/   | < 0.000 | 0.070   | <       | 0.00=   | < 0.040 | 0.074   | <       |         | < 0.050 | 0.070   | < 0.046 | 0.074   | < 0.450 | 0.00   |
| Bis(2-etilesil)Ftalato      | μg/l               |                  | 0,232   | 0,072   | 0,215   | 0,071   | 0,236   | 0,072   | 0,102   | 0,067   | 0,216   | 0,071   | <       |         | 0,256   | 0,073   | 0,216   | 0,071   | 0,159   | 0,069  |
| Acetonitrile                | mg/l               |                  |         |         |         |         |         |         |         |         |         |         |         |         | <       |         |         |         | <       | 1      |
| Acrilonitrile               | mg/l               |                  |         |         |         |         |         |         |         |         |         |         |         |         | <       | l       |         |         | <       | 1      |

|                             |                    |                  |          |         |          |         |          | 12AI -  | VASCHE  | DI GF                                            | RANULAZ | ZIONE                                            | LOPPA A  | AFO4                                             |          |         |         |                                                  |          |         |         |                                                  |         |                                                  |
|-----------------------------|--------------------|------------------|----------|---------|----------|---------|----------|---------|---------|--------------------------------------------------|---------|--------------------------------------------------|----------|--------------------------------------------------|----------|---------|---------|--------------------------------------------------|----------|---------|---------|--------------------------------------------------|---------|--------------------------------------------------|
| Analita                     | Unità<br>di misura | Limiti<br>152/06 | 16/04/2  |         | 17/04/2  |         | 18/04/2  |         | 23/04/2 |                                                  | 29/04/2 |                                                  | 30/04/2  |                                                  | 05/05/2  |         | 08/05/2 | 1                                                | 09/05/2  |         | 04/11/2 |                                                  | 14/11/2 |                                                  |
|                             |                    |                  | Valore   | Incert. | Valore   | Incert. | Valore   | Incert. | Valore  | Incert.                                          | Valore  | Incert.                                          | Valore   | Incert.                                          | Valore   | Incert. | Valore  | Incert.                                          | Valore   | Incert. | Valore  | Incert.                                          | Valore  | Incert.                                          |
| Temperatura                 | °C                 |                  | 42,4     | 0,2     | 35,9     | 0,2     | 38,4     | 0,2     | 54      | 0,2                                              | 44,5    | 0,2                                              | 35       | 0,2                                              | 23,5     | 0,2     | 56,3    | 0,2                                              | 42,8     | 0,2     | 42,3    | 0,2                                              | 36,5    | 0,2                                              |
| pН                          |                    |                  | 7,8      | 0,1     | 8        | 0,1     | 7,8      | 0,2     | 7,6     | 0,2                                              | 8       | 0,2                                              | 8,4      | 0,2                                              | 7,8      | 0,2     | 7,5     | 0,2                                              | 7,9      | 0,2     | 7,8     | 0,1                                              | 8       | 0,2                                              |
| Conducibilità               | μS/cm              |                  | 54000    | 866     | 55200    | 885     |          |         |         |                                                  |         |                                                  | 52300    | 839                                              | 55100    | 884     | 55200   | 885                                              | 55700    |         | 53100   | 852                                              | 54000   | 866                                              |
| Idrocarburi                 | μg/l               | 5000             | 47       | 20      | 79       | 20      | <        |         | <       |                                                  | 77      | 20                                               | 53       | 20                                               | 48       | 20      | 41      | 20                                               | 98       | 21      | <       |                                                  | <       |                                                  |
| Arsenico                    | mg/l               | 0,5              | 0,00178  | 0,00077 | 0,00214  | 0,00083 | 0,0017   | 0,00076 | 0,00182 | 0,00077                                          | 0,0014  | 0,00071                                          | 0,00225  | 0,00085                                          | 0,00109  | 0,00068 | 0,00176 | 0,00077                                          | 0,00243  | 0,00088 | 0,0034  | 0,0011                                           | 0,00198 | 0,0008                                           |
| Cadmio                      | mg/l               | 0,02             | <        |         | <        |         | <        |         | <       |                                                  | <       |                                                  | <        |                                                  | <        |         | <       |                                                  | <        |         | <       |                                                  | <       |                                                  |
| Cromo VI                    | mg/l               | 0,2              | <        |         | <        |         | <        |         | <       |                                                  | <       |                                                  | <        |                                                  | <        |         | <       |                                                  | <        |         | <       |                                                  | <       |                                                  |
| Cromo totale                | mg/l               | 2                | <        |         | <        |         | 0,0047   | 0,0014  | <       |                                                  | <       |                                                  | <        |                                                  | 0,00149  | 0,00072 | <       |                                                  | <        |         | <       |                                                  | 0,00153 | 0,00073                                          |
| Mercurio                    | mg/l               | 0,005            | <        |         | <        |         | <        |         | 0,00032 | 0,00015                                          | <       |                                                  | <        |                                                  | <        |         | <       |                                                  | <        |         | <       |                                                  | <       |                                                  |
| Nichel                      | mg/l               | 2                | 0,00119  | 0,00068 | 0,00142  | 0,00069 | 0,003    | 0,0008  | 0,00197 | 0,00072                                          | 0,00227 | 0,00074                                          | 0,00298  | 0,0008                                           | 0,00259  | 0,00076 | 0,00227 | 0,00074                                          | 0,00349  | 0,00084 | 0,0057  | 0,0011                                           | 0,00192 | 0,00072                                          |
| Piombo                      | mg/l               | 0,2              | <        |         | <        |         | <        |         | <       |                                                  | <       |                                                  | <        |                                                  | 0,00174  | 0,00071 | <       |                                                  | <        |         | <       |                                                  | <       |                                                  |
| Rame                        | mg/l               | 0,1              | <        |         | 0,0041   | 0,0011  | 0,0013   | 0,00069 | 0,00184 | 0,00075                                          | 0,00122 | 0,00069                                          | 0,00289  | 0,00088                                          | 0,0135   | 0,003   | <       |                                                  | 0,00157  | 0,00071 | 0,0043  | 0,0011                                           | 0,00167 | 0,00073                                          |
| Selenio                     | mg/l               | 0,03             | 0,00173  | 0,00073 | 0,00152  | 0,00071 | 0,00262  | 0,00084 | 0,00282 | 0,00087                                          | 0,0052  | 0,0013                                           | <        |                                                  | 0,00168  | 0,00073 | 0,0048  | 0,0012                                           | 0,00291  | 0,00088 | 0,00332 | 0,00094                                          | 0,00125 | 0,00069                                          |
| Zinco                       | mg/l               | 0,5              | <        |         | 0,009    | 0,0038  | 0,0108   | 0,0041  | <       |                                                  | 0,0053  | 0,0034                                           | <        |                                                  | 0,0194   | 0,0057  | <       |                                                  | <        |         | 0,0297  | 0,0079                                           | 0,0071  | 0,0036                                           |
| Pesticidi Totali            | mg/l               | 0,05             | <        |         | <        |         | <        |         | <       |                                                  | <       |                                                  | <        |                                                  | <        |         | <       |                                                  | <        |         | <       |                                                  | <       | $\Box$                                           |
| Aldrin                      | mg/l               | 0,01             | <        | 1       | <        |         | <        |         | <       |                                                  | <       | 1                                                | <        | 1                                                | <        |         | <       | 1                                                | <        |         | <       | <b>†</b>                                         | <       |                                                  |
| Dieldrin                    | mg/l               | 0,01             | <        |         | <        |         | <        |         | <       |                                                  | <       |                                                  | <        |                                                  | <        |         | <       |                                                  | <        |         | <       |                                                  | <       |                                                  |
| Endrin                      | mg/l               | 0,002            | <        |         | <        |         | <        |         | <       |                                                  | <       |                                                  | <        |                                                  | <        |         | <       |                                                  | <        |         | <       |                                                  | <       | <del>                                     </del> |
| Isodrin                     | mg/l               | 0,002            | <        |         | <        |         | <        |         | <       |                                                  | <       |                                                  | <        |                                                  | <        |         | <       |                                                  | <        |         | <       |                                                  | <       | <del>                                     </del> |
| Esaclorobenzene (HCB)       | mg/l               | -,               | <        |         | <        |         | <        |         | <       |                                                  | <       |                                                  | <        |                                                  | <        |         | <       |                                                  | <        |         | <       |                                                  | <       |                                                  |
| Dichlorvos                  | μg/l               |                  | <        |         | <        |         | <        |         | <       |                                                  | <       |                                                  | <        |                                                  | <        |         | <       |                                                  | <        |         | <       |                                                  | <       |                                                  |
| Insetticidi fosforati       | μg/l               |                  | <        |         | <        |         | <        |         | <       |                                                  | <       |                                                  | <        |                                                  | <        |         | <       |                                                  | <        |         | <0,05   |                                                  | <0,05   |                                                  |
| Naftalene                   | μg/l               |                  | <        |         | <        |         | 0,01     | 0,0067  | 0,017   | 0,00071                                          | 0,037   | 0,0093                                           | <        |                                                  | 0,011    | 0,0067  | 0,048   | 0,011                                            | 0,141    | 0,026   | 0,039   | 0,0096                                           | <       |                                                  |
| Benzo(b)fluorantene         | μg/l               |                  | <        |         | <        |         | <        |         | <       |                                                  | <       |                                                  | <        |                                                  | <        |         | <       |                                                  | <        |         | <       |                                                  | <       |                                                  |
| Benzo(k)fluorantene         | μg/l               |                  | <        |         | <        |         | <        |         | <       |                                                  | <       |                                                  | <        |                                                  | <        |         | <       |                                                  | <        |         | <       |                                                  | <       |                                                  |
| Benzo(a)pirene              | μg/l               |                  | <        |         | <        |         | <        |         | <       |                                                  | <       |                                                  | <        |                                                  | <        |         | <       |                                                  | <        |         | <       |                                                  | <       |                                                  |
| Indeno(1,2,3-cd)pirene      | μg/l               |                  | <        |         | <        |         | <        |         | <       |                                                  | <       |                                                  | <        |                                                  | <        |         | <       |                                                  | <        |         | <       |                                                  | <       |                                                  |
| Benzene                     | μg/l               |                  | <        |         | <        |         | <        |         | <       |                                                  | <       |                                                  | <        |                                                  | <        |         | <       |                                                  | <        |         | <       |                                                  | <       |                                                  |
| Solventi organici aromatici | mg/l               | 0,2              | <        |         | <        |         | <        |         | <       |                                                  | <       |                                                  | <        |                                                  | <        |         | <       |                                                  | <        |         | <0,0011 |                                                  | <0,0011 |                                                  |
| Tetracloruro di carbonio    | μg/l               | 0,2              | <        |         | <        |         | <        |         | <       |                                                  | <       |                                                  | <        |                                                  | <        |         | <       |                                                  | <        |         | <       |                                                  | <       |                                                  |
| Cloroformio                 | μg/I               |                  | <        | 1       | <        |         | <        |         | 1       | 0,51                                             | <       | 1                                                | <        | 1                                                | <        |         | <       | 1                                                | <        |         | <       | <b> </b>                                         | <       |                                                  |
| 1,2-dicloroetano            | μg/l               |                  | <        |         | <        |         | <        |         | <       | -,                                               | <       |                                                  | <        |                                                  | <        |         | <       |                                                  | <        |         | <       |                                                  | <       |                                                  |
| Diclorometano               | μg/l               |                  | <        |         | <        |         | <        |         | <       |                                                  | <       |                                                  | <        |                                                  | <        |         | <       |                                                  | <        |         | <       |                                                  | <       | $\vdash$                                         |
| Tetracloroetilene           | μg/I               |                  | <        | 1       | <        |         | <        |         | <       |                                                  | <       | 1                                                | <        | 1                                                | <        |         | <       | 1                                                | <        |         | <       | <b> </b>                                         | <       |                                                  |
| Tricloroetilene             | μg/I               |                  | <        | 1       | <        |         | <        |         | <       |                                                  | <       | 1                                                | <        | 1                                                | <        |         | <       | 1                                                | <        |         | <       | <b> </b>                                         | <       |                                                  |
| Monobutilstagno             | μg/I               |                  | <        |         | <        |         | <        |         | <       |                                                  | <       | <del>                                     </del> | <        | <del>                                     </del> | <        |         | <       | <del>                                     </del> | <        |         |         | <del>                                     </del> | <       |                                                  |
| Dibutilstagno               | μg/I               |                  | <        | 1       | <        |         | <        |         | <       |                                                  | <       | 1                                                | <        | 1                                                | <        |         | <       | 1                                                | <        |         | <       | <b> </b>                                         | <       |                                                  |
| Tributilstagno              | μg/I<br>μg/I       |                  | <        | 1       | <        |         | <        |         | <       |                                                  | <       | -                                                | <        | -                                                | <        |         | <       | -                                                | <        |         | <       | <del>                                     </del> | <       | <del>                                     </del> |
| Tetrabutilstagno            | ду/1               |                  | <u> </u> | 1       | <u> </u> |         | `        |         | `       |                                                  |         | -                                                | <u> </u> | -                                                | <u> </u> |         | <       | -                                                | <u> </u> |         | <       | <del>                                     </del> | <       | <del>                                     </del> |
| Monoottilstagno             | μg/l               |                  | <        | 1       | <        |         | <        |         | <       |                                                  | <       | <u> </u>                                         | <        | <u> </u>                                         | <        |         | <       | <u> </u>                                         | <        |         | <       | <u> </u>                                         | <       | <del>                                     </del> |
| Diottilstagno               | μg/I               |                  | <        |         | <        |         | <        |         | <       |                                                  | <       |                                                  | <        |                                                  | <        |         | <       |                                                  | <        |         | <       |                                                  | <       |                                                  |
|                             |                    |                  | <        | 1       |          |         | <        |         | <       |                                                  | <       | 1                                                | <        | 1                                                | <        |         | <       | 1                                                | <        |         | <       | 1                                                | <       | $\vdash$                                         |
| Trifenilstagno              | μg/l               |                  |          | 1       | <        |         |          |         |         | <del>                                     </del> |         | -                                                | -        | -                                                |          | -       | -       | -                                                | -        | -       |         | <del>                                     </del> |         | ├─                                               |
| Tricicloesilstagno          | μg/l               |                  | <        | 1       | <        |         | < 0.0470 | 0.000   | < 0.004 | 0.070                                            | <       | 0.00=                                            | <        |                                                  | < 0.40   | 0.00=   | < 0.242 | 0.07                                             | < 0.402  | 0.07    | <       |                                                  | <       | <del>                                     </del> |
| Bis(2-etilesil)Ftalato      | μg/l               |                  | <        | 1       | <        |         | 0,0176   | 0,069   | 0,234   | 0,072                                            | 0,107   | 0,067                                            | <        | 1                                                | 0,12     | 0,067   | 0,312   | 0,077                                            | 0,193    | 0,07    | <       | <b> </b>                                         | <       | <b></b>                                          |
| Acetonitrile                | mg/l               |                  | }        | 1       | 1        |         |          |         |         | 1                                                |         | 1                                                |          | 1                                                |          |         | <       | 1                                                |          |         | <       | 1                                                | <       | <b></b>                                          |
| Acrilonitrile               | mg/l               | 0.               |          | -       | -        |         |          |         |         |                                                  |         | <u> </u>                                         |          | <u> </u>                                         |          |         | <       | <u> </u>                                         |          |         | <       | <u> </u>                                         | <       | <del>                                     </del> |
| Solventi organici azotati   | mg/l               | 0,1              | <        |         | <        |         | <        |         | <       |                                                  | <       | <u> </u>                                         | <        | <u> </u>                                         | <        |         | <       | <u> </u>                                         | <        |         | <0,022  | <u> </u>                                         | <0,022  |                                                  |

|                             |                    |                  |         |         |          |         | '       | 3AI - I | MPIANTO | INDA    | L        |         |                  |         |         |         |         |         |                       |       |
|-----------------------------|--------------------|------------------|---------|---------|----------|---------|---------|---------|---------|---------|----------|---------|------------------|---------|---------|---------|---------|---------|-----------------------|-------|
| Analita                     | Unità<br>di misura | Limiti<br>152/06 | 22/04/2 | 014     | 24/04/20 | 014     | 30/04/2 | 014     | 05/05/2 | 014     | 06/05/2  | 014     | 07/05/2          | 014     | 08/05/2 | 014     | 09/05/2 | 014     | 09/05/2<br>(field dup |       |
|                             | ui illisura        | 132/00           | Valore  | Incert. | Valore   | Incert. | Valore  | Incert. | Valore  | Incert. | Valore   | Incert. | Valore           | Incert. | Valore  | Incert. | Valore  | Incert. | Valore                | Ince  |
| Temperatura                 | °C                 |                  | 27,3    | 0,2     | 85       | 0,2     | 85      | 0,2     | 85      | 0,2     | 46,1     | 0,2     | 48               | 0,2     | 62,8    | 0,2     | 43,3    | 0,2     | 43,3                  | 0,2   |
| рН                          |                    |                  | 8,4     | 0,2     | 8,6      | 0,2     | 8,6     | 0,2     | 8,8     | 0,2     | 8,7      | 0,2     | 9,1              | 0,2     | 9,1     | 0,2     | 8,9     | 0,2     | 8,9                   | 0,2   |
| Conducibilità               | μS/cm              |                  | 3910    | 63      | 6890     | 111     | 6890    | 111     | 6220    | 100     | 6310     | 101     | 3910             | 63      | 7150    | 115     | 5070    | 81      | 5070                  | 81    |
| Idrocarburi                 | μg/l               | 5000             | <       |         | <        |         | 114     | 21      | <       |         | <        |         | <                |         | <       |         | <       |         | <                     | +-    |
| Arsenico                    | mg/l               | 0,5              | <       |         | <        |         | <       |         | <       |         | ·        |         | <                |         | <       |         | <       |         | <                     | +     |
| Cadmio                      | mg/l               | 0,02             | <       |         | <        |         | <       |         | <       |         | <        |         | <                |         | <       |         | <       |         | <                     | +     |
| Cromo VI                    | mg/l               | 0,02             | <       |         | <        |         | <       |         | <       |         | <        |         | <                |         | <       |         | <       |         | <                     | +     |
| Cromo totale                | mg/l               | 2                | 0,00255 | 0,00089 | <        |         | <       |         | 0,00185 | 0,00077 | 0,0045   | 0,0013  | <                |         | <       |         | 0,00294 | 0,00096 | 0,00225               | 0,00  |
| Mercurio                    | -                  | 0,005            | <       | 0,00089 | <        |         | <       |         | <       | 0,00077 | < <      | 0,0013  | <                |         | <       |         | < <     | 0,00096 | <                     | 0,00  |
| Nichel                      | mg/l               | 2                | 0,009   | 0.0045  | 0,00326  | 0.00000 | 0,00228 | 0.00074 | 0,00392 | 0,00088 | 0,0072   | 0.0040  | 0,0051           | 0.004   | 0,00291 | 0,00079 | 0,0051  | 0.0044  | 0,00428               | 0.00  |
|                             | mg/l               | 0,2              | 0,009   | 0,0015  | -        | 0,00082 | 0,00228 | 0,00074 | 0,00392 | 0,0008  | 0,0072   | 0,0013  | 0,0031           | 0,001   | 0,00291 | 0,00079 | 0,0031  | 0,0011  | 0,00428               | 0,000 |
| Piombo                      | mg/l               |                  | 0,0056  |         | <        |         | 0,00156 | 0,00069 |         | 0,0012  |          | 0,0015  | 0,00415          | 0,00092 |         | 0,001   | 0,00418 | 0,00092 |                       | 0,00  |
| Rame                        | mg/l               | 0,1              |         | 0,0014  |          | 0.0004  |         | 0.0000  | < 0.004 | 0.0045  | < 0.0055 | 0.0054  |                  | 0.0040  | <       | 0.0070  |         | 0.000   | < 0.04.44             | 0.00  |
| Selenio                     | mg/l               | 0,03             | 0,0102  | 0,0023  | 0,0468   | 0,0091  | 0,0309  | 0,0066  | 0,021   | 0,0045  | 0,0255   | 0,0054  | 0,0216<br>0,0217 | 0,0046  | 0,0369  | 0,0078  | 0,0135  | 0,003   | 0,0141                | 0,0   |
| Zinco                       | mg/l               | 0,5              | 0,099   | 0,024   | 0,0127   | 0,0044  | 0,052   | 0,013   | 0,074   | 0,019   | 0,125    | 0,031   | -                | 0,0061  | 0,057   | 0,014   | 0,119   | 0,029   | 0,107                 | 0,0   |
| Pesticidi Totali            | mg/l               | 0,05             | <       |         | <        |         | <       |         | <       |         | <        |         | <                |         | <       |         | <       |         | <                     | -     |
| Aldrin                      | mg/l               | 0,01             | <       |         | <        |         | <       |         | <       |         | <        |         | <                |         | <       |         | <       |         | <                     | _     |
| Dieldrin                    | mg/l               | 0,01             | <       |         | <        |         | <       |         | <       |         | <        |         | <                |         | <       |         | <       |         | <                     | 4     |
| Endrin                      | mg/l               | 0,002            | <       |         | <        |         | <       |         | <       |         | <        |         | <                |         | <       |         | <       |         | <                     | 4     |
| Isodrin                     | mg/l               | 0,002            | <       |         | <        |         | <       |         | <       |         | <        |         | <                |         | <       |         | <       |         | <                     | _     |
| Esaclorobenzene (HCB)       | mg/l               |                  | <       |         | <        |         | <       |         | <       |         | <        |         | <                |         | <       |         | <       |         | <                     | 4     |
| Dichlorvos                  | μg/l               |                  | <       |         | <        |         | <       |         | <       |         | <        |         | <                |         | <       |         | <       |         | <                     | 4-    |
| Insetticidi fosforati       | μg/l               |                  | <       |         | <        |         | <       |         | <       |         | <        |         | <                |         | <       |         | <       |         | <                     |       |
| Naftalene                   | μg/l               |                  | 0,035   | 0,009   | 0,017    | 0,00071 | 0,017   | 0,0071  | 0,054   | 0,012   | 0,017    | 0,0071  | 0,015            | 0,007   | 0,176   | 0,046   | 0,022   | 0,0076  | 0,024                 | 0,00  |
| Benzo(b)fluorantene         | μg/l               |                  | <       |         | <        |         | <       |         | <       |         | <        |         | <                |         | 0,015   | 0,007   | <       |         | <                     |       |
| Benzo(k)fluorantene         | μg/l               |                  | <       |         | <        |         | <       |         | <       |         | <        |         | <                |         | 0,005   | 0,0033  | <       |         | <                     |       |
| Benzo(a)pirene              | μg/l               |                  | <       |         | <        |         | <       |         | <       |         | <        |         | <                |         | 0,012   | 0,0037  | 0,006   | 0,0034  | 0,007                 | 0,00  |
| Indeno(1,2,3-cd)pirene      | μg/l               |                  | <       |         | <        |         | <       |         | <       |         | <        |         | <                |         | <       |         | <       |         | <                     |       |
| Benzene                     | μg/l               |                  | <       |         | <        |         | <       |         | <       |         | <        |         | <                |         | <       |         | <       |         | <                     |       |
| Solventi organici aromatici | mg/l               | 0,2              | <       |         | <        |         | <       |         | <       |         | <        |         | <                |         | <       |         | <       |         | <                     |       |
| Tetracloruro di carbonio    | μg/l               |                  | <       |         | <        |         | <       |         | <       |         | <        |         | <                |         | <       |         | <       |         | <                     | 1_    |
| Cloroformio                 | μg/l               |                  | <       |         | <        |         | <       |         | <       |         | <        |         | <                |         | <       |         | <       |         | <                     | 1     |
| 1,2-dicloroetano            | μg/l               |                  | <       |         | <        |         | <       |         | <       |         | <        |         | <                |         | <       |         | <       |         | <                     |       |
| Diclorometano               | μg/l               |                  | <       |         | <        |         | <       |         | <       |         | <        |         | <                |         | <       |         | <       |         | <                     |       |
| Tetracloroetilene           | μg/l               |                  | <       |         | <        |         | <       |         | <       |         | <        |         | <                |         | <       |         | <       |         | <                     |       |
| Tricloroetilene             | μg/l               |                  | <       |         | <        |         | <       |         | <       |         | <        |         | <                |         | <       |         | <       |         | <                     |       |
| Monobutilstagno             | μg/l               |                  | <       |         | <        |         | <       |         | <       |         | <        |         | <                |         | <       |         | <       |         | <                     |       |
| Dibutilstagno               | μg/l               |                  | <       |         | <        |         | <       |         | <       |         | <        |         | <                |         | <       |         | <       |         | <                     |       |
| Tributilstagno              | μg/l               |                  | <       |         | <        |         | <       |         | <       |         | <        |         | <                |         | <       |         | <       |         | <                     |       |
| Monoottilstagno             | μg/l               |                  | <       |         | <        |         | <       |         | <       |         | <        |         | <                |         | <       |         | <       |         | <                     |       |
| Diottilstagno               | μg/l               |                  | <       |         | <        |         | <       |         | <       |         | ٧        |         | <                |         | <       |         | ٧       |         | <                     | Ι     |
| Trifenilstagno              | μg/l               |                  | <       |         | <        |         | <       |         | <       |         | <        |         | <                |         | <       |         | <       |         | <                     |       |
| Tricicloesilstagno          | μg/l               |                  | <       |         | <        |         | <       |         | <       |         | <        |         | <                |         | <       |         | <       |         | <                     |       |
| Bis(2-etilesil)Ftalato      | μg/l               |                  | 0,166   | 0,069   | 0,113    | 0,067   | 0,184   | 0,07    | 0,126   | 0,067   | 0,161    | 0,069   | <                |         | 0,24    | 0,072   | <       |         | <                     |       |

|                             | Lla 't \           | 1.5- 22          | 14/04/2 | 014     | 17/04/2 | 014     | 22/04/2 | 014     | 24/04/2 | 014     | 29/04/2 | 014     | 06/05/2 | 014     | 08/05/2 | 014     | 09/05/2 | 2014     |
|-----------------------------|--------------------|------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|
| Analita                     | Unità<br>di misura | Limiti<br>152/06 | Valore  | Incert. | Valore  | Ince     |
| Temperatura                 | °C                 |                  | 38,2    | 0,2     | 34      | 0,2     | 39,6    | 0,2     | 38,9    | 0,2     | 34,9    | 0,2     | 36,7    | 0,2     | 38      | 0,2     | 40,2    | 0,2      |
| рН                          | -                  |                  | 11,1    | 0,1     | 10,1    | 0,2     | 9,9     | 0,1     | 10,5    | 0,2     | >12     |         | 11,4    | 0,2     | 10,4    | 0,1     | 10,7    | 0,:      |
| Conducibilità               | μS/cm              |                  | 4410    | 71      | 3630    | 58      | 3480    | 56      | 3750    | 60      | 7240    | 116     | 6200    | 99      | 3620    | 58      | 3820    | 6        |
|                             | μονοιιι            |                  |         |         |         |         |         |         |         |         | . = . • |         |         |         |         |         |         |          |
| Idrocarburi                 | μg/l               | 5000             | 87      | 20      | <       |         | <       |         | <       |         | 274     | 22      | <       |         | 107     | 20      | <       |          |
| Arsenico                    | mg/l               | 0,5              | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |          |
| Cadmio                      | mg/l               | 0,02             | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |          |
| Cromo VI                    | mg/l               | 0,2              | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |          |
| Cromo totale                | mg/l               | 2                | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |          |
| Mercurio                    | mg/l               | 0,005            | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |          |
| Nichel                      | mg/l               | 2                | 0,00218 | 0,00073 | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       | 1        |
| Piombo                      | mg/l               | 0,2              | 0,00204 | 0,00072 | <       |         | <       |         | <       |         | 0,00125 | 0,00068 | 0,00164 | 0,0007  | <       |         | <       | <u> </u> |
| Rame                        | mg/l               | 0,1              | 0,00114 | 0,00068 | 0,00292 | 0,00089 | 0,00172 | 0,00073 | 0,00131 | 0,00069 | <       |         | 0,00121 | 0,00068 | <       |         | <       | <u> </u> |
| Selenio                     | mg/l               | 0,03             | <       |         | <       |         | <       |         | <       |         | 0,00133 | 0,00069 | <       |         | <       |         | <       |          |
| Zinco                       | mg/l               | 0,5              | <       |         | 0,0053  | 0,0034  | 0,0064  | 0,0035  | <       |         | <       |         | <       |         | <       |         | <       |          |
| Pesticidi Totali            | mg/l               | 0,05             | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |          |
| Aldrin                      | mg/l               | 0,01             | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |          |
| Dieldrin                    | mg/l               | 0,01             | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |          |
| Endrin                      | mg/l               | 0,002            | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |          |
| Isodrin                     | mg/l               | 0,002            | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |          |
| Esaclorobenzene (HCB)       | mg/l               |                  | <       |         | <       |         | <       |         | ٧       |         | <       |         | <       |         | ٧       |         | <       |          |
| Dichlorvos                  | μg/l               |                  | <       |         | <       |         | <       |         | ٧       |         | <       |         | <       |         | ٧       |         | <       |          |
| Insetticidi fosforati       | μg/l               |                  | <       |         | <       |         | <       |         | ٧       |         | <       |         | <       |         | ٧       |         | <       |          |
| Naftalene                   | μg/l               |                  | <       |         | 0,045   | 0,01    | 0,058   | 0,012   | 0,034   | 0,0089  | 0,031   | 0,0085  | 0,042   | 0,01    | 0,056   | 0,012   | 0,029   | 0,00     |
| Benzo(b)fluorantene         | μg/l               |                  | 0,225   | 0,058   | 0,274   | 0,071   | 0,098   | 0,018   | 0,031   | 0,0084  | 0,011   | 0,0067  | <       |         | <       |         | <       |          |
| Benzo(k)fluorantene         | μg/l               |                  | 0,056   | 0,008   | 0,085   | 0,012   | 0,037   | 0,0058  | 0,014   | 0,0037  | <       |         | <       |         | <       |         | <       |          |
| Benzo(a)pirene              | μg/l               |                  | 0,074   | 0,012   | 0,1     | 0,016   | 0,039   | 0,0069  | 0,014   | 0,0039  | <       |         | <       |         | <       |         | <       | T        |
| Indeno(1,2,3-cd)pirene      | μg/l               |                  | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |          |
| Benzene                     | μg/l               |                  | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |          |
| Solventi organici aromatici | mg/l               | 0,2              | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       | Ī        |
| Tetracloruro di carbonio    | μg/l               |                  | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |          |
| Cloroformio                 | μg/l               |                  | <       |         | <       |         | <       |         | ٧       |         | <       |         | <       |         | <       |         | <       | Ι        |
| 1,2-dicloroetano            | μg/l               |                  | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |          |
| Diclorometano               | μg/l               |                  | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       | Ī        |
| Tetracloroetilene           | μg/l               |                  | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |          |
| Tricloroetilene             | μg/l               |                  | <       |         | <       |         | <       |         | ٧       |         | <       |         | <       |         | <       |         | <       | I        |
| Monobutilstagno             | μg/l               |                  | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |          |
| Dibutilstagno               | μg/l               |                  | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       | Ī        |
| Tributilstagno              | μg/l               |                  | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       | Ī        |
| Monoottilstagno             | μg/l               |                  | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |          |
| Diottilstagno               | μg/l               |                  | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       | T        |
| Trifenilstagno              | μg/l               |                  | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |          |
| Tricicloesilstagno          | μg/l               |                  | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       | 1        |
| Bis(2-etilesil)Ftalato      | μg/l               |                  | <       |         | 0,159   | 0,069   | 0,146   | 0,068   | 0,106   | 0,067   | <       |         | 0,141   | 0,068   | 0,306   | 0,076   | <       | 1        |
| Solventi organici azotati   | mg/l               | 0,1              | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       |         | <       | $\top$   |

|                             |                    |                  |                |          |                |         |         |         |                |          |                | _                                                |                |         |                | _       |                | _                                                |                |         |                | _     |
|-----------------------------|--------------------|------------------|----------------|----------|----------------|---------|---------|---------|----------------|----------|----------------|--------------------------------------------------|----------------|---------|----------------|---------|----------------|--------------------------------------------------|----------------|---------|----------------|-------|
| Analita                     | Unità<br>di misura | Limiti<br>152/06 | 15/04/2        | 1        | 17/04/20       |         | 23/04/2 | 1       | 29/04/2        | 1        | 05/05/2        | 1                                                | 06/05/2        | 1       | 07/05/20       |         | 09/05/2        | 1                                                | 03/11/20       |         | 05/11/2        | _     |
| Townsels                    | °C                 |                  | Valore<br>20.3 | Incert.  | Valore<br>16.2 | Incert. | Valore  | Incert. | Valore<br>18.4 | Incert.  | Valore<br>19.9 | Incert.                                          | Valore<br>21.4 | Incert. | Valore<br>21.2 | Incert. | Valore<br>24.2 | Incert.                                          | Valore<br>22.3 | Incert. | Valore<br>24.4 | Ince  |
| Temperatura                 | °C                 |                  |                |          |                |         | 21,4    | -       |                |          |                |                                                  |                | -       |                |         |                |                                                  |                |         |                | _     |
| pH                          | 0.1                |                  | 7,9            | 0,1      | 8              | 0,2     | 7,6     | 0,1     | 8,6            | 0,2      | 7,5            | 0,2                                              | 7,8            | 0,1     | 8,4            | 0,1     | 8,5            | 0,2                                              | 7,7            | 0,1     | 8,1            | 0,2   |
| Conducibilità               | μS/cm              |                  | 1001           | 16       | 984            | 16      | 879     | 14      | 836            | 13       | 745            | 12                                               | 680            | 11      | 685            | 11      | 672            | 11                                               | 1054           | 17      | 1065           | 17    |
| Idrocarburi                 | μg/l               | 5000             | 99             | 21       | 135            | 21      | 66      | 20      | 168            | 21       | 129            | 20                                               | <              |         | 49             | 20      | <              |                                                  | 194            | 21      | 222            | 22    |
| Arsenico                    | mg/l               | 0,5              | 0,00155        | 0,00073  | 0,00157        | 0,00074 | 0,00139 | 0,00072 | 0,00182        | 0,00077  | <              |                                                  | <              |         | 0,00109        | 0,00068 | 0,00125        | 0,0007                                           | 0,0015         | 0,00073 | 0,00203        | 0,000 |
| Cadmio                      | mg/l               | 0,02             | <              |          | <              |         | <       |         | <              |          | <              |                                                  | <              |         | <              |         | <              |                                                  | 0,00135        | 0,00069 | 0,00116        | 0,000 |
| Cromo VI                    | mg/l               | 0,2              | <              |          | <              |         | <       |         | <              |          | <              |                                                  | <              |         | <              |         | <              |                                                  | <              |         | <              |       |
| Cromo totale                | mg/l               | 2                | 0,0066         | 0,0018   | 0,0053         | 0,0015  | 0,0036  | 0,0011  | 0,0089         | 0,0023   | 0,004          | 0,0012                                           | 0,00274        | 0,00092 | 0,00236        | 0,00085 | 0,00151        | 0,00073                                          | 0,0111         | 0,0028  | 0,0128         | 0,00  |
| Mercurio                    | mg/l               | 0,005            | <              |          | <              |         | <       |         | <              |          | <              |                                                  | <              |         | <              |         | <              |                                                  | <              |         | <              |       |
| Nichel                      | mg/l               | 2                | 0,0174         | 0,0028   | 0,0188         | 0,003   | 0,0285  | 0,0044  | 0,0254         | 0,0039   | 0,0185         | 0,0029                                           | 0,019          | 0,003   | 0,0227         | 0,0036  | 0,0206         | 0,0032                                           | 0,023          | 0,0036  | 0,025          | 0,00  |
| Piombo                      | mg/l               | 0,2              | <              |          | <              |         | <       |         | 0,00249        | 0,00076  | <              |                                                  | <              |         | <              |         | <              |                                                  | <              |         | 0,00207        | 0,000 |
| Rame                        | mg/l               | 0,1              | 0,0132         | 0,0029   | 0,0091         | 0,0021  | 0,0083  | 0,0019  | 0,0186         | 0,004    | 0,0125         | 0,0027                                           | 0,011          | 0,0025  | 0,005          | 0,0012  | 0,0046         | 0,0012                                           | 0,01           | 0,0022  | 0,0319         | 0,00  |
| Selenio                     | mg/l               | 0,03             | 0,00171        | 0,00073  | 0,00178        | 0,00074 | 0,00155 | 0,00072 | 0,00114        | 0,00068  | <              |                                                  | <              |         | 0,00102        | 0,00067 | <              |                                                  | 0,00148        | 0,00071 | 0,00169        | 0,000 |
| Zinco                       | mg/l               | 0,5              | 0,068          | 0,017    | 0,07           | 0,018   | 0,067   | 0,017   | 0,135          | 0,033    | 0,079          | 0,02                                             | 0,065          | 0,016   | 0,069          | 0,017   | 0,078          | 0,019                                            | 0,049          | 0,013   | 0,087          | 0,02  |
| Pesticidi Totali            | mg/l               | 0,05             | <              |          | <              |         | <       |         | <              |          | <              |                                                  | <              |         | <              |         | <              |                                                  | <              |         | <              | 1     |
| Aldrin                      | mg/l               | 0,01             | <              |          | <              |         | <       |         | <              |          | <              |                                                  | <              |         | <              |         | <              |                                                  | <              |         | <              |       |
| Dieldrin                    | mg/l               | 0,01             | <              |          | <              |         | <       |         | <              |          | <              |                                                  | <              |         | <              |         | <              |                                                  | <              |         | <              | +     |
| Endrin                      | mg/l               | 0,002            | <              |          | <              |         | <       |         | <              |          | <              |                                                  | <              |         | <              |         | <              |                                                  | <              |         | <              | +     |
| Isodrin                     | mg/l               | 0,002            | <              |          | <              |         | <       |         | <              |          | <              |                                                  | <              |         | <              |         | <              |                                                  | <              |         | <              | 1     |
| Esaclorobenzene (HCB)       | mg/l               |                  | <              |          | <              |         | <       |         | <              |          | <              |                                                  | <              |         | <              |         | <              |                                                  | <              |         | <              | +     |
| Dichlorvos                  | μg/l               |                  | <              |          | <              |         | <       |         | <              |          | <              |                                                  | <              |         | <              |         | <              |                                                  | <              |         | <              | †     |
| Insetticidi fosforati       | μg/l               |                  | <              |          | <              |         | <       |         | <              |          | <              |                                                  | <              |         | <              |         | <              |                                                  | <0,05          |         | <0,05          | †     |
| Naftalene                   | μg/l               |                  | <              |          | <              |         | <       |         | <              |          | <              |                                                  | 0,064          | 0,013   | <              |         | <              |                                                  | <              |         | <              | +     |
| Benzo(b)fluorantene         | μg/l               |                  | <              |          | <              |         | <       |         | <              |          | <              |                                                  | <              |         | <              |         | <              |                                                  | <              |         | <              | +     |
| Benzo(k)fluorantene         | μg/l               |                  | <              |          | <              |         | <       |         | <              |          | <              |                                                  | <              |         | <              |         | <              |                                                  | <              |         | <              | †     |
| Benzo(a)pirene              | μg/l               |                  | <              |          | <              |         | <       |         | <              |          | <              |                                                  | <              |         | <              |         | <              |                                                  | <              |         | <              | †     |
| Indeno(1,2,3-cd)pirene      | μg/l               |                  | <              |          | <              |         | <       |         | <              |          | <              |                                                  | <              |         | <              |         | <              |                                                  | <              |         | <              | +-    |
| Benzene                     | μg/l               |                  | <              |          | <              |         | <       |         | <              |          | <              |                                                  | <              |         | <              |         | <              |                                                  | 1,56           | 0.71    | <              | +-    |
| Solventi organici aromatici | mg/l               | 0,2              | <              |          | <              |         | <       |         | <              |          | <              |                                                  | <              |         | <              |         | <              |                                                  | 0,00156        | 0,00071 | <0,0011        | +-    |
| Tetracloruro di carbonio    | μg/l               | 0,2              | <              |          | <              |         | <       |         | <              |          | <              |                                                  | <              |         | <              |         | <              |                                                  | <              | .,      | <              | +-    |
| Cloroformio                 | μg/l               |                  | 67             | 28       | 52             | 22      | 36      | 15      | 34             | 15       | 0,78           | 0.43                                             | 2.7            | 1.2     | 0.68           | 0.4     | <              |                                                  | 46             | 19      | 59             | 25    |
| 1,2-dicloroetano            | μg/l               |                  | <              |          | <              |         | <       |         | <              |          | <              | 0,10                                             | <              | 1,2     | <              | 0,4     | <              |                                                  | 1,67           | 0,76    | <              |       |
| Diclorometano               | μg/l               |                  | <              |          | <              |         | <       |         | <              |          | <              |                                                  | <              |         | <              |         | <              |                                                  | <              | 0,70    | <              | +     |
| Tetracloroetilene           | μg/l               |                  |                | -        | <              |         |         |         | <              | -        | <              | <del>                                     </del> |                |         | <              |         | <              | <del>                                     </del> | <              |         |                | +     |
| Tricloroetilene             | μg/l               |                  | <              |          | <              |         | <       |         | <              |          | <              |                                                  | <              |         | <              |         | <              |                                                  | <              |         | <              | +     |
| Monobutilstagno             | μg/I<br>μg/I       |                  | <              |          | <              |         | <       |         | <              |          | <              |                                                  | <              |         | <              | -       | <              |                                                  | <              |         | <              | +     |
| Dibutilstagno               |                    |                  | <              | <u> </u> | <              |         |         |         | <              | <u> </u> | <              | <u> </u>                                         | <              |         | <              |         | <              | <u> </u>                                         | <              |         |                | +     |
| Tributilstagno              | μg/l               |                  | <              |          | <              |         | <       |         | <              |          | <              |                                                  | <              |         | <              |         | <              |                                                  | <              |         | <              | +     |
|                             | μg/l               |                  | `              | 1        | `              |         | •       |         | `              | 1        | `              | 1                                                | `              |         | `              | 1       | ,              | 1                                                | <              |         |                | +     |
| Tetrabutilstagno            | uc/l               |                  | <              | 1        | <              |         | <       |         | <              | 1        | <              | <b> </b>                                         | <              |         | <              |         | <              | <b> </b>                                         | <              |         | <              | +     |
| Monoottilstagno             | μg/l               |                  |                | -        |                |         |         |         |                | -        |                | -                                                |                |         |                |         |                | -                                                |                |         |                | +     |
| Diottilstagno               | μg/l               |                  | <              |          | <              |         | <       |         | <              |          | <              |                                                  | <              |         | <              |         | <              |                                                  | <              |         | <              | _     |
| Trifenilstagno              | μg/l               |                  | <              |          | <              |         | <       |         | <              |          | <              |                                                  | <              |         | <              |         | <              |                                                  | <              |         | <              | +     |
| Tricicloesilstagno          | μg/l               |                  | <              |          | <              |         | <       |         | <              |          | <              |                                                  | <              |         | <              |         | <              | 1                                                | <              |         | <              | +-    |
| Bis(2-etilesil)Ftalato      | μg/l               |                  | 0,109          | 0,067    | 0,282          | 0,075   | 0,233   | 0,072   | 0,11           | 0,067    | 0,11           | 0,067                                            | 0,132          | 0,068   | 0,113          | 0,067   | <              | -                                                | <              |         | 0,123          | 0,06  |
| Acetonitrile                | mg/l               |                  |                | ļ        |                |         |         |         |                | ļ        |                | ļ                                                |                |         |                | ļ       |                | ļ                                                | <              |         | <              | ₩     |
| Acrilonitrile               | mg/l               |                  |                | 1        | I              | 1       |         | 1       | l              | 1        | l              | 1                                                | l              | 1       | l              | I       |                | 1                                                | <              | 1       | <              | 1     |

| Analita                                  | Unità<br>di misura | Limiti<br>152/06 | 16/04/2        | 1        | 22/04/20       |         | 24/04/2        | 1       | 29/04/2        | 1        | 05/05/2<br>Valore |          | 06/05/2        | 1       | 07/05/2        |         | 09/05/2        | 1        | 03/11/2        |         | 05/11/2        | 2014<br>Incert |
|------------------------------------------|--------------------|------------------|----------------|----------|----------------|---------|----------------|---------|----------------|----------|-------------------|----------|----------------|---------|----------------|---------|----------------|----------|----------------|---------|----------------|----------------|
| Temperatura                              | °C                 |                  | Valore<br>28.1 | Incert.  | Valore<br>27.3 | Incert. | Valore<br>36.5 | Incert. | Valore<br>24.6 | Incert.  | 33.2              | Incert.  | Valore<br>35,1 | Incert. | Valore<br>34.3 | Incert. | Valore<br>36.2 | Incert.  | Valore<br>34.5 | Incert. | Valore<br>24.4 | 0,2            |
| рН                                       | -                  |                  | 8,5            | 0,1      | 8,4            | 0,2     | 8,4            | 0,2     | 8,5            | 0,2      | 8,4               | 0,2      | 8,8            | 0,1     | 8,8            | 0,2     | 8,4            | 0,2      | 8,5            | 0,2     | 8,4            | 0,1            |
| Conducibilità                            | μS/cm              |                  | 5110           | 82       | 4830           | 77      | 5040           | 81      | 4900           | 79       | 4490              | 72       | 4690           | 75      | 4640           | 74      | 4040           | 65       | 3100           | 50      | 3080           | 49             |
| Odriddolollita                           | μο/οπ              |                  | 3110           | O.E.     | 4000           |         | 5040           |         | 4300           |          | 4430              |          | 4030           | ,,,     | 4040           |         | 4040           |          | 3100           | - 00    | 3000           | -              |
| Idrocarburi                              | μg/l               | 5000             | 119            | 21       | 127            | 21      | 87             | 20      | 118            | 21       | 103               | 21       | <              |         | 70             | 20      | 54             | 20       | 134            | 21      | 137            | 21             |
| Arsenico                                 | mg/l               | 0,5              | 0,00123        | 0,0007   | 0,0015         | 0,00073 | 0,00114        | 0,00069 | <b>«</b>       |          | <                 |          | <              |         | 0,00118        | 0,00069 | <b>«</b>       |          | <              |         | <              | 0,000          |
| Cadmio                                   | mg/l               | 0,02             | <              |          | <              |         | <              |         | <b>«</b>       |          | <                 |          | <              |         | ٧              |         | <b>«</b>       |          | <              |         | <              | 0,000          |
| Cromo VI                                 | mg/l               | 0,2              | <              |          | <              |         | <              |         | <b>«</b>       |          | <                 |          | <              |         | ٧              |         | <b>«</b>       |          | <              |         | <              |                |
| Cromo totale                             | mg/l               | 2                | 0,00295        | 0,00096  | 0,009          | 0,0023  | 0,0034         | 0,0011  | 0,0015         | 0,00072  | 0,00153           | 0,00073  | 0,00196        | 0,00079 | 0,00116        | 0,00069 | 0,00149        | 0,00072  | 0,00272        | 0,00092 | 0,00107        | 0,000          |
| Mercurio                                 | mg/l               | 0,005            | <              |          | <              |         | <              |         | <              |          | <                 |          | <              |         | <              |         | <              |          | <              |         | <              | T              |
| Nichel                                   | mg/l               | 2                | 0,0069         | 0,0013   | 0,081          | 0,0014  | 0,0065         | 0,0012  | 0,0044         | 0,00094  | 0,0069            | 0,0012   | 0,0071         | 0,0013  | 0,0066         | 0,012   | 0,0066         | 0,0012   | 0,0086         | 0,0015  | 0,00442        | 0,000          |
| Piombo                                   | mg/l               | 0,2              | <              |          | 0,00161        | 0,0007  | 0,00112        | 0,00067 | <              |          | <                 |          | <              |         | <              |         | <              |          | <              |         | <              |                |
| Rame                                     | mg/l               | 0,1              | 0,0096         | 0,0021   | 0,0101         | 0,0022  | 0,0104         | 0,0023  | 0,0048         | 0,0012   | 0,0047            | 0,0012   | 0,0063         | 0,0015  | 0,0044         | 0,0011  | 0,0037         | 0,001    | 0,0073         | 0,0017  | 0,005          | 0,00           |
| Selenio                                  | mg/l               | 0,03             | <              |          | 0,00115        | 0,00068 | 0,0038         | 0,001   | <              |          | <                 |          | <              |         | <              |         | <              |          | <              |         | <              |                |
| Zinco                                    | mg/l               | 0,5              | 0,313          | 0,069    | 0,53           | 0,11    | 0,322          | 0,07    | 0,096          | 0,024    | 0,142             | 0,035    | 0,229          | 0,055   | 0,139          | 0,034   | 0,153          | 0,038    | 0,269          | 0,061   | 0,173          | 0,04           |
| Pesticidi Totali                         | mg/l               | 0,05             | <              |          | <              |         | <              |         | <              |          | <                 |          | <              |         | <              |         | <              |          | <              |         | <              |                |
| Aldrin                                   | mg/l               | 0,01             | <              |          | <              |         | <              |         | <              |          | <                 |          | <              |         | <              |         | <              |          | <              |         | <              | 1              |
| Dieldrin                                 | mg/l               | 0,01             | <              |          | <              |         | <              |         | <              |          | <                 |          | <              |         | <              |         | <              |          | <              |         | <              | 1              |
| Endrin                                   | mg/l               | 0,002            | <              |          | <              |         | <              |         | <              |          | <                 |          | <              |         | <              |         | <              |          | <              |         | <              | 1              |
| Isodrin                                  | mg/l               | 0,002            | <              |          | <              |         | <              |         | <              |          | <                 |          | <              |         | <              |         | <              |          | <              |         | <              | 1              |
| Esaclorobenzene (HCB)                    | mg/l               |                  | <              |          | <              |         | <              |         | <              |          | <                 |          | <              |         | <              |         | <              |          | <              |         | <              | 1              |
| Dichlorvos                               | μg/l               |                  | <              |          | <              |         | <              |         | <              |          | <                 |          | <              |         | <              |         | <              |          | <              |         | <              | 1              |
| Insetticidi fosforati                    | μg/l               |                  | <              |          | <              |         | <              |         | <              |          | <                 |          | <              |         | <              |         | <              |          | <0,05          |         | <0,05          | 1              |
| Naftalene                                | μg/l               |                  | <              |          | 0,026          | 0,008   | 0,011          | 0,0067  | <              |          | <                 |          | <              |         | <              |         | <              |          | <              |         | 0,018          | 0,007          |
| Benzo(b)fluorantene                      | μg/l               |                  | <              |          | <              |         | <              |         | <              |          | <                 |          | <              |         | <              |         | <              |          | <              |         | <              | 1              |
| Benzo(k)fluorantene                      | μg/l               |                  | <              |          | <              |         | <              |         | <              |          | <                 |          | <              |         | <              |         | <              |          | <              |         | <              | 1              |
| Benzo(a)pirene                           | μg/l               |                  | <              |          | <              |         | <              |         | <              |          | <                 |          | <              |         | <              |         | <              |          | <              |         | <              | 1              |
| Indeno(1,2,3-cd)pirene                   | μg/l               |                  | <              |          | <              |         | <              |         | <              |          | <                 |          | <              |         | <              |         | <              |          | <              |         | <              | 1              |
| Benzene                                  | μg/l               |                  | <              |          | <              |         | <              |         | <              |          | <                 |          | <              |         | <              |         | <              |          | <              |         | <              | 1              |
| Solventi organici aromatici              | mg/l               | 0,2              | <              |          | <              |         | <              |         | <              |          | <                 |          | <              |         | <              |         | <              |          | <0,0011        |         | <0,0011        | +-             |
| Tetracloruro di carbonio                 | μg/l               |                  | <              |          | <              |         | <              |         | <              |          | <                 |          | <              |         | <              |         | <              |          | <              |         | <              | +              |
| Cloroformio                              | μg/l               |                  | <              |          | <              |         | <              |         | <              |          | <                 |          | <              |         | <              |         | <              |          | 0,75           | 0,42    | <              | +              |
| 1,2-dicloroetano                         | μg/l               |                  | <              |          | <              |         | <              |         | <              |          | <                 |          | <              |         | <              |         | <              |          | 2,04           | 0,9     | <              | +              |
| Diclorometano                            | μg/l               |                  | <              |          | <              |         | <              |         | <              |          | <                 |          | <              |         | <              |         | <              |          | <              | -       | <              | †              |
| Tetracloroetilene                        | μg/l               |                  | <              |          | <              |         | <              |         | <              |          | <                 |          | <              |         | <              |         | <              |          | <              |         | <              | +              |
| Tricloroetilene                          | μg/l               |                  | <              |          | <              |         | <              |         | <              |          | <                 |          | <              |         | <              |         | <              |          | <              |         | <              | †              |
| Monobutilstagno                          | μg/l               |                  | <              |          | <              |         | <              |         | <              |          | <                 |          | <              |         | <              |         | <              |          | <              |         | <              | +              |
| Dibutilstagno                            | μg/l               |                  | <              |          | <              |         | <              |         | <              |          | <                 |          | <              |         | <              |         | <              |          | <              |         | <              | +              |
| Tributilstagno                           | μg/l               |                  | <              |          | <              |         | <              |         | <              |          | <                 |          | <              |         | <              |         | <              |          | <              |         | <              | +              |
| Tetrabutilstagno                         | r-9r ·             |                  |                |          |                |         | -              |         | -              |          | -                 |          |                |         | *              |         | -              |          | <              |         | <              | +              |
| Monoottilstagno                          | μg/l               |                  | <              |          | <              |         | <              |         | <              |          | <                 |          | <              |         | <              |         | <              |          | <              |         | <              | +              |
| Diottilstagno                            | μg/l               |                  | <              |          | <              |         | <              |         | <              |          | <                 | 1        | <              |         | <              |         | <              |          | <              |         | · ·            | +              |
| Trifenilstagno                           | μg/I               |                  | <              | <b>-</b> | <              |         | <              |         | · ·            | <b>-</b> | <                 |          | <              |         | <              |         | · ·            | <b>-</b> | <              |         | <              | +              |
| Tricicloesilstagno                       | μg/I<br>μg/I       |                  | <              | <u> </u> | <              |         | <              |         | <              | <u> </u> | <                 |          | <              |         | <              |         | <              | <u> </u> | <              |         | <              | +              |
| Bis(2-etilesil)Ftalato                   |                    |                  |                |          | 0,205          | 0,07    | 0,115          | 0,067   | 0,57           | 0,14     |                   |          | 0,102          | 0,067   | 0,29           | 0,075   | 0,108          | 0,067    | <              |         | 0,12           | 0,06           |
| Acetonitrile                             | μg/l               |                  | <              | -        | 0,205          | 0,07    | 0,115          | 0,067   | 0,57           | 0,14     | <                 |          | 0,102          | 0,067   | 0,29           | 0,075   | 0,108          | 0,067    | <              |         | 0,12           | 0,00           |
|                                          | mg/l               |                  |                | 1        |                |         |                | 1       |                | <b> </b> |                   |          |                | 1       |                |         |                | <b> </b> |                |         | -              | +-             |
| Acrilonitrile  Solventi organici azotati | mg/l<br>mg/l       | 0,1              | <              | ļ        |                |         |                |         |                | ļ        |                   | <u> </u> |                |         |                |         |                | <u> </u> | <              |         | <0,022         | 4              |

|                             |                    |                  |         |         | 40711   | 11411 1 |         | 0111711 | RIFICAZIO |         | 002     |         |          |             |         |         |         |        |
|-----------------------------|--------------------|------------------|---------|---------|---------|---------|---------|---------|-----------|---------|---------|---------|----------|-------------|---------|---------|---------|--------|
| Analita                     | Unità<br>di misura | Limiti<br>152/06 | 14/04/2 |         | 17/04/2 |         | 22/04/2 |         | 24/04/2   |         | 29/04/2 |         | 06/05/20 |             | 08/05/2 |         | 09/05/2 |        |
|                             |                    |                  | Valore  | Incert. | Valore  | Incert. | Valore  | Incert. | Valore    | Incert. | Valore  | Incert. | Valore   | Incert.     | Valore  | Incert. | Valore  | Ince   |
| Temperatura                 | °C                 |                  | 38,9    | 0,2     | 35,4    | 0,2     | 40,9    | 0,2     | 37,5      | 0,2     | 40,5    | 0,2     | 39,9     | 0,2         | 39,5    | 0,2     | 41      | 0,2    |
| рН                          |                    |                  | 8,9     | 0,1     | 9,4     | 0,2     | 10,1    | 0,1     | 9,8       | 0,1     | 9,6     | 0,2     | 9,9      | 0,2         | 9,5     | 0,1     | 10,1    | 0,     |
| Conducibilità               | μS/cm              |                  | 1611    | 26      | 1704    | 27      | 1563    | 25      | 1645      | 26      | 1680    | 27      | 1903     | 31          | 1729    | 28      | 1799    | 2      |
| Idrocarburi                 | μg/l               | 5000             | <       |         | 91      | 20      | 46      | 20      | 43        | 20      | <       |         | 134      | 21          | <       |         | 41      | 2      |
| Arsenico                    | mg/l               | 0,5              | <       |         | <       |         | 0,00208 | 0,00081 | 0,00108   | 0,00068 | <       |         | <        |             | <       |         | <       |        |
| Cadmio                      | mg/l               | 0,02             | <       |         | <       |         | <       |         | <         |         | <       |         | <        |             | <       |         | <       |        |
| Cromo VI                    | mg/l               | 0,2              | <       |         | <       |         | <       |         | <         |         | <       |         | <        |             | <       |         | <       |        |
| Cromo totale                | mg/l               | 2                | <       |         | <       |         | <       |         | <         |         | <       |         | <        |             | <       |         | <       | 1      |
| Mercurio                    | mg/l               | 0,005            | <       |         | <       |         | <       |         | <         |         | <       |         | <        |             | <       |         | <       |        |
| Nichel                      | mg/l               | 2                | <       |         | <       |         | <       |         | <         |         | <       |         | <        |             | <       |         | <       | $\top$ |
| Piombo                      | mg/l               | 0,2              | <       |         | <       |         | <       |         | <         |         | <       |         | <        |             | <       |         | <       | T      |
| Rame                        | mg/l               | 0,1              | <       |         | <       |         | <       |         | <         |         | <       |         | <        |             | <       |         | <       | T      |
| Selenio                     | mg/l               | 0,03             | <       |         | <       |         | <       |         | <         |         | <       |         | <        |             | 0,00103 | 0,00067 | <       | T      |
| Zinco                       | mg/l               | 0,5              | <       |         | <       |         | <       |         | <         |         | <       |         | <        |             | <       |         | <       | T      |
| Pesticidi Totali            | mg/l               | 0,05             | <       |         | <       |         | <       |         | <         |         | <       |         | <        |             | <       |         | <       | $\top$ |
| Aldrin                      | mg/l               | 0,01             | <       |         | <       |         | <       |         | <         |         | <       |         | <        |             | <       |         | <       | +      |
| Dieldrin                    | mg/l               | 0,01             | <       |         | <       |         | <       |         | <         |         | <       |         | <        |             | <       |         | <       | T      |
| Endrin                      | mg/l               | 0,002            | <       |         | <       |         | <       |         | <         |         | <       |         | <        |             | <       |         | <       | $\top$ |
| Isodrin                     | mg/l               | 0,002            | <       |         | <       |         | <       |         | <         |         | <       |         | <        |             | <       |         | <       | $\top$ |
| Esaclorobenzene (HCB)       | mg/l               |                  | <       |         | <       |         | <       |         | <         |         | <       |         | <        |             | <       |         | <       | $\top$ |
| Dichlorvos                  | μg/l               |                  | <       |         | <       |         | <       |         | <         |         | <       |         | <        |             | <       |         | <       | $\top$ |
| Insetticidi fosforati       | μg/l               |                  | <       |         | <       |         | <       |         | <         |         | <       |         | <        |             | <       |         | <       | +      |
| Naftalene                   | μg/l               |                  | 0,023   | 0,007   | 0,143   | 0,027   | 0,045   | 0,01    | 0,025     | 0,0079  | 0,085   | 0,017   | 0,034    | 0,0089      | 0,026   | 0,008   | 0,031   | 0,0    |
| Benzo(b)fluorantene         | μg/l               |                  | <       |         | <       |         | <       |         | <         |         | <       |         | <        |             | <       |         | <       | $\top$ |
| Benzo(k)fluorantene         | μg/l               |                  | <       |         | <       |         | <       |         | <         |         | <       |         | <        |             | <       |         | <       | $\top$ |
| Benzo(a)pirene              | μg/l               |                  | <       |         | <       |         | <       |         | <         |         | <       |         | <        |             | <       |         | <       | $\top$ |
| Indeno(1,2,3-cd)pirene      | μg/l               |                  | <       |         | <       |         | <       |         | <         |         | <       |         | <        |             | <       |         | <       | +      |
| Benzene                     | μg/l               |                  | <       |         | <       |         | <       |         | <         |         | <       |         | <        |             | <       |         | <       | +      |
| Solventi organici aromatici | mg/l               | 0,2              | <       |         | <       |         | <       |         | <         |         | <       |         | <        |             | <       |         | <       | $\top$ |
| Tetracloruro di carbonio    | μg/l               |                  | <       |         | <       |         | <       |         | <         |         | <       |         | <        |             | <       |         | <       | T      |
| Cloroformio                 | μg/l               |                  | <       |         | <       |         | <       |         | <         |         | <       |         | <        |             | <       |         | <       | T      |
| 1,2-dicloroetano            | μg/l               |                  | <       |         | <       |         | <       |         | <         |         | <       |         | <        |             | <       |         | <       | T      |
| Diclorometano               | μg/l               |                  | <       |         | <       |         | <       |         | <         |         | <       |         | <        |             | <       |         | <       | T      |
| Tetracloroetilene           | μg/l               |                  | <       |         | <       |         | <       |         | <         |         | <       |         | <        |             | <       |         | <       | T      |
| Tricloroetilene             | μg/l               |                  | <       |         | <       |         | <       |         | <         |         | <       |         | <        |             | <       |         | <       | T      |
| Monobutilstagno             | μg/l               |                  | <       |         | <       |         | <       |         | <         |         | <       |         | <        |             | <       |         | <       | T      |
| Dibutilstagno               | μg/l               |                  | <       |         | <       |         | <       |         | <         |         | <       |         | <        |             | <       |         | <       | +      |
| Tributilstagno              | μg/l               |                  | <       |         | <       |         | <       |         | <         |         | <       |         | <        |             | <       |         | <       | +      |
| Monoottilstagno             | μg/l               |                  | <       |         | <       |         | <       |         | <         |         | <       |         | <        |             | <       |         | <       | +      |
| Diottilstagno               | μg/l               |                  | <       |         | <       |         | <       |         | <         |         | <       |         | <        |             | <       |         | <       | +      |
| Trifenilstagno              | μg/l               |                  | <       |         | <       |         | <       |         | <         |         | <       |         | <        |             | <       |         | <       | +      |
| Tricicloesilstagno          | μg/l               |                  | <       |         | <       |         | <       |         | <         |         | <       |         | <        |             | <       |         | <       | +      |
| Bis(2-etilesil)Ftalato      | μg/l               |                  | <       |         | 0,191   | 0,07    | 0,105   | 0,067   | <         |         | 0,119   | 0,067   | 0,117    | 0,067       | 0,265   | 0,074   | 0,149   | 0,0    |
| Solventi organici azotati   | mg/l               | 0,1              | <       |         | <       | -       | <       |         | <         | 1       | <       |         | <        | <del></del> | <       | -       | <       | +-     |

|                                    |                    |                  |         | 41       | AI - IMPIA | OTNA     | DI SEDIM | MENTA   | ZIONE, [ | DISOLI   | EAZIONE | , FILT                                           | RAZIONE | E RA                                             | AFFREDD | DAMEN   | то ссс  | 2       |          |         |          |         |         |                                                  |
|------------------------------------|--------------------|------------------|---------|----------|------------|----------|----------|---------|----------|----------|---------|--------------------------------------------------|---------|--------------------------------------------------|---------|---------|---------|---------|----------|---------|----------|---------|---------|--------------------------------------------------|
| Analita                            | Unità<br>di misura | Limiti<br>152/06 | 15/04/2 | 014      | 17/04/2    | 014      | 23/04/2  | 014     | 28/04/2  |          | 30/04/2 | 014                                              | 05/05/2 | 014                                              | 07/05/2 | 014     | 09/05/2 | 014     | 03/11/20 | 014     | 05/11/20 | 014     | 11/11/2 | 014                                              |
|                                    |                    |                  | Valore  | Incert.  | Valore     | Incert.  | Valore   | Incert. | Valore   | Incert.  | Valore  | Incert.                                          | Valore  | Incert.                                          | Valore  | Incert. | Valore  | Incert. | Valore   | Incert. | Valore   | Incert. | Valore  | Incert.                                          |
| Temperatura                        | °C                 |                  | 30,1    | 0,2      | 18,9       | 0,2      | 24,7     | 0,2     | 30,3     | 0,2      | 22,2    | 0,2                                              | 25,4    | 0,2                                              | 30,8    | 0,2     | 36,3    | 0,2     | 35       | 0,2     | 33,3     | 0,2     | 33,5    | 0,2                                              |
| pН                                 |                    |                  | 7,5     | 0,1      | 7,2        | 0,2      | 7,6      | 0,2     | 7,5      | 0,1      | 7,7     | 0,2                                              | 7,1     | 0,2                                              | 9,4     | 0,1     | 7,2     | 0,2     | 7,1      | 0,2     | 7,5      | 0,2     | 7,3     | 0,2                                              |
| Conducibilità                      | μS/cm              |                  | 998     | 16       | 1079       | 17       | 875      | 14      | 950      | 15       | 1027    | 16                                               | 926     | 15                                               | 935     | 15      | 976     | 16      | 983      | 16      | 992      | 16      | 978     | 16                                               |
| Idrocarburi                        | μg/l               | 5000             | 44      | 20       | <          |          | <        |         | <        |          | 38      | 20                                               | 73      | 20                                               | 96      | 20      | 45      | 21      | <        |         | 49       | 20      | <       |                                                  |
| Arsenico                           | mg/l               | 0,5              | 0,00288 | 0,00097  | 0,0033     | 0,0011   | 0,00281  | 0,00095 | 0,00296  | 0,00098  | 0,00285 | 0,00096                                          | 0,00108 | 0,00068                                          | 0,00291 | 0,00097 | 0,0036  | 0,0012  | 0,00147  | 0,00072 | 0,00175  | 0,00077 | 0,00216 | 0,00083                                          |
| Cadmio                             | mg/l               | 0,02             | <       |          | <          |          | <        |         | <        |          | <       |                                                  | <       |                                                  | <       |         |         |         | 0,00118  | 0,00068 | 0,00107  | 0,00067 | 0,00119 | 0,00068                                          |
| Cromo VI                           | mg/l               | 0,2              | <       |          | <          |          | <        |         | <        |          | <       |                                                  | <       |                                                  | <       |         |         |         | <        |         | <        |         | <       | <u> </u>                                         |
| Cromo totale                       | mg/l               | 2                | 0,0091  | 0,0024   | 0,0076     | 0,002    | 0,0065   | 0,0018  | 0,0082   | 0,0021   | 0,0087  | 0,0023                                           | 0,0033  | 0,0011                                           | 0,005   | 0,014   | 0,0079  | 0,0021  | 0,00302  | 0,00098 | 0,00262  | 0,0009  | 0,00317 | 0,001                                            |
| Mercurio                           | mg/l               | 0,005            | <       |          | <          |          | <        |         | <        |          | <       |                                                  | <       |                                                  | <       |         | -,      |         | <        |         | <        |         | <       | _                                                |
| Nichel                             | mg/l               | 2                | 0,0524  | 0,0094   | 0,066      | 0,012    | 0,0499   | 0,009   | 0,0509   | 0,0092   | 0,062   | 0,011                                            | 0,104   | 0,019                                            | 0,072   | 0,013   | 0,0484  | 0,0088  | 0,00432  | 0,00093 | 0,00453  | 0,00095 | 0,004   | 0,00089                                          |
| Piombo                             | mg/l               | 0,2              | 0,0152  | 0.0025   | 0,0106     | 0.0018   | 0,012    | 0.002   | 0,0139   | 0.0023   | 0.0188  | 0.003                                            | 0,0055  | 0.0011                                           | 0,0111  | 0,019   | 0,0141  | 0.0023  | 0,00119  | 0.00068 | 0,00119  | 0.00067 | 0,00137 | 0,00069                                          |
| Rame                               | mg/l               | 0,1              | 0,0072  | 0,0017   | 0,0163     | 0,0035   | 0,048    | 0,012   | 0,00358  | 0,00099  | 0,0041  | 0,0011                                           | 0,00204 | 0,00077                                          | 0,00285 | 0,00088 | 0,00254 | 0,00083 | 0,00273  | 0,00086 | 0,0095   | 0,0021  | 0,00267 | 0,00085                                          |
| Selenio                            | mg/l               | 0,03             | 0,00233 | 0,0008   | 0,00143    | 0,0007   | 0,00167  | 0,00072 | 0,00338  | 0,00068  | 0,00109 | 0,00068                                          | <       | -,-50,7                                          | 0,00283 | 0,00069 | <       | -,-3000 | 0,00273  | 0.00091 | 0,003    | 0,0009  | 0,00257 | 0,00083                                          |
| Zinco                              | mg/l               | 0,03             | 0,268   | 0.061    | 0,189      | 0.046    | 0,207    | 0.051   | 0,224    | 0.054    | 0,16    | 0.039                                            | 0,27    | 0.061                                            | 0,141   | 0.034   | 0,081   | 0.02    | 0.0268   | 0.0073  | 0,003    | 0.0083  | 0.0296  | 0.0078                                           |
| Pesticidi Totali                   | mg/l               | 0,05             | <       | 0,001    | 0,169      | 0,040    | < <      | 0,001   | <        | 0,004    | < <     | 0,000                                            | < <     | 0,001                                            | 0,141   | 0,004   | < <     | 0,02    | 0,0266   | 0,0073  | 0,0314   | 0,0003  | <       | 0,0070                                           |
| Aldrin                             | mg/l               | 0,03             | <       | -        | <          |          | <        |         | <        |          | <       | <del>                                     </del> | <       | <del>                                     </del> | <       |         | <       |         | <        |         | <        |         | <       | $\vdash$                                         |
| Dieldrin                           | mg/l               | 0,01             | <       |          | <          |          | <        |         | <        |          | <       |                                                  | <       |                                                  | <       |         | <       |         | <        |         | <        |         | <       | -                                                |
| Endrin                             | mg/l               | 0,002            | <       |          | <          |          | <        |         | <        |          | <       |                                                  | <       |                                                  | <       |         | <       |         | <        |         | <        |         | <       | 1                                                |
| Isodrin                            | mg/l               | 0,002            | <       |          | <          |          | <        |         | <        |          | <       |                                                  | <       |                                                  | <       |         | <       |         | <        |         | <        |         |         | -                                                |
| Esaclorobenzene (HCB)              | mg/l               | 0,002            | <       |          | <          |          | <        |         | <        |          | <       |                                                  | <       |                                                  | <       |         | <       |         | <        |         | <        |         | <       | -                                                |
| Dichlorvos                         | <u> </u>           |                  | <       |          | <          |          | <        |         | <        |          | <       |                                                  | <       |                                                  | <       |         | <       |         | <        |         | <        |         | <       | 1                                                |
| Insetticidi fosforati              | μg/l               |                  | <       |          | <          |          | <        |         | <        |          | <       |                                                  | <       |                                                  | <       |         | <       |         | <0,05    |         | <0,05    |         | <0,05   | 1                                                |
| Naftalene                          | μg/l               |                  | 0,059   | 0,012    | <          |          | 0,013    | 0,0068  | 0,015    | 0,007    | <       |                                                  | 0,014   | 0,0069                                           | 0,014   | 0,0069  | 0,014   | 0,0069  | < <      |         | < <      |         | < <     | -                                                |
| Benzo(b)fluorantene                | μg/l               |                  | < <     | 0,012    | <          |          | < <      | 0,0000  | < <      | 0,007    | <       |                                                  | < <     | 0,0009                                           | < <     | 0,0009  | < <     | 0,0009  | <        |         | <        |         | <       | 1                                                |
|                                    | μg/l               |                  | <       |          | <          |          | <        |         | <        |          | <       |                                                  | <       |                                                  | <       |         | <       |         | <        |         | <        |         | <       | 1                                                |
| Benzo(k)fluorantene Benzo(a)pirene | μg/l               |                  | <       |          | <          |          | <        |         | <        |          | <       |                                                  | <       |                                                  | <       |         | <       |         | <        |         | <        |         | <       | -                                                |
|                                    | μg/l               |                  |         |          |            |          |          |         |          |          |         |                                                  |         |                                                  |         |         |         |         |          |         |          |         |         | -                                                |
| Indeno(1,2,3-cd)pirene             | μg/l               |                  | <       |          | <          |          | <        |         | <        |          | <       |                                                  | <       |                                                  | <       |         | <       |         | <        |         | <        |         | <       | -                                                |
| Benzene                            | μg/l               | 0.0              | <       |          | <          |          | <        |         | <        |          | <       |                                                  | <       |                                                  | <       |         | <       |         | <        |         | <        |         | <       |                                                  |
| Solventi organici aromatici        | mg/l               | 0,2              | <       |          | <          |          | <        |         | <        |          | <       |                                                  | <       |                                                  | <       |         | <       |         | <0,0011  |         | <0,0011  |         | <0,0011 |                                                  |
| Tetracloruro di carbonio           | μg/l               |                  | <       |          | <          |          | <        |         | <        |          | <       |                                                  | <       |                                                  | <       |         | <       |         | <        |         | <        |         | <       | -                                                |
| Cloroformio                        | μg/l               |                  | <       | -        | <          | 1        | 1,41     | 0,66    | 1,34     | 0,63     | 0,71    | 0,41                                             | <       | 1                                                | <       |         | <       |         | <        |         | <        |         | <       | $\vdash$                                         |
| 1,2-dicloroetano                   | μg/l               |                  | <       | 1        | <          | 1        | <        |         | <        | 1        | <       | 1                                                | <       | 1                                                | <       |         | <       |         | <        |         | <        |         | <       | $\vdash$                                         |
| Diclorometano                      | μg/l               |                  | <       | 1        | <          | <b> </b> | <        |         | <        | <b> </b> | <       | <b> </b>                                         | <       | <b> </b>                                         | <       |         | <       |         | <        |         | <        |         | <       | <del></del>                                      |
| Tetracloroetilene                  | μg/l               |                  | <       | 1        | <          | <b> </b> | <        |         | <        | <b> </b> | <       | <b> </b>                                         | <       | <b> </b>                                         | <       |         | <       |         | <        |         | <        |         | <       | <del></del>                                      |
| Tricloroetilene                    | μg/l               |                  | <       | 1        | <          | <b> </b> | <        |         | <        | <b> </b> | <       | <b> </b>                                         | <       | <b> </b>                                         | <       |         | <       |         | <        |         | <        |         | <       | $\vdash$                                         |
| Monobutilstagno                    | μg/l               |                  | <       | 1        | <          | 1        | <        |         | <        | 1        | <       | 1                                                | <       | 1                                                | <       |         | <       |         | <        |         | <        |         | <       | <del>                                     </del> |
| Dibutilstagno                      | μg/l               |                  | <       | <b> </b> | <          | <b> </b> | <        |         | <        | <b> </b> | <       | <b> </b>                                         | <       | <b> </b>                                         | <       |         | <       |         | <        |         | <        |         | <       | <del></del>                                      |
| Tributilstagno                     | μg/l               |                  | <       | <u> </u> | <          |          | <        |         | <        |          | <       | <u> </u>                                         | <       | <u> </u>                                         | <       |         | <       |         | <        |         | <        |         | <       | <del>                                     </del> |
| Tetrabutilstagno                   | ļ                  |                  |         | -        |            |          |          |         |          |          |         | -                                                |         | -                                                |         |         |         |         | <        |         | <        |         | <       | ₩                                                |
| Monoottilstagno                    | μg/l               |                  | <       |          | <          |          | <        |         | <        |          | <       | <u> </u>                                         | <       | <u> </u>                                         | <       |         | <       |         | <        |         | <        |         | <       | ₩                                                |
| Diottilstagno                      | μg/l               |                  | <       |          | <          |          | <        |         | <        |          | <       |                                                  | <       |                                                  | <       |         | <       |         | <        |         | <        |         | <       |                                                  |
| Trifenilstagno                     | μg/l               |                  | <       | <b> </b> | <          |          | <        |         | <        |          | <       | <b> </b>                                         | <       | <b> </b>                                         | <       |         | <       |         | <        |         | <        |         | <       |                                                  |
| Tricicloesilstagno                 | μg/l               |                  | <       | ļ        | <          |          | <        |         | <        |          | <       | ļ                                                | <       | ļ                                                | <       |         | <       |         | <        |         | <        |         | <       | <u> </u>                                         |
| Bis(2-etilesil)Ftalato             | μg/l               |                  | 0,161   | 0,069    | 0,13       | 0,067    | 0,182    | 0,069   | 0,201    | 0,07     | 0,43    | 0,11                                             | 0,122   | 0,067                                            | 0,229   | 0,072   | 0,157   | 0,068   | 0,116    | 0,067   | <        |         | 0,192   | 0,07                                             |
| Acetonitrile                       | mg/l               |                  |         |          |            |          |          |         |          |          |         |                                                  |         |                                                  |         |         |         |         | <        |         | <        |         | <       |                                                  |
| Acrilonitrile                      | mg/l               |                  |         |          |            |          |          |         |          |          |         |                                                  |         |                                                  |         |         |         |         | <        |         | <        |         | <       |                                                  |
| Solventi organici azotati          | mg/l               | 0,1              | <       |          | <          |          | <        |         | <        |          | <       |                                                  | <       |                                                  | <       |         | <       |         | <0,022   |         | <0,022   |         | <0,022  |                                                  |

|                             |                    |                  |         |         | 42A     | l - IMP | PIANTO D | I SED   | IMENTAZ | IONE,   | , DISOLE. | AZION   | IE, FILTR | AZION   | IEE RAF | FRE      | DDAMEN <sup>-</sup> | го сс   | О3                                                                                               |         |         |         |                        |         |         |          |
|-----------------------------|--------------------|------------------|---------|---------|---------|---------|----------|---------|---------|---------|-----------|---------|-----------|---------|---------|----------|---------------------|---------|--------------------------------------------------------------------------------------------------|---------|---------|---------|------------------------|---------|---------|----------|
| Analita                     | Unità<br>di misura | Limiti<br>152/06 | 15/04/2 | 014     | 17/04/2 | 2014    | 23/04/2  | 014     | 28/04/2 | 014     | 05/05/2   | 014     | 06/05/2   | 014     | 07/05/2 | _        | 09/05/2             | 014     | 03/11/2                                                                                          | 014     | 05/11/2 | 014     | 05/11/2<br>(field dupl |         | 11/11/2 | 014      |
|                             |                    |                  | Valore  | Incert. | Valore  | Incert. | Valore   | Incert. | Valore  | Incert. | Valore    | Incert. | Valore    | Incert. | Valore  | Incert.  | Valore              | Incert. | Valore                                                                                           | Incert. | Valore  | Incert. | Valore                 | Incert. | Valore  | Incert.  |
| Temperatura                 | °C                 |                  | 24,3    | 0,2     | 10,8    | 0,2     | 30,2     | 0,2     | 29,4    | 0,2     | 27,3      | 0,2     | 29,8      | 0,2     | 31,1    | 0,2      | 31,3                | 0,2     | 31,1                                                                                             | 0,2     | 31,6    | 0,2     | 31,6                   | 0,2     | 32      | 0,2      |
| pН                          |                    |                  | 7,3     | 0,1     | 7,3     | 0,2     | 7,3      | 0,2     | 7,2     | 0,2     | 7,1       | 0,1     | 7         | 0,1     | 8,2     | 0,2      | 7,4                 | 0,2     | 7,3                                                                                              | 0,2     | 7,4     | 0,1     | 7,4                    | 0,1     | 7,3     | 0,2      |
| Conducibilità               | μS/cm              |                  | 999     | 16      | 1040    | 17      | 900      | 14      | 950     | 15      | 950       | 15      | 975       | 16      | 923     | 15       | 923                 | 15      | 944                                                                                              | 15      | 995     | 16      | 995                    | 16      | 993     | 16       |
| Idrocarburi                 | μg/l               | 5000             | <       |         | <       |         | <        |         | 38      | 21      | 67        | 20      | <         |         | 117     | 21       | 52                  | 20      | 80                                                                                               | 20      | <       |         | <                      |         | <       |          |
| Arsenico                    | mg/l               | 0,5              | 0,0034  | 0,0011  | 0,0031  | 0,001   | 0,00301  | 0,00099 | 0,00218 | 0,00083 | 0,00126   | 0,0007  | 0,00169   | 0,00076 | 0,0031  | 0,001    | 0,00294             | 0,00097 | 0,00134                                                                                          | 0,00071 | 0,00179 | 0,00077 | 0,00167                | 0,00075 | 0,00209 | 0,00082  |
| Cadmio                      | mg/l               | 0,02             | <       |         | <       |         | <        |         | <       |         | <         |         | <         |         | <       |          | <                   |         | 0,00113                                                                                          | 0,00068 | 0,00114 | 0,00068 | 0,00117                | 0,00068 | 0,00121 | 0,00068  |
| Cromo VI                    | mg/l               | 0,2              | <       |         | <       |         | <        |         | <       |         | <         |         | <         |         | <       |          | <                   |         | <l.r.< td=""><td></td><td>&lt;</td><td></td><td>&lt;</td><td></td><td>&lt;</td><td></td></l.r.<> |         | <       |         | <                      |         | <       |          |
| Cromo totale                | mg/l               | 2                | 0,0109  | 0,0028  | 0,0086  | 0,0022  | 0,0064   | 0,0017  | 0,0074  | 0,002   | 0,0039    | 0,0012  | 0,0038    | 0,0011  | 0,008   | 0,0021   | 0,0059              | 0,0016  | 0,00234                                                                                          | 0,00085 | 0,00268 | 0,00091 | 0,00291                | 0,00095 | 0,0053  | 0,0015   |
| Mercurio                    | mg/l               | 0,005            | <       |         | <       |         | <        |         | <       |         | <         |         | <         |         | <       |          | <                   |         | <                                                                                                |         | <       |         | <                      |         | <       |          |
| Nichel                      | mg/l               | 2                | 0,0527  | 0,0095  | 0,062   | 0,012   | 0,0479   | 0,0087  | 0,0478  | 0,0086  | 0,101     | 0,019   | 0,081     | 0,015   | 0,008   | 0,015    | 0,0503              | 0,0091  | 0,0054                                                                                           | 0,001   | 0,00474 | 0,00097 | 0,00459                | 0,00095 | 0,00476 | 0,00098  |
| Piombo                      | mg/l               | 0,2              | 0,0244  | 0,0039  | 0,0161  | 0,0026  | 0,0135   | 0,0022  | 0,018   | 0,0029  | 0,0049    | 0,001   | 0,0062    | 0,0012  | 0,0172  | 0,0028   | 0,0165              | 0,0027  | 0,00136                                                                                          | 0,00068 | 0,00138 | 0,00069 | 0,00128                | 0,00068 | 0,0012  | 0,00068  |
| Rame                        | mg/l               | 0,1              | 0,0081  | 0,0018  | 0,0055  | 0,0013  | 0,008    | 0,018   | 0,0045  | 0,0012  | 0,00175   | 0,00074 | 0,00289   | 0,00088 | 0,0038  | 0,001    | 0,00337             | 0,00096 | 0,00311                                                                                          | 0,00092 | 0,00342 | 0,00096 | 0,0043                 | 0,0011  | 0,00309 | 0,00091  |
| Selenio                     | mg/l               | 0,03             | 0,00212 | 0,00078 | 0,0014  | 0,0007  | 0,00192  | 0,0075  | 0,00203 | 0,00076 | <         |         | <         |         | 0,00148 | 0,00071  | 0,00128             | 0,00069 | 0,00339                                                                                          | 0,00095 | 0,00317 | 0,00092 | 0,00282                | 0,00087 | 0,00235 | 0,0008   |
| Zinco                       | mg/l               | 0,5              | 0,284   | 0,064   | 0,249   | 0,058   | 0,232    | 0,055   | 0,227   | 0,054   | 0,264     | 0,06    | 0,186     | 0,045   | 0,18    | 0,044    | 0,13                | 0,032   | 0,0342                                                                                           | 0,0089  | 0,0303  | 0,008   | 0,0313                 | 0,0082  | 0,0306  | 0,0081   |
| Pesticidi Totali            | mg/l               | 0,05             | <       |         | <       |         | <        |         | <       |         | <         |         | <         |         | <       |          | <                   |         | <                                                                                                |         | <       |         | <                      |         | <       |          |
| Aldrin                      | mg/l               | 0,01             | <       |         | <       |         | <        |         | <       |         | <         |         | <         |         | <       |          | <                   |         | <                                                                                                |         | <       |         | <                      |         | <       |          |
| Dieldrin                    | mg/l               | 0,01             | <       |         | <       |         | <        |         | <       |         | <         |         | <         |         | <       |          | <                   |         | <                                                                                                |         | <       |         | <                      |         | <       |          |
| Endrin                      | mg/l               | 0,002            | <       |         | <       |         | <        |         | <       |         | <         |         | <         |         | <       |          | <                   |         | <                                                                                                |         | <       |         | <                      |         | <       |          |
| Isodrin                     | mg/l               | 0,002            | <       |         | <       |         | <        |         | <       |         | <         |         | <         |         | <       |          | <                   |         | <                                                                                                |         | <       |         | <                      |         | <       |          |
| Esaclorobenzene (HCB)       | mg/l               |                  | <       |         | <       |         | <        |         | <       |         | <         |         | <         |         | <       |          | <                   |         | <                                                                                                |         | <       |         | <                      |         | <       |          |
| Dichlorvos                  | μg/l               |                  | <       |         | <       |         | <        |         | <       |         | <         |         | <         |         | <       |          | <                   |         | <                                                                                                |         | <       |         | <                      |         | <       |          |
| Insetticidi fosforati       | μg/l               |                  | <       |         | <       |         | <        |         | <       |         | <         |         | <         |         | <       |          | <                   |         | <                                                                                                |         | <0,05   |         | <0,05                  |         | <0,05   |          |
| Naftalene                   | μg/l               |                  | <       |         | <       |         | 0,015    | 0,007   | <       |         | <         |         | <         |         | 0,024   |          | 0,015               | 0,007   | <                                                                                                |         | <       |         | <                      |         | <       |          |
| Benzo(b)fluorantene         | μg/l               |                  | <       |         | <       |         | <        |         | <       |         | <         |         | <         |         | <       |          | <                   |         | <                                                                                                |         | <       |         | <                      |         | <       |          |
| Benzo(k)fluorantene         | μg/l               |                  | <       |         | <       |         | <        |         | <       |         | <         |         | <         |         | <       |          | <                   |         | <                                                                                                |         | <       |         | <                      |         | <       |          |
| Benzo(a)pirene              | μg/l               |                  | <       |         | <       |         | <        |         | <       |         | <         |         | <         |         | <       |          | <                   |         | <                                                                                                |         | <       |         | <                      |         | <       |          |
| Indeno(1,2,3-cd)pirene      | μg/l               |                  | <       |         | <       |         | <        |         | <       |         | <         |         | <         |         | <       |          | <                   |         | <                                                                                                |         | <       |         | <                      |         | <       |          |
| Benzene                     | μg/l               |                  | <       |         | <       |         | <        |         | <       |         | <         |         | <         |         | <       |          | <                   |         | ٧                                                                                                |         | <       |         | <                      |         | ٧       |          |
| Solventi organici aromatici | mg/l               | 0,2              | <       |         | <       |         | <        |         | <       |         | <         |         | <         |         | <       |          | <                   |         | <0,0011                                                                                          |         | <0,0011 |         | <0,0011                |         | <0,0011 |          |
| Tetracloruro di carbonio    | μg/l               |                  | <       |         | <       |         | <        |         | <       |         | <         |         | <         |         | <       |          | <                   |         | <                                                                                                |         | <       |         | <                      |         | <       |          |
| Cloroformio                 | μg/l               |                  | <       |         | <       |         | 1,61     | 0,73    | 1,23    | 0,59    | 0,62      | 0,39    | <         |         | <       |          | <                   |         | <                                                                                                |         | <       |         | <                      |         | <       |          |
| 1,2-dicloroetano            | μg/l               |                  | <       |         | <       |         | <        |         | <       |         | <         |         | <         |         | <       |          | <                   |         | <                                                                                                |         | <       |         | <                      |         | <       |          |
| Diclorometano               | μg/l               |                  | <       |         | <       |         | <        |         | <       |         | <         |         | <         |         | <       |          | <                   |         | <                                                                                                |         | <       |         | <                      |         | <       |          |
| Tetracloroetilene           | μg/l               |                  | <       |         | <       |         | <        |         | <       |         | <         |         | <         |         | <       |          | <                   |         | <                                                                                                |         | <       |         | <                      |         | <       |          |
| Tricloroetilene             | μg/l               |                  | <       |         | <       |         | <        |         | <       |         | <         |         | <         |         | <       |          | <                   |         | <                                                                                                |         | <       |         | <                      |         | <       |          |
| Monobutilstagno             | μg/l               |                  | <       |         | <       |         | <        |         | <       |         | <         |         | <         |         | <       |          | <                   |         | <                                                                                                |         | <       |         | <                      |         | <       |          |
| Dibutilstagno               | μg/l               |                  | <       |         | <       |         | <        |         | <       |         | <         |         | <         |         | <       | <u> </u> | <                   |         | <                                                                                                |         | <       |         | <                      |         | <       |          |
| Tributilstagno              | μg/l               |                  | <       |         | <       |         | <        |         | <       |         | <         |         | <         |         | <       | <u> </u> | <                   |         | <                                                                                                |         | <       |         | <                      |         | <       |          |
| Tetrabutilstagno            |                    |                  |         |         | ļ       |         |          |         |         |         |           |         |           |         |         | <u> </u> |                     |         | <                                                                                                |         | <       |         | <                      |         | <       |          |
| Monoottilstagno             | μg/l               |                  | <       |         | <       |         | <        |         | <       |         | <         |         | <         |         | <       |          | <                   |         | <                                                                                                |         | <       |         | <                      |         | <       |          |
| Diottilstagno               | μg/l               |                  | <       |         | <       |         | <        |         | <       |         | <         | ļ       | <         |         | <       |          | <                   | ļ       | <                                                                                                |         | <       |         | <                      |         | <       | <u> </u> |
| Trifenilstagno              | μg/l               |                  | <       |         | <       |         | <        |         | <       |         | <         |         | <         |         | <       | <u> </u> | <                   |         | <                                                                                                |         | <       |         | <                      |         | <       |          |
| Tricicloesilstagno          | μg/l               |                  | <       |         | <       |         | <        |         | <       |         | <         |         | <         |         | <       |          | <                   |         | <                                                                                                |         | <       |         | <                      |         | <       | <u> </u> |
| Bis(2-etilesil)Ftalato      | μg/l               |                  | 0,213   | 0,071   | 0,117   | 0,067   | 0,125    | 0,067   | 0,209   | 0,071   | 0,121     | 0,067   | 0,134     | 0,068   | <       | <u> </u> | 0,164               | 0,069   | <                                                                                                |         | <       |         | <                      |         | <       |          |
| Acetonitrile                | mg/l               |                  |         |         |         |         |          |         |         |         |           |         |           |         |         |          |                     |         | <                                                                                                |         | <       |         | <                      |         | <       |          |
| Acrilonitrile               | mg/l               |                  |         |         |         |         |          |         |         |         |           |         |           |         |         |          |                     |         | <                                                                                                |         | <       |         | <                      |         | <       |          |
| Solventi organici azotati   | mg/l               | 0,1              | <       |         | <       |         | <        |         | <       |         | <         |         | <         |         | <       |          | <                   |         | <0,022                                                                                           |         | <0,022  |         | <0,022                 |         | <0,022  |          |

|                                |                    |                  |         | 43       | SAI - IMPIA | ANTO     | DI SEDIM | 1ENTA   | ZIONE, [ | DISOLI  | EAZIONE | , FILT  | RAZIONE  | E RA    | AFFREDD | DAMEN   | NTO CCC | )4      |          |         |         |           |         |          |
|--------------------------------|--------------------|------------------|---------|----------|-------------|----------|----------|---------|----------|---------|---------|---------|----------|---------|---------|---------|---------|---------|----------|---------|---------|-----------|---------|----------|
| Analita                        | Unità<br>di misura | Limiti<br>152/06 | 15/04/2 | 014      | 17/04/2     | 014      | 23/04/2  | 014     | 28/04/2  | 014     | 30/04/2 | 014     | 05/05/20 | 014     | 07/05/2 | 014     | 09/05/2 | 014     | 03/11/2  | 014     | 05/11/2 | 014       | 11/11/2 | 014      |
|                                | di illiodid        | 102700           | Valore  | Incert.  | Valore      | Incert.  | Valore   | Incert. | Valore   | Incert. | Valore  | Incert. | Valore   | Incert. | Valore  | Incert. | Valore  | Incert. | Valore   | Incert. | Valore  | Incert.   | Valore  | Incert.  |
| Temperatura                    | °C                 |                  | 25,9    | 0,2      | 17,9        | 0,2      | 24,1     | 0,2     | 25       | 0,2     | 24      | 0,2     | 21,6     | 0,2     | 26,2    | 0,2     | 27,9    | 0,2     | 24,5     | 0,2     | 28,3    | 0,2       | 26,1    | 0,2      |
| pН                             |                    |                  | 7,8     | 0,1      | 7,2         | 0,2      | 7,3      | 0,2     | 7,6      | 0,1     | 7,9     | 0,2     | 8        | 0,2     | 7,8     | 0,2     | 7,7     | 0,2     | 7,7      | 0,2     | 8,2     | 0,2       | 7,9     | 0,1      |
| Conducibilità                  | μS/cm              |                  | 1077    | 17       | 1043        | 17       | 860      | 14      | 933      | 15      | 1073    | 17      | 946      | 15      | 939     | 15      | 902     | 14      | 1023     | 16      | 1008    | 16        | 994     | 16       |
| Idrocarburi                    | μg/l               | 5000             | 39      | 20       | 50          | 20       | <        |         | <        |         | 76      | 20      | 98       | 20      | 101     | 21      | 43      | 21      | <        |         | 58      | 20        | <       |          |
| Arsenico                       | mg/l               | 0,5              | 0,0034  | 0,0011   | 0,00282     | 0,00095  | 0,00257  | 0,00091 | 0,024    | 0,00087 | 0,0031  | 0,001   | 0,00129  | 0,0007  | 0,00262 | 0,00091 | 0,00279 | 0,00094 | 0,00154  | 0,00073 | 0,00187 | 0,00078   | 0,00198 | 0,0008   |
| Cadmio                         | mg/l               | 0,02             | <       |          | <           |          | <        |         | <        |         | <       |         | <        |         | <       |         | <       |         | 0,0012   | 0,00068 | 0,00119 | 0,00068   | 0,00117 | 0,00068  |
| Cromo VI                       | mg/l               | 0,2              | <       |          | <           |          | <        |         | <        |         | <       |         | <        |         | <       |         | <       |         | <        |         | <       |           | <       |          |
| Cromo totale                   | mg/l               | 2                | 0,0101  | 0,0026   | 0,0066      | 0,0018   | 0,0055   | 0,0015  | 0,0077   | 0,002   | 0,0084  | 0,0022  | 0,0034   | 0,0011  | 0,0045  | 0,0013  | 0,0067  | 0,0018  | 0,00275  | 0,00092 | 0,004   | 0,0012    | 0,0032  | 0,0011   |
| Mercurio                       | mg/l               | 0,005            | <       |          | <           |          | <        |         | <        |         | <       |         | <        |         | <       |         | <       |         | <        |         | <       |           | <       |          |
| Nichel                         | mg/l               | 2                | 0,0504  | 0,0091   | 0,062       | 0,012    | 0,0483   | 0,0087  | 0,0411   | 0,0063  | 0,08    | 0,014   | 0,109    | 0,02    | 0,071   | 0,013   | 0,0519  | 0,0094  | 0,0054   | 0,0011  | 0,0053  | 0,001     | 0,00433 | 0,00093  |
| Piombo                         | mg/l               | 0,2              | 0,0118  | 0,002    | 0,0093      | 0,0016   | 0,008    | 0,014   | 0,0122   | 0,0021  | 0,0174  | 0,0028  | 0,00449  | 0,00095 | 0,0071  | 0,0013  | 0,0119  | 0,002   | 0,00129  | 0,0068  | 0,00164 | 0,0007    | 0,00134 | 0,00068  |
| Rame                           | mg/l               | 0,1              | 0,0059  | 0,0014   | 0,0056      | 0,0013   | 0,005    | 0,0013  | 0,00357  | 0,00099 | 0,06    | 0,012   | 0,00265  | 0,00085 | 0,00261 | 0,00084 | 0,0044  | 0,0012  | 0,00314  | 0,00092 | 0,0048  | 0,0012    | 0,00259 | 0,00084  |
| Selenio                        | mg/l               | 0,03             | 0,00204 | 0,00077  | 0,00187     | 0,00075  | 0,00119  | 0,00068 | 0,00109  | 0,00067 | 0,00324 | 0,00093 | <        | ,       | 0,00144 | 0,00071 | <       | -,      | 0,00294  | 0,00089 | 0,00308 | 0,00091   | 0,00235 | 0,0008   |
| Zinco                          | mg/l               | 0,5              | 0,264   | 0,06     | 0,222       | 0,053    | 0,195    | 0,048   | 0,171    | 0,042   | 0,268   | 0,061   | 0,215    | 0,053   | 0,148   | 0,036   | 0,121   | 0,03    | 0,0261   | 0,0071  | 0,0381  | 0,0098    | 0,0244  | 0,0067   |
| Pesticidi Totali               | mg/l               | 0,05             | <       | -,       | <           | .,       | <        | .,,,,,  | <        |         | <       | .,      | <        | .,,,==  | <       | .,,     | <       | .,      | <        | .,      | <       | .,,,,,,,, | <       | .,       |
| Aldrin                         | mg/l               | 0,01             | <       |          | <           |          | <        |         | <        |         | <       |         | <        |         | <       |         | <       |         | <        |         | <       |           | <       |          |
| Dieldrin                       | mg/l               | 0,01             | <       |          | <           |          | <        |         | <        |         | <       |         | <        |         | <       |         | <       |         | <        |         | <       |           | <       |          |
| Endrin                         | mg/l               | 0,002            | <       |          | <           |          | <        |         | <        |         | <       |         | <        |         | <       |         | <       |         | <        |         | <       |           | <       |          |
| Isodrin                        | mg/l               | 0,002            | <       |          | <           |          | <        |         | <        |         | <       |         | <        |         | <       |         | <       |         | <        |         | <       |           | <       |          |
| Esaclorobenzene (HCB)          | mg/l               | 0,002            |         |          | <           |          | <        |         | <        |         | <       |         | <        |         | <       |         | <       |         | <        |         | <       |           | <       |          |
| Dichlorvos                     | μg/l               |                  | <       |          | <           |          | <        |         | <        |         | <       |         | <        |         | <       |         | <       |         | <        |         | <       |           | <       |          |
| Insetticidi fosforati          |                    |                  |         |          |             |          | <        |         | <        |         |         |         | <        |         | <       |         | <       |         | <0,05    |         | <0,05   |           | <0,05   |          |
| Naftalene                      | μg/l               |                  | 0,073   | 0,015    | 0,012       | 0,0068   | <        |         | <        |         | <       |         | <        |         | 0,015   | 0,007   | <       |         | < <      |         | 0,038   | 0,0094    | < <     |          |
| Benzo(b)fluorantene            | μg/l               |                  | < <     | 0,015    | < <         | 0,0000   | <        |         | <        |         | <       |         | <        |         | < <     | 0,007   | <       |         | <        |         | < <     | 0,0094    | <       |          |
| Benzo(k)fluorantene            | μg/l               |                  |         |          |             |          |          |         |          |         |         |         |          |         |         |         |         |         | <        |         | <       |           | <       |          |
| Benzo(a)pirene                 | μg/l               |                  | <       |          | <           |          | <        |         | <        |         | <       |         | <        |         | <       |         | <       |         | <        |         |         |           | <       |          |
| Indeno(1,2,3-cd)pirene         | μg/l               |                  |         |          |             |          |          |         |          |         |         |         |          |         |         |         | <       |         | <        |         | <       |           | <       |          |
| Benzene                        | μg/l               |                  | <       |          | <           |          | <        |         | <        |         | <       |         | <        |         | <       |         | <       |         | <        |         | <       |           | <       |          |
| Solventi organici aromatici    | μg/l<br>mg/l       | 0,2              | <       |          | <           |          | <        |         | <        |         | <       |         | <        |         | <       |         | <       |         | <0,0011  |         | <0,0011 |           | <0,0011 |          |
| Tetracloruro di carbonio       |                    | 0,2              | <       |          |             |          | <        |         | <        |         | <       |         | <        |         | <       |         |         |         | < 0,0011 |         | <0,0011 |           | <0,0011 |          |
| Cloroformio                    | μg/l               |                  | <       |          | <           |          | 1,73     | 0.78    | 1.49     | 0.69    | 0.92    | 0.48    | 0,69     | 0.41    | <       |         | <       |         | <        |         | <       |           | <       |          |
| 1,2-dicloroetano               | μg/l               |                  | <       |          | <           |          | <        | 0,76    | <        | 0,09    | < <     | 0,40    | < <      | 0,41    | <       |         | <       |         | <        |         | <       |           | <       |          |
| Diclorometano                  | μg/l               |                  | <       |          | <           |          | <        |         | <        |         | <       |         | <        |         | <       |         | <       |         | <        |         | <       |           | <       |          |
| Tetracloroetilene              | μg/l               |                  | <       | <b> </b> | <           |          | · ·      |         | <        |         | <       |         | <        |         | <       |         | · ·     |         | <        |         | <       | <b> </b>  | · ·     | $\vdash$ |
| Tricloroetilene                | μg/l<br>μg/l       |                  | <       | <b> </b> | <           |          | <        |         | <        |         | <       |         | <        |         | <       |         | <       |         | <        |         | <       | <b> </b>  | <       | $\vdash$ |
|                                |                    | }                |         | -        |             |          |          |         |          |         |         |         |          |         |         |         |         |         |          |         |         | -         |         |          |
| Monobutilstagno  Dibutilstagno | μg/l               |                  | <       |          | <           |          | <        |         | <        |         | <       |         | <        |         | <       |         | <       |         | <        |         | <       |           | <       |          |
| Tributilstagno                 | μg/l               | }                |         | -        | -           |          |          |         |          |         |         |         |          |         | <       |         |         |         | <        |         | -       | -         | <       |          |
|                                | μg/l               |                  | <       | -        | <           |          | <        |         | <        |         | <       |         | <        |         | <       |         | <       |         |          |         | <       | -         |         |          |
| Tetrabutilstagno               |                    |                  |         |          |             |          |          |         |          |         |         |         |          |         |         |         |         |         | <        |         | <       |           | <       | -        |
| Monoottilstagno                | μg/l               |                  | <       |          | <           | $\vdash$ | <        |         | <        |         | <       |         | <        |         | <       |         | <       |         | <        |         | <       |           | <       | $\vdash$ |
| Diottilstagno                  | μg/l               |                  | <       | -        | <           |          | <        |         | <        |         | <       |         | <        |         | <       |         | <       |         | <        |         | <       | -         | <       | $\vdash$ |
| Trifenilstagno                 | μg/l               |                  | <       | -        | <           |          | <        |         | <        |         | <       |         | <        |         | <       |         | <       |         | <        |         | <       | -         | <       |          |
| Tricicloesilstagno             | μg/l               |                  | <       |          | <           |          | <        |         | <        |         | <       |         | <        |         | <       |         | <       |         | <        |         | <       |           | <       |          |
| Bis(2-etilesil)Ftalato         | μg/l               |                  | <       | ļ        | 0,113       | 0,067    | 0,228    | 0,072   | 0,326    | 0,078   | <       |         | 0,107    | 0,067   | 0,108   | 0,067   | 0,128   | 0,067   | <        |         | <       | ļ         | 0,11    | 0,067    |
| Acetonitrile                   | mg/l               |                  |         | <b> </b> |             |          |          |         |          |         |         |         |          |         |         |         |         |         | <        |         | <       | <b> </b>  | <       |          |
| acrilonitrile                  | mg/l               |                  |         | <u> </u> |             |          |          |         |          |         |         |         |          |         |         |         |         |         | <        |         | <       | <u> </u>  | <       |          |
| Solventi organici azotati      | mg/l               | 0,1              | <       |          | <           |          | <        |         | <        |         | <       |         | <        |         | <       |         | <       |         | <0,022   |         | <0,022  |           | <0,022  |          |

|                             |                    |                  |         |         |         | 24      | AI - IMPI | ANTO    | DI TRAT | TAME    | NTO TNA | 2       |          |         |         |         |         |         |         |       |
|-----------------------------|--------------------|------------------|---------|---------|---------|---------|-----------|---------|---------|---------|---------|---------|----------|---------|---------|---------|---------|---------|---------|-------|
| Analita                     | Unità<br>di misura | Limiti<br>152/06 | 18/04/2 | 014     | 24/04/2 | 014     | 28/04/2   | 014     | 29/04/2 | 014     | 06/05/2 | 014     | 08/05/20 | 014     | 09/05/2 | 014     | 03/11/2 | 014     | 12/11/2 | 014   |
|                             | ui iiisuia         | 152/06           | Valore  | Incert. | Valore  | Incert. | Valore    | Incert. | Valore  | Incert. | Valore  | Incert. | Valore   | Incert. | Valore  | Incert. | Valore  | Incert. | Valore  | Incer |
| Temperatura                 | °C                 |                  |         |         | 19,8    | 0,2     | 18,2      | 0,2     | 20      | 0,2     | 18,9    | 0,2     | 20       | 0,2     | 21,4    | 0,2     | 17,1    | 0,2     | 24,8    | 0,2   |
| pН                          |                    |                  |         |         | 8,1     | 0,1     | 8         | 0,2     | 8,9     | 0,2     | 8,2     | 0,2     | 7,1      | 0,2     | 8,1     | 0,1     | 8,1     | 0,2     | 8,1     | 0,2   |
| Conducibilità               | μS/cm              |                  |         |         | 804     | 13      | 741       | 12      | 660     | 11      | 638     | 10      | 650      | 10      | 663     | 11      | 1307    | 21      | 1194    | 19    |
| Idrocarburi                 | μg/l               | 5000             | 107     | 20      | 720     | 100     | 161       | 21      | 850     | 120     | 221     | 22      | 369      | 24      | 153     | 21      | 140     | 21      | 1360    | 190   |
| Arsenico                    | mg/l               | 0,5              | 0,00189 | 0,00079 | 0,00207 | 0,00082 | 0,00203   | 0,00081 | 0,00155 | 0,00073 | 0,0016  | 0,00074 | 0,00296  | 0,00098 | 0,0035  | 0,0011  | 0,0031  | 0,001   | 0,0037  | 0,001 |
| Cadmio                      | mg/l               | 0,02             | <       |         | <       |         | <         |         | <       |         | <       |         | <        |         | <       |         | <       |         | <       |       |
| Cromo VI                    | mg/l               | 0,2              | <       |         | <       |         | <         |         | <       |         | <       |         | <        |         | <       |         | <       |         | <       |       |
| Cromo totale                | mg/l               | 2                | <       |         | <       |         | <         |         | <       |         | <       |         | <        |         | <       |         | <       |         | <       |       |
| Mercurio                    | mg/l               | 0,005            | <       |         | <       |         | <         |         | <       |         | <       |         | <        |         | <       |         | <       |         | <       |       |
| Nichel                      | mg/l               | 2                | 0,00449 | 0,00095 | 0,00484 | 0,00098 | 0,0069    | 0,0013  | 0,0067  | 0,0013  | 0,0079  | 0,0014  | 0,0068   | 0,0012  | 0,0058  | 0,0011  | 0,0133  | 0,0021  | 0,0105  | 0,001 |
| Piombo                      | mg/l               | 0,2              | <       |         | <       |         | <         |         | <       |         | <       |         | <        |         | <       |         | <       |         | <       |       |
| Rame                        | mg/l               | 0,1              | 0,00112 | 0,00068 | 0,00165 | 0,00073 | 0,00213   | 0,00078 | 0,00166 | 0,00073 | <       |         | <        |         | <       |         | 0,0052  | 0,0013  | 0,0047  | 0,001 |
| Selenio                     | mg/l               | 0,03             | <       |         | <       |         | <         |         | <       |         | <       |         | <        |         | <       |         | <       |         | <       |       |
| Zinco                       | mg/l               | 0,5              | 0,0143  | 0,0047  | 0,0111  | 0,0041  | 0,0084    | 0,0037  | 0,0062  | 0,0035  | <       |         | <        |         | 0,0101  | 0,004   | <       |         | 0,0388  | 0,009 |
| Pesticidi Totali            | mg/l               | 0,05             | <       |         | <       |         | <         |         | <       |         | <       |         | <        |         | <       |         | <       |         | <       |       |
| Aldrin                      | mg/l               | 0,01             | <       |         | <       |         | <         |         | <       |         | <       |         | <        |         | <       |         | <       |         | <       |       |
| Dieldrin                    | mg/l               | 0,01             | <       |         | <       |         | <         |         | <       |         | <       |         | <        |         | <       |         | <       |         | <       |       |
| Endrin                      | mg/l               | 0,002            | <       |         | <       |         | <         |         | <       |         | <       |         | <        |         | <       |         | <       |         | <       |       |
| Isodrin                     | mg/l               | 0,002            | <       |         | <       |         | <         |         | <       |         | <       |         | <        |         | <       |         | <       |         | <       |       |
| Esaclorobenzene (HCB)       | mg/l               | .,               | <       |         | <       |         | <         |         | <       |         | <       |         | <        |         | <       |         | <       |         | <       |       |
| Dichlorvos                  | μg/l               |                  | <       |         | <       |         | <         |         | <       |         | <       |         | <        |         | <       |         | <       |         | <       |       |
| Insetticidi fosforati       | μg/l               |                  | <       |         | <       |         | <         |         | <       |         | <       |         | <        |         | <       |         | <0,05   |         | <0,05   |       |
| Naftalene                   | μg/l               |                  | 0,143   | 0,027   | <       |         | 3,02      | 0,78    | 1,13    | 0,29    | 0,05    | 0,011   | 1,6      | 0,42    | 1,35    | 0,35    | <       |         | 0,115   | 0,022 |
| Benzo(b)fluorantene         | μg/l               |                  | <       |         | <       |         | <         |         | <       | - '     | <       |         | <        |         | <       | -,      | <       |         | <       |       |
| Benzo(k)fluorantene         | μg/l               |                  | <       |         | <       |         | <         |         | <       |         | <       |         | <        |         | <       |         | <       |         | <       |       |
| Benzo(a)pirene              | μg/l               |                  | <       |         | <       |         | <         |         | <       |         | <       |         | <        |         | <       |         | <       |         | <       |       |
| Indeno(1,2,3-cd)pirene      | μg/l               |                  | <       |         | <       |         | <         |         | <       |         | <       |         | <        |         | <       |         | <       |         | <       |       |
| Benzene                     | μg/l               |                  | <       |         | <       |         | <         |         | <       |         | <       |         | <        |         | <       |         | <       |         | <       |       |
| Solventi organici aromatici | mg/l               | 0,2              | <       |         | <       |         | <         |         | <       |         | <       |         | <        |         | <       |         | <0,0011 |         | <0,0011 | 1     |
| Tetracloruro di carbonio    | μg/l               | 0,2              | <       |         | <       |         | <         |         | <       |         |         |         | <        |         | <       |         | <       |         | < <     |       |
| Cloroformio                 | μg/l               |                  | 0,69    | 0,41    | 2,6     | 1,1     | 1,4       | 0,65    | 1,37    | 0,64    | 0,66    | 0,4     | 0,73     | 0,42    | 0,65    | 0,39    | 1,11    | 0,55    | 1,25    | 0,6   |
| 1,2-dicloroetano            | μg/I<br>μg/I       |                  | <       | 0,41    | <       | 1,1     | <         | 0,00    | <       | 0,04    | < <     | 0,4     | < <      | 0,42    | <       | 0,30    | <       | 0,55    | <       | 0,0   |
| Diclorometano               | μg/I<br>μg/I       |                  | <       |         | <       |         | <         |         | <       |         | <       |         | <        |         | <       |         | <       |         | <       |       |
| Tetracloroetilene           | μg/I<br>μg/I       |                  | <       |         | <       |         | <         |         | <       |         | <       |         | <        |         | <       |         | <       |         | <       |       |
| Tricloroetilene             | μg/I<br>μg/I       |                  | <       |         | <       |         | <         |         | <       |         | <       |         | <        |         | <       |         | <       |         | <       | 1     |
| Monobutilstagno             | μg/I<br>μg/I       |                  | <       |         | <       |         | <         |         | <       |         | <       |         | <        |         | <       |         | <       |         | <       |       |
| Dibutilstagno               | μg/I<br>μg/I       |                  | <       |         | <       |         | <         |         | <       |         | <       |         | <        |         | <       |         | <       |         | <       |       |
| Tributilstagno              |                    |                  | <       |         | <       |         | <         |         | <       |         | <       |         | <        |         | <       |         | <       |         | <       | 1     |
| Tetrabutilstagno            | μg/l               |                  |         |         |         |         | ,         |         | ,       |         |         |         | ,        |         | ,       |         | <       |         | <       | 1     |
| Monoottilstagno             | ug/l               |                  | <       |         | <       |         | <         |         | <       |         | <       |         | <        |         | <       |         | <       |         | <       |       |
| Diottilstagno               | μg/l<br>μg/l       |                  | <       |         | <       |         | <         |         | <       |         | <       |         | <        |         | <       |         | <       |         | <       |       |
|                             |                    |                  | <       |         | <       |         |           |         | <       |         | <       |         | <        |         | <       |         | <       |         | <       |       |
| Trifenilstagno              | μg/l               |                  |         |         |         |         | <         |         |         |         |         |         |          |         |         |         | <       |         |         | -     |
| Tricicloesilstagno          | μg/l               |                  | < 0.50  | 0.40    | < 0.400 | 0.00=   | < 200     | 0.076   | < 0.54  | 0.40    | < 0.452 | 0.000   | < 0.404  | 0.000   | <       |         |         | 0.007   | <       |       |
| Bis(2-etilesil)Ftalato      | μg/l               |                  | 0,52    | 0,13    | 0,122   | 0,067   | 0,306     | 0,076   | 0,51    | 0,13    | 0,152   | 0,068   | 0,181    | 0,069   | <       |         | 0,125   | 0,067   | <       | -     |
| Acetonitrile                | mg/l               |                  |         |         |         |         |           | 1       |         |         |         |         |          |         |         |         | <       |         | <       | 1     |
| Acrilonitrile               | mg/l               |                  |         |         |         |         |           |         |         |         |         |         |          |         |         |         | <       |         | <       |       |

|                             | Unità     | Limiti | 16/04/2 | 014     | 22/04/2 | 014     | 23/04/2 | 014     | 29/04/2 | 014     | 30/04/2 | 014      |
|-----------------------------|-----------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|
| Analita                     | di misura | 152/06 | Valore  | Incert. | Valore  | Incert. | Valore  | Incert. | Valore  | Incert. | Valore  | Incer    |
| Temperatura                 | °C        |        | 23,4    | 0,2     | 20,9    | 0,2     | 23,9    | 0,2     | 25,2    | 0,2     | 25      | 0,2      |
| pH                          | 0         |        | 7,6     | 0,2     | 7,9     | 0,2     | 8,2     | 0,2     | 8,4     | 0,2     | 7,5     | 0,2      |
| Conducibilità               | 0/        |        | 1544    | 25      | 1546    | 25      | 1528    | 25      | 1619    | 26      | 1564    | 25       |
| Conducibilita               | μS/cm     |        | 1544    | 25      | 1546    | 25      | 1526    | 25      | 1019    | 20      | 1504    | 25       |
| Idrocarburi                 | μg/l      | 5000   | 119     | 21      | 137     | 21      | 143     | 21      | 800     | 110     | 156     | 21       |
| Arsenico                    | mg/l      | 0,5    | 0,00231 | 0,00086 | 0,00154 | 0,00073 | 0,00136 | 0,00071 | 0,00126 | 0,0007  | 0,00159 | 0,000    |
| Cadmio                      | mg/l      | 0,02   | <       |         | <       |         | <       |         | <       |         | <       |          |
| Cromo VI                    | mg/l      | 0,2    | <       |         | <       |         | <       |         | <       |         | <       |          |
| Cromo totale                | mg/l      | 2      | <       |         | <       |         | <       |         | <       |         | <       |          |
| Mercurio                    | mg/l      | 0,005  | <       |         | <       |         | <       |         | <       |         | <       |          |
| Nichel                      | mg/l      | 2      | 0,0229  | 0,0036  | 0,0243  | 0,0038  | 0,0229  | 0,0036  | 0,0264  | 0,0041  | 0,0245  | 0,003    |
| Piombo                      | mg/l      | 0,2    | 0,002   | 0,00072 | <       |         | <       |         | <       |         | <       |          |
| Rame                        | mg/l      | 0,1    | 0,0496  | 0,0098  | 0,00155 | 0,00071 | <       |         | <       |         | <       |          |
| Selenio                     | mg/l      | 0,03   | <       |         | <       |         | <       |         | <       |         | <       |          |
| Zinco                       | mg/l      | 0,5    | 0,039   | 0,01    | 0,0242  | 0,0067  | 0,0253  | 0,0069  | 0,0205  | 0,0059  | 0,017   | 0,005    |
| Pesticidi Totali            | mg/l      | 0,05   | <       |         | <       |         | <       |         | <       |         | <       |          |
| Aldrin                      | mg/l      | 0,01   | <       |         | <       |         | <       |         | <       |         | <       |          |
| Dieldrin                    | mg/l      | 0,01   | <       |         | <       |         | <       |         | <       |         | <       |          |
| Endrin                      | mg/l      | 0,002  | <       |         | <       |         | <       |         | <       |         | <       |          |
| Isodrin                     | mg/l      | 0,002  | <       |         | <       |         | <       |         | <       |         | <       |          |
| Esaclorobenzene (HCB)       | mg/l      | -      | <       |         | <       |         | <       |         | <       |         | <       |          |
| Dichlorvos                  | μg/l      |        | <       |         | <       |         | <       |         | <       |         | <       |          |
| Insetticidi fosforati       | μg/l      |        | <       |         | <       |         | <       |         | <       |         | <       |          |
| Naftalene                   | μg/l      |        | <       |         | <       |         | <       |         | <       |         | <       |          |
| Benzo(b)fluorantene         | μg/l      |        | <       |         | <       |         | <       |         | <       |         | <       |          |
| Benzo(k)fluorantene         | μg/l      |        | <       |         | <       |         | <       |         | <       |         | <       |          |
| Benzo(a)pirene              | μg/l      |        | <       |         | <       |         | <       |         | <       |         | <       |          |
| Indeno(1,2,3-cd)pirene      | μg/l      |        | <       |         | <       |         | <       |         | <       |         | <       |          |
| Benzene                     | μg/l      |        | <       |         | <       |         | <       |         | <       |         | <       |          |
| Solventi organici aromatici | mg/l      | 0,2    | <       |         | <       |         | <       |         | <       |         | <       |          |
| Tetracloruro di carbonio    | μg/l      | - ,    | <       |         | <       |         | <       |         | <       |         | <       |          |
| Cloroformio                 | μg/l      |        | <       |         | <       |         | 1,02    | 0,51    | <       |         | <       |          |
| 1,2-dicloroetano            | μg/l      |        | <       |         | ·       |         | <       | ,0.     | ·       |         | ·       |          |
| Diclorometano               | μg/l      |        | <       |         | <       |         | <       |         | <       |         | <       |          |
| Tetracloroetilene           | μg/I      |        | <       |         | <       |         | <       |         | <       |         | · ·     |          |
| Tricloroetilene             | μg/l      |        | <       |         | <       |         | <       |         | <       |         | <       |          |
| Monobutilstagno             | μg/I      |        | <       |         | <       |         | <       |         | <       |         | <       |          |
| Dibutilstagno               |           |        |         |         |         |         |         |         |         |         |         |          |
| Tributilstagno              | μg/l      |        | <       |         | <       |         | <       |         | <       |         | <       |          |
| Monoottilstagno             | μg/l      |        |         |         |         |         |         |         |         |         |         |          |
| Diottilstagno               | μg/l      |        | <       |         | <       |         | <       |         | <       |         | <       |          |
|                             | μg/l      |        |         |         | -       |         |         |         | <       |         | <       |          |
| Trifenilstagno              | μg/l      |        | <       |         | <       |         | <       |         | <       |         | <       | <u> </u> |
| Tricicloesilstagno          | μg/l      |        | <       |         | < 0.120 | 0.000   | < 0.202 | 0.075   | <       |         | < 0.004 | 0.0      |
| Bis(2-etilesil)Ftalato      | μg/l      | 0,1    | <       |         | 0,139   | 0,068   | 0,292   | 0,075   | <       | ļ       | 0,221   | 0,07     |

|                             |           |        |         |         | 48A     | I - IMF  | PIANTO E | OI TRA  | TTAMEN  | TO TL                                            | A2      |         |         |         |         |         |         |                                                  |
|-----------------------------|-----------|--------|---------|---------|---------|----------|----------|---------|---------|--------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|--------------------------------------------------|
| Analita                     | Unità     | Limiti | 16/04/2 | 014     | 18/04/2 | 014      | 22/04/2  | 014     | 29/04/2 | 014                                              | 30/04/2 | 014     | 07/05/2 | 014     | 08/05/2 | 014     | 09/05/2 | 2014                                             |
|                             | di misura | 152/06 | Valore  | Incert. | Valore  | Incert.  | Valore   | Incert. | Valore  | Incert.                                          | Valore  | Incert. | Valore  | Incert. | Valore  | Incert. | Valore  | Incert                                           |
| Temperatura                 | °C        |        | 16,4    | 0,2     | 15,4    | 0,2      | 20,6     | 0,2     | 19,8    | 0,2                                              | 18,5    | 0,2     | 19,6    | 0,2     | 20,7    | 0,2     | 19,5    | 0,2                                              |
| pН                          |           |        | 7,9     | 0,1     | 8,3     | 0,1      | 8,1      | 0,2     | 8,3     | 0,1                                              | 8,1     | 0,2     | 8,3     | 0,2     | 8,1     | 0,2     | 8       | 0,2                                              |
| Conducibilità               | μS/cm     |        | 1981    | 32      | 1904    | 31       | 1964     | 32      | 2160    | 35                                               | 2160    | 35      | 2126    | 34      | 2060    | 33      | 2110    | 34                                               |
| Idrocarburi                 | μg/l      | 5000   | 113     | 21      | 126     | 21       | 133      | 21      | 183     | 21                                               | 89      | 20      | 91      | 20      | 138     | 21      | 98      | 20                                               |
| Arsenico                    | mg/l      | 0,5    | 0,00146 | 0,00072 | 0,00147 | 0,00073  | 0,00153  | 0,00073 | <       |                                                  | <       |         | 0,00134 | 0,00071 | 0,00104 | 0,00068 | 0,00164 | 0,0007                                           |
| Cadmio                      | mg/l      | 0,02   | <       |         | <       |          | <        |         | <       |                                                  | <       |         | <       |         | <       |         | <       |                                                  |
| Cromo VI                    | mg/l      | 0,2    | <       |         | <       |          | <        |         | <       |                                                  | <       |         | <       |         | <       |         | <       |                                                  |
| Cromo totale                | mg/l      | 2      | <       |         | <       |          | <        |         | <       |                                                  | <       |         | <       |         | <       |         | <       |                                                  |
| Mercurio                    | mg/l      | 0,005  | <       |         | <       |          | <        |         | <       |                                                  | <       |         | <       |         | <       |         | <       |                                                  |
| Nichel                      | mg/l      | 2      | 0,0167  | 0,0026  | 0,0141  | 0,0023   | 0,0164   | 0,0026  | 0,0147  | 0,0024                                           | 0,0163  | 0,0026  | 0,0171  | 0,0027  | 0,0166  | 0,0026  | 0,0154  | 0,002                                            |
| Piombo                      | mg/l      | 0,2    | <       |         | <       | 1        | <        |         | <       |                                                  | <       | 1       | <       |         | <       |         | <       | 1                                                |
| Rame                        | mg/l      | 0,1    | <       |         | 0,00147 | 0,00071  | 0,00158  | 0,0072  | <       | 1                                                | 0,00153 | 0,00071 | <       |         | <       |         | 0,00173 | 0,0007                                           |
| Selenio                     | mg/l      | 0,03   | <       |         | <       |          | <        |         | <       | 1                                                | <       |         | <       |         | <       |         | 0,00237 | 0,000                                            |
| Zinco                       | mg/l      | 0,5    | 0,0192  | 0,0056  | 0,0059  | 0,0035   | 0,019    | 0,0056  | 0,0068  | 0,0036                                           | 0,0055  | 0,0034  | 0,0083  | 0,0037  | <       |         | <       | <del>                                     </del> |
| Pesticidi Totali            | mg/l      | 0,05   | <       | .,      | <       | 1        | <        | .,      | <       | .,                                               | <       | 0,0034  | <       | -,      | <       |         | <       | 1                                                |
| Aldrin                      | mg/l      | 0,01   | <       |         | <       |          | <        |         | <       |                                                  | <       |         | <       |         | <       |         | <       | +                                                |
| Dieldrin                    | mg/l      | 0,01   | <       |         | <       |          | <        |         | <       |                                                  | <       |         | <       |         | <       |         | <       | 1                                                |
| Endrin                      | mg/l      | 0,002  | <       |         | <       |          | <        |         | <       |                                                  | <       |         | <       |         | <       |         | <       | 1                                                |
| Isodrin                     | mg/l      | 0,002  | <       |         | <       |          | <        |         | · ·     |                                                  | <       |         | <       |         | <       |         | <       |                                                  |
| Esaclorobenzene (HCB)       | mg/l      | -,     | <       |         | <       |          | <        |         | <       |                                                  | <       |         | <       |         | <       |         | <       |                                                  |
| Dichlorvos                  | μg/l      |        | <       |         | <       |          | <        |         | <       |                                                  | <       |         | <       |         | <       |         | <       | 1                                                |
| Insetticidi fosforati       | μg/l      |        | <       |         | <       |          | <        |         | <       |                                                  | <       |         | <       |         | <       |         | <       |                                                  |
| Naftalene                   | μg/l      |        | <       |         | <       |          | <        |         | <       |                                                  | <       |         | <       |         | <       |         | <       |                                                  |
| Benzo(b)fluorantene         | μg/l      |        | <       |         | <       |          | <        |         | <       |                                                  | <       |         | <       |         | <       |         | <       |                                                  |
| Benzo(k)fluorantene         | μg/l      |        | <       |         | <       |          | <        |         | <       |                                                  | <       |         | <       |         | <       |         | <       |                                                  |
| Benzo(a)pirene              | μg/l      |        | <       |         | <       |          | <        |         | <       |                                                  | <       |         | <       |         | <       |         | <       |                                                  |
| Indeno(1,2,3-cd)pirene      | μg/l      |        | <       |         | <       |          | <        |         | <       |                                                  | <       |         | <       |         | <       |         | <       |                                                  |
| Benzene                     | μg/l      |        | <       |         | <       |          | <        |         | <       |                                                  | <       |         | <       |         | <       |         | <       |                                                  |
| Solventi organici aromatici | mg/l      | 0,2    | <       |         | <       |          | <        |         | <       |                                                  | <       |         | <       |         | <       |         | <       | 1                                                |
| Tetracloruro di carbonio    | μg/l      | - /-   | <       |         | <       |          | <        |         | <       |                                                  | <       |         | <       |         | <       |         | <       | 1                                                |
| Cloroformio                 | μg/l      |        | <       |         | <       |          | <        |         | <       |                                                  | <       |         | <       |         | <       |         | <       | 1                                                |
| 1,2-dicloroetano            | μg/l      |        | <       |         | <       |          | <        |         | <       |                                                  | <       |         | <       |         | <       |         | <       | 1                                                |
| Diclorometano               | μg/l      |        | <       |         | <       |          | <        |         | <       |                                                  | <       |         | <       |         | <       |         | <       | 1                                                |
| Tetracloroetilene           | μg/l      |        | <       |         | <       |          | <        |         | <       |                                                  | <       |         | <       |         | <       |         | <       | 1                                                |
| Tricloroetilene             | μg/I      |        | <       |         | <       |          | <        |         | <       |                                                  | <       |         | <       |         | <       |         | <       | 1                                                |
| Monobutilstagno             | μg/I      |        | <       |         | <       | 1        | <        |         | <       | 1                                                | <       | 1       | <       |         | <       |         | <       | 1                                                |
| Dibutilstagno               | μg/I      |        | <       |         | <       |          | <        |         | ·       |                                                  | <       |         | <       |         | <       |         | <       | 1                                                |
| Tributilstagno              | μg/I      |        | <       |         | <       | -        | <        |         | <       |                                                  | <       | -       | <       |         | <       |         | <       | 1                                                |
| Monoottilstagno             | μg/I      |        | <       |         | <       |          | <        |         | ·       |                                                  | <       |         | <       |         | <       |         | ·       | 1                                                |
| Diottilstagno               | μg/I      |        | <       |         | <       | -        |          |         | <       |                                                  |         | -       | <       |         | <       |         | <       | +                                                |
| Trifenilstagno              | μg/I      |        | <       |         | <       | <b>-</b> | <        |         | <       | 1                                                | <       |         | <       |         | <       |         | <       | +                                                |
| Tricicloesilstagno          | μg/I      |        | <       |         | <       |          | <        |         | <       | <del>                                     </del> | <       |         | <       |         | <       |         | <       | +                                                |
| Bis(2-etilesil)Ftalato      | μg/I      |        | <       |         | 0,217   | 0,071    | 0,104    | 0,067   | <       |                                                  | 0,234   | 0,072   | 0,257   | 0,073   | 0,244   | 0,072   | <       | +                                                |
| Solventi organici azotati   | μg/i      | 0,1    | <       |         | < <     | 0,071    | < <      | 0,007   | <       | 1                                                | < <     | 0,072   | 0,201   | 0,013   | < <     | 0,072   | <       | 1                                                |

|                             |                    |                  | 47/0/*  | 044     | 17/04/2    | 014     | 07/05 7 | 044     | 00/05 ** | 044     | 08/05/2    | 014     | 00/05   | 044    |
|-----------------------------|--------------------|------------------|---------|---------|------------|---------|---------|---------|----------|---------|------------|---------|---------|--------|
| Analita                     | Unità<br>di misura | Limiti<br>152/06 | 17/04/2 |         | (field dup | licate) | 07/05/2 |         | 08/05/2  |         | (field dup | licat)e | 09/05/2 |        |
|                             |                    |                  | Valore  | Incert. | Valore     | Incert. | Valore  | Incert. | Valore   | Incert. | Valore     | Incert. | Valore  | Incer  |
| Temperatura                 | °C                 |                  | 23,1    | 0,2     | 23,1       | 0,2     | 34,2    | 0,2     | 35,4     | 0,2     | 35,4       | 0,2     | 37,5    | 0,2    |
| pН                          |                    |                  | 8,6     | 0,2     | 8,6        | 0,2     | 9,1     | 0,2     | 8,5      | 0,1     | 8,5        | 0,1     | 9       | 0,2    |
| Conducibilità               | μS/cm              |                  | 1705    | 27      | 1705       | 27      | 2340    | 38      | 2970     | 48      | 2970       | 48      | 2850    | 46     |
| Idrocarburi                 | μg/l               | 5000             | 203     | 21      | 218        | 21      | 584     | 29      | 322      | 23      | 326        | 23      | 231     | 22     |
| Arsenico                    | mg/l               | 0,5              | <       |         | <          |         | 0,00218 | 0,00083 | 0,00116  | 0,00068 | 0,0013     | 0,0007  | 0,0016  | 0,0007 |
| Cadmio                      | mg/l               | 0,02             | <       |         | <          |         | <       |         | <        |         | <          |         | <       |        |
| Cromo VI                    | mg/l               | 0,2              | <       |         | <          |         | <       |         | <        |         | <          |         | <       |        |
| Cromo totale                | mg/l               | 2                | <       |         | <          |         | <       |         | <        |         | <          |         | <       |        |
| Mercurio                    | mg/l               | 0,005            | <       |         | <          |         | <       |         | <        |         | <          |         | <       |        |
| Nichel                      | mg/l               | 2                | 0,00285 | 0,00078 | 0,00304    | 0,0008  | 0,0179  | 0,0028  | 0,0224   | 0,0035  | 0,0228     | 0,0035  | 0,0404  | 0,006  |
| Piombo                      | mg/l               | 0,2              | <       |         | <          |         | <       |         | <        |         | <          |         | <       |        |
| Rame                        | mg/l               | 0,1              | 0,0056  | 0,0014  | 0,0052     | 0,0013  | 0,0207  | 0,0045  | 0,0097   | 0,0022  | 0,0081     | 0,0019  | 0,0103  | 0,002  |
| Selenio                     | mg/l               | 0,03             | <       |         | <          |         | <       |         | <        |         | <          |         | <       |        |
| Zinco                       | mg/l               | 0,5              | 1,04    | 0,21    | 1,03       | 0,2     | 0,117   | 0,029   | 0,114    | 0,028   | 0,114      | 0,028   | 0,37    | 0,078  |
| Pesticidi Totali            | mg/l               | 0,05             | <       |         | <          |         | <       |         | <        |         | <          |         | <       |        |
| Aldrin                      | mg/l               | 0,01             | <       |         | <          |         | <       |         | <        |         | <          |         | <       |        |
| Dieldrin                    | mg/l               | 0,01             | <       |         | <          |         | <       |         | <        |         | <          |         | <       |        |
| Endrin                      | mg/l               | 0,002            | <       |         | <          |         | <       |         | <        |         | <          |         | <       |        |
| Isodrin                     | mg/l               | 0,002            | <       |         | <          |         | <       |         | <        |         | <          |         | <       |        |
| Esaclorobenzene (HCB)       | mg/l               |                  | <       |         | <          |         | <       |         | <        |         | <          |         | <       |        |
| Dichlorvos                  | μg/l               |                  | <       |         | <          |         | <       |         | <        |         | <          |         | <       |        |
| Insetticidi fosforati       | μg/l               |                  | <       |         | <0,05      |         | <       |         | <        |         | <          |         | <       |        |
| Naftalene                   | μg/l               |                  | <       |         | <          |         | 0,016   | 0,007   | <        |         | <          |         | 0,02    | 0,007  |
| Benzo(b)fluorantene         | μg/l               |                  | <       |         | <          |         | <       |         | <        |         | <          |         | <       |        |
| Benzo(k)fluorantene         | μg/l               |                  | <       |         | <          |         | <       |         | <        |         | <          |         | <       |        |
| Benzo(a)pirene              | μg/l               |                  | <       |         | <          |         | <       |         | <        |         | <          |         | <       |        |
| Indeno(1,2,3-cd)pirene      | μg/l               |                  | <       |         | <          |         | <       |         | <        |         | <          |         | <       |        |
| Benzene                     | μg/l               |                  | <       |         | <          |         | <       |         | <        |         | <          |         | <       |        |
| Solventi organici aromatici | mg/l               | 0,2              | <       |         | <0,0011    |         | <       |         | <        |         | <          |         | <       |        |
| Tetracloruro di carbonio    | μg/l               |                  | <       |         | <          |         | <       |         | <        |         | <          |         | <       |        |
| Cloroformio                 | μg/l               |                  | 2,13    | 0,94    | 3          | 1,3     | 5,4     | 2,3     | 7,5      | 3,2     | 7,7        | 3,2     | 2,9     | 1,3    |
| 1,2-dicloroetano            | μg/l               |                  | <       |         | <          |         | <       |         | <        |         | <          |         | <       |        |
| Diclorometano               | μg/l               |                  | <       |         | <          |         | <       |         | <        |         | <          |         | <       |        |
| Tetracloroetilene           | μg/l               |                  | <       |         | <          |         | <       |         | <        |         | <          |         | <       |        |
| Tricloroetilene             | μg/l               |                  | <       |         | <          |         | <       |         | <        |         | <          |         | <       |        |
| Monobutilstagno             | μg/l               |                  | <       |         | <          |         | <       |         | <        |         | <          |         | <       |        |
| Dibutilstagno               | μg/l               |                  | <       |         | <          |         | <       |         | <        |         | <          |         | <       |        |
| Tributilstagno              | μg/l               |                  | <       |         | <          |         | <       |         | <        |         | <          |         | <       |        |
| Monoottilstagno             | μg/l               |                  | <       |         | <          |         | <       |         | <        |         | <          |         | <       |        |
| Diottilstagno               | μg/l               |                  | <       |         | <          |         | <       |         | <        |         | <          |         | <       |        |
| Trifenilstagno              | μg/l               |                  | <       |         | <          |         | <       |         | <        |         | <          |         | <       |        |
| Tricicloesilstagno          | μg/l               |                  | <       |         | <          |         | <       |         | <        |         | <          |         | <       |        |
| Bis(2-etilesil)Ftalato      | μg/l               |                  | 0,109   | 0,067   | 0,127      | 0,067   | 0,257   | 0,073   | 0,202    | 0,07    | 0,224      | 0,071   | 0,202   | 0,07   |
| Acetonitrile                | mg/l               |                  |         |         | <          |         |         |         | <        |         | <          |         |         |        |
| acrilonitrile               | mg/l               |                  |         |         | <          |         |         | 1       | <        | 1       | <          | 1       |         | 1      |

| Analita                     | Unità<br>di misura | Limiti<br>152/06 | 15/04/2  | 014     | 17/04/2 | 014     | 23/04/2  | 014      | 06/05/2  | 014     | 07/05/2 | 014                                              |
|-----------------------------|--------------------|------------------|----------|---------|---------|---------|----------|----------|----------|---------|---------|--------------------------------------------------|
|                             | ui illisura        | 132/00           | Valore   | Incert. | Valore  | Incert. | Valore   | Incert.  | Valore   | Incert. | Valore  | Incert.                                          |
| Temperatura                 | °C                 |                  | 45       | 0,2     | 40,1    | 0,2     | 31,8     | 0,2      | 40,6     | 0,2     | 43,5    | 0,2                                              |
| рН                          |                    |                  | 5,2      | 0,2     | 5,3     | 0,2     | 9,6      | 0,2      | 5,6      | 0,2     | 6,1     | 0,2                                              |
| Conducibilità               | μS/cm              |                  | 1660     | 27      | 2140    | 40      | 1433     | 23       | 2020     | 32      | 2240    | 36                                               |
| Idrocarburi                 | μg/l               | 5000             | 1950     | 270     | 1500    | 210     | 1230     | 170      | 498      | 27      | 2880    | 400                                              |
| Arsenico                    | mg/l               | 0,5              | 0,0502   | 0,0098  | 0,04    | 0,01    | 0,0188   | 0,0049   | 0,0154   | 0,004   | 0,0133  | 0,0035                                           |
| Cadmio                      | mg/l               | 0,02             | <        | -7,     | <       |         | <        | -,,      | <        | - 7,5-5 | <       | 1                                                |
| Cromo VI                    | mg/l               | 0,2              | <        |         | <       |         | <        |          | <        |         | <       | +                                                |
| Cromo totale                | mg/l               | 2                | 0,0064   | 0,0017  | 0,0051  | 0,0014  | 0,0033   | 0,0011   | 0,00246  | 0,00087 | 0,00226 | 0.00084                                          |
| Mercurio                    | mg/l               | 0,005            | <        | 0,0011  | <       | 0,0011  | <        | 0,0011   | <        | 0,00007 | <       | 0,0000                                           |
| Nichel                      | mg/l               | 2                | 0,43     | 0,078   | 0,412   | 0,074   | 0,371    | 0,067    | 0,254    | 0,046   | 0,116   | 0,021                                            |
| Piombo                      | mg/l               | 0,2              | 0,43     | 0,076   | 0,412   | 0,074   | 0,371    | 0,007    | < 0,254  | 0,046   | 0,116   | 0,021                                            |
| Rame                        | mg/l               | 0,2              | <        |         | <       |         | <        |          | 0,00218  | 0,00079 | <       | +                                                |
|                             |                    |                  |          |         |         |         |          |          |          | 0,00079 |         | +                                                |
| Selenio                     | mg/l               | 0,03             | < 0.0072 | 0.000-  | <       |         | < 0.0074 | 0.000-   | < 0.0002 | 0.000=  | <       | +                                                |
| Zinco                       | mg/l               | 0,5              | 0,0073   | 0,0036  | <       |         | 0,0071   | 0,0036   | 0,0082   | 0,0037  | <       | -                                                |
| Pesticidi Totali            | mg/l               | 0,05             | <        |         | <       |         | <        |          | <        |         | <       | <del>                                     </del> |
| Aldrin                      | mg/l               | 0,01             | <        |         | <       |         | <        |          | <        |         | <       | <del>                                     </del> |
| Dieldrin                    | mg/l               | 0,01             | <        |         | <       |         | <        |          | <        |         | <       | <u> </u>                                         |
| Endrin                      | mg/l               | 0,002            | <        |         | <       |         | <        |          | <        |         | <       | -                                                |
| Isodrin                     | mg/l               | 0,002            | <        |         | <       |         | <        |          | <        |         | <       |                                                  |
| Esaclorobenzene (HCB)       | mg/l               |                  | <        |         | <       |         | <        |          | <        |         | <       |                                                  |
| Dichlorvos                  | μg/l               |                  | <        |         | <       |         | <        |          | <        |         | <       |                                                  |
| Insetticidi fosforati       | μg/l               |                  | <        |         | <       |         | <        |          | <        |         | <       |                                                  |
| Naftalene                   | μg/l               |                  | <        |         | <       |         | 0,035    | 0,009    | 0,047    | 0,011   | 0,072   | 0,015                                            |
| Benzo(b)fluorantene         | μg/l               |                  | <        |         | <       |         | <        |          | <        |         | <       |                                                  |
| Benzo(k)fluorantene         | μg/l               |                  | <        |         | <       |         | <        |          | <        |         | <       |                                                  |
| Benzo(a)pirene              | μg/l               |                  | <        |         | <       |         | <        |          | <        |         | <       |                                                  |
| Indeno(1,2,3-cd)pirene      | μg/l               |                  | <        |         | <       |         | <        |          | <        |         | <       |                                                  |
| Benzene                     | μg/l               |                  | <        |         | <       |         | <        |          | <        |         | <       |                                                  |
| Solventi organici aromatici | mg/l               | 0,2              | <        |         | <       |         | <        |          | <        |         | <       |                                                  |
| Tetracloruro di carbonio    | μg/l               |                  | <        |         | <       |         | <        |          | <        |         | <       |                                                  |
| Cloroformio                 | μg/l               |                  | <        |         | <       |         | 1,03     | 0,52     | <        |         | <       |                                                  |
| 1,2-dicloroetano            | μg/l               |                  | <        |         | <       |         | <        |          | <        |         | <       |                                                  |
| Diclorometano               | μg/l               |                  | <        |         | <       |         | <        |          | <        |         | <       |                                                  |
| Tetracloroetilene           | μg/l               |                  | <        |         | <       |         | <        |          | <        |         | <       |                                                  |
| Tricloroetilene             | μg/l               |                  | <        |         | <       |         | <        |          | <        |         | <       |                                                  |
| Monobutilstagno             | μg/l               |                  | <        |         | <       |         | <        |          | <        |         | <       |                                                  |
| Dibutilstagno               | μg/l               |                  | <        |         | <       |         | <        |          | <        |         | <       |                                                  |
| Tributilstagno              | μg/l               |                  | <        |         | <       |         | <        |          | <        |         | <       |                                                  |
| Monoottilstagno             | μg/l               |                  | <        |         | <       |         | <        |          | <        |         | <       | <b>†</b>                                         |
| Diottilstagno               | μg/l               |                  | <        |         | <       |         | <        |          | <        |         | <       | <b>†</b>                                         |
| Trifenilstagno              | μg/l               |                  | <        |         | <       |         | <        |          | <        |         | <       | <b>†</b>                                         |
| Tricicloesilstagno          | μg/l               |                  | <        |         | <       |         | <        |          | <        |         | <       | +                                                |
| Bis(2-etilesil)Ftalato      | μg/l               |                  | 0,192    | 0,07    | 0,253   | 0,073   | 0,9      | 0,2      | 0,152    | 0,068   | 0,312   | 0,077                                            |
| Solventi organici azotati   | mg/l               | 0,1              | <        |         | <       |         | <        | <u> </u> | <        |         | <       | + -                                              |

|                             |                    |                  |         |         |          | 32      | AI - IMPI | ANTO    | DI TRAT               | TAME    | NTO TUL | .1      |         |         |         |         |         |         |         |       |
|-----------------------------|--------------------|------------------|---------|---------|----------|---------|-----------|---------|-----------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|-------|
| Analita                     | Unità<br>di misura | Limiti<br>152/06 | 14/04/2 |         | 17/04/20 |         | 23/04/2   | 1       | 23/04/2<br>(field dup | licate) | 28/04/2 |         | 05/05/2 |         | 07/05/2 |         | 08/05/2 |         | 09/05/2 |       |
|                             |                    |                  | Valore  | Incert. | Valore   | Incert. | Valore    | Incert. | Valore                | Incert. | Valore  | Incert. | Valore  | Incert. | Valore  | Incert. | Valore  | Incert. | Valore  | Ince  |
| Temperatura                 | °C                 |                  | 19,7    | 0,2     | 17,6     | 0,2     | 20        | 0,2     | 20                    | 0,2     | 21      | 0,2     | 18,1    | 0,2     | 21,6    | 0,2     | 23,2    | 0,2     | 24,6    | 0,2   |
| pH                          | -                  |                  | 9,1     | 0,2     | 9,2      | 0,2     | 8,9       | 0,1     | 8,9                   | 0,1     | 9,5     | 0,2     | 9,3     | 0,2     | 9       | 0,2     | 9       | 0,1     | 8,6     | 0,1   |
| Conducibilità               | μS/cm              |                  | 1237    | 20      | 1083     | 17      | 1338      | 21      | 1338                  | 21      | 1460    | 23      | 1319    | 21      | 1327    | 21      | 1284    | 21      | 814     | 13    |
| Idrocarburi                 | μg/l               | 5000             | 1770    | 250     | 433      | 25      | 417       | 25      | 463                   | 26      | 101     | 21      | 662     | 94      | 137     | 21      | 327     | 23      | 413     | 25    |
| Arsenico                    | mg/l               | 0,5              | <       |         | <        |         | <         |         | <                     |         | <       |         | <       |         | <       |         | <       |         | <       |       |
| Cadmio                      | mg/l               | 0,02             | <       |         | <        |         | <         |         | <                     |         | <       |         | <       |         | <       |         | <       |         | <       |       |
| Cromo VI                    | mg/l               | 0,2              | <       |         | <        |         | <         |         | <                     |         | <       |         | <       |         | <       |         | <       |         | <       |       |
| Cromo totale                | mg/l               | 2                | 0,00122 | 0,00069 | <        |         | 0,0013    | 0,0007  | 0,00125               | 0,00069 | 0,00146 | 0,00072 | 0,0016  | 0,00074 | 0,00158 | 0,00073 | 0,00139 | 0,00071 | 0,00105 | 0,000 |
| Mercurio                    | mg/l               | 0,005            | <       |         | <        |         | <         |         | <                     |         | <       |         | <       |         | <       |         | <       |         | <       |       |
| Nichel                      | mg/l               | 2                | 0,00164 | 0,0007  | 0,00148  | 0,00069 | 0,00181   | 0,00071 | 0,0019                | 0,00071 | 0,00143 | 0,00069 | 0,00163 | 0,0007  | 0,00145 | 0,00069 | 0,00135 | 0,00068 | 0,00206 | 0,000 |
| Piombo                      | mg/l               | 0,2              | <       |         | <        |         | <         |         | <                     |         | <       |         | <       |         | <       |         | <       |         | <       |       |
| Rame                        | mg/l               | 0,1              | 0,0091  | 0,002   | 0,0078   | 0,0018  | 0,01      | 0,0022  | 0,0101                | 0,0023  | 0,0115  | 0,0025  | 0,0104  | 0,0023  | 0,0081  | 0,0018  | 0,0072  | 0,0017  | 0,0051  | 0,00  |
| Selenio                     | mg/l               | 0,03             | <       |         | <        |         | <         |         | <                     |         | <       |         | <       |         | <       |         | <       |         | <       | T     |
| Zinco                       | mg/l               | 0,5              | 0,387   | 0,081   | 0,363    | 0,077   | 0,487     | 0,099   | 0,49                  | 0,1     | 0,418   | 0,087   | 0,427   | 0,088   | 0,357   | 0,076   | 0,369   | 0,078   | 0,262   | 0,0   |
| Pesticidi Totali            | mg/l               | 0,05             | <       |         | <        |         | <         |         | <                     |         | <       |         | <       |         | <       |         | <       |         | <       | 1     |
| Aldrin                      | mg/l               | 0,01             | <       |         | <        |         | <         |         | <                     |         | <       |         | <       |         | <       |         | <       |         | <       | †     |
| Dieldrin                    | mg/l               | 0,01             | <       |         | <        |         | <         |         | <                     |         | <       |         | <       |         | <       |         | <       |         | <       | T     |
| Endrin                      | mg/l               | 0,002            | <       |         | <        |         | <         |         | <                     |         | <       |         | <       |         | <       |         | <       |         | <       | †     |
| Isodrin                     | mg/l               | 0,002            | <       |         | <        |         | <         |         | <                     |         | <       |         | <       |         | <       |         | <       |         | <       | +     |
| Esaclorobenzene (HCB)       | mg/l               |                  | <       |         | <        |         | <         |         | <                     |         | <       |         | <       |         | <       |         | <       |         | <       | †     |
| Dichlorvos                  | μg/l               |                  | <       |         | <        |         | <         |         | <                     |         | <       |         | <       |         | <       |         | <       |         | <       | +     |
| Insetticidi fosforati       | μg/l               |                  | <       |         | <        |         | <         |         | <                     |         | <       |         | <       |         | <       |         | <       |         | <       | †     |
| Naftalene                   | μg/l               |                  | <       |         | <        |         | 0,016     | 0,007   | 0,01                  | 0,0067  | 0,015   | 0,007   | 0,018   | 0,0072  | 0,039   | 0,0096  | 0,011   | 0,0067  | <       | +     |
| Benzo(b)fluorantene         | μg/l               |                  | <       |         | <        |         | <         |         | <                     |         | <       |         | <       |         | <       |         | <       |         | <       | †     |
| Benzo(k)fluorantene         | μg/l               |                  | <       |         | <        |         | <         |         | <                     |         | <       |         | <       |         | <       |         | <       |         | <       | +     |
| Benzo(a)pirene              | μg/l               |                  | <       |         | <        |         | <         |         | <                     |         | <       |         | <       |         | <       |         | <       |         | <       | †     |
| Indeno(1,2,3-cd)pirene      | μg/l               |                  | <       |         | <        |         | <         |         | <                     |         | <       |         | <       |         | <       |         | <       |         | <       | +     |
| Benzene                     | μg/l               |                  | <       |         | <        |         | <         |         | <                     |         | <       |         | <       |         | <       |         | <       |         | <       | +     |
| Solventi organici aromatici | mg/l               | 0,2              | <       |         | <        |         | <         |         | <                     |         | <       |         | <       |         | <       |         | <       |         | <       | +     |
| Tetracloruro di carbonio    | μg/l               | ,                | <       |         | <        |         | <         |         | <                     |         | <       |         | <       |         | <       |         | <       |         | <       | +     |
| Cloroformio                 | μg/l               |                  | <       |         | 154      | 64      | 260       | 110     | 260                   | 110     | 270     | 120     | 227     | 95      | 340     | 140     | 290     | 120     | 180     | 76    |
| 1,2-dicloroetano            | μg/l               |                  | <       |         | <        |         | <         |         | <                     |         | <       |         | <       |         | <       |         | <       |         | <       | +     |
| Diclorometano               | μg/l               |                  | <       |         | <        |         | <         |         | <                     |         | <       |         | <       |         | <       |         | <       |         | <       | +     |
| Tetracloroetilene           | μg/l               |                  | <       |         | <        |         | <         |         | <                     |         | <       |         | <       |         | <       |         | <       |         | <       | +     |
| Tricloroetilene             | μg/l               |                  | <       |         | <        |         | <         |         | <                     |         | <       |         | <       |         | <       |         | <       |         | <       | +     |
| Monobutilstagno             | μg/l               |                  | <       |         | <        |         | <         |         | <                     |         | <       |         | <       |         | <       |         | <       |         | <       | T     |
| Dibutilstagno               | μg/l               |                  | <       |         | <        |         | <         |         | <                     |         | <       |         | <       |         | <       |         | <       |         | <       | +     |
| Tributilstagno              | μg/l               |                  | <       |         | <        |         | <         | 1       | <                     | 1       | <       | 1       | <       |         | <       |         | <       |         | <       | +     |
| Monoottilstagno             | μg/l               |                  | <       |         | <        |         | <         | 1       |                       | 1       | <       | 1       | <       |         | <       |         | <       |         | <       | +     |
| Diottilstagno               | μg/l               |                  | <       |         | <        |         | <         |         | <                     | -       | <       | -       | <       |         | <       |         | <       |         | <       | +     |
| Trifenilstagno              | μg/I               |                  |         |         | <        |         | <         |         | <                     | -       | <       | -       | <       |         | <       |         | <       |         | <       | +     |
| Tricicloesilstagno          |                    |                  | <       |         | <        |         | <         |         | <                     |         | <       |         | <       |         | <       |         | <       |         | <       | +     |
| Bis(2-etilesil)Ftalato      | μg/l<br>μg/l       |                  | <       |         | 0,127    | 0,067   | 0,68      | 0,16    | 0,68                  | 0,15    | 0,236   | 0,072   | 0,296   | 0,076   | 0,275   | 0,074   | 0,39    | 0,082   | <       | +     |
| Solventi organici azotati   | μg/I<br>mg/I       | 0,1              | <       | 1       | < <      | 0,007   | < <       | 0,10    | < <                   | 0,10    | < <     | 0,072   | < 0,296 | 0,070   | < <     | 0,074   | < <     | 0,002   | <       | +-    |

|                                      |                    |                  | 28/04/2 | 014     | 28/04/2    | 014     | 29/04/2 | 014     | 30/04/2 | 014     | 05/05/2  | 014      |
|--------------------------------------|--------------------|------------------|---------|---------|------------|---------|---------|---------|---------|---------|----------|----------|
| Analita                              | Unità<br>di misura | Limiti<br>152/06 |         |         | (field dup |         |         | 1       |         |         |          |          |
|                                      | - 0                |                  | Valore  | Incert. | Valore     | Incert. | Valore  | Incert. | Valore  | Incert. | Valore   | Incer    |
| Temperatura                          | °C                 |                  | 20,2    | 0,2     | 20,2       | 0,2     | 19,7    | 0,2     | 18,8    | 0,2     | 18,1     | 0,2      |
| pH                                   |                    |                  | 7,8     | 0,2     | 7,8        | 0,2     | 8,2     | 0,2     | 7,8     | 0,2     | 7,8      | 0,2      |
| Conducibilità                        | μS/cm              |                  | 3870    | 62      | 3870       | 62      | 3940    | 63      | 4040    | 65      | 4000     | 64       |
| Idrocarburi                          | μg/l               | 5000             | 179     | 21      | 166        | 21      | 293     | 23      | 443     | 26      | 174      | 21       |
| Arsenico                             | mg/l               | 0,5              | 0,0032  | 0,0011  | 0,0034     | 0,0011  | 0,0032  | 0,001   | 0,00299 | 0,00098 | 0,0039   | 0,001    |
| Cadmio                               | mg/l               | 0,02             | <       |         | <          |         | <       |         | <       |         | <        |          |
| Cromo VI                             | mg/l               | 0,2              | <       |         | <          |         | <       |         | <       |         | <        |          |
| Cromo totale                         | mg/l               | 2                | <       |         | <          |         | <       |         | <       |         | <        |          |
| Mercurio                             | mg/l               | 0,005            | <       |         | <          |         | <       |         | <       |         | <        |          |
| Nichel                               | mg/l               | 2                | 0,00429 | 0,00092 | 0,0051     | 0,001   | 0,00309 | 0,0008  | 0,003   | 0,0008  | 0,00378  | 0,0008   |
| Piombo                               | mg/l               | 0,2              | <       |         | <          |         | <       |         | <       |         | <        |          |
| Rame                                 | mg/l               | 0,1              | <       |         | <          |         | <       |         | <       |         | <        | <u> </u> |
| Selenio                              | mg/l               | 0,03             | <       |         | <          |         | <       |         | <       |         | <        | <u> </u> |
| Zinco                                | mg/l               | 0,5              | 0,0087  | 0,0038  | 0,0094     | 0,0039  | 0,0095  | 0,0039  | <       |         | <        |          |
| Pesticidi Totali                     | mg/l               | 0,05             | <       | -,      | <          | 2,0000  | <       | -,      | <       |         | <        |          |
| Aldrin                               | mg/l               | 0,01             | <       |         | <          |         | <       |         | <       |         | <        |          |
| Dieldrin                             | mg/l               | 0,01             | <       |         | <          |         | <       |         | <       |         | <        |          |
| Endrin                               | mg/l               | 0,002            | <       |         | <          |         | <       |         | <       |         | <        |          |
| Isodrin                              | mg/l               | 0,002            | <       |         |            |         |         |         | · ·     |         | <        |          |
| Esaclorobenzene (HCB)                | mg/l               | 0,002            | <       |         |            |         | <       |         | ·       |         | <        |          |
| Dichlorvos                           | μg/l               |                  | <       |         | <          |         | <       |         | <       |         | <        |          |
| Insetticidi fosforati                | μg/l               |                  | <       |         |            |         | <       |         | <       |         | <        |          |
| Naftalene                            |                    |                  | <       |         | <          |         | <       |         | <       |         | <        |          |
| Benzo(b)fluorantene                  | μg/l<br>μg/l       |                  | <       |         | <          |         | <       |         | ·       |         | ·        |          |
| Benzo(k)fluorantene                  |                    |                  | <       |         | <          |         | <       |         | <       |         | <        |          |
| Benzo(a)pirene                       | μg/l<br>μg/l       |                  | <       |         | <          |         | <       |         | <       |         | <        |          |
| Indeno(1,2,3-cd)pirene               |                    |                  | <       |         | <          |         | <       |         | <       |         | <        |          |
|                                      | μg/l               |                  |         |         |            |         |         |         |         |         |          |          |
| Benzene Solventi organici aromatici  | μg/l               | 0,2              | <       |         | <          |         | <       |         | <       |         | <        |          |
|                                      | mg/l               | 0,2              | <       |         | <          |         | <       |         | <       |         | <        |          |
| Tetracloruro di carbonio Cloroformio | μg/l               |                  | 10,1    | 4.0     | 10,3       | 4.0     | 8,2     | 2.5     | 8       | 2.      | <<br>0.E |          |
|                                      | μg/l               |                  | -       | 4,3     |            | 4,3     | -       | 3,5     |         | 3,4     | 8,5      | 3,6      |
| 1,2-dicloroetano                     | μg/l               |                  | <       |         | <          |         | <       | 1       | <       |         | <        | ₩        |
| Diclorometano                        | μg/l               |                  | <       |         | <          |         | <       |         | <       |         | <        | <u> </u> |
| Tetracloroetilene                    | μg/l               |                  | <       |         | <          |         | <       |         | <       |         | <        | -        |
| Tricloroetilene                      | μg/l               |                  | <       |         | <          |         | <       | 1       | <       |         | <        | ₩        |
| Monobutilstagno                      | μg/l               |                  | <       |         | <          |         | <       | -       | <       |         | <        | <u> </u> |
| Dibutilstagno                        | μg/l               |                  | <       |         | <          |         | <       |         | <       |         | <        | <u> </u> |
| Tributilstagno                       | μg/l               |                  | <       |         | <          |         | <       |         | <       |         | <        | <u> </u> |
| Monoottilstagno                      | μg/l               |                  | <       |         | <          |         | <       |         | <       |         | <        | <u> </u> |
| Diottilstagno                        | μg/l               |                  | <       |         | <          |         | <       |         | <       |         | <        | <u> </u> |
| Trifenilstagno                       | μg/l               |                  | <       |         | <          |         | <       | ļ       | <       |         | <        | <u> </u> |
| Tricicloesilstagno                   | μg/l               |                  | <       |         | <          |         | <       |         | <       |         | <        | <u> </u> |
| Bis(2-etilesil)Ftalato               | μg/l               |                  | 0,218   | 0,071   | 0,207      | 0,071   | 0,112   | 0,067   | 0,205   | 0,07    | 0,259    | 0,07     |

|                             |              |        |          |         |                       |         |         |         |         |         |         |         |                        | 58AI    | - IMPIAN | ITO TE   | RATTAM  | -NTO I  | PERCOL                 | ATO.    |           |         |         |         |         |         |                       |         |         |                                                  |          |         |         |         |                        |          |
|-----------------------------|--------------|--------|----------|---------|-----------------------|---------|---------|---------|---------|---------|---------|---------|------------------------|---------|----------|----------|---------|---------|------------------------|---------|-----------|---------|---------|---------|---------|---------|-----------------------|---------|---------|--------------------------------------------------|----------|---------|---------|---------|------------------------|----------|
|                             | Unità        | Limiti | 16/04/20 | 014     | 16/04/2<br>(field duo |         | 18/04/2 | 014     | 22/04/2 | 014     | 24/04/2 | 014     | 24/04/2<br>(field dup. | 014     | 29/04/2  |          | 06/05/2 |         | 06/05/2<br>(field dup) | 014     | 08/05/2   | 2014    | 09/05/2 | 014     | 12/11/2 | 2014    | 12/11/2<br>(field dun |         | 14/11/2 | 014                                              | 19/11/2  | 2014    | 24/11/2 | 014     | 24/11/2<br>(field dup. |          |
| Analita                     | di misura    | 152/06 | Valore   | Incert. | Valore                | Incert. | Valore  | Incert. | Valore  | Incert. | Valore  | Incert. | Valore                 | Incert. | Valore   | Incert.  | Valore  | Incert. | Valore                 | Incert. | Valore    | Incert. | Valore  | Incert. | Valore  | Incert. | Valore                | Incert. | Valore  | Incert.                                          | Valore   | Incert. | Valore  | Incert. | Valore                 | Incert.  |
| Temperatura                 | °C           |        | 18,7     | 0,2     | 18,7                  | 0,2     | 17,7    | 0,2     | 21,1    | 0,2     | 20,4    | 0,2     | 20,4                   | 0,2     | 21,6     | 0,2      | 24,1    | 0,2     | 24,1                   | 0,2     | 22,8      | 0,2     | 23,5    | 0,2     | 21,4    | 0,2     | 21,4                  | 0,2     | 20,5    | 0,2                                              | 22       | 0,2     | 16,7    | 0,2     | 16,7                   | 0,2      |
| pH                          |              |        | 8        | 0,1     | 8                     | 0,1     | 7,8     | 0,2     | 7,9     | 0,2     | 8,3     | 0,2     | 8,3                    | 0,2     | 8,3      | 0,2      | 7,1     | 0,2     | 7,1                    | 0,2     | 8,2       | 0,2     | 8,2     | 0,2     | 8       | 0,2     | 8                     | 0,2     | 8       | 0,1                                              | 8        | 0,2     | 7,9     | 0,2     | 7,9                    | 0,2      |
| Conducibilità               | μS/cm        |        | 10440    | 167     | 10440                 | 167     | 10620   | 170     | 10050   | 161     | 10550   | 169     | 10550                  | 169     | 10490    | 168      | 10350   | 166     | 10350                  | 166     | 10450     | 168     | 10120   | 162     | 13910   | 223     | 13910                 | 223     | 14160   | 227                                              | 13903    | 223     | 14260   | 229     | 14260                  | 229      |
|                             |              |        |          |         |                       |         |         |         |         |         |         |         |                        |         |          |          |         |         |                        |         |           |         |         |         |         |         |                       |         |         |                                                  |          | ##      |         |         |                        | =        |
| Idrocarburi                 | μg/l         | 5000   | 125      | 21      | 113                   | 20      | 145     | 21      | 158     | 21      | 123     | 21      | 134                    | 21      | 192      | 21       | 80      | 21      | 91                     | 20      | 280       | 23      | 167     | 21      | 206     | 22      | 194                   | 21      | 300     | 23                                               | 643      | 91      | 235     | 22      | 221                    | 22       |
| Arsenico                    | mg/l         | 0,5    | 0,0146   | 0,0038  | 0,0148                | 0,0039  | 0,0138  | 0,0036  | 0,0149  | 0,0039  | 0,0165  | 0,0043  | 0,0165                 | 0,0043  | 0,0169   | 0,0044   | 0,0156  | 0,0041  | 0,0154                 | 0,004   | 0,0172    | 0,0045  | 0,0183  | 0,0048  | 0,0094  | 0,0025  | 0,0092                | 0,0025  | 0,017   | 0,0044                                           | 0,0111   | 0,0029  | 0,009   | 0,0024  | 0,0094                 | 0,0025   |
| Cadmio                      | mg/l         | 0,02   | <        |         | <                     |         | <       |         | <       |         | <       |         | <                      |         | <        |          | <       |         | <                      |         | <         |         | <       |         | <       |         | <                     |         | <       |                                                  | <        | +-+     | <       |         | <                      | +        |
| Cromo VI                    | mg/l         | 0,2    | <        | 0.0011  | <                     | 0.0040  | <       | 0.00007 | <       | 0.00094 | <       | 0.00096 | <                      | 0.00095 | <        | 0.004    | <       | 0.00007 | <                      | 0.004   | < 0.00045 | 0.004   | <       | 0.0040  | <       | 0.0044  | <                     | 0.0011  | <       | 0.0000                                           | < 0.0047 | 0.0040  | <       | 0.004   | <                      | 0.001    |
| Cromo totale                | mg/l         | 2      | 0,0035   | 0,0011  | 0,0039                | 0,0012  |         | 0,00097 | 0,00286 | 0,00094 | 0,00295 | 0,00096 | 0,00291                | 0,00095 | 0,0033   | 0,001    | 0,00302 | 0,00097 |                        | 0,001   | 0,00315   | 0,001   | 0,0057  | 0,0016  | 0,0036  | 0,0011  | 0,0034                | 0,0011  | 0,013   | 0,0033                                           | 0,0047   | 0,0013  | 0,0032  | 0,001   | 0,0032                 | 0,001    |
| Mercurio                    | mg/l         | 0,005  | <        | 0.045   | < 0.004               | 0.045   | <       | 0.040   | <       | 0.047   | < .     | 0.040   | -,                     | 0,000   | <        | 0.047    | < 0.000 | 0.047   | <                      | 0.047   | < 0.070   | 0.044   | <       | 0.040   | < .     | 0.040   | < .                   | 0.040   | < .     | 0.004                                            | <        |         | < .     | 0.00    | <                      |          |
| Nichel                      | mg/l         | 2      | 0,081    | 0,015   | 0,081                 | 0,015   | 0,085   | 0,016   | 0,095   | 0,017   | 0,102   | 0,019   | 0,101                  | 0,019   | 0,093    | 0,017    | 0,093   | 0,017   | 0,092                  | 0,017   | 0,078     | 0,014   | 0,099   | 0,018   | 0,104   | 0,019   | 0,104                 | 0,019   | 0,129   | 0,024                                            | 0,099    | 0,018   | 0,112   | 0,02    | 0,112                  | 0,021    |
| Piombo                      | mg/l         | 0,2    | 0,00211  | 0.00077 | 0,00181               | 0.000   | 0,0015  | 0.0007  | 0,00179 | 0.0007  | 0,0012  | 0.0005- | 0,00115                | 0.0000  | 0,00142  | 0.005-   | 0,00173 | 0.000=- | 0,0012                 | 0.0000- | <         | 1       | 0,00112 | 0.0005  | 0,00248 | 0.0000  | 0,00189               | 0.00075 | 0,0016  | 0,000                                            | 0,00229  | 0.0001  | 0.002   | 0.0007  | 0,00229                | 0.000    |
| Rame                        | mg/l         | 0,1    |          | 0,00078 |                       | 0,00074 |         | 0,00071 |         | 0,00074 |         | 0,00068 |                        | 0,00068 |          | 0,0007   |         | 0,00073 |                        | 0,00068 |           | 0.00092 |         | 0,00068 |         | 0,00082 |                       |         |         | 0,00095                                          |          |         | 0,002   | 0,00076 |                        |          |
| Selenio<br>Zinco            | mg/l         | 0,03   | 0,00251  |         | 0,00257               |         | 0,00245 |         | 0,00245 | 0.00081 | 0,00254 | 0,00083 | 0,00253                | 0.00083 | 0,00192  | 0,00075  | 0,0019  | 0,00075 | -,                     | 0,00075 | 0,00318   | 0,00092 | 0,00261 | 0,00084 | 0,00266 | 0,00084 | 0,0027                | 0,00085 | 0,00358 | 0,00098                                          | 0,00274  | 0,00086 | 0,00245 | 0,00082 | 0,00263                | 0,00084  |
|                             | mg/l         |        |          | 0,007   |                       | 0,0078  |         | 0,0075  |         | 0,0074  |         | 0,0064  | -,-                    | 0,0067  | -,-      | 0,0067   | -7      | 0,0073  | -,                     | 0,0059  | .,        | 0,0055  | -,      | 0,0081  | .,      | 0,0093  | -,-                   | 0,0079  | -,      | 0,019                                            | -,-      | 0,011   | -,-     | 0,0077  | -,                     | 0,0079   |
| Pesticidi Totali<br>Aldrin  | mg/l         | 0,05   | <        |         | <                     |         | <       |         | <       |         | <       |         | <                      |         | <        |          | <       |         | <                      |         | <         |         | <       |         | <       |         | <                     | -       | <       |                                                  | <        | +-+     | <       |         | <                      | +        |
| Dieldrin                    | mg/l         | 0,01   | <        |         | <                     |         | <       |         | <       |         | <       |         | <                      |         | <        |          | <       |         | <                      |         | <         |         | <       |         | <       |         | <                     | -       | <       |                                                  | <        | +-+     | <       |         | <                      | +-       |
| Endrin                      | mg/l         | 0.002  |          |         |                       |         |         |         |         |         |         |         |                        |         |          |          |         |         |                        |         |           |         |         |         |         |         |                       | -       |         |                                                  |          | +-+     |         |         |                        | +-       |
| Isodrin                     | mg/l         | 0,002  | <        |         | <                     |         | <       |         | <       |         | <       |         | <                      |         | <        |          | <       |         | <                      |         | <         |         | <       |         | <       |         | <                     |         | <       |                                                  | <        | +-+     | <       |         | <                      | +        |
| Esaclorobenzene (HCB)       | mg/l         | 0,002  | <        |         | <                     |         | <       |         | <       |         | <       |         | <                      |         | <        |          | <       |         | <                      |         | <         |         | <       |         | <       |         | <                     | -       | <       |                                                  | <        | +-+     | <       |         | <                      | +-       |
| Dichloryos                  | mg/l<br>μg/l |        | -        |         | <                     |         |         |         | -       |         | <       |         | <                      |         | <        |          | <       |         | <                      |         | <         |         | <       |         | <       |         | -                     |         | ٠       |                                                  | -        | +-+     | ٠       |         | <                      | +        |
| Insetticidi fosforati       | μg/1         |        | <        |         | <                     |         | <       |         | <       |         | <       |         | <                      |         | <        |          | <       |         | <                      |         | <         |         | <       |         | <0,05   |         | <0,05                 |         | <0,05   |                                                  | <0,05    | +-+     | <0,05   |         | <0,05                  | +        |
| Naftalene                   | μg/I<br>μg/I |        | -        |         | -                     |         | 0,021   | 0.0075  | <       |         | <       |         | <                      |         | <        |          | <       |         | <                      |         | <         |         | <       |         | 0.089   | 0,017   | 0,09                  | 0.018   | <0,03   |                                                  | < <      | ++      | < 0,00  |         | < <                    | +        |
| Benzo(b)fluorantene         | μg/l         |        | <        |         | <                     |         | < <     | 0,0075  | <       |         | <       |         | <                      |         | <        |          | <       |         | <                      |         | <         |         | <       |         | < <     | 0,017   | < <                   | 0,010   | 0,014   | 0,0069                                           | <        | ++      | <       |         | <                      | +        |
| Benzo(k)fluorantene         | μg/l         |        | -        |         | <                     |         | -       |         | <       |         | <       |         | <                      |         | <        |          | <       |         | <                      |         | <         |         | <       |         | <       |         | <                     |         | <       | 0,0003                                           | -        | +-+     | <       |         | <                      | +        |
| Benzo(a)pirene              | μg/l         |        | <        |         | <                     |         | <       |         | <       |         | <       |         | <                      |         | <        |          | <       |         | <                      |         | <         |         | <       |         | <       |         | <                     |         | 0.005   | 0,0033                                           | 0.006    | 0,0034  | <       |         | <                      | +        |
| Indeno(1,2,3-cd)pirene      | μg/l         |        | <        |         | <                     |         | <       |         | <       |         | <       |         | <                      |         | <        |          | <       |         | <                      |         | <         |         | <       |         | 0,015   | 0,007   | 0,015                 | 0,007   | 0,047   | 0,011                                            | 0,014    | 0.0069  | 0,014   | 0.0069  | 0,014                  | 0,0069   |
| Benzene                     | μg/l         |        | -        |         | ٠.                    |         | -       |         | -       |         |         |         | <                      |         |          |          | -       |         | <                      |         | <         |         | <       |         | <       |         | <                     |         | <       |                                                  | <        | +       | <       |         | <                      | +        |
| Solventi organici aromatici | mg/l         | 0,2    | <0,0011  |         | <0,0011               |         | <       |         | <       |         | <       |         | <                      |         | <        |          | <       |         | <                      |         | <         |         | <       |         | <0,0011 |         | <0,0011               |         | <0,0011 |                                                  | <0,0011  | +       | <0,0011 |         | <0,0011                | +        |
| Tetracloruro di carbonio    | μg/l         |        | .,       |         | <                     |         | -       |         | <       |         | -       |         | <                      |         | <        |          | ~       |         | <                      |         | -         |         | <       |         | ~       |         |                       |         |         |                                                  | .,       | +       |         |         | <                      | +        |
| Cloroformio                 | μg/l         |        | 1,7      | 0,77    | 1,7                   | 0,77    | 1,07    | 0,53    | 0,92    | 0,48    | 0,9     | 0,47    | 0,88                   | 0,47    | 1,73     | 0,78     | 0,92    | 0,48    | 0,98                   | 0,5     | 1,56      | 0,71    | <       |         | 1,5     | 0,69    | 1,5                   | 0,69    | 1,98    | 0,88                                             | 1,67     | 0,75    | 0,96    | 0,49    | 0,96                   | 0.49     |
| 1,2-dicloroetano            | μg/l         |        | <        |         | <                     | +       | <       |         | <       |         | <       | t i     | <                      |         | <        | <u> </u> | <       |         | <                      |         | <         |         | <       |         | <       |         | <                     |         | <       |                                                  | <        | + + +   | <       |         | <                      | +        |
| Diclorometano               | μg/l         |        | <        |         | <                     |         | <       |         | <       |         | <       | l -     | <                      |         | <        |          | <       | t       | <                      |         | <         |         | <       |         | <       |         | <                     |         | <       |                                                  | <        | +       | <       |         | <                      | <b>†</b> |
| Tetracloroetilene           | μg/l         |        | <        |         | <                     |         | <       |         | <       |         | <       | t       | <                      |         | <        | t        | <       | t —     | <                      |         | <         |         | <       |         | <       |         | <                     |         | <       | <del>                                     </del> | <        | +       | <       |         | <                      | +        |
| Tricloroetilene             | μg/l         |        | <        |         | <                     |         | <       |         | <       |         | <       |         | <                      |         | <        |          | <       |         | <                      |         | <         |         | <       |         | <       |         | <                     |         | <       |                                                  | <        | 1 1     | <       |         | <                      | 1        |
| Monobutilstagno             | μg/l         |        | <        |         | <                     |         | <       |         | <       |         | <       | l -     | <                      |         | <        |          | <       | t       | <                      |         | <         |         | <       |         | <       |         | <                     |         | <       |                                                  | <        | +       | <       |         | <                      | <b>†</b> |
| Dibutilstagno               | μg/l         |        | <        |         | <                     |         | <       |         | <       |         | <       | l -     | <                      |         | <        |          | <       | t       | <                      |         | <         |         | <       |         | <       |         | <                     |         | <       |                                                  | <        | +       | <       |         | <                      | <b>†</b> |
| Tributilstagno              | μg/I         |        | <        |         | <                     |         | <       |         | <       |         | <       |         | <                      |         | <        |          | <       |         | <                      |         | <         |         | <       |         | <       |         | <                     |         | <       |                                                  | <        | 1 1     | <       |         | <                      | 1        |
| Tetrabutilstagno            |              |        | <        |         | <                     |         |         |         |         |         |         | l -     |                        |         |          |          |         | t       |                        |         | <         |         |         |         | <       |         | <                     |         | <       |                                                  | <        | +       | <       |         | <                      | <b>†</b> |
| Monoottilstagno             | µg/I         |        | <        |         | <                     |         | <       |         | <       |         | <       |         | <                      |         | <        |          | <       |         | <                      |         | <         |         | <       |         | <       |         | <                     |         | <       |                                                  | <        | 1 - 1   | <       |         | <                      | T        |
| Diottilstagno               | μg/l         |        | <        |         | <                     |         | <       |         | <       |         | <       | l -     | <                      |         | <        |          | <       | t       | <                      |         | <         |         | <       |         | <       |         | <                     |         | <       |                                                  | <        | +       | <       |         | <                      | <b>†</b> |
| Trifenilstagno              | μg/I         |        | <        |         | <                     |         | <       |         | <       |         | <       |         | <                      |         |          |          | <       |         | <                      |         | <         |         | <       |         | <       |         | <                     |         | <       |                                                  | <        | 1 1     | <       |         | <                      | T        |
| Tricicloesilstagno          | μg/l         |        | <        |         | <                     |         | <       |         | <       |         | <       | l -     | <                      |         | <        |          | <       | t       | <                      |         | <         |         | <       |         | <       |         | <                     |         | <       |                                                  | <        | +       | <       |         | <                      | <b>†</b> |
| Bis(2-etilesil)Ftalato      | μg/I         |        | 0,12     | 0,067   | 0,117                 | 0,067   | 0,187   | 0,07    | 0,201   | 0,07    | 0,166   | 0,069   | 0,17                   | 0,069   | 0,137    | 0,068    | 0,141   | 0,068   | 0,156                  | 0,068   | 0,281     | 0,075   | 0,173   | 0,069   | 0,128   | 0,067   | 0,144                 | 0,068   | 0,271   | 0,074                                            | 0,272    | 0,074   | 0,22    | 0,071   | 0,201                  | 0,07     |
| Acetonitrile                | mg/l         |        |          |         |                       |         |         |         |         |         |         |         |                        |         |          |          |         |         |                        |         | <         |         |         |         | <       |         | <                     |         | <       |                                                  | <        | 1 1     | <       |         | <                      | 1        |
| Acrilonitrile               | mg/l         |        |          |         |                       |         |         |         |         |         |         | l -     |                        |         |          |          |         |         |                        |         | <         |         |         |         | <       |         | <                     |         | <       |                                                  | <        | +       | <       |         | <                      | 1        |
| Solventi organici azotati   | mg/l         | 0,1    | <        |         | <                     | 1       | <       |         | <       |         | <       | t       | <                      |         | <        |          | <       |         | <                      |         | <         |         | <       |         | <0,022  |         | <0,022                |         | <0,022  |                                                  | <0,022   | +       | <0,022  |         | <0,022                 | +        |

| Impianto di filtrazione e<br>raffreddamento RIV 2-5-6 (52AI)   | U.M.         | U.M. Limiti (152) 14/11/2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11/2014   | 19/11/2014                                                                                                                                                                                                                                                                                                                                                                                                                                            |           | 24/11/2014                                                                                                                                                                                                                                                                                                                                                                                                     |          | 26/11/2014 |                                                                                                                                                                                                                                                                                                                                             | 09/12/2014 |         | 16/12/2014                                                                                                                                                                                                                                                                                  |       |      | 26/01/2015                                                                                                                                                                                                               |         |                                                                                                                                                                                   | 04/02/2015 |      |        | 04/02/2015<br>(field duplicate)                                                                                               |     |         |                                                            |   |        |
|----------------------------------------------------------------|--------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|--------|-------------------------------------------------------------------------------------------------------------------------------|-----|---------|------------------------------------------------------------|---|--------|
| TEMPERATURA (AL PRELIEVO)                                      | °c           | ND                        | 18,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ± 0,2     | 21,7                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ± 0,2     | 15,9                                                                                                                                                                                                                                                                                                                                                                                                           | +        | 0,2        | 16                                                                                                                                                                                                                                                                                                                                          | ±          | 0,2     | 12,5                                                                                                                                                                                                                                                                                        | ± (   | 0,2  | 12,3                                                                                                                                                                                                                     | ± 0,2   | 10                                                                                                                                                                                | ),2        | +    | 0,2    |                                                                                                                               |     |         |                                                            |   |        |
| pH (AL PRELIEVO)                                               |              | ND                        | 8,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ± 0,2     | 9,4                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ± 0,1     | 9                                                                                                                                                                                                                                                                                                                                                                                                              | ±        | 0,1        | 9                                                                                                                                                                                                                                                                                                                                           | ±          | 0,2     | 8,9                                                                                                                                                                                                                                                                                         |       | 0,2  | 8,9                                                                                                                                                                                                                      | ± 0,1   | _                                                                                                                                                                                 | -          |      | 0,2    |                                                                                                                               |     |         |                                                            |   |        |
| CONDUCIBILITÀ EL. (AL PRELIEVO)                                | μS / cm      | ND                        | 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ± 4       | 278                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ± 4       | 274                                                                                                                                                                                                                                                                                                                                                                                                            | ±        | 4          | 270                                                                                                                                                                                                                                                                                                                                         | ±          | 4       | 270                                                                                                                                                                                                                                                                                         |       | 4    | 273                                                                                                                                                                                                                      | ± 4     | _                                                                                                                                                                                 | 10         | ±    | 5      |                                                                                                                               |     |         |                                                            |   |        |
| IDROCARBURI TOT (C10-C40)                                      | μg/I         | 5000                      | 169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ± 21      | 141                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ± 21      | 145                                                                                                                                                                                                                                                                                                                                                                                                            | ±        | 21         | 98                                                                                                                                                                                                                                                                                                                                          | ±          | 21      | 103                                                                                                                                                                                                                                                                                         |       | 21   | 141                                                                                                                                                                                                                      | ± 21    | _                                                                                                                                                                                 | -          | ±    | 21     | 125                                                                                                                           | ±   | 21      | 140                                                        | ± | 21     |
| ARSENICO                                                       | mg/l         | 0,5                       | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td>-</td><td></td><td><l.r.< td=""><td>-</td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>_</td><td>_</td><td></td><td>0,00108</td><td>± (</td><td>0,00067</td><td><l.r.< td=""><td>-</td><td></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                                |           | <l.r.< td=""><td></td><td><l.r.< td=""><td>-</td><td></td><td><l.r.< td=""><td>-</td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>_</td><td>_</td><td></td><td>0,00108</td><td>± (</td><td>0,00067</td><td><l.r.< td=""><td>-</td><td></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                             |           | <l.r.< td=""><td>-</td><td></td><td><l.r.< td=""><td>-</td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>_</td><td>_</td><td></td><td>0,00108</td><td>± (</td><td>0,00067</td><td><l.r.< td=""><td>-</td><td></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                             | -        |            | <l.r.< td=""><td>-</td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>_</td><td>_</td><td></td><td>0,00108</td><td>± (</td><td>0,00067</td><td><l.r.< td=""><td>-</td><td></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<>                                                           | -          |         | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>_</td><td>_</td><td></td><td>0,00108</td><td>± (</td><td>0,00067</td><td><l.r.< td=""><td>-</td><td></td></l.r.<></td></l<></td></l.r.<></td></l.r.<>                                                            |       |      | <l.r.< td=""><td></td><td><l< td=""><td>_</td><td>_</td><td></td><td>0,00108</td><td>± (</td><td>0,00067</td><td><l.r.< td=""><td>-</td><td></td></l.r.<></td></l<></td></l.r.<>                                         |         | <l< td=""><td>_</td><td>_</td><td></td><td>0,00108</td><td>± (</td><td>0,00067</td><td><l.r.< td=""><td>-</td><td></td></l.r.<></td></l<>                                         | _          | _    |        | 0,00108                                                                                                                       | ± ( | 0,00067 | <l.r.< td=""><td>-</td><td></td></l.r.<>                   | - |        |
| CADMIO                                                         |              | 0.02                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td></td><td></td><td>_</td><td>_</td><td></td><td></td><td><l.r.< td=""><td>- '</td><td>0,00007</td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                                      |           | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td></td><td></td><td>_</td><td>_</td><td></td><td></td><td><l.r.< td=""><td>- '</td><td>0,00007</td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                                      |          |            | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td></td><td></td><td>_</td><td>_</td><td></td><td></td><td><l.r.< td=""><td>- '</td><td>0,00007</td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                   |            |         | <l.r.< td=""><td></td><td></td><td></td><td></td><td>_</td><td>_</td><td></td><td></td><td><l.r.< td=""><td>- '</td><td>0,00007</td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                   |       |      |                                                                                                                                                                                                                          |         | _                                                                                                                                                                                 | _          |      |        | <l.r.< td=""><td>- '</td><td>0,00007</td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<>                             | - ' | 0,00007 | <l.r.< td=""><td></td><td></td></l.r.<>                    |   |        |
|                                                                | mg/l         |                           | <l.r.< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></l<></td></l.r.<></td></l.r.<>                                                                                                                                                                                                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |                                                                                                                                                                                                                                                                                                                                             |            |         |                                                                                                                                                                                                                                                                                             |       |      | <l.r.< td=""><td></td><td><l< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></l<></td></l.r.<>                                                                                 |         | <l< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></l<>                                                                                 | -          |      |        |                                                                                                                               |     |         |                                                            |   |        |
| CROMO ESAVALENTE                                               | mg/l         | 0,2                       | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                                 |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                              |           | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                              |          |            | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<>                                                           |            |         | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<>                                                           |       |      | <l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<>                                        |         | <l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<>                                        |            |      |        | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<>                                       |     |         | <l.r.< td=""><td></td><td></td></l.r.<>                    |   |        |
| СКОМО ТОТ                                                      | mg/l         | 2                         | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                                 |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                              |           | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                              |          |            | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<>                                                           |            |         | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<>                                                           |       |      | <l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<>                                        |         | <l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<>                                        |            |      |        | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<>                                       |     |         | <l.r.< td=""><td></td><td></td></l.r.<>                    |   |        |
| MERCURIO                                                       | mg/l         | 0,005                     | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td>0,00029</td><td>± 0,000</td><td>15 <l< td=""><td>R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                                   |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td>0,00029</td><td>± 0,000</td><td>15 <l< td=""><td>R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                |           | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td>0,00029</td><td>± 0,000</td><td>15 <l< td=""><td>R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                |          |            | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td>0,00029</td><td>± 0,000</td><td>15 <l< td=""><td>R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<>                                                             |            |         | <l.r.< td=""><td></td><td></td><td>0,00029</td><td>± 0,000</td><td>15 <l< td=""><td>R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<>                                                             |       |      | 0,00029                                                                                                                                                                                                                  | ± 0,000 | 15 <l< td=""><td>R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<>                                   | R.         |      |        | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<>                                       |     |         | <l.r.< td=""><td></td><td></td></l.r.<>                    |   |        |
| NICHEL                                                         | mg/I         | 2                         | 0,00104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ± 0,00067 | <l.r.< td=""><td></td><td>0,00107</td><td>±</td><td>0,00067</td><td><l.r.< td=""><td></td><td></td><td>0,0011</td><td>± 0,0</td><td>0068</td><td>0,00147</td><td>± 0,000</td><td>69 <l< td=""><td>.R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<>                                                                                           |           | 0,00107                                                                                                                                                                                                                                                                                                                                                                                                        | ±        | 0,00067    | <l.r.< td=""><td></td><td></td><td>0,0011</td><td>± 0,0</td><td>0068</td><td>0,00147</td><td>± 0,000</td><td>69 <l< td=""><td>.R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<>                                                                  |            |         | 0,0011                                                                                                                                                                                                                                                                                      | ± 0,0 | 0068 | 0,00147                                                                                                                                                                                                                  | ± 0,000 | 69 <l< td=""><td>.R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<>                                  | .R.        |      |        | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<>                                       |     |         | <l.r.< td=""><td></td><td></td></l.r.<>                    |   |        |
| PIOMBO                                                         | mg/l         | 0,2                       | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                               |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                            |           | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                            |          |            | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<>                                                         |            |         | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<>                                                         |       |      | <l.r.< td=""><td></td><td><l< td=""><td>R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<>                                      |         | <l< td=""><td>R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<>                                      | R.         |      |        | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<>                                       |     |         | <l.r.< td=""><td></td><td></td></l.r.<>                    |   |        |
| RAME                                                           | mg/l         | 0,1                       | <l.r.< td=""><td></td><td>0,00162</td><td>± 0,00072</td><td>0,00276</td><td>±</td><td>0,00086</td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td>0,00125</td><td>± 0,000</td><td>69 <l< td=""><td>.R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                                             |           | 0,00162                                                                                                                                                                                                                                                                                                                                                                                                                                               | ± 0,00072 | 0,00276                                                                                                                                                                                                                                                                                                                                                                                                        | ±        | 0,00086    | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td>0,00125</td><td>± 0,000</td><td>69 <l< td=""><td>.R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<>                                                            |            |         | <l.r.< td=""><td></td><td></td><td>0,00125</td><td>± 0,000</td><td>69 <l< td=""><td>.R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<>                                                            |       |      | 0,00125                                                                                                                                                                                                                  | ± 0,000 | 69 <l< td=""><td>.R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<>                                  | .R.        |      |        | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<>                                       |     |         | <l.r.< td=""><td></td><td></td></l.r.<>                    |   |        |
| SELENIO                                                        | mg/l         | 0,03                      | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td>t</td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td>0,00</td><td>111</td><td>± 0,</td><td>00068</td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                               |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td>t</td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td>0,00</td><td>111</td><td>± 0,</td><td>00068</td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                            |           | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td>t</td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td>0,00</td><td>111</td><td>± 0,</td><td>00068</td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                            |          |            | <l.r.< td=""><td>t</td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td>0,00</td><td>111</td><td>± 0,</td><td>00068</td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                         | t          |         | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td>0,00</td><td>111</td><td>± 0,</td><td>00068</td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                          |       |      | <l.r.< td=""><td></td><td>0,00</td><td>111</td><td>± 0,</td><td>00068</td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<>                                       |         | 0,00                                                                                                                                                                              | 111        | ± 0, | 00068  | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<>                                       |     |         | <l.r.< td=""><td></td><td></td></l.r.<>                    |   |        |
| ZINCO                                                          | mg/l         | 0,5                       | 0,0073                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ± 0,0036  | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>-</td><td>- 7</td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                          |           | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>-</td><td>- 7</td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                          |          |            | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>-</td><td>- 7</td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<>                                                       |            |         | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>-</td><td>- 7</td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<>                                                       |       |      | <l.r.< td=""><td></td><td><l< td=""><td>-</td><td>- 7</td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<>                                    |         | <l< td=""><td>-</td><td>- 7</td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<>                                    | -          | - 7  |        | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<>                                       |     |         | <l.r.< td=""><td></td><td></td></l.r.<>                    |   |        |
| PESTICIDI TOT ESCL FOSFORATI<br>ALDRIN DIELDRIN ENDRIN ISODRIN | mg/l         | ND                        | <l.r.< td=""><td>,,,,,,</td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                           | ,,,,,,    | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                              |           | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                              |          |            | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<>                                                           |            |         | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<>                                                           |       |      | <l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<>                                        |         | <l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<>                                        |            |      |        | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<>                                       |     |         | <l.r.< td=""><td></td><td></td></l.r.<>                    |   |        |
| INSETTICIDI CLORURATI                                          |              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |                                                                                                                                                                                                                                                                                                                                             |            |         |                                                                                                                                                                                                                                                                                             |       |      |                                                                                                                                                                                                                          |         |                                                                                                                                                                                   |            |      |        |                                                                                                                               |     |         |                                                            |   |        |
| Aldrin                                                         | mg/l         | ND                        | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                               |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                            |           | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                            |          |            | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<>                                                         |            |         | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<>                                                         |       |      | <l.r.< td=""><td></td><td><l< td=""><td>R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<>                                      |         | <l< td=""><td>R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<>                                      | R.         |      |        | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<>                                       |     |         | <l.r.< td=""><td></td><td></td></l.r.<>                    |   |        |
| Dieldrin                                                       | mg/l         | ND                        | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td>L</td><td></td><td><l.r.< td=""><td>L</td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                             |           | <l.r.< td=""><td></td><td><l.r.< td=""><td>L</td><td></td><td><l.r.< td=""><td>L</td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                          |           | <l.r.< td=""><td>L</td><td></td><td><l.r.< td=""><td>L</td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                          | L        |            | <l.r.< td=""><td>L</td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<>                                                        | L          |         | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<>                                                         |       |      | <l.r.< td=""><td></td><td><l< td=""><td>R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<>                                      |         | <l< td=""><td>R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<>                                      | R.         |      |        | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<>                                       |     |         | <l.r.< td=""><td></td><td></td></l.r.<>                    |   |        |
| Endrin                                                         | mg/l         | ND                        | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>.R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                              |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>.R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                           |           | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>.R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                           |          |            | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>.R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<>                                                        |            |         | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>.R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<>                                                        |       |      | <l.r.< td=""><td></td><td><l< td=""><td>.R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<>                                     |         | <l< td=""><td>.R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<>                                     | .R.        |      |        | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<>                                       |     |         | <l.r.< td=""><td></td><td></td></l.r.<>                    |   |        |
| Isodrin                                                        | mg/l         | ND                        | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>_</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                                |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>_</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                             |           | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>_</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                             |          |            | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>_</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<>                                                          |            |         | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>_</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<>                                                          |       |      | <l.r.< td=""><td></td><td><l< td=""><td>_</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<>                                       |         | <l< td=""><td>_</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<>                                       | _          |      |        | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<>                                       |     |         | <l.r.< td=""><td></td><td></td></l.r.<>                    |   |        |
| ESACLOROBENZENE                                                | mg/I         | ND                        | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>.R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                              |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>.R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                           |           | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>.R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                           |          |            | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>.R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<>                                                        |            |         | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>.R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<>                                                        |       |      | <l.r.< td=""><td></td><td><l< td=""><td>.R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<>                                     |         | <l< td=""><td>.R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<>                                     | .R.        |      |        | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<>                                       |     |         | <l.r.< td=""><td></td><td></td></l.r.<>                    |   |        |
| INSETTICIDI FOSFORATI                                          |              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |                                                                                                                                                                                                                                                                                                                                             |            |         |                                                                                                                                                                                                                                                                                             |       |      |                                                                                                                                                                                                                          |         |                                                                                                                                                                                   |            |      |        |                                                                                                                               |     |         |                                                            |   |        |
| Dichlorvos                                                     | μg/I         | ND                        | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>_</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                                |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>_</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                             |           | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>_</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                             |          |            | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>_</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<>                                                          |            |         | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>_</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<>                                                          |       |      | <l.r.< td=""><td></td><td><l< td=""><td>_</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<>                                       |         | <l< td=""><td>_</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<>                                       | _          |      |        | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<>                                       |     |         | <l.r.< td=""><td></td><td></td></l.r.<>                    |   |        |
| Insetticidi fosforati Tot<br>IDROCARBURI POLICICLICI           | μg/I         | ND                        | <0,05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           | <0,05                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           | <0,05                                                                                                                                                                                                                                                                                                                                                                                                          |          |            | <0,05                                                                                                                                                                                                                                                                                                                                       |            |         | <0,05                                                                                                                                                                                                                                                                                       |       |      | <0,05                                                                                                                                                                                                                    |         | <0                                                                                                                                                                                | ,05        |      |        | <0,05                                                                                                                         |     |         | <0,05                                                      |   |        |
| AROMATICI                                                      |              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |                                                                                                                                                                                                                                                                                                                                             |            |         |                                                                                                                                                                                                                                                                                             |       |      |                                                                                                                                                                                                                          |         |                                                                                                                                                                                   |            |      |        |                                                                                                                               |     |         |                                                            |   |        |
| Naftalene                                                      | μg/l         | ND                        | 0,021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,0075    | 0,017                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ± 0,0071  | 0,018                                                                                                                                                                                                                                                                                                                                                                                                          | ±        | 0,0072     | 0,055                                                                                                                                                                                                                                                                                                                                       | ±          | 0,012   | 0,024                                                                                                                                                                                                                                                                                       | ± 0,0 | 0078 | 0,026                                                                                                                                                                                                                    | ± 0,00  | ,                                                                                                                                                                                 |            | ± 0  | ,0093  | 0,015                                                                                                                         | ±   | 0,007   | 0,018                                                      | ± | 0,0072 |
| Benzo(b)fluorantene                                            | μg/I         | ND                        | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                                 |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                              |           | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                              |          |            | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<>                                                           |            |         | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<>                                                           |       |      | <l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<>                                        |         | <l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<>                                        |            |      |        | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<>                                       |     |         | <l.r.< td=""><td></td><td></td></l.r.<>                    |   |        |
| Benzo(k)fluorantene                                            | μg/l         | ND                        | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>_</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                                |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>_</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                             |           | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>_</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                             |          |            | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>_</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<>                                                          |            |         | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>_</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<>                                                          |       |      | <l.r.< td=""><td></td><td><l< td=""><td>_</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<>                                       |         | <l< td=""><td>_</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<>                                       | _          |      |        | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<>                                       |     |         | <l.r.< td=""><td></td><td></td></l.r.<>                    |   |        |
| Benzo(a)pirene                                                 | μg/l<br>μg/l | ND<br>ND                  | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td></l.r.<></l.r.<br></td></l.r.<></l.r.<br></td></l<></td></l.r.<></td></l.r.<></l.r.<br></td></l.r.<></td></l.r.<></l.r.<br></td></l.r.<></td></l.r.<>                     |           | <l.r.< td=""><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td></l.r.<></l.r.<br></td></l.r.<></l.r.<br></td></l<></td></l.r.<></td></l.r.<></l.r.<br></td></l.r.<></td></l.r.<></l.r.<br></td></l.r.<>  |           | <l.r.<br><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td></l.r.<></l.r.<br></td></l.r.<></l.r.<br></td></l<></td></l.r.<></td></l.r.<></l.r.<br></td></l.r.<></td></l.r.<></l.r.<br>  |          |            | <l.r.< td=""><td></td><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td></l.r.<></l.r.<br></td></l.r.<></l.r.<br></td></l<></td></l.r.<></td></l.r.<></l.r.<br></td></l.r.<>  |            |         | <l.r.<br><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td></l.r.<></l.r.<br></td></l.r.<></l.r.<br></td></l<></td></l.r.<></td></l.r.<></l.r.<br>  |       |      | <l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td></l.r.<></l.r.<br></td></l.r.<></l.r.<br></td></l<></td></l.r.<>  |         | <l< td=""><td></td><td></td><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td></l.r.<></l.r.<br></td></l.r.<></l.r.<br></td></l<>  |            |      |        | <l.r.<br><l.r.< td=""><td></td><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td></l.r.<></l.r.<br></td></l.r.<></l.r.<br> |     |         | <l.r.<br><l.r.< td=""><td></td><td></td></l.r.<></l.r.<br> |   |        |
| Indeno (1,2,3 cd) pirene<br>SOLVENTI ORGANICI                  | μg/1         | ND                        | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                               |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                            |           | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                            |          |            | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<>                                                         |            |         | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<>                                                         |       |      | <l.r.< td=""><td></td><td><l< td=""><td>R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<>                                      |         | <l< td=""><td>R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<>                                      | R.         |      |        | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<>                                       |     |         | <l.r.< td=""><td></td><td></td></l.r.<>                    |   |        |
| AROMATICI                                                      |              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |                                                                                                                                                                                                                                                                                                                                             |            |         |                                                                                                                                                                                                                                                                                             |       |      |                                                                                                                                                                                                                          |         |                                                                                                                                                                                   |            |      |        |                                                                                                                               |     |         |                                                            |   |        |
| Benzene                                                        | μg/l         | ND                        | 3,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ± 1,5     | 3,2                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ± 1,4     | 2,5                                                                                                                                                                                                                                                                                                                                                                                                            | ±        | 1,1        | 2,6                                                                                                                                                                                                                                                                                                                                         | ±          | 1,1     | 3                                                                                                                                                                                                                                                                                           |       | 1,3  | 3,5                                                                                                                                                                                                                      | ± 1,5   |                                                                                                                                                                                   | _          |      | 1,7    | 36                                                                                                                            | ±   | 15      | 35                                                         | ± | 15     |
| Soventi organici aromatici  COMPOSTI ORGANICI                  | mg/I         | ND                        | 0,01424                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ± 0,00319 | 0,01725                                                                                                                                                                                                                                                                                                                                                                                                                                               | ± 0,00359 | 0,001643                                                                                                                                                                                                                                                                                                                                                                                                       | ±        | 0,001326   | 0,00806                                                                                                                                                                                                                                                                                                                                     | ± (        | 0,00196 | 0,00483                                                                                                                                                                                                                                                                                     | ± 0,0 | 0154 | 0,01585                                                                                                                                                                                                                  | ± 0,003 | 59 0,01                                                                                                                                                                           | 1527       | ± 0, | .00334 | 0,1001                                                                                                                        | ±   | 0,0205  | 0,0949                                                     | ± | 0,0199 |
| VOLATILI (VOC)                                                 |              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |                                                                                                                                                                                                                                                                                                                                             |            |         |                                                                                                                                                                                                                                                                                             |       |      |                                                                                                                                                                                                                          |         |                                                                                                                                                                                   |            |      |        |                                                                                                                               |     |         |                                                            |   |        |
| Tetracloruro di carbonio                                       | μg/l         | ND                        | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>.R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                              |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>.R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                           |           | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>.R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                           |          |            | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>.R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<>                                                        |            |         | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>.R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<>                                                        |       |      | <l.r.< td=""><td></td><td><l< td=""><td>.R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<>                                     |         | <l< td=""><td>.R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<>                                     | .R.        |      |        | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<>                                       |     |         | <l.r.< td=""><td></td><td></td></l.r.<>                    |   |        |
| Cloroformio                                                    | μg/I         | ND                        | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                                 |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                              |           | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                              |          |            | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<>                                                           |            |         | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<>                                                           |       |      | <l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<>                                        |         | <l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<>                                        |            |      |        | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<>                                       |     |         | <l.r.< td=""><td></td><td></td></l.r.<>                    |   |        |
| 1,2-dicloroetano                                               | μg/I         | ND                        | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>_</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                                |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>_</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                             |           | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>_</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                             |          |            | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>_</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<>                                                          |            |         | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>_</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<>                                                          |       |      | <l.r.< td=""><td></td><td><l< td=""><td>_</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<>                                       |         | <l< td=""><td>_</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<>                                       | _          |      |        | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<>                                       |     |         | <l.r.< td=""><td></td><td></td></l.r.<>                    |   |        |
| Diclorometano                                                  | μg/I         | ND                        | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>_</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                                |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>_</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                             |           | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>_</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                             |          |            | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>_</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<>                                                          |            |         | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>_</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<>                                                          |       |      | <l.r.< td=""><td></td><td><l< td=""><td>_</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<>                                       |         | <l< td=""><td>_</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<>                                       | _          |      |        | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<>                                       |     |         | <l.r.< td=""><td></td><td></td></l.r.<>                    |   |        |
| Tetracloroetilene                                              | μg/l<br>μg/l | ND<br>ND                  | <l.r.<br><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>_</td><td></td><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td></l.r.<></l.r.<br></td></l.r.<></l.r.<br></td></l<></td></l.r.<></td></l.r.<></l.r.<br></td></l.r.<></td></l.r.<></l.r.<br></td></l.r.<></td></l.r.<></l.r.<br> |           | <l.r.< td=""><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>_</td><td></td><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td></l.r.<></l.r.<br></td></l.r.<></l.r.<br></td></l<></td></l.r.<></td></l.r.<></l.r.<br></td></l.r.<></td></l.r.<></l.r.<br></td></l.r.<> |           | <l.r.<br><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>_</td><td></td><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td></l.r.<></l.r.<br></td></l.r.<></l.r.<br></td></l<></td></l.r.<></td></l.r.<></l.r.<br></td></l.r.<></td></l.r.<></l.r.<br> |          |            | <l.r.< td=""><td></td><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>_</td><td></td><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td></l.r.<></l.r.<br></td></l.r.<></l.r.<br></td></l<></td></l.r.<></td></l.r.<></l.r.<br></td></l.r.<> |            |         | <l.r.<br><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>_</td><td></td><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td></l.r.<></l.r.<br></td></l.r.<></l.r.<br></td></l<></td></l.r.<></td></l.r.<></l.r.<br> |       |      | <l.r.< td=""><td></td><td><l< td=""><td>_</td><td></td><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td></l.r.<></l.r.<br></td></l.r.<></l.r.<br></td></l<></td></l.r.<> |         | <l< td=""><td>_</td><td></td><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td></l.r.<></l.r.<br></td></l.r.<></l.r.<br></td></l<> | _          |      |        | <l.r.<br><l.r.< td=""><td></td><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td></l.r.<></l.r.<br></td></l.r.<></l.r.<br> |     |         | <l.r.<br><l.r.< td=""><td></td><td></td></l.r.<></l.r.<br> |   |        |
| Tricloroetilene COMPOSTI ORGANO-                               | µg/1         | ND                        | <l.k.< td=""><td></td><td><l.k.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.k.< td=""><td></td><td></td><td><l.k.< td=""><td></td><td></td><td><l.k.< td=""><td></td><td>&lt;.</td><td>K.</td><td></td><td></td><td><l.k.< td=""><td></td><td></td><td><l.k.< td=""><td></td><td></td></l.k.<></td></l.k.<></td></l.k.<></td></l.k.<></td></l.k.<></td></l.r.<></td></l.k.<></td></l.k.<>                                                                                                         |           | <l.k.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.k.< td=""><td></td><td></td><td><l.k.< td=""><td></td><td></td><td><l.k.< td=""><td></td><td>&lt;.</td><td>K.</td><td></td><td></td><td><l.k.< td=""><td></td><td></td><td><l.k.< td=""><td></td><td></td></l.k.<></td></l.k.<></td></l.k.<></td></l.k.<></td></l.k.<></td></l.r.<></td></l.k.<>                                                                                      |           | <l.r.< td=""><td></td><td></td><td><l.k.< td=""><td></td><td></td><td><l.k.< td=""><td></td><td></td><td><l.k.< td=""><td></td><td>&lt;.</td><td>K.</td><td></td><td></td><td><l.k.< td=""><td></td><td></td><td><l.k.< td=""><td></td><td></td></l.k.<></td></l.k.<></td></l.k.<></td></l.k.<></td></l.k.<></td></l.r.<>                                                                                      |          |            | <l.k.< td=""><td></td><td></td><td><l.k.< td=""><td></td><td></td><td><l.k.< td=""><td></td><td>&lt;.</td><td>K.</td><td></td><td></td><td><l.k.< td=""><td></td><td></td><td><l.k.< td=""><td></td><td></td></l.k.<></td></l.k.<></td></l.k.<></td></l.k.<></td></l.k.<>                                                                   |            |         | <l.k.< td=""><td></td><td></td><td><l.k.< td=""><td></td><td>&lt;.</td><td>K.</td><td></td><td></td><td><l.k.< td=""><td></td><td></td><td><l.k.< td=""><td></td><td></td></l.k.<></td></l.k.<></td></l.k.<></td></l.k.<>                                                                   |       |      | <l.k.< td=""><td></td><td>&lt;.</td><td>K.</td><td></td><td></td><td><l.k.< td=""><td></td><td></td><td><l.k.< td=""><td></td><td></td></l.k.<></td></l.k.<></td></l.k.<>                                                |         | <.                                                                                                                                                                                | K.         |      |        | <l.k.< td=""><td></td><td></td><td><l.k.< td=""><td></td><td></td></l.k.<></td></l.k.<>                                       |     |         | <l.k.< td=""><td></td><td></td></l.k.<>                    |   |        |
| STANNICI                                                       |              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u> |            |                                                                                                                                                                                                                                                                                                                                             | <u> </u>   |         |                                                                                                                                                                                                                                                                                             |       |      |                                                                                                                                                                                                                          |         |                                                                                                                                                                                   |            |      |        |                                                                                                                               |     |         |                                                            |   |        |
| Monobutilstagno                                                | μg/I         | ND                        | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td><u> </u></td><td></td><td><l.r.< td=""><td><u> </u></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                 |           | <l.r.< td=""><td></td><td><l.r.< td=""><td><u> </u></td><td></td><td><l.r.< td=""><td><u> </u></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                              |           | <l.r.< td=""><td><u> </u></td><td></td><td><l.r.< td=""><td><u> </u></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                              | <u> </u> |            | <l.r.< td=""><td><u> </u></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<>                                                   | <u> </u>   |         | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<>                                                           |       |      | <l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<>                                        |         | <l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<>                                        |            |      |        | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<>                                       |     |         | <l.r.< td=""><td></td><td></td></l.r.<>                    |   |        |
| Dibutilstagno                                                  | μg/l<br>μg/l | ND<br>ND                  | <l.r.<br><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td></l.r.<></l.r.<br></td></l.r.<></l.r.<br></td></l<></td></l.r.<></td></l.r.<></l.r.<br></td></l.r.<></td></l.r.<></l.r.<br></td></l.r.<></td></l.r.<></l.r.<br>  |           | <l.r.< td=""><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td></l.r.<></l.r.<br></td></l.r.<></l.r.<br></td></l<></td></l.r.<></td></l.r.<></l.r.<br></td></l.r.<></td></l.r.<></l.r.<br></td></l.r.<>  |           | <l.r.<br><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td></l.r.<></l.r.<br></td></l.r.<></l.r.<br></td></l<></td></l.r.<></td></l.r.<></l.r.<br></td></l.r.<></td></l.r.<></l.r.<br>  |          |            | <l.r.< td=""><td></td><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td></l.r.<></l.r.<br></td></l.r.<></l.r.<br></td></l<></td></l.r.<></td></l.r.<></l.r.<br></td></l.r.<>  |            |         | <l.r.<br><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td></l.r.<></l.r.<br></td></l.r.<></l.r.<br></td></l<></td></l.r.<></td></l.r.<></l.r.<br>  |       |      | <l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td></l.r.<></l.r.<br></td></l.r.<></l.r.<br></td></l<></td></l.r.<>  |         | <l< td=""><td></td><td></td><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td></l.r.<></l.r.<br></td></l.r.<></l.r.<br></td></l<>  |            |      |        | <l.r.<br><l.r.< td=""><td></td><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td></l.r.<></l.r.<br></td></l.r.<></l.r.<br> |     |         | <l.r.<br><l.r.< td=""><td></td><td></td></l.r.<></l.r.<br> |   |        |
| Tributilstagno<br>Tetrahutilstagno                             | μg/I<br>μg/I | ND<br>ND                  | <l.r.< td=""><td></td><td><l.r.< td=""><td>1</td><td><l.r.<br><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><i.< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></i.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></l.r.<br></td></l.r.<></td></l.r.<>                                                                           |           | <l.r.< td=""><td>1</td><td><l.r.<br><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><i.< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></i.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></l.r.<br></td></l.r.<>                                                        | 1         | <l.r.<br><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><i.< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></i.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></l.r.<br>                                                         |          |            | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><i.< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></i.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                         |            |         | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><i.< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></i.<></td></l.r.<></td></l.r.<>                                                         |       |      | <l.r.< td=""><td></td><td><i.< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></i.<></td></l.r.<>                                      |         | <i.< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></i.<>                                      |            |      |        | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<>                                       |     |         | <l.r.< td=""><td></td><td></td></l.r.<>                    |   |        |
| Tetrabutilstagno<br>Monoottilstagno                            | µg/I         | ND ND                     | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                                 |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                              |           | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                              |          |            | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<>                                                           |            |         | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<>                                                           |       |      | <l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<>                                        |         | <l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<>                                        |            |      |        | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<>                                       |     |         | <l.r.< td=""><td></td><td></td></l.r.<>                    |   |        |
| Diottilstagno                                                  | μg/I         | ND                        | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>_</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                                |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>_</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                             |           | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>_</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                             |          |            | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>_</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<>                                                          |            |         | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>_</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<>                                                          |       |      | <l.r.< td=""><td></td><td><l< td=""><td>_</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<>                                       |         | <l< td=""><td>_</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<>                                       | _          |      |        | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<>                                       |     |         | <l.r.< td=""><td></td><td></td></l.r.<>                    |   |        |
| Trifenilstagno                                                 | µg/I         | ND                        | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                               |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                            |           | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                            |          |            | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<>                                                         |            |         | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<>                                                         |       |      | <l.r.< td=""><td></td><td><l< td=""><td>R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<>                                      |         | <l< td=""><td>R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<>                                      | R.         |      |        | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<>                                       |     |         | <l.r.< td=""><td></td><td></td></l.r.<>                    |   |        |
| Tricicloesilstagno                                             | μg/I         | ND                        | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td>L</td><td></td><td><l.r.< td=""><td>L</td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                               |           | <l.r.< td=""><td></td><td><l.r.< td=""><td>L</td><td></td><td><l.r.< td=""><td>L</td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                            |           | <l.r.< td=""><td>L</td><td></td><td><l.r.< td=""><td>L</td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                            | L        |            | <l.r.< td=""><td>L</td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<>                                                          | L          |         | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<>                                                           |       |      | <l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<>                                        |         | <l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<>                                        |            |      |        | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<>                                       |     |         | <l.r.< td=""><td></td><td></td></l.r.<>                    |   |        |
| BIS(2-ETILESIL)FTALATO                                         | μg/I         | ND                        | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td>0,155</td><td>±</td><td>0,068</td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>R.</td><td></td><td></td><td>0,209</td><td>±</td><td>0,071</td><td>0,223</td><td>±</td><td>0,071</td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                                                             |           | <l.r.< td=""><td></td><td>0,155</td><td>±</td><td>0,068</td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>R.</td><td></td><td></td><td>0,209</td><td>±</td><td>0,071</td><td>0,223</td><td>±</td><td>0,071</td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                                          |           | 0,155                                                                                                                                                                                                                                                                                                                                                                                                          | ±        | 0,068      | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>R.</td><td></td><td></td><td>0,209</td><td>±</td><td>0,071</td><td>0,223</td><td>±</td><td>0,071</td></l<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                             |            |         | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>R.</td><td></td><td></td><td>0,209</td><td>±</td><td>0,071</td><td>0,223</td><td>±</td><td>0,071</td></l<></td></l.r.<></td></l.r.<>                                                                             |       |      | <l.r.< td=""><td></td><td><l< td=""><td>R.</td><td></td><td></td><td>0,209</td><td>±</td><td>0,071</td><td>0,223</td><td>±</td><td>0,071</td></l<></td></l.r.<>                                                          |         | <l< td=""><td>R.</td><td></td><td></td><td>0,209</td><td>±</td><td>0,071</td><td>0,223</td><td>±</td><td>0,071</td></l<>                                                          | R.         |      |        | 0,209                                                                                                                         | ±   | 0,071   | 0,223                                                      | ± | 0,071  |
| SOLVENTI ORGANICI<br>AZOTATI                                   |              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |                                                                                                                                                                                                                                                                                                                                             |            |         |                                                                                                                                                                                                                                                                                             |       |      |                                                                                                                                                                                                                          |         |                                                                                                                                                                                   |            |      |        |                                                                                                                               |     |         |                                                            |   |        |
| Acetonitrile                                                   | mg/l         | ND                        | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                               |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                            |           | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                            |          |            | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<>                                                         |            |         | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td>R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<>                                                         |       |      | <l.r.< td=""><td></td><td><l< td=""><td>R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<>                                      |         | <l< td=""><td>R.</td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<>                                      | R.         |      |        | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<>                                       |     |         | <l.r.< td=""><td></td><td></td></l.r.<>                    |   |        |
| acrilonitrile                                                  | mg/l         | ND                        | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                                 |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                              |           | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                              |          |            | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<></td></l.r.<>                                                           |            |         | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<></td></l.r.<>                                                           |       |      | <l.r.< td=""><td></td><td><l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<></td></l.r.<>                                        |         | <l< td=""><td></td><td></td><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l<>                                        |            |      |        | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<>                                       |     |         | <l.r.< td=""><td></td><td></td></l.r.<>                    |   |        |
| Solventi organici azotati tot                                  | mg/l         | ND                        | <0,022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           | <0,022                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | <0,022                                                                                                                                                                                                                                                                                                                                                                                                         |          |            | <0,022                                                                                                                                                                                                                                                                                                                                      |            |         | <0,022                                                                                                                                                                                                                                                                                      |       |      | <0,022                                                                                                                                                                                                                   |         | _                                                                                                                                                                                 | 022        |      |        | <0,022                                                                                                                        |     |         | <0,022                                                     |   |        |
|                                                                |              | l                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1         |                                                                                                                                                                                                                                                                                                                                                                                                                | -        |            |                                                                                                                                                                                                                                                                                                                                             | -          |         |                                                                                                                                                                                                                                                                                             | 1     |      |                                                                                                                                                                                                                          |         |                                                                                                                                                                                   |            |      |        |                                                                                                                               |     |         |                                                            |   |        |

| Impianto di filtrazione e                                      |              | Limiti   |                                                                                                                                                                                                                                                                                                                                                                                                                      |           | 26/11/2014                                                                                                                                                                                                                                                                                                                                                                    |           |                                                                                                                                                                                                                                                                                                                    |      |         |                                                                                                                                                                                                                                                     |         |                                                                                                                                                                                                             |           |                                                                                                                                                             |          | 09/02/2015                                                                                        |           |                                               |       |       |
|----------------------------------------------------------------|--------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------|-----------|-----------------------------------------------|-------|-------|
| raffreddamento riv 1 (33AI)                                    | U.M.         | (152)    | 14/1                                                                                                                                                                                                                                                                                                                                                                                                                 | 1/2014    | 24/1                                                                                                                                                                                                                                                                                                                                                                          | 1/2014    | 26/1                                                                                                                                                                                                                                                                                                               | 1/20 | 014     | 09/1                                                                                                                                                                                                                                                | 2/2014  | 16,                                                                                                                                                                                                         | /12/2014  | 26/0                                                                                                                                                        | 01/2015  | 04/0                                                                                              | 02/2015   | 09/                                           | 02/20 | 15    |
| TEMPERATURA (AL PRELIEVO)                                      | °c           | ND       | 17                                                                                                                                                                                                                                                                                                                                                                                                                   | ± 0,2     | 15,3                                                                                                                                                                                                                                                                                                                                                                          | ± 0,2     | 16,1                                                                                                                                                                                                                                                                                                               | ±    | 0,2     | 11,2                                                                                                                                                                                                                                                | ± 0,2   | 12,1                                                                                                                                                                                                        | ± 0,2     | 13,8                                                                                                                                                        | ± 0,2    |                                                                                                   |           | 9,5                                           | ±     | 0,2   |
| pH (AL PRELIEVO)                                               |              | ND       | 8,4                                                                                                                                                                                                                                                                                                                                                                                                                  | ± 0,1     | 9,2                                                                                                                                                                                                                                                                                                                                                                           | ± 0,2     | 8,9                                                                                                                                                                                                                                                                                                                | ±    | 0,2     | 8,4                                                                                                                                                                                                                                                 | ± 0,2   | 8,3                                                                                                                                                                                                         | ± 0,2     | 8,1                                                                                                                                                         | ± 0,1    |                                                                                                   |           | 5,5                                           | ±     | 0,2   |
| CONDUCIBILITÀ EL. (AL PRELIEVO)                                | μS / cm      | ND       | 93                                                                                                                                                                                                                                                                                                                                                                                                                   | ± 2       | 100                                                                                                                                                                                                                                                                                                                                                                           | ± 2       | 98                                                                                                                                                                                                                                                                                                                 | ±    | 2       | 99                                                                                                                                                                                                                                                  | ± 2     | 98                                                                                                                                                                                                          | ± 2       | 91                                                                                                                                                          | ± 2      |                                                                                                   |           | 86                                            | ±     | 2     |
| IDROCARBURI TOT (C10-C40)                                      | μg/I         | 5000     | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                    |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                    |           | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                |      |         | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                 |         | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<>                                       |          | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<>                    |           | <l.r.< td=""><td></td><td></td></l.r.<>       |       |       |
| ARSENICO                                                       | mg/l         | 0,5      | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td>0,0014</td><td>± 0,00072</td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                          |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td>0,0014</td><td>± 0,00072</td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                          |           | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td>0,0014</td><td>± 0,00072</td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                      |      |         | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td>0,0014</td><td>± 0,00072</td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                       |         | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td>0,0014</td><td>± 0,00072</td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<>                                                      |           | <l.r.< td=""><td></td><td>0,0014</td><td>± 0,00072</td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<>                                             |          | 0,0014                                                                                            | ± 0,00072 | <l.r.< td=""><td></td><td></td></l.r.<>       |       |       |
| CADMIO                                                         | mg/l         | 0,02     | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                    |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                    |           | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                |      |         | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                 |         | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<>                                       |          | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<>                    |           | <l.r.< td=""><td></td><td></td></l.r.<>       |       |       |
| CROMO ESAVALENTE                                               | mg/l         | 0,2      | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                    |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                    |           | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                |      |         | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                 |         | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<>                                       |          | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<>                    |           | <l.r.< td=""><td></td><td></td></l.r.<>       |       |       |
| СКОМО ТОТ                                                      | mg/l         | 2        | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                    |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                    |           | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                |      |         | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                 |         | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<>                                       |          | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<>                    |           | <l.r.< td=""><td></td><td></td></l.r.<>       |       |       |
| MERCURIO                                                       | mg/l         | 0,005    | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                    |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                    |           | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                |      |         | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                 |         | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<>                                       |          | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<>                    |           | <l.r.< td=""><td></td><td></td></l.r.<>       |       |       |
| NICHEL                                                         | mg/l         | 2        | 0,00131                                                                                                                                                                                                                                                                                                                                                                                                              | ± 0,00068 | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td>0,0019</td><td>± 0,000</td><td>71 0,00189</td><td>± 0,00071</td><td><l.r.< td=""><td></td><td>0,00126</td><td>± 0,00068</td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                                   |           | <l.r.< td=""><td></td><td></td><td>0,0019</td><td>± 0,000</td><td>71 0,00189</td><td>± 0,00071</td><td><l.r.< td=""><td></td><td>0,00126</td><td>± 0,00068</td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<>                                                                               |      |         | 0,0019                                                                                                                                                                                                                                              | ± 0,000 | 71 0,00189                                                                                                                                                                                                  | ± 0,00071 | <l.r.< td=""><td></td><td>0,00126</td><td>± 0,00068</td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<>                                            |          | 0,00126                                                                                           | ± 0,00068 | <l.r.< td=""><td></td><td></td></l.r.<>       |       |       |
| PIOMBO                                                         | mg/l         | 0,2      | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                    |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                    |           | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                |      |         | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                 |         | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<>                                       |          | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<>                    |           | <l.r.< td=""><td></td><td></td></l.r.<>       |       |       |
| RAME                                                           | mg/l         | 0,1      | 0,0043                                                                                                                                                                                                                                                                                                                                                                                                               | ± 0,0012  | 0.00333                                                                                                                                                                                                                                                                                                                                                                       | ± 0,00095 | 0.00357                                                                                                                                                                                                                                                                                                            | ±    | 0,00099 | 0.0044                                                                                                                                                                                                                                              | ± 0,001 |                                                                                                                                                                                                             | ± 0,0012  | 0.0051                                                                                                                                                      | ± 0,0013 | 0.00353                                                                                           | ± 0,00098 | 0.00365                                       | ±     | 0,001 |
| SELENIO                                                        | mg/l         | 0,03     | <l.r.< td=""><td>.,</td><td><l.r.< td=""><td>.,</td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td>.,</td><td><l.r.< td=""><td>.,</td><td><l.r.< td=""><td></td><td>,</td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                           | .,        | <l.r.< td=""><td>.,</td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td>.,</td><td><l.r.< td=""><td>.,</td><td><l.r.< td=""><td></td><td>,</td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                             | .,        | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td>.,</td><td><l.r.< td=""><td>.,</td><td><l.r.< td=""><td></td><td>,</td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                           |      |         | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td>.,</td><td><l.r.< td=""><td>.,</td><td><l.r.< td=""><td></td><td>,</td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                            |         | <l.r.< td=""><td></td><td><l.r.< td=""><td>.,</td><td><l.r.< td=""><td>.,</td><td><l.r.< td=""><td></td><td>,</td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                           |           | <l.r.< td=""><td>.,</td><td><l.r.< td=""><td>.,</td><td><l.r.< td=""><td></td><td>,</td></l.r.<></td></l.r.<></td></l.r.<>                                  | .,       | <l.r.< td=""><td>.,</td><td><l.r.< td=""><td></td><td>,</td></l.r.<></td></l.r.<>                 | .,        | <l.r.< td=""><td></td><td>,</td></l.r.<>      |       | ,     |
| ZINCO                                                          | mg/I         | 0,5      | 0,0247                                                                                                                                                                                                                                                                                                                                                                                                               | ± 0,0068  | 0,0352                                                                                                                                                                                                                                                                                                                                                                        | ± 0,0091  | 0,0323                                                                                                                                                                                                                                                                                                             | +    | 0,0085  | 0,04                                                                                                                                                                                                                                                | ± 0,01  |                                                                                                                                                                                                             | ± 0,0068  | 0,0363                                                                                                                                                      | ± 0,0094 | 0,041                                                                                             | ± 0,011   | 0,049                                         | ±     | 0,013 |
| PESTICIDI TOT ESCL FOSFORATI<br>ALDRIN DIELDRIN ENDRIN ISODRIN | mg/l         | ND ND    | <l.r.< td=""><td>2 0,0000</td><td><l.r.< td=""><td>1 0,0031</td><td><l.r.< td=""><td>-</td><td>0,0003</td><td><l.r.< td=""><td>2 0,0.</td><td><l.r.< td=""><td>1 0,0000</td><td><l.r.< td=""><td>2 0,0034</td><td><l.r.< td=""><td>2 0,011</td><td><l.r.< td=""><td>-</td><td>0,013</td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                          | 2 0,0000  | <l.r.< td=""><td>1 0,0031</td><td><l.r.< td=""><td>-</td><td>0,0003</td><td><l.r.< td=""><td>2 0,0.</td><td><l.r.< td=""><td>1 0,0000</td><td><l.r.< td=""><td>2 0,0034</td><td><l.r.< td=""><td>2 0,011</td><td><l.r.< td=""><td>-</td><td>0,013</td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                  | 1 0,0031  | <l.r.< td=""><td>-</td><td>0,0003</td><td><l.r.< td=""><td>2 0,0.</td><td><l.r.< td=""><td>1 0,0000</td><td><l.r.< td=""><td>2 0,0034</td><td><l.r.< td=""><td>2 0,011</td><td><l.r.< td=""><td>-</td><td>0,013</td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                      | -    | 0,0003  | <l.r.< td=""><td>2 0,0.</td><td><l.r.< td=""><td>1 0,0000</td><td><l.r.< td=""><td>2 0,0034</td><td><l.r.< td=""><td>2 0,011</td><td><l.r.< td=""><td>-</td><td>0,013</td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>              | 2 0,0.  | <l.r.< td=""><td>1 0,0000</td><td><l.r.< td=""><td>2 0,0034</td><td><l.r.< td=""><td>2 0,011</td><td><l.r.< td=""><td>-</td><td>0,013</td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                   | 1 0,0000  | <l.r.< td=""><td>2 0,0034</td><td><l.r.< td=""><td>2 0,011</td><td><l.r.< td=""><td>-</td><td>0,013</td></l.r.<></td></l.r.<></td></l.r.<>                  | 2 0,0034 | <l.r.< td=""><td>2 0,011</td><td><l.r.< td=""><td>-</td><td>0,013</td></l.r.<></td></l.r.<>       | 2 0,011   | <l.r.< td=""><td>-</td><td>0,013</td></l.r.<> | -     | 0,013 |
| INSETTICIDI CLORURATI                                          |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                      |           |                                                                                                                                                                                                                                                                                                                                                                               |           |                                                                                                                                                                                                                                                                                                                    |      |         |                                                                                                                                                                                                                                                     |         |                                                                                                                                                                                                             |           |                                                                                                                                                             |          |                                                                                                   |           |                                               |       |       |
| Aldrin                                                         | mg/l         | ND       | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                    |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                    |           | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                |      |         | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                 |         | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<>                                       |          | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<>                    |           | <l.r.< td=""><td></td><td></td></l.r.<>       |       |       |
| Dieldrin                                                       | mg/l         | ND       | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td>L</td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                   |           | <l.r.< td=""><td></td><td><l.r.< td=""><td>L</td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                   |           | <l.r.< td=""><td>L</td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                               | L    |         | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                 |         | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<>                                       |          | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<>                    |           | <l.r.< td=""><td></td><td></td></l.r.<>       |       |       |
| Endrin                                                         | mg/l         | ND       | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                    |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                    |           | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                |      |         | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                 |         | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<>                                       |          | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<>                    |           | <l.r.< td=""><td></td><td></td></l.r.<>       |       |       |
| Isodrin                                                        | mg/l         | ND       | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                    |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                    |           | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                |      |         | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                 |         | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<>                                       |          | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<>                    |           | <l.r.< td=""><td></td><td></td></l.r.<>       |       |       |
| ESACLOROBENZENE                                                | mg/l         | ND       | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                    |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                    |           | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                |      |         | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                 |         | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<>                                       |          | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<>                    |           | <l.r.< td=""><td></td><td></td></l.r.<>       |       |       |
| INSETTICIDI FOSFORATI                                          |              | ND       |                                                                                                                                                                                                                                                                                                                                                                                                                      |           |                                                                                                                                                                                                                                                                                                                                                                               |           |                                                                                                                                                                                                                                                                                                                    |      |         |                                                                                                                                                                                                                                                     |         |                                                                                                                                                                                                             |           |                                                                                                                                                             |          |                                                                                                   |           |                                               |       |       |
| Dichlorvos                                                     | μg/l<br>μg/l | ND<br>ND | <l.r.<br>&lt;0.05</l.r.<br>                                                                                                                                                                                                                                                                                                                                                                                          |           | <l.r.<br>&lt;0,05</l.r.<br>                                                                                                                                                                                                                                                                                                                                                   |           | <l.r.<br>&lt;0.05</l.r.<br>                                                                                                                                                                                                                                                                                        |      |         | <l.r.<br>&lt;0,05</l.r.<br>                                                                                                                                                                                                                         |         | <l.r.<br>&lt;0,05</l.r.<br>                                                                                                                                                                                 |           | <l.r.<br>&lt;0.05</l.r.<br>                                                                                                                                 |          | <l.r.<br>&lt;0,05</l.r.<br>                                                                       |           | <l.r.<br>&lt;0.05</l.r.<br>                   |       |       |
| Insetticidi fosforati Tot<br>IDROCARBURI POLICICLICI           | HB/ ·        |          | 10,03                                                                                                                                                                                                                                                                                                                                                                                                                |           | 10,03                                                                                                                                                                                                                                                                                                                                                                         |           | <0,03                                                                                                                                                                                                                                                                                                              |      |         | <0,03                                                                                                                                                                                                                                               |         | 10,03                                                                                                                                                                                                       |           | 10,03                                                                                                                                                       |          | 10,03                                                                                             |           | 10,03                                         |       |       |
| AROMATICI                                                      |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                      |           |                                                                                                                                                                                                                                                                                                                                                                               |           |                                                                                                                                                                                                                                                                                                                    |      |         |                                                                                                                                                                                                                                                     |         |                                                                                                                                                                                                             |           |                                                                                                                                                             |          |                                                                                                   |           |                                               |       |       |
| Naftalene                                                      | μg/I<br>μg/I | ND<br>ND | <l.r.< td=""><td></td><td><l.r.<br><l.r.< td=""><td></td><td>0,254<br/><l.r.< td=""><td>±</td><td>0,066</td><td><l.r.< td=""><td></td><td>0,041<br/><l.r.< td=""><td></td><td><l.r.<br><l.r.< td=""><td></td><td><l.r.<br><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></l.r.<br></td></l.r.<></l.r.<br></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></l.r.<br></td></l.r.<> |           | <l.r.<br><l.r.< td=""><td></td><td>0,254<br/><l.r.< td=""><td>±</td><td>0,066</td><td><l.r.< td=""><td></td><td>0,041<br/><l.r.< td=""><td></td><td><l.r.<br><l.r.< td=""><td></td><td><l.r.<br><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></l.r.<br></td></l.r.<></l.r.<br></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></l.r.<br> |           | 0,254<br><l.r.< td=""><td>±</td><td>0,066</td><td><l.r.< td=""><td></td><td>0,041<br/><l.r.< td=""><td></td><td><l.r.<br><l.r.< td=""><td></td><td><l.r.<br><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></l.r.<br></td></l.r.<></l.r.<br></td></l.r.<></td></l.r.<></td></l.r.<> | ±    | 0,066   | <l.r.< td=""><td></td><td>0,041<br/><l.r.< td=""><td></td><td><l.r.<br><l.r.< td=""><td></td><td><l.r.<br><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></l.r.<br></td></l.r.<></l.r.<br></td></l.r.<></td></l.r.<> |         | 0,041<br><l.r.< td=""><td></td><td><l.r.<br><l.r.< td=""><td></td><td><l.r.<br><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></l.r.<br></td></l.r.<></l.r.<br></td></l.r.<> |           | <l.r.<br><l.r.< td=""><td></td><td><l.r.<br><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></l.r.<br></td></l.r.<></l.r.<br> |          | <l.r.<br><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></l.r.<br> |           | <l.r.< td=""><td></td><td></td></l.r.<>       |       |       |
| Benzo(b)fluorantene<br>Benzo(k)fluorantene                     | µg/I         | ND<br>ND | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><lr.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></lr.<></td></l.r.<></td></l.r.<>                                                                                      |           | <l.r.< td=""><td></td><td><lr.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></lr.<></td></l.r.<>                                                                                      |           | <lr.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></lr.<>                                                                  |      |         | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                 |         | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<>                                       |          | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<>                    |           | <l.r.< td=""><td></td><td></td></l.r.<>       |       |       |
| Benzo(a)pirene                                                 | μg/I         | ND       | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                    |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                    |           | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                |      |         | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                 |         | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<>                                       |          | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<>                    |           | <l.r.< td=""><td></td><td></td></l.r.<>       |       |       |
| Indeno (1,2,3 cd) pirene                                       | μg/I         | ND       | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                    |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                    |           | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                |      |         | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                 |         | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<>                                       |          | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<>                    |           | <l.r.< td=""><td></td><td></td></l.r.<>       |       |       |
| SOLVENTI ORGANICI<br>AROMATICI                                 |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                      |           |                                                                                                                                                                                                                                                                                                                                                                               |           |                                                                                                                                                                                                                                                                                                                    |      |         |                                                                                                                                                                                                                                                     |         |                                                                                                                                                                                                             |           |                                                                                                                                                             |          |                                                                                                   |           |                                               |       |       |
| Benzene                                                        | µg/I         | ND       | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                    |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                    |           | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                |      |         | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                 |         | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<>                                       |          | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<>                    |           | <l.r.< td=""><td></td><td></td></l.r.<>       |       |       |
| Soventi organici aromatici                                     | mg/l         | ND       | <0,0011                                                                                                                                                                                                                                                                                                                                                                                                              |           | <0,0011                                                                                                                                                                                                                                                                                                                                                                       |           | <0,0011                                                                                                                                                                                                                                                                                                            |      |         | <0,0011                                                                                                                                                                                                                                             |         | <0,001                                                                                                                                                                                                      | I.        | <0,0011                                                                                                                                                     |          | <0,0011                                                                                           |           | <0,0011                                       |       |       |
| COMPOSTI ORGANICI<br>VOLATILI (VOC)                            |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                      |           |                                                                                                                                                                                                                                                                                                                                                                               |           |                                                                                                                                                                                                                                                                                                                    |      |         |                                                                                                                                                                                                                                                     |         |                                                                                                                                                                                                             |           |                                                                                                                                                             |          |                                                                                                   |           |                                               |       |       |
| Tetracloruro di carbonio                                       | μg/I         | ND       | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                    |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                    |           | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                |      |         | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                 |         | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<>                                       |          | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<>                    |           | <l.r.< td=""><td></td><td></td></l.r.<>       |       |       |
| Cloroformio                                                    | µg/I         | ND       | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                    |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                    |           | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                |      |         | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                 |         | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<>                                       |          | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<>                    |           | <l.r.< td=""><td></td><td></td></l.r.<>       |       |       |
| 1,2-dicloroetano                                               | μg/I         | ND       | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                    |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                    |           | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                |      |         | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                 |         | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<>                                       |          | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<>                    |           | <l.r.< td=""><td></td><td></td></l.r.<>       |       |       |
| Diclorometano                                                  | μg/l         | ND       | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                    |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                    |           | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                |      |         | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                 |         | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<>                                       |          | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<>                    |           | <l.r.< td=""><td></td><td></td></l.r.<>       |       |       |
| Tetracloroetilene                                              | μg/l<br>μg/l | ND<br>ND | <l.r.< td=""><td></td><td><l.r.<br><l.r.< td=""><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td>-</td><td><l.r.<br><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></l.r.<br></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></l.r.<br></td></l.r.<></l.r.<br></td></l.r.<>                          |           | <l.r.<br><l.r.< td=""><td></td><td><l.r.<br><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td>-</td><td><l.r.<br><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></l.r.<br></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></l.r.<br></td></l.r.<></l.r.<br>                          |           | <l.r.<br><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td>-</td><td><l.r.<br><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></l.r.<br></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></l.r.<br>                         |      |         | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td>-</td><td><l.r.<br><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></l.r.<br></td></l.r.<></td></l.r.<></td></l.r.<>                             |         | <l.r.< td=""><td></td><td><l.r.< td=""><td>-</td><td><l.r.<br><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></l.r.<br></td></l.r.<></td></l.r.<>                            |           | <l.r.< td=""><td>-</td><td><l.r.<br><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></l.r.<br></td></l.r.<>                   | -        | <l.r.<br><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></l.r.<br> |           | <l.r.< td=""><td></td><td></td></l.r.<>       |       |       |
| Tricloroetilene  COMPOSTI ORGANO- STANNICI                     |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                      |           |                                                                                                                                                                                                                                                                                                                                                                               |           |                                                                                                                                                                                                                                                                                                                    |      |         |                                                                                                                                                                                                                                                     |         |                                                                                                                                                                                                             |           |                                                                                                                                                             |          |                                                                                                   |           |                                               |       |       |
| Monobutilstagno                                                | μg/I         | ND       | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                    |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                    |           | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                |      |         | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                 |         | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<>                                       |          | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<>                    |           | <l.r.< td=""><td></td><td></td></l.r.<>       |       |       |
| Dibutilstagno                                                  | μg/I<br>μg/I | ND<br>ND | <l.r.< td=""><td></td><td><l.r.<br><l.r.< td=""><td></td><td><l.r.<br><l.r.< td=""><td>-</td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.<br><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></l.r.<br></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></l.r.<br></td></l.r.<></l.r.<br></td></l.r.<>                          |           | <l.r.<br><l.r.< td=""><td></td><td><l.r.<br><l.r.< td=""><td>-</td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.<br><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></l.r.<br></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></l.r.<br></td></l.r.<></l.r.<br>                          |           | <l.r.<br><l.r.< td=""><td>-</td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.<br><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></l.r.<br></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></l.r.<br>                         | -    |         | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.<br><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></l.r.<br></td></l.r.<></td></l.r.<></td></l.r.<>                              |         | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.<br><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></l.r.<br></td></l.r.<></td></l.r.<>                             |           | <l.r.< td=""><td></td><td><l.r.<br><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></l.r.<br></td></l.r.<>                    |          | <l.r.<br><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></l.r.<br> |           | <l.r.< td=""><td></td><td></td></l.r.<>       |       |       |
| Tributilstagno Tetrabutilstagno                                | µg/I         | ND<br>ND | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td>-</td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                   |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td>-</td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                   |           | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td>-</td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                               |      |         | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td>-</td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                |         | <l.r.< td=""><td></td><td><l.r.< td=""><td>-</td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                               |           | <l.r.< td=""><td>-</td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<>                                      | -        | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<>                    |           | <l.r.< td=""><td></td><td></td></l.r.<>       |       |       |
| Monoottilstagno                                                | μg/I         | ND ND    | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                    |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                    |           | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                |      |         | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                 |         | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<>                                       |          | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<>                    |           | <l.r.< td=""><td></td><td></td></l.r.<>       |       |       |
| Diottilstagno                                                  | μg/I         | ND       | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                    |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                    |           | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                |      |         | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                 |         | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<>                                       |          | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<>                    |           | <l.r.< td=""><td></td><td></td></l.r.<>       |       |       |
| Trifenilstagno                                                 | μg/I         | ND       | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                    |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                    |           | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                |      |         | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                 |         | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<>                                       |          | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<>                    |           | <l.r.< td=""><td></td><td></td></l.r.<>       |       |       |
| Tricicloesilstagno                                             | μg/I         | ND       | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                    |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                    |           | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                |      |         | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                 |         | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                |           | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<>                                       |          | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<>                    |           | <l.r.< td=""><td></td><td></td></l.r.<>       |       |       |
| BIS(2-ETILESIL)FTALATO SOLVENTI ORGANICI                       | μg/I         | ND       | <l.r.< td=""><td></td><td>0,121</td><td>± 0,067</td><td><l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td>0,179</td><td>± 0,069</td><td>0,172</td><td>± 0,069</td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                                               |           | 0,121                                                                                                                                                                                                                                                                                                                                                                         | ± 0,067   | <l.r.< td=""><td></td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td>0,179</td><td>± 0,069</td><td>0,172</td><td>± 0,069</td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<>                                                                                  |      |         | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td>0,179</td><td>± 0,069</td><td>0,172</td><td>± 0,069</td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></td></l.r.<>                                                                   |         | <l.r.< td=""><td></td><td>0,179</td><td>± 0,069</td><td>0,172</td><td>± 0,069</td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<>                                                                  |           | 0,179                                                                                                                                                       | ± 0,069  | 0,172                                                                                             | ± 0,069   | <l.r.< td=""><td></td><td></td></l.r.<>       |       |       |
| AZOTATI                                                        |              |          | l                                                                                                                                                                                                                                                                                                                                                                                                                    |           | L                                                                                                                                                                                                                                                                                                                                                                             |           | l .                                                                                                                                                                                                                                                                                                                |      |         |                                                                                                                                                                                                                                                     |         |                                                                                                                                                                                                             |           | <b>.</b>                                                                                                                                                    |          |                                                                                                   |           | <b>.</b>                                      |       |       |
| Acetonitrile                                                   | mg/l<br>mg/l | ND<br>ND | <l.r.< td=""><td></td><td><l.r.<br><l.r.< td=""><td></td><td><l.r.<br><l.r.< td=""><td>-</td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.<br><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></l.r.<br></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></l.r.<br></td></l.r.<></l.r.<br></td></l.r.<>                          |           | <l.r.<br><l.r.< td=""><td></td><td><l.r.<br><l.r.< td=""><td>-</td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.<br><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></l.r.<br></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></l.r.<br></td></l.r.<></l.r.<br>                          |           | <l.r.<br><l.r.< td=""><td>-</td><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.<br><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></l.r.<br></td></l.r.<></td></l.r.<></td></l.r.<></td></l.r.<></l.r.<br>                         | -    |         | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.<br><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></l.r.<br></td></l.r.<></td></l.r.<></td></l.r.<>                              |         | <l.r.< td=""><td></td><td><l.r.< td=""><td></td><td><l.r.<br><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></l.r.<br></td></l.r.<></td></l.r.<>                             |           | <l.r.< td=""><td></td><td><l.r.<br><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></l.r.<br></td></l.r.<>                    |          | <l.r.<br><l.r.< td=""><td></td><td><l.r.< td=""><td></td><td></td></l.r.<></td></l.r.<></l.r.<br> |           | <l.r.< td=""><td></td><td></td></l.r.<>       |       |       |
| acrilonitrile Solventi organici azotati tot                    | mg/l<br>mg/l | ND<br>ND | <l.r.<br>&lt;0,022</l.r.<br>                                                                                                                                                                                                                                                                                                                                                                                         |           | <l.r.<br>&lt;0,022</l.r.<br>                                                                                                                                                                                                                                                                                                                                                  |           | <l.r.<br>&lt;0,022</l.r.<br>                                                                                                                                                                                                                                                                                       |      |         | <l.r.<br>&lt;0,022</l.r.<br>                                                                                                                                                                                                                        |         | <l.r.<br>&lt;0,022</l.r.<br>                                                                                                                                                                                | 1         | <l.r.<br>&lt;0,022</l.r.<br>                                                                                                                                | 1        | <l.r.<br>&lt;0,022</l.r.<br>                                                                      |           | <l.r.<br>&lt;0,022</l.r.<br>                  |       |       |
| SOLACUTE OLEGUIICI GYOTGELI FOF                                | ь.           | 1        | -0,022                                                                                                                                                                                                                                                                                                                                                                                                               | 1         | 10,022                                                                                                                                                                                                                                                                                                                                                                        | 1         | 10,022                                                                                                                                                                                                                                                                                                             |      |         | 10,022                                                                                                                                                                                                                                              | l       | 10,022                                                                                                                                                                                                      | 1         | 10,022                                                                                                                                                      | 1        | 10,022                                                                                            | 1         | 10,022                                        |       |       |

| Impianto di filtrazione e<br>raffreddamento riv 3-4 (52AI)     | U.M.         | Limiti<br>(152) | 14/11/2014                                                 |     |        |  |  |  |
|----------------------------------------------------------------|--------------|-----------------|------------------------------------------------------------|-----|--------|--|--|--|
| TEMPERATURA (AL PRELIEVO)                                      | °c           | ND              | 17,6                                                       | ±   | 0,2    |  |  |  |
| pH (AL PRELIEVO)                                               |              | ND              | 8,4                                                        | ±   | 0,2    |  |  |  |
| CONDUCIBILITÀ EL. (AL PRELIEVO)                                | μS / cm      | ND              | 11460                                                      | ±   | 184    |  |  |  |
| IDROCARBURI TOT (C10-C40)                                      | μg/I         | 5000            | <l.r.< td=""><td></td><td></td></l.r.<>                    |     |        |  |  |  |
| ARSENICO                                                       | mg/l         | 0,5             | <l.r.< td=""><td></td><td></td></l.r.<>                    |     |        |  |  |  |
| CADMIO                                                         |              | 0,02            | <l.r.< td=""><td></td><td></td></l.r.<>                    |     |        |  |  |  |
|                                                                | mg/l         |                 |                                                            |     |        |  |  |  |
| CROMO ESAVALENTE                                               | mg/l         | 0,2             | <l.r.< td=""><td></td><td></td></l.r.<>                    |     |        |  |  |  |
| СКОМО ТОТ                                                      | mg/l         | 2               | <l.r.< td=""><td></td><td></td></l.r.<>                    |     |        |  |  |  |
| MERCURIO                                                       | mg/l         | 0,005           | <l.r.< td=""><td></td><td></td></l.r.<>                    |     |        |  |  |  |
| NICHEL                                                         | mg/l         | 2               | 0,00178                                                    | ±   | 0,0007 |  |  |  |
| PIOMBO                                                         | mg/l         | 0,2             | <l.r.< td=""><td></td><td></td></l.r.<>                    |     |        |  |  |  |
| RAME                                                           | mg/l         | 0,1             | 0,0072                                                     | ±   | 0,001  |  |  |  |
| SELENIO                                                        | mg/l         | 0,03            | 0,00202                                                    | ±   | 0,0007 |  |  |  |
| ZINCO                                                          | mg/l         | 0,5             | 0,0175                                                     | ±   | 0,005  |  |  |  |
|                                                                | 6/1          | 0,3             | 0,0175                                                     | -   | 0,003  |  |  |  |
| PESTICIDI TOT ESCL FOSFORATI<br>ALDRIN DIELDRIN ENDRIN ISODRIN | mg/l         | ND              | <l.r.< td=""><td></td><td></td></l.r.<>                    |     |        |  |  |  |
| INSETTICIDI CLORURATI                                          |              |                 |                                                            |     |        |  |  |  |
| Aldrin                                                         | mg/l         | ND              | <l.r.< td=""><td></td><td></td></l.r.<>                    |     |        |  |  |  |
| Dieldrin                                                       | mg/I         | ND<br>ND        | <l.r.< td=""><td></td><td></td></l.r.<>                    |     |        |  |  |  |
| Endrin                                                         | mg/l<br>mg/l | ND<br>ND        | <l.r.<br><l.r.< td=""><td></td><td></td></l.r.<></l.r.<br> |     |        |  |  |  |
| Isodrin                                                        | mg/l         | ND<br>ND        | <l.r.< td=""><td></td><td></td></l.r.<>                    |     |        |  |  |  |
| ESACLOROBENZENE INSETTICIDI FOSFORATI                          | 6/1          | NO.             | SE.R.                                                      |     |        |  |  |  |
|                                                                | µg/I         | ND              | <l.r.< td=""><td></td><td></td></l.r.<>                    |     |        |  |  |  |
| Dichlorvos Insetticidi fosforati Tot                           | µg/I         | ND              | <0,05                                                      |     |        |  |  |  |
| IDROCARBURI POLICICLICI<br>AROMATICI                           |              |                 | ,                                                          |     |        |  |  |  |
| Naftalene                                                      | μg/I         | ND              | <l.r.< td=""><td></td><td></td></l.r.<>                    |     |        |  |  |  |
| Benzo(b)fluorantene                                            | μg/I         | ND              | <l.r.< td=""><td></td><td></td></l.r.<>                    |     |        |  |  |  |
| Benzo(k)fluorantene                                            | μg/I<br>μg/I | ND<br>ND        | <l.r.< td=""><td></td><td></td></l.r.<>                    |     |        |  |  |  |
| Benzo(a)pirene                                                 | µg/I<br>µg/I | ND<br>ND        | <l.r.<br><l.r.< td=""><td></td><td></td></l.r.<></l.r.<br> |     |        |  |  |  |
| Indeno (1,2,3 cd) pirene<br>SOLVENTI ORGANICI<br>AROMATICI     | HB/1         |                 | SEIR.                                                      |     |        |  |  |  |
| Benzene                                                        | μg/l         | ND              | <l.r.< td=""><td></td><td></td></l.r.<>                    |     |        |  |  |  |
| Soventi organici aromatici                                     | mg/l         | ND              | <0,0011                                                    |     |        |  |  |  |
| FENOLI TOTALI                                                  | mg/l         | 0,5             | <l.r.< td=""><td></td><td></td></l.r.<>                    |     |        |  |  |  |
| COMPOSTI ORGANICI<br>VOLATILI (VOC)                            |              |                 |                                                            |     |        |  |  |  |
| Tetracloruro di carbonio                                       | μg/I         | ND              | <l.r.< td=""><td></td><td></td></l.r.<>                    |     |        |  |  |  |
| Cloroformio                                                    | μg/I         | ND              | <l.r.< td=""><td></td><td></td></l.r.<>                    |     |        |  |  |  |
| 1,2-dicloroetano                                               | μg/l         | ND              | <l.r.< td=""><td></td><td></td></l.r.<>                    |     |        |  |  |  |
| Diclorometano                                                  | μg/l         | ND              | <l.r.< td=""><td></td><td></td></l.r.<>                    |     |        |  |  |  |
| Tetracloroetilene                                              | μg/I         | ND              | <l.r.< td=""><td></td><td></td></l.r.<>                    |     |        |  |  |  |
| Tricloroetilene  COMPOSTI ORGANO- STANNICI                     | μg/I         | ND              | <l.r.< td=""><td></td><td></td></l.r.<>                    |     |        |  |  |  |
| Monobutilstagno                                                | μg/I         | ND              | <l.r.< td=""><td>L</td><td></td></l.r.<>                   | L   |        |  |  |  |
| Dibutilstagno                                                  | μg/l         | ND              | <l.r.< td=""><td></td><td></td></l.r.<>                    |     |        |  |  |  |
| Tributilstagno                                                 | μg/l         | ND              | <l.r.< td=""><td></td><td></td></l.r.<>                    |     |        |  |  |  |
| Tetrabutilstagno                                               | μg/I         | ND              | <l.r.< td=""><td></td><td></td></l.r.<>                    |     |        |  |  |  |
| Monoottilstagno                                                | μg/I         | ND<br>ND        | <l.r.< td=""><td></td><td></td></l.r.<>                    |     |        |  |  |  |
| Diottilstagno                                                  | μg/I<br>μg/I | ND<br>ND        | <l.r.< td=""><td></td><td></td></l.r.<>                    |     |        |  |  |  |
| Trifenilstagno<br>Tricicloesilstagno                           | µg/I<br>µg/I | ND<br>ND        | <l.r.< td=""><td></td><td></td></l.r.<>                    |     |        |  |  |  |
| BIS(2-ETILESIL)FTALATO                                         | µg/I         | ND.             | <l.r.< td=""><td></td><td></td></l.r.<>                    |     |        |  |  |  |
| SOLVENTI ORGANICI<br>AZOTATI                                   | ны/1         | .40             | sult.                                                      |     |        |  |  |  |
| Acetonitrile                                                   | mg/l         | ND              | <l.r.< td=""><td></td><td></td></l.r.<>                    |     |        |  |  |  |
| acrilonitrile                                                  | mg/l         | ND              | <l.r.< td=""><td></td><td></td></l.r.<>                    |     |        |  |  |  |
| Solventi organici azotati tot                                  | mg/l         | ND              | <0.022                                                     | 1 - |        |  |  |  |



Cadoneghe, 6 luglio 2015

Ns. rif.: 15 AF053 A0

Vs. rif.:

Spett.le ILVA SPA VIA APPIA KM. 648 74100 TARANTO (TA) Tel. 099 481.4383 Fax 099 4706591

trattamentoacque.taranto@gruppoilva.com

Alla C. A. Egr. ING. FELICE ROSITO

Oggetto: OFFERTA TEST PILOTA PER ACQUE DA COKERIA

Con riferimento ai graditi colloqui intercorsi rimettiamo, in allegato, offerta budgetaria per l'esecuzione delle attività in oggetto.

Restando a Vostra disposizione per ogni eventuale chiarimento porgiamo distinti saluti.

BERNARDINELLO ENGINEERING S.p.A. Federico Nicolazzi



## INDICE OFFERTA 15 AF 053 A0

- 1. INTRODUZIONE
- 2. TIPO DI TRATTAMENTO
- 3. DATI DI PROGETTO
- 4. DESCRIZIONE DELLE ATTIVITA'
- 5. DISTINTA PREZZI
- 6. ESCLUSIONI

Offerta 15 AF 053 A0 Pagina 3 di 20 Spett.le I.L.V.A. Taranto



#### 1. INTRODUZIONE

### 1.1 PREMESSA

I.L.V.A. dispone di un impianto di trattamento delle acque provenienti da cokerie dopo un pretrattamento chimico-fisico. In sintesi il processo prevede una equalizzazione delle acque influenti in vasca e, dopo dosaggi di chemicals, l'invio del refluo alla vasca di ossidazione biologica alimentata con ossigeno. L'acqua contenente fango biologico viene chiarificata in una vasca dedicata e da questa l'acqua inviata ad una sezione di stripping a vapore.

Le problematiche evidenziate sull'acqua trattata sono:

- i. la presenza di solidi sospesi nell'acqua chiarificata
- ii. l'elevato costo della deammoniazione in termini di consumo di vapore
- iii. la presenza di selenio nell'acqua trattata al di sopra dei limiti di legge

Bernardinello negli scorsi mesi ha eseguito test su una filiera di trattamento costituita da più steps tecnologici in successione che ha ottenuto la riduzione/eliminazione delle problematiche evidenziate.

I risultati delle prove eseguite sono state utilizzate come base per il dimensionamento dell'impianto proposto con la nostra offerta 15 PR 014 A0.

Lo scopo di queste ulteriori prove è la validazione del dimensionamento e quindi dell'offerta, effettuando protocolli di campionamento, analisi e supervisione delle attività da parte di enti terzi rispetto alla Bernardinello.



#### 1.2 SCOPO DELL'OFFERTA

Lo scopo dell'offerta è la fornitura di una unità mobile (denominata "pilota").

### Saranno a nostro carico:

- 1.2.1 Fornitura del pilota
- 1.2.2 Trasporto e avviamento dell'impianto
- 1.2.3 Conduzione giornaliera presso lo stabilimento ILVA
- 1.2.4 Fornitura chemicals speciali
- 1.2.5 Demobilitazione dell'impianto e trasporto al termine del periodo di noleggio
- 1.2.6 Stesura di relazione tecnica finale

Sono comprese nella nostra proposta ma eseguite da enti terzi qualificati

- 1.2.7 Campionamento ed analisi delle acque
- 1.2.8 Supervisione scientifica delle prove
- 1.2.9 Validazione con firma della relazione tecnica finale

### Saranno a carico ILVA

- 1.2.10 Fornitura acido solforico 30 %, idrato di sodio 30 %, ipoclorito di sodio 12 % prodotto per l'abbattimento del selenio GE Betz MR2405 .
- 1.2.11 Fornitura acqua da trattare, smaltimento eluati, rifiuti liquidi e solidi
- 1.2.12 Collegamenti elettrici, idraulici, pneumatici
- 1.2.13 Ausiliari di produzione (EE, acqua da trattare, aria compressa)
- 1.2.14 Smontaggio e caricamento su automezzo

Offerta 15 AF 053 A0 Pagina 5 di 20 Spett.le I.L.V.A. Taranto

1.3 VALIDAZIONE DELLA SPERIMENTAZIONE

Per validare il processo proposto dalla nostra società proponiamo di operare con la struttura di

lavoro descritta qui di seguito:

1.3.1 Bernardinello

La nostra società fornirà l'impianto pilota di trattamento e lo condurrà durante i giorni feriali in

orario 8,30-18 mantenendone i livelli produttivi ed effettuando la operazioni di manutenzione

ordinaria e straordinaria. Al termine del test redigerà la bozza di relazione tecnica che verrà

sottoposta all'organo di supervisione scientifica.

1.3.2 Università di Padova

Un professore ordinario di questa Università sarà delegato dalla stessa a verificare e

successivamente validare il progetto di trattamento. Il professore verificherà la filiera di

trattamento, predisporrà il piano di campionamento, si interfaccerà con il laboratorio che sarà

prescelto per il campionamento e controllo analitico e firmerà la relazione finale con timbro

dell'Università di Padova.

1.3.3 Laboratorio

Il laboratorio prescelto per le attività di controllo analitico eseguirà con proprio personale il

campionamento della acque nei punti stabiliti da piano di campionamento ed analisi ed eseguirà

presso il proprio laboratorio le analisi coordinandosi con il professore delegato dall'Università.

Il laboratorio sarà accreditato e in possesso dei requisiti e delle apparecchiature in grado di

operare sui campioni scelti con un sufficiente grado di precisione e accuratezza.

In via preliminare sono stati stabiliti due campionamenti/die.



# 1.4 Specifiche di riferimento

Le specifiche tecniche di riferimento per il dimensionamento e la realizzazione dell'impianto pilota sono le seguenti :

| 1.4.1 | Unità package           | :              | Specifiche   | Berna | ardinello Engineering S.p.A. |
|-------|-------------------------|----------------|--------------|-------|------------------------------|
| 1.4.2 | Disegno tecnico         | :              | Norme        | I.S.A | <b>.</b> .                   |
| 1.4.3 | Specifiche Quadri Ele   | ttrici         |              |       | Normalizzazione interna B.E. |
| 1.4.4 | Criteri di costruzione  | delle parti n  | netalliche   |       | u                            |
| 1.4.5 | Specifiche di vernicia  | tura carpent   | erie metalli | che   | u                            |
| 1.4.6 | Elenco documentazion    | ne a corredo   | dell'impian  | ıto   | u                            |
| 1.4.7 | Elenco di certificati a | corredo del    | l'impianto   |       | и                            |
| 1.4.8 | Normative di sicurezza  | a parti mecc   | caniche      |       | Norme CE                     |
| 1.4.9 | Normative di sicurezza  | a parti eletti | riche        |       | EN 60204-1                   |



## 2. TIPO DI TRATTAMENTO

# 2.1 DESCRIZIONE DEL PROCESSO

Il processo di trattamento si articolerà nei seguenti step unitari:

- Chiariflocculazione
- Filtrazione e stoccaggio acqua filtrata
- Ultrafiltrazione
- Stoccaggio acqua ultrafiltrata
- Osmosi inversa
- Trattamento del concentrato per abbattimento del selenio
- Post trattamento finale



## 2.2 GENERALITÀ

Di seguito descriveremo le principali caratteristiche dell'impianto pilota proposto.

L'impianto è stato progettato per la verifica dei parametri processistici ed impiantistici per il trattamento dell'acqua influente.

Il trattamento si basa sui seguenti processi unitari:

- Chiariflocculazione
- Filtrazione meccanica su sabbia
- Ultrafiltrazione
- Demineralizzazione su membrane di osmosi.
- Trattamento secondario del selenio
- Post trattamento finale



Figura 1: Foto dell'impianto pilota in un recente test (alcune apparecchiature sono diverse da quelle proposte)



# 2.2.1 Chiarificazione primaria e dosaggio chemicals

Il pretrattamento dell'acqua avverrà mediante chiarificazione in sedimentatore lamellare in acciaio inossidabile con pacchi in PRFV e accessori d'uso. Il dosaggio dei chemicals avverrà mediante l'utilizzo di elettropompe dosatrici a membrana che prelevano da serbatoi di stoccaggio dedicati.

## 2.2.2 Filtrazione meccanica

L'acqua chiarificata e stoccata in un serbatoio dedicato verrà ripresa mediante elettropompa centrifuga e inviata ad una unità di filtrazione a quarzite costituita da un filtro in acciaio inossidabile con piastra drenante portaugelli. Durante i test saranno verificati gli sporcamenti dei filtri misurando l'andamento del DP sulle cartucce.



Vista del sistema descritto ai punti precedenti



### 2.2.3 Ultrafiltrazione

L'ultrafiltrazione è una tecnica che consente di rendere compatibile l'acqua da trattare con il successivo stadio di osmosi inversa. L'osmosi infatti deve essere alimentata con acqua di adeguate caratteristiche chimico fisiche e, in particolare, con acqua con un basso contenuto di solidi, misurati dal test SDI (che è in grado di determinare anche altri parametri).

Per definizione operativa si definiscono "solidi sospesi" tutti i solidi di dimensioni superiori a  $0,45 \mu m$ . Le sostanze, o particelle, "colloidali" sono definibili come sostanze solide disperse in un liquido (in questo caso l'acqua), aventi dimensioni variabili nell'intervallo 0,10 -  $1 \mu m$ 

L'aspetto caratterizzante dei colloidi è la repulsione elettrostatica che si esercita, tra le varie particelle, per opera di cariche dello stesso segno disposte sulla superficie. La presenza di queste cariche può derivare da imperfezioni cristalline. La repulsione tra cariche dello stesso segno impedisce la agglomerazione tra le particelle e la conseguente formazione di aggregati più voluminosi, e quindi più facilmente sedimentabili. Sulla superficie vengono attratti gli ioni opposti presenti nell'acqua. Quindi, nel caso di cariche negative sulla superficie, si contrapporrà uno strato di cariche positive a diretto contatto con quelle negative; questo doppio strato elettrico si chiama "strato di Stern" (vedi figura 2.1). Oltre questo strato si distingue un altro dove la concentrazione degli ioni positivi è prevalente. Tutte le membrane oggetto delle prove sono di primaria marca, nuove e sufficientemente testate in precedenti casi e per tutte esistono impianti industriali in funzionamento con buon esito. Il senso del test è quello di verificare quale di queste membrane possiede le migliori caratteristiche e performance per la specifica applicazione. L'impianto è completamente automatico ed è dotato dei sistemi di contro lavaggio e CEB (Chemical enhanced backwash).



# 2.2.4 Membrane di deammoniazione (opzionali e non previste nella proposta finale)

Queste membrane semipermeabili ai gas hanno la proprietà di trattenere l'acqua e i sali e, nelle condizioni di progetto, di far permeare l'ammoniaca attraverso le proprie fibre in PP. L'ammoniaca permeata verrà assorbita in una soluzione di acido solforico diluito che verrà inviata all'esterno della membrana semipermeabile stessa. Il sistema è completo degli accessori necessari alla regolazione del flusso di acqua da trattare e della soluzione di acido solforico diluito.

### 2.2.5 Osmosi inversa

L'osmosi inversa proposta è composta da un sistema a doppio stadio

Il sistema è in grado di simulare diversi assetti con o senza riciclo del concentrato.

Il sistema è inoltre dotato di unità di cleaning in place per l'eventuale pulizia delle membrane e delle tubazioni.



Vista delle sezioni a membrana semipermeabile



# 2.2.6 Post trattamento

Il post trattamento affidato al dosaggio di chemicals, seguito da una serie di vasche di flocculazione coaugulazione dotate di agitatori lenti seguite da un decantatore circolare.



Vista dell'impianto di postrattamento del concentrato



## 3. DATI DI PROGETTO

# 3.1 Provenienza dell'acqua da trattare

L'acqua grezza arriverà in pressione dalla Vostra rete.

# 3.2 Utilizzo dell'acqua trattata

Utilizzo tecnologico e, in particolare, alimento impianto di demineralizzazione.

# 3.3 Caratteristiche dell'acqua da trattare

Sono quelle di cui alle analisi che ci avete inviato negli ultimi mesi e a noi ben note.

## 3.4 Caratteristiche e prestazioni dell'impianto

3.4.1. Portata massima di alimentazione

5 m<sup>3</sup>/h

### 3.5 Processo

# 3.5.1. Caratteristiche dell'acqua trattata

In linea con le caratteristiche richieste e illustrate nella nostra offerta 15 PR 014 A0.



# 3.6 Parametri di progetto

| I parametri di progetto | (oltre a quelli riportati ai | punti 3.1 / 3.2 / | 3.3 / 3.4/3.5) sono : |
|-------------------------|------------------------------|-------------------|-----------------------|
|-------------------------|------------------------------|-------------------|-----------------------|

| Temperatura di progetto                                 | 15   | °C |
|---------------------------------------------------------|------|----|
| Temperatura massima dell'acqua da trattare in esercizio | 30   | °C |
| Temperatura minima acqua da trattare in esercizio       | 15   | °C |
| Venti prevalenti                                        | n.d. |    |
| Temperatura estrema massima aria                        | 42   | °C |
| Temperatura estrema minima aria                         | +5   | °C |
| Precipitazioni annue                                    | n.d. | mm |
| Umidità relativa media                                  | n.d. | %  |
| Umidità relativa massima                                | 99   | %  |

# 3.7 *Classificazione* area

L'area interessata alle installazioni si intende non classificata (area sicura).



| 3.8                                 | Servizi richiesti                      |                  |                   |
|-------------------------------------|----------------------------------------|------------------|-------------------|
| 3.8.1.                              | Acqua da trattare                      |                  |                   |
| 3.8.1.1                             | portata oraria                         | 10               | m <sup>3</sup> /h |
| 3.8.1.2                             | pressione stabilizzata                 | 3                | bar               |
| 3.8.2.                              | Energia elettrica trifase senza neutro |                  |                   |
| 3.8.2.1                             | Tensione                               | 380              | V                 |
|                                     |                                        |                  |                   |
| 3.8.2.2                             | frequenza                              | 50               | Hz                |
| 3.8.2.3                             | Potenza installata                     | Vedi allegato to | ecnico            |
| 3.8.3.                              | Prodotti chimici                       |                  |                   |
| (fornitura a cura e spese I.L.V.A.) |                                        |                  |                   |
|                                     | Acido solforico 30 %.                  |                  |                   |
|                                     | Idrato di sodio 30 %,                  |                  |                   |
|                                     | Ipoclorito di sodio 12 %.              |                  |                   |
| 3.8.3.4                             | GE – Betz MR2405                       |                  |                   |
| (fornitu                            | ra a cura e spese BERNARDINELLO)       |                  |                   |
| 3.8.3.5                             | Antiscalant;                           |                  |                   |

Di ogni prodotti verranno comunicati schede tecniche e di sicurezza per Vostra approvazione.

3.8.3.6 Prodotti di cleaning, flussaggi



| 201           | A · , 1            | 1       | 1 1     | . 1          | · · ·         | 1. 1 , \   |
|---------------|--------------------|---------|---------|--------------|---------------|------------|
| <i>3.8.4.</i> | Aria strumentale   | comando | valvale | nneumatiche  | l peciceata p | disoleata  |
| 5.0.7.        | Tiru bir mincinate | comanao | vaivoic | pricumations | cosiccuia c   | aisoicaia, |

Pressione minima stabilizzata 6 bar

# 3.8.5. Scarichi impianto

Gli scarichi dell'impianto avranno caratteristiche diverse in relazione alla sezione di provenienza. Essi saranno fondamentalmente suddivisibili in:

- Scarichi lavaggio filtri meccanici
- Scarico acqua ultrafiltrazione e concentrato RO
- Prese campione

Tutti gli scarichi verranno avviati all'esistente impianto di chiariflocculazione

# 3.9 Limiti di fornitura

Saranno a bordo impianto.



#### 3.10 Caratteristiche contrattuali

## 3.10.1 Durata del contratto

La durata contrattuale prevista è di 2 mesi dall'entrata in servizio del sistema.

## 3.10.2 Fatturazione

Alla produzione del report finale

La fatturazione del DEMOB avverrà al termine delle attività.

### 3.10.3 Pagamento

A 90 gg d.f.f.m.

### 3.10.4 Servizio

Per l'esecuzione del contratto assicureremo la presenza di personale qualificato per le attività di avviamento. Saranno a Nostra cura:

- 3.10.4.1 Campionamento ed analisi di laboratorio necessarie.
- 3.10.4.2 Conduzione giornaliera dell'impianto.
- 3.10.4.3 Stesura del report tecnico finale per il supervisore

La presenza del nostro personale sarà di una ora die in orario diurno feriale. L'impianto verrà attivato il mattino e fermato durante la notte e i giorni festivi.

## 3.10.5 Consegna impianto

L'impianto sarà consegnato presso la Vostra sede entro 15 giorni lavorativi da Vostro ordine scritto.

Offerta 15 AF 053 A0 Pagina 18 di 20 Spett.le I.L.V.A. Taranto

4. DESCRIZIONE DELLE ATTIVITA'

4.1 Tipologie costruttive

L'impianto prevede l'uso di tubazioni di rating adeguato alla applicazioni.

Verranno utilizzati materiali plastici per le basse pressioni ed acciaio inossidabile AISI316L per

le alte pressioni, il tutto secondo normativa UNI DIN.

4.2 Opere civili

Le opere civili sono escluse dalla nostra fornitura ma forniremo un lay-out dell'impianto con i

carichi gravanti in esercizio.

Sarà possibile studiare sistemi di sostegno che non prevedano la realizzazione di opere civili

come pose di traversine o lamiere di acciaio che non sono comunque comprese nella nostra

fornitura.

A Vostra cura l'eventuale copertura dell'impianto che comunque è adatto all'uso esterno.

4.3 Campionamento ed analisi

Il campionamento e le analisi chimiche verranno effettuate da un laboratorio terzo accreditato

rispetto alla BE. Chiederemo regolare subappalto per l'ingresso del personale specializzato

dipendente del laboratorio per l'effettuazione delle attività di campionamento presso l'impianto

pilota. Si prevede un campionamento giornaliero per le 8 settimane di attività (circa 200

campioni).

4.4 Report finale

Il report finale verrà stilato in collaborazione con un delegato dell'Università di Padova che

supervisionerà le attività di conduzione dell'impianto e le attività analitiche. Il delegato dovrà

periodicamente visitare l'impianto e, per questo motivo, chiederemo il permesso d'ingresso

presso il Vostro stabilimento.



## 5. DISTINTA PREZZI

5.1.1 Prezzo onnicomprensivo per il noleggio e conduzione dell'impianto come descritto ai capitoli 3-4 della presente offerta:

## € 3.500,00/mese

5.1.2 Prezzo per la supervisione scientifica da parte di Università italiana di primario standing, il campionamento ed analisi eseguite da laboratorio accreditato, per 10 campioni/die per 8 settimane.

## € 24.500,00

5.1.3 Prezzo per la gestione dell'impianto (personale, chemicals etc.) per il periodo di 8 settimane.

## € 7.500,00

5.1.4 Prezzo per la mobilitazione dell'impianto (montaggio nei limiti di batteria):

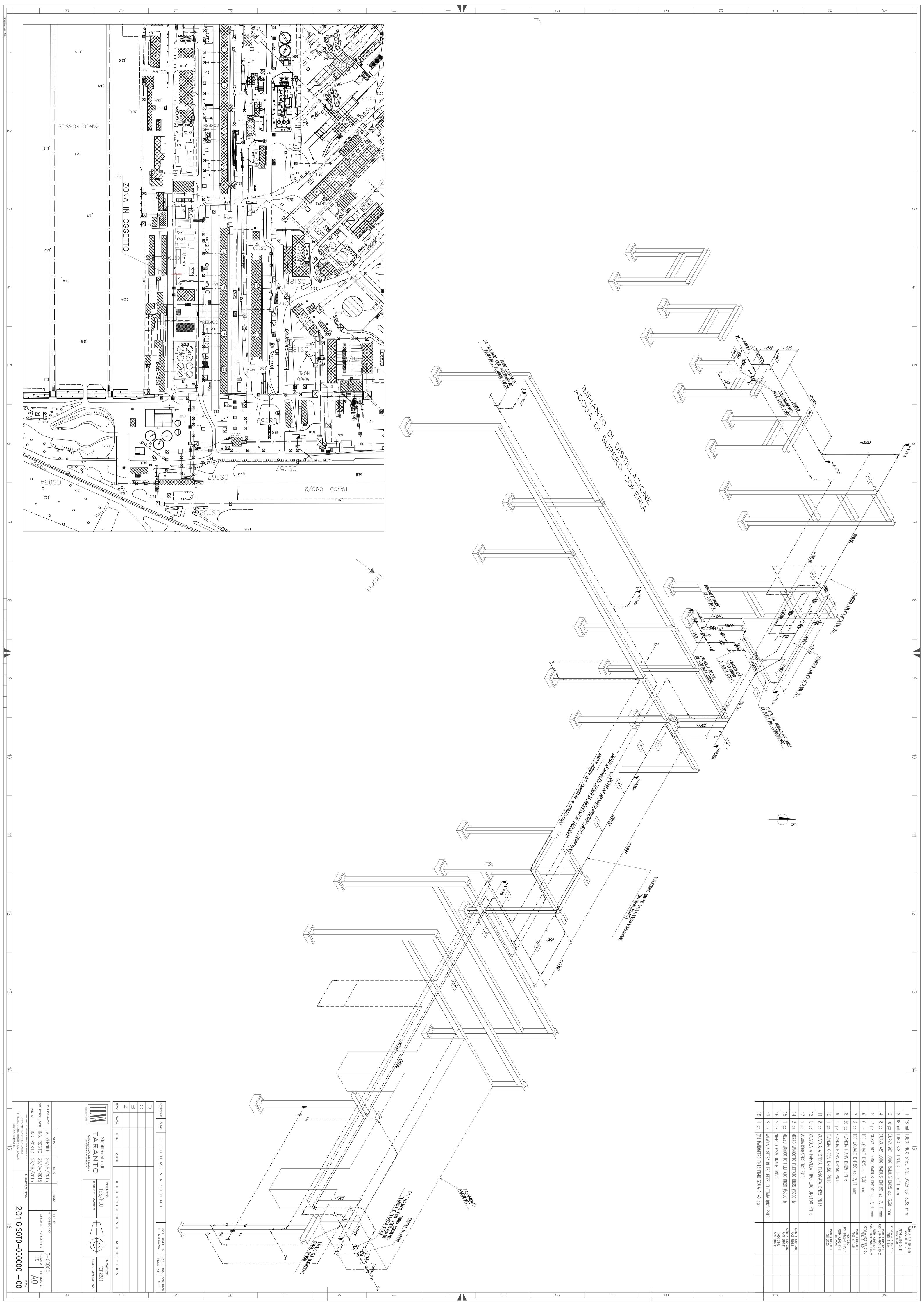
### Incluso

5.1.5 Prezzo per il demob dell'impianto (trasporto presso la nostra sede):

# 3.500,00 €

In caso di gradito ordine per l'impianto industriale, le spese di cui sopra verranno scontate dall'importo complessivo.




#### 6. ESCLUSIONI

Desideriamo comunque precisare che abbiamo considerato l'area di impianto libera da qualsiasi manufatto e cascame. Sono espressamente esclusi dalla nostra fornitura:

- 6.1 Smantellamenti e smaltimenti materiali presenti nell'area 6.2 Linea di alimentazione elettrica, idraulica e pneumatica. 6.3 Energia elettrica, aria compressa, acqua di servizio 6.4 Contatti con enti esterni per quanto non di nostra stretta competenza. 6.5 Permessi ed autorizzazioni necessarie all'esecuzione dei lavori. L' I.V.A. 6.6 6.7 Posizionamento montaggio e smontaggio Impianto antincendio 6.8 6.9 Eventuale compilazione registro carico/scarico rifiuti e relativo formulario
- 6.11 Chemicals descritti sopra
- 6.12 Quanto non previsto nella presente offerta.

Smaltimento dei reflui e rifiuti prodotti durante il test

6.10

