

Società con unico socio soggetta all'attività di direzione e coordinamento da parte di Saras SpA

Spett.le Ministero dell'Ambiente e della Tutela del Territorio e dei Mare DVA - Divisione III RIR- AIA Via Cristoforo Colombo, 44 -00147 Roma (RM) c.a. dott. Giuseppe LO PRESTI

Spett.le **ISPRA** Servizio Interdipartimentale per l'Indirizzo il Coordinamento e il Controllo delle Attività Ispettive Via Vitaliano Brancati, 48 - 00144 Roma (RM) c.a. ing. Alfredo PINÍ

> Spett.le **ARPAS** Dipartimento di Cagliari Viale Ciusa, 6 - 09100 Cagliari (CA) c.a. dott. Massimo Secci

> Spett.le Regione Autonoma della Sardegna Assessorato Difesa Ambiente Via Roma, 80 - 09123 Cagliari (CA)

Spett.le Provincia di Cagliari Via Cadello, 9b - 09100 Cagliari (CA)

Spett.le Comune di Sarroch Via Siotto, 2 - 09018 Sarroch (CA) c.a. ufficio del Sindaco

Sarroch, 29 aprile 2016

Oggetto: Piani di Monitoraggio e Controllo (PMC)

Riferimento: DSA-DEC-2009-000230 del 24.03.2009 - Autorizzazione Integrata Ambientale

dell'impianto complesso "Raffineria e Impianto di Gassificazione a Ciclo Combinato

(IGCC) della società Sarlux Srl, sito in Sarroch (CA)

e AIA DEC-DVA-2012-0000333 del 03/07/2012 dello stabilimento versalis s.p.a.,

per quanto di competenza, sito in Sarroch (CA).

Con riferimento all'oggetto il sottoscritto ing. Vincenzo Greco, gestore dell'impianto complesso "Raffineria, Gassificazione a Ciclo Combinato-IGCC e Impianti Nord ex versalis", della società Sarlux Srl, trasmette in allegato la dichiarazione di conformità e il reporting annuale (compresi gli allegati) dei Piano di Monitoraggio e Controllo (PMC) per la raffineria, per l'IGCC e per gli Impianti Nord ex versalis, relativi al periodo 01/01/2015 - 31/12/2015.

Cordiali saluti

- Sarlux Srl L'Amministratore Delegato

Ing. Vincendo Greco

Sede Legale e stabilimento I-09018 Sarroch (Cagliari) S.S. Sulcitana 195 Km.19° Telefono +39 070 90911 Fax +39 070 900209

Sede Amministrativa I-20122 Milano Via dell'Unione 1 Telefono +39 02 77371 Fax +39 02 76020640

Cap. Soc. Euro 100,000.000 int. vers. Reg. Imprese di Cagliari Cod. Fisc. e P. IVA IT 02093140925 sarlux@pec.grupposaras.it www.sarlux.saras.it

Sarlux Sr

Società con unico socio soggetta all'attività di direzione e coordinamento da parte di Saras SpA

PIANO DI MONITORAGGIO E CONTROLLO

Dichiarazione di conformità

Anno 2015

Dichiarazione di conformità

II sottoscritto ing. Vincenzo Greco, in qualità di Gestore dell'impianto complesso "Raffineria e Impianto di Gassificazione a Ciclo Combinato-IGCC compreso impianti Nord ex versalis, dichiara che l'esercizio dell'impianto, nel periodo compreso tra il 1 Gennaio 2015 ed il 31 Dicembre 2015, è avvenuto nel rispetto delle prescrizioni e condizioni stabilite nelle Autorizzazioni Integrate Ambientali (decreto DSA-DEC-2009-0000230 del 24/03/09 e AIA DEC-DVA-2012-0000333 del 03/07/2012 per quanto di competenza), ad eccezione delle non conformità e degli eventi incidentali rilevati e comunicati all'Autorità Competente e all'Ente di Controllo e di seguito riportati:

Impianti Nord ex versalis

Non conformità			
Data	Riferimento	Oggetto	
21/01/2015	Protocollo n. 000601 del 21/01/2015	Superamento dei VLE dei parametri NOx e CO presso la Centrale Termoelettrica.	
20/02/2015	Protocollo n. 000631 del 20/02/2015	Superamento VLE per parametri NOx e SO2 camino E11.	
03/03/2015	Protocollo n. 000644 del 03/03/2015	Superamento VLE per parametri NOx e SO2 camino E11.	
04/03/2015	Protocollo n. 000647 del 04/03/2015	Superamento VLE relativo al parametro CO sul camino E11	
05/03/2015	Protocollo n. 000651 del 05/03/2015	Superamento VLE del parametro CO sul camino E11	

Non conformità			
Data	Riferimento	Oggetto	
09/03/2015	Protocollo n. 000653 del 09/03/2015	Superamento VLE per parametri NOx e SO2 camino E11.	
13/03/2015	Protocollo n. 000657 del 13/03/2015	Superamento VLE relativo al parametro CO sul camino E11	
16/03/2015	Protocollo n. 000658 del 16/03/2015	Superamento VLE per parametri NOx e SO2 camino E11.	
13/03/2015	Protocollo n. 000664 del 13/03/2015	Superamento VLE per parametri NOx e SO2 camino E11.	
30/03/2015	Protocollo n. 000672 del 30/03/2015	Superamento VLE per parametri NOx e SO2 camino E11.	
08/04/2015	Protocollo n. 000682 del 08/04/2015	Superamento VLE per parametri NOx e SO2 camino E11.	
13/04/2015	Protocollo n. 000685 del 13/04/2015	Superamento VLE per parametri NOx e SO2 camino E11.	
20/04/2015	Protocollo n. 000691 del 20/04/2015	Superamento VLE per parametri NOx e SO2 camino E11.	
27/04/2015	Protocollo n. 000697 del 27/04/2015	Superamento VLE per parametri NOx e SO2 camino E11.	
(N. N. H. N. N. N. H. H. N.	and the second second		
04/05/2015	Protocollo n. 000704 del 04/05/2015	Superamento VLE per parametri NOx e SO2 camino E11.	

Non conformità				
Data	Riferimento	Oggetto		
11/05/2015	Protocollo n. 000708 del 11/05/2015	Superamento VLE per parametri NOx e SO2 camino E11.		
19/05/2015	Protocollo n. 000718 del 19/05/2015	Superamento VLE per parametri NOx e SO2 camino E11.		
26/05/2015	Protocollo n. 000721 del 26/05/2015	Superamento VLE per parametri NOx e SO2 camino E11.		
27/05/2015	Protocollo n. 000725 del 27/05/2015	Blocco impianti per disservizio elettrico e conseguente attivazione sistema torcia		
01/06/2015	Protocollo n. 000729 del 01/06/2015	Superamento VLE per parametri NOx e SO2 camino E11		
08/06/2015	Protocollo n. 000738 del 08/06/2015	Superamento VLE per parametri NOx e SO2 camino E11		
10/06/2015	Protocollo n. 000740 del 10/06/2015	Fermata compressore di recupero gas di torcia e conseguente attivazione del sistema torcia		
15/06/2015	Protocollo n. 000744 del 15/06/2015	Superamento VLE per parametri NOx e SO2 camino E11		
22/06/2015	Protocollo n. 000751 del 22/06/2015	Superamento VLE per parametri NOx e SO2 camino E11		
ও হ'ব জালে হ'ব জাকুরু	e we er er er er er er er.	Yes lid to life that include the c		
29/06/2015	Protocollo n. 000756 del 29/06/2015	Superamento VLE per parametri NOx e SO2 camino E11		

Non conformità				
Data	Riferimento	Oggetto		
26/07/2015	Protocollo n. 000766 del 26/07/2015	Superamento VLE per parametri NOx e SO2 camino E11		
13/07/2015	Protocollo n. 000769 del 13/07/2015	Superamento VLE per parametri NOx e SO2 camino E11		
20/07/2015	Protocollo n. 000772 del 20/07/2015	Superamento VLE per parametri NOx e SO2 camino E11		
21/07/201	Protocollo n. 000774 del 21/07/2015	Fermata compressore di recupero gas di torcia e conseguente attiviazione del sistema torcia		
27/07/2015	Protocollo n. 000779 del 27/07/2015	Superamento VLE per parametri NOx e SO2 camino E11		
03/08/2015	Protocollo n. 000785 del 03/08/2015	Fermata compressore di recupero gas di torcia e conseguente attivazione del sistema torcia		
03/08/2015	Protocollo n. 000786 del 03/08/2015	Superamento VLE per parametri NOx e SO2 camino E11		
10/08/2015	Protocollo n. 000793 del 10/08/2015	Superamento VLE per parametri NOx e SO2 camino E11		
17/08/2015	Protocollo n. 000797 del 17/08/2015	Superamento VLE per parametri NOx e SO2 camino E11		
·*************************************				
	001 1 7 1	1		

	Non conformità	
Data	Riferimento	Oggetto
24/08/2015	Protocollo n. 000798 del 24/08/2015	Superamento VLE per parametri NOx e SO2 camino E11
31/08/2015	Protocollo n. 000802 del 31/08/2015	Superamento VLE per parametri NOx e SO2 camino E11
07/09/2015	Protocollo n. 000803 del 07/09/2015	Superamento VLE per parametri NOx e SO2 camino E11
14/09/2015	Protocollo n. 000811 del 14/09/2015	Superamento VLE per parametri NOx e SO2 camino E11
22/09/2015	Protocollo n. 000821 del 22/09/2015	Superamento VLE per parametro NOx camino E11
28/09/2015	Protocollo n. 000824 del 28/09/2015	Superamento VLE per parametri NOx e SO2 camino E11
05/10/2015	Protocollo n. 000831 del 05/10/2015	Superamento VLE per parametri NOx e SO2 camino E11
06/10/2015	Protocollo n. 000833 del 06/10/2015	Attivazione sistema torcia a seguito del riavviamento impianti Reforming, BTX, Splitter e Formex
12/10/2015	Protocollo n. 000835 del 12/10/2015	Superamento VLE per parametro NOx camino E11
12/10/2015	Protocollo n. 000839 del 12/10/2015	Fermata, per manutenzione, del compressore di recupero gas di torcia e conseguente attivazione del sistema torcia

Non conformità					
Data	Riferimento	Oggetto			
20/10/2015	Protocollo n. 000844 del 20/10/2015	Attivazione sistema torcia a seguito della fermata per manutenzione dell'impianto Reforming			
17/11/2015	Protocollo n. 000870 del 17/11/2015	Superamento VLE per parametro SO2 camino E11			
23/11/2015	Protocollo n. 000873 del 23/11/2015	Attivazione sistema torcia a seguito della fermata e riavviamento dell'impianto Splitter			

Complesso raffineria e IGCC

Non conformità			
Data	Riferimento	Oggetto	
01/01/2015	Protocollo n° 000588 del 02/01/2015	Superamento quantità giornaliera di gas inviato in torcia (riferimento al valore proposto di 325 t/d come da comunicazione del 7/08/2009)	
04/01/2015	Protocollo n° 000591 del 05/01/2015	Superamento quantità giornaliera di gas inviato in torcia (riferimento al valore proposto di 325 t/d come da comunicazione del 7/08/2009)	
26/01/2015	Protocollo n° 000605 del 27/01/2015	Superamento quantità giornaliera di gas inviato in torcia (riferimento al valore proposto di 325 t/d come da comunicazione del 7/08/2009)	
29/01/2015	Protocollo n° 000613 del 30/01/2015	Superamento quantità giornaliera di gas inviato in torcia (riferimento al valore proposto di 325 t/d come da comunicazione del 7/08/2009)	
31/01/2015	Protocollo nº 000614 del 03/02/2015	Rimozione sigillo scolmatore 1F	
04/02/2015	Protocollo nº 000618 del 05/02/2015	Rimozione sigillo scolmatore 1F	
04/02/2015	Protocollo n° 000617 del 05/02/2015	Superamento quantità giornaliera di gas inviato in torcia (riferimento al valore proposto di 325 t/d come da comunicazione del 7/08/2009)	
06/02/2015	Protocollo n° 000622 del 09/02/2015	Superamento quantità giornaliera di	
		gas inviato in torcia (riferimento al valore proposto di 325 t/d come da comunicazione del 7/08/2009)	
.24/02/2015	Protocollo nº 000637 del.25/02/2015	Superamento quantità giornaliera di gas inviato in torcia (riferimento al valore proposto di 325 t/d come da comunicazione del 7/08/2009)	

Non conformità			
Data	Riferimento	Oggetto	
16/03/2015	Protocollo nº 000660 del 17/03/2015	Rimozione sigillo scolmatore 1F, 2 e 3A	
22/03/2015	Protocollo nº 000666 del 23/03/2015	Rimozione sigillo scolmatore 1F	
10/06/2015	Protocollo n° 000741del 11/06/2015	Superamento quantità giornaliera di gas inviato in torcia (riferimento al valore proposto di 325 t/d come da comunicazione del 7/08/2009)	
02/07/2015 03/07/2015	Protocollo nº 000761 del 03/07/2015	Superamento quantità giornaliera di gas inviato in torcia (riferimento al valore proposto di 325 t/d come da comunicazione del 7/08/2009)	
08/07/2015	Protocollo nº 000768 del 13/07/2015	Superamento quantità giornaliera di gas inviato in torcia (riferimento al valore proposto di 325 t/d come da comunicazione del 7/08/2009)	
22/07/2015	Protocollo nº 000775 del 23/07/2015	Superamento quantità giornaliera di gas inviato in torcia (riferimento al valore proposto di 325 t/d come da comunicazione del 7/08/2009)	
07/09/2015	Protocollo nº 000804 del 09/09/2015	Superamento quantità giornaliera di gas inviato in torcia (riferimento al valore proposto di 325 t/d come da comunicazione del 7/08/2009)	
09/09/2015	Protocollo nº 000810 del 11/09/2015	Superamento quantità giornaliera di gas inviato in torcia (riferimento al valore proposto di 325 t/d come da comunicazione del 7/08/2009)	
16/09/2015	Protocollo nº 000815 del 17/09/2015	Superamento quantità giornaliera di gas inviato in torcia (riferimento al valore proposto di 325 t/d come da comunicazione del 7/08/2009)	

Non conformità			
Data	Riferimento	Oggetto	
28/09/2015	Protocollo n° 000825 del 29/09/2015	Superamento quantità giornaliera di gas inviato in torcia (riferimento al valore proposto di 325 t/d come da comunicazione del 7/08/2009)	
30/09/2015	Protocollo n° 000830 del 02/10/2015	Rimozione sigillo scolmatore 1F, 2 e 3A	
22/10/2015	Protocollo n° 000846 del 23/10/2015	Superamento quantità giornaliera di gas inviato in torcia (riferimento al valore proposto di 325 t/d come da comunicazione del 7/08/2009)	
15/11/2015	Protocollo n° 000869 del 17/11/2015	Superamento quantità giornaliera di gas inviato in torcia (riferimento al valore proposto di 325 t/d come da comunicazione del 7/08/2009)	
25/11/2015	Protocollo n° 000877 del 26/11/2015	Blocco impianto MHC2	
25/11/2015	Protocollo n° 000878 del 27/11/2015	Superamento quantità giornaliera di gas inviato in torcia (riferimento al valore proposto di 325 t/d come da comunicazione del 7/08/2009)	
01/12/2015	Protocollo n° 000882 del 02/12/2015	Blocco impianto MHC2	
29/11/2015	Protocollo n° 000884 del 03/12/2015	Superamento del limite orario di emissione del parametro CO (monossido di carbonio) camino IGCC3 - impianto IGCC	
26/12/2014	Protocollo n° 000911 del 29/12/2015	Superamento del limite orario di emissione del parametro SO2 (biossido di zolfo) camini IGCC1 e IGCC3 - impianto IGCC	

Si precisa che, nella tabella precedente, non sono state riportate le comunicazioni effettuate (già inserite nel DAP) in caso di:

- Fermate/riavviamenti impianto (esclusi blocchi impianto)
- fuori servizio strumentali
- utilizzo dei camini 22,1/2,11,12,13 in fase di manutenzione

in quanto non costituiscono non conformità, né eventi incidentali.

Relativamente ai superamenti della quantità giornaliera di gas inviato in torcia per il complesso raffineria e IGCC si evidenzia che, in base alla proposta presentata da Sarlux (ex Saras) in data 7/8/2009, il limite considerato per l'anno 2015 è pari a 325 ton/giorno.

Infine si segnala il superamento per il parametro polveri PTS al camino CO-Bolier rilevato durante il campionamento effettuato nel corso della prima campagna semestrale in data 30 marzo 2015. A fronte di singoli campionamenti rappresentativi delle medie orarie inferiori al VLE orario (pari a 50 mg/Nm³) è stata rilevata una media giornaliera pari a 41 mg/Nm³. Va evidenziato che il metodo per la determinazione delle polveri UNI EN 13284-1:2003 al par. 8.1 riporta che "l'incertezza della misura è nell'intervallo di 2 mg/m³" e pertanto non si può stabilire con certezza che il valore ottenuto superi il VLE giornaliero.

Sono inoltre da evidenziare i seguenti punti:

Emissioni in atmosfera

I dati di emissione trasmessi nel reporting annuale per i camini monitorati in continuo sono quelli registrati dagli analizzatori (SME) per tutti i parametri ad eccezione di quanto riportato sotto:

Camino Centralizzato (camino 25)

GIUGNO

 VOC: utilizzati dati da calcolo come da "Protocollo di Monitoraggio Inquinanti da Emissioni Convogliate-rev3" – causa disponibilità del dato in continuo inferiore all'80% (pag. 36 del PMC).

(vedi comunicazione del 22/06/2015 - prot.n°750, del 10/07/2015 - prot.n°768)

Topping 2 (camini 18/19)

GENNAIO

- FI: utilizzati dati da calcolo come da "Protocollo di Monitoraggio Inquinanti da Emissioni Convogliate-rev3" – causa disponibilità del dato in continuo inferiore all'80% (pag. 36 del PMC).

(vedi comunicazione del 16/02/2015 - prot.n°627)

FEBBRAIO

- FI: utilizzati dati da calcolo come da "Protocollo di Monitoraggio Inquinanti da Emissioni Convogliate-rev3" – causa disponibilità del dato in continuo inferiore all'80% (pag. 36 del PMC).

(vedi comunicazione del 16/02/2015 - prot.nº627)

MAGGIO

- PTS: utilizzati dati da misura in continuo. La disponibilità del dato in continuo è risultata inferiore all'80% (rif. D.Lgs 152/2006 – Allegato VI-parte quinta), ma il dato, confrontato con il calcolo da "Protocollo di Monitoraggio Inquinanti da Emissioni Convogliate-rev3", è risultato comunque conservativo

(vedi comunicazione del 03/06/2015 - prot.nº730)

GIUGNO

- PTS: utilizzati dati da misura in continuo. La disponibilità del dato in continuo è risultata inferiore all'80% (rif. D.Lgs 152/2006 – Allegato VI-parte quinta), ma il dato, confrontato con il calcolo da "Protocollo di Monitoraggio Inquinanti da Emissioni Convogliate-rev3", è risultato comunque conservativo

(vedi comunicazione del 26/08/2015 - prot.n°799)

LUGLIO

- PTS: utilizzati dati da calcolo come da "Protocollo di Monitoraggio Inquinanti da Emissioni Convogliate-rev3" – causa disponibilità del dato in continuo inferiore all'80% (pag. 36 del PMC).

(vedi comunicazione del 26/08/2015 - prot.nº799)

AGOSTO

- PTS: utilizzati dati da misura in continuo. La disponibilità del dato in continuo è risultata inferiore all'80% (rif. D.Lgs 152/2006 – Allegato VI-parte quinta), ma il dato, confrontato con il calcolo da "Protocollo di Monitoraggio Inquinanti da Emissioni Convogliate-rev3", è risultato comunque conservativo

(vedi comunicazione del 26/08/2015 - prot.n°799)

SETTEMBRE/OTTOBRE/NOVEMBRE/DICEMBRE

- VOC: utilizzati dati da calcolo come da "Protocollo di Monitoraggio Inquinanti da Emissioni Convogliate-rev3" – causa disponibilità del dato in continuo inferiore all'80% (pag. 36 del PMC).

(vedi comunicazione del 15/09/2015 - prot.n°812, del 10/03/2016 - prot.n°973).

CCR-ALKY (camino 20)

DICEMBRE

- SO₂, NOx, CO: utilizzati dati da misura in continuo. La disponibilità del dato in continuo è risultata inferiore all'80% (rif. D.Lgs 152/2006 Allegato VI-parte quinta), ma il dato, confrontato con il calcolo da "Protocollo di Monitoraggio Inquinanti da Emissioni Convogliate-rev2", è risultato comunque conservativo.
- PTS: utilizzati dati da calcolo come da "Protocollo di Monitoraggio Inquinanti da Emissioni Convogliate-rev3" causa disponibilità del dato in continuo inferiore all'80% (pag. 36 del PMC).

(vedi comunicazione del 29/12/2015 - prot.n°911)

FCC-K1F3 (camino 14)

NOVEMBRE

- SO₂: utilizzati dati da misura in continuo. La disponibilità del dato in continuo è risultata inferiore all'80% (rif. D.Lgs 152/2006 – Allegato VI-parte quinta), ma il dato, confrontato con il calcolo da "Protocollo di Monitoraggio Inquinanti da Emissioni Convogliate-rev3", è risultato comunque conservativo.

(vedi comunicazione del 30/11/2015 - prot.n°879, del 01/12/2015 - prot.n°880)

VSB-F102C (camino 8)

NOVEMBRE

SO₂: utilizzati dati da misura in continuo. La disponibilità del dato in continuo è risultata inferiore all'80% (rif. D.Lgs 152/2006 – Allegato VI-parte quinta), ma il dato, confrontato con il calcolo da "Protocollo di Monitoraggio Inquinanti da Emissioni Convogliate-rev3", è risultato comunque conservativo.

Scarichi

In riferimento agli adempimenti previsti dall'AIA, si riportano i seguenti casi di indisponibilità dei dati misurati in continuo:

Scarico 1B

Fuori servizio dell'analizzatore di pH dal 26/10/2015 (comunicazione del 29/10/2015 prot. n. 852) al 10/11/2015 (comunicazione del 17/11/2015 prot. n°868).

Scarico 1C

Fuori servizio del misuratore di portata dal 15/02/2013 (comunicazione del 19/03/2013 prot. $n^{\circ}895$) (in corso).

Fuori servizio del misuratore di temperatura dal 07/07/2015 (comunicazione del 10/08/2015 prot. n. 792) al 12/08/2015 (comunicazione del 13/08/2015 prot. n°795).

Pavimentazione bacini

Per motivi tecnico-logistici il serbatoio ST-16, previsto per il 2015, è stato posticipato al 2016, in aggiunta ai tre serbatoi già previsti per il 2016, confermando così, su base biennale, l'obiettivo di pavimentazione di almeno tre serbatoio/anno.

Altre prescrizioni

Si riporta infine, per completezza d'informazione, lo stato di avanzamento relativo all'attuazione delle altre prescrizioni previste dal decreto DSA-DEC-2009-0000230 del 24/03/09 e dal decreto DVA DEC-DVA-2012-0000333 del 03/07/2012 per quanto di competenza:

Pagina 33 del Parere Istruttorio

Installazione entro il 31 dicembre 2010 di un punto di campionamento in continuo sui fumi del CO-boiler sul quale dovrà essere rispettato un limite come media giornaliera per le PTS di 40 mg/Nm³.

In data 22.04.2013 il Gestore ha ricevuto il Parere Istruttorio Conclusivo [DVA-2013-0008608 del 11.04.2013] che prevede l'installazione del sistema di monitoraggio in continuo delle PTS in uscita dal camino da Aprile 2014 e, campagne di monitoraggio delle PTS da effettuare con cadenza mensile.

In data 29 Aprile 2014 è stata comunicata l'installazione e la messa in servizio del misuratore di polveri [prot. 356 del 29/04/2014). Lo strumento, certificato QAL1, è in linea come da prescrizione.

Per tutto il 2015 si è proseguito con il controllo mensile effettuato in ottemperanza alle normative vigenti in materia di inquinamento atmosferico, Decreto "Autorizzazione Integrata Ambientale A.I.A" del 24/03/2009 n° 230 e D.Lgs 03/04/2006, n°152 – Norme in materia ambientale.

Nel mese di Ottobre 2015 sono stati effettuati i campionamenti finalizzati all'implementate delle curve di taratura QAL2 previste dalla norma UNI EN ISO14181.

Pagina 34 del Parere Istruttorio

Installazione del sistema di recupero vapori presso il terminale marittimo.

Per tutto il 2015 sono state portate avanti le attività di risanamento e riqualificazione del pontile con particolare riferimento alle opere di ripristino strutturale di alcune aree del pontile, necessarie a supportare l'impiantistica dell'intervento.

Lo stato di avanzamento dell'attività di progettazione è:

- ingegneria di base completata a dicembre 2013;
- progettazione di Front End completata a giugno 2014.

Nel corso del 2015 si è proceduto con l'affinamento della progettazione anche attraverso l'analisi delle soluzioni adottate da altri impianti simili, nonchè attraverso il confronto con i più referenziati fornitori a livello mondiale. Data l'unicità dell'applicazione permangono alcune criticità la cui soluzione è allo studio.

Installazione di un Sistema Monitoraggio Emissioni sul camino 14(FCC-K1F3) e sul camino 8(VSB-F102C).

Il Gestore ha completato l'installazione dei due nuovi SME nel mese di marzo 2015.

L'implementate delle curve di taratura QAL2 previste dalla norma UNI EN ISO14181 è stata completata a partire dal 1°novembre 2015 per il Camino FCC K1-F3 e dal 4 novembre 2015 per il Camino VSB F-102C.

Gascromatografo collettore gas di torcia Impianti Nord

Dalle informazioni acquisite dal precedente gestore risulta che:

- il gascromatografo è entrato in servizio in data 01/11/2013, ma i valori non sono risultati congruenti con le analisi storiche del gas a blow-down. Da verifica e' emerso che la presenza di acqua nel gas interferiva con la misura rendendo inattendibile il dato;
- nel corso del 2014 sono state quindi effettuate dalla società fornitrice le necessarie valutazioni per la definizione di un appropriato sistema di rimozione dell'acqua, da installare a monte della colonna cromatografica;
- sono state realizzate le modifiche previste e sono stati avviati i test funzionali ma, guasti tecnici della struttura (colonne del gascromatografo, valvola di switch del campione da analizzare), hanno comportato il protrarsi del fuori servizio fino a dicembre 2014.

Per tutto il 2015, Sarlux gestisce lo strumento dal primo gennaio, sono stati effettuati test di verifica della funzionalità che hanno portato a dichiarare il sistema non idoneo. Vista la particolarità dell'applicazione sono in corso attività di verifica e studio di soluzioni alternative.

Attività di QAL2 previste dalla norma UNI EN 14181, eseguite nel corso del 2015

Analizzatore	impianto	Camino p	eriodo esecuzione QAL2
Analizzatore PTS	impianto CO Boiler	(Camino n.15)	ottobre 2015
Analizzatore SO ₂	impianto FCC K1F3	(Camino n. 14)	giugno 2015
Analizzatore NO_x	impianto FCC K1F3	(Camino n. 14)	giugno 2015
Analizzatore CO	impianto FCC K1F3	(Camino n. 14)	giugno 2015
Analizzatore PTS	impianto FCC K1F3	(Camino n. 14)	giugno 2015
Analizzatore SO ₂	impianto VSB F102C	(Camino n. 7)	agosto 2015
Analizzatore NO_x	impianto VSB F102C	(Camino n. 7)	agosto 2015
Analizzatore CO	impianto VSB F102C	(Camino n. 7)	agosto 2015
Analizzatore PTS	impianto VSB F102C	(Camino n. 7)	agosto 2015
Analizzatore PTS	impianto Topping2	(Camino n. 18/19)	settembre 2015
Analizzatore COV	impianto Topping2	(Camino n. 18/19)	gennaio 2015
Analizzatore COV	Camino Centralizzato	(Camino n. 25)	aprile 2015

Attività di AST previste dalla norma UNI EN 14181, eseguite nel corso del 2015

	Analizzatore	impianto	Camino	period	o esecuzione AST	
	Analizzatore CO	impianto CO Boiler	(Camino n.15)		luglio 2015	
	Analizzatore SO ₂	impianto CO Boiler	(Camino n.15)		luglio 2015	
	Analizzatore NO _x	impianto CO Boiler	(Camino n.15)		luglio 2015	
	Analizzatore CO	impianto CCR-Alky	(Camino n. 20)		luglio 2015	
	Analizzatore PTS	impianto CCR-Alky	(Camino n. 20)	5 705	marzo 2015	
\$5	Analizzatore SO ₂	impianto CCR-Alky	(Camino n. 20)	s t	luglio 2015	
	Analizzatore NO _x	impianto CCR-Alky	(Camino n. 20)		luglio 2015	
	Analizzatore SO ₂	impianto Topping2	(Camino n. 18/19)	e emen	settembre.2015	15
	Analizzatore NO _x	impianto Topping2	(Camino n. 18/19)		settembre 2015	
	Analizzatore CO	impianto Topping2	(Camino n. 18/19)	8	settembre 2015	

Analizzatore	impianto	Camino	periodo esecuzione AST
Analizzatore SO ₂	Camino Centralizzato	(Camino n. 25)	luglio 2015
Analizzatore NO _x	Camino Centralizzato	(Camino n. 25)	luglio 2015
Analizzatore CO	Camino Centralizzato	(Camino n. 25)	luglio 2015
Analizzatore PTS	Camino Centralizzato	(Camino n. 25)	luglio 2015
Analizzatore SO ₂	Camino Z4-F2	(Camino n. 24)	marzo 2015
Analizzatore NO_x	Camino Z4-F2	(Camino n. 24)	marzo 2015
Analizzatore CO	Camino Z4-F2	(Camino n. 24)	marzo 2015
Analizzatore PTS	Camino Z4-F2	(Camino n. 24)	marzo 2015
Analizzatore SO ₂	Camino Z3-F2	(Camino n. 23)	maggio 2015
Analizzatore NO _x	Camino Z3-F2	(Camino n. 23)	maggio 2015
Analizzatore CO	Camino Z3-F2	(Camino n. 23)	maggio 2015
Analizzatore PTS	Camino Z3-F2	(Camino n. 23)	maggio 2015
Analizzatore SO ₂	impianto IGCC 701		marzo 2015
Analizzatore NO _x	impianto IGCC 701		marzo 2015
Analizzatore CO	impianto IGCC 701		marzo 2015
Analizzatore PTS	impianto IGCC 701		marzo 2015
Analizzatore SO ₂	impianto IGCC 702		maggio 2015
Analizzatore NO _x	impianto IGCC 702		maggio 2015
Analizzatore CO	impianto IGCC 702		maggio 2015
Analizzatore PTS	impianto IGCC 702		maggio 2015
Analizzatore SO ₂	impianto IGCC 703		giugno 2015
Analizzatore NO _x	impianto IGCÇ 703		giugno 2015
Analizzatore CO	impianto IGCC 703		giugno 2015
Analizzatore PTS	impianto IGCC 703		giugno 2015

Sarlux Srl L'Amministratore Delegato Ing. Vincenzo Greco

PIANO DI MONITORAGGIO E CONTROLLO

Report annuale per il complesso "Raffineria + IGCC" per il periodo dal 01/01/2015 al 31/12/2015

Anno 2015

INDICE

Rep	ort annuale Raffineria	5
1.	EMISSIONI PER L'INTERO IMPIANTO: ARIA	6
2.	IMMISSIONI PER L'INTERO IMPIANTO: ARIA	17
3.	EMISSIONI PER L'INTERO IMPIANTO: ACQUA	18
4.	EMISSIONI PER L'INTERO IMPIANTO: RIFIUTI	19
5.	EMISSIONI PER L'INTERO IMPIANTO: RUMORE	21
6.	PROGRAMMA LDAR	21
7.	PROGRAMMA PER IL CONTENIMENTO DEGLI ODORI	21
8.	CONSUMI SPECIFICI PER TONNELLATA DI PETROLIO	22
9.	CRACKING CATALITICO	22
10.	CALDAIE	24
11.	TORCE	24
12.	UNITA' RECUPERO ZOLFI	27
13.	EVENTUALI PROBLEMI DI GESTIONE DEL PIANO	28
Repo	ort annuale IGCC	29
1.	DATI DELL'IMPIANTO IGCC	30
2.	EMISSIONI PER L'INTERO IMPIANTO: ARIA	33
3.	IMMISSIONI PER L'INTERO IMPIANTO: ARIA	38
4.	EMISSIONI PER L'INTERO IMPIANTO: ACQUA	38
5.	EMISSIONI PER L'INTERO IMPIANTO: RIFIUTI	38
6.	EMISSIONI PER L'INTERO IMPIANTO: RUMORE	39
7.	CONSUMI SPECIFICI PER MWH GENERATO SU BASE ANNUALE	39
8.	UNITA' DI RAFFREDDAMENTO	

NOME DELL'IMPIANTO PER CUI SI TRASMETTE IL RAPPORTO

Nome dell'impianto: Complesso Raffineria+IGCC Sarlux Srl del Sito di Sarroch (CA)

Nome del gestore: Ing. Vincenzo Greco

Società che controlla l'impianto: Sarlux Srl, Strada Statale Sulcitana 195, km 19, Sarroch (CA)

PREMESSA

Il presente documento costituisce il report annuale del complesso "Raffineria+IGCC" della società Sarlux di Sarroch, in base alla comunicazione del MATTM con nota prot. DVA-2011-0008683 del 11/04/2011, relativamente al periodo di esercizio dal 01/01/2015 al 31/12/2015, del Piano di Monitoraggio e Controllo previsto dall'Autorizzazione Integrata Ambientale (AIA) del sito (rif. DSA-DEC-2009-0000230 del 24/03/2009).

Il Piano di Monitoraggio e Controllo (PMC) per l'anno 2015 è stato eseguito rispettando, a meno delle esclusioni indicate nella "Dichiarazione di conformità", la frequenza, la tipologia e la modalità di determinazione dei parametri da controllare, in accordo a quanto definito nel PMC allegato al decreto autorizzativo.

Oltre a quanto espressamente indicato dal PMC le attività di monitoraggio e controllo fanno riferimento anche al documento "Allegato E4 Rev.1 – Piano di Monitoraggio e Controllo" presentato da Saras nell'aprile 2008.

I "reporting annuali", per la Raffineria e per l'impianto IGCC, sono stati prodotti nel rispetto delle indicazioni riportate nel PMC 5 definite alle pagg. 39, 40, 41, 42, 44 con la sola eccezione dei dati emissivi aggregati secondo quanto previsto dal *D.Lgs. 152/2006 – Allegato VI-parte quinta*, in base alla nota dell'ISPRA del 14/04/2014 *prot.016657*.

In allegato sono riportate le relazioni specifiche che fanno riferimento alle diverse campagne di monitoraggio previste. Si evidenzia che molte attività sono a carattere stagionale.

Si precisa inoltre che:

- i dati relativi all'impianto IGCC riferiti a:
 - immissioni dovute per l'intero impianto: aria;
 - consumi specifici per tonnellata di petrolio: acqua dolce;
 - emissioni dovute all'intero impianto: acqua;
 - emissioni dovute all'intero impianto: rifiuti, ad eccezione del filter cake;
 - emissioni dovute all'intero impianto: rumore;

		programma p	er il conteniment	o degli odori;		
	sono compresi all'interno dei dati della Raffineria in quanto l'impianto IGCC è strettamente integrato con questa per tutte le utilities e per la gestione.					
8						
						il ii v
						at
9	ig g					
8 8 850 N	5 5.5 Na			na Too ay ta Ta 		er e mi ei

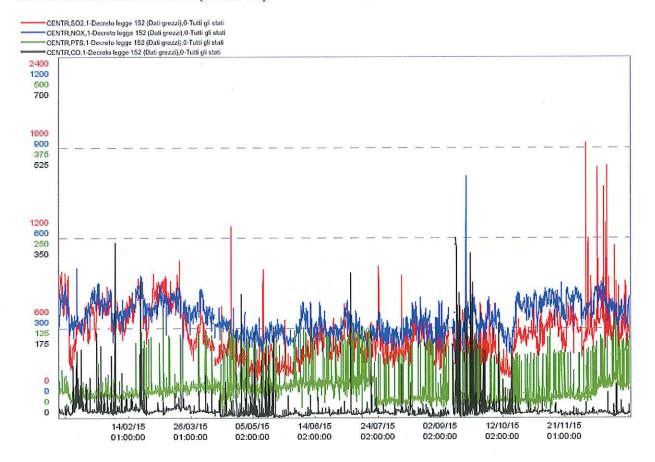
PIANO DI MONITORAGGIO E CONTROLLO

Report annuale Raffineria per il periodo 01/01/2015 - 31/12/2015

Anno 2015

1. EMISSIONI PER L'INTERO IMPIANTO: ARIA

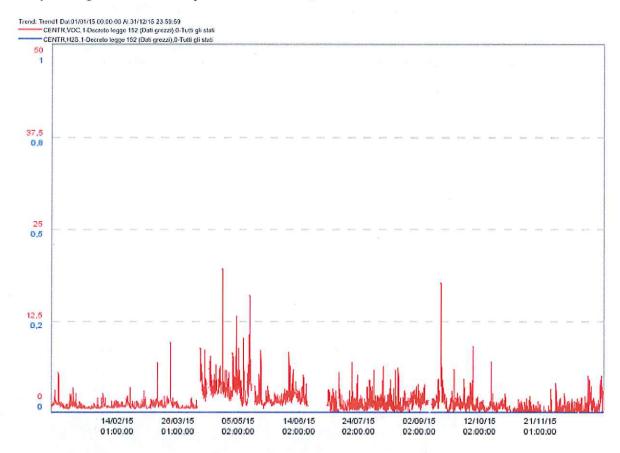
Emissioni per l'inter	o impianto:	ARIA RAF	FINERIA		
	SO ₂	NOx	СО	PTS	VOC totali
Tonnellate emesse per anno [t]	3.378	2.252	220	259	
Conc me	dia mensile	[mg/Nm³]			
GENNAIO	381	261	22	27	(= = = = = = = = = = = = = = = = = = =
FEBBRAIO	425	260	22	26	
MARZO	401	288	26	26	
APRILE	302	243	24	29	
MAGGIO	314	223	19	29	
GIUGNO	325	220	18	31	
LUGLIO	371	235	18	25	
AGOSTO	367	212	18	26	
SETTEMBRE	367	213	35	29	
OTTOBRE	297	235	32	30	
NOVEMBRE	383	260	27	24	
DICEMBRE	401	230	21	30	
%					
Emissione specifica annuale dei forni per Gj di energia utilizzata [g/Gj]	57	66	9	5	
Emissione specifica annuale per tonnellata di greggio trattato [g/ton greggio]	233	155	15	18	
Stima delle tonnellate emesse di VOC per anno [t]					1169


Per i suddetti parametri SO₂, NOx, CO e PTS valgono i limiti e le prescrizioni per le emissioni convogliate in aria per l'intero complesso di raffineria (bolla) definiti dal decreto AIA (rif. DSA-DEC-2009-0000230 del 24/03/2009) e di seguito riportati:

VLE bolla di raffineria					
9 9 0	emissione media annuale (t/a)	concentrazione media mensile (mg/ Nm³) 600			
SO_2	6400	600			
NO_X	3400	300			
CO	500	50			
PTS	-	40			

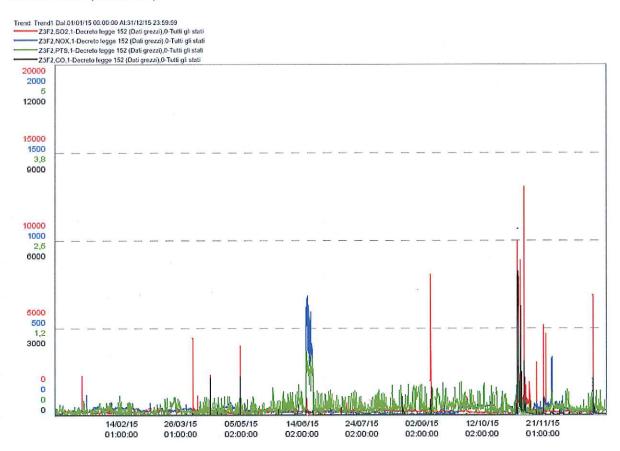
• Grafici con i valori medi orari per ogni parametro rilevato in continuo:

Per i grafici a seguire si precisa che, non sono previsti limiti di legge sul singolo camino di emissione ma solo limiti di bolla per l'intero complesso raffineria riportati nella tabella precedente.

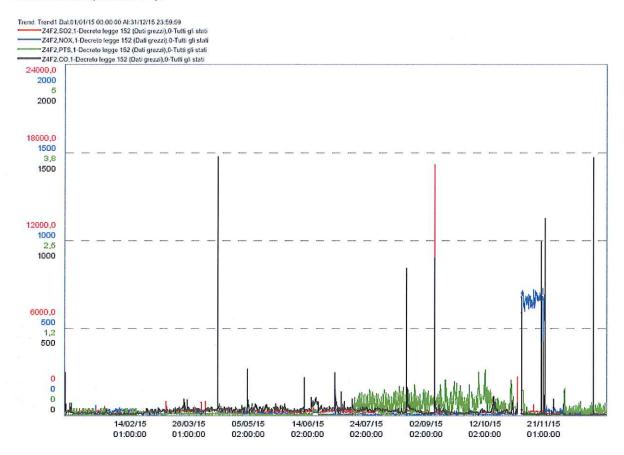

Camino Centralizzato raffineria (camino 25):

Il grafico sopra riportato rappresenta l'andamento orario dei dati riferiti al Camino Centralizzato della raffineria.

Per maggior chiarezza nella lettura del grafico, si riportano i seguenti fuori servizio analizzatori (SME) per il periodo in esame:


 Parametro O₂ (quindi dati SME normalizzati) f.s. dal 07/09/2015 al 09/09/2015 (comunicazione del 11/09/2015 prot. n.3810) Si riporta il grafico relativo ai parametri VOC e H₂S del Camino Centralizzato.

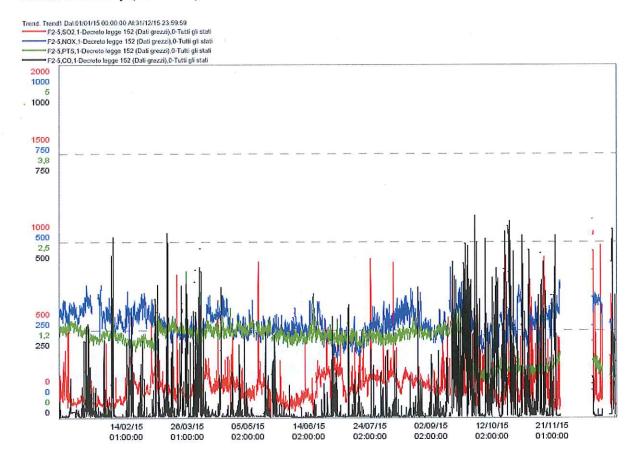
Per maggior chiarezza nella lettura del grafico, si riportano i seguenti fuori servizio analizzatori (SME) per il periodo in esame:


- Parametro VOC f.s. dal 13/05/2015 al 15/05/2015 (comunicazione del 29/05/2015 prot. n.728)
- Parametro VOC f.s. dal 19/06/2015 al 02/07/2015 (comunicazione del 22/06/2015 prot. n.750 e comunicazione del 13/07/2015 prot. n.768)

Camini Z3F2 (camino 23):

Il grafico sopra riportato rappresenta l'andamento orario dei dati riferiti al Camino Z3F2 della raffineria.

Camini Z4F2 (camino 24):

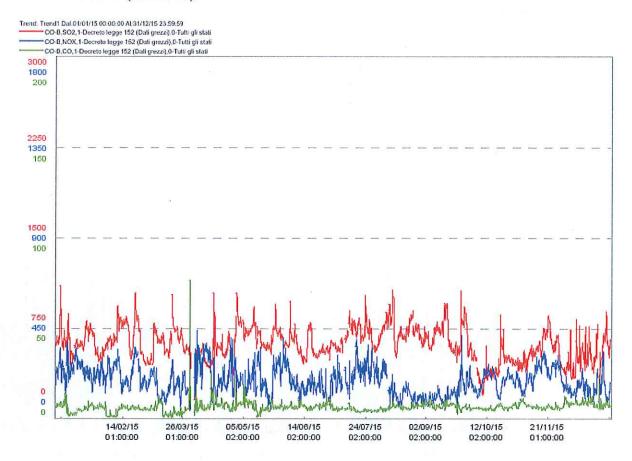


Il grafico sopra riportato rappresenta l'andamento orario dei dati riferiti al Camino Z4F2 della raffineria.

Per maggior chiarezza nella lettura del grafico, si riportano i seguenti fuori servizio analizzatori (SME) per il periodo in esame:

- Parametro PTS f.s. dal 30/04/2015 al 04/05/2015 (comunicazione del 15/06/2015 prot. n.743)
- SME f.s. dal 02/11/2015 al 05/11/2015 (comunicazione del 06/11/2015 prot. n.860)

Camino CCR-Alky (camino 20):

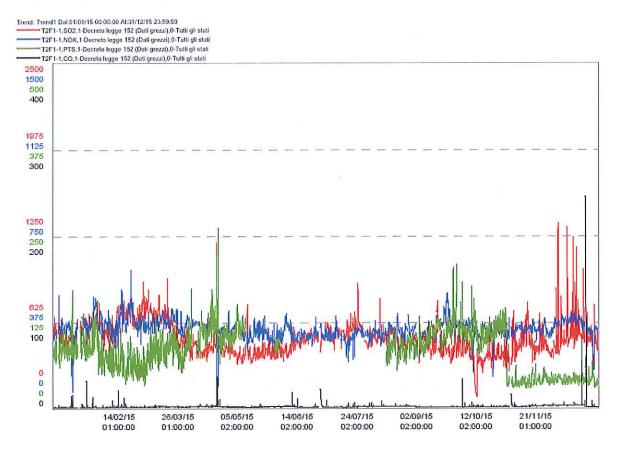


Il grafico sopra riportato rappresenta l'andamento orario dei dati riferiti al Camino CCR-Alky della raffineria.

Si precisano, inoltre, per meglio interpretare la lettura del grafico, le fermate/ blocchi impianto e i seguenti fuori servizio analizzatori (SME) per il periodo in esame:

- Parametro NO_x f.s. dal 22/01/2015 al 26/01/2015 (comunicazione del 16/02/2015 prot. n.627)
- Fermata programmata impianto CCR, Alky convogliato al proprio camino, dal 28/11/2015 al 18/12/2015 (comunicazione del 30/11/2015 prot. n.879)
- SME f.s. dal 23/12/2015 al 28/12/2015 (comunicazione del 29/12/2015 prot. n.911)

Camino CO-boiler (camino 15):

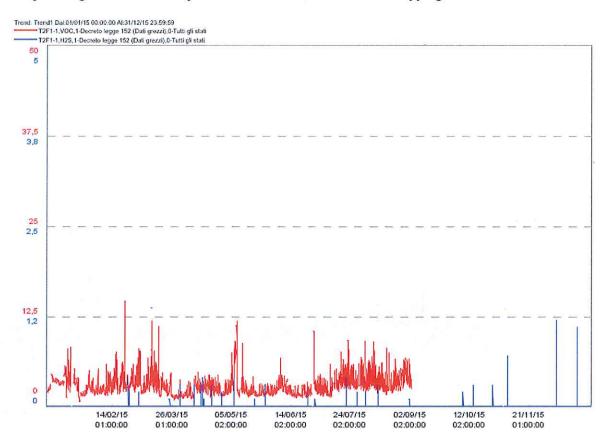


Il grafico sopra riportato rappresenta l'andamento orario dei dati riferiti al Camino CO-boiler della raffineria.

Si precisano, inoltre, per meglio interpretare la lettura del grafico, le fermate/ blocchi impianto per il periodo in esame:

Impianto FCC-COBoiler in fermata dal 31/03/2015 al 02/04/2015 (comunicazione del 01/04/2015 prot. n.678 e comunicazione del 03/04/2015 prot. n.680)

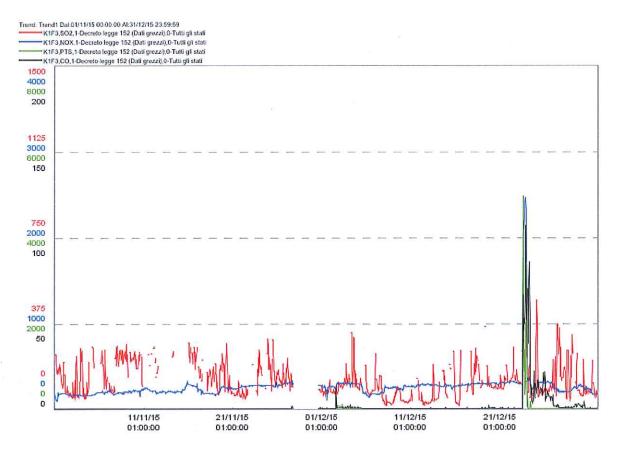
Camino T2 (camino 18/19):



Il grafico sopra riportato rappresenta l'andamento orario dei dati riferiti al Camino Topping 2 della raffineria.

Si precisano, inoltre, per meglio interpretare la lettura del grafico, i seguenti fuori servizio analizzatori (SME) per il periodo in esame:

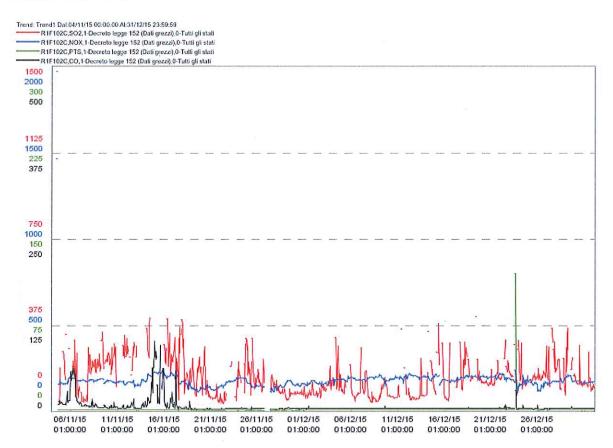
- Parametro PTS f.s. dal 03/04/2015 al 07/04/2015 (comunicazione del 07/04/2015 prot. n.681 e comunicazione del 08/04/2015 prot. n.683)
- Parametro PTS f.s. dal 11/05/2015 al 29/05/2015 (comunicazione del 03/06/2015 prot. n.730)
- Parametro PTS f.s. dal 01/06/2015 al 12/08/2015 (comunicazione del 26/08/2015 prot. n.799)


Si riporta il grafico relativo ai parametri VOC e H₂S del Camino Topping 2.

Per maggior chiarezza nella lettura del grafico, si riportano i seguenti fuori servizio analizzatori (SME) per il periodo in esame:

Parametro VOC f.s. dal 02/09/2015 al 19/02/2016 (comunicazione del 15/09/2015 prot. n.812 e comunicazione del 10/03/2016 prot. n.973)

Camino FCC-K1F3



Il grafico sopra riportato rappresenta l'andamento orario dei dati riferiti al Camino FCC-K1F3 della raffineria in servizio dal 01/11/2015.

Si precisano, inoltre, per meglio interpretare la lettura del grafico, i seguenti fuori servizio analizzatori (SME) per il periodo in esame:

• SME f.s. dal 27/11/2015 al 30/11/2015 (comunicazione del 30/11/2015 prot. n.879 e comunicazione del 01/12/2015 prot. n.880)

Camino VSB-F102C

Il grafico sopra riportato rappresenta l'andamento orario dei dati riferiti al Camino VSB-F102C della raffineria in servizio dal 04/11/2015.

Con r	iferimento	all'oggetto	del paragraf	o si veda l'a	allegato 1	0-Monitor	raggio Qualita	à dell'Aria.
	1							
§(*:							
	8 90	a			8 E	e i		e 165

	4.5	[hg/]
May brokes 445 687 687 688 148 687 687 688	4.5	
mg/limense 2.5 1.5 2.5	90.1	
migit max 5.0 6.0 5	4.5	
Manuelle	90.1	40
Part	00.7	
Pagintenic 14,175 513,589 513,589 513,587 514,510 514,50 515,00 51	90.1	
Particularies 175,0 151,0 151,0 151,0 151,0 151,0 171,0 171,0 151,	90.1	
megit mine, 157.0 115.0 215.0 115.0	90.1	
Maintheany 310 210 220 250 250 2510	8	160
Progress Process Pro		- 77
Hybrithmen 906 1550 2250 2340 1585 148		
MIGH Limited 1.6 2.3 8.5 1.45 14.6 13.7 14.6 14.5 14.6 14.5 14.6 14.5 14.6 14.5 14.6 14.5 14.6 14.5 14.6 14.5 14.6 14.5 14.6 14.5 14.6 14.5 14.6 14.5 14.6 14.5 14.6 14.7 14.6 14.7 14.6 14.7 14.6 14.7 14.6 14.7 14.6 14.7 14.6 14.6 14.7 14.6		
mght mix S.3 S.4 14.5 14.5 14.5 12.7 10.8 11.5 12.2 11.7 14.9 14.5		
Particular Columbia Columbi	4.	15
Parties of the control of the cont		
Pagimese 2509 10422 113514 1235 12350 14301 1440 1440 1450		
The color	1	
mgL max 10.0 2.0 2.0 10.0 4.0 10.0 <th< td=""><td></td><td>2 20</td></th<>		2 20
Columbia	5.8	80
Profession		
lightnese 5,5E+00 6,5E+00 6,7E+00 4,7E+00 6,7E+00		
mg/L max 0.007 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.072 0.022 0		
mg/L max 0.02		
High case Color	0.01	2
kg/mese 1,4E+00 1,7E+00 1,2E+00 0,01		
kg/mess 1,4E+00 1,7E+00 1,7E+00 1,2E+00 1,0E+00 1,1E+00 0,01 <th< td=""><td></td><td></td></th<>		
mg/L medio 0.00		
mg/L max		
mg/L min 0.01 0.00 0.0	0.003	0.2
Riginese S.1E+01 S.8E+01 S.5E+01 S.7E+01 S.2E+01 S.8E+01 S.0E+01 S.0		
kg/mese 5.1E+01 5.8E+01 5.7E+01 3.7E+01 2.8E+01 3.8E+01 5.8E+01 5.8E+01 5.8E+01 7.8E+01 7.8E+01 <t< td=""><td></td><td></td></t<>		
mg/L medio 0.05 0.10 0.10 0.05 0.05 0.05 0.01 0.01 0.01 0.01 0.05 0.05 0.04 0.01		
mg/L max 0.27 0.43 0.28 0.27 0.36 0.23 0.30 0.44 0.50 0.42 0.47 0.4		
mg/L min 0,01 0,0	60.0	9.5
Figures Figu		
kg/mese 2.8E+02 3.3E+02 2.4E+02 2.1E+02 2.2E+02 2.3E+02 2.3E+02 3.2E+02 2.7E+02 3.7E+02 3.7E+02 <t< td=""><td></td><td></td></t<>		
mg/L max		
mgg/L max	33	
High medic 1,0	0.5	۲-
Maje		
Riginace 1,1E-01 1,3E-01 1,3		
0.0004		
High min Coord C	0000	1000
emilss.spec.glm ² 4.8E+01 5.3E+01 5.6E+01 2.9E+01 2.9E+01 2.9E+01 2.9E+01 2.9E+01 4.6E+01 5.0E+01 5.0	0.0002	
kg/mese 4.8E+01 5.8E+01 2.8E+01 2.8E+01 2.8E+01 2.8E+01 2.9E+01 3.1E+01 3.1E+01 4.6E+01 5.0E+01 mg/L medio 0.09 0.08 0.06 0.06 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.09 mg/L max 0.40 0.50 0.24 0.12 0.14 0.10 0.13 0.16 0.15 0.25 0.48 mg/L min 0.01 0.01 0.02 0.03 0.04 0.01 0.02 0.03 0.04 0.01 0.01 0.01 0.01 0.01 0.		1
mg/L medio 0.09 0.08 0.08 0.06 0.06 0.06 0.06 0.06 0.06 0.07 0.06 0.07 0.09 0.07 0.09 mg/L max 0.40 0.50 0.24 0.12 0.14 0.10 0.13 0.16 0.15 0.25 0.48 mg/L min 0.01 0.01 0.02 0.03 0.04 0.01		-
0.40 0.50 0.24 0.12 0.14 0.10 0.13 0.16 0.15 0.25 0.48 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0		
0.01 0.01 0.03 0.01 0.02 0.03 0.03 0.04 0.01 0.01 0.01 0.01	0.07	0.5
emiss. spec. g/m³		
that included near the first of the control of the		
softo il imite di rievabilità strumentale sono stati sostituti da un valore pari alla meta dei ilmite stesso, secondo quanto previsto a pag. 35 dei PMC		

4. EMISSIONI PER L'INTERO IMPIANTO: RIFIUTI

Emissione per l'intero impianto: RIFIUTI						
Tonnellate di rifiuti prodotte per anno [t]	50.818					
Tonnellate di rifiuti pericolosi prodotte per anno [t]	35.854					
Produzione specifica di rifiuti pericolosi [kg/tonn di greggio] 2,5						
Tonnellate di rifiuti smaltite internamente alla raffineria suddivise in pericolosi e non pericolosi (*)						
PERICOLOSI	32.291 (**)					
NON PERICOLOSI	36 (***)					
TOTALE	32.327					

Indice di recupero rifiuti annuo [%] = rapporto tra quantitativo di rifiuti inviati a recupero e quantitativo totale di rifiuti prodotti dalla raffineria	28,1%
--	-------

- (*) rifiuti inviati ad impianto di smaltimento interno ECOTEC
- (**) non è compresa la quantità pari a 68,55 tonnellate del CER 150110* inviate all' impianto presente all'interno del sito gestito dalla società Ecotec Gestione Impianti s.r.l. in quanto destinate a recupero. E' inclusa la quota inviata a smaltimento.
- (***) non sono comprese le seguenti quantità:
 - 2,29 tonnellate ČER 160214
 - 29, 45 tonnellate CER 170402
 - 2292,79 tonnellate CER 170405
 - 19,99 tonnellate CER 170411
 - 45,125 tonnellate CER 200136

inviate all'impianto presente all'interno del sito gestito dalla società Congiu Francesco & c. s.r.l. in quanto destinate a recupero e non a smaltimento.

Il dato della produzione totale di rifiuti per l'anno 2015 è in linea con quelli del 2014, da rilevare un leggero aumento che viene controbilanciato dal miglioramento delle prestazioni sulla produzione specifica dei pericolosi che passa da 3,3 a 2,5 kg/tonnellate di greggio.

Risulta evidente il miglioramento dell'indice di recupero rifiuti annuo, dal 13 al 28,1%, dovuto principalmente alla scelta aziendale di inviare a recupero le terre da scavo, che nel 2015 hanno avuto un incremento legato a nuove realizzazioni, oltre che ad attività di bonifica.

viene riportato nel report	ing roce .						
g							
		n at to the	th 17	* :	11	10 Ed. 11	e e e

6. PROGRAM	MA LDAR
Con riferimento	alle attività svolte nel corso del 2015 si veda l'Allegato 11.
7. PROGRAM	MA PER IL CONTENIMENTO DEGLI ODORI
Con riferimento	all'oggetto del paragrafo si veda l'Allegato 17.
	, x

5. EMISSIONI PER L'INTERO IMPIANTO: RUMORE

Con riferimento all'oggetto del paragrafo si veda l'Allegato 9.

8. CONSUMI SPECIFICI PER TONNELLATA DI PETROLIO

Tonnellate di petrolio lavorate nell'anno 2015 sono: 14.508.710

Consumi specifici anno 2015				
Acqua dolce (m³/t) (*)	0.52			
Fuel gas (Nm ³ /t)	33.13			
Fuel oil (t/t)	0.01			
Energia elettrica (kWh/t)	56.57			

^(*)Il dato riferito ai consumi di acqua dolce sono di sito

9. CRACKING CATALITICO

• EMISSIONI DAL CO BOILER: ARIA

CO B	7 <u>2</u> 7			
	SO ₂	NOx	СО	PTS
Tonnellate emesse per anno [t]	1.754	587	18	119
Concentrazione media annuale [mg/Nm³]	615	188	6	36
Emissione specifica annuale [kg/t carica alimentata]	0,414	0,138	0,004	0,028

Per i parametri SO₂, NOx, CO, si precisa che, aldilà dei limiti di bolla per l'intero complesso raffineria riportati a pag 6, non sono previsti limiti di legge sul singolo camino di emissione; per il parametro PTS, è previsto un limite come media giornaliera di 40 mg/Nm³ riferito ad un tenore di O₂ al 3% (pag. 33 del Parere Istruttorio), e come media oraria pari al 125% del VLE giornaliero, che corrisponde a 50 mg/Nm³.

• EMISSIONI: RIFIUTI

tonnellate di catalizzatore FCC d	esausto prodotte per mese [t]
GENNAIO	23
FEBBRAIO	2
MARZO	20
APRILE	0
MAGGIO	153
GIUGNO	15
LUGLIO	20
AGOSTO	117
SETTEMBRE	151
OTTOBRE	204
NOVEMBRE	136
DICEMBRE	157
produzione specifica di catalizzatore FCC FCC [kg/t di cari	
GENNAIO	0,06
FEBBRAIO	0,01
MARZO	0,05
APRILE	·
MAGGIO	0,07
GIUGNO	0,04
LUGLIO	0,06
AGOSTO	0,32
SETTEMBRE	0,45
OTTOBRE	0,57
MOMEMBE	0,38
NOVEMBRE	0,30

10. CALDAIE

• EMISSIONI: ARIA

CALDAIE									
	SO_2	NOx	CO	PTS	Ni(*)	Va(*)			
tonnellate emesse per anno [t]	395	239	11	.28	2.25E-01	7.72E-02			
emissione specifica annuale per Gj di energia utilizzata [g/Gj]	136	82	4	10	7.74E-02	2.66E-02			

^(*)dati calcolati con concentrazione misurata da campagna di monitoraggio emissioni anno 2015 - intero contributo camino centralizzato (T1 + caldaie)

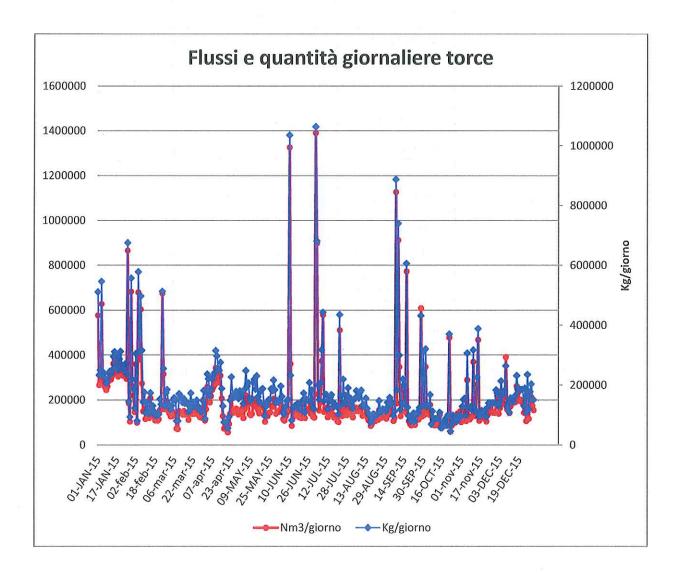
Per i parametri suddetti SO₂, NOx, CO e PTS, si precisa che, aldilà dei limiti di bolla per l'intero complesso raffineria riportati a pag 6, non sono previsti limiti di legge sul singolo camino di emissione.

11. TORCE

EMISSIONI: ARIA

• Nº di ore di funzionamento in emergenza anno 2015: 207

Tale dato fa riferimento alla comunicazione che indica in 325 tonnellate/giorno la quantità di idrocarburi bruciati in torcia proposta da Saras in data 7/8/2009 oltre la quale si ritiene necessario comunicare all'Autorità competente ed all'Ente di controllo una segnalazione di emergenza.


Il numero delle ore risulta essere calcolato come numero delle ore, in una giornata considerata dalle ore 0 alle ore 24, per le quali sono stati bruciati idrocarburi in torcia oltre il valore giornaliero di 325 t/g.

• Volume di materiali bruciati in emergenza:

Mese	Nm³ bruciati in emergenza
GENNAIO 2015	1.241.716
FEBBRAIO 2015	736.144
MARZO 2015	0
APRILE 2015	0
MAGGIO 2015	0
GIUGNO 2015	933.809
LUGLIO 2015	1.732.809
AGOSTO 2015	0
SETTEMBRE 2015	1.684.629
OTTOBRE 2015	57.775
NOVEMBRE 2015	76.770
DICEMBRE 2015	0

I dati dei volumi di materiale bruciati in emergenza si riferiscono alle quantità totali di gas bruciate in torcia nelle ore di superamento.

• Flussi e quantità di materiali misurati giornalmente in torcia:

12. UNITA' RECUPERO ZOLFI

• EMISSIONI: ARIA

nº di ore di effettivo funzionamento annuale	Z 2	Z3	Z 4	TGT1	TGT2	Z3F2	Z4F2
gen-15	610	744	744	744	744	744	744
feb-15	64	672	672	672	672	672	672
mar-15	744	744	744	744	744	744	744
apr-15	720	720	720	720	720	720	720
mag-15	744	744	744	744	744	744	744
giu-15	720	720	720	624	720	720	720
lug-15	744	744	740	744	744	744	744
ago-15	742	744	744	744	744	744	744
set-15	720	720	720	720	720	720	720
ott-15	744	744	744	744	744	744	744
nov-15	447	719	720	720	275	720	720
dic-15	0	743	543	744	744	743	742
Tot 2015	6999	8758	8555	8664	8315	8759	8758

	Mese	Rendimento
	Gennaio	99.97
	Febbraio	99.98
	Marzo	99.96
a a	Aprile	99.96
2015 Rendimento medio mensile di desolforazione	Maggio	99.97
	Giugno	99.96
	Luglio	99.97
	Agosto	99.97
	Settembre	99.97
П	Ottobre	99.98
	Novembre	99.93
	Dicembre	99.99

Produzione specifica di zolfo	Mese	Produzione specifica [g/ton]
	Gennaio	5970
Ž.	Febbraio	5503
	Marzo	5871
	Aprile	7058
4 1 -	Maggio	5732
Grammi di zolfo prodotto per tonn	Giugno	5224
di petrolio, valutati su base mensile	Luglio	6039
	Agosto	6401
_	Settembre	5928
=	Ottobre	4690
*	Novembre	4909
	Dicembre	5704

• EMISSIONI: RIFIUTI

Tonnellate di zolfo fuori specifica prodotte per anno [t]	267,8
a ⁱⁿ	

13. EVENTUALI PROBLEMI DI GESTIONE DEL PIANO

Con riferimento al periodo del reporting non si evidenziano problemi in sede di attuazione del PMC al di fuori di quanto già evidenziato nella "Dichiarazione di conformità".

PIANO DI MONITORAGGIO E CONTROLLO

Report annuale IGCC

Anno 2015

1. DATI DELL'IMPIANTO IGCC

\bullet $\,$ $\,$ N° di ore di effettivo funzionamento dei gruppi:

	Nº ore
IGCC1	8448
IGCC2	7886
IGCC3	7594

• Rendimento elettrico medio effettivo, su base mensile per ogni gruppo:

-	701RENDCCUCV Rendimento CCU 1	702RENDCCUCV Rendimento CCU 2	703RENDCCUCV Rendimento CCU 3
Data	Quantità(%)	Quantità(%)	Quantità(%)
	701	702	703
01/2015	59.83	57.17	58.50
02/2015	61.41	52.80	58.21
03/2015	60.35	55.63	59.68
04/2015	57.26	52.58	58.11
05/2015	58.59	54.18	60.56
06/2015	58.58	54.35	59.57
07/2015	55.32	51.56	59.79
08/2015	57.05	51.34	58.80
09/2015	56.22	52.00	56.42
10/2015	59.92	58.14	30.54
11/2015	58.08	56.31	56.98
12/2015	57.23	54.14	58.90
Totale	58.3	54.2	56.3

• Energia generata in MWh, su base temporale settimanale e mensile per ogni gruppo:

		The second secon	E (MWh) settim	
	Giorno	Gruppo A1	Gruppo A2	Gruppo A3
.io	4	10.996,48	1.781,87	11.937,69
8 25 25		25.658,46	33.167,29	27.854,60
Jen	18	25.658,46	33.009,82	27.854,60
_	25	25.658,46	32.852,36	27.854,60
io.	1	26.129,72	988,11	45.528,48
ora	8	28.957,29		15.559,66
Febbraio	15	28.957,29		23.222,02
H	22	28.957,29		32.208,67
	1	29.445,90	25.591,84	32.787,09
02	8	32.377,60	32.179,64	32.270,86
Marzo	15	32.377,60	32.179,64	32.270,86
\geq	22	32.377,60	32.179,64	32.270,86
	29	32.377,60	32.179,64	32.270,86
4)	5	32.480,49	32.830,20	35.653,93
rile	12	32.521,64	33.090,43	33.603,72
Aprile	19	32.521,64	33.090,43	33.168,05
7	26	32.521,64	33.090,43	32.955,41
	3	32.915,67	32.915,48	32.284,04
510	10	33.441,04	32.682,22	32.333,26
Maggio	17	33.441,04	32.682,22	32.590,12
Z	24	33.441,04	32.682,22	32.540,13
	31	33.441,04	32.682,22	32.467,07
0	7	27.614,56	29.801,19	30.627,63
gn	14	27.614,56	29.801,19	30.627,63
Giugno	21	27.614,56	29.801,19	30.627,63
<u> </u>	28	27.614,56	29.801,19	30.627,63
_	5	27.977,32	29.730,82	30.472,21
Luglio	12	28.122,43	29.702,68	30.410,04
	19	28.122,43	29.702,68	30.410,04
_	26	28.122,43	29.702,68	30.410,04
	2	28.691,94	29.957,50	30.507,31
to	9	30.115,74	30.594,57	30.750,48
Agosto	16	30.115,74	30.594,57	30.750,48
A	23	30.115,74	30.594,57	30.750,48
	30	30.115,74	30.594,57	30.750,48
re	. 6	28.592,52	28.862,77	32.842,93
mb	13	28.338,65	28.574,13	33.191,67
Settembre	20	28.338,65	28.574,13	33.191,67
Se	27	28.338,65	28.574,13	33.191,67

	G	enerazione EI	E (MWh) settin	nanale
	Giorno	Gruppo A1	Gruppo A2	Gruppo A3
ø	4	30.279,12	30.099,96	14.225,00
br	11	31.734,48	31.244,33	
Ottobre	18	31.734,48	31.244,33	
0	25	31.734,48	31.244,33	
6	1	31.899,84	31.433,92	2.424,97
pre	8	32.892,01	32.892,01	16.974,82
em	15	32.892,01	32.892,01	16.974,82
Novem	22	32.892,01	32.892,01	16.974,82
	29	32.892,01	32.892,01	16.974,82
re	6	32.209,16	30.225,00	30.510,38
mb	13	32.095,35	31.329,90	32.766,30
icembre	20	32.095,35	31.329,90	32.766,30
Ā	27	32.095,35	31.329,90	32.766,30

	Generazione EE (MWh) mensile			
11 11	Gruppo A1	Gruppo A2	Gruppo A3	Totale
Gennaio	113.630,33	102.343,17	123.356,10	339.329,60
Febbraio	115.829,15	20.994,75	120.820,43	257.644,33
Marzo	143.386,53	142.509,82	142.913,80	428.810,15
Aprile	139.378,45	141.816,12	144.535,62	425.730,18
Maggio	148.096,04	144.735,57	143.839,87	436.671,48
Giugno	118.348,13	127.719,37	131.261,25	377.328,75
Luglio	124.542,18	131.540,43	134.673,04	390.755,65
Agosto	133.369,70	135.490,24	136.180,68	405.040,62
Settembre	121.451,35	122.460,57	142.250,03	386.161,95
Ottobre	140.538,41	138.367,75		278.906,17
Novembre	140.965,74	139.591,88	72.749,25	353.306,87
Dicembre	142.136,55	138.746,70	145.107,90	425.991,15
Produzione totale anno 2015	1.581.672,56	1.486.316,37	1.437.687,97	4.505.676,90

2. EMISSIONI PER L'INTERO IMPIANTO: ARIA

IGCC				
	SO ₂	NOx	CO	PTS
Tonnellate emesse per anno [t]	199	769	161	2
Conc media mensile [mg/Nm ³]				<i>k</i>
GENNAIO	14	31	5	0.1
FEBBRAIO	9	30	4	0.1
MARZO	6	31	6	0.1
APRILE	9	31	- 5	0.1
MAGGIO	5	33	5	0.1
GIUGNO	6	32	5	0.1
LUGLIO	13	24	6	0.1
AGOSTO	7	29	7	0.1
SETTEMBRE	7	29	8	0.1
OTTOBRE	2	30	11	0.1
NOVEMBRE	13	28	9	0.1
DICEMBRE	. 8	29	6	0.1
I trimestre	10	31	5	0.1
II trimestre	6	32	5	0.1
III trimestre	9	28	7	0.1
IV trimestre	8	29	8	0.1
Emissione specifica annuale per MWh di energia generata [kg/MWhg]	0.04	0.17	0.04	0.001
Emissione specifica annuale per tonn di tar gassificato [kg/t]	0.17	0.66	0.14	0.002

• Numero di avvii per anno:

IGCC1 (Unità 701): 5

IGCC2 (Unità 701): 5

IGCC3 (Unità 701): 5

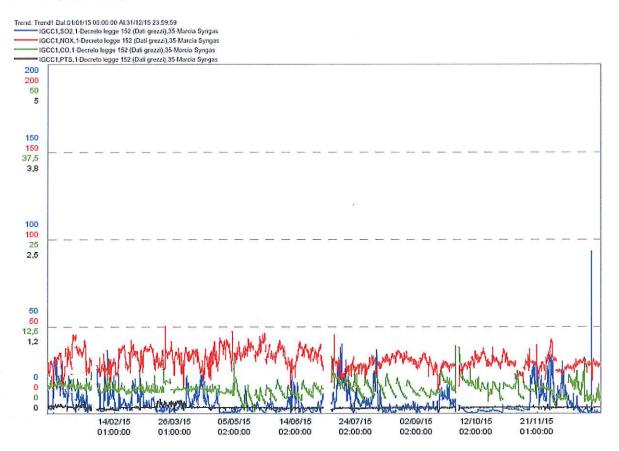
• Numero di spegnimenti per anno:

IGCC1 (Unità 701): 5

IGCC2 (Unità 701): 5

IGCC3 (Unità 701): 5

• Emissione in tonnellate per tutti gli eventi di avvio e spegnimento di SO2, NOx, CO, PTS:

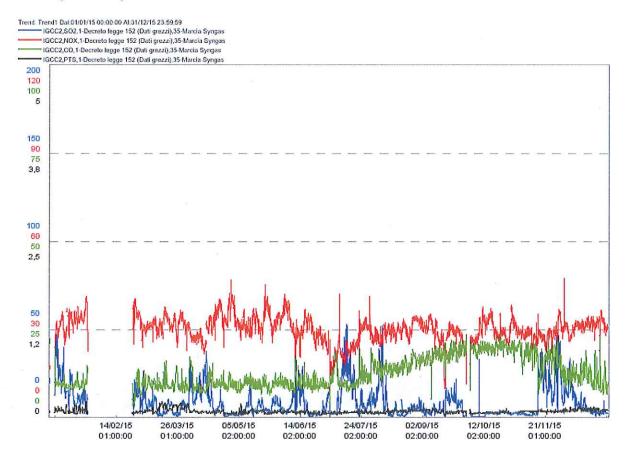

	Emissione in (t)
SO_2	0,4
NOx	13,6
CO	1,2
PTS	0,01

• Grafici con i valori medi orari per ogni parametro rilevato in continuo, riferiti alla sola marcia Syngas:

Per i grafici a seguire valgono i seguenti VLE (mg/Nm³ di fumi secchi):

	VLE medi orari [mg/Nm³]
NO_X	62,5
CO	31,25
SO ₂	75
polveri	12,5

IGCC1 (Unità 701)

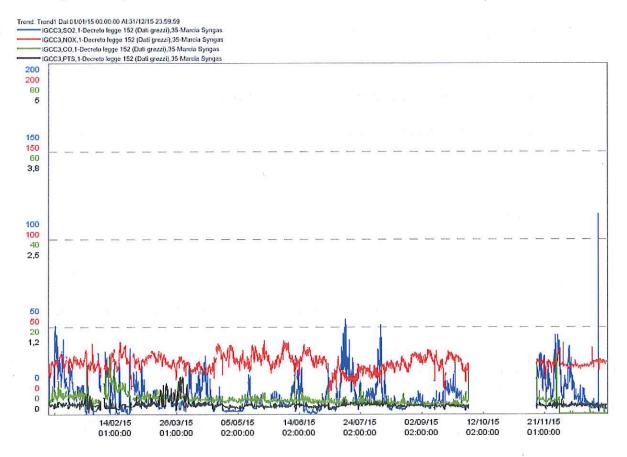


Il grafico sopra riportato rappresenta l'andamento orario dei dati riferiti al camino IGCC1.

Si precisano, inoltre, per meglio interpretare la lettura del grafico, le seguenti fermate/blocchi impianto e i superamenti per il periodo in esame:

- blocco Impianto IGCC1 (turbina 701) dal 29/01/2015 al 02/02/2015;
- blocco Impianto IGCC1 (turbina 701) dal 02/07/2015 al 08/07/2015;
- blocco Impianto IGCC1 (turbina 701) dal 28/09/2015 al 30/09/2015;
- superamento del limite di emissione in concentrazione per il parametro SO₂ (vedi comunicazione del 29/12/2015 prot.n°911);

IGCC2 (Unità 702)



Il grafico sopra riportato rappresenta l'andamento orario dei dati riferiti al camino IGCC2.

Si precisano, inoltre, per meglio interpretare la lettura del grafico, le seguenti fermate/ blocchi impianto, i fuori servizio analizzatori (SME) per il periodo in esame:

- blocco Impianto IGCC2 (turbina 702) dal 01/01/2015 al 04/01/2015;
- Impianto IGCC2 (turbina 702) in fermata dal 26/01/2015 al 24/02/2015;
- blocco Impianto IGCC2 (turbina 702) dal 02/07/2015 al 03/07/2015;
- Impianto IGCC2 (turbina 702) in fermata dal 30/09/2015 al 02/10/2015;
- parametro PTS f.s. dal 29/10/2015 al 03/11/2015 (vedi comunicazione del 04/11/2015 prot. n.858)

IGCC3 (Unità 703)

Il grafico sopra riportato rappresenta l'andamento orario dei dati riferiti al camino IGCC3.

Si precisano, inoltre, per meglio interpretare la lettura del grafico, le seguenti fermate/blocchi impianto, i fuori servizio analizzatori (SME) e i superamenti per il periodo in esame:

- blocco Impianto IGCC3 (turbina 703) dal 04/02/2015 al 06/02/2015;
- blocco Impianto IGCC3 (turbina 703) dal 02/07/2015 al 03/07/2015;
- blocco Impianto IGCC3 (turbina 703) dal 09/09/2015 al 10/09/2015;
- Impianto IGCC3 (turbina 703) in fermata dal 02/10/2015 al 16/11/2015;
- superamento del limite di emissione in concentrazione per il parametro CO (vedi comunicazione del 03/12/2015 prot.n°884);
- superamento del limite di emissione in concentrazione per il parametro SO₂ (vedi comunicazione del 29/12/2015 prot.n°911).

3. IMMISSIONI PER L'INTERO IMPIANTO: ARIA

Con riferimento all'oggetto del paragrafo si veda l'allegato 10-Monitoraggio Qualità dell'Aria.

4. EMISSIONI PER L'INTERO IMPIANTO: ACQUA

Si vedano i risultati riportati nel Report annuale Raffineria per il complesso Raffineria e IGCC nel capitolo "Emissioni per l'intero impianto: ACQUA".

5. EMISSIONI PER L'INTERO IMPIANTO: RIFIUTI

Rifiuti prodotti	V .	U.
CER 05 01 09* - fanghi prodotti dal	Totale Prodotto	1390
trattamento in loco degli effluenti,	Di cui inviati a recupero	1099
contenenti sostanze pericolose	Di cui inviati a smaltimento	0
[t]	Di cui in giacenza al 31/12/2015	291
	[kg/tonn di TAR]	0,33
Produzione specifica di rifiuti pericolosi	[kg/MWh generato]	0,31
tonnellate di rifiuti inviate a recupero	[t]	1.562 (*)

^(*)comprensivo residuo 2014

6. EMISSIONI PER L'INTERO IMPIANTO: RUMORE
Con riferimento all'oggetto si veda il paragrafo 5 del Report annuale Raffineria.
7. CONSUMI SPECIFICI PER MWH GENERATO SU BASE ANNUALE
• Consumo specifico di Acqua: 0,75 m³/MWhg
Si precisa che come consumo specifico di acqua si intende la "fresh-water" da letti misti e solo per la parte che partecipa alla produzione di energia elettrica.
Il consumo è stato calcolato come segue:
(Condensa dei tre gruppi + Acqua saturazione syngas + Vapore KS export dei tre gruppi + spurghi C.C dei tre gruppi) X % di "Fresh" acqua Demi Total BFW
MWh lordi totali
Nota: come spurgo dei tre gruppi si assume un valore totale di 15 t/h
• Consumo specifico di gasolio: 0,67 kg/MWhg
• Energia elettrica degli autoconsumi: 11,43 kWh/MWhg

8. UNITA' DI RAFFREDDAMENTO

Stima del calore introdotto in acqua su base mensile:

Calore introdotto in acqua (Giga Joule) = (((((T °C acqua mare scarico Torre) - (T °C acqua mare ingresso torre)) X Kg Portata spurgo torre)) X 4,184 Joule/g* 1000 g/kg) / 1.000.000.000

Periodo Gennaio - Dicembre 2015			
	Calore introdotto [Giga Joule]		
Gennaio2014	28.291		
Febbraio 2014	29.646		
Marzo 2014	52.767		
Aprile 2014	35.181		
Maggio 2014	24.911		
Giugno 2014	20.860		
Luglio 2014	13.898		
Agosto 2014	8.786		
Settembre 2014	8.753		
Ottobre 2014	24.139		
Novembre 2014	28.485		
Dicembre 2014	34.502		
Totale GJ	310.220		

PIANO DI MONITORAGGIO E CONTROLLO

Report annuale per il complesso:
"Impianti Nord (ex-Versalis)"

per il periodo dal 01/01/2015 al 31/12/2015

Anno 2015

Indice

1.	PREMESSA	3
2.	INFORMAZIONI GENERALI	3
3.	CONSUMI	5
4.	EMISSIONI IN ARIA	12
5.	EMISSIONI IN ACQUA	23
	RIFIUTI	
	RUMORE	
8.	ODORE	28
9.	ULTERIORI INFORMAZIONI	28
ALLE	GATI	

ALLEGATO 1 "Registro torcia 2015"

- **ALLEGATO 2** "Verifica del Delta temperatura oltre 1000 metri allo scarico a mare dello stabilimento"
- **ALLEGATO 3** "Sintesi delle attività di controllo, verifica e manutenzione svolte nel 2015 sulle apparecchiature, linee, serbatoi e strumentazione rilevante dal punto di vista ambientale"
- ALLEGATO 4 "Cronoprogramma attività di controllo 2016"
- **ALLEGATO 5** "Report di AST del sistema automatico di misura in continuo delle emissioni in atmosfera installato al camino E11 della Centrale Termoelettrica"
- **ALLEGATO 6** "Report di IAR del sistema automatico di misura in continuo delle emissioni in atmosfera installato al camino E11 della Centrale Termoelettrica"

1. PREMESSA

In data 29/12/2014 è stato stipulato tra versalis e Sarlux un contratto di cessione di ramo d'azienda con efficacia dal 01/01/2015. Pertanto dal 1º gennaio 2015 Sarlux gestisce tutte le attività relative al Ramo d'Azienda oggetto di cessione denominato Impianti Nord che comprende i seguenti impianti e attività tecnicamente connesse:

- Impianto Reforming;
- Impianto BTX;
- Impianto Splitter;
- Impianto Formex;
- Impianto Pseudocumene (di proprietà sarlux dal 19 Maggio 2015);
- Centrale Termoelettrica;
- Distribuzione fluidi e trattamento acque;
- Logistica, tra cui Parco Generale Serbatoi e Pontile
- laboratorio

Alla luce di quanto premesso, in conformità al paragrafo 12.7 del Piano di Monitoraggio e Controllo allegato all'Autorizzazione Integrata Ambientale (DVA-DEC-0000333), che prescrive la trasmissione di un rapporto annuale, si riportano nei paragrafi successivi i dati ambientali relativi al periodo di esercizio 01/01/2015 - 31/12/2015.

2. INFORMAZIONI GENERALI

Nome dell'impianto

Sarlux Impianti Nord (ex Versalis);

Nome del Gestore

Vincenzo Greco;

Nome della società che controlla l'impianto Sarlux S.r.l Strada Statale Sulcitana 195, km

19, Sarroch (CA)

Si riporta di seguito l'effettivo numero di ore di funzionamento dei reparti produttivi nell'anno compresi il numero degli avviamenti e spegnimenti 2015.

REPART:	I PRODUTTIVI	N° ORE DI EFFETTIVO FUNZIONAMENTO	N° SPEGNIMENTI	N° AVVII
Sigla	Reparto			
F1.2	CTE	8730	1	. 1
F1.1	Reforming	7967	2	2
F2	Pseudocumene ^(*)	3520	3	3
F3	Cumene Sezione Splitter	8201	3	3
F4	Formex	8712	2	2
F5	BTX	8712	2	2

^(*) Impianto passato di proprietà SARLUX dal 19/maggio/2015

3. CONSUMI

Consumo di materie prime (espressi in kg) in carica agli impianti nell'anno 2015

Con il passaggio degli impianti richiamati in premessa da versalis a Sarlux i prodotti in carica non sono più identificati come materie prime acquistate da terzi.

Le cariche agli impianti Nord sono tutte sottoprodotti della carica della raffineria-impianti Sud.

Nella tabella sotto si riporta il riassunto annuale degli approvvigionamenti e passaggi in lavorazione dei prodotti virgin nafta, riformata CCR e propilene RG.

Anno 2015	Giacenza al 01/01/2015	Arrivi	Lavorazioni	Giacenza al 31/12/2015
VIRGIN NAFTA	4.518.537	759.970.377	752.464.772	20.356.142
RIFORMATA CCR	2.772.679	515.043.772	509.552.253	8.264.198
PROPILENE RG	376.428	104.756.686	104.697.932	317.674

Consumi di chemicals 2015

REFORMING	unità di misura	QUANTITA'	
Dimetildisolfuro	kg	65	
PerchloroEthylene	kg	12000	
P3 Ferrocor 8895	kg	2550	F1.1
P3 Ferrosolf 8915	kg	2250	F1.1
SODA CA. SOL.50% SHP BULK P386	kg	25.000	

ВТХ	unità di misura		
Terre Filtranti	kg	120.000	
Sabbia silicea	kg	4.000	F5
Granini silice	kg	8.000	

FORMEX	unità di misura	QUANTITA'	
N-Formilmorfolina	kg	60.000	
Morfolina	kg	6.000	F4
Metaqua 5000 (ex Prodecor SEM 120 L)	kg	6.500	i dib

unità di misura	QUANTITA'	
kg	0	F3
	misura	misura QUANTITA'

TORRI DI RAFFREDDAMENTO	unità di misura	QUANTITA'	FASE DI UTILIZZO
Ipoclorito di sodio	kg	25000	
Turbodispin D83	kg	2200	
Ferrodor 242	kg	2600	F1.1/1.2
Ferrofos 8446	kg	10900	
Ferrocid 8583	Kg	1200	

CENTRALE TERMOELETTRICA	unità di misura	QUANTITA'	FASE DI UTILIZZO	
ACOM ACTIVATOR	kg	4104		
FERROLIX 8339	kg	5700	F1.2	
Metaqua 8195	kg	2800	F1.Z	
Fosfato trisodico	kg	500		

VORAZIONE DEMINERALIZZAZIONE	unità di misura	QUANTITA'	FASE DI UTILIZZO
Calce idrata	kg	157260	
Resina cat. forte	kg	0	
Resina cat. Forte IR 120 MB	kg	0	-
Res. Amberlite IRA 945	kg	0	
Resina an. forte IRA402MB	kg	0	
Flocculante Anionico	kg	0	A.T.C
Cloruro Ferrico	kg	17100	TRATTAMENTO ACQUE
Politene Eraclene MP90PT	kg	0	
Acido solforico conc Soda caustica 50%	kg	796948	
	kg	1157052	
Resina an forte 120MB	kg	0	
Sabbia silicea	kg	0	

LAV. ACQUA CONDIZIONATA	unita di misura	QUANTITA'	FASE DI UTILIZZO	
Metaqua 8165	kg	1200	A.T.C TRATTAMENTO ACQUE	
Ipoclorito di sodio	kg	9500		
Carbone attivo CECA	kg	. 0		
Sabbia silicea	kg	0		

LAV. ACQUA MARE	unita di misura	QUANTITA'	FASE DI UTILIZZO	
Clorito	kg	29800	E1 2	
Acido Cloridrico	kg	27500	F1.2	

Caratteristiche combustibile liquido

OLIO COMBUSTIBILE BTZ 2015				
parametro	unità di misura	risultato		
Acqua	%р	0,4		
Viscosità	°E	372,4		
Potere calorifico inf.	kcal/kg	9785		
Densità	kg/m³	971,6		
Punto di scorr. Supp.	°C	22,3		
Asfalteni	%р	1,7		
Ceneri	%р	0,034		
HFT	%m/m	0,025		
Res. Carb. Conradson	%р	7,7		
Nichel +Vanadio	ppm peso	30,24		
Sodio	ppm peso	27,8		
zolfo	%р	0,59		

Caratteristiche combustibile gassoso

	FUEL GAS 2015	
MESE	Potere calorifico kcal/kg	Zolfo ppm
GENNAIO	10.194,0	81
FEBBRAIO	10.178,5	78
MARZO	10.670,1	80
APRILE	11.005,6	93
MAGGIO	11.099,2	76
GIUGNO	10.482,7	54
LUGLIO	10.185,3	41
AGOSTO	10.229,3	72
SETTEMBRE	10.690,8	72
OTTOBRE	10.172,9	72
NOVEMBRE	10.183,0	72
DICEMBRE	10.555,3	72

Consumi risorse idriche nell'anno 2015

APPROVVIGIONAMENTO	UTILIZZO		m³
	Igienico sanitario		110.635
	To the selected a	Processo	1.890.645
Acquedotto uso industriale	Industriale	Raffreddamento	91.963
	Antincendio		179.609
Mare (CTE)	Industriale	Raffreddamento	45.943.162
Potabile rete pubblica	Igienico sanitario		4.878 ^(*)

^(*)Consumi 2015 non ancora disponibili, il dato riportato in tabella è il consumato del 2014

Consumo e produzione di energia nell'anno 2015

TIPOLOGIA	UM	FASE DI PRODUZIONE	FASE DI CONSUMO	TOTALE ANNO
Energia elettrica prodotta	MWh	F1.2 (CTE)		160.090
	MWh	F1.2 (CTE)	F1.2 (CTE)	22.715
	MWh	F1.1 (Reforming)	F1.1 (Reforming)	21.547
Energia elettrica	MWh	F2 (Pseudocumene)	F2 (Pseudocumene)	1.234
consumata (importata da rete	MWh	F3 (Cumene)	F3 (Cumene/SPL)	2.673
esterna)	MWh	F4 Formex)	F4 (Formex)	6.191
and the second s	MWh	F5 (BTX)	F5 (BTX)	6.067
Energia termica prodotta (vapore autoprodotto)	t	F1.2 (CTE)		1.053.960 ⁽¹⁾
	t		F1.2 (CTE)	387.652 ⁽²⁾
	t		F1.1 (Reforming)	208.226 ⁽²⁾
Energia termica	t		F2 (Pseudocumene)	93.262 ⁽³⁾
consumata	t		F3 (Cumene/SPL)	175.767 ⁽³⁾
(vapore importato)	t		F4 (Formex)	255.658 ⁽²⁾
			F5 (BTX)	119.469 ⁽²⁾

⁽¹⁾Somma del quantitativo prodotto di vapore di MP (30 bar) e del quantitativo di BP (6 bar) (2) Somma del quantitativo consumato di vapore di MP (30 bar) e del quantitativo di BP (6 bar) (3) Vapore di MP (30 bar) consumato (4) Vapore di BP (6 bar) consumato

4. EMISSIONI IN ARIA Quantità emessa nell'anno 2015

Camino	Portata Nm³/h	Inquinanti	Flusso di massa kg/h	Flusso di massa kg/anno	concentra mg/Nm ³	azione	O _{2%}
					Rilevata ⁽⁶⁾	VLE	
		СО	0,08	682,79	7,28	50	
		NOx	0,76	6.663,66	71	200	
E2	10.773 ⁽⁹⁾	SO ₂	0,11	938,54	10 ⁽¹⁾	35	3
		polveri	0,006	56,31	0,6	5	
		СОТ	0,006	52,56	0,56	5	
		СО	0,07	638,1	6,8	50	
		NOx	0,81	7.086,01	75,5	200	
E3	10.773 ⁽⁹⁾	SO ₂	0,11	938,54	10(1)	35	3
		polveri	0,008	65,70	0,7	5	
		СОТ	0,0065	56,31	0,6	5	
		СО	0,74	5.857,028	10,6	50	
		NOx	7,49	59.675,28	108	200	
E7	69.346 ⁽⁹⁾	SO ₂	0,69	5.525,49	10(1)	35	3
		polveri	0,03	221,02	0,4	5	
		СОТ	0,055	442,04	0,8	5	3548 ⁵ AX
		СО	0,99	12.114 ⁽⁸⁾	7,41 ⁽⁸⁾	50	
		NOx	39,68	379.755 ⁽⁸⁾	296,5 ⁽⁸⁾	200	
-11	122 024(8)	SO ₂	68,07	666.453 ⁽⁸⁾	508,6 ⁽⁸⁾	400	
E11	133.831 ⁽⁸⁾	polveri	3,85	38.578 ⁽⁸⁾	28,8 ⁽⁸⁾	50	3
		Nichel	0,03	262,88	0,23	(2)	5
		Vanadio	0,01	87,63	0,08	(2)	•

Camino	portata Nm³/h	Inquinanti	Flusso di massa Kg/h	Flusso di massa kg/anno	concentra mg/Nm³	zione	O _{2%}
					Rilevata ⁽⁶⁾	VLE	
		СО	0,00819	0,303	3,9	50	
E15	2.100 (3)	HCI	0,00105	0,039	0,5	15	n.a
		IPA	0,0000003	0,0000117	0,00015	0,1	
		COV	0,0009	7,82	4,6(4)	2	tracy.
		Benzene	0,000097	0,85 ⁽⁷⁾	< 0,5	1	
		Etilbenzene	0,000097	0,85 ⁽⁷⁾	< 0,5	1	
	(5)	Toluene	0,000097	0,85 ⁽⁷⁾	< 0,5	1	
E16	405,8 ⁽⁵⁾	Xilene	0,000097	0,85 ⁽⁷⁾	< 0,5	1	- n.a
		Trimetilbenzene	0,000097	0,85 ⁽⁷⁾	< 0,5	1	
		Esano	0,000097	0,85 ⁽⁷⁾	< 0,5	1	
		Pentano	0,000097	0,85 (7)	< 0,5	1	

⁽¹⁾ il valore è calcolato stechiometricamente dalle analisi eseguite sul combustibile

⁽²⁾ VLE come da D.Lgs 152/06

⁽³⁾Rigenerazione del catalizzatore effettuata 1 volta nel 2015 (durata 62 ore).

^{(4)·}Il valore comprende anche il contributo del propano e idrocarburi < C5 non contemplati nell'allegato I – Parte seconda – alla parte V del D.Lgs.152/06.

(5) Valore medio annuo dei 12 monitoraggi discontinui.

(6) Valore medio annuo dei 4 monitoraggi discontinui.

⁽⁷⁾Quantità calcolata prendendo in considerazione il valore in concentrazione pari alla metà del limite di rilevabilità (8)Valore rilevato dal sistema di monitoraggio in continuo durante le ore di marcia in normale funzionamento.
(9)Valore calcolato sulla base del quantitativo di combustibile consumato nell'anno

pagina 14 di 28

Di seguito i risultati delle analisi di controllo di tutti gli inquinati in tutte le emissioni 2015

DATA n°RDP mg/Nm³ mg/Nm³ mg/Nm³ oC % Nm³/h mg/Nm³ % vol mg/Nm³ 03-mar-15 1502971-001 < 0,5 31 14,8 11.300 4,9 4,3 <1,1 17-giu-15 1506958-001 5,3 80 0,5 30 15 17.300 14,6 5,2 <1 01-set-15 1508937-001 24 57 1,1 31 11,5 16.900 9 2,6 <1 30-nov-15 1511975-001 5,5 75 0,3 334 9,1 17.900 0,6 5 5 <2,2 <2,2	CAMINO E2		<i>S</i> 0 ₂	NO2	polveri	temp	umidītà	portata secca dei fumi	00	02	COT	portata secca dei fumi al 3% O ₂
5 72 0,6 311 14,8 11.300 4,9 4,3 80 0,5 300 15 17.300 14,6 5,2 57 1,1 311 11,5 16.900 9 2,6 75 0,3 334 9,1 17.900 0,6 5	DATA	n°RDP	mg/Nm³	mg/Nm³	mg/Nm³	၁	%	Nm³/h	mg/Nm³	lov %	mg/Nm³	Nm³/h
80 0,5 300 15 17.300 14,6 5,2 57 1,1 311 11,5 16.900 9 2,6 75 0,3 334 9,1 17.900 0,6 5	03-mar-15	1502971-001	< 0,5	72	9,0	311	14,8	11.300	4,9	4,3	<1,1	10.400
57 1,1 311 11,5 16.900 9 2,6 75 0,3 334 9,1 17.900 0,6 5		1506958-001	5,3	80	5′0	300	15	17.300	14,6	5,2	<1	15.900
75 0,3 334 9,1 17.900 0,6 5	01-set-15	1508937-001	24	57	1,1	311	11,5	16.900	6	2,6	77	17.400
	30-nov-15	1511975-001	5,5	75	0,3	334	9,1		9′0	2	<0,2	15.400

CAMINO E3		502	NO ₂	polveri	temp	umidītà	portata secca dei fumi	00	02	<i>coт</i>	portata secca dei fumi al 3% O ₂
DATA	n°RDP	mg/Nm³	mg/Nm³ mg/Nm³	mg/Nm ³	ى ى	%	Nm ³ /h	mg/Nm³ % vol	% vol	mg/Nm³	Nm3/h
04-mar-15	1502977-001	< 0,5	59	9′0	299	15	13.800	1,95	2,6	₽	14.200
22-giu-15	1506960-001 < 0,5	< 0,5	84	0,7	307	15	14.700	13,9	9	1,2	12.200
02-set-15	1508939-001	30	87	1,1	299	8'6	15.100 8,6	9,8	6,3	₽	12.600
01-dic-15	1511974-001 6,8	8,9	72	0,4	296	9,5	15.400 2,9	2,9	4,8	<0,2	13.700

CAMINO E7		202	NO ₂	polveri	temp	umidità	portata secca dei fumi	00	0,	сот	portata secca dei fumi al 3% 0 ₂
DATA	n°RDP	mg/Nm³	mg/Nm³	/Nm³ mg/Nm³	ىر	%	Nm³/h	Nm³/h mg/Nm³	% vol	% vol mg/Nm ³	Nm³/h
09-mar-15	1502979-001 2,1	2,1	115	2′0	148	11	106.400 4,1	4,1	12,2	<2	53.200
23-giu-15	1506957-001 0,5	5′0	117	6,3	150	11	110.800 23	23	8,8	1,6	74.500
03-set-15	1508940-001	22	109	9′0	153	10,3	106.500 13	13	∞	<1	76.300
02-dic-15	1511973-001 8,3	8,3	91	0,32	147,85 9,5	9,5	106.800 2,3	2,3	7,8	<0,3	78.300

portata come da FR234

temp

00

IPA

PCDD/PCDF HCI

CAMINO E15

Nm3/h

mg/Nm³ C

mg/Nm³ mg/Nm³

mg/Nm³

n° RDP

DATA

2.100

ŀ

3,9

<0,00015

03/11/2015 1510916-001 0,000000016 <0,5

EMISSIONE E16	E16	BENZENE	ETILBENZENE	TOLUENE	XILENE	TRIMETIL- BENZENE	ESANO	PENTANO	COV CARBONIO ORGANICO TOTALE *	temp	Portata	ALTRI IDROCARBURI >C5 ESPRESSI COME ESANO	ALTRI IDROCARBURI <c5 espressi<br="">COME ESANO</c5>
·	n ^o . RDP	mg/Nm³	mg/Nm³	mg/Nm³	mg/Nm³	mg/Nm³	mg/Nm³	mg/Nm³	mg/Nm³	^ပ ွ	Nm³/h	mg/Nm³	mg/Nm³
16-gen-15	1500782-001	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	17	16,8	< 290	< 0,5	< 0,5
2-feb-15	1501792-001	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	23	8′9	640	< 0,5	< 0,5
11-mar-15	1503469-001	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	1,7	11	490	< 0,5	< 0,5
9-apr-15	1504077-001	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	3,4	19	420	< 0,5	< 0,5
6-mag-15	1505689-001	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	1	27	< 290	< 0,5	< 0,5
15-giu-15	1506991-001	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	2,7	26	< 290	< 0,5	< 0,5
21-lug-15	1508217-001	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	0,2	25	420	< 0,5	0,25
25-ago-15	1508837-001	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	0,2	26,8	< 290	< 0,5	< 0,5
29-set-15	1510239-001	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	4,4	23,8	450	< 0,5	2,6
19-oft-15	1510398-001	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	0,8	23,8	410	< 0,5	< 0,5
26-nov-15	1511608-001	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	0,2	12,8	410	0,25	0,25
3-dic-15	1511976-001	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	1	13,8	470	< 0,5	9,0
(*).Il valore co	(*).Il valore comprende anche il contributo del propano e idi	contributo d€	el propano e		ocarburi < C5 non contemplati		nell'allegato I - Parte seconda	- Parte secc	- alla	arte V de	parte V del D.Lgs.152/06.	2/06.	

	Talanta Science	1502981-001	1506962-001	1508930-001	1512184-001
Rdp n.		10/03/15	18-19/06/15	7-8/12/15	3-4/12/15
	Unità di	10/03/13	10-15/00/15	7 0/12/13	5-4/12/13
PARAMETRI	misura				
SO ₂	mg/Nm ³	772	591	499	78
Pm10	mg/Nm ³	16	26	9,5	6,8
COV	mg/Nm ³	<1,2	16	<1	<1
Cadmio	mg/Nm ³	<0,0001	0,008	0,0004	<0,0001
Tallio	mg/Nm ³	<0,001	<0,001	<0,001	<0,001
Mercurio	mg/Nm ³	<0,001	<0,001	<0,001	<0,001
Cd+Tl+Hg	mg/Nm ³	<0,0021	0,0028	0,0024	<0,0021
Antimonio	mg/Nm ³	0,068	0,027	0,019	0,004
CromoIV	mg/Nm ³	0,003	<0,001	0,001	<0,001
Cobalto	mg/Nm ³	<0,001	0,006	<0,001	0,03
Arsenico	mg/Nm³	0,03	0,02	0,01	0,04
Nichel (fraz. resp.)	mg/Nm³	0,39	0,09	0,021	0,07
As+CrIV+Co+Ni (fraz.Res)	mg/Nm ³	0,4	0,1	0,031	0,1
Cromo	mg/Nm ³	0,031	0,02	0,01	0,005
Zinco	mg/Nm³	0,07	0,05	0,04	0,006
Berillo	mg/Nm ³	<0,001	<0,001	<0,001	<0,001
Nichel tot	mg/Nm³	0,28	0,17	0,13	0,32
Selenio	mg/Nm³	0,002	<0,001	0,005	<0,001
Tellurio	mg/Nm³	0,002	<0,001	0,001	<0,001
Ni+Se+Te	mg/Nm³	0,28	0,17	0,14	0,32
Rame	mg/Nm³	0,001	0,003	0,002	0,002
Cromo III	mg/Nm³	0,03	0,016	0,012	0,004
Manganese	mg/Nm³	0,005	0,005	0,005	0,005
Vanadio	mg/Nm³	0,12	0,05	0,07	0,06
Stagno	mg/Nm³	<0,001	<0,001	<0,001	<0,001
Palladio	mg/Nm³	<0,001	<0,001	<0,001	<0,001
Platino	mg/Nm³	<0,001	<0,001	<0,001	<0,001
Piombo	mg/Nm ³	0,007	0,006	0,015	<0,001
Rodio	mg/Nm ³	<0,001	0,01	<0,001	0,001
Sb+CrIII+Mn+Pd+ Pb+Pt+Cu+Rh+Sn+V	mg/Nm³	0,25	0,12	0,13	0,13
Cianuri	mg/Nm³	<0,001	<0,001	0,001	<0,001
PCDD/PCDF	ng/Nm³	0,003	0,052	0,008	0,044
IPA	mg/Nm³	<0,000628	<0,000643	<0,000672	<0,000613
Benzo(j)fluorantene	mg/Nm³	<0,000008	<0,000010	<0,000013	<0,000007
Benzo(b+k)fluorantene	mg/Nm³	<0,000003	<0,000003	<0,000004	<0,000002
Benzo(a)pirene	mg/Nm³	<0,000006	<0,000007	<0,000009	<0,000005
Benzo(g,h,i)pirilene	mg/Nm³	<0,000006	<0,000007	<0,000009	<0,000005
Indeno(1,2,3-cd)pirene	mg/Nm³	<0,000003	<0,000004	<0,000005	<0,000002
PCB totali	mg/Nm³	0,00007	<0,00001	0,00008	<0,00001
PCT	mg/Nm³	<0,000002	<0,000002	<0,000003	<0,000002
PNC	mg/Nm ³	<0,00005	<0,00006	<0,00008	<0,00004

Risultati del monitoraggio delle emissioni fuggitive

Il piano LDAR degli impianti di nuova proprietà SARLUX, regolarmente eseguito nel 2015, nel pieno rispetto di quanto precedentemente fatto negli anni 2013 e 2014 (definizione di fuori soglia 1.000/500 p.p.m. rispettivamente per NON H350 e H350) ha rilevato un numero di componenti perdenti pari a 0,89% del totale monitorato che si è ridotto a 0,46% a valle delle attività di manutenzione e successivo rimonitoraggio.

Per l'anno 2015 è stato commissionato alla società VED, l'implementazione della attività di monitoraggio delle emissioni fuggitive presso gli impianti produttivi e i servizi ausiliari di proprietà Sarlux.

La campagna di misura ha interessato oltre alle emissioni fuggitive di sostanze organiche volatili, anche le emissioni fuggitive dell'idrogeno.

La campagna, nel 2015, è stata eseguita nei mesi di ottobre e novembre su 27.714 sorgenti, che corrisponde all'86,76% del numero totale di sorgenti censite pari a 31.942. L'emissione calcolata sulla base delle misure eseguite pre-manutenzione è di 34,24 tonnellate anno di VOC-NM, 0,53 tonnellate anno di Metano e 0,57 tonnellate anno di Idrogeno.

Le sorgenti oggetto di monitoraggio contenenti COV, sono state ispezionate con analizzatori portatili COV modello TVA-1000B FID (Thermo Instrument)

Le sorgenti censite e accessibili contenenti idrogeno sono state ispezionate con analizzatori TCD modello GASCHECK-G (IonScience).

Di seguito vengono riportati i dati medi relativi alle condizioni meteo e alle attività di monitoraggio durante la campagna di monitoraggio 2015.

DATA	TMEDIA °C	UMIDITA %	VENTOMEDIA km/h	PRESSIONESLM mb	PIOGGIA mm
22/10/2015	16	79	19	1011	0
23/10/2015	16	73	12	1016	0
26/10/2015	20	84	14	1017	0
27/10/2015	19	91	7	1016	0
28/10/2015	20	86	7	1016	0
29/10/2015	18	73	- 13	1016	0
30/10/2015	17	76	12	1018	0
31/10/2015	16	79	12	1019	0
02/11/2015	18	82	14	1025	0
03/11/2015	20	87	21	1025	0
05/11/2015	. 18	. 85	. 12	. 1021 .	. 0 .
06/11/2015	16	86	10	1024	0
16/11/2015	16	81	9	1019	0
17/11/2015	15	86	12	1022	0
18/11/2015	16	83	21 = x = x 13 2 x = x =	1023	

Nella tabella seguente la distribuzione delle sorgenti per tipologia di componente.

IMPIANTO	Agitatore	Compressore	Fine Linea	Flangia	Pompa	Valvola	PSV	TOTALE
CRIOGENICO	0	0	17	84	0	45	0	146
CTE	4	0	137	889	6	350	6	1.392
DISTRIBUZIONE FUEL GAS E IDROGENO	0	0	19	87	0	43	0	149
ISOLA 3_6	0	0	246	1.298	0	559	65	2.168
ISOLA 15 BTX	0	1	416	2.783	15	1.205	14	4.434
ISOLA 15 FORMEX	0	0	241	1.973	21	881	4	3.120
ISOLA 15 PSEUDOCUMENE	1	0	174	869	10	468	10	1.532
ISOLA 15 REFORMING	0	3	801	3.381	30	1.922	26	6.163
ISOLA 15 SPLITTER	0	0	91	873	6	411	5	1.386
ISOLA 20	0	0	312	2.122	22	963	50	3.469
ISOLA 24	0	0	160	935	4	397	17	1.513
ISOLA 25	0	0	139	1.419	23	508	30	2.119
ISOLA 30	0	0	280	2.076	13	832	20	3.221
PONTILE	0	0	84	632	3	200	10	929
TORCIA	0	0	22	102	2	75	0	201
TOTALE	5	4	3.139	19.523	155	8.859	257	31.942

Delle 27.714 sorgenti accessibili e monitorabili sono state riscontrate:

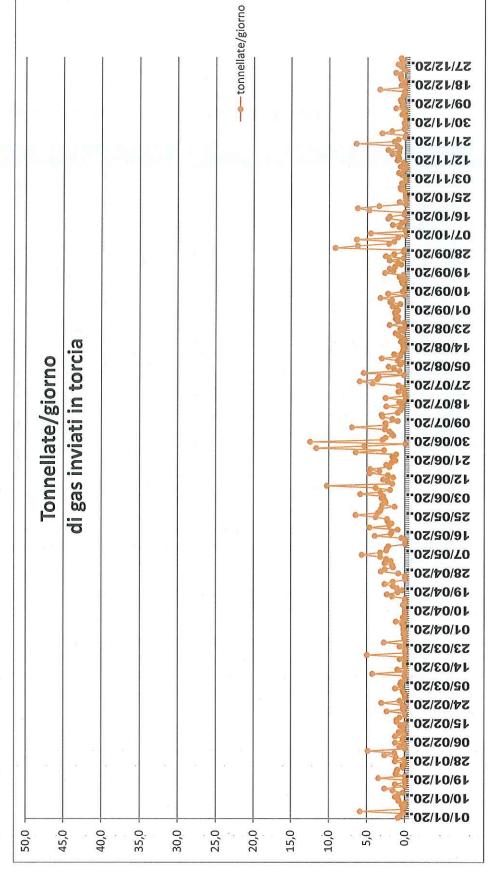
- 9.367 sorgenti classificate come H350 delle quali 95 fuori soglia, ossia con perdita superiore alla Leak definition di 500 ppmv;
- 18.347 sorgenti classificate come NON H350 delle quali 140 fuori soglia, ossia con perdita superiore alla Leak definition di 1.000 ppmv.

TABELLA DISTRIBUZIONE SORGENTI H350

IMPIANTO	≥ 500ppm	<500ppm	Totale	Div.%
CTE	0	25	25	0,00%
ISOLA 3_6	17	1.810	1.827	0,93%
ISOLA 15 BTX	21	1.721	1.742	1,21%
ISOLA 15 FORMEX	13	1.896	1.909	0,68%
ISOLA 15 REFORMING	37	1.587	1.624	2,28%
ISOLA 20	1	651	652	0,15%
ISOLA 24	. 1	774	775	0,13%
ISOLA 25	5	750	755	0,66%
PONTILE	0	58	58	0,00%

TABELLA DISTRIBUZIONE SORGENTI NON H350

IMPIANTO	≥ 1.000ppm	<1.000ppm	Totale	Div.%
CRIOGENICO	0	142	142	0,00%
CTE	4	1.236	1.240	0,32%
DISTRIBUZIONE FUEL GAS E IDROGENO	1	138	139	0,72%
ISOLA 3 6	1	222	223	0,45%
ISOLA 15 BTX	20	2.439	2.459	0,81%
ISOLA 15 FORMEX	0	1.034	1.034	0,00%
ISOLA 15 PSEUDOCUMENE	2	1.362	1.364	0,15%
ISOLA 15 REFORMING	31	4.093	4.124	0,75%
ISOLA 15 SPLITTER	25	1.317	1.342	1,86%
ISOLA 20	3	887	890	0,34%
ISOLA 24	0	228	228	0,00%
ISOLA 25	17	980	997	1,71%
ISOLA 30	35	3.121	3.156	1,11%
PONTILE	1	832	833	0,12%
TORCIA	0	176	176	0,00%
TOTALE	140	18.207	18.347	0,76%


Al fine di ridurre le emissioni in atmosfera sono stati eseguiti degli interventi di manutenzione focalizzati alla riparazione delle sorgenti fuori soglia riscontrate durante la campagna di monitoraggio.

N. 235 sorgenti sottoposte a manutenzione durante l'anno 2015 sono inoltre state oggetto di remonitoring entro l'anno.

I dati di remonitoring hanno evidenziato una riduzione delle emissioni, in particolare gli interventi di manutenzione hanno consentito l'eliminazione di 120 sorgenti fuori soglia di cui 46 H350, per le quali si è registrata un'emissione post manutenzione inferiore alla Leak definition di 500 ppmv, e 74 NON H350 per le quali si è registrata un'emissione inferiore alla Leak definition di 1.000 ppmv.

Torcia a mare impianti Nord (E12)

Si riporta di seguito il trend dei flussi inviati i torcia durante l'anno 2015.

In allegato 1 copia del registro.

5. EMISSIONI IN ACQUA

Quantità di parametri oggetto di monitoraggio scaricate a mare nell'anno 2015

Totale scaricate	a mare (kg) 2015 ⁽¹⁾		
SST a 105°C	11.756,27		
BOD5	866,86		
COD	3.748,08		
Alluminio	9,312		
Ferro	68,02		
Manganese	2,33		
Fosforo totale	20,19		
Azoto ammoniacale	522,215		
Azoto nitrico	837,74		
Azoto nitroso	4,66		

⁽¹⁾Il valore è pari alla somma dei contributi mensili sulla base dei quantitativi di acqua scaricati e la concentrazione rilevata dall'analisi.

					SF1 CTE -	Scarico ac	SF1 CTE -Scarico acqua mare di raffreddamento	i raffreddai	nento					
C	n. Rdp		EV-15-	EV-15-	EV-15-	EV-15-	EV-15-	EV-15-	EV-15-	EV-15-	EV-15-	EV-15-	EV-15-	EV-15-
	200		000148- 000666	000814- 004122	001168-	001822-	002505-	003557-	004654-	005447- 025517	006216- 028872	0007338-	008115- 036586	009808-
			GEN	FEB	MAR	APR	MAG	GIU	FNG	AGO	SET	TTO	NON	DIC
S			15/01/15	15/01/15 04/02/15 11	11/03/15	02/04/15	02/04/15 05/05/15	09/06/15 14/07/15	14/07/15	06/08/15	15/09/15	20/10/15	06/11/15 . 15/12/15	15/12/15
	Un.Mis.	VLE											77	
Hd	Hd	9,5	8,22	8,12	8,26	8,73	8,3	8,27	8,24	8,17	8,17	8,19	8,20	8,3
Temperatura	၁့	32	18,2	13,5	15,8	17,0	19,4	25,5	28,3	32,9	27,5	23,1	22,1	17,1
Portata	m3/h	1	5.400	5.400	5.400	5.400	5.400	5.400	5.400	5.400	5.400	5.400	5.400	5.400

N. Rdp EV-15- E	-15- EV-15- 2423 005602 2423 005602 2423 005602 202/15 11/03/15 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EV-15- 001981- 009667 APR 09/04/15 0 assente 11	EV-15- 003154- 015490 MAG 25/05/15 0 assente 12 0	EV-15- 003825- 017822 GIU 17/06/15 0 assente 29 0,0286 0,16	EV-15- 004654- 022018 LUG 14/07/15 0 assente 14	EV-15- 005447- 025519 AGO 06/08/15 0 assente 60 0,0408	EV-15- 006216- 028877 SET 15/09/15	EV-15- 007338- 033694 OTT 20/10/15	EV-15- 008178- 036912 NOV 06/11/15	EV-15- 009808- 044153 DIC 15/12/15
GEN Un.Mis. VLE 15/01/15 Un.Mis. VLE 15/01/15 n°/I Assente mg/I 1 0,058 mg/I 2 1,04 mg/I 2 0,0204 mg/I 20 - mg/I 10 - mg/I 10 - mg/I 10 - mg/I 0,6 -	as as			GIU 17/06/15 0 assente 29 0,0286	LUG 14/07/15 0 assente 14	06/08/15 06/08/15 0 assente 60 0,0408	SET 15/09/15 0	20/10/15 0	NOV 06/11/15	DIC 15/12/15
Un.Mis. VLE Un.Mis. VLE Dilluiz. 20 0 n°/l Assente assente mg/l 1 0,058 mg/l 2 1,04 mg/l 2 0,0204 mg/l 20 - mg/l 10 - mg/l 10 - mg/l 10 - mg/l 0,6 -	as as			17/06/15 0 assente 29 0,0286 0,16	14/07/15 0 assente 14 0,011	0 0 assente 60 0,0408	15/09/15	20/10/15	06/11/15	15/12/15
Un.Mis. VLE Dilluiz. 20 0 n°/1 Assente assente mg/1 80 5 mg/1 1 0,058 mg/1 2 1,04 mg/1 2 0,0204 mg/1 20 - mg/1 10 - mg/1 10 - mg/1 10 - mg/1 0,6 -	se lo lo	0 assente 11 0,077	0 assente 12 0,153	0 assente 29 0,0286 0,16	0 assente 14 0,011	0 assente 60 0,0408	0	o		
Dilluiz. 20 0 n°/I Assente assente mg/I 1 0,058 mg/I 2 1,04 mg/I 2 0,0204 mg/I 20 - mg/I 10 - mg/I 0,6 -	as	0 assente 11 0,077	0 assente 12 0,153	0 assente 29 0,0286 0,16	0 assente 14 0,011	0 assente 60 0,0408	0	0		
mg/l Assente assente mg/l 80 5 mg/l 1 0,058 mg/l 2 1,04 mg/l 2 0,0204 mg/l 20 - mg/l 10 - mg/l 10 -	as o	assente 11 0,077	assente 12 0,153	29 0,0286 0,16	14 0,011	60 0,0408	040000		0	o
mg/l 80 5 mg/l 1 0,058 mg/l 2 1,04 mg/l 2 0,0204 mg/l 10 - mg/l 10 -	0	11 0,077	12 0,153	29 0,0286 0,16	0,011	0,0408	assente	assente	assente	assente
mg/l 1 0,058 mg/l 2 1,04 mg/l 2 0,0204 mg/l 20 - mg/l 10 - mg/l 10 - mg/l 0,6 -	0	7,000	0,153	0,0286	0,011	0,0408	10	7	ω	28
mg/l 2 1,04 mg/l 2 0,0204 mg/l 20 - mg/l 10 - mg/l 10 - mg/l 0,6 -				0,16		0 10	0,161	0,105	0,129	0,183
mg/l 2 0,0204 mg/l 20 - mg/l 10 - mg/l 0,6 -		1,68	1,87	0 0 0	0,131	0,10	0,364	0,349	0,421	0,403
mg/l 20 - mg/l 10 - mg/l 10 -	0,0305	0,0491	0,056	6/00'0	0,0175	0,00624	0,0118	0,023	0,0225	0,0162
mg/l 10 - mg/l 10 - mg/l 0,6 -	1	ı			101	ī	e e g	¢	t	8′9
mg/l 10 - mg/l 0,6 -	(i)	1	1	J.	1	1	1,	1	1	0,0718
- 9'0 I/bm	1		,	a	,	j.	·	1	1	0,338
	3	1	ı	i.	1	1	t	1	1	0,0142
BOD5 mg/l 40 -	1	ī	1	1	1	ī	ar. s		1	4
160	9	(50)	1	1	1	1	1	1	1	36,8
96'9 68'9 9'5 Hd Hd	,95 6,4	8,02	7,58	89'8	8,45	9,35	8,37	8,23	8,79	8,15
Temperatura °C 35 18,2 26,4	6,4 17,4	20,1	22,1	26,1	28,5	34,5	29,5	23,4	22	16,1
Portata m3/h - 12,9 25	25 12,9	12,5	12,5	40	100	15,4	15,4	12,5	12,5	12,5

					SF3 S	SF3 Scarico lavaggio filtri, acqua mare 2015	ggio filtri, a	acqua mare	2015					
n.l	n. Rdp	Į į	EV-15- 000148- 000665	EV-15- 000504- 002422	EV-15- 001166- 005597	EV-15- 001821- 008927	EV-15- 003154- 015490	EV-15- 003557- 016948	EV-15- 004654- 022020	EV-15- 005447- 025520	EV-15- 006216- 028874	EV-15- 007338- 033696	EV-15- 008115- 036589	EV-15- 009808- 044152
**************************************			gen	feb	mar	apr	mag	giu	lug	ago	sett	ott	nov	dic
a)	Un.Mis.	VLE	15/01/15	04/02/15	10/03/15	02/04/15	05/05/15	09/06/15	14/07/15	06/08/15	15/09/15	20/10/15	05/11/15	15/12/15
Materiali grossolani	I/ou	0	assente	assente	assente	assente	assente	assente	assente	assente	assente	assente	assente	assente
Solidi Sospesi totali	I/bm	08	7	14	12	14	10	φ	m	20	7	6	13	7
BODS	mg02/1	40	^ 1	^ 1	^ 1	<1 1	۲	< <u>1</u>	\ 1	< <u>1</u>	\ \	\ 1	7	<1
Fosforo totale	I/bm	10	0,049	<0,0043	0,01	<0,0043	0,0065	0,015	<0,0072	0,0443	<0,014	<0,014	<0,014	<0,014
Azoto ammoniacale	mgNH₄/I	15	<0,21	0,48	<0,21	0,54	<0,21	<0,21	0,81	<0,21	0,77	0,902	0,918	0,818
Azoto nitrico	I/bm	20	0,48	0,426	0,0313	0,052	0,64	0,0402	0,0375	0,0355	0,054	<0,0075	0,123	0,151
Azoto nitroso	l/gm	9,0	0,012	<0,0026	<0,0026	<0,0026	>0,0026	<0,0035	<0,0035	<0,0035	0,005	0,0041	0,0076	<0,0035
Parametri da campo:		19									ı	Ĭ		
Н	unità pH	5,6	8,22	8,05	8,18	7,95	8,26	8,1	8,29	8,21	8,19	8,15	8,2	8,23
Temperatura	ပ္	35	15,3	10,5	13,8	15,9	19	22	25,4	32,9	25,5	21,1	20,5	16,2
Portata	m3/h		83,3	80	120	120	120	80	120	120	120	120	120	120

<u>Verifica annuale del delta temperatura oltre i 1.000 metri dallo scarico in mare del Rio Antigori (ex SF1)</u>

Si riporta in allegato 2 il documento prodotto dalla società Labanalysis sulla verifica del Delta T oltre 1.000 metri dallo scarico del Rio Antigori ex SF1 (X=1501296,8594; Y=4327432,6497).

Calcolo carico termico giornaliero (Scarico SF1 acqua mare di raffreddamento CTE)

Nelle tabelle successive si riporta il calcolo del carico termico giornaliero su corpo idrico ricevente in MJoule allo scarichi SF1 (acqua mare di raffreddamento CTE), secondo la seguente formula:

 $Q = Cp x m x (\Delta T)$

Q = Carico Termico giornaliero espresso in Milioni di Joule;

Cp = Calore specifico dell'acqua di mare in J/kg °C;

m = massa di acqua di raffreddamento = flusso di acqua prelevato (milioni di dm³/d) x densità dell'acqua in kg/dm³;

 ΔT = temperatura acqua allo scarico – temperatura acqua ingresso impianto.

	Carico T		naliero espre le termoeletti			
	TEMPERATURA INGRESSO ACQUA MARE IMPIANTO CTE	TEMPERATURA USCITA ACQUA MARE IMPIANTO CTE	Cp (Calore specifico dell'acqua mare)	d densità	m massa di acqua di raffreddamento	carico termico giornaliero
Giorno di riferimento	°C	°C	j/kg °C	kg/m³	m³/giorno	Milioni di Joule
26/06/2015	23	31	3.925,00	1030	129.600,00	4.191.523,20

6. RIFIUTI

I dati relativi agli impianti Nord sono conteggiati unitamente ai rifiuti relativi agli impianti Sud nella sezione Raffineria.

7. RUMORE

Eseguita nel 2013 verifica dell'impatto acustico dello stabilimento, in conformità a quanto prescritto al punto 5.1 "monitoraggio dei livelli sonori", a pagina 27 del Piano di Monitoraggio e Controllo, con esito positivo.

Nel 2016 si prevede di estendere agli impianti Nord le attività di monitoraggio in essere agli impianti Sud, anticipando il monitoraggio quadriennale previsto nel 2017 dal PMC.

8. ODORE

Eseguito nel 2013 monitoraggio degli odori in conformità a quanto prescritto a pagina 27, punto 6 del Piano di Monitoraggio e Controllo, con esito positivo.

Nel 2016 si prevede di estendere agli impianti Nord le attività di monitoraggio in essere agli impianti Sud, anticipando il monitoraggio quadriennale previsto nel 2017 dal PMC.

9. ULTERIORI INFORMAZIONI

Risultanze dei controlli effettuati su impianti, apparecchiature, linee, serbatoi e strumentazione come previsto al punto 10 del PMC.

Si riporta in allegato 3 una sintesi delle attività di controllo, verifica e manutenzione svolte nel 2015 sulle apparecchiature, linee, serbatoi e strumentazione rilevante dal punto di vista ambientale e, in allegato 4, il crono programma delle attività da svolgere nell'anno 2016.

Rapporti di prova sulle verifiche degli SME

Si riporta nell'allegato 5 e nell'allegato 6 rispettivamente il report di AST e il report di IAR del sistema automatico di misura in continuo delle emissioni in atmosfera installato al camino E11 della Centrale Termoelettrica.