

Ministero dell'Ambiente e della Tutela del Territorio (del Mare – Direzione Generale Valutazioni Ambienta

E.prot DVA - 2014 - 0013089 del 07/05/2014

Ministero dell'Ambiente e della Tutela del Territorio

Direzione Generale per le Valutazioni Ambientali – Ex Divisione VI-Rischio industriale e IPPC Via Cristoforo Colombo, 44 00144 ROMA

ISPRA Istituto Superiore per la Protezione e la Ricerca ambientale

Via Vitaliano Brancati, 48
00144 ROMA
mailto:protocollo.ispra@ispra.legalmail.it

Regione Autonoma della Sardegna

Assessorato Regionale Difesa Ambiente Via Roma, 80 09123 CAGLIARI

Amministrazione Provinciale di Sassari

Settore VIII - Ambiente Piazza d'Italia, 31 07100 SASSARI

Comune di Sassari

Settore Ambiente Palazzo Ducale 07100 SASSARI

Comune di Porto Torres

Settore Urbanistica e Ambiente Piazza Umberto I, 1 07046 Porto Torres (SS)

ARPAS

Dipartimento Provinciale di Sassari Via Rockfeller, 56/58 07100 SASSARI E.ON Produzione 5.p.A. A socio unico Centrale di Fiume Santo Località Cabu Aspru - Sassari c.p. 224 - Porto Torres succ. 1 07046 Porto Torres (SS) www.eon.it

T +39-079-5394 700 F +39-079-5394 835

Sede legale Località Fiume Santo Cabu Aspru 07100 Sassari (SS)

C.F. Reg. Imprese e P.I. 03251970962 R.E.A. \$5 - 148192 Capitale Sociale, € 560.648.000,00 i.v. Soggetta a direzione e coordinamento di E.ON Italia S.p.A.

Oggetto: Decreto DVA-DEC-2010-0000207 del 26.04.2010 - Autorizzazione Integrata Ambientale per l'esercizio della centrale termoelettrica di Fiume Santo (SS) di E.ON Produzione SpA. Rapporto 2013

Con riferimento all'oggetto e in relazione a quanto prescritto dal Piano di Monitoraggio e Controllo, si invia, su supporto informatico, il rapporto che descrive l'esercizio dell'impianto nell'anno 2013.

Rimaniamo a disposizione per eventuali chiarimenti e approfondimenti. Distinti saluti

Il Direttore di Centrale
Marco Bertolino

Marco Bertolino

Marco Bertolino

Allegati:c.s.

Panella Monica

Da:

Aia Pec [Aia@pec.minambiente.it] mercoledì 30 aprile 2014 15:53

DGSalvaguardia.ambientale@pec.minambiente.it

Oggetto:

Inviato:

I: POSTA CERTIFICATA: controlli AIA_E.ON-SS-FSanto:report dati 2013

Allegati:

daticert.xml; controlli AIA E.ON-SS-FSanto:report dati 2013 (1,14 MB)

Da: Per conto di: licensing.eon@eon.legalmail.it [mailto:posta-certificata@legalmail.it]

Inviato: mercoledì 30 aprile 2014 15.01

A: MATTM AIA; IPSRA; RAS Ambiente; provincia SS; Comune di Sassari; Comune di PortoTorres ambiente; ARPAS

dipartimento SS

Oggetto: POSTA CERTIFICATA: controlli AIA_E.ON-SS-FSanto:report dati 2013

Messaggio di posta certificata

Il giorno 30/04/2014 alle ore 15:00:55 (+0200) il messaggio "controlli AIA E.ON-SS-FSanto:report dati 2013" è stato inviato da "licensing.eon@eon.legalmail.it" indirizzato a:

protocollo@pec.provincia.sassari.it

dipartimento.ss@pec.arpa.sardegna.it

protocollo.ispra@ispra.legalmail.it

ambiente@pec.comune.porto-torres.ss.it

aia@pec.minambiente.it

amb.assessore@pec.regione.sardegna.it

protocollo@pec.comune.sassari.it

Il messaggio originale è incluso in allegato.

Identificativo messaggio: 889678904.1243427020.1398862855249vliaspec008@legalmail.it

L'allegato daticert.xml contiene informazioni di servizio sulla trasmissione

Legalmail certified email message

On 2014-04-30 at 15:00:55 (+0200) the message "controlli AIA_E.ON-SS-FSanto:report dati 2013" was sent by "licensing.eon@eon.legalmail.it" and addressed to:

protocollo@pec.provincia.sassari.it

dipartimento.ss@pec.arpa.sardegna.it

protocollo.ispra@ispra.legalmail.it

ambiente@pec.comune.porto-torres.ss.it

aia@pec.minambiente.it

amb.assessore@pec.regione.sardegna.it

protocollo@pec.comune.sassari.it

The original message is attached with the name postacert.eml or controlli AIA E.ON-SS-FSanto:report dati 2013.

Message ID: 889678904.1243427020.1398862855249vliaspec008@legalmail.it

The daticert.xml attachment contains service information on the transmission

Ministero dell'Ambiente e della Tutela del Territorio

Direzione Generale per le Valutazioni Ambientali - Ex Divisione VI-Rischio industriale e IPPC Via Cristoforo Colombo, 44 00144 ROMA

ISPRA Istituto Superiore per la Protezione e la Ricerca ambientale

Via Vitaliano Brancati, 48 00144 ROMA mailto:protocollo.ispra@ispra.legalmail.it

Regione Autonoma della Sardegna

Assessorato Regionale Difesa Ambiente Via Roma, 80 09123 CAGLIARI

Amministrazione Provinciale di Sassari

Settore VIII - Ambiente Piazza d'Italia, 31 07100 SASSARI

Comune di Sassari

Settore Ambiente Palazzo Ducale 07100 SASSARI

Comune di Porto Torres

Settore Urbanistica e Ambiente Piazza Umberto I, 1 07046 Porto Torres (SS)

ARPAS

Dipartimento Provinciale di Sassari Via Rockfeller, 56/58 07100 SASSARI E.ON Produzione S.p.A. A socio unico Centrale di Fiume Santo Località Cabu Aspru - Sassari c.p. 224 - Porto Torres succ. 1 07046 Porto Torres (SS) www.eon.it

T +39-079-5394 700 F +39-079-5394 835

Sede legale Località Fiume Santo Cabu Aspru 07100 Sassari (SS)

C.F. Reg. Imprese e P.I. 03251970962 R.E.A. SS - 148192 Capitale Sociale € 560.648.000,00 i.v. Soggetta a direzione e coordinamento di E.ON Italia S.p.A.

Oggetto: Decreto DVA-DEC-2010-0000207 del 26.04.2010 - Autorizzazione Integrata Ambientale per l'esercizio della centrale termoelettrica di Fiume Santo (SS) di E.ON Produzione SpA. Rapporto 2013

Con riferimento all'oggetto e in relazione a quanto prescritto dal Piano di Monitoraggio e Controllo, si invia, su supporto informatico, il rapporto che descrive l'esercizio dell'impianto nell'anno 2013.

Rimaniamo a disposizione per eventuali chiarimenti e approfondimenti. Distinti saluti

Il Direttore di Centrale

Marco Bertolino

Marco Serto

Allegati:c.s.

AUTORIZZAZIONE INTEGRATA AMBIENTALE

Decreto MATTM n. DVA-DEC-2010-0000207 del 26 aprile 2010

Rapporto annuale di esercizio dell'impianto dati anno 2013

Sommario

1.	Introduzione	3
2.	Generalità dell'impianto	3
3.	Dati sul funzionamento, energia generata e rendimento elettrico	4
4.	Conformità dell'esercizio alla Autorizzazione Integrata Ambientale	5
5. 5.1 5.2 5.3 5.4 5.5	Emissioni in atmosfera Emissioni massiche annuali Concentrazioni medie annuali Emissioni specifica annuale per MWh di energia generata lorda Emissioni specifica annuale per t di combustibile bruciati Transitori	9 9 10
5.5.1 5.5 5.5.3 5.6 5.7	.2 Avvii e spegnimenti nell'anno (transitori)	10 10 11
6.	Immissioni in atmosfera	12
7. 7.1 7.2 7.3	Scarichi in acqua Emissioni di inquinanti: Concentrazioni mensili degli inquinanti al punto di scarico SF2 Emissioni di inquinanti: Concentrazioni mensili degli inquinanti al punto di scarico vasca finale acque reflue Emissioni massiche e specifiche per tipologia di inquinanti allo scarico SF2 e uscita impianto di trattamento Unità di raffreddamento: Stima del calore introdotto in acqua di mare	13 13 14
8.	Rifiuti	17
9.	Rumore	. 20
10.	Controllo della falda superficiale	. 20
11.	Scarichi acque meteoriche	21
12.	Consumi specifici	21
13.	Unità di desolforazione	21
14.	Unità di denitrificazione	. 22
15. affer	Problematiche nella gestione del Piano di Monitoraggio e Controllo che iscono al periodo di comunicazione	
16	ALLEGATI	. 22

1. Introduzione

Il presente documento costituisce il rapporto annuale di esercizio relativo all'anno 2013, in adempimento a quanto richiesto nel Piano di Monitoraggio e Controllo allegato al Decreto di Autorizzazione Integrata Ambientale rilasciato dal MATTM n. DVA-DEC-2010-0000207 del 26 aprile 2010.

2. Generalità dell'impianto

Società Gestore - sede legale					
Ragione sociale	E.ON Produzione S.p.A.				
Indirizzo	Cabu Aspru – Fiume Santo, 07100 Sassari				
contatti	Tel. Centralino 079-5394700				
Gruppo di riferimento controllante la società in oggetto	E.ON ITALIA S.P.A (100%)				
Impianto					
Denominazione impianto	Centrale Termoelettrica Fiume Santo				
Indirizzo impianto	Località Cabu Aspru				
Comune	Sassari				
CAP Comune	07100				
Provincia	Sassari				
Coordinate geografiche del sito	Lat. 40°51′06″ Long. 8°17′57″				
Telefono	079 5394542				
Fax	079 5394835				
Email	licensing.eon@eon.legalmail.it				
Identificativi del rappresentate del gestore					
Cognome	Bertolino				
Nome	Marco				
Ruolo/funzione	Direttore Centrale				
Indirizzo e-mail	marco.bertolino@eon.com				
Referente per i controlli AIA					
Cognome	Maglioli				
Nome	Paola				
Ruolo/funzione	Referente AIA				
Indirizzo e-mail	paola.maglioli@eon.com				

3. Dati sul funzionamento, energia generata e rendimento elettrico

Funzionamento effettivo

	Gruppo 1	Gruppo 2	Gruppo 3	Gruppo 4
	[ore]	[ore]	[ore]	[ore]
Tempo di funzionamento	962*	644*	8.100	7.739

^{*:} aggiungerei perché le ore esercite dai gruppi 1 e 2 sono > 500 h stabilite dall'AIA per l'anno 2013. Rendimento elettrico medio effettivo

mese	Gruppo 1	Gruppo 2	Gruppo 3	Gruppo 4
	[%]	[%]	[%]	[%]
Gennaio	-	-	34,28	34,04
Febbraio	-	-	33,77	34,48
Marzo	24,37	2,87	32,85	34,42
Aprile	11,57	4,33	33,23	34,64
Maggio	28,33	25,70	32,91	34,19
Giugno	27,44	23,13	34,16	33,72
Luglio	5,67	5,38	32,49	33,96
Agosto	5,64	-	34,61	33,29
Settembre	-	24,51	34,18	32,98
Ottobre	-	23,19	33,26	32,80
Novembre	23,46	-	32,78	31,50
Dicembre	-	29,09	32,39	32,10

Energia generata lorda

mese	Gruppo 1	Gruppo 2	Gruppo 3	Gruppo 4	GE
	MWh	MWh	MWh	MWh	MWh
Gennaio	-	-	208.954	178.752	0,17
Febbraio	-	-	165.893	161.558	0
Marzo	6.674	1.006	158.184	183.922	0,09
Aprile	1.305	662	164.016	185.472	0,20
Maggio	12.485	5.915	106.594	184.421	1,47
Giugno	9.090	2.828	173.717	168.384	0
Luglio	684	680	165.038	190.992	0
Agosto	524	-	184.642	177.562	0,23
Settembre	-	3.740	179.885	149.914	0
Ottobre	-	3.283	162.758	173.837	0,15
Novembre	7.945	-	154.459	82.440	0
Dicembre	52	8.739	164.318	45.653	0
Globale anno	38.759	26.852	1.988.458	1.882.906	2,31

NOTA: Il GE è relativo alla produzione del campo fotovoltaico

Conformità dell'esercizio alla Autorizzazione Integrata Ambientale

4. Conformità dell'esercizio alla Autorizzazione Integrata Ambientale

Dichiarazione di conformità alla Autorizzazione Integrata Ambientale

Contestualmente all'invio del presente documento il Gestore dell'impianto, nella persona del Direttore di Centrale Ing. Marco Bertolino dichiara che nel corso dell'anno 2012 l'esercizio della Centrale Termoelettrica di Fiume Santo è avvenuto nel rispetto delle prescrizioni e condizioni stabilite nell' autorizzazione AIA.

Riassunto delle non-conformità rilevate

Punto 1 - Nota prot. n° DVA-2013-6249 del 13/03/2013

Durante l'anno di riferimento non si sono registrate non conformità durante l'esercizio dell'impianto.

A seguito del controllo ordinario, effettuato rispettivamente nei giorni 17-18 dicembre 2012 da ARPAS e dal 22-23 gennaio 2013 da ISPRA e ARPAS, sono state comunicate dal MATTM le inosservanze alle prescrizioni dell'atto autorizzativo rilevate. Le azioni risolutive sono state prese in carico e risolte dal gestore, come comunicato con nota prot. n. 0000272-2013-57-9 del 12.04.2013, e descritto a seguire.

INOSSERVANZA: Adozione di idonee misure atte a prevenire lo sviluppo di polverosità diffusa, proveniente dai cumuli di stoccaggio, nelle zone interne del parco carbone in presenza di vento, non raggiunte al momento dell'ispezione dalla bagnatura tramite irroratori fissi basculanti ubicati lungo il perimetro medesimo del parco carbone.

MESSA IN ATTO: in data 27-28 marzo 2013 è stata effettuata una prova sperimentale con l'utilizzo del crostante, così come preannunciato al punto a) della diffida. A fronte dell'esito positivo della sperimentazione, si è già provveduto a chiedere un'offerta al fornitore in base alla quale verrà effettuato l'ordine di acquisto del prodotto. Inoltre, il gestore ha modificato le modalità di irroramento del parco carbone, secondo quanto riportato nella procedura di esercizio 1-4-FO-10-880:

" Per prevenire la polverosità nel carbonile il caposquadra in sala manovra è tenuto ad azionare i sistemi di irroramento valutando le modalità e l'intensità dell'irroramento stesso ogni qualvolta che:

- le condizioni meteo lo richiedano (tempo non piovoso e ventosità > 50 km/h)
- esiste operatività nel carbonile (scarico carbone, transito mezzi e altro) in assenza di pioggia e indipendentemente dalle condizioni di ventosità.

La certificazione delle azioni svolte avviene trascrivendo ogni otto ore sul file "situazione impianti.xls" la lettura del contatore acqua irroramento. Nello stesso file verrà trascritta inoltre una sintesi delle condizioni che hanno /non hanno richiesto l'avvio delle attività di irroramento del carbonile."

INOSSERVANZA: Visualizzazione della presenza dello stato di allarme dei differenziali di pressione (Delta P) installati sui filtri dell'impianto di depressurizzazione, per la movimentazione del calcare e delle ceneri, con registrazione ed annotazione degli eventi segnalati dal sistema on-off sul sistema informatico SAP.

MESSA IN ATTO: Il gestore ricorda che:

- Nel momento in cui ISPRA ha richiesto la verifica dell'allarme del differenziale di pressione, era
 momentaneamente assente in impianto la persona che avrebbe potuto attivare <u>artificialmente</u> l'allarme del
 delta P e quindi non è stato possibile organizzare la simulazione;
- i filtri a manica sono sostituiti periodicamente in funzione della manutenzione programmata e pertanto, proprio grazie a questo, è estremamente difficile che possa verificarsi spontaneamente l'intasamento del filtro a manica e, di conseguenza, l'attivazione dell'allarme (che viene visualizzato nella schermata del DCS (*Digital Control System*).

Si allega la documentazione fotografica riportante la simulazione dell'allarme relativo al SILO CALCARE (allegato 1 calcare 005.jpg) e al SILO CENERE (allegato 1 cenere 002.jpg). In ogni caso, si conferma la disponibilità del Gestore ad organizzare la simulazione d'intervento di allarme in presenza delle Autorità Competenti presso la centrale.

INOSSERVANZA: Effettuazione dell'autocontrollo trimestrale delle polveri sugli scarichi degli impianti di depressurizzazione di silos calcare e dei silos delle ceneri.

MESSA IN ATTO: Al fine di dimostrare la non significatività della emissione, in data 28 marzo 2013, il gestore ha compiuto una campagna di misura per le polveri, tramite la ditta Laboratorio LEONARDI s.a.s., rispettivamente sul silo

calcare (punto BS 999B), sul silos ceneri (punti denominati BS 999 A e S1 Decentrato). Gli esiti della campagna di misura hanno confermato la non significatività delle emissioni da monitorare (allegato 2 EON13369.pdf e allegato 2 EON13370.pdf)

Pertanto, il gestore sta procedendo alla comunicazione di modifica non sostanziale AIA, rivolta specificatamente alla possibilità di applicare a tali punti il monitoraggio a pag. 14 del PMC.

INOSSERVANZA: Misurazione in continuo della portata di acqua scaricata in corrispondenza del punto di campionamento SF2, con registrazione informatizzata dei dati rilevati, quale punto di campionamento fiscale a valle degli impianti di trattamento.

MESSA IN ATTO: Il gestore ha acquistato il misuratore di portata ed entro fine aprile questo sarà installato e operativo presso il "**Punto di scarico** "vasca raccolta" acque trattate", punto di campionamento fiscale a valle degli impianti di trattamento acque reflue.

Con nota prot. n. 0000173-2013-22-6 del 29/04/2013, il gestore ha presentato la richiesta di modifica non sostanziale AIA relativa a........

INOSSERVANZA: Effettuazione in corrispondenza di eventi meteorici dei monitoraggi agli scarichi delle acque meteoriche per i parametri idrocarburi totali e solidi sospesi.

CONTRODEDUZIONI: Il gestore ha fatto presente che non avendo ricevuto risposte diverse da parte di ISPRA, aveva ritenuto di aver chiarito gli aspetti autorizzativi relativi agli scarichi delle acque meteoriche. Ribadendo che la maggior parte delle acque meteoriche potenzialmente inquinabili vengono inviate agli impianti di trattamento acque reflue e, per quanto riguarda le altre acque meteoriche, provenienti comunque da aree non inquinabili, vi è l'impossibilità fisica ad effettuare il campionamento per l'assenza di pozzetti o vasche di raccolta prima degli scarichi acque meteoriche.

MESSA IN ATTO: A seguito dell'incontro

INOSSERVANZA: Invio relazione che giustifichi la variazione dei metodi rispetto a quelli di rifermento previsti a pag. 7 del PMC e che evidenzi l'equivalenza tra i metodi che si intendono adottare per la caratterizzazione del carbone approvvigionato rispetto ai metodi previsti a pagina 7 del PMC, per i parametri umidità, ceneri, zolfo, berillio, piombo, nichel, manganese, vanadio, cromo, zinco, arsenico, antimonio, selenio cadmio e mercurio.

CONTRODEDUZIONI: Premesso che:

- la metodica citata in AIA ASTMD 4606-95 superata dalla ASTM 4606-03 (2007) è applicabile solo per gli elementi arsenico e selenio e non per l'elemento antimonio;
- La metodica ASTM 6357-00a richiesta per l'analisi del cadmio e del mercurio non è applicabile al mercurio, ma la metodica prevista per l'analisi di questo elemento è ASTM 6358-00;
- Nel documento ISPRA prot. 18712 del 01.06.2011 "Definizione di modalità per l'attuazione dei Piani di Monitoraggio e Controllo (PMC), 2° emanazione", nell'allegato G si parla esclusivamente di metodiche analitiche per le emissioni in atmosfera e per le emissioni idriche.

Il gestore ha fatto presente di non aver contratti diretti con i laboratori di analisi, ma solo con le ditte degli ispettori, che provvedono a fornire la documentazione relativa alla nave di combustibile sia quantitativa che qualitativa. Tali ditte si rivolgono a laboratori appartenenti della comunità europea purché accreditati ISO 17025 per le analisi richieste.

MESSA IN ATTO: Dopo numerosi solleciti, i laboratori hanno fornito la documentazione richiesta (Allegato 4 F1-METODI DESCRIZIONE .pdf; Allegato 4 F2-DATI AlA.pdf; Allegato 4 F3-DATI LABORATORIO.pdf). In base a tale documentazione è stato compilato l'allegato 4 F4.pdf, che riporta il confronto tra le incertezze dei dati forniti dai laboratori con quelli richiesti in AlA. In ogni caso ai laboratori è stato richiesto (per il tramite delle ditte degli ispettori) di utilizzare le norme prescritte in AlA, a pag 7 del PMC.

Pertanto, per il combustile carbone a partire dal 2013, le metodiche utilizzate saranno quelle riportate nell'Allegato 4 F.pdf.

INOSSERVANZA: Inoltro di una approfondita relazione in merito al superamento del valore limite per il parametro selenio riscontrato allo scarico SF2 nel contesto delle condizioni di funzionamento dell'impianto di trattamento; invio di una dettagliata descrizione delle procedure e delle modalità di gestione dell'impianto di trattamento acque acide alcaline al fine di prevenire possibili superamenti della concentrazione limite per il parametro selenio effettuazione di una specifica campagna bimestrale con campionamenti settimanali di caratterizzazione per la determinazione del selenio nelle acque in uscita dall'impianto di trattamento.

CONTRODEDUZIONI: preso atto del rapporto di prova, allegato al documento U. prot. n. DVA-2013-0006249 del 13.03.2013, effettuata dall'ARPAS, si è evidenziato che il metodo utilizzato non risulta essere tra quelli previsti in AIA (a pag. 22), ne tra quelli previsti dall'allegato G (pag. 7 di 12) al documento ISPRA prot. 18712 del 01.06.2011 "Definizione di modalità per l'attuazione dei Piani di Monitoraggio e Controllo (PMC), 2° emanazione.

Inoltre, in occasione del campionamento effettuato da ARPAS il 17.12.2012, è stato prelevato un campione che il gestore ha provveduto ad inviare al Laboratorio Leonardi snc, il quale applicando la metodica alternativa prevista nell'allegato G documento ISPRA prot. 18712 del 01.06.2011, ha ottenuto una concentrazione di selenio inferiore a 0,01 mg/l, come da rapporto analitico (allegato 5 E.ON 121260.pdf).

MESSA IN ATTO: A parere del gestore, il metodo utilizzato dall'ARPAS non è confrontabile con quello previsto dai documenti sopra citati, per cui ha richiesto di effettuare l'analisi in contradditorio presso il laboratorio esterno utilizzato per le analisi mensili.

INOSSERVANZA: E' inoltre necessario evidenziare che, relativamente al monitoraggio del valore limite annuo di emissione massiche per il parametro SO2, pari a 10740 t/anno, pur avendo E.ON Produzione S.p.A. con nota 928 del 19.11.2010 trasmesso la nota tecnica relativa al calcolo della portata fumi su base mensile per ogni attività produttiva, in relazione al punto 8 del verbale di riunione del 28.07.2010, allo stato attuale non è stata documentata la determinazione dell'incertezza composta relativa al sistema di calcolo con acquisizione in continuo implementato a sistema. A tale riguardo, si richiede al gestore di trasmettere quanto prima tale valutazione di incertezza composta secondo i criteri indicati al punto B) note ISRPA prot 18712 e prot. 13053 del 28/03/2012. Si rammenta che il sistema di calcolo della portata dei fumi, attualmente in uso, dovrà garantire, tramite confronto tra i dati sperimentali e quelli calcolati, che l'incertezza composta sia pari o inferiore a quella associata all'utilizzo di sistemi di misura in continuo con metodi analitici di riferimento

MESSA IN ATTO: Si è inviata la relazione richiesta (allegato 6) in cui si è riportato:

- il calcolo delle incertezze composte, dovute all'applicazione della formula indicata dal DPR n. 416/2001;
- le caratteristiche della strumentazione di misura in continuo e la relativa incertezza (allegato 6 bis);
- il confronto fra quest'ultimo dato e l'incertezza ottenuta dal calcolo fornito dal gestore.

Punto 2 nota DVA-2013-0013216 del 06.06.2013

Il Ministero dell'ambiente e della tutela del Territorio e del Mare, recependo la nota ISPRA Prot. 00222069 del 29.05.2013, nella quale viene comunicato il superamento delle inottemperanze oggetto di diffida identificate con le lettere B., C., F., ha comunicato la necessità di espletare ulteriori accertamenti per verificare le azioni correttive di cui ai punti A. e D., mentre non ha ritenuto esaustive le risposte di cui ai punti E., G, diffida il gestore ad ottemperare alle prescrizioni di cui ai punti E. e G.

MESSA IN ATTO: il Gestore con nota prot. n. 0000648-2013 del 05.07.2013, ha comunicato quanto segue:

- Punto E: è stata presentata con nota prot.n. 0000271-2013-22-6 P del 04.07.2013 la richiesta di modifica non sostanziale AIA, di cui si allega copia (allegato 1);
- Punto G: Il gestore, con prot. n. 0000046-2011-22-6 P del 22.02.2011, aveva presentato la richiesta di modifica non sostanziale all'impianto di trattamento acque reflue esistente a seguito della quale è stata aggiornata la procedura del Sistema di Gestione Integrato Ambiente e Sicurezza PAM-FO-I02 "Gestione delle acque reflue", nella quale viene descritta la modalità di gestione dell'impianto di trattamento acque reflue.

Di conseguenza, in riferimento a quanto richiesto da ISPRA connota prot. n. 00222069 del 29.05.2013:

- ✓ si allega copia della procedura PAM-FO-I02 "Gestione delle acque reflue" (allegato 2);
- ✓ si allegano i rapporti analitici relativi alla campagna bimestrale con campionamenti settimanali messa in atto a partire dal 21/03/2013 al 20/06/2013 (Allegato3);
- √ si ritiene doveroso sottolineare che la metodica EPA 6020/2007 utilizzata da ARPAS Dipartimento di Sassari per la determinazione del Selenio non è tra quelle previste in AIA a pag. 22, e nell'allegato G pag. 7 di 12 al documento ISPRA prot. 18712 del 01.06.2011 "Definizione di modalità per l'attuazione dei Piani di Monitoraggio e Controllo (PMC), 2° emanazione;

√ nel corso dell'ispezione ARPAS del 03.06.2013 è stato prelevato un campione di acqua reflua dal punto di campionamento identificato come "vasca finale acque reflue"; il gestore ha presenziato alle analisi effettuate da APRAS il 10.06.2013 e in quella occasione non è stato rilevato nessun superamento per gli analiti ricercati e in particolare per l'elemento oggetto della diffida.

Punto 3 DVA-2013-0026429 del 18/11/2013

In relazione quanto riportato nella nota ISPRA prot. n. 044911 del 08.11.2013 relativa alla visita ispettiva del 23 ottobre 2013, il MATTM diffida il gestore per le seguenti inosservanze.

MESSA IN ATTO: il gestore, con nota prot. n.0001080-2013-57-9 ha comunicato quanto segue:

- 1) in merito alla inosservanza rilevata sulla gestione temporale del rifiuto CER 100104* in ottemperanza all'art. 1 della Determinazione 2893/IV del 23/12/2003, il rifiuto CER 100104* è gestito come un rifiuto in attesa di trattamento e pertanto il periodo temporale da rispettare è inferiore ai 3 anni.
- 1a) si allega alla presente il formulario del rifiuto CER 100104* che è stato avviato a trattamento in data 29.11.2013 nella quantità di 2.980 kg (Allegato 4)
- 1b) la prescrizione è stata ottemperata a far data dal 28 ottobre. Infatti, a seguito della visita ISPRA, il rifiuto è stato radunato in un unico cumulo e coperto con telone come visibile dalla foto allegata (Allegato 5). Ulteriori produzioni di CER 100104*, in relazione alla quantità prodotta, saranno protette mediante apposite coperture mobili o messe in cassoni amovibili dotati di copertura e posizionati all'interno della vasca C1;
- 1c) le vasche C1 e C2 saranno dismesse nell'ambito del progetto di dismissione delle sezioni 1 e 2. Sarà cura del gestore inviare il progetto della vasca rimanente, denominata vasca H area A, e utilizzata per il rifiuto CER 100121, entro il termine dei 30 giorni; trasmesso con nota prot. 1141-2013 del 17.12.2013
- 1d) si allega l'istruzione operativa del SGIAS PAM-FO-I01 Gestione dei rifiuti rev.05 (Allegato 6). Si ribadisce che l'anomalia da voi riscontrata non viene ritenuta tale per le ragioni esposte nel paragrafo precedente;
- 2) durante la visita del 01/08/2013 presso il parco carbone a cura dei NOE e dei tecnici ARPAS è stato chiesto ai tecnici EON presenti in sala manovra carbone di azionare, con il comando manuale a distanza, gli irroratori. Veniva fatto rilevare dal NOE che alcuni irroratori non si attivavano. I tecnici EON facevano notare che tali irroratori erano in sicurezza in quanto era in atto un intervento di manutenzione (dalla sala manovra era visibile il personale terzo che operava presso gli stessi).

Il gestore sottolinea, inoltre, che a questa inosservanza è stato dato riscontro con nota prot.n. 272 del 12.04.2013, al punto A, con la modifica della procedura di gestione del parco carbone. Nella stessa nota, inoltre, veniva comunicato che si stava procedendo alla sperimentazione con il crostante a base di acqua e cellulosa. Tale prodotto viene dosato regolarmente da fine settembre.

Si precisa che a seguito della nota aggiuntiva E.ON prot. n. 648 del 05.07.2013, ISPRA ha rilevato il superamento delle inottemperanze (con nota 31358 del 31.07.2013).

Riassunto degli eventi incidentali

MAIL PEC DEL 06.09.2013: COMUNICAZIONE DI MALFUNZIONAMENTO.

Il gestore ha comunicato che in data di 05.09.2013 alle ore 19 circa, a seguito di un anomalia al precipitatore elettrostatico della sezione 4, si è rilevato un superamento del VLE per le polveri. Il giorno 06.09.2013 visto il perdurare del malfunzionamento dell'impianto di abbattimento, si è proceduto a limitare il carico del gruppo al minimo tecnico e a programmare la fermata dell'impianto per il ripristino del precipitatore elettrostatico. La fermata è stata programmata per il giorno 07.09.2013 alle ore 06:00 a salvaguardia della rete elettrica sarda.

Si è precisato che la media delle 48 ore, iniziata il 15:00 del 05.09.2013 si sarebbe conclusa l'indomani verso le 10 e comunque il mancato superamento della media delle 48 ore non avrebbe implicato un superamento del limite di legge. In caso di misurazioni continue, infatti, il valore limite di emissione si considera rispettato se la valutazione dei risultati evidenzia che, nelle ore di normale funzionamento, durante un anno civile, il 97% di tutte le medie di 48 ore non supera il 110% del valore misure. Di conseguenza, solo a conclusione dell'anno civile sarà stimabile il 3% di superamenti rispetto al limite di emissione.

NOTA PROT. N. 138-2013 DEL 15.11.2013:DESCRIZIONE EVENTO DEL 10 NOVEMBRE 2013.

In relazione all'evento accaduto nella notte del 10/11/2013 presso il pontile in concessione demaniale alla società E.ON Produzione S.p.A, il gestore ha fornito un resoconto di quanto avvenuto, le conseguenze riportate in centrale a seguito dello stesso, i controlli eseguiti per verificare da un lato che non si fossero determinati effetti di tipo ambientale e di sicurezza e dall'altro i necessari futuri interventi manutentivi per il ripristino delle normali condizioni d'esercizio.

Di seguito si riporta tale la descrizione: alle ore 22.40 circa di domenica 10/11/2013 a causa delle forti raffiche di vento, registrate dalla Capitaneria di Porto in ca. 140 km/h, lo scaricatore carbone, macchinario fisso, denominato DW1, utilizzato in esercizio per trasferire il carbone dalla nave al nastro trasportatore, ancorato al pontile in corrispondenza della stiva 6 della nave Grand Diva ormeggiata presso la banchina, nonostante non fosse in esercizio e fosse in blocco con dispositivi di ancoraggio alle rotaie inseriti, a causa delle condizioni meteo avverse, è stato spinto lungo i binari fino ad urtare lo scaricatore carbone, denominato DW2 posizionato all'estremità della banchina direzione EST, anch'esso fermo, ma per attività manutentive, e con i dispositivi di ancoraggio alle rotaie inseriti.

L'urto è stato assorbito dal respingente posizionato al termine dei binari e ha causato il deragliamento di entrambi gli scaricatori provocando la rottura dei diversi carrelli di scorrimento. L'evento non ha provocato danni a persone o all'ambiente.

5. Emissioni in atmosfera

5.1 Emissioni massiche annuali

parametri			Punti di				
		PE-1 GR1	PE-1 GR2	PE-2	PE-3	TOTALE	VLE
SO2	t	36	26	1.673	1.560	3.295	10740*
NOx	t	16	14	853	808	1.690	
Polveri	t	1	1	110	86	199	
СО	t	0	0	18	17	35	

^{*}PIC paragrafo 10.2 punto 10.2.1 Emissioni convogliate

5.2 Concentrazioni medie annuali

parametri		Gr.1-Gr.2	PE-1 GR1	PE-1 GR2	Gr.3-Gr.4	PE-2	PE-3
		VLE	Da SME	Da SME	VLE	Da SME	Da SME
SO2	mg/Nm3	400	278,67	291,86	300	236,94	235,40
NOx	mg/Nm3	650	181,31	234,05	200	179,64	181,33
Polveri	mg/Nm3	40	6,03	12,42	20	15,60	13,00
со	mg/Nm3	50	1,44	3,89	50	2,56	2,54

NO_x è inteso come NO+NO₂

5.3 Emissioni specifica annuale per MWh di energia generata lorda

parametri		Punti di emissione					
		PE-1 GR1	PE-1 GR2	PE-2	PE-3		
SO2	kg/MWh	0,93	0,98	0,84	0,83		
NOx	kg/MWh	0,41	0,52	0,43	0,43		
Polveri	kg/MWh	0,02	0,04	0,06	0,05		
СО	kg/MWh	0,01	0,02	0,01	0,01		

5.4 Emissioni specifica annuale per t di combustibile bruciati

parametri -		PE-1 GR1	PE-1 GR2	PE-2	PE-3
		OCD	OCD	Carbone	Carbone
SO2	kg/t	3,30	3,49	2,28	2,28
NOx	kg/t	1,44	1,86	1,16	1,18
Polveri	kg/t	0,08	0,16	0,15	0,13
СО	kg/t	0,02	0,06	0,02	0,02

5.5 Transitori

5.5.1 Avvii nell'anno

	Gr. 1	Gr. 2	Gr. 3	Gr. 4
Avviamenti Caldi	10	3	16	12
Avviamenti Tiepidi	3	0	3	2
Avviamenti Freddi	10	10	1	1
Totale Avviamenti	23	13	20	15

5.5.2 Avvii e spegnimenti nell'anno (transitori)

	Gr. 1	Gr. 2	Gr. 3	Gr. 4
numero transitori	46	26	40	30

5.5.3 Emissioni per tutti gli eventi di avvio/spegnimento

parametri		Punti di emissione				
parametri		PE-1 -GR1	PE-1 GR2	PE-2 Gr3	PE-3 Gr4	
SO ₂	t	1,26	0,85	2,45	3,78	
NOx (NO ₂ equiv.)	t	0,99	0,58	2,29	3, <i>7</i> 3	
СО	t	0,56	0,97	1,04	2,44	
Polveri	t	0,10	0,20	0,59	1,23	

Si riportano negli allegati 1, 2, 3, 4 i fogli di calcolo di ciascun gruppo.

5.6 Emissioni fuggitive e diffuse

Nell'allegato 6 si fornisce l'estrazione da SAP degli avvisi di tutte le perdite relative al 2013.

La dicitura gr0a significa che l'apparecchiatura è comune ai gruppi 1 e 2

La dicitura gr0b significa che l'apparecchiatura è comune ai gruppi 3 e 4

La dicitura gr0 significa che l'apparecchiatura è comune a tutti e 4 i gruppi.

5.7 Emissioni convogliate da sorgenti non significative

Per i motori diesel le emissioni non significative sono state calcolate a partire dalle seguenti approssimazioni:

- considerando che i su elencati motori vengono avviati solo per le prove di emergenza o in caso di reale emergenza e pertanto il loro funzionamento è di poche ore anno;
- il gasolio utilizzato ha valenza fiscale e come tale viene conteggiato, partendo dal dato certo della quantità di gasolio e trattando i motori come una unità turbogas, sono stati utilizzati i dati di concentrazione massima ottenuti durante le ultime verifiche sulle emissioni;
- il gasolio è stato ripartito sui vari motori in parti uguali.

La stima delle emissioni è calcolata utilizzando i valori unitari dei fumi riportati nella tabella 1 dell'allegato al DPR 416/2001 nel quale per il gasolio il fattore per il volume dei fumi è di 12 Nmc/kg.

Si riporta in allegato 6 il foglio di calcolo mentre nella tabella seguente si riportano le emissioni massiche totali.

EMISSIONI MASSICH	IE DA MOTO	RI DIESEL
SO ₂	t	0,0004
NOx (NO ₂ equiv.)	t	0,0014
Polveri	t	0,0001
CO	t	0,0007

Si fa presente che rispetto al 2012 il dato di emissione è notevolmente diminuito in funzione della quantità di gasolio utilizzato, 27.474 kg di gasolio nel 2012 contro 1298 kg di gasolio utilizzati nel 2013.

Sili cenere, sili calcare e torri carbone.

Il dato di partenza, in mg/mc, è fornito dalla relazione di indagine di igiene industriale "Valutazione della contaminazione ambientale e dell'esposizione professionale degli addetti alla Centrale Termoelettrica" effettuata nel maggio-giugno 2007 .

Considerato che i sistemi sono dotati di filtri a manica, le emissioni massiche sono state calcolate considerando un funzionamento annuo di 8760 ore, sebbene ciò non è realistico in quanto:

- 1) gli esaustori del nastro e torri carbone funzionano durante le fasi di scarico navi
- 2) gli esaustori del trasporto ceneri funzionano in continuo ma non alla massima portata così come invece considerato nella stima;
- 3) gli esaustori dello carico silo calcare funzionano solo nel momento dello scarico dell'autobotte e non in modo continuativo così come considerato.
- Si riporta nella tabella seguente le concentrazioni e le emissioni massiche relative ai sili calcare, sili cenere e torri carbone.

Nel calcolo eseguito per il 2013 sono stati mantenuti gli stessi valori di emissione in concentrazione per i sili calcare e ceneri, mentre per le torri è stato preso come riferimento il valore limite di concentrazione, mentre per le ore di funzionamento è stimato l'arrivo di due navi al mese con una media di 7 giorni di scarico per 24 ore (totale ore 4032).

	conc mg/mc	t
CALCARE da relazione prot. 818		
del 4/10/2010	0,3	0,037
CENERI da relazione prot. 818 del		
4/10/2010	1,4	0,32
TORRI CARBONE da relazione		
prot. 818 del 4/10/2010	20	46

6. Immissioni in atmosfera

Si fa presente che i dati sono disponibili presso l'ARPA e non sono prescritte al gestore specifiche campagne di monitoraggio della qualità dell'aria.

In allegato 7 viene fornita una tabella riassuntiva dei dati delle immissioni 2013.

7. Scarichi in acqua

7.1 Emissioni di inquinanti: Concentrazioni mensili degli inquinanti al punto di scarico SF2

7 			Pun	to disca	rico SF2 r	ng/l			
Parametro	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	VLE
рН	7,6	7,4	7,6	7,6	7,7	7,6	7,6	7,2	5,5-9,5
BOD5	<10	<10	<10	<10	<10	<10	<10	<10	40
COD	<10	<10	<10	<10	<10	<10	<10	<10	80
Grassi e dii animali/vegetali	4	<1	<1	<1	<1	4	<1	<1	20
Solidi speciali totali	< 5	₹ 5	₹ 5	₹ 5	₹ 5	<5	₹ 5	₹ 5	40
Azoto ammoniacale (come NH ₄)	<0,1	⊲0,1	1,4	<0,1	<0,1	<0,1	<0,1	<0,1	15
Fosforo totale (come P)	<0,1	⊲0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	10
Cromo totale	<0,01	0,04	0,05	<0,01	<0,01	<0,01	<0,01	<0,01	2
Ferro	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	2
Nichel	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	2
Mercurio	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	0,005
Cadmio	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	0,02
Selenio	<0,01	0,01	<0,01	<0,01	<0,01	0,02	<0,01	<0,01	0,03
Arsenico	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	0,5
Manganese	<0,1	0,03	0,4	<0,1	<0,1	<0,1	<0,1	<0,1	2
Antimonio	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	
Rame	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	0,1
Zinco	≺0,1	≺0,1	≺0,1	≺0,1	≺0,1	≺0,1	≺0,1	≺0,1	0,5
Solfati (come SO ₄)	4960	4123	4536	4451	3903	4067	3859	4560	na
Cloruri	18821	24652	23547	20559	21270	22550	20380	21206	na
Idrocarburi totali	<1	<1	<1	<1	<1	<1	<1	<1	5
Azoto nitrico (come N)	4	<1	<1	<1	2,06	4	<1	<1	20
Escherichia Coli	5	12	14	5	4	5	15	37	
Cloro attivo libero	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	0,2
Solventi dorurati	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	1
Saggio di tossicità acuta%	<50	<50	<50	<50	<50	<50	<50	<50	

A seguito del Parere Istruttorio conclusivo del MATTM DVA-2013-0016032 del 09.07.2013 lo scarico SF2 non viene monitorato per i parametri sopra riportati.

7.2 Emissioni di inquinanti: Concentrazioni mensili degli inquinanti al punto di scarico vasca finale acque reflue

Davametre				Punto	di scaric	o vasca i	finale ac	que reflu	ie mg/l				VLE
Parametro	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic	VLE
pН	7,2	7,2	7,4	7,5	8,05	7,3	6,9	7,1	6	7,4	7,3	7,1	5,5-9,5
BOD5	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	40
COD	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	80
Grassi e olii animali/vegetali	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	20
Solidi speciali totali	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	40
Azoto ammoniacale (come NH ₄)	1,1	0,9	1,2	1,2	0,3	0,7	<0,1	<0,1	0,3	2,9	3,7	3,6	15
Fosforo totale (come P)	<0,1	<0,1	<0,1	<0,1	0,5	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	10
Cromo totale	0,04	0,06	0,06	0,107	0,086	0,05	< 0,01	< 0,01	0,08	0,05	0,015	0,028	2
Ferro	<0,1	<0,1	0,4	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	2
Nichel	< 0,05	< 0,05	< 0,05	< 0,05	0,74	0,82	< 0,05	< 0,05	< 0,05	< 0,05	0,136	< 0,05	2
Mercurio	< 0,002	< 0,002	< 0,002	< 0,002	< 0,002	< 0,002	< 0,002	< 0,002	< 0,002	< 0,002	< 0,002	< 0,002	0,005
Cadmio	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	0,02
Selenio	0,015	0,018	0,019	< 0,01	0,012	< 0,01	0,022	0,015	< 0,01	0,012	0,011	0,013	0,03
Arsenico	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	0,5
Manganese	0,1	0,3	0,5	0,232	0,407	0,63	<0,1	<0,1	0,34	0,1	<0,1	<0,1	2
Antimonio	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	na
Rame	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	0,1
Zinco	<0,1	<0,1	<0,1	0,16	0,104	0,126	<0,1	<0,1	<0,1	0,14	0,31	<0,1	0,5
Solfati (come SO ₄)	4735	4425	4136	4557	4930	5860	5860	5012	4553	3429	3860	3744	na
Cloruri	19541	19645	19054	7799	10290	16350	16350	17850	9217	10569	14650	12253	na
Idrocarburi totali	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	5
Azoto nitrico (come	2,5	0,005	3,5	5,02	5,5	3,1	3,1	2,1	5,5	2,8	3,9	4,7	20
N) Escherichia Coli	8	15	21	15	14	10	10	16	12	25	18	32	
Cloro attivo libero	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	0,2
Solventi clorurati	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	1
Saggio di tossicità acuta %	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	苯基克氏性

7.3 Emissioni massiche e specifiche per tipologia di inquinanti allo scarico SF2 e uscita impianto di trattamento

Parametro	Emissioni massiche SF2	Emissioni specifiche SF2	Emissioni massiche uscita impianto	Emissioni specifiche uscita impianto
	[kg]	[kg/MWh lorda]	[kg]	[kg/MWh lorda]
BOD5	47.394,85	1,20E-02	4.082,44	1,04E-03
COD	47.394,85	1,20E-02	4.082,44	1,04E-03
Grassi e olii animali/vegetali	4.739,49	1,20E-03	408,24	1,04E-04
Solidi speciali totali	23.697,43	6,02E-03	2.041,22	5,18E-04
Azoto ammoniacale (come NH4)	1.836,55	4,66E-04	1.088,65	2,77E-04
Fosforo totale (come P)	473,95	1,20E-04	71,44	1,81E-05
Cromo totale	142,18	3,61E-05	39,87	1,01E-05
Ferro	473,95	1,20E-04	64,64	1,64E-05
Nichel	236,97	6,02E-05	130,71	3,32E-05
Mercurio	9,48	2,41E-06	0,82	2,07E-07
Cadmio	23,70	6,02E-06	2,04	5,18 E -07
Selenio	67,54	1,72E-05	10,34	2,63E-06
Arsenico	47,39	1,20E-05	4,08	1,04E-06
Manganese	805,71	2,05E-04	374,84	9,52E-05
Antimonio	47,39	1,20E-05	4,08	1,04E-06
Rame	473,95	1,20E-04	40,82	1,04E-05
Zinco	473,95	1,20E-04	80,97	2,06E-05
Solfati (come SO4)	40.829.478,40	1,04E+01	3.749.108,77	9,52E-01
Cloruri	204.964.953,18	5,21E+01	11.809.682,43	3,00E+00
ldrocarburi totali	4.739,49	1,20E-03	408,24	1,04E-04
Azoto nitrico (come N)	6.587,88	1,67E-03	2.839,00	7,21E-04
Escherichia Coli	114.932,51	2,92E-02	13.335,97	3,39E-03
Cloro attivo libero	94,79	2,41E-05	8,16	2,07E-06
Solventi clorurati	236,97	6,02E-05	20,41	5,18E-06
Saggio di tossicità acuta	236.974,25	6,02E-02	20.412,20	5,18E-03

Si fa presente che nel pozzetto SF2 vengono convogliate le acque degli impianti di trattamento (816.488 mc) e le acque in uscita dagli impianti di dissalazione (8.662.482 mc), per un totale in uscita di 9.478.970,00 mc.

Nel pozzetto uscita impianto vengono convogliate le sole acque degli impianti di trattamento (816.488 mc).

I dati sono stati calcolati come da normativa E-PRTR Regolamento CE n. 166/06

7.4 Unità di raffreddamento: Stima del calore introdotto in acqua di mare

	SF1	SF2		
	GJ	GJ		
gennaio	1	1.977		
febbraio	2	1.692		
marzo	31	1.746		
aprile	17	1.925		
maggio	64	1.626		
giugno	69	1.570		
luglio	5	1.660		
agosto	8	1.813		
settembre	15	1.710		
ottobre	12	1.780		
novembre	59	1.251		
dicembre	58	724		
totale	341	19.474		

Per la metodologia di stima del calore introdotto in acqua è stata utilizzata la formula inserita a pag. 18 del PMC, utilizzando la temperatura max in ingresso e in uscita e la massa di acqua di raffreddamento relativa ai giorni di funzionamento dell'impianto; Cp=4186]/kg°C, densità dell'acqua pura= 0,998 kg/dmc a 4 °C

8. Rifiuti

Quantità di rifiuti prodotti e loro destino

Produzione di rifiuti non pericolosi

CER	Descrizione	destino	Quantità prodotta kg	
060316	Ossidi metallici	S	13.020	
080318	Toner per stampa esauriti	R	20	
100101	Ceneri pesanti, scorie e polveri di caldaia	S	9.644.050	
100102	Ceneri leggere di carbone	S, R	127.880.490	
100105	Rifiuti solidi prodotti da reazioni a base di calcio nei	R, S	18.743.540	
100105	processi di desolforazione dei fumi		16.745.540	
100121	Fanghi da trattamento in loco degli effluenti, diversi da	S	21,290,920	
100121	quelli di cui alla voce 100120	<u> </u>	21.270.720	
150102	Plastica a recupero	R	600	
150203	Assorbenti, materiali filtranti, stracci e indumenti	R, S	6.905	
130203	protettivi, diversi da quelli di cui alla voce 150202	Ν, 3	0,705	
160122	Guarnizioni	S	200	
160216	Componenti rimossi da apparecchiature fuori uso, diversi	R	2.340	
100210	da quelli di cui alla voce 160215	IX.	2.540	
160304	Rifiuti inorganici, diversi da quelli di cui alla voce 160303	S	53.980	
160509	Sostanze chimiche di scarto diverse da quelle di cui alle	S	100	
100507	voci 160506,160507 e 160508		100	
170202	Vetro da demolizione	S	240	
170203	Plastica	S, R	175.900	
170302	Miscele bituminose diverse da quelle di cui alla voce 170301	S	42.340	
170402	Alluminio	R	460	
170405	Ferro ed acciaio	R	116.245	
170411	Cavi, diversi da quelli di cui alla voce 170410	R	540	
170504	Terra e rocce	S	1.118.420	
470604	Altri materiali isolanti diversi da quelli di cui alle voci		46400	
170604	170601 e 170603	S	16.120	
17000/	Rifiuti misti dell'attività di costruzione e demolizione,	S	767.280	
170904	diversi da quelli di cui alle voci 170901, 170902 e 170903	3	767.280	
190501	Parte di rifiuti urbani e simili non compostata	S	5.160	
190905	Resine a scambio ionico saturate o esaurite	S	2.540	
200101	Carta e cartone	R	3.200	
200138	Legno, diverso da quello di cui alla voce 200137	R	8.420	
200201	Materiali derivanti da falciatura e potatura	R	2.900	
200301	Rifiuti urbani non differenziati	S	38.560	
200303	Residui della pulizia stradale	S	5.700	

179.940,19	t	Totale rifiuti non pericolosi prodotti
97.639.60	t	rifiuti effettivamente conferiti alle operazioni di recupero R nell'anno di
77.057,00	·	riferimento

Si fa presente che rispetto all'anno 2012 nella tabella compaiono i seguenti nuovi rifiuti:

CER 080318 Toner per stampa esauriti

CER 170604 Altri materiali isolanti diversi da quelli di cui alle voci 170601 e 170603

CER 200201 Materiali derivanti da falciatura e potatura

CER 200303 Residui della pulizia stradale

Per contro non sono stati prodotti i seguenti rifiuti non pericolosi:

CER 160505 Gas in contenitori a pressione, diversi da quelli di cui alla voce 160504

CER 160604 Batterie alcaline

CER 161106 Rivestimenti e refrattari inutilizzabili

CER 170103 Isolatori in porcellana e mattonelle in cemento

(*)Legenda: S= smaltimento R=Recupero

Produzione di rifiuti pericolosi

CER	Descrizione	destino	Quantità
060315*	Ossidi metallici contenenti sostanze pericolose	S	prodotta kg 2460
100104*	Ceneri leggere di olio combustibile e polveri di caldaia	S	52.160,00
130205*	Altri oli per motori, ingranaggi e lubrificazione	R	29.040,00
130707	Olio da trasformatore	R	1.000,00
			, ,
150110*	Imballaggi contenenti residui di sostenze pericolose	S	420,00
150202*	Assorbenti, materiali filtranti (inclusi filtri dell'olio non specificati altrimenti), stracci	S	10.900,00
	e indumenti protettivi, contaminati da sostanze pericolose		·
160107	Filtri dell'olio	R	40,00
160215*	Colonnine di carta da isolatori	S	640,00
160507*	Sali per essicazione aria	S	10,00
160601*	Batterie al piombo	R	4.404,00
160708 [*]	Rifiuti contenenti oli	S	105.720,00
160709*	Rifiuti contenenti altre sostanze pericolose	R	9.500,00
170204*	Vetro, plastica e legno impregnati da sostanze pericolose o da esse contaminati	S	6.500,00
170503 [*]	Terra e rocce, contenenti sostenze pericolose	S	2.780,00
170603 [*]	Altri materiali isolanti contenenti o costituiti da sostanze pericolose	S	660,00
200121*	Tubi fluorescenti ed altri rifiuti contenenti mercurio	S	420,00
200135*	Computer fuori uso compresi i monitor	R	450,00
	Totale rifiuti pericolosi prodotti	t	227,10
	Totale rifiuti non pericolosi avviati a recupero (sono conteggiati i rifiuti		44.00
effettiva	mente conferiti alle operazioni di recupero R anell'anno di riferimento)	t	44, 86
	Deaduriene energia di dittori a substanta	kg/MWh	
	Produzione specifica di rifiuti pericolosi	generato	0,058

(*)Legenda: S= smaltimento R=Recupero

Si fa presente che rispetto all'anno 2012 nella tabella compaiono i seguenti nuovi rifiuti:

CER 060315*Ossidi metallici contenenti sostanze pericolose

CER 130707* Olio da trasformatore

CER 160107* Filtri dell'olio

CER 160215* Colonnine di carta da isolatori

CER 160507* Sali per essicazione aria

Per contro non sono stati prodotti i seguenti rifiuti pericolosi:

CER 160602* Accumulatori al nichel cadmio

CER 191307* Rifiuti liquidi acquosi concentrati contenenti sostanze pericolose

Criterio di gestione del deposito temporaneo di rifiuti per l'anno in corso

La Centrale di Fiume Santo gestisce i depositi temporanei dei rifiuti con le seguenti modalità:

- raccogliendo ed avviando alle operazioni di recupero o smaltimento i propri rifiuti speciali non pericolosi, con cadenza almeno trimestrale, indipendentemente dalle quantità in deposito;
- raccogliendo ed avviando alle operazioni di recupero o smaltimento i propri rifiuti speciali pericolosi in prossimità del limite temporale ammesso dalla legge ossia entro tre mesi dalla produzione sia per la tipologia non pericolosa che per la pericolosa.

9. Rumore

Le misure di rumore non sono oggetto dell'anno di riferimento del presente rapporto

10. Controllo della falda superficiale

Campagne di monitoraggio della falda

Si riportano in tabella i valori analitici dei piezometri investigati.

Dall'analisi dei valori analitici riportati si evidenzia che tutti i parametri sono al di sotto del VLE.

Si segnala a novembre 2012 il contratto è stato assegnato, a seguito di gara su diversi laboratori, al laboratorio Leonardi s.a.s.

			Lab. C.P	P.G.	Lab. (C.P.G.	Lab. C.P.G.	Lab Leonardi s.a.s	Lab. CP.G.	Lab Leonardi s.a.s	Lab Leonardi s.a.s	Lab Leonardi s.a.s	Lab Leonardi s.a.s	Lab Leonardi s.a.s
			BH49P	Z	BH18	36PZ	BH4	49PZ	BH1		BH49PZ		BH186PZ	
	VALLE		30/05/2011	17/11/2011	30/05/2011	30/05/2011	11/06/2012	22/11/2012	11/06/2012	22/11/2012	28/05/2013	27/11/2013	27/05/2013	28/11/2013
рН		VLE	7,21	7,13	7,46	7,42	7,27	7,19	7,39	7,41	7,4	7,1	7,2	7,1
Ar	microg/l	10	<5	<5	<5	<5	1	<1	4	<1	0,8	0,2	<5	<0,1
Se	microg/l	10	<5	<5	<5	<5	1	<1	4	<1	<5	<0,1	<5	<0,1
Cr tot	microg/l	50	<1	<1	<1	<1	<1	<5	4	<5	0,3	0,4	<1	<0,1
Ni	microg/l	20	<1	<1	<1	<1	<1	<2	<1	<2	0,7	4,3	<1	<0,1
V	microg/l	-	<5	<5	<5	<5	1	<5	1	<5	1,6	2,1	<5	5,1
Zn	microg/l	3000	6	2	3	<1	<1	<300	4	<300	183	45,1	3,8	8,3
Hg	microg/l	1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1
BTEX														
benzene	microg/l	1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1
etilbenzene	microg/l	50	<0,1	0,1	<0,1	0,2	<0,1	<5	<0,1	<5	<0,1	<0,1	<0,1	<0,1
p-xilene	microg/l	10	<0,1	0,2	<0,1	0,5	<0,1	<1	<0,1	<1	<0,1	<0,1	<0,1	<0,1
toluene	microg/l	15	<0,1	<0,1	<0,1	0,9	<0,1	<1,5	<0,1	<1,5	<0,1	<0,1	<0,1	<0,1
IPA	microg/l	0,1	<0,001	<0,001	<0,001	<0,001	<0,001	<0,01	<0,001	<0,01	<0,001	<0,001	<0,001	<0,001

			Lab. C.	P.G.	Lab.	CP.G.	Lab. C.P.G.	Lab Leonardi s.a.s	Lab. C.P.G.	Lab Leonardi s.a.s	Lab Leonardi s.a.s	Lab Leonardi s.a.s	Lab Leonardi s.a.s	Lab Leonardi s.a.s
	MONTE		BH160	PZ	BH2	:68PZ	BH1	60PZ	BH2	68PZ	BH160PZ		BH268PZ	
'	MONIE		30/05/2011	17/11/2011	30/05/2011	17/11/2011	11/06/2012	22/11/2012	11/06/2012	22/11/2012	24/05/2013	25/11/2013	24/05/2013	26/11/2013
pН		VLE	7,41	7,16	7,56	7,18	7,4	7,13	7,52	7,3	7,21	7,1	7,1	7,3
Ar	microg/l	10	<5	<5	<5	<5	<1	<1	<1	<1	<5	0,2	<5	<0,1
Se	microg/l	10	<5	<5	<5	<5	<1	<1	<1	<1	<5	<0,1	<5	<0,1
Cr tot	microg/l	50	<1	<1	<1	<1	<1	<5	<1	<5	<1	0,5	<1	<0,1
Ni	microg/l	20	<1	<1	<1	<1	<1	<2	<1	<2	<1	<0,1	<1	1,2
٧	microg/l	-	<5	<5	<5	<5	<1	<5	<1	<5	<5	0,6	<5	3,9
Zn	microg/l	3000	2	<1	3	2	<1	<300	<1	<300	5	2,1	2,4	11,3
Hg	microg/l	1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1
BTEX														
benzene	microg/l	1	<0,1	0,2	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1
etilbenzene	microg/l	50	<0,1	0,2	<0,1	<0,1	<0,1	<5	<0,1	<5	<0,1	<0,1	<0,1	<0,1
p-xilene	microg/l	10	<0,1	0,3	<0,1	0,1	<0,1	<1	<0,1	<1	<0,1	<0,1	<0,1	<0,1
toluene	microg/l	15	<0,1	1,1	<0,1	0,4	<0,1	<1,5	<0,1	<1,5	<0,1	<0,1	<0,1	<0,1
IPA	microg/l	0,1	<0,001	<0,001	<0,001	<0,001	<0,001	<0,01	<0,001	<0,01	<0,001	<0,01	<0,001	<0,001

11. Scarichi acque meteoriche

Si riporta, di seguito la tabella con le quantità delle acque meteoriche, provenienti da aree impermeabili non inquinabili, scaricate a mare.

anno	mese	PLUV (mmH20)	portata a mare dalle aree impermeabili non inquinabili m ³
	1	51,8	28.517
	2	17,1	9.395
	3	7,5	4.138
	4	14,6	8.036
	5	43,7	24.037
2013	6	0,38	211
2015	7	4,1	2.252
,	8	4,20	2.311
,	9	7,3	4.013
	10	8,5	4.659
	11	26,8	14.735
,	12	25,71	14.139

12. Consumi specifici

Di seguito si riassumono i dati di consumo specifico riferiti alla produzione lorda di energia elettrica realizzata dall'insieme di tutti i gruppi.

Parametro	Consumo	specifico	su	base
	annuale			
Acqua (acqua potabile + acqua industriale)	m³/MWh	(0,21	
Gasolio	kg/MWh	(),24	
Carbone	kg/MWh	3	60,56	
OCD	kg/MWh		8,73	•••••
Energia elettrica (autoconsumi)	kWh/MWh	1:	20,86	

13. Unità di desolforazione

Parametro		
Calcare utilizzato nell'anno	t	15.718,4

	g	en	fe	eb	m	ar	aį	pr	m	ag	gi	ug
	gr3	gr4	gr3	gr4	gr3	gr4	gr3	gr4	gr3	gr4	gr3	gr4
ore funzion.	<i>7</i> 17	654	556	323	664	707	653	615	390	698	647	583
efficienza %	99,76	99,76	99,69	99,31	99,72	99,44	99,66	99,35	99,71	99,39	99,71	99,35
gesso t		1.846		1.559		1.629		1.664		1.385		1.629

	lug		ago		set		ott		nov		dic	
	gr3	gr4										
ore funzion.	581	744	704	700	653	596	663	712	459	320	673	188
efficienza %	99,77	99,49	99,80	99,59	99,70	99,39	99,68	99,36	99,73	99,45	99,79	99,59
gesso t		1.695		1.724		1.570		1.602		1.128		1.000

14. Unità di denitrificazione

Parametro		
ammoniaca utilizzata nell'anno	t	5.516,1

						GRUF	PO 3								
	gen	feb mar apr mag giu lug ago set ott nov dic													
ore funzion.	739	672	<i>7</i> 17	709	453	679	598	739	685	668	654	739			
efficienza %	75,99	80,45	81,20	80,80	87,55	79,73	80,63	78,25	79,30	80,96	81,78	80,06			

						GRUI	PPO 4							
	gen	feb mar apr mag giu lug ago set ott nov dic												
ore funzion.	744	669	722	697	726	700	744	744	637	734	361	213		
efficienza %	82,36	83,70	81,57	81,35	81,61	82, <i>7</i> 5	81,24	81,72	84,70	81,98	91,42	95,17		

^{*}Il dato di efficienza è stato stimato in base alle misure eseguite nell'ottobre 2010 per la verifica delle prestazioni degli impianti DeNOx

15. Problematiche nella gestione del Piano di Monitoraggio e Controllo che afferiscono al periodo di comunicazione

Niente da segnalare

16. ALLEGATI

Tutti gli allegati sono riportati nel supporto informatico con la seguente numerazione

- allegato 1 avviamenti gr 1 2013
- allegato 2 avviamenti gr 2 2013
- allegato 3 avviamenti gr 3 2013
- allegato 4 avviamenti gr 4 2013
- Allegato 5 avvisa a SAP
- Allegato 6 emissioni massiche diesel di emergenza
- Allegato 7 tabella riassuntiva immissioni

ALLEGATO 1: AVVIAMENTI GR1, DURATA AVVIAMENTO, CONSUMO COMBUSTIBILI, VOLUME FUMI, EMSSIONI IN CONCENTRAZIONE, EMISSIONI MASSICHI

			25-feb	5-mar	17-mar	18-mar	20-mar	21-mar	23-mar	30-mar	31-mar	9-apr	10-apr	25-apr	26-apr	12-mag	13-mag	19-mag	31-mag
		ore	12	8	8	4	3	2	2	7	0	2	8	8	2	3	9	8	0
OC SZ		Ton	42	89	12	16	16	12	10	13	2	0	30	19	12	0	36	19	1
Vg (Nmc/Kg)	11,76	Nmc	493920	1046640	141120	188160	188160	141120	117600	152880	23520	0	352800	223440	141120	0	423360	223440	11760
Gasolio		Ton	16	12	14	0	0	5	0	12	0	9	0	11	0	5	4	10	0
Vg (Nmc/Kg)	12,00	Nmc	189600	144000	168000	0	0	60000	0	144000	0	108000	0	132000	0	60000	48000	120000	0
Volume totale de	ei gas	Nmc	683520	1190640	309120	188160	188160	201120	117600	296880	23520	108000	352800	355440	141120	60000	471360	343440	11760
	SO ₂	mg/Nmc	45	105	83	98	95	107	107	143	143	90	143	180	180	90	51	180	143
Concentrazioni	NOx	mg/Nmc	45	73	73	73	127	177	126	177	177	44	177	126	126	44	58	126	177
misurate	Polveri	mg/Nmc	16	18	9	8	10	10	11	22	22	9	9	10	10	9	10	10	22
	CO	mg/Nmc	69	53	11	20	25	1	5	41	41	16	16	3	3	16	11	3	41
	SO ₂	ton	0,03	0,13	0,03	0,02	0,02	0,02	0,01	0,04	0,00	0,01	0,05	0,06	0,03	0,01	0,02	0,06	0,00
Emissioni	NOx (NO ₂ equiv.)	ton	0,03	0,09	0,02	0,01	0,02	0,04	0,01	0,05	0,00	0,00	0,06	0,04	0,02	0,00	0,03	0,04	0,00
globali	Polveri	ton	0,01	0,02	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	CO	ton	0,05	0,06	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,01	0,00	0,00	0,00	0,01	0,00	0,00

			4-giu	19-giu	20-giu	26-giu	27-giu	30-lug	31-lug	17-ott	18-ott	09-nov	10-nov	11-nov	18-nov	27-nov	6-dic	7-dic]
		ore	1	5	5	1	7	6	4	7	18	16	4	2	7	2	0	12]
OC SZ		Ton	8	8	24	0	30	0	36	2	75	32	6	13	5	2	0	59	
Vg (Nmc/Kg)	11,76	Nmc	94080	94080	282240	0	352800	0	423360	23520	882000	376320	70560	152880	58800	23520	0	693840	1
Gasolio		Ton	0	7	0	2	8	11	8	10	2	16	5	0	11	5	1	6	1
Vg (Nmc/Kg)	12,00	Nmc	960	84000	0	24000	96000	132000	96000	120000	24000	192000	60000	0	132000	60000	6000	72000	1
Volume totale de	ei gas	Nmc	95040	178080	282240	24000	448800	132000	519360	143520	906000	568320	130560	152880	190800	83520	6000	765840	
	SO ₂	mg/Nmc	89	89	226	90	133	90	191	89	124	191	89	86	210	56	90	205	
Concentrazioni	NOx	mg/Nmc	44	44	194	44	106	44	80	44	116	80	44	88	191	47	44	167	
misurate	Polveri	mg/Nmc	3	3	2	9	1	9	9	3	5	9	3	8	29	14	9	21	
	CO	mg/Nmc	132	8	33	16	10	16	104	132	132	104	132	11	132	110	16	101	Totale t
	SO ₂	ton	0,01	0,02	0,06	0,00	0,06	0,01	0,10	0,01	0,11	0,11	0,01	0,01	0,04	0,00	0,00	0,16	0,54
Emissioni	NOx (NO ₂ equiv.)	ton	0,00	0,01	0,05	0,00	0,05	0,01	0,04	0,01	0,11	0,05	0,01	0,01	0,04	0,00	0,00	0,13	0,49
globali	Polveri	ton	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,01	0,00	0,00	0,02	0,07
	CO	ton	0,01	0,00	0,01	0,00	0,00	0,00	0,05	0,02	0,12	0,06	0,02	0,00	0,03	0,01	0,00	0,08	0,15

ALLEGATO 2: AVVIAMENTI GR2, DURATA AVVIAMENTO, CONSUMO COMBUSTIBILI, VOLUME FUMI, EMSSIONI IN CONCENTRAZIONE, EMISSIONI MASSICHE

			23-feb	4-mar	5-mar	17-mar	18-mar	30-mar	31-mar	8-apr	9-apr	19-mag	20-mag	21-mag	23-mag
		ore	12	6	10	2	7	8	1	4	8	11	9	1	1
OC SZ		Ton	30	14	228	0	42	30	8	0	44	55	46	8	8
Vg (Nmc/Kg)	11,76	Nmc	352800	164640	2681280	0	493920	352800	94080	0	517440	646800	540960	94080	94080
Gasolio		Ton	12	0	5	3	3	15	0	11	4	14	0	0	0
Vg (Nmc/Kg)	12,00	Nmc	144000	1200	60000	36000	36000	180000	0	132000	48000	168000	624	636	0
Volume totale d	lei gas	Nmc	496800	165840	2741280	36000	529920	532800	94080	132000	565440	814800	541584	94716	94080
	SO₂	mg/Nmc	43	23	88	23	130	23	129	23	51	89	78	194	227
Concentrazioni	NOx	mg/Nmc	37	20	129	20	122	20	156	20	73	57	50	165	176
misurate	Polveri	mg/Nmc	27	40	19	40	23	40	21	40	16	19	10	26	19
	CO	mg/Nmc	100	101	31	101	110	101	43	101	144	24	166	54	52
	SO ₂	ton	0,02	0,00	0,24	0,00	0,07	0,01	0,01	0,00	0,03	0,07	0,04	0,02	0,02
Emissioni	NOx (NO ₂ equiv.	ton	0,02	0,00	0,35	0,00	0,06	0,01	0,01	0,00	0,04	0,05	0,03	0,02	0,02
globali	Polveri	ton	0,01	0,01	0,05	0,00	0,01	0,02	0,00	0,01	0,01	0,02	0,01	0,00	0,00
	CO	ton	0,05	0,02	0,08	0,00	0,06	0,05	0,00	0,01	0,08	0,02	0,09	0,01	0,00

			7-giu	21-lug	22-lug	2-set	3-set	4-set	7-set	16-ott	17-ott	28-nov	29-nov	13-dic	14-dic	
		ore	13	2	9	4	3	14	6	14	5	1	8	1	10	
OC SZ		Ton	39	0	20	0	0	27	18	28	18	0	24	0	24	1
/g (Nmc/Kg)	11,76	Nmc	458640	0	235200	0	0	317520	211680	329280	211680	0	282240	0	282240	
Gasolio		Ton	15	3	6	1	5	11	6	13	3	4	6	3	12	
Vg (Nmc/Kg)	12,00	Nmc	180000	36000	72000	12000	60000	132000	72000	156000	36000	48000	72000	36000	144000	
Volume totale (dei gas	Nmc	638640	36000	307200	12000	60000	449520	283680	485280	247680	48000	354240	36000	426240	
	SO ₂	mg/Nmc	61	84	227	84	84	15	37	227	37	84	64	84	50	
Concentrazioni	NOx	mg/Nmc	34	22	176	22	22	26	60	176	60	22	18	22	50	
misurate	Polveri	mg/Nmc	12	15	19	15	15	11	11	19	11	15	38	15	18	
	CO	mg/Nmc	200	90	52	90	90	134	135	52	135	90	224	90	207	Tota
	SO ₂	ton	0,04	0,00	0,07	0,00	0,01	0,01	0,01	0,11	0,01	0,00	0,02	0,00	0,02	0,
Emissioni	NOx (NO₂ equiv.	ton	0,02	0,00	0,05	0,00	0,00	0,01	0,02	0,09	0,01	0,00	0,01	0,00	0,02	0,
globali	Polveri	ton	0,01	0,00	0,01	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,01	0,00	0,01	0,
	CO	ton	0,13	0,00	0,02	0,00	0,01	0,06	0,04	0,03	0,03	0,00	0,08	0,00	0,09	0,

ALLEGATO 3: AVVIAMENTI GR3, DURATA AVVIAMENTO, CONSUMO COMBUSTIBILI, VOLUME FUMI, EMSSIONI IN CONCENTRAZIONE, EMISSIONI MASSICHE

			13-gen	5-mar	6-mar	18-mar	9-apr	13-mag	1-giu	2-giu	24-giu	22-lug	31-lug
		ore	1,7	3	2	5	3	1	3	12	1	3	5
OC SZ		Ton	50	98	40	70	53	45	0	130	25	27	0
Vg (Nmc/Kg)	11,76	Nmc	588000	1152480	470400	823200	623280	529200	0	1528800	294000	317520	0
Gasolio		Ton	5	5	9	5	6	8	11	25	2	8	28
Vg (Nmc/Kg)	12,00	Nmc	55200	60000	108000	60000	67200	96000	132000	300000	24000	96000	336000
Volume totale dei ga	s	Nmc	643200	1212480	578400	883200	690480	625200	132000	1828800	318000	413520	336000
	SO ₂	mg/Nmc	218	154	134	190	209	127	32	209	201	130	143
Concentrazioni	NOx	mg/Nmc	174	133	117	146	181	192	97	181	197	210	260
misurate	Polveri	mg/Nmc	61	42	36	34	73	32	56	73	55	41	28
	CO	mg/Nmc	132	14	80	31	21	102	102	21	50	219	132
	SO ₂	ton	0,14	0,19	0,08	0,17	0,14	0,08	0,00	0,38	0,06	0,05	0,05
Postantant alabati	NOx (NO ₂ equiv.)	ton	0,11	0,16	0,07	0,13	0,12	0,12	0,01	0,33	0,06	0,09	0,09
Emissioni globali	Polveri	ton	0,04	0,05	0,02	0,03	0,05	0,02	0,01	0,13	0,02	0,02	0,01
	CO	ton	0,08	0,02	0,05	0,03	0,01	0,06	0,01	0,04	0,02	0,09	0,04

			31-lug	1-ago	8-set	14-set	15-set	12-ott	20-ott	15-nov	6-dic	12-dic	
		ore	5	3	1	1	6	0	6	7	1	1	
OC SZ		Ton	0	50	31	0	65	25	18	40	9	30	
Vg (Nmc/Kg)	11,76	Nmc	0	588000	364560	0	764400	294000	211680	470400	105840	352800	
Gasolio		Ton	28	11	2	4	36	3	35	36	3	5	1
Vg (Nmc/Kg)	12,00	Nmc	336000	132000	24000	48000	432000	30000	420000	432000	36000	60000	
Volume totale dei ga	s	Nmc	336000	720000	388560	48000	1196400	324000	631680	902400	141840	412800	
	SO ₂	mg/Nmc	143	265	194	87	188	221	260	274	207	232	
Concentrazioni	NOx	mg/Nmc	260	298	199	149	187	228	192	200	145	184	
misurate	Polveri	mg/Nmc	28	45	41	68	41	54	33	54	47	11	
	CO	mg/Nmc	132	63	63	14	200	176	119	131	145	25	Totale t
	SO ₂	ton	0,09	0,32	0,11	0,08	0,13	0,14	0,03	0,50	0,07	0,10	2,45
Footsets of all half	NOx (NO ₂ equiv.)	ton	0,17	0,36	0,12	0,13	0,13	0,14	0,03	0,37	0,05	0,08	2,29
Emissioni globali	Polveri	ton	0,02	0,05	0,02	0,06	0,03	0,03	0,00	0,10	0,01	0,00	0,60
	CO	ton	0,08	0,08	0,04	0,01	0,14	0,11	0,02	0,24	0,05	0,01	1,05

ALLEGATO 4: AVVIAMENTI GR 4, DURATA AVVIAMENTO, CONSUMO COMBUSTIBILI, VOLUME FUMI, EMSSIONI IN CONCENTRAZIONE, EMISSIONI MASSICHE

			12-feb	6-mar	19-mar	10-apr	26-apr	13-mag	18-mag	24-giu	27-giu	28-giu	10-set	5-ott	6-ott	12-nov	22-dic	
		ore	1	4	3	3	4	2	3	2	7	2	9	2	2	5	17	
OC SZ		Ton	31	62	70	75	80	85	60	45	71	38	188	54	80	50	240	
Vg (Nmc/Kg)	11,76	Nmc	364560	729120	823200	882000	940800	999600	705600	529200	834960	446880	2210880	635040	940800	588000	2822400	
Gasolio		Ton	5	8	13	5	4	8	11	6	0	16	31	9	10	44	40	
Vg (Nmc/Kg)	12,00	Nmc	60000	96000	156000	60000	48000	96000	132000	72000	0	192000	372000	108000	120000	528000	480000	
Volume totale dei gas		Nmc	424560	825120	979200	942000	988800	1095600	837600	601200	834960	638880	2582880	743040	1060800	1116000	3302400	
	SO ₂	mg/Nmc	242	192	241	260	192	192	77	317	241	317	205	148	180	403	214	
Concentrazioni	NOx	mg/Nmc	172	178	146	185	178	178	95	243	146	243	259	114	253	253	310	
misurate	Polveri	mg/Nmc	14	61	34	73	61	61	56	53	34	53	28	30	30	30	195	
	CO	mg/Nmc	16	124	55	16	124	124	124	35	55	35	68	398	345	345	181	Totale t
	SO ₂	ton	0,10	0,16	0,24	0,24	0,19	0,21	0,06	0,19	0,20	0,20	0,53	0,11	0,19	0,45	0,71	3,79
Emissioni globali	NOx (NO ₂ equ	ton	0,07	0,15	0,14	0,17	0,18	0,20	0,08	0,15	0,12	0,16	0,67	0,08	0,27	0,28	1,02	3,74
	Polveri	ton	0,01	0,05	0,03	0,07	0,06	0,07	0,05	0,03	0,03	0,03	0,07	0,02	0,03	0,03	0,64	1,23
	CO	ton	0,01	0,10	0,05	0,02	0,12	0,14	0,10	0,02	0,05	0,02	0,18	0,30	0,37	0,39	0,60	2,45

Allegato 5 avvisa a SAP

Data avviso	Descrizione	Priorità	Sede tecnica	Definizione
02/01/2013	gr3 perdita flangia scar.p. del vuoto A	3	FO-03-02-VC0-EP	ELETTROPOMPA VUOTO CONDENSATORE
03/01/2013	GR3,DESOX A:perdita da valv.FD265A	2	FO-03-44-WA1-PR	PRESCRUBBER (BV901A)
03/01/2013	grb perdita pistone lato pt pompa p123b	2	FO-0B-46-WP0-P0	IMPIAN. ABBATTIMENTO SELENIO- POMPE
04/01/2013	GR.3 PERDITA 3PE LINEA COND.VERSO CONDEN	2	FO-03-15-FE0	DEPOLVERIZZATORI ELETTROSTATICI
04/01/2013	GR1 PERDITA DA REFRIG. OLIO TURB	2	FO-01-02-LT0-CL	CASSA OLIO TURBINA
05/01/2013	GR4,DESOX : perdita HO2 ind. sala pompe	2	FO-04-44	IMPIANTO DESOX
05/01/2013	GR3,DESOX A:perdita da lin. antischiuma	2	FO-03-44-WD1-TV	TUBAZIONI E VALVOLE
05/01/2013	GR4 DESOX A PERDITA TUBAZ. LAV.DEM. ASS.	2	FO-04-44-WB1-TV	SERBATOIO QUENCHER+AGITATORI
05/01/2013	GR3: perdita strum. risc. AP8/2	3	FO-03-01-AP2-R8	RISCALDATORE
05/01/2013	GR4: perdita tub. polv. mul. B angolo A	2	FO-04-17-MU2-TV	TUBAZIONE POLVERINO CARBONE (ATEX)
09/01/2013	gr3 desox filtro gesso "A" perdita acua	2	FO-03-44-WC1-TV	TUBAZIONI E VALVOLE
10/01/2013	Gr3: perdita collet.condense PE al cond.	3	FO-03-09-DX0-CX	CICLO DISTRIBUZ. ALLE UTENZE DI GRUPPO
10/01/2013	GR3,PE perdita da linea condense a SSI	2	FO-03-15-FE0	DEPOLVERIZZATORI ELETTROSTATICI
12/01/2013	GR3,DESOX A:perdita da valv.FD264A	2	FO-03-44-WA1-PR	PRESCRUBBER (BV901A)
13/01/2013	GR3:perdita di OCD-richiesta pulizia	1	FO-03-07	GENERATORE DI VAPORE
13/01/2013	gr4 desox "A" cam.gesso arm. "A" perdita	2	FO-04-44-WB1-CS	STRUMENTAZIONE
13/01/2013	gr4 desox "B" camp. gesso arm. A perdita	2	FO-04-44-WB2-CS	STRUMENTAZIONE
15/01/2013	GR4,DESOX B:perdita olio cusc. booster	2	FO-04-44-WA2-VF	VENTILAT. FUMI TRATTATI (BOOSTER) CD150B
16/01/2013	GR4,DESOX 4A:perdita da giunto CA502B	2	FO-04-44-WA1-PR	PRESCRUBBER (BV901A)
17/01/2013	gr4 desox "A" calcare perdita campione	2	FO-04-44-WD1-CS	STRUMENTAZIONE
17/01/2013	Gr3:perdita olio rompizolle alimentat. B	2	FO-03-17-MU2	PREPARAZIONE E CONVOGL. POLVERINO(ATEX)
18/01/2013	gr4 desox "A" perdita lav. dem ass	2	FO-04-44-WB1-SG	SEPARATORE DI GOCCE (DEMISTER)
18/01/2013	gr4 desox "A" linea trs.calc perdita	2	FO-04-44-WD1-SI	SILOS CALCARE GIORNALIERO (BS904A)
20/01/2013	gr3 perdita da aria sbarr.usc.polv.mul.F	2	FO-03-17-MU6	PREPARAZIONE E CONVOGL. POLVERINO(ATEX)
21/01/2013	GRB EV200 POMPA SCAM PERDITA DA FLANGIA	2	FO-0B-06-EV2	EVAPORATORE UNITA' 2
22/01/2013	GR3 DESOX 3A PERDITA LINEA ANTISCHIU.AFT	2	FO-03-44-WD1-TV	TUBAZIONI E VALVOLE
24/01/2013	GR4.PERDITA VAP AUX A RISC.OCD Z.VI GR.3	2	FO-04-09	VAPORE AUSILIARIO

26/01/2013	GR1 perdita aria strumenti	2	FO-01-15-VA1-SE	SERRANDE ASPIRAZIONE E MANDATA
	serranda VA1			•
27/01/2013	GR4 4PE: PERDITA VAPORE BATT.CONDOTTI AT	2	FO-03-15-FE0-PR	DEPOLVERIZZATORE ELETTROSTATICO
27/01/2013	GROB TSD PERDITA H2O LAVAGGIO FECL3	2	FO-0B-46	AREA TRATTAMENTO SPURGHI DESOX (TSD)
28/01/2013	grb perdita linea h2olavaggio pompe fec	2	FO-0B-46-WN0-CF	CICLO DOSAGGIO CLORURO FERRICO+COMP.MECC
30/01/2013	gr b - perdita olio riduttore N8	3	FO-0B-17-TO0-N0	NASTRO TRASPORTATORE "N8" (ATEX)
31/01/2013	gr3 perdita in caldaia - soff. 31	2	FO-03-07-PP0-PP	PARTI IN PRESSIONE DI CALDAIA
13/02/2013	gr4 desox "A" perdita camp. calcare	2	FO-04-44-WD1-TV	TUBAZIONI E VALVOLE
13/02/2013	gr4 desox perdita mandata worman	2	FO-04-44-WA0-V0	VASCA RACCOLTA SPURGHI (BL901X)
14/02/2013	GrB perdita pompa fanghi impianto TWT	2	FO-0B-46-WP0-P0	IMPIAN. ABBATTIMENTO SELENIO- POMPE
19/02/2013	gr4 desox "A" pompa CA836A perdita tenut	2	FO-04-44-WB1-P0	POMPE RICIRCOLO SOSPENSIONE (ASS. E WFC)
20/02/2013	GROB ITAA PERDITA MAND.SENTINA CA406X	2	FO-0B-43-WW0	IMPIANTO TRATTAMENTO ACQUE AMMONIACALI
21/02/2013	GR4,DESOX A:perdita su mand.CA838B	2	FO-04-44-WB1-P0	POMPE RICIRCOLO SOSPENSIONE (ASS. E WFC)
21/02/2013	gr.b perdita da mandata pompa fanghi X	2	FO-0B-46-WL1-P3	POMPE ALIMENTO FILTRI
23/02/2013	GR4.MULINO E - PERDITA POLVERINO	1	FO-04-17-MU5	PREPARAZIONE E CONVOGL. POLVERINO(ATEX)
25/02/2013	GR1 perdita acqua da mandata 1VC2	2	FO-01-02-VC0-EP	ELETTROPOMPA VUOTO CONDENSATORE
26/02/2013	GR3,DESOX A:perdita da mandata CA502B	2	FO-03-44-WA1-PR	PRESCRUBBER (BV901A)
27/02/2013	grb perdita dalla mandata pompa X TSD	1	FO-0B-45	AREA MOVIMENTAZIONE (DESOX)
27/02/2013	GR1 perdita giunto 3 pezzi pompa 1VC2	3	FO-01-02-VC0-EP	ELETTROPOMPA VUOTO CONDENSATORE
28/02/2013	Gr4:perdita baderne valv. DP attemp. SH	2	FO-04-07-SR0	TUBAZ.VAPORE SURR,RISURR. FREDDO E CALDO
01/03/2013	GR3.MULINO F. PERDITA DA CASSONE PIRITI	2	FO-03-17-MU6	PREPARAZIONE E CONVOGL. POLVERINO(ATEX)
03/03/2013	GR3: perdita da flangia PSV risc. AP8/2	3	FO-03-01-AP2-R8	RISCALDATORE
04/03/2013	GRB: perdita post filtro LMC A	2	FO-0B-01-LM1-PF	POSTFILTRI
11/03/2013	GR4: perdita passo d' uomo ingresso RA1	4	FO-04-15-RA2-LJ	RISCALDATORE ARIA (LJUNGSTROM)
12/03/2013	GR3 MULINO E PERDITA H2O RAFFRED CUSCINE	2	FO-03-17-MU5	PREPARAZIONE E CONVOGL. POLVERINO(ATEX)
12/03/2013	GR4,DESOX A:perdita su mand.CA873A	2	FO-04-44-WB1-P0	POMPE RICIRCOLO SOSPENSIONE (ASS. E WFC)
12/03/2013	GR3,DESOX A:perdita da valvola FF859B	2	FO-03-44-WB1-SG	SEPARATORE DI GOCCE (DEMISTER)
14/03/2013	GR4,DESOX B: perdita da pompa CA837B	2	FO-04-44-WB2-P0	POMPE RICIRCOLO SOSPENSIONE (ASS. E WFC)
15/03/2013	GROB TWT PERDITA POLM.COMP.SKID VAPORE	2	FO-0B-46-WP0	IMPIAN. ABBATTIMENTO SELENIO
16/03/2013	gr3 perdita.flangia valle usc.polv.mul.D	2	FO-03-17-MU4	PREPARAZIONE E CONVOGL. POLVERINO(ATEX)

16/03/2013	GR3: perdita dalla tenuta PEC A	3	FO-03-01-CD1-P0	POMPA (COMPRESE VALV.ASPIRAZ. E MANDATA)
18/03/2013	grb perdita mandata pompa P123A twt	2	FO-0B-46-WP0	IMPIAN. ABBATTIMENTO SELENIO
19/03/2013	GR3: perdita da man. radice campione VP	3	FO-03-07	GENERATORE DI VAPORE
19/03/2013	GR4,DESOX A:perdita da scarico PHmetro	3	FO-04-44-WB1-CS	STRUMENTAZIONE
19/03/2013	Gr.b Perdita sincronismo DW2	2	FO-0B-17-DS2	SCARICAT.CARBONE A BENNA N°2 (GRU) ATEX
20/03/2013	Gr.b perdita olio riduttore N6-6bis	3	FO-0B-17-TO0-T0	TORRE DI TRASFERIMENTO "T6BIS" (ATEX)
22/03/2013	GRB PERDITA LINEA DOSAGGIO SODA LMC	2	FO-0B-01-LM0	CICLO LETTI MISTI (COMPRESO STOCCAGGIO)
25/03/2013	GROA LMC1/2 PERDITA HCL DA LIVELLO SERB.	1	FO-0A-01-LM0	LETTI MISTI
26/03/2013	GROA LMC1/2 PERDITA POMPA CARIC.HCL	2	FO-0A-01-LM0	LETTI MISTI
29/03/2013	GR3,DESOX A:perdita da valvola FF229A	2	FO-03-44-WA1-PR	PRESCRUBBER (BV901A)
30/03/2013	GRB: perdita circ. dosaggio O2 ciclo ter	2	FO-0B-01-CH0-C1	SISTEMA CICLO OSSIDANTE
01/04/2013	GR02: perdita dalla caldaia	2	FO-02-07-PP0-PP	PARTI IN PRESSIONE DI CALDAIA
04/04/2013	GR4,DESOX B:perdita da valv.PHmetro calc	2	FO-04-44-WD2-TV	TUBAZIONI E VALVOLE
07/04/2013	gr3 desox "A" camp. calc. "A" perdita	2	FO-03-44-WD1-CS	STRUMENTAZIONE
08/04/2013	GROB ITAR PERDITA HCL DA CA106A	1	FO-0B-59	TRATTAMENTO DELLE ACQUE REFLUE
09/04/2013	GR3,DESOX A:perdita da pompa CA886A	2	FO-03-44-WB1-IS	IDROCICLONI SECONDARI GESSO
10/04/2013	GR1 perdita flangia valvola attemper. SH	2	FO-01-07-PP0-PP	PARTI IN PRESSIONE DI CALDAIA
10/04/2013	GROB TWT perdita pompa p203a solf.ferros	2	FO-0B-46-WP0	IMPIAN. ABBATTIMENTO SELENIO
13/04/2013	GR2 perdita ingresso eco caldaia	2	FO-02-07-PP0	PARTI IN PRESSIONE
13/04/2013	GR1 perdita PSV vapore ausiliario	2	FO-01-09	VAPORE AUSILIARIO
13/04/2013	GROA ITAR PERDITA RIC. SERBATOIO A	2	FO-0B-59	TRATTAMENTO DELLE ACQUE REFLUE
14/04/2013	GROB LMD3/4 PERDITA PRESA COND.LMDB	2	FO-0B-06-EV0-LM	CICLO LETTI MISTI COMPRESI FILTRI
16/04/2013	GRB TSD TWT P122B PERDITA FLANGIA MANDAT	2	FO-0B-46-WP0	IMPIAN. ABBATTIMENTO SELENIO
19/04/2013	GR4:perdita olio rompizolle alim. mul.B	2	FO-04-17-MU2	PREPARAZIONE E CONVOGL. POLVERINO(ATEX)
19/04/2013	GROA LMC1/2 PERDITA MANOM.SERB.NEUTR	2	FO-0A-01-LM0	LETTI MISTI
22/04/2013	GR4.MULINO C-PERDITA OLIO GIUNTO VITE	2	FO-04-17-MU3	PREPARAZIONE E CONVOGL. POLVERINO(ATEX)
24/04/2013	GR4 DESOX A PERDITA ARMADIO CALCARE B	2	FO-04-44-WD1-CN	CONDOTTI E VALVOLE
26/04/2013	GR1 perdita collettore ECO	2	FO-01-07	GENERATORE DI VAPORE
26/04/2013	gr b - perdita olio riduttori N5-6	2	FO-0B-17-TO0-N4	NASTRO TRASPORTATORE "N5-6" (ATEX)

26/04/2013	gr b - perdita olio riduttore N6- 6bis6	2	FO-0B-17-T00-N3	NASTRO TRASPORTATORE "N6bis-6" (ATEX)
26/04/2013	gr b - perdita olio riduttore N6bis- 7	2	FO-0B-17-T00-N2	NASTRO TRASPORTATORE "N6bis-7"
28/04/2013	grb perdita dalle bavette N8bis (ATEX)	2	FO-0B-17-TO1	TRASPORTO CARB. (PARTITA ESTERNA) (ATEX)
29/04/2013	GR1 PERDITA PRESA DI PRESSIONE VAP. AUX	2	FO-01-09	VAPORE AUSILIARIO
29/04/2013	gr3 perdita dalla pompa spinta nafta "A"	1	FO-03-10-PN0	STAZIONE DI POMPAGGIO
01/05/2013	GROB LMC3/4 PERDITA IN VALV589X TRASF.RE	2	FO-0B-01-LM0	CICLO LETTI MISTI (COMPRESO STOCCAGGIO)
03/05/2013	grb perdita presa campione distillato "B	3	FO-0B-06-EV0-LM	CICLO LETTI MISTI COMPRESI FILTRI
03/05/2013	grb perdita dalle bavette N8-bis ATEX)	2	FO-0B-17-TO1	TRASPORTO CARB. (PARTITA ESTERNA) (ATEX)
03/05/2013	grb perdita dalle bavette ND-E (ATEX)	2	FO-0B-17-TO2	TRASPORTO CARB. (PARTITA INTERNA) (ATEX)
04/05/2013	gr3 perdita baderne spurgo VP	3	FO-03-07-SS0-TV	TUBAZ VALVOLE,TUBO CAMINO E SILENZIATORE
05/05/2013	GRB-N6BIS-7 PERDITA D'OLIO RID. LATO MAR	2	FO-0B-17-TO0-N2	NASTRO TRASPORTATORE "N6bis-7" (ATEX)
05/05/2013	GRB-PERDITA DA UN FORO SOTTO EW5	2	FO-0B-17-T00-2T	TORRE DI TRASFERIMENTO "TC" (ATEX)
05/05/2013	GRB-N6-6BIS- PERDITA OLIO RIDUTTORE	2	FO-0B-17-TO0-N3	NASTRO TRASPORTATORE "N6bis-6" (ATEX)
06/05/2013	Gr4: perdita polverino rullo mulino F	2	FO-04-17-MU6	PREPARAZIONE E CONVOGL. POLVERINO(ATEX)
06/05/2013	Gr4:perdita di carbone tramoggia mul. C	2	FO-04-17-MU3	PREPARAZIONE E CONVOGL. POLVERINO(ATEX)
06/05/2013	GR A perdita soda letti misti condensato	2	FO-0A-01-LM0-SO	CIRCUITO SODA
06/05/2013	GRO perdita acido linea l. misti gr.1- 2	2	FO-0A-01-LM0-AC	CIRCUITO ACIDO
07/05/2013	GR3.MULINO E-PERDITA FLESSIBILE H2O RAFF	2	FO-03-17-MU5	PREPARAZIONE E CONVOGL. POLVERINO(ATEX)
07/05/2013	GR03 PERDITA PRESA MAN.VAP.FIN OCD A GR3	2	FO-03-09	VAPORE AUSILIARIO
11/05/2013	GRB-N2-3 PERDITA DALLE BAVETTE	2	FO-0B-17-TO0-N7	NASTRO TRASPORTATORE "N2-3" (ATEX)
11/05/2013	Gr4: perdita polverino carbone mulino E	2	FO-04-17-MU5	PREPARAZIONE E CONVOGL. POLVERINO(ATEX)
12/05/2013	GR4:perdita polverino mulino F	2	FO-04-17-MU6	PREPARAZIONE E CONVOGL. POLVERINO(ATEX)
12/05/2013	GR3,DESOX B:perdita da pompa CA820A	2	FO-03-44-WB2-IS	idrocicloni secondari gesso
12/05/2013	GRB ITAA Perdita aria da sotto grigliato	2	FO-0B-43-WW0	IMPIANTO TRATTAMENTO ACQUE AMMONIACALI
13/05/2013	GR3.ATT.SH BT-VALV.BLOCCO- PERDITA FLANGI	1	FO-03-07	GENERATORE DI VAPORE
14/05/2013	GR3: perdita polverino mulino A	2	FO-03-17-MU1	PREPARAZIONE E CONVOGL. POLVERINO(ATEX)
14/05/2013	GR3: perdita polverino mulino D	2	FO-03-17-MU4	PREPARAZIONE E CONVOGL. POLVERINO(ATEX)
15/05/2013	GR1 perdita linea cond. vap.aux. tenute	2	FO-01-09-DX0-CX	CICLO DISTRIBUZ. ALLE UTENZE DI GRUPPO

15/05/2013	gr3 desox antinecendio perdita	2	FO-03-44	IMPIANTO DESOX
17/05/2013	grb perdita di resine dal dren serb RC	1	FO-0B-01-LM0-SR	RIGENERAZIONE LETTI MISTI
18/05/2013	gr b - perdita olio da pistone tendifune	2	FO-0B-17-DS2	SCARICAT.CARBONE A BENNA N°2 (GRU) ATEX
19/05/2013	GR3: perdita polverino mulino A	2	FO-03-17-MU1	PREPARAZIONE E CONVOGL. POLVERINO(ATEX)
19/05/2013	GR3: perdita polverino mulino E	2	FO-03-17-MU5	PREPARAZIONE E CONVOGL. POLVERINO(ATEX)
19/05/2013	GROB ITAR GR3/4 PERDITA INT.TORBIDIMETRO	2	FO-0B-59	TRATTAMENTO DELLE ACQUE REFLUE
20/05/2013	gr b - perdita olio antiretro N1-2	2	FO-0B-17-TO0-N8	NASTRO TRASPORTATORE "N1-2" (ATEX)
23/05/2013	GR3,DESOX :perdita da ten agit.CH851B	2	FO-03-44-WB0-TV	TUBAZIONI,VALVOLE,POMPE,SERBATOI, ETC.
28/05/2013	GRA perdita flangia valv. 2023 Letti M.	2	FO-0A-01-LM0-AC	CIRCUITO ACIDO
28/05/2013	GR2 perdita dal barilotto vap. atomizz.	2	FO-02-09-DX0-CX	CICLO DISTRIBUZ. ALLE UTENZE DI GRUPPO
30/05/2013	GRB TSD Perdita acqua prep polielettroli	2	FO-0B-46-WN0-PO	CICLO DOSAGGIO POLIELETTROLITA+COMP.MECC
31/05/2013	GR4.MULINO D-PERDITA POLVERINO DA CLASS.	2	FO-04-17-MU4	PREPARAZIONE E CONVOGL. POLVERINO(ATEX)
01/06/2013	GR B PERDITA TRAMOG TORRE 2	2	FO-0B-17-TO0-T2	TORRE DI TRASFERIMENTO "T2" (ATEX)
01/06/2013	GR1 TURBINA CASSA OLIO PERDITA	2	FO-01-02	TURBINA
01/06/2013	GR1 PERDITA AMMONIACA MANDATA POMPE	1	FO-0A-01-CH0-AM	CIRCUITO AMMONIACA
04/06/2013	GR3 MULINO E PERDITA FLESSIB ACQUA RAFFR	2	FO-03-17-MU5	PREPARAZIONE E CONVOGL. POLVERINO(ATEX)
04/06/2013	Gr3: perdita di polverino mandata mul. A	2	FO-03-17-MU1-TV	TUBAZIONE POLVERINO CARBONE (ATEX)
04/06/2013	gr3,desox A:perdita da linea caric.calc.	2	FO-0B-45-WG2-TV	TUBAZIONI E VALVOLE
09/06/2013	Gr3: perdita di polverino mandata mul. A	2	FO-03-17-MU1-TV	TUBAZIONE POLVERINO CARBONE (ATEX)
09/06/2013	Gr3:perdita linea dosaggio soda caldaia	2	FO-0B-01-CH0-C0	CIRCUITO SODA
09/06/2013	GROB NASTRO NH-B PERDITA DA BAVETTE	2	FO-0B-17-TO0-7N	NASTRI TRASPORTAT. "NH-B" "NH-B1" (ATEX
09/06/2013	GROB NASTRO NB.C PERDITA OLIO ANTIRETRO	2	FO-0B-17-TO0-3N	NASTRI TRASPORTAT. "NB-C" "NB-C1" (ATEX
10/06/2013	Gr4: perdita polverino mulino E	2	FO-04-17-MU5-TV	TUBAZIONE POLVERINO CARBONE (ATEX)
13/06/2013	CV2- PERDITA DI BULLONI DI FISSAGGIO	1	FO-0B-17-TO0-2T	TORRE DI TRASFERIMENTO "TC" (ATEX)
14/06/2013	GROB TSD PERDITA ARIA SERV. LOCALE HCL	2	FO-0B-46	AREA TRATTAMENTO SPURGHI DESOX (TSD)
16/06/2013	gr4,desox B:perdita calc. da ingr. silo	2	FO-04-45-WH0	TRASPORTO, STOCCAGGIO E CARICAMENTO GESS
16/06/2013	Gr4: perdita polverino mulino E	2	FO-04-17-MU5	PREPARAZIONE E CONVOGL. POLVERINO(ATEX)
17/06/2013	GROB NASTRO NC-D PERDITA DA BAVETTE	2	FO-0B-17-TO0-4N	NASTRI TRASPORTAT. "NC-D" "NC-D1" (ATEX

17/06/2013	GRB-CZ1 FUORI GUIDA SPOSTATO PERDITA	2	FO-0B-17-TO0-0T	TORRE DI TRASFERIMENTO "TA" (ATEX)
20/06/2013	Gr4:perdita polverino mulino D	2	FO-04-17-MU4	PREPARAZIONE E CONVOGL. POLVERINO(ATEX)
20/06/2013	Gr4:perdita collettore spurghi caldi	2	FO-04-07-SS0-S0	SERBATOI DI ESPANSIONE E RACCOLTA
20/06/2013	Gr3:perdita polverino molla rullo mul. B	2	FO-03-17-MU2	PREPARAZIONE E CONVOGL. POLVERINO(ATEX)
21/06/2013	gr3,desox A:perdita da PHmetro calcare B	2	FO-03-44-WD1-TV	TUBAZIONI E VALVOLE
22/06/2013	grb perdita dallo sfiato 11/12 stadio e	2	FO-0B-06-EV1-TV	CICLO
23/06/2013	GR3.MULINO "C"-PERDITA ARIA CASSA PIRITI	1	FO-03-17-MU3	PREPARAZIONE E CONVOGL. POLVERINO(ATEX)
24/06/2013	gr.b perdita da bavette NBC	2	FO-0B-17-TO0-3N	NASTRI TRASPORTAT. "NB-C" "NB-C1" (ATEX
24/06/2013	GR4: perdita vuoto in fase di rullaggio	2	FO-04-02-TT0-TT	TURBINA
27/06/2013	GRB perdita di olio central.oleod. TWT	2	FO-0B-46-WP0	IMPIAN. ABBATTIMENTO SELENIO
28/06/2013	GRB ITAR Perdita HCL da pompa dos CA106A	2	FO-0B-59-QA0-DC	CICLO E STAZIONE DOSAGGIO ACIDO
28/06/2013	GRB ITAR Perdita HCL da pompa dos CA106B	2	FO-0B-59-QA0-DC	CICLO E STAZIONE DOSAGGIO ACIDO
29/06/2013	gr.b AIA perdita dosaggio filmante carb.	3	FO-0B-17-TO2	TRASPORTO CARB. (PARTITA INTERNA) (ATEX)
30/06/2013	GR1 perdita spurgo collettore vap. aux	2	FO-01-09-VX0-V4	COLLETTORE
30/06/2013	GR1 perdita valvole vap. aux lavaggio ac	2	FO-01-09-DX0-CX	CICLO DISTRIBUZ. ALLE UTENZE DI GRUPPO
04/07/2013	gr3,desox A:perdita linea idorc.calcare	2	FO-03-44-WD1-ID	IDROCICLONI CALCARE
05/07/2013	Gr4:perdita di carbone dal mulino C	2	FO-04-17-MU3	PREPARAZIONE E CONVOGL. POLVERINO(ATEX)
06/07/2013	GR0B: ITAA, perdita aspirazione CA405A	2	FO-0B-43-WW0-TV	TUBAZIONI E VALVOLE
07/07/2013	GROB NASTRO N2-3 PERDITA DA BAVETTE	2	FO-0B-17-TO0-N7	NASTRO TRASPORTATORE "N2-3" (ATEX)
07/07/2013	GROB NASTRO N3-4 PERDITA OLIO RIDUTTORE	2	FO-0B-17-TO0-N6	NASTRO TRASPORTATORE "N3-4" (ATEX)
08/07/2013	gr b - perdita olio da riduttori DW2	2	FO-0B-17-DS2	SCARICAT.CARBONE A BENNA N°2 (GRU) ATEX
08/07/2013	gr b - perdita da manica 3 calcare	2	FO-0B-45-WG1-TV	TUBAZIONI E VALVOLE
10/07/2013	GROB NASTRO N7-8 PERDITA DA BAVETTE	2	FO-0B-17-TO0-N1	NASTRO TRASPORTATORE "N7-8" (ATEX)
13/07/2013	GROB ITAA PERDITA LINEA FONDO COL. A	2	FO-0B-43-WW0	IMPIANTO TRATTAMENTO ACQUE AMMONIACALI
13/07/2013	GROB ITAA PERDITA VAP AUX A COL.A	1	FO-0B-43-WW0	IMPIANTO TRATTAMENTO ACQUE AMMONIACALI
13/07/2013	GROB ITAA PERDITA ASP.CA421A COLONNA B	2	FO-0B-43-WW0	IMPIANTO TRATTAMENTO ACQUE AMMONIACALI
14/07/2013	GROB NASTRO N8 BIS PERDITA DA BAVETTE	2	FO-0B-17-TO0-T8	TORRE DI TRASFERIMENTO "T8" (ATEX)
15/07/2013	GROB NASTRO N2-3 PERDITA DA BAVETTE	2	FO-0B-17-TO0-N7	NASTRO TRASPORTATORE "N2-3" (ATEX)

15/07/2013	GROB NASTRO N3-4 PERDITA DA BAVETTE	2	FO-0B-17-TO0-N6	NASTRO TRASPORTATORE "N3-4" (ATEX)
18/07/2013	grb perdita dalla tenuta del CZ4	2	FO-0B-17-TO2	TRASPORTO CARB. (PARTITA INTERNA) (ATEX)
21/07/2013	GR.4B PERDITA TENUTA POMPA CA756B	2	FO-04-44-WB2-P0	POMPE RICIRCOLO SOSPENSIONE (ASS. E WFC)
21/07/2013	gr3,desox :perdita H2O lav.tele filt	2	FO-03-44-WC0-TV	TUBAZIONI E VALVOLE
23/07/2013	GR.4BDESOX PERDITA POMPA IDROC II CA820B	2	FO-04-44-WB2-IS	IDROCICLONI SECONDARI GESSO
23/07/2013	GR3 3AAB PERDITA VALVOLA ASPIRAZIONE	2	FO-03-01-AA2-VA	VALVOLE ASPIRAZ.,MANDATA E RICIRCOLAZ.
24/07/2013	GROB ITAR PERDITA OLIO MOTORIDUTT.AGITAT	2	FO-0B-59	TRATTAMENTO DELLE ACQUE REFLUE
25/07/2013	grb perdita flangia mandata P2 lm distil	1	FO-0B-06-EV0-LM	CICLO LETTI MISTI COMPRESI FILTRI
29/07/2013	GR3: perdita pompa vuoto condens. B	2	FO-03-02-VC0-EP	ELETTROPOMPA VUOTO CONDENSATORE
01/08/2013	GR3 PE: perdita da valvola FF266A	2	FO-03-44-WA1-PR	PRESCRUBBER (BV901A)
03/08/2013	GR3 Desox B: perdita da valvola FF225B	3	FO-03-44-WA1-PR	PRESCRUBBER (BV901A)
03/08/2013	GR3 Desox A perdita da valvola FF229A	3	FO-03-44-WA2-PR	PRESCRUBBER (BV901B)
03/08/2013	Gr4: perdita carbone mulino E	2	FO-04-17-MU5	PREPARAZIONE E CONVOGL. POLVERINO(ATEX)
07/08/2013	gr4,desox B:perdita olio dal ridutt. GGH	2	FO-04-44-WA2-RG	RISCALDATORI RIGENERATIVI (GGH)
07/08/2013	gr4 perdita da pn.scarico piriti mul.C	2	FO-04-17-MU3	PREPARAZIONE E CONVOGL. POLVERINO(ATEX)
09/08/2013	GRB EV200 perdita flang val mand RSE B	2	FO-0B-06-EV2	EVAPORATORE UNITA' 2
09/08/2013	GRB-BAVETTE NA-B APERTE PERDITA	1	FO-0B-17-TO0-2N	NASTRI TRASPORTAT. "NA-B" "NA-B1" (ATEX
09/08/2013	GR4.MULINO F-PERDITA POLV.TUB.LT.MARE	2	FO-04-17-MU6	PREPARAZIONE E CONVOGL. POLVERINO(ATEX)
09/08/2013	GR4.MULINO E-PERDITA ARIA COM.VALV.POLVE	2	FO-04-17-MU5	PREPARAZIONE E CONVOGL. POLVERINO(ATEX)
11/08/2013	gr3 perdita linea tamp.mand.polv.mul.A	2	FO-03-17-MU1	PREPARAZIONE E CONVOGL. POLVERINO(ATEX)
12/08/2013	gr.b perdita acqua avvolgitubo DW1	2	FO-0B-17-DS1	SCARICAT.CARBONE A BENNA N°1 (GRU) ATEX
14/08/2013	Gr3: perdita polverino mulino E	2	FO-03-17-MU5-TV	TUBAZIONE POLVERINO CARBONE (ATEX)
15/08/2013	gr b - perdita olio ridut. nastro bracci	2	FO-0B-17-MR0-MR	MACCHINA COMBINATA CARBONE (ATEX)
16/08/2013	GR4 MULINO 4C PERDITA CARBONE TENUTA STC	2	FO-04-17-MU3	PREPARAZIONE E CONVOGL. POLVERINO(ATEX)
16/08/2013	GR3 Desox:perdita da linea lav. tela	3	FO-03-44-WC1-TV	TUBAZIONI E VALVOLE
17/08/2013	GR 3 PERDITA DA TRAMOGGIA TORRE 5	2	FO-0B-17-T00-T5	TORRE DI TRASFERIMENTO "T5" (ATEX)
19/08/2013	GRB LMC 3/4 PERDITA MANDATA POMPA P1	2	FO-0B-01-LM1	LETTI MISTI
21/08/2013	GR3.MULINO D-PERDITA POLV.ATT.TUBO TEN.	2	FO-03-17	CARBONE (ATEX)

21/08/2013	GROB NASTRO NB-C PERDITA DA BAVETTE	2	FO-0B-17-T00-3N	NASTRI TRASPORTAT. "NB-C" "NB-C1" (ATEX
24/08/2013	GROB NASTRO N8TRIS PERDITA OLIO RIDUTTOR	2	FO-0B-17-TO0-T8	TORRE DI TRASFERIMENTO "T8" (ATEX)
24/08/2013	GR3: perdita polverino mulino E	2	FO-03-17-MU5	PREPARAZIONE E CONVOGL. POLVERINO(ATEX)
24/08/2013	GROB ITAA PERDITA VAP AUX A COLONNA A	1	FO-0B-43-WW0	IMPIANTO TRATTAMENTO ACQUE AMMONIACALI
24/08/2013	GROB ITAA PERDITA VAP AUX	2	FO-0B-43-WW0	IMPIANTO TRATTAMENTO ACQUE AMMONIACALI
27/08/2013	gr4 desox B perdita campione gesso	2	FO-04-44-WB2-CS	STRUMENTAZIONE
29/08/2013	GROB TSD PERDITA VALV.ALIMENTO 1	2	FO-0B-46	AREA TRATTAMENTO SPURGHI DESOX (TSD)
01/09/2013	GR.3A PERDITA LINEA MANDATA RIC.QUENCHER	2	FO-04-44-WB1-P0	POMPE RICIRCOLO SOSPENSIONE (ASS. E WFC)
01/09/2013	GRB- PERDITA DALLO SPORTELLO DEVIATRICE	2	FO-0B-17-TO0-4T	TORRE DI TRASFERIMENTO "TE" (ATEX)
01/09/2013	GRB ITAA Perdita acqua ammon valle reg Q	2	FO-0B-43-WW0	IMPIANTO TRATTAMENTO ACQUE AMMONIACALI
01/09/2013	GR3 Desox A:perdita mand.pompe quencher	1	FO-03-44-WB1-P0	POMPE RICIRCOLO SOSPENSIONE (ASS. E WFC)
01/09/2013	GR3: perdita polverino mulino A	2	FO-03-17-MU1	PREPARAZIONE E CONVOGL. POLVERINO(ATEX)
01/09/2013	GR3: perdita polverino mulino C	2	FO-03-17-MU3	PREPARAZIONE E CONVOGL. POLVERINO(ATEX)
03/09/2013	GR3 PKS LINEA C PULIZIA PERDITA POLVERIN	2	FO-03-17	CARBONE (ATEX)
03/09/2013	GR4 Desox A:perdita da scarico camp.calc	2	FO-04-44-WD1-CN	CONDOTTI E VALVOLE
04/09/2013	GR3.MULINO D-PERDITA POLVERINO TUB.ANG.A	1	FO-03-17-MU4	PREPARAZIONE E CONVOGL. POLVERINO(ATEX)
04/09/2013	GR3.MULINO F-PERDITA POLVERINO TUB.ANG.A	1	FO-03-17-MU6	PREPARAZIONE E CONVOGL. POLVERINO(ATEX)
04/09/2013	GRB ITAA Perdita acqua ammon valle reg Q	2	FO-0B-43-WW0	IMPIANTO TRATTAMENTO ACQUE AMMONIACALI
06/09/2013	GROB COMBINATA PERDITA BAVETTE BRACCIO	2	FO-0B-17-MR0-MR	MACCHINA COMBINATA CARBONE (ATEX)
10/09/2013	GRA PERDITA D'ACQUA DA VALVOLA MANUALE	2	FO-0A-01-LM0-SO	CIRCUITO SODA
11/09/2013	grb perdita polielettrolita pompa riserv	2	FO-0B-46-WP0-P0	IMPIAN. ABBATTIMENTO SELENIO- POMPE
12/09/2013	gr4 perdita polverino valv. mulino F	2	FO-04-17-MU6	PREPARAZIONE E CONVOGL. POLVERINO(ATEX)
16/09/2013	GR0B: TSD, perdita H2O preparazione poli	2	FO-0B-46-WN0-PO	CICLO DOSAGGIO POLIELETTROLITA+COMP.MECC
16/09/2013	gr3 desox B perdita campioni gesso	2	FO-03-44-WB2-CS	STRUMENTAZIONE
19/09/2013	Gr3:perdita polverino carbone mulino C	2	FO-03-17-MU3	PREPARAZIONE E CONVOGL. POLVERINO(ATEX)
21/09/2013	GR3.MULINO E-PERDITA TUBO ARIA TEN.LT.MO	1	FO-03-17-MU5	PREPARAZIONE E CONVOGL. POLVERINO(ATEX)
24/09/2013	Gr3:perdita polverino carbone mulino C	2	FO-03-17-MU3	PREPARAZIONE E CONVOGL. POLVERINO(ATEX)
28/09/2013	gr b - perdita da flangia pompa X TSD	2	FO-0B-46-WM0-TV	TUBAZIONI E VALVOLE

03/10/2013	GROB TSD PERDITA TENUTE	2	FO-0B-46	AREA TRATTAMENTO SPURGHI DESOX
	CA732X ALIMENTO			(TSD)
05/10/2013	GR3: perdita polverino mulino A	2	FO-03-17-MU1	PREPARAZIONE E CONVOGL. POLVERINO(ATEX)
06/10/2013	Gr3:perdita polverino carbone mulino B	2	FO-03-17-MU2	PREPARAZIONE E CONVOGL. POLVERINO(ATEX)
12/10/2013	grb perdita d'olio da N8	2	FO-0B-17-TO1	TRASPORTO CARB. (PARTITA ESTERNA) (ATEX)
13/10/2013	GROB DW1 PERDITA OLIO PISTONE TENDIFUNE	2	FO-0B-17-DS1	SCARICAT.CARBONE A BENNA N°1 (GRU) ATEX
14/10/2013	GROB NASTRO N2-3 PERDITA DA BAVETTE	2	FO-0B-17-TO0-N7	NASTRO TRASPORTATORE "N2-3" (ATEX)
14/10/2013	gr3 mulino E perdita tub.uscita lt.mare	2	FO-03-17-MU5	PREPARAZIONE E CONVOGL. POLVERINO(ATEX)
17/10/2013	grb perdita d'olio da N3-4	2	FO-0B-17-TO1	TRASPORTO CARB. (PARTITA ESTERNA) (ATEX)
18/10/2013	grb perdita dal tubo di sfiato RSE"A" e	2	FO-0B-06-EV1-S2	ELETTROPOMPE RICIRCOLO SALAMOIA
18/10/2013	GR2 SILOS 2PE PERDITA DA SERPENTINA VAPO	2	FO-02-15	ARIA GAS
18/10/2013	GR2 2VC2 PERDITA LINEA MANOMETRO	2	FO-02-02-VC0-EP	ELETTROPOMPA VUOTO CONDENSATORE
19/10/2013	GR4 Desox A:perdita coll.anello prescr.	2	FO-04-44-WA1-PR	PRESCRUBBER (BV901A)
22/10/2013	grb perdita da filtri a maniche silo "B"	1	FO-0B-46-WN0-S3	SILOS STOCCAGGIO CALCE GIORNALIERO
23/10/2013	GR2 perdita ocd baderna filtro a caldo	2	FO-02-10-VN0-FC	FILTRI A CALDO
23/10/2013	GROB NASTRO N8-BIS PERDITA DA BAVETTE	2	FO-0B-17-TO0-T8	TORRE DI TRASFERIMENTO "T8" (ATEX)
23/10/2013	GR3 MULINO 3A PERDITA POLVERINO ARIA TEN	1	FO-03-17-MU1	PREPARAZIONE E CONVOGL. POLVERINO(ATEX)
24/10/2013	GR1 perdita vapore valvola man. vap. aux	2	FO-01-09-VX0-V4	COLLETTORE
24/10/2013	GR1 perdita valvola spurgo vapore aux	2	FO-01-09-VX0-V4	COLLETTORE
24/10/2013	GR1 perdita valv. vapore condizionamento	3	FO-01-09-DX0-CX	CICLO DISTRIBUZ. ALLE UTENZE DI GRUPPO
24/10/2013	GR2 perdita valv. vapore condizionamento	3	FO-02-09-DX0-CX	CICLO DISTRIBUZ. ALLE UTENZE DI GRUPPO
25/10/2013	GR1 perdita OCD mandata pompe	2	FO-01-10-VN0-TV	TUBAZIONI, VALVOLE, SERBATOI
26/10/2013	Gr3:perdita serb.raccolta condense RAV B	3	FO-03-15-RV2-TV	TUBAZIONI, VALVOLE, SERBATOI
01/11/2013	Gr3:perdita linea recupero condense PE	3	FO-03-09-DX0-CX	CICLO DISTRIBUZ. ALLE UTENZE DI GRUPPO
04/11/2013	GR4:mul.E perdita tubaz. mandata carbone	2	FO-04-17-MU5	PREPARAZIONE E CONVOGL. POLVERINO(ATEX)
04/11/2013	GR4:mul.D perdita tubaz. mandata carbone	2	FO-04-17-MU4	PREPARAZIONE E CONVOGL. POLVERINO(ATEX)
05/11/2013	GRB EV100 Pompa ric sal CA559B perdita d	2	FO-0B-06-EV1	EVAPORATORE UNITA' 1
07/11/2013	GR3 MULINO 3A PERDITA POLVERINO TUBAZION	2	FO-03-17-MU1	PREPARAZIONE E CONVOGL. POLVERINO(ATEX)
11/11/2013	GR1 PERDITA DA INGRESSO ECO	1	FO-01-07-PP0-PP	PARTI IN PRESSIONE DI CALDAIA

11/11/2013	GR4 MULINO 4C PERDITA DI POLVERINO TUBAZ	2	FO-04-17-MU3	PREPARAZIONE E CONVOGL. POLVERINO(ATEX)
14/11/2013	GR4: perdita polverino mulino D	2	FO-04-17-MU4	PREPARAZIONE E CONVOGL. POLVERINO(ATEX)
20/11/2013	GRA perdita acido pompa letti misti 1-2	1	FO-0A-01-LM0-AC	CIRCUITO ACIDO
26/11/2013	GR3 Desox B:perdita valvola FF758A	2	FO-03-44-WB2-SG	SEPARATORE DI GOCCE (DEMISTER)
28/11/2013	Gr3:perdita olio livello visivo mulino B	2	FO-03-17-MU2	PREPARAZIONE E CONVOGL. POLVERINO(ATEX)
29/11/2013	GROB EV100 PERDITA DA REFRIG.DEGASATORE	2	FO-0B-06-EV1	EVAPORATORE UNITA' 1
07/12/2013	GR3 Desox A:perdita da valv.lav.demister	2	FO-03-44-WB1-SG	SEPARATORE DI GOCCE (DEMISTER)
09/12/2013	Gr3: perdita olio cassa riduttore mul. E	2	FO-03-17-MU5	PREPARAZIONE E CONVOGL. POLVERINO(ATEX)
09/12/2013	Gr3:perdita aria valv. raffred. mulino C	3	FO-03-17-MU3	PREPARAZIONE E CONVOGL. POLVERINO(ATEX)
18/12/2013	GROA LMC PERDITA DI ACIDO DA MANDATA POM	2	FO-0A-01-LM0-AC	CIRCUITO ACIDO
24/12/2013	gr4 mulino E perdita da albero inf.	2	FO-04-17-MU5	PREPARAZIONE E CONVOGL. POLVERINO(ATEX)
24/12/2013	gr4 perdita polv.mulino D angolo B	2	FO-04-17-MU4	PREPARAZIONE E CONVOGL. POLVERINO(ATEX)
25/12/2013	GR4.MULINO D-PERDITA POLV.ANGOLO B CALDA	1	FO-04-17-MU4	PREPARAZIONE E CONVOGL. POLVERINO(ATEX)
27/12/2013	GR4: perdita polverino mulino F	2	FO-04-17-MU6	PREPARAZIONE E CONVOGL. POLVERINO(ATEX)
28/12/2013	GROB ITAA PERDITA H20 INDUSTRIALE	3	FO-0B-43-WW0	IMPIANTO TRATTAMENTO ACQUE AMMONIACALI

ALLEGATO 6: CONSUMO COMBUSTIBILI, VOLUME FUMI, EMSSIONI IN CONCENTRAZIONE, EMISSIONI MASSICHE

			valore da verifica su TG6	valore da verifica su TG5	GE1	GE2	GE3	GE4	GEBA	Motopomp a AIDI	Motopompa AID2	Motopompa gr 3e gr4	Motopompa AIM2	Motopompa AIM3	GE TG 5 /TG 6	motopompa schium OCD	motopompa torre 7	
Gasolio		kg	30 TG0	30 105	121,207	104,849	137,959	137,959	7,883	39,023	39,023	66,02338293	137,9593076	159,4415427	288,7291224	5,912541755	52,03036745	
Vg (Nmc/Kg)	12,00	Nmc	0	0	1454485	1258189	1655512	1655512	94601	468273	468273	792281	1655512	1913299	3464749	70951	624364	
SO _{2 misurata}		mg/Nmc	24	21	24	24	24	24	24	24	24	24	24	24	24	24	24	
NOx _{misurata}		mg/Nmc	82	87	87	87	87	87	87	87	87	87	87	87	87	87	87	ĺ
Polveri misurata		mg/Nmc	4	5	5	5	5	5	5	5	5	5	5	5	5	5	5	ĺ
CO misurata		mg/Nmc	47	38	47	47	47	47	47	47	47	47	47	47	47	47	47	TOTALE
SO ₂		t			0,00003	0,00003	0,00004	0,00004	0,00000	0,00001	0,00001	0,00002	0,00004	0,00005	0,00008	0,00000	0,00001	0,0004
NOx (NO ₂ equi	v.)	t			0,00013	0,00011	0,00014	0,00014	0,00001	0,00004	0,00004	0,00007	0,00014	0,00017	0,00030	0,00001	0,00005	0,0014
Polveri		t			0,00001	0,00001	0,00001	0,00001	0,00000	0,00000	0,00000	0,00000	0,00001	0,00001	0,00002	0,00000	0,00000	0,0001
CO		t			0,00007	0,00006	0,00008	0,00008	0,00000	0,00002	0,00002	0,00004	0,00008	0,00009	0,00016	0,00000	0,00003	0,0007

Allegato 7 tabella riassuntiva immissioni

	LiPunti					Campanedda	1		Platamona			Pozzo		Stintino			
microg/mc	NO2	PM10		S02	NO2	PM10	S02	NO2	PM10	S02	NO2	PM10	S02	NO2	PM10	S02	
Gennaio	7	',3	5,8	0,3	5,0	7,4	7,2	5,7	20,3	0,0	12,5	7,1	0,3	1,4	8,3	0,1	
Febbraio	10),1	3,1	2,3	3,7	7,6	3,0	5,7	17,4	0,0	11,0	5,6	0,0	0,5	7,0	0,1	
Marzo	7	',3	5,4	1,3	2,7	8,3	0,0	4,1	22,4	0,0	8,7	6,6	0,0	11,4	13,5	0,0	
Aprile	8	,6	8,6	0,2	2,2	11,0	0,0	4,3	24,5	0,0	4,6	6,8	0,0	12,5	13,1	0,1	
Maggio	5	,5	6,4	3,9	1,4	9,8	0,0	4,1	22,7	0,0	3,3	6,4	0,2	6,5	11,7	0,0	
Giugno	4	,7	9,6	2,3	1,3	10,5	0,9	4,2	28,4	0,3	10,3	8,3	0,8	1,6	13,0	0,1	
Luglio	E	,0	8,6	2,2	2,0	9,4	0,0	2,4	27,7	0,0	6,9	8,3	2,8	0,7	10,3	0,1	
Agosto	E	,4	10,9	2,7	1,9	6,9	0,0	2,8	24,5	0,0	4,9	5,6	2,0	0,4	8,1	0,0	
Setttembre	7	' ,1	8,2	1,1	3,1	6,4	0,0	3,7	21,0	0,2	5,5	4,9	3,5	0,6	7,4	0,3	
Ottobre	7	',6	7,4	0,5	2,2	9,3	0,2	3,1	11,5	4,6	21,9	5,8	3,9	0,1	9,0	0,2	
Novembre	7	',9	3,4	0,4	1,6	4,9	0,3	2,3	10,4	0,0	12,8	4,4	0,3	0,1	9,1	1,9	
Dicembre	13	,4	7,9	1,1	3,1	6,5	0,0	5,8	13,7	0,1	16,4	9,3	0,0	1,3	11,3	0,8	