

Viadana: 27/06/2013

Rif.: LS1313

Ministero dell'Ambiente e della Tutela del Territorio (del Mare — Direzione Generale Valutazioni Ambienta

E.prot DVA #2013 - 0015645 del 04/07/2013

A: Ministero dell'Ambiente e della Tutela del Territorio e del Mare

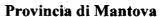
DVA – Div. IV – AIA

Via C. Colombo, 44 - 00147 Roma

Fax. 06/57225068

ISPRA

Servizio Interdipartimentale per l'Indirizzo, il Coordinamento ed il Controllo delle Attività Ispettive


Via Vitaliano Brancati, 48 - 00144 Roma

ARPA Lombardia

Settore Attività Produttive e Laboratori Viale Restelli, 3/1 – 20124 Milano

ARPA Dipartimento di Mantova

Viale Risorgimento, 43 – 46100 Mantova Att.ne Lodi – Balloni

Via Don Maraglio, 4 – 46100 Mantova

Sindaco di Viadana

Piazza Matteotti - 46019 Viadana (MN)

OGGETTO: AUTORIZZAZIONE INTEGRATA AMBIENTALE sito produttivo SADEPAN CHIMICA S.r.l. di Viadana (MN) – RAPPORTO ANNUALE

Rif. Decreto Ministeriale DVA – DEC – 2011 – 0000423 del 26/07/2011

Si invia in allegato il Rapporto Annuale relativo all'ano 2012 (01/01/2012 – 31/12/2012).

Resp. Protezione Ambiente e Sicurezza Ing. Spata L.

) ota

RAPPORTO ANNUALE

Il presente documento assolve all'obbligo di comunicazione annuale previsto dal Decreto Ministeriale n° DVA-DEC-2011-0000423 del 26/07/2012 (Autorizzazione Integrata Ambientale) rilasciata a Sadepan Chimica S.r.l. per il sito produttivo di Viadana (MN).

Il documento è redatto secondo i contenuti previsti dal capitolo 11.6 del Piano di Monitoraggio e Controllo.

Il documento è relativo al periodo 01/01/2012 - 31/12/2012.

INFORMAZIONI GENERALI

Nome dell'impianto: SADEPAN CHIMICA S.r.l.

Nome del Gestore e della società che controlla l'impianto: BELLOTTI PAOLO

Nº ore di effettivo funzionamento dei reparti produttivi:

Reparto Formaldeide: 8616 ore

Reparto Resine Liquide: 8424 ore

Reparto Resine in Polvere: 6504 ore

Reparto Resine Autoindurenti: 2521 ore

Reparto Sazolene: 5668 ore

Nº di avvii e spegnimenti anno dei reparti produttivi:

Reparto Formaldeide: 3

Reparto Resine Liquide: 8

Reparto Resine in Polvere: 7

Reparto Resine Autoindurenti: 52 (funzionamento del reparto – circa 8 ore al giorno per 5 giorni

alla settimana)

Reparto Sazolene: 8

Principali prodotti e relative quantità mensili:

Mese	Formaldeide 36% [ton]	Resine Liquide [ton]	Resine in polvere [ton]	Resine Autoindur. [ton]	Sazolene [ton]
Gennaio	17.896,77	23.574,00	1.023,00	353,00	799,00
Febbraio	22.434,86	21.005,00	224,00	457,00	1.122,00
Marzo	20.222,89	26.468,00	1.391,00	468,00	2.643,00
Aprile	17.404,49	19.222,00	392,00	380,00	1.392,00
Maggio	21.297,57	21.865,00	1.089,00	493,00	2.240,00
Giugno	21.319,83	22.490,00	1.207,00	427,00	999,00
Luglio	17.633,38	18.979,00	1.380,00	487,00	352,00
Agosto	5.248,24	7.036,00	192,00	428,00	0,00
Settembre	21.238,99	23.808,00	1.395,00	469,00	1.595,00
Ottobre	24.758,21	23.960,00	1.370,00	506,00	2.691,00
Novembre	17.612,87	23.450,00	936,00	422,00	2.690,00
Dicembre	14.742,44	13.591,00	932,00	353,00	2.079,00
тот	221.810,53	245.448,00	11.531,00	5.243,00	18.602,00

DICHIARAZIONE DI CONFORMITA' ALL'AUTORIZZAZIONE INTEGRATA AMBIENTALE

Il sottoscritto Bellotti Paolo in qualità di Gestore del sito produttivo Sadepan Chimica S.r.l. di Viadana (MN)

DICHIARA

che l'esercizio dell'impianto, nel periodo di riferimento del presente rapporto, ovvero dal 01/01/2012 al 31/12/2012 è avvenuto nel rispetto delle prescrizioni e condizioni stabilite dll'Autorizzazione Integrata Ambientale. Il Gestore si è adoperato per l'attuazione di quanto prescritto nel Parere Istruttorio Conclusivo (PIC) ed ha provveduto a mettere in atto il Piano di Monitoraggio e Controllo (PMC).

che nel corso del 2012 non sono state rilevate non conformità ambientali e non sono state pertanto prodotte comunicazioni relative agli Enti di controllo.

che nel corso del 2012 non si sono verificati eventi incidentali e non sono state pertanto prodotte comunicazioni relative ad Autorità Competente ed Enti di controllo.

Il Gestore Bellotti Paolo

CONSUMI

Consumo di materie prime e materie ausiliarie nell'anno:

MATERIE PRIME	QUANTITA' [ton]
Metanolo	92676
Urea	104875
Melammina	16457
Glicole Dietilenico	813
Acido Formico	53
Acido Fosforico	177
Resorcinolo	3
Urotropina (esamina)	183
Acido solfammico	20
Permanganato di potassio	0,1
Sodio idrossido	160
Sodio ipoclorito	16
Acido Cloridrico	242
Ammoniaca (in soluzione acquosa)	285
Additivi non pericolosi	2334

Consumo di combustibili nell'anno:

Metano 3020293 mcs, Gasolio 22,3 ton

Mese	Metano
Gennaio	403.709,00
Febbraio	202.157,00
Marzo	357.775,00
Aprile	186.870,00
Maggio	221.234,00
Giugno	145.256,00
Luglio	174.193,00
Agosto	81.946,00
Settembre	182.421,00
Ottobre	220.429,00
Novembre	349.191,00
Dicembre	495.112,00
тот	3.020.293,00

Mese	Gasolio
Gennaio	2,06
Febbraio	1,75
Marzo	2,44
Aprile	0,94
Maggio	1,56
Giugno	1,92
Luglio	1,83
Agosto	2,80
Settembre	2,89
Ottobre	0,00
Novembre	2,14
Dicembre	1,97
тот	22,28

Caratteristiche dei combustibili:

Metano NON DISPONIBILE;

Gasolio: vedere scheda tecnica allegata (Gasolio Standard ENI) (Allegato n°1)

Consumo di risorse idriche nell'anno:

Acqua da pozzo 883628 m³

Mese	Totale emunto	Igienico sanitario [POZZO 4]	Processo [ACQUA DEMI]	Raffredd. Impianti [orri evap.]	Processo [Colle liquide]	Usi Vari [Raffr Resine, Deferr., Controlav. scambio ionico, Lavaggi, Irrigaz].
Gennaio	74.664,00	1.374,00	6.933,00	57.115,00	583	8.659,00
Febbraio	84.632,00	1.772,00	6.407,00	64.079,00	487	11.887,00
Marzo	79.928,00	2.000,00	7.760,00	56.015,00	905	13.248,00
Aprile	68.630,00	652,00	5.246,00	52.759,00	742	9.231,00
Maggio	74.481,00	865,00	7.358,00	54.589,00	1017	10.652,00
Giugno	84.317,00	385,00	7.384,00	69.118,00	606	6.824,00
Luglio	83.613,00	679,00	6.798,00	68.590,00	516	7.030,00
Agosto	40.601,00	453,00	3.478,00	30.491,00	101	6.078,00
Settembre	81.053,00	537,00	6.399,00	69.202,00	673	4.242,00
Ottobre	79.416,00	883,00	6.988,00	64.585,00	825	6.135,00
Novembre	66.673,00	733,00	6.399,00	46.539,00	973	12.029,00
Dicembre	65.620,00	940,00	5.276,00	47.760,00	463	11.181,00
тот	883.628,00	11.273,00	76.426,00	680.842,00	7.891,00	107.196,00

Consumo e produzione di energia nell'anno:

Energia termica consumata: 152261 MWh Energia elettrica consumata: 36238 MWh

Energia complessiva consumata: 188499 MWh

Mese	En Consumata [MWh]
Gennaio	13.840,03
Febbraio	14.817,34
Marzo	14.472,00
Aprile	11.450,01
Maggio	13.945,04
Giugno	13.415,24
Luglio	11.506,96
Agosto	3.778,43
Settembre	13.713,43
Ottobre	16.063,29
Novembre	12.915,03
Dicembre	12.344,42
тот	152.261,21

Mese	En Elettrica [MWh]
Gennaio	2.954,09
Febbraio	2.947,05
Marzo	3.586,14
Aprile	2.608,47
Maggio	3.326,43
Giugno	3.143,73
Luglio	3.003,66
Agosto	1.426,78
Settembre	3.403,14
Ottobre	3.758,49
Novembre	3.216,78
Dicembre	2.862,81
тот	36.237,58

NOTA: nella voce energia termica è stata considerata l'energia autoprodotta dalle reazioni chimiche di ossidazione che si verificano all'interno delle 6 unità di produzione Formaldeide e relativi Post Combustori catalitici e l'energia ottenuta dalla combustione del gas metano all'interno della Centrale Termica e per l'essiccazione dei prodotti in polvere.

EMISSIONI ARIA

Quantità emessa nell'anno di ogni inquinante monitorato per ciascun punto di emissione

Nella tabella successiva si riportano i dati dei quantitativi dei due principali inquinanti: COT e Formaldeide emessi complessivamente nel 2012 dai camini dei quattro PC (E1, E2, E8, E16) del Biofiltro (E3) e del Sazolene (E15).

Emissione	COT [kg]	Formaldeide [kg]
PC1	0	0
PC2	301,3	25,2
PC3	762,8	253,8
PC4	396,5	111,3
E3	-	562
E15	-	1265

Risultati delle analisi di controllo di tutti gli inquinanti in tutte le emissioni, come previsto dal PMC

Tutti i valori sono espressi in [mg/Nm³]

Emissione E2 - PC3						
RdP	4923/2012	10850/2012	15748/2012	22257/2012	26893/2012	1522/2013
Data campionamento	17/02/2012	16/04/2012	14/06/2012	07/09/2012	26/10/2012	20/12/2012
Formaldeide	3,6	5,3	0,67	0,68	0,61	7,4
Metanolo	< 0,1	0,12	0,14	0,13	0,2	0,21
Dimetiletere [DME]	1,2	2,1	4,1	1,4	1,7	2,6
Ammoniaca [NH₃]	< 0,1	0,64	0,56	0,31	0,72	0,68
Monossido di carbonio [CO]	12	7	6	10	12	20
Carbonio Organico Totale [COT]	-	13,4	_	-	6,8	6,8

Emissione E3 - Biofiltro	You you be					
RdP	5401/2012	10852/2012	15750/2012	22259/2012	26895/2012	1524/2013
Data campionamento	01/03/2012	20/04/2012	14/06/2012	07/09/2012	26/10/2012	20/12/2012
Formaldeide	0,17	1,3	2,7	1,7	0,38	0,93

Emissione E5 - Caldaia H3	
RdP	10853/2012
Data campionamento	18/04/2012
Ossidi di Azoto [NO₂]	76
Ossido di Carbonio	35

Emissione E6 - Caldala H4	
RdP	10854/2012
Data campionamento	18/04/2012
Ossidi di Azoto [NO₂]	124
Ossido di Carbonio	34

Emissione E7 - Caldala H5	
RdP	9598/2012
Data campionamento	18/04/2012
Ossidi di Azoto [NO ₂]	186
Ossido di Carbonio	83

Emissione E8 - PC2							
RdP	4924/2012	10856/2012	15751/2012	22260/2012	26896/2012		
Data campionamento	17/02/2012	17/04/2012	15/06/2012	07/09/2012	26/10/2012		
Formaldeide	0,23	0,42	0,41	0,57	0,31		
Metanolo	< 0,1	< 0,1	< 0,1	0,13	0,17		
Dimetiletere [DME]	0,25	0,36	0,89	0,41	0,13		
Ammoniaca [NH₃]	0,06	0,75	0,4	0,23	1,5		
Monossido di carbonio [CO]	< 1	< 1	8	2	3		
Carbonio Organico Totale [COT]	-	2,4	_	-	2,8		

Emissione E9 - Filtro a maniche buca UREA					
RdP	10857/2012	26897/2012			
Data campionamento	18/04/2012	29/10/2012			
Polvere	0,57	0,82			
Ammoniaca [NH ₃]	0,92	4,3			

Emissione E10 - Aspiratori su i vasca scioglimento UREA	開始 - 日本 東京 開電	
RdP	10858/2012	26898/2012
Data campionamento	17/04/2012	26/10/2012
Ammoniaca [NH ₃]	0,59	0,88
Formaldeide	0,24	0,23

Emissione E15 - Sazolene		1000里的数次。			i. In he	
RdP	5403/2012	1086/2012	15753/2012	22261/2012	26899/2012	1525/2013
Data campionamento	01/03/2012	16/04/2012	15/06/2012	14/09/2012	29/10/2012	21/12/2012
Polvere	1,1	0,81	1,1	1,5	1,5	0,55
Formaldeide	0,18	7,7	12,9	8	2,5	2,3
Ammoniaca [NH ₃]	7	14	2,9	2,1	5,2	4,4

Emissione E16 - PC4		. Zi i i i i i i i i i i i i i i i i i i	I was the same	Edi Calibration		
RdP	4925/2012	10863/2012		22262/2012	26900/2012	1526/2013
Data campionamento	17/02/2012	16/04/2012	14/06/2012	07/09/2012	29/10/2012	21/12/2012
Formaldeide	1,7	3,1	2,3	0,65	1,1	3,9
Metanolo	< 0,1	< 0,1	< 0,1	0,14	0,12	0,31
Dimetiletere [DME]	0,65	0,58	1,7	0,93	1,2	1,1
Ammoniaca [NH ₃]	2,3	0,71	0,23	0,22	0,45	0,22
Monossido di carbonio [CO]	10	26	50	8	12	14
Carbonio Organico Totale [COT]	-	5,5	-	_	6,6	4,9

Emissione E21 - Caldaia H6	V 1988 - A
RdP	9599/2012
Data campionamento	18/04/2012
Ossidi di Azoto [NO₂]	173
Ossido di Carbonio	91

Risultati del monitoraggio delle emissioni fuggitive

Vedere report allegato (Allegato 3)

EMISSIONI IN ACQUA

Quantità emessa nell'anno di ogni inquinante monitorato

Valori calcolati partendo dalla media delle concentrazioni rilevate nelle 4 analisi allo scarico (vedere punto successivo) e considerando una portata di scarico annuale pari a 569336 m³ ovvero il 65% del quantitativo emunto complessivamente dai pozzi (unica fonte di approvvigionamento).

Parametro	Media	Limiti Tab.3, All.5 ala parte III^ del D.Lgs 03/04/2006 n° 152	Unità di misura	kg/anno
рН	8,05	5,5 - 9,5	mg/l	-
Solidi speciali totali	5,75	5,75 80		1742
C.O.D.	28,00	160	mg/l	8491
B.O.D.5	5,50	40	mg/l	1668
Cromo	0,01	2	mg/l	2
Cromo esavalente	0,00	0,2	mg/l	0
Manganese	0,12	2	mg/l	35
Piombo	0,01	0,2	mg/l	3
Rame totale	0,01	0,1	mg/l	2
Zinco	0,02	0,5	mg/l	7
Cadmio	0,004	0,02	mg/l	1
Boro	0,16	2	mg/l	48
Nickel	0,01	2	mg/l	2
Alluminio	0,01	1	mg/l	2
Cobalto (Co)	0,01		mg/l	2
Ferro (Fe)	0,22	2	mg/l	68
Mercurio (Hg)	0,00010	0,005	mg/l	0,030
Fosforo totale	0,49	10	mg/l	148
Azoto ammoniacale	8,63	15	mg/l	2616
Azoto nitroso	0,39	0,6	mg/l	118
Azoto nitrico	13,27	20	mg/l	4026
Cloruri	54,25	1200	mg/l	16452

Parametro	Media	Limiti Tab.3, All.5 ala parte ill^ del D.Lgs (03/04/2006 n°152	Unità di misura	kg/anno
Solfati	44,25	1000	mg/l	13419
Tensioattivi anionici	0,25		mg/l	75
Tensioattivi non ionici	0,20		mg/l	60
Solventi organici aromatici	0,01	0,2	mg/l	3
Solventi organici clorurati	0,01	1	mg/l	3
Aldeidi	0,06	1	mg/l	17
Eschierichia coli	1212,50	5000	ufc/100 ml	367709
Saggio di tossicità	accetabile	50	organismi vivi	
Metanolo	0,00		mg/l	2
Acido Formico	0,70		mg/l	212

Risultati delle analisi di controllo di tutti gli inquinanti in tutti gli scarichi, come previsto dal PMC

Parametro	Analisi del 19/04/2012	Analisi del 26/06/2012	Analisi del 03/10/2012	Analisi del 20/12/2012	Limiti Tab.3, Ali.5 ala parte III^ del D.Lgs 03/04/2006 n°152
pH	7,95	8,1	8,3	7,86	5,5 - 9,5
Solidi speciali totali	10	3,99	3,99	5	80
C.O.D.	28		- ,		160
B.O.D.5	8	3	3	8	40
Cromo	0,0069	0,0069	0,0069	0,0069	2
Cromo esavalente	0,00099	0,00099	0,00099	0,00099	0,2
Manganese	0,053	0,05	0,25	0,11	2
Piombo	0,0099	0,0099	0,0099	0,0099	0,2
Rame totale	0,0099	0,007	0,007	0,009	0,1
Zinco	0,014	0,008	0,053	0,017	0,5
Cadmio	0,0039	0,0039	0,0039	0,0039	0,02
Boro	0,23	0,12	0,11	0,17	2
Nickel	0,0069	0,0069	0,0069	0,0069	2
Alluminio	0,0069	0,0069	0,009	0,0069	1
Cobalto (Co)	0,0069	0,0069	0,0069	0,0069	
Ferro (Fe)	0,27	0,33	0,25	0,049	2
Mercurio (Hg)	0,000099	0,000099	0,0001	0,000099	0,005
Fosforo totale	0,6	0,35	0,44	0,56	10
Azoto ammoniacale	15	8	8	3,5	15
Azoto nitroso	0,5	0,5	0,5	0,0499	0,6
Azoto nitrico	14	20	19	0,099	20
Cloruri	34	33	47	103	1200

Parametro	Analisi del 19/04/2012	Analisi del 26/06/2012	Analisi del 03/10/2012	Analisi del 20/12/2012	Limiti Tab.3, All.5 ala parte III^ del D.Lgs 03/04/2006 n°152
Solfati	38	49	51	39	1000
Tensioattivi anionici	0,19	0,2	0,3	0,3	
Tensioattivi non ionici	0,2	0,199	0,199	0,199	
Solventi organici aromatici	0,0099	0,0099	0,0099	0,0099	0,2
Solventi organici clorurati	0,0099	0,0099	0,0099	0,0099	1
Aldeidi	0,0099	0,0099	0,0099	0,2	1
Eschierichia coli	600	300	3900	50	5000
Saggio di tossicità	0	-	-	-	50
Metanolo	0,000099	0,000099	0,0099	0,0099	
Acido Formico	0,8	1,8	0,099	0,099	

Risultati del monitoraggio delle acque sotterranee

VEDERE TABELLA RIEPILOGATIVA ALLEGATA (Allegato n°4)

EMISSIONI RIFIUTI

Codici, descrizione qualitativa e quantità di rifiuti prodotti nell'anno e loro destino

Rispetto agli anni precedenti si conferma la diminuzione nella quantità di rifiuti smaltiti in termini assoluti (578213 kg nel 2009; 562358 kg nel 2010; 355920 kg nel 2011; 340205 kg nel 2012). Si conferma anche il dimezzamento dei quantitativi dei rifiuti costituiti da adesivi e sigillanti induriti (CER 080410) che passano dalle 300 ton smaltite nel 2009 a 302 ton nel 2010 alle 154 ton del 2011 alle 152 ton nel 2012. Anche per le altre tipologie di rifiuti si è registrata una diminuzione dei quantitativi prodotti e smaltiti rispetto agli ultimi due anni (CER 150106: 22,5 ton nel 2009, 22,9 ton nel 2010; 16,78 ton nel 2011; 12,78 ton nel 2012), in contro tendenza il quantitativo di rifiuti metallici destinati al recupero in quanto legato essenzialmente ad operazionidi manutenzione sugli impianti (CER 170405: 32 ton nel 2009; 33,4 ton nel 2010; 7,72 ton nel 2011; 12,94 ton nel 2012). Nello stabilimento è attiva la raccolta differenziata dei rifiuti per poter avviare al recupero anche carta, plastica e legno.

Se si considerano i trend di conferimento dei rifiuti nel corso del 2012 si può effettuare un confronto per specifica tipologia rispetto agli ultimi anni ottenendo le seguenti evidenze:

- Aumentato in modo non significativo il quantitativo di rifiuti derivanti dalla pulizia degli impianti di depurazione biologica asserviti ai servizi igienici CER **200304** (9180 kg smaltiti nel 2009; 3480 kg smaltiti nell'anno 2010; 6700 kg nel 2011; **8220** kg nel 2012)

- In ulteriore diminuzione il quantitativo di carta prodotto CER **150101** inviato a recupero (47120 kg recuperati nel 2009; 44980 kg recuperati nel corso del 2010; 34520 recuperati nel 2011; **28580** kg nel 2012)
- Come già descritto in precedenza resta invariato rispetto al 2011, ma si registra un dimezzamento nel confronto con gli anni precedenti, il quantitativo di Resine indurite destinate a smaltimento CER **080410** (300000 kg nel 2009; 302380 kg nel 2010; 153860 kg nel 2011; **151620** kg nel 2012).
- In sensibile calo il quantitativo di rifiuti derivanti da Plastica CER 150102 (112580 kg nel 2009;
 92120 kg nel 2010; 97380 kg nel 2011, 58660 kg nel 2012)
- Diminuzione non significativa si registra per i rifiuti di Imballaggi misti CER **150106** (22500 kg nel 2009; 22860 kg nel 2010; 16780 kg nel 2011; **12780** kg nel 2012)
- Raddoppiato rispetto al 2011 il quantitativo di rifiuti derivanti da stracci ed assorbenti in generale CER **150203** (22010 kg del 2009; 14900 kg nel 2010; 11260 kg nel 2011; **22160** kg nel 2012)
- In aumento il quantitativo di Ferro e Acciaio CER **170405** inviato a recupero (32000 kg nel 2009; 33380 kg nel 2010; 7720 kg nel 2011, **12940** kg nel 2012).
- In sensibile aumento ma non significativo il quantitativo di rifiuto CER **190902** derivante dalle operazioni di pulizia delle vasche degli impianti di deferrizzazione dell'acqua (18950 kg nel 2009; 15440 kg nel 2010; 15320 kg nel 2011; **17500** kg nel 2012)
- sostanzialmente invariato il quantitativo di rifiuto CER **130205** ovvero scarti di olio (720 kg nel 2009; 1280 kg nel 2010; 980 nel 2011; **660** kg nel 2012)

Rispetto agli ultimi anni, nel corso del 2012, sono stati smaltiti inoltre i rifiuti costituiti da:

- CER 120112* costituito da residui di grasso per riduttori ed altre apparecchiature esaurito (940 kg nel 2012)
- CER 150103 imballaggi in legno ovvero bancali (6880 kg nel 2012)
- CER **150107** imballaggi in vetro (**540** kg nel 2012)
- CER 160802* catalizzatore degli impianti formaldeide (17965 kg nel 2012 destinati ad attività di recupero in Svezia)
- CER 170203 plastica derivante dai pacchi delle torri evaporative (760 kg recuperati nel 2012)

Rispetto agli ultimi due anni, nel corso del 2012, non sono stati smaltiti rifiuti costituiti da:

- CER **061002** Sali di termostatazione dei reattori;

- CER 080318 toner;
- CER 170407 Metalli misti.
- CER 200121 Lampade al neon

Nel calcolo dell'indice specifico dei rifiuti smaltiti nel 2012, come negli anni precedenti, si è proceduto escludendo dalla somma l'olio, il ferro e l'acciaio, gli imballaggi in plastica ed in carta, il vetro, in quanto avviati ad attività di recupero.

Smaltimento specifico di rifiuti:

kg di rifiuti avviati a smaltimento / tonnellate annue di produzione

Rifiuti per unità di prodotto finito 424 Kg/10³t

Indice annuo di recupero rifiuti (%): kg annui di rifiuti inviati a recupero / kg annui di rifiuti prodotti

Il dato riferito al 2012 è pari al 37% sostanzialmente invariato rispetto al 2011 quando il rapporto si era attestato al 39.5%.

A recupero

CER 130205* ovvero scarti di olio 660 kg

CER 150101 Carta 28580 kg

CER 150102 Plastica 58660 kg

CER 150103 Legno 6880 kg

CER 150107 Vetro 540 kg

CER 160802* Catalizzatore 17965 kg

CER 170203 Plastica 760 kg

CER 170405 Ferro e Acciaio 12940 kg

Totale a recupero 126985 kg

Criterio di gestione del deposito temporaneo di rifiuti per l'anno in corso UTILIZZATO IL CRITERIO TEMPORALE

EMISSIONI RUMORE

Risultanze delle campagne di misura suddivise in misure diurne e misure notturne

Nei giorni 31 luglio e 01-02 agosto 2012 il laboratorio esterno specializzato Studio Alfa ha provveduto ad effettuare una campagna di monitoraggio acustico al fine di valutare l'impatto del rumore aziendale sull'ambiente esterno.

Si riporta in allegato la relazione finale che evidenzia il rispetto dei limiti di zona sia nel periodo diurno che notturno verificati anche presso i recettori più vicini. (Allegati 5.1 e 5.2)

ULTERIORI INFORMAZIONI

Nel corso del 2012 non sono pervenute segnalazioni effettuate dalla popolazione in merito ad episodi riconducibili ad emissioni odorigene

Risultanze dei controlli effettuati su impianti, apparecchiature e linee di distribuzione, come previsto al paragrafo 2

Si riportano di seguito i controlli effettuati nel corso del 2012 sulle apparecchiature individuate come critiche ed i relativi esiti:

Principali impianti di abbattimento legati alle Emissioni in atmosfera

1 i incipan impiani	II ui abbattimento i	egati alie Emissioni	in almostera	
Apparecchiatura	Tipo controllo	Frequenza	Esito	Registraz
PC1 (E1)	Parti pneumatiche ed elettriche	Non eseguita per fermo impianto	-	Software gestione manutenzione
	Generale	Non eseguita per fermo impianto	•	Software gestione manutenzione
PC2 (E8)	Parti pneumatiche ed elettriche	mensile	Positivo: nessuna anomalia riscontrata	Software gestione manutenzione
	Generale	semestrale	Positivo: nessuna anomalia riscontrata	Software gestione manutenzione
PC3 (E2)	Parti pneumatiche ed elettriche	mensile	Positivo: nessuna anomalia riscontrata	Software gestione manutenzione
	Generale	semestrale	Positivo: nessuna anomalia riscontrata	Software gestione manutenzione
PC4 (E16)	Parti pneumatiche ed elettriche	mensile	Positivo: nessuna anomalia riscontrata	Software gestione manutenzione
	Generale	semestrale	Positivo: nessuna anomalia riscontrata	Software gestione manutenzione

Apparecchiatura	Tipo controllo	Frequenza	Esito	Registraz
Filtro a maniche Sazolene (E15)	Parti pneumatiche ed elettriche	quindicinale	Positivo: nessuna anomalia riscontrata	Software gestione manutenzione
	Generale	semestrale	Positivo: nessuna anomalia riscontrata	Software gestione manutenzione
Filtro a maniche Buca UREA (E9)	Parti pneumatiche ed elettriche	quindicinale	Positivo: nessuna anomalia riscontrata	Software gestione manutenzione
	Generale	semestrale	Positivo: nessuna anomalia riscontrata	Software gestione manutenzione

Serbatoi di stoccaggio

Serbatol di stoccaggio					
Apparecchiatura	Tipo controllo	Frequenza	Esito E	Registraz	
SR25 stoccaggio	Integrità del	quinquennale	Positivo	Rapporto ditta	
giornaliero	fondo (visivo,			TRATERM del	
impianto FOR2	spessimetrie e			29/02/2012	
	liquidi penetranti)			;	
SR26 stoccaggio	Integrità del	quinquennale	Positivo	Rapporto ditta	
giornaliero	fondo (visivo,			TRATERM del	
impianto FOR2	spessimetrie e			29/02/2012	
	liquidi penetranti)				
SR45 stoccaggio	Integrità del	quinquennale	Positivo	Rapporto ditta	
giornaliero	fondo (visivo,			TRATERM del	
impianto FOR4	spessimetrie e			28/03/2012	
	liquidi penetranti)				
SR46 stoccaggio	Integrità del	quinquennale	Positivo	Rapporto ditta	
giornaliero	fondo (visivo,	_ -		TRATERM del	
impianto FOR4	spessimetrie e			28/03/2012	
	liquidi penetranti)		Ì		
SR93 stoccaggio	Integrità del	quinquennale	Positivo	Rapporto ditta	
Formaldeide	fondo (visivo,	- -		TRATERM del	
	spessimetrie e			30/07/2012	
	liquidi penetranti)				

Per quanto concerne la prescrizione prevista a pag.71 del PIC ed a pag.15 del PMC relativa alla verifica periodica dell'integrità dei sei serbatoi di stoccaggio si comunica che a causa di esigenze produttive il piano quinquennale inviato in data 06/02/2012 ad ISPRA ha subito alcune modifiche descritte di seguito:

- nel corso del 2012 non è stato verificato il serbatoio SR88 al suo posto è stato effettuato il controllo sul serbatoio SR93 inizialmente previsto nel 2013
- il serbatoio 88 verrà controllato nel corso del 2013

Per il 2013 è inoltre prevista la seguente modifica:

i serbatoi 89 e 92 non verranno verificati in quanto al loro posto si eseguirà il controllo dei serbatoi di stoccaggio Metanolo SR1 e SR47 (ultimo controllo di tali serbatoi eseguito nel 2008 e pertanto in scadenza). Il controllo dei serbatoi 89 e 92 verrà eseguito nel 2016.

Le variazioni descritte non inficiano il rispetto della prescrizione base, ovvero di verificare tutti i serbatoi di stoccaggio Formaldeide e Metanolo ogni 5 anni a rotazione.

Apparecchiature con presenza di Metanolo e Formaldeide

	on presenza di Met	anolo e Formalde		
Apparecchiatura	Tipo controllo	Frequenza	Esito	Registraz
Manichette di	Integrità della	semestrale	Positivo	Software gestione
scarico	manichetta			manutenzione
Metanolo da	(visivo)			
autobotte				
Bracci di carico	Integrità del	semestrale	Positivo	Software gestione
Formaldeide su	braccio (visivo)			manutenzione
autobotte				
	Funzionamento	semestrale	Positivo	Software gestione
	della sonda di			manutenzione
	livello			
Serbatoi di	Funzionamento	semestrale	Positivo	Software gestione
stoccaggio	del livello			manutenzione
Metanolo	meccanico			
	Funzionamento	semestrale	Positivo	Scheda n°1
	del livello radar			apparecchiature
				critiche
	Funzionamento	semestrale	Positivo	Scheda n°1
	dell'interruttore			apparecchiature
	di blocco per alto			critiche
	livello			
Pompe metanolo	Funzionamento e	mensile	Positivo	Scheda n°2
di scarico da	visivo			apparecchiature
Autocisterne				critiche e
				software gestione
				manutenzione
Pompe di	Funzionamento e	settimanale	Positivo	Scheda n°3
alimentazione	visivo			apparecchiature
Metanolo agli				critiche
impianti				
Pompe	Funzionamento e	annuale	Positivo	Software gestione
Formaldeide di	visivo			manutenzione
travaso				
giornaliero				
Pompe	Funzionamento e	semestrale	Positivo	Software gestione
Formaldeide di	visivo			manutenzione
carico				
autocisterna				
Pompe	Funzionamento e	annuale	Positivo	Software gestione
Formaldeide di	visivo			manutenzione
riciclo				
Pompe	Funzionamento e	annuale	Positivo	Software gestione
Formaldeide di	visivo			manutenzione
alimentazione				
Resine				
•	•	•	······································	

Apparecchiatura	Tipo controllo	Frequenza	Esito	Registraz
Linee metanolo	Integrità della	annuale	Positivo	Software gestione
dallo scarico ai	linea (visivo)			manutenzione
serbatoi	70-10-10-10-10-10-10-10-10-10-10-10-10-10			
Linee metanolo	Integrità della	annuale	Positivo	Software gestione
dai serbatoi alle	linea (visivo)			manutenzione
pompe				
Linee metanolo	Integrità della	annuale	Positivo	Software gestione
dalle pompe agli	linea (visivo)			manutenzione
impianti FOR				
Reattori	Sostituzione	ad ogni cambio	Positivo	Registri impianti
Formaldeide	dischi di rottura	ed a metà vita del catalizzatore		presso il reparto
	Funzionamento	annuale	Positivo	Registri impianti
	sonde di			presso il reparto
	temepratura	4	-	
	Funzionamento	annuale	Positivo	Registri impianti
	flussostati			presso il reparto
Reattori Resine	Sostituzione	semestrale	Positivo	Registri impianti
Realton Resilie	dischi di rottura	semestrate	1 OSILIVO	presso il reparto
	aloum al lottara			presso ir repairo
	Funzionamento	annuale	Positivo	Registri impianti
	allarmi di			presso il reparto
	temperatura e			
	pressione			
Serbatoi di	Funzionamento	annuale	Positivo	Software gestione
stoccaggio	del livello			manutenzione
Formaldeide	meccanico			
	Funzionamento	semestrale	Positivo	Scheda n°1
	del livello radar		1	apparecchiature
	T		7	critiche
	Funzionamento	semestrale	Positivo	Scheda n°1
	dell'interruttore			apparecchiature
	di blocco per alto			critiche
Matamala datt	livello Impianto di		Dogitivo	Varifica interna
Metanolodotto		annuale	Positivo	Verifica interna della corrente
	protezione catodica			dena corrente
	Cawuica			

EVENTUALI PROBLEMI DI GESTIONE PIANO

Le problematiche emerse sono brevemente riepilogate di seguito:

- reperire le caratteristiche tecniche del gas Metano; voce peraltro non applicabile secondo quanto comunicatoci verbalmente anche dal Gruppo Ispettivo nel corso della verifica eseguita nel giugno 2012, in quanto prescrizione riferita essenzialmente ai Grandi Impianti di Combustione;
- determinare la quantità di energia prodotta dall'impianto (e recuperata nel processo produttivo);
- definizione dei controlli effettuati su impianti, apparecchiature e linee di distribuzione, come previsto dal paragrafo 2

Viadana 27/06/2013

Il Gestore Bellotti P.

Gasolio Standard

biocarburante.

Il gasolio per autotrazione è utilizzato come alimentazione per i motori a combustione interna ad accensione spontanea, detti motori a ciclo Diesel.

Viene iniettato in camera di combustione dove, raggiunti determinati valori di temperatura e pressione, s'infiamma a contatto con l'aria. Il gasolio pertanto dovrà possedere buone caratteristiche di combustione, tali da limitare il ritardo tra l'iniezione e l'inizio dell'accensione. Il "numero di cetano" è l'indicatore scelto per esprimere l'efficienza di combustione, più questo parametro è alto e migliori sono le prestazioni.

Per ragioni di sicurezza è importante che sia privo di frazioni leggere o pesanti.

La specifica di riferimento europea che armonizza in tutta l'Europa Occidentale le specifiche nazionali del gasolio autotrazione é la EN 590 emanata dal CEN, che è stata recepita in Italia come UNI EN 590.Le caratteristiche del gasolio che hanno un impatto ambientale sono direttamente definite dall'Unione Europea nella Direttiva 2009/30/CE. Tra queste il contenuto di zolfo, per cui dal 1° gennaio 2009 tutti gasoli commercializzati sono privi di zolfo Accogliendo le indicazioni delle Direttive Europee, la specifica tecnica del gasolio per autotrazione si è evoluta per consentire la miscelazione di biodiesel fino al valore attuale del 7%v/v di questo

Gasolio Standard

CARATTERISTICHE	UNITA' DI	VA	LORE	METODO
CARATTERISTICHE	MISURA	min.	max.	METODO
Aspetto	1	clear	& bright	ASTM D 4176/2-02
Densità a 15 °C	kg/m3	820	845	EN ISO 3675:1998, EN ISO 12185:1996/C1:2001
Numero di cetano		51	1	EN 15195:2007, EN ISO 5165:1998
Indice di cetano	anna anna anna ann ann an ann ann ann a	46		EN ISO 4264:2007
Distillazione: recuperato a 150 °C recuperato a 250 °C recuperato a 350 °C punto del 95%, recuperato	% (v/v) % (v/v) % (v/v) °C	85	2 65	EN ISO 3405:2000
P. infiammabilità		>55		EN ISO 2719:2002
Poliaromatici (2 anelli +)	% (m/m)		8	EN 12916:2006
Viscosità a 40 °C	mm2/s	2,00	4,50	EN ISO 3104:1996
Punto di nebbia, 1/4 – 31/10		riportare		EN 23015:1994
Punto di nebbia, 1/11 – 31/3	°C [0	EN 23013.1994
C.F.P.P., 1/4 – 31/10	℃		-2	EN 116:1997
C.F.P.P., 1/11 – 31/3	°C		-12	
Zolfo totale	mg/kg		10	EN ISO 20884:2004, EN ISO 20846:2004
Corrosione su rame (3 h a 50 °C)	indice		, 1	EN ISO 2160:1998
Res. carbonioso (su res. 10 %)	% (m/m)	•	0,30	EN ISO 10370:1995
Acqua	mg/kg		200	EN ISO 12937:2000
Ceneri	% (m/m)	and the second s	0,01	EN ISO 6245:2002
Potere lubrificante	μm		460	EN ISO 12156-1:2006
Class 13243 111 - 2 1 - 2	g/m3	U*************************************	25,0	EN ISO 12205:1996
Stabilità all'ossidazione	h	20	i	EN 15751:2009
Contaminazione totale	mg/kg		24,0	EN 12662:2008
Contenuto di biodiesel	% (v/v)		7,0	EN 14078:2010
			1	

Il prodotto è conforme alla norma europea EN 590:2010, ai requisiti di legge e alle norme doganali.

		Analisi	Analisi acqua di falda			
	Piezometro 1	Piezometro2	Piezometro 3	Piezometro 4	Piezometro 5	
	(Biofiltro)	(Officina)	(Confine SIA)	(Ex Pezzali)	(Azoto)	
Data	Sogg. CH2O CH3OH FT-IR NH4	Sogg. CH2O CH3OH FT-IR NH4	Sogg. CH2O CH3OH FT-IR NH4	Sogg. CH2O CH3OH FT-IR NH4	Sogg. CH2O CH3OH FT-IR NH4	4
campionamento	ngm hgu hgu mgu m	l/gm //gu //gu mg/l	убш убп убп убп ш	Ngm Ngu Ngu mg/l mg/l	// 6rd // 6rd // 6rd w	ľ6
07/06/2012	3,89 3,8 < 0,1 < 10 0,95 3,84	2 < 0,1	< 10 0,16 3,42 2,3 < 0,1 < 10 2,5	3,4 1,7 0,3 < 10 3,3	3,99	98
05/12/2012	2,53 4 < 0,1 < 10 0,85 2,56 3,1	< 0.1	0,5 2,17 3,4 < 0,1 < 10 2,2	1,89 3 < 0,1 < 10 1,2	2,44 3,2 < 0,1 < 10 1,4	4
LIMIT			Caratteri	Caratteristiche piezometri	13/12/2012	12
Formaldeide	ď.r.		PZ1 pr	profondità 13,8 m - filtro da 9 m fino a 4,8 m	Ε	
Idrocarburi totali	n.p.		PZ2 pr	profondità 14,8 m - filtro da 9 m fino a 5,8 m	m RPA	
Metanolo	ď.r.		PZ3 pr	profondità 13,6 m - filtro da 9 m fino a 4,6 m	m Spata L.	نـ
Azoto ammoniacale	n.p.		PZ4 pro	profondità 15 m - filtro da 9 m fino a 6 m		
			PZ5 pri	profondità 15 m - filtro da 9 m fino a 6 m		
Sogg.= soggiacenza						
בוזיקווס ומוסמ וופטמווס						
al piano campagna	Riferimento normativo: tabel.	la 2 allegato 5 al titolo V della parte	e quarta del DLgs 152/06. Non s	Riferimento normativo: tabella 2 allegato 5 al titolo V della parte quarta del DLgs 152/06. Non sono presenti nessuna delle sostanze		
	analizzate ad eccezione deg	analizzate ad eccezione degli idrocarburi totali (espressi come n-esano) il cui limite è 350 µg/i	n-esano) il cui limite è 350 µg/l			

COMUNE DI VIADANA PROVINCIA DI MANTOVA

Monitoraggio Acustico

The state of the s

Rumoresia स्था इंग्लोशिक nto

AGOSTO 2012

Committente

"SADEPAN CHIMICA S.r.I." Viale Lombardia, 29 Viadana (MN)

INDICE

1. PREMESSA	3
2. DEFINIZIONI	4
3. METODOLOGIA DI MISURA	€
4. DESCRIZIONE DELLE MISURE E SORGENTI SONORE	7
5. ESITO DELLE MISURE FONOMETRICHE	10
6. CONCLUSIONI	16
7. ALLEGATI	17

1. PREMESSA

Il presente documento riporta i risultati del monitoraggio acustico in ambiente esterno presso lo stabilimento della Ditta "Sadepan Chimica S.r.l.", sito in Viale Lombardia, 29 a Viadana (MN).

Lo studio si prefigge di valutare la compatibilità dei livelli sonori indotti dalle attività aziendali al confine di proprietà ed ai più vicini ricettori sensibili con i limiti di rumore fissati dalla classificazione acustica comunale. Ai fini AIA si precisa che non sono stati individuati nuovi punti di misura (rispetto alla precedente indagine del 2008) utili a rideterminare l'immissione di rumori verso l'esterno. Non sono intervenute variazioni ad impianti e/o al ciclo produttivo.

Il Comune di Viadana è dotato di un piano di zonizzazione acustica del proprio territorio. In base a tale documento si rileva quanto segue:

- l'area aziendale è inserita in classe V ("aree prevalentemente industriali"), con limiti di 70 dBA in periodo diurno e 60 dBA in periodo notturno;
- l'abitazione in Via Alberti, a nord-ovest dell'area aziendale vicino all'ufficio spedizioni, è anch'essa inserita in classe V (ricettore denominato A1);
- l'altra abitazione individuata (ricettore denominato A2), sita in Via Gialdi oltre il confine sud e Viale Europa, è inserita in classe IV ("aree di intensa attività umana"), con limiti di 65 dBA in periodo diurno e 55 dBA in periodo notturno.

L'attività dell'azienda consiste nella produzione di resine e collanti per pannelli in truciolare e si svolge in modo continuo nell'arco delle 24 ore, compresi i giorni prefestivi e festivi. L'attività aziendale soddisfa i requisiti indicati dall'art.2 del D.M. 11/12/'96 necessari per essere riconosciuta come impianto a ciclo produttivo continuo.

La compatibilità acustica dell'attività è vincolata al rispetto dei limiti assoluti a confine ed ai più vicini ricettori sensibili secondo la normativa vigente (Legge Quadro n.447/'95, D.P.C.M. 14/11/'97 "Determinazione dei valori limite delle sorgenti sonore"). Ai sensi del D.M. 11/12/'96 "Applicazione del criterio differenziale per gli impianti a ciclo produttivo continuo", gli impianti di questo tipo esistenti all'entrata in vigore del decreto sono soggetti alla verifica del criterio differenziale qualora non siano rispettati i valori assoluti di immissione in esterno ai propri confini.

La campagna di misure fonometriche è consistita in due campionamenti in continuo svolti nei giorni 31 Luglio-01 Agosto, 01-02 Agosto 2012 e in misure di breve durata effettuate in data 02 Agosto 2012 finalizzate ad una più esauriente caratterizzazione acustica dell'area.

Foto aerea con indicazione dei confini aziendali Sadepan Chimica, in rosso

2. DEFINIZIONI

La valutazione dei livelli sonori viene effettuata come segue:

Livello ambientale

E' costituito dall'insieme del rumore residuo e da quello delle sorgenti aziendali, con l'esclusione degli eventi sonori singolarmente identificabili di natura eccezionale rispetto al valore ambientale della zona. Il livello ambientale descrive la situazione acustica dell'area esaminata, raccogliendo i contributi di tutte le sorgenti sonore della zona in cui si trova l'azienda in oggetto.

E' il livello che si confronta con i limiti assoluti fissati dalla normativa per la classe acustica alla quale appartiene l'area in esame. Può essere determinato attraverso:

- campionamenti in continuo:

vengono confrontati con i limiti di legge i valori medi, calcolati sul periodo diurno (6.00-22.00) e notturno (22.00-6.00), a partire dai dati misurati;

misure di breve durata (o estemporanee):

vengono confrontati con i limiti di legge i valori del Leq misurati su un intervallo di tempo di alcuni minuti, sufficiente a cogliere l'evento sonoro da caratterizzare.

Sono previsti, dal D.M. 16/03/98, fattori correttivi per tener conto della presenza di rumori con componenti impulsive, tonali o di bassa frequenza (non si applicano alle infrastrutture di trasporto):

Per la presenza di componenti impulsive: $K_i = 3 \text{ dB}$

Per la presenza di componenti tonali: $K_T = 3 dB$

Per la presenza di componenti in bassa frequenza (tonali tra 20 e 200Hz): $K_B = 3 dB$ (esclusivamente nel periodo notturno)

Il livello ambientale corretto (L_C) risulta pertanto definito dalla relazione:

$$L_C = L_A + K_i + K_T + K_B$$

Esclusivamente durante il periodo diurno, si può prendere in considerazione la presenza di rumore a tempo parziale, nel caso di persistenza del rumore stesso per un tempo totale non superiore ad un'ora.

Livello residuo

Si rileva quando si escludono le sorgenti aziendali (azienda ferma). Non è stato rilevato nella presente indagine essendo sempre attiva l'azienda durante i rilevamenti. Del resto, come si dimostrerà, i risultati ottenuti ai ricettori non ne hanno reso necessaria la rilevazione (si veda tab. 9 e osservazioni successive).

Contributo sonoro aziendale

Si determina, in generale, sottraendo energeticamente il livello residuo al livello ambientale. Il rispetto dei limiti di zona ai ricettori non ha richiesto la verifica del rumore residuo e valutazioni specifiche circa il contributo acustico delle singole sorgenti aziendali ai ricettori. Come si vedrà al paragrafo 5, in alcune situazioni il contributo acustico complessivo dell'Azienda può essere stimato con buona approssimazione attraverso il ricorso al parametro statistico L95 (ossia il livello acustico che viene rilevato

Monitoraggio acustico

per il 95% del tempo di misura), valore che quantifica la rumorosità di fondo data da impianti attivi con continuità e "taglia" picchi sonori di breve durata dovuti ad esempio ai transiti veicolari.

• Livello differenziale (da verificarsi solamente in prossimità di abitazioni o comunque di edifici caratterizzati da lunga permanenza di persone o secondo le prescrizioni di legge).

Rappresenta la differenza algebrica tra il livello di rumore ambientale e quello di rumore residuo. I risultati ottenuti, relativi ai livelli ambientali ai ricettori, come si vedrà non ne hanno reso necessario il calcolo ai sensi del D.M. 11/12/96.

3. METODOLOGIA DI MISURA

Le misure sono state eseguite da tecnico competente in acustica ambientale nel rispetto di quanto disposto dal D.M. 16/03/98.

Le misure sono state eseguite in assenza di precipitazioni atmosferiche e con velocità del vento inferiore ai 5 m/s. Il microfono era munito di cuffia antivento, come richiesto dalla normativa per le misure in esterno.

La modalità di acquisizione impostata ha permesso di rilevare (su base temporale di 10' nei campionamenti in continuo e di 1" nei rilievi di breve durata), i valori di Leq, Lmin, Lmax e dei principali parametri statistici (tra cui L95). Tutti i parametri acustici sono stati acquisiti con costante di tempo Fast e filtro di ponderazione A.

Il parametro acustico assunto a riferimento è il Livello equivalente espresso in dBA (Leq in dBA) che è il parametro di valutazione indicato da raccomandazioni internazionali (ISO DIS 01/03/'91) e nazionali (Legge Quadro n.447/'95) per la valutazione della rumorosità all'esterno e negli ambienti abitativi.

Strumentazione utilizzata

La catena strumentale risponde alle norme IEC 804 e 651 classe 1.

- n.1 analizzatore statistico digitale Larson Davis mod. 824;
- calibratore di livello sonoro Larson Davis mod. Cal 200.

In allegato è fornita copia dei certificati di taratura della strumentazione sopraelencata.

All'inizio e al termine del monitoraggio si è proceduto a controllare il livello prodotto dal segnale di calibrazione emesso dal Calibratore LD cal 200, di classe 1.

La differenza tra i livelli misurati all'inizio e alla fine della sessione di misura non ha superato i ± 0.1 dB(A). Ciò consente di affermare che durante le misure non si sono verificati shock termici, elettrici, meccanici o di altra natura che abbiano alterato la fedeltà della catena strumentale e quindi di sostenere la validità delle misurazioni effettuate.

Il trasferimento di tutti i dati su computer e l'elaborazione dei parametri è stata eseguita tramite il software "Noise & Vibration Works for Windows" predisposto dalla ditta Spectra. La taratura della strumentazione è stata eseguita da un laboratorio autorizzato dal SIT (SERVIZIO DI TARATURA ITALIANA). I certificati di taratura hanno validità biennale come previsto dalle procedure di qualità interna aziendale.

6

4. DESCRIZIONE DELLE MISURE E SORGENTI SONORE

I campionamenti in continuo sono stati eseguiti in due punti presso i ricettori sensibili più vicini e più esposti alla rumorosità aziendale, ossia le abitazioni A1 e A2.

Misura	Ubicazione	Data	Rumore rilevato
CC1	Confine nord-ovest vicino al ricettore A1, Via Alberti	dal 31/07/2012 - 09:33 al 01/08/2012 - 10:10	ambientale
CC2	Oltre confine sud e Viale Europa, vicino al ricettore A2, Via Gialdi	dal 01/08/2012 - 10:26 al 02/08/2012 - 09:00	ambientale

Tabella 1 – Campionamenti in continuo Luglio-Agosto 2012

Il microfono dello strumento, per i rilievi in continuo, è stato posto ad un'altezza di 4.0 m dal suolo, mentre durante i rilievi di breve durata ad un'altezza di 1.5 m. circa

Circa la misure brevi, non essendo intervenute variazioni sulle sorgenti, si precisa che sono confermati i livelli di caratterizzazione delle singole sorgenti eseguiti nel 2008; sono invece eseguite ex novo le misure di ambientale ai confini rappresentativi aziendali. Tali misure sono della durata tale da caratterizzare l'azienda nel punto indagato in periodo diurno e notturno (poiché interessati da impianti a funzionamento continuo). Le misure a confine ed ai ricettori vengono altresì georeferenziate – operazione eseguita per i soli punti a confine ed ai ricettori ma non per gli impianti data la complessità ed articolazione degli stessi.

Tabella 2 – Misure di breve durata Novembre 2008 e Agosto 2012

Misura	Descrizione	Giorno e ora misura	
R1	Pianerottolo Condensatori SACIR (spenti)	19 Novembre 2008 - 9:58	
R2	Pianerottolo gruppo elettrogeno sopra sala compressori (condensatori SACIR spenti)	19 Novembre 2008 - 9:59/10:00	
R3	Pianerottolo Condensatori SACIR (accesi)	19 Novembre 2008 - 10:03/10:04	
R4	Pianerottolo gruppo elettrogeno sopra sala compressori (condensatori SACIR accesi)	19 Novembre 2008 - 10:11	
R5	Copertura sala compressori in direzione A2 (condensatori SACIR accesi)	19 Novembre 2008 - 10:12/10.15	
R6	A fianco torri evaporative	19 Novembre 2008 - 10:18/10:19	
R7	D = 10 m da torri evaporative sopra serbatoio formaldeide	19 Novembre 2008 - 10:20/10:21	

R8	Piano ventilatore PC4 FOR6	19 Novembre 2008 - 10:27/10:28	
R9	C/o uscita aria rep. Resine D = 10 m da primo camino	19 Novembre 2008 - 10:36	
Misura	Descrizione 地震	Giorno e ora misura	Georeferenziazione punti di misura (coord.Google Earth)
R10	Confine est con tettoia SIA	02 Agosto 2012 – 10.49/10.54	10°30'18.49" E 44°55'27.26" N
R11	D = 5 m da gruppo motore- ventola filtro anidro	19 Novembre 2008 - 10:59/11:01	
R12	Confine nord con SIA	02 Agosto 2012 – 10.58/11.04	1030'18.28" E 44'55'52.89" N
R13	Confine nord con SIA	02 Agosto 2012 – 11.06/11.11	10°30'14.32" E 44°55'54.87" N
R14	D = 8 m da ventole torri raffreddamento	19 Novembre 2008 - 11:30/11:32	
R15	Confine con SIA zona ingresso/uscita autocarri	02 Agosto 2012 – 11.14/11.19	10°30'8.01" E 44°55'52.53" N
R16	Confine con SIA zona ingresso/uscita autocarri	02 Agosto 2012 – 11.20/11.25	10°30'5.71" E 44°55'53.88" N
R17	Confine nord-ovest con abitazione A1	02 Agosto 2012 – 12.02/12.17	10°30'4.86" E 44°55'58.26" N
R18	Confine sud-est (c/o cabina metano)	02 Agosto 2012 – 10.34/10.39	10°30'17.79" E 44°55'45.36" N
R19	Confine sud (di fronte a carico formaldeide)	02 Agosto 2012 – 10.19/10.24	10°30'13.80" E 44°55'47.64" N
R20	Confine sud (di fronte a scarico metanolo)	02 Agosto 2012 – 11.41/11.46	1030'10.02" E 4455'49.80" N
R21	Confine sud-est con tettola SIA	02 Agosto 2012 - 10.40/10.46	10'30'18.11" E 44'55'46.10" N
R22	Confine sud-ovest (zona ingresso)	02 Agosto 2012 - 11.26/11.31	10°30'03.28" E 44°55'53.59" N
R23	Confine con SIA, di fianco a torri raffreddamento	02 Agosto 2012 – 11.33/11.39	10°30'10.65" E 44°55'52.82" N

R24	Confine sud-est di fronte a compressori e biofiltro (oltre il muro di cinta)	02 Agosto 2012 – 12.22/12.42	10°30'15.46" E 44°55'46.52" N
R25	Oltre il confine sud, c/o abitazione A2	02 Agosto 2012 – 12.47/13.08	10°30'18.37" E 44°55'40.76" N

Nei sopralluoghi effettuati sono stati individuati gli impianti che costituiscono le principali fonti di rumorosità in ambiente esterno. Alcuni di essi sono facilmente individuabili, altri sono di più difficile identificabilità in considerazione della complessità della struttura impiantistica aziendale. Di seguito si riporta l'elenco delle principali sorgenti sonore fisse, con una sigla di identificazione riportata nella tavola allegata.

Sigla sorgenti sonore	Descrizione	Interna/esterna
S1	Camini espulsione aria Rep. Resine (n.2)	Esterna
S2	Torri evaporative c/o post combustore	Esterna
S3	Condensatori SACIR (utilizzo in caso di necessità e comunque non continuativo)	Esterna
S4	Locale compressori	Interna
S5	Biofiltro	Esterna
S6	Ventilatore PC4 FOR6	Esterna
S7	Bruciatore niro	Interna
S8	Ventilatore filtro anidro	Esterna
S9	Essiccatore	Esterna
S10	Ventilatori torri di raffreddamento (n.4)	Esterna

Altra significativa sorgente sonora è costituita dal traffico pesante indotto (autocarri, autotreni) sia in entrata che in uscita da Via Alberti, che circolano all'interno dell'area a velocità assai ridotta nel solo periodo diurno. Dal confronto con responsabili aziendali è stata compilata la seguente tabella nella quale sono stati distinti i tratti interni all'area aziendale (da T0 a T8) con i relativi transiti medi giornalieri.

Tabella 4 – Transiti medi giornalieri dei mezzi pesanti indotti nell'area Sadepan Chimica (solo periodo diurno)

tratti interni	ingresso	uscita	totale	
T0 a/b	330	330	660	
T1	330	0	330	
T2	230	220	450	
<i>T</i> 3	210	200	410	
T4 a	205	195	400	2
T4 b	180	195	375	transití/giorno
T5	15	40	55	ti/g
T6 a	15	40	55	S⊑
T6 b	15	40	55] <u> </u>
T6 c	0	25	25	
T7 a	100	100	200	
17 b	0	100	100	
T8	0	330	330	

5. ESITO DELLE MISURE FONOMETRICHE

Le misure sono state effettuate sia presso alcuni impianti aziendali ritenuti significativi ai fini dell'impatto acustico in esterno (misure da R1 a R9, misura R11, misura R14 – non essendo intervenute variazioni, previo verifica confirmatoria, si considerano valide le misure di caratterizzazione eseguite nel più recente monitoraggio), sia in corrispondenza di alcuni punti a confine rappresentativi per il confronto con i limiti di zona.

Misure presso impianti aziendali

Come detto alcune misure sono state effettuate in vicinanza di impianti aziendali in condizioni operative descritte nella tabella 2. Di seguito si riportano i risultati ottenuti. I livelli misurati forniscono informazioni quantitative circa le emissioni sonore degli stessi impianti. Essi non sono da confrontarsi con i limiti di zona non essendo rilevati a confine.

Tabella 5 – Livelli acustici rilevati vicino alle sorgenti sonore fisse (impianti)

Misura	Ubicazione	Condizione	√s Leq	L95
R1	Pianerottolo Condensatori SACIR S3	Condensatori spenti	74.5	73.5
R2	Pianerottolo gruppo elettrogeno sopra sala compressori	Condensatori spenti	73	71.5
R3	Pianerottolo Condensatori SACIR S3	Condensatori accesi	81.5	80.5
R4	Pianerottolo gruppo elettrogeno sopra sala compressori	Condensatori accesi	76	75
R5	Copertura sala compressori in direzione A2	Condensatori accesi	74	73.5
R6	A fianco torri evaporative (S2)	Normale attività impianto	86	85.5
R7	D = 15 m da torri evaporative S2 sopra serbatoio formaldeide	Normale attività impianto	75.5	75
R8	Piano ventilatore PC4 FOR6 (S6)	Normale attività impianto	77	76.5
R9	C/o uscita aria rep. Resine D = 10 m da primo camino (S1)	Normale attività impianto	86	85
R11	D = 5 m da motore-ventola filtro anidro (S8)	Normale attività impianto	80.5	79.5
R14	D = 8 m da ventole torri raffreddamento (S10)	Normale attività impianto	83.5	82.5

Monitoraggio acustico

Misure ai confini aziendali

Sono state effettuate varie misure a confine, in punti significativi per il confronto con i limiti di zona.

La maggior parte delle misure ha compreso eventi di transito di automezzi indotti e movimentazione merce con muletti. Per quei punti invece in cui, durante il tempo di misura, non si sono registrati significativi transiti di automezzi (punti R10 al confine est, R12 al confine nord, R23 al confine centrale con area SIA, R24 oltre il muro di cinta sul confine sud) si è proceduto a sommare al livello misurato, dato dagli impianti aziendali e dalla movimentazione dei muletti ove presenti, il contributo acustico medio diurno dei transiti indotti dagli automezzi sui tratti interni più vicini.

Circa il traffico indotto lungo i tratti T0÷T8, il rumore che da esso viene prodotto, in funzione della distanza sorgente-ricettore, si propaga con un'attenuazione che è maggiormente riconducibile alle sorgenti lineari e che deriva dalla seguente formula (attenuazione per divergenza sorgenti lineari):

$$A_{div} = 10*\log (d / d_0)$$
 [dBA]

dove:

d → distanza sorgente – confine/ricettore (m)
 d₀ → distanza di riferimento (m)

Per valutare gli eventi sonori caratterizzati da una durata limitata come gli eventi di transito, il contributo sonoro in un dato intervallo di tempo è calcolato attraverso il valore di SEL (contributo energetico di un evento di transito riferito ad 1") e il numero di eventi che si verificano nell'intervallo stesso.

Nel calcolo è stata adottata la seguente relazione:

$$Leq(T) = 10*log[(n*10^{(SEL/10)})/T]$$

dove:

 $n = n^{\circ}$ eventi nel periodo T (tempo di riferimento, o ssia il periodo diurno)

T = periodo di riferimento in secondi (periodo diurno pari a 57600 sec)

Il SEL è esprimibile attraverso la relazione:

SEL =
$$10*log[10^{0.1*Lp}dt]$$
 con $Lp = Lp_0 - Att_{div} = Lp_0 - 10*log (r/r_0)$

dove:

r = distanza sorgente-ricettore;

r₀ = distanza a cui è noto il livello di pressione sonora Lp₀.

Apposite misure (eseguite in precedente indagine ma tuttora valide) presso l'area di accesso hanno fornito un SEL medio di riferimento del transito degli autocarri di 87.5 dBA a 7.5 m di distanza dalla mezzeria della corsia di marcia.

11

Il livello sonoro prodotto dai passaggi di autocarri è stato poi diluito sulle 16 ore del periodo diurno per il calcolo del contributo acustico medio (confronto con limiti di zonizzazione). Per determinare i contributi acustici ai punti di misura dei transiti interni (si veda tavola 1 in allegato), è necessario apportare un'apposita correzione angolare ΔA per tenere conto delle dimensioni finite dei tratti percorsi. In relazione ad' ognuno dei due segmenti che congiungono il ricettore e gli estremi del tratto, sono individuabili due angoli $\theta 1$ e $\theta 2$ compresi tra questi e la perpendicolare all'asse stradale (od un suo eventuale prolungamento) passante per il ricettore a confine.

La correzione angolare ΔA , funzione degli angoli θ_1 e θ_2 , si applica nel seguente modo:

- (a) si divide la strada in due parti a $\theta = 0$ (tracciando la normale alla strada passante per il ricettore a confine);
- (b) si sottraggono 3 dBA al livello d'emissione per ottenere il livello d'emissione prodotto da ciascuna 'emistrada';
- (c) si sottraggono ai valori di cui al punto b) le correzioni angolari ΔA_1 e ΔA_2 , funzioni di θ_1 e θ_2 ;
- (d) per ottenere il contributo acustico del segmento stradale al ricettore si sommano energeticamente i 2 valori di cui al punto c); se uno dei due angoli è negativo si deve sottrarre il valore minore a quello maggiore.

Tabella 6 – Angoli θ e corrispondenti termini correttivi ΔA espressi in dB

angolo ΔΘ(°)	∆A (dB)
10	-8.7
20	-5.7
30	-4.0
40	-2.8
50	-1.9
60_	-1.2
70	-0.7
80	-0.3
90	0.0

La tabella seguente riporta i risultati delle misure a confine, in allegato sono riportate le schede descrittive di ogni misura. Come detto, per le misure R10, R12, R23, R24 si è poi proceduto a sommare il contributo medio diurno dei transiti indotti sui tratti interni (tabelle 8.1, 8.2). Per molti punti a confine il contributo dei transiti indotti incide in misura rilevante.

Tabella 7 – Risultati misure a confine (valori in dBA)

Misura	Descrizione	Param misu	rato 🐪 🦠	Limite di zona	Rispetto
R10	Confine est con tettoia SIA	Leq	69.5	70	SI
R12	Confine nord con SIA	Leq	69.5	70	SI
R13	Confine nord con SIA	Leq	67.5	70	SI
R15	Confine con SIA zona ingresso/uscita autocarri	Leq	65.5	70	SI
R16	Confine con SIA zona ingresso/uscita autocarri	Leq	65	70	SI
R17	Confine nord-ovest con abitazione A1	Leq	67	70	SI
R18	Confine sud-est (c/o cabina metano)	Leq	68.5	70	SI
R19	Confine sud (di fronte a carico formaldeide)	Leq	69	70	SI
R20	Confine sud (tra carico formaldeide e scarico metanolo)	Leq	69.5	70	SI
R21	Confine sud-est con tettoia SIA	Leq	68	70	SI
R22	Confine sud-ovest (zona ingresso)	Leq	64.5	70	SI
R23	Confine con SIA, di fianco a torri raffreddamento	Leq	66.5	70	SI
R24	Confine sud-est di fronte a compressori e biofiltro (oltre il muro di cinta)	L95	58	70	SI
R25	Oltre il confine sud c/o abitazione A2	Leq	59.5	65	SI

Osservazioni:

La misura R24 è stata effettuata a fianco di Viale Europa, oltre il muro di cinta del perimetro aziendale, che costituisce di fatto una barriera antirumore. Essendo il quadro acustico in quel punto influenzato principalmente dal traffico veicolare che insiste sulla strada provinciale ed essendo la rumorosità degli impianti aziendali pressoché continua, si ritiene di poter quantificare il contributo delle sorgenti fisse aziendali non con il parametro Leq misurato, che ne determinerebbe una eccessiva sovrastima, ma più adeguatamente con il parametro statistico L95 medio. Tale livello, ipotizzando la stessa emissione degli impianti nell'arco delle 24 ore, mostra il rispetto anche del limite notturno di classe V (60 dBA).

Tabella 8.1 - Risultati misure a confine con transiti autocarri indotti (valori in dBA)

Misura	Descrizione	Leq senza transiti Sadepan (con movimentazione muletti)	Contributo medio diurno transiti automezzi aziendali	Leq totale	Limite di zona	Rispetto
R10	Confine est con tettoia SIA	69.5	50.8	69.5	70.0	SI
R12	Confine nord con SIA	69.5	47.5	69.5	70.0	SI
R23	Confine con SIA, di fianco a torri raffreddamento	66.5	64.1	68.5	70.0	SI

Tabella 8.2 - Risultati contributo totale Sadepan Chimica oltre il muro di cinta sud (valori in dBA)

Misura	Descrizione	Contributo medio implanti Sadepan (L95 misura)	Contributo medio diprilo transiti automezzi aziendali	Contributo totale : Sadepan	Limite di zona	Rispetto
R24	Confine sud-est di fronte a compressori e biofiltro (oltre il muro di cinta)	58.0	56.2	60.2	70.0	SI

I calcoli relativi al contributo dei transiti indotti sono riportati in allegato.

Relativamente al punto R24, come già verificato nell'ambito di precedente monitoraggio acustico, il muro di cinta determina ad una quota di 1.5 m dal suolo un'attenuazione acustica del contributo dei transiti degli autocarri indotti di circa 5 dB rispetto ad un virtuale ricettore posto simmetricamente all'interno dell'area aziendale.

Misure in continuo presso i ricettori abitativi

Si riportano di seguito i risultati dei campionamenti in continuo, comprensivi di periodo diurno e notturno, in prossimità dei due più vicini ambienti abitativi.

Tabella 9 - Risultati misure in continuo (valori in dBA)

Misura	Descrizione	Periodo	Led	L95.	Limite di zona	Rispetto
004	Campionamento in continuo - confine nord/ovest (c/o A1)	Diurno	<u>59</u>	55 I	70	SI
CC1		Notturno	54.5	52.5	60	SI
000	Campionamento in continuo - oltre il confine sud (c/o A2)	Diurno	59	<u>53</u>	65	SI
CC2		Notturno	53.5 	<u>49.5</u>	55	SI

Osservazioni:

I valori sottolineati sono posti a confronto con i limiti di zonizzazione e ne mostrano il rispetto in entrambi i periodi di riferimento.

Nella misura CC2 vicino all'abitazione A2, il contributo acustico dell'Azienda è dato dagli impianti. La rumorosità nell'area è fortemente influenzata dal traffico veicolare di Viale Europa e dai transiti su Via Gialdi, motivo che porta ad individuare nel parametro statistico L95 medio un buon descrittore del contributo acustico imputabile all'Azienda. Riprova dell'attendibilità di questa scelta è il fatto che il parametro Leq minimo misurato di notte su base temporale di 10 min., ossia rilevato in condizioni di minor rumore residuo a parità di contributo degli impianti pressoché costante nel periodo notturno, risulta all'incirca pari al parametro L95 medio dell'intero periodo notturno (49.5 dBA). Irrilevante al ricettore è invece il contributo acustico dei transiti indotti interni al perimetro aziendale.

Il rispetto dei limiti di immissione assoluti alle abitazioni più vicine dispensa dalla verifica del criterio differenziale ai sensi del D.M. 11/12/'96.

Monitoraggio acustico 1

6. CONCLUSIONI

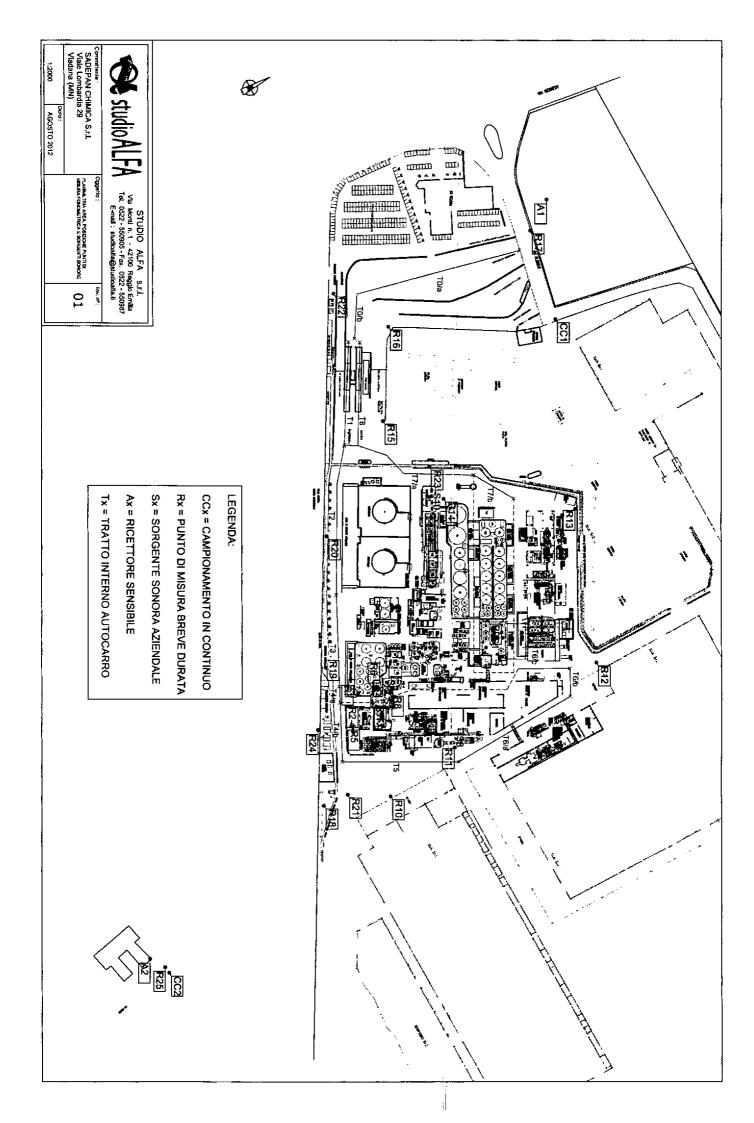
Dall'analisi dei dati fonometrici rilevati emerge il seguente quadro acustico relativo allo stabilimento Sadepan Chimica.

RICETTORI A CONFINE:

In tutti i punti a confine oggetto di misura si è verificato il **rispetto** del limite di zonizzazione acustica comunale (classe V). Le misure diurne sono influenzate in misura significativa dai transiti degli autocarri indotti all'interno dell'area di pertinenza. Sul confine sud con Viale Europa, appena oltre il muro di cinta, il contributo acustico aziendale rispetta anche il limite di immissione assoluto notturno di classe V.

RICETTORI SENSIBILI: ABITAZIONI A1 E A2:

L'attività aziendale in oggetto ha i requisiti necessari per essere definita come impianto a ciclo produttivo continuo. Per le abitazioni è richiesta la verifica dei livelli ambientali. Nel caso di rispetto dei limiti di immissione assoluti, ai sensi del D.M. 11/12/'96 (art.3), non si è soggetti alla verifica del criterio differenziale.


Presso le più vicine abitazioni A1-A2, si è registrato il **rispetto** dei limiti di zona fissati dal piano acustico comunale in entrambi i periodi di riferimento.

Reggio Emilia, 03 Agosto 2012

Geom. Gianluca Savigni in qualità di : Responsabile del Settore Fisico di Studio Alfa Tecnico competente in acustica ambientale

STUDIO ALFA S.r.I.

Carrara S.p.a.

Rapporto Ispettivo LDAR 2012 Sadepan Chimica Stabilimento di Viadana

INDICE GENERALE

1.	Oggetto d'attività	Pag 3
2.	Descrizione dell'attività eseguita	Pag 5
3.	Esito dell' ispezione	Pag 9
4.	Dati di monitoraggio	Pag 11
5.	Conclusione	Pag 12

1. Oggetto d'attività

Sadepan chimica Stabilimento di Viadana, di seguito nominato il "GESTORE", ha commissionato a Carrara S.p.a. Divisione FERP, di seguito nominata FERP, l'implementazione della routine LDAR presso gli impianti dello stabilimento.

L'ispezione si è sviluppata nell'anno solare 2012 con l'attività di censimento, catalogazione, monitoraggio estensivo con tecnica EPA Method 21 e remonitoring degli items riscontrati in stato di Leakage.

A seguito delle ispezioni, si è provveduto ad elaborare il prospetto statistico (calcolo della Leak Frequency rispetto alla Leak Definition 1.000 ppmv) ed il computo della stima emissiva, in base ai dati raccolti.

La stima emissiva calcolata è relativa ai componenti effettivamente monitorati ed a quelli inventariati e non monitorati ed è espressa in Ton/an (8.760 h) e Kg/h. Il presente report riferito all'attività di Marzo 2012 è stato redatto in conformità alla sezione 8. Report della EN15446 che richiede:

- Scope of the report (facility, type and size of equipment measured, streams, purpose, reporting period);
- Results expressed in mass per year (indicating how the mass is specified; as reference compound equivalent, carbon equivalent, actual composition of emission);
- Characteristic of instrument used;
- Response factor that have been used. In case are provided per concentration strata by the manufacturer, these
 values should be provided. Source of information for response factors, substances for which response factor is
 unknow shall be indicated,
- Value of threshold concentration:
- Which correlation is used;
- Which pegged value is used;
- Max. ppmv used in correlations;
- Number of components measured during the reporting period;
- Number of components measured during the previous period;
- Number of components never measured;
- Handling of equipment not measured;
- Grouping of equipment in case average leak rates are derived from plant data

L'applicazione della procedura LDAR è stata effettuata in accordo con le prescrizioni contenute nell'AIA:

DECRETO MINISTERO DELL'AMBIENTE E DELLA TUTELA DEL TERRITORIO E DEL MARE

PROT. DVA-DEC-2011-0000423 DEL 26/07/2011 PUBBLICATO SULLA G.U. N°193 DEL 20/08/2011

Pag.74 - punto 22) del PIC e Cap. 3.2 pag.11 del PMC - Emissioni diffuse e fuggitive.

- Il Gestore deve trasmettere entro 6 mesi dal rilascio dell'AIA un programma di manutenzione periodica finalizzato al controllo delle perdite (emissioni fuggitive e diffuse) di Formaldeide ed altri COV e alle relative riparazioni (Leak Detection and Repair).
- Il Gestore dovrà trasmettere, entro 36 mesi dal rilascio dell'AIA i risultati del censimento completo delle sorgenti di emissioni fuggitive secondo il programma LDAR, che dovranno essere registrati su database in formato elettronico e cartaceo e dovranno essere allegati al primo rapporto annuale che verrà inviato all'Autorità competente e all'Ente di controllo.
- Una sintesi dei risultati del monitoraggio ed eventuali interventi dovrà essere presentata dal Gestore con cadenza annuale.

2. Descrizione dell'attività eseguita (scope of the report)

L'attività è consistita nell'implementare la procedura LDAR presso gli Impianti del Gestore al fine di:

- 1. quantificare e qualificare le sorgenti appartenenti agli Impianti per la redazione dell'Inventario;
- 2. accumulare per ogni sorgente raggiungibile una lettura secondo tecnica EPA Method 21;
- 3. segnalare le sorgenti divergenti rispetto alla "Leak Definition" 1.000 ppmv perché il Gestore potesse avviare su queste un'azione correttiva;
- 4. Rimonitorare le sorgenti riscontrate in stato di Leakage per verificare gli interventi di riparazione effettuati;
- 5. contabilizzare le emissioni dell'Impianto secondo le procedure EN15446 (questa attività ricorrerà al termine di ogni ispezione);

I componenti oggetto di monitoraggio sono stati inventariati ed aggregati in cinque gruppi principali: 1) Agitatori, Compressori, Pompe; 2) Valvole; 3) Valvole di sicurezza; 4) Flange; 5) Fine linea ed in sottogruppi GAS o LIGHT LIQUID (LL) a seconda della fase dello stream (sono stati seguiti i criteri di classificazione della EPA453/95). Le flange indistintamente aggregano flange di linea (piping), flange di apparecchi (scambiatori di calore) o Bonnet Flange delle valvole.

Durante la fase di censimento e catalogazione sono, inoltre, stati individuati gli Streams ed i relativi fattori di risposta RF, definendo la curva di correzione (SVA Screened Value Adjusted)

$$SVA = ((A*Xi)/(1+(B*Xi/10.000))$$

ove Xi è la lettura bruta che rilascia il valore "aggiustato" SVA lungo tutto il range 0 ÷ 100.000 ppmv.

Dove necessario, per il calcolo dei fattori di risposta degli Streams identificati è stata utilizzata per ognuno l'equazione 8.1 riportata nell'allegato B della EN15446:

RFm = 1 / (X1/RF1 + X2/RF2 + ... + Xn/RFn)

RFm response factor dello stream

X1, X2, ..., Xn frazione molare della sostanza n – sima costituente lo stream

RF1, RF2, ..., RFn respons factor della singola sostanza

Con gli RFm basati sulla Leak Definition 500 e 10.000 di ciascuno stream, come indicato dal manuale dello strumento Thermo ENV, sono stati successivamente calcolati i fattori A e B della curva di risposta del Thermo ENV TVA 1000 B. La curva di risposta restituisce il fattore di risposta della macchina allo stream con continuità all'interno di tutto il range di lettura 0 ÷ 100.000:

Response Curve

Response factors can change as concentration changes. The response factor for a compound determined at 500 ppm may not be the same as the response factor determined at 10,000 ppm. By using a response curve, you can characterize a compounds response over a broader range of concentrations. If the actual concentration is plotted as Y vs. X (measured concentration), the resulting curve can be represented by the rational equation

$$Y = \frac{AX}{\left(1 + \frac{BX}{10000\text{ppm}}\right)}$$

Per le sostanze singole non appartenenti alla lista del manuale Thermo ENV , è stato utilizzato il valore $RF_{1.000} = 1$ come previsto dalla EN15446.

Fattori A e B e ripartizione in peso degli Streams

Stream	Α	В	Formurea Form	naldeide_	Metanolo
Formurea	1,000	0,000	1,000		
Formaldeide	7,234	-50,520	· · · · · · · · · · · · · · · · · · ·	L,000	
Metanolo	3,815	0,193	\		1,000
				i i i i i i i i i i i i i i i i i i i	

Le tre sostanze d'interesse risultano distribuite come segue:

Zona	FORMALDEIDE	FORMUREA	META NOLO	Totale
FOR 1	235		162	397
FOR 2	189		144	333
FOR 3	214		127	341
FOR 4	207		125	332
FOR 5	214		182	396
FOR 6	1 84	1	134	319
REPARTO RESINE	77	113		190
STOC. E MOV. METANOLO			280	280
STOC. LATO STRADA	247			247
STOC.LATO TORRI DI RAFF.	86	182		268
Totale	1.653	296	1.154	3.103

L'ispezione EPA Method 21 è stata condotta con FID TVA 1000B che opera nell'intero range emissivo, da 0 a 100.000 ppmv.

Nel computo emissivo è stato utilizzato il valore di pegged 100.000 ppmv. In relazione al calcolo della stima emissiva è stata utilizzata per ogni componente l'ultima lettura ppmv accumulata.

Ai componenti non monitorabili e privi di qualsiasi lettura sono stati attribuiti i valori medi emissivi computati presso componenti omogenei per tipo e zona.

Le letture, corrette con il fattore di risposta, sono state elaborate con le equazioni di correlazione:

 $Kg/h = A \times (SVA)^{A}$

ove i fattori A e B sono acquisiti dalla tabella:

Table C.1 – US EPA SOCMI correlation parameters and factors

Source	Service	А	8	Pegged value at 10.000 ppm (kg/h)	Pegged value at 100.000 ppm (kg/h)	Average factor (kg/h)
Valve	Ges	1.87 x 10 ⁻⁶	0,873	0,024	0,110	0.00597
Valve	Light liquid	6,41 x 10 ⁻⁶	0,797	0,036	0,150	0,00403
Pump seal ⁶)	Light liquid	1,90 x 10 ^호	0,824	. 0.140	0,620	0,0199
Connector	All	3,05 x 10 °	0,885	0,044	0,220	0,00183

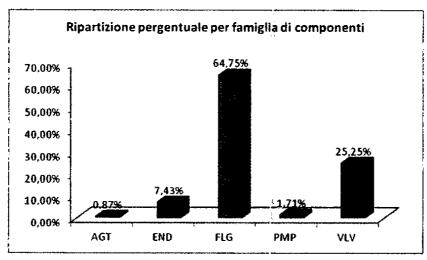
Additional average emission factors are available for the following components:

compressor seals (gas service): 0,228 kg/h
relief valves (gas service): 0,104 kg/h
open ended lines (all services): 6,0017 kg/h

sampling connections (all services): 0,015 kg/h

I fattori medi emissivi attribuiti a componenti non monitorabili sono stati i seguenti:

Componente	Media Kg/h COV
AGT	4,198E-04
END	4,457E-04
FLG	3,986E-04
VLV	3,223E-04
5-,	


AGT: Agitatori; END: Fine linea; FLG: Flange; VLV: Valvole

Al termine del ciclo ispettivo, l'inventario è stato classificato come segue:

Zona	_AGT _	END	FLG	PMP	VLV	Non monitorabili	Monitorabili	Totale
FOR 1	2	34	259	6	96	36	394	361
FOR 2	3	24	223	6	77	14	323	319
FOR 3	1	32	217	6	85	12	339	329
FOR 4	1	27	213	6	85	14	329	318
FOR 5	3	29	265	6	93	36	369	360
FOR 6	2	30	201	7	79	48	302	271
REPARTO RESINE		3	132		55		190	190
STOC. E MOV. METANOLO		22	185	4	69		280	280
STOC. LATO STRADA	7	17	149	5	69	42	247	205
STOC.LATO TORRI DI RAFF.	8	15	165	6	74	13	268	255
Totale	27	233	2.009	52	782	215	2.888	3.103

AGT: Agitatori; END: Fine linea; FLG: Flange; PMP: Pompe; VLV: Valvole

I punti componente censiti risultano ripartiti per famiglia d'appartenenza come mostrato nel seguente istogramma:

AGT: Agitatori; END: Fine linea; FLG: Flange; PMP: Pompe; VLV: Valvole

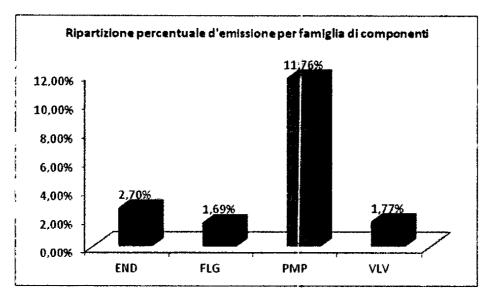
L'inventario risulta dunque costituito da 3.103 componenti dei quali 215 non monitorabili e 2.888 monitorabili.

Carrara Spa Divisione Ferp - Report LDAR 2012 Sadepan Chimica - Viadana- Rev 01 - pag 8

3. Esito dell'ispezione

Sono stati oggetto d'ispezione gli impianti FOR 5, FOR 6 e Stoccaggio e Movimentazione metanolo per un totale di 911 letture.

A seguito del primo ciclo ispettivo l'indice di Leak Frequency rispetto alla Leak Definition 1.000 ppmv è risultata del 1,98% (18 vs 911).


Zona	0	1_1	Totale
FOR 5	356	4	360
FOR 6	264	7	271
STOC. E MOV. METANOLO	273	. 7	280
Totale	893	18	911

Componente	0	1	_Totale
AGT	4		4
END	72	2	74
FLG	580	10	590
PMP	15	2	17
VLV	222	4	226
Totale	893	18	911

Status 0: ppmv < 1.000; Status 1: ppmv > 1.000

AGT: Agitatori; END: Fine linea; FLG: Flange; PMP: Pompe; VLV: Valvole

La ripartizione percentuale d'emissione, per famiglia di componenti risulta, dopo il primo ciclo ispettivo, essere divisa come mostrato dall'istogramma sottostante:

AGT: Agitatori; END: Fine linea; FLG: Flange; PMP: Pompe; VLV: Valvole

Il ciclo di remonitoraggio dei componenti precedentemente riscontrati divergenti rispetto alla Leak Definition di 1.000 ppmv, ha evidenziato il rientro al disotto della soglia di perdita di tutti e 18 i componenti.

Nella tabella successiva è possibile verificare la dinamica del comportamento dei componenti in seguito ai due cicli ispettivi in modo più dettagliato.

Componente / Range	4	5	6	7	Totale
AGT			1	4	4
END			1	73	74
FLG	2	23	47	518	590
PMP				17	17
VLV		11	9	206	226
Totale	2	34	57	818	911

AGT: Agitatori; END: Fine linea; FLG: Flange; PMP: Pompe; VLV: Valvole

I range emissivi sono stati classificati in 8 gruppi, da 100.000 ppmv a 0 secondo la seguente legenda:

status	Range di appartenenza del componente
AP	Pegged ppm > 100.000
1	10,000 <ppm 99,999<="" <="" td=""></ppm>
2	5,000 < ppm < 9,999
3	1,000 < ppm < 4.999
4	500 < ppm < 999
5	100 < ppm < 499
6	10 < ppm < 99
7	ppm < 10
AV	nos montorabile

4. Dati di monitoraggio

L'attività di monitoraggio presso l'impianto è stata effettuata il 9 Febbraio 2012 ed il 7 Settembre 2012. Di seguito il riepilogo.

Data	Nro letture	Nro operatori	Media gg
09/02/2012	911	1	911
07/09/2012	18	1	· 18

Il rumore di fondo in ppmv riscontrato durante il monitoraggio è risultato compreso nel range $0,10 \div 0,25$ ppmv.

5. Conclusione

Nelle prossime tabelle vengono analizzate e quantificate le emissioni di COV (Composti Organici Volatili) in termini di Kg/h e di Ton/anno.

L'emissione oraria complessiva si è attestata a circa 0,058 Kg/h mentre l'emissione annua complessiva risulta essere di circa 0,51 Ton/anno.

Nelle tabelle inoltre sono specificate la performance per Unità e per famiglia di componenti.

Zona	Nro Componenti	Kg/h COV	Ton/anno COV
FOR 5	396	0,023	0,198
FOR 6	319	0,026	0,227
STOC. E MOV. METANOLO	280	0,010	0,085
Totale	995	0,058	0,510
Componente	Nro Componenti	kg/h cov	Ton/anno COV
AGT	5	0,001	0,005
END	81	0,004	0,035
FLG	651	0,040	0,353
PMP	17	0,001	0,008
VLV	241	0,012	0,109

AGT: Agitatori; END: Fine linea; FLG: Flange; PMP: Pompe; VLV: Valvole

Restando a disposizione per ogni ragguaglio od integrazione, l'occasione è gradita per porgere distinti saluti.

Cordialmente Carrara S.p.a. – divisione FERP – 27/09/2012 Eng. F.Apuzzo CARRARA S.p.A.
Via Provinciale, 38
25030 ADRO (Breedle)