

Ministero dell'Ambiente e della Tutela del Territorio e del Mare — D.G. Valutazioni e Autorizzazioni Ambientali

E.proi DVA - 2015 - 0012076 del 07/05/2015

Sarroch 30/04/2015 Prot.SH/DS/15/084/LP cu

PICENINO II THE POLITICA DELLA TOTALA DEL TERRADE LA MACONINO II

EMILATE DE LE VILLETANIA AMERICANA

versalis

Stabilimento di Sarroch
SS 195 Km18.8
09018 Sarroch (CA) - Italia
Tel. centralino + 39 07090901
stabilimento.sarroch@versalis.eni.com
Direzione e Uffici Amministrativi
Piazza Boldrini, 1 - 20097 San Donato Milanese (MI)
Tel. centralino: +39 02 5201
www.versalis.eni.com - info@versalis.eni.com

Spettabili

Ministero dell'Ambiente e della Tutela del Territorio e del Mare – Direzione Generale Valutazioni Ambientali dva-IV@minambiente.lt ala@PEC.minambiente.lt

ISPRA

Protocollo ispra@ispra legalmail.it Controlli-ala@isprambiente.it

Regione Autonoma della Sardegna Direzione Generale della Difesa dell'Ambiente difesa@pec.regione.sardegna.it

Provincia di Cagliari Settore Ambiente ed Ecologia ecologia@pec.provincia.cagliari.it

Comune di Sarroch protocollosarroch@pec.it

ARPAS

dipartimento.ca@pec,arpa.sardegna.it

Oggetto: AIA DEC-DVA-2012-0000333 Stabillmento versalis di Sarroch - Trasmissione rapporto annuale 2014

Con riferimento al punto 12.7 del Piano di Monitoraggio e Controllo, parte integrante del Decreto autorizzativo citato, si trasmette in allegato il Rapporto Annuale dell'esercizio 2014.

Il Gestore dichiara che l'esercizio dello stabilimento, nel periodo di riferimento del presente Rapporto (Gennalo/Dicembre 2014), è avvenuto nel rispetto delle prescrizioni e condizioni prescritte nel citato Decreto AIA.

Oistinti saluti

versalis

Polo Industriale Sardegna (Area di competenza: stabilimenti di Porto Jorres e S

Responsabile Luca Piludu

Versalis spa

Sede Legale: San Donato Milanese (MI) - Piazza Boldrini, 1 - Italia Capitale sociale interamente versato: Euro 1.553,400.000,00 Codice Fiscale e registro Imprese di Milano 03823300821 Part. IVA IT 01768800748 R.E.A. Milano n. 1351279 Società soggetta oll'attività di direzione e coordinamento di Eni S.p.A.

(arroch)

Società con socio unico

Ole

PEC DVA

Da:

Aia PEC < Aia@pec.minambiente.it>

Inviato:

lunedì 4 maggio 2015 11:02

A:

'PEC DVA'

Oggetto:

I: POSTA CERTIFICATA: AIA DEC?DVA?2012?0000333 - Stabilimento versalis di

Sarroch - Trasmissione rapporto annuale 2014

Allegati:

daticert.xml; AIA DEC-DVA-2012-0000333 - Stabilimento versalis di Sarroch -

Trasmissio... (6,19 MB)

----Messaggio originale----

Da: Per conto di: direzione_sh@pec.versalis.eni.com [mailto:posta-certificata@pec.actalis.it]

Inviato: giovedì 30 aprile 2015 16:40

A: DVA IV Minambiente; aia miniambiente; Protocollo; Controlli

Cc: hse_sh@versalis.eni.com

Oggetto: POSTA CERTIFICATA: AIA DEC?DVA?2012?0000333 - Stabilimento versalis di Sarroch - Trasmissione

rapporto annuale 2014

Messaggio di posta certificata

Il giorno 30/04/2015 alle ore 16:39:39 (+0200) il messaggio "AIA DEC?DVA?2012?0000333 - Stabilimento versalis di Sarroch - Trasmissione rapporto annuale 2014" è stato inviato da "direzione_sh@pec.versalis.eni.com" indirizzato a:

Protocollo.ispra@ispra.legalmail.it

Controlli-aia@isprambiente.it

dva-IV@minambiente.it

aia@pec.minambiente.it

hse sh@versalis.eni.com

Il messaggio originale è incluso in allegato.

Identificativo del messaggio:

opec275.20150430163939.09342.02.43.2@pec.actalis.it

Sarroch 30/04/2015 Prot.SH/DS/15/084/LP cu

versalis

Stabilimento di Sarroch SS 195 Km18.8 09018 Sarroch (CA) - Italia Tel. centralino + 39 07090901 stabilimento.sarroch@versalis.eni.com

Direzione e Uffici Amministrativi
Piazza Boldrini, 1 - 20097 San Donato Milanese (MI)
Tel. centralino: +39 02 5201
www.versalis.eni.com - info@versalis.eni.com

Spettabili

Ministero dell'Ambiente e della Tutela del Territorio e del Mare – Direzione Generale Valutazioni Ambientali dva-IV@minambiente.it aia@PEC.minambiente.it

ISPRA

Protocollo.ispra@ispra.legalmail.it Controlli-aia@isprambiente.it

Regione Autonoma della Sardegna Direzione Generale della Difesa dell'Ambiente difesa@pec.regione.sardegna.it

Provincia di Cagliari Settore Ambiente ed Ecologia ecologia@pec.provincia.cagliari.it

Comune di Sarroch protocollosarroch@pec.it

ARPAS

dipartimento.ca@pec.arpa.sardeqna.it

Oggetto: AIA DEC-DVA-2012-0000333 Stabilimento versalis di Sarroch - Trasmissione rapporto annuale 2014

Con riferimento al punto 12.7 del Piano di Monitoraggio e Controllo, parte integrante del Decreto autorizzativo citato, si trasmette in allegato il Rapporto Annuale dell'esercizio 2014.

Il Gestore dichiara che l'esercizio dello stabilimento, nel periodo di riferimento del presente Rapporto (Gennaio/Dicembre 2014), è avvenuto nel rispetto delle prescrizioni e condizioni prescritte nel citato Decreto AIA.

Distinti saluti

versalis

Polo Industriale Sardegna

(Area di competenza: stabilimeni di Porto Torres e Sarroch)
Responsabile
Luca Piludu

Versalis spa

Sede Legale: San Donato Milanese (MI) - Piazza Boldrini, 1 - Italia Capitale sociale interamente versato: Euro 1.553.400.000,00 Codice Fiscale e registro Imprese di Milano 03823300821 Part. IVA IT 01768800748 R.E.A. Milano n. 1351279

Società soggetta all'attività di direzione e coordinamento di Eni S.p.A. Società con socio unico

Ole

AUTORIZZAZIONE INTEGRATA AMBIENTALE VERSALIS STABILIMENTO DI SARROCH

RAPPORTO RIASSUNTIVO ANNO 2014

Indice

1.	PREMESSA	3
2.	INFORMAZIONI GENERALI	3
3.	DICHIARAZIONE DI CONFORMITÀ	6
4.	CONSUMI	8
5.	EMISSIONI IN ARIA	21
6.	EMISSIONI IN ACQUA	32
7.	RIFIUTI	38
8.	RUMORE	41
9.	ODORE	41
10. SUOL	MONITORAGGIO DELLE ACQUE SOTTERRANEE E CARATTERIZZAZIONE LO/SOTTOSUOLO	41
11.	ULTERIORI INFORMAZIONI	44
ALLE	GATI	
ALLE	GATO 1 "Registro torcia 2014"	
ALLE	GATO 2 "Verifica del Delta temperatura oltre 1000 metri allo scarico a mare dello stabilimento"	
ALLE	GATO 3 "Sintesi del M.U.D. 2015"	
ALLE	GATO 4 "Consuntivo emissioni acustiche su serbatoi non dotati di doppio fondo"	
ALLE	GATO 5 "Sintesi delle attività di controllo, verifica e manutenzione svolte nel 2014 sulle apparecchiature, linee, serbatoi e strumentazione rilevante dal pun di vista ambientale"	ıto
ALLE	GATO 6 "Cronoprogramma attività 2015"	
ALLE	GATO 7 "Report di AST del sistema automatico di misura in continuo delle emission atmosfera installato al camino E11 della Centrale Termoelettrica"	ni in
ALLE	GATO 8 "Report di IAR del sistema automatico di misura in continuo delle emission	i in

atmosfera installato al camino E11 della Centrale Termoelettrica"

1. PREMESSA

Nel mese di luglio 2012 versalis spa, ha ottenuto l'Autorizzazione Integrata Ambientale per l'esercizio dello Stabilimento di Sarroch, rilasciata con Decreto DVA-2012-0000333 del 03/07/2012, di cui all'annuncio pubblicato sulla Gazzetta Ufficiale n.192 del 18/08/2012.

Al paragrafo 12.7 del Piano di Monitoraggio e Controllo allegato all'Autorizzazione Integrata Ambientale si prescrive la trasmissione di un rapporto annuale che descriva l'esercizio dell'impianto nell'anno precedente.

Inviamo i dati relativi ai consumi ed emissioni dell'anno 2014.

Nel mese di novembre 2014, nota Prot.Dire/251 del 28/11/2014, sono stati fermati definitivamente gli impianti Pseudocumene e Xiloli, avviati alla messa in sicurezza conservativa.

In data 29/12/14 è stata stipulata tra versalis e Sarlux un contratto di cessione di ramo d'azienda con efficacia 01/01/2015, oggetto della comunicazione di aggiornamento Gestore, nota Prot. Dire/008 del 01/01/2015.

2. INFORMAZIONI GENERALI

Denominazione Impiantoversalis spa Stabilimento di SarrochIndirizzo sede operativaStrada statale 195 km 18,8 SN

Sede legale Piazza Boldrini, 1 20097 – San Donato Milanese (MI)

Rappresentante legaleLuca PiluduTipo di impiantoImpianto chimico

Codice è attività IPPC 4.1 (a) – Impianto chimico per la produzione di prodotti

chimici organici di base

1.1 – Impianti di combustione con potenza calorifica >

50 MW

Codice NACE 20.14 - Fabbricazione di Prodotti Chimici

Codice NOSE-P 105.09 – Impianti chimici

101.01 – Processi di combustione > 300MW

Stabilimento autorizzato all'esercizio di Deposito Preliminare/Messa in riserva (D15/R13) di rifiuti speciali pericolosi e non pericolosi, per un quantitativo massimo

di 650 t di cui 450 t di rifiuti pericolosi.

Gestore Impianto Luca Piludu – Strada statale 195 km 18,8 SN

e-mail: <u>luca.piludu@versalis.eni.com</u>

direzione_sh@pec.versalis.eni.com

Referente IPPC Carlo Usai - Strada statale 195 km 18,8 SN

e-mail: <u>carlo.usai@versalis.eni.com</u>

hse_sh@pec.versalis.eni.com

Numero di addetti al 31/12/2014 344

Si riporta di seguito l'effettivo numero di ore di funzionamento dei reparti produttivi nell'anno compresi il numero degli avviamenti e spegnimenti.

REPARTI	PRODUTTIVI	N° ORE DI EFFETTIVO FUNZIONAMENTO	N° SPEGNIMENTI	N° AVVII
Sigla	Reparto			
F1.2	CTE	8.760	1	1
F1.1	Reforming	6.573	7	7
F2	Pseudocumene	3.919	6	5 ^(*)
F3	Cumene Sezione Splitter	5.328	10	10
F4	Formex	6.736	8	8
F5	BTX	6.864	4	4
F6	Xiloli	6.144	9	8(*)

^(*)Comunicata con nota Prot.Dire/251 del 28/11/2014 la fermata definitiva e la messa in sicurezza conservativa.

Nella tabella seguente si riportano i principali prodotti e le relative quantità (tonnellate) mensili

	GEN	FEB	MAR	APR	MAG	GIU	FNG	AGO	SETT	ОТТ	NOV	DIC	TOTALE
GPL	3.730	3.897	4.779	4.323	3.342	0	0	1.315	1.521	2.990	3.439	4.482	33.818
RICH GAS	3.102	2.945	2.915	2.756	2.760	0	0	1.570	1.507	2.356	3.767	3.695	27.373
BENZENE	4.752	3.799	5.234	4.535	4.488	786	0	1.827	5.492	7.376	7.444	4.081	49.814
RAFFI NATO FORMEX	11.460	8.797	11.696	11.709	9.897	828	0	5.067	11.963	13.237	14.663	13.581	112.896
PARAXILENE	5.093	5.237	8.462	7.510	5.157	1.347	99	943	4.056	3.035	2.333	0	43.240
ETILBENZENE	2.152	1.620	2.707	2.105	2.518	1.093	6	495	2.085	1.617	1.558	0	17.960
ORTOXI LENE	4.312	2.809	5.330	4.688	4.532	1.599	24	1.163	4.060	2.948	2.875	0	34.341
METAXILENE	2.760	3.313	5.343	4.367	4.877	1.848	184	3.671	8.093	5.371	4.535	30	44.394
MESITILENE	99	0	0	0	0	0	0	0	0	0	0	0	99
PSEUDOCUMENE	2.328	22	397	1.653	1.521	46	0	740	1.285	1.887	1.014	0	10.892
PROPI LENE PG	5.199	6.139	4.472	1.465	5.878	4.785	2.885	3.644	618	0	4.637	11.432	51.150
PROPANO	1.421	1.488	1.057	425	1.528	1.291	936	1.142	211	0	1.312	3.333	14.144
BENZINA MIX	50.039	51.847	54.895	57.690	49.484	3.141	1.960	23.142	42.591	40.627	54.119	71.601	501.138

3. DICHIARAZIONE DI CONFORMITÀ

Formalizzare il rispetto delle prescrizioni

Il Gestore dichiara che l'esercizio dello stabilimento, nel periodo di riferimento gennaio/dicembre 2014, è avvenuto nel rispetto delle prescrizioni e condizioni prescritte nel citato Decreto AIA.

Non Conformità e consequenti comunicazioni.

• Prot.Dire/007

Comunicazione di malfunzionamento sistema di regolazione dell'aria comburente delle caldaie della Centrale Termoelettrica e superamento dei VLE dei parametri NOx e CO.

Prot Dire/008

Comunicazione di superamento VLE per parametri NOx e CO camino E11.

Prot.Dire/013

Comunicazione del superamento VLE relativo al parametro CO sul camino E11 a causa di un malfunzionamento del sistema automatico di chiusura della serranda di intercetto dell'aria comburente del bruciatore n.4 della caldaia B3.

Prot.Dire/023

Comunicazione di superamento VLE relativo al parametro CO sul camino E11 a causa della concomitanza tra un malfunzionamento del sistema di regolazione dell'aria comburente e l'avviamento del turboalternatore TG1.

Prot.Dire/030

Comunicazione di superamento VLE relativo al parametro CO sul camino E11 a causa della concomitanza tra un malfunzionamento del sistema di regolazione dell'aria comburente e l'avviamento del turboalternatore TG1.

Prot.Dire/037

Comunicazione del superamento VLE del parametro CO sul camino E11 a causa del malfunzionamento del sistema di regolazione aria comburente.

Prot.Dire/044

Comunicazione del superamento VLE dei parametri Benzene e Esano durante il campionamento al camino E16 del 05/02/2014.

Prot.Dire/073

Comunicazione di superamento VLE del parametro CO sul camino E11, registrato dal sistema SME, dalle ore 14.00 alle ore 15.00 del 18/04/2014.

Prot.Dire/198

Comunicazione di superamento VLE del parametro CO al camino E15 dell'impianto Reforming.

Prot.Dire/208

Con riferimento alla nota Prot.Dire/206, si comunica che durante la fase di avviamento caldaia, dalle ore 09.00 alle ore 10.00 del giorno 02 ottobre 2014, è stato registrato dallo SME installato al camino della Centrale Termoelettrica un superamento del VLE relativo al parametro CO.

Prot.Dire/233

Comunicazione di superamento NOx alla centrale termoelettrica registrato dal sistema di monitoraggio in continuo a causa di un transitorio sulla rete fuel gas indotto da variazioni dalla fornitura dell'adiacente raffineria.

- Prot.Dire/240
 Comunicazione di superamento CO alla centrale termoelettrica registrato dal sistema di monitoraggio in continuo verificatosi durante la pulizia periodica del bruciatore
- Prot.Dire/246
 Comunicazione di superamento CO alla centrale termoelettrica registrato dal sistema di monitoraggio in continuo verificatosi durante la pulizia periodica del bruciatore.

Riassunto degli eventi incidentali

Durante l'avviamento dell'impianto Reforming, alle ore 12 circa del 29 maggio a causa della rottura di un tubo serpentino del forno F3, ribollitore di fondo colonna C3, si è verificata una fuori uscita di benzina unifinata all'interno della camera di combustione con conseguente irregolarità di combustione ed emissione di fumo nero dal camino E7. Effettuata comunicazione, ai sensi del punto 12.6 del PMC in data 30/05/2014 con Prot.Dire/108.

In data 30/05/2014 con nota Prot.Dire/109 è stato comunicato che alle ore 15.25 del 29 maggio, durante le fasi di riavviamento dell'impianto Xiloli – Zona Acidas,i è verificata una perdita di metaxilene misto a HF e BF3 dalla tenuta dello stelo di una valvola a saracinesca di intercetto della mandata pompa PP707A.

In data 28/11/2014 con nota Prot. Dire/250 è stata comunicata la fermata dell'impianto Xiloli e la fermata del circuito di acqua mare a causa della rottura del collettore acqua mare di raffreddamento.

4. CONSUMI

Consumo di materie prime (espressi in kg) in carica agli impianti nell'anno 2014

GENNAIO	Giacenza	Arrivi	Lavorazioni	Giacenza
VIRGIN NAFTA ACQUISTO	9.739.000	59.689.270	57.377.270	12.050.000
RIFORMATA CCR	1.671.000	32.862.372	32.699.372	1.890.000
XILENI MISTI BULK P386	0	0	0	0
PARAXILGREZZO BULK P386	3.122.000	0	1.245.000	1.877.000
XILENI BULK P386	0	0	0	0
AROMATICI C9	0	0	11.227.000	0
PROPILENE RG	421.000	6.867.902	6.855.902	433.000

FEBBRAIO	Giacenza	Arrivi	Lavorazioni	Giacenza
VIRGIN NAFTA				
ACQUISTO	12.050.000	58.878.121	53.866.121	17.054.000
RIFORMATA CCR	1.890.000	28.062.848	27.607.848	2.289.000
XILENI MISTI BULK				
P386	0	0	0	0
PARAXILGREZZO				
BULK P386	1.877.000	4.469.136	3.444.136	2.902.000
XILENI BULK P386	0	1.580.542	0	1.580.542
AROMATICI C9	0	0	359.000	0
PROPILENE RG	433.000	7.648.260	7.857.260	224.000

MARZO	Giacenza	Arrivi	Lavorazioni	Giacenza
VIRGIN NAFTA				
ACQUISTO	17.054.000	62.884.890	66.705.890	13.239.000
RIFORMATA CCR	2.289.000	33.029.520	33.078.520	2.240.000
XILENI MISTI				
BULK P386	0	0	0	0
PARAXILGREZZO				
BULK P386 a sez				
1100	2.902.000	2.487.026	4.291.026	1.098.000
XILENI BULK				
P386	1.580.542	1.240.660	0	2.821.202
AROMATICI C9	0	0	2.448.000	0
PROPILENE RG	224.000	6.027.114	5.662.114	589.000

APRILE	Giacenza	Arrivi	Lavorazioni	Giacenza
VIRGIN NAFTA				
ACQUISTO	13.239.000	65.860.662	65.249.662	13.850.000
RIFORMATA CCR	2.240.000	31.786.608	31.575.608	2.451.000
XILENI MISTI BULK				
P386	0	0	0	0
PARAXILGREZZO BULK				
P386 a sez 1100	1.098.000	3.573.839	3.459.839	1.212.000
XILENI BULK P386	2.821.202	0	0	2.821.202
AROMATICI C9	0	0	7.577.000	0
PROPILENE RG	589.000	1.674.395	1.955.395	308.000

MAGGIO	Giacenza	Arrivi	Lavorazioni	Giacenza
VIRGIN NAFTA ACQUISTO	13.850.000	52.484.300	54.602.300	11.885.000
RIFORMATA CCR	2.451.000	30.944.624	31.978.624	1.417.000
XILENI MISTI BULK P386	0	92.149	92.149	0
PARAXILGREZZO BULK P386 a sez 1100	1.212.000	1.262.899	1.281.899	1.015.000
XILENI BULK P386	2.821.202	0	0	2.821.202
AROMATICI C9	0	0	7.798.000	0
PROPILENE RG	308.000	7.693.451	7.626.451	375.000

GIUGNO	Giacenza	Arrivi	Lavorazioni	Giacenza
VIRGIN NAFTA ACQUISTO	11.885.000	14.031.196	0	26.103.000
RIFORMATA CCR	1.417.000	3.180.936	3.049.936	1.675.000
XILENI MISTI BULK P386	0	0	0	0
PARAXILGREZZO BULK P386 a sez 1100	1.015.000	2.967.001	0	3.975.000
XILENI BULK P386	2.821.202	1.576.521	0	4.397.723
AROMATCI C9	0	0	421.000	0
PROPILENE RG	375.000	6.038.999	6.293.999	120.000

LUGLIO	Giacenza	Arrivi	Lavorazioni	Giacenza
VIRGIN NAFTA				
ACQUISTO	26.103.000	0	0	26.124.000
RIFORMATA CCR	1.675.000	0	0	1.671.000
XILENI MISTI BULK				
P386	0	1.970.924	433.924	10.131.277
PARAXILGREZZO BULK				
P386 a sez 1100	3.975.000	0	0	3.977.000
XILENI BULK P386	4.397.723	0	0	4.397.723
AROMATICI C9	0	0	0	0
PROPILENE RG	120.000	4.025.357	3.925.357	220.000

AGOSTO	Giacenza	Arrivi	Lavorazioni	Giacenza
VIRGIN NAFTA				
ACQUISTO	26.124.000	23.312.925	30.150.998	19.116.000
RIFORMATA CCR	1.671.000	9.642.026	9.826.026	1.423.000
XILENI MISTI BULK				
P386	0	0	0	0
PARAXILGREZZO BULK				
P386 a sez 1100	3.977.000	0	0	3.562.000
XILENI BULK P386	4.397.723	0	0	1.293.095
AROMATICI C9	0	0	3.819.000	0
PROPILENE RG	220.000	5.166.146	4.915.146	471.000

SETTEMBRE	Giacenza	Arrivi	Lavorazioni	Giacenza
VIRGIN NAFTA				
ACQUISTO	19.116.000	55.640.616	54.050.739	20.534.000
RIFORMATA CCR	1.423.000	24.911.276	20.622.276	5.714.000
XILENI MISTI BULK				
P386	0	0	0	0
PARAXILGREZZO BULK				
P386 a sez 1100	3.562.000	0	465.000	1.414.000
XILENI BULK P386	1.293.095	0	0	1.293.095
AROMATICI C9	0	0	6.785.000	0
PROPILENE RG	471.000	444.229	887.229	98.000

OTTOBRE	Giacenza	Arrivi	Lavorazioni	Giacenza
VIRGIN NAFTA				
ACQUISTO	20.534.000	43.422.469	55.416.469	8.548.000
RIFORMATA CCR	5.714.000	27.255.482	26.303.482	6.716.000
XILENI MISTI BULK				
P386	0	0	0	0
PARAXILGREZZO BULK				
P386 a sez 1100	1.414.000	0	155.000	402.000
XILENI BULK P386	1.293.095	0	0	540.095
AROMATICI C9	0	0	8.851.000	0
PROPILENE RG	98.000	0	0	98.000

NOVEMBRE	Giacenza	Arrivi	Lavorazioni	Giacenza
VIRGIN NAFTA				
ACQUISTO	8.548.000	58.895.805	54.689.805	12.752.000
RIFORMATA CCR	6.716.000	28.770.984	31.556.984	3.930.000
XILENI MISTI				
BULK P386	0	0	0	0
PARAXILGREZZO				
BULK P386 a sez				
1100	402.000	0	0	248.000
XILENI BULK				
P386	540.095	0	0	0
AROMATICIC9	0	0	7.418.000	0
PROPILENE RG	98.000	6.642.990	6.105.990	565.000

DICEMBRE	Giacenza	Arrivi	Lavorazioni	Giacenza
VIRGIN NAFTA ACQUISTO	12.752.000	48.159.213	56.401.213	4.518.000
RIFORMATA CCR	3.930.000	30.138.154	31.295.154	2.773.000
XILENI MISTI BULK P386	0	0	0	0
PARAXILGREZZO BULK P386 a sez 1100	248.000	0	0	247.000
XILENI BULK P386	0	0	0	0
AROMATICI C9	0	0	0	0
PROPILENE RG	565.000	7.361.595	7.550.595	376.000

Consumi di chemicals 2014

REFORMING	unità di misura	QUANTITA'	FASE DI UTILIZZO
Dimetildisolfuro	kg	152	1.1
PerchloroEthylene	kg	3.220	
P3 Ferrocor 8895	kg	850	
P3 Ferrosolf 8915	kg	0	
SODA CA. SOL.50% SHP BULK P386	kg	26.076	
Setacci molecolari MS514	kg	1885	
Setacci molecolari TIPO564/C	kg	0	
Ketjenfine KG-55	kg	41	
Allumina attiva F200	kg	287	

втх	unità di misura		FASE DI UTILIZZO
Terre Filtranti	kg	139.000	5
Conferimento terre	kg	153	
Sabbia silicea	kg	3000	
Granini silice	kg	11.200	-

FORMEX	unità di misura	QUANTITA'	FASE DI UTILIZZO
N-Formilmorfolina	kg	59.380	4
Morfolina	kg	5.100	
Prodecor SEM 120 L	kg	3.570	

SPLITTER	unità di misura	QUANTITA'	FASE DI UTILIZZO
Setacci molecolari 3 A	kg	148	3
Catalizzatore Puraspec 7040	kg	123	
Puraspec 7164	kg	41	
Catalizzatore Puraspec 7312	kg	21	-
Puraspec 7186	kg	21	

TORRI DI RAFFREDDAMENTO	unità di misura	QUANTITA'	FASE DI UTILIZZO
Nalco23212(ex NALCO 23214)	kg	0	1.1/1.2
Ferrofos 8465	kg	0	-
P3 Ferrofos 8453	kg	0	-
I poclorito di sodio	kg	21.940	-
Nalco 7309	kg	0	-
Nalco 7330	kg	0	-
Ferrofos 8501	kg	0	-
Ferrocid 8583	kg	0	-
(ex Prodeslime110)			

CENTRALE TERMOELETTRICA	unità di misura	QUANTITA'	FASE DI UTILIZZO
ACOM ACTIVATOR	kg	0	1.2
P3 FERROLIX 8331	kg	0	
Octapower (ex Ferroflame 8382)	kg	0	-
Fosfato trisodico	kg	600	-

LAVORAZIONE DEMINERALIZZAZIONE	unità di misura		FASE DI UTILIZZO
Calce idrata	kg	128.200	A.T.C TRATTAMENTO
Resina cat. forte	kg	0	ACQUE
Resina cat. Forte IR 120 MB	kg	0	
Res. Amberlite IRA 945	kg	0	
Resina an. forte IRA402MB	kg	0	
Prodefloc A 4112	kg	70	
Policloruro di alluminio	kg	3620	
Politene Eraclene MP90PT	kg	19.325	
Acido solforico conc	kg	69.2052	
Soda caustica 50%	kg	1.165.911	
Resina an forte 120MB	kg	0	
Sabbia silicea	kg	0	

LAV. TRATTAMENTO CONDENSE	unita di misura	QUANTITA'	FASE DI UTILIZZO
Carbone attivo CECA	kg	0	A.T.C TRATTAMENTO
Resina cat.forte IR 120 MB	kg	0	ACQUE
Resina an.forte IRA 402 MB	kg	0	
Acido solforico conc	kg	1.800	
Soda caustica 50%	kg	2.400	

LAV. ACQUA CONDIZIONATA	unita di misura	QUANTITA'	FASE DI UTILIZZO
Carbone attivo CECA	kg	0	A.T.C TRATTAMENTO
Ipoclorito di sodio	kg	2.062	ACQUE
Sabbia silicea	kg	0	

TAS (BIOLOGICO)	unita di misura	QUANTITA'	FASE DI UTILIZZO
Batteri liofilizzati	kg	0	A.T.C TRATTAMENTO
Sabbia silicea	kg	0	ACQUE
I poclorito di sodio	kg	18.558	
Prodefloc C 4510	kg	1.475	
Prodefoam XP 40 H	kg	0	

XILOLI	unita di misura	QUANTITA'	FASE DI UTILIZZO
Acido fluoridrico	kg	4.460	6
Alkysor	kg	0	
P3 FERROFOS 8579(exP3	kg	300	
Ferrolix 332)			
Ferrocid 8583	kg	0	
Calce idrata	kg	34.220	
Esano	kg	72.120	
Fosfato trisodico	kg	0	
Propano	kg	415.000	
Setacci molec. 4 Å	kg	0	
Soda 50%	kg	15.760	
Trifluoruro di boro	kg	12.771	

Consumi di combustibili dell'anno 2014 in tonnellate

TIPOLOGIA	FASE DI UTILIZZO	GEN	FEB	MAR	APR	MAG	GIU	FUG	AGO	SET	OTT	NON	DIC	Tot 2014
Olio combustibile BTZ	F1.2(CTE)	9397	8485	9795	8298	6728	4462	2323	5451	7110	7187	5629	6254	81.120
fuel gas	F1.1 (Reforming)	3.066	3.066 2.861	3.129	3.046	2.720	0	0	1.595	2.383	2.594	3.257	3.344	27.995
1	F1.2(CTE)	649	248	274	416	571	86	250	383	930	1111	1291	691	6.912
1	F5 (BTX)	1.002	806	924	889	890	26	0	389	961	841	1.101	1.180	9.017
1	F6 (Xiloli)	1.571	1.571 1.361 1.398	1.398	1.238	1.421	1.395	69	540	1.318	1.163	1.163 1.478	0	12.952
1	piloti torcia	31	28	31	30	31	30	24	39	28	37	45	44	398

Caratteristiche combustibile liquido

OLIO COME	BUSTIBILE BTZ 2014	*
parametro	unità di misura	risultato
Acqua	%p	0,38
Viscosità	°E	382
Potere calorifico inf.	kcal/kg	9772
Densità	kg/m³	0,97
Punto di scorr. Supp.	°C	15,8
Asfalteni	%р	2,2
Ceneri	%p	0,14
HFT	%m/m	0,05
Res. Carb. Conradson	%p	8,8
Nichel +Vanadio	ppm peso	53,9
Sodio	ppm peso	27,5

I parametri sono desunti dal bollettino di accompagnamento prodotto dal fornitore del combustibile

Caratteristiche combustibile gassoso

	FUEL GAS 2014	
MESE	Potere calorifico kcal/kg	Zolfo ppm
GENNAIO	10.671	76,39
FEBBRAIO	10.774	124
MARZO	11.902	70,71
APRILE	11.830	95,25
MAGGIO	11.021	96,13
GIUGNO	9.054	46
LUGLIO	7.996	3
AGOSTO	10.249	66
SETTEMBRE	13.046	12,6
OTTOBRE	12.199	79,18
NOVEMBRE	10.055	77,4
DICEMBRE	9.926	95,3

Consumi risorse idriche nell'anno 2014

APPROVVIGIONAMENTO	UTILIZZO		m³
	Igienico sanitario		96.938
Acquadatta usa industriala	Industriale	Processo	1.426.280
Acquedotto uso industriale	mustriale	Raffreddamento	140.049
	Antincendio		238.168
Mare	Industriale	Raffreddamento	66.463.200
Potabile rete pubblica	Igienico sanitario		4.878
Raffineria Sarlux	Industriale	Processo	0

Consumo e produzione di energia nell'anno 2014

TIPOLOGIA	UM	FASE DI PRODUZIONE	FASE DI CONSUMO	TOTALE ANNO
Energia elettrica prodotta	MWh	F1.2 (CTE)		116.667
	MWh	F1.2 (CTE)	F1.2 (CTE)	17.446
	MWh	F1.1 (Reforming)	F1.1 (Reforming)	16.587
Energia elettrica	MWh	F2 (Pseudocumene)	F2 (Pseudocumene)	1.341
consumata (importata da rete	MWh	F3 (Cumene)	F3 (Cumene/SPL)	1.974
esterna)	MWh	F4 Formex)	F4 (Formex)	4.984
	MWh	F5 (BTX)	F5 (BTX)	4.495
	MWh	F6 (Xiloli)	F6 (Xiloli)	60.166
Energia termica prodotta (vapore autoprodotto)	t	F1.2 (CTE)		644.362
	t		F1.2 (CTE)	145.747
	t		F1.1 (Reforming)	152.332
Energia termica	t		F2 (Pseudocumene)	112.477
consumata	t		F3 (Cumene/SPL)	99.692
(vapore importato)	t		F4 (Formex)	262.777
	t		F5 (BTX)	118.917
	t		F6 (Xiloli)	364.895

5. EMISSIONI IN ARIA

Quantità emessa nell'anno 2014

Camino	portata	Inquinanti	Flusso di massa	Flusso di massa	concent	razione	O ₂
	Nm³/h		kg/h	kg/anno	mg/	Nm³	
					Rilevata ⁽⁶⁾	VLE	
		СО	0,00	0,00	0,00	50,00	
E1	0	NOx	0,00	0,00	0,00	200	3
	Ü	SO ₂	0,00	0,00	0,00	35,00	
		Polveri	0,00	0,00	0,00	5,00	
		СО	0,06425	441,0	8,4	50,00	
E2	7.649	NOx	0,51248	3.517,7	67	200	3
EZ	7.049	SO ₂	0,09775	671	13 ⁽¹⁾	35,00	3
		polveri	0,00917	63,0	1,2	5,00	
		СО	0,05507	378,0	7,2	50,00	
		NOx	0,49489	3.396,9	65	200	
E3	7.649	SO ₂	0,09775	671	13 ⁽¹⁾	35,00	3
		polveri	0,01453	99,8	1,9	6,00	
		СО	1,07582	7.074,6	21,7	50,00	
		NOx	4,27849	28.135,4	86,3	200	_
E7	49.577	SO ₂	0,6335	4.166,5	13 ⁽¹⁾	35,00	3
		polveri	0,08923	586,8	1,8	5,00	
		СО	0,08837	543	3,6	50,00	
		NOx	2,00074	12.293	81,5	200	_
E9	24.549	SO ₂	0,31373	1.927,6	13 ⁽¹⁾	35,00	3
		polveri	0,02209	135,7	0,9	5,00	
		СО	2,56724	11	20	50,00	
		NOx	42,6161	347.748	332	450,00	
		SO ₂	108,722	960.900	847	1.400,00	
E11	128.362	polveri	3,97922	30.993	31	50,00	3
		Nichel	0,06231	508,5	0,4855	(2)	
		Vanadio	0,06485	529,2	0,50525	(2)	

Camino	portata	Inquinanti	Flusso di massa	Flusso di massa	concentraz	zione	O ₂
	Nm³/h		Kg/h	kg/anno	mg/Nn	1 ³	
					Rilevata ⁽⁶⁾	VLE	
		COV	0,21200	1857,18	25,2	50	
E14	8.411	HF	0,00210	18,42	0,25	5	n.a
		Benzene	0,00597	52,32	0,71	5	
		СО	0,19950	7,38	95 ⁽⁷⁾	50	
E15	2.100(3)	HCI	0,00052	0,019	0,25	15	n.a
		IPA	9,45E-08	0,0000035	0,000045	0,1	
		COV	0,00029	2,549	1,5 ⁽⁵⁾	2	
		Benzene	0,00007	0,679	0,4	1	
		Etilbenzene	0,00005	0,509	0,3	1	
E16	194 ⁽⁴⁾	toluene	0,00005	0,509	0,3	1	
EIO	1941	xilene	0,00005	0,509	0,3	1	n.a
		trimetilbenzene	0,00005	0,509	0,3	1	
		esano	0,00009	0,849	0,5	1	
		pentano	0,00009	0,849	0,5	1	

 $^{^{(1)}}$ il valore è calcolato stechiometricamente dalle analisi eseguite sul combustibile gassoso

⁽²⁾ VLE come da D.Lgs 152/06

⁽³⁾Rigenerazione del catalizzatore effettuata 1 volta nel 2014 (durata 37 ore).

⁽⁴⁾Inferiore al limite di rilevabilità del metodo

⁽⁵⁾ Presentata istanza di modifica non sostanziale per la riformulazione del limite dei SOV, con lettera Prot.Dire/162 del 30/04/2013, per la presenza di propano e idrocarburi < C5 non contemplati nell'allegato I – Parte seconda – alla parte V del D.Lgs.152/06.

⁽⁶⁾Valore medio dei monitoraggi discontinui.

 $^{^{(7)}}$ Comunicato superamento VLE con nota Prot.Dire/198

CAM	CAMINO E2	\$0 ₂	NO ₂	polveri	temp	umidità	portata secca dei fumi	8	05	сот	portata secca dei fumi al 3% O ₂
DATA	n°RDP	mg/Nm³	mg/Nm³	mg/Nm³ mg/Nm³	ပံ့	%	Nm³/h	Nm³/h mg/Nm³ % vol mg/Nm³	lov %	mg/Nm³	Nm³/h
6-mar-14	1405312-001	23	61	0,5	304,8	15	7.330	2	3	9'0	7.250
24-set-14	1418480-001	20	58	0,7	294,8	14	5.900	21	4,8	0,5	5.600
12-nov-14	12-nov-14 1421475-001	8,7	82	2,4	298,8	14	6.340	2,2	4,5	0,5	5.850
Impianto ferr	Impianto fermo da maggio a agosto	gosto									

CAM	CAMI NO E3	SO_2	NO_2	polveri	temp	umidità	portata secca dei fumi	00	O ₂	сот	portata secca dei fumi al 3% O ₂
DATA	n°RDP	mg/Nm³	mg/Nm³ mg/Nm³	mg/Nm³	၁့	%	Nm ³ /h	Nm³/h mg/Nm³ % vol mg/Nm³	% vol	mg/Nm³	Nm ³ /h
5-mar-14	5-mar-14 1405313-001	1,5	51	1	273,8	14,1	11.500	10	3,2	9'0	11.150
24-set-14	1418481-001	15	26	1,5	275,8	15,7	9.130	6	3,6	0,5	8.870
4-nov-14	4-nov-14 1421476-001	7	87	3,1	298,8	15,3	12.000	2,5	8'9	0,5	066.6
Impianto ferm	Impianto fermo da maggio a agosto	osto									

Stabilimento di Sarroch

CAMI	CAMINO E7	SO ₂	NO ₂	polveri	temp	umidità	portata secca dei fumi	00	05	сот	portata secca dei fumi al 3% 0 ₂
DATA	n°RDP	mg/Nm³ mg/Nm³	mg/Nm³	mg/Nm³	၁့	%	Nm³/h	mg/Nm³ % vol mg/Nm³	% vol	mg/Nm³	Nm³/h
7-mar-14	7-mar-14 1405314-001	27	74	6'0	155	11	86.900	40	8,2	8'0	62.300
25-set-14	25-set-14 1418482-001	1,7	89	2,4	151,8	11	84.900	21	6'8	0,5	57.100
6-nov-14	6-nov-14 1421477-001	25	96	2,2	150,8	10,6	95.400	4,1	6,3	0,5	62.500
Impianto ferm	Impianto fermo da maggio ad agosto	gosto									

portata Secca dei fumi al 3% 0 ₂	Vm³ Nm³/h	0 21.700	5 21.600	5 46.900	3 46.300
COT	ol mg/Nm ³	3 1,0	3 0,5	2 0,5	3 1,3
02	3 % vol	12,8	13,3	11,2	10,8
00	mg/Nm³	1,2	4,5	3,5	2
portata secca dei fumi	Nm³/h	47.700	51.800	82.700	82.500
umidità	%	8	8	6,7	10
temp	၁့	167	149,8	169,8	170,8
polveri	mg/Nm³	3,5	0,86	1,2	6'0
NO ₂	mg/Nm³ mg/Nm³	81	88	79	78
SO ₂	mg/Nm ³	10	21	22	22
CAMINO E9	n^\circRDP	10-apr-14 1405315-001	1413163-001	1418483-001	10-nov-14 1421478-001
CAMI	DATA	10-apr-14	24-giu-14	26-set-14	10-nov-14

CAMII	CAMINO E14	composti del fluoro come (F-)	VOC	benzene	temp	umidità	portata
DATA	n° Rdp	mg/Nm³	mg/Nm³	mg/Nm³	၁့	%	Nm³/h
24-gen-14	1401720-001	<0,5	27,9	1,5	22	2	3.920
6-feb-14	1402714001	<0'2	47	2,5	19	2	3.970
13-mar-14	1405543-001	<0,5	8,7	<0,5	22		3.935
3-apr-14	1407162-001	<0,5	25	<0,5	18	1	12.200
7-mag-14	1409179-001	<0,5	19	9'0	20	2	11.100
20-giu-14	1413187-001	<0,5	40	0,7	22	2	096.6
10-lug-14	1414173-001	<0,5	15	<0,5	22	2	3.845
26-ago-14	1416485-001	<0,5	19	1,5	24	2	9.530
26-set-14	1418493-001	<0,5	5,4	<0,5	20	2	10.400
23-ott-14	1420189-001	<0,5	35	<0,5	24	2	10.500
28-nov-14	1422455-001	<0,5	31,9	<0,5	18	2	11.100
23-dic-14	1423429-001	<0,5	28,7	<0,5	15	2	10.500

CAMINO E15	E15	PCDD/PCDF	E HC	IPA	00	temp	portata come da FR234
рата	n° RDP	mg/Nm³ mg/Nm³ mg/Nm³	mg/Nm³	mg/Nm³	mg/Nm³	ပ	Nm³/h
1-ago-14	416189-001	11-ago-14 1416189-001 0,0000001	0,25	0,25 0,000045	95	18	2.100

Stabilimento di Sarroch

EMISSI	EMISSIONE E16	BENZENE	ETILBENZENE	TOLUENE	XILENE	TRIMETIL- BENZENE	ESANO	PENTANO	COV CARBONIO ORGANICO TOTALE	temp	Portata	ALTRI IDROCARBURI >C5 ESPRESSI COME ESANO	ALTRI I DROCARBURI <c5 espressi<br="">COME ESANO</c5>
	n° RDP	mg/Nm³	mg/Nm³	mg/Nm³	mg/Nm³	mg/Nm³	mg/Nm³	mg/Nm³	mg/Nm³	ပံ့	Nm³/h	mg/Nm³	mg/Nm³
23-gen-14	1401727-001	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	125	14,8	180	<0,5	<0,5
5-feb-14	1402720-001	3(*)	6'0	<0,5	<0,5	<0,5	2,3(*)	9'0	111	8'6	200	2,6	58,4
20-mar-14	1406109-001	<0,5	<0,5	0,45	<0,5	<0,5	<0,5	<0,5	92	16	<360	<0,5	98
4-apr-14	1407166-001	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	0,5	13	<360	<0,5	<0,5
23-apr-14	1408443-001	<0,5	<0'2	<0,5	<0,5	<0,5	<0,5	<0'2	4,9	12	<360	9'0	9'0
7-mag-14	1409177-001	<0'2	<0'2	<0'2	<0,5	<0,5	<0'2	<0'2	175	18	<350	<0,5	121
29-mag-14	1410637-001	<0,5	<0'2	<0'2	<0,5	<0,5	<0'2	<0'2	385	22	<350	<0,5	212
11-giu-14	1411999-001	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	819	24,8	<350	<0,5	490
9-lug-14	1410637-001	<0'2	<0'2	<0'2	<0,5	<0'2	<0'2	6'0	257	26,8	<350	3,6	252
7-ago-14	1415916-001	<0,5	<0'2	<0'2	<0,5	<0,5	1	1,6(**)	175	26,8	<350	7,3	108
29-set-14	1417754-001	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	25,8	<350	1,3	<0,5
23-ott-14	1420193-001	<0'2	<0'2	<0'2	<0,5	<0,5	0,7	2	8	15,8	<290	<0,5	<0,5
21-nov-14	1421932-001	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	758	18,8	<300	0,5	458
3-dic-14	1422460-001	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	55,6	17,85	<300	0,5	0,5
(*)													

^(*)Comunicato superamento VLE con nota Prot.Dire/044

^(**)valore NON NON CONFORME come da applicazione linea guida ISPRA 52/2009 (incertezza riportata sul Rdp pari a+/-0,8 mg/Nm³)

Risultati del monitoraggio delle emissioni fuggitive.

Versalis già da alcuni anni, con l'emissione della Operating Instruction Professionale n° 138 "Controllo e gestione delle emissioni fuggitive", ha proceduto al censimento e al monitoraggio di tutti i componenti accessibili presenti nel sito, e al rimonitoraggio parziale della quota parte dei componenti monitorati l'anno precedente.

Dal 1.1.2013 la frequenza di monitoraggio di tutti i componenti accessibili è stata poi portata ad annuale.

La Operating Instruction prevede di eseguire il monitoraggio del componente con strumento FIR e, cautelativamente, fissa un limite di accettabilità del componente per perdita non superiore a 1.000 ppmv per le sostanze non cancerogene/mutagene e 500 ppmv per le sostanze cancerogene/mutagene.

Sulla base della suddetta Operating Instruction il 17 novembre 2012 con nota prot.Dire/090, in ottemperanza alla prescrizione 10.4.2 Emissioni non convogliate (diffuse e fuggitive) dell'AIA rilasciata, è stato inoltrato all' ISPRA il piano di monitoraggio fuggitive 2014 che prevede la misura strumentale di tutte le sorgenti presenti in stabilimento, accessibili, con frequenza annuale.

Il piano, regolarmente eseguito nel 2014, rispetto ai succitati limiti (1.000/500 p.p.m.) ha rilevato un numero di componenti perdenti pari a 1,04% del totale monitorato che si è ridotto a 0,58% a valle delle attività di manutenzione e successivo rimonitoraggio.

Per l'anno 2014 è stato commissionato alla società VED, l'implementazione della attività di monitoraggio delle emissioni fuggitive presso gli impianti produttivi e i servizi ausiliari.

La campagna di misura ha interessato oltre alle emissioni fuggitive di sostanze organiche volatili, anche le emissioni fuggitive dell'idrogeno.

La campagna, nel 2014, è stata eseguita nei mesi di marzo, aprile, maggio, giugno, ottobre e dicembre.

Le sorgenti oggetto di monitoraggio contenenti COV, sono state ispezionate con analizzatori portatili COV modello TVA-1000B FID (Thermo Instrument)

Le sorgenti censite e accessibili contenenti idrogeno sono state ispezionate con analizzatori TCD modello GASCHECK-G (IonScience).

Di seguito vengono riportati i dati medi relativi alle condizioni meteo e alle attività di monitoraggio durante la campagna di monitoraggio 2014.

Stabilimento di Sarroch

Data	VV	TEMP.	UMID.	PRESS.	PIOGGIA
Data	m/s	°C	%	mbar	mm
11/03/2014	17	25	76	1020	
12/03/2014	11	21	82	1019	
13/03/2014	13	22	76	1017	3-6
14/03/2014	20	21	63	1017	
17/03/2014	18	21	61	1020	
18/03/2014	12	21	68	1020	-
19/03/2014	21	21	70	1011	2
20/03/2014	23	22	68	1011	
21/03/2014	11	22	73	1020	
26/03/2014	11	21	80	1018	
27/03/2014	12	21	86	1015	
28/03/2014	12	22	76	1015	-
02/04/2014	-12	22	84	1015	
07/04/2014	18	24	71	1006	
09/04/2014	13	23	69	1009	
10/04/2014		23	78	nd	
11/04/2014	20	24	74	nd	
14/04/2014	27	25	87	1020	-
15/04/2014		20	73	1018	
16/04/2014	10	19	77	1020	
17/04/2014	10	19	75	1019	-
18/04/2014		19	75	1015	
22/04/2014	10	19	73	1013	
23/04/2014	9	21	87	1020	-
24/04/2014		20	87	nd	
28/04/2014	28	23	67	1014	
30/04/2014	26	22	64	1016	-
07/05/2014		19	77	nd	
14/05/2014	10	21	87	1020	
15/05/2014	14	22	86	1014	-
16/05/2014		21	74	1013	
19/05/2014	8	11	86	1022	
20/05/2014	16	12	79	1018	-
21/05/2014		12	81	1022	72
29/05/2014	8	10	90	1030	
09/06/2014		11	84	1032	
10/06/2014		10	84	1034	
11/06/2014	8	9	93	1034	
15/10/2014	19	10	75	1010	2-7
16/10/2014		10	75	1010	-
	19	10	75	1010	
29/12/2014 30/12/2014	19	10	75	1010	

Nella tabella seguente la distribuzione delle sorgenti per tipologia di componente.

IMPIANTO	AGITATORE	COMPRESSORE	FINE L.	FLANGIA	POMPA	VALVOLA	PSV	TOTALE
BTX	0	1	416	2.783	15	1.205	14	4.434
CRIOGFUELGAS-IDROGENO	0	0	36	171	0	88	0	295
CTE	4	0	137	889	6	350	6	1.392
FORMEX	0	0	241	1.973	21	881	4	3.120
PGS	0	0	1.540	10.184	69	4.287	283	16.363
PSEUDOCUMENE	1	0	174	869	10	468	10	1.532
REFORMING	0	3	801	3.381	30	1.922	26	6.163
SPLITTER	0	0	91	873	6	411	5	1.386
XILOLI ZONA ACIDA	3	0			51		111	15.809
			831	11.075		3.738		
XILOLI ZONA DISTILLAZIONE	5	2	1.221	7.429	71	3.417	55	12.200
TOTALE	13	6	5.488	39.627	279	16.767	514	62.694

Delle 57.892 sorgenti accessibili e monitorabili sono state riscontrate:

- 11.426 sorgenti classificate come H350 delle quali 149 fuori soglia, ossia con perdita superiore alla Leak definition di 500 ppmv;
- 46.466 sorgenti classificate come NON H350 delle quali 455 fuori soglia, ossia con perdita superiore alla Leak definition di 1.000 ppmv.

TABELLA DISTRIBUZIONE SORGENTI H350

IMPIANTO	≥ 500ppm	<500ppm	Totale	Div.%
BTX	20	1.712	1.732	1,15%
CRIOGENICO-FUELGAS-IDROGENO	0	0	0	0,00%
CTE	0	21	21	0.00%
FORMEX	12	1.889	1.901	0,63%
PGS	34	4.246	4.280	0.79%
PSEUDOCUMENE	0	0	0	0,00%
REFORMING	49	1.573	1.622	3,02%
SPLITTER	0	0	0	0,00%
XILOLI ZONA ACIDA	0	578	578	0.00%
XILOLI ZONA DISTILLAZIONE	34	1.258	1,292	2,63%
TOTALE	149	11.277	11.426	1,30%

TABELLA DISTRIBUZIONE SORGENTI NON H350

IMPIANTO	≥ 1.000ppm	<1.000ppm	Totale	Div.%
BTX	17	2.423	2,440	0,70%
CRIOGENICO-FUELGAS-IDROGENO	0	278	278	0,00%
CTE	5	1.236	1.241	0,40%
FORMEX	1	1.021	1.022	0,10%
PGS	146	11.060	11.206	1,30%
PSEUDOCUMENE	3	1.361	1.364	0,22%
REFORMING	34	4.067	4.101	0.83%
SPLITTER	26	1.313	1.339	1,94%
XILOLI ZONA ACIDA	83	13.472	13.555	0,61%
XILOLI ZONA DISTILLAZIONE	140	9.780	9.920	1,41%
TOTALE	455	46.011	46.466	0,98%

Al fine di ridurre le emissioni in atmosfera sono stati eseguiti degli interventi di manutenzione focalizzati alla riparazione delle sorgenti fuori soglia riscontrate durante la campagna di monitoraggio.

N. 604 sorgenti sottoposte a manutenzione durante l'anno 2014 sono inoltre state oggetto di remonitoring entro l'anno.

I dati di remonitoring hanno evidenziato una riduzione delle emissioni, in particolare gli interventi di manutenzione hanno consentito l'eliminazione di 270 sorgenti fuori soglia di cui 73 H350, per le quali si è registrata un'emissione post manutenzione inferiore alla Leak definition di 500 ppmv, e 197 NON H350 per le quali si è registrata un'emissione inferiore alla Leak definition di 1.000 ppmv.

Di seguito vengono riportati i dati di abbattimento delle emissioni generati dagli interventi di manutenzione.

	F.S.	Emissione Totale (Ton/an)	Emissione VOC (Ton/an)	Emissione Metano (Ton/an)	Emissione Idrogeno (Ton/an)	% Div.
Pre-manutenzione	604	175,305	174,395	0,259	0,651	1,04
Post-manutenzione	334	132,077	131,493	0,168	0,416	0,58

La torcia di stabilimento, denominata camino E12, dal 01/08/2013 è dotata di strumentazione per la misura dei flussi.

Nella tabella seguente si riportano il numero delle attivazioni torcia, i relativi tempi di durata, le quantità in tonnellate e la stima della composizione del gas nell'anno 2014.

			ATTIVAZIONE TORCIA	2014	
	Durata della causa	Comunicazione	Causa attivazione	Portata t	Composizione stimata
1	5 giorni	Prot.Dire/003	Fermata impianto Formex	93	76,83% moli di azoto, 22,87% moli di idrocarburi totali
2	9 giorni	Prot.Dire/017	Attività manutentiva impianto Reforming	20	21% moli di idrocarburi totali, 54% moli di idrogeno
3	42 ore	Prot.Dire/024	Fermata e avviamento impianto Xiloli	68	48% moli di azoto, 52% moli di propano
4	2 ore	Prot.Dire/043	Fermata compressore PC-1301 impianto Xiloli	5	48% moli di azoto, 52% moli di propano
5	3 ore e 20 minuti	Prot.Dire/053	Interruzione del prelievo dell'idrogeno da parte dell'adiacente raffineria	1,336	70% moli di azoto, 21% moli di idrogeno
6	20 minuti	Prot.Dire/055	Interruzione del prelievo dell'idrogeno da parte dell'adiacente raffineria	0,33	71% moli di azoto, 23% moli di idrogeno
7	6 giorni	Prot.Dire/059	Fermata e avviamento impianto Splitter	2,92	90,2% moli di azoto, 8,8% moli di idrocarburi totali
8	3 giorni	Prot.Dire/063	Irregolarità nel prelievo dei quantitativi di idrogeno dall'adiacente raffineria	4,88	82% moli di azoto, 9,8% moli di idrocarburi totali
9	15 minuti	Prot.Dire/093	Malfunzionamento valvola di regolazione della pressione del circuito Platforming dell'impianto Reforming	0,43	62,48% moli di azoto, 23% moli di idrogeno, 11,33% moli di idrocarburi totali
10	2 ore	Prot.Dire/139	Malfunzionamento misura di livello delle condense vapore acqueo sullo scambiatore TT 201	2,73	-
11	4 giorni	Prot.Dire/151	Fermata compressore di recupero gas di torcia K601	143	98% moli di azoto
12	10 ore	Prot.Dire/172	Avviamento impianto Xiloli	9,1	propano
13		Prot.Dire/176		151,9	93% moli di azoto
14	13 giorni	Prot.Dire/181	Errato inserimento a blow down linea azoto	376	87% moli di azoto
15	19 ore	Prot.Dire/202	Avviamento impianto Pseudocumene	1,15	88,6% moli di azoto
16	14 ore e 30 minuti	Prot.Dire/204	Attività di manutenzione impianto Splitter	79,12	90% moli di azoto
17	6 giorni	Prot.Dire/209	Avviamento impianti	60,7	69% moli di azoto, 22,8% moli di idrocarburi
18	10 ore	Prot.Dire/210	Trafilamento di propano dallo scambiatore TT 1351	26,95	69% moli di azoto, 27% moli di propano
19	17 giorni	Prot.Dire/220	Fermata e avviamento impianto Xiloli	49,8	71% moli di azoto, 20% moli di propano
20	4 giorni	Prot.Dire/232	Avviamento impianto Splitter	22,89	92,3% moli di azoto

In allegato 1 copia del registro torcia come richiesto da ISPRA con la quarta emanazione del 28/02/2013.

EMISSIONI IN ACQUA

Quantità di parametri oggetto di monitoraggio scaricate a mare nell'anno 2014

Totale scaricato a mare (kg) 2014	
SST a 105°C	5.650,66
BOD5	5.048,69
COD	6.106,33
Arsenico	0,4942
Alluminio	27,14
Boro	265,67
Cadmio	0,2092
Cromo totale	1,6466
Cromo VI	2,2557
Ferro	280,1433
Manganese	62,09838
Mercurio	0,02815
Nichel	2,91694
Piombo	0,166733
Rame	2,68272
Selenio	0,362853
Zinco	13,412223
Cloro attivo libero	10,95388
Fluoruri	1.076,34
Fosforo totale	134,6624
Azoto ammoniacale	300,5485
Azoto nitrico	1.989,237
Azoto nitroso	2,8184
Solventi organici aromatici	0,16852
Idrocarburi totali	43,6532

				S	-2 TAC –Scar	ico vasca di n	SF2 TAC -Scarico vasca di neutralizzazione 2014	ne 2014					
n. Rdp	0	1402341	1402569	1404566	1406684	1409206	1411386	1415446	1415735	001662- 005789	002139- 007942	002561- 009707	003024-
		gen	feb	mar	apr	mag	giu	6n _l	ago	sett	ott	von	dic
		31/01/14	04/02/14	04/03/14	01/04/14	09/05/14	05/06/14	30/07/14	01/08/14	02/09/14	08/10/14	05/11/14	02/12/14
	Un.Mis.												
Colore	Diluiz.	Incolore	Incolore	Incolore	Incolore	Incolore	Incolore	Incolore	Incolore	12	Incolore	10	12
Materiali grossolani	l/。u	Assenti	Assenti	Inodore	Assenti	Assenti	Assenti	Assenti	Assenti	Assenti	Assenti	Assenti	Assenti
Solidi sospesi totali	l/gm	2	21	10	12	е	4	9	7	24	37	15	30
Alluminio	l/gm	990'0	0,199	0,21	0,341	0,055	0,0295	0,157	0,082	0,355	0,211	0,11	68'0
Ferro	l/gm	0,345	0,514	0,45	1,39	0,185	0,0647	0,0213	0,129	1,23	0,737	0,479	0,235
Manganese	l/gm	0,00693	0,0087	0,0072	0,0385	0,00337	0,00405	0,00052	0,049	0,162	0,015	0,529	0,0095
Parametri da campo:													
Н	Hd	8,30	9,18	18'6	8,17	17,71	7,42	12'6	7,61	7,4	8,64	7,28	8,39
Temperatura	J.	16,7	16,0	14,9	17,5	7,72	30,1	31,5	32,9	27,3	24,7	23,6	22
Portata	m3/h	12,5	12,5	12,5	12,5	12,5	15,4	15,4	15,4	20	15,4	12,5	12,5

	į													
					v	F3 Scarico la	SF3 Scarico lavaggio filtri, acqua mare	acqua mare						
Ċ	n. Rdp		1401375	1402703	1404628	1406683	1408889	1411384	1413557	1416080	001663- 005791	00212500 07831	00256100 9707	0030240 11880
			gen	feb	mar	apr	mag	giu	lug	ago	sett	ott	nov	dic
	Un.Mis.	VLE	21/01/14	06/02/14	06/03/14	01/04/14	06/05/14	05/06/14	03/07/14	11/08/14	02/09/14	07/10/14	04/11/14	02/12/14
Materiali grossolani	l/°n	0	Assenti	Assenti	Assenti	Assenti	Assenti	Assenti	Assenti	Assenti	Assenti	Assenti	assente	
Solidi sospesi totali	mg/l	80	6	10	12	28	7	2	6	9	7	13	21	26
BOD5	mg02/I	40	10	10	10	10	10	10	10	10	-	-	-	-
Fosforo totale	l/gm	10	0,119	<0,016	0,019	0,019	0,019	0,019	6600'0	<0,009	600'0>	0,0438	0,0104	0,0132
Azoto ammoniacale	mgNH₄/I	15	<0,05	<0'0>	<0'0>	<0,05	<0,05	<0'0>	<0'0>	<0,05	900'0	9'0	8′0	8'0
Azoto nitrico	mg/l	20	<1,3	<1,3	<1,3	<0,3	<0,3	<0,3	<1,3	0,3	0,373	0,0145	0,131	0,0306
Azoto nitroso	l/gm	9'0	<0,004	<0,004	<0,004	<0,004	<0,004	<0,004	<0,004	<0,004	0,0013	0,0036	0,0013	0,0013
Parametri da campo:														
Hd	unità pH	9'6	7,95	7,68	8,27	8,03	8'00	8,24	90'8	8,15	8,22	8,13	8,13	8,14
Temperatura	ů,	35	12,9	12,2	12,0	14,3	18,0	21,1	24,1	22,7	25,8	25,1	21,3	18,9
Portata	m3/h		120	120	120	120	120	200	120	120	120	120	12,5	120

							SF4 BIO	0						
	N. Rdp		1401379	1402704	1404567	1408799	1408890	1411888	1414964	1416081	EV-14- 001749- 006289	EV-14- 002125- 007833	EV-14- 002561- 009709	EV-14- 003115- 012322
Prova	Un.Mis.		gen	feb	mar	apr	mag	giu	lug	ago	sett	ott	nov	dic
Colore	diluizione	20	Incol	Incol	Incol	Incol	Incol	Incol	Incol	Incol	Incol	Incol	Incol	Incol
Odore	diluizione		lnod	lnod	lnod	inodore	Inod	lnod	lnod	poul	lnod	lnod	lnod	lnod
Materiali grossolani	l/°n	0	Assenti	Assenti	Assenti	Assenti	Assenti	Assenti	Assenti	Assenti	Assenti	Assenti	Assenti	Assenti
Solidi sospesi totali	l/gm	80	18	-	က	7	4	23	38	41	2	11	т	26
COD	mg02/I	160	17,2	10,7	12,6	16	26,4	23,9	24	18	2	16	22	57
Idrocarb. totali	mg/I	2	0,04	0,04	0,025	0,025	0,45	0,025	<0,053	<0,053	<0,053	0,265	0,12	0,77
Solventi Organici Aromatici	l/gm	0,2	0,00002	0,0000225	0,000022	0,000022	0,000223	0,0000225	0,00049	0,00194	<0,00004	0,00106	0,00242	0,00112
Azoto totale	mg/l		12,6	10,6	7,4	8'6	11,8	4,9	2	2,9	6,76	6,1	8,3	1,97
Arsenico	mg/l	0,5	0,00218	0,00095	7,000,0	0,00281	0,00228	0,0028	0,00237	0,00135	0,00095	0,00109	0,000458	0,00231
Boro	mg/l	0,02	69'0	1,37	1,05	1,82	1,54	0,73	0,25	0,95	1,03	0,752	1,27	0,484
Cadmio	mg/l	2	90000'0	0,00014	0,000293	0,00114	0,00108	0,00088	0,00054	0,0018	0,00067	0,00158	0,00056	0,000327
Ferro	mg/l	2	1,07	0,248	0,075	0,656	0,211	1,13	2,21 (*)	0,253	0,22	0,22	0,107	1,62
Manganes e	l/gm	0,00	0,199	0,0526	0,0147	0,162	0,0412	0,2	0,32	0,0335	0,0341	0,0287	0,0103	0,87
Mercurio	mg/l	2	0,00015	0,000237	0,000059	0,00014	0,000056	0,00002	0,000071	0,0000447	960000'0>	<0,00009	<0,00000	0,000282
Nichel	mg/l	0,2	0,0113	0,00623	0,0069	0,0085	0,00548	0,0159	0,0135	0,00454	0,0081	0,0065	0,0128	0,0207
Piombo	mg/l	0,1	0,0011	0,000574	60000'0	0,00063	0,00026	0,00097	0,00134	0,00039	<0,00025	<0,00025	<0,00025	0,00088
Rame	mg/l	0,03	0,0123	0,00604	0,0071	0,0121	0,0081	0,0157	0,0115	0,00608	8600'0	0,0079	0,0084	0,0083
Selenio	mg/l	0,03	0,00091	0,00079	0,000305	0,00172	0,0013	0,000305	69000'0	0,00163	0,0044	0,00092	<0,00092	0,0019
Zinco	mg/l	0,5	0,0527	0,0273	0,0127	0,0338	0,0146	0,1	0,094	0,0386	0,0356	0,0269	0,021	0,075
Cromo totale	l/gm	7	0,00595	0,00254	0,00162	0,0113	0,0085	0,0115	0,0101	0,00332	0,00227	0,00417	0,00214	0,00505
Cromo VI	l/gm	0,2	0,01	0,01	0,01	0,01	0,01	0,01	<0,02	<0,02	<0,00048	600'0>	600'0>	<0,000

							SF4 BIO							
N. Rdp			1401379 1402704	1402704	1404567	1408799	1408890	1411888	1414964	1416081	EV-14- 001749- 006289	EV-14- 002125- 007833	EV-14- 002561- 009709	EV-14- 003115 - 012322
Prova	Un.Mis.		den	feb	mar	apr	mag	giu	lug	ago	sett	ott	nov	dic
Fosforo totale	mg/l	10	0,289	0,114	0,171	0,631	0,543	9'0	0,62	0,463	0,271	0,35	0,169	0,276
Fluoruri	mg/l	9	1,81	2,11	2,97	7,4(**)	9	4,7	2,3	3,8	4,2	3,32	3,49	4,1
Azoto ammoniac.	mgNH4/I	15	0,025	0,025	0,025	0,025	0,025	0,025	<0'0>	<0'0>	<0,012	<0,19	<0,19	0,49
Azoto nitrico	mg/l	20	12,8	10,6	6'9	2'6	11,6	3,6	1,2	2,8	6,5	5,6	6,7	0,0115
Azoto nitroso	mg/l	9'0	<0,004	<0,004	<0,004	<0,004	<0,004	<0,004	<0,004	<0,004	<0,0026	0,0056	<0,0026	<0,002 6
BOD5	mgO2/I	40	<10	<10	<10	<10	<10	<10	< 10	<10	۲ ۲	۲ ۲	<10	12
Cloro attivo	mg/l	0,2	<0'0>	0/0/0	0,070	080'0	0,070	0,070	<0,05	<0,05	<0,015	<0,015	<0,015	<0,015
Parametri da campo														
Hd	unità pH	6'2	7,60	69'L	7,60	8,11	8,01	7,72	7,78	8,05	7,59	7,46	7,31	7,25
Temp	J.		18,5	18,3	16,8	22,0	23,4	31,3	29,1	32,5	29,7	26,1	23,7	16,8
Portata	m3/h		!	29	50	-	-	70,0	70	49	99	99	1	1
(+)												4		

valore NON NON CONFORME come da applicazione linea guida ISPRA 52/2009 (incertezza riportata sul Rdp pari a +/- 0,3 mg/Nm³)

valore NON NON CONFORME come da applicazione linea guida ISPRA 52/2009 (incertezza riportata sul Rdp pari a +/- 2,1 mg/Nm³) (**)

<u>Verifica annuale del delta temperatura oltre i 1.000 metri dallo scarico in mare del Rio Antigori (ex SF1)</u>

Si riporta in allegato 2 il documento prodotto dalla società Labanalysis sulla verifica del Delta T oltre 1.000 metri dallo scarico del Rio Antigori ex SF1 (X=1501296,8594; Y=4327432,6497).

Nelle tabelle successive si riporta il calcolo del carico termico giornaliero su corpo idrico ricevente in MJoule agli scarichi SF1 (acqua mare di raffreddamento CTE) e SF5 (acqua mare di raffreddamento Xiloli zona Acida), secondo la seguente formula:

 $Q = Cp x m x (\Delta T)$

Q = Carico Termico giornaliero espresso in Milioni di Joule;

Cp = Calore specifico dell'acqua di mare in J/kg °C;

m = massa di acqua di raffreddamento = flusso di acqua prelevato (milioni di dm³/d) x densità dell'acqua in kg/dm³;

 ΔT = temperatura acqua allo scarico – temperatura acqua ingresso impianto.

	Carico T		naliero espre le termoeletti			
	TEMPERATURA INGRESSO ACQUA MARE IMPIANTO CTE	TEMPERATURA USCITA ACQUA MARE IMPIANTO CTE	Cp (Calore specifico dell'acqua mare)	d densità	m massa di acqua di raffreddamento	carico termico giornaliero
Giorno di riferimento	°C	°C	j/kg °C	kg/m³	m³/giorno	Milioni di Joule
15/08/2014	25	28	3.925	1030	129.60	1.571.821,20

	Carico Te		naliero espres i zona Acida 2		oni di Joule	
	TEMPERATURA INGRESSO ACQUA MARE IMPIANTO	TEMPERATURA USCITA ACQUA MARE IMPIANTO	Cp (Calore specifico dell'acqua mare)	d Densità	m massa di acqua di raffreddamento	carico termico giornaliero
Giorno di riferimento	°C	°C	j/kg °C	kg/m³	m3/giorno	Milioni di Joule
15/08/2014	26	28	3.925	1030	72.000	582.156,00

6. RIFIUTI

In allegato 3 una sintesi del MUD 2015, riferito all'anno 2014 (Stampa sintetica)

Di seguito si riportano tre tabelle riepilogative; le acque emunte dalla falda nell'ambito del barrieramento idraulico del sito produttivo ammontano a 615.012.900 kg.

.

	COMPLESSIVI t	DI CUI PERICOLOSI t	DI CUI NON PERICOLOSI t
PRODUZIONE 2014	620.813,2	2.967,24	617.845,97

RIEPILOGO	RIFIUTI PER DESTINAZIONE	
		t/anno
Non pericolosi	Recupero	59,04
	Recupero non definitivo	113,2
	Incenerimento	3,98
	Altro trattamento	615.032,48
	Discarica	2.591,86
	Smaltimento non definitivo	31,36
TOTALE NON PERICOLOSI		617.845,97
Pericolosi	Recupero	0,00
	Recupero non definitivo	8,62
	Incenerimento	99,19
	Altro trattamento	2.422,12
	Discarica	106,14
	Smaltimento non definitivo	216,64
TOTALE PERICOLOSI		2.767,24
Pericolosi + non pericolosi	Recupero	59,04
	Recupero non definitivo	121,82
	Incenerimento	103,17
	Altro trattamento	617.454,6
	Discarica	2.697,96
	Smaltimento non definitivo	248
TOTALE		620.813,2

Stabilimento di Sarroch

		INDICI DI PERFORMANCE	MANCE		
	% discarica su smaltimento	% recupero su totale	Rifiuti avviati a Recupero	Rifiuti avviati a Smaltimento	di cui in discarica
	D/S	R/(R+S)	~	S	Q
Non pericolosi	0,4%	0,002%	172,24	617.659,68	2.591,86
Pericolosi	3,7%	0,3%	8,62	2.844,05	106,1
Totale Pericolosi e Non pericolosi	0,4%	0,002%	180,86	620.503,73	2.697,96

7. RUMORE

Eseguita nel 2013 verifica dell'impatto acustico dello stabilimento in conformità di quanto prescritto al punto 5.1 "monitoraggio dei livelli sonori", a pagina 27 del Piano di Monitoraggio e Controllo. Prevista successiva verifica nel 2017.

8. ODORE

Eseguito nel 2013 monitoraggio degli odori in conformità a quanto prescritto a pagina 27, punto 6 del Piano di Monitoraggio e Controllo. Prossimo monitoraggio da eseguire nel 2017.

9. MONITORAGGIO DELLE ACQUE SOTTERRANEE E CARATTERIZZAZIONE SUOLO/SOTTOSUOLO

Suolo sottosuolo e falda

Il sistema di barrieramento idraulico è parte integrante delle attività di bonifica previste dal "Progetto di Bonifica della Falda", approvato con decreto MATTM n. 380/TRI/DI/B del 27.05.2010.

Il progetto di bonifica approvato prevede anche:

- Barrieramento fisico fronte mare parzialmente penetrante l'acquifero con la tecnologia combinata "diaframma fisico e jet grouting";
- Moduli di bonifica "in situ" con la tecnologia "Ground Circulating Water In Well Stripping";
- Piano di recupero di prodotto in fase separata dalla falda (surnatante);
- Trattamento delle acque di falda emunte dalla barriera tramite impianto TAF.

La barriera idraulica si sviluppa per 1.400 m lungo il margine orientale dello stabilimento in prossimità della linea di costa, è costituita da 79 pozzi di emungimento intervallati da altrettanti piezometri di interasse e completa di piezometri di controllo per un totale di 98 piezometri. La realizzazione della barriera è avvenuta in più step, l'ultima implementazione

è stata eseguita nel 2012 (installazione di n. 14 pozzi superficiali nella parte centrale del fronte mare più n. 2 pozzi nella porzione nord del fronte mare).

Ogni pozzo di emungimento è adeguatamente attrezzato e strumentato tramite:

- Un misuratore di portata;
- Un misuratore di conducibilità;
- Un misuratore di pressione in mandata pozzo;
- Un misuratore di livello freatimetrico nel pozzo;
- Un misuratore di livello freatimetrico nel piezometro di interasse.
- Una pompa skimmer pneumatica per il recupero di prodotto in fase separata dai pozzi, ove richiesto dal Progetto di Bonifica Approvato e rinvenuto prodotto in fase separata;
- Una pompa elettrosommersa con inverter per l'emungimento delle acque di falda.

I segnali elementari rilevati dalla strumentazione in campo sono trasmessi in remoto al sistema DCS (Distributed Control System) gestito dalla consolle di controllo e archiviati mediante appositi database.

Sino alla messa in esercizio dell'impianto TAF autorizzato dal Decreto MATTM n. 380/TRI/DI/B del 27.05.2010 le acque emunte verranno trattate da un impianto mobile della società SIMAM.

Con Deliberazione della Regione Sardegna n. 30/11 del 02/08/2007 l'impianto SIMAM ha superato la Valutazione di Impatto Ambientale Regionale (V.I.A.).

Lo scarico di SIMAM, a mare, è autorizzato dalla Provincia di Cagliari con la Determinazione n. 662 del 20/09/2007, rinnovata il 20.09.2011, n.1110, nel rispetto dei limiti imposti dall'autorizzazione di reimmissione in falda. In ottemperanza alla Determina Dirigenziale della provincia di Cagliari n. 662, SIMAM, redige una relazione mensile recante informazioni sulla marcia dell'impianto relativamente a:

- Andamento dell'impianto;
- Determinazioni analitiche;
- Rifiuti prodotti e smaltiti.

Il sistema di barrieramento idraulico è gestito in sinergia con l'evoluzione del modello idrogeologico di stabilimento, un modello numerico che si interfaccia con il modello

concettuale di sito, recentemente implementato dal gruppo del Prof. Marco Petitta dell'Università "La Sapienza" di Roma.

Il modello idrogeologico è continuamente validato con dati di campo, per consentire una simulazione dell'andamento della falda e dei livelli piezometrici e settare la barriera idraulica con l'obiettivo di ottenere la massima efficienza idraulica possibile.

Il modello idrogeologico permette, alimentato con i dati rilevati in campo, di:

- Eseguire i calcoli di verifica dei livelli piezometrici di falda;
- Ricavare le portate di acque di falda da emungere tramite i pozzi barriera, per ottenere un determinato andamento piezometrico atteso della falda.

Le fasi di validazione, implementazione e verifica del modello, così come la valutazione dell'efficienza idraulica, sono gestite informando gli Enti competenti, in un'ottica di collaborazione con gli stessi.

Nell'anno 2014 sono stati emunti 615.012,9 t di acque di falda e recuperati 140,57 t di prodotto in fase separata dalla falda, combinando le metodologie di recupero in continuo da pozzi di emungimento (skimmer fisso) e recupero discontinuo (skimmer mobile) da piezometri realizzati nell'intera area di stabilimento.

Risultanze delle eventuali campagne di monitoraggio e di caratterizzazione effettuate.

Relativamente al monitoraggio ai fini conoscitivi delle acque di falda, meglio specificato nel paragrafo 7.2 "Acque sotterranee" del PMC (Piano di Monitoraggio e Controllo), al fine di valutare l'efficacia del sistema di barrieramento idraulico, nel 2008 si è condotta, congiuntamente con ARPA Sardegna, la prima delle campagne trimestrali di monitoraggio dei piezometri di controllo della barriera idraulica. Dal 2008 a oggi, in seguito anche a prescrizioni delle Conferenze di Servizi Decisorie (CdS) del SIN (Sulcis Iglesiente, Guspinese), il numero di piezometri di controllo è stato incrementato fino a raggiungere le 28 unità. Il set analitico delle acque di falda è quello del piano di caratterizzazione del sito, approvato dalla Regione Sardegna. L'avvio di ogni campagna è comunicato agli Enti di Controllo preposti (ARPA Sardegna), che partecipano ai campionamenti prelevando contro campioni nella misura del 10% del totale, per la validazione dei dati analitici.

La CDS decisoria del 13.11.2012, al punto 24b, ha prescritto alla la società di adottare uno specifico protocollo per la valutazione dei risultati del monitoraggio della barriera idraulica emesso da ISPRA.

Versalis ha terminato, nel mese di Settembre 2014, il secondo semestre di osservazione e sta provvedendo alla preparazione di un report conclusivo dei risultati. Nei prossimi mesi la società presenterà agli Enti la relazione relativa al primo semestre e secondo di applicazione del

protocollo ISPRA e, contestualmente, aggiornerà le autorità riguardo ai dati idrochimici, aggiornati al 2014.

Attività relative alla messa in sicurezza operativa dei terreni.

In seguito all'approvazione da parte della CdS del 05.07.2011 dell'Analisi di Rischio dei suoli insaturi, è stato presentato, il 21.03.2013, il progetto di MISO (Messa in Sicurezza Operativa) dei terreni, successivamente istruito dalla CdS del 27.11.2013.

Dopo aver perfezionato le modalità di risposta alle prescrizioni della CdS in successivi incontri tecnici presso ARPA Sardegna. Versalis, in data 04.12.2014 ha richiesto al MATTM, di prendere atto della chiusura del procedimento dei terreni dello stabilimento di Sarroch, ritenendo di aver ottemperato alle prescrizioni della CdS del 27.11.2013.

10. ULTERIORI INFORMAZIONI

Risultanze dei controlli eseguiti sui serbatoi non ancora dotati di doppio fondo, come comunicato nella lettera prot. Dire/223 del 02/12/2013.

Si riporta in allegato 4 il resoconto delle attività di controllo e verifica eseguite sui serbatoi non ancora dotati di doppio fondo come da programma presentato in data 02/12/2013.

Risultanze dei controlli effettuati su impianti apparecchiature e linee come previsto al punto 10 del PMC.

Si riporta in allegato 5 una sintesi delle attività di controllo, verifica e manutenzione svolte nel 2014 sulle apparecchiature, linee, serbatoi e strumentazione rilevante dal punto di vista ambientale e, in allegato 6, il crono programma delle attività da svolgere nell'anno 2015.

EVENTI DI	ATTIVAZIONE	DATA	UNITA'	CAUSA	TORCIA	MODALIITA' DETERMINAZIONE QUANTITA'	QUANTITA' SCARICATA	MODALIITA' DETERMINAZIONE COMPOSIZIONE				il caso specifico) %H2S	D	URATA ACCEN	IONE TORCIA	TIPOLOGIA DI CALISA	MODALIITA' DETERMINAZIONE PORTATA	PORTATA GAS INVI. MININA	IATI IN TORCIA
Protocollo (se necessaria comunicazione)	Modalità (se necessaria comunicazione)	gg.mm.aaaa				Descrizione modalità (misura, calcolo, stima)	(t)	Descrizione modalità (misura, calcolo, stima)	% vol	% vol	% vol		K vol	min	ore	(emergenza, sicurezza, avvio-spegnimento impianti, altro)	Descrizione modalità (misura, calcolo, stima)	(kg/h)	(kg/h)
	Fax, PEC, lettera		Descrizione unità di processo	Descrizione sintetica causa (es. Blocco compressore K-1111, Apertura PSV ecc)	Item Torcia	M, C, S		M, C, S					100			Decsrizione tipologia in accordo a quelle autorizzate in AIA	M, C, S		
		01/01/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	13,22	ND	ND	ND	ND	ND		-		Altro	М	0	5.816
		02/01/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	12,23	ND	ND	ND	ND	ND		-		Altro	М	0	5.394
		03/01/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	12,47	ND	ND	ND	ND	ND		-		Altro	М	0	5.001
		04/01/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	13,27	ND	ND	ND	ND	ND		-		Altro	М	0	5.363
		05/01/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	14,63	ND	ND	ND	ND	ND		-		Altro	М	0	5.238
		06/01/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	м	12,21	ND	ND	ND	ND	ND				Altro	м	0	5.488
		07/01/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	м	11,08	ND	ND	ND	ND	ND				Altro	м	0	4.921
		08/01/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	м	17,14	ND	ND	ND	ND	ND				Altro	м	0	4.949
		09/01/2014		Polmonazioni con azoto delle apparecchiature Fermata Impianto Formex	E12	м	21,74	S	0,23	76,83	22,87	<0,01				Altro	м	0	5.285
		10/01/2014		Polmonazioni con azoto delle apparecchiature Fermata Impianto Formex	E12	М	21,72	S	0,23	76,83	22,87	<0,01		-		Altro	М	0	6.034
Prot.Dire/003 del 17/01/2014	PEC	11/01/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature Fermata Impianto Formex	E12	М	20,96	S	0,23	76,83	22,87	<0,01		-		Altro	М	0	5.363
		12/01/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature Fermata Impianto Formex	E12	М	18,88	S	0,23	76,83	22,87	<0,01		-		Altro	М	0	7.299
		13/01/2014		Polmonazioni con azoto delle apparecchiature Fermata Impianto Formex	E12	М	16,24	s	0,23	76,83	22,87	<0,01		-		Altro	м	0	5.659
		14/01/2014		Polmonazioni con azoto delle apparecchiature	E12	м	15,02	ND	ND	ND	ND	ND		-		Altro	м	0	5.472
		15/01/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	м	12,68	ND	ND	ND	ND	ND				Altro	м	0	6.393
		16/01/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E13	М	6,95	ND	ND	ND	ND	ND		-		Altro	М	0	5.363
		17/01/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E14	М	7,14	ND	ND	ND	ND	ND		-		Altro	м	0	4.586
		18/01/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E15	М	10,47	ND	ND	ND	ND	ND		-		Altro	М	0	4.972
		19/01/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E16	М	8,89	ND	ND	ND	ND	ND				Altro	М	0	5.035
		20/01/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E17	М	8,93	ND	ND	ND	ND	ND		-		Altro	м	0	5.285
		21/01/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E18	М	9,69	ND	ND	ND	ND	ND				Altro	М	0	4.433
		22/01/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E19	М	11,86	ND	ND	ND	ND	ND				Altro	М	0	4.513
		23/01/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E20	М	8,47	ND	ND	ND	ND	ND				Altro	М	0	4.615
		24/01/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E21	м	9,07	ND	ND	ND	ND	ND				Altro	М	0	4.659
		25/01/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E22	м	8,46	ND	ND	ND	ND	ND				Altro	М	0	4.739
-		26/01/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E23	м	8,69	ND	ND	ND	ND	ND				Altro	м	0	5.001
		27/01/2014	Implanti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E24	м	8,94	ND	ND	ND	ND	ND				Altro	м	0	4.776
		28/01/2014		Polmonazioni con azoto delle apparecchiature Bonifica circuiti degli scambiatori 950-E216A/B Reforming	E25	м	9,15	ND	ND	ND	ND	ND				Altro	м	0	5.050
Prot.Dire 017 del 07/02/2014	PEC	29/01/2014	ausiliari	Polmonazioni con azoto delle apparecchiature Bonifica circuiti degli scambiatori 950-E216A/B Reforming	E26	м	9,15	s	5,00	22,00	21,00	<0,01				Altro	м	0	9.735
		30/01/2014		Polmonazioni con azoto delle apparecchiature Bonifica circuiti degli scambiatori 950-E216A/B Reforming	E27	М	3,61	ND	ND	ND	ND	ND				Altro	м	0	5.001
		31/01/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature Bonifica circuiti degli scambiatori 950-E216A/B Reforming	E28	м	0,86	ND	ND	ND	ND	ND		-		Altro	м	Argument is not a string or cell reference	724

01/02/2014

EVENTI D	ATTIVAZIONE	DATA	UNITA'	CAUSA	TORCIA	MODALITA' DETERMINAZIONE QUANTITA'	QUANTITA' SCARICATA	MODALITA' DETERMINAZIONE COMPOSIZIONE		COMPC N2	OSIZIONE (Da a Idrocarburi totali	feguare al ca %H2S		тот		DURATA ACCENSIONE TORCIA	TIPOLOGIA DI CAUSA	MODALITA' DETERMINAZIONE PORTATA	PORTATA GAS IN MININA	MASSIMA
Protocollo (se necessaria comunicazione)	Modalità (se necessaria comunicazione)	gg.mm.aaaa				Descrizione modalità (misura, calcolo, stima)	(t)	Descrizione modalità (misura, calcolo, stima)	% vol	% vol	% vol	% vol	% vol	% vol	min	ore	(emergenza, sicurezza, awio- spegnimento impianti, altro)	Descrizione modalità (misura, calcolo, stima)	(kg/h)	(kg/h)
	Fax, PEC, lettera		Descrizione unità di processo	Descrizione sintetica causa (es. Blocco compressore K-1111, Apertura PSV ecc)	Item Torcia	M, C, S		M, C, S						100			Decsrizione tipologia in accordo a quelle autorizzate in AIA	M, C, S		
		01/02/2014	Implanti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	м	1,22	ND	ND	NE	D NO	NI NI	D NI				Altro	м	0	3.201
		02/02/2014	Implanti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	м	4,71	ND	ND	NE.	D NO	NI NI	D NI				Altro	м	0	4.185
Prot.Dire 017 del 07/02/2014	PEC	03/02/2014	Implanti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature Riavvio Impianto Reforming	E12	м	10,79	ND	1,00	47,0	0 15,0	<0,0	1 54,0				Altro	м	0	4.068
		04/02/2014	Implanti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature Riavvio Impianto Reforming	E12	м	0,87	ND	ND	NE	D NO	NI NI	D NI				Altro	м	0	1.237
		05/02/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature Riavvio impianto Reforming	E12	м	7,05	ND	ND	NE	D NO	NI NI	D NI				Altro	м	0	17.653
		06/02/2014	Implanti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	м	2,45	ND	ND	NE	D NO	NI NI	D NI				Altro	м	0	4.925
		07/02/2014	Implanti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	м	2,01	ND	ND	NE	D NO	NI NI	D NI				Altro	м	0	5.425
		08/02/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	м	0,07	ND	ND	NE	D NO	NI NI	D NI				Altro	м	0	607
		09/02/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	м	0,64	ND	ND	NE	D NO	NI NI	D NI				Altro	м	0	3.923
		10/02/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	0,26	ND	NO	NE) NO	NI NI	D NI		-		Altro	м	0	1.349
		11/02/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	м	0,38	ND	ND	NE	D NO	NI NI	D NI				Altro	м	0	612
		12/02/2014	Implanti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	м	0,22	ND	ND	NE	D NO	NI NI	D NI				Altro	м	0	548
		13/02/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	м	0,00	ND	NE	NE	D NO	NI NI	D NI		-		Altro	м	0	2.386
		14/02/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	м	0,41	ND	NE	NE	D NO	NI NI	D NI		-		Altro	м	0	648
		15/02/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	м	0,46	ND	NE	NE	D NO	NI NI	D NI		-		Altro	м	0	671
		16/02/2014	Impianti di produzione, logistica e ausiliari	Depressurizzazione circuito propano Polmonazioni con azoto delle apparecchiature	E12	М	5,25	s	<1	48,0	0 52,0	<0,0	1 NI	100,0	-		Altro	м	0	5.004
Prot.Dire 024 del 19/02/2014	PEC	17/02/2014	Impianti di produzione, logistica e ausiliari	Depressurizzazione circuito propano Polmonazioni con azoto delle apparecchiature	E12	М	13,65	ND	NO	NE) NO	NI NI	D NI		-		Altro	м	0	17.559
		18/02/2014	Impianti di produzione, logistica e ausiliari	Riavviamento impianto XIIIII Polmonazioni con azoto delle apparecchiature	E12	м	49,28	ND	ND	NE	D NO	NI NI	D NI				Altro	м	0	19.105
		19/02/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	м	0,00	ND	ND	NE	D NO	NI NI	D NI				Altro	м	0	5.001
		20/02/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	м	0,00	ND	ND	NE	D NO	NI NI	D NI				Altro	м	0	1.421
		21/02/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	м	0,06	ND	ND	NE	D NO	NI NI	D NI				Altro	м	0	926
		22/02/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	м	0,52	ND	NE	N	D NO	NI NI	D NI		-		Altro	м	0	1.094
		23/02/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	м	0,38	ND	NE	N	D NO	NI NI	D NI		-		Altro	м	0	521
		24/02/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	м	0,60	ND	ND	NE NE	D NO	NI NI	D NI		-		Altro	м	0	4.671
		25/02/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	м	0,27	ND	ND	NE NE	D NO	NI NI	D NI		-		Altro	м	0	1.428
		26/02/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	м	80,0	ND	NE	N) NI	NI NI	D NI		-		Altro	м	0	1.827
		27/02/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	м	0,14	ND	NE	N) NI	NI NI	D NI		-		Altro	м	0	514
		28/02/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	м	1,64	ND	NE	NE) NO	NI NI	D NI				Altro	м	0	3.599

March Marc		UNITA'	UNITA	CAUSA	TORCIA	MODALIITA' DETERMINAZIONE	QUANTITA' SCARICATA	MODALIITA' DETERMINAZIONE		COMP	OSIZIONE (Da	adeguare al c	aso specifico)			DURATA ACCENSIONE TORCIA	TIPOLOGIA DI CAUSA	MODALIITA' DETERMINAZIONE	PORTATA GAS IN	VIATI IN TORCIA
Marche M		UNITA	UNITA	CAUSA	TORCIA	QUANTITA'	QUANTITA SCARICATA	COMPOSIZIONE	CH4	N2	totali	n %H2S	96H	тот		DURATA ACCENSIONE TORCIA		PORTATA	MININA	MASSIMA
Make the property of the prope							(t)	Descrizione modalità (misura, calcolo, stima)	% vol	% vol	% vol	% vol	% vol	% vol	min	ore	(emergenza, sicurezza, avvio- spegnimento impianti, altro)	Descrizione modalità (misura, calcolo, stima)	(kg/h)	(kg/h)
Ministry				Descrizione sintetica causa (es. Blocco compressore K-1111, Apertura PSV ecc)	Item Torcia	M, C, S		M, C, S						100			quelle autorizzate in AIA	M, C, S		
March Marc		ausiliari	ausiliari	folmonazioni con azoto delle apparecchiature	E12	М	2,24	ND	ND	N N	ID N	ND P	ID N	0	-		Altro	м	-645	4.551
March Marc		ausiliari	ausiliari	olmonazioni con azoto delle apparecchiature	E12	М	0,90	ND	ND) N	ID B	ND P	ID N	0	-		Altro	М	-396	1.846
March Marc	ınti c		ausiliari		E12	М	0,36	ND	ND	N N	ID N	ND P	ID N	0	-		Altro	м	-140	554
March Marc		ausiliari	pianti di produzione, logistica e ausiliari P	liavviamento Impianto Xiloli	E12	М	5,73	s	<1	48,0	00 52,	00 <0,	01 N	100	.00	-	Altro	м	-1.002	17.950
No.	inti c	ınti di produzione, logistica e ausiliari	pianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	1,73	ND	ND	n N	ID 8	ND P	ID N	0	-		Altro	м	-1.002	8.689
No.	inti c			Polmonazioni con azoto delle apparecchiature	E12	М	1,04	ND	ND	N N	ID N	ND P	ID N	0	-		Altro	м	-465	2.723
March Marc	inti c			Polmonazioni con azoto delle apparecchiature	E12	М	0,19	ND	ND	N N	ID N	ND P	ID N	0	-		Altro	м	-251	389
March Marc	inti c	inti di produzione, logistica e ausiliari	pianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	0,00	ND	ND	N N	ID N	ND P	ID N	0	-		Altro	м	-449	498
March Marc	inti c			Polmonazioni con azoto delle apparecchiature	E12	М	0,00	ND	ND	N N	ID N	ND P	ID N	0	-		Altro	м	-249	757
A section of the product of the prod	inti c			Polmonazioni con azoto delle apparecchiature	E12	М	0,05	ND	ND	N N	ID N	ND P	ID N	0	-		Altro	м	-401	548
March Marc	inti c	inti di produzione, logistica e	pianti di produzione, logistica e	Polmonazioni con azoto delle apparecchiature	E12	М	0,26	ND	ND	N N	ID N	ND P	ID N	0	-		Altro	м	-202	698
1,000,000 1,000,000 1,00	inti c			Polmonazioni con azoto delle apparecchiature	E12	М	0,00	ND	ND	N N	ID N	ND P	ID N	0	-		Altro	м	-272	472
March Marc	inti c			olmonazioni con azoto delle apparecchiature	E12	М	0,00	ND	ND	N N	ID 8	ND P	ID N	0			Altro	м	-221	473
1507/2014 1507	inti c			olmonazioni con azoto delle apparecchiature	E12	М	0,00	ND	ND	N N	ID N	ND P	ID N	0	-		Altro	м	-201	442
1401/1024 1401	inti c	ınti di produzione, logistica e	pianti di produzione, logistica e	olmonazioni con azoto delle apparecchiature	E12	М	0,08	ND	ND	N N	ID 8	ND N	ID N	o	-		Altro	м	-280	451
Productiving 1 of 17/00/2004	inti c	ınti di produzione, logistica e	pianti di produzione, logistica e	olmonazioni con azoto delle apparecchiature	E12	М	0,00	ND	ND	N N	ID 8	ND N	ID N	o	-		Altro	м	-295	844
1400/100 1400/100	inti c	inti di produzione, logistica e	pianti di produzione, logistica e	la Sarlux	E12	М	1,34	s	3,00	70,0	00 9,	00 <0,	01 21,0	0 100	. 00		Altro	м	-262	3.444
Author/1966 of 12/01/12/14 Implicit of productions, legislate Author/1966 produ	inti c				E12	М	0,00	ND	ND	N N	ID 8	ND N	ID N	o	-		Altro	м	-187	365
2001/2014 Page of productions, lighters Proc. Conv. (196) of the Section Proc.	ınti c			olmonazioni con azoto delle apparecchiature	E12	М	0,52	ND	ND	N N	ID 8	ND P	ID N	0			Altro	м	-413	1.140
2,100,1004 Impaired productions, logistical and including and productions, logistical and logis	inti c	ınti di produzione, logistica e	planti di produzione, logistica e	olmonazioni con azoto delle apparecchiature	E12	М	2,15	ND	ND	N N	ID 8	ND P	ID N	0	-		Altro	м	-421	4.435
22/01/2014 Impaired productions, legisters Amountained can satisfy delta approachature 112 M 2,16 NO NO NO NO NO NO NO N	inti c	ınti di produzione, logistica e	pianti di produzione, logistica e	olmonazioni con azoto delle apparecchiature	E12	М	0,00	ND	ND	N N	ID 8	ND P	ID N	0	-		Altro	м	-622	1.412
\$\frac{1}{2}\rm{1}	ınti c	ınti di produzione, logistica e	planti di produzione, logistica e	olmonazioni con azoto delle apparecchiature	E12	М	2,16	ND	ND	N N	ID 8	ND P	ID N	0			Altro	м	-214	1.855
Pet Display	inti c	ınti di produzione, logistica e	pianti di produzione, logistica e	olmonazioni con azoto delle apparecchiature	E12	М	4,26	ND	ND	N N	ID 8	ND P	ID N	0	-		Altro	м	-190	1.896
Prod. Division Seed 24/03/03/04 PEC 25/03/05/04 Impaired in productions legislated in productions (application in large and international profession of the production (application in large and in larg	ınti c	inti di produzione, logistica e	pianti di produzione, logistica e	olmonazioni con azoto delle apparecchiature	E12	М	0,41	ND	ND	N N	ID 8	ND P	ID N	0			Altro	м	-239	5.972
Prod. Law/1955 del 24/03/1952 PGC 201/03/2014 Impaired de productions, logiticar (productions, logiticar (prod. prod. pr	inti c	inti di produzione, logistica e	pianti di produzione, logistica e	la Sarlux	E12	М	1,57	s	2,10	71,0	00 5,	70 <0,	01 23,5	0 100	20 -		Altro	м	-230	2.202
27/03/2014	inti c		pianti di produzione, logistica e F	ermata Impianto Splitter	E12	М	0,32	s	ND	N	ID N	ND P	ID N	0			Altro	м	-260	730
24/63/2014 Impaid of production, legister Authoritions impaired production, legister Authoritions Aut	inti c	inti di produzione, logistica e	pianti di produzione, logistica e N	Aanutenzione Impianto Splitter	E12	М	2,19	s	0,30	90,2	20 8,	80 <0,	01 N	99	30 -		Altro	м	-1.001	5.410
2x 001/2014 Implicated for productions, logical seat	inti c	inti di produzione, logistica e	pianti di produzione, logistica e N	Manutenzione Impianto Splitter	E12	М	0,11	ND	ND	N	ID N	4D P	ID N				Altro	м	-359	1.109
30(01/2014 Implant di produtione, ligitica: de Munitantionie implanto dilitere E12 M 0,02 NO	ınti c	ınti di produzione, logistica e	pianti di produzione, logistica e N	Manutenzione Impianto Splitter	E12	М	0,18	ND	ND	N N	ID 8	ND P	ID N	0	-		Altro	м	-221	678
ausiian Promonazioni con azoto delle appareccinature	inti c	inti di produzione, logistica e	pianti di produzione, logistica e N	Manutenzione Impianto Splitter	E12	М	0,02	ND	ND	N	ID N	4D P	ID N				Altro	м	-239	441
3 3/(3)/2014 Implant di produzione, lagistra: e Manutentronien implanto Spittere Parametri di produzione, lagistra: e Manutentronien implanto Spittere Parametri di produzione, lagistra il monazioni con stato della Sourcenhalure E12 M 0,01 ND NO	inti c	inti di produzione, logistica e	pianti di produzione, logistica e N	Manutenzione Impianto Splitter		M			ND	N N	ID 8	4D >	ID N	0				м	-281	389

										MODERAN	(Da adeauar	a al caro ro	nacifica)					DOSTATA CACINII	MATERIAL TODOLO
EVENTI D	ATTIVAZIONE	DATA	UNITA'	CAUSA	TORCIA	MODALIITA' DETERMINAZIONE QUANTITA'	QUANTITA' SCARICATA	MODALIITA' DETERMINAZIONE COMPOSIZIONE	CH4	N2	Idrocarbur	95H21	s TOT	DURATA ACC	NSIONE TORCIA	TIPOLOGIA DI CAUSA	MODALIITA' DETERMINAZIONE -	PORTATA GAS INV	MASSIMA
Protocollo (se necessaria comunicazione)	Modalità (se necessaria comunicazione)	gg.mm.aaaa				Descrizione modalità (misura, calcolo, stima)	(t)	Descrizione modalità (misura, calcolo, stima)	% moli	% moli	totali % moli	% mo		min	ore	(emergenza, sicurezza, avvio-spegnimento impianti, altro)	Descrizione modalità (misura, calcolo, stima)	(kg/h)	(kg/h)
	Fax, PEC, lettera		Descrizione unità di processo	Descrizione sintetica causa (es. Blocco compressore K-1111, Apertura PSV ecc)	Item Torcia	M, C, S		M, C, S					100			Decsrizione tipologia in accordo a quelle autorizzate in AIA	M, C, S		
		01/04/2014	Impianti di produzione, logistica e ausiliari	Manutenzione Impianto Splitter Polmonazioni con azoto delle apparecchiature	E12	М	0,00	ND	NE	ND.	N	D	ND	-	-	Altro	м	-329	438
Prot.Dire/059 del 02/04/2014	PEC	02/04/2014	Impianti di produzione, logistica e ausiliari	Avviamento Impianto Splitter Polmonazioni con azoto delle apparecchiature	E12	М	0,04	ND	NE	ND ND	N	D	ND	-	-	Altro	м	-212	472
Prot.Dire/060 del 03/04/2014	PEC	03/04/2014	Impianti di produzione, logistica e ausiliari	Fermata Implanto Reforming Fermata Implanto Splitter Polmonazioni con azoto delle apparecchiature	E12	м	0,05	ND	NE	ND ND	N	D	ND	-	-	Altro	м	-358	5.001
Prot.Dire/061 del 04/04/2014	PEC	04/04/2014	Impianti di produzione, logistica e ausiliari	Fermata Splitter Polmonazioni con azoto delle apparecchiature	E12	М	4,77	ND	NE	ND.	N	D	ND	-	-	Altro	м	-541	6.940
		05/04/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	0,00	ND	NE	ND.	N	D	ND	-	-	Altro	м	-617	3.352
		06/04/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	0,00	ND	NE	ND ND	N	D	ND	-	-	Altro	м	-161	533
		07/04/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	0,11	ND	NE	ND ND	N	D	ND	-	-	Altro	м	-270	749
Prot.Dire/063 08/04/2014	PEC	08/04/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature Depressurizzazione circuito idrogeno/retegas per interruzione prelievo idrogeno da Sarlux	E12	М	4,88	ND	0,60	82,40	9,1	10	0,02	-	-	Altro	м	-617	6.940
		08/04/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	0,11	ND	NE	ND ND	N	D	ND		-	Altro	м	-270	749
		09/04/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	0,25	ND	NE	ND.	N	D	ND	-	-	Altro	м	-319	5.347
		10/04/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	0,13	ND	NE	ND.	N	D	ND	-	-	Altro	м	-323	486
		11/04/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	0,00	ND	NE	ND.	N	D	ND	-	-	Altro	м	-575	4.856
		12/04/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	0,01	ND	NE	ND ND	N	D	ND	-	-	Altro	м	-528	1.271
		13/04/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	м	0,00	ND	NE	ND ND	N	D	ND	-	-	Altro	м	-339	1.509
		14/04/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	м	0,00	ND	NE	ND ND	N	D	ND	-	-	Altro	м	-331	345
		15/04/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	0,04	ND	NE	ND.	N	D	ND	-	-	Altro	м	-293	293
		16/04/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	0,02	ND	NE	ND.	N	D	ND	-	-	Altro	м	-269	484
		17/04/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	0,02	ND	NE	ND.	N	D	ND	-	-	Altro	м	-302	983
		18/04/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	0,00	ND	NE	ND.	N	D	ND	-	-	Altro	м	-348	21.136
		19/04/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	0,12	ND	0,0	93,35	3,1	15 (0,01	-	-	Altro	м	-447	5.769
Prot.Dire/075 del 22/04/2014	PEC	20/04/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	0,50	ND	NE	ND.	N	D	ND	-	-	Altro	м	-516	8.283
		21/04/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	0,16	ND	NE	ND ND	N	D	ND	-		Altro	м	-321	11.922
		22/04/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	0,24	ND	NE	ND ND	N	D	ND	-	-	Altro	м	-272	1.522
		23/04/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	0,57	ND	NE	ND ND	N	D	ND	-	-	Altro	м	-352	1.139
		24/04/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	0,78	ND	NE	ND ND	N	D	ND	-	-	Altro	м	-323	1.311
		25/04/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	0,19	ND	NE	ND ND	N	D	ND	-	-	Altro	м	-460	853
		26/04/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	0,13	ND	NE	ND ND	N	D	ND			Altro	м	-375	501
		27/04/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	0,20	ND	NE		N	D	ND			Altro	м	-390	1.080
		28/04/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	0,10	ND	NE	ND ND	N	D	ND			Altro	м	-395	1.335
		29/04/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	0,06	ND	NE	ND.	N	D	ND	-	-	Altro	М	-425	191
	1	30/04/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	0,06	ND	NE	ND ND	N	D	ND	-	-	Altro	м	-337	2.360

EVENTI DI	ATTIVAZIONE	DATA	UNITA'	CAUSA	TORCIA	MODALIITA' DETERMINAZIONE QUANTITA'	QUANTITA' SCARICATA	MODALIITA' DETERMINAZIONE COMPOSIZIONE	CH4	COMPO:	IZIONE (Da ade Idrocarburi	guare al cas %H2S		тот		DURATA ACCENSIONE TORCIA	TIPOLOGIA DI CAUSA	MODALIITA' DETERMINAZIONE	PORTATA GAS IN	NVIATI IN TORCIA MASSIMA
Protocollo (se necessaria comunicazione)	Modalità (se necessaria comunicazione)	gg.mm.aaaa				Descrizione modalità (misura, calcolo, stima)	(t)	Descrizione modalità (misura, calcolo, stima)	% moli	% moli	% moli	% moli	% moli	% moli	min	ore	(emergenza, sicurezza, awio- spegnimento impianti, altro)	Descrizione modalità (misura, calcolo, stima)	(kg/h)	(kg/h)
	Fax, PEC, lettera		Descrizione unità di processo	Descrizione sintetica causa (es. Blacco compressore K-1111, Apertura PSV ecc)	Item Torcia	M, C, S		M, C, S						100			Decsrizione tipologia in accordo a quelle autorizzate in AIA	M, C, S		
		01/05/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	м	0,11	ND	ND	ND	ND	ND	ND				Altro	м	-630	498
		02/05/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	м	0,52	ND	ND	ND	ND	ND	ND				Altro	м	-361	718
		03/05/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	0,20	ND	ND	ND.	ND	ND	ND				Altro	м	-497	3.841
		04/05/2014	Implanti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	0,06	ND	ND	ND.	ND	ND	ND				Altro	м	-456	542
rot.Dire/093 del 06/05/2014	PEC	05/05/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature Scarico sovrapressione rete gas da 214PC2 per malfunzionamento valvola di regolazione pressione sezione Platforming Impianto Reforming	E12	м	0,43	s	2,52	62,48	11,33	<0,01	23,95	100,28	25		Altro	м	-411	12.328
		06/05/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	0,00	ND	ND	ND.	ND	ND	ND				Altro	м	-418	329
		07/05/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	0,00	ND	ND	ND	ND	ND	ND		-		Altro	м	-378	131
		08/05/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	0,00	ND	ND	ND	ND	ND	ND				Altro	М	-397	125
		09/05/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	0,15	ND	ND	ND	ND	ND	ND				Altro	М	-444	163
		10/05/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	0,08	ND	ND	ND	ND	ND	ND		-		Altro	м	-376	184
		11/05/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	1,15	ND	ND	ND	ND	ND	ND				Altro	М	-341	1.157
		12/05/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	0,32	ND	ND	ND	ND	ND	ND				Altro	М	-369	550
		13/05/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	0,44	ND	ND	ND	ND	ND	ND				Altro	м	-385	1.049
		14/05/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	0,16	ND	ND	ND	ND	ND	ND				Altro	М	-424	510
		15/05/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	0,17	ND	ND	ND	ND	ND	ND				Altro	М	-406	981
		16/05/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	0,27	ND	ND	ND	ND	ND	ND				Altro	м	-403	584
		17/05/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	0,08	ND	ND	ND	ND	ND	ND				Altro	М	-405	617
		18/05/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	0,37	ND	ND	ND	ND	ND	ND				Altro	М	-302	646
		19/05/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	0,41	ND	ND	ND	ND	ND	ND				Altro	М	-254	610
		20/05/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	1,19	ND	ND	ND	ND	ND	ND				Altro	м	-379	746
		21/05/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	м	0,52	ND	ND	ND	ND	ND	ND				Altro	м	-399	569
		22/05/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	м	0,84	ND	ND	ND	ND	ND	ND				Altro	м	-217	1.238
		23/05/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	0,44	ND	ND	ND	ND	ND	ND				Altro	М	-220	976
		24/05/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	0,91	ND	ND	ND	ND	ND	ND				Altro	м	-571	883
		25/05/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	1,27	ND	ND	ND	ND	ND	ND				Altro	м	-604	4.447
rot.Dire/104 del 23/05/2014	PEC	26/05/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature Attività preliminari alla manutenzione e il riavvio dell'impianto Reforming	E12	М	2,30	ND	ND	ND	ND	ND	ND				Spegnimento impianto- manutenzione	м	-845	7.159
		27/05/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	м	0,95	ND	ND	ND	ND	ND	ND				Altro	м	-624	783
		28/05/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	м	0,81	ND	ND	ND.	ND	ND	ND				Altro	м	-772	3.386
		29/05/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	4,98	ND	ND	ND.	ND	ND	ND				Altro	м	-815	9.158
		30/05/2014	Impianti di produzione, logistica e	Polmonazioni con azoto delle apparecchiature	E12	м	0,25	ND	ND	ND	ND	ND	ND				Altro	м	-399	1.180
		31/05/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	0,67	ND	ND	ND.	ND	ND	ND				Altro	м	-330	1.217

EVENTI DI	ATTIVAZIONE	DATA	UNITA'	CAUSA	TORCIA	MODALIITA' DETERMINAZIONE QUANTITA'	QUANTITA' SCARICATA	MODALIITA' DETERMINAZIONE COMPOSIZIONE	CH4	COMPO N2	Idrocarb	a adeguare al c	so specifico) %H	тот		DURATA ACCENSIONE TORCIA	TIPOLOGIA DI CAUSA	MODALIITA' DETERMINAZIONE PORTATA	PORTATA GAS IN	NVIATI IN TORCIA MASSIMA
Protocollo (se necessaria comunicazione)	Modalità (se necessaria comunicazione)	gg.mm.aaaa				Descrizione modalità (misura, calcolo, stima)	(t)	Descrizione modalità (misura, calcolo, stima)	% moli	% moli	% mo	li % moli	% moli	% moli	min	ore	(emergenza, sicurezza, awio- spegnimento impianti, altro)	Descrizione modalità (misura, calcolo, stima)	(kg/h)	(kg/h)
	Fax, PEC, lettera		Descrizione unità di processo	Descrizione sintetica causa (es. Blocco compressore K-1111, Apertura PSV ecc)	Item Torcia	M, C, S		M, C, S						100			Decsrizione tipologia in accordo a quelle autorizzate in AIA	M, C, S		
Prot.Dire/113 del 02/06/2014	PEC	01/06/2014	Impianti di produzione, logistica e	Polmonazioni con azoto delle apparecchiature.	E12	м	2,74	ND	NE	NI NI	0	ND P	D NI				Avviamento	м	-987	8.689
		02/06/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	м	1,53	ND	NE	NI NI	0	ND P	D NI				Altro	м	-994	4.393
		03/06/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	м	3,10	ND	NE	NI NI	0	ND P	D NI				Altro	м	-447	2.727
		04/06/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	м	1,44	ND	NE	NI NI	0	ND P	D NI				Altro	м	-455	1.816
		05/06/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	0,29	ND	NE	NI NI	0	ND P	D NI		-		Altro	м	-545	766
		06/06/2014	Impianti di produzione, logistica e	Polmonazioni con azoto delle apparecchiature	E12	м	3,17	ND	NE	NI NI	0	ND P	D NI				Altro	м	-358	2.203
		07/06/2014	Impianti di produzione, logistica e	Polmonazioni con azoto delle apparecchiature	E12	м	3,36	ND	NE	NI NI	0	ND P	D NI				Altro	м	-478	4.022
Prot.Dire/176 del 25/08/2014	PEC	08/06/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	м	1,13	ND	0,13	93,0	0	1,88 <0,	1,8				Altro	м	-210	711
		09/06/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	м	2,37	ND	0,13	93,0	0	1,88 <0,	1,8				Altro	м	-1.000	6.331
		10/06/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	м	8,96	ND	0,13	93,0	0	1,88 <0,	1,8				Altro	м	-360	6.565
		11/06/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	м	37,70	ND	0,13	93,0	0	1,88 <0,	1,8				Altro	м	-299	6.081
		12/06/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	м	40,12	ND	0,13	93,0	0	1,88 <0,	1,8				Altro	м	0	6.706
		13/06/2014	Impianti di produzione, logistica e	Polmonazioni con azoto delle apparecchiature	E12	м	42,77	ND	0,13	93,0	0	1,88 <0,	1,8				Altro	м	0	6.971
		14/06/2014	Impianti di produzione, logistica e	Polmonazioni con azoto delle apparecchiature	E12	м	37,47	ND	0,13	93,0	0	1,88 <0,	1,8				Altro	м	-456	8.158
		15/06/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	м	36,18	ND	0,13	93,0	0	1,88 <0,	1,8				Altro	м	131	7.471
		16/06/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	м	35,31	ND	0,13	93,0	0	1,88 <0,	1,8				Altro	м	-210	5.972
		17/06/2014	Impianti di produzione, logistica e	Polmonazioni con azoto delle apparecchiature	E12	м	39,93	ND	0,13	93,0	0	1,88 <0,	1,8				Altro	м	-410	5.816
		18/06/2014	ausiliari Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	м	34,25	ND	0,13	93,0	0	1,88 <0,	1,8				Altro	м	-207	6.050
		19/06/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	м	26,80	ND	0,13	93,0	0	1,88 <0,	1,8				Altro	м	-430	5.503
		20/06/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	м	30,37	ND	0,13	93,0	0	1,88 <0,	1,8				Altro	м	-553	6.128
		21/06/2014	Impianti di produzione, logistica e	Polmonazioni con azoto delle apparecchiature	E12	М	31,89	ND	0,13	93,0	0	1,88 <0,	1,8				Altro	м	-635	7.299
		22/06/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	33,80	ND	0,13	93,0	0	1,88 <0,	1,8				Altro	м	-649	5.363
		23/06/2014	Implanti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	м	38,33	ND	0,13	93,0	0	1,88 <0,	1,8				Altro	м	-643	5.456
		24/06/2014	Impianti di produzione, logistica e	Polmonazioni con azoto delle apparecchiature	E12	м	42,56	ND	0,13	93,0	0	1,88 <0,	1,8				Altro	м	-742	7.487
		25/06/2014	ausiliari Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	м	48,34	ND	0,13	93,0	0	1,88 <0,	1,8				Altro	м	-863	6.799
		26/06/2014	Impianti di produzione, logistica e	Polmonazioni con azoto delle apparecchiature	E12	м	41,97	ND	0,13	93,0	0	1,88 <0,	1,8				Altro	м	-782	5.987
		27/06/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	м	36,98	ND	0,13	93,0	0	1,88 <0,	1,8				Altro	м	-1.000	5.691
		28/06/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	м	32,25	ND	0,13	93,0	0	1,88 <0,	1,8				Altro	м	-1.000	5.300
		29/06/2014	ausiliari Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	34,38	ND	0,13		1	1,88 <0,	1,8				Altro	м	-832	5.987
		30/06/2014	ausiliari Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	M	33,95	ND	0,13	93,0	0	1,88 <0,	1,8				Altro	м	-1.000	5.535

EVENTI DI	ATTIVAZIONE	DATA	UNITA'	CAUSA	TORCIA	MODALIITA' DETERMINAZIONE QUANTITA'	QUANTITA' SCARICATA	MODALIITA' DETERMINAZIONE COMPOSIZIONE	CH4	N2	Idrocarbur totali	adeguare al ca 1 %H2S	so specifico) 96H	тот		DURATA ACCENSIONE TORCIA	TIPOLOGIA DI CAUSA	MODALIITA' DETERMINAZIONE PORTATA	PORTATA GAS IN MININA	MASSIMA
Protocollo (se necessaria comunicazione)	Modalità (se necessaria comunicazione)	gg.mm.aaaa				Descrizione modalità (misura, calcolo, stima)	(t)	Descrizione modalità (misura, calcolo, stima)	% moli	% moli	% moli	% moli	% moli	% moli	min	ore	(emergenza, sicurezza, avvio- spegnimento impianti, altro)	Descrizione modalità (misura, calcolo, stima)	(kg/h)	(kg/h)
	Fax, PEC, lettera		Descrizione unità di processo	Descrizione sintetica causa (es. Blocco compressore K-1111, Apertura PSV ecc)	Item Torcia	M, C, S		M, C, S						100			Decsrizione tipologia in accordo a quelle autorizzate in AIA	M, C, S		
		01/07/2014	Impianti di produzione, logistica e	Polmonazioni con azoto delle apparecchiature.	E12	м	31,53	ND	0,1	3 93,00	1,1	88 <0,0	1 1,84			-	Altro	м	-793	5.378
		02/07/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	м	34,35	ND	0,1	3 93,00	1,1	88 <0,0	1 1,84				Altro	м	-1.000	5.347
		03/07/2014	Impianti di produzione, logistica e	Polmonazioni con azoto delle apparecchiature	E12	м	36,90	ND	0,1	3 93,00	1.1	88 <0,0	1 1,84				Altro	м	-930	5.535
		04/07/2014	ausiliari Impianti di produzione, logistica e	Polmonazioni con azoto delle apparecchiature	E12	M	37,05	ND	0,1	1		88 <0,0					Altro	м	-937	7.612
		05/07/2014	ausiliari Impianti di produzione, logistica e	Polmonazioni con azoto delle apparecchiature	E12	M	38,32	s	0,1	-	_	+	_				Altro	м	-791	9.751
		06/07/2014	ausiliari Impianti di produzione, logistica e	Polmonazioni con azoto delle apparecchiature	E12	M	26,71	ND ND	0,1	1		88 <0.0	-				Altro	м	-602	4.770
		07/07/2014	ausiliari Impianti di produzione, logistica e	Polmonazioni con azoto delle apparecchiature	E12	M	29.40	ND ND	0.13	1		88 <0.0	_				Altro	м	-766	4.716
			ausiliari Impianti di produzione, logistica e							-	-	-	_							
		08/07/2014	ausiliari Impianti di produzione, logistica e	Polmonazioni con azoto delle apparecchiature	E12	М	30,94	ND	0,1	1		88 <0,0					Altro	м	-701	5.363
		09/07/2014	ausiliari Impianti di produzione, logistica e	Polmonazioni con azoto delle apparecchiature	E12	М	22,82	ND	0,13	-	1,1		_			•	Altro	м	-1.000	4.567
		10/07/2014	ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	31,42	ND	0,1	93,00	1,1	88 <0,0	1 1,84			-	Altro	М	-1.000	5.519
ot.Dire/146 del 11/07/2014	PEC	11/07/2014	Impianti di produzione, logistica e ausiliari	FERMATA GARO E INTERCETTATO TUTTI I COLLETTORI DEL BLOW DOWN	E12	М	37,35	ND	0,1	93,00	1,8	88 <0,0	1 1,84		-		Altro	М	-714	9.735
		12/07/2014	Impianti di produzione, logistica e ausiliari	FERMATA GARO E INTERCETTATO TUTTI I COLLETTORI DEL BLOW DOWN	E12	М	24,36	ND	0,13	93,00	1,8	88 <0,0	1 1,84		-		Altro	м	185	2.416
		13/07/2014	Impianti di produzione, logistica e ausiliari	FERMATA GARO E INTERCETTATO TUTTI I COLLETTORI DEL BLOW DOWN	E12	М	24,46	ND	0,1	93,00	1,1	88 <0,0	1 1,84		-		Altro	м	213	1.778
		14/07/2014	Impianti di produzione, logistica e ausiliari	FERMATA GARO E INTERCETTATO TUTTI I COLLETTORI DEL BLOW DOWN	E12	М	25,01	ND	0,1	93,00	1,1	88 <0,0	1 1,84				Altro	м	353	1.791
		15/07/2014	Impianti di produzione, logistica e	FERMATA GARO E INTERCETTATO TUTTI I COLLETTORI DEL BLOW DOWN	E12	М	27,64	ND	0,1	93,00	1,1	88 <0,0	1 1,84		-		Altro	м	451	1.984
		16/07/2014	Impianti di produzione, logistica e ausiliari	FERMATA GARO E INTERCETTATO TUTTI I COLLETTORI DEL BLOW DOWN	E12	М	36,83	ND	0,1	3 93,00	1,1	88 <0,0	1 1,84				Altro	м	-382	4,444
		17/07/2014	Impianti di produzione, logistica e ausiliari	FERMATA GARO E INTERCETTATO TUTTI I COLLETTORI DEL BLOW DOWN	E12	М	37,16	ND	0,13	93,00	1,1	88 <0,0	1 1,84				Altro	м	-864	5.519
rot.Dire/15 del 22/07/2014	PEC	18/07/2014	Impianti di produzione, logistica e	Polmonazione con azoto delle apparecchiture GARO FERMO PER OTTIMIZZAZIONE POTERE CALORIFICO	E12	М	40,13	ND	0,13	93,00	1,1	88 <0,0	1 1,84				Altro	м	-705	5.472
		19/07/2014	ausiliari Impianti di produzione, logistica e	Polmonazione con azoto delle apparecchiture	E12	м	44,31	ND.	0.13	3 93.00	1.1	88 <0.0	1 1.84				Altro	м	-1.000	5.535
		20/07/2014	ausiliari Impianti di produzione, logistica e	GARO FERMO PER OTTIMIZZAZIONE POTERE CALORIFICO Polmonazione con azoto delle apparecchiture	E12	M	50,40	ND	0,1	3 93,00	1.1	88 <0,0	1 184				Altro	м	-126	6.081
		21/07/2014	ausiliari Impianti di produzione, logistica e	GARO FERMO PER OTTIMIZZAZIONE POTERE CALORIFICO Polmonazione con azoto delle apparecchiture	E12	M	48,22	ND ND	0.13	1		_	-				Altro	м	-371	5.675
			ausiliari Impianti di produzione, logistica e	GARO FERMO PER OTTIMIZZAZIONE POTERE CALORIFICO						-		-	_							
		22/07/2014	ausiliari Impianti di produzione, logistica e	Polmonazioni con azoto delle apparecchiature	E12	М	42,61	ND	0,1	-	-	88 <0,0	_				Altro	м	1	6.690
		23/07/2014	ausiliari Impianti di produzione, logistica e	Polmonazioni con azoto delle apparecchiature	E12	М	41,55	ND	0,13	-		10,0	_			•	Altro	м	-723	5.722
		24/07/2014	ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	44,80	ND	0,1	93,00	1,1	88 <0,0	1 1,84			-	Altro	м	-577	6.034
		25/07/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	48,56	ND	0,1	93,00	1,1	88 <0,0	1 1,84		-	*	Altro	М	-148	5.769
		26/07/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	45,40	ND	0,1	93,00	1,1	88 <0,0	1 1,84		-		Altro	м	1	6.315
		27/07/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	46,33	ND	0,13	93,00	1,1	88 <0,0	1 1,84				Altro	м	-532	5.722
		28/07/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	44,19	ND	0,13	93,00	1,1	88 <0,0	1 1,84				Altro	м	-733	5.909
		29/07/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	40,59	ND	0,13	3 93,00	1,1	88 <0,0	1 1,84				Altro	м	-320	5.675
		30/07/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	M	46,27	ND	0,13	3 93,00	1,1	88 <0,0	1 1,84		-		Altro	м	-443	6.284
		31/07/2014	Impianti di produzione, logistica e	Polmonazioni con azoto delle apparecchiature	E13	M	43.83	ND.	0,1	3 93.00		88 <0.0	1 1.84				Altro	м	-574	6.081

EVENTI DI	ATTIVAZIONE	DATA	UNITA'	CAUSA	TORCIA	MODALIITA' DETERMINAZIONE QUANTITA'	QUANTITA' SCARICATA	MODALIITA' DETERMINAZIONE COMPOSIZIONE	CH4	COMPOS N2	IZIONE (Da ade Idrocarburi	guare al cas %H2S	o specifico) %H	тот		DURATA ACCENSIONE TORCIA	TIPOLOGIA DI CAUSA	MODALIITA' DETERMINAZIONE PORTATA	PORTATA GAS IN	NVIATI IN TORCIA MASSIMA
Protocollo (se necessaria	Modalità (se necessaria comunicazione)	gg.mm.aaaa				Descrizione modalità (misura,	(t)	Descrizione modalità (misura, calcolo, stima)	% moli	% moli	% moli	% moli	% moli	% moli	min	ore	(emergenza, sicurezza, awio- spegnimento impianti, altro)	Descrizione modalità (misura, calcolo, stima)	(kg/h)	(kg/h)
comunications	Fax, PEC, lettera		Descrizione unità di processo	Descrizione sintetica causa (es. Blocco compressore K-1111, Apertura PSV ecc)	Item Torcia	M, C, S		M, C, S						100			Decsrizione tipologia in accordo a quelle autorizzate in AIA	M, C, S		
		01/08/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature.	E12	M	45,54	ND	0,13	93,00	1,88	<0,01	1,84				Altro	м	-522	5.909
		02/08/2014	Impianti di produzione, logistica e	Polmonazioni con azoto delle apparecchiature	E12	M	39,37	ND	0,13	93,00	1,88	<0,01	1,84				Altro	м	-411	5.628
		03/08/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	M	42,20	ND	0,13	93,00	1,88	<0,01	1,84				Altro	м	-540	5.550
		04/08/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	M	42,44	ND	0,13	93,00	1,88	<0,01	1,84				Altro	м	-328	5.347
		05/08/2014	Impianti di produzione, logistica e	Polmonazioni con azoto delle apparecchiature	E12	М	42,82	ND	0,13	93,00	1,88	<0,01	1,84				Altro	м	-268	5.722
		06/08/2014	ausiliari Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	40,26	ND	0,13	93,00	1,88	<0,01	1,84				Altro	м	-707	6.206
		07/08/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	M	42,17	ND	0,13	93,00	1,88	<0,01	1,84				Altro	м	-971	4.762
		08/08/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature (avviato circuito propano Xiloli)	E12	M	15,01	ND	0,13	93,00	1,88	<0,01	1,84				Altro	м	-971	15.186
		08/08/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	M	36,55	ND	0,13	93,00	1,88	<0,01	1,84				Altro	м	-999	9.361
		10/08/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	M	34,36	ND	0,13	93,00	1,88	<0,01	1,84				Altro	м	-1.000	5.175
		11/08/2014	Impianti di produzione, logistica e	Polmonazioni con azoto delle apparecchiature	E12	M	34,93	ND	0,13	93,00	1,88	<0,01	1,84				Altro	м	-1.000	4.888
		12/08/2014	ausiliari Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	M	25,94	ND	0,13	93,00	1,88	<0,01	1,84				Altro	м	-1.000	10.626
		13/08/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	M	22,35	ND	0,13	93,00	1,88	<0,01	1,84				Altro	м	-1.000	5.738
		14/08/2014	Impianti di produzione, logistica e	Polmonazioni con azoto delle apparecchiature	E12	M	27,78	ND	0,13	93,00	1,88	<0,01	1,84				Altro	м	-698	5.269
		15/08/2014	Implanti di produzione, logistica e	Polmonazioni con azoto delle apparecchiature	E12	M	23,23	ND	0,13	93,00	1,88	<0,01	1,84				Altro	м	-854	5.378
		16/08/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	M	26,71	ND	0,13	93,00	1,88	<0,01	1,84				Altro	м	-1.000	4.747
rot.Dire/176 del 25/08/2014	PEC	17/08/2014	Impianti di produzione, logistica e	Polmonazioni con azoto delle apparecchiature	E12	M	21,43	ND	0,13	93,00	1,88	<0,01	1,84				Altro	м	-350	5.175
		18/08/2014	ausiliari Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	M	24,84	ND	0,02	96,84	1,83	<0,01	0,42				Altro	м	-542	4.573
		19/08/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	M	29,50	ND	0,02	96,84	1,83	<0,01	0,42				Altro	м	-357	5.175
		20/08/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	M	33,21	ND	0,02	96,84	1,83	<0,01	0,42				Altro	м	-531	12.125
		21/08/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	M	29,67	ND	0,02	96,84	1,83	<0,01	0,42				Altro	м	-443	5.535
		22/08/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	M	27,77	ND	0,02	87,00	8,50	<0,01	3,79				Altro	м	-335	5.363
		23/08/2014	Impianti di produzione, logistica e	Polmonazioni con azoto delle apparecchiature	E12	M	27,20	ND	0,02	87,00	8,50	<0,01	3,79				Altro	м	-174	4.113
		24/08/2014	ausiliari Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	25,31	ND ND	0,02	87,00	8,50	<0,01	3,79				Altro	м	-427	4.975
		25/08/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	27,26	ND ND	0,02	87,00	8,50	<0,01	3,79				Altro	м	-504	4.539
		26/08/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	26,34	ND ND	0,02	87,00	8,50	<0,01	3,79				Altro	м	-626	5.002
		27/08/2014	Impianti di produzione, logistica e	Polmonazioni con azoto delle apparecchiature	E12	М	29,18	ND ND	0,02	87,00	8,50	<0,01	3,79				Altro	м	-421	5.316
		28/08/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	27,14	ND ND	0,02	87,00	8,50	<0,01	3,79				Altro	м	-615	9.204
		29/08/2014	Implanti di produzione, logistica e	Polmonazioni con azoto delle apparecchiature	E12	M	28,44	ND	0,02	87,00	8,50	<0,01	3,79				Altro	м	-318	4.622
		30/08/2014	Impianti di produzione, logistica e	Polmonazioni con azoto delle apparecchiature	E12	M	26,58	ND	0,02	87,00	8,50	<0,01	3,79				Altro	м	-279	4.772
		31/08/2014	ausiliari Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E13	M	27,90	ND	0,02	87,00	8.50	<0,01	3,79				Altro	м	-370	4.629

EVENTI DI	H ATTIVAZIONE	DATA	UNITA'	CAUSA	TORCIA	MODALIITA' DETERMINAZIONE QUANTITA'	QUANTITA' SCARICATA	MODALIITA' DETERMINAZIONE COMPOSIZIONE	CH4	COMPOS N2		eguare al ca: %H2S		тот		DURATA ACCENSIONE TORCIA	TIPOLOGIA DI CAUSA	MODALITA' DETERMINAZIONE PORTATA	PORTATA GAS IN MININA	MASSIMA
Protocollo (se necessaria comunicazione)	Modalità (se necessaria comunicazione)	gg.mm.aaaa				Descrizione modalità (misura, calcolo, stima)	(t)	Descrizione modalità (misura, calcolo, stima)	% moli	% moli	% moli	% moli	% moli	% moli	min	are	(emergenza, sicurezza, avvio- spegnimento impianti, altro)	Descrizione modalità (misura, calcolo, stima)	(kg/h)	(kg/h)
	Fax, PEC, lettera		Descrizione unità di processo	Descrizione sintetica causa (es. Blacco compressore K-1111, Apertura PSV ecc)	Item Torcia	M, C, S		M, C, S						100			Decsrizione tipologia in accordo a quelle autorizzate in AIA	M, C, S		
		01/09/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature.	E12	М	28,62	ND	0,02	87,00	8,50	<0,0	3,79				Altro	м	-748	5.909
		02/09/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	27,55	ND	0,02	87,00	8,50	<0,0	3,79		-		Altro	м	-708	4.687
		03/09/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	м	28,40	ND	0,02	87,00	8,50	<0,0	3,79				Altro	м	-702	5.000
Prot.Dire/181 del 05/09/2014	PEC	04/09/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	м	20,28	ND	0,02	87,00	8,50	<0,0	3,79				Altro	м	-886	10.188
		05/09/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	м	0,97	ND	NE	ND.	ND	NE	ND		-		Altro	м	-295	2.428
Prot.Dire/204 del 25/09/2014	PEC	06/09/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature Bonifica impinato Splitter	E12	М	0,08	ND	<0,01	90,00	2,20	<0,0	2,02		-		Altro	м	-100	372
		07/09/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature Bonifica impinato Splitter	E12	М	11,74	ND	<0,01	90,00	2,20	<0,0	2,02				Altro	м	-1.001	6.190
		08/09/2014	Impianti di produzione, logistica e		E12	м	7,41	ND	<0,01	90,00	2,20	<0,0	2,02				Altro	м	-676	4.359
		09/09/2014	Impianti di produzione, logistica e ausiliari		E12	М	2,75	ND	<0,01	90,00	2,20	<0,0	2,02		-		Altro	м	-254	3.050
		10/09/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature Bonifica impinato Splitter	E12	м	10,86	ND	<0,01	90,00	2,20	<0,0	2,02				Altro	м	-373	4.151
		11/09/2014	Impianti di produzione, logistica e ausiliari		E12	М	6,90	ND	<0,01	90,00	2,20	<0,0	2,02		-		Altro	м	-658	4.249
		12/09/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature Bonifica impinato Solitter	E12	М	6,03	ND	<0,01	90,00	2,20	<0,0	2,02		-		Altro	м	-220	3.494
		13/09/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature Bonifica impinato Splitter	E12	М	7,65	ND	<0,01	90,00	2,20	<0,0	2,02		-		Altro	м	-184	4.455
		14/09/2014	Impianti di produzione, logistica e ausiliari		E12	М	6,28	ND	<0,01	90,00	2,20	<0,0	2,02		-		Altro	м	-236	3.217
		15/09/2014	Impianti di produzione, logistica e ausiliari		E12	М	6,34	ND	<0,01	90,00	2,20	<0,0	2,02		-		Altro	м	-642	3.323
		16/09/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature Bonifica impinato Splitter	E12	м	13,07	ND	<0,01	90,00	2,20	<0,0	2,02				Altro	м	-527	4.399
		17/09/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature Bonifica impinato Splitter	E12	м	2,37	ND	<0,01	90,00	2,20	<0,0	2,02				Altro	м	-374	431
		18/09/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	м	0,36	ND	NE	ND.	ND	NE	ND		-		Altro	м	-273	2.465
		19/09/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	м	0,37	ND	NE	ND.	ND	NE	ND		-		Altro	м	-320	1.742
		20/09/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	м	0,03	ND	NE	ND.	ND	NE	ND		-		Altro	м	-336	479
		21/09/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature Riavvio Impianto Pseudocumene	E12	м	0,75	ND	NE	ND.	ND	NE	ND		-		Altro	м	-492	2.669
		22/09/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature Riavvio Impianto Pseudocumene	E12	м	0,35	ND	NE	ND.	ND	NE	ND		-		Altro	м	-617	2.133
		23/09/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature Riavvio Impianto Pseudocumene	E12	м	0,86	ND	NE	ND.	ND	NE	ND		-		Altro	м	-405	293
		24/09/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature Riavvio Impianto Pseudocumene	E12	М	1,09	ND	NE	ND.	ND	NE	ND		-		Altro	м	-981	4.309
		25/09/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature Riavvio Impianto Pseudocumene	E12	М	0,28	ND	NE	ND.	ND	NE	ND		-		Altro	м	-262	187
· · · · · · · · · · · · · · · · · · ·		26/09/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	0,20	ND	NE	ND.	ND	NE	ND		-		Altro	М	-364	219
		27/09/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	0,84	ND	NE	ND.	ND	NE	ND		-		Altro	М	-341	4.747
		28/09/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	0,75	ND	NE	ND.	ND	NE	ND				Altro	М	-1.001	2.772
		29/09/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature	E12	М	0,55	ND	NE	ND.	ND	NE	ND		-		Altro	м	-1.000	2.708
rot.Dire/206 del 30/09/2014	PEC	30/09/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature. Fermata Impianti a causa dello sciopero indetto dalle rappresentanze sindacali unite.	E12	М	9,03	ND	0,71	69,60	22,80	0,44	6,25		-		Altro	м	Argument is not a string or cell reference	Argument is n string or ce reference

										COMPOSIZIO	E (Da adee	uare al caso	specifico)					MODALITA'	PORTATA GAS III	INVIATI IN TORC
EVENTI DI AT	TTIVAZIONE	DATA	UNITA'	CAUSA	TORCIA	MODALIITA' DETERMINAZIONE QUANTITA'	QUANTITA' SCARICATA	MODALIITA' DETERMINAZIONE COMPOSIZIONE	CH4	N2 Idn	carburi	%H2S	%H	тот		DURATA ACCENSIONE TORCIA	TIPOLOGIA DI CAUSA	DETERMINAZIONE PORTATA	MININA	MASSIM
Protocollo (se necessaria comunicazione)	Modalità (se necessaria comunicazione)	gg.mm.aaaa				Descrizione modalità (misura, calcolo, stima)	(t)	Descrizione modalità (misura, calcolo, stima)	% moli	% moli 9	moli	% moli	% moli	% moli	min	ore	(emergenza, sicurezza, avvio- spegnimento impianti, altro)	Descrizione modalità (misura, calcolo, stima)	(kg/h)	(kg/h)
	Fax, PEC, lettera		Descrizione unità di processo	Descrizione sintetica causa (es. Blocco compressore K-1111, Apertura PSV ecc)	Item Torcia	M, C, S		M, C, S						100			Decsrizione tipologia in accordo a quelle autorizzate in AIA			
		01/10/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature. Fermata impianti a causa dello sciopero indetto dalle rappresentanze sindacali unitarie.	E12	М	15,16	ND	0,71	69,60	22,80	0,44	6,25				Altro	м	-1.000	4.570
		02/10/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature. Fermata impianti a causa dello sciopero indetto dalle rappresentanze sindacali unitarie. Avviamento impianto Xiloli	E12	М	18,09	ND	0,71	69,60	22,80	0,44	6,25				Altro	м	-1.001	9.048
		03/10/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature. Fermata Impianti a causa dello sciopero indetto dalle rappresentanze sindacali unitarie. Avviamento impianto Reforming	E12	М	4,82	ND	0,71	69,60	22,80	0,44	6,25				Altro	м	-899	8.096
		04/10/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature. Fermata impianti a causa dello sciopero indetto dalle rappresentanze sindacali unitarie. Avviamento impianto Formex	E12	М	10,15	ND	0,71	69,60	22,80	0,44	6,25				Altro	М	-1.000	6.472
		05/10/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature. Fermata impianti a causa dello sciopero indetto dalle rappresentanze sindacali unitarie. Avviamento impianto BTX	E12	М	1,23	ND	0,71	69,60	22,80	0,44	6,25				Altro	м	-603	3.268
		06/10/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature. Fermata impianti a causa dello sciopero indetto dalle rappresentanze sindacali unitarie. Avviamento impinato Pseudocumene	E12	м	2,21	ND	0,71	69,60	22,80	0,44	6,25				Altro	м	-1.001	4.950
		07/10/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature. Scarico scambiatore TT1351	E12	М	7,03	ND	<0,01	69,00	28,00	<0,01	<0,01		-		Altro	М	-1.001	5.253
rot.Dire/209 del 08/10/2014	PEC	08/10/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature. Scarico scambiatore TT1351	E12	м	13,32	ND	<0,01	71,00	27,00	<0,01	<0,01				Altro	м	-1.001	5.253
ot.Dire/2010 del 09/10/2014	PEC	09/10/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature. Scarico scambiatore TT1351	E12	м	12,73	ND	<0,01	71,00	27,00	<0,01	<0,01				Altro	м	-1.001	5.004
		10/10/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature. Scarico scambiatore TT1351	E12	М	2,68	ND	<0,01	71,00	27,00	<0,01	<0,01				Altro	м	-1.000	4.584
		11/10/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature. Scarico scambiatore TT1351	E12	М	5,32	ND	<0,01	71,00	27,00	<0,01	<0,01				Altro	м	-1.000	5.050
rot.Dire/214 del 14/10/2014	PEC	12/10/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature. Fermata impianto Xiloli per riparazione scambiatore TT1351.	E12	м	5,76	ND	<0,01	71,00	27,00	<0,01	<0,01				Altro	м	-1.000	5.738
		13/10/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature. Manutenzione scambiatore TT1351	E12	м	4,89	ND	<0,01	71,00	27,00	<0,01	<0,01				Altro	м	-576	4.282
		14/10/2014	Impianti di produzione, logistica e	Polmonazioni con azoto delle apparecchiature.	E12	м	13,74	ND	<0,01	71,00	27,00	<0,01	<0,01				Altro	м	-1.001	6.753
		15/10/2014	ausiliari Impianti di produzione, logistica e	Manutenzione scambiatore TT1351 Polmonazioni con azoto delle apparecchiature.	E12	м	4,61	ND	<0,01	71,00	27,00	<0,01	<0,01				Altro	м	-757	4.421
		16/10/2014	ausiliari Impianti di produzione, logistica e	Manutenzione scambiatore TT1351 Polmonazioni con azoto delle apparecchiature.	E12	M	3,26	ND ND	<0,01	71,00	27,00	<0.01	<0,01				Altro	м	-1.000	3.814
			ausiliari Impianti di produzione, logistica e	Manutenzione scambiatore TT1351 Polmonazioni con azoto delle apparecchiature.		M					_				-	•	_			_
rot.Dire/220 del 24/10/2014	PEC	17/10/2014	ausiliari Impianti di produzione, logistica e	Avviamento impianto XIIoli Polmonazioni con azoto delle apparecchiature.	E12		2,05	ND	<0,01	71,00	27,00	<0,01	<0,01			*	Altro	м	-438	3.314
		18/10/2014	ausiliari		E12	М	0,82	ND	ND	ND	ND	ND	ND				Altro	М	-433	682
		19/10/2014	ausiliari	Polmonazioni con azoto delle apparecchiature.	E12	М	0,19	ND	ND	ND	ND	ND	ND		-		Altro	м	-561	911
		20/10/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature.	E12	м	0,17	ND	ND	ND	ND	ND	ND				Altro	м	-271	639
		21/10/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature.	E12	м	0,48	ND	ND	ND	ND	ND	ND				Altro	м	-304	1.255
		22/10/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature.	E12	м	0,38	ND	ND	ND	ND	ND	ND		-		Altro	м	-337	401
		23/10/2014	Impianti di produzione, logistica e	Polmonazioni con azoto delle apparecchiature.	E12	M	0,43	ND	ND	ND	ND	ND	ND				Altro	м	-265	1.456
		24/10/2014	ausiliari Impianti di produzione, logistica e	Polmonazioni con azoto delle apparecchiature.	E12	M	1,11	ND	ND	ND	ND	ND	ND				Altro	M	-321	1.851
		25/10/2014	ausiliari Impianti di produzione, logistica e	Polmonazioni con azoto delle apparecchiature.	E12	M	0.34	ND ND	NO.	ND.	ND.	AUD.	ND.				Altro	м	-313	913
			ausiliari Impianti di produzione, logistica e	Polmonazioni con azoto delle apparecchiature.					ND			reD								_
		26/10/2014	ausiliari	Polmonazioni con azoto delle apparecchiature.	E12	M	0,77	ND	ND	ND	ND	ND	ND			*	Altro	м	-333	5.002
		27/10/2014	ausiliari		E12	М	0,53	ND	ND	ND	ND	ND	ND		-		Altro	м	-349	2.908
		28/10/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature.	E12	М	0,14	ND	ND	ND	ND	ND	ND		-		Altro	м	-350	761
		29/10/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature.	E12	м	1,33	ND	ND	ND	ND	ND	ND		-		Altro	м	-451	7.252
		30/10/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature.	E12	M	0,60	ND	0,71	69,60	22,80	0,44	6,25				Altro	м	-285	1.516
			Impianti di produzione, logistica e	Polmonazioni con azoto delle apparecchiature.																\rightarrow

EVENTI DI	ATTIVAZIONE	DATA	UNITA'	CAUSA	TORCIA	MODALIITA' DETERMINAZIONE QUANTITA'	QUANTITA' SCARICATA	MODALIITA' DETERMINAZIONE COMPOSIZIONE	CH4	COMPC N2	GIZIONE (Da : Idrocarbur totali	adeguare al c	sso specifico) %H	тот		DURATA ACCENSIONE TORCIA	TIPOLOGIA DI CAUSA	MODALIITA' DETERMINAZIONE PORTATA	PORTATA GAS IN	MASSIMA
Protocollo (se necessaria comunicazione)	Modalità (se necessaria comunicazione)	gg.mm.aaaa				Descrizione modalità (misura, calcolo, stima)	(t)	Descrizione modalità (misura, calcolo, stima)	% moli	% moli	% moli	% moli	% moli	% moli	min	ore	(emergenza, sicurezza, avvio- spegnimento impianti, altro)	Descrizione modalità (misura, calcolo, stima)	(kg/h)	(kg/h)
	Fax, PEC, lettera		Descrizione unità di processo	Descrizione sintetica causa (es. Blocco compressore K-1111, Apertura PSV ecc)	Item Torcia	M, C, S		M, C, S						100			Decsrizione tipologia in accordo a quelle autorizzate in AIA	M, C, S		
		01/11/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature.	E12	М	0,27	М	NE) NE	N	ID N	D NI				Altro	м	-283	617
		02/11/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature.	E12	М	0,13	М	NE) NE	N N	ID N	D NI				Altro	м	-539	428
		03/11/2014		Polmonazioni con azoto delle apparecchiature.	E12	М	7,78	М	0,00	92,25	7,:	32 <0,0	0,0		-		Altro	м	-1.000	6.300
		04/11/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature.	E12	М	4,30	ND	0,00	92,25	7,3	32 <0,0	11 0,0				Altro	м	-879	3.955
		05/11/2014		Polmonazioni con azoto delle apparecchiature.	E12	М	2,63	ND	0,00	92,2	7,	32 <0,0	0,0				Altro	м	-205	1.014
		06/11/2014		Polmonazioni con azoto delle apparecchiature.	E12	М	8,19	ND	0,00	92,2	7,	32 <0,0	0,0				Altro	м	-347	3.059
Prot.Dire/232 del 07/11/2014	PEC	07/11/2014		Polmonazioni con azoto delle apparecchiature.	E12	М	3,66	ND	0,00	92,25	7,3	32 <0,0	11 0,0				Altro	м	-4	1.261
		08/11/2014		Polmonazioni con azoto delle apparecchiature.	E12	м	5,22	ND	NE) NI	N	ID N	D NI		-		Altro	м	-99	1.466
		09/11/2014		Polmonazioni con azoto delle apparecchiature.	E12	м	6,86	ND	NE) NE	N	ID N	D NI				Altro	м	-198	1.440
		10/11/2014		Polmonazioni con azoto delle apparecchiature.	E12	м	5,82	ND	NE) NE	N	ID N	D NI				Altro	м	-247	1.390
		11/11/2014		Polmonazioni con azoto delle apparecchiature.	E12	М	7,60	ND	NE) NE	N	ID N	D NI				Altro	м	-168	1.881
		12/11/2014		Polmonazioni con azoto delle apparecchiature.	E12	м	8,80	ND	NE) NE	N	ID N	D NI				Altro	м	-198	2.069
		13/11/2014		Polmonazioni con azoto delle apparecchiature.	E12	м	2,28	ND	NE) NE	N	ID N	D NI				Altro	м	-136	931
		14/11/2014		Polmonazioni con azoto delle apparecchiature.	E12	м	3,40	ND	NE) NE	N	ID N	D NI				Altro	м	4	458
		15/11/2014		Polmonazioni con azoto delle apparecchiature.	E12	м	2,60	ND	NE) NE	N	ID N	D NI				Altro	м	-160	920
		16/11/2014		Polmonazioni con azoto delle apparecchiature.	E12	М	2,83	ND	NE) NE	N	ID N	D NI				Altro	м	-131	529
		17/11/2014		Polmonazioni con azoto delle apparecchiature.	E12	м	0,51	ND	NE) NE	N	ID N	D NI				Altro	м	-208	2.068
		18/11/2014		Polmonazioni con azoto delle apparecchiature.	E12	М	0,41	ND	NE) NE	N	ID N	D NI				Altro	м	-165	526
		19/11/2014		Polmonazioni con azoto delle apparecchiature.	E12	м	0,97	ND	NE) NE	N	ID N	D NI				Altro	м	-123	460
		20/11/2014		Polmonazioni con azoto delle apparecchiature.	E12	м	0,09	ND	NE) NE	N	ID N	D NI				Altro	м	-258	448
		21/11/2014	Impianti di produzione, logistica e	Polmonazioni con azoto delle apparecchiature.	E12	М	0,45	ND	NE) NE	N	ID N	D NI				Altro	м	-283	238
		22/11/2014	ausiliari Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature.	E12	М	0,00	ND	NE) NE	N	ID N	D NI				Altro	м	-248	101
		23/11/2014	Impianti di produzione, logistica e	Polmonazioni con azoto delle apparecchiature.	E12	м	0,00	ND	NE) NI	N	ID N	D NI				Altro	м	-315	0
		24/11/2014		Polmonazioni con azoto delle apparecchiature.	E12	м	0,00	ND	NE) NI	N	ID N	D NI				Altro	м	-286	100
		25/11/2014	ausiliari Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature.	E12	м	0,00	ND	NE) NI	N	ID N	D NI				Altro	м	-234	122
		26/11/2014		Polmonazioni con azoto delle apparecchiature.	E12	м	1,09	ND	NE) NI	N	ID N	D NI				Altro	м	-177	1.120
		27/11/2014	Impianti di produzione, logistica e	Polmonazioni con azoto delle apparecchiature.	E12	м	0,37	ND	NE) NE	N	ID N	D NI				Altro	м	-245	994
		28/11/2014		Polmonazioni con azoto delle apparecchiature.	E12	м	0,17	ND	NE) NE	N	ID N	D NI				Altro	м	-244	512
		29/11/2014		Polmonazioni con azoto delle apparecchiature.	E12	M	0,00	ND ND	NI NI) NI	N	ID N	D N				Altro	м	-204	120
		30/11/2014	ausiliari Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature.	E12	м	7.86	ND ND	NIT.	NI NI		in a					Altro	м	-176	2.064

EVENTI D	1 ATTIVAZIONE	DATA	UNITA'	CAUSA	TORCIA	MODALIITA' DETERMINAZIONE QUANTITA'	QUANTITA' SCARICATA	MODALIITA' DETERMINAZIONE COMPOSIZIONE	CH4	COMP N2	OSIZIONE	(Da adeguare al arburi %H2	caso specifico %H	тот		DURATA ACCENSIONE TORCIA	TIPOLOGIA DI CAUSA	MODALIITA' DETERMINAZIONE PORTATA	PORTATA GAS IN	MASSIMA
Protocollo (se necessaria comunicazione)	Modalità (se necessaria comunicazione)	gg.mm.aaaa				Descrizione modalità (misura, calcolo, stima)	(t)	Descrizione modalità (misura, calcolo, stima)	% moli	% moli	% m	noli % mo	% moli	% moli	min	ore	(emergenza, sicurezza, awio- spegnimento impianti, altro)	Descrizione modalità (misura, calcolo, stima)	(kg/h)	(kg/h)
	Fax, PEC, lettera		Descrizione unità di processo	Descrizione sintetica causa (es. Blocco compressore K-1111, Apertura PSV ecc)	Item Torcia	M, C, S		M, C, S						100			Decsrizione tipologia in accordo a quelle autorizzate in AIA	M, C, S		
		01/12/2014	Impianti di produzione, logistica e	Polmonazioni con azoto delle apparecchiature.	E12	м	11,20	м	ND) N	ID	ND	ND P	4D	-		Altro	м	-152	2.108
		02/12/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature.	E12	м	8,53	м	NE	o N	ID	ND	ND P	4D			Altro	м	-162	1.801
		03/12/2014		Polmonazioni con azoto delle apparecchiature.	E12	м	9,73	М	ND) N	ID	ND	ND P	4D			Altro	м	-190	2.113
		04/12/2014	Impianti di produzione, logistica e	Polmonazioni con azoto delle apparecchiature.	E12	M	3,69	ND	NE) N	ID	ND	ND P	4D			Altro	м	-324	1.528
		05/12/2014	ausiliari Impianti di produzione, logistica e	Polmonazioni con azoto delle apparecchiature.	E12	м	0,42	ND	ND) N	ID	ND	ND P	4D			Altro	м	-343	1.619
		06/12/2014		Polmonazioni con azoto delle apparecchiature.	E12	M	0,31	ND	NE	o N	ID	ND	ND P	(D			Altro	м	-207	886
		07/12/2014		Polmonazioni con azoto delle apparecchiature.	E12	M	0,39	ND ND	NC.	. N	in.	MD	ND P	(D			Altro	м	-148	466
		08/12/2014	ausiliari Impianti di produzione, logistica e	Polmonazioni con azoto delle apparecchiature.	E12	M	0,31	ND ND	NC.	. N	in.	MD	ND P	(D			Altro	м	-234	473
			ausiliari Impianti di produzione, logistica e	Polmonazioni con azoto delle apparecchiature.		M			NL.	, N				(D				м		
		09/12/2014	ausiliari Impianti di produzione, logistica e	Polmonazioni con azoto delle apparecchiature.	E12		0,20	ND	NL								Altro		-257	1.699
		10/12/2014	ausiliari	Polmonazioni con azoto delle apparecchiature.	E12	М	0,84	ND	NE	1 "	+			4D			Altro	м	-224	1.966
		11/12/2014	ausiliari Impianti di produzione, logistica e	Polmonazioni con azoto delle apparecchiature. Polmonazioni con azoto delle apparecchiature.	E12	М	0,19	ND	NE) N	ID	ND	ND P	4D	-		Altro	м	-226	463
		12/12/2014	ausiliari		E12	М	0,39	ND	NE) N	ID	ND	ND P	4D		-	Altro	М	-196	1.190
		13/12/2014	ausiliari	Polmonazioni con azoto delle apparecchiature.	E12	М	3,34	ND	NE) N	ID	ND	ND P	4D	-	-	Altro	м	-875	4.971
		14/12/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature.	E12	м	13,29	ND	NE	o N	ID	ND	ND P	4D	-		Altro	м	-117	2.586
		15/12/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature.	E12	М	5,66	ND	NE) N	ID	ND	ND P	4D			Altro	м	-333	1.809
		16/12/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature.	E12	м	0,15	ND	NE) N	ID	ND	ND P	4D			Altro	м	-354	446
		17/12/2014		Polmonazioni con azoto delle apparecchiature.	E12	м	0,51	ND	NE	o N	ID	ND	ND P	4D			Altro	м	-201	1.575
		18/12/2014		Polmonazioni con azoto delle apparecchiature.	E12	м	2,44	ND	NE	o N	ID	ND	ND P	4D		-	Altro	м	-212	5.300
		19/12/2014	Impianti di produzione, logistica e	Polmonazioni con azoto delle apparecchiature.	E12	м	0,44	ND	ND) N	ID	ND	ND P	4D			Altro	м	-411	1.332
		20/12/2014		Polmonazioni con azoto delle apparecchiature.	E12	M	0,48	ND	NE	o N	ID	ND	ND P	(D			Altro	м	-338	1.124
		21/12/2014		Polmonazioni con azoto delle apparecchiature.	E12	M	1,01	ND	ME	N N	ID.	ND	ND P	(D			Altro	м	-885	1.404
		22/12/2014	ausiliari Impianti di produzione, logistica e	Polmonazioni con azoto delle apparecchiature.	E12	M	0,35	ND ND		. N		ND.	ND P	(D			Altro	м	-286	592
			ausiliari Impianti di produzione, logistica e	Polmonazioni con azoto delle apparecchiature.			0,33		NL.	, N		NO.	ND F					м		
		23/12/2014	ausiliari Impianti di produzione logistica e	Polmonazioni con azoto delle apparecchiature.	E12	М	_	ND	NL	1 "	1	ND	ND F	40			Altro	_	-150	463
		24/12/2014	ausiliari	Polmonazioni con azoto delle apparecchiature.	E12	М	0,06	ND	NE	1 "			ND P	(1)			Altro	м	-319	996
		25/12/2014	ausiliari Impianti di produzione, logistica e	Polmonazioni con azoto delle apparecchiature.	E12	М	0,14	ND	NE	1 "		ND	ND P	4D	-		Altro	м	-119	396
		26/12/2014	ausiliari		E12	М	0,19	ND	NE) N	ID	ND	ND P	(D			Altro	м	-151	418
		27/12/2014	ausiliari	Polmonazioni con azoto delle apparecchiature.	E12	М	0,59	ND	NE) N	ID	ND	ND P	4D			Altro	м	-486	16.700
		28/12/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature.	E12	М	2,03	ND	NE) N	ID	ND	ND P	4D	-		Altro	м	-234	924
		29/12/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature.	E12	м	1,04	ND	NE) N	ID	ND	ND I	4D			Altro	м	-310	642
		30/12/2014	Impianti di produzione, logistica e ausiliari	Polmonazioni con azoto delle apparecchiature.	E12	М	1,10	ND	NE	o N	ID	ND	ND P	(D			Altro	м	-213	738

Laboratorio: Via Europa, 5 - 27041 CASANOVA LONATI (Pavia) - Sede legale: Via Rota Candiani, 13 - 27043 BRONI (Pavia)
Tel. 0385.287128 (15 linee) - Fax 0385.57311 - E-mail: info@laboratysis.it - Sito internet: http://www.laboratysis.it

Determinazione dell'incremento termico in acqua di mare

(art. 3, c.6 del D.L. 9 ottobre 1993, n. 408)

Laboratorio: Via Europa, 5 - 27041 CASANOVA LONATI (Pavia) - Sede legale: Via Rota Candiani, 13 - 27043 BRONI (Pavia) Tel. 0385-287128 (15 linee) - Fax 0385.57311 - E-mail: info@labanatysis.tt - Sito Internet; http://www.labanatysis.tt

INDICE

1	PREMESSA3
2	RIFERIMENTI
3	CAMPIONAMENTO3
4	CALCOLO DELL'INCREMENTO TERMICO6
5	PRECAUZIONI DI SICUREZZA

Laboratorio: Via Europa, 5 - 27041 CASANOVA LONATI (Pavia) - Sede legale: Via Rota Candiani, 13 - 27043 BRONI (Pavia) Tel. 0385.287128 (15 linee) - Fax 0385.57311 - E-mail: info@tabanatysis.lt - Sito internet: http://www.labanatysis.lt

1 PREMESSA

L'incremento termico viene determinato come differenza tra i valori medi delle temperature misurate a 1000m dallo scarico nello strato superficiale pari a 3m di profondità ed il valor medio delle temperature misurate in un punto non influenzate dallo scarico stesso.

Al fine di ottemperare alle prescrizioni AIA in merito all'incremento termico dell'acqua di mare, sono state effettuate una serie di misurazioni della temperatura dell'acqua di mare sull'arco di circonferenza di raggio 1000m prendendo come centro della semicirconferenza lo scarico dello stabilimento Versalis di Sarroch (CA) denominato Canale Nord.

2 RIFERIMENTI

- "Metodi analitici per le acque notiziario Anno 13 N. 4 ottobre-dicembre 1993" C.N.R. Istituto di ricerca sulle acque
- APAT CNR IRSA 2100 Man 29 2003

3 CAMPIONAMENTO

Il giorno 23 dicembre 2014, i tecnici qualificati di LabAnalysis Francesco Contu ed Antonio Piu, come da applicazione del metodo di monitoraggio incremento termico a mare, hanno identificato i punti di misurazione sull'arco di circonferenza con centro nello scarico a mare dello stabilimento Versalis.

Lo scarico, denominato canale Nord, recapita a mare le acque provenienti dagli scarichi SF1 (acqua mare di raffreddamento CTE), SF2 (rigenerazione resine), SF3 (contro lavaggio filtri acqua mare), SF4 (BIO), SF5 (acqua mare di raffreddamento xiloli).

Sono stati identificati n.10 punti da monitorare sul lato Cagliari/Nord e n.10 punti sul lato Sarroch/Sud; in Figura 1 è visibile la planimetria dei punti di campionamento.

Esternamente all'arco di circonferenza è stato fissato un punto di riferimento, non influenzato dallo scarico a mare Versalis, in cui rilevare la temperatura.

Laboratorio: Via Europa, 5 - 27041 CASANOVA LONATI (Pavia) - Sede legale: Via Rota Candiani, 13 - 27043 BRONI (Pavia)
Tel. 0385.287128 (15 linee) - Fax 0385.57311 - E-mail: info@tabanalysis.it - Sito Internet: http://www.labanalysis.it

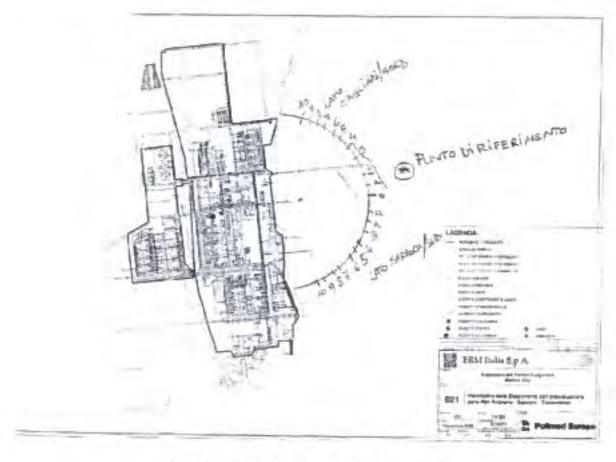


Figura 1 - Planimetria dei punti di campionamento

Per ognuno dei 20 punti individuati sull'arco di circonferenza (10 sul lato Cagliari/Nord e 10 sul lato Sarroch/Sud) sono state effettuate misurazioni della temperatura lungo la colonna d'acqua fino a 3m di profondità, dieci misurazioni alla quota 0.1m sotto il livello del mare, dieci alla quota di 1.5m sotto il livello del mare e dieci alla quota di 3m sotto il livello del mare. Le misure di temperatura sono riportate in Tabella 1.

Sul centro della semicirconferenza (canale Nord) sono state effettuate misurazioni della temperatura lungo la colonna d'acqua di 3m, dieci misurazioni alla quota 0.1m sotto il livello del mare, dieci alla quota di 1.5m sotto il livello del mare e dieci alla quota di 3m sotto il livello del mare. Le misure di temperatura sono riportate in Tabella 2.

Anche nel punto esterno alla semicirconferenza, scelto in modo da non essere influenzato dallo scarico canale Nord e considerato come punto di riferimento, sono state effettuate misurazioni della temperatura lungo la colonna d'acqua di 3m, dieci misurazioni alla quota 0,1m sotto il livello del mare, dieci alla

Laboratorio: Via Europa, 5 - 27041 CASANOVA LONATI (Pavia) - Sede legale: Via Rota Cendiani, 13 - 27043 BRONI (Pavia)
Tel. 0385.287128 (15 lines) - Fax 0385.57311 - E-mail: info@tabanatysis.it - Sito Internet: http://www.labanatysis.it

quota di 1,5m sotto il livello del mare ed dieci alla quota di 3m sotto il livello del mare. Le misure di temperatura sono riportate in Tabella 3.

		Te	emperatura T (°	(C)
profondità colonna d	'acqua	-0,1m	-1,5m	-3,0m
profondità colonna Lato Cagliari/Nord	punto 1	15,22	15,24	15,23
7-	punto 2	15,23	15,23	15,22
	punto 3	15,22	15,22	15,24
	punto 4	15,24	15,23	15,22
	punto 5	15,22	15,23	15,23
	punto 6	15,2	15,22	15,21
	punto 7	15,21	15,24	15,23
	punto 8	15,22	15,21	15,21
	punta 9	15,17	15,18	15,18
	punto 10	15,17	15,18	15,18
Lato Sarroch/Sud	punto 1	15,22	15,24	15,23
	punto 2	15,23	15,23	15,24
	punto 3	15,22	15,23	15,23
	punto 4	15,22	15,22	15,22
	punto 5	15,22	15,23	15,22
	punto 6	15,21	15,24	15,23
	punto 7	15,18	15,17	15,2
	punto 8	15,18	15,19	15,18
	punto 9	15,17	15,19	15,19
	punto 10	15,17	15,17	15,17

Tabella 1 - misure della temperatura lungo l'arco della circonferenza

		7	emperatura T (*C)
profondità coloni	na d'acqua	-0,1m	-1,5m	-3,0m
Scarico canale Nord	punto 1	14,98	14,91	14,93
	punto 2	14,9	14,93	14,91
	punto 3	14,93	14,95	14,92
	punto 4	14,92	14,95	14,92
	punto 5	14,92	14,94	14,93
	punto 6	14,94	14,96	14,93
	punto 7	14,96	14,94	14,93
	punto 8	14,93	14,94	14,95
	punto 9	14,95	14,97	14,95
	punto 10	14,95	14,96	14,96

Tabella 2- misure della temperatura nel punto di scarico canale Nord

Laboratorio: Via Europe, 5 - 27041 CASANOVA LONATI (Pavia) - Sede legale: Via Rota Candiani, 13 - 27043 BRON (Pavia)
Tel. 0385.287128 (15 linee) - Fax 0385.57311 - E-mail: info@labanetysis.it - Sito Internet: http://www.labanetysis.it

		Te	mperatura T (°C)
profondità colonna d	d'acqua	-0,1m	-1,5m	-3,0m
punto di riferimento	punto 1	15,34	15,32	15,32
	punto 2	15,33	15,31	15,3
	punto 3	15,33	15,3	15,31
	punto 4	15,34	15,31	15,31
	punto 5	15,32	15,3	15,32
	punto 6	15,34	15,29	15,29
	punto 7	15,35	15,29	15,29
	punto 8	15,36	15,3	15,32
	punto 9	15,35	15,31	15,3
	punto 10	15,37	15,32	15,32

Tabella 3 - misure della temperatura nel punto di riferimento

CALCOLO DELL'INCREMENTO TERMICO

Si è proceduto ad effettuare il calcolo dell'incremento termico secondo la norma "Metodi analitici per la acque - Notiziario Anno 13 - N. 4 Ottobre-Dicembre 1993 C.N.R. Istituto di Ricerca sulle acque" al punto 4.

La trattazione statistica è stata effettuata calcolando le deviazioni standard s1 ed s2 secondo le formule seguenti

$$s_1 = \sqrt{\frac{\sum_{j=1}^{n} j(T_j - T_M)^2}{n-1}}$$

$$s_2 = \sqrt{\frac{\sum_{i=1}^{n} (T_{ri} - T_{rM})^2}{n-1}}$$

dove:

st = deviazione standard relativa alle repliche nel punto della circonferenza (scarico SF1)

T, = temperatura della singola replica nel punto della circonferenza (scarico SF1), come media delle tre determinazioni lungo la colonna d'acqua

Laboratorio: Via Europa, 5 - 27041 CASANOVA LONATI (Pavia) - Sada legale: Via Rota Candiani, 13 - 27043 BRONI (Pavia) Tel. 0385.287128 (15 lines) - Fax 0385.57311 - E-mail: info@tabanatysts.it - Sito Internet; http://www.labanatysts.it

T_M = valore medio di T_i relativo alle n (10) repliche nel punto della circonferenza (scarico SF1)

52 = deviazione standard relativa alle repliche nel punto di riferimento

T_n = temperatura della singola replica nel punto di riferimento, come media delle tre determinazioni lungo al colonna d'acqua

T_{rM} = valore medio di T_{ri} relativo alle n (10) repliche nel punto di riferimento

Sulla base delle formule sopra indicate e delle temperature rilevate elencate in tabella 1, tabella 2 e tabella 3, i valori di deviazioni standard ottenuti sono i seguenti:

 $s_1 = 0.0130$

 $s_3 = 0.0092$

Si è quindi proceduto a determinare la differenza di temperatura tra ciascun punto dell'arco di circonferenza ed il punto di riferimento mediante la formula seguente:

$$\Delta T_1 = (T_1 - 2s_1) - (T_{rM} + 2s_2)$$

dove:

ΔT_i = incremento termico in ciascun punto

T₁= temperatura misurata sull'arco di circonferenza a 1000m dallo scarico SF1 come valore medio delle misure a -0,1m, -1,5m e -3m

I valori ottenuti sono riportati in Tabella 4.

Laboratorio: Via Europe, 5 - 27041 CASANOVA LONATI (Pavia) - Sede legale: Via Rota Candiani, 13 - 27043 BRONI (Pavia)
Tel. 0385.287128 (15 linee) - Fax 0385.57311 - E-mail: info@tabanatysis.it - Sito internet; http://www.labanatysis.it

	punto	ΔΤ
Lato Cagliari/Nord	1	-0,133
	2	-0,13633
	3	-0,13633
	4	-0,133
	5	-0,13633
	6	-0,153
	7	-0,13633
	8	-0,14967
	9	-0,18633
	10	-0,18633
Lato Sarroch/Sud	1	-0,133
	2	-0,12967
	3	-0,13633
	4	-0,143
	5	-0,13967
	6	-0,13633
	7	-0,17967
	8	-0,17967
	9	-0,17967
	10	-0,193

Tabella 4 - valori di AT

Dai valori di ΔT evidenziati in tabella 4 si evince che in nessun punto dell'arco di circonferenza vi è superamento del limite di legge pari a $\Delta T = 3$ °C; questo significa che lo scarico Versalis (canale Nord) non ha alcuna influenza sulla temperatura del mare a 1000m di distanza dall'emissione dello scarico.

5 PRECAUZIONI DI SICUREZZA

Il campionamento è avvenuto nel rispetto delle norme di sicurezza D.L.gs 81-08 e s.m.i.. Il personale campionatore ha utilizzato, a seconda della necessità, tutti i DPI necessari previsti dal DVR Generale in ultima revisione e riportati nel Piano della Sicurezza per Interventi Esterni di LabAnalysis.

Dott. LORENZO MAGGI Assistenza Tecnica Acqua, Fanghi, Terreni

Unità locale	
S.S. 195 KM 18,8 - 09018 - SARROCH (CAGLIARI)	
Sede legale	
PIAZZA BOLDRINI, 1 - 20097 - SAN DONATO MILANESE (MILANO)	
Scheda RIF	
Codice rifiuto: 070101	
Stato fisico: Liquido	
Rifiuto prodotto nell'unità locale	40.160,000 Kg.
Rifiuto ricevuto da terzi (0 moduli)	
Rifiuto prodotto fuori dall'unità locale (0 moduli)	
Rifiuto trasportato dal dichiarante	
Vettori cui è stato affidato il trasporto (1 moduli)	
Rifiuto consegnato a terzi (2 moduli)	40.160,000 Kg.
Rifiuto in giacenza presso il produttore (recupero)	
Rifiuto in giacenza presso il produttore (smaltimento)	
Quantità avviata a recupero	
Quantità avviata a smaltimento	
Moduli TE-SP	
00889810909 DASARA TRASPORTI SPA	
01510940925 FRADELLONI RAFFAELE E FIGLI S.P.A.	
00141480921 VINCI E CAMPAGNA S.P.A.	
Modulo DR-SP	
01001190493 ECOMAR ITALIA SPA	
VIA PISANA LIVORNESE NORD, 9 - 57014 - COLLESALVETTI (LIVORNO)	
Quantità	29.620,000 Kg.
Modulo DR-SP	
01970360481 TESECO S.P.A.	
VIA CARLO LUDOVICO RAGGHIANTI, 12 - 56121 - OSPEDALETTO (PISA)	
Quantità	10.540,000 Kg.
Scheda RIF	
Codice rifiuto: 070104	
Stato fisico: Liquido	
Rifiuto prodotto nell'unità locale	1.220,000 Kg.
Rifiuto ricevuto da terzi (0 moduli)	

SEZIONE ANAGRAFICA

Anno di riferimento: 2014

VERSALIS S.P.A.

03823300821

Rifiuto prodotto fuori dall'unità locale (0 moduli)	
Rifiuto trasportato dal dichiarante	
Vettori cui è stato affidato il trasporto (1 moduli)	
Rifiuto consegnato a terzi (2 moduli)	1.520,000 Kg.
Rifiuto in giacenza presso il produttore (recupero)	
Rifiuto in giacenza presso il produttore (smaltimento)	60,000 Kg.
Quantità avviata a recupero	
Quantità avviata a smaltimento	
Moduli TE-SP	
00889810909 DASARA TRASPORTI SPA	
01510940925 FRADELLONI RAFFAELE E FIGLI S.P.A.	
00141480921 VINCI E CAMPAGNA S.P.A.	
Modulo DR-SP	
01001190493 ECOMAR ITALIA SPA	
VIA POLVERONI - FRAZIONE VADA, 9/11 - 57016 - ROSIGNANO MARITTIMO (LIVORNO)	
Quantità	280,000 Kg.
Modulo DR-SP	
01970360481 TESECO S.P.A.	
VIA CARLO LUDOVICO RAGGHIANTI, 12 - 56121 - OSPEDALETTO (PISA)	
Quantità	1.240,000 Kg.
Scheda RIF	
Codice rifiuto: 070110	
Stato fisico: Solido non polverulento	
Rifiuto prodotto nell'unità locale	17.220,000 Kg.
Rifiuto ricevuto da terzi (0 moduli)	
Rifiuto prodotto fuori dall'unità locale (0 moduli)	
Rifiuto trasportato dal dichiarante	
Vettori cui è stato affidato il trasporto (0 moduli)	
Rifiuto consegnato a terzi (0 moduli)	
Rifiuto in giacenza presso il produttore (recupero)	
Rifiuto in giacenza presso il produttore (smaltimento)	
Quantità avviata a recupero	
Quantità avviata a smaltimento	17.220,000 Kg.
Modulo MG-SP	
D15	17.220,000 Kg.
Quantità in giacenza (smaltimento)	17.220,000 Kg.

Codice rifiuto: 070110	
Stato fisico: Solido polverulento	
Rifiuto prodotto nell'unità locale	164.820,000 Kg.
Rifiuto ricevuto da terzi (0 moduli)	
Rifiuto prodotto fuori dall'unità locale (0 moduli)	
Rifiuto trasportato dal dichiarante	
Vettori cui è stato affidato il trasporto (1 moduli)	
Rifiuto consegnato a terzi (1 moduli)	54.180,000 Kg.
Rifiuto in giacenza presso il produttore (recupero)	
Rifiuto in giacenza presso il produttore (smaltimento)	
Quantità avviata a recupero	
Quantità avviata a smaltimento	110.640,000 Kg.
Modulo MG-SP	
D15	110.640,000 Kg.
Quantità in giacenza (smaltimento)	110.640,000 Kg.
Moduli TE-SP	
00889810909 DASARA TRASPORTI SPA	
01510940925 FRADELLONI RAFFAELE E FIGLI S.P.A.	
Modulo DR-SP	
10190370154 AMBIENTHESIS S.P.A	
STRADA GRUGLIASCO - RIVALTA, 4 - 10043 - ORBASSANO (TORINO)	
Quantità	54.180,000 Kg.
Scheda RIF	
Codice rifiuto: 070111	
Stato fisico: Solido non polverulento	
Rifiuto prodotto nell'unità locale	6.420,000 Kg.
Rifiuto ricevuto da terzi (0 moduli)	
Rifiuto prodotto fuori dall'unità locale (0 moduli)	
Rifiuto trasportato dal dichiarante	
Vettori cui è stato affidato il trasporto (1 moduli)	
Rifiuto consegnato a terzi (2 moduli)	10.620,000 Kg.
Rifiuto in giacenza presso il produttore (recupero)	
Rifiuto in giacenza presso il produttore (smaltimento)	
Quantità avviata a recupero	
Quantità avviata a smaltimento	7.160,000 Kg.
Modulo MG-SP	
D15	7.160,000 Kg.

Quantità in giacenza (smaltimento)	7.160,000 Kg.
Moduli TE-SP	
01510940925 FRADELLONI RAFFAELE E FIGLI S.P.A.	
00141480921 VINCI E CAMPAGNA S.P.A.	
Modulo DR-SP	
01020620496 RA.RI SRL	
VIA DEI FABBRI, 5/7 - 57121 - LIVORNO (LIVORNO)	
Quantità	2.460,000 Kg.
Modulo DR-SP	
01970360481 TESECO S.P.A.	
VIA CARLO LUDOVICO RAGGHIANTI, 12 - 56121 - OSPEDALETTO (PISA)	
Quantità	8.160,000 Kg.
Scheda RIF	
Codice rifiuto: 070111	
Stato fisico: Liquido	
Rifiuto prodotto nell'unità locale	2.228.860,800 Kg.
Rifiuto ricevuto da terzi (0 moduli)	
Rifiuto prodotto fuori dall'unità locale (0 moduli)	
Rifiuto trasportato dal dichiarante	
Vettori cui è stato affidato il trasporto (1 moduli)	
Rifiuto consegnato a terzi (3 moduli)	2.222.220,800 Kg.
Rifiuto in giacenza presso il produttore (recupero)	
Rifiuto in giacenza presso il produttore (smaltimento)	
Quantità avviata a recupero	
Quantità avviata a smaltimento	15.020,000 Kg.
Modulo MG-SP	
D15	15.020,000 Kg.
Quantità in giacenza (smaltimento)	6.640,000 Kg.
Moduli TE-SP	
00889810909 DASARA TRASPORTI SPA	
Modulo DR-SP	
01287950891 ECOTEC GESTIONE ACQUE S.R.L.	
S.S. SULCITANA KM 18,8 - 09018 - SARROCH (CAGLIARI)	
Quantità	1.967.230,000 Kg.
Modulo DR-SP	
01372130425 SIMAM SRL	
VIA MANTEGA, 1 - 60019 - SENIGALLIA (ANCONA)	

 Quantità
 246.610,800 Kg.

 Modulo DR-SP
 01970360481

 TESECO S.P.A.
 TESECO S.P.A.

01970300461 TESECO S.P.A.	
VIA CARLO LUDOVICO RAGGHIANTI, 12 - 56121 - PISA (PISA)	
Quantità	8.380,000 Kg.
Scheda RIF	
Codice rifiuto: 100104	
Stato fisico: Solido polverulento	
Rifiuto prodotto nell'unità locale	6.760,000 Kg.
Rifiuto ricevuto da terzi (0 moduli)	
Rifiuto prodotto fuori dall'unità locale (0 moduli)	
Rifiuto trasportato dal dichiarante	
Vettori cui è stato affidato il trasporto (1 moduli)	
Rifiuto consegnato a terzi (1 moduli)	6.660,000 Kg.
Rifiuto in giacenza presso il produttore (recupero)	
Rifiuto in giacenza presso il produttore (smaltimento)	
Quantità avviata a recupero	
Quantità avviata a smaltimento	2.040,000 Kg.
Modulo MG-SP	
D15	2.040,000 Kg.
Quantità in giacenza (smaltimento)	2.040,000 Kg.
Moduli TE-SP	
01510940925 FRADELLONI RAFFAELE E FIGLI S.P.A.	
Modulo DR-SP	
01970360481 TESECO S.P.A.	
VIA CARLO LUDOVICO RAGGHIANTI, 12 - 56121 - OSPEDALETTO (PISA)	
Quantità	6.660,000 Kg.
Scheda RIF	
Codice rifiuto: 110105	
Stato fisico: Liquido	
Rifiuto prodotto nell'unità locale	55.160,000 Kg.
Rifiuto ricevuto da terzi (0 moduli)	
Rifiuto prodotto fuori dall'unità locale (0 moduli)	
Rifiuto trasportato dal dichiarante	
Vettori cui è stato affidato il trasporto (1 moduli)	
Rifiuto consegnato a terzi (1 moduli)	55.160,000 Kg.
Rifiuto in giacenza presso il produttore (recupero)	

Quantità avviata a recupero	
Quantità avviata a smaltimento	
Moduli TE-SP	
01148520339 FERRARI ALDO TRASPORTI SRL	
00141480921 VINCI E CAMPAGNA S.P.A.	
Modulo DR-SP	
02262060698 DEPURACQUE S.R.L. S. U.	
P. MAZZOLARI - LOC. S.MARTINO - 66103 - CHIETI (CHIETI)	
Quantità	55.160,000 Kg.
Scheda RIF	
Codice rifiuto: 110107	
Stato fisico: Liquido	
Rifiuto prodotto nell'unità locale	25.320,000 Kg.
Rifiuto ricevuto da terzi (0 moduli)	
Rifiuto prodotto fuori dall'unità locale (0 moduli)	
Rifiuto trasportato dal dichiarante	
Vettori cui è stato affidato il trasporto (1 moduli)	
Rifiuto consegnato a terzi (1 moduli)	25.320,000 Kg.
Rifiuto in giacenza presso il produttore (recupero)	
Rifiuto in giacenza presso il produttore (smaltimento)	
Quantità avviata a recupero	
Quantità avviata a smaltimento	
Moduli TE-SP	
01148520339 FERRARI ALDO TRASPORTI SRL	
Modulo DR-SP	
02262060698 DEPURACQUE S.R.L. S. U.	
P. MAZZOLARI - LOC. S.MARTINO - 66103 - CHIETI (CHIETI)	
Quantità	25.320,000 Kg.
Scheda RIF	
Codice rifiuto: 110111	
Stato fisico: Liquido	
Rifiuto prodotto nell'unità locale	38.620,000 Kg.
Rifiuto ricevuto da terzi (0 moduli)	
Rifiuto prodotto fuori dall'unità locale (0 moduli)	
Rifiuto trasportato dal dichiarante	
Vettori cui è stato affidato il trasporto (1 moduli)	

Rifiuto in giacenza presso il produttore (smaltimento)

Rifiuto consegnato a terzi (1 moduli)	38.620,000 Kg.
Rifiuto in giacenza presso il produttore (recupero)	
Rifiuto in giacenza presso il produttore (smaltimento)	
Quantità avviata a recupero	
Quantità avviata a smaltimento	
Moduli TE-SP	
00889810909 DASARA TRASPORTI SPA	
SNNNTN38M09I452K SANNA ANTONIO	
Modulo DR-SP	
02262060698 DEPURACQUE S.R.L. S. U.	
P. MAZZOLARI - LOC. S.MARTINO - 66103 - CHIETI (CHIETI)	
Quantità	38.620,000 Kg.
Scheda RIF	
Codice rifiuto: 130205	
Stato fisico: Liquido	
Rifiuto prodotto nell'unità locale	120,000 Kg.
Rifiuto ricevuto da terzi (0 moduli)	
Rifiuto prodotto fuori dall'unità locale (0 moduli)	
Rifiuto trasportato dal dichiarante	
Vettori cui è stato affidato il trasporto (0 moduli)	
Rifiuto consegnato a terzi (0 moduli)	
Rifiuto in giacenza presso il produttore (recupero)	
Rifiuto in giacenza presso il produttore (smaltimento)	
Quantità avviata a recupero	120,000 Kg.
Quantità avviata a smaltimento	
Modulo MG-SP	
R13	120,000 Kg.
Quantità in giacenza (recupero)	920,000 Kg.
Scheda RIF	
Codice rifiuto: 150103	
Stato fisico: Solido non polverulento	
Rifiuto prodotto nell'unità locale	10.020,000 Kg.
Rifiuto ricevuto da terzi (0 moduli)	
Rifiuto prodotto fuori dall'unità locale (0 moduli)	
Rifiuto trasportato dal dichiarante	
Vettori cui è stato affidato il trasporto (1 moduli)	
Rifiuto consegnato a terzi (1 moduli)	6.580,000 Kg.

Rifiuto in giacenza	a presso il produttore (recupero)	
Rifiuto in giacenza	a presso il produttore (smaltimento)	
Quantità avviata a	a recupero	
Quantità avviata a	a smaltimento	3.440,000 Kg.
Modulo MG-SP		
D15		3.440,000 Kg.
Quantità in giacer	nza (smaltimento)	3.440,000 Kg.
Moduli TE-SP		
00141480921	VINCI E CAMPAGNA S.P.A.	
Modulo DR-SP		
02153000266	VIDORI SERVIZI AMBIENTALI S.P.A	
VIA C. TITTONI,	14 - 31020 - VIDOR (TREVISO)	
Quantità		6.580,000 Kg.
	Scheda RIF	
Codice rifiuto: 150	0110	
Stato fisico: Solid	o non polverulento	
Rifiuto prodotto ne	ell'unità locale	11.000,000 Kg.
Rifiuto ricevuto da	a terzi (0 moduli)	
Rifiuto prodotto fu	ori dall'unità locale (0 moduli)	
Rifiuto trasportato	dal dichiarante	
Vettori cui è stato	affidato il trasporto (1 moduli)	
Rifiuto consegnat	o a terzi (3 moduli)	11.400,000 Kg.
Rifiuto in giacenza	a presso il produttore (recupero)	
Rifiuto in giacenza	a presso il produttore (smaltimento)	0,000 Kg.
Quantità avviata a	a recupero	
Quantità avviata a	a smaltimento	
Moduli TE-SP		
00889810909	DASARA TRASPORTI SPA	
01510940925	FRADELLONI RAFFAELE E FIGLI S.P.A.	
00141480921	VINCI E CAMPAGNA S.P.A.	
Modulo DR-SP		
10190370154	AMBIENTHESIS S.P.A	
STRADA GRUGL	IASCO - RIVALTA, 4 - 10043 - ORBASSANO (TORINO)	
Quantità		1.880,000 Kg.
Modulo DR-SP		
01020620496	RA.RI SRL	
VIA DEI FABBRI,	5/7 - 57121 - LIVORNO (LIVORNO)	

Quantità 480,000 Kg.

Modulo DR-SP

01970360481 TESECO S.P.A.

VIA CARLO LUDOVICO RAGGHIANTI, 12 - 56121 - OSPEDALETTO (PISA)

Quantità 9.040,000 Kg.

Scheda RIF

Codice rifiuto: 150202

Stato fisico: Solido non polverulento

Rifiuto prodotto nell'unità locale 28.970,000 Kg.

Rifiuto ricevuto da terzi (0 moduli)

Rifiuto prodotto fuori dall'unità locale (0 moduli)

Rifiuto trasportato dal dichiarante

Vettori cui è stato affidato il trasporto (1 moduli)

Rifiuto consegnato a terzi (4 moduli) 31.800,000 Kg.

Rifiuto in giacenza presso il produttore (recupero)

Rifiuto in giacenza presso il produttore (smaltimento)

Quantità avviata a recupero

Quantità avviata a smaltimento 2.320,000 Kg.

Modulo MG-SP

D15 2.320,000 Kg.

Quantità in giacenza (smaltimento) 2.320,000 Kg.

Moduli TE-SP

00889810909 DASARA TRASPORTI SPA

02352370924 ECO.GE.M.M.A SRL

01510940925 FRADELLONI RAFFAELE E FIGLI S.P.A.

00141480921 VINCI E CAMPAGNA S.P.A.

Modulo DR-SP

10190370154 AMBIENTHESIS S.P.A

STRADA GRUGLIASCO - RIVALTA, 4 - 10043 - ORBASSANO (TORINO)

Quantità 20.160,000 Kg.

Modulo DR-SP

01020620496 RA.RI SRL

VIA DEI FABBRI, 5/7 - 57121 - LIVORNO (LIVORNO)

Quantità 9.260,000 Kg.

Modulo DR-SP

01970360481 TESECO S.P.A.

VIA CARLO LUDOVICO RAGGHIANTI, 12 - 56121 - PISA (PISA)

Quantità 920,000 Kg. Modulo DR-SP 01970360481 TESECO S.P.A. VIA CARLO LUDOVICO RAGGHIANTI, 12 - 56121 - OSPEDALETTO (PISA) 1.460,000 Kg. Quantità Scheda RIF Codice rifiuto: 150202 Stato fisico: Fangoso palabile Rifiuto prodotto nell'unità locale 1.740,000 Kg. Rifiuto ricevuto da terzi (0 moduli) Rifiuto prodotto fuori dall'unità locale (0 moduli) Rifiuto trasportato dal dichiarante Vettori cui è stato affidato il trasporto (0 moduli) Rifiuto consegnato a terzi (0 moduli) Rifiuto in giacenza presso il produttore (recupero) Rifiuto in giacenza presso il produttore (smaltimento) Quantità avviata a recupero Quantità avviata a smaltimento 1.740,000 Kg. Modulo MG-SP D15 1.740,000 Kg. Quantità in giacenza (smaltimento) 1.740,000 Kg. Scheda RIF Codice rifiuto: 150203 Stato fisico: Solido non polverulento Rifiuto prodotto nell'unità locale 420,000 Kg. Rifiuto ricevuto da terzi (0 moduli) Rifiuto prodotto fuori dall'unità locale (0 moduli) Rifiuto trasportato dal dichiarante Vettori cui è stato affidato il trasporto (1 moduli) Rifiuto consegnato a terzi (1 moduli) 8.620,000 Kg. Rifiuto in giacenza presso il produttore (recupero) Rifiuto in giacenza presso il produttore (smaltimento) Quantità avviata a recupero Quantità avviata a smaltimento 420,000 Kg. Modulo MG-SP D15 420,000 Kg. Moduli TE-SP

01510940925	FRADELLONI RAFFAELE E FIGLI S.P.A.	
Modulo DR-SP		
01643170929	ECOSERDIANA SPA	
VIA DELL'ARTIG	IANATO, 6 - 09122 - CAGLIARI (CAGLIARI)	
Quantità		8.620,000 Kg.
	Scheda RIF	
Codice rifiuto: 16	0212	
Stato fisico: Solid	lo non polverulento	
Rifiuto prodotto n	ell'unità locale	500,000 Kg.
Rifiuto ricevuto da	a terzi (0 moduli)	
Rifiuto prodotto fu	uori dall'unità locale (0 moduli)	
Rifiuto trasportato	o dal dichiarante	
Vettori cui è stato	affidato il trasporto (1 moduli)	
Rifiuto consegnat	to a terzi (1 moduli)	500,000 Kg.
Rifiuto in giacenz	a presso il produttore (recupero)	
Rifiuto in giacenz	a presso il produttore (smaltimento)	
Quantità avviata	a recupero	
Quantità avviata	a smaltimento	
Modulo MG-SP		
Moduli TE-SP		
00889810909	DASARA TRASPORTI SPA	
Modulo DR-SP		
01970360481	TESECO S.P.A.	
VIA CARLO LUD	OVICO RAGGHIANTI, 12 - 56121 - PISA (PISA)	
Quantità		500,000 Kg.
	Scheda RIF	
Codice rifiuto: 16	0216	
Stato fisico: Solid	lo non polverulento	
Rifiuto prodotto n	ell'unità locale	2.360,000 Kg.
Rifiuto ricevuto da	a terzi (0 moduli)	
Rifiuto prodotto fu	uori dall'unità locale (0 moduli)	
Rifiuto trasportato	o dal dichiarante	
Vettori cui è stato	affidato il trasporto (1 moduli)	
Rifiuto consegnat	to a terzi (2 moduli)	2.160,000 Kg.
Rifiuto in giacenz	a presso il produttore (recupero)	
Rifiuto in giacenz	a presso il produttore (smaltimento)	
Quantità avviata	a recupero	1.000,000 Kg.

Modulo MG-SP	
R13	1.000,000 K
Quantità in giacenza (recupero)	1.000,000 K
Moduli TE-SP	
00141480921 VINCI E CAMPAGNA S.P.A.	
Modulo DR-SP	
05235640488 EUROCORPORATION SRL	
VIA DE' CATTANI, 178 - 50145 - FIRENZE (FIRENZE)	
Quantità	600,000 Kg
Modulo DR-SP	
01237620172 STENA TECHNOWORLD SRL	
VIA MARTORELLO, 13 - 25014 - CASTENEDOLO (BRESCIA)	
Quantità	1.560,000 Kg
Scheda RIF	
Codice rifiuto: 160303	
Stato fisico: Solido polverulento	
Rifiuto prodotto nell'unità locale	0,000 Kg
Rifiuto ricevuto da terzi (0 moduli)	
Rifiuto prodotto fuori dall'unità locale (0 moduli)	
Rifiuto trasportato dal dichiarante	
Vettori cui è stato affidato il trasporto (1 moduli)	
Rifiuto consegnato a terzi (1 moduli)	3.720,000 Kg
Rifiuto in giacenza presso il produttore (recupero)	
Rifiuto in giacenza presso il produttore (smaltimento)	0,000 Kg
Quantità avviata a recupero	
Quantità avviata a smaltimento	
Moduli TE-SP	
00141480921 VINCI E CAMPAGNA S.P.A.	
Modulo DR-SP	
01136110390 SOTRIS S.P.A. CENTRO DI STOCCAGGIO	
S.S. 309 ROMEA NORD KM 2,6, 272 - 48100 - RAVENNA (RAVENNA)	
Quantità	3.720,000 K
Scheda RIF	

2/31	
------	--

480,000 Kg.

Stato fisico: Liquido

Rifiuto prodotto nell'unità locale

Rifiuto ricevuto o	da terzi (0 moduli)	
Rifiuto prodotto f	fuori dall'unità locale (0 moduli)	
Rifiuto trasportat	to dal dichiarante	
Vettori cui è stat	to affidato il trasporto (1 moduli)	
Rifiuto consegna	ato a terzi (1 moduli)	480,000 Kg.
Rifiuto in giacena	za presso il produttore (recupero)	
Rifiuto in giacena	za presso il produttore (smaltimento)	
Quantità avviata	a recupero	
Quantità avviata	a smaltimento	
Moduli TE-SP		
01510940925	FRADELLONI RAFFAELE E FIGLI S.P.A.	
Modulo DR-SP		
01970360481	TESECO S.P.A.	
VIA CARLO LUI	DOVICO RAGGHIANTI, 12 - 56121 - OSPEDALETTO (PISA)	
Quantità		480,000 Kg.
	Scheda RIF	
Codice rifiuto: 16	60303	
Stato fisico: Soli	ido non polverulento	
Rifiuto prodotto i	nell'unità locale	320,000 Kg.
Rifiuto ricevuto o	da terzi (0 moduli)	
Rifiuto prodotto f	fuori dall'unità locale (0 moduli)	
Rifiuto trasportat	to dal dichiarante	
Vettori cui è stat	to affidato il trasporto (1 moduli)	
Rifiuto consegna	ato a terzi (1 moduli)	520,000 Kg.
Rifiuto in giacena	za presso il produttore (recupero)	
Rifiuto in giacena	za presso il produttore (smaltimento)	
Quantità avviata	a recupero	
Quantità avviata	a smaltimento	
Moduli TE-SP		
00889810909	DASARA TRASPORTI SPA	
00141480921	VINCI E CAMPAGNA S.P.A.	
Modulo DR-SP		
01970360481	TESECO S.P.A.	
VIA CARLO LUI	DOVICO RAGGHIANTI, 12 - 56121 - OSPEDALETTO (PISA)	
Quantità		520,000 Kg.
	Scheda RIF	
Codice rifiuto: 16	60304	

Stato fisico: Solido non polverulento	
Rifiuto prodotto nell'unità locale	120,000 Kg.
Rifiuto ricevuto da terzi (0 moduli)	
Rifiuto prodotto fuori dall'unità locale (0 moduli)	
Rifiuto trasportato dal dichiarante	
Vettori cui è stato affidato il trasporto (1 moduli)	
Rifiuto consegnato a terzi (1 moduli)	120,000 Kg.
Rifiuto in giacenza presso il produttore (recupero)	
Rifiuto in giacenza presso il produttore (smaltimento)	
Quantità avviata a recupero	
Quantità avviata a smaltimento	
Moduli TE-SP	
01510940925 FRADELLONI RAFFAELE E FIGLI S.P.A.	
Modulo DR-SP	
01970360481 TESECO S.P.A.	
VIA CARLO LUDOVICO RAGGHIANTI, 12 - 56121 - OSPEDALETTO (PISA)	
Quantità	120,000 Kg.
Scheda RIF	
Codice rifiuto: 160305	
Stato fisico: Liquido	
Rifiuto prodotto nell'unità locale	20,000 Kg.
Rifiuto ricevuto da terzi (0 moduli)	
Rifiuto prodotto fuori dall'unità locale (0 moduli)	
Rifiuto trasportato dal dichiarante	
Vettori cui è stato affidato il trasporto (1 moduli)	
Rifiuto consegnato a terzi (1 moduli)	240,000 Kg.
Rifiuto in giacenza presso il produttore (recupero)	
Rifiuto in giacenza presso il produttore (smaltimento)	
Quantità avviata a recupero	
Quantità avviata a smaltimento	
Moduli TE-SP	
00141480921 VINCI E CAMPAGNA S.P.A.	
Modulo DR-SP	
01970360481 TESECO S.P.A.	
VIA CARLO LUDOVICO RAGGHIANTI, 12 - 56121 - OSPEDALETTO (PISA)	
Quantità	240,000 Kg.
Scheda RIF	

Codice rifiuto: 16	0306	
Stato fisico: Solic	do non polverulento	
Rifiuto prodotto n	iell'unità locale	20,000 Kg.
Rifiuto ricevuto d	a terzi (0 moduli)	
Rifiuto prodotto fi	uori dall'unità locale (0 moduli)	
Rifiuto trasportate	o dal dichiarante	
Vettori cui è stato	o affidato il trasporto (1 moduli)	
Rifiuto consegna	to a terzi (1 moduli)	1.840,000 Kg.
Rifiuto in giacenz	ta presso il produttore (recupero)	
Rifiuto in giacenz	za presso il produttore (smaltimento)	
Quantità avviata	a recupero	
Quantità avviata	a smaltimento	
Moduli TE-SP		
00141480921	VINCI E CAMPAGNA S.P.A.	
Modulo DR-SP		
01970360481	TESECO S.P.A.	
VIA CARLO LUD	OVICO RAGGHIANTI, 12 - 56121 - OSPEDALETTO (PISA)	
Quantità		1.840,000 Kg.
	Scheda RIF	
Codice rifiuto: 16	0601	
Stato fisico: Solic	do non polverulento	
Rifiuto prodotto n	ell'unità locale	8.428,000 Kg.
Rifiuto ricevuto d	a terzi (0 moduli)	
Rifiuto prodotto fi	uori dall'unità locale (0 moduli)	
Rifiuto trasportate	o dal dichiarante	
Vettori cui è stato	o affidato il trasporto (0 moduli)	
Rifiuto consegna	to a terzi (1 moduli)	8.620,000 Kg.
Rifiuto in giacenz	za presso il produttore (recupero)	
Rifiuto in giacenz	a presso il produttore (smaltimento)	
Quantità avviata	a recupero	
Quantità avviata	a smaltimento	
Modulo MG-SP		
Modulo DR-SP		
01909170928	IN.VE.SA. DI FAIS A. E C. S.R.L.	
S.P. 86 KM. 2,7	- 09015 - DOMUSNOVAS (CAGLIARI)	
Quantità		8.620,000 Kg.
	Scheda RIF	

Codice rifiuto: 160602	
Stato fisico: Solido non polverulento	
Rifiuto prodotto nell'unità locale	
Rifiuto ricevuto da terzi (0 moduli)	
Rifiuto prodotto fuori dall'unità locale (0 moduli)	
Rifiuto trasportato dal dichiarante	
Vettori cui è stato affidato il trasporto (0 moduli)	
Rifiuto consegnato a terzi (0 moduli)	
Rifiuto in giacenza presso il produttore (recupero)	
Rifiuto in giacenza presso il produttore (smaltimento)	
Quantità avviata a recupero	100,000 Kg.
Quantità avviata a smaltimento	
lodulo MG-SP	
R13	100,000 Kg.
Quantità in giacenza (recupero)	100,000 Kg.
Scheda RIF	
Codice rifiuto: 160708	
Stato fisico: Liquido	
Rifiuto prodotto nell'unità locale	3.060,000 Kg.
Rifiuto ricevuto da terzi (0 moduli)	
Rifiuto prodotto fuori dall'unità locale (0 moduli)	
Rifiuto trasportato dal dichiarante	
Vettori cui è stato affidato il trasporto (1 moduli)	
Rifiuto consegnato a terzi (1 moduli)	5.640,000 Kg.
Rifiuto in giacenza presso il produttore (recupero)	
Rifiuto in giacenza presso il produttore (smaltimento)	
Quantità avviata a recupero	
Quantità avviata a smaltimento	3.080,000 Kg.
lodulo MG-SP	
D15	3.080,000 Kg.
Quantità in giacenza (smaltimento)	3.080,000 Kg.
oduli TE-SP	
00889810909 DASARA TRASPORTI SPA	
01510940925 FRADELLONI RAFFAELE E FIGLI S.P.A.	
lodulo DR-SP	
01970360481 TESECO S.P.A.	
VIA CARLO LUDOVICO RAGGHIANTI, 12 - 56121 - PISA (PISA)	

Quantità 5.640,000 Kg.

Scheda RIF	
Codice rifiuto: 160708	
Stato fisico: Fangoso palabile	
Rifiuto prodotto nell'unità locale	28.000,000 Kg.
Rifiuto ricevuto da terzi (0 moduli)	
Rifiuto prodotto fuori dall'unità locale (0 moduli)	
Rifiuto trasportato dal dichiarante	
Vettori cui è stato affidato il trasporto (1 moduli)	
Rifiuto consegnato a terzi (1 moduli)	2.400,000 Kg.
Rifiuto in giacenza presso il produttore (recupero)	
Rifiuto in giacenza presso il produttore (smaltimento)	
Quantità avviata a recupero	
Quantità avviata a smaltimento	2.400,000 Kg.
Modulo MG-SP	
D15	2.400,000 Kg.
Quantità in giacenza (smaltimento)	25.600,000 Kg.
Moduli TE-SP	
00141480921 VINCI E CAMPAGNA S.P.A.	
Modulo DR-SP	
01970360481 TESECO S.P.A.	
VIA CARLO LUDOVICO RAGGHIANTI, 12 - 56121 - PISA (PISA)	
	2.400,000 Kg.
VIA CARLO LUDOVICO RAGGHIANTI, 12 - 56121 - PISA (PISA)	2.400,000 Kg.
VIA CARLO LUDOVICO RAGGHIANTI, 12 - 56121 - PISA (PISA) Quantità	2.400,000 Kg.
VIA CARLO LUDOVICO RAGGHIANTI, 12 - 56121 - PISA (PISA) Quantità Scheda RIF	2.400,000 Kg.
VIA CARLO LUDOVICO RAGGHIANTI, 12 - 56121 - PISA (PISA) Quantità Scheda RIF Codice rifiuto: 160807	2.400,000 Kg. 12.020,000 Kg.
VIA CARLO LUDOVICO RAGGHIANTI, 12 - 56121 - PISA (PISA) Quantità Scheda RIF Codice rifiuto: 160807 Stato fisico: Solido non polverulento	
VIA CARLO LUDOVICO RAGGHIANTI, 12 - 56121 - PISA (PISA) Quantità Scheda RIF Codice rifiuto: 160807 Stato fisico: Solido non polverulento Rifiuto prodotto nell'unità locale	
VIA CARLO LUDOVICO RAGGHIANTI, 12 - 56121 - PISA (PISA) Quantità Scheda RIF Codice rifiuto: 160807 Stato fisico: Solido non polverulento Rifiuto prodotto nell'unità locale Rifiuto ricevuto da terzi (0 moduli)	
VIA CARLO LUDOVICO RAGGHIANTI, 12 - 56121 - PISA (PISA) Quantità Scheda RIF Codice rifiuto: 160807 Stato fisico: Solido non polverulento Rifiuto prodotto nell'unità locale Rifiuto ricevuto da terzi (0 moduli) Rifiuto prodotto fuori dall'unità locale (0 moduli)	
VIA CARLO LUDOVICO RAGGHIANTI, 12 - 56121 - PISA (PISA) Quantità Scheda RIF Codice rifiuto: 160807 Stato fisico: Solido non polverulento Rifiuto prodotto nell'unità locale Rifiuto ricevuto da terzi (0 moduli) Rifiuto prodotto fuori dall'unità locale (0 moduli) Rifiuto trasportato dal dichiarante	
VIA CARLO LUDOVICO RAGGHIANTI, 12 - 56121 - PISA (PISA) Quantità Scheda RIF Codice rifiuto: 160807 Stato fisico: Solido non polverulento Rifiuto prodotto nell'unità locale Rifiuto ricevuto da terzi (0 moduli) Rifiuto prodotto fuori dall'unità locale (0 moduli) Rifiuto trasportato dal dichiarante Vettori cui è stato affidato il trasporto (0 moduli)	
VIA CARLO LUDOVICO RAGGHIANTI, 12 - 56121 - PISA (PISA) Quantità Scheda RIF Codice rifiuto: 160807 Stato fisico: Solido non polverulento Rifiuto prodotto nell'unità locale Rifiuto ricevuto da terzi (0 moduli) Rifiuto prodotto fuori dall'unità locale (0 moduli) Rifiuto trasportato dal dichiarante Vettori cui è stato affidato il trasporto (0 moduli) Rifiuto consegnato a terzi (0 moduli)	
VIA CARLO LUDOVICO RAGGHIANTI, 12 - 56121 - PISA (PISA) Quantità Scheda RIF Codice rifiuto: 160807 Stato fisico: Solido non polverulento Rifiuto prodotto nell'unità locale Rifiuto ricevuto da terzi (0 moduli) Rifiuto prodotto fuori dall'unità locale (0 moduli) Rifiuto trasportato dal dichiarante Vettori cui è stato affidato il trasporto (0 moduli) Rifiuto consegnato a terzi (0 moduli) Rifiuto in giacenza presso il produttore (recupero)	

Quantità in giacenza (smaltimento)	12.020,000 Kg.
Scheda RIF	
Codice rifiuto: 161105	
Stato fisico: Solido non polverulento	
Rifiuto prodotto nell'unità locale	35.480,000 Kg.
Rifiuto ricevuto da terzi (0 moduli)	
Rifiuto prodotto fuori dall'unità locale (0 moduli)	
Rifiuto trasportato dal dichiarante	
Vettori cui è stato affidato il trasporto (1 moduli)	
Rifiuto consegnato a terzi (1 moduli)	4.600,000 Kg.
Rifiuto in giacenza presso il produttore (recupero)	
Rifiuto in giacenza presso il produttore (smaltimento)	
Quantità avviata a recupero	
Quantità avviata a smaltimento	30.880,000 Kg.
lodulo MG-SP	
D15	30.880,000 Kg.
Quantità in giacenza (smaltimento)	30.880,000 Kg.
loduli TE-SP	
01510940925 FRADELLONI RAFFAELE E FIGLI S.P.A.	
lodulo DR-SP	
01970360481 TESECO S.P.A.	
VIA CARLO LUDOVICO RAGGHIANTI, 12 - 56121 - OSPEDALETTO (PISA)	
Quantità	4.600,000 Kg.
Scheda RIF	
Codice rifiuto: 161106	
Stato fisico: Solido non polverulento	
Rifiuto prodotto nell'unità locale	400,000 Kg.
Rifiuto ricevuto da terzi (0 moduli)	
Rifiuto prodotto fuori dall'unità locale (0 moduli)	
Rifiuto trasportato dal dichiarante	
Vettori cui è stato affidato il trasporto (1 moduli)	
Rifiuto consegnato a terzi (1 moduli)	15.380,000 Kg.
Rifiuto in giacenza presso il produttore (recupero)	
Rifiuto in giacenza presso il produttore (smaltimento)	
militio in glacenza presso ii produttore (smattimento)	
Quantità avviata a recupero	

12.020,000 Kg.

D15

oduli TE-SP		
00141480921	VINCI E CAMPAGNA S.P.A.	
odulo DR-SP		
01643170929	ECOSERDIANA SPA	
VIA DELL'ARTIC	GIANATO, 6 - 09122 - CAGLIARI (CAGLIARI)	
Quantità		15.380,000 H
	Scheda RIF	
Codice rifiuto: 17	70202	
Stato fisico: Solid	do non polverulento	
Rifiuto prodotto r	nell'unità locale	400,000 H
Rifiuto ricevuto c	la terzi (0 moduli)	
Rifiuto prodotto f	uori dall'unità locale (0 moduli)	
Rifiuto trasportat	o dal dichiarante	
Vettori cui è state	o affidato il trasporto (0 moduli)	
Rifiuto consegna	ato a terzi (0 moduli)	
Rifiuto in giacenz	za presso il produttore (recupero)	
Rifiuto in giacenz	za presso il produttore (smaltimento)	
Quantità avviata	a recupero	
Quantità avviata	a smaltimento	400,000 k
odulo MG-SP		
D15		400,000 k
Quantità in giace	enza (smaltimento)	400,000 k
	Scheda RIF	
Codice rifiuto: 17	70203	
Stato fisico: Solid	do non polverulento	
Rifiuto prodotto r	nell'unità locale	7.620,000 k
Rifiuto ricevuto c	la terzi (0 moduli)	
Rifiuto prodotto f	uori dall'unità locale (0 moduli)	
Rifiuto trasportat	o dal dichiarante	
Vettori cui è state	o affidato il trasporto (1 moduli)	
Rifiuto consegna	to a terzi (3 moduli)	7.620,000 k
Rifiuto in giacenz	za presso il produttore (recupero)	
Rifiuto in giacenz	za presso il produttore (smaltimento)	
Quantità avviata	a recupero	
	a smaltimento	220,000 k

		220,000 Kg.
Quantità in giace	nza (smaltimento)	220,000 Kg.
Moduli TE-SP		
00889810909	DASARA TRASPORTI SPA	
02352370924	ECO.GE.M.M.A SRL	
01510940925	FRADELLONI RAFFAELE E FIGLI S.P.A.	
00141480921	VINCI E CAMPAGNA S.P.A.	
Modulo DR-SP		
10190370154	AMBIENTHESIS S.P.A	
STRADA GRUGI	LIASCO - RIVALTA, 4 - 10043 - ORBASSANO (TORINO)	
Quantità		4.180,000 Kg.
Modulo DR-SP		
01020620496	RA.RI SRL	
VIA DEI FABBRI	, 5/7 - 57121 - LIVORNO (LIVORNO)	
Quantità		1.040,000 Kg.
Modulo DR-SP		
01970360481	TESECO S.P.A.	
VIA CARLO LUD	OVICO RAGGHIANTI, 12 - 56121 - PISA (PISA)	
Quantità		2.400,000 Kg.
	Scheda RIF	
Codice rifiuto: 17	0204	
Stato fisico: Solid	o non polverulento	
Rifiuto prodotto n	ell'unità locale	1.860,000 Kg.
Rifiuto ricevuto da	a terzi (0 moduli)	
Rifiuto prodotto fu	uori dall'unità locale (0 moduli)	
Rifiuto prodotto fu	uori dall'unità locale (0 moduli)	
Rifiuto trasportato	uori dall'unità locale (0 moduli)	
Rifiuto trasportato	uori dall'unità locale (0 moduli) o dal dichiarante	760,000 Kg.
Rifiuto trasportato Vettori cui è stato Rifiuto consegnat	uori dall'unità locale (0 moduli) o dal dichiarante o affidato il trasporto (1 moduli)	760,000 Kg.
Rifiuto trasportato Vettori cui è stato Rifiuto consegnat Rifiuto in giacenz	uori dall'unità locale (0 moduli) o dal dichiarante o affidato il trasporto (1 moduli) to a terzi (1 moduli)	760,000 Kg.
Rifiuto trasportato Vettori cui è stato Rifiuto consegnat Rifiuto in giacenz	uori dall'unità locale (0 moduli) o dal dichiarante o affidato il trasporto (1 moduli) to a terzi (1 moduli) a presso il produttore (recupero) a presso il produttore (smaltimento)	760,000 Kg.
Rifiuto trasportato Vettori cui è stato Rifiuto consegnat Rifiuto in giacenz Rifiuto in giacenz	uori dall'unità locale (0 moduli) o dal dichiarante o affidato il trasporto (1 moduli) to a terzi (1 moduli) a presso il produttore (recupero) a presso il produttore (smaltimento) a recupero	760,000 Kg.
Rifiuto trasportato Vettori cui è stato Rifiuto consegnat Rifiuto in giacenz Rifiuto in giacenz Quantità avviata	uori dall'unità locale (0 moduli) o dal dichiarante o affidato il trasporto (1 moduli) to a terzi (1 moduli) a presso il produttore (recupero) a presso il produttore (smaltimento) a recupero	
Rifiuto trasportato Vettori cui è stato Rifiuto consegnat Rifiuto in giacenz Rifiuto in giacenz Quantità avviata	uori dall'unità locale (0 moduli) o dal dichiarante o affidato il trasporto (1 moduli) to a terzi (1 moduli) a presso il produttore (recupero) a presso il produttore (smaltimento) a recupero	
Rifiuto trasportato Vettori cui è stato Rifiuto consegnat Rifiuto in giacenz Rifiuto in giacenz Quantità avviata a Quantità avviata a Modulo MG-SP D15	uori dall'unità locale (0 moduli) o dal dichiarante o affidato il trasporto (1 moduli) to a terzi (1 moduli) a presso il produttore (recupero) a presso il produttore (smaltimento) a recupero	1.260,000 Kg.

00141480921	VINCI E CAMPAGNA S.P.A.	
Modulo DR-SP		
01020620496	RA.RI SRL	
VIA DEI FABBRI	, 5/7 - 57121 - LIVORNO (LIVORNO)	
Quantità		760,000 Kg.
	Scheda RIF	
Codice rifiuto: 17	0402	
Stato fisico: Solid	do non polverulento	
Rifiuto prodotto r	uell'unità locale	440,000 Kg.
Rifiuto ricevuto d	a terzi (0 moduli)	
Rifiuto prodotto f	uori dall'unità locale (0 moduli)	
Rifiuto trasportat	o dal dichiarante	
Vettori cui è state	o affidato il trasporto (0 moduli)	
Rifiuto consegna	to a terzi (0 moduli)	
Rifiuto in giacenz	ra presso il produttore (recupero)	
Rifiuto in giacenz	ra presso il produttore (smaltimento)	
Quantità avviata	a recupero	440,000 Kg.
Quantità avviata	a smaltimento	
Modulo MG-SP		
R13		440,000 Kg.
Quantità in giace	nza (recupero)	440,000 Kg.
	Scheda RIF	
Codice rifiuto: 17	0405	
Stato fisico: Solid	do non polverulento	
Rifiuto prodotto r	ell'unità locale	112.000,000 Kg.
Rifiuto ricevuto d	a terzi (0 moduli)	
Rifiuto prodotto f	uori dall'unità locale (0 moduli)	
Rifiuto trasportat	o dal dichiarante	
Vettori cui è stato	o affidato il trasporto (0 moduli)	
Rifiuto consegna	to a terzi (2 moduli)	103.340,000 Kg.
Rifiuto in giacenz	ra presso il produttore (recupero)	
Rifiuto in giacenz	ra presso il produttore (smaltimento)	
Quantità avviata	a recupero	8.840,000 Kg.
Quantità avviata	a smaltimento	
Modulo MG-SP		
R13		8.840,000 Kg.
Quantità in giace	nza (recupero)	8.840,000 Kg.
ŭ		, 3

Modulo DR-SP	
02173970928 METAL B S.N.C.	
STRADA STATALE 196 KM 2800 - 09033 - DECIMOMANNU (CAGLIARI)	
Quantità	51.880,000 Kg.
Modulo DR-SP	
01423630902 SARDA ROTTAMI SRL	
ZONA INDUSTRIALE - 07046 - PORTO TORRES (SASSARI)	
Quantità	51.460,000 Kg.
Scheda RIF	
Codice rifiuto: 170411	
Stato fisico: Solido non polverulento	
Rifiuto prodotto nell'unità locale	2.420,000 Kg.
Rifiuto ricevuto da terzi (0 moduli)	
Rifiuto prodotto fuori dall'unità locale (0 moduli)	
Rifiuto trasportato dal dichiarante	
Vettori cui è stato affidato il trasporto (0 moduli)	
Rifiuto consegnato a terzi (0 moduli)	
Rifiuto in giacenza presso il produttore (recupero)	
Rifiuto in giacenza presso il produttore (smaltimento)	
Quantità avviata a recupero	2.420,000 Kg.
Quantità avviata a smaltimento	
Modulo MG-SP	
R13	2.420,000 Kg.
Quantità in giacenza (recupero)	2.600,000 Kg.
Scheda RIF	
Codice rifiuto: 170503	
Stato fisico: Solido non polverulento	
Rifiuto prodotto nell'unità locale	93.640,000 Kg.
Rifiuto ricevuto da terzi (0 moduli)	
Rifiuto prodotto fuori dall'unità locale (0 moduli)	
Rifiuto trasportato dal dichiarante	
Vettori cui è stato affidato il trasporto (1 moduli)	
Rifiuto consegnato a terzi (1 moduli)	153.560,000 Kg.
Rifiuto in giacenza presso il produttore (recupero)	
Rifiuto in giacenza presso il produttore (smaltimento)	
Quantità avviata a recupero	
Quantità avviata a smaltimento	17.200,000 Kg.

Modulo MG-SP		
D15		17.200,000 Kg.
Quantità in giacenza (smaltimento)		17.200,000 Kg.
Moduli TE-SP		
00889810909	DASARA TRASPORTI SPA	
01510940925	FRADELLONI RAFFAELE E FIGLI S.P.A.	
00141480921	VINCI E CAMPAGNA S.P.A.	
Modulo DR-SP		
01970360481	TESECO S.P.A.	
VIA CARLO LUI	DOVICO RAGGHIANTI, 12 - 56121 - PISA (PISA)	
Quantità		153.560,000 Kg.
	Scheda RIF	
Codice rifiuto: 17	70504	
Stato fisico: Solid	do non polverulento	
Rifiuto prodotto r	nell'unità locale	1.992.140,000 Kg.
Rifiuto ricevuto c	ła terzi (0 moduli)	
Rifiuto prodotto f	uori dall'unità locale (0 moduli)	
Rifiuto trasportat	o dal dichiarante	
Vettori cui è stat	o affidato il trasporto (1 moduli)	
Rifiuto consegna	ato a terzi (1 moduli)	1.943.740,000 Kg.
Rifiuto in giacenz	za presso il produttore (recupero)	
Rifiuto in giacenz	za presso il produttore (smaltimento)	
Quantità avviata	a recupero	
Quantità avviata	a smaltimento	53.700,000 Kg.
Modulo MG-SP		
D15		53.700,000 Kg.
Quantità in giace	enza (smaltimento)	53.700,000 Kg.
Moduli TE-SP		
02825720929	CHERCHI TRASPORTI SRL	
02352370924	ECO.GE.M.M.A SRL	
01510940925	FRADELLONI RAFFAELE E FIGLI S.P.A.	
00141480921	VINCI E CAMPAGNA S.P.A.	
Modulo DR-SP		
01643170929	ECOSERDIANA SPA	
VIA DELL'ARTIO	GIANATO, 6 - 09122 - CAGLIARI (CAGLIARI)	
Quantità		1.943.740,000 Kg.
	Scheda RIF	

Codice rifiuto: 170601	
Stato fisico: Solido polverulento	
Rifiuto prodotto nell'unità locale	100,000 Kg.
Rifiuto ricevuto da terzi (0 moduli)	
Rifiuto prodotto fuori dall'unità locale (0 moduli)	
Rifiuto trasportato dal dichiarante	
Vettori cui è stato affidato il trasporto (1 moduli)	
Rifiuto consegnato a terzi (1 moduli)	13.020,000 Kg.
Rifiuto in giacenza presso il produttore (recupero)	
Rifiuto in giacenza presso il produttore (smaltimento)	
Quantità avviata a recupero	
Quantità avviata a smaltimento	
Modulo MG-SP	
Moduli TE-SP	
00141480921 VINCI E CAMPAGNA S.P.A.	
Modulo DR-SP	
01970360481 TESECO S.P.A.	
VIA CARLO LUDOVICO RAGGHIANTI, 12 - 56121 - PISA (PISA)	
Quantità	13.020,000 Kg.
Quantità Scheda RIF	13.020,000 Kg.
	13.020,000 Kg.
Scheda RIF	13.020,000 Kg.
Scheda RIF Codice rifiuto: 170603	13.020,000 Kg. 19.480,000 Kg.
Scheda RIF Codice rifiuto: 170603 Stato fisico: Solido polverulento	
Scheda RIF Codice rifiuto: 170603 Stato fisico: Solido polverulento Rifiuto prodotto nell'unità locale	
Scheda RIF Codice rifiuto: 170603 Stato fisico: Solido polverulento Rifiuto prodotto nell'unità locale Rifiuto ricevuto da terzi (0 moduli)	
Scheda RIF Codice rifiuto: 170603 Stato fisico: Solido polverulento Rifiuto prodotto nell'unità locale Rifiuto ricevuto da terzi (0 moduli) Rifiuto prodotto fuori dall'unità locale (0 moduli)	
Scheda RIF Codice rifiuto: 170603 Stato fisico: Solido polverulento Rifiuto prodotto nell'unità locale Rifiuto ricevuto da terzi (0 moduli) Rifiuto prodotto fuori dall'unità locale (0 moduli) Rifiuto trasportato dal dichiarante	19.480,000 Kg.
Scheda RIF Codice rifiuto: 170603 Stato fisico: Solido polverulento Rifiuto prodotto nell'unità locale Rifiuto ricevuto da terzi (0 moduli) Rifiuto prodotto fuori dall'unità locale (0 moduli) Rifiuto trasportato dal dichiarante Vettori cui è stato affidato il trasporto (1 moduli)	19.480,000 Kg.
Scheda RIF Codice rifiuto: 170603 Stato fisico: Solido polverulento Rifiuto prodotto nell'unità locale Rifiuto ricevuto da terzi (0 moduli) Rifiuto prodotto fuori dall'unità locale (0 moduli) Rifiuto trasportato dal dichiarante Vettori cui è stato affidato il trasporto (1 moduli) Rifiuto consegnato a terzi (3 moduli)	19.480,000 Kg.
Scheda RIF Codice rifiuto: 170603 Stato fisico: Solido polverulento Rifiuto prodotto nell'unità locale Rifiuto ricevuto da terzi (0 moduli) Rifiuto prodotto fuori dall'unità locale (0 moduli) Rifiuto trasportato dal dichiarante Vettori cui è stato affidato il trasporto (1 moduli) Rifiuto consegnato a terzi (3 moduli) Rifiuto in giacenza presso il produttore (recupero)	19.480,000 Kg.
Scheda RIF Codice rifiuto: 170603 Stato fisico: Solido polverulento Rifiuto prodotto nell'unità locale Rifiuto ricevuto da terzi (0 moduli) Rifiuto prodotto fuori dall'unità locale (0 moduli) Rifiuto trasportato dal dichiarante Vettori cui è stato affidato il trasporto (1 moduli) Rifiuto consegnato a terzi (3 moduli) Rifiuto in giacenza presso il produttore (recupero) Rifiuto in giacenza presso il produttore (smaltimento)	19.480,000 Kg. 20.340,000 Kg.
Scheda RIF Codice rifiuto: 170603 Stato fisico: Solido polverulento Rifiuto prodotto nell'unità locale Rifiuto ricevuto da terzi (0 moduli) Rifiuto prodotto fuori dall'unità locale (0 moduli) Rifiuto trasportato dal dichiarante Vettori cui è stato affidato il trasporto (1 moduli) Rifiuto consegnato a terzi (3 moduli) Rifiuto in giacenza presso il produttore (recupero) Rifiuto in giacenza presso il produttore (smaltimento) Quantità avviata a recupero Quantità avviata a smaltimento	
Scheda RIF Codice rifiuto: 170603 Stato fisico: Solido polverulento Rifiuto prodotto nell'unità locale Rifiuto ricevuto da terzi (0 moduli) Rifiuto prodotto fuori dall'unità locale (0 moduli) Rifiuto trasportato dal dichiarante Vettori cui è stato affidato il trasporto (1 moduli) Rifiuto consegnato a terzi (3 moduli) Rifiuto in giacenza presso il produttore (recupero) Rifiuto in giacenza presso il produttore (smaltimento) Quantità avviata a recupero Quantità avviata a smaltimento	19.480,000 Kg. 20.340,000 Kg.
Scheda RIF Codice rifiuto: 170603 Stato fisico: Solido polverulento Rifiuto prodotto nell'unità locale Rifiuto ricevuto da terzi (0 moduli) Rifiuto prodotto fuori dall'unità locale (0 moduli) Rifiuto trasportato dal dichiarante Vettori cui è stato affidato il trasporto (1 moduli) Rifiuto consegnato a terzi (3 moduli) Rifiuto in giacenza presso il produttore (recupero) Rifiuto in giacenza presso il produttore (smaltimento) Quantità avviata a recupero Quantità avviata a smaltimento	19.480,000 Kg. 20.340,000 Kg. 380,000 Kg.

01510940925	FRADELLONI RAFFAELE E FIGLI S.P.A.	
01957760901	LOGISTICA NIEDDU S.R.L.	
00141480921	VINCI E CAMPAGNA S.P.A.	
Modulo DR-SP		
00843310426	SEA SERVIZI ECOLOGIC AMBIENTALI S.R.L.	
LOCALITÀ SALIN	NE - 60020 - CAMERATA PICENA (ANCONA)	
Quantità		7.720,000 Kg.
Modulo DR-SP		
01970360481	TESECO S.P.A.	
VIA CARLO LUD	OVICO RAGGHIANTI, 12 - 56121 - PISA (PISA)	
Quantità		5.740,000 Kg.
Modulo DR-SP		
02153000266	VIDORI SERVIZI AMBIENTALI S.P.A	
VIA C. TITTONI,	14 - 31020 - VIDOR (TREVISO)	
Quantità		6.880,000 Kg.
	Scheda RIF	
Codice rifiuto: 17	0904	
Stato fisico: Solid	do non polverulento	
Rifiuto prodotto n	ell'unità locale	335.420,000 Kg.
Rifiuto ricevuto da	a terzi (0 moduli)	
Rifiuto prodotto fu	uori dall'unità locale (0 moduli)	
Rifiuto trasportato	o dal dichiarante	
Vettori cui è stato	affidato il trasporto (1 moduli)	
Rifiuto consegnat	to a terzi (1 moduli)	378.320,000 Kg.
Rifiuto in giacenz	a presso il produttore (recupero)	
Rifiuto in giacenz	a presso il produttore (smaltimento)	
Quantità avviata	a recupero	
Quantità avviata	a smaltimento	34.840,000 Kg.
Modulo MG-SP		
D15		34.840,000 Kg.
Quantità in giace	nza (smaltimento)	34.840,000 Kg.
Moduli TE-SP		
01510940925	FRADELLONI RAFFAELE E FIGLI S.P.A.	
00141480921	VINCI E CAMPAGNA S.P.A.	
Modulo DR-SP		
01643170929	ECOSERDIANA SPA	

Quantità 378.320,000 Kg.

Scheda RIF Codice rifiuto: 180103 Stato fisico: Solido non polverulento Rifiuto prodotto nell'unità locale 40,000 Kg. Rifiuto ricevuto da terzi (0 moduli) Rifiuto prodotto fuori dall'unità locale (0 moduli) Rifiuto trasportato dal dichiarante Vettori cui è stato affidato il trasporto (1 moduli) Rifiuto consegnato a terzi (1 moduli) 40,000 Kg. Rifiuto in giacenza presso il produttore (recupero) Rifiuto in giacenza presso il produttore (smaltimento) Quantità avviata a recupero Quantità avviata a smaltimento Moduli TE-SP 00141480921 VINCI E CAMPAGNA S.P.A. Modulo DR-SP 02175430392 HERAMBIENTE S.P.A FORNO INCENERITORE F3 VIA BAIONA, 182 - 48123 - RAVENNA (RAVENNA) Quantità 40,000 Kg. Scheda RIF Codice rifiuto: 190901 Stato fisico: Solido non polverulento Rifiuto prodotto nell'unità locale 10.820,000 Kg. Rifiuto ricevuto da terzi (0 moduli) Rifiuto prodotto fuori dall'unità locale (0 moduli) Rifiuto trasportato dal dichiarante Vettori cui è stato affidato il trasporto (1 moduli) Rifiuto consegnato a terzi (1 moduli) 15.280,000 Kg. Rifiuto in giacenza presso il produttore (recupero) Rifiuto in giacenza presso il produttore (smaltimento) Quantità avviata a recupero Quantità avviata a smaltimento Modulo MG-SP Moduli TE-SP 01510940925 FRADELLONI RAFFAELE E FIGLI S.P.A.

00141480921

VINCI E CAMPAGNA S.P.A.

Modulo DK-SP	
01970360481 TESECO S.P.A.	
VIA CARLO LUDOVICO RAGGHIANTI, 12 - 56121 - OSPEDALETTO (PISA)	
Quantità	15.280,000 Kg.
Scheda RIF	
Codice rifiuto: 190903	
Stato fisico: Solido non polverulento	
Rifiuto prodotto nell'unità locale	244.500,000 Kg.
Rifiuto ricevuto da terzi (0 moduli)	
Rifiuto prodotto fuori dall'unità locale (0 moduli)	
Rifiuto trasportato dal dichiarante	
Vettori cui è stato affidato il trasporto (1 moduli)	
Rifiuto consegnato a terzi (1 moduli)	244.500,000 Kg.
Rifiuto in giacenza presso il produttore (recupero)	
Rifiuto in giacenza presso il produttore (smaltimento)	
Quantità avviata a recupero	
Quantità avviata a smaltimento	
Moduli TE-SP	
02825720929 CHERCHI TRASPORTI SRL	
01510940925 FRADELLONI RAFFAELE E FIGLI S.P.A.	
00141480921 VINCI E CAMPAGNA S.P.A.	
Modulo DR-SP	
01643170929 ECOSERDIANA SPA	
VIA DELL'ARTIGIANATO, 6 - 09122 - CAGLIARI (CAGLIARI)	
Quantità	244.500,000 Kg.
Scheda RIF	
Codice rifiuto: 190905	
Stato fisico: Solido non polverulento	
Rifiuto prodotto nell'unità locale	33.820,000 Kg.
Rifiuto ricevuto da terzi (0 moduli)	
Rifiuto prodotto fuori dall'unità locale (0 moduli)	
Rifiuto trasportato dal dichiarante	
Vettori cui è stato affidato il trasporto (1 moduli)	
Rifiuto consegnato a terzi (1 moduli)	31.360,000 Kg.
Rifiuto in giacenza presso il produttore (recupero)	
Rifiuto in giacenza presso il produttore (smaltimento)	

Modulo DR-SP

Quantità avviata a smaltimento		2.460,000 Kg
Modulo MG-SP		
D15		2.460,000 Kg.
Quantità in giacenza (smaltimento)		2.460,000 Kg
Moduli TE-SP		
01510940925 FRADELLON	NI RAFFAELE E FIGLI S.P.A.	
00141480921 VINCI E CAN	MPAGNA S.P.A.	
Modulo DR-SP		
01970360481 TESECO S.F	P.A.	
VIA CARLO LUDOVICO RAGGH	IIANTI, 12 - 56121 - PISA (PISA)	
Quantità		31.360,000 Kg.
	Scheda RIF	
Codice rifiuto: 191307		
Stato fisico: Liquido		
Rifiuto prodotto nell'unità locale		136.998,000 Kg.
Rifiuto ricevuto da terzi (0 moduli)	
Rifiuto prodotto fuori dall'unità loc	cale (0 moduli)	
Rifiuto trasportato dal dichiarante		
Vettori cui è stato affidato il trasp	orto (1 moduli)	
Rifiuto consegnato a terzi (1 mod	luli)	140.570,000 Kg.
Rifiuto in giacenza presso il produ	uttore (recupero)	
Rifiuto in giacenza presso il produ	uttore (smaltimento)	6.270,000 Kg.
Quantità avviata a recupero		
Quantità avviata a smaltimento		9.638,000 Kg.
Modulo MG-SP		
D15		9.638,000 Kg.
Quantità in giacenza (smaltiment	0)	9.638,000 Kg.
Moduli TE-SP		
SNNNTN38M09I452K SANNA	ANTONIO	
00141480921 VINCI E CAN	MPAGNA S.P.A.	
Modulo DR-SP		
01970360481 TESECO S.F	P.A.	
VIA CARLO LUDOVICO RAGGH	HANTI, 12 - 56121 - PISA (PISA)	
Quantità		140.570,000 Kg.
	Scheda RIF	
Codice rifiuto: 191308		
Stato fisico: Liquido		

Rifiuto prodotto nell'unità locale	615.027,970 Ton.
Rifiuto ricevuto da terzi (0 moduli)	
Rifiuto prodotto fuori dall'unità locale (0 moduli)	
Rifiuto trasportato dal dichiarante	
Vettori cui è stato affidato il trasporto (1 moduli)	
Rifiuto consegnato a terzi (4 moduli)	615.012,900 Ton.
Rifiuto in giacenza presso il produttore (recupero)	
Rifiuto in giacenza presso il produttore (smaltimento)	
Quantità avviata a recupero	
Quantità avviata a smaltimento	17.830,000 Kg.
Modulo MG-SP	
D15	17.830,000 Kg.
Quantità in giacenza (smaltimento)	17.830,000 Kg.
Moduli TE-SP	
01510940925 FRADELLONI RAFFAELE E FIGLI S.P.A.	
SNNNTN38M09I452K SANNA ANTONIO	
Modulo DR-SP	
10190370154 AMBIENTHESIS S.P.A	
STRADA GRUGLIASCO - RIVALTA, 4 - 10043 - ORBASSANO (TORINO)	
Quantità	9.760,000 Kg.
Modulo DR-SP	
00124720905 CONSORZIO INDUSTRIALE PROVINCIALE DI SASSARI	
ZONA INDUSTRIALE LA MARINELLA - 07046 - PORTO TORRES (SASSARI)	
Quantità	16.220,000 Kg.
Modulo DR-SP	
01372130425 SIMAM SRL	
VIA MANTEGA, 1 - 60019 - SENIGALLIA (ANCONA)	
Quantità	614.945,000 Ton.
Modulo DR-SP	
01970360481 TESECO S.P.A.	
VIA CARLO LUDOVICO RAGGHIANTI, 12 - 56121 - OSPEDALETTO (PISA)	
Quantità	41.920,000 Kg.
Scheda RIF	
Codice rifiuto: 200121	
Stato fisico: Solido non polverulento	
Rifiuto prodotto nell'unità locale	440,000 Kg.
Rifiuto ricevuto da terzi (0 moduli)	

Rifiuto prodotto fuori dall'unità locale (0 moduli)	
Rifiuto trasportato dal dichiarante	
Vettori cui è stato affidato il trasporto (0 moduli)	
Rifiuto consegnato a terzi (0 moduli)	
Rifiuto in giacenza presso il produttore (recupero)	
Rifiuto in giacenza presso il produttore (smaltimento)	
Quantità avviata a recupero	440,000 Kg.
Quantità avviata a smaltimento	
Modulo MG-SP	
R13	440,000 Kg.
Quantità in giacenza (recupero)	600,000 Kg.
Scheda RIF	
Codice rifiuto: 200201	
Stato fisico: Solido non polverulento	
Rifiuto prodotto nell'unità locale	65.075,000 Kg.
Rifiuto ricevuto da terzi (0 moduli)	
Rifiuto prodotto fuori dall'unità locale (0 moduli)	
Rifiuto trasportato dal dichiarante	
Vettori cui è stato affidato il trasporto (1 moduli)	
Rifiuto consegnato a terzi (3 moduli)	60.160,000 Kg.
Rifiuto in giacenza presso il produttore (recupero)	
Rifiuto in giacenza presso il produttore (smaltimento)	4.915,000 Kg.
Quantità avviata a recupero	
Quantità avviata a smaltimento	
Moduli TE-SP	
02352370924 ECO.GE.M.M.A SRL	
Modulo DR-SP	
03339510921 IRECO SRL	
Z.I. VILLACIDRO - 09039 - VILLACIDRO (MEDIO CAMPIDANO)	
Quantità	1.240,000 Kg.
Modulo DR-SP	
02099330900 SARDA COMPOST S.R.L.	
LOC. SPIRITU SANTU - 07026 - OLBIA (OLBIA-TEMPIO)	
Quantità	7.580,000 Kg.
Modulo DR-SP	
01931650921 TECNOCASIC S.P.A	
Z.I. MACCHIAREDDU D C KM10,500 - 09012 - CAPOTERRA (CAGLIARI)	

Quantità 51.340,000 Kg.

AGGIORNAMENTO AL 31.01.2015

Questo documento e gli annessi allegati sono Proprietà di versalis. Essi non possono essere riprodotti né interamente, né in parte per scopi diversi da quelli per i quali sono stati trasmessi, senza autorizzazione scritta di versalis

Unità: INMA SH

Data: 09/02/2015

Pagina 2 di 53

ı	N	DI	C	E
		$\boldsymbol{\nu}$	·	_

1. PREMESSA	3
2. ATTIVITA'	3
3. STATO DI AVANZAMENTO AL 31.12.2014	7
ALLEGATI – CONSUNTIVO DEI CONTROLLI	11
APPARECCHI A PRESSIONE	13
TUBAZIONI	18
PRESSURE SAFETY VALVE	26
SERBATOI	32
STRUMENTI CRITICI PER L'AMBIENTE	50

Unità: INMA SH

Data: 09/02/2015

Pagina 3 di 53

1. PREMESSA

La Presente relazione si pone come obiettivo l'analisi dell'avanzamento per gli interventi di ispezione, controllo e verifiche di legge dichiarati nell'istanza AIA con scadenza 2014.

In questa sede saranno analizzati gli aspetti realizzativi degli interventi, con particolare riferimento alle attività sui serbatoi, e le criticità presentatesi.

2. ATTIVITA'

Le attività di controllo facenti parte della dichiarazione AIA riguardano in particolare 7 tipologie di equipment:

- Linee
- PSV
- Apparecchi
- Serbatoi (controlli non distruttivi di controllo e realizzazione doppi fondi/doppie tenute)
- Livelli elettronici
- Valvole di respiro
- Strumenti critici per l'ambiente

Per quanto riguarda linee, apparecchi e PSV, gli interventi individuati e successivamente dichiarati nell'istanza AIA fanno riferimento al Piano di Ispezione di stabilimento, che prevede, oltre alla realizzazione delle verifiche imposte dalla legge, anche delle verifiche secondo piani dettati dalla buona tecnica, dalle analisi RBI e di guasto, e dall'esperienza maturata nel corso degli anni.

In particolare, gli interventi da effettuarsi entro l'anno riguardano:

- N. 123 linee in verifica completa, di cui 27 in scadenza di legge (D.M. 329) e altre 96 facenti parte del piano di controllo di stabilimento

Linee				
IMPIANTO	Totale			
ВТХ	7			
FORMEX	2			
REFORMING	34			
SPLITTER	29			
XILOLI	44			
PSEUDOCUMENE	7			
Totale	123			

Unità: INMA SH

Data: 09/02/2015

Data: 05/02/201

Pagina 4 di 53

- N. 71 PSV in taratura secondo verifiche di legge

Psv			
Impianto	Totale		
CTE	11		
PGS	30		
SPL	15		
XILOLI	5		
REFORMING	10		
Totale	71		

- N. 58 apparecchi in verifica di integrità.

Apparecchi			
Impianto	Totale		
ВТХ	2		
DFTA	1		
PSEUDO	20		
REFORMING	1		
XILOLI	34		
Totale	58		

Per quanto riguarda invece i serbatoi, gli interventi individuati riguardano soprattutto attività di manutenzione predittiva/ispettiva.

In particolare, gli interventi da effettuarsi entro l'anno riguardano:

- N. 6 Emissioni Acustiche
- N. 4 Ispezioni Esterne, da effettuarsi secondo piano di controllo interno

Serbatoi			
impianto	I. EST	E.A.	
CTE	0	1	
DFTA	0	4	
PGSS	4	1	
Totale	4	6	

Aggiornamento al 31.01.2015

Unità: INMA SH

Data: 09/02/2015

Pagina 5 di 53

- N. 61 tarature di livelli elettronici (uno per serbatoio)

Livelli			
impianto	Totale		
CTE	5		
DFTA	2		
FMX	1		
PGSS	50		
XILO	2		
Totale	61		

- N. 32 tarature di valvole di respiro

Valvole			
impianto	Totale		
CTE	5		
DFTA	2		
FORMEX	1		
XILOLI	4		
PGSS	20		
Totale	32		

- N. 39 controlli di strumenti critici per l'ambiente

Strumenti critici per l'ambiente			
impianto	Totale		
ВТХ	5		
CTE	12		
REFORMING	11		
TAC	5		
TAS	3		
TORCIA	1		
XILOLI	2		
Totale	39		

Unità: INMA SH

Data: 09/02/2015

Pagina 6 di 53

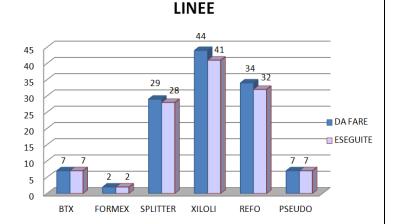
- N. 5 Doppifondi sui serbatoi (previsti per il 2014 secondo un programma quinquennale di realizzazione),

serbatoio	guaina	doppio fondo	doppia tenuta
S 11B	-	Si	-
S 124	-	Si	-
S 130B	-	Si	-
S 155	Si	Si	Si
S 203	-	Si	-
S 406	-	Si	-

Unità: INMA SH

Data: 09/02/2015

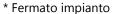
Pagina 7 di 53

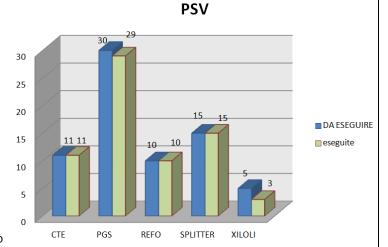

3. STATO DI AVANZAMENTO AL 31.01.2015

Al 31.01.2015 sono stati eseguiti i seguenti controlli:

LINEE:

Eseguiti 117 controlli su 123, come da scadenze di legge/piano di manutenzione. N.5 linee di quelle previste a piano risultano demolite, mentre una linea ha il controllo di legge nel 2016 (erroneamente caricato nel 2014)


LINEE				
IMPIANTO	totale	eseguite		
втх	7	7		
FORMEX	2	2		
REFORMING	34	32+1*+1**		
SPLITTER	29	28+1*		
XILOLI	44	41+3*		
PSEUDOCUMENE	7	7		
Totale	123	117+6*		


PSV:

Eseguiti 68 controlli su 71, come da scadenze di legge/piano di manutenzione. N.2 PSV fanno riferimento ad apparecchi fermati, mentre n.1 del PGS è psv doppia di un apparecchio rimasto a lungo fermo, la cui taratura è stata riprogrammata nel 2015

PSV			
Impianto	totale	Eseguite	
CTE	11	11	
PGSS	30	29+1*	
SPL	15	15	
XILOLI	5	3+2*	
REFORMING	10	10	
Totale	71	68+3*	

^{**} Riprogrammata per fermo apparecchio

Questo documento e gli annessi allegati sono Proprietà di **versalis**. Essi non possono essere riprodotti né interamente, né in parte per scopi diversi da quelli per i quali sono stati trasmessi, senza autorizzazione scritta di **versalis**

^{*} Linee demolite

^{**} Linea il cui controllo è nel 2016

Unità: INMA SH

Data: 09/02/2015

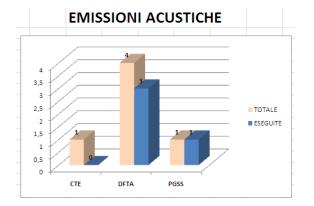
Pagina 8 di 53

APPARECCHI

Eseguiti 46 controlli su 59, come da scadenze di legge/piano di manutenzione.

Richieste ed ottenute deroghe per le verifiche di integrità di n. 13 apparecchi degli Xiloli (Scadenze portate a Novembre 2014), che sono stati fermati nello stesso Mese.

APPARECCHI				
Impianto	Totale	Eseguite		
DFTA	1	1		
ВТХ	2	2		
PSEUDOCUMENE	20	20		
XILOLI	34	21+13*		
REFORMING	1	1		
CENTRALE	1	1		
Totale	59	46		

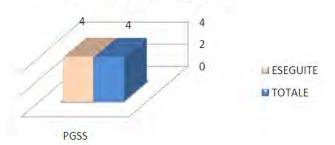

^{*} In deroga - fermati

APPARECCHI 35 30 25 20 21 20 15 10 5

SERBATOI – EMISSIONI ACUSTICHE

Eseguite 4 emissioni acustiche su 6.

EMISSIONI ACUSTICHE				
impianto	Totale	eseguite		
CTE	1	0+1*		
DFTA	4	3+1*		
PGSS	1	1		
Totale	6	4		


PSEUDO

SERBATOI – ISPEZIONI ESTERNE

Eseguite 4 ispezioni esterne su 4.

ISPEZIONI ESTERNE				
impianto	Totale	eseguite		
PGSS	4	4		
Totale	4	4		

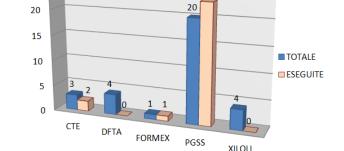
ISPEZIONI ESTERNE

Questo documento e gli annessi allegati sono Proprietà di versalis. Essi non possono essere riprodotti né interamente, né in parte per scopi diversi da quelli per i quali sono stati trasmessi, senza autorizzazione scritta di versalis

^{*} Riprogrammati nel 2015 per funzionamento in continuo del serbatoio

Unità: INMA SH

Data: 09/02/2015


Pagina 9 di 53

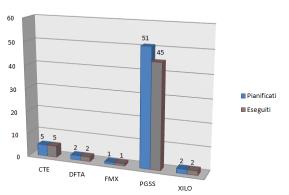
VALVOLE DI RESPIRO:

Eseguiti 26 controlli su 32, come da piano di manutenzione. Tarate le valvole di respiro di 3 serbatoi non previste a piano. 5 valvole sono state riprogrammate nel 2015, mentre 4 non sono state eseguite perché sono stati fermati i serbatoi.

25

VALVOLE DI RESPIRO				
impianto	da fare	eseguiti		
CTE	3	2+1*		
DFTA	4	4*		
FORMEX	1	1		
PGSS	20	23		
XILOLI	4	0+4**		
Totale	32	26		

Valvole di Respiro


LIVELLI ELETTRONICI:

Eseguiti 55 controlli su 61, come da piano di manutenzione. 5 serbatoi risultano vuoti e quindi non misurabili, gli altri sono stati riprogrammati a Febbraio 2015

LIVELLI					
impianto	Da fare	eseguiti			
CTE	5	5			
DFTA	2	2			
FMX	1	1			
PGSS	51	45+5*+1**			
XILO	2	2			
Totale	61	55+5*+1**			

^{*} Vuoti (S155, S130B, S400, S406, S413A)

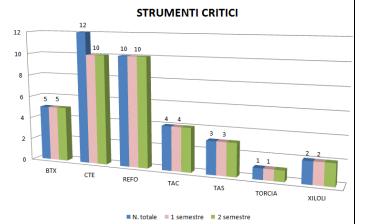
LIVELLI ELETTRONICI

^{*} Riprogrammate nel 2015

^{**} fermo Impianto

^{**} Riprogrammate a Febbraio

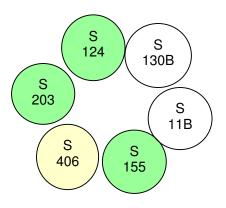
Data: 09/02/2015


Unità: INMA SH

Pagina 10 di 53

STRUMENTI CRITICI PER L'AMBIENTE

Eseguiti 35 controlli Relativi alla taratura 1° Semestre e 37 relativi alla taratura 2° Semestre


STRUMENTI CRITICI PER L'AMBIENTE impianto Totale 1° SEM 2° SEM BTX 5 5 5 10* 10* **CTE** 12 **REFORMING** 10 10 10 4 TAC 4 2 **TAS** 3 3 3 1 **TORCIA** 1 1 2 **XILOLI** 2 2 35+2* Totale 39 37+2*

DOPPI FONDI

Il piano di realizzazione seque il pianificato. In particolare, sono state completate le attività sul serbatoio 155, in corso dall'anno scorso.

serbatoio	guaina	doppio fondo	doppia tenuta
S 124	Eseguito	Eseguito	Eseguito
S 130 B	-	Da fare*	-
S 11B	-	Da fare*	-
S 155	Eseguito	Eseguito	Eseguito
S 203	Eseguito	Eseguito	Eseguito
S 406	-	Bonificato	-

* per i serbatoi S130B e S11B l'intervento è stato riprogrammato nel 2015

Questo documento e gli annessi allegati sono Proprietà di versalis. Essi non possono essere riprodotti né interamente, né in parte per scopi diversi da quelli per i quali sono stati trasmessi, senza autorizzazione scritta di versalis

^{* 2} strumenti da sostituire

Sintesi delle attività di controllo, verifica e manutenzione svolte nel 2014 sulle apparecchiature, linee, serbatoi e strumentazione rilevante dal punto di vista ambientale Aggiornamento al 31.01.2015 Unità: INMA SH

Data: 09/02/2015

Pagina 11 di 53

ALLEGATI – CONSUNTIVO DEI CONTROLLI

Questo documento e gli annessi allegati sono Proprietà di versalis. Essi non possono essere riprodotti né interamente, né in parte per scopi diversi da quelli per i quali sono stati trasmessi, senza autorizzazione scritta di versalis

CONTROLLI APPARECCHI

APPARECCHI A PRESSIONE

Riferimenti applicabili e campo di applicazione

Le procedure interne di riferimento sono:

- "Manuale Ispezione e Collaudi Polimeri Europa" ed. 3 del 20/05/2009
- "Circolare applicativa n.04/10" del 12/04/2010

Le apparecchiature a pressione, nel rispetto della normativa vigente al momento della fabbricazione, sono costruite:

- Secondo D.L. nº 93 del 25-2-2000 (Decreto di recepimento della Direttiva PED);
- Secondo D.M. 21-11-1972 (Norme per la costruzione degli apparecchi a pressione);
- Secondo R.D. 12-5-1927 n. 824.

L'esercizio di predette apparecchiature è regolamentato da D.M. n°329 del 1-12-2004, che, coerentemente a quanto previsto dall'art.19 del D.L. n° 93 del 25-2-2000, fornisce le prescrizioni volte ad assicurare la permanenza dei requisiti di integrità e di funzionamento in occasione dell'utilizzazione delle attrezzature a pressione. Eventuali prescrizioni più restrittive sono riportate nel manuale PED dell'apparecchiatura.

Tipologia di controlli applicabili

Le verifiche periodiche sono condotte, secondo D.Lgs 69 del 2013, da:

- INAIL per la prima verifica periodica, che vi provvede nel termine di 45 gg dalla richiesta, decorso inutilmente il quale il datore di lavoro può avvalersi delle ASL / ARPA o di soggetti pubblici/privati abilitati
- ASL/ARPA per le successive, che vi provvede nel termine di 30 gg dalla richiesta, decorso inutilmente il quale il datore di lavoro può avvalersi di soggetti pubblici/privati abilitati

Nel caso di verifica di integrità, ove possibile, si esegue, ad opera di personale specializzato, uno dei controlli non distruttivi sotto elencati:

- 1) UT (Ultrasonic test) Controllo con Ultrasuoni
- 2) RT (Radiographic test) Controllo con Sorgenti Radianti
- 3) PT (Penetrant test) Controllo con Liquidi Penetranti
- 4) MT (Magnetic particle test) Controllo con Particelle Magnetiche
- 5) VT (Visual test) Controllo Visivo
- 6) ET (Eddy current test) Controllo con Correnti Indotte
- 7) EA Emissione acustica

ed eventuale prova idraulica.

SIGLA	IMPIANTO	SEZIONE	NOME	DATA
950	REF	Serv	B 1	LUGLIO 2014
952	BTX	ВТХ	C 4/A	NOVEMBRE 2014
952	BTX	ВТХ	C 4/B	DICEMBRE 2014
2150	PSE	Pse	C 1/A	FEBBRAIO 2014
2150	PSE	Pse	C 1/B	FEBBRAIO 2014
2150	PSE	Pse	C 2	FEBBRAIO 2014
2150	PSE	Pse	V 1	FEBBRAIO 2014
2150	PSE	Pse	V 2	FEBBRAIO 2014
2150	PSE	Pse	V 4	FEBBRAIO 2014
2150	PSE	Pse	V 5	FEBBRAIO 2014
2150	PSE	Pse	E 1	FEBBRAIO 2014
2150	PSE	Pse	E 2	FEBBRAIO 2014
2150	PSE	Pse	E 3	FEBBRAIO 2014
2150	PSE	Pse	E 4	FEBBRAIO 2014
2150	PSE	Pse	E 5	FEBBRAIO 2014
2150	PSE	Pse	E 7	FEBBRAIO 2014
2150	PSE	Pse	E 8	FEBBRAIO 2014
2150	PSE	Pse	E 9	FEBBRAIO 2014
2150	PSE	Pse	E 10	FEBBRAIO 2014
2150	PSE	Pse	E 11	FEBBRAIO 2014

SIGLA	IMPIANTO	SEZIONE	NOME	DATA
2150	PSE	Pse	EA 1/A	FEBBRAIO 2014
2150	PSE	Pse	EA 1/B	FEBBRAIO 2014
2150	PSE	Pse	EA 2	FEBBRAIO 2014
955	XIL	Acid	MS 105	FERMATO
955	XIL	Acid	AS 201	FERMATO
955	XIL	Acid	AS 251	FERMATO
955	XIL	Acid	TT 251	FERMATO
955	XIL	Acid	TT 252/A	FERMATO
955	XIL	Acid	TT 252/B	FERMATO
955	XIL	Acid	TT 253	FERMATO
955	XIL	Acid	TT 254	FERMATO
955	XIL	Acid	MS 609	APRILE 2014
955	XIL	Dist	AS 1201	FERMATO
955	XIL	Dist	MS 1201	FERMATO
955	XIL	Dist	TT 1202	FERMATO
955	XIL	Dist	TT 1206	FERMATO
955	XIL	Dist	TA 1301/1	AGOSTO 2014
955	XIL	Dist	TA 1301/2	AGOSTO 2014
955	XIL	Dist	TA 1301/3	LUGLIO 2014
955	XIL	Dist	TA 1301/4	AGOSTO 2014
955	XIL	Dist	TA 1301/5	AGOSTO 2014
955	XIL	Dist	TA 1301/6	APRILE 2014

SIGLA	IMPIANTO	SEZIONE	NOME	DATA
955	XIL	Dist	TA 1301/7	AGOSTO 2014
955	XIL	Dist	TA 1301/8	AGOSTO 2014
955	XIL	Dist	TA 1301/9	AGOSTO 2014
955	XIL	Dist	TA 1301/10	LUGLIO 2014
955	XIL	Dist	TA 1301/11	AGOSTO 2014
955	XIL	Dist	TA 1301/12	AGOSTO 2014
955	XIL	Dist	TA 1301/13	APRILE 2014
955	XIL	Dist	TA 1301/14	LUGLIO 2014
955	XIL	Dist	TA 1301/15	APRILE 2014
955	XIL	Dist	TA 1301/16	AGOSTO 2014
955	XIL	Dist	TA 1301/17	APRILE 2014
955	XIL	Dist	TA 1301/18	LUGLIO 2014
955	XIL	Dist	TA 1301/19	LUGLIO 2014
955	XIL	Dist	TA 1301/20	APRILE 2014
955	XIL	Dist	TT 905	FERMATO
1204	ARI	Aria	ME 1C	30/09/2014

CONTROLLI LINEE

TUBAZIONI

Riferimenti applicabili e campo di applicazione

Le procedure interne di riferimento sono:

- "Manuale Ispezione e Collaudi Polimeri Europa" ed. 3 del 20/05/2009
- "Circolare applicativa n.04/10" del 12/04/2010

Gli impianti Versalis gestiscono linee di collegamento tra apparecchiature di processo per il trasferimento di fluidi.

Le linee a pressione con dn>3" possono essere soggette a verifiche di legge, secondo D.M. 329.

Dall'entrata in vigore del D.M. 329, le categorie di linee oggetto dello stesso decreto, sono state equiparate alle attrezzature a pressione e, in ottemperanza dell'art.16 del suddetto decreto, sono stati emessi gli elenchi delle linee di ciascuna fase e attività tecnicamente connessa; successivamente è stata condotta e completata un'attività massiva di denuncia linee nel corso dell'anno 2009 per tutte le linee rientranti nel campo di applicazione del D.M.329, finalizzata alla successiva denuncia ad INAIL.

Queste linee sono soggette a successive verifiche periodiche (visite di integrità).

Le linee a **pressione con dn<=3**" non sono soggette a verifiche di legge secondo D.M. 329, ma possono essere soggette a piani di ispezione interni, se rilevanti per aspetti QHSE (sulla base delle possibili conseguenza che può provocare una eventuale perdita del prodotto contenuto, sulla salute delle persone e sull'ambiente).

Ad esempio, le linee inserite nei **top event** secondo 334, inserite nei rapporti di sicurezza degli impianti, sono soggette a piani di ispezione interni.

I Piani di Ispezione e le frequenze di controllo sono definite basandosi su:

- Classificazione delle linee in base alla pericolosità del fluido contenuto;
- conoscenza del rateo di corrosione generalizzata (quando noto);
- analisi dei meccanismi di danno;
- conoscenza/analisi dei risultati delle precedenti ispezioni.

Tipologia di controlli applicabili

Nel caso di verifica di integrità, ove possibile, si esegue,ad opera di personale specializzato, uno dei controlli non distruttivi sotto elencati:

- 1) UT (Ultrasonic test) Controllo con Ultrasuoni
- 2) RT (Radiographic test) Controllo con Sorgenti Radianti
- 3) PT (Penetrant test) Controllo con Liquidi Penetranti
- 4) MT (Magnetic particle test) Controllo con Particelle Magnetiche
- 5) VT (Visual test) Controllo Visivo
- 6) ET (Eddy current test) Controllo con Correnti Indotte

IMPIANTO	SIGLA	DATA DEL CONTROLLO
втх	24"-952-P59-P1122	SETTEMBRE 2014
втх	6"-952-P768-P1310A-I	SETTEMBRE 2014
втх	6"-952-BD759-P1147A-V	SETTEMBRE 2014
втх	6"-BD777-P1147A	SETTEMBRE 2014
втх	6"-952-P569-P1310-I	SETTEMBRE 2014
втх	6"-952-P770-P1310A-I	SETTEMBRE 2014
BTX	6"-952-P540-P1147A-V	SETTEMBRE 2014
REFORMING	P74-P74N-P2513-24"	FEBBRAIO 2014
REFORMING	P113-P1110-4"	SETTEMBRE 2013
REFORMING	P19-P1514-6"	SETTEMBRE 2013
REFORMING	P210-P1311-8"	FEBBRAIO 2014
REFORMING	P21-P1110-6"	SETTEMBRE 2013
REFORMING	P329-P1311-10"	SETTEMBRE 2013
REFORMING	P32-P1122-1,5	SETTEMBRE 2013
REFORMING	P64-P1148-8"	SETTEMBRE 2013
REFORMING	P6-P1511-6"	FEBBRAIO 2014
REFORMING	P94N-P1311B-16"	SETTEMBRE 2013
REFORMING	P94-P1311-16"	SETTEMBRE 2013
REFORMING	P96-P1311-6"	FEBBRAIO 2014

		DATA DEL
IMPIANTO	SIGLA	CONTROLLO
REFORMING	P97-P1310-6"	FEBBRAIO 2014
REFORMING	P129-P1110-2"	SETTEMBRE 2013
REFORMING	P130-P1148-3"	SETTEMBRE 2013
REFORMING	P63-P1148-4"	SETTEMBRE 2013
REFORMING	P64-P1148-4"	SETTEMBRE 2013
REFORMING	P157-P1110-3"	FEBBRAIO 2014
REFORMING	P301N-1311B-1 1/2"	FEBBRAIO 2014
REFORMING	P301-P1311-1 1/2"-2"	FEBBRAIO 2014
REFORMING	P306.N-1311B-1 1/2"	FEBBRAIO 2014
REFORMING	P319-P1311-16"	FEBBRAIO 2014
REFORMING	P322-P1311-16"	NON ESISTE
REFORMING	P60-P1110-8"	SETTEMBRE 2013
REFORMING	P72N-P1311B-6"	FEBBRAIO 2014
REFORMING	P167-P1110-6"	FEBBRAIO 2014
REFORMING	P11-P2610-12"	NON ESISTE
REFORMING	P34-P1311-6"	NON ESISTE
REFORMING	P76-P2513-24"	SETTEMBRE 2013
REFORMING	P169-P1110-4"	FEBBRAIO 2014
REFORMING	P78-P2513-24"	SETTEMBRE 2013
REFORMING	P75-P2513-24"	GIUGNO 2014
REFORMING	P77-P2513-24"	GIUGNO 2014

IMPLANTO	IMPIANTO SIGLA	
IMPIANTO	SIGLA	CONTROLLO
REFORMING	P98-P1311-6"	GIUGNO 2014
SPLITTER	1 1/2"-5602-P047-P1310-V	GIUGNO 2014
SPLITTER	3/4"-5602-P195-P1310-V	GIUGNO 2014
SPLITTER	3/4"-5602-P207-P1310-V	MAGGIO 2014
SPLITTER	2"-5602-P046-P1310-V	GIUGNO 2014
SPLITTER	3/4"-5602-P191-P1310-V	MAGGIO 2014
SPLITTER	3"-5602-P5003-P1310-I	MAGGIO 2014
SPLITTER	3"-200-P207-P1310-V	MAGGIO 2014
SPLITTER	2"-5602-P5005-P1310-I	MAGGIO 2014
SPLITTER	1"-5602-P5019-P1310-V	MAGGIO 2014
SPLITTER	3"-5602-CW014-S1140-V	MAGGIO 2014
SPLITTER	3/4"-5602-P171-P1310-V	MAGGIO 2014
SPLITTER	3/4"-5602-P170-P1310-V	MAGGIO 2014
SPLITTER	3"-150-P166-P1310-I	GIUGNO 2014
SPLITTER	2"-5602-FG5001-S1146-V	MAGGIO 2014
SPLITTER	1/2"-5602-P5016-P1310-V	DICEMBRE 2013
SPLITTER	1/2"-5602-P199-P1310-V	MAGGIO 2014
SPLITTER	1/2"-5602-P5017-P1310-V	DICEMBRE 2013
SPLITTER	1/2"-5602-P5013-P1310-V	MAGGIO 2014
SPLITTER	1/2"-5602-P5012-P1310-V	MAGGIO 2014
SPLITTER	1/2"-5602-P5011-P1310-I	MAGGIO 2014

SIGLA	CONTROLLO
	CONTROLLO
1/2"-5602-P5010-P1310-V	GIUGNO 2014
1/2"-5602-P5009-P1310-V	MAGGIO 2014
2"-5602-P5006-P1310-I	GENNAIO 2014
2"-5602-P5008-P1310-V	MAGGIO 2014
4"-5602-P5002-P1310-I	MAGGIO 2014
1/2"-200-P215-P1310-V	MAGGIO 2014
4"-5602-P5001-P1310-I	MAGGIO 2014
2"-5602-P5007-P1310-V	GENNAIO 2014
12"-5602-P012-P1310	MAGGIO 2014
3/4"-951-P107-P1122	NON ESISTE
4"-951-P39-P1122	NOVEMBRE 2014
BD065-P1147-12"-V	FEBBRAIO 2014
BD269-P1147-12"-V	FEBBRAIO 2014
PV022-P1147-30"	FEBBRAIO 2014
BD059-P1147-4"	FEBBRAIO 2014
BD269-P1147-12"	FEBBRAIO 2014
BD065-P1147-12"	FEBBRAIO 2014
BD067-P1147-12"	FEBBRAIO 2014
8007-P-C41-1 1/2"	OTTOBRE 2013
7567-P-C01B-4"	OTTOBRE 2013
0568-P-C28-2"	OTTOBRE 2013
	1/2"-5602-P5009-P1310-V 2"-5602-P5006-P1310-I 2"-5602-P5008-P1310-V 4"-5602-P5002-P1310-I 1/2"-200-P215-P1310-V 4"-5602-P5001-P1310-I 2"-5602-P5007-P1310-V 12"-5602-P012-P1310 3/4"-951-P107-P1122 4"-951-P39-P1122 BD065-P1147-12"-V BD269-P1147-30" BD059-P1147-4" BD269-P1147-12" BD065-P1147-12" BD067-P1147-12" 8007-P-C41-1 1/2" 7567-P-C01B-4"

IMPIANTO SIGLA		DATA DEL
IMPIANTO	SIGLA	CONTROLLO
XILOLI	6505-P-C28-2"	MAGGIO 2014
XILOLI	8032-P-C15-3"	OTTOBRE 2013
XILOLI	6079-P-C28- ³ / ₄	OTTOBRE 2013
XILOLI	8516-P-C41-1"	OTTOBRE 2013
XILOLI	8047-P-C01-4"	OTTOBRE 2013
XILOLI	8048-P-C01-3"	OTTOBRE 2013
XILOLI	6196-P-C28-1"	OTTOBRE 2013
XILOLI	6107-P-C28-2"	OTTOBRE 2013
XILOLI	8042-P-C01-4"	APRILE 2014
XILOLI	8043-P-C01-3"	OTTOBRE 2013
XILOLI	6054-P-C28-2"	OTTOBRE 2013
XILOLI	6187-P-C28-1"	OTTOBRE 2013
XILOLI	8031-P-C15-3"	OTTOBRE 2013
XILOLI	2319-P-C28-3"	OTTOBRE 2013
XILOLI	5517-P-C28-1"	MAGGIO 2014
XILOLI	2680-P-C28-3/4"	APRILE 2014
XILOLI	2099-P-C28-2"	OTTOBRE 2013
XILOLI	4574-P-C01B-3"	OTTOBRE 2013
XILOLI	6520-P-C01B-2"	OTTOBRE 2013
XILOLI	0452-P-C01-3"	OTTOBRE 2013
XILOLI	6525-P-C01B-1"	OTTOBRE 2013

IMPLANTO	OLOL A	DATA DEL
IMPIANTO	SIGLA	CONTROLLO
XILOLI	6524-P-C01B-1 1/2"	OTTOBRE 2013
XILOLI	2646-P-C41-C01B-2"	NON ESISTE
XILOLI	2665-P-C28-3"	OTTOBRE 2013
XILOLI	2693-P-C28-3/4"	OTTOBRE 2013
XILOLI	0170-P-C28-3/4"	OTTOBRE 2013
XILOLI	0169-P-C28-1"	OTTOBRE 2013
XILOLI	1503-P-C28-1"	OTTOBRE 2013
XILOLI	0127-P-C28-3"	OTTOBRE 2013
XILOLI	0165-P-C28-1"	OTTOBRE 2013
XILOLI	17004-17005-RI-3/4"	OTTOBRE 2013
XILOLI	17003-RG-1/2"	OTTOBRE 2013
XILOLI	17003-RI-2"	OTTOBRE 2013
XILOLI	17001-RG-C01K-3/4"	OTTOBRE 2013
XILOLI	0761-P-C28-3"	FERMATO IMPIANTO
XILOLI	7506-P-C28-3"	OTTOBRE 2013
XILOLI	3502-P-C41-3"	OTTOBRE 2013
XILOLI	0560-P-C15-1 1/2"	FERMATO IMPIANTO
XILOLI	0154-P-C28-4"	FERMATO IMPIANTO
XILOLI	2659-P-X15-2"	APRILE 2014
XILOLI	17001-RI-C01K-3"	OTTOBRE 2013

PSV

PRESSURE SAFETY VALVE

Riferimenti applicabili e campo di applicazione

Le procedure interne di riferimento sono:

- "Manuale Ispezione e Collaudi Polimeri Europa" ed. 3 del 20/05/2009
- "Circolare applicativa n.04/10" del 12/04/2010

In concomitanza con le visite di funzionamento degli apparecchi a pressione e delle linee a pressione, o secondo scadenza predefinita viene eseguita la taratura al banco degli organi di protezione della stessa apparecchiatura.

L'esercizio di predette apparecchiature è regolamentato da D.M. n°329 del 1-12-2004, che, coerentemente a quanto previsto dall'art.19 del D.L. n° 93 del 25-2-2000, fornisce le prescrizioni volte ad assicurare la permanenza dei requisiti di funzionamento in occasione dell'utilizzazione delle attrezzature a pressione: una di queste prescrizioni prevede la taratura dell'organo di protezione.

La taratura è presenziata da funzionario AUSL.

Tipologia di controlli applicabili

Prova di scatto a banco dell'organo di protezione

IMPIANTO	SIGLA	INSTALLAZIONE	DATA DEL CONTROLLO
REFO	950 PSV 14/A	V 10	23/07/2014
REFO	950 PSV 14/B	V 10	23/07/2014
REFO	950 PSV 11/A	B 1	10/07/2014
REFO	950 PSV 11/B	B 1	10/07/2014
REFO	950 PSV 503/A	B 1	10/07/2014
REFO	950 PSV 503/B	B 1	10/07/2014
REFO	950 PSV 810	V 29	23/07/2014
REFO	950 PSV 1005	E 9 A/B	22/07/2014
REFO	950 PSV 1006	E 9/C	22/07/2014
REFO	950 PSV 1007	E 9/C	22/07/2014
SPLITTER	5602 PSV 101/A	E 101	15/10/2014
SPLITTER	5602 PSV 101/B	E 101	15/10/2014
SPLITTER	5602 PSV 105	E 103 N	07/10/2014
SPLITTER	5602 PSV 106	E 104	10/10/2014
SPLITTER	5602 PSV 111	V 101	10/10/2014
SPLITTER	5602 PSV 120	V 100	10/10/2014
SPLITTER	5602 PSV 152	C 151/A	07/10/2014
SPLITTER	5602 PSV 153	C 151/B	10/10/2014
SPLITTER	5602 PSV 154	E 151	10/10/2014
SPLITTER	5602 PSV 156	E 152	15/10/2014

IMPIANTO	SIGLA	INSTALLAZIONE	DATA DEL CONTROLLO
SPLITTER	5602 PSV 157	E 153	10/10/2014
SPLITTER	5602 PSV 159	V 153	15/10/2014
SPLITTER	5602 PSV 201	C 201	07/10/2014
SPLITTER	5602 PSV 202	C 202	07/10/2014
SPLITTER	5602 PSV 203	C 203	07/10/2014
XILOLI Z.A.	955 RV880-101/A	MS 611/B	10/04/2014
XILOLI Z.A.	955 RV880-101/B	MS 611/B	15/04/2014
XILOLI Z.A.	955 RV880-102	TT 605/B	Fermo Impianto
XILOLI Z.A.	955 RV816	MS 811 N	Fermo Impianto
XILOLI Z.A.	955 RV1316	PC 1315	10/04/2014
CTE	240 PSV2.11	V2	10/06/2014
CTE	240 PSV2.10	V2	10/06/2014
CTE	240 PSV3.14	B3	05/08/2014
CTE	240 PSV3.15	B3	05/08/2014
CTE	240 PSV3.10	V3	05/08/2014
CTE	240 PSV3.17	E3	05/08/2014
CTE	200 PSV2	V 2	12/06/2014
CTE	200 PSV2/S	V 2	03/06/2014
CTE	213 PSV8	V 1	03/06/2014
CTE	200 PSV14	E 8/A	05/06/2014
CTE	240 PSV3	PIC 03	05/06/2014

IMPIANTO	SIGLA	INSTALLAZIONE	DATA DEL CONTROLLO
PGS	990 PSV5/A	S 301	03/09/2014
143	990 T 3 V 3/A	3 301	03/03/2014
PGS	990 PSV5/B	S 301	23/10/2014
PGS	990 PSV6/A	S 302	22/12/2014
PGS	990 PSV6/B	S 302	20/01/2015
PGS	990 PSV7/A	S 311	22/12/2014
PGS	990 PSV7/B	S 311	20/01/2015
PGS	990 PSV8/A	S 312	23/10/2014
PGS	990 PSV8/B	S 312	03/09/2014
PGS	5702 PSV331/A	S 331	03/09/2014
PGS	5702 PSV331/B	S 331	23/10/2014
PGS	5702 PSV332/A	S 332	03/07/2014
PGS	5702 PSV332/B	S 332	03/06/2014
PGS	5380 PSV341/A	S 341	04/04/2014
PGS	5380 PSV341/B	S 341	30/01/2014
PGS	5702 PSV107/A	S 308	Riprogrammata 2015
PGS	5702 PSV107/B	S 308	01/07/2014
PGS	5702 PSV108/A	S 309	28/01/2014
PGS	5702 PSV108/B	S 309	20/02/2014
PGS	233 PSV7	E 1	26/06/2014
PGS	233 PSV302	E 2	20/02/2014
PGS	233 PSV20	E 3	31/07/2014

IMPIANTO	SIGLA	INSTALLAZIONE	DATA DEL CONTROLLO
PGS	5702 PSV103	E 4	23/10/2014
PGS	Cont. PSV1	MIS Campione	04/03/2014
PGS	Cont. PSV7	FIL Propilene/A	28/05/2014
PGS	Cont. PSV8	DEG Propilene/A	28/05/2014
PGS	Cont. PSV3	FIL Propilene/B	21/10/2014
PGS	Cont. PSV4	DEG Propilene/B	21/10/2014
PGS	Cont. PSV5	F/D Propano/A	19/11/2014
PGS	Cont. PSV6	F/D Propano/B	21/10/2014
PGS	Cont. PSV2	F/D GPL	13/11/2014

SERBATOI, LIVELLI ELETTRONICI E VALVOLE DI RESPIRO

SERBATOI

Riferimenti applicabili e campo di applicazione

Le procedure interne di riferimento sono:

- "Istruzione operativa Indu/Sete 015 Linee guida per l'ispezione dei serbatoi di stoccaggio di idrocarburi e prodotti chimici a pressione atmosferica"
- "Opi 020 versalis spa sh r01 Conferma metrologica dei misuratori elettronici di livello dei serbatoi di stoccaggio dei prodotti e dei termoelementi associati"
- Opi Manu 006 versalis spa sh r01 Controllo e taratura valvole di respiro o atmosferiche installate sui serbatoi a tetto fisso"

I serbatoi non a pressione (atmosferici) non sono soggetti a normativa specifica che ne regolamenti l'esercizio e l'ispezione periodica (sono esclusi dal D.M. 329).

Sono soggetti ad ispezione periodica regolamentata da linee guida aziendali e di Stabilimento basate generalmente su API 653 (standard di riferimento internazionale per lo stoccaggio dei prodotti petroliferi).

Oltre alle ispezioni periodiche dell'apparecchio, vengono controllati periodicamente anche gli organi di sicurezza quali livelli elettronici e valvole di respiro

Tipologia di controlli applicabili

L'ispezione dei serbatoio (apparecchio) viene usualmente condotta secondo quanto descritto nella norma API RP575 e smi.

A supporto delle ispezioni periodiche vengono eseguiti uno o più dei seguenti controlli:

- Ispezione visiva
- Liquidi penetranti
- Magnetoscopia
- Vacuum box test
- Ultasuoni
- Emissioni acustiche
- Flusso magnetico disperso

Le tipologie di controlli sono:

- Ispezioni visive di routine per verificare lo stato del serbatoio
- Ispezioni esterne, che comprendono l'analisi delle condizioni di mantello, tetto e accessori
- Ispezioni dei fondi mediante emissione acustica o controllo diretto
- Verifica metrologica dei misuratori elettronici di livello
- Controllo e taratura vlolve di respiro su serbatoi a tetto fisso

	TIPO	PRODOTTO			Liv.	Valv. Di
SIGLA	TETTO	STOCCATO	E. A.	i. EST	Elettr.	Resp
S 100	G2	M-Xilene			Giugno	
S 101	FPG	Benzina			Dicembre	
S 102	FPG	Xileni Misti			Maggio	
S 104	G2	Raffinato FMX			Giugno	
S 105	G2	Virgin Nafta			Ottobre	
S 106	G2	Virgin Nafta			Dicembre	
S 107	G2	Virgin Nafta		Maggio 2014	Dicembre	
S 108	G2	Raffinato FMX			Ottobre	
S 109	FP	O-Xilene			Novembre	
S 110	FP	O-Xilene			Maggio	Novembre 2013
S 111	G2	Benzina			Giugno	
S 112	G2	Benzina			Dicembre	
S 121	G2	Raffinato 500			Dicembre	
S 122	G2	Etilbenzene			Gennaio 2015	
S 123	G	M-Xilene			Ottobre	
S 124	G2	Etilbenzene		Giugno 2014	Ottobre	
S 125	G2	P-Xilene			Giugno	
S 130 B	FP	P-Xilene Grezzo	Gennaio 2015		Vuoto	
S 130 C	FP	Mesitilene Grezzo			Novembre	Settembre 2014

OLOL A	TIPO	PRODOTTO	БА	: 507	Liv.	Valv. Di
SIGLA	TETTO	STOCCATO	E. A.	i. EST	Elettr.	Resp
S 131	G2	Benzene		Aprile 2014	Gennaio	
				-	2015 IN	
S 132	G2	Benzene		Aprile 2014	CORSO	
S 141	G2	Virgin Nafta			Dicembre	
S 142	G2	Estratto Aromatico			Giugno	
S 151	FPG	Benzina			Maggio	Ottobre 2013
S 152	G2	Etilbenzene			Novembre	
S 153	G	M-Xilene			Ottobre	
S 154	G	P-Xilene			Maggio	
S 155	G	P-Xilene		Febbraio 2014	In manutenz	
S 200 D	FP	Xileni Misti			Novembre	Settembre 2014
S 201	FPG	Virgin Nafta		Marzo 2014	Giugno	
S 202	FPG	Raffinato FMX			Ottobre	Settembre 2014
S 203	FP	Xileni misti		Settembre 2014	Giugno	
S 400	FP	Aromatici C7- C8			Vuoto	Ottobre 2014
S 401	FPG	Aromatici C7- C8			Ottobre	Ottobre 2013
S 402	FPG	Taglio C6			Ottobre	
S 403	FP	Xileni Misti			Ottobre	
S 404	FP	Xileni Misti			Dicembre	Aprile 2013
S 405	FP	Pseudocumen e			Novembre	
S 406	FP	Pseudocumen e			Vuoto	Novembre 2014

0101.4	TIPO	PRODOTTO	ГА	: 505	Liv.	Valv. Di
SIGLA	TETTO	STOCCATO	E. A.	i. EST	Elettr.	Resp
S 407 A	FP	Mesitilene			Novembre	Settembre
0 10771						2014
S 407 B	FP	Mesitilene			Novembre	Settembre 2014
						Ottobre
S 408 A	FP	Mesitilene			Novembre	2014
S 408 B	FP	Mesitilene			Novembre	Ottobre
0 100 2						2014
S 410	FP	P-Xilene			Ottobre	Dicembre
		Grezzo				2014
S 411	FPG	Esano			Novembre	Ottobre 2014
						Dicembre
S 412	FP	Raffinato 800			Novembre	2014
0.445.4						Ottobre
S 413 A	FP	Mesitilene			Vuoto	2014
S 413 B	FP	Mesitilene			Novembre	Ottobre
0 410 B	,,				Novembre	2014
S 414	FP	P-Xilene			Novembre	Dicembre
		Grezzo				2013
S 415	G2	Oli Misti			Novembre	
S 523	FP	M-Xilene			Dicembre	
MF1101	F	P-Xilene			Dicembre	FERMO
MF101	F	Xileni Misti			Dicembre	FERMO
S21A	F	Olio			Dicembre	IN
02	·	combustibile			2.00	CORSO
S21B	F	Olio			Dicembre	Dicembre
		combustibile	Dinionificate			
S22	F	Gasolio	Ripianificata 2015		Dicembre	Dicembre
S1	F	N-			Dicembre	IN
-		Formilmorfolin				CORSO
S11A	F	Surnatante	Gennaio		Dicembre	IN
			2015			CORSO
S11B	F	Oli Misti	Gennaio 2015		Dicembre	IN CORSO
			2013			00/100

SIGLA	TIPO TETTO	PRODOTTO STOCCATO	E. A.	i. EST	Liv. Elettr.	Valv. Di Resp
S20	F	Acido Solforico	Ripianificata 2015		Novembre	
S15	F	Soda Caustica	Giugno 2014		Novembre	

SERBATOI - REGISTRO DI MANUTENZIONE

CONSUNTIVO DELLE MANUTENZIONI EFFETTUATE SUI SERBATOI – AGGIORNAMENTO AL 31.12.2014

NOME	IMPIANTO	INTERVENTO	Data	AVVISO/PM01/WBS
S 100	PGS	Taratura Liv. Elettronico	Giugno 2014	10782914

NOME	IMPIANTO	INTERVENTO	Data	AVVISO/PM01/WBS
		Revisione Regolatrice di Azoto	Agosto 2014	10439766
S 101	PGS	messa a terra su bocchello S101	Agosto 2014	10802568
		Taratura Liv. Elettronico	Dicembre 2014	10782914

NOME	IMPIANTO	INTERVENTO	Data	AVVISO/PM01/WBS
S 102	PGS	Taratura Liv. Elettronico	Maggio 2014	10782914

NOME	IMPIANTO	INTERVENTO	Data	AVVISO/PM01/WBS
		fuori servizio Livello Elettronico	Agosto 2014	10800941
S 104	PGS	ripristino Livello Elettronico (blocco)	Giugno 2014	10792436
3 104	PG3	Taratura Liv. Elettronico	Giugno 2014	10782914
		Manutenzione valvole dreno bacino serbatoio	Dicembre 2014	ININDU 127007 - ININDU 137000

NOME	IMPIANTO	INTERVENTO	Data	AVVISO/PM01/WBS
		Montaggio doppia tenuta	Giugno 2014	ININDU 127007 - ININDU 137000
	Montag tetto	Montaggio Cappucci su piedi del tetto	Giugno 2014	ININDU 127007 - ININDU 137000
		Sostituzione supporti e cavo termosensibile	Giugno 2014	ININDU 127007 - ININDU 137000
S 105	PGS	manutenzione di tutte le valvole a contatto con il mantello del serbatoio;	Giugno 2014	ININDU 127007 - ININDU 137000
		Manutenzione delle valvole di intercetto drenaggio bacino serbatoio	Giugno 2014	ININDU 127007 - ININDU 137000
		ripristino funzionalità Livello Elettronico	Marzo 2014	10782738
		Taratura Liv. Elettronico	Ottobre 2014	10782914

NOME	IMPIANTO	INTERVENTO	Data	AVVISO/PM01/WBS
S 106	PGS	Taratura Liv. Elettronico	Dicembre 2014	10782914

NOME	IMPIANTO	INTERVENTO	Data	AVVISO/PM01/WBS
S 107	PGS	Taratura Liv. Elettronico	Dicembre 2014	10782914

NOME	IMPIANTO	INTERVENTO	Data	AVVISO/PM01/WBS
		Ciecatura per manutenzione Mantello	Aprile 2014	10787135
S 108	PGS	Taratura Liv. Elettronico	Ottobre 2014	10782914
		Manutenzione valvole dreno bacino serbatoio	Dicembre 2014	ININDU 127007 - ININDU 137000

NOME	IMPIANTO	INTERVENTO	Data	AVVISO/PM01/WBS
S 109	PGS	Taratura Liv. Elettronico	Novembre 2014	10782914

NOME	IMPIANTO	INTERVENTO	Data	AVVISO/PM01/WBS
S 110	DCC	Taratura valvola di respiro	Novembre 2013	10439766
	PGS	Taratura Liv. Elettronico	Maggio 2014	10802568

NOME	IMPIANTO	INTERVENTO	Data	AVVISO/PM01/WBS
S 111	PGS	Taratura Liv. Elettronico	Giugno 2014	10782914

NOME	IMPIANTO	INTERVENTO	Data	AVVISO/PM01/WBS
S 112	PGS	Manutenzione valvole dreno bacino serbatoio	Dicembre 2014	ININDU 127007 - ININDU 137000
_		Taratura Liv. Elettronico	Dicembre 2014	10782914

NOME	IMPIANTO	INTERVENTO	Data	AVVISO/PM01/WBS
S 121	PGS	Taratura Liv. Elettronico	Dicembre 2014	10782914

NOME	IMPIANTO	INTERVENTO	Data	AVVISO/PM01/WBS
S 122	PGS	Taratura Liv. Elettronico	In corso	10782914

NOME	IMPIANTO	INTERVENTO	Data	AVVISO/PM01/WBS
S 123	PGS	Taratura Liv. Elettronico	Ottobre 2014	10782914

NOME	IMPIANTO	INTERVENTO	Data	AVVISO/PM01/WBS
		Sostituzione integrale della prima virola e della corona per tutta la circonferenziale ;	Ottobre 2014	ININDU 127007 - ININDU 137000
		Sabbiatura interna ed esterna del tetto;	Ottobre 2014	137000
		Sostituzione del tubo articolato;	Ottobre 2014	ININDU 127007 - ININDU 137000
		Sostituzione integrale dei piedi di appoggio del tetto galleggiante;	Ottobre 2014	ININDU 127007 - ININDU 137000 ININDU 127007 - ININDU 137000 ININDU 127007 - ININDU 137000 ININDU 127007 - ININDU
S 124	PGS	Sostituzione delle valvole di sfiato;	Ottobre 2014	
		Sostituzione del pozzetto di raccolta acqua e la VDR al suo interno	Ottobre 2014	ININDU 127007 - ININDU 137000
		manutenzione di tutte le valvole a contatto con il mantello del serbatoio;	Ottobre 2014	ININDU 127007 - ININDU 137000
		Manutenzione valvole di intercetto dranaggio bacino serbatoio;	Ottobre 2014	ININDU 127007 - ININDU 137000
		Taratura Liv. Elettronico	Ottobre 2014	10782914

NOME	IMPIANTO	INTERVENTO	Data	AVVISO/PM01/WBS
S 125	PGS	Taratura Liv. Elettronico	Giugno 2014	10782914

NOME	IMPIANTO	INTERVENTO	Data	AVVISO/PM01/WBS
S 130B	PGS	Taratura Liv. Elettronico	In Corso	10782914

NOME	IMPIANTO	INTERVENTO	Data	AVVISO/PM01/WBS
S 130C	DCC	Taratura valvola di respiro	Settembre 2014	10802983
	PGS	Taratura Liv. Elettronico	Novembre 2014	10782914

NOME	IMPIANTO	INTERVENTO	Data	AVVISO/PM01/WBS
		Taratura Liv. Elettronico	In corso	10782914
S 131	PGS	ripristino Livello Elettronico (blocco)	Marzo 2014	10778925
		Manutenzione valvole dreno bacino serbatoio	Dicembre 2014	ININDU 127007 - ININDU 137000

NOME	IMPIANTO	INTERVENTO	Data	AVVISO/PM01/WBS
		Taratura Liv. Elettronico	In corso	10782914
S 132	PGS	Manutenzione valvole dreno bacino serbatoio	Dicembre 2014	ININDU 127007 - ININDU 137000

NOME	IMPIANTO	INTERVENTO	Data	AVVISO/PM01/WBS
S 141	PGS	Taratura Liv. Elettronico	Dicembre 2014	10782914

NOME	IMPIANTO	INTERVENTO	Data	AVVISO/PM01/WBS
S 142	PGS	Taratura Liv. Elettronico	Giugno 2014	10782914

NOME	IMPIANTO	INTERVENTO	Data	AVVISO/PM01/WBS
S 151	PGS	Taratura Liv. Elettronico	Maggio 2014	10782914

NOME	IMPIANTO	INTERVENTO	Data	AVVISO/PM01/WBS
S 152	PGS	Taratura Liv. Elettronico	Novembre 2014	10782914

NOME	IMPIANTO	INTERVENTO	Data	AVVISO/PM01/WBS
S 153	PGS	Taratura Liv. Elettronico	Ottobre 2014	10782914

NOME	IMPIANTO	INTERVENTO	Data	AVVISO/PM01/WBS
S 154	PGS	ripristino funzionalita' livello elettronico	Gennaio 2014	AVVISO/PM01/WBS 10769918 10782914
		Taratura Liv. Elettronico	Marzo 2014	

NOME	IMPIANTO	INTERVENTO	Data	AVVISO/PM01/WBS
		Doppio fondo e geomembrana.	Luglio 2014	ININDU 127007 - ININDU 137000
		Montaggio doppia tenuta e calze sul tubo di calma	Luglio 2014	ININDU 127007 - ININDU 137000
		Montaggio cappucci su piedi del tetto.	Luglio 2014	ININDU 127007 - ININDU 137000
		Smontaggio degli snodi del tubo articolato e manutenzione degli stessi. A seguire collaudo idraulico dello stesso;	Luglio 2014	ININDU 127007 - ININDU 137000
		Sostituzione dei N°11 piedi di appoggio del tetto galleggiante	Luglio 2014	ININDU 127007 - ININDU 137000
		Manutenzione valvole interno bacino;	Luglio 2014	ININDU 127007 - ININDU 137000
		Sostituzione del piano di calpestio intermedio	Luglio 2014	ININDU 127007 - ININDU 137000
		Sostituzione del battitacco a partire dal piano di calpestio sino alla passerella circonferenziale e verniciatura;	Luglio 2014	ININDU 127007 - ININDU 137000
S 155	PGS	Ripristino saldature dei piantoni al battitacco della passerella circonferenziale	Luglio 2014	ININDU 127007 - ININDU 137000
		Posizionamento e saldatura di due lining di copertura sulla passerella circonferenziale	Luglio 2014	ININDU 127007 - ININDU 137000
		Sostituzione della tubazione 4'' all'interno del pozzetto di drenaggio;	Luglio 2014	ININDU 127007 - ININDU 137000
		Sostituzione del pozzetto di drenaggio e del relativo filtro;	Luglio 2014	ININDU 127007 - ININDU 137000
		Ripristino del cordone di saldatura e sostituzione dell'angolare di rinforzo nella zona di attacco al passamano dell'ultima virola dei 2 pannelli antincendio e dei 4 pannelli dei versatori schiuma.	Luglio 2014	ININDU 127007 - ININDU 137000
		Sostituzione supporti e cavo termosensibile del doppio fondo eseguendo la saldatura del barrotto nel lining.	Luglio 2014	ININDU 127007 - ININDU 137000
		Sostituzione integrale della prima virola e della corona per tutta la circonferenziale ;	Luglio 2014	ININDU 127007 - ININDU 137000

NOME	IMPIANTO	INTERVENTO	Data	AVVISO/PM01/WBS
		Sabbiatura interna ed esterna del tetto	Luglio 2014	ININDU 127007 - ININDU 137000
		Sostituzione del tubo articolato;	Luglio 2014	ININDU 127007 - ININDU 137000
		Sostituzione integrale dei piedi di appoggio del tetto galleggiante;	Luglio 2014	ININDU 127007 - ININDU 137000
S155	PGS	Sostituzione delle valvole di sfiato;	Luglio 2014	ININDU 127007 - ININDU 137000
3133	1 03	manutenzione di tutte le valvole a contatto con il mantello del serbatoio.	Luglio 2014	ININDU 127007 - ININDU 137000
		Manutenzione valvole di intercetto drenaggio bacino serbatoio	Luglio 2014	ININDU 127007 - ININDU 137000
		Taratura Liv. Elettronico	ln manutenzione	

NOME	IMPIANTO	INTERVENTO	Data	AVVISO/PM01/WBS
S 200D	DCC	Taratura valvola di respiro	Settembre 2014	10802983
	PGS	Taratura Liv. Elettronico	Novembre 2014	10782914

NOME	IMPIANTO	INTERVENTO	Data	AVVISO/PM01/WBS
S 201	PGS	Taratura Liv. Elettronico	Giugno 2014	10782914

NOME	IMPIANTO	INTERVENTO	Data	AVVISO/PM01/WBS
S 202	DCC	Taratura valvola di respiro	Settembre 2014	10802983
	PGS	Taratura Liv. Elettronico	Ottobre 2014	10782914

NOME	IMPIANTO	INTERVENTO	Data	AVVISO/PM01/WBS
		Taratura Liv. Elettronico	Giugno 2014	ININDU 127007 - ININDU 137000
		Doppio fondo e geomembrana.	Ottobre 2014	ININDU 127007 - ININDU 137000
		Riparazione del battitacco e dei corrimano danneggiati nel piano di accesso al bacino del serbatoio ;	Ottobre 2014	ININDU 127007 - ININDU 137000
		Riparazione del piano di calpestio intermedio e verniciatura della scala di accesso al tetto ;	Ottobre 2014	ININDU 127007 - ININDU 137000
		Sostituzione del piano di calpestio adiacente al tetto ;	Ottobre 2014	ININDU 127007 - ININDU 137000
		Riparazione del battitacco e del corrimano della scala di accesso al serbatoio;	Ottobre 2014	ININDU 127007 - ININDU 137000
		Eliminazione difetti su lamiere lato nord-est 1/2 virola;	Ottobre 2014	ININDU 127007 - ININDU 137000
S203	PGS	Verniciatura parapetto tetto serbatoio.	Ottobre 2014	ININDU 127007 - ININDU 137000
3203	PG3	Manutenzione valvole di intercetto;	Ottobre 2014	ININDU 127007 - ININDU 137000
		Manutenzione valvole di intercetto dranaggio bacino serbatoio	Ottobre 2014	ININDU 127007 - ININDU 137000
		Sabbiatura della corona del fondo per una lunghezza di 500 mm a partire dalla 1° virola;	Ottobre 2014	ININDU 127007 - ININDU 137000
		Sabbiatura della 1°virola per un altezza di 500mm a partire dal fondo.	Ottobre 2014	ININDU 127007 - ININDU 137000
		Sabbiatura del trincarino per tutta la circonferenziale per un altezza di circa 400mm;	Ottobre 2014	ININDU 127007 - ININDU 137000
		Sabbiatura dei PDE.	Ottobre 2014	ININDU 127007 - ININDU 137000
		manutenzione di tutte le valvole a contatto con il mantello del serbatoio;	Ottobre 2014	ININDU 127007 - ININDU 137000
		Manutenzione valvole dreno bacino serbatoio	Ottobre 2014	ININDU 127007 - ININDU 137000

NOME	IMPIANTO	INTERVENTO	Data	AVVISO/PM01/WBS
		Taratura valvola di respiro	Ottobre 2014	10802983
S 400	PGS	Taratura Liv. Elettronico	In corso	10782914
0 100	. 65	Manutenzione valvole dreno bacino serbatoio	Ottobre 2014	ININDU 127007 - ININDU 137000

NOME	IMPIANTO	INTERVENTO	Data	AVVISO/PM01/WBS
		Taratura valvola di respiro	Ottobre 2013	10802983
S 401	DCC	Revisione valvola regolatrice di Azoto	Agosto 2014	10439767
S 401	PGS	Manutenzione valvole dreno bacino serbatoio	Dicembre 2014	ININDU 127007 - ININDU 137000
		Taratura Liv. Elettronico	Ottobre 2014	10782914

NOME	IMPIANTO	INTERVENTO	Data	AVVISO/PM01/WBS
		Taratura Liv. Elettronico	Ottobre 2014	10782914
S 402	PGS	Manutenzione valvole dreno bacino serbatoio	Dicembre 2014	ININDU 127007 - ININDU 137000

NOME	IMPIANTO	INTERVENTO	Data	AVVISO/PM01/WBS
		Taratura Liv. Elettronico	Ottobre 2014	10782914
S 403	PGS	Manutenzione valvole dreno bacino serbatoio	Dicembre 2014	ININDU 127007 - ININDU 137000

NOME	IMPIANTO	INTERVENTO	Data	AVVISO/PM01/WBS
		Taratura valvola di respiro	Aprile 2013	10802983
S 404	PGS	Manutenzione valvole dreno bacino serbatoio	Dicembre 2014	ININDU 127007 - ININDU 137000
		Taratura Liv. Elettronico	Dicembre 2014	10782914

NOME	IMPIANTO	INTERVENTO	Data	AVVISO/PM01/WBS
S 405	PGS	Manutenzione valvole dreno bacino serbatoio	In corso	ININDU 127007 - ININDU 137000
		Taratura Liv. Elettronico	Novembre 2014	10782914

NOME	IMPIANTO	INTERVENTO	Data	AVVISO/PM01/WBS
		manutenzione serbatoio	In corso	ININDU 127007 - ININDU 137000
C 40C	DCC	Taratura valvola di respiro	Novembre 2014	10802983
S 406	PGS	Manutenzione valvole dreno bacino serbatoio	In corso	ININDU 127007 - ININDU 137000
		Taratura Liv. Elettronico	In corso	10782914

NOME	IMPIANTO	INTERVENTO	Data	AVVISO/PM01/WBS
S 407A	DCC	Taratura valvola di respiro	Settembre 2014	10802983
	PGS	Taratura Liv. Elettronico	Novembre 2014	10782914

NOME	IMPIANTO	INTERVENTO	Data	AVVISO/PM01/WBS
		sostituzione scheda temperatura	Marzo 2013	10780268
S 407B	PGS	Taratura Liv. Elettronico	Novembre 2014	10782914
		Taratura valvola di respiro	Settembre 2014	10802983

NOME	IMPIANTO	INTERVENTO	Data	AVVISO/PM01/WBS
6.4004	DCC	Taratura valvola di respiro	Ottobre 2014	Ottobre 2014 10802983
S 408A	PGS	Taratura Liv. Elettronico	Novembre 2014	10782914

NOME	IMPIANTO	INTERVENTO	Data	AVVISO/PM01/WBS
S 408B	PGS	Taratura Liv. Elettronico	Novembre 2014	10782914
		Taratura valvola di respiro	Ottobre 2014	10802983

NOME	IMPIANTO	INTERVENTO	Data	AVVISO/PM01/WBS
S 410	PGS	Taratura Liv. Elettronico	Ottobre 2014	10782914

NOME	IMPIANTO	INTERVENTO	Data	AVVISO/PM01/WBS
S 411	PGS	Taratura valvola di respiro	Ottobre 2014	10802983
		Taratura Liv. Elettronico	Novembre 2014	10782914
		Manutenzione valvole dreno	Dicembre 2014	ININDU 127007 - ININDU
		bacino serbatoio		137000

NOME	IMPIANTO	INTERVENTO	Data	AVVISO/PM01/WBS
S 412	PGS	Taratura Liv. Elettronico	Novembre 2014	10782914

NOME	IMPIANTO	INTERVENTO	Data	AVVISO/PM01/WBS
S 413A	DCC	Taratura valvola di respiro	Ottobre 2014	014 10802983
	PGS	Taratura Liv. Elettronico	In Corso	10782914

NOME	IMPIANTO	INTERVENTO	Data	AVVISO/PM01/WBS
S 413B	PGS	Taratura Liv. Elettronico	Novembre 2014	10782914

NOME	IMPIANTO	INTERVENTO	Data	AVVISO/PM01/WBS
6.444	DCC	Taratura valvola di respiro	Dicembre 2013	10802983
3 414	S 414 PGS	Taratura Liv. Elettronico	Novembre 2014	10782914

NOME	IMPIANTO	INTERVENTO	Data	AVVISO/PM01/WBS
S 415	PGS	Taratura Liv. Elettronico	Novembre 2014	10782914

NOME	IMPIANTO	INTERVENTO	Data	AVVISO/PM01/WBS
S 523	PGS	Taratura Liv. Elettronico	Dicembre 2014	10782914

NOME	IMPIANTO	INTERVENTO	Data	AVVISO/PM01/WBS
	FMX	Taratura valvola di respiro	In Corso	10802983
31		Taratura Liv. Elettronico	Dicembre 2014	10782914

NOME	IMPIANTO	INTERVENTO	Data	AVVISO/PM01/WBS
C11A	DETA	Taratura valvola di respiro	In Corso	10802983
S11A	DFTA	Taratura Liv. Elettronico	Dicembre 2014	10782914

NOME	IMPIANTO	INTERVENTO	Data	AVVISO/PM01/WBS
S11B	.B DFTA	Taratura valvola di respiro	In Corso	10802983
3110		Taratura Liv. Elettronico	Dicembre 2014	10782914

NOME	IMPIANTO	INTERVENTO	Data	AVVISO/PM01/WBS
C1 F	S15 DFTA	Taratura valvola di respiro	In Corso	10802983
212		Taratura Liv. Elettronico	Dicembre 2014	10782914

NOME	IMPIANTO	INTERVENTO	Data	AVVISO/PM01/WBS
630	DETA	Taratura valvola di respiro	In Corso	10802983
320	S20 DFTA	Taratura Liv. Elettronico	Dicembre 2014	10782914

NOME	IMPIANTO	INTERVENTO	Data	AVVISO/PM01/WBS
624.4	DETA	Taratura valvola di respiro	In Corso	10802983
S21A	DFTA	Taratura Liv. Elettronico	Dicembre 2014	10782914

NOME	IMPIANTO	INTERVENTO	Data	AVVISO/PM01/WBS
C21D	C24B DETA	Taratura valvola di respiro	Dicembre 2014	10802983
S21B DFTA	Taratura Liv. Elettronico	Dicembre 2014	10782914	

NOME	IMPIANTO	INTERVENTO	Data	AVVISO/PM01/WBS
caa	DETA	Taratura valvola di respiro	Dicembre 2014	10802983
322	S22 DFTA	Taratura Liv. Elettronico	Dicembre 2014	10782914

NOME	IMPIANTO	INTERVENTO	Data	AVVISO/PM01/WBS
N4F101	MF101 DFTA	Taratura valvola di respiro	Fermo Impianto	10802983
INITIOT		Taratura Liv. Elettronico	Dicembre 2014	10782914

NOME	IMPIANTO INTERVENTO		Data	AVVISO/PM01/WBS
N/F1101	DETA	Taratura valvola di respiro	Fermo Impianto	10802983
MF1101 DFTA	Taratura Liv. Elettronico	Dicembre 2014	10782914	

AIA 2014 ALLEGATO 6

STRUMENTAZIONE CRITICA PER L'AMBIENTE

STRUMENTI CRITICI PER L'AMBIENTE

Riferimenti applicabili e campo di applicazione

Le procedure interne di riferimento sono:

• "Opi 019 versalis spa sh r01 - Gestione e conferma metrologica della strumentazione critica per i Sistemi di Gestione"

Il campo di applicazione riguarda le seguenti classi di impianti/apparecchiaTure strumentali:

- Strumenti critici di misura
- Analizzatori di processo

La manutenzione preventiva di questi item è finalizzata a ridurre le probabilità di guasto dei componenti e si sviluppa secondo scadenze prefissate.

Le norme tecniche in molti casi non descrivono nel dettaglio le operazioni di manutenzione e la frequenza da eseguire sulle apparecchiature e gli impianti strumentali. Il gestore dell'impianto, di concerto con le unità tecniche, ha individuato, in funzione delle caratteristiche dell'impianto stesso e delle esigenze dei reparti, le opportune operazioni di manutenzione e la relativa frequenza.

Tipologia di controlli applicabili

per gli strumenti:

Controllo taratura

per gli analizzatori:

- Verifica visiva del corretto funzionamento del sistema di analisi (incluso trattamento campioni e adeguatezza della risposta analitica).
- o Taratura ed allineamento dei risultati tra campo e sala controllo
- o Verifica e manutenzione del sample system (pulizia filtri, rottametri, etc)
- o Pulizia dell'interno e l'esterno dello strumento
- Pulizia di tutte le ventole e i filtri
- Verifica dei collegamenti elettrici/pneumatici fra i moduli
- o Verifica dei gas carrier
- Verifica dell'assenza di perdite

ELENCO CONTROLLI A CONSUNTIVO

				Cadenza		
SIGLA	Descrizione	Impianto	Locazione	Controll	controlli	controlli
		•		0	(1° sem.)	(2° sem.)
1315PH1	Analizzatore di PH	TAS	Uscita vasca API	Semestrale	06/05/2014	20/11/2014
1315TOC1	Analizzatore TOC	TAS	Uscita Biologico	Semestrale	06/05/2014	20/11/2014
AN-CO B2	Analizzatore continuo fumi	CTE	Caldaia B2	Semestrale	25/06/2014	23/12/2014
AN-CO B3	Analizzatore continuo fumi	CTE	Caldaia B3	Semestrale	25/06/2014	23/12/2014
AN-CO C	Analizzatore continuo fumi	CTE	Camino	Semestrale	23/01/2014	18/07/2014
AN-NO C	Analizzatore continuo fumi	CTE	Camino	Semestrale	23/01/2014	18/07/2014
AN-O2 C	Analizzatore continuo fumi	CTE	Camino	Semestrale	23/01/2014	18/07/2014
AN-OPA C	Analizzatore continuo polveri	CTE	Camino	Semestrale	23/01/2014	18/07/2014
AN-SO2 C	Analizzatore continuo fumi	CTE	Camino	Semestrale	23/01/2014	18/07/2014
ARM 901	Analizzatore Co a raggi IR	XILOLI DIST.	Camino forno HF901	Semestrale	06/05/2014	11/11/2014
B-AN1	Analizzatore di Ossigeno	втх	Forno F1	Semestrale	15/01/2014	25/08/2014
B-AN2	Analizzatore di Ossigeno	втх	Forno F2	Semestrale	15/01/2014	25/08/2014
BANCO 1	Analizzatore Co a raggi IR	втх	Forno F1-F2	Semestrale	03/02/2014	25/08/2014
R-AR1	Analizzatore di Ossigeno	REFORMING	Forno F1	Semestrale	13/01/2014	25/08/2014
R-AR2	Analizzatore di Ossigeno	REFORMING	Forno F2	Semestrale	13/01/2014	25/08/2014
R-AR3	Analizzatore di Ossigeno	REFORMING	Forno F3	Semestrale	13/01/2014	25/08/2014
R-AR4	Analizzatore di Ossigeno	REFORMING	Forno F4	Semestrale	13/01/2014	25/08/2014
R-AR5	Analizzatore di Ossigeno	REFORMING	Forno F5	Semestrale	13/01/2014	25/08/2014

				Cadenza	controlli	controlli
SIGLA	Descrizione	Impianto	Locazione	Controll	(1° sem.)	(2° sem.)
R-AR6	Analizzatore di Ossigeno	REFORMING	Forno F6-F7	Semestrale	13/01/2014	25/08/2014
RANCO 1	Analizzatore Co a raggi IR	REFORMING	Forno F1-F2- F3	Semestrale	10/02/2014	25/08/2014
RANCO 2	Analizzatore Co a raggi IR	REFORMING	Forno F4-F5- F6-F7	Semestrale	10/02/2014	25/08/2014
950 FR500	Fuel Gas a Sasol	REFORMING		Semestrale	1802/2014	11/09/2014
214 PC-2	Pressione Fuel Gas a 214V1	втх		Semestrale	1802/2014	16/09/2014
950 FR22	Fuel Gas Consumato	REFORMING		Semestrale	1802/2014	11/09/2014
952 FR205	Fuel Gas a Btx	BTX		Semestrale	20/02/2014	18/09/2014
200 FR5	Fuel Gas Consumato a Cte	CTE		Semestrale	23/06/2014	11/09/2014
955 FR1309	Fuel Gas consumato a Xilo	XILOLI		Semestrale	20/02/2014	18/09/2014
230 FR1	Fuel Gas ai Piloti Torcia	TORCIA		Semestrale	20/02/2014	11/09/2014
240 FR208	Fuel Oil Caldaia B2	CTE		Annuale	•	la sostituzione a della caldaia
240 FR308	Fuel Oil Caldaia B3	CTE		Annuale	•	la sostituzione a della caldaia
219 FT1	Portata Acqua da Casic	TAC		Semestrale	15/03/2014	29/09/2014
02147 QL	Bilico	PGSS-UTF		Triennale	27/11	/2012
02148 QL	Bilico	PGSS-UTF		Triennale	13/11	/2013
201 PH35	Analizzatore di PH	TAC	Uscita vasca neutralizzaz.	Semestrale	14/04/2014	07/10/2014
LI S021A	Liv. Elettronico Serbatoio S21A	PGSS	Isola 27	Annuale	Dicemb	ore 2014
LI S021B	Liv. Elettronico Serbatoio S21B	PGSS	Isola 27	Annuale	Dicemb	ore 2014
1318 FI544	Portata effluente Pontile	CRIOGENIC O		Triennale	06/05	5/2013
	Pontile	U				

SIGLA	Descrizione	Impianto	Locazione	Cadenza Controll o	controlli (1° sem.)	controlli (2° sem.)
219 LI1A	Liv. Vasca Acqua Grezza S1A	TAC		Semestrale		18/12/2014
219 LI1B	Liv. Vasca Acqua Grezza S1B	TAC		Semestrale		18/12/2014
1315 FIT10	Misuratore Acqua Recuperata	TAS	Biologico	Semestrale		29/09/2014

ALLEGATO 6 CRONO PROGRAMMA ATTIVITA' 2015

ELENCO APPARECCHI - CONTROLLI A PREVENTIVO 2015

SIGLA	IMPIANTO	SEZIONE	NOME	TIPO CONTROLLO
950	REF	REF	V8	INTEGRITA'
950	REF	REF	V4/K3	INTEGRITA'
950	REF	REF	V3/K3	INTEGRITA'
950	REF	REF	V2/K3	INTEGRITA'
950	REF	REF	V19	INTEGRITA'
950	REF	REF	V1/K3	INTEGRITA'
950	REF	REF	EA3	INTEGRITA'
950	REF	REF	EA1/A	INTEGRITA'
950	REF	REF	EA1/B	INTEGRITA'
950	REF	REF	EA1/C	INTEGRITA'
950	REF	REF	EA1/D	INTEGRITA'
950	REF	REF	E5	INTEGRITA'
950	REF	REF	E22	INTEGRITA'
950	REF	REF	D4/K2B	INTEGRITA'
951	FMX	FMX	E13B	INTEGRITA'
213	CTE	CTE	V1	INTEGRITA'
240	CTE	CTE	V 3.01	INTEGRITA'
240	СТЕ	СТЕ	E 3.06	INTEGRITA'

ELENCO LINEE - CONTROLLI A PREVENTIVO 2015

IMPIANTO	SIGLA	TIPO CONTROLLO
BTX	P577-952-P1147A-PP-4"	INTERNO
BTX	P546-952-P1147A-PP-4"	INTERNO
BTX	P641-952-P1147-I-6"	DI LEGGE
BTX	P605-952-P1147-I-6"	DI LEGGE
BTX	P164-952-P1122-I-6"	DI LEGGE
BTX	P59-952-P1122-24"	DI LEGGE
BTX	P540-952-P1147A-V-6"	DI LEGGE
BTX	P768-952-P1310A-I-6"	DI LEGGE
BTX	BD777-952-P1147A-V-6"	DI LEGGE
BTX	BD759-952-P1147A-V-6"	DI LEGGE
BTX	P569-952-P1310-I-6"	DI LEGGE
BTX	P770-952-P1310A-I-6"	DI LEGGE
REFORMING	P81-P2513-24"	DI LEGGE
REFORMING	P79-P2513-24"	DI LEGGE
REFORMING	P97-P1310-6"	DI LEGGE
REFORMING	P96-P1311-6"	DI LEGGE
REFORMING	P94N-P1311B-16"	DI LEGGE
REFORMING	P94-P1311-16"	DI LEGGE
REFORMING	P80-P2513-24"	DI LEGGE
REFORMING	P64-P1148-4"	DI LEGGE

IMPIANTO	SIGLA	TIPO DI CONTROLLO
REFORMING	P6-P1511-6"	DI LEGGE
REFORMING	P329-P1311-10"	DI LEGGE
REFORMING	P210-P1311-8"	DI LEGGE
REFORMING	P21-P1110-6"	DI LEGGE
REFORMING	P19-P1514-8"	DI LEGGE
REFORMING	P113-P1110-4"	DI LEGGE
REFORMING	P72N-P1311B-6"	DI LEGGE
REFORMING	P60-P1110-8"	DI LEGGE
REFORMING	P319-P1311-16"	DI LEGGE
REFORMING	P82N-P2513B-18"	DI LEGGE
REFORMING	P82 -P2513B-24"	DI LEGGE
REFORMING	P78-P2513-24"	DI LEGGE
REFORMING	P77-P2513-24"	DI LEGGE
REFORMING	P76-P2513-24"	DI LEGGE
REFORMING	P74-P74N-P2513-24"	DI LEGGE
REFORMING	P34-P1311-6"	DI LEGGE
REFORMING	P98-P1311-6"	DI LEGGE
REFORMING	P81-P2513-24"	DI LEGGE
REFORMING	P79-P2513-24"	DI LEGGE
FORMEX	P94-951-P1122-3"	INTERNO
FORMEX	P69-951-P1122-12"	INTERNO
FORMEX	P62-951-P1122-1"	INTERNO
FORMEX	P61-951-P1122-10"	INTERNO

IMPIANTO	SIGLA	TIPO DI CONTROLLO
FORMEX	P562-951-P1147A-1 1/2"	INTERNO
FORMEX	P561-951-P1147A-1"	INTERNO
FORMEX	P552-951-P1147-3/4"	INTERNO
FORMEX	P542-951-P1147A-2"	INTERNO
FORMEX	P43-951-P1122-I-4"	INTERNO
FORMEX	P41-951-P1122-4"	INTERNO
FORMEX	BD503-951-P1147-3"	INTERNO
FORMEX	P507-951-P1147A-PP-4"	INTERNO
FORMEX	P56-951-P1122-I-4"	INTERNO
FORMEX	P502-951-P1147A-PP-4"	DI LEGGE
FORMEX	P501-P1122-951-6"- 12"	DI LEGGE
FORMEX	P15-951-P1122-12"	DI LEGGE
FORMEX	P53-951-P1122-I-12"	DI LEGGE
FORMEX	P514-P1147-8"	DI LEGGE
FORMEX	P27-951-P1122-I-14"	DI LEGGE
FORMEX	P73-951-P1122-10"	DI LEGGE
FORMEX	P71-951-P1122-10"	DI LEGGE
FORMEX	P12-951-P1122-10"	DI LEGGE
FORMEX	P597-951-P1147-I-4"	DI LEGGE
FORMEX	P57-951-P1122-I-10"	DI LEGGE
FORMEX	P56-951-P1122-I-10"	DI LEGGE
FORMEX	P551-951-P1147A-PP-6"	DI LEGGE
FORMEX	P550-951-P1147A-PP-6"	DI LEGGE

IMPIANTO	SIGLA	TIPO DI CONTROLLO
FORMEX	P515-951-P1147-I-6"	DI LEGGE
FORMEX	P514-951-P1147-I-8"	DI LEGGE
FORMEX	P512-951-P1147-I-12"	DI LEGGE
FORMEX	P510-951-P1147-I-4"	DI LEGGE
FORMEX	P509-951-P1147-I-6"	DI LEGGE
FORMEX	P503-951-P1147A-PP-20"	DI LEGGE
FORMEX	P49-951-P1122-I-14"	DI LEGGE
FORMEX	P36-951-P1147A-8"	DI LEGGE
FORMEX	P19-951-P1122-4"	DI LEGGE
FORMEX	P18-951-P1122-10"	DI LEGGE
FORMEX	P17-951-P1122-6"	DI LEGGE
FORMEX	P16-951-P1122-10"	DI LEGGE
FORMEX	P13-951-P1122-I-10"	DI LEGGE
FORMEX	P539-951-P1147A-4"	DI LEGGE
FORMEX	P35-951-P1122-20"	DI LEGGE
PONTILE	P326-233-P1420-6"	INTERNO
PONTILE	P503-3"	INTERNO
PONTILE	P325-0140-P1166-10"	INTERNO
PONTILE	P753-2155-Sv742-P1166-8"	INTERNO
PONTILE	P741-2155-P1166-8"	INTERNO
PONTILE	P316-0140-P1166-10"	INTERNO
PONTILE	P315-0140-P1166-10"	INTERNO
PONTILE	P1730-P1166-8"	INTERNO

IMPIANTO	SIGLA	TIPO DI CONTROLLO
PONTILE	P063PONT1240-8"	INTERNO
PONTILE	3"-0140-SL-P1166	INTERNO
PONTILE	2÷4-0140-SL-S1148	INTERNO
PONTILE	XM102-0140-P1166-10"	INTERNO
PONTILE	VN172-12"	INTERNO
PONTILE	TO162-140-P1166-10"	INTERNO
PONTILE	Sistema slop piattaforme	INTERNO
PONTILE	RI/RA182-140-P1166-12"	INTERNO
PONTILE	PX132-0140-P1166-10"	INTERNO
PONTILE	PF366-0140-P1166-10"	INTERNO
PONTILE	P752-1240-P1166-8"	INTERNO
PONTILE	P742-2155-P1166E-8"	INTERNO
PONTILE	P327-140-P1420-3"	INTERNO
PONTILE	P324-233-P1166-12"	INTERNO
PONTILE	P317-P1166-12"	INTERNO
PONTILE	P313-140-P1166-10"	INTERNO
PONTILE	P294-140-P1166-12"	INTERNO
PONTILE	P283-140-P1166-10"	INTERNO
PONTILE	P280-233-P1166-10"	INTERNO
PONTILE	P262-140-P1420-6"	INTERNO
PONTILE	P17-3"	INTERNO
PONTILE	P123-1240-P1420-3"	INTERNO
PONTILE	P1036-140-P1166-12"	INTERNO

IMPIANTO	SIGLA	TIPO DI CONTROLLO
PONTILE	P095-1240-P1166-10"	INTERNO
PONTILE	P093-140-P1166-10"	INTERNO
PONTILE	P050-10"	INTERNO
PONTILE	P048-1240-P1166-8"	INTERNO
PONTILE	P007-6"	INTERNO
PONTILE	OX112-0140-P1166-10"	INTERNO
PONTILE	MX122-140-P1166-10"	INTERNO
PONTILE	Manifolds	INTERNO
PONTILE	GA207-1240-P1166-8"	INTERNO
PONTILE	GA202-140-P1166-12"	INTERNO
PONTILE	EB142-0140-P1166-10"	INTERNO
PONTILE	CU192-12"	INTERNO
PONTILE	BE152-0140-P1166-10"	INTERNO
PONTILE	8"-Piatt.A1-N°1-P1166	INTERNO
PONTILE	8"-N°2-P1166	INTERNO
PONTILE	6"-N°5-P1166	INTERNO
PONTILE	6"-N°4-P1166	INTERNO
PONTILE	6"-N°2-P1166	INTERNO
PONTILE	4"-N°3-P1166	INTERNO
PONTILE	3"-Piatt.A2-N°1-P1166	INTERNO
PONTILE	3"-DN3"-SL-S1148	INTERNO
PONTILE	2÷4-Sist. Slop PiattPiatt. A2- P1166	INTERNO
PONTILE	2÷4-Sist. Slop PiattPiatt. A1- P1166	INTERNO

ELENCO PSV - CONTROLLI A PREVENTIVO 2015

IMPIANTO	SIGLA	INSTALLAZIONE
CTE	240 - PSV 3.11	V3.01
CTE	240 - PSV 1.12	IN OFFICINA
CTE	200 - PSV 13	E8/B
CTE	240 - PSV 7	PIC04
CTE	240 - PSV 6	PIC06
CTE	240 - PSV 5	PIC05
CTE	240 - PSV 3.12	E3.07
CTE	240 - PSV 2.12	E2.07
CTE	213 - PSV 8	V1
CTE	200 - PSV 2/S	V2
CTE	200 - PSV 2	V2
CTE	240 - PSV 2.17	E2.08
AZOTO	221-SV 3	Ricev.
AZOTO	221-SV 2	Ricev.
AZOTO	221-SV 1	Evap
AZOTO	221-SV 12/B	K6
AZOTO	221-SV S1/A	R1
AZOTO	221-SV S1	R1
AZOTO	221-SV 12	K4
ARIA	209-PSV 2	E 152
ARIA	215-PSV 1	V1
ARIA	209-PSV ME 1/A	ME1/A

IMPIANTO	SIGLA	INSTALLAZIONE
ARIA	209-PSV ME 1/B	ME1/B
ACQUE	1318-PSV 515	LN2-TN151
ACQUE	1318-PSV 569	LN2-N109
ACQUE	1318-PSV 585	LEB-EB110
ACQUE	1318-PSV 589	LN2-N168
ACQUE	1318-PSV 501	LN2-N1031
ACQUE	1318-PSV 502	LN2-N1002
ACQUE	218-PSV 1	V1/A
ACQUE	218-PSV 2	V1/B
ACQUE	1318-PSV 568	LN2-TN108
PGS	990 PSV5/A	S 301
PGS	990 PSV5/B	S 301
PGS	990 PSV6/A	S 302
PGS	990 PSV6/B	S 302
PGS	990 PSV7/A	S 311
PGS	990 PSV7/B	S 311
PGS	990 PSV8/A	S 312
PGS	990 PSV8/B	S 312
PGS	5702 PSV331/A	S 331
PGS	5702 PSV331/B	S 331
PGS	5702 PSV332/A	S 332
PGS	5702 PSV332/B	S 332
PGS	5380 PSV341/A	S 341

IMPIANTO	SIGLA	INSTALLAZIONE
PGS	5380 PSV341/B	S 341
PGS	5702 PSV107/A	S 308
PGS	5702 PSV107/B	S 308
PGS	5702 PSV108/A	S 309
PGS	5702 PSV108/B	S 309
PGS	233 PSV7	E 1
PGS	233 PSV302	E 2
PGS	233 PSV20	E 3
PGS	5702 PSV103	E 4
PGS	Cont. PSV1	MIS Campione
PGS	Cont. PSV7	FIL Propilene/A
PGS	Cont. PSV8	DEG Propilene/A
PGS	Cont. PSV3	FIL Propilene/B
PGS	Cont. PSV4	DEG Propilene/B
PGS	Cont. PSV5	F/D Propano/A
PGS	Cont. PSV6	F/D Propano/B
PGS	Cont. PSV2	F/D GPL

SERBATOI - ELENCO CONTROLLI A PREVENTIVO 2015

SIGLA	TIPO TETTO	PRODOTTO STOCCATO	E. A.	i. EST	Liv. Elettr.	Valv. Di Resp
S 101	FPG	Debenzolata	Isp Interna		×	X
S 102	FPG	Debenzolata			Х	Х
S 104	G2	Benzene			Х	N.A.
S 105	G2	Virgin Nafta			X	N.A.
S 106	G2	Virgin Nafta			X	N.A.
S 107	G2	Virgin Nafta			X	N.A.
S 108	G2	Taglio C6			X	N.A.
S 111	G2	Debenzolata			Х	N.A.
S 112	G2	Riformata		X	X	N.A.
S 121	G2	Riformata			Х	N.A.
S 131	G2	Benzene			Х	N.A.
S 132	G2	Benzene			X	N.A.
S 141	G2	Virgin Nafta			X	N.A.
S 142	G2	Estratto Aromatico			X	N.A.
S 201	FPG	Raffinato FMX			X	X
S 202	FPG	Raffinato FMX			X	
S 203	FP	Xileni misti	Х		Х	Х
S 402	FPG	Taglio C6			X	X
S 403	FP	Xileni Misti			X	X
S 404	FP	Xileni Misti			Х	Х
S21A	F	Olio combustibile			Х	Х

SIGLA	TIPO TETTO	PRODOTTO STOCCATO	E. A.	i. EST	Liv. Elettr.	Valv. Di Resp
S21B	F	Olio combustibile			X	X
S22	F	Gasolio	Х		Х	×
S1	F	N- Formilmorfol in			Х	Х
S20	F	Acido Solforico	Х	Х	Х	N.A.
S15	F	Soda Caustica		х	×	N.A.

STRUMENTI - ELENCO CONTROLLI A PREVENTIVO 2015

Sigla strumento	Descrizione	Impianto	Cadenza di controllo	2015
219 FT 1	Portata acqua da CASIC	TAC	Semestrale	Χ
201 PH 35	Anal. di PH - Uscita vasca di neutralizzazione	TAC	Semestrale	Χ
219 LI1A	Livello vasca Acqua grezza S1A	TAC	Semestrale	X
219 LI1B	Livello vasca Acqua grezza S1B	TAC	Semestrale	Χ
1318 FI 544	Portata effluente Pontile Criogenico	CRIO	Triennale	
AN-CO-B2	Analizz. continuo fumi CTE Caldaia B2	CTE	Semestrale	Χ
AN-CO-B3	Analizz. continuo fumi CTE Caldaia B3	CTE	Semestrale	Х
AN-CO-C	Analizz. continuo fumi CTE Camino	CTE	Semestrale	Х
AN-NO-C	Analizz. continuo fumi CTE Camino	CTE	Semestrale	Х
AN-O2-C	Analizz. continuo fumi CTE Camino	CTE	Semestrale	Х
AN-OPA-C	Analizz. continuo polveri CTE Camino	CTE	Semestrale	X
AN-SO2-C	Analizz. continuo fumi CTE Camino	CTE	Semestrale	Х
AN - PORTATA	Misuratore di portata fumi camino CTE	CTE	Annuale	Х
AN - H2O	Analizz. Umidità fumi camino CTE	CTE	Annuale	Х
AN-TR-C	Temperatura fumi camino CTE	CTE	Annuale	Х
200 FR-5	FUEL GAS consumato a CTE	CTE	Semestrale	Х
952 FR-205	FUEL GAS a BTX	BTX	Semestrale	Х
B-AN1	Analizz. di ossigeno BTX Forno F1	BTX	Trimestrale	Х
B-AN2	Analizz. di ossigeno BTX Forno F2	BTX	Trimestrale	Х
BANCO 1	Analizz. CO IR estrattivo BTX Forni F1-F2	BTX	Trimestrale	Х
952 TR-16	Temperatura uscita fumi forno F1	BTX	Semestrale	Х
952 TR-22	Temperatura uscita fumi forno F2	BTX	Semestrale	Х
214 PC-2	Pressione FUEL GAS a 214 V1	BTX	Semestrale	Х
RANCO 1	Analizz. CO IR estrattivo Forni F1-F2-F3	REFORMING	Trimestrale	Х
RANCO 2	Analizz. CO IR estrattivo Forni F4-F5-F6/7	REFORMING	Trimestrale	Х

Sigla strumento	Descrizione	Impianto	Cadenza di controllo	2015
R-AR1	Analizz. di ossigeno REFORMING Forno F1	REFORMING	Trimestrale	Χ
R-AR2	Analizz. di ossigeno REFORMING Forno F2	REFORMING	Trimestrale	Χ
R-AR3	Analizz. di ossigeno REFORMING Forno F3	REFORMING	Trimestrale	Χ
R-AR4	Analizz. di ossigeno REFORMING Forno F4	REFORMING	Trimestrale	Χ
R-AR5	Analizz. di ossigeno REFORMING Forno F5	REFORMING	Trimestrale	Χ
R-AR6	Analizz. di ossigeno REFORMING Forni F6-F7	REFORMING	Trimestrale	Х
TR300	Temperatura uscita fumi F1	REFORMING	Semestrale	Х
TR307	Temperatura uscita fumi F2	REFORMING	Semestrale	Х
TR314	Temperatura uscita fumi F3	REFORMING	Semestrale	Х
TR323	Temperatura uscita fumi F4	REFORMING	Semestrale	Х
TR335	Temperatura uscita fumi F5	REFORMING	Semestrale	Х
TR345	Temperatura uscita fumi F6/F7	REFORMING	Semestrale	Х
TR365	Temperatura uscita fumi al camino E7	REFORMING	Semestrale	Х
950 FR-22	FUEL GAS consumato	REFORMING	Semestrale	Х
230 FR-1	FUEL GAS ai piloti torcia	PGS	Semestrale	Х
FT-001	Misuratore portata gas di torcia IS15/IS30/CTE	PGS	Mensile	Х
FT-003	Misuratore portata gas di torcia 230-V1	PGS	Mensile	Х
FT-004	Misuratore portata gas di torcia IS30	PGS	Mensile	Χ

Ns. rif.

1419136

Casanova Lonati, Il 09 dicembre 2014

Spett.
VERSALIS S.p.A.
Stabilimento di Sarroch
S.S. 195, Km 18,8
09018 Sarroch (CA)

Alla C. a. Dott. D. Meloni

Vi trasmettiamo quanto segue:

- -) Relazione tecnica **1419136-001** e rispettivi allegati: Determinazione dell'Indice di Accuratezza (IAR) relativo del sistema di monitoraggio emissioni installato presso l'emissione E11.
- -) Relazione tecnica **1419136-002** e rispettivi allegati: Elaborazioni e verifica AST secondo UNI EN 14181:2005 relativo al sistema di monitoraggio emissioni installato presso l'emissione E11.

Restando a Vs. disposizione per qualsiasi ulteriore richiesta o chiarimento porgiamo distinti saluti.

L'Operatore di Area Fisica FS3 Dott.ssa Barbara Tatti

CLIENTE: <u>VERSALIS S.p.a. - Stabilimento di Sarroch</u>

OGGETTO: Elaborazioni e verifica AST secondo UNI EN

14181:2005

SITO DI PRELIEVO: Sarroch (CA)

EMISSIONE: E11

NS. RIF: Relazione Tecnica 1419136-002

DATA: 06/11/2014

Rev.	Redatto	Verificato	Approvato
0	Dott.ssa Tatti	Ing. Morini	Dott. Maggi
	Borlow Totti	Web Ulen	h.h.

Casanova Lonati, 06-11-2014

RT n. 1419136-002 pag. 2 di 32

INDICE

1.	DES	CRIZIONE DELL'IMPIANTO	4
	2.1.	PREMESSA	4
	2.2.	PRINCIPI TECNICI SU CUI SI BASA IL PROCESSO: CENTRALE TERMOELETTRI	CA (CTE)5
	2.2.1.	GENERATORI DI VAPORE	5
	2.2.2.	GENERATORI DI ENERGIA	7
	2.3.	CARATTERISTICHE PUNTO DI EMISSIONE	8
	2.3.1.	CAMINO N.6 - E11	8
	2.3.2.	LINEE DI PRELIEVO	9
	2.4.	STRUMENTAZIONE PRESENTE PRESSO IL CAMINO N.6 – E11	10
	2.4.1.	CARATTERISTICHE DELLO SME	10
	2.4.2.	STRUMENTAZIONE AUSILIARIA	11
	2.4.3.	SISTEMA DI CAMPIONAMENTO	
	2.4.4.	FILTRAZIONE GROSSOLANA	
	2.4.5.	SISTEMA TRATTAMENTO GAS CAMPIONE	13
	2.4.6.	DISTRIBUZIONE GAS CAMPIONE	
	2.4.7.	SISTEMA ANALISI MODULARE	15
	2.4.8.	CABINA ANALISI	15
3.	SIS	TEMA DI ACQUISIZIONE E SUPERVISIONE	16
	3.1.	ELABORAZIONE ED ACQUISIZIONE DEI DATI	17
	3.2.	MEMORIZZAZIONE MISURE	19
4.	STR	UMENTAZIONE DI PROVA	20
	4.1.	STRUMENTAZIONE DI MONITORAGGIO LABANALYSIS	20
5.	CON	DIZIONI DI FUNZIONAMENTO DEGLI IMPIANTI DURANTE LE PRO	VE 21
6.	VER	IFICHE EFFETTUATE	21
	6.1.	TEST FUNZIONALE E VERIFICHE PRELIMINARI	21
	6.1.1. sistem	Verifica documentale e verifica visiva del buono stato, della gestione e della manutenzia di campionamento e analisi	
	6.1.2.	Valutazione della rappresentatività della sezione di misura	22
	6.1.3.	Verifica di zero e span degli strumenti di misurazione	22
	6.1.4.	Verifica della linearità degli strumenti di misurazione	23
	6.1.5.	Verifica delle interferenze	23
	6.1.6.	Verifica della tenuta della linea di trasporto del campione dal punto di prelievo all'anal	izzatore 24
	6.1.7.	Verifica del tempo di risposta della strumentazione	24
	6.1.8.	Verifica del funzionamento della linea di trasmissione dati	24
	6.1.9.	Verifica efficienza del convertitore di NO2 ad NO	25

9.2.

Laboratorio: Via Europa, 5 - 27041 CASANOVA LONATI (Pavia) - Sede legale: Via Rota Candiani, 13 - 27043 BRONI (Pavia)
Tel. 0385.287128 (15 linee) - Fax 0385.57311 - E-mail: info@labanalysis.it - Sito internet: http://www.labanalysis.it

Casanova	Lonati	, 06-11-2014	RT n. 1419136-002 pag. 3 di 3	32
	6.2.	VERIFICA AST SECONDO UNI E	N 14181:2005	2
	6.2.1.	CALCOLO DELLA VARIABIL	ITÀ DEL SISTEMA E TEST DI VARIABILITÀ	2
	6.2.2.	VERIFICHE SU PARAMETRI	AUSILIARI	2
	6.2.3, UTILI	ULTERIORI PRECISAZIONI P ZZATI NELLE PROVE AST	ER QUANTO RIGUARDA I PARAMETRI AUSILIARI	2
	6.2.4.	AUMENTO DEL RANGE DI V	ALIDITÀ DELLE RETTE QAL2 IN USO	2
7.	RISU	ILTATI	***************************************	25
	7.1.	RISULATATI VERIFICHE PRELI	MINARI	2
	7.1.1. sistem	Verifica documentale e verifica va di campionamento e analisi	risiva del buono stato, della gestione e della manutenzione de	. 2
	7.1.2.	Valutazione della rappresentativi	tà della sezione di misura	20
	7.1.3.	Verifica di zero e span degli stru	menti di misurazione	25
	7.1.4.	Verifica della linearità degli strui	menti di misurazione	25
	7.1.5.	Verifica delle interferenze		29
	7.1.6.	Verifica della tenuta della linea d	li trasporto del campione dal punto di prelievo all'analizzator	e 36
	7.1.7.	Verifica del tempo di risposta del	lla strumentazione	30
	7.1.8.	Verifica del funzionamento della	tinea di trasmissione dati	30
	7.1.9.	Verifica dell'efficienza del conve	ertitore di NO ₂ ad NO	30
	7.2.	VERIFICA AST SECONDO UNI E	N 14181:2005	31
	7.3.	VERIFICHE SU PARAMETRI AU	SILIARI	3
8.	CON	CLUSIONI		32
9.	ALLI	GATL	***************************************	3
	9.1.	VERIFICA AST SECONDO UNI E	N 14181:2005	3

VERIFICHE SU PARAMETRI AUSILIARI

Casanova Lonati, 06-11-2014

RT n. 1419136-002 pag. 4 di 32

OGGETTO DELL'INDAGINE

Lo scopo dell'indagine effettuata all'emissione gassosa **E11** l'impianto di combustione a doppia caldaia presso **Versalis S.p.a.** - **Stabilimento di Sarroch** (CA) nei giorni 6, 7 e 8 ottobre 2014 è quello di verificare, tramite la procedura AST (Annual Surveillance Test) prevista dalla UNI EN 14181:2005, che le funzioni di calibrazione determinate in occasione della più recente QAL2 (Quality Assurance Level 2) si siano mantenute valide.

Per i parametri ausiliari (in questo caso il parametro O₂) non è stata eseguita la verifica AST dal momento che non è previsto il calcolo della retta di taratura QAL2, ma è stato effettuato il test di variabilità per verificare la validità statistica dei dati, dal momento che essi in generale rientrano nelle operazioni di normalizzazione all'umidità ed al tenore di ossigeno per gli inquinanti.

Nella relazione tecnica sono inoltre presenti i risultati delle prove preliminari effettuate prima dei prelievi necessari per la verifica AST.

1. DESCRIZIONE DELL'IMPIANTO

2.1. PREMESSA

Lo scopo della Centrale Termoelettrica è quello di fornire, mediante la produzione di vapore, il calore necessario alle diverse utenze di Stabilimento, ai livelli di temperatura adeguati ai diversi processi produttivi; allo stesso tempo si genera energia elettrica da immettere nella rete di Stabilimento in parallelo con quella fornita da gestore nazionale, GRTN, garantendo inoltre, nei casi di mancanza di quest'ultima, i servizi elettrici indispensabili, aumentando la produzione istantanea di energia elettrica a condensazione, se necessario.

La Centrale Termoelettrica produce vapore ed energia elettrica mediante combustione del solo olio combustibile o di olio combustibile e fuel gas nei generatori di calore, con successiva espansione del vapore prodotto nei turboalternatori.

La Centrale Termoelettrica si compone di:

- 2 gruppi di generazione di vapore e 2 gruppi di energia elettrica.
- sistema di stoccaggio e reintegro dell'acqua demineralizzata per usi termici, con diversi recuperi di calore che tratta ed effettua il reintegro di tutta la massa di acqua che entra alla CTE sia sotto forma di vapore che sotto forma di condense;
- sistema di alimentazione combustibile alle caldaie.

Casanova Lonati, 06-11-2014

RT n. 1419136-002 pag. 5 di 32

2.2. PRINCIPI TECNICI SU CUI SI BASA IL PROCESSO: CENTRALE TERMOELETTRICA (CTE)

Le caldaie marciano con combustibile misto, olio combustibile e fuel gas, oppure solo con olio combustibile. Il fuel gas viene alimentato dalla rete di Stabilimento attraverso un separatore 200-V-2. L'olio combustibile proviene da due serbatoi 213-S-21A/B ubicati all'interno dell'area della Centrale Termoelettrica. I serbatoi, della capacità 2000 m³, sono posti all'interno di un unico bacino di contenimento e di tetto fisso.

Sono inoltre dotati di serpentino di riscaldamento interno, che utilizza vapore di bassa pressione, in modo da mantenere il combustibile ad una temperatura che ne assicuri la fluidità necessaria per poterlo pompare. Nella stessa zona si trova l'area utilizzata per il sistema di interconnessione, di alimentazione e riscaldamento dell'olio combustibile ai bruciatori dei generatori di vapore. Tale sistema è costituito da una doppia stazione di pompaggio, la prima composta da quattro pompe da 25 m³/h (che originariamente alimentavano esclusivamente la centrale termoelettrica) e la seconda composta da due pompe. Tutte le pompe sono azionate da motori elettrici.

Sull'aspirazione dei serbatoi sono posti i filtri a freddo da 50 m³/h, denominati 213-MS-1A/B-3A/B, mentre sulla mandata delle pompe si trovano gli scambiatori di preriscaldo 213-E-1A/B-2A/B ed i filtri a caldo 213 MS-2A/B-4A/B da 50 m³/h ciascuno. La funzione dei filtri, del tipo autopulente, è quella di trattenere le impurità contenute nell'olio. Gli scambiatori, inseriti sulla mandata delle pompe, di cui uno in servizio e l'altro di riserva, riscaldano l'olio combustibile in modo che arrivi ai bruciatori delle caldaie ad un certo valore di viscosità ed utilizzano come fluido termico il vapore a bassa pressione.

A valle dei filtri a caldo inizia il collettore di distribuzione del fuel oil alle caldaie; ogni stacco è equipaggiato con un apparecchio di misura della portata, di una valvola di blocco e di una valvola di regolazione. A valle di queste ultime, prima dei bruciatori delle singole caldaie, si staccano le linee di ritorno al serbatoio che permettono il riscaldamento delle singole linee prima della messa in servizio dei bruciatori. Tutte le linee del fuel oil sono tracciate con vapore. Anche sulla corrente dell'olio combustibile alimentato agli impianti si trovano 2 scambiatori a vapore 213-E-2A/B. Nell'area è presente un serbatoio 213-S-22 per lo stoccaggio del gasolio, utilizzato in fase di avviamento per produrre il vapore necessario all'atomizzazione dell'olio combustibile; si tratta di un serbatoio della capacità di 100 m³, del tipo a tetto fisso. Il rifornimento tramite autobotte avviene direttamente sul serbatoio.

2.2.1. GENERATORI DI VAPORE

Nella Centrale Termoelettrica in esame sono installate 3 caldaie B-1, B-2 e B-3, del tipo pressurizzato e munite ciascuna di 6 bruciatori predisposti per funzionare con i seguenti

Casanova Lonati, 06-11-2014

RT n. 1419136-002 pag. 6 di 32

combustibili:

- fuel oil;
- fuel oil e fuel gas, in combustione mista;
 gasolio, in fase di avviamento.

La caldaia B-1 è fuori servizio.

Le caldaie B-2 e B-3, attualmente in esercizio, sono del tipo ad un solo corpo cilindrico.

Il circuito aria-fumi comprende:

- ventilatore aria;
- aerotermo a vapore;
- riscaldatore aria;
- camera di combustione;
- surriscaldatori;
- economizzatore;
- camino.

Sono presenti 2 camini, di cui uno, collegato alla caldaia B-1, non è più in funzione; l'altro camino, denominato E11, alto 140 m, riceve i fumi delle caldaie B-2 e B-3.

ll circuito dell'acqua invece comprende, per ciascun generatore di vapore:

- 1 degasatore che utilizza vapore per il degasaggio e porta la temperatura in uscita a
- 140-160 °C;
- 3 pompe di alimento;
- 1 preriscaldatore dell'acqua di alimento con vapore a media pressione, che porta la
- temperatura dell'acqua a 230-240 °C.

L'acqua demineralizzata, prelevata dall'impianto Trattamento Acque, viene alimentata ai due degasatori, previo passaggio negli scambiatori E-208 ed E-308; la degasazione consente l'eliminazione dall'acqua di ossigeno ed anidride carbonica in essa disciolti.

Tali gas possono produrre effetti indesiderati, quali corrosioni e incrostazioni. Il degasatore funziona con vapore di bassa pressione. Per spingere ulteriormente l'eliminazione dei gas, in particolare dell'ossigeno, si ricorre alla degasazione per via chimica con l'aggiunta di agente deossigente, sostanza che reagisce con l'ossigeno sviluppando azoto, inerte.

Per mantenere il corretto valore di pH dell'acqua nel corpo cilindrico delle caldaie viene impiegato il fosfato trisodico.

ll fosfato viene pompato direttamente nel corpo cilindrico.

Le pompe di alimento, rispettivamente P-303/304/305 e P-203/204/205, aspirano l'acqua dai degasatori e questa, attraverso i due scambiatori E-207 ed E-307, si porta in ingresso caldaia a circa 230°C. L'acqua di alimento, prima di arrivare al corpo cilindrico, attraversa

Casanova Lonati, 06-11-2014

RT n. 1419136-002 pag. 7 di 32

l'economizzatore, dove riceve calore a spese dei fumi caldi di combustione. I generatori producono vapore surriscaldato alle seguenti condizioni:

- portata:

200 t/h;

- pressione:

95 ate:

- temperatura:

500 °C.

2.2.2. GENERATORI DI ENERGIA

Il vapore di alta pressione prodotto dalle caldaie B-2 e B-3 viene inviato rispettivamente ai due turboalternatori TG-1 e TG-2, del tipo a condensazione.

I turboalternatori ricevono una portata di 280 t/h di vapore surriscaldato a 92 ate e 500°C, della potenza di 26 MW ciascuno; sono dotati di due prelievi regolati, con pressioni rispettivamente di 30 kg/cm² (media pressione) e 6 kg/cm² (bassa pressione).

Il massimo scarico ai condensatori E-201 e E-301 è di circa di 45 t/h.

Il vapore dei prelievi regolati, prima dell'immissione nei collettori dell'utenza, viene desurriscaldato tramite iniezione di acqua, portando la temperatura a circa 285°C per il vapore a 30 kg/cm² e a circa 185°C per il vapore a 6 kg/cm².

Il condensatore riceve il vapore di scarico; la condensa viene raccolta grazie all'uso dell'eiettore, nella parte inferiore del condensatore, aspirata dalla pompa di estrazione, che è dotata di una seconda pompa di riserva, e recuperata nel ciclo interno.

Lo rete elettrica è realizzata in modo da garantire flessibilità e continuità del servizio.

La Centrale Termoelettrica può funzionare con marcia isolata o in parallelo il gestore delle reti nazionali GRTN.

Casanova Lonati, 06-11-2014

RT n. 1419136-002 pag. 8 di 32

2.3. CARATTERISTICHE PUNTO DI EMISSIONE

2.3.1. CAMINO N.6 - E11

Il punto di emissione è il camino E11.

Il piano su cui sono installati gli strumenti si trova a 48,50 mt dal suolo.

Diametro camino interno (altezza prese prelievo SME): 3500mm Quota camino: 150 m Quota ballatoio di servizio sul camino: 48,50 m Altezza prese prelievo analizzatori(*): 50,20 m Altezza prese prelievo misuratore polveri(*): 49,67 m Altezza prese prelievo misuratore portata(*): 49,10 m Altezza prese prelievo misuratore pressione fumi(*): 49,40 m Altezza prese prelievo misuratore temperatura fumi(*): 50,20 m Altezza prese prelievo misuratore umidità (laser) (*): 49,50 m

(*): quote rilevate dal piano stradale

Dati Camino:

Forma Camino: Cilindrica

Diametro camino interno: 3,5 m

Quota ingresso effluenti gassosi: 12, 5 m

Quota sbocco effluenti gassosi tipica: 140 m

Portata effluenti gassosi tipica: 180.000 Nm³/h (Rif. all'O2 di

riferimento)

Temperatura effluenti gassosi: 140 °C

Composizione effluenti gassosi al camino

H₂O: 10.0 % (v/v)
O₂: 6.0 % (v/v)
CO₂: 8.0 % (v/v)

Contenuto indicativo dei principali inquinanti negli effluenti gassosi del camino

CO: 2.0 mg/Nm³ NO_x: 400.0 mg/Nm³

SO₂: 1000.0 mg/Nm³ (Rif. al 3% di O₂)

Casanova Lonati, 06-11-2014

RT n. 1419136-002 pag. 9 di 32

2.3.2. LINEE DI PRELIEVO

Il campione aspirato dal camino viene convogliato dalla sonda di prelievo alla relativa cabina di analisi dove avviene l'analisi mediante una linea riscaldata (Temperatura 180 °C, Diametro 6 – 8 mm, lunghezza 65 m circa).

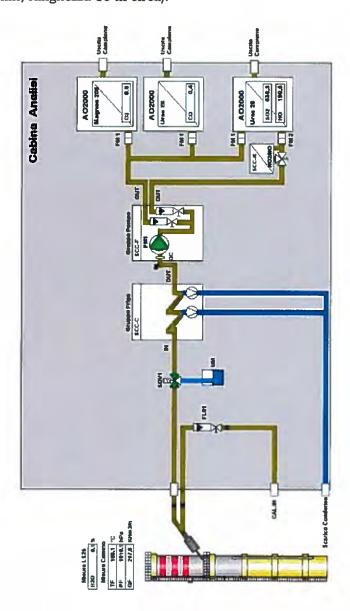


Fig. 1: Schema del sistema SME installato sul Camino N. 6 - E11

Il misuratore di Portata è del tipo in situ, quindi direttamente installato sul camino.

Casanova Lonati, 06-11-2014

RT n. 1419136-002 pag. 10 di 32

In corrispondenza delle sonde di prelievo SME sono disponibili delle flange per l'esecuzione di misure di confronto.

2.4. STRUMENTAZIONE PRESENTE PRESSO IL CAMINO N.6 - E11

E' presente una cabina di monitoraggio situata a terra, dotata di sistema di condizionamento, che garantisce il controllo della temperatura all'interno della cabina stessa.

Il prospetto completo degli analizzatori facenti parte del sistema da verificare, comprensivo dei valori di fondo scala impostato per ciascuno strumento, è riportato nella Tabella 3.

E' presente un sistema per la taratura automatica e manuale, mediante l'utilizzo di bombole di taratura.

2.4.1. CARATTERISTICHE DELLO SME

Il sistema analisi relativo allo SME dell'impianto è costituito da una cabina analisi. Tale cabina contiene un sistema di analisi completo e asservito al camino E11.

In cabina analisi è presente un PC SME detto "master" che riceve ed elabora i dati provenienti dai vari moduli di analisi. Un altro PC "slave" di backup è installato in sala controllo CTE.

Il sistema di analisi della cabina è costituito dai seguenti analizzatori e misuratori a camino:

Parametro Misurato	Produttore	Strumentazione	Principio di misura	Campo Misura	Matricola	Certificazione
O ₂	ABB	Advance Optima MAGNOS 26	Paramagnetico	0 – 25 %V	3.347867.3	TUV
со		Advance Optima URAS 26	NDIR	0 - 75 mg/Nm ³ 0 - 1500 mg/Nm ³	3.47097.3	
NO				0 - 100 mg/Nm ³ 0 - 2000 mg/Nm ³	3.347094.3	
SO ₂				0 - 300 mg/Nm ³ 0 - 3000 mg/Nm ³	3.347094.3	
H ₂ O		AO2000-LS25	Laser	0 - 40 %	10248	
POLVERI	sick	DT 100	Estinzione luce	0 - 100 %Est	13238313	
PORTATA		FLS 100PR	Ultrasuoni	0 - 180.000 Nm ³ /h	13318501	

Tabella 1: Strumentazione analitica installata

Casanova Lonati, 06-11-2014

RT n. 1419136-002 pag. 11 di 32

2.4.2. STRUMENTAZIONE AUSILIARIA

Sono inoltre presenti i seguenti strumenti:

- n.1 sonda prelievo gas campione (su camino) PFE 3 di produzione ABB,
- n.1 misuratore di temperatura (su camino) Termoelemento PT100 (Termoresistore al platino da 100 Ohm a 0 °C) e trasmettitore Modello DAT 1040, di produzione Tercom, campo di misura: 0 400 °C, Codice interno DCS: CTESANTF;
- n.1 misuratore di pressione assoluta dei fumi modello 266GSH di produzione ABB, 0 2,5 bar assoluti, tarato a 900 1100 mbar assoluti (a membrana), Codice interno DCS: CTESPressione fumi;
- n.1 convertitore NO₂/NO(*) (in armadio analisi) SCC-K di produzione ABB, per la trasformazione dell'NO₂ in NO per essere misurato dal sistema analisi. Lo strumento è posizionato sulla linea di misura dell'NO, prima dell'analizzatore e permette la misura degli ossidi di azoto totali NOx
- n.1 Unità condizionamento campione (in armadio analisi) SCC-C di produzione ABB;
- n.1 Unità aspirazione campione (in armadio analisi) SCC-F di produzione ABB;

(*): il convertitore viene inserito o escluso dal circuito pneumatico tramite apposito selettore montato fronte armadio analisi direttamente sul modulo SCC-K.

Tutte le apparecchiature previste e installate sono conformi alla vigente normativa in particolare:

- La strumentazione è conforme alla normativa CEE ed in particolare al D.Lgs. 152/06 ed ai più severi standards internazionali;
- Gli analizzatori previsti sono provvisti di certificati da Enti di certificazione esteri riconosciuto come previsti dal D.Lgs. 152/06 (TUV D);
- Il sistema è inoltre conforme alle normative CEI ed UNI; tutte le attività tecniche sono state eseguite in rispetto della normativa vigente in materia di prevenzione degli infortuni;
- Il sistema di acquisizione ed elaborazione dati prevede una procedura operativa perfettamente aderente a quella prevista dal D.Lgs. 152/06.

Casanova Lonati, 06-11-2014

RT n. 1419136-002 pag. 12 di 32

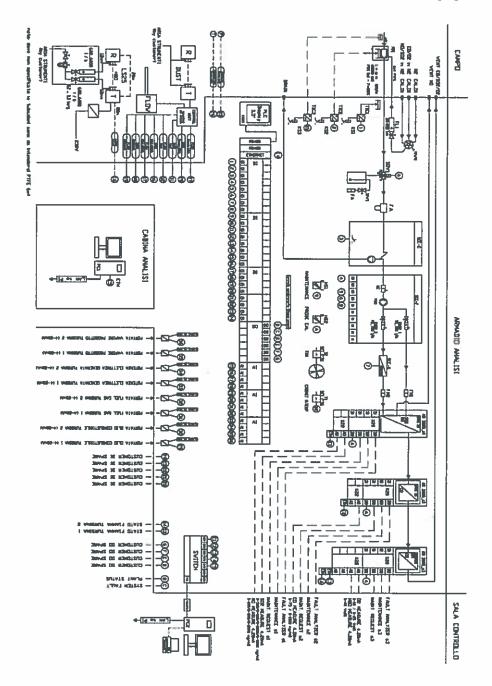


Fig. 2: Schema pneumatico del sistema di analisi

Casanova Lonati, 06-11-2014

RT n. 1419136-002 pag. 13 di 32

2.4.3. SISTEMA DI CAMPIONAMENTO

Il sistema di campionamento è costituito da

- N.1 sonde per il prelievo del gas campione, funzionante a 180°C e avente lunghezza immersione pari a 2000mm;
- N. 1 <u>linea riscaldata</u> flessibile per il trasporto del gas campione dalla sonda di prelievo all'armadio analisi, con lunghezza linea riscaldata pari a 85 m;

La sonda di prelievo è utilizzata per l'estrazione in continuo del gas campione dal camino, anche in presenza di condizioni particolarmente difficili come alte temperature, alti livelli di umidità del gas, alto contenuto in polveri e sporco, alta velocità di flusso e presenza di componenti condensabili ed aggressivi. Al fine di non alterare le condizioni chimico-fisiche dei fumi da analizzare, il prelievo ed il successivo trasporto del gas campione vengono effettuati a caldo ad una temperatura non inferiore a 160°C. Viene impiegata a tale scopo una speciale sonda, dotata di un filtro alloggiato in un box riscaldato. Il campione viene prelevato dalla sonda e viene inviato all'unità filtro per eliminare ogni particella interferente e da qui attraverso una linea riscaldata arriva al sistema trattamento gas campione.

La linea di trasporto è riscaldata elettricamente a 160°C per evitare alterazioni del gas da misurare.

2.4.4. FILTRAZIONE GROSSOLANA

Il campione viene prelevato dal camino tramite il Gruppo Sonda; esso si compone di uno stelo Flangiato DN 65 PN6, oltre che dell' unità di filtrazione R1021. Quest'ultima viene riscaldata tramite una resistenza PT 100 regolata a 160 gradi °C con Termoregolatore TIC installato all'interno del sistema di analisi, con allarme di blocco pompa di prelievo per anomalia di temperatura. L'elemento filtrante presenta un'efficienza del 99,9 %, riferita a particolato > di 5 micron. Una protezione in acciaio inox offre riparo dagli agenti atmosferici per le parti esposte nonché per la giunzione con la linea di trasporto del campione. In caso di anomalia dell'elemento riscaldante del filtro, compare un allarme sul sistema di acquisizione SME.

2.4.5. SISTEMA TRATTAMENTO GAS CAMPIONE

E' presente un sistema di trattamento fumi costituito da:

- N.1 <u>Unità condizionamento gas campione</u>, modelli SCC-C di produzione ABB, per l'eliminazione della condensa dal gas campione, costituiti da un sistema refrigerante, a sua volta costituito da:
 - o Gruppo frigorifero a compressore, con uno scambiatore di calore;
 - o Pompa peristaltica per evacuazione condensa;

Casanova Lonati, 06-11-2014

RT n. 1419136-002 pag. 14 di 32

o Display: un termometro con allarme di temperatura anomala.

Nei fumi di combustione è inevitabile la cospicua presenza di vapor acqueo, legata al combustibile usato; tante sono le coppie di atomi di idrogeno nel combustibile e tanto maggiori saranno le molecole d'acqua nei gas combusti. Se il gas campione giungesse con tutto il suo contenuto di vapor acqueo agli strumenti di analisi e ad una temperatura inferiore al punto di rugiada (o dew point), punto in cui il vapor acqueo inizia a condensare, la condensazione di una frazione dei vapori sarebbe inevitabile e ciò comporterebbe i seguenti danni:

- Irregolarità dei flussi per l'effetto del gorgogliamento nelle valvole e nei collegamenti pneumatici;
- Imbrattamento e possibili occlusioni nei collegamenti pneumatici;
- L'eventuale presenza di acqua va a compromettere la correttezza dei risultati delle analisi da parte dello strumento.

Il gas campione viene perciò raffreddato ad una temperatura inferiore al punto di rugiada tramite il refrigeratore, per separare ed eliminare la condensa.

Il gas campione passa attraverso lo scambiatore termico nel quale il gas campione viene raffreddato alla temperatura di rugiada che viene mantenuta costante tramite un sistema di controllo della temperatura.

La condensa che si accumula viene rimossa automaticamente da una pompa peristaltica.

2.4.6. DISTRIBUZIONE GAS CAMPIONE

E' presente un sistema di distribuzione gas campione con pompa di aspirazione fumi costituito da:

- N.1 <u>Unità di aspirazione gas campione</u>, SCC-F di produzione ABB, per il collegamento della linea di trattamento del gas campione e il sistema analisi; tale unità di aspirazione è a sua volta costituita da:
 - o N.1 monitor condensa ad elettrodi di tipo capacitivo con allarme per la segnalazione di presenza accidentale di condensa a valle dell'essiccatore; tale allarme agisce sul sistema pneumatico provocando il blocco del sistema;
 - o N.1 pompa a membrana di aspirazione campione; o N.2 flussimetri per la regolazione della portata del gas campione con allarme di basso flusso;

La funzione principale dell'unità è di dosare in modo continuo l'alimentazione di gas campione in modo che ne venga fornita una quantità costante al connesso sistema analisi, tramite la pompa a membrana di cui è fornito. Inoltre ha le seguenti funzioni :

- controlla il livello della condensa;

Casanova Lonati, 06-11-2014

RT n. 1419136-002 pag. 15 di 32

- regola e controlla la portata del gas campione.

2.4.7. SISTEMA ANALISI MODULARE

Nel sistema è presente:

- N. 1 sistema analisi modulare, modello Advance Optima AO2020 di produzione ABB a microprocessore, multicomponente per la misura in continuo delle concentrazioni di SO₂, H₂O, CO, NO, O₂, alloggiato in apposito armadio in cabina analisi, in custodie rack 19"; tale sistema è costituito da:
 - o N.1 modulo URAS 26 (tecnologia NDIR) per la misura di SO2 ed NO
 - o N.1 modulo URAS 26 (tecnologia NDIR) per la misura di CO
 - o N.1 modulo Magnos 206 (paramagnatico) per la misura di O2

Quest'ultimo modulo funge anche da unità di appoggio e controllo per l'analizzatore LS25 (Laser) utilizzato per la misura di H₂O.

2.4.8. CABINA ANALISI

La <u>cabina analisi</u> prevista per l'alloggiamento dei sistemi di analisi, realizzata in pannelli di lamiera verniciata e zincata a caldo, con intercapedine isolante in poliuretano espanso ad alta densità (50 mm), al suo interno montate e cablate si trovano le seguenti apparecchiature:

- o N.1 distribuzione elettrica;
- o N.1 sistema analisi;
- o N.2 PLC AC500-serie ECO prodotto da ABB.

La cabina è dotata di impianto elettrico (completo di illuminazione interna, prese servizio ecc.) realizzato secondo Normativa CEI con barra di terra per il collegamento delle apparecchiature.

L'armadio analisi (completo di illuminazione interna, prese servizio ecc.) realizzato secondo Normativa CEI con barra di terra per il collegamento delle apparecchiature; in particolare ha le seguenti caratteristiche:

Materiale costruzione:

lamiera d'acciaio

Grado di protezione:

1P 54 (con autocertificazione)

Verniciatura:

RAL 7032 interno/esterno

Dimensioni:
Accessori:

 $1000 \times 800 \times 2000 \text{ mm} (l \times p \times h)$

telaio girevole e golfari

Messa a terra:

Con morsetto o bullone esterno saldato sull'armadio

Cablaggio elettrico:

standard ABB (CEI 20/22)

Cablaggio pneumatico:

tubo PTFE 6x4 e raccorderia in PVDF

Casanova Lonati, 06-11-2014

RT n. 1419136-002 pag. 16 di 32

Ventilatore:

Per temperatura ambiente tra - 5...+35 °C

Alimentazione:

230 V, 50 Hz monofase

3. SISTEMA DI ACQUISIZIONE E SUPERVISIONE

Il sistema di acquisizione è composto dalle seguenti componenti hardware:

- N.1 PLC modello AC 500 ECO di produzione ABB, in cabina analisi, per l'acquisizione dati;
- N.2 switch con convertitore rame/fibra SW1 e SW2 in cabina analisi e in sala controllo;
- N.1 PC in cabina analisi, per l'elaborazione e supervisione dati (master).
- N.1 PC in sala controllo dell'impianto, per l'elaborazione e supervisione dati (backup)
 Gli analizzatori Advance Optima AO2020 sono interfacciati tramite collegamento ethernet allo Switch rame/Fibra presente in cabina analisi a cui si appoggiano il PLC presente all'interno dei singoli armadi analisi;

La connessione tra il PLC di acquisizione e i PC in sala controllo/cabina analisi avviene tramite rete Ethernet/fibra ottica e tra il PLC e il DCS della centrale tramite collegamenti analogici (hardware).

Il sistema di acquisizione e supervisione è stato progettato e sviluppato in modo da garantire la continuità operativa anche in presenza di un guasto o anomalia di un componente del sistema, grazie alla ridondanza dei componenti del sistema di acquisizione e supervisione.

I due computer di elaborazione dati SME installati in sala controllo/cabina analisi operano in modalità di ridondanza a caldo. Entrambi eseguono la stessa versione degli applicativi SME ed eseguono in parallelo le elaborazioni ed archiviazione dati. Solo il sistema designato come "Master" esegue le letture dalla strumentazione ed aggiorna il sistema 'Backup' mediante la rete ethernet. In questo modo si evitano conflitti sulle linee di comunicazione con il strumentazione ed i PLC in campo.

Il sistema 'Backup' controlla il funzionamento del sistema 'Master' ed in caso di anomalia prende il controllo della comunicazione con la strumentazione. Al ripristino del sistema 'Master' viene eseguito un allineamento degli archivi storici con i dati acquisiti dal sistema 'Backup'.

Casanova Lonati, 06-11-2014

RT n. 1419136-002 pag. 17 di 32

3.1. ELABORAZIONE ED ACQUISIZIONE DEI DATI

Il Sistema opera in ambiente multitasking, ed è completamente rispondente alle norme vigenti in Italia ed in particolare alle elaborazioni richieste:

- Direttiva del Parlamento Europeo 2001/80/CE del 23 Ottobre 2001;
- D.Lgs. 152/06 "Norme in materia di tutela dell'aria e di riduzione delle emissioni in atmosfera UNI EN 14181: Emissioni da Sorgente Fissa - Assicurazione della qualità di sistemi di misurazione automatici
- PMC allegato al decreto AIA DVA-DEC-2012-0000333.
- 1 2 PC di supervisione, alloggiati in sala controllo/cabina analisi, hanno le seguenti caratteristiche:
 - PC Elaborazioni Configurazione RAID 1
 - Scheda Ethernet 1 porta 10/100/1000 Mbit connettore RJ45 Express x1
 - Monitor LCD colori 21 pollici Wide
 - Stampante HP OfficeJet 7000 A3+
 - Applicativo Software per sistema Monitoraggio Emissioni
 - Modulo di gestione funzioni EN14181 QAL3
 - Licenza control Maestro Run Time 100 I/O

I moduli applicativi del software dello SME eseguono le funzioni di elaborazioni di Legge e la produzione dei report richiesti dagli Enti di Controllo (EC) e dalle prescrizione indicate nel PMC sottoscritto con ISPRA.

Il sistema di elaborazione dati ha le seguenti funzioni:

- acquisizione delle grandezze analogiche o digitali relative agli inquinanti misurati,
- acquisizione segnali digitali del sistema analisi per il monitoraggio delle emissioni,
- gestione degli allarmi provenienti dal sistema analisi,
- presentazione delle misure analogiche in tempo reale e in forma di trend,
- gestione della validazione delle misure secondo normativa,
- calcolo delle medie orarie,
- applicazione correzione in ossigeno,
- presentazione del valore medio orario corrente delle misure,
- verifica e segnalazione superamento soglie allarmi,
- memorizzazione delle misure acquisite e corrette,
- presentazione a video in forma grafica degli andamenti storici ed in tempo reale delle misure (trend),
- stampe dei valori memorizzati su comando utente,
- stampe degli allarmi e memorizzazioni su supporto magnetico

Casanova Lonati, 06-11-2014

RT n. 1419136-002 pag. 18 di 32

archiviazione dei dati.

Il software, sviluppato con un pacchetto SCADA, per l'acquisizione e l'elaborazione centrale dei dati di emissione, è costituito da un sistema in grado di:

- acquisire ed inviare pacchetti di dati ad altri nodi,
- elaborare e registrare i dati nel database,
- validare i dati ricevuti,
- definire e gestire le funzioni di supervisione,
- definire e visualizzare trend di dati,
- realizzare stampe, sia predefinite che parametriche
- archiviare i dati sia su archivio temporaneo che su archivio permanente.

Il sistema di acquisizione provvede a gestire direttamente i seguenti segnali delle grandezze misurate e digitali (allarmi / stati) del sistema analisi per il monitoraggio delle emissioni:

- acquisizione delle grandezze relative agli inquinanti misurati;
- acquisizione segnali digitali (stati e allarmi) del sistema analisi per il monitoraggio delle emissioni.

Il sistema effettua l'acquisizione del dato elementare con una frequenza di 10 secondi (dato elementare).

L'interfaccia utente del sistema monitoraggio emissioni è basata sulle seguenti pagine grafiche:

- Misure: per visualizzare tutti i valori acquisiti, raggruppati per significato, misure di analisi o misure di impianto, corredate dall'attributo di validità;
- Stati impianto: per controllare tutte le segnalazioni provenienti dal campo ed acquisite dal sistema;
- Trends: per rappresentare le variabili analogiche in tempo reale oppure quelle storiche in forma di andamento nel tempo;
- Impostazione: per inserire tutti i parametri di sistema (soglie, valori di riferimento, percentuale di validazione medie, ecc.) sotto una password conosciuta al solo operatore di livello più alto;
- Reports: per scegliere (ed eventualmente stampare) tramite apposita finestra le tabelle riassuntive delle emissioni in atmosfera dell'impianto;
- Sinottico: schema animato dell'impianto corredato dalle segnalazioni degli stati d'impianto principali e dalle misure analogiche più importanti.

Ogni pagina può essere stampata sulla stampante di sistema.

Casanova Lonati, 06-11-2014

RT n. 1419136-002 pag. 19 di 32

Sono implementati i criteri di invalidazione previsti dal D.Lgs. 152/06 nonché gli stati sistema e stati impianto. In accordo con il D.Lgs. 152/06 il sistema automaticamente provvede a validare sia i valori elementari acquisiti sia i valori orari medi calcolati.

3.2. MEMORIZZAZIONE MISURE

Il sistema genera automaticamente gli archivi dei dati elementari, delle medie orarie e degli stati d'impianto e i report di pertinenza, contenenti i dati medi orari, giornalieri e mensili e che vengono presentati in Allegato 1 del presente documento. Gli archivi storici presenti nella memoria del sistema (Hard-Disk) sono su base 10 secondi (dato elementare), su media al minuto sia tal quale che normalizzata, ed oraria e comprendono anche i codici di validazione o invalidazione; questi dati di base vengono poi utilizzati dal software di elaborazione e visualizzazione per effettuare il calcolo delle medie previste dal D.Lgs. 152/06.

Gli archivi dei dati analitici sono realizzati in conformità alla normativa FDA - CFR 21 Part 11 e permettono l'archiviazione delle medie orarie ed i parametri funzionali, che vengono poi elaborati dal software per la creazione delle tabelle contenenti i dati medi orari, giornalieri e mensili che vengono descritte in Allegato 1 del presente documento.

I dati ottenuti nelle fasi di preelaborazione e di elaborazione, associati ai rispettivi indici di validazione, rimangono nella memoria del sistema (sono garantiti 5 anni di dati residenti).

Il sistema di archiviazione dei dati storici è mutuato dal sistema SCADA sottostante gli applicativi SME. L'archiviazione dei dati storici è demandata al sistema SCADA che utilizza un database storico proprietario e binario conforme al 21 CFR Part 11. La struttura del database è tale da non richiedere database temporanei: al momento del campionamento o elaborazione, i dati vengono immediatamente archiviati. L'elevata velocità di accesso ed il frazionamento del database in archivi giornalieri o mensili non richiede particolari politiche di gestione delle dimensioni dei supporti di registrazione facilitando le funzioni di salvataggio su supporti rimovibili.

Casanova Lonati, 06-11-2014

RT n. 1419136-002 pag. 20 di 32

4. STRUMENTAZIONE DI PROVA

4.1. STRUMENTAZIONE DI MONITORAGGIO LABANALYSIS

Parametro misurato	Tipo di strument.	Costruttore	Modello	Tecnica di misura / Tipo di strumentazione	Campo di misura	Codice interno strument. utilizzata	Metodo	
O ₂	Analizzatore automatico	Horiba	PG 250	Paramagnetico	0-25 % vol	3458		UNI EN 14789:2006
со	Analizzatore automatico	Horiba	PG 250	NDIR	0-200 ppm		UNI EN 15058:2006	
NOx	Analizzatore automatico	Horiba	PG 250	Chemi luminescenza	0-500 ppm	3436	UNI EN 14792:2006	
SO₂	Analizzatore automatico	Horiba	PG 250	NDIR	0-500 ppm		UNI EN 10393:1995	
Polveri	Contatore volumetrico / pompa	LIFETEK	55XP-R	Manuale	8701	3235	UNI EN 13284-	
	Bilancia	ME	5-0-CE			1700	1:2003	

Tabella 2: Strumentazione di monitoraggio LabAnalysis

I prelievi manuali sono stati effettuati con l'impiego della seguente strumentazione:

- -) pompe aspiranti con portata massima di 40 l/min;
- -) contatori volumetrici con sensibilità 0.2 l;
- -) sonde isocinetiche in acciaio inox e/o sonde in vetro;
- -) filtri tarati in fibra di quarzo diametro 47 mm;
- -) termometro certificato;
- -) barometro certificato;
- -) micromanometri certificati;
- -) tubo di Pitot / Darcy;
- -) bilancia tecnica certificata.

I filtri sono stati pesati con una bilancia analitica certificata.

Tutta la strumentazione viene sistematicamente sottoposta a taratura mediante l'utilizzo di gas certificati e utilizzando campioni di riferimento primari certificati LAT o equivalenti. In allegato sono presenti i certificati dei gas e della strumentazione utilizzata. In allegato è presente anche la certificazione del diluitore utilizzato per le prove di linearità.

Casanova Lonati, 06-11-2014

RT n. 1419136-002 pag. 21 di 32

5. CONDIZIONI DI FUNZIONAMENTO DEGLI IMPIANTI DURANTE LE PROVE

Le condizioni di impianto, fornite dalla ditta, nelle giornate in cui sono stati condotti i campionamenti per l'AST, sono riassunte nella seguente tabella:

Periodo di osservazione	Condizione operativa	Port. Gas 1 (Nm3/h)	Port. Gas 2 (Nm3/h)	Port. Olio 1 (t/h)	Port. Olio 2 (t/h)	Port. Vapore 1 (t/h)	Port. Vapore 2 (t/h)
07/10/2014 Ore 02.00 - 06.00	Regolare	0,57	2477	5,71	4,51	93,40	112,8
07/10/2014 Ore 11.00 - 22.00	Regolare	0,44	2292	5,68	4,66	92,89	111,5
07/10/2014 Ore 23.00 – 24.00	Regolare	0,24	2391	5,76	4,58	94,36	110,7
08/10/2014 Ore 00.00 - 07.00	Regolare	1,30	2401	5,68	4,57	92,96	112,2

Tabella 3: Condizioni di impianto nelle giornate di campionamento

6. VERIFICHE EFFETTUATE

6.1. TEST FUNZIONALE E VERIFICHE PRELIMINARI

Prima di procedere all'esecuzione dei campionamenti destinati alle elaborazioni per la verifica delle rette, la norma UNI EN 14181:2005 stabilisce di effettuare una serie di prove preliminari e di verifiche documentali, atte ad accertare che lo SME sia in buone condizioni di funzionamento, che il campione da analizzare venga correttamente prelevato e condotto agli analizzatori nei sistemi estrattivi, che i registri ed i manuali di gestione siano in ordine. Tali prove sono più in dettaglio elencate e descritte in seguito e i risultati sono presentati in allegato alla presente relazione tecnica:

- Verifica documentale e verifica visiva del buono stato, della gestione e della manutenzione del sistema di campionamento e analisi
- Valutazione della rappresentatività della sezione di misura
- Verifica di zero e span degli strumenti di misurazione
- Verifica della linearità degli strumenti di misurazione
- Verifica delle interferenze
- Verifica della tenuta della linea di trasporto del campione dal punto di prelievo all'analizzatore
- Verifica del tempo di risposta della strumentazione
- Verifica del funzionamento della linea di trasmissione dati
- In aggiunta a quanto espressamente indicato dalla norma, è stata svolta la verifica dell'efficienza del convertitore di NO2 ad NO

Casanova Lonati, 06-11-2014

RT n. 1419136-002 pag. 22 di 32

6.1.1. Verifica documentale e verifica visiva del buono stato, della gestione e della manutenzione del sistema di campionamento e analisi

Le verifiche effettuate, atte all'accertamento del buono stato complessivo del sistema prima di procedere alle ulteriori indagini preliminari ed alla taratura, sono state svolte sulla base di quanto riportato dalla norma UNI EN 14181:2005, Appendice A.

6.1.2. Valutazione della rappresentatività della sezione di misura

La prova consiste nel misurare contemporaneamente la concentrazione dei parametri sottoposti a verifica (O₂) con una sonda fissa posizionata nel punto centrale della sezione del condotto e con una sonda mobile all'interno della medesima sezione del condotto (secondo il reticolo previsto dalla UNI EN 13284:2001). I valori così acquisiti vengono elaborati come previsto nella UNI EN 15259:2008, fornendo infine un giudizio sull'omogeneità del flusso gassoso. A seconda dei risultati statistici ottenuti, la norma prevede 3 differenti casistiche:

- Flusso gassoso omogeneo: le misurazioni possono essere effettuate in qualsiasi punto della sezione (1° caso)
- Flusso gassoso non omogeneo: si divide a sua volta in due sottocategorie a seconda dei valori assunti dalle grandezze intermedie calcolate statisticamente:
 - o 2º caso: le misurazioni devono essere effettuate in un punto rappresentativo, che sarà quello con le caratteristiche più simili alla media dell'intera sezione per quanto riguarda il rapporto tra le concentrazioni rilevate dal sistema di misura mobile e quelle rilevate dal sistema fisso.
 - o **3º caso**: le misurazioni devono obbligatoriamente essere effettuate in più punti, utilizzando come riferimento le griglie definite in base alle caratteristiche della sezione dalla norma UNI EN 13284:2001.

Le elaborazioni prevedono la definizione di grandezze statistiche tabellate ($F_{95\%}$, t_{N-1} ; $_{0,95}$) che dipendono dal numero di valori utilizzati, e di una grandezza denominata U_{perm} , definita sulla base delle indicazioni contenute nel documento "Guida tecnica per i gestori dei Sistemi di Monitoraggio in continuo delle emissioni in atmosfera (SME). Aggiornamento 2012" (Manuale 87/2013) redatto da ISPRA: per O_2 essa è pari a 2,1 % v/v e viene calcolata come il 10% (IC = intervallo di confidenza massimo ammesso) del valore massimo teorico (IC % V/V), espresso su base secca.

6.1.3. Verifica di zero e span degli strumenti di misurazione

Vengono effettuate le prove di zero con una bombola di azoto e le prove dello span con bombole dedicate, ottenendo le adeguate diluizioni mediante diluitore certificato, secondo il

Casanova Lonati, 06-11-2014

RT n. 1419136-002 pag. 23 di 32

metodo UNI EN 14181:2005. Per ognuno dei due livelli di concentrazione è prevista una lettura della risposta dello strumento in esame.

6.1.4. Verifica della linearità degli strumenti di misurazione

Il test di linearità è eseguito con bombole certificate, effettuando le adeguate diluizioni mediante diluitore certificato, viene seguito il metodo UNI EN 14181:2005; i valori di zero vengono controllati utilizzando una bombola di azoto.

Per la verifica della linearità di tutti gli analizzatori sono stati esaminati 5 livelli di concentrazione (compreso lo zero, che viene verificato 2 volte), eseguendo 3 letture per ogni livello su tutto il campo di misura, per un totale di 18 letture.

I certificati delle bombole di gas utilizzate, del diluitore sono allegati alla presente relazione. Per ogni gas esaminato viene calcolata la retta di regressione. In corrispondenza di ogni

concentrazione sono calcolati i residui dalla concentrazione media. I residui così calcolati vengono poi convertiti in residui relativi dividendo per il limite superiore di misurazione. Maggiori indicazioni sono riportate nell'allegato B del metodo UNI EN 14181:2005.

- Criteri di accettabilità:

La linearità risulta verificata se:

– per ogni residuo vale la relazione: $d_{c,rel} < 5\%$ dove $d_{c,rel}$ = residuo relativo in unità di concentrazione.

6.1.5. Verifica delle interferenze

La verifica, per ogni parametro, consiste nell'invio di gas "interferente" ad una concentrazione pari a circa l'80 % del campo di misura dello strumento e nella registrazione dei valori misurati per gli altri parametri.

- Criteri di accettabilità:

Per quanto riguarda i criteri di accettabilità si fa riferimento alla norma UNI EN 15267-3:2008, paragrafo 8.2.1, Tabella 1. Per l'analizzatore di ogni gas viene calcolato lo scostamento da zero dovuto a ciascun interferente (al netto dell'eventuale disallineamento dell'analizzatore riscontrato durante le prove di linearità alla lettura dei valori di zero), esprimendolo come percentuale del fondoscala; vengono calcolate la somma degli scostamenti relativi maggiori di zero e la somma degli scostamenti relativi minori di zero. La maggiore tra le due somme, in valore assoluto, viene confrontata con il limite di accettabilità che è definito nel modo seguente:

- 1) Per tutti i gas ad eccezione dell'ossigeno, è pari al 4% del fondoscala dell'analizzatore.
- 2) Per l'ossigeno, è pari ad una concentrazione di 0,40 % v/v. Per uniformità con gli

Casanova Lonati, 06-11-2014

RT n. 1419136-002 pag. 24 di 32

altri parametri, nella presente relazione tecnica anche per l'ossigeno il criterio di accettabilità è espresso come percentuale del fondoscala; dal momento che quest'ultimo è sempre pari a 25 % v/v, il criterio di accettabilità coincide con l'1,6 % del fondoscala.

6.1.6. Verifica della tenuta della linea di trasporto del campione dal punto di prelievo all'analizzatore

La prova relativa alla tenuta della linea di trasporto del campione dal camino alla cabina degli analizzatori viene effettuata inviando azoto in testa alla linea di trasporto gas (a monte della sonda di prelievo), mediante raccordo a T, in modo che la pompa del sistema di campionamento possa prendere la quota parte di gas che utilizza per l'analisi. Viene quindi registrata la risposta dell'analizzatore di O₂ in cabina analisi.

- Criteri di accettabilità:

La tenuta della linea è verificata se la concentrazione di O₂ letta all'analizzatore risulterà inferiore all'1% del fondo scala dell'O₂.

6.1.7. Verifica del tempo di risposta della strumentazione

La verifica avviene in 2 fasi:

- dapprima misurando il tempo impiegato (T₉₀) dal singolo analizzatore a raggiungere una prima lettura pari al 90% del proprio valore di span, dopo che una bombola certificata contenente lo stesso gas da verificare, di concentrazione prossima al valore di span, è stata collegata in testa alla sonda di campionamento.
- in seguito viene misurato il tempo impiegato dallo stesso analizzatore a discendere fino a raggiungere una prima lettura pari al 10% del fondoscala strumentale, dopo avere collegato in testa alla sonda di campionamento una bombola certificata contenente azoto.

Per la verifica del tempo di risposta viene considerato rappresentativo il misuratore di ossigeno. Si ricorda che il tempo di risposta rilevato deve essere inferiore a quello rilevato in sede di QAL1.

6.1.8. Verifica del funzionamento della linea di trasmissione dati

La linea di trasmissione dei dati viene verificata collegando un data-logger di Lab Analysis alla morsettiera predisposta per tale prova e registrando i segnali in uscita degli strumenti per la misurazione dei gas in cabina. I dati vengono acquisiti in formato ingegneristico (4-20 mA) e trasformati nell'unità di misura corrispondente ai dati elementari di Versalis S.p.a. - Stabilimento di Sarroch, utilizzando i fondi scala strumentali. Vengono quindi calcolate le

Casanova Lonati, 06-11-2014

RT n. 1419136-002 pag. 25 di 32

medie orarie dai dati convertiti di LabAnalysis e le medie orarie dai dati elementari di Versalis S.p.a. - Stabilimento di Sarroch, che saranno confrontate per un periodo di tempo significativo.

- Criteri di accettabilità:

La prova si considera superata se la differenza tra i due segnali è inferiore al 2 % del fondo scala in tutti i casi.

- Criteri di accettabilità:

La prova di trasmissione dati si considera superata se la differenza tra i due segnali è inferiore al 2 % del fondoscala, per tutto il periodo di confronto e per ciascuno dei parametri testati.

6.1.9. Verifica efficienza del convertitore di NO₂ ad NO

L'efficienza del convertitore di NO₂ ad NO viene valutata erogando all'analizzatore una corrente di NO mentre il convertitore è disinserito. Quindi viene inserito il convertitore e generato in situ NO₂ mediante l'impiego di un ozonizzatore. Dal confronto tra le concentrazioni di NO ed NO_X rilevate prima e dopo l'accensione dell'ozonizzatore, si calcola l'efficienza del convertitore.

- Criteri di accettabilità:

La prova si considera superata se il rendimento di conversione di NO2 ad NO supera il 95%.

6.2. VERIFICA AST SECONDO UNI EN 14181:2005

La verifica viene eseguita negli anni che intercorrono tra una verifica QAL2 e la successiva, a meno che il mancato rispetto del range di validità delle rette di calibrazione secondo le indicazioni della norma al paragrafo 6.5, oppure un cambio sostanziale delle condizioni operative dell'impianto o del sistema di misurazione emissioni impongano un'ulteriore verifica QAL2. La procedura AST consente di verificare se i valori forniti dal sistema in esame (AMS – Automated Measuring System) rispondono ancora ai criteri di incertezza come dimostrato dalla precedente QAL2 e se la funzione di calibrazione calcolata nell'ultima QAL2 rimane valida. Nel caso in cui la verifica AST non sia superata, è necessario effettuare una nuova calibrazione tramite la procedura QAL2.

La procedura AST richiede che vengano utilizzate nelle elaborazioni almeno 5 coppie di valori SRM – AMS.

Per quanto riguarda SRM, per parametri che richiedono campionamento manuale, sono stati effettuati prelievi di durata variabile, fornendo il valore medio rilevato per ogni campionamento; per i parametri (gas) registrati tramite analizzatori automatici sono state effettuate misure istantanee in continuo, da cui sono state ricavate le medie orarie.

Casanova Lonati, 06-11-2014

RT n. 1419136-002 pag. 26 di 32

Per quanto riguarda AMS, in corrispondenza dei prelievi SRM sono stati ricavati i valori medi orari utilizzando i dati elementari forniti dall'esercente; questi ultimi non contengono correzioni dovute a precedenti tarature con metodo QAL2 ed ai relativi intervalli di confidenza sperimentale.

Sono stati condotti per ogni parametro almeno 5 campionamenti in parallelo come indicato dalla norma.

6.2.1. CALCOLO DELLA VARIABILITÀ DEL SISTEMA E TEST DI VARIABILITÀ

Utilizzando la funzione di calibrazione calcolata nel corso dell'ultima QAL2, viene eseguito il test di variabilità sui dati per stabilirne la validità statistica.

Per ogni coppia di valori saranno calcolate le differenze e poi la differenza media:

$$D_i = \mathbf{y}_{\mathbf{s},i} - \hat{\mathbf{y}}_{\mathbf{s},i}$$

$$D_M = \frac{1}{N} \sum_{i=1}^{N} D_i$$

Dove:

 $y_{s,i}$ = valore del sistema di riferimento alle condizioni di riferimento di legge $\hat{y}_{s,i}$ = valore tarato del sistema in esame alle condizioni di riferimento di legge N = numero di misure effettuate

Infine viene determinata la deviazione standard (s_D):

$$s_D = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (D_i - D_M)^2}$$

- Criteri di accettabilità:

Il test di variabilità risulta superato se vengono verificate 2 condizioni:

1)
$$s_d \le 1,5 * \sigma_0 K_v$$

Dove:

 K_v = valore ricavato dal test x^2 con un valore di β pari a 50%.

 σ_0 =incertezza derivante dalle richieste di legge. In questo caso è calcolata come:

$$\sigma_0 = \frac{p \times ELV}{1,96}$$

essendo:

- p (intervallo di confidenza): percentuale stabilita dall'autorità di controllo
- ELV: valore limite di emissione (Emission Level Value)

Casanova Lonati, 06-11-2014

RT n. 1419136-002 pag. 27 di 32

Sono stati adottati i valori di probabilità ricavati dal D. Lgs. 152/06, parte V, Allegato II, Parte II, sezione 8, punto 4 (per il parametro CO non contemplato nel D. Lgs. 152/06, sono stati utilizzati come riferimento indicativo i valori presenti nel D. Lgs. 133/05, nella D. Dirig. reg. 27-4-2010 n. 4343 "Misure tecniche per l'installazione e la gestione dei Sistemi di Monitoraggio in continuo alle Emissioni (SME)." emanata dalla Regione Lombardia) e nel documento "Guida tecnica per i gestori dei Sistemi di Monitoraggio in continuo delle emissioni in atmosfera (SME). Aggiornamento 2012" (Manuale 87/2013) redatto da ISPRA:

INQUINANTE	P (intervallo di confidenza)
со	0,10
NO _X	0,20
SO2	0,20
POLVERI	0,30

Tabella 4: valori dell'intervallo di confidenza massimo ammesso

ELV: per lo svolgimento dei calcoli necessari alla verifica AST per tutti gli inquinanti vengono presi in considerazione i valori limite di emissione giornalieri imposti dall'Autorizzazione Integrata Ambientale (U. prot. ° DVA-DEC- 2012-0000333) rilasciata dal Ministero dell'Ambiente e della Tutela del Territorio e del Mare) per l'esercizio dell'impianto ubicato nel comune di Sarroch:

- CO: 50 mg/Nm³ secchi riferiti 3 % v/v O₂
- NO_X: 450 mg/Nm³ secchi riferiti 3 % v/v O₂
- SO₂: 1400 mg/Nm³ secchi riferiti 3 % v/v O₂
- Polveri: 50 mg/Nm³ secchi riferiti 3 % v/v O₂

$$\left|D_{M}\right| \leq t_{0,95}(N-1)\frac{s_{d}}{\sqrt{N}} + \sigma_{o}$$

ove D_m , s_d , N e σ_0 sono i parametri definiti in precedenza mentre $t_{0,95}$ (N-1) è il valore t di student tabulato ad N-1 gradi di libertà e ad un livello di confidenza pari al 95%.

6.2.2. VERIFICHE SU PARAMETRI AUSILIARI

Per quanto riguarda O₂, non trattandosi di un'inquinante, non è prevista una verifica AST completa, in quanto non è presente una retta di taratura QAL2; viene effettuata su tale parametro "ausiliario" solo una verifica della variabilità ed un confronto tra il valore dell'intervallo di confidenza sperimentale e il valore massimo consentito dell'intervallo di confidenza. Lo scopo è di verificare la validità statistica dei dati e dimostrare comunque il

Casanova Lonati, 06-11-2014

RT n. 1419136-002 pag. 28 di 32

buon funzionamento della strumentazione di misura, riferendosi anche ai risultati delle prove di linearità; i parametri ausiliari devono essere misurati correttamente in quanto in generale sono necessari per esprimere gli inquinanti nelle condizioni di riferimento e rendere quindi possibile il loro confronto con i limiti di legge.

Calcolate le grandezze D_i , D_m e s_D come indicato al paragrafo 6.2.1., per verificare se il test di variabilità si conclude con esito positivo, la deviazione standard va confrontata con l'incertezza limite indicata in normativa ed in particolare:

$$s_D \le \sigma_0 K_v$$

Dove, come già indicato in precedenza:

 K_v = valore ricavato dal test x^2 con un valore di β pari a 50%.

 σ_0 = incertezza derivante dalle richieste di legge. In questo caso è calcolata come:

$$\sigma_0 = \frac{p \times ELV}{1,96}$$

essendo:

- p (intervallo di confidenza): percentuale stabilita dall'autorità di controllo
- ELV: valore limite di emissione (Emission Level Value)

Per definire p ed ELV sui parametri ausiliari, si utilizzano i seguenti criteri, in base al documento "Guida tecnica per i gestori dei Sistemi di Monitoraggio in continuo delle emissioni in atmosfera (SME). Aggiornamento 2012" (Manuale 87/2013) redatto da ISPRA:

- <u>O</u>₂:
 - o Massimo valore di incertezza (IC_{max}): 10%
 - o ELV: 21 % v/v espresso su base secca

6.2.3. ULTERIORI PRECISAZIONI PER QUANTO RIGUARDA I PARAMETRI AUSILIARI UTILIZZATI NELLE PROVE AST

Dal momento che per il parametro O₂ non è presente una retta di taratura, nelle elaborazioni dei test AST dei vari inquinanti, per esprimere i valori dell'AMS nelle condizioni di riferimento, i valori di O₂ utilizzati sono quelli misurati direttamente dall'AMS, non tarati sulla base dei valori registrati dall'SRM.

6.2.4. AUMENTO DEL RANGE DI VALIDITÀ DELLE RETTE QAL2 IN USO

La norma UNI EN 14181:2005 prevede (paragrafo 8.2), in caso l'AST abbia esito positivo, la possibilità di aumentare il range di validità della retta di taratura che è stata verificata. Nel caso in cui, durante la campagna analitica, siano rilevati valori AMS maggiori del limite

Casanova Lonati, 06-11-2014

RT n. 1419136-002 pag. 29 di 32

superiore di validità, quest'ultimo potrà essere aumentato sino al valore massimo misurato da AMS, incrementato del 10%. Per effettuare tale confronto si prendono in considerazione valori AMS calibrati con la funzione di taratura ed espressi nelle condizioni di riferimento.

7. RISULTATI

7.1. RISULATATI VERIFICHE PRELIMINARI

7.1.1. Verifica documentale e verifica visiva del buono stato, della gestione e della manutenzione del sistema di campionamento e analisi

Le verifiche effettuate hanno avuto esito positivo. I risultati delle stesse sono riportati in allegato alla presente relazione tecnica.

7.1.2. Valutazione della rappresentatività della sezione di misura

Sono stati utilizzati rispettivamente un analizzatore Horiba PG 250 per le misure nel punto fisso al centro della sezione di misura e un analizzatore Mega System Emicheck 2 per le misure effettuate secondo il reticolo previsto dalla UNI EN 13284:2001.

In allegato alla presente relazione vengono presentati i risultati sperimentali ottenuti e viene formulato un giudizio sull'omogeneità del flusso gassoso, in base alle casistiche stabilite dalla norma UNI EN 15259:2008; è stato accertato che la sezione risulta omogenea (1° caso, paragrafo 5.1.2.).

7.1.3. Verifica di zero e span degli strumenti di misurazione

Le verifiche effettuate hanno avuto esito positivo; è stata accertata la correttezza nella risposta di tutti gli strumenti di misurazione ai livelli di zero e span. Le prove quindi risultano superate. I risultati delle stesse sono riportati in allegato alla presente relazione tecnica.

7.1.4. Verifica della linearità degli strumenti di misurazione

Le verifiche effettuate hanno accertato la linearità di tutti strumenti di misurazione. Le prove risultano quindi superate.

I risultati delle stesse sono riportati in allegato alla presente relazione tecnica.

7.1.5. Verifica delle interferenze

Le verifiche effettuate hanno accertato che per ciascun gas lo scostamento nella lettura dovuto alla presenza degli altri gas è inferiore ai criteri massimi di accettabilità. Le prove risultano quindi superate. I risultati delle stesse sono riportati in allegato alla presente relazione tecnica.

Casanova Lonati, 06-11-2014

RT n. 1419136-002 pag. 30 di 32

7.1.6. Verifica della tenuta della linea di trasporto del campione dal punto di prelievo all'analizzatore

Le verifiche di lettura in cabina hanno evidenziato uno scostamento massimo dal dato atteso inferiore ai criteri massimi di accettabilità. Le prove risultano quindi superate. 1 risultati delle stesse sono riportati in allegato alla presente relazione tecnica.

7.1.7. Verifica del tempo di risposta della strumentazione

I risultati delle prove effettuate sono riportati in allegato alla presente relazione tecnica.

7.1.8. Verifica del funzionamento della linea di trasmissione dati

Le prove risultano superate per tutti i parametri sottoposti al test. In allegato vengono presentati i risultati sperimentali ottenuti, con l'indicazione degli scostamenti rilevati per ogni parametro su ogni ora di confronto.

7.1.9. Verifica dell'efficienza del convertitore di NO2 ad NO

Le verifiche effettuate hanno accertato che il rendimento medio di conversione è superiore ai criteri minimi di accettabilità. Le prove risultano quindi superate.

l risultati delle stesse sono riportati in allegato alla presente relazione tecnica.

7.2. VERIFICA AST SECONDO UNI EN 14181:2005

La tabella che segue riporta le rette di taratura da verificare, l'esito dei test di controllo effettuati, il range di validità attualmente in uso e l'estensione (eventuale) del range di validità, previa esito positivo della verifica AST:

Param.	Retta di taratura da verificare	Esito test variabilità	Esito test	Intervallo di validità in uso per la retta da verificare ((mg/Nm³) secchi rif. 3% v/v O2)	Intervallo di validità esteso per la retta da verificare ((mg/Nm³) secchi rif. 3% v/v O₂)
NOx	y = 1,03 x - 7,31	Superato	Superato	0 - 565,04	Invariato
co	y = 0.98 x + 0.47	Superato	Superato	0 - 177,43	Invariato
SO ₂	y = 0.98 x	Superato	Superato	0 - 882,44	Invariato
SO ₂ (*)	y = 0.94 x + 22.12	Superato	Superato	0 - 1694,17	Invariato
Polveri	y = 0.283 x - 2.175	Superato	Superato	0 - 42,65	Invariato

Tabella 5: risultati delle verifiche AST

(*): Retta ottenuta tramite materiali di riferimento per l'estensione all'ELV dell'intervallo di validità

Casanova Lonati, 06-11-2014

RT n. 1419136-002 pag. 31 di 32

7.3. VERIFICHE SU PARAMETRI AUSILIARI

La tabella che segue riporta l'esito dei test di controllo effettuati:

Parametro	Esito test variabilità e confronto IC – IC _{limite}
O ₂	Superato

Tabella 6: risultati delle verifiche su parametri ausiliari

8. CONCLUSIONI

Tutte le verifiche preliminari sono state superate.

l test della verifica AST sono stati superati dai tutti i parametri parametri considerati, pertanto le funzioni di taratura possono essere considerate ancora valide; il range di validità delle stesse si mantiene invariato in tutti i casi.

Per il parametro O2 il test di variabilità è stato superato.

9. ALLEGATI

In allegato alla presente relazione vengono riportati i certificati di tara strumentazione.

Inoltre vengono riportate le tabelle ed i grafici in seguito elencati, in base al tipo di elaborazione effettuata.

9.1. VERIFICA AST SECONDO UNI EN 14181:2005

Per ogni inquinante sono presenti in allegato:

- i valori misurati dal sistema in esame (AMS), i valori misurati dal sistema di riferimento (SRM), la funzione calibrata secondo l'equazione determinata in sede di QAL2 (AMS CAL), le elaborazioni funzionali al confronto con i criteri di accettabilità della verifica AST e il confronto tra il range di validità attualmente in uso per la retta da verificare e il valore massimo AMS, calibrato, espresso in condizioni di riferimento ed aumentato del 10%
- un grafico di confronto tra il sistema in esame (AMS), il sistema di riferimento (SRM)
 e il sistema in esame tarato attraverso la funzione di calibrazione (AMS CAL) (non presente per il parametro Polveri)
- un grafico x-y delle misurazioni in parallelo corredate dalla rappresentazione della funzione di taratura da verificare
- per il parametro polveri una tabella riepilogativa con i dati di campionamento e

Casanova Lonati, 06-11-2014

RT n. 1419136-002 pag. 32 di 32

analisi

9.2. VERIFICHE SU PARAMETRI AUSILIARI

- valori misurati dal sistema in esame (AMS), valori misurati dal sistema di riferimento (SRM), elaborazioni funzionali al confronto con i criteri di accettabilità della verifica
- grafico di confronto tra sistema in esame (AMS) e sistema di riferimento (SRM)
- grafico x-y delle misurazioni in parallelo

Mod. P-AM-838-01_rev0 nome file: P-AM-838-01_rev0

SCHEDA PROVA FUNZIONALE AMS - UNI EN 14181:2005 Allegato alla RT 1419136-002

pag. 1 dl 3

Data di esecuzione della prova funzionale:	6 e 7 ottobre 2014
Impianto:	Centrale Termica
Punto emissivo:	E11
Altezza da terra piano installazione AMS (m)	
Lunghezza linea di campionamento sistemi estrattivi (m)	70
Temperatura linea di campionamento (°C)	160
Posizionamento strumenti	Cabina analisi (O2,CO,NO,SO₂ e convertitore) e in quota 50 mt (opacimetro,T,P,Q).

DESCRIZIONE VERIFICA	ESITO	VERIFICA
DESCRIZIONE VERIFICA	POSITIVO	NEGATIVO
Accessibilità AMS per la manutenzione regolare ed altre attività necessarie	х	
Posizionamento AMS atto alla misurazione di un campione rappresentativo della composizione del gas del camino (vedere allegato specifico dedicato alla prova)	х	
Distanza SRM inferiore a 3 diametri equivalenti rispetto ad AMS	х	
Buona accessibilità, pulizia, ventilazione, illuminazione, presenza di idonea protezione per il personale addetto al campionamento	х	
Temperatura costante in cabina analisi	x	

2) PROVA FUNZIONALE: SPECIFICA	DELLE SINGOLE FA	SI DA ESEGUIRE DURANTE	QAL2 / AST (UNI EN 141	81:2005, Appendice A1)	
OFCCOLLONE ATTRACTAL	Q	AL2	AST		
DESCRIZIONE ATTIVITA'	AMS estrattivo AMS non estrattivo		AMS estrattivo	AMS non estrattivo	
Allineamento e pulizia		X		X	
Sistema di campionamento	X		X		
Documentazione e registrazioni	X	X	X	Х	
Attitudine al servizio	Х	X	X	X	
Prova di tenuta	Х		X		
Controllo dello zero e dello span	Х	X	X	X	
Linearità			X	X	
Interferenze			X	X	
Deriva dello zero e dello span (audit)			X	X	
Tempo di risposta	Х	X	X	X	
Rapporto	Х	Х	X	X	

2.1) PROVA FUNZIONALE: ALLINEAMENTO E PULIZIA	APPLICABILE	1	NON APPLICABILE
(UNI EN 14181:2005, Appendice A2)	Х		
DESCRIZIONE VERIFICA		ESITO	VERIFICA
DESCRIZIONE VERIFICA		ESEGUITO	NON ESEGUITO
Esame sui seguenti elementi interni all'analizzatore (dall'ultimo del sistema estrattivo fornito dall'esercente):	report di manutenzione		
pulizia dei componenti ottici		X	
allineamento del sistema di misurazione		X	
controllo della contaminazione (controllo interno delle superfici ottiche)		X	

Mod. P-AM-838-01_rev0 nome file: P-AM-838-01_rev0

SCHEDA PROVA FUNZIONALE AMS - UNI EN 14181:2005 Allegato alla RT 1419136-002

pag. 2 di 3

2.2) PROVA FUNZIONALE: SISTEMA DI CAMPIONAMENTO	I APPLICABILE I		NON APPLICABILE	
(UNI EN 14181:2005, Appendice A3)				
Esame visivo sui seguenti elementi (ove presenti) del sistema di campionamento:				VERIFICA
			TIVO	NEGATIVO
	sonda di campionamento			
sistemi di	condizionamento dei gas)	(
	pompe	>	(
	tutti i collegamenti			
linee di campionamento				
alimentazione			(
filtri			1	

2.3) PROVA FUNZIONALE: DOCUMENTAZIONE E REGISTRAZIONI	APPLICABILE	NON APPLICABILE
(UNI EN 14181:2005, Appendice A4)	x	

		ESITO VERIFICA			
Controllo della seguente documentazione:	POSITIVO	NEGATIVO	DOCUMENTO DI RIFERIMENTO		
schema dell'AMS	х		Cabina analisi e uff tecnico - 3BJT0B071EFB201		
tutti i manuali (di manutenzione, di utilizzo, ecc.)	х		Uff tecnico - 3BJT0B071CEM201		
registri per documentare i possibili malfunzionamenti e le azioni intraprese	х		SALA CONTROLLO CTE- CAPOTURNO		
rapporti di assistenza	х		SALA CONTROLLO CTE- CAPOTURNO		
documentazione QAL3, comprese le azioni intraprese come risultato di situazioni fuori dal controllo	ı x		UFFICIO TECNICO		
procedure del sistema di gestione per manutenzione AMS	x		Uff tecnico - 38JT08071CEM201		
procedure del sistema di gestione per taratura AMS	х		Uff tecnico - 3BJT0B071CEM201		
procedure del sistema di gestione per la formazione	х		Uff tecnico - 3BJTOBO71CEM201		
registrazioni della formazione e addestramento	х		SALA CONTROLLO CTE - CAPOTURNO		
registrazione programmi di manutenzione	х		Uff tecnico - 3BJT0B071CEM201		

2.4) PROVA FUNZIONALE: GESTIONE	APPLICABILE	NON APPLICABILE
(UNI EN 14181:2005, Appendice A5)	×	

Controllo della seguenti caratteristiche dell'AMS:	ESITO VERIFICA			
Controllo della seguenti caratteristiche dell'Airis.	POSITIVO	NEGATIVO		
ambiente di lavoro sicuro e pulito con spazio sufficiente e protezioni contro le intemperie	x			
accesso semplice e sicuro all'AMS	X			
forniture adeguate di materiali di riferimento, strumenti e parti di ricambio	Х			

Mod. P-AM-838-01_rev0 nome file:

SCHEDA PROVA FUNZIONALE AMS - UNI EN 14181:2005

pag. 3 dl 3

2.5) PROVA FUNZIONALE:			ESITO *		
TEST DI TENUTA	APPLICABILE	NON APPLICABILE	POSITIVO	NEGATIVO	
UNI EN 14181:2005, Appendice A6)	х		x		
dere allegato specifico dedicato alle prove di tenuta					
			- 1		
2.6) PROVA FUNZIONALE:			ES	ITО *	
CONTROLLO DELLO ZERO E DELLO SPAN	APPLICABILE	NON APPLICABILE	POSITIVO	NEGATIVO	
(UNI EN 14181:2005, Appendice A7)	x		x		
edere allegato specifico dedicato alle prove di linearità					
The second secon					
2.7) PROVA FUNZIONALE: LINEARITÀ			ESITO *		
	APPLICABILE	NON APPLICABILE	POSITIVO	NEGATIVO	
UNI EN 14181:2005, Appendice A8)	X		x		
edere allegato specifico dedicato alle prove di linearità					
			ES:	то •	
2.8) PROVA FUNZIONALE: INTERFERENZE	APPLICABILE	NON APPLICABILE	POSITIVO	NEGATIVO	
INTERFERENZE					
INTERFERENZE	х		x		
INTERFERENZE UNI EN 14181:2005, Appendice A9)			x		
INTERFERENZE UNI EN 14181:2005, Appendice A9)			x		
INTERFERENZE UNI EN 14181:2005, Appendice A9)				то *	
1		NON APPLICABILE		TO * NEGATIVO	

^{*} vedere allegato specifico dedicato alle prove sul tempo di risposta

VFC DE-407-1 Rev0 Rappresentatività del 09/01/2013 Nome file: VFC DE-407-1 Rev0 Rappresentatività Pag 1 di 1

Allegato alia RT 1419136-002

Elaborazione effettuata sui dati rilevati secondo metodo UNI EN 15289:2008 per la verifica della rappresentatività della sezione di misura

Data:

07/10/2014

Impianto:

E11

Parametro misurato:

Ossigeno

Asse 1 1 1 1 1 1 1 1 1 2 2	(k) 0,030 0,098 0,179 0,290 0,500 0,710 0,821 0,902 0,970 0,030 0,098	griglia C _{gr} % v/v 5,7 5,7 5,8 5,9 5,7 5,7 5,7 5,8	punto fisso C _{ref} % v/v 5,7 5,8 5,8 5,8 5,8 5,7 5,7 5,7	C _{gr} / C _{ref} % 99,1 97,8 98,4 100,2 101,4 100,2 99,6 99,3 101,4
1 1 1 1 1 1 1 1 2 2	0,030 0,098 0,179 0,290 0,500 0,710 0,821 0,902 0,970 0,030 0,098	5,7 5,7 5,7 5,8 5,9 5,7 5,7 5,7 5,8	5,7 5,8 5,8 5,8 5,8 5,7 5,7 5,7	99,1 97,8 98,4 100,2 101,4 100,2 99,6 99,3
1 1 1 1 1 1 1 1 2 2	0,098 0,179 0,290 0,500 0,710 0,821 0,902 0,970 0,030 0,098	5,7 5,7 5,8 5,9 5,7 5,7 5,7 5,8 5,8	5,8 5,8 5,8 5,8 5,7 5,7 5,7	97,8 98,4 100,2 101,4 100,2 99,6 99,3
1 1 1 1 1 1 1 2 2	0,179 0,290 0,500 0,710 0,821 0,902 0,970 0,030 0,098	5,7 5,8 5,9 5,7 5,7 5,7 5,8 5,8	5,8 5,8 5,8 5,7 5,7 5,7 5,7	98,4 100,2 101,4 100,2 99,6 99,3
2 2	0,290 0,500 0,710 0,821 0,902 0,970 0,030 0,098	5,8 5,9 5,7 5,7 5,7 5,8 5,8	5,8 5,8 5,7 5,7 5,7 5,7	100,2 101,4 100,2 99,6 99,3
2 2	0,500 0,710 0,821 0,902 0,970 0,030 0,098	5,9 5,7 5,7 5,7 5,8 5,8	5,8 5,7 5,7 5,7 5,7	101,4 100,2 99,6 99,3
2 2	0,710 0,821 0,902 0,970 0,030 0,098	5,7 5,7 5,7 5,8 5,8	5,7 5,7 5,7 5,7	100,2 99,6 99,3
2 2	0,821 0,902 0,970 0,030 0,098	5,7 5,7 5,8 5,8	5,7 5,7 5,7	99,6 99,3
2 2	0,902 0,970 0,030 0,098	5,7 5,8 5,8	5,7 5,7	99,3
2 2	0,970 0,030 0,098	5,8 5,8	5,7	
2 2	0,030 0,098	5,8		101,4
2	0,098			
2			5,8	99,3
2		5,7	5,7	100,7
2 2	0,179	5,8 5.7	5,7	101,2
2	0,290	5,7	5,8	99,0
2	0,710	5,8 5,8	5,8	100,2
2	0,821 0,902	5,8 5,8	5,8	100,7
2	0,970	5,8 5,7	5,8 5,8	99,5 98,4
-	0,070	0,.	0,0	30,4
Valore medio		5,7	5,8	99,8
Devlazione standard		S _{gr}	S _{rif}	
		0,1	0,1	
Numero di misurazioni		1		
Gradi di libertà	<u>-</u>	10	6	
Test di omogeneità:				
$F=(s_{gr}/s_{rif})^2$		1,	7	
F _{95%}		2,3		
Flusso gassoso		Omog	eneo	
Deviazione standard sul tempo	o s _{rif}	0,	1	% v/v
Deviazione standard sulla posizione s _{pos}				
Incertezza estesa permessa Uperm		2,1	10	% v/v
t _{N-1} ; 0,95		2,1	20	
U _{pos}				
U _{pos} <=0,5 U _{perm}				
Tipo di misura		Misurazione in d	gualsiasi punto	
Punto di misura rappresentativ	ro	_		
C _{gr} / C _{ref} (%) al punto rappreser				

CONTROLLO DELLO ZERO E DELLO SPAN AMS - UNI EN 14181:2005 Allegato alla RT 1419136-002

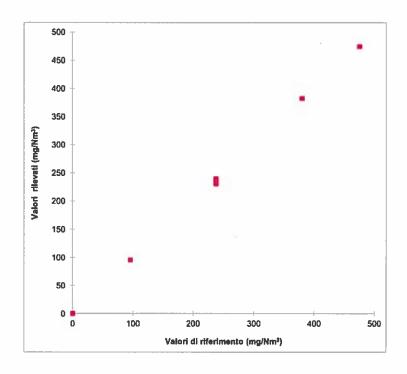
Data di esecuzione della verifica: 06/10/2014

Impianto: Centrale Termica

Punto emissivo: E11

Prove preliminari sulla risposta degli analizzatori mediante gas a titolo noto:

GAS	LIVELLO DI CONCENTRAZIONE	VALORE TEORICO	VALORE LETTO	U.D.M.	FONDO ANALIZ		CONCENT BOMI	
	CONCENTRAZIONE	IMPOSTATO	ATO SULL'ANALIZZATORE		VALORE	U.D.M.	VALORE	U.D.M.
со	ZERO	0,0	0,0	mg/Nm³	1500	mg/Nm ³	410,0	
	SPAN	475,0	474,0	mg/wm	1300	mg/Ivm	410,0	ppm
NO	ZERO	0,0	5,0	mg/Nm ³	2000	mg/Nm ³	402,0	ID 40 400
	SPAN	538,3	548,3	mg/Nm	2000	mg/ivm	402,0	ppm
SO ₂	ZERO	0,0	-27,0	mg/Nm ³	3000	mg/Nm³	40E 0	
302	SPAN	1157,1	1241,0	mg/ivm	3000	mg/Nm	405,0	ppm
02	ZERO	0,0	-0,3	% v/v	25	9/ 1./1.	30.05	% v/v
	SPAN	20,1	20,1	70 V/V	25	% v/v	20,05	76 V/V



pag. 1 di 1

Allegato - RT 1419136-002 Verifica linearità secondo UNI EN 14181;2005

Data di esecuzione:	Parametro:		
06/10/2014	со		
Impianto:	Analizzatore;		
E11	ABB		
Campo di misura analizzatore:	Bombola gas utilizzata:		
0 - 1500 mg/Nm3	Siad 145558 Cert 9225		

Valori di riferimento (mg/Nm ^b)	Valori rlievati (mg/Nm ^k)	Valori rilevati (mg/Nm²)	Valori rilevati (mg/Nm²)	Media valoti rilevati (mg/Nm ¹)	Residui (mg/Nm³)	Residui Relativi (%)	Deriazione valori riferimento – valori rifevati (mg/Nm²)	conc. hombola utilizzata (mg/Nm ³)	% bombola utilizzata	% rispeno al fondo scala
0,0	0,0	0,0	0,0	0,0	0,2	0,0	0,0	512,5	0,0	0,0
95,0	95,0	95,0	95,0	95,0	0,1	0,0	0,0		18,5	6,3
237,5	238,0	239,0	230,0	235,7	-1,7	0,1	7,5		46,3	15,8
379,9	382,0	382,0	382,0	382,0	2,2	0,1	2,1		74,1	25,3
475,0	474,0	474,0	474,0	474,0	-0,9	0,1	1,0		92,7	31,7
0,0	0,0	0,0	0,0	0,0	0,2	0,0	0,0		0,0	0,0

PARAMETRI RETTA INTERPOLAZIONE

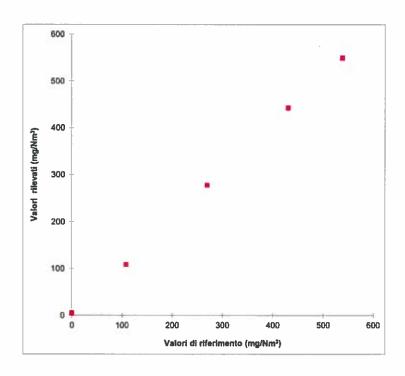
COEFFICIENTE DI CORRELAZIONE	INTERCETTA	PENDENZA	N	
0,9999	-0,15	1,00	18:	
Sy/x	5a	Sb		
2,1654	0,7523	0,0028		

CRITERIO DI ACCETTABILITA'

Ad ogni livello di concentrazione deve risultare verificato che: Residuo relativo % < 5%

Residuo relativo massimo (%): 0,1

L'analizzatore ABB fornisce una risposta lineare secondo i requisiti della norma UNI EN 14181:2005



pag. 1 dl 1

Allegato - RT 1419136-002 Verifica linearità secondo UNI EN 14181:2005

Data di esecuzione: 06/10/2014	Parametro; NO
Impianto:	Analizzatore:
E11	ABB
Campo di misura analizzatore:	Bombola gas utilizzata:
0 - 2000 mg/Nm3	Siad 241944 Cert 19710

Valori di elferimento (mg/Nm²)	Valori riicveti (mg/Nm²)	Valori rilevati (mg/Nm²)	Valori rilevati (mg/Nm ⁵)	Media valori rilevati (mg/Nm ³)	Residui (mg/Nm³)	Residul Relativi (%)	Deviatione valori riferimento - valori riferati (mg/Nm ¹)	conc. bombola utilissasa (mg/Nm ³)	% bombola utilizzata	% risperso al fondo scala
0,0	5,0	5,0	5,0	5,0	1,5	0,1	5,0	538,3	0,0	0,0
107,8	108,0	108,0	108,0	108,0	-4,8	0,2	0,2	4000000	20,0	5,4
269,1	277,0	277,0	277,0	277,0	0,6	0,0	7,9		50,0	13,5
430,5	442,0	442,0	442,0	442,0	2,0	0,1	11,5		80,0	21,5
538,3	548,0	549,0	548,0	548,3	-1,0	0,0	10,7		100,0	26,9
0,0	5,0	5,0	5,0	5,0	1,5	0,1	5,0		0.0	0,0

PARAMETRI RETTA INTERPOLAZIONE

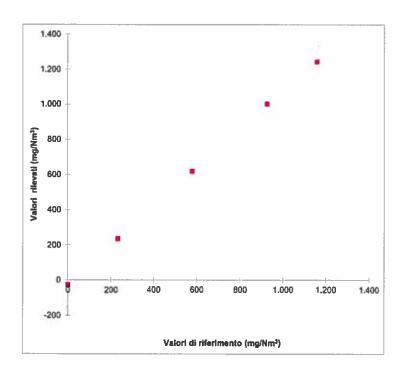
COEFFICIENTE DI CORRELAZIONE	INTERCETTA	PENDENZA	и
0,9999	3,45	1,01	18
Sy/x	Sa	Sb	
2,4872	0,8642	0,0028	

CRITERIO DI ACCETTABILITA'

Ad ogni livello di concentrazione deve risultare verificato che: Residuo relativo % < 5%

Residuo relativo massimo (%): 0,2

L'analizzatore ABB fornisce una risposta lineare secondo i requisiti della norma UNI EN 14181:2005



pag. 1 di 1

Allegato - RT 1419136-002 Verifica linearità secondo UNI EN 14181:2005

Data di esecuzione:	Parametro:
06/10/2014	SO2
Impianto:	Analizzatore:
E11	ABB
Campo di misura analizzatore:	Bombola gas utilizzata:
0 - 3000 mg/Nm3	Siad 241988 Cert 16590

Valori di riferimento (mg/Nm ³)	Valori rilevati (mg/Nm³)	Valori rilevati (mg/Nm²)	Valori rilevati (mg/Nm³)	Media valori rilevati (mg/Nm ¹)	Residui (mg/Nm ¹)	Residui Relativi (%)	Deviazione valori riferimento - valori rilevati (mg/Nm ⁵)	conc. hombuls utilizzata (mg/Nm²)	% bembola udlizzara	% rispetto al fondo scala
0,0	-27,0	-27,0	-27,0	-27,0	-3,4	0,1	27,0	1157,1	0,0	0,0
231,4	234,0	234,0	234,0	234,0	3,1	0,1	2,6		20,0	7,7
578,5	619,0	620,0	619,0	619,3	6,7	0,2	41,5		50,0	19,3
925,7	999,0	999,0	999,0	999,0	4,7	0,2	73,3		80,0	30,9
1157,1	1241,0	1241,0	1241,0	1.241,0	-7,8	0,3	83,9		100,0	38,6
0,0	-27,0	-27,0	-27,0	-27,0	-3,4	0,1	27,0		0,0	0,0

PARAMETRI RETTA INTERPOLAZIONE

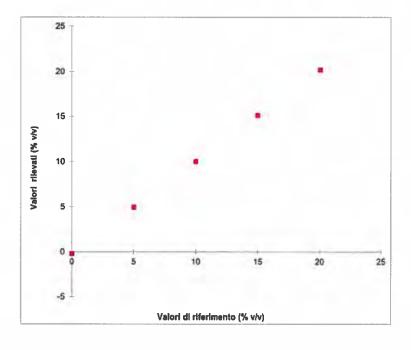
COEFFICIENTE DI CORRELAZIONE	INTERCETTA	PENDENZA	N	
0,9999	-23,59	1,10	18	
. 5y/x	Sa	Sb		
5,4970	1,9097	0,0029		

CRITERIO DI ACCETTABILITA'

Ad ogni livello di concentrazione deve risultare verificato che: Residuo relativo $\% \le 5\%$

Residuo relativo massimo (%): 0,3

L'analizzatore ABB fornisce una risposta lineare secondo i requisiti della norma UNI EN 14181:2005



pag. 1 di 1

Allegato - RT 1419136-002 Verifica linearità secondo UNI EN 14181:2005

Data di esecuzione:	Parametro:
06/10/2014	O2
Impianto:	Analizzatore:
Ell	ABB
Campo di misura analizzatore:	Bombola gas utilizzata:
0 - 25 % v/v	Siad 259882 Cert 9226

Valori di riferimento % v/v	Valori rilevati % v/v	Valori silevati % v/v	Valuel elleveet % v/v	Media valori rilevati % v/v	Residui % v/v	Residui Relativi %	Deviazione valori riferimento + valori rifevati %	Conc. hombola unilizzata % v/v	% bombola utilizzeta	% rispetto al fondo scala
0,0	0,3	+0,3	-0,2	-0,2	0,0	0,1	0,3	20,1	0,0	0,0
5,0	4,9	4,9	4,9	4,9	0,0	0,1	0,1		24,9	20,0
10,0	10,0	10,0	10,0	10,0	0,0	0,1	0,0		49,9	40,0
15,0	15,1	15,1	15,1	15,1	0,1	0,2	0,1		74,8	60,0
20,1	20,1	20,1	20,1	20,1	-0,1	0,2	0,1		100,0	80,2
0,0	-0,3	-0,3	-0,3	-0,3	0,0	0,1	0,3		0,0	0,0

PARAMETRI RETTA INTERPOLAZIONE

COEFFICIENTE DI CORRELAZIONE	INTERCETTA	PENDENZA	N	
1,0000	-0,22	1,02	18	
Sy/x	Ss	\$b		
0,0404	0,0143	0,0013	3	

CRITERIO DI ACCETTABILITA'

Ad ogni livello di concentrazione deve risultare verificato che: Residuo relativo $\% \le 5\%$

Residuo relativo massimo (%): 0,2

L'analizzatore ABB formisce una risposta lineare secondo i requisiti della norma UNI EN 14181:2005

VFC-P-AM-838-02_rev0 del 12/07/2013 nome file: VFC-P-AM-838-02_rev0

VERIFICA DELLE INTERFERENZE AMS - UNI EN 14181:2005 Allegato alla RT 1419136-002

Data di esecuzione della verifica:	06/10/2014	
Impianto:	Centrale Termica	
Punto emissivo:	E11	

													INTER	RERIT	го								
						NO					CO					502					Ož		
INTERFERENTE	GAS	F.S.	U.D.M.	CONC. LETTA	LETTURA DI ZERO MEDIA	F.S.	U.D.M.	% RISPETTO AL F.S.	COMC. LETTA	LETTURA DI ZERO MEDIA	F-5.	n'o'w'	MINISPETTO ALFS.	COMC. LETTA	ZENO MEDIA	F.S.	U.D.M.	% RISPETTO ALF.S.	CONC LETTA	DENO MEDIA ZERO MEDIA	F.S.	n.D.M.	% RESPETTO ALF.S.
麗	NO	\$000	mg/Hm³					N.A.	0,0				0,00%	-25,0				0,07%	-0,2				0,12%
፭	CO	1500	mg/Hm³	0,0	ya	*	ã	-0,25%	-	ا ، ا	=	į į	N.A.	-28,0	ایا	*	l a	-0,03%	-0,2	ایا		yt	0,08%
	503	3000	mg/Nm³	0,0	5,00	2000	e/Nm²	-0,25%	0,0	8	1500	1	0,00%	-	27,0	9	rng/Nim²	N.A.	-0,2	0,25	#	*	0,04%
	02	25	% v/v	-8,0			ľ	-0,65%	-1,0	1		"	-0,07%	-20,0	1		"	0,23%	4.0	1			N.A.
INTE		TOTALE P	25/11VA (%			8,00%					0,00%					0,30%					0,24%		
INTER		TOTALE NI ETTO AL F.S	gativa (% .)			-2,15% -0,07% -0,03%							0,00%										
CR		ACCETTAB ETTO AL F.S			4,00% 4,00% 1,00%					4,00%				4,00% 4,00%					1,60%				
	E	SITO TEST				SUPERA	то		SUPERATO			SUPERATO					SUPERATO						

TENUTA LINEA DI TRASPORTO CAMPIONE AMS - UNI EN 14181:2005 Allegato alla RT 1419136-002

Data di esecuzione della verifica:	06/10/2014	
Impianto:	Centrale Termica	
Punto emissivo:	E11	
Analizzatore:	ABB Magnos 206	
Gas verificato:	02	
Fondoscala (% v/v):	25	

GAS VERIFICATO	FONDOSCALA (% v/v)	VALORE FINALE LETTO (% v/v)	SCOSTAMENTO PERCENTUALE DAL FONDOSCALA (%)
O2	25,0	-0,17	-0,68

1% del fondoscala = 0,25 % VV di O2

Scostamento massimo inferiore all'1% del fondoscala. Prova superata.

VFC-P-AM-838-03_rev0 del 12/07/2013 nome file: VFC-P-AM-838-03_rev0

TEMPO DI RISPOSTA AMS - UNI EN 14181:2005 Allegato alla RT 1419136-002

Data di esecuzione della verifica:	06/10/2014
Impianto:	Centrale Termica
Punto emissivo:	E11
Analizzatore:	ABB Magnos 206
Gas verificato:	02
Fondoscala (% v/v):	25

GAS VERIFICATO	VALORE IMPOSTATO (% v/v)	90% DEL VALORE IMPOSTATO (% v/v)	T ₉₀ (s)
03	20,0	18,0	29
U2	0,0	2,5	31

VERIFICA DELL'EFFICIENZA DEL SISTEMA DI CONVERSIONE DI NO2 AD NO - AMS Allegato alla RT 1419136-002

Data di esecuzione della verifica: 06/10/2014

Impianto / punto emissivo: E11

	Convertitore disinserito							
Ozoni	izzatore spento	Ozonizzatore acceso						
c _{1 NOx} (mg/Nm ³)	c _{1 NO} (mg/Nm ³)	c _{2 NO} (mg/Nm ³)	c _{2 NOx} (mg/Nm ³)					
23,8	23,8	0,8	22,8					

Conversione =
$$\frac{(c_{2NOx} - c_{2NO}) - (c_{1NOx} - c_{1NO})}{c_{1NO} - c_{2NO}} \times 100 = 95,7\%$$

Conversione uguale o superiore al 95%.

Prova superata.

Pag. 1 di 3

Allegato alla RT 1419136-002

Verifica trasmissione dati CO

Ora inizio	Versalis (mg/Nm³)	LabAnalysis [mg/Nm³)	Xdi (mg/Nm³)
2:00	8,31	7,06	1,25
3:00	21,95	20,60	1,35
4:00	26,05	24,67	1,38
5:00	16,89	15,53	1,36
	2:00 3:00 4:00	(mg/Nm³) 2:00 8,31 3:00 21,95 4:00 26,05	(mg/Nm³) (mg/Nm³) 2:00 8,31 7,06 3:00 21,95 20,60 4:00 26,05 24,67

Scala utilizzata: 0 - 75 mg/Nm3 2 % fondoscala = 1,5 mg/Nm3

Scostamento massimo inferiore al 2% del fondoscala. Prova superata.

Verifica trasmissione dati O2

Data	Ora inizio	Versalis (%)	LabAnalysis [%]	Xdi (%)
07/10/2014	2:00	5,77	5,75	0,02
07/10/2014	3:00	5,67	5,66	0,02
07/10/2014	4:00	5,91	5,89	0,02
07/10/2014	5:00	5.95	5.93	0.02

Scala utilizzata: 0 - 15 % 2 % fondoscala = 0,3 %

Scostamento massimo inferiore al 2% del fondoscala. Prova superata.

Pag. 2 di 3

Allegato alia RT 1419136-002

Verifica trasmissione dati NO_X

Ora inizio	Versalis (mg/Nm ³)	LabAnalysis (mg/Nm³)	Xdi (mg/Nm³)
2:00	185,21	184,12	1,09
3:00	182,79	181,68	1,10
4:00	185,58	184,47	1,10
5:00	184,63	183,54	1,09
	2:00 3:00 4:00	(mg/Nm³) 2:00 185,21 3:00 182,79 4:00 185,58	(mg/Nm ³) (mg/Nm ³) 2:00 185,21 184,12 3:00 182,79 181,68 4:00 185,58 184,47

Scala utilizzata: 0 - 100 mg/Nm3 2 % fondoscala = 2 mg/Nm3

Scostamento massimo inferiore al 2% del fondoscala. Prova superata.

Verifica trasmissione dati 802

Data	Ora inizio	Versalis (mg/Nm ³)	LabAnalysis (mg/Nm³)	Xdi (mg/Nm³)
07/10/2014	2:00	568,41	565,97	2,43
07/10/2014	3:00	567,88	565,51	2,37
07/10/2014	4:00	563,86	561,53	2,32
07/10/2014	5:00	573,92	571,57	2,34

Scala utilizzata: 0 - 300 mg/Nm3 2 % fondoscala = 6 mg/Nm3

Scostamento massimo inferiore al 2% del fondoscala. Prova superata.

Pag. 3 di 3

Allegato alla RT 1419136-002

Verifica trasmissione dati H₂O

Data	Ora inizio	Versalis (%)	LabAnalysis (%)	Xđi (%)
07/10/2014	2:00	6,31	6,34	-0,03
07/10/2014	3:00	6,39	6,42	-0,03
07/10/2014	4:00	6,30	6,33	-0,03
07/10/2014	5:00	6,22	6,24	-0,03

Scala utilizzata: 0 - 40 mg/Nm3 2 % fondoscala = 0,8 mg/Nm3

Scostamento massimo inferiore al 2% del fondoscala. Prova superata.

Verifica trasmissione dati Q

Data	Ora inizio	Versalis (KNm3/h)	LabAnalysis (KNm3/h)	Xdi (KNm3/h)
07/10/2014	2:00	353,92	349,63	4,29
07/10/2014	3:00	346,26	342,11	4,15
07/10/2014	4:00	349,50	345,78	3,71
07/10/2014	5:00	348,83	345,13	3,71

Scala utilizzata: 0 - 1000 mg/Nm3 2 % fondoscala = 20 mg/Nm3

Scostamento massimo inferiore al 2% del fondoscala. Prova superata.

Allegato alla RT 1419136-002

Verifica trasmissione dati POLVERI

Data	Ora inizio	Versalis (% Est)	LabAnalysis (% Est)	Xdi (% Est)
07/10/2014	2:00	54,12	53,85	0,26
07/10/2014	3:00	57,32	56,99	0,33
07/10/2014	4:00	58,11	57,88	0,23
07/10/2014	5:00	56,93	56,75	0,17

Scala utilizzata: 0 - 100 mg/Nm3 2 % fondoscala = 2 mg/Nm3

Scostamento massimo inferiore al 2% del fondoscala. Prova superata.

ELABORAZIONE SECONDO UNI EN 14181:2005

AST

ab nalysis s.rl.

Impianto / Punto emissivo:	E11
Prelivi eseguiti da:	LabAnalysis srl

× NO×
Parametro:

			SISTEMA AUTOMATICO DI MISURA (AMS)	TOMAT	10 001	MISURA	(AMS)		SISTE	WA DI R	UFERIME	SISTEMA DI RIFERIMENTO (SRM)		0
P. Num.	. Data/ora	Durata	X4,1	۲	۵	H ₂ O	ŏ	YALI	۲	<u>~</u>	O2H	02	Ys,ı	Ö
	inizio prelievo	(nien)	(mg/Nm²) secon	M	reder	(A/A) #	% (v/v) accos	(mg/Nen³) secon	м	appea.	(V.) #	% (v/v) æcco	(mg/Nm³) s 3% O ₂	<u> </u>
1	07/10/20104 19,00	8	288,6				0'9	282,8				6,1	341,6	7
2	07/10/20104 20,00	09	286,0				0'9	280,2				6,1	338,5	×
m	07/10/20104 21,00	9	286,6				0'9	280,6				6,1	337,9	×
4	07/10/20104 23,00	9	278,3				5,8	272,8				5,9	324,6	×,
រណ	08/10/20104 00,00	09	276,7				5,8	271,0				5,8	321,2	X

٥	
Salco	
12	
igi	
ispo	
101	
- -	
Š	
, nor	
atta	
elem.	
ļa Ē	
ij	
vent	
it d	
TPie.	
Veng	
50	
2005	
181	
Z 14	
Ä	
Ta U	
nor	
용	
econ	
one s	lievo
Drazi	F Pre
eleb de	edi su
뺼	ST IT
)TA	i valo
ž	8

0 (mg/Nm³) secco	3 % (v/v) secco	450 (mg/Nm³) s 3% O ₂
Offset	O ₂ rif.	Limite di emissione (ELV)

	anne (man district	
O ₂ rif.	3 % (v/v) secco	
Limite di emissione (ELV)	450 (mg/Nm³) s 3% O ₂	
Legenda:		
x _{MJ} = i-esimo vatore misurata dall'AMS		
YAUT i-esimo valore misurato dall'SRJA		
ys,= i-esimo valore rilevato dall'SRM in condizioni di riferimento	ondizioni di riferimento	
Xx. media dei valori xx.		
ya, media dei valori γ _{aυ}		
Younn Trassimo valore you		
y _{s ma} ≐ minimo valore y _{s,j}		
P.Num.= Numero Prelievo		

ab nalysis s.rl.

AST

					Ум, ^{ј=}	+ 15'/-
SISTEMA AUTOMATICO DI MISURA (AMS)			ELABORAZIONI			
95,max		Ϋ́Q	z	Σ(D ₁ -D _M) ²	Test di v	Test di variabilità
347,2		-6,7	ıo	2,1	S _D	0,721
Ps, i	_	D; = Ys.1-94	D _i -D _M	(D ₁ -D _M) ²	¥ 8	0,916 45,918
(mg/Nm²), 1, 3% O;	٤	(mg/Nm²), s, 3% O ₂	(mg/Nm³), s, 3% O ₂	(mg/Nm³), s, 3% O ₂	TEST	PASSATO
347,2		ارة 10	17	1,2	Limite inte	mite intervallo di confidenza
345,7		-7,2	9'0-	0,3		
345,2		-7,4	7'0-	6,0	Test t	
331,1		-6,5	0,2	0'0	t (n-1)	2,13
327,8		-6,7	0'0	0,0	TEST	PASSATO

		X _{M,i}
URA		1,03
184 T		+
FUNZIONE DI TARATURA	FICARE	-7,31
FUNZIC	DA VERIFICARE	Ŷ _{M,i} =

Test di variabilità	0,721	0,916	45,918	PASSATO
Test di	So O	ž	0,0	TEST

	2,13	PASSATO
Test t	t (n-1)	TEST

20 %

AST PASSATO

Validità originale funzione di taratura da verificare 565,04 0,00 \$ 95,1 \$

NON APPLICABILE; LA VALIDITA' DELLA FUNZIONE DI TARATURA RIMANE INVARIATA Estensione validità funzione di taratura da verificare

Legendo:

Pays i-esimo valore calibrato dell'AMS

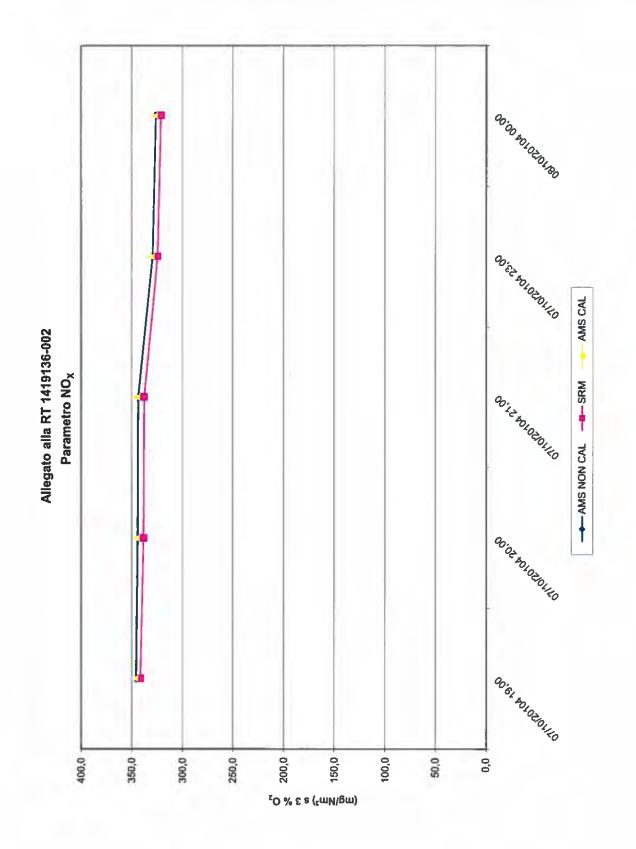
× ≥ + esimo volore misurato dall'AMS

xs. Fesimo valore misurato dall'AMS in condizioni di riferimento

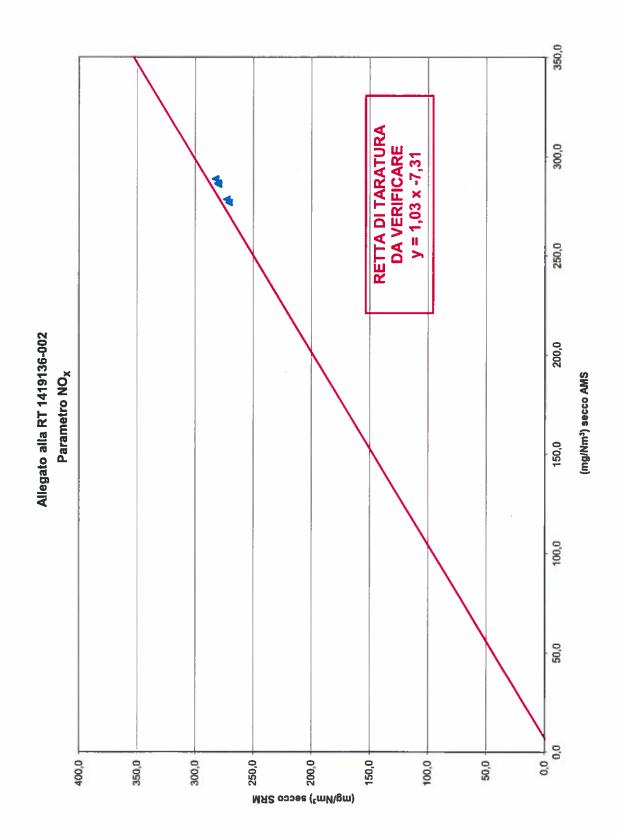
83.7 i-esimo valore calibrato dell'AMS in condizioni di riferimento

95 max valore calibrato dell'AMS incondizioni di riferimento

D_M= media degli scostamenti D_i


N= numero di prove effettuate

 $s_{\rm D^{\mp}}$ deviazione standard delle differenze $D_{\rm t}$


 $k_{\rm v}$ = parametro di un test χ^2 con un valore di β del 50%

op= incertezza famita dal legislatore come % del valore limite

Laboratorio: Via Europa, 5 - 27041 CASANOVA LONATI (Pavia) - Sede legale: Via Rota Candiani, 13 - 27043 BRONI (Pavia)
Tel. 0385.287128 (15 linee) - Fax 0385.57311 - E-mail: info@labanalysis.it - Sito internet: http://www.labanalysis.it

Laboratorio: Via Europa, 5 - 27041 CASANOVA LONATI (Pavia) - Sede legale: Via Rota Candiani, 13 - 27043 BRONI (Pavia) Tel. 0385.287128 (15 linee) - Fax 0385.57311 - E-mail: info@labanalysis.it - Sito Internet: http://www.labanalysis.it

Allegato alla RT 1419136-002

157

Impianto / Punto emissivo:	E11
Prelivi eseguiti da:	LabAnalysis srl

1.2	Versalis S.p.a. –
9110	Stabilimento di Sarroch
	ABB Uras 26
Andii Zzatore:	3.347097.3

00	
Parametro	

0 (mg/Nm³) secco	3 % (v/v) secco	50 (mg/Nm³) s 3% O ₂
Offset	O ₂ rif.	Limite di emissione (ELV)

	2,7 Legenda:	1,5 x _{M,F} i-esime valore misurate dall'AMS	7,5 y _{M,F} i-esimo valore misurato dall'SRM	9.7 ys. i-esima valore rilevata dall'SRM in condizioni di riferimento	0,9 ×A. www. The dis del valori x _{Al} ,	Yst media dei valori yst.	Y _{s max} * massimo valore y _s ,	y, mer minimo valore y.,	P. Namero Prelievo	
--	--------------	---	---	---	---	---------------------------	--	--------------------------	--------------------	--

			SISTEMA AUTOMATICO DI MISURA (AMS)	JTOMAT	10 DI	MISUR	(AMS)		SISTE	MA DI R	LFERIM	SISTEMA DI RIFERIMENTO (SRM)	
P.Num.	Data/ora	Durata	X _{M,1}	-	<u>a</u>	OŽH	ő	γw'n	۲	٩	O H	0	Ys.i
	inizio prelievo	(age)	(mg/Ndm) secce	₩.	þ	(A/A) %	% (v/v) secce	(mg/Nm²) secce	¥	ł	% (v/v)	% (v/v)	(mg/ham²) s 3% O ₂
	07/10/20104 19,00	09	12,2				0'9	10,5				6,1	12,7
N	07/10/20104 20,00	99	10,5				0'9	9,5				6,1	11,5
m	07/10/20104 21,00	99	6,4				0'9	6,2				6,1	7,5
4	07/10/20104 23,00	09	6'8				8,8	8,1				5,9	2.6
ທ	08/10/20104 00,00	9	10,3				5,8	9,2				5,8	6,01

NOTA: nell'élaborazione secondo la norma UNI EN 14181:2005 non vengono impiegati eventuali dati elementari non validi o non disponibili nel calcolo dei valori medi sul prelievo

Allegato alla RT 1419136-002

157

OA VE Pm.i=		Test di	Q.	ን ይ	TEST	Limite int		Test t	t (n-1)	TEST
		$\Sigma(D_i-D_M)^2$	1,3	(D ₁ -D _M) ²	(mg/Nm²), s, 3% O ₂	0,7	0'0	0,5	0'0	0'0
	ELABORAZIONI	z	ĸ	D,-DM	(mg/Nim ¹), 1, 3% O ₂	8'0-	0'0	2'0	0,2	-0,1
		D _M	-1,4	D, = Ys,1-9.	(mg/Nm²), s, 3% O ₂ (mg/Nm²), s, 3% O ₂	-2,2	-1,4	7'0-	-1,2	-1,5
	MISURA (AMS)	PS, max	14,9	9s,i	(mg/Nm²), s, 3% O ₂	14,9	12,9	8,1	6'01	12,4
	OMATICO DI			P.M. s	(mg/Nm²) secco	12,5	10,7	6,8	2'6	10,5
	SISTEMA AUTOMATICO DI MISURA (AMS)			r, x	(mg/Nm²), s, 3% O ₂	14,7	12,6	7,7	10,5	12,1

		,_
		X
TURA		0,98
ARA		+
FUNZIONE DI TARATURA	DA VERIFICARE	0,47
FUNZ	DA VE	Ŷ _{M,} i=

est di variabilità	0,560	916'0	2,551	PASSATO
Test di	og Og	¥	9	TEST

denza 10 Z			a
sllo di confi		2,13	PASSATO
imite intervallo di confidenza	Test t	r (n-1)	rest

AST PASSATO

Validità originale funzione di taratura da verificare 0,00 s 95,i s 177,43 Estensione validità funzione di taratura da verificare NON APPLICABILE; LA VALIDITA' DELLA FUNZIONE DI TARATURA RIMANE INVARIATA

Tegenda:

Age i esimo volore calibrato dell'AMS

 $\kappa_{\rm M,P}$ i-esimo valore misurato dall'AMS in condizioni di riferimento $\kappa_{\rm JP}$ i-esimo valore misurato dall'AMS in condizioni di riferimento

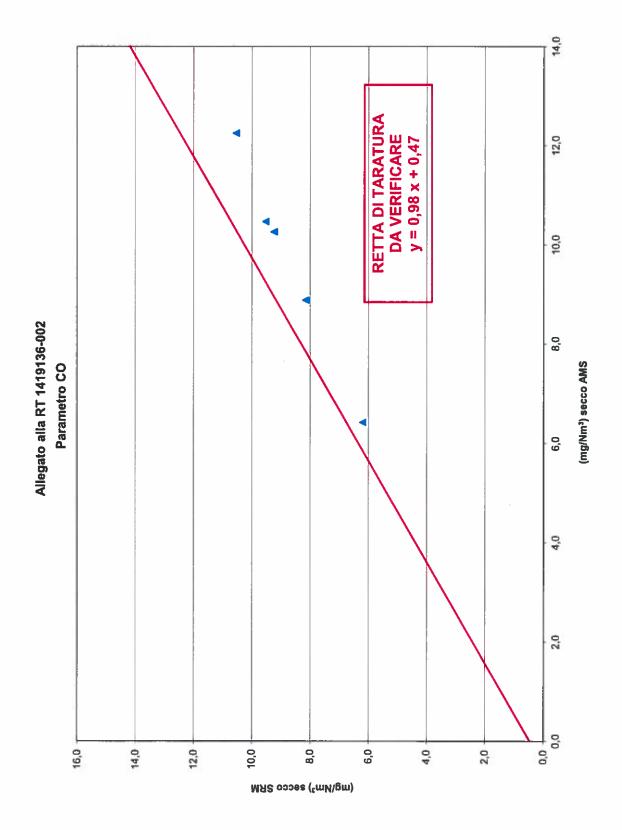
 $_{15} \dot{r}$ i-esimo valore calibrato dell'AMS in condizioni di riferimento

same max valore calibrate dell'AMS incondizioni di riferimente

D_m= media degli scostamenti D,

Na numero di prove effettuale

sar deviazione standard delle differenze D,


ς× parametro di un test χ² con un volore di β del 50%

ao= incertezza fornita dal legislatare came % del valore limite

Laboratorio: Via Europa, 5 - 27041 CASANOVA LONATI (Pavia) - Sede legale: Via Rota Candiani, 13 - 27043 BRONI (Pavia)
Tel. 0385,287128 (15 linee) - Fax 0385,57311 - E-mail: info@labanalysis.it - Sito Internet: http://www.labanalysis.it

Laboratorio: Via Europa, 5 - 27041 CASANOVA LONATI (Pavia) - Sede legale: Via Rota Candiani, 13 - 27043 BRONI (Pavia) Tel. 0385.287128 (15 linee) - Fax 0385.57311 - E-mail: info@labanalysis.it - Sito internet: http://www.labanalysis.it

AST

ab nalysis s.rl.

Lab Analysis srl <u>E11</u> Prelivi eseguiti da: Impianto / Punto emissivo:

Analizzatore:		Stabilimento di Sarroch	Versalis S.p.a
---------------	--	-------------------------	----------------

205
Parametro:

SISTEMA AUTOMATICO DI MISURA (AMS)	SISTEMA DI RIFERIMENTO (SRM)
Durate Xa,1 T P H2O O2 Ya,1 T	P H ₂ O
(min) (mg/har) secon K mbur % (v/v) % (v/v) secon (mg/har) secon K	mbar % (v/v) % (v/v) secto
0'9	
0,0 579,7 6,0 567,0	
60 580,1 6,0 568,6	
60 578,8 5,8 56,2	
60 576,5 5.8 5.8 565,8	

NOTA: nell'elaborazione seconda la norma UNI EN 14181:2005 non vengono impiegati eventuali dati elementari non validi o non disponibili nel calcolo dei valori medi sul prelievo

0 (mg/Nm³) secco	3 % (v/v) secco	1400 (mg/Nm³) s 3% O ₂
Offset	O ₂ rif.	Limite di emissione (ELV)

O ₂ rif.	3 % (v/v) secco
Limite di emissione (ELV)	1400 (mg/Nm³) s 3% O ₂
Legenda:	
x _{MJ} = i-esimo valore misurato dall'AAAS	
y _{My} = Hesimo valore misurato dall'SRM	
Yast I-esimo valore rilevato dall'SRM in condizioni di riferimento	condizioni di riferimento
×n,== media dei valori καυ	
ya, ====================================	
ys* massimo valone ye.	
y _{sm} = minimo valore y _{sj}	
P.Nun. = Numero Prelievo	

AST

ab nalysis s.rl.

SISTEMA AUTO	MATICO DI	SISTEMA AUTOMATICO DI MISURA (AMS)		ELABORAZIONI	
		Ps,max	Ω	z	$\Sigma(D_i-D_M)^2$
		683,7	2,8	מו	10,6
, s,	9ж,1	P.s.i	$D_i = \gamma_{\epsilon,i} - \hat{\gamma}_{\omega}$	D _i -D _M	(D ₁ -D _M) ²
(mg/Nm³), s, 3% O ₂	(mg/Nm [†]) secoo	(mg/Nm²), s, 3% O ₂	(ng/Nin'), s, 3% O ₂ (ng/Nin'), s, 3% O ₂	(mg/Nm³), s. 3% O ₂	(mg/Nm ³), s. 3% O ₂
693,9	567,9	680,0	5,2	2,3	ດ
9,769	568,1	683,7	1,2	-1,6	2,7
8,269	568,5	681,9	2,8	0'0	0'0
686,1	567,2	672,4	1,4	-1,4	1,9
9'089	564,9	0,799	3,6	2'0	0'2

		_
		X _{M,i}
URA URA		86'0
ARAI		+
FUNZIONE DI TARATURA	FICARE	00'0
FUNZIC	DA VERIFICARE	Ŷ _{M,i} =

Test di variabilità	1,627	916'0	142,857	PASSATO
Test di	80	ž	90	TEST

nza			
illo di confide		2,13	PASSATO
Limite intervallo di confidenza	Test t	t (n-1)	TEST

AST PASSATO

Validità originale funzione di taratura da verificare 0,00 \$ 95,1 \$ 882,44

NON APPLICABILE: LA VALIDITA' DELLA FUNZIONE DI TARATURA RIMANE INVARIATA Estensione validità funzione di taratura da verificare

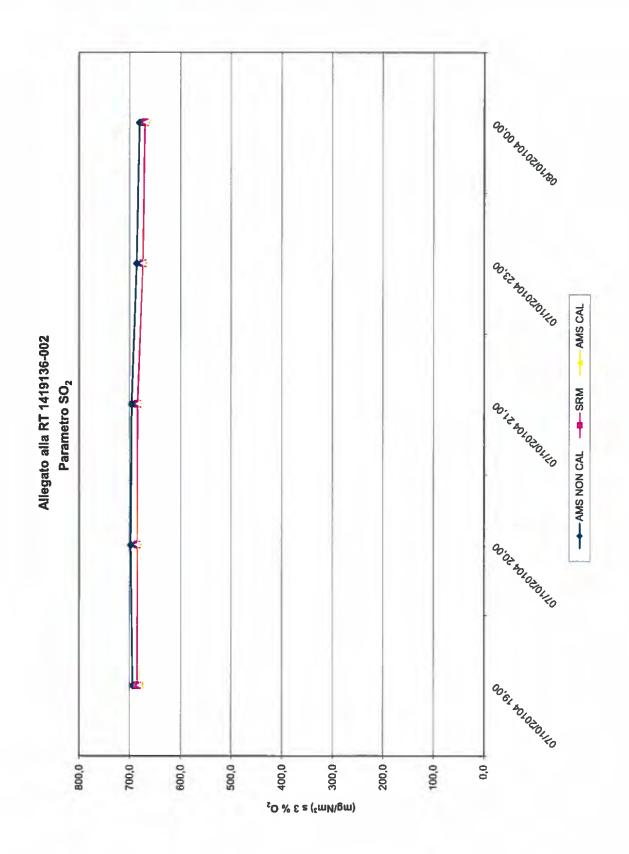
9_{M/z} i-esimo valone calibrato dell'AMS

x_{M,}= i-esimo valore misurato dall'AMS

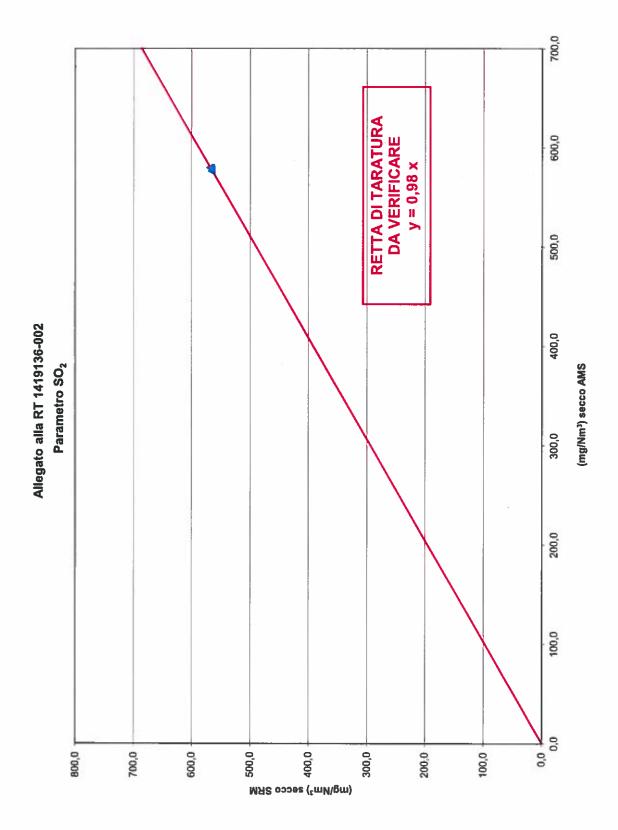
Ksyz i-esimo valore misurato dall'AMS in condizioni di riferimento 19.7 i-esimo valore calibrato dell'AMS in condizioni di riferimento

13 max valore calibrate dell'AMS incondizioni di riferimento

D_M= media degli scostamenti D₁


N= numero di prove effettuate

 $s_{\rm b^{\pm}}$ deviatione standard delle differenze D,


 $k_{\rm c}$ = parametro di un test χ^2 con un volore di B del 50%

og incertezza fornita dal legislatore come % del valore limite

Laboratorio: Via Europa, 5 - 27041 CASANOVA LONATI (Pavia) - Sede legale: Via Rota Candiani, 13 - 27043 BRONI (Pavia)
Tel. 0385.287128 (15 linee) - Fax 0385.57311 - E-mall: info@labanalysis.it - Sito internet: http://www.labanalysis.it

Laboratorio: Via Europa, 5 - 27041 CASANOVA LONATI (Pavia) - Sede legale: Via Rota Candiani, 13 - 27043 BRONI (Pavia) Tel. 0385.287128 (15 linee) - Fax 0385.57311 - E-mail: info@labanalysis.it - Sito internet: http://www.labanalysis.it

ab nalysis s.rl.

Impianto / Punto emissivo:	E11
Prelivi eseguiti da:	LabAnalysis srl

1	Versalis S.p.a
	Stabilimento di Sarroch
	ABB Uras 26
ענימון 77מו מו. כי	3.347094.3

s02	con estensione	all'ELV
Parametro		

			SISTEMA AUTOMATICO DI MISURA (AMS)	JTOMAT	ICO DI	MISURA	(AMS)		SISTE	MA DI F	LIFERIM	SISTEMA DI RIFERIMENTO (SRM)		
P.Num.	Data/ora	Durata	XM,1	۰	۵.	H20	ő	YM,I	-	a _	O, I	ő	Ys,ı	
	inizio prelievo	(upp)	(mg/Nm²) secco	¥	a de	(A/A) %	% (v/v) secon	(mg/Nm²) secco	¥	mbor	% (v/v)	% (v/v) aecco	(mg/Nm ³) s 3% O ₂	
-	07/10/20104 19,00	9	579,5				0'9	567,2				6,1	685,2	
2	07/10/20104 20,00	9	2'629				0'9	567,0				6,1	684,9	
ო	07/10/20104 21,00	9	580,1				0'9	568,6				6,1	684,7	
4	07/10/20104 23,00	9	578,8				5,8	566,2				5,9	673,8	
ıD	08/10/20104 00,00	09	576,5				5,8	565,8				5 80 80	9'029	

NOTA: nell'elaborazione secondo la norma UNI EN 14181:2005 non vengono impiegati eventuali dati elementari non validi o non disponibili nel calcolo dei valori medi sul prelievo

0 (mg/Nm³) secco	3 % (v/v) secco	1400 (mg/Nm³) s 3% O ₂
Offset	O ₂ rif.	Limite di emissione (ELV)

O ₂ rif.	3 % (v/v) secto	
Limite di emissione (ELV)	1400 (mg/Nm³) s 3% O ₂	
	:	
Legenda:		
x _{MJ} = i-esimo valore misurato dall'AMS		
y _{M,} = i-esimo valore misurato dall'SRM		
ys. Fiesimo valore rilevato dall'SRM in condizioni di riferimento	condizioni di riferimento	
×a, ===== media dei valori x _{a,j}		
ya, mede media dei valori yau		
Ys mer? massimo valore y,,		
y _{s me} ≏ minimo valore y _{s j}		
P.Num.= Numero Prelievo		

FUNZIONE DI TARATURA DA VERIFICARE $\hat{y}_{M,i} = 22,12 + 0,94 \times_{M,i}$

	Σ(D _i -D _M) ² 10,5	(D ₁ -D _M) ² (mg/Nm ¹), s, 3% O ₂	で 20 0 0 0 0 0 4
ELABORAZIONI	Zω	D _i -D _M (mg/Nm ³), s, 3% O ₂	4,1, 0,0, 4,1, 0,0,
	Ом 4,1	$D_1 = \gamma_{x,i} - \hat{\gamma}_{x,i}$ (mg/Nm ³), s, 3% O_2	4 2 4 4 5 4 4 7 7 4 7 7 7 7 7 7 7 7 7 7 7 7
(SWA) A	9s.max 682,4	95,i (mg/Nm²), s, 3% O;	678,7 682,4 680,6 671,1
AISUR	3- 4	S. S	
SISTEMA AUTOMATICO DI MISURA (AMS)	• •	ŶM.i (mg/Nan³) secce (mg/Na	566,9 567,0 567,4 566,2 564,0

Test di variabilità	1,618	0,916	142,857	PASSATO
Test di v	So	7.	020	TEST

	2,13	PASSATO
Test t	+ (n-1)	TEST

20 %

Limite intervallo di confidenza

AST PASSATO

Validità originale funzione di taratura da verificare 0,00 s 95,i s 1694,17

Estensione validità funzione di taratura da verificare NON APPLICABILE: LA VALIDITA' DELLA FUNZIONE DI TARATURA PIMANE INVARIATA

Legenda:

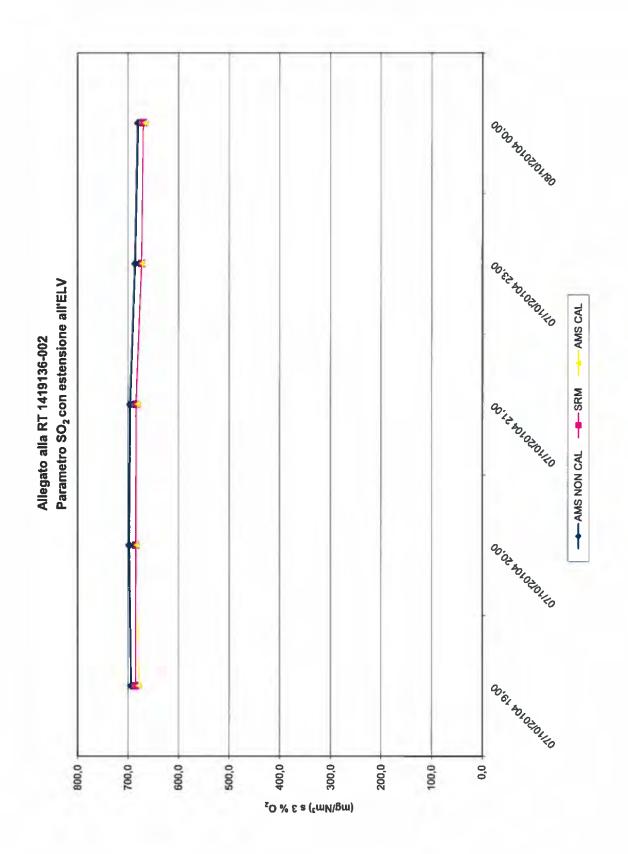
9_{M,r} i-esimo valore calibrato dell'AMS

Kaj= i-esimo valore misurato dall'AMS

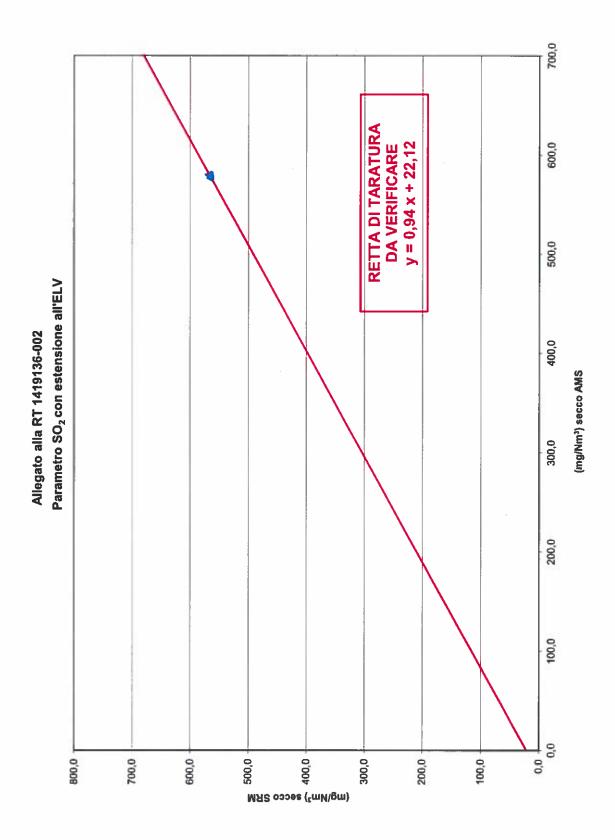
 $\kappa_{g,F}$ i-esimo valore misurato dall'AMS in condizioni di riferimento $s_{g,F}$ i-esimo valore calibrato dell'AMS in condizioni di riferimento

98,000 max valore calibrate dell'AMS incondizioni di riferimento

D_M= media degli scostamenti D_i


N= numero di prove effettuate

so= deviazione standard delle differenze D,


c,= parametro di un test x² con un valore di β del 50%

ao≓ incertezza fornita dal legislatore come % del valore limite

Laboratorio: Via Europa, 5 - 27041 CASANOVA LONATI (Pavia) - Sede legale: Via Rota Candiani, 13 - 27043 BRONI (Pavia)
Tel. 0385.287128 (15 linee) - Fax 0385.57311 - E-mail: info@labanalysis.it - Sito internet: http://www.labanalysis.it

Laboratorio: Via Europa, 5 - 27041 CASANOVA LONATI (Pavia) - Sede legale: Via Rota Candiani, 13 - 27043 BRONI (Pavia)
Tel. 0385.287128 (15 linee) - Fax 0385.57311 - E-mail: info@labanalysis.it - Sito Internet: http://www.labanalysis.it

ELABORAZIONE SECONDO UNI EN 14181:2005 TEST DI VARIABILITA'

Allegato alla RT 1419136-002 pog 1 di 2

E11	LabAnalysis srl
Impianto / Punto emissivo:	Prelivi eseguiti da:

1	Versalis S.p.a Stabilimento
	di Sarroch
	ABB Magnos 106
Analizzatore:	3.347867.3

02	
Parametro	

			SISTEMA AUTOMATICO DI MISURA (AMS)	UTOMAT	IG OOL	MISURA	(AMS)		SISTEM	M DI RI	FERIMEN	SISTEMA DI RIFERIMENTO (SRM)	
P. N.	. Data/ora	Durata	X,M,i	۲	۵	0 ² H	0	Yasi	J- -	4	H ₂ 0	0	Ys.i
	inizio prelievo	(min)	% (v/v) secca	M	b B	% (v/v)	% (v/v) secce	% (v/v) secce	м	à	(a/a) %	% (v/v) secce	% (v/v) secce
-	07/10/20104 19,00	9	0'9					6,1					6,1
2	07/10/20104 20,00	9	0'9					6,1					6,1
ო	07/10/20104 21,00	9	0'9					6,1					6,1
4	07/10/20104 23,00	9	ر ال					5,9					6'6
2	08/10/20104 00:00	09	80					ال 00					50

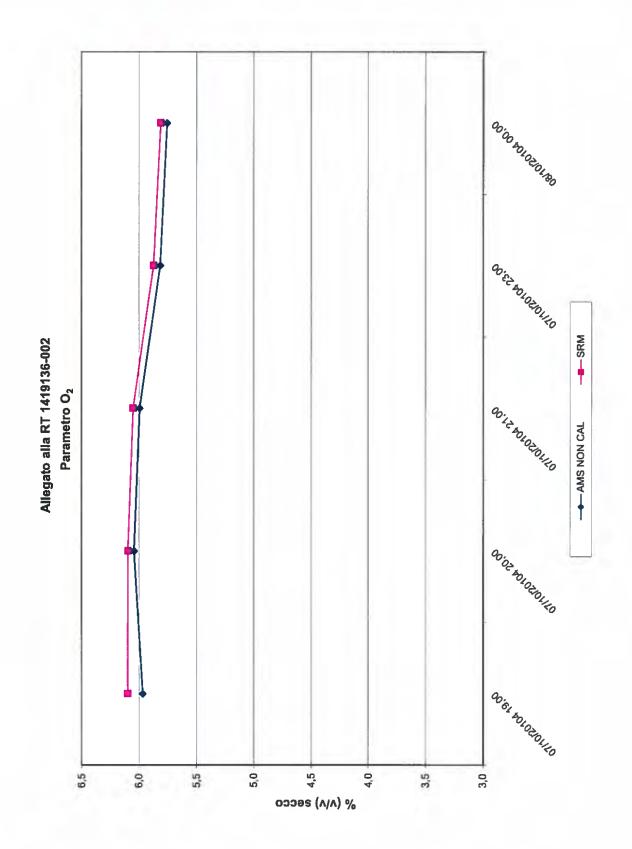
n disponibili nel calcalo dei	
i elementari non validi o non dis	
ono impiegati eventuali dat	
I EN 14181:2005 non veng	
azione secondo la norma UN	lievo
NOTA: nell'elaborazi	valori medi sul pre

0 % (v/v) secco	% (v/v) secco	5,9 % (v/v) secca	6,0 % (v/v) secco	6,1 % (v/v) secco 5,8 % (v/v) secco	21 % (v/v) secco
Offset	O ₂ rif.	X.M, media	Yat, medies	Alle condizioni di riferimento: Ysma Ysmin	Limite di emissione (ELV)

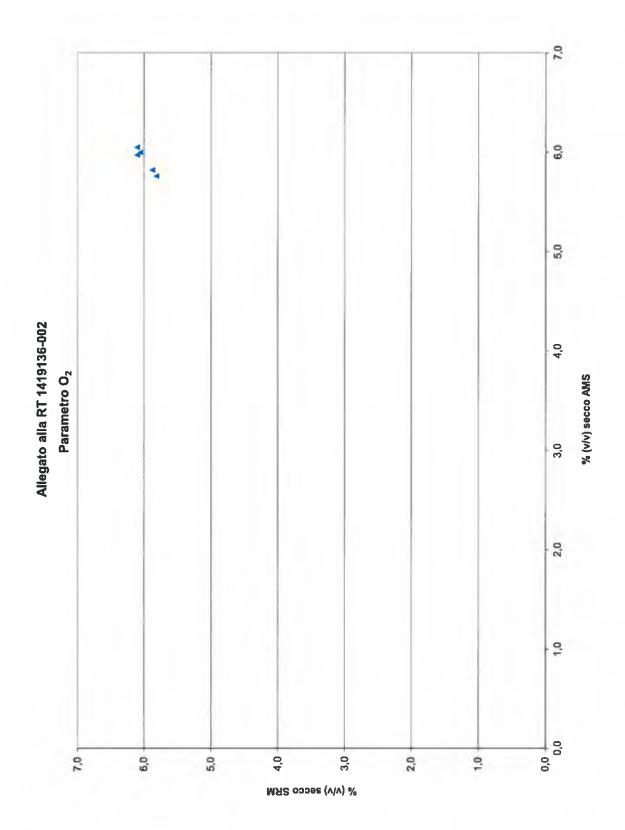
Legenda:

ELABORAZIONE SECONDO UNI EN 14181:2005 TEST DI VARIABILITA'

Allegato alla RT 1419136-002 p92 2 di 2


SISTEMA AU	SISTEMA AUTOMATICO DI MISURA (AMS)	AISURA (AMS)		ELABORAZIONI	
		95,max 6,1	р _м 00'0	Z 10	Σ(D _i -D _M) ² 0,00
X _{S,1}	βA, i ½ (v/v) seecce	95.i	$D_1 \equiv \gamma_{s, l} - \hat{\phi}_{s,l}$ % (w/v) secon	D _i -D _M	(D ₁ -D _M) ² % (v/v) secce
0'9	0'9	0'9	90'0	90'0	00'0
6,0	6,1	6,1	-0,02	-0,02	00'0
0,0	6,1	6,1	-0,01	-0,01	00'0
5,8	5,9	5,9	10'0	10,0	00'0
5,8	80,	5,8	10'0-	10'0-	00'0

° 05	10 % 2,1 % (v/v) secco	0,32 % 0,068 % (v/v) secco
Parametro: 02	Limite intervallo di confidenza	Intervallo di confidenza sperimentale


variabilità	0,034	916'0	1,071	PASSATO
Test di M	g.	sř.	8	TEST

Legenda: कृत्यः रेस्ट्रांनक valore calibrata dell'AMS	$\kappa_{s,t}$ i-esimo valore misurato dall'AMS in condizioni di riferimento	9.5.5 i-esimo valore calibrato dell'AMS in condizioni di riferimento	95.mar max valore calibrato dell'AMS incondizioni di riferimento	D _M = media degli scostamenti D,	N= nanero di prove effettuate	$s_{b^{\pi}}$ deviazione standard delle differenze D_i	k_{μ} parametro di un test χ^2 con un valore di β del 50%	os incertezza fornita dal legislatore come X del valore limite
Legenda: Ŷĸijz i-esimo valore ca	s,= i-esimo valore m	s,= i-esimo valore co	Spect max valore cal	mª media degli scos	l= numero di prove e	5 deviazione stand	= parametro di un te	; incertezza fornil

Laboratorio: Via Europa, 5 - 27041 CASANOVA LONATI (Pavia) - Sede legale: Via Rota Candiani, 13 - 27043 BRONI (Pavia) Tel. 0385.287128 (15 linee) - Fax 0385.57311 - E-mail: info@labanalysis.it - Sito internet: http://www.labanalysis.it

Laboratorio: Via Europa, 5 - 27041 CASANOVA LONATI (Pavia) - Sede legale: Via Rota Candiani, 13 - 27043 BRONI (Pavia) Tel. 0385.287128 (15 linee) - Fax 0385.57311 - E-mail: info@labanalysis.it - Sito internet: http://www.labanalysis.it

Laboratorio: Via Europa, 5 - 27041 CASANOVA LONATI (Pavia) - Sede legale: Via Rota Candiani, 13 - 27043 BRONI (Pavia) Tel. 0385.287128 (15 linee) - Fax 0385.57311 - E-mail: info@tabanalysis.it - Sito internet: http://www.labanalysis.it

azione
i elabor
Fabella di
419136-002: T
to alla RT 1
Allega

L		L	L		2	fotata	Dati ri	Dati rilevati al contalitri	ntalitri	Dati rilevati		al punto di prelievo	relievo				Elaborazioni 	zioni		
N° prelievo / condizione Periodo di considerato per il aspirato seco Condizione prelievo seco condizione	considerato per il prelievo	considerato per il prelievo	considerato per il prelievo			aspirato Secco		P T al barometrica contalitri (Pc)	T al contalitri (Tc)	ΔPe effluente	T effluente (Te)	Ossigeno	Estinzione media (+)	Acqua etaborazioni	la zioni	Volume		ř	Polverosità	শ্ব
Operativa (vc)	Finale	Finale	Finale	Finale	Finale	(40)										Totale N	Norm. Tal quate	rate Norm.	Н	Refal 3% di O ₂
Inizio Fine Durata mg mg m³	Fine Durata mg mg (min)	Durata mg mg (min)	mg mg	ш		m3		kPa	¥	Pa	×	%	%	Nm3	%	m ³ N	Nm³ S mg/m	mg/m³ ng/Nm³ S	m³ S п	mg/Nm³ S ref O ₂
			perue	******		*****				201014						*****		*****		
1/A 10,46 11,45 60 147,312 161,467 0,728	60 147,312 161,467	60 147,312 161,467	147,312 161,467			0,728		100,6	298	-260	414	e, c	54,9	0,087	11,6	1,147 0	0,663 12,3		21,4	25,5
Z/A 12,16 13,15 60 146,029 160,923 0,732	13,15 60 146,029 160,923	13,15 60 146,029 160,923	146,029 160,923			0,732	hancer	100,6	297	-255	416	5,9	55,4	0,097	12,7	1,176 0	0,668 12,7	•••••	22,3	26,6
3/A 13,19 14,18 60 145,589 159,234 0,739	14,18 60 145,589 159,234	60 145,589 159,234	145,589 159,234			0,739	Barer	100,6	297	-261	416	6,0	54,8	960'0	12,5	1,185 0	0,675 11,5		20,2	24,3
4/A 14,23 15,22 60 145,397 159,498 0,739	15,22 60 145,397 159,498	15,22 60 145,397 159,498	145,397 159,498			0,739	anger 1	100,6	286	-256	416	0,9	53,6	0,094	12,2	1,185 0	0,677 11,9	DDD	20,8	25,0
5/A 15,27 16,26 60 146,689 158,644 0,728	16,26 60 146,689 158,644	16,26 60 146,689 158,644	146,689 158,644			0,728		100,6	297	-262	417	6,0	53,4	0,092	12,1	1,166 0	0,665 10,3		18,0	21,6
		*****	******									****		*****		*****			*****	

Ordine dei Chimici della Provincia di Pavia nº 423 A Il Responsabile Settore Aria LabAnalysis srl

(+): valore ottenuto come media dei valori rilevati dal polverimetro in esame

DELLA PRO Dott. Stefano Maggi Dott. MAGGI STEFANO

AST

ab Analysis s.rl.

E11	LabAnalysis srl
Impianto / Punto emissivo:	Prelivi eseguiti da:

Polveri	
Parametro:	

offset 0,00 %	3 % (v/v) secco	imite di emissione (ELV) $50 \text{ (mg/Nhm}^3)$ s $3\% O_2$
Offset	O ₂ rif.	Limite di
		_

SISTEMA DI RIFERIMENTO (SRM)

% (v/v) % (v/v) secce

Y.M. i (mg/m²) cenide

% (v/v) % (v/v) secce

SISTEMA AUTOMATICO DI MISURA (AMS)

X 5

Durata (mm)

Data/ora inizio prelievo

Limite di emissione (ELV)	50 (mg/Nm³) s 32 C
Legenda:	
AMS i-esimo valore misurato dall'AMS	
yar i esima valore misurato dall'SRM	
$\gamma_{s,r}$ i-esima valore rilevata dall'SRM in condizioni di riferimenta	n condizioni di riferimenta
×n, mada? medio dei volori ×n,	
YM, made? media dei valori Yas	
Ys === * massima valora ys;	
ys == = minima valore ys,	
P.Nun.* Numero Prelievo	

_													
-	07/10/2014 10,46	09	54,9	415	1002,5	6,4	ال ش	12,3	414	1003,4	11,6	5,9	25,5
~	07/10/2014 12,16	09	55,4	416	1002,7	6,5	EQ.	12,7	416	1003,5	12,7	5,9	56,6
m	07/10/2014 13,19	09	54,8	416	1002,8	6,4	9,5	11,5	416	1003,4	12,5	0'9	24,3
4	07/10/2014 14,23	09	53,6	416	1002,9	6,4	9,0	11,9	416	1003,4	12,2	0'9	25,0
ស	07/10/2014 15,27	09	53,4	417	1003,0	6,3	0′9	10,3	417	1003,4 12,1	12,1	0'9	21,6
N S S S S S S S S S S S S S S S S S S S	NOTA: nell'elaborazione secondo la norma UNI EN 14181:2005 non vengono impiegati eventuali dati elementari non validi o non disponibili nel calcolo dei valori medi sul prelievo	econdo la rrelievo	norma UNI E	N 14181	:2005 non	vengono	implegati ev	ventuali dati e	lementar	i non validi	o non di	sponibili nel	

Allegato alla RT 1419136-002

FUNZIONE DI TARATURA
DA VERIFICARE

Ŷ_{M,i}= -2,175 + 0,283 ×_{M,i}

<u> </u>	Σ(D ₁ -D _M) ² 10,2	(D ₁ -D _M) ² (reg/Neh); s, 3% O ₂	0,5	£,7 0,3	9′0	6,4
ELABORAZIONI	Zin	D;-D;, (mg/Nm²), s, 3% O;	7.0	0°7 0°2	9'0	-2,5
	D _M	D ₁ = γ _{x,1} -β _ω (mg/Nah), 1, 3% O ₂	9,0-	3,0 8,1-	-0,5	-3,8
ISTEMA AUTOMATICO DI MISURA (AMS	⁹ 5,тах 26,3	\$5,1 {mg/hm²), 1, 3% 0,	26,0	26,1	25,5	25,4
ISTEMA AUTOMATIA		∳M,↓ (mg/m²) umida	13,4	13,3	13,0	12,9

		_		
est di variabilità	1,597	0,916	7,653	PASSATO
Test di	S _D	2	o	TEST

	2,13	PASSATO
Test t	t (n-1)	TEST

30 %

Limite intervallo di confidenza

AST PASSATO

Validità originale funzione di taratura da verificare 0,00 s 95, i s 42,65

Estensione validità funzione di taratura da verificare NON APPLICABILE; LA VALIDITA' DELLA FUNZIONE DI TARATURA RIMANE INVARIAT

regenda:

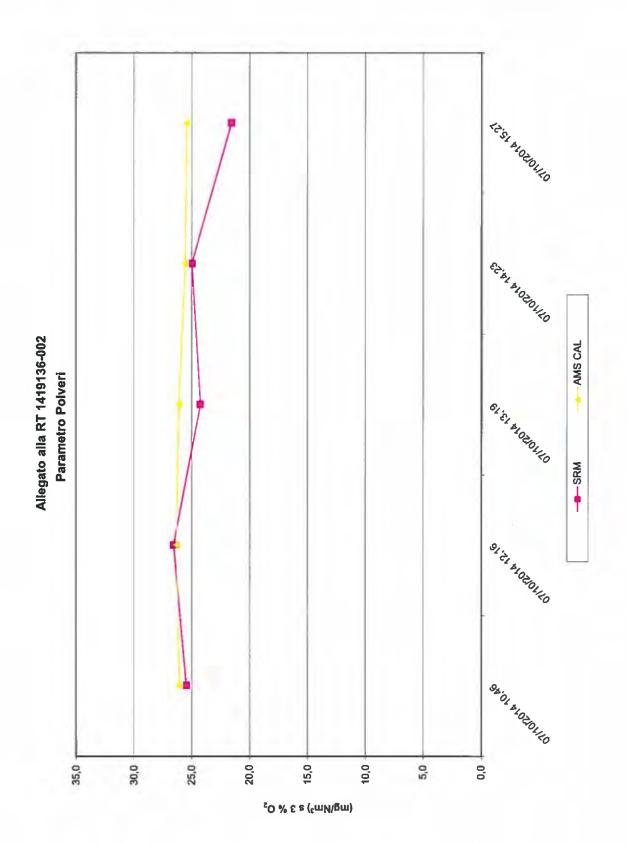
g_{aj}= i-esimo valore calibrato dell'AMS

K_{M,F} i-esimo valore misurato dall'AMS

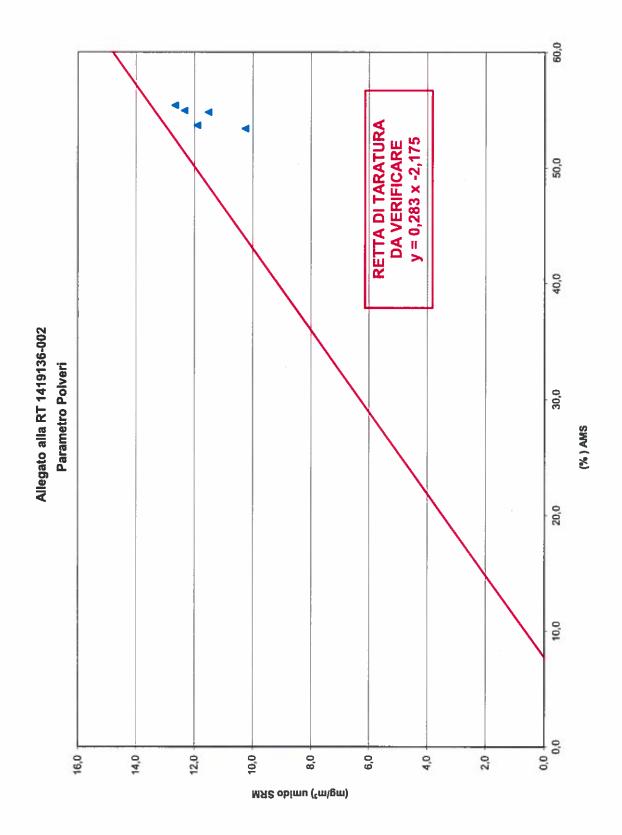
 $\kappa_{s,s}$ i-esimo valore misurato dall'AMS in condizioni di riferimento $\kappa_{s,r}$ i-esimo valore calibrato dell'AMS in condizioni di riferimento

Same max valore calibrate dell'AMS incondizioni di riferimente

fs...... max valore calibrato dell'AMS inc D_M= media degli scostamenti D,


d≈ numero di prove effettuate

 $\xi_{D^{\pm}}$ deviazione standard delle differenze D,


C= parametro di un test x² con un volore di B del 50%

agi incertezza fornita dal legislatore come % del valore limite

Laboratorio: Via Europa, 5 - 27041 CASANOVA LONATI (Pavia) - Sede legale: Via Rota Candiani, 13 - 27043 BRONI (Pavia) Tel. 0385.287128 (15 linee) - Fax 0385.57311 - E-mail: info@labanalysis.it - Sito internet: http://www.labanalysis.it

Laboratorio: Via Europa, 5 - 27041 CASANOVA LONATI (Pavia) - Sede legale: Via Rota Candiani, 13 - 27043 BRONI (Pavia)
Tel. 0385.287128 (15 linee) - Fax 0385.57311 - E-mail: info@labanalysis.it - Sito internet: http://www.labanalysis.it

CERTIFICATO DI ACCREDITAMENTO

Accreditation Certificate

Accreditamento no

0077

Rev. 2

Si dichiara che

LabAnalysis srl

Sede

Via Europa, 5 - 27041 Casanova Lonati PV

è conforme ai requisiti della norma

UNI CEI EN ISO/IEC 17025;2005 "Requisiti generali per la competenza dei Laboratori di prova e taratura"

meets the reqirements of the standard

EN ISO/IEC 17025;2005 "General Requirements for the Competence of Testing and Calibration Laboratories" standard

quale

Laboratorio di Prova

as

Testing Laboratory

L'accreditamento attesta la competenza tecnica del Laboratorio relativamente allo scopo riportato nelle schede allegate al presente certificato. Le schede possono variare nel tempo. I requisiti gestionali della ISO/IEC 17025:2005 (sezione 4) sono scritti in un linguaggio idoneo all'attività dei Laboratori di Prova, sono conformi ai principi della ISO 9001:2008 ed allineati con i suoi requisiti applicabili.

Il presente certificato non è da ritenersi valldo se non accompagnato dalle schede allegate e può essere sospeso o revocato in qualsiasi momento nel caso di inadempienza accertata da parte di ACCREDIA. La vigenza dell'accreditamento può essere verificata sul sito WEB (www.accredia.it) o richiesta direttamente ai singoli Dipartimenti.

The accreditation certifies the technical competence of the laboratory limited to the scope detailed in the attached Enclosure. The scope may vary in the time. The management system requirements in ISO/IEC 17025:2005 (Section 4) are written in a language relevant to Testing Laboratories operations and meet the principles of ISO 9001:2008 and are aligned with its pertinent requirements.

The present certificate is valid only if associated to the annexed schedule, and can be suspended or withdrawn at any time in the event of non fulfilment as ascertained by ACCREDIA.

The in force status of the accreditation may be checked in the WEB site (www.accredia.it) or on direct request to appointed Department.

Data di 1ª emissione 1st issue date 1994-07-13 Data di modifica Modification date 2014-05-08 Data di scadenza Expiring date 2018-07-12

Il Direttore Generale The General Director (Dr. Filippo Trifiletti) Il Direttore di Dipartimento Department Director (Dr. Paolo Bianco)

Il Presidente The President

(Cav. del Lav. Federico Grazioli)

Mod CA-01 rev. 01

Pag 1 di 2

Membro degli Acturdi di Mutuo Ritonoscimento EA, IAF e ILAC Signatory of EA, IAF and ILAC Mutual Recognition Agreements

CERTIFICATO DI ACCREDITAMENTO

Accreditation Certificate

Accreditamento nº Accreditation nº

0077

Rev. 2

Si dich ara che We declare that Sedi operative:

LabAnalysis srl Via Europa, 5 27041 Casanova Lonati PV LabAnalysis srl

Cittadella della Ricerca Ed.6, SS 7 per Mesagne Km 7,300 72100 Brindisi BR

Mod CA-01 rev 01

Pag 2 di 2

Calzari Emanuele

RAPPORTO DI QUALIFICA RQUAL N°

3458 -P-QUAL-446- 2014

Operatore:

Procedura di riferimento

Data :

P-QUAL-446

18/02/2014 Luogo :

Condizioni amb entali influenti :

Casanova Lonati Area :

temperatura 22±5°C

	Concentrazion	u.m.	Costruttore	Certif, N*	del	ecadenza bombola
Bombola Q2	19.99	%	Slad	58518	13/10/2010	13/10/2015
Bombola CO2:	16.23	%	Sapio	MP 14280	07/08/2011	07/06/2014
Bombola CO ;	401	ppm	Siad	107344	15/06/2011	15/06/2014
Bombola NO :	398	ppm	Slad	230173	12/02/2012	10/01/2015
Bombola NO2	106	ppm	Slad	50758	04/01/2013	04/07/2014
Bombola SO2	389	DDM	Siad	107208	04/07/2012	04/07/2014

	Costruttore	Modello	S/N	Calibrato ii	Cod, Int.	Scadenza taratura
Diluiitore:	LN	Sonimix 2106 B	2270	10/09/2012	878	settembre-15
	1			Y		1

GAS	O2	CO2	co	NO	SO2
Codice interno :	3458	3458	3458	3458	3458
Costruttore :	Horiba	Horiba	Horiba	Horiba	Horba
Modello:	PG-250	PG-250	PG-250	PG-250	PG-250
Fondo Scala 1	10	20	200	50	200
Fondo Scala 2	25		500	100	500
Fondo Scala 3	_	_		250	
Fondo Scala 4		_		500	
Unita misura scala	%	%	ppm	ppm	ppm

Efficienza (%)	Criterio d	l accettabilità				Esito	
96.3	> 95 %					ØΡ	ON
Linearità					-	/	
Gas misurato	N°Scala	Residuo relativo M	ex % Criteri accettabil	Scostamento Max % Relativo F.S.	Criteri eccettab	« Esito	
O2	1	0.3	< 5% F.S.	0.900	< 2% F.S.	QΡ	ON
02	2	0.3	< 5% F.S.	0.480	< 2% F.S.	K P	ON
CO2	1	0.2	< 5% F.S.	0.350	< 2% F.S.	10/P	ON
co	1	0.2	< 5% F.S.	0.300	< 2% F.S.	Ø₽	ON
co	2	0.1	< 5% F.S.	0.160	< 2% F.S.	ØΡ	ON
NO	1	0.2	< 5% F.S.	0.400	< 2% F.S.	2 P	ON
NO	2	0.4	< 5% F.S.	1.000	< 2% F.S.	ЮP	ON
NO	3	0.2	< 5% F.S.	0.240	< 2% F.S.	ØР	ON
NO	4	0.1	< 5% F.S.	0.080	< 2% F.S.	QP	ON
SO2	1	0.2	< 5% F.S.	0.350	< 2% F.S.	ØΡ	ON
SO2	2	0.1	< 5% F.S.	0.140	< 2% F.S.	Q(P	ON
Ripetibilità	•	•	•				
Gas misurato	N°Scala	Sr (% F.S.)			Criteri accettat	a Esito	
02	1	0.10			< 2% F.S.	φ(P	ON
02	2	0.05			< 2% F.S.	ØP	ON
CO2	1	0.04			< 2% F.S.	ØP	ON
CO	1	0.04			< 2% F.S.	A'P	ON
co	2	0.02			< 2% F.S.	Q P	ON
NO	1	0.10			< 2% F.S.	Q/P	ON
NO	2	0.04			< 2% F.S.	QP	ON
NO	3	0.02			< 2% F.S.	g P	ON
NO	4	0.02			< 2% F.S.	Ø₩P	ON
SO2	1	0.03			< 2% F.S.	ØР	ON
SO2	2	0.01			< 2% F.S.	ØP.	ON

Ventica validazione foglio di calcolo		_
Calcolo	Risultato	Aspettato
MEDIA(B33.B43)/SOMMA(B46:B56)	0.0909091	0.0909091
DEV.ST(B46.B56)	0.9816498	0.9816498
B56*B55*B54*B52*B47*B41/(SQMMA(B33:B40)-SQMMA(B50:B54)	128.0000	128.0000

Operators (nome/ firma)

Calzari Emanuele

Controllo DAT (nome / firms)

Dragoni Matteo

Laboratorio: Via Europa, 5 - 27041 CASANOVA LONATI (Pavia) - Sede legale: Via Rota Candiani, 13 - 27043 BRONI (Pavia)
Tel. 0385,287128 (15 linee) - Fax 0385.57311 - E-mail: info@labanalysis.it - Sito Internet: http://www.labanalysis.it

All.1 P-TAR-194 Rev.2 del 01/02/2008 Nome file: VFC-P-TAR-194-02_rev2

RAPPORTO DI TARATURA – CONTATORE VOLUMETRICO

Casanova Lonati,

12/03/2012

RT n°

3235-Ptar194-12

Pag.1 di 1

Richiedente:

Taratura interna Lab Analysis

Descrizione strumento: Campionatore aria

3235

Area:

Modello:

Cod. Int.: .

STM5

LIFETEK 55 XP-R

uf cont.tar. = 0,0002 m3

Campione di riferimento: Contatore Volumetrico

Cod. Int.:

1701

Certificato nº:

3251682

Rilasciato da:

NMI

Unità di formato - uf:

0,0002 m3

0,0009

Incertezza estesa ammessa nel CR U =1% per il flusso tra 3 e 5l/min=0,3 m3/h U=± Incertezza estesa ammessa nel CR U =1% per il flusso tra 10 e 15l/min=0,9 m3/h U=±

0,0027

Procedura di riferimento: P-TAR-194

Condizioni ambientali influenti:

Data inizio taratura:

12/03/2012

Data fine taratura: 12/03/2012

		Esattezza:	
	Volume medio di	Volume medio	
Flusso impostato I/min	riferimento m³/h	contatore m ³ /h	Scostamento %
Tra 3 e 5 l/min	0,304	0,301	-1,06
Tra 10 e 15 l/min	0,915	0,905	-1,09
	c	Correzione volume: (%)	
		SSUNA CORREZIONE	

Incertezza:				
	Incertezza estesa di taratura (*)	Incertezza estesa di taratura (*)		
Flusso impostato I/min	(±U °C) al flusso impostato l/min	(±U °C) al flusso impostato m3/h		
Tra 3 e 5 ¼min	0,15	0,009		
Tra 10 e 15 l/min	0,63	0,038		

(*); l'incertezza estesa indicata è espressa come l'incertezza tipo moltiplicata per il fattore di copertura K=2,57, per il livello di fiducia del 95% circa, I gradi di libertà effettivi risultato essere n_{eff}=2, L'incertezza tipo è stata determinata conformemente al documento EA-4/02.

Responsabile Taratura

MAURIGIO

Responsabile, Controllo

Tecnico)

edente: riziohe campione: cla Analitica filo: (clente di semipibilità is mpo di misura / tarat ta minima (g): (g): (g): (g): (g): (g): (g): (g):	atura 0.001000g po atura 0.001000g po cd.2266); certificato 667; certificato n' 1 mg. 1g. 20g. 100; 1 g. 20g (cod.809) g, 50g. 100g. 200g 2502); certificato n' entre cappa aspira	Rapporto di Tan Taratura interna LabAnalysis 00 0°C) (1°C) riata massima (g): riata massima (g): 0 n°2223/12 386/13 10 (cod.186); certificato n°1386/13 10 certificato n°1386/13 11386/13 11386/13 P.TAR-09 rev. 31/03/2014	Area AFT 1,00E-08 1,000000g 4,500000g 4,500000g 20 1ncertezza uE (g) 0,0000006 0,0000006 0,00000104 0,00000104 0,00000064	Marca: SARTORIUS n'metricola: 21903098 risoluzione(g): 0,000001g risoluzione(g): 0,000001g Data fine taratura 31	/03/2014
rizione campione: cia Analitica filo: cia Analitica filo: Micrite di sensibilità is mpo di misura / taret a minima (g): poloni di riterimento: re CIBE de 5 mg (coc re CIBE de 5 mg (coc re CIBE de 2 mg (20) re Mettler Toledo da re CIBE de 0,5g, 10g re CIBE de 2 g (cod,2 adura impiegata: inizio taratura izioni di taratura : se meratura "C: 10 filma variazione di ter ta minima in embito ta minima: ibilità all'eccentricità micro / termes sibilità micro / termes politica di misura / tarat messe nominati neg 2mg 3mg 4mg 10mg 10mg 10mg 10mg 10mg 10mg 10mg 10	AE 5-0-CE termica (tra 10 e 30 attura 10	Taratura interna LabAnalysis 00 DC) (1/°C) mata massima (g): pertificato n°1386/13 p	Area AFT 1,00E-08 1,000000g 4,500000g 4,500000g 20 0,002000 0,0000006 0,0000006 0,00000104 0,00000104 0,00000104	Marca: SARTORIUS n'metricola: 21903098 risoluzione(g): 0.000001g risoluzione(g): 0.000001g Data fine taratura 31 (** Massima incertezza combinata di ripet 1.04E-06	(s)
rizione campione: cia Anelitica filo:	AE 5-0-CE termica (tra 10 e 30 attura 10	000 O'C) (1/°C) riata massima (g): riata massima (g): riata massima (g): o n'2223/12 386/13 g cod.166); certificato n°1386/13 g cod.166); certificato n°1386/13 g cod.2550); certificato n°1386/13 1386/13 P-TAR-09 rev. 31/03/2014 szione accesa rata °C: 0 diff Lmax/2 (g) 0,000000 0,0000000 (**)sL (g) 0,00000100 0,00000099	1,00E-08 1,000000g 4,500000g 4,500000g 20 0,002000 0,0000006 0,0000006 0,00000104 0,00000104 0,00000104	n'metricole: 21903058 risoluzione(g): 0.000001g risoluzione(g): 0.000001g Data fine taratura 31 (**)Massima incertezza combinata di ripet 1.04E-06	(s)
cia Analitica filori filorite di sensibilità i mpo di misura / tara ta minima (g): mpo di misura / tara ta minima (g): pri Aletter Toledo da ra CIBE da 2 mg (200 ra CIBE da 1 mg, 20) ra CIBE da 2.5g, 10g ra CIBE da 2.5g, 10g ra CIBE da 2.5g, 10g ra CIBE da 2.5g (cod. 2 dura impiegata: inizio taratura izioni di taratura : an taminima in ambito ta minima in am	AE 5-0-CE termica (tra 10 e 30 attura 10	O'C) (1/°C) rists massima (g): rists massima (g): o n*2223/12 386/13 g (cod.166); certificato n*1386/13 g (cod.2550); certificato n*1386/13 *1386/13 P.TAR-09 rev. 31/03/2014 szlone accesa rata *C: 0.000000 0.0000000 (**)sL (g) 0.0000000 0.00000000 0.00000000 0.000000	1,00E-08 1,000000g 4,500000g 4,500000g 20 0,002000 0,0000006 0,0000006 0,00000104 0,00000104 0,00000104	n'metricole: 21903058 risoluzione(g): 0.000001g risoluzione(g): 0.000001g Data fine taratura 31 (**)Massima incertezza combinata di ripet 1.04E-06	(s)
iciente di sensibilità is impo di misura / tarat a minima (g): Impo di misura / tarat a minima in ambito taratura : se minima in ambito taratura : se minima in ambito ta minima in ambito di min	termica (tra 10 e 30 tatura 2,0001000g po atura 2,0001000g po atura 3,0001000g po certificato nº 10 mg, 1g, 20g, 100g, 10g, 20g (cod.809) g, 50g, 100g, 200g 2502); certificato nº 10 amperatura ranjet po faramaceutico: tà del carico Carico (g) 1 g 1 g 1 g 1 g 1 g 1 g 1 g 1 g 1 g 1	riata massima (g): rinta massima (g): rinta massima (g): 2 or 2223/12 386/13 2 cod.166); certificato n°1386/13 2 cod.2550); certificato n°1386/13 1386/13 P-TAR-09 rev. 31/03/2014 szione accesa rata °C: 0 diff Lmax/2 (g) 0,000000 0,0000000 (**)sL (g) 0,00000100 0,00000099	3.000000g 4.500000g 4.500000g 20 0.002000 0.0000006 0.0000006 0.00000006 0.00000104 0.00000104 0.00000104	risoluzione(g): 0.000001g risoluzione(g): 0.000001g Data fine taratura 31 (** Massima incertezza combinata di ripet 1.04E-06	(s)
mpo di misura / tarat la minima (g): mpo di misura / tarat la minima (g): pioni di riterimento: re CIBE de 5 mg (coc re CIBE de 2 mg (20 re CIBE de 1 mg (20 re CIBE de 1 mg (20 re CIBE de 2 mg (20 re CIBE de 2 g (cod.2 edura impiegata: inizio taratura izioni di taratura : se seratura "C: time variazione di te la minima: la minima: la minima: la minima: seratura "C: time variazione di te la minima:	atura 0,001000g po atura 0,001000g po atura 0,001000g po cd.2266); certificato 687); certificato n' 1 mg. 1g. 20g. 100; 1 tg. 20g (cod.809) g, 50g. 100g. 200g 2502); certificato n' amperatura rapist o faramaceutico: tà dei carico Carico (g) 1 g 1 g Carico 1 nominate (g) 20mg (cod.2550) 2 g (cod.2550)	riata massima (g): rinta massima (g): rinta massima (g): 2 or 2223/12 386/13 2 cod.166); certificato n°1386/13 2 cod.2550); certificato n°1386/13 1386/13 P-TAR-09 rev. 31/03/2014 szione accesa rata °C: 0 diff Lmax/2 (g) 0,000000 0,0000000 (**)sL (g) 0,00000100 0,00000099	3.000000g 4.500000g 4.500000g 20 0.002000 0.0000006 0.0000006 0.00000006 0.00000104 0.00000104 0.00000104	risoluzione(g): 0.000001g Data fine taratura 31 9 9 1 1.04E-06	(s)
ta minima (g): ta minima (g): mpo di misura / tara ta minima (g): pro di misura / tara ta minima (g): pro cibi da 5 mg (coc tra CIBE da 5 mg (coc tra CIBE da 5 mg (coc tra CIBE da 1 mg, 20; tra CIBE da 1 mg, 20; tra CIBE da 0,5q, 10g tra CIBE da 0,5q, 10g tra CIBE da 2,9 (cod.2 dura impiegata: inizio taratura izioni di taratura : ar tra minima in ambito ta mi	2.001000g po atura 2.001000g po atura 2.001000g po d. 2266); certificato n°1 2.001000g po d. 2266); certificato n°1 2.001000g po d. 2260; codo atura 2.001000g po d. 2260; certificato n°1 2.001000g po d. 2260; certificato n°1 2.001000g po d. 2260; certificato n°1 2.0010000g po d. 2260; certificato n°1 2.00100000g po d. 2260; certificato n°1 2.00100000000000000000000000000000000	### Part	1.2 0.002000 0.002000 0.0000006 0.0000006 (***JuB (g) 0.00000104 0.00000104 0.00000104	risoluzione(g): 0.000001g Data fine taratura 31 9 9 1 1.04E-06	(s)
mpo di misura / tare ta minima (g): joloni di rifarimento: re CIBE de 5 mg (coc re CIBE de 7 mg (25 re CIBE de 1 mg, 20 re Metter Totedo da re CIBE de 0.5g, 10g re CIBE de 1 mg re CIBE de 2 mg re CIB	atura ,001000g po dd.2666); certificato n° ing, 1g, 20g, 100; ing, 20g (cod 809) g, 50g, 100g, 200g 2502); certificato n° amperatura raplat faramaceutico: tà del carico Carico ig ig carico ig(cod 1867) 2g (cod 2550) 2g (cod 2550)	### Part	1.2 0.002000 0.002000 0.0000006 0.0000006 (***JuB (g) 0.00000104 0.00000104 0.00000104	risoluzione(g): 0.000001g Data fine taratura 31 9 9 1 1.04E-06	(s)
plori di riferimento: re CIBE de 5 mg (coc re CIBE de 2 mg (25c re CIBE de 2 mg (25c re CIBE de 1 mg 20 re Mettler Totedo de re CIBE de 0.5g, 10g re CIBE de 2g (cod.2 redura impiegata: inizio taratura izioni di taratura : se seratura °C; 15 time variazione di tei ta minima in ambito ta minima: ibilità all'eccentricità aminena in ambito ta minima: ibilità all'eccentricità aminena in ambito ta minima: ibilità all'eccentricità minora fundace producti di misura / tarat masse nominati reg 2mg 3mg 3mg 10mg 3mg 10mg 3mg 10mg 10mg 10mg 10mg 10mg 10mg 10mg 10	cid 2266); certificato con control carificato (1) mg, 19, 20g, 100; 19, 20g (cod 809) g, 50g, 100g, 200g 2502); certificato n' control cappa espiral carificato (1) certificato (1) certificat	on*2223/12 386/13 g (cod.166); certificate n*1386/13 g (cod.166); certificate n*1386/13 (cod.2550); certificate n*1386/13 *1386/13 P-TAR-09 rev. 31/03/2014 szlone accesa rata *C: 0 diff Lmax/2 (g) 0.000000 0.0000000 (**)sL (g) 0.00000100 0.00000100 0.00000099	0.20 0.002000 0.000999 incertezza uE (g) 0.000006 0.0000006 (***uB (g) 0.00000104 0.00000104 0.00000104	Data fine taratura 31 9 0 (** Massima incortezza combinata di ripet	(s)
re CIBE de 5 mg (coc re CIBE de 2 mg (coc re CIBE de 2 mg (20) re Metter Toledo da re CIBE de 0.5g, 10g re CIBE de 0.5g, 10g re CIBE de 2.5g (cod.2 edura implegata: inizio taratura izioni di taratura : se seratura "C; 11 time variazione di te ta minima in embito ta minima in embito ta minima: ibilità ell'eccentricità encon / tenne ibilità ell'eccentricità encon / tenne inimo di misura / tarat masse nominati 1mg 2mg 3mg 10mg 30mg 10mg 10mg 10mg 10mg 10mg 10mg 10mg 1	od.2266); certificar of 167; certificar of 167; certificar of 1 org. 1g. 20g. 100; 1 g. 20g. (cod.809) g. 50g. 100g. 200g. 2502); certificar of 1 org. 20g. 200g. 2502); certificar of 1 org. 20g. 2502); certificar of 1 org. 2502	386/13 (cod.166); certificato n°1386/13 (cod.166); certificato n°1386/13 (cod.2550); certificato n°1386/13 *1388/13 P-TAR-09 rev. 31/03/2014 szlone accesa sata °C: 0 diff Lmax/2 (g) 0.000000 0.0000000 (**)sL (g) 0.0000100 0.00000000 0.00000090	0,002000 0,000999 Incertezza uE (g) 0,000006 0,000006 (***uB (g) 0,0000104 0,0000104 0,0000104	(**)Massima incortezza combinata di ripet	(s)
inizio taratura izioni di taratura : ar izioni di taratura di taratura : izioni di minima in ambito izioni di taratura : ar iz	in particular in	31/03/2014 szione accesa rata °C: 0 diff Lmax/2 (g) 0,000000 0,0000000 (**)sL (g) 0,0000100 0,0000100 0,00000000	0,002000 0,000999 Incertezza uE (g) 0,000006 0,000006 (***uB (g) 0,0000104 0,0000104 0,0000104	(**)Massima incortezza combinata di ripet	(s)
inizio taratura izioni di taratura : ar izioni di taratura di taratura : izioni di minima in ambito izioni di taratura : ar iz	in particular in	31/03/2014 szione accesa rata °C: 0 diff Lmax/2 (g) 0,000000 0,0000000 (**)sL (g) 0,0000100 0,0000100 0,00000000	0,002000 0,000999 Incertezza uE (g) 0,000006 0,000006 (***uB (g) 0,0000104 0,0000104 0,0000104	(**)Massima incortezza combinata di ripet	(s)
izioni di taratura : se peratura "C; 15 ima variazione di ta ta minima in ambito ta minima: ibilità all'eccentricità a minima in ambito ta minima: ibilità all'eccentricità a minima / taratura / tara	in particular in	### G: 0 ### Lmax/2 (g) 0,000000 0,000000 (**)sL (g) 0.0000100 0,00000100 0,0000009	0,002000 0,000999 Incertezza uE (g) 0,0000006 0,0000005 (**NuB (g) 0,00000104 0,00000104 0,00000104	(**)Massima incortezza combinata di ripet	(s)
ime variazione di tei ta minima in embito ta minima: ibilità all'eccentriciti e nicora / ternico ibilità e nicora / ternico i i e nicora	in particular in	diff Lmax/2 (g) 0,000000 0,000000 (**)sL (g) 0,0000100 0,00000100 0,00000100	0,002000 0,000999 Incertezza uE (g) 0,0000006 0,0000005 (**NuB (g) 0,00000104 0,00000104 0,00000104	(**)Massima Incertezza combinata di ripet	ibliză (g)
ime variazione di tei ta minima in embito ta minima: ibilità all'eccentriciti e nicora / ternico ibilità e nicora / ternico i i e nicora	in particular in	diff Lmax/2 (g) 0,000000 0,000000 (**)sL (g) 0,0000100 0,00000100 0,00000100	0,002000 0,000999 Incertezza uE (g) 0,0000006 0,0000005 (**NuB (g) 0,00000104 0,00000104 0,00000104	(**)Massima Incertezza combinata di ripet	ibliză (g)
ta minima: Ibilità all'eccentricità Individuali di misura / tarai	tà del carico Carico (g) ig ig Carico Carico Carico Carico nominate (g) Domg (cod 2550 ig (cod 2550)	diff Lmax/2 (g) 0,000000 0,000000 (**)sL (g) 0,0000100 0,0000100 0,0000009	0,000999 incertezza uE (g) 0,000006 0,000006 (**juB (g) 0,0000104 0,0000104 0,0000104	(**)Massima Incertezza combinata di ripet	іънка (у)
s rices / termino Sibilità Internation 1 Internation	Carico (g) ig 1g Carico mominate (g) Domg (cod 2550 ig (cod 16873) 2g (cod 2550)	0,000000 0,000000 (**)sL (g) 0.00000100 0.00000100 0.00000099	0,000006 0,000006 (**JuB (g) 0.0000104 0,0000104	(**)Massima incertazza combinata di ripet	пъника (g)
strikk a strong to the strike and the strong to the strong	1g 1g 1g Carico nominate (g) 100mg (cod 2550 1g (cod 166/3) 2g (cod 2560)	0,000000 0,000000 (**)sL (g) 0.00000100 0.00000100 0.00000099	0,000006 0,000006 (**JuB (g) 0.0000104 0,0000104	(**)Massima incertazza combinata di ripet	ibliká (g)
strikk a strong to the strike and the strong to the strong	1g 1g 1g Carico nominate (g) 100mg (cod 2550 1g (cod 166/3) 2g (cod 2560)	0,000000 0,000000 (**)sL (g) 0.00000100 0.00000100 0.00000099	0,000006 0,000006 (**JuB (g) 0.0000104 0,0000104	(**)Massima incertazza combinata di ripet	ibliká (g)
mount / motors 1 1 2	Carico nominale (g) D0mg (cod 2550 1g (cod 166/3) 2g (cod 2560)	(**)siL (g) 0.0000100 0.0000100 0.0000099	(**)uB (g) 0.00000104 0.0000104 0.00000104	1.04E-06	ibilità (q)
mount / motors 1 1 2	nominate (g) DOmg (cod 2550 1g (cod 166/3) 2g (cod 2560)	0.00000100 0.00000100 0.0000099	0.00000104 0.00000104 0.00000104	1.04E-06	ibithā (g)
intità misura / tara masse nominati img 20mg 30mg 50mg 50mg 60mg 60mg 60mg 60mg 10mg 10mg 10mg 10mg 10mg 10mg 10mg 1	nominate (g) DOmg (cod 2550 1g (cod 166/3) 2g (cod 2560)	0.00000100 0.00000100 0.0000099	0.00000104 0.00000104 0.00000104	1.04E-06	iblikė (g)
nrith messe nomineth ling 2mg 2mg 2mg 2mg 3mg 10mg 20mg 30mg 30mg 6mg 6mg 6mg 6mg 6mg 6mg 6mg 6mg 6mg 6	00mg (cod 2550 1g (cod 166/3) 2g (cod 2550)	0.00000100 0.00000100 0.0000099	0.00000104 0.00000104 0.00000104	1.04E-06	lee III
nrith mpo di misura / tera messe nomineli 1mg 2mg 3mg 8mg 10mg 20mg 30mg 80mg 60mg 60mg 60mg 61g 1g mpo di misura / tara masse nomineli 1mg	1g (cod 166/3) 2g (cod 2550)	0.00000100 0,00000099	0,00000104 0,00000104	Character and the control of the con	ĺα, II
messe nominati img 2mg 3mg 5mg 10mg 10mg 20mg 30mg 6mg 60mg 60mg 60mg 60mg 61g mpo di misura / tara	2g (cod 2550)	0,00000099	0,00000104	1.04E-06	la, II
mpo di misura / terai messe nomineli 1mg 2mg 2mg 3mg 10mg 10mg 30mg 30mg 30mg 56mg 64mg 64mg 64mg 64mg 64mg 64mg 64mg 6	4.5g	0,00000057	0,0000064	1.04E-08	1835.
mpo di misura / terai messe nomineli 1mg 2mg 2mg 3mg 10mg 10mg 30mg 30mg 30mg 56mg 64mg 64mg 64mg 64mg 64mg 64mg 64mg 6					
messe nominati img 2mg 2mg 3mg 3mg 10mg 20mg 9 50mg 60mg 10mg 10mg 10mg 10mg 10mg 10mg 10mg 1					
nominati Ireg 2mg 2mg 3mg 6mg 10mg 20mg 95mg 66mg 66mg 10mg 10mg 10mg 10mg 10mg 10mg 10mg 10	atura .	5 HAR 5000 ON NO 14	- 374, 194, 192, 194	1 85 /L 87 31 T = 37	_
freg 2mg 2mg 3mg 4mg 10mg 10mg 30mg 50mg 50mg 60mg 60mg 61mg npo di misura / tara	In A	U-12're (D M) (g) beserbetta estesa di	U-ti's (D-10) (g) Incortezza	Insertazza pomposta d'una della Minnela U(I) (g)	0
2mg 3mg 6mg 10mg 10mg 30mg 30mg 68mg 68mg 6,6g (g mpo di misura / tara masse neminali	AMOUT	Tarolora con corresione per la non linear		incortazza optivia di tutotore sonze enerciatore per in me limentità	•
2mg 3mg 6mg 10mg 10mg 30mg 30mg 68mg 68mg 6,6g (g mpo di misura / tara masse neminali	-0.0000008	8,0100029	0,0000067		e 0
limg 10mg 20mg 30mg 30mg 60mg 60mg 60mg 61mg 10g 11g 1mpo di misura / tara masse neminali	0.0000003	0,0000029	0,0000087	0,0000098	
20mg 30mg 60mg 60mg 60mg 61mg 61.6g 1g mpo di misura / tara masse neminali	-0,00000008	0,000029	0,0000076 0,0000007	0,000098	
30mg 68mg 68mg 6.5g 7.5g 1g mpo di misura / tara masse neminali	-0,0000028 0,0000015	0,0000036	0,0000070	BOST NEWSON	
66mg 6,5g 1g mpo di misura / tara masse neminali 1mg	-0,0000008 -0.0000052	8,000048	0,0000078	18	
mpo di misura / tara masse neminali	-0.0000065	0,0000055	0,0000070 0,0000081	1 37	
mpo di misura / tara masse neminali 1mg	0,0000019	0,0000047	0,0000078	8 8 X	25 10 27
masse neminali imp		y(g) = 1°x	rr 10		
neminali	etura		PP 82 - 121 - 121 -	-	_
1mg	- 33 - 2-		U-22's (DM) (g) Incortogas	(S) - 100 (S) - 100 (S)	
1mg	Δ M (g)	U=12'u (D M) (y) invertezza estesa di Taretura esen perrezione per la non linear	neteca di taratura da pingale pone	heoriezzo componia d'una della bilatola (Uf) (g) 	• 00
	0,0000015	0,0000031 0,0000038	8,0000087 8,0000071		\dashv
0,5g	-0,0000048	0,0000048	0,000077	8,0000278	
1,50	-0,0000034 0,0000026	0,0000066	0,0000078 0,0000089		
2,0g 2,5g	0,0863118	0.0000058	0,000004	20 · -	
3.00	0,0000/196	0,0000074	0,0000085	8	
3,5g 4,6g	0,0000192 8,0000132	0,0000087	0.0000104		
4,5g		0,0000095 petto ad uf (vedi rif. SIT Tec 003/03	0,0000113	J	
rolare con due cifre d <u>aci</u>	0,0000088	t u/ (vedi nt. SIT/Tec 003/03)			
darra actors of torration	0,0000068 tra decimale in più ris	y (g) =1"x di fiducia del 95% (ottenuta, nel caso di	distribuzione normale e di cierco	,	
o di gradi di libertà, molti	0,000066 fra decimale in più rh cimali in più rispetto ad		- William of the control of the day Age		_
tezze tipo è stala delem	0,0000066 fra decimale in più ris pimali in più rispetto a à è espressa al fivello		-IA vision offer many	Data scadenza taratura: mar-15	
getto posto sul ricettore i	0,000008 tra decimale is più ris preali in più rispetto a à è espresse al fivello liplicando per due l'in princia conformement	cortezza tipo). la el documento FA-4/02	THE WITHOUGH PROPER ANDVANCE.		
uali effetti di interazione n	d,0000088 fra decimale is più ris pirmili in più rispetto as à à espressa al fivello lipidicando per due l'in minata conformement ere sommate afa letti e di cartoo.	carlezza tipo). Iz al documento EA-4/02 ura L della bilancia per ottenera E valora	hrs actuo ana masse counsusto	-	
	d ,0000068 fra decimale in più ris pimali in più rispetto as è espressa al fivello lipilicando per due l'in minata conformente ere sommete alla letta di carlco, magnetica sono stati	cortezza tipo). la el documento FA-4/02	hrs vicino eve meses couveus;o	100 E	PHA S

All1P-TAR-09 rev6 del 10/12/12 name file; VFC-P-TAR-9-05_rev1D_cod_1700_dsAli1P-TAR-09_rev6

	11.0			
Casanova Lonati,	31/03/2014			
	Note esplicative at	Rapporto di taratura RT nº	[1700-P-TAR-09-2014	.1
		**		

- 1. La taratura di cui sono riportati i risultati vale nelle condizioni operative ambientali riscontrate durante le prove. Se la bilancia verrà rimossa i risultati qui riportati non sono più validi.
- 2. La bilancia è stata tarata in "Valore convenzionale di massa", cioè indicherà la massa di un oggetto di densilà 6000Kg m in grado di aquilibrare il misurando in aria di densilà 1,2Kg m il alta temperatura 20°C.
- 3. La tabella delle correzioni riporta ΔM=M-L e la corrispondente incertezza estesa di tarsiura per i valori nominali di misura. Se la densità dell'oggetto in misura non è molto diversa da 8000Kg m-3 , data una lettura L al potrà ricavare la massa convenzionale M ad essa equivalente con:

M# L + AM

Punti di misura non riportati nella tabella devono essere interpolati linearmente (vedi VFC-P-TAR-09/08)

- 4. L'incertezza estesa di taratura U (ΔM) è stata valuiata ad un livello di fiducia del 95,45%; essa non coincide con quella d'uso. Una stima dell'incertezza d'uso è espressa come U(I) ed indicata nel rapporto di taratura.
- 8. Due corpi aventi lo stesso valore convenzionale mc, confrontati in aria di densità d_{a,} appaiono differenti della quantità (da -1.2)*(V1-V2), che è dunque la correzzione da opportare al risultato del confronto. (us -1.2) (v 1-v2), che è donque se consezzane ce opportane ai monsio dei commonto.

 Tale comezione, trascurabile in molti casi, deve tuttavia essere valutata, enche in modo approssimato, nelle pesate in cui intervengono comì avente densità molto diversa rispetto a quelta del campioni, in particolare se molto bassa (liquidi o gas), o qualora d_e al discoati molto da 1,2Kg/m 3.

Riferimenti:

- (1) SIT /TEC -003/03 "Linee guida per la taratura di bilance"
- (2) EA-4/02 "Espressione dell'incertezza di misura nelle tarature"
 (3) P-TAR-09 "Procedura di qualificazione bilance analitiche e tecniche"

CALIBRATION RECORD SHEET

DUT

Dev. Under Test: Serial Number:

1179B01314CM1BV

Range: Cal. Table No: 10000 sccm N2

G513123G20

1

Cal. Date:

2013-06-28

Cal. Table Active:

yes

Calibration

#	Dev. Under Test [sccm]	Flow Rate [sccm]	rel. Deviation [% of F.S.]
0	0	0	0.0
1	1000	990	0.1
2	2000	1990	0.1
3	4000	3980	0.2
4	6000	5970	0.3
5	8000	7980	0.2
6	10000	9970	0.3

Calibration Conditions

Orientation:

horizontal

Ambient Temp.:

23.0 °C

Calibration Gas:

N2

GCF:

1.000

Inlet Pressure:

2700 mbar

Reference

Reference Unit:	1179BX14CM1BVS500	QC check ID:	P-F2.0051	
Serial Number:	G482165G20	QC ID expires:	2013-11-22	
Calibration System:	MICROCAL F5	QC check ID:	P-FB4.0000	
Serial Number:	G20871G40	QC ID expires:	2014-05-27	

In Tolerance:

yes

As Found:

no

Out of Tolerance:

no

As Left:

yes

Process Date:

2013-06-28

Data by:

kpachowska

Print Date:

2013-06-28

Checked by:

This calibration was performed with a reference which was calibrated against DryCal ML-800 (traceable to NIST). The Device Under Test (DUT) was warmed and stabilized for the recommended time, specified by manufacturer, before check/adjustment to zero.

MKS Instruments Deutschland GmbH / Schatzbogen 43 / 81829 München / Tel: +49 89 420008-0

Document No.: FRM_QW44

Revision: 2011-08-26

CALIBRATION RECORD SHEET

DUT

Dev. Under Test:

1179B01314CM1BV

Range:

10000 sccm N2

Serial Number:

G513128G20

Cal. Table No:

1

Cal. Date:

2013-07-01

Cal. Table Active:

yes

Calibration

#	Dev. Under Test [sccm]	Flow Rate [sccm]	rel. Deviation [% of F.S.]
0	0	0	0.0
1	1000	1010	-0.1
2	2000	2020	-0.2
3	4000	4020	-0.2
4	6000	6020	-0.2
5	8000	8020	-0.2
6	10000	10020	-0.2

Calibration Conditions

Orientation:

horizontal

2700 mbar

Ambient Temp.:

23.0 °C

Calibration Gas: Inlet Pressure:

N2

GCF:

1.000

Reference

1179BX14CM1BVS500

QC check ID:

P-F2.0051

Reference Unit: Serial Number:

G482165G20

QC ID expires:

2013-11-22

Calibration

System:

P-FB4.0000

Serial Number:

MICROCAL F5 G20871G40 QC check ID: QC ID expires:

2014-05-27

In Tolerance:

yes

As Found:

по

Out of Tolerance:

no

As Left:

yes

Process Date:

2013-07-01

Data by:

yes

Print Date:

2013-07-01

Checked by:

kpachowska

This calibration was performed with a reference which was calibrated against DryCal ML-800 (traceable to NIST). The Device Under Test (DUT) was warmed and stabilized for the recommended time, specified by manufacturer, before check/adjustment to zero.

MKS Instruments Deutschland GmbH / Schatzbogen 43 / 81829 München / Tel: +49 89 420008-0

Document No.: FRM_QW44

Revision: 2011-08-26

Società Italiana Acetilene e Derlyati - SIAD Spa Capitale Sociale € 1.196.000 24126 BERGAMO - Via S. Bernardino, 92 Tel. 035-328111 - Fax 035-315486 N. 1403 Registro delle Imprese di Bergamo Post meccanografico: BG 000472 Partita IVA e Codice Fiscale 00209070168

Stabillmento di Osio Sopra 24040 Osio Sopra (BG) S.S. 525 del Brembo. I Tel. 035/328446 Fax 035/502208 http://www.siad.it e-nuil: ricerca@siad.n

11/04/2014

Spett.le

LABANALYSIS Via Europa 5

27041

CASANOVA LONATI

Indirizzo di consegna

Via Europa 5 27041 CASANOVA LONATI (PV)

Certificato n.

(177181 / 1155)

accettazione na offerta 14-0004n

Data ordina cliente

23/01/2014

Riferimento del cliente Tipo di miscela

MIX GSP B.LE RIC 20L

Gas

Miscele Certificate

Composizione Certificata

Componenti		Richlesta	Va	lore certificato	Incertezza estesa
ANIDRIDE CARBONICA	-	12,00 %vol	=	11,99 %vol	0,12 %vol
OSSIDO DI CARBONIO	=	400,0 ppmvol	=	410,0 ppmvol	8,4 ppmvol
OSSIDO DI AZOTO	=	400,0 ppmvol	=	401,0 ppmvol	8,2 ppmvol
AZOTO		Resto		Resto	
ANIDRIDE SOLFOROSA	=	400,0 ppmvol	-	402,0 ppmvol	8,2 ppmvol
Altre impurezze					

BIOSSIDO DI AZOTO

ppmvol

L'incertezza estesa è espressa come incertezza tipo moltiplicata per il fattore di copertura k=2, che per una distribuzione di probabilità normale, corrisponde ad un livello di fiducia dei 95% circa.

Classificazione ADR

UN 1956 GAS COMPRESSO, N.A.S. (azoto, anidride carbonica), 2.2 - SCHEDA CEFIC 20G1A

Scheda di sicurezza n.

SI-GC2.2_317

Codice per preparazione 180 6142

Codice per analisi ISO 6143

Riferibilità

Procedura int. di preparazione Acr 583. La miscela è stata preparata con il metodo gravimetrico su bilance tarate con masse certificate da Centro ACCREDIA. Numero del certificati delle masse : 511, 512, 2567, 2568, A1179; centro ACCREDIA LAT n. 55

Note

Analista

Di Mauro Antonino

Data analisi

09/04/2014

Garanzia di stabilità fino al 09/04/2018 Temperatura minima di utilizzo e stoccaggio

0.C

Pressione minima di utilizzo

10% Press. B.la

Temperatura massima di utilizzo e stoccaggio

50 °C

Capacità b.la (I)

20,0

Pressione b.la (bar abs) 150.00

Contenuto b.la. 3.00 m3

Matricola

145558

Barcode

\$5044841

SIAD S.p.A. - Il responsibile della ricerca

ing. Giorgio Bissolotti

SOCIETÀ ITALIANA ACETILENE E DERIVATI S.I.A.D. S.p.A. 24126 Bergamo, Italy - Via S. Bernardino, 92 Tel. +39 035 328111 - Fax +39 035 315486 www.siad.com - siad@siad.eu Capitale Sociale - Share Capital € 25.000.000 i.v. - paid up P.IVA, C.F., Reg. Impr. Bg - VAT and Fiscal Nr.: (IT) 00209070168

Stabilimento di Osio Sopra 24040 Osio Sopra (BG) S.S. 525 del Brembo, 1 Tel. 035/328446 Fax 035/502208 e-mail: ricerca@siad.eu

30/07/2014

Spett.le

LABANALYSIS Via Europa 5

R.E.A. BG-15532 - Export: BG 000472

27041

CASANOVA LONATI

PV

Indirizzo di consegna

Via Europa 5 27041 CASANOVA LONATI (PV)

Certificato n.

19710

(180018 / 4835)

Riferimento del cliente

248-14

Data ordine cliente

10/04/2014

Tipo di miscela

MIX GSP B.LE RIC 20L

Gas

Miscele Certificate

Composizione Certificata

Componenti

Richlesta

Valore certificato

Incertezza estesa

OSSIDO DI AZOTO

400,0 ppmvol

402,0 ppmvol

8,2 ppmvol

AZOTO

Resto

Resto

Altre impurezze

BIOSSIDO DI AZOTO

ppmvol

L'incertezza estesa è espressa come incertezza tipo moltiplicata per il fattore di copertura k=2, che per una distribuzione di probabilità normale, corrisponde ad un livello di fiducia del 95% circa.

Classificazione ADR

UN 1956 GAS COMPRESSO, N.A.S. (azoto,ossido di azoto), 2.2 - SCHEDA CEFIC 20G1A

Scheda di sicurezza n.

SI-GC2.2_134

Codice per preparazione ISO 6142

Codice per analisi ISO 6143

Riferibilità

Procedura int. di preparazione Acr 563. La miscela è stata preparata con il metodo gravimetrico su bilance tarate con masse certificate da Centro ACCREDIA. Numero dei certificati delle masse: 511, 512, 2567, 2568, A1179; centro ACCREDIA LAT n. 55

Note

Analista

Migliorati Marcello

Data analisi

04/07/2014

Garanzia di stabilità fino al 04/07/2016

Temperatura minima di utilizzo e stoccaggio

10%-Press-B.ia

Temperatura massima di utilizzo e stoccaggio

50 °C

Pressione minima di utilizzo-

Capacità b.la (I)

20,0

Pressione b.la (bar abs) 150,00

Contenuto b.la. 3.00 m3

Matricola

241944

Barcode

S5132814

SIAD S.p.A. - Il responsabile della ricerca

Ing. Giorgio Bissolotti

- segue -

Società Haliana Acetilene e Derivati - SIAD Spa Capitale Sociale € 1,196 (00) 24126 BERGAMO - Via S. Bernardino, 92 Tel. 035-328111 - Fax 035-315-186 N. 1403 Registro delle Imprese di Bergamo Pos meccanografico: BG 000472 Partita IVA e Codice Fiscale 00209070168

Stabilimento di Oslo Sopra 24040 Osia Sopra (BG) S.S. 525 del Brembo, 1 Tel. 035/328446 Fax 035/502208 http://www.sind.it e-mail ricerca@siad it

24/06/2013

Spett.le

LABANALYSIS Vla Europa 5

27041

CASANOVA LONATI

PV

Indirizzo di consegna

Via Europa 5 27041 CASANOVA LONATI (PV)

Certificato n.

16590

(168406 / 6473)

Data ordine cliente

15/04/2013

Riferimento del cliente Tipo di miscela

300 13 MIX GSP B.LE RIC 20L

Gas

Miscolo Certificate

Composizione Certificata

Componenti

ANIDRIDE SOLFOROSA

Richiesta

Valore certificato Resto

Incertezza estesa

AZOTO

Resto 400,0 ppmvol =

405,0 ppmvol

8,2 ppmvol

L'incertezza estesa è espressa come incertezza tipo moltiplicata per il fattore di copertura k=2, che per una distribuzione di probabilità normale, corrisponde ad un livello di fiducia del 95% circa.

Classificazione ADR

UN 1956 GAS COMPRESSO, N.A.S. (azoto,anidride solforosa), 2.2 - SCHEDA CEFIC 20G1A

Scheda di sicurezza n.

SI-GC2.2_90

Codice per preparazione ISO 6142

Codice per analisi ISO 6143

Riferibilità

Procedura Int, di preparazione Acr 563. La miscela è stata preparata con il metodo gravimetrico su bilanco tarato con masse certificate da Contro ACCREDIA. Numero del certificati delle

masso: 511, 512, 2567, 2568, A1179; contro ACCREDIA LAT n. 65

Note

Analista

Costa Alessandro

Data analisi

11/06/2013

Garanzia di stabilità fino al 11/06/2015

-20 °C

Pressione minima di utilizzo

10% Press. B.la

Temperatura minima di utilizzo e stoccaggio Temperatura massima di utilizzo e stoccaggio 20,0

50 °C

Pressione bila (bar abs) 150,00

Contenuto b.la. 3.00

m3

Matricola

241988

Barcode

S5135821

SIAD S.p.A. - Il responsibile della ricerca Ing. Giorgio Bissolotti

Capacità b.la (I)

Società Italiana Acetilene e Derivati - SIAD Spa-Capitale Sociale € 1.196 000 34126 BERGAMO - Via S. Bernardino, 92 Tel. 035-328111 - Pax 035-315-86 N. 1403 Registro delle Imprese di Bergamo Pos. meccanografico: BG 000472 Partita IVA e Codice Fiscale 00209070168

Stabilimento di Osio Sopra 24040 Osio Sopra (BG) S.S. 525 del Brembo, 1 Tel: 035/328446 Fax 035/502208 http://www.siad.it e-mail: ricercu@stad. t

11/04/2014

Spett.ie

LABANALYSIS Via Europa 5

27041

CASANOVA LONATI

Indirizzo di consegna

Via Europa 5 27041 CASANOVA LONATI (PV)

Certificato n.

(177181 / 1156)

Riferimento del cliente

accettazione na offerta 14-0004n

Data ordine cliente

23/01/2014

Tipo di miscela

MIX GSP B.LE RIC 20L

Gas

Miscele Certificate

Composizione Certificata

Componenti

Richiesta

Valore certificato

Incertezza estesa

AZOTO OSSIGENO Resto 20,00 %vol Resto 20,05 %vol

0,17 %vol

L'incertezza estesa è espressa come incertezza tipo moltiplicata per il fattore di copertura k=2, che per una distribuzione di probabilità normale, corrisponde ad un livello di fiducia del 95% circa.

Classificazione ADR

UN 1956 GAS COMPRESSO, N.A.S. (azoto,ossigeno), 2.2 - SCHEDA CEFIC 20G1A

Scheda di sicurezza n.

SI-GC2.2_3

Codice per preparazione ISO 6142

Codice per analisi ISO 6143

Riferibilità

Procedura Int. di preparazione Acr 563. La miscela è stata preparata con il metodo gravimetrico su bilance tarate con masse certificate da Centro ACCREDIA. Numero dei certificati delle masse: 511, 512, 2567, 2568, A1179; centro ACCREDIA LAT n. 55

Note

Teo

Data analisi

18/03/2014

Garanzia di stabilità fino al

18/03/2019

Pressione minima di utilizzo

10% Press. B.la

Temperatura minima di utilizzo e stoccaggio Temperatura massima di utilizzo e stoccaggio

-20 °C 50 °C

Pressione b.la (bar abs) 150,00

Contenuto b.la.

m3

Capacità b.la (i) Matricola

20,0 259882

Barcode

S5153173

SIAD S.p.A. - Il responsabile della ricerca Ing. Giorgio/Bissolotti

- seque -

Laboratorio: Via Europa, 5 - 27041 CASANOVA LONATI (Pavia) - Sede legale: Via Rota Candiani, 13 - 27043 BRONI (Pavia) Tel. 0385.287128 (15 linee) - Fax 0385.57311 - E-mail: Info@labanalysis.it - Sito Internet: http://www.labanalysis.it

CLIENTE:

VERSALIS S.p.a. - Stabilimento di Sarroch

OGGETTO:

Determinazione dell'Indice di Accuratezza

Relativo (IAR) (parametro H₂O)

SITO DI PRELIEVO: Sarroch (CA)

EMISSIONE: E11

NS. RIF: Relazione Tecnica 1423250-001

DATA: 12/01/2015

Rev.	Redatto	Verificato	Approvato
0	Dott.ssa Tatti	Ing. Morini	Dott. Magg
	0	11 011	1.1
	Borbara Tatti	West Mann	MM

Laboratorio: Via Europa, 5 - 27041 CASANOVA LONATI (Pavia) - Sede legale: Via Rota Candiani, 13 - 27043 BRONI (Pavia)
Tel. 0385.287128 (15 linee) - Fax 0385.57311 - E-mail: Info@labanalysis.it - Sito Internet: http://www.labanalysis.lt

Casanova Lonati, 12-01-2015

RT n. 1423250-001 pag. 2 di 6

INDICE

1. OG	GETTO DELL'INDAGINE	3
2. STI	RUMENTAZIONE DI PROVA	3
2.1. 2.2.	Strumentazione di riferimento LabAnalysis Strumentazione di Versalis S.p.a Stabilimento di Sarroch	
3. CO	NDIZIONI DI IMPIANTO DURANTE LE PROVE	4
4. PR	OCEDURE UTILIZZATE	4
4.1.	Determinazione dell'indice di accuratezza relativo (IAR)	4
5. RIS	SULTATI	5
5.1.	Valutazione dell'accuratezza relativa	5
6. CO	NCLUSIONI	6
7. ALI	LEGATI	6

Laboratorio: Via Europa, 5 - 27041 CASANOVA LONATI (Pavia) - Sede legale: Via Rota Candiani, 13 - 27043 BRONI (Pavia)
Tel. 0385.287128 (15 linee) - Fax 0385.57311 - E-mail: info@labanalysis.it - Sito internet: http://www.labanalysis.it

Casanova Lonati, 12-01-2015

RT n. 1423250-001 pag. 3 di 6

1. OGGETTO DELL'INDAGINE

Lo scopo dell'indagine effettuata all'emissione gassosa E11 della ditta Versalis S.p.a.

- Stabilimento di Sarroch (CA) nel giorno 11 dicembre 2014 è quello di verificare il funzionamento e valutare l'accuratezza delle apparecchiature installate per il monitoraggio del parametro H₂O.

2. STRUMENTAZIONE DI PROVA

2.1. Strumentazione di riferimento LabAnalysis

I prelievi sono stati effettuati mediante l'impiego della seguente strumentazione:

Parametro misurato	Tipo di strument.	Costrutto	Modello	Tecnica di misura / Tipo di strumentazione	Campo di misura	Codice interno strument. utilizzata	Metodo
H ₂ O	Prelievo manuale	-	-	Condensazione / adsorbimento / Pesata	-		UNI EN 14790:2006

Tabella 1; Strumentazione di monitoraggio LabAnalysis

I prelievi manuali sono stati effettuati con l'impiego della seguente strumentazione:

- -) pompe aspiranti con portata massima di 40 1/min;
- -) contatori volumetrici con sensibilità 0.2 l;
- -) sonde isocinetiche in acciaio inox e/o sonde in vetro.

Tutta la strumentazione viene sistematicamente sottoposta a taratura mediante l'utilizzo di gas certificati e di campioni di riferimento primari certificati LAT o equivalenti. In allegato sono presenti i certificati della strumentazione utilizzata.

2.2. Strumentazione di Versalis S.p.a. - Stabilimento di Sarroch

L'emissione E11 ha installata la seguente strumentazione:

Parametro Misurato	Produttore	Strumentazione	Principio di misura	Campo Misura	Matricola
H ₂ O	ABB	AO2000-LS25	Laser	0-40%	10248

Tabella 1: Strumentazione Versalis S.p.a. installata

Laboratorio: Via Europa, 5 - 27041 CASANOVA LONATI (Pavia) - Sede legale: Via Rota Candiani, 13 - 27043 BRONI (Pavia)
Tel. 0385.287128 (15 linee) - Fax 0385.57311 - E-mail: info@labanalysis.it - Sito internet: http://www.labanalysis.it

Casanova Lonati, 12-01-2015

RT n. 1423250-001 pag. 4 di 6

3. CONDIZIONI DI IMPIANTO DURANTE LE PROVE

Le condizioni di funzionamento degli impianti nel periodo di svolgimento delle misurazioni sono state fornite dalla ditta e sono riassunte nella tabella che segue:

Periodo di osservazione	Condizione operativa	Port. Gas 1 (Nm3/h)	Port. Ges 2 (Nm3/h)	Port. Olio 1 (t/h)	Port. Olio 2 (t/h)	Port. Vapore 1 (t/h)	Port. Vapore 2 (t/h)
11/12/2014 Ore 10.00 - 16.00	Regolare	2148,04	0,88	3,16	5,30	133,13	88,21

Tabella 3: Condizioni di impianto nella giornata di campionamento

4. PROCEDURE UTILIZZATE

4.1. Determinazione dell'indice di accuratezza relativo (IAR)

La verifica dell'accuratezza è stata effettuata confrontando le misure rilevate dal sistema in esame con le misure rilevate nella stessa zona di campionamento da altri sistemi di misura assunti come riferimento e descritti al punto 2.1. L'accordo tra i due sistemi è stato valutato effettuando misure istantanee da cui sono state calcolate le medie orarie e valutando l'indice di accuratezza relativo (IAR).

Per quanto riguarda SRM sono stati effettuati prelievi manuali di durata pari a 30 minuti, fornendo il valore medio rilevato per ogni campionamento.

Per quanto riguarda AMS, in corrispondenza dei prelievi SRM sono stati ricavati i valori medi orari utilizzando i dati elementari forniti dall'esercente; questi ultimi non contengono correzioni dovute a precedenti tarature con metodo QAL2 ed ai relativi intervalli di confidenza sperimentale.

In base al DL n. 152 del 3 aprile 2006, parte quinta, allegato VI, l'indice di accuratezza relativo IAR risulta definito come:

$$IAR = \left[1 - \frac{\left(M + Ic\right)}{Mr}\right] \times 100$$

dove:

M= valore assoluto della media delle differenze tra le concentrazioni misurate con due

Laboratorio: Via Europa, 5 - 27041 CASANOVA LONATI (Pavia) - Sede legale: Via Rota Candiani, 13 - 27043 BRONI (Pavia)
Tel. 0385.287128 (15 linee) - Fax 0385.57311 - E-mail: info@labanalysis.lt - Sito Internet: http://www.labanalysis.lt

Casanova Lonati, 12-01-2015

RT n. 1423250-001 pag. 5 di 6

sistemi

Mr = media dei rilievi effettuati con il sistema di riferimento

Ic= valore assoluto del coefficiente di confidenza corrispondente ad una probabilità del 95% e relativo alle predette differenze.

Ic è definito come:

$$Ic = ln \times \frac{SD}{\sqrt{n}}$$

essendo:

(tn) = è il tn di Student ed assume in corrispondenza ad una probabilità del 95%, valori diversi in base al numero di misure N (i valori sono riportati nei tabulati statistici).

SD = deviazione standard di una popolazione di n grandezze xi rilevate sperimentalmente.

- Criteri di accettabilità:

Se tale valore di IAR risulta superiore all'80% la verifica della strumentazione può essere considerata positiva. In caso contrario si dovranno prendere tutti i provvedimenti necessari per un corretto funzionamento del sistema.

5. RISULTATI

5.1. Valutazione dell'accuratezza relativa

Accuratezza relativa	H ₂ O
IAR (%)	94,5

Tabella 4: risultati della verifica IAR

I risultati dettagliati rilevati dai due sistemi e l'elaborazione degli stessi secondo la procedura descritta al punto 4.1 sono riportati in allegato.

Laboratorio: Via Europa, 5 - 27041 CASANOVA LONATI (Pavia) - Sede legale: Via Rota Candiani, 13 - 27043 BRONI (Pavia)
Tel. 0385.287128 (15 linee) - Fax 0385.57311 - E-mail: info@labanalysis.it - Sito internet: http://www.labanalysis.it

Casanova Lonati, 12-01-2015

RT n. 1423250-001 pag. 6 di 6

In particolare sono riportati i dati rilevati dai due sistemi e i grafici relativi al confronto dei due sistemi di misura.

In base ai dati rilevati e alle successive elaborazioni, l'accuratezza relativa risulta verificata (IAR≥80%) per gli strumenti di monitoraggio del parametro H₂O.

6. CONCLUSIONI

Dall'esito delle prove effettuate si può concludere che per il parametro H₂O lo IAR ha dato esito positivo secondo il DL n. 152 del 3 aprile 2006 e s.m.i..

7. ALLEGATI

- Tabelle di elaborazione per il calcolo dell'indice di accuratezza relativo (IAR)
- Grafici di confronto dei due sistemi di misurazione
- Certificati della strumentazione utilizzata

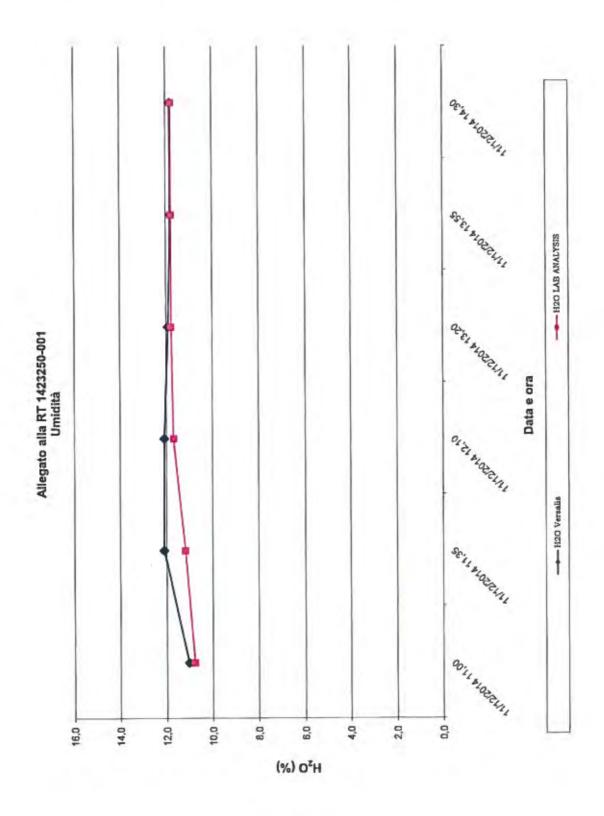
Laboratorio: Via Europa, 5 - 27041 CASANOVA LONATI (Pavia) - Sede legale: Via Rota Candiani, 13 - 27043 BRONI (Pavia)
Tel. 0385.287128 (15 linee) - Fax 0385.57311 - E-mail: info@labanalysis.lt - Sito internet: http://www.labanalysis.lt

Pagina 1 dl 1

94,5 %

IAR=

0,4


Allegato alia RT 1423250-001 E11 Elaborazione effettuata sui dati rilevati per il calcolo dell'indice di accuratezza

Data/ora inizio prelievo	Durata (minuti)	Versalis H ₂ O (%)	LabAnalysis H ₂ O (%)		%1 (%)	
11/12/2014 11,00	30	11,0	10,8		0,2	
11/12/2014 11,35	30	12,1	11,2		0,9	
11/12/2014 12,10	30	12,1	11,7		0,4	
11/12/2014 13,20	30	11,9	11,8		0,1	
11/12/2014 13,55	30	11,8	11,8		0,0	
11/12/2014 14,30	30	11,8	11,8		0,0	
	Mr=	12	M=	D		
			S=	D		
	tn=	2,57	N=	6		

Ic-

Laboratorio: Via Europa, 5 - 27041 CASANOVA LONATI (Pavia) - Sede legale: Via Rota Candiani, 13 - 27043 BRONI (Pavia) Tel. 0385.287128 (15 linee) - Fax 0385.57311 - E-mail: info@labanalysis.it - Sito internet: http://www.labanalysis.it

CERTIFICATO DI ACCREDITAMENTO

Accreditation Certificate

Accreditamento nº Accreditation no

0077

Rev. 2

SI dichiara che We declare that LabAnalysis srl

Via Europa, 5 - 27041 Casanova Lonati PV

à conforme ai requisiti della norma

UNI CEI EN ISO/IEC 17025:2005 "Requisiti generali per la competenza del Laboratori di prova e taratura"

meets the regirements of the standard EN ISO/IEC 17025:2005 "General Requirements for the Competence of Testing

and Calibration Laboratories" standard

quale

Laboratorio di Prova Testing Laboratory

L'accreditamento attesta la competenza tecnica del Laboratorio relativamente allo scopo riportato nelle schede allegate al presente certificato. Le schede possono variare nel tempo. I requisiti gestionali della ISO/IEC 17025:2005 (sezione 4) sono scritti in un linguaggio idoneo all'attività dei Laboratori di Prova, sono conformi ai principi della ISO 9001;2008 ed allineati con i suoi requisiti applicabili. Il presente certificato non è da ritenersi valido se non accompagnato dalle schede allegate e può essere

sospeso o revocato in qualsiasi momento nel caso di inademplenza accertata da parte di ACCREDIA. La vigenza dell'accreditamento può essere verificata sul sito WEB (www.accredia.it) o richiesta direttamente al singoli Dipartimenti

The accreditation certifies the technical competence of the laboratory limited to the scope detailed in the attached Enclosure. The scope may vary in the time. The management system requirements in ISO/IEC 17025:2005 (Section 4) are written in a language relevant to Testing Laboratories operations and meet the

principles of ISO 9001:2008 and are aligned with its pertinent requirements.

The present certificate is valid only if associated to the annexed schedule, and can be suspended or withdrawn at any time in the event of non fulfilment as ascertained by ACCREDIA.

The in force status of the accreditation may be checked in the WEB site (www.accredia.it) or on direct request to appointed Department.

Data di 1ª emissione 1st issue date 1994-07-13

Data di modifica Modification date 2014-05-08

Data di scadenza Expiring date 2018-07-12

Il Qiveltore Generale TWe General Director

(Dr. Filippe Triffletti)

Il Direttore di Dipartimento Department Director (Dr. Paolo Bianco)

II Presidente The President (Cav. del Lav. Federico Grazioli)

Man CAULINY OF

ACCREDIA

Marriero pagi Pasard di Matri, Marriero anno 114, 101 i 1730 Tagudany al EA, 64 ann I al Victoria him gratica Approximat

CERTIFICATO DI ACCREDITAMENTO

Accreditation Certificate

Accreditamento nº Accreditation nº

0077

Rev. 2

Si dichiara che We declare that Sedl operative:

LabAnalysis srl Vla Europa, 5 27041 Casanova Lonali PV LabAnalysis srl

Cittadella della Ricerca Ed.6, SS 7 per Mesagne Km 7,300 72100 Brindisi BR

Mad. CA-01 (ev 0)

Laboratorio: Via Europa, 5 - 27041 CASANOVA LONATI (Pavia) - Sede legale: Via Rota Candiani, 13 - 27043 BRONI (Pavia) Tel. 0385.287128 (15 linee) - Fex 0385.57311 - E-mail: Info@labanalysis.it - Sito Internet: http://www.labanalysis.it

> All.1 P-TAR-194 Rev.3 del 02/04/2012 Name file: VFC-P-TAR-194-02_rev3

RAPPORTO DI TARATURA - CONTATORE VOLUMETRICO

Casanova Lonati,

02/05/2012

RT n°

1418-Ptar194-12

Pag.1 dl 1

Richiedente:

Teratura Interna Lab Analysis

Descrizione strumento: Campionatore aria

Cod. Int.: 1418 Area:

Modella:

STM2

ZB1 Timer

uf cont.lar. = 0,0002 m3

Campione di riferimento: Contatore Volumetrico

Cod. Int.:

1701

Certificato nº:

Rilasciato da:

NMI

Unità di formato - uf:

0,0002 m3

Incertezza estesa ammessa nel CR U =1% per il flusso tra 3 e 5l/min=0,3 m3/h U=±

0.0008

Incertezza estesa ammessa nel CR U =1% per il flusso tra 10 e 15l/min=0,9 m3/h U=±

0,0025

Procedura di riferimento: P-TAR-194

Condizioni ambientali influenti:

Data inizio taratura:

02/05/2012

Data fine taratura 02/05/2012

		Esattezza:	
Flusgo Impostato I/mln	Volume medio di riferimento m ³ /h	Volume medio contatore m³/h	Scostamento %
Tra 3 e 6 l/min	0,275	0,283	3,02
Tra 10 e 15 Vmin	0,817	0,832	1,77

Correzione volume: (K moltilipicativo da applicare al volume prelevato) 0,9767

	incertezza:	
Flusso Impostato Vmin	Incertezza estesa di taratura (*) (±U *C) al flusso impostato l/min	Incertezza estesa di taratura (*) (±U °C) al flusso impostato m3/h
Tra 3 e 5 Umin	0,18	0,011
Tra 10 e 15 Vmir	0,43	0,026

(*): l'incertezza estesa indicata è espressa come l'incertezza tipo moltiplicata per il fattore di copertura K=2,57, per il livello di fiducia del 95% circa. I gradi di libertà effettivi risultato essere nere 2. L'incertezza tipo è stata determinata conformemente al documento EA-4/02.

Responsabile Taratura

LETTIA CATE MANTANG

DRUCEA

Responsabile Controllo Tecnico)

Laboratorio: Via Europa, 5 - 97041 CASANOVA LONATI (Pavia) - Sede leguie: Via Rota Candiani, 13 - 27043 BROM (Pavia) Tol. 0365.287128 (15 lines) - Fao Crist 57311 - E-mail: info@labenelysis.it - Sito Internet: http://www.lobanelysis.it

	AR-194/01_rev6 del 1-0:		telan Can	Int // /P	
	Verifica di ta	aratura contatore vol	umetrico Cod	, Inc. 1911	
Taratura seco CAMPIONE D	ndo Procedura P-TAR-19 DI RIFERIMENTO (CR): C	34 Contatore volumetrico Cod	Data		
	CR (m3)	Cont. da tarare (m3)	Scostam. (m3)	Scostamento (%)	Esito laratura (^) Firma
Tempo cemplomanio	enio: 15minuli essili	Flusso: tra 3 e 6 l/mln			
Vei	263.3020	599.4318		1	05/12/2014
Vef	263.3606	599.4924			- B. W
Vol.	0.0583	0.0592	0.0009	1.54	Soul L
Tempo complonam	ento:15minuti esets	Flusso: tra 3 e 6 l/min			
Vel		1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -			
Vcf					
Vol.					
Tempo campionam	ento (Omiruli esaill	Flusso: tra 10 e 15 l/min			
Vol	263.4926	599,6302			05/12/2014
Vcf	263.6218	599.7644			P
Vol.	0.1286	0.1311	0.0025	1.94	and &
Tempo campionam	ento;10minuli esatii	Flussot tra 10 e 15 l/min			
Vel					
Vcf					
Vol.					
(^) Indicare P	per esito Positivo; N per	esito Negativo			
Vois Vol. al co	ontatore iniziale				
Vcf=Vol. al co	ontatore finale				
Vc=Vol. camp		5.			
The state of the s	stamento ammesso; ± 2	% eccettabilità (Sigla) P-PRO-	50.		

Courses condade in confice te co 9767

Laboratorio: Via Europa, 5 - 27041 CASANOVA LONATI (Pavia) - Sede legale: Via Rota Candiani, 13 - 27043 BRONI (Pavia)
Tel. 0385.287128 (15 linee) - Fax 0385.57311 - E-mail: info@labanalysis.it - Sito Internet: http://www.labanalysis.it

CLIENTE:

VERSALIS S.p.a. - Stabilimento di Sarroch

OGGETTO:

Determinazione dell'Indice di Accuratezza

Relativo (IAR)

SITO DI PRELIEVO: Sarroch (CA)

EMISSIONE: E11

NS. RIF: Relazione Tecnica 1419136-001

DATA: 06/11/2014

Rev.	Redatto	Verificato	Approvato
0	Dott.ssa Tatti	Ing. Morini	Dott. Magg
		IA nell	
	Borlone Tatti	llibellon	
	Dollare Joll	Mr. b. Mari	

Laboratorio: Via Europa, 5 - 27041 CASANOVA LONATI (Pavia) - Sede legale: Via Rota Candiani, 13 - 27043 BRONI (Pavia) Tel. 0385.287128 (15 linee) - Fax 0385.57311 - E-mail: info@labanalysis.it - Sito internet: http://www.labanalysis.it

Casanova Lonati, 06-11-2014

RT n. 1419136-001 pag. 2 di 7

INDICE

1. OGGETTO DELL'INDAGINE	3
2. STRUMENTAZIONE DI PROVA	3
2.1. Strumentazione di riferimento LabAnalysis	3
2.2. Strumentazione di Versalis S.p.a Stabilimento di Sarroch 3. CONDIZIONI DI IMPIANTO DURANTE LE PROVE	4
4. PROCEDURE UTILIZZATE	5
4.1. Determinazione dell'indice di accuratezza relativo (IAR) 5. RISULTATI	
Valutazione dell'accuratezza relativa CONCLUSIONI	
7. ALLEGATI	7

Laboratorio: Via Europa, 5 - 27041 CASANOVA LONATI (Pavia) - Sede legale: Via Rota Candiani, 13 - 27043 BRONI (Pavia)
Tel. 0385.287128 (15 linee) - Fax 0385.57311 - E-mail: info@labanalysis.lt - Sito internet: http://www.labanalysis.lt

Casanova Lonati, 06-11-2014

RT n. 1419136-001 pag. 3 di 7

1. OGGETTO DELL'INDAGINE

Lo scopo dell'indagine effettuata all'emissione gassosa E11 della ditta Versalis S.p.a.

 Stabilimento di Sarroch (CA) nei giorni 7 e 8 ottobre 2014 è quello di verificare il funzionamento e valutare l'accuratezza delle apparecchiature installate per il monitoraggio degli inquinanti gassosi.

2. STRUMENTAZIONE DI PROVA

2.1. Strumentazione di riferimento LabAnalysis

I prelievi sono stati effettuati mediante l'impiego della seguente strumentazione:

Parametro misurato	Tipo di strument.	Costruttore	Modello	Tecnica di misura / Tipo di strumentazione	Campo di misura	Codice interno strument. utilizzata	Metodo						
O ₂	Analizzatore automatico	Horiba PG 250		Paramagnetico	0-25 % vol		UNI EN 14789:2006						
co	Analizzatore automatico	Horiba	PG 250	NDIR	0-200 ppm	3458	UNI EN 15058:2006						
NOx	Analizzatore automatico	Horiba	PO 250	Chemi luminescenza	0-500 ppm		UNI EN 14792:2006						
SO ₂	Analizzatore automatico	Horiba	PG 250	NDIR	0-500 ppm		UNI EN 10393:1995						
Temperatura	Prelievo manuale		61.	Cinton	81.4	Cinton	Cinton	Cinton	Cistama	Termocoppia	•	4382,	
Pressione	Prelievo manuale	Mega System	Sistema Isocheck SRB-DL		-	4383, 4384,	UNI EN 10169:2001						
Portata	Prelievo manuale		SKB-DL	Misura ΔP		4385, 4386							
H ₂ O	Prelievo manuale	4		Condensazione / adsorbimento / Pesata	7.0		UNI EN 14790:2006						

Tabella 1: Strumentazione di monitoraggio LabAnalysis

I prelievi manuali sono stati effettuati con l'impiego della seguente strumentazione:

- -) pompe aspiranti con portata massima di 40 1/min;
- -) contatori volumetrici con sensibilità 0.2 l;
- -) sonde isocinetiche in acciaio inox e/o sonde in vetro;
- -) termometro certificato;
- -) barometro certificato;
- -) micromanometri certificati;
- -) tubo di Pitot / Darcy;

Laboratorio: Via Europa, 5 - 27041 CASANOVA LONATI (Pavia) - Sede legale: Via Rota Candiani, 13 - 27043 BRONI (Pavia)
Tel. 0385.287128 (15 linee) - Fax 0385.57311 - E-mail: info@labanalysis.lt - Sito Internet: http://www.labanalysis.lt

Casanova Lonati, 06-11-2014

RT n. 1419136-001 pag. 4 di 7

Tutta la strumentazione viene sistematicamente sottoposta a taratura mediante l'utilizzo di gas certificati e di campioni di riferimento primari certificati LAT o equivalenti. In allegato sono presenti i certificati dei gas e della strumentazione utilizzata.

2.2. Strumentazione di Versalis S.p.a. - Stabilimento di Sarroch

L'emissione E11 ha installata la seguente strumentazione:

Parametro Misurato	Produttore	Strumentazione	Principio di misusa	Campo Misura	Matricola	
O ₂		Advance Optima MAGNOS 26	Paramagnetico	0-25 %V	3.347867.3	
co				0 - 75 mg/Nm ³ 0 - 1500 mg/Nm ³	3.47097.3	
NO	ABB	Advance Optima URAS 26	NDIR	0 - 100 mg/Nm ³ 0 - 2000 mg/Nm ³	3.347094.3	
SO ₂		0.0.0		0 - 300 mg/Nm ³ 0 - 3000 mg/Nm ³	3.347094.3	
H ₂ O		AO2000-LS25	Laser	0-40%	10248	
POLVERI	V.S.	DT 100	Estinzione luce	0 - 100 %Est	13238313	
PORTATA	SICK	FLS 100PR	Ultrasuoni	0 – 180.000 Nm ³ /h	13318501	
PRESSIONE	ABB	266GSH	Pressione assoluta	900 – 1100 mbar	CTES Pressione fumi	
TEMPERATURA	Tercom	PT100	Termocoppia	0-400 °C	CTESANTI	

Tabella 1: Strumentazione Versalis S.p.a. installata

3. CONDIZIONI DI IMPIANTO DURANTE LE PROVE

Le condizioni di funzionamento degli impianti nel periodo di svolgimento delle misurazioni sono state fornite dalla ditta e sono riassunte nella tabella che segue:

Periodo di osservazione	Condisione operativa	Port. Gas 1 (Nm3/h)	Port. Gas 2 (Nm3/h)	Port. Olio 1 (t/h)	Port. Olio 2 (t/h)	Port. Vapore 1 (t/h)	Port. Vapore 2 (t/h)
07/10/2014 Ore 02.00 - 06.00	Regolare	0,57	2477	5,71	4,51	93,40	112,8
07/10/2014 Ore 11.00 - 22.00	Regolare	0,44	2292	5,68	4,66	92,89	111,5
07/10/2014 Ore 23.00 - 24.00	Regolare	0,24	2391	5,76	4,58	94,36	110,7
08/10/2014 Ore 00.00 - 07.00	Regolare	1,30	2401	5,68	4,57	92,96	112,2

Tabella 3: Condizioni di impianto nelle giornate di campionamento

Laboratorio: Via Europa, 5 - 27041 CASANOVA LONATI (Pavia) - Sede legale: Via Rota Candiani, 13 - 27043 BRONI (Pavia)
Tel. 0385.287128 (15 linee) - Fax 0385.57311 - E-mail: Info@labanalysis.lt - Sito Internet: http://www.labanalysis.lt

Casanova Lonati, 06-11-2014

RT n. 1419136-001 pag. 5 di 7

4. PROCEDURE UTILIZZATE

4.1. Determinazione dell'indice di accuratezza relativo (IAR)

La verifica dell'accuratezza è stata effettuata confrontando le misure rilevate dal sistema in esame con le misure rilevate nella stessa zona di campionamento da altri sistemi di misura assunti come riferimento e descritti al punto 2.1. L'accordo tra i due sistemi è stato valutato effettuando misure istantanee da cui sono state calcolate le medie orarie e valutando l'indice di accuratezza relativo (IAR).

Per quanto riguarda SRM, per parametri che richiedono campionamento manuale, sono stati effettuati prelievi di durata variabile, fornendo il valore medio rilevato per ogni campionamento; per i parametri (gas) registrati tramite analizzatori automatici sono state effettuate misure istantanee in continuo, da cui sono state ricavate le medie orarie.

Per quanto riguarda AMS, in corrispondenza dei prelievi SRM sono stati ricavati i valori medi orari utilizzando i dati elementari forniti dall'esercente; questi ultimi non contengono correzioni dovute a precedenti tarature con metodo QAL2 ed ai relativi intervalli di confidenza sperimentale.

In base al DL n. 152 del 3 aprile 2006, parte quinta, allegato VI, l'indice di accuratezza relativo IAR risulta definito come:

$$IAR = \left[1 - \frac{(M + Ic)}{Mr}\right] \times 100$$

dove:

M= valore assoluto della media delle differenze tra le concentrazioni misurate con due sistemi

Mr = media dei rilievi effettuati con il sistema di riferimento

Ic= valore assoluto del coefficiente di confidenza corrispondente ad una probabilità del 95% e relativo alle predette differenze.

Laboratorio: Via Europa, 5 - 27041 CASANOVA LONATI (Pavia) - Sede legale: Via Rota Candiani, 13 - 27043 BRONI (Pavia)
Tel. 0385.287128 (15 linee) - Fax 0385.57311 - E-mail: info@labanalysis.it - Sito internet: http://www.labanalysis.it

Casanova Lonati, 06-11-2014

RT n. 1419136-001 pag. 6 di 7

Ic è definito come:

$$Ic = tn \times \frac{SD}{\sqrt{n}}$$

essendo:

(tn) = è il tn di Student ed assume in corrispondenza ad una probabilità del 95%, valori diversi in base al numero di misure N (i valori sono riportati nei tabulati statistici).

SD = deviazione standard di una popolazione di n grandezze xi rilevate sperimentalmente.

- Criteri di accettabilità:

Se tale valore di IAR risulta superiore all'80% la verifica della strumentazione può essere considerata positiva. In caso contrario si dovranno prendere tutti i provvedimenti necessari per un corretto funzionamento del sistema.

5. RISULTATI

5.1. Valutazione dell'accuratezza relativa

Accuratezza relativa	O ₂	СО	NO _x	802
IAR (%)	98,9	86,1	98,0	96,9

Accuratezza relativa	Portata	Temperatura	Pressione	H ₂ O
IAR (%)	98,5	99,3	99,9	49,7

Tabella 4: risultati della verifica IAR

I risultati dettagliati rilevati dai due sistemi e l'elaborazione degli stessi secondo la procedura descritta al punto 4.1 sono riportati in allegato.

In particolare sono riportati i dati rilevati dai due sistemi e i grafici relativi al confronto dei due sistemi di misura.

Laboratorio: Via Europa, 5 - 27041 CASANOVA LONATI (Pavia) - Sede legale: Via Rota Candiani, 13 - 27043 BRONI (Pavia)
Tel. 0385.287128 (15 linee) - Fax 0385.57311 - E-mail: Info@labanalysis.it - Sito internet: http://www.labanalysis.it

Casanova Lonati, 06-11-2014

RT n. 1419136-001 pag. 7 di 7

MAGGI STEFANO

In base ai dati rilevati e alle successive elaborazioni, l'accuratezza relativa risulta verificata (IAR≥80%) per gli strumenti di monitoraggio dei seguenti parametri:

- O2
- CO
- NOx
- SO₂
- Portata
- Temperatura
- Pressione

l'accuratezza relativa non risulta verificata per gli strumenti di monitoraggio dei seguenti parametri:

- H₂O

6. CONCLUSIONI

Dall'esito delle prove effettuate si può concludere che per i parametri O2, CO, NO_x, SO₂, Portata, Temperatura e Pressione lo IAR ha dato esito positivo secondo il DL n. 152 del 3 aprile 2006 e s.m.i.., per il parametro H2O lo IAR non ha dato esito positivo. Si consiglia pertanto di effettuare operazioni di manutenzione sulla strumentazione e successivamente di ripetere le prove.

7. ALLEGATI

- Tabelle di elaborazione per il calcolo dell'indice di accuratezza relativo (IAR)
- Grafici di confronto dei due sistemi di misurazione
- Certificati dei gas e della strumentazione utilizzata

Laboratorio: Via Europa, 5 - 27041 CASANOVA LONATI (Pavia) - Sede legale: Via Rota Candiani, 13 - 27043 BRONI (Pavia)
Tel. 0385.287128 (15 linee) - Fax 0385.57311 - E-mail: Info@labanalysis.it - Sito internet: http://www.labanalysis.it

IAR=

0,00

98,9 %

Pagina 1 di 8

Allegato alia RT 1419136-001 E11 Elaborazione effettuata sui dati rilevati per il calcolo dell'indice di accuratezza

		Valori i	tal quali	
		Versalis	LabAnalysis	
Data/ora inizio prelieve	Durata	O ₂	O ₂	X1
	(minuti)	(%)	(%)	(%)
		secco	secco	
07/10/2014 11,00	60	5,8	5,9	0,1
07/10/2014 12,00	60	5,8	5,9	0,1
07/10/2014 13,00	60	5,9	5,9	0,1
07/10/2014 14,00	60	5,9	6,0	0,1
07/10/2014 15,00	60	5,9	6,0	0,1
07/10/2014 16,00	60	6,0	6,0	0,1
07/10/2014 17,00	60	5,9	6,0	0,1
07/10/2014 18,00	60	6,0	6,0	0,1
07/10/2014 19,00	60	6,0	6,1	0,1
07/10/2014 20,00	60	6,0	6,1	0,1
07/10/2014 21,00	60	6,0	6,1	0,1
07/10/2014 23,00	60	5,8	5,9	0,1
08/10/2014 0,00	60	5,8	5,8	0,1
08/10/2014 1,00	60	5,7	5,8	0,1
08/10/2014 2,00	60	5,7	5,7	0,0
08/10/2014 3,00	60	5,6	5,7	0,0
08/10/2014 4,00	60	5,6	5,7	0,0
08/10/2014 5,00	60	5,7	5,7	0,0
08/10/2014 6,00	60	5,7	5,8	0,1
	Mr=	5,9	M*	0,1
		4.5	S-	0,0
	tn=	2,10	N=	19

Ic=

Laboratorio: Via Europa, 5 - 27041 CASANOVA LONATI (Pavia) - Sede legale: Via Rota Candiani, 13 - 27043 BRONI (Pavia)
Tel. 0385.287128 (15 linee) - Fax 0385.57311 - E-mail: info@labanalysis.lt - Sito internet: http://www.labanalysis.lt

Pagina 2 di 8

Allegato alla RT 1419136-001 E11

Elaborazione effettuata sui dati rilevati per il calcolo dell'indice di accuratezza

		Valori t	al quali		Valori riferiti	al 3% VV di O 2
		Versalis	LabAnalysis		Versalis	LabAnalysis
Data/ora inizio prelievo	Durata (minuti)	CO (mg/Nm³)	(mg/Nm ³)	Xi (mg/Nm³)	(mg/Nm ³)	(mg/Nm³)
		20000	secco		secco	secco
07/10/2014 11,00	60	16,7	14,8	2,0	19,9	17,6
07/10/2014 12,00	60	19,6	17,3	2,3	23,2	20,6
07/10/2014 13,00	60	17,8	15,5	2,3	21,1	18,5
07/10/2014 14,00	60	12,3	10,8	1,5	14,7	13,0
07/10/2014 15,00	60	12,2	11,1	1,1	14,6	13,3
07/10/2014 16,00	60	10,5	9,6	0,9	12,6	11,6
07/10/2014 17,00	60	13,0	11,4	1,6	15,6	13,6
07/10/2014 18,00	60	14,4	12,6	1,8	17,2	15,2
07/10/2014 19,00	60	12,2	10,5	1,7	14,7	12,7
07/10/2014 20,00	60	10,5	9,5	0,9	12,6	11,5
07/10/2014 21,00	60	6,4	6,2	0,2	7,7	7,5
07/10/2014 23,00	60	8,9	8,1	0,7	10,5	9,7
08/10/2014 0,00	60	10,3	9,2	1,0	12,1	10,9
08/10/2014 1,00	60	10,6	9,6	1,0	12,6	11,4
08/10/2014 2,00	60	12,6	11,6	1,0	14,8	13,7
08/10/2014 3,00	60	15,6	14,1	1,5	18,3	16,5
08/10/2014 4,00	60	14,1	12,9	1,2	16,5	15,2
08/10/2014 5,00	60	12,2	11,0	1,2	14,4	13,0
08/10/2014 6,00	60	9,6	9,0	0,6	11,3	10,6
	Mr=	11,3	M-	1,3		
		2212	S=	0,6		
	tn=	2,10	N-	19		
		lc=	0,27	IAR= 8	6,1 %	1

Laboratorio: Via Europa, 5 - 27041 CASANOVA LONATI (Pavia) - Sede legale: Via Rota Candiani, 13 - 27043 BRONI (Pavia)
Tel. 0385.287128 (15 linee) - Fax 0385.57311 - E-mail: info@labanalysis.it - Sito Internet: http://www.labanalysis.it

Pagina 3 di 8

Allegato alla RT 1419136-001 E11 Elaborazione effettuata sui dati rilevati per il calcolo dell'indice di accuratezza

		Valori te	al quali		Valori riferiti	al 3% VV di O2
Data/ora inizio prelievo	Durata (minuti)	Versalis NO _X come NO ₂ (mg/Nm ³) secco	LabAnalysis NO _X come NO ₂ (mg/Nm ²) secco	XI (mg/Nm³)	Versalis NO _X come NO ₂ (mg/Nm ³) secco	LabAnalysis NO _X come NO ₂ (mg/Nm ³) secco
07/10/2014 11,00	60	279,4	275,4	4,0	331,5	328,3
07/10/2014 12,00	60	278,0	274,9	3,1	329,3	327,2
07/10/2014 13,00	60	280,4	277,2	3,1	333,3	331,1
07/10/2014 14,00	60	282,5	279,3	3,2	337,1	334,9
07/10/2014 15,00	60	283,9	279,8	4,0	339,2	335,8
07/10/2014 15,00	60	287,5	282,5	5,0	344,6	339,9
07/10/2014 17,00	60	285,3	279,8	5,5	341,2	335,8
07/10/2014 18,00	60	286,2	280,3	5,9	342,7	337,0
07/10/2014 19,00	60	288,6	282,8	5,8	347,3	341,6
07/10/2014 20,00	60	286,0	280,2	5,8	343,0	337,4
07/10/2014 21,00	60	286,6	280,6	6,0	343,8	338,0
07/10/2014 23,00	60	278,3	272,8	5,5	329,9	324,6
08/10/2014 0,00	60	276,7	271,0	5,7	326,7	321,2
08/10/2014 1,00	60	274,9	269,3	5,6	324,4	318,8
08/10/2014 2,00	60	271,6	266,2	5,4	318,8	313,5
08/10/2014 3,00	60	270,0	264,8	5,2	316,0	310,9
08/10/2014 4,00	60	270,7	265,1	5,6	316,9	311,4
08/10/2014 5,00	60	272,5	266,9	5,6	320,3	314,7
08/10/2014 6,00	60	272,7	266,7	6,0	321,0	315,0
	Mr=	274,5	M=	5,0		
			S-	1,0		
	tn=	2,10	N-	19		
		ic-	0,49	IAR=	98,0 %]

Laboratorio: Via Europa, 5 - 27041 CASANOVA LONATI (Pavia) - Sede legale: Via Rota Candiani, 13 - 27043 BRONI (Pavia)
Tel. 0385.287128 (15 linee) - Fax 0385.57311 - E-mail: Info@labanatysis.it - Sito internet: http://www.labanatysis.it

Pagina 4 di 8

Allegato alia RT 1419136-001 E11 Elaborazione effettuata sui dati rilevati per il calcolo dell'indice di accuratezza

		Valori t	al quali		Valori riferiti	al 3% VV di O 2	
		Versalis	LabAnalysis		Versalis	LabAnalysis	
Data/ora inizio prelievo	Durata (minuti)	SO ₂ (mg/Nm ³)	SO ₂ (mg/Nm ³)	Xi (mg/Nm³)	SO ₂ (mg/Nm ³)	SO ₂ (mg/Nm ²)	
	year a	secco	secco		secco	secco	
07/10/2014 11,00	60	569,3	541,2	28,2	675,3	645,2	
07/10/2014 12,00	60	568,2	546,0	22,1	673,0	649,9	
07/10/2014 13,00	60	569,9	547,4	22,5	677,5	653,8	
07/10/2014 14,00	60	572,1	551,8	20,3	682,7	661,5	
07/10/2014 15,00	60	573,9	556,1	17,8	685,6	667,3	
07/10/2014 16,00	60	575,7	561,4	14,3	690,1	675,6	
07/10/2014 17,00	60	575,0	562,3	12,7	687,5	674,8	
07/10/2014 18,00	60	578,1	564,7	13,4	692,2	678,8	
07/10/2014 19,00	60	579,5	567,2	12,3	697,4	685,1	
07/10/2014 20,00	60	579,7	567,0	12,7	695,3	682,7	
07/10/2014 21,00	60	580,1	568,6	11,5	696,1	685,0	
07/10/2014 23,00	60	578,8	566,2	12,5	686,1	673,8	
08/10/2014 0,00	60	576,5	565,8	10,6	680,6	670,6	
08/10/2014 1,00	60	578,6	568,3	10,3	682,7	672,7	
08/10/2014 2,00	60	575,5	564,0	11,5	675,7	664,3	
08/10/2014 3,00	60	573,0	561,4	11,6	670,7	659,1	
08/10/2014 4,00	60	577,2	566,6	10,7	675,8	665,4	
08/10/2014 5,00	60	586,5	575,4	11,1	689,5	678,5	
08/10/2014 6,00	60	587,3	573,8	13,5	691,3	677,6	
	Mr=	561.8	M=	14.7			
			S=	5,0			
	tn=	2,10	N=	19			
		Ic*	2,42	IAR=	96,9 %	1	

Laboratorio: Via Europa, 5 - 27041 CASANOVA LONATI (Pavia) - Sede legale: Via Rota Candiani, 13 - 27043 BRONI (Pavia)
Tel. 0385.287128 (15 linee) - Fax 0385.57311 - E-mail: Info@labanalysis.lt - Sito Internet: http://www.labanalysis.lt

Pagina 5 di 8

Allegato alla RT 1419136-001 E11

Elaborazione effettuata sui dati rilevati per il calcolo dell'indice di accuratezza

Data/ora inizio prelievo	Durata (minuti)	Valori tal quali Versalis Portata (m³/h) umido	LabAnalysis Portata (m³/h) umido		XI (Nm³/h)	
07/10/2014 10,46	60	349036	346223		2813	
07/10/2014 12,16	60	351019	353170		2151	
07/10/2014 13,19	60	351930	359131		7201	
07/10/2014 14,23	60	354635	350179		4456	
07/10/2014 15,27	60	355954	361736		5782	
07/10/2014 8,26	50	425815	426274		459	
07/10/2014 9,26	50	435991	436050		59	
	Mr-	376109	M=	3274		
			S=	2672		
	tn=	2,45	N-	7		
		Ic=	2474,3	IAR=	98,5 %	

Laboratorio: Via Europa, 5 - 27041 CASANOVA LONATI (Pavia) - Sede legale: Via Rota Candiani, 13 - 27043 BRONI (Pavia)
Tel. 0385.287128 (15 linee) - Fax 0385.57311 - E-mail: info@labanalysis.lt - Sito internet: http://www.labanalysis.lt

Pagina 6 dl 8

Allegato alia RT 1419136-001 E11 Elaborazione effettuata sui dati rilevati per il calcolo dell'indice di accuratezza

Data/ora inizio prelievo	Durata (minuti)	Versalis Temperatura (K)	LabAnalysis Temperatura (K)		жі (К)	
07/10/2014 10,46	60	415,1	414,1		1,0	
07/10/2014 12,16	60	415,8	415,6		0,2	
07/10/2014 13,19	60	415,8	415,5		0,3	
07/10/2014 14,23	60	416,1	415,7		0,4	
07/10/2014 15,27	60	416,5	416,9		0,4	
07/10/2014 8,26	50	418,9	414,9		4,0	
07/10/2014 9,26	50	419,8	416,5		3,3	
	Mr=	415,6	M-	1,4		
			S-	1,6		
	tn=	2,45	N=	7		
		Ic=	1,47	IAR=	99,3 %	-

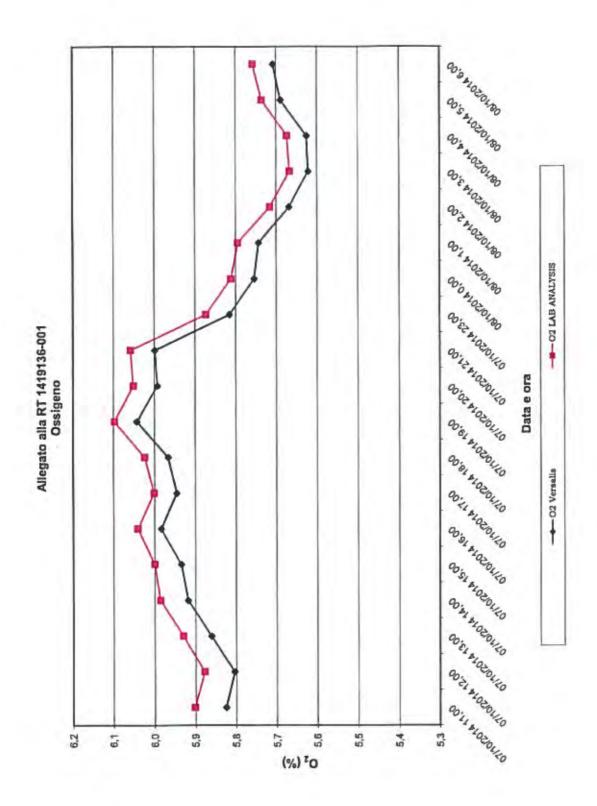
Laboratorio: Via Europa, 5 - 27041 CASANOVA LONATI (Pavia) - Sede legale: Via Rota Candiani, 13 - 27043 BRONI (Pavia) Tel. 0385.287128 (15 linee) - Fax 0385.57311 - E-mail: Info@labanalysis.it - Sito Internet: http://www.labanalysis.it

Pagina 7 di 8

Allegato alla RT 1419136-001 E11 Elaborazione effettuata sui dati rilevati per il calcolo dell'indice di accuratezza

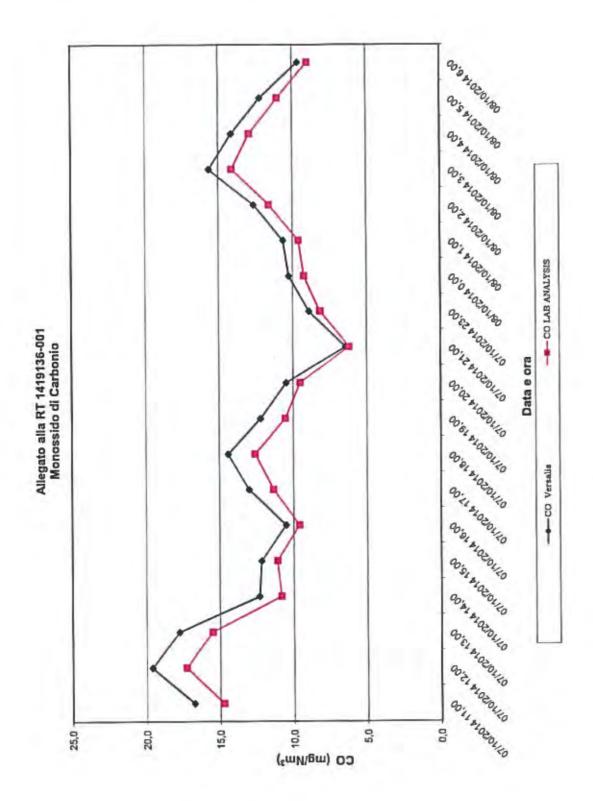
Data/ora inizio prelievo	Durata (minuti)	Versalis Pressione (Pa)	LabAnalysis Pressione (Pa)	Xi (Pa)
07/10/2014 10,46	60	100251,7	100340,0	88,3
07/10/2014 12,16	60	100272,6	100345,0	72,4
07/10/2014 13,19	60	100281,7	100339,0	57,3
07/10/2014 14,23	60	100293,7	100344,0	50,3
07/10/2014 15,27	60	100300,7	100338,0	37,3
07/10/2014 8,26	50	100364,8	100332,0	32,8
07/10/2014 9,26	50	100373,4	100340,0	33,4

	Ic=	19,6	IAR=	99,9 %	14
tn=	2,45	N-	7		
Mr=	100340	S=	21		
**	100340	M-	53		

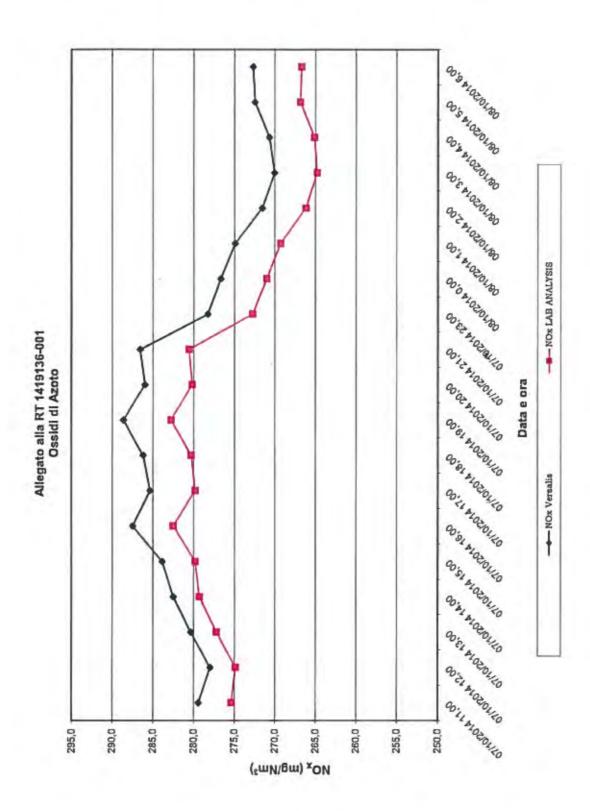

Laboratorio: Via Europa, 5 - 27041 CASANOVA LONATI (Pavia) - Sede legale: Via Rota Candiani, 13 - 27043 BRONI (Pavia)
Tel. 0385.287128 (15 linee) - Fax 0385.57311 - E-mail: Info@labanalysis.lt - Sito Internet: http://www.labanalysis.lt

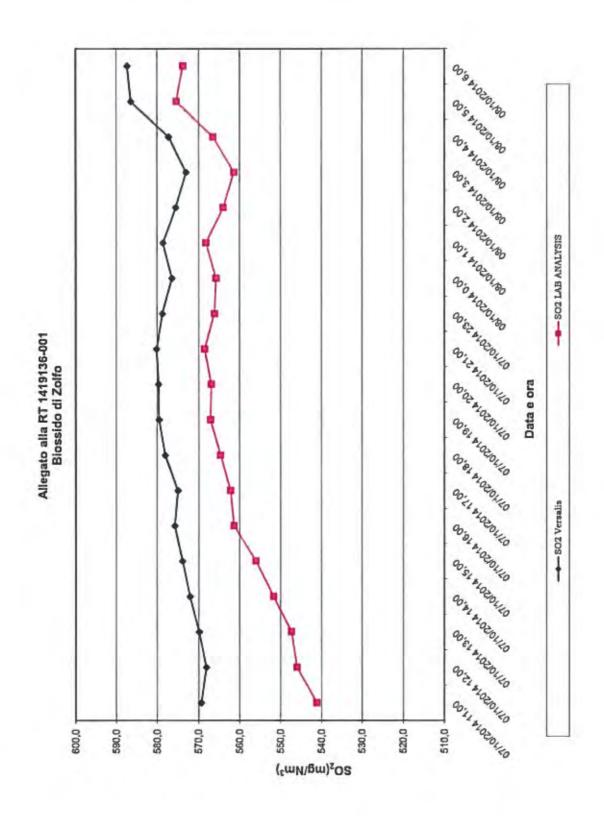
Pagina 8 di 8

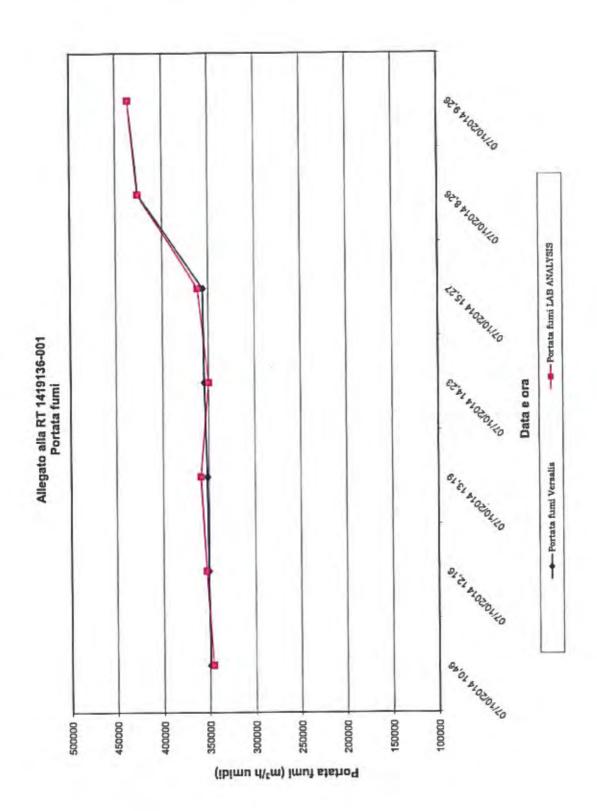
Allegato alla RT 1419136-001 E11 Elaborazione effettuata sui dati rilevati per il calcolo dell'indice di accuratezza

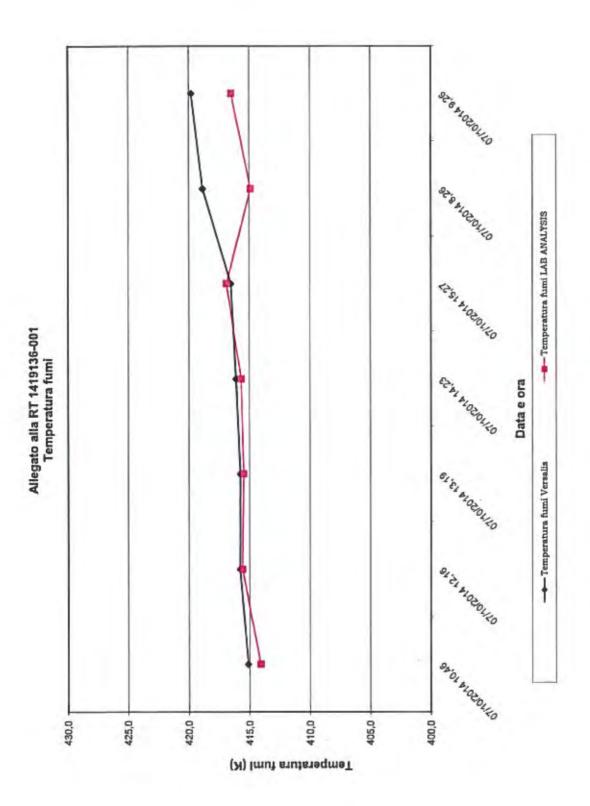

Data/ora inizio prelievo	Durata (minuti)	Versalis H ₂ O (%)	LabAnalysis H ₂ O (%)		XI (%)	
07/10/2014 10,46 07/10/2014 12,16 07/10/2014 13,19 07/10/2014 14,23 07/10/2014 15,27 07/10/2014 8,26	60 60 60 60 60	6,4 6,5 6,4 6,4 6,3 6,4	11,6 12,7 12,5 12,2 12,1 12,1		5,2 6,2 6,1 5,8 5,8	
07/10/2014 9,26	50	6,4	12,4		6,0	
	Mr=	12	M= S=	6		
	tn=	2,45	N= 0,3 [7 IAR=	49,7 %	

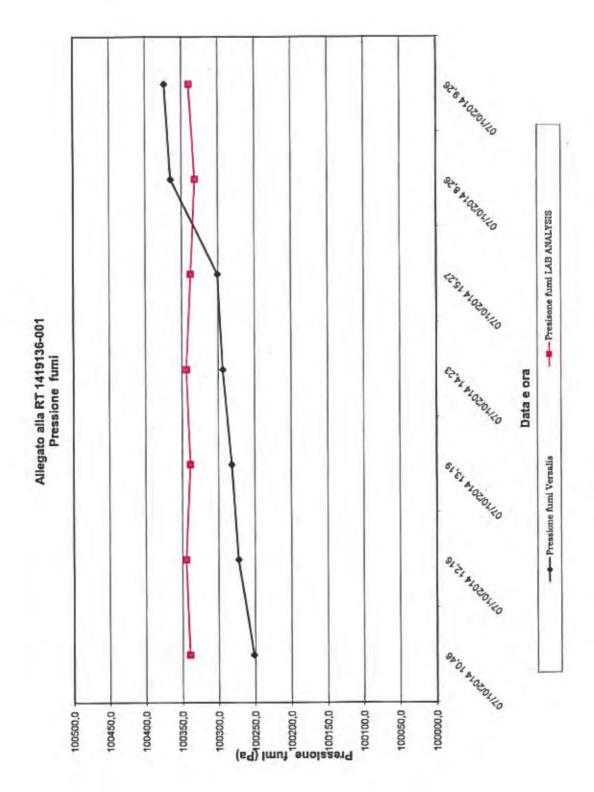
Laboratorio: Via Europa, 5 - 27041 CASANOVA LONATI (Pavia) - Sede legale: Via Rota Candiani, 13 - 27043 BRONI (Pavia)
Tel. 0385.287128 (15 linee) - Fax 0385.57311 - E-mail: info@labanatysis.lt - Sito Internet; http://www.labanatysis.lt



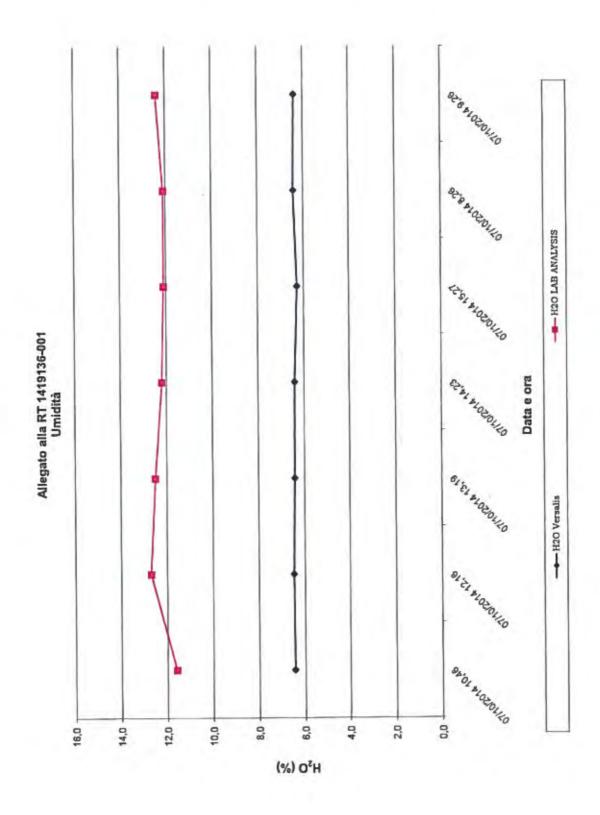

Laboratorio: Via Europa, 5 - 27041 CASANOVA LONATI (Pavia) - Sede legale: Via Rota Candiani, 13 - 27043 BRONi (Pavia) Tel. 0385.287128 (15 linee) - Fax 0385.57311 - E-mail: Info@labanalysis.lt - Sito Internet: http://www.labanalysis.lt


Laboratorio: Via Europa, 5 - 27041 CASANOVA LONATI (Pavia) - Sede legale: Via Rota Candiani, 13 - 27043 BRONI (Pavia) Tel. 0385.287128 (15 linee) - Fax 0385.57311 - E-mail: info@labanalysis.it - Sito Internet: http://www.labanalysis.it


Laboratorio: Via Europa, 5 - 27041 CASANOVA LONATI (Pavia) - Sede legale: Via Rota Candiani, 13 - 27043 BRONI (Pavia) Tel. 0385.287128 (15 linee) - Fax 0385.57311 - E-mail: info@labanatysis.it - Sito internet: http://www.labanatysis.it


Laboratorio: Via Europa, 5 - 27041 CASANOVA LONATI (Pavia) - Sede legale: Via Rota Candiani, 13 - 27043 BRONI (Pavia) Tel. 0385.287128 (15 linee) - Fax 0385.57311 - E-mail: info@labanalysis.it - Sito Internet: http://www.labanalysis.it

Laboratorio: Via Europa, 5 - 27041 CASANOVA LONATI (Pavia) - Sede legale: Via Rota Candiani, 13 - 27043 BRONI (Pavia)
Tel. 0385.287128 (15 linee) - Fax 0385.57311 - E-mail: info@labanalysis.lt - Sito Internet: http://www.labanalysis.lt



Laboratorio: Via Europa, 5 - 27041 CASANOVA LONATI (Pavia) - Sede legale: Via Rota Candiani, 13 - 27043 BRONI (Pavia) Tel. 0385.287128 (15 linee) - Fax 0385.57311 - E-mail: Info@labanalysis.it - Sito Internet: http://www.labanalysis.it

Laboratorio: Via Europa, 5 - 27041 CASANOVA LONATI (Pavia) - Sede legale: Via Rota Candiani, 13 - 27043 BRONI (Pavia)
Tel. 0385.287128 (15 linee) - Fax 0385.57311 - E-mail: Info@labanalysis.lt - Sito Internet: http://www.labanalysis.lt

CERTIFICATO DI ACCREDITAMENTO

Accreditation Certificate

Accreditamenta nº Accreditation nº 0077

Rev. 2

SI dichiara che We declare that LabAnalysis srl

Sede

Via Europa, 5 - 27041 Casanova Lonati PV

à conforme ai requisiti della noma

UNI CEI EN ISC/IEC 17025:2005 "Requisiti generali per la competenza del

Laboratori di prova e taratura"

meets the regirements of the standard EN ISO/IEC 17025:2005 "General Requirements for the Competence of Testing

and Calibration Laboratories" standard

quale

Laboratorio di Prova

an

Testing Laboratory

L'accreditamento attesta la competenza tecnica del Laboratorio relativamente allo scopo riportato nelle schede allegate al presente certificato. Le schede possono variare nel tempo. I requisiti gestionali della ISO/IEC 17025:2005 (sezione 4) sono scritti in un linguaggio Idoneo all'attività del Laboratori di Prova, sono conformi al principi della ISO 9001:2008 ed allineati con i suoi requisiti applicabili. Il presente certificato non è da ritenersi valido se non accompagnato dalle achede allegate e può essere sospeso o revocato in qualsiasi momento nel caso di Inadempienza accertata da parle di ACCREDIA. La vigenza dell'accreditamento può essere verificata sul site WEB (www.accredia.it) o richiesta direttamente

al singoli Dipartimenti

The accreditation certifies the technical competence of the laboratory limited to the scope detailed in the attached Enclosure. The scope may vary in the time. The management system requirements in 150/IEC 17025:2005 (Section 4) are written in a language relevant to Testing Laboratories operations and meet the principles of ISO 9001:2008 and are aligned with its pertinent requirements.

The present certificate is valid only if associated to the annexed schedule, and can be suspended or withdrawn at any time in the event of non fulfilment as ascertained by ACCREDIA. The in force status of the accreditation may be checked in the WEB site (www.accredia.il) or on direct request to appointed Department.

Data di 1º emissione 1st issue date 1994-07-13

Data di modifica Modification date 2014-05-08

Data di scadenza Expiring date 2018-07-12

Il Direttore Generale Tyle General Director (Dr. Filippe Triflletti)

Il Direttore di Dipartimento Department Director (Dr. Paolo Bianco)

Il Presidente The President

(Cav. del Lav. Federico Grazioli)

Mod. EA-01 lev at

ACCREDIA

CERTIFICATO DI ACCREDITAMENTO

Accreditation Certificate

Accreditamento nº Accreditation nº

0077

Rev. 2

Si dichiara che We declare that Sedi operative:

LabAnalysis srl Via Europa, 5

27041 Casanova Lonati PV

LabAnalysis srl Clttadella della Ricerca Ed.6, SS 7 per Mesagne Km 7,300 72100 Brindisi BR

	RAPPOR	RTO DI QUALI	FICA RQUA	L Nº	3458	-P-QUAL-	146-	2014
Procedura di restmento:	P-QUAL-44	5	Condizioni amb	dentall Influenti ;	temperatura :	22t 5 °C		
Data L	18/02/2014	Luogo ;	Casenbys Lorde	A/ea:	APC	Operatore:	Cale	iri Emenusie
	Te		D. H. Maria	O-W MA	Lea	scadents tombola	·	
Bombola O2 :	Concentrazion	%	Costruttore	Certif. N* 58518	13/10/2010	13/10/2015		
Bombola CO2 :	16.23	16	Sapio	MP 14280	07/08/2011	07/06/2014	1	
Bombola CO :	401	ppm	Slad	107344	15/06/2011	15/08/2014	1	
Bombola NO :	398	ppm	Sied	230173	12/02/2012	10/01/2015	2	
Bombola NO2:	108	ppm	Siad	50758	04/01/2013	04/07/2014	1	
Bombola SO2 :	389	ррга	Siad	107208	04/07/2012	04/07/2014		
	Costruttore	Modelle	IS/N	Calibrato II	Cod, Int.	Scadenza tara	shea	1
Dilulitors:	LN	Sanimix 2108 B	2270	10/00/2012	878	settembre		
Dituriors.		Committee 2 100 0	2270	THUMESTE	1			
GAS	102	COZ	Ico	NO	SOZ	1		
Codice Interna :	3458	3458	3458	3458	3458	γ.		
Costruttore :	Horiba	Horiba	Horiba	Horiba	Hariba	1		
Modello :	PG-250	PG-250	PG-250	PG-250	PG-250	1		
Fondo Scals 1	10	20	200	50	200	1		
ondo Scala 2	25	1 2	500	100	500	1		
Fondo Scale 3			1	250		1		
Fondo Scala 4				500]		
Unita misura scala	%	%	ppm	ppm	ppm]		
Efficienza del	cornvert	itore						
Efficienza (%)	Criterio di	accettabilità					Esito	
96.3	> 95 %						ØP.	ON
Linearità							-	
Gas misurato	N°Scala	Residue relative Max	Const aircraft					
02	1		A PRIMARY MICCOLLISCONO	Scosiamento Max % Relativ	15 F.S.	Criteri accettabili	Esito	
	11	0,3	< 5% F.S.	Gostomento Max 16 Relativ 0.900	rs.	Criteri accettabili	Esito CP	ON
Ö2		0.3 0.3		Marie Control of the	rs.s.		P(P	ON
	2	D.3	< 5% F.S.	0.900	rs F.S.	< 2% F.S.	QP QP	-
CO2	1	0.3 0.2	< 5% F.S. < 5% F.S. < 5% F.S.	0.900 0.480 0.350	ra F.S.	< 2% F.S. < 2% F.S. < 2% F.S.	92P 92P 94P	ON
CO2 CO	1	0.3 0.2 0.2	< 5% F.S. < 5% F.S. < 5% F.S. < 5% F.S.	0.900 0.480 0.350 0.300	15 F.S.	< 2% F.S. < 2% F.S. < 2% F.S. < 2% F.S.	P P P	ON ON
CO2 CO	1 2	0.3 0,2 0.2 0.1	< 5% F.S. < 5% F.S. < 5% F.S. < 5% F.S. < 5% F.S.	0.900 0.480 0.350 0.300 0.160	76 F.S.	< 2% F.S. < 2% F.S. < 2% F.S. < 2% F.S. < 2% F.S.	400 400 400 400 400 400 400	O N O N O N
CO2 CO CO NO	2 1 1 2 1	0.3 0.2 0.2 0.1 0.2	< 5% F.S. < 5% F.S. < 5% F.S. < 5% F.S. < 5% F.S. < 5% F.S.	0.900 0.480 0.350 0.300 0.160 0.400	16 F.S.	< 2% F.S. < 2% F.S. < 2% F.S. < 2% F.S. < 2% F.S. < 2% F.S.	90 90 90 90 90 90 90 90 90 90 90 90 90 9	ON ON ON
CO2 CO CO NO	2 1 2 1 2	0.3 0,2 0.2 0.1 0.2 0.4	< 5% F.S. < 5% F.S.	0.900 0.480 0.350 0.300 0.160 0.400 1,000	16 F.S.	< 2% F.S. < 2% F.S. < 2% F.S. < 2% F.S. < 2% F.S. < 2% F.S. < 2% F.S.	9P 9P 9P 9P 9P	ON ON ON ON
CO2 CO CO NO NO	2 1 1 2 1 2 3	0.3 0,2 0.2 0.1 0.2 0.4 0.2	< 5% F.S.	0.900 0.480 0.350 0.300 0.160 0.400 1.000 0.240	16 F.S.	< 2% F.S. < 2% F.S.	45 45 45 45 45 45 45 45 45 45 45 45 45 4	ON ON ON ON ON
CO2 CO CO NO NO NO	2 1 1 2 1 2 3 4	0.3 0.2 0.2 0.1 0.2 0.4 0.2	< 5% F.S.	0.900 0.480 0.350 0.300 0.160 0.400 1,000 0.240 0.080	16 F.S.	< 2% F.S. < 2% F.S.	40 40 40 40 40 40 40 40 40 40 40 40 40 4	ON ON ON ON ON ON
CO2 CO CO NO NO NO	2 1 1 2 1 2 3	0.3 0,2 0.2 0.1 0.2 0.4 0.2	< 5% F.S.	0.900 0.480 0.350 0.300 0.160 0.400 1.000 0.240	16 F.S.	< 2% F.S. < 2% F.S.	45 45 45 45 45 45 45 45 45 45 45 45 45 4	ON ON ON ON ON
CO2 CO CO NO NO NO NO NO NO SO2	2 1 1 2 1 2 3 4	0.3 0.2 0.2 0.1 0.2 0.4 0.2	< 5% F.S.	0.900 0.480 0.350 0.300 0.160 0.400 1,000 0.240 0.080	16 F.S.	< 2% F.S. < 2% F.S.	40 40 40 40 40 40 40 40 40 40 40 40 40 4	ON ON ON ON ON ON
CO2 CO CO NO NO NO NO NO SO2 SO2	2 1 1 2 1 2 3 4	0.3 0.2 0.2 0.1 0.2 0.4 0.2 0.1	<pre>< 5% F.S. < 5% F.S.</pre>	0.900 0.480 0.350 0.300 0.160 0.400 1,000 0.240 0.080 0.350	16 F.S.	< 2% F.S. < 2% F.S.	9P 9P 9P 9P 9P 9P 9P	ON ON ON ON ON ON ON
CO2 CO2 CO NO NO NO NO SO2 SO2 Ripetibilità Gas misurato	2 1 1 2 1 2 3 4	0.3 0.2 0.2 0.1 0.2 0.4 0.2 0.1	<pre>< 5% F.S. < 5% F.S.</pre>	0.900 0.480 0.350 0.300 0.160 0.400 1,000 0.240 0.080 0.350	16 F.S.	< 2% F.S. < 2% F.S.	40 40 40 40 40 40 40 40 40 40 40 40 40 4	ON ON ON ON ON ON
CO2 CO CO NO NO NO NO NO SO2 SO2 Ripetibilità	2 1 1 2 3 4 1 1 2 2	0.3 0.2 0.2 0.1 0.2 0.4 0.2 0.1 0.2	<pre>< 5% F.S. < 5% F.S.</pre>	0.900 0.480 0.350 0.300 0.160 0.400 1,000 0.240 0.080 0.350	16 F.S.	< 2% F.S. < 2% F.S.	40 40 40 40 40 40 40 40 40 40 40 40 40 4	ON ON ON ON ON ON
CO2 CO NO NO NO NO NO SO2 SO2 Ripetibilità Gas misurato	2 1 1 2 1 2 3 4 1 1 2 2 N°Scala	0.3 0.2 0.1 0.2 0.4 0.2 0.1 0.2 0.1 0.2 0.1	<pre>< 5% F.S. < 5% F.S.</pre>	0.900 0.480 0.350 0.300 0.160 0.400 1,000 0.240 0.080 0.350	16 F.S.	< 2% F.S. < 2% F.S.	RP RP RP RP RP RP RP RP	ON ON ON ON ON ON ON

Verifies validazione foplin di calculo:						
Célcille	Rindens	Aspettsio				
MEDIA(B11B43)/SOMMA(B46B16)	0.0009091	0.0909091				
DEVSTOWNER	0.9816.008	0.9816498				
H56° B55° B54° B52° B47° B41/SOMMA(B33-B4G-SOMMA(B50-B54)	(28.0000	121,0000				

CO

CO

NO

NO

NO

NO

502

802

Calzan Emanuate

0.04

0.02

0.10

0.04

0.02

0.02 0.03

0.01

2

2

3

4

1

CONVORD DAT MOME / From 1

Marina Marina

<2% F.S. AP ON

<2% F.S. QP ON <2% F.S. QP ON <2% F.S. QP ON <2% F.S. QP ON

< 2% F.S. QP < 2% F.S. QP

OP

ON

ON

ON

< 2% F.S.

Laboratorio: Via Europa, 5 - 27041 CASANOVA LONATI (Pavia) - Sede legale: Via Rota Candiani, 13 - 27043 BRONI (Pavia)
Tel. 0385,287128 (15 lines) - Fax 0385,57311 - E-mail: Info@labanalyais.it - Sito Internet: http://www.labanalysis.it

All.1 P-TAR-178 Rev.6 data: 03/10/2013 Nome file: VFC-P-TAR-178/02_rev3

RAPPORTO DI TARATURA – MICROMANOMETRO DIFFERENZIALE

Casanova Lonati,

17/07/2014

RT nº

4382 (2)-Ptar178-14

Pag.1 di 1

Richiedente:

Taratura interna Lab Analysis

Descrizione strumento: Micromanometro differenziale

Cod. Int.: 4382 (2)

Modella:

Isocheck

Area: STM5

Campo di misura:

0-1000 Pa

unità di formato: 0.1 Pa

Campo di misura: 0 - 2000 Pa

Certificato nº; P12-26826A

Unità di formato:

Campione di riferimento: Micromanometro differenziale

Cod. Int.: Rilasciato da:

Aerometrologie

0.1 Pa

Incertezza estesa alla pressione impostata (400Pa);

0.84 1.1

Pa

incertezza estesa alla pressione impostata (800Pa):

Procedura di riferimento: P-TAR-178 rev 6

Condizioni ambientali influenti: nessuna Data inizio taratura:

Data scadenza taratura: 07/2016

17/07/2014

Data fine taratura: 17/07/2014

	Criteri di accettabilità:
THE TAX DATE OF THE PARTY OF TH	10Pa con micromanomentro con fondo scala ≤ 100 Pa
Incertezza estesa ammessa:	15Pa con micromanometro con fondoscala > 100Pa
Scostamento ammesso:	< 5%

	incertezza:	
Pressione impostata (Pa)	Inceriezza estesa di taratura quando non si applica la correzione (*) (±U Pa) alla pressione impostata	Incertezza estesa di taratura (*) (±U Pa) alla pressione impostata
400	7.0	5.9
800	9.5	7.0

Accuratezza:						
Pressione Impostata (Pa)	Pressione media micromanometro di riferimento (Pa)	Pressione media micromanometro in terature (Pa)	Scostamento %			
400	401.2	397.9	-0.81			
800	808.5	802.9	-0.69			

Correzione pressione: (%) **NESSUNA CORREZIONE**

(*): L'incertezza estesa Indicata è espressa come incertezza tipo moltiplicata per il fattore di copertura K=2, che per una distribuzione normale corrisponde ad un livello di fiducia del 95% circa. I gradi effettivi di libertà sono v_{ell} ≥ 10. L'incertezza lipo è stata determinata conformemente al documento EA-4/02.

Responsabile Taratura

(CAMMARATA LINUKORO

Responsabile Controllo

Laboratorio: Via Europa, 5 - 27041 CASANOVA LONATI (Pavia) - Sede legale: Via Rota Candiani, 13 - 27043 BRONI (Pavia)
Tel. 0385.287128 (15 linee) - Fax 0385.57311 - E-mail: info@labanalysis.lt - Sito Internet: http://www.labanalysis.lt

All.1 P-TAR-178 Rev.6 data: 03/10/2013 Nome file: VFC-P-TAR-178/02_rev3

RAPPORTO DI TARATURA - MICROMANOMETRO DIFFERENZIALE

Casanova Lonati,

17/07/2014

RT nº

4383-Ptar176-14

Pag.1 di 1

Richledente:

Taratura interna Lab Analysis

Descrizione strumento: Micromanometro differenziale

Cod. Int.: 4383

Area: STM5

Modella:

Isocheck

unità di formato: 1 Pa

Campo di misura: 0 - 9800 Pa

Cod. Int.:

Campione di riferimento: Micromanometro differenziale

3385

Aerometrologie

Campo di misura: 0 - 2000 Pa Certificato nº: P12-26826A

Rilasciato da: Unità di formato:

0.1 Pa

Pa

Incortezza estesa alla pressione impostata (-500Pa): Incertezza estesa alla pressione impostata (600Pa):

0.94 0.94

Pa

Procedura di riferimento: P-TAR-178 rev 6

Condizioni ambientali influenti: nessuna Data inizio taratura:

17/07/2014

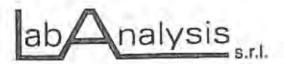
Data fine taratura: 17/07/2014

Data scadenza taratura:

Criteri di accettabilità:				
formation living hands bed	10Pa con micromanomentro con fondo scala ≤ 100 Pa			
Incertezza estesa ammessa:	15Pa con micromanometro con fondoscala > 100Pa			
Scostamento emmesso:	< 5%			

	Incertezza:							
Pressione Impostata (Pa)	Incertezza estesa di taratura quando non si applica la correzione (*) (±U Pa) alla pressione impostata	Incertezza estesa di taratura (*) (±U Pa) alla pressione impostata						
-500	9,5	8.2						
500	6.0	4.2						

Accuratezza:						
Pressione impostata (Pa)	Pressione media micromanometro di niferimento (Pa)	Pressione media mioromanometro in teratura (Pa)	Scostamento %			
-500	-502.3	-498.1	-0.62			
500	498.1	495.6	-0,49			


Correzione pressione: (%) **NESSUNA CORREZIONE**

(*): L'incertezza estesa indicata é espressa come incertezza tipo moltiplicata per il fattore di copertura K=2, che per una distribuzione normale corrisponde ad un livello di liducia del 95% circa. I gradi effettivi di libertà sono v_{ell} ≥ 10. L'incertezza lipu è stata determinata conformemente al documento EA-4/02.

> Responsable Taratura CAMMARATH MOMMO

Responsabile Controllo

Mis

Laboratorio: Via Europa, 5 - 27041 CASANOVA LONATI (Pavia) - Sede legale: Via Rota Candiani, 13 - 27043 BRONI (Pavia)
Tel. 0385.207128 (15 lines) - Fax 0385.57311 - E-mail: Info@laboralysis.ii - São Internet: http://www.laboralysis.ii

All.1-P-TAR-264 Rev1 del 02-07-2012 pag.1 di 1 Nome del file: All, 1P-TAR-264 revi

RAPPORTO DI TARATURA BAROMETRO

Casanova Lonati, 13/05/2014

RT nº 4385-4386-P-TAR-264-2014 Pag.1 di 1

Rapporto di Taratura nº 4385-4386-P-TAR-264-2014

Scadenza RdT: 05/2016

Richiedente: Taratura interna Labanalysis

Descrizione strumento: Barometro (ISOCHECK-SRB-DL) Cod. Int.: 4385-4386 Area: STM5

Unità di formato - (uf: 0,1 hPa)

Campione di riferimento: barometro certificato

Cod. Int.: 264

Incertezza CR: 0,25(hPa)

Rilasciato da: Centro di Taratura Accreditato nº24

Certificato nº:0443P13

Unità di formato - uf; 1(hPa)

Procedura di riferimento: P-TAR-264 Rev.7

Condizioni ambientali influenti:

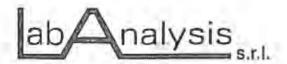
Temperatura: 28,3°C (Cod. Termometro 1887)

Umidità: 35%RH (Cod. Igrometro 2510)

Data inizio taratura:13/05/2014

Data fine taratura: 13/05/2014

Scadenza RdT: 05/2015


PUNTO Nº	PRESSIONE RIFERIMENTO	PRESSIONE INDICATA Plot (bfa)	SCOSTAMENTO R = P _{et} - P _{tot} [hPa]	Limiti R IbPal	INCERTEZZA DI MISURA ESTESA U(*) [bP#]	Limiti U (*) [hPa]	ESITO
	P _{eff} JhPa	f lad 104 m	1 21	1			POSITIVO
4	1004	1006	-2	13	41	±3	PUSITIVU

(*):L'incertezza estesa indicata è espressa come l'incertezza tipo composta moltiplicata per il fattore di copertura K, ad un livello di fiducia del 95% circa per i gradi di libertà ven≥10. L'incertezza tipo è stata determinata conformemente al documento EA-4/02.

> Responsabile taratura (OPFS3 B. Tatti)

Barlona Tatte

Responsabile Controllo (OAT L. Amperiale)

Laboratorio: Via Europa, 5 - 27041 CASANOVA LONATI (Pavia) - Sade legale: Via Rote Candiani, 13 - 27043 BRONI (Pavia)
Tel. 0385.257128 (15 lines) - Fex 0385.57311 - E-mail: Inte@laboratysts.it - Sito internat: http://www.laboratysts.it

All.1-P-TAR-153_Rev3 del 16-10-2013 Nome del file: All1-P-TAR-153_Rev3

RAPPORTO DI TARATURA - TERMOMETRI

Casanova Lonati, 13/05/2014

RT nº4386-4384-P-TAR-153-2014

Pag.1 di 1

Rapporto di Taratura nº 4386-4384-P-TAR-153-2014 Scadenza RdT:05/2016

Richiedente:

Taratura interna Lab Analysis

Descrizione strumento: Termometro digitale

Cod. Int.: 4386-4384

Descrizione sonda: Termocoppia tipo K.

Area: STM5

Unità di formato - uf: 0,1°C

Modello: ISOCHECK-SRB-DL

Campione di riferimento: termometro -sonda certificata (per ta)

Cod. Int.: 2902/2903

Incertezza CR: ±0,15°C

Rilasciato da: Centro di Taratura Accreditato nº24

Certificato nº: LAT 024 1799T13

Unità di formato - uf: 0,05°C

Campione di riferimento: termometro -sonda certificata (per to e to)

Cod. Int.: 1118

Incertezza CR; ±1°C (t≥150°C)

Rilasciato da: Centro di Taratura Accreditato nº24

Certificato nº:LAT 024 2134T12

Unità di formato - uf: 1°C

Procedura di riferimento: P-TAR-153 Rev.10

Condizioni ambientali influenti: nessuna

Data inizio taratura: 13/05/2014

Data fine taratura: 13/05/2014

671	THE RESIDENCE PROPERTY	A HISTORIAN AND AND AND AND AND AND AND AND AND A							
PUNTO Nº	TEMPERATURA RIFERIMENTO Tr [°C]		SCOSTAMENTO R = (Tr-Ti) [°C]	INCERTEZZA DI MISURA ESTESA U(§)[°C]	Limiti U (*) [°C]	ESITO	INCERTEZZA DI MISURA ESTESA RELATIVA U(\$)(%)	Limiti U(*) [%]	ESITO
la	24,3	24,3	0,0	± 0,2	±1	POSITIVO	0,1	±1	POSITIVO
1b	245	243,9	50 - 1	±1,1	12	POSITIVO	0,3	±1	POSITIVO
te	560	558,8	1,2	±1,8	±2	POSITIVO	0,2	±1	POSITIVO

Lo scostamento è stato valutato come contributo all'incertezza. NON è necessario correggere i valori letti dalla sonda.

(§):L'incertezza estesa indicata è espressa come l'incertezza tipo composta moltiplicata per il fattore di copertura K=2, ad un livello di fiducia del 95% circa per i gradi di libertà v_{ett}≥10. L'incertezza tipo è stata determinata conformemente al documento EA-4/02.

Responsabile taratura (OPFS3 B. Tatti)

D.D. TH

Responsabile Controllo

(QAT L. Imperiale)

oritoria: Vie Europa, 8 - 27041 CASANOVA LORIATI (revis) - Bede legitie: Via Rote Creditoti, 13 - 27043 BROTe (P Nrt. 6308,207128 (15 Bree) - Pax 6303,57311 - B-most Info@lationstylla 8 - Sibe branck MipoVeneriabnostylla 8

Mod. VFC-P-TAN-210 Rev. 1 del 03/10/2013 name Sie: VFC-P-TAR-280_rev1

RAPPORTO OF TARATURA - TUBO DI PITOT

Catanava Lonsti,

131 07/2014

Pog. 1 a 1

Rapporto di taratura nº [1488]

E SLEET

Richiederile: Taraiura Inleme LabArrelysia Despizione strumento; Tubo di Pitol Tpe

Cod bit (3350)

Aven ETSTMSEE Ritesciate de Windung Metrology

Campions di Markmetto: Tubo di Pitot tipo L Cod. kd. /ultime di terstura (a.): /1.0011

Complaine off rifleriamente: Micro Cod Int.

104 104 0.02707

Certification 1 177

Procedure di rifermente: P-TAR-260

Condition problemed influent: Massada 113

Data Intzio taratura:

Range mex (Po) Errora & linearità (%)

(ALIOYISOTA)

5.007/2014

pressione barametrics: formpressure wind tunnel;

Velocità I	Prove 1
Velocità 1	Prove 1
Valoottà f	Prove 3
Velocità 2	Prove 1
Velocità 2	Provs 2
Velocità 2	Prove 2
Velocità à	Prove 1
Velocità 1	Prova 2
Vetocità 2	Prove 3
Velocità 4	Prove 1
Velocilà 4	Prova 2
Velocità 4	Prove 3
Velocità 5	Prove 1
Velocità II	Prova 1
Velocità 5	Prove 2

Δp _i Pu	Δp. Pt	u _a	timute.	U	Enite test
10,0	115	0.670			Pastalo
1040	210	0.658			Possato
10,11	1000	0,672	0,870	0.053	Passeig
76,7	1000	0,655			Passalo
777	100 a	0.059			Passalo
(6.51	(1)5	0,064	0,856	0,016	Passato
3.0	1007	A 0,656			Pastalo
1(0)	1101	0,004			Passato
(60)	907	0,867	0,059	0,019	Passato
7550	THIA TO	0,652		-	Passato
1000	911-91	0,853			Passate
11221 -	160	0,657	0,856	0.010	Pagesto
215	(200.1	0,661			Passalo
500.4	74/03 1	0,655			Passoto
TRAP - TO T	(TARIS)	0.656	0.057	0.013	Passato

Partition pulliple frame	topo m r non tipo of
Velocità 1	Prove 1
Vetocha f	Prova 2
Votocilá f	Prove 3
Velocità I	Provs 1
Valacità 2	Prova 2
Velocità 2	Prova 3
Valootta 3	Prova 1
Velocità 3	Prove 2
Velocità 3	Prove 3
Velocità 4	Prova 1
Velocità 4	Prova 2
Valoatt 4	Prova 3
Velocità 8	Frova 1
Valooità f	Prova 2
Valouth 5	Prove 3

Ap,	Ap.	ù _{ti}	See .		Exelo test
*D.0	75.0	0,660			Passate
JH	17	0,870			Passete
100	4.4	0.649	0,860	0,045	Passeio
750	010101 H	0,463	-		Passaio
11.000	10000	0.863			Parrale
11/2	1000	0,650	0.860	9,015	Passeig
140	1163(1)	0.057			Passaio
(0.0.	43063	E 0.057			Passolo
(34)	60(4	0,857	0.857	0,029	Passalo
940	595.9	0.854			Pussuig
4386	908	0.054			Passalo
19871	360.9	0,859	0,858	0.011	Passelo
1550.1	755.46	0.857	14444		Pussaip
6404	160	0.854			Passaio
Annual Control	7647	0,853	0,855	0.011	Passato

Verifice milizi tube si Pilot tipe 8

Posseio

Fatiors di Israkus Piloi incertezza estesa di laratura (K+Z) 0,860 0.013

LEGENDA

Account (FEAT)

2. Considere differentiale registrate del Inde di Pilos di dissione

3. Considere differentiale registrate del Inde di Pilos in Sanatore

or i fallate di Insidere tiude di Pilos in Sanatore

or i fallate di Insidere tiude di Pilos in Sanatore

Secondaria di Insidere tiude di Pilos di Inde di Inde

Oci + Secondaria patasa di Caratore (IC-2)

Sayurtà Unitana Avrillone y Derivati-SIAD Spa-Capitale Sociale E 1.196(18) 21126 BERTIAMO - Vin V. Bérnaidino, 92 Tel. 055-320111 - Fax 0.13-315480 N. 1404 Register delle Imprese di Bergansi Proc. mercennegration PG 0111172 Publica IVA e Chalice Pricate 002090/1168

Stabilimento di (Ido Sopra 24000 (bits Supra (IIC) S.S. 525 del Parentes, 1 Tel, 035/328446 Fay (U.VSUZ 208 http://www.elad.ir i lanie Barreri Hime-y

11/04/2014

Spett.le

LABANALYSIS Via Europa 5

27041

CASANOVA LONATI

PV

Indirizzo di consegna

Via Europa 5 27041 CASANOVA LONATI (PV)

Certificato n.

(177181 / 1155)

23/01/2014

Riferimento del cliente Tipo di miscola

accettazione na offerta 14-0004n MIX GSP B.LE RIC 20L

Data ordine cliente

Miscele Certificate

Composizione Certificata

Componenti	Richiesta		Valore certificato		Incortazza estesa
ANIDRIDE CARBONICA		12,00 %vol		11,99 %vol	0,12 %vol
OSSIDO DI CARBONIO	2	400,0 ppmvol		410,0 ppmvol	6,4 ppmvol
OSSIDO DI AZOTO	1.5	400,0 ppmvol		401,0 ppmvol	8,2 ppmvol
AZOTO		Resto		Rosto	
ANIDRIDE SOLFOROSA		400,0 ppmvol		402,0 ppmvol	8,2 ppmyol
Altre Impurezze					

L'incertezza estesa è espressa come incertezza lipo moltiplicata per il fattore di copertura k=2, che per una distribuzione di probabilità normale, corrisponde ad un livello di fiducia del 95% circa.

Classificazione ADR

BIOSSIDO DI AZOTO

UN 1956 GAS COMPRESSO, N.A.S. (azoto,anidride carbonica), 2.2 - SCHEDA CEFIC 20G1A

Scheda di sicurezza n. SI-GC2.2 317

Codice per preparazione ISO 6142

Codice per analisi ISO 6143

Riferibilità

Procedura Int. di preparazione Acr 563. La miscela è stata preparata con il metodo gravimetrico su bilance tarate con masse certificate da Centro ACCREDIA. Numero del certificati dello

masse : 511, 512, 2587, 2588, A1179; centro ACCREDIA LAT n. 65

Note

Analista

DI Mauro Antonino

Data analial

09/04/2014

Garanzia di stabilità fino al 09/04/2016

Temperatura minima di utilizzo e sloccaggio

0 °C

Pressione minime di utilizzo

10% Press. B.ta

Temperatura massima di utilizzo e stoccaggio

50 °C

Matricola

20,0 145558 Pressions b.la (bar abs) 150,00

Contenuto b.ta. 3,00

- segue -

Capacità b.la (I)

Barcode

B5044841

SIAD S.p.A. - Il responsabile della ricerca Ing. Glorgio Bissolotti