m_amte.DVA.REGISTRO UFFICIALE.I.0026138.26-10-2016

Trasmissione a mezzo p.e.c.

Spett.le
Ministero dell'Ambiente e della Tutela del
Territorio e del Mare
DG Valutazioni Ambientali
Via C. Colombo, 44 - 00147 ROMA
dgsalvaguardia.ambientale@pec.minambiente.it
aia@pec.minambiente.it

Spett.le
ISPRA
Istituto Superiore per la Ricerca Ambientale
Via Vitaliano Brancati, 48 - 00144 ROMA
protocollo.ispra@ispra.legalmail.it

Spett.le
ARPA Puglia -DG
Corso Trieste,27- 70126 BARI
dir.generale.arpapuglia@pec.rupar.puglia.it
Dipartimento di Taranto - 74123 TARANTO
c/o ex Ospedale Testa Contrada Rondinella
dap.ta.arpapuglia@pec.rupar.puglia.it

Taranto, 26 10 2016 Ns.Rif: Dir.524/2016

Oggetto: Proposta di Monitoraggio di cui al punto 18 della tabella riportata al paragrafo 14 del Piano di Monitoraggio e Controllo dello stabilimento ILVA di Taranto allegato al Decreto del MATTM n. 194 del 13/07/2016.

Relativamente a quanto in oggetto, Vi rimettiamo in allegato la proposta di procedura relativa alla validazione dei campionamenti della rete piezometrica delle discariche le cui modalità di costruzione e gestione sono state autorizzate con proposte del sub-commissario prot. 5/U/19-12-2014 e prot. 6/U/19-12-2014 approvate con L.20/2015.

Distinti saluti

ILVA S.p.A.
In Amministrazione Straordinaria
Stabilimento di Taranto
Il Direttore di Stabilimento
Ing. Ruggero Cola

M

ILVA S.p.A. IN AMMINISTRAZIONE STRAORDINARIA via Appia SS km 648 - 74123 Taranto - tel. +39 099 4811 - fax +39 099 4812271 - telex 860049

Committente:

Località:

ILVA - Stabilimento di Taranto

Progetto:

PIANO DI MONITORAGGIO E CONTROLLO

Titolo elaborato:

RISPOSTA AL PUNTO 18 CAP. 14, MONITORAGGI SULLA RETE PIEZOMETRICA DELLE DISCARICHE

(PROT.5/U/19-12-2014 E PROT.6/U/19-12-2014 APPROVATE CON L.20/2015)

Numero elaborato:

R01

Codice interno del documento:

054-004R01E01

Rev.	Data	Descrizione	Redatto	Controllato	Approvato
E01	18.10.2016	Emissione	Arianna Chini	Stefano Veggi	Stefano Veggi
E02					
E03					

Progettista:

Desmos Ingegneria Ambiente Energia s.r.l.

Uffici: Via Pietrasanta, 12 20141 Milano Tel. +39 02 36588750 Fax +39 02 36588751 Sede legale: Viale Bianca Maria, 13 20122 Milano

 $\hbox{E-mail:}\ \underline{desmos\text{-}ing@desmos\text{-}ing.it}\ \hbox{-}\ \hbox{E-}\ mail\ certificata:}\ \underline{desmos\text{-}ing@pec.it}$

P.I. e C.F.: 09016150964 – REA: MI 2063052

ISO 9001:2015

ISO 14001:2015

Reg. CH-51454

SOMMARIO

1.	PREMESSA	2
2.	DISCARICA PER RIFIUTI NON PERICOLOSI	3
2.1	Sistema di monitoraggio	4
2.2	Controlli analitici campioni di acque dai piezometri	5
2.3	Livelli di guardia	7
3.	DISCARICA PER RIFIUTI PERICOLOSI	17
3.1	Sistema di monitoraggio	18
3.2	Controlli analitici campioni di acque dai piezometri	19
3.3	Livelli di guardia	21
3.3.1	Aggiornamento dei limiti di guardia	26
4.	VALIDAZIONE DEI DATI	27

Allegati:

Allegato A: ESTRATTO PIANO DI MONITORAGGIO ISPRA PMC_5, 23/06/2016 prot. n. 38027

Allegato B: STRATIGRAFIE DEI PUNTI DI MONITORAGGIO

Allegato C: METODICHE ANALITICHE

	054-004R01	RISPOSTA AL PUNTO 18 CAP. 14, MONITORAGGI SULLA RETE PIEZOMETRICA DELLE DISCARICHE	E01
Ī	Codice	Titolo	Rev.

1. PREMESSA

Nella presente nota tecnica, redatta da Desmos Ingegneria Ambiente ed Energia su incarico di Ilva S.p.A. in Amministrazione Straordinaria, è descritta la proposta di procedura e validazione per le campagne di monitoraggio delle acque sotterranee per le discariche interne allo stabilimento, in ottemperanza a quanto riportato al punto 18 del Piano di Monitoraggio e Controllo relativo allo stabilimento ILVA di Taranto (Allegato A).

Il Piano di monitoraggio e Controllo allegato all'Autorizzazione Integrata Ambientale dello stabilimento, rilasciata con decreto n. DVA-DEC-2011-450 del 04/08/2011 e s.m.i., è stato sostituito con Decreto del MATTM (prot. 0000194 del 13/07/2016) dalla proposta di Piano di Monitoraggio e controllo redatta dall'ISPRA (PMC 5, 23/06/2016 prot. n. 38027).

In tale proposta di Piano di Monitoraggio è contenuta la richiesta cui risponde il presente documento, relativa alle discariche per rifiuti pericolosi e per rifiuti non pericolosi, ubicate nell'area di cava "Mater Gratiae" all'interno dello stabilimento di ILVA, per le quali i provvedimenti di riferimento sono contenuti nelle note del Sub-Commissario, rispettivamente prot. 5/U/19/12-2014 e prot. 6/U/19/12/2014, approvate con D.L 1/2015 del 05/01/2015 convertito dalla legge 20 del 04/03/2015.

In particolare, nel presente documento si riportano i contenuti dei Piani di Sorveglianza e Controllo delle suddette discariche, con riferimento al monitoraggio delle acque sotterranee, tenendo conto degli aggiornamenti elaborati ad oggi per ottemperare alle prescrizioni delle note del sub-commissario ed alle note contenute nei verbali relativi di esecuzione visita ispettiva ordinaria di ISPRA/ARPA Puglia.

	054-004R01	RISPOSTA AL PUNTO 18 CAP. 14, MONITORAGGI SULLA RETE PIEZOMETRICA DELLE DISCARICHE	E01
Ī	Codice	Titolo	Rev.

2. DISCARICA PER RIFIUTI NON PERICOLOSI

La discarica per rifiuti non pericolosi (denominata "G3") è ubicata del Comune di Statte (TA), all'interno dell'area di cava denominata "Mater Gratiae" di proprietà di ILVA.

Nella figura seguente è riportata l'ubicazione della discarica "G3" che confina ad Ovest con la discarica per rifiuti pericolosi "V4" e sugli altri lati confina con la pista di accesso e con le aree di cava.

La Discarica è entrata in esercizio il 04/10/2016.

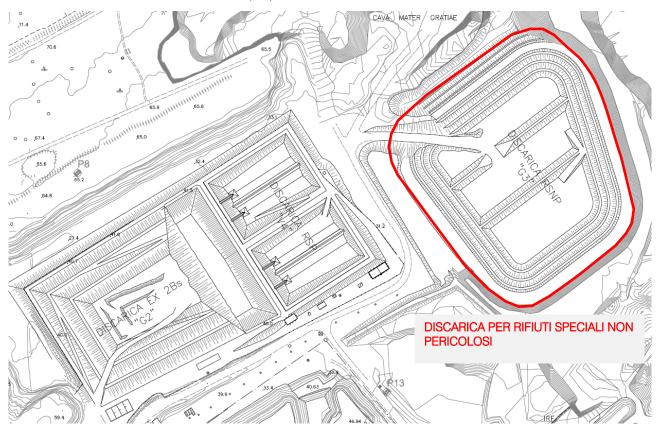


Figura 2-1: Ubicazione Discarica per rifiuti speciali non pericolosi "G3"

Di seguito si riporta un estratto del "Piano di Sorveglianza e Controllo" della discarica in oggetto (Desmos Ingegneria Ambiente ed Energia, rif.: 005-2015 031R02E03, del 16/05/2016), trasmesso con nota DIR 463 del 28/09/2016 con riferimento al monitoraggio delle acque sotterranee.

Tale Piano è l'ultima revisione del "Piano di Sorveglianza e Controllo" datato 16/12/2013 (rif.:08463-011R02E04, Studio Geotecnico Italiano – All.312 al Progetto Definitivo), in recepimento delle prescrizioni contenute nella proposta aggiornata di decreto di modalità di costruzione e di gestione della discarica per rifiuti speciali non pericolosi ILVA di cui alla nota prot. 5/U/19-12-2014 del sub commissario ILVA, recepita dalla legge 20 del 04/03/2015.

Nel giugno 2016 è stato realizzato un nuovo punto di monitoraggio (P2 nuovo) nei pressi del preesistente P2. Il nuovo piezometro è inserito nel piano di monitoraggio in sostituzione del vecchio P2,

Codice	MONITORAGGI SULLA RETE PIEZOMETRICA DELLE DISCARICHE Titolo	Rev.
054-004R01	RISPOSTA AL PUNTO 18 CAP. 14,	E01

per il quale sarà mantenuto attivo il presidio di pompaggio per eventuali situazioni di emergenza, facendo esso parte del sistema di monitoraggio di valle delle discariche "V2" e "G2".

2.1 <u>Sistema di monitoraggio</u>

Di seguito le caratteristiche dei punti di monitoraggio identificati per la discarica per rifiuti non pericolosi.

NOME POZZO	COORDINATE (GAUSS – BOAGA) N E		QUOTA POZZO	LUNGH. TRATTO CIECO	LUNGH. TRATTO FESSURATO	DIAMETRO PERFO- RAZIONE
	[m]	[m]	[m s.l.m.]	[m]	[m]	
P1 monte	4489651.88	2706387.94	32.327	51.6	14.1	600
P2 nuovo monte	4489526.84	2706357.12	31.308	53.0	10.5	180
P3 monte	4489400.35	2706309.16	32.417	53.1	14.0	600
P4 monte	4489352.93	2706089.04	35.277	53.5	14.0	600
PV1 valle	4489303.56	2706740.96	36.039	68.0	14.0	600
PV2 valle	4489106.92	2706580.38	36.295	68.0	14.0	600
PV3 valle	4489197.55	2706350.97	36.064	67.0	14.0	600
PM5 monte	4489549.95	2706453.57	36.227	68.0	14.0	200

Tabella 2-1: Caratteristiche dei pozzi di monitoraggio delle acque sotterranee

I pozzi di monitoraggio, caratterizzati da diametro elevato, ospitano un efficiente sistema di pompaggio che può garantire in emergenza, interventi di spurgo di livelli idrici superficiali potenzialmente inquinati. I punti di monitoraggio di monte pre-esistenti per la discarica di progetto, sono costituiti dai pozzi esistenti P1, P2, P3 e P4. Gli altri punti di monitoraggio sono stati realizzati ad integrazione del sistema della discarica in oggetto. In merito agli elementi descrittivi di tutti i pozzi di monitoraggio esistenti si rimanda all'Allegato B ove sono riportate le modalità realizzative e la stratigrafia.

Va sottolineato che il D.Lgs. n.36/03 prevede che siano previsti almeno un pozzo di monitoraggio a monte e due a valle della discarica. Tale prescrizione è pienamente rispettata.

	054-004R01	RISPOSTA AL PUNTO 18 CAP. 14, MONITORAGGI SULLA RETE PIEZOMETRICA DELLE DISCARICHE	E01
Ī	Codice	Titolo	Rev.

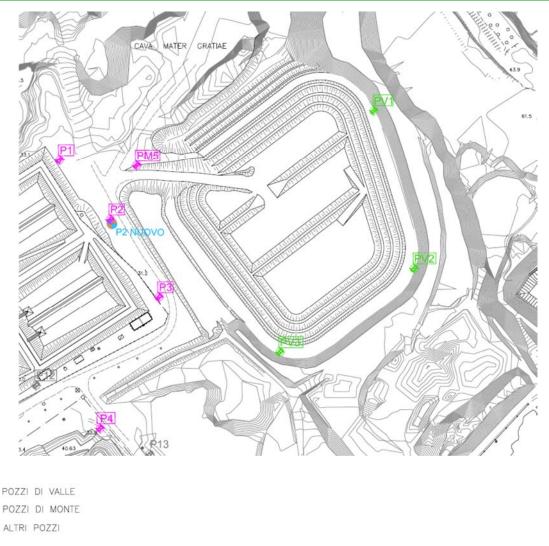


Figura 2-2: Posizione pozzi di monitoraggio di monte (P1÷P4 esistenti, PM5 di recente esecuzione, P2 NUOVO in sostituzione di P2) e dei pozzi di monitoraggio di valle (PV1÷PV3 di recente esecuzione).

2.2 <u>Controlli analitici campioni di acque dai piezometri</u>

Saranno eseguite campagne di monitoraggio della qualità delle acque sotterranee tramite il prelievo di campioni di acque da sottoporre ad analisi chimiche.

Viene altresì previsto il monitoraggio del livello piezometrico della falda della rete di monitoraggio. Il prelievo dei campioni di acque di falda prevede le seguenti fasi:

- 1. spurgo iniziale di durata utile allo scopo ,con avviamento della pompa di aspirazione;
- 2. prelievo dei campioni;

054-004R01	RISPOSTA AL PUNTO 18 CAP. 14, MONITORAGGI SULLA RETE PIEZOMETRICA DELLE DISCARICHE	E01
Codice	Titolo	Rev.

- 3. etichettatura dei contenitori ed invio al laboratorio di stabilimento indicando il punto di prelievo, data di campionamento e la richiesta di analisi;
- 4. in laboratorio i campioni vengono sottoposti ad analisi immediata o comunque entro le 24 h, previa conservazione in frigo a 4°C, per i composti volatili e\o facilmente alterabili.

Le portate di spurgo e campionamento sono determinate dalle caratteristiche delle pompe installate nei pozzi, adatte all'acquifero produttivo quale è quello di riferimento e definite in sede di progettazione dei sistemi di emungimento per eventuali casi di emergenza.

In presenza di valori anomali dei parametri fondamentali e comunque almeno una volta all'anno saranno monitorati anche i seguenti parametri:

- o composti organo alogenati (compreso il cloruro di vinile)
- o solventi organici azotati
- o solventi clorurati.

Nella seguente tabella è riportata la sintesi dei parametri di monitoraggio e le relative frequenze di misura sia in fase di gestione operativa che post- operativa.

Codice	Titolo	Rev
054-004R01	MONITORAGGI SULLA RETE PIEZOMETRICA DELLE DISCARICHE	EUI
	RISPOSTA AL PUNTO 18 CAP. 14,	E01

PARAMETRO	FREQUENZA MISURE GESTIONE OPERATIVA	FREQUENZA MISURE GESTIONE POST- OPERATIVA
рН	Trimestrale	Semestrale
Temperatura	Trimestrale	Semestrale
Conducibilità elettrica	Trimestrale	Semestrale
Ossidabilità Kubel	Trimestrale	Semestrale
BOD₅	Trimestrale	Semestrale
TOC	Trimestrale	Semestrale
idrocarburi totali	Trimestrale	Semestrale
Ca, Na, K	Trimestrale	Semestrale
Cloruri	Trimestrale	Semestrale
Solfati	Trimestrale	Semestrale
Floruri	Trimestrale	Semestrale
IPA	Trimestrale	Semestrale
Fe, Mn	Trimestrale	Semestrale
As, Cu, Cd, Cr totale, Cr VI, Hg, Ni, Pb, Mg, Zn, V	Trimestrale	Semestrale
Cianuri	Trimestrale	Semestrale
Azoto ammoniacale, nitrico, nitriti (o nitroso)	Trimestrale	Semestrale
Fenoli	Trimestrale	Semestrale
Solventi organici aromatici	Trimestrale	Semestrale
Composti organoalogenati (compreso cloruro di vinile)	Annuale	Annuale
Solventi organici azotati	Annuale	Annuale
Solventi clorurati	Annuale	Annuale
Livello di falda	Mensile	Semestrale

Tabella 2-2: Piano di controllo delle acque sotterranee – discarica per rifiuti non pericolosi

Le analisi saranno svolte presso laboratori accreditati.

In Allegato C al presente elaborato sono riportate le metodiche con cui vengono effettuate le determinazioni analitiche per le acque sotterranee.

2.3 Livelli di guardia

I livelli di guardia sono intesi come dei valori dei parametri da assumere quali soglia di attenzione e/o allarme in relazione ad uno stato di alterazione delle caratteristiche delle acque stesse dovuto alla presenza della discarica.

I livelli di guardia sono stati definiti nel *Piano di Sorveglianza e Controllo*" della discarica in oggetto (ultima revisione: Desmos Ingegneria Ambiente ed Energia, rif.: 005-2015 031R02E03, del 16/05/2016).

	054-004R01	RISPOSTA AL PUNTO 18 CAP. 14, MONITORAGGI SULLA RETE PIEZOMETRICA DELLE DISCARICHE	E01
Ī	Codice	Titolo	Rev.

Le modalità di intervento in caso di superamento dei livelli di guardia sono, come previsto dal D.Lgs. n.36/03, contenute nel "*Piano di gestione operativa*" (Desmos Ingegneria Ambiente ed Energia, rif.: 005-2015 031R01E02, del 05/11/2015) a cui si rimanda per maggiori dettagli.

Il periodo di osservazione per la definizione dei livelli di guardia si riferiscono:

- al periodo gennaio 2014 luglio 2016; per quanto riguarda i piezometri P1, P3 e P4;
- al periodo febbraio 2016 a luglio 2016 (precisamente campionamenti di febbraio, aprile, giugno, luglio) per i pozzi PV1, PV2, PV3 e PM5, di recente realizzazione; pur non essendo ancora disponibile un anno di osservazione sono proposti di seguito dei livelli di guardia preliminari.

Per il pozzo P2 nuovo, si dispone ad oggi di un numero insufficiente di analisi e non è pertanto possibile calcolare i relativi livelli di guardia; per tale punto di monitoraggio si farà pertanto riferimento ai livelli di guardia precedentemente calcolati per il pozzo P2 sulla base dei campionamenti da gennaio 2014 a marzo 2016 (Piano di Sorveglianza e Controllo, 005-2015-031R02E03).

Per i punti di monitoraggio PV1, PV2, PV3, PM5 e P2 nuovo, si procederà all'aggiornamento dei rispettivi livelli di guardia proposti, quando sarà disponibile almeno un anno di osservazioni.

Nei casi in cui le concentrazioni sono risultate inferiori ai limite di rilevabilità, per il calcolo dei parametri statistici è stato considerato un valore pari al limite stesso.

Si riportano di seguito i livelli di guardia calcolati, rimandando al documento citato per maggiori dettagli sugli approcci adottati e sui dati utilizzati per le elaborazioni.

Codice		MONITORAGGI SULLA RETE PIEZOMETRICA DELLE DISCARICHE Titolo	Rev.
	054-004R01	RISPOSTA AL PUNTO 18 CAP. 14,	E01

Pozzo P1 (monte)

PARAMETRO	U.M.	CSC D. LGS. 152/2006	PRECISIONE P	LIMITI X+2s-p	LIMITI X+3s+p
Conducibilità	[µS/cm]	-	± 115,3	3172	3807
рН	[-]	-	±0,10	7,39	7,80
Cloruri	[mg/l]	-	± 12,34	837	951
Solfati	[mg/l]	250	± 4,85	136,07	165,08
Azoto ammoniacale	[mg/l]	-	± 0,003	0,347	0,412
Azoto nitrico	[mg/l]	-	± 0,0002	5,5270	6,0802
Azoto nitroso	[mg/l]	-	± 0,0003	0,1656	0,2282
Cd	[µg/l]	5	± 0,1	1,07	1,46
Cr (VI),	[µg/l]	5	± 0,1	1,68	2,45
Cr tot	[µg/l]	50	± 0,8	13,50	20,40
Fe	[µg/l]	200	± 5	103,80	158,41
Mn	[µg/l]	50	± 0,9	18,60	28,44
Hg	[µg/l]	1	± 0,07	0,41	0,78
Ni	[µg/l]	20	± 0,6	45,23	61,97
Pb	[µg/l]	10	± 0,2	1,28	2,10
Cu	[µg/l]	1000	± 1	0,89	4,26
Zn	[µg/l]	3000	± 6,5	635,36	939,06

Tabella 2.3: Limiti di guardia per il pozzo di monte P1 definiti con il metodo statistico

PARAMETRO	U.M.	CSC D. Lgs. 152/2006	PRECISIONE P	LIMITI X+2s-p	LIMITI X+3s+p
Idrocarburi totali*	[mg/l]	0,350	± 0,0122	0,3378	0,3622

^{*}valutato con valore limite prefissato pari al 100% della CSC

Tabella 2.4: Limiti di guardia per il pozzo di monte P1 definiti con il metodo del valore limite prefissato

054-004R01	RISPOSTA AL PUNTO 18 CAP. 14, MONITORAGGI SULLA RETE PIEZOMETRICA DELLE DISCARICHE	E01
Codice	Titolo	Rev.

Pozzo P2 (monte)¹

PARAMETRO	U.M.	CSC D. LGS. 152/2006	PRECISIONE P	LIMITI X+2s-p	LIMITI X+3s+p
Conducibilità	[µS/cm]	-	± 115,3	4580	6044
рН	[-]	-	±0,10	7,82	8,35
Cloruri	[mg/l]	-	± 12,34	858,21	1055,08
Solfati	[mg/l]	250	± 4,85	127,09	185,39
Azoto ammoniacale	[mg/l]	-	± 0,003	0,420	0,513
Azoto nitrico	[mg/l]	-	± 0,0002	6,0529	7,5027
Azoto nitroso	[mg/l]	-	± 0,0003	0,4410	0,6257
Cd	[µg/l]	5	± 0,1	0,90	1,20
Cr (VI),	[µg/l]	5	± 0,1	2,08	2,99
Cr tot	[µg/l]	50	± 0,8	14,63	22,27
Hg	[µg/l]	1	± 0,07	0,41	0,78
Ni	[µg/l]	20	± 0,6	55,78	74,68
Pb	[µg/l]	10	± 0,2	1,58	2,53
Cu	[µg/l]	1000	± 1	4,95	10,20
Zn	[µg/l]	3000	± 6,5	14,72	40,86

Tabella 2.5: Limiti di guardia per il pozzo di monte P2 definiti con il metodo statistico

PARAMETRO	U.M.	CSC D. LGS. 152/2006	PRECISIONE P	LIMITI X+2S-P	LIMITI X+3s+p
Fe*	[µg/l]	200	± 5	195	205
Mn*	[µg/l]	50	± 0,9	49,10	50,90
Idrocarburi totali*	[mg/l]	0,350	± 0,0122	0,3378	0,3622

^{*}valutato con valore limite prefissato pari al 100% della CSC

Tabella 2.6: Limiti di guardia per il pozzo di monte P2 definiti con il metodo del valore limite prefissato

¹ I limiti di guardia definiti per il pozzo P2 saranno presi come riferimento per le concentrazioni rilevate nel piezometro P2 nuovo, fino a che non si disporrà di almeno un anno di osservazione per il nuovo piezometro P2 stesso

054-004R01	RISPOSTA AL PUNTO 18 CAP. 14, MONITORAGGI SULLA RETE PIEZOMETRICA DELLE DISCARICHE	E01
Codice	Titolo	Rev.

Pozzo P3 (monte)

PARAMETRO	U.M.	CSC D. Lgs. 152/2006	PRECISIONE P	LIMITI X+2S-P	LIMITI X+3s+p
Conducibilità	[µS/cm]	-	± 115,3	3160	3846
рН	[-]	-	±0,10	7,55	8,01
Cloruri	[mg/l]	-	± 12,34	875,10	1046,93
Solfati	[mg/l]	250	± 4,85	137,26	174,07
Azoto ammoniacale	[mg/l]	1	± 0,003	0,227	0,236
Azoto nitrico	[mg/l]	1	± 0,0002	6,2231	7,0665
Azoto nitroso	[mg/l]	-	± 0,0003	0,0672	0,0856
Cd	[µg/l]	5	± 0,1	0,90	1,20
Cr (VI),	[µg/l]	5	± 0,1	2,54	3,54
Cr tot	[µg/l]	50	± 0,8	18,00	26,32
Mn	[µg/l]	50	± 0,9	11,56	18,33
Hg	[µg/l]	1	± 0,07	0,39	0,75
Ni	[µg/l]	20	± 0,6	64,56	86,82
Pb	[µg/l]	10	± 0,2	0,85	1,48
Cu	[µg/l]	1000	± 1	0,99	4,42
Zn	[µg/l]	3000	± 6,5	57,17	100,34

Tabella 2.7: Limiti di guardia per il pozzo di monte P3 definiti con il metodo statistico

PARAMETRO	U.M.	CSC D. LGS. 152/2006	PRECISIONE P	LIMITI X+2s-P	LIMITI X+3s+P
Fe*	[µg/l]	200	± 5	195	205
Idrocarburi totali*	[mg/l]	0,350	± 0,0122	0,3378	0,3622

^{*}valutato con valore limite prefissato pari al 100% della CSC

Tabella 2.8: Limiti di guardia per il pozzo di monte P3 definiti con il metodo del valore limite prefissato

054-004R01	RISPOSTA AL PUNTO 18 CAP. 14, MONITORAGGI SULLA RETE PIEZOMETRICA DELLE DISCARICHE	E01
Codice	Titolo	Rev.

Pozzo P4 (monte)

PARAMETRO	U.M.	CSC D. LGS. 152/2006	PRECISIONE P	LIMITI X+2s-p	LIMITI X+3s+p
Conducibilità	[µS/cm]	-	± 115,3	3247	4054
рН	[-]	-	±0,10	7,62	8,07
Cloruri	[mg/l]	-	± 12,34	684,83	796,49
Solfati	[mg/l]	250	± 4,85	110,20	140,06
Azoto ammoniacale	[mg/l]	-	± 0,003	0,393	0,479
Azoto nitrico	[mg/l]	-	± 0,0002	5,8448	6,9178
Azoto nitroso	[mg/l]	-	± 0,0003	0,3433	0,4885
Cd	[µg/l]	5	± 0,1	0,90	1,20
Cr (VI),	[µg/l]	5	± 0,1	2,41	3,50
Cr tot	[µg/l]	50	± 0,8	15,66	23,12
Fe	[µg/l]	200	± 5,0	569,56	814,52
Mn	[µg/l]	50	± 0,9	267,47	379,24
Hg	[µg/l]	1	± 0,07	0,34	0,69
Ni	[µg/l]	20	± 0,6	482,95	629,39
Pb	[µg/l]	10	± 0,2	1,04	1,74
Cu	[µg/l]	1000	± 1	1,29	4,86
Zn	[µg/l]	3000	± 6,5	50,40	90,27

Tabella 2-9: Limiti di guardia per il pozzo di monte P4 definiti con il metodo statistico

PARAMETRO	U.M.	CSC D. Lgs. 152/2006	PRECISIONE P	LIMITI X+2s-p	LIMITI X+3s+p
Idrocarburi totali*	[mg/l]	0,350	± 0,0122	0,3378	0,3622

^{*}valutato con valore limite prefissato pari al 100% della CSC

Tabella 2.10: Limiti di guardia per il pozzo di monte P4 definiti con il metodo del valore limite prefissato

054-004R01	RISPOSTA AL PUNTO 18 CAP. 14, MONITORAGGI SULLA RETE PIEZOMETRICA DELLE DISCARICHE	E01
Codice	Titolo	Rev.

Pozzo PM5 (monte)

PARAMETRO	U.M.	CSC D. LGS. 152/2006	PRECISIONE P	LIMITI X+2s-p	LIMITI X+3s+p
Conducibilità	[µS/cm]	-	± 115,3	4646	5509
рН	[-]	-	±0,10	8,60	9,33
Cloruri	[mg/l]	-	± 12,34	1219,21	1419,96
Solfati	[mg/l]	250	± 4,85	229,21	295,67
Azoto ammoniacale	[mg/l]	-	± 0,003	1,310	1,739
Azoto nitrico	[mg/l]	-	± 0,0002	4,4218	5,1693
Azoto nitroso	[mg/l]	-	± 0,0003	0,3510	0,4688
Cd	[µg/l]	5	± 0,1	0,90	1,20
Cr (VI),	[µg/l]	5	± 0,1	1,15	1,70
Cr tot	[µg/l]	50	± 0,8	1,82	4,79
Fe	[µg/l]	200	± 5,0	201,27	271,97
Mn	[µg/l]	50	± 0,9	22,85	32,99
Hg	[µg/l]	1	± 0,07	0,03	0,24
Ni	[µg/l]	20	± 0,6	3,51	6,15
Pb	[µg/l]	10	± 0,2	4,71	6,82
Cu	[µg/l]	1000	± 1	1,23	4,70
Zn	[µg/l]	3000	± 6,5	26,75	55,07

Tabella 2-11: Limiti di guardia per il pozzo di monte PM5 definiti con il metodo statistico

PARAMETRO	U.M.	CSC D. Lgs. 152/2006	PRECISIONE P	LIMITI X+2s-p	LIMITI X+3s+p
Idrocarburi totali*	[mg/l]	0,350	± 0,0122	0,3378	0,3622

^{*}valutato con valore limite prefissato pari al 100% della CSC

Tabella 2.12: Limiti di guardia per il pozzo di monte PM5 definiti con il metodo del valore limite prefissato

	054-004R01	RISPOSTA AL PUNTO 18 CAP. 14, MONITORAGGI SULLA RETE PIEZOMETRICA DELLE DISCARICHE	E01
Ī	Codice	Titolo	Rev.

Pozzo PV1 (valle)

PARAMETRO	U.M.	CSC D. LGS. 152/2006	PRECISIONE P	LIMITI X+2s-p	LIMITI X+3s+p
Conducibilità	[µS/cm]	-	± 115,3	3028	3475
рН	[-]	-	±0,10	7,57	7,99
Cloruri	[mg/l]	-	± 12,34	1810,73	2272,09
Solfati	[mg/l]	250	± 4,85	239,20	305,20
Azoto ammoniacale	[mg/l]	-	± 0,003	0,227	0,236
Azoto nitrico	[mg/l]	-	± 0,0002	4,7837	5,1744
Azoto nitroso	[mg/l]	-	± 0,0003	0,0497	0,0506
Cd	[µg/l]	5	± 0,1	0,90	1,20
Cr (VI),	[µg/l]	5	± 0,1	1,14	1,67
Cr tot	[µg/l]	50	± 0,8	4,67	8,74
Fe	[µg/l]	200	± 5,0	567,29	744,31
Mn	[µg/l]	50	± 0,9	16,52	24,71
Hg	[µg/l]	1	± 0,07	0,03	0,24
Ni	[µg/l]	20	± 0,6	9,91	14,53
Pb	[µg/l]	10	± 0,2	2,14	3,26
Cu	[µg/l]	1000	± 1	3,02	7,14
Zn	[µg/l]	3000	± 6,5	28,79	58,27

Tabella 2-13: Limiti di guardia per il pozzo di valle PV1 definiti con il metodo statistico

PARAMETRO	U.M.	CSC D. Lgs. 152/2006	PRECISIONE P	LIMITI X+2s-p	LIMITI X+3s+p
Idrocarburi totali*	[mg/l]	0,350	± 0,0122	0,3378	0,3622

^{*}valutato con valore limite prefissato pari al 100% della CSC

Tabella 2.14: Limiti di guardia per il pozzo di valle PV1 definiti con il metodo del valore limite prefissato

	054-004R01	RISPOSTA AL PUNTO 18 CAP. 14, MONITORAGGI SULLA RETE PIEZOMETRICA DELLE DISCARICHE	E01
Ī	Codice	Titolo	Rev.

Pozzo PV2 (valle)

PARAMETRO	U.M.	CSC D. LGS. 152/2006	PRECISIONE P	LIMITI X+2s-p	LIMITI X+3s+p
Conducibilità	[µS/cm]	-	± 115,3	3044	3515
рН	[-]	-	±0,10	7,67	8,12
Cloruri	[mg/l]	-	± 12,34	691,97	767,57
Solfati	[mg/l]	250	± 4,85	166,23	211,40
Azoto ammoniacale	[mg/l]	-	± 0,003	0,227	0,236
Azoto nitrico	[mg/l]	-	± 0,0002	4,7643	5,1566
Azoto nitroso	[mg/l]	-	± 0,0003	0,0497	0,0506
Cd	[µg/l]	5	± 0,1	0,90	1,20
Cr (VI),	[µg/l]	5	± 0,1	1,15	1,70
Cr tot	[µg/l]	50	± 0,8	3,66	7,40
Fe	[µg/l]	200	± 5,0	470,92	640,63
Mn	[µg/l]	50	± 0,9	170,55	231,73
Hg	[µg/l]	1	± 0,07	0,03	0,24
Ni	[µg/l]	20	± 0,6	4,73	7,68
Pb	[µg/l]	10	± 0,2	0,80	1,40
Cu	[µg/l]	1000	± 1	1,23	4,70
Zn	[µg/l]	3000	± 6,5	24,94	53,29

Tabella 2-15: Limiti di guardia per il pozzo di valle PV2 definiti con il metodo statistico

PARAMETRO	U.M.	CSC D. Lgs. 152/2006	PRECISIONE P	LIMITI X+2s-p	LIMITI X+3s+p
Idrocarburi totali*	[mg/l]	0,350	± 0,0122	0,3378	0,3622

^{*}valutato con valore limite prefissato pari al 100% della CSC

Tabella 2.16: Limiti di guardia per il pozzo di valle PV2 definiti con il metodo del valore limite prefissato

	054-004R01	RISPOSTA AL PUNTO 18 CAP. 14, MONITORAGGI SULLA RETE PIEZOMETRICA DELLE DISCARICHE	E01
Ī	Codice	Titolo	Rev.

Pozzo PV3 (valle)

PARAMETRO	U.M.	CSC D. LGS. 152/2006	PRECISIONE P	LIMITI X+2s-p	LIMITI X+3s+p
Conducibilità	[µS/cm]	-	± 115,3	3857	4545
рН	[-]	-	±0,10	8,19	8,17
Cloruri	[mg/l]	-	± 12,34	844,79	923,71
Solfati	[mg/l]	250	± 4,85	88,21	105,74
Azoto ammoniacale	[mg/l]	-	± 0,003	0,227	0,236
Azoto nitrico	[mg/l]	-	± 0,0002	3,5006	3,9913
Azoto nitroso	[mg/l]	-	± 0,0003	0,0497	0,0506
Cd	[µg/l]	5	± 0,1	0,90	1,20
Cr (VI),	[µg/l]	5	± 0,1	1,13	1,65
Cr tot	[µg/l]	50	± 0,8	1,86	4,87
Fe	[µg/l]	200	± 5,0	227,74	305,78
Mn	[µg/l]	50	± 0,9	18,82	26,71
Hg	[µg/l]	1	± 0,07	0,03	0,24
Ni	[µg/l]	20	± 0,6	4,67	7,52
Pb	[µg/l]	10	± 0,2	0,80	1,40
Cu	[µg/l]	1000	± 1	1,00	3,00
Zn	[µg/l]	3000	± 6,5	27,56	55,64

Tabella 2-17: Limiti di guardia per il pozzo di valle PV3 definiti con il metodo statistico

PARAMETRO	U.M.	CSC D. Lgs. 152/2006	PRECISIONE P	LIMITI X+2s-p	LIMITI X+3s+p
Idrocarburi totali*	[mg/l]	0,350	± 0,0122	0,3378	0,3622

^{*}valutato con valore limite prefissato pari al 100% della CSC

Tabella 2.18: Limiti di guardia per il pozzo di valle PV3 definiti con il metodo del valore limite prefissato

	054-004R01	RISPOSTA AL PUNTO 18 CAP. 14, MONITORAGGI SULLA RETE PIEZOMETRICA DELLE DISCARICHE	E01
Ī	Codice	Titolo	Rev.

3. DISCARICA PER RIFIUTI PERICOLOSI

La discarica per rifiuti pericolosi (denominata "V4") è ubicata del Comune di Statte (TA), all'interno dell'area di cava denominata "Mater Gratiae" di proprietà di ILVA.

Nella figura seguente è riportata l'ubicazione della discarica "V4" che confina ad Ovest con la discarica per rifiuti non pericolosi "G2", ad Est con la discarica per rifiuti non pericolosi G3 e sugli altri lati confina con la pista di accesso e con le aree di cava.

Attualmente per la discarica in oggetto è stato completato l'allestimento del Modulo 1, entrato in esercizio nell'agosto 2015, mentre il Modulo 2 è ancora in fase di costruzione.

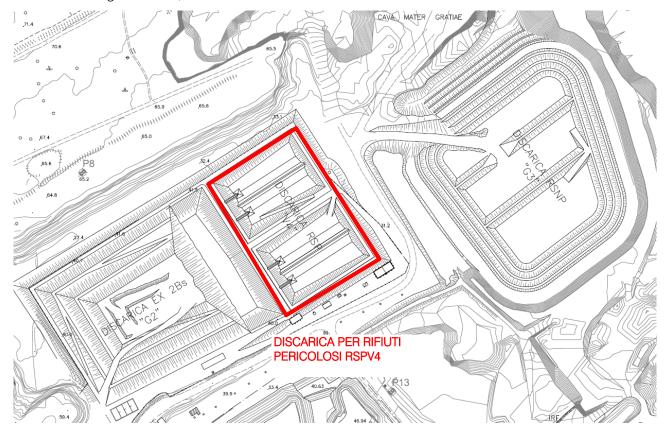


Figura 3-1: Ubicazione Discarica per rifiuti pericolosi "V4"

Di seguito si riporta un estratto del "Piano di Sorveglianza e Controllo" aggiornato al 02/11/2015 (rif. 026-2015002R01E01, Desmos Ingegneria Ambiente ed Energia) e successivamente modificato ed integrato con il documento "Risposte alle osservazioni nota Ispra prot 220/16" del 17/06/2016 (rif. 026-2015011R01E01, Desmos), redatto in risposta alle prescrizioni/osservazioni contenute nella nota di ISPRA del 14/06/2016, prot. 220/16 e trasmesso con nota DIR 329 il 27/07/2016.

	054-004R01	RISPOSTA AL PUNTO 18 CAP. 14, MONITORAGGI SULLA RETE PIEZOMETRICA DELLE DISCARICHE	E01
Ī	Codice	Titolo	Rev.

3.1 Sistema di monitoraggio

Di seguito le caratteristiche dei punti di monitoraggio identificati per la discarica per rifiuti non pericolosi.

NOME POZZO		RDINATE — BOAGA) E	QUOTA POZZO	LUNGH. TRATTO CIECO	LUNGH. TRATTO FESSURATO	DIAMETRO PERFO- RAZIONE
	[m]	[m]	[m s.l.m.]	[m]	[m]	[mm]
P1 valle	4489651.88	2706387.94	32.327	51.6	14.1	600
P2 nuovo valle	4489526.84	2706357.12	31.308	53.0	10.5	180
P3 valle	4489400.35	2706309.16	32.417	53.1	14.0	600
P6 monte	4489706.54	2705534.02	56.076	53.5	14.0	600
P10 monte	4489804.79	2706257.05	65.149	67.0	14.0	220
P11 monte	4489602.84	2706157.95	41.389	61.0	14.0	220
P12 monte	4489472.31	2706048.72	34.794	54.0	14.0	220

Tabella 3-1: Caratteristiche dei pozzi di monitoraggio delle acque sotterranee

I pozzi di monitoraggio, caratterizzati da diametro elevato, ospitano un efficiente sistema di pompaggio che può garantire in emergenza, interventi di spurgo di livelli idrici superficiali potenzialmente inquinati. I punti di monitoraggio di monte pre-esistenti per la discarica di progetto, sono costituiti dai pozzi esistenti P1, P2, P3 e P6. Gli altri punti di monitoraggio sono stati realizzati ad integrazione del sistema della discarica in oggetto. In merito agli elementi descrittivi di tutti i pozzi di monitoraggio esistenti si rimanda all'Allegato B ove sono riportate le modalità realizzative e la stratigrafia.

Va sottolineato che il D.Lgs. n.36/03 prevede che siano previsti almeno un pozzo di monitoraggio a monte e due a valle della discarica. Tale prescrizione è pienamente rispettata dal progetto in esame. Nel giugno 2016 è stato realizzato un nuovo punto di monitoraggio (P2 nuovo) nei pressi del preesistente P2. Il nuovo piezometro è inserito nel piano di monitoraggio in sostituzione del vecchio P2, per il quale sarà mantenuto attivo il presidio di pompaggio per eventuali situazioni di emergenza, facendo esso parte del sistema di monitoraggio di valle delle discariche "V2" e "G2".

	054-004R01	RISPOSTA AL PUNTO 18 CAP. 14, MONITORAGGI SULLA RETE PIEZOMETRICA DELLE DISCARICHE	E01
Ī	Codice	Titolo	Rev.

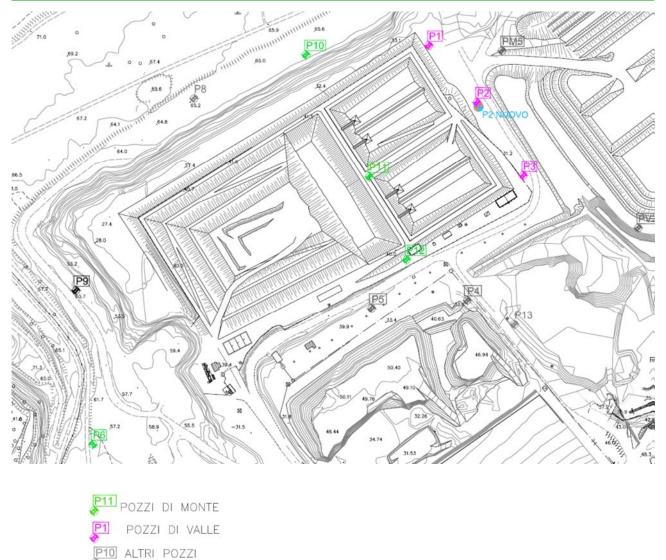


Figura 3-2: Posizione rete di monitoraggio discarica in oggetto: Pozzi di monte: P6, P10, P11 e P12 e Pozzi di valle: P1, P2, P2 NUOVO e P3.

Per le caratteristiche tecniche specifiche di ogni pozzo si rimanda all'Allegato B alla relazione.

3.2 Controlli analitici campioni di acque dai piezometri

Sono previste ed attualmente regolarmente eseguite campagne di monitoraggio della qualità delle acque sotterranee tramite il prelievo di campioni di acque da sottoporre ad analisi chimiche.

Il prelievo dei campioni di acque di falda prevede le seguenti fasi:

- 1. spurgo iniziale di durata utile allo scopo, con avviamento della pompa di aspirazione;
- 2. prelievo dei campioni;

054-004R01	RISPOSTA AL PUNTO 18 CAP. 14, MONITORAGGI SULLA RETE PIEZOMETRICA DELLE DISCARICHE	E01
Codice	Titolo	Rev.

- 3. etichettatura dei contenitori ed invio al laboratorio di stabilimento indicando il punto di prelievo, data di campionamento e la richiesta di analisi;
- 4. in laboratorio i campioni vengono sottoposti ad analisi immediata o comunque entro le 24 h, previa conservazione in frigo a 4°C, per i composti volatili e\o facilmente alterabili.

Le portate di spurgo e campionamento sono determinate dalle caratteristiche delle pompe installate nei pozzi, adatte all'acquifero produttivo quale è quello di riferimento e definite in sede di progettazione dei sistemi di emungimento per eventuali casi di emergenza.

Secondo quanto previsto dal D.Lgs. n°36/2003, tabella 1 allegato 2, sono determinati i seguenti parametri:

PARAMETRO	FREQUENZA MISURE GESTIONE OPERATIVA	FREQUENZA MISURE GESTIONE POST- OPERATIVA
рН	Trimestrale	Semestrale
Temperatura	Trimestrale	Semestrale
Conducibilità elettrica	Trimestrale	Semestrale
Ossidabilità Kubel	Trimestrale	Semestrale
BOD₅	Trimestrale	Semestrale
TOC	Trimestrale	Semestrale
Ca, Na, K	Trimestrale	Semestrale
Cloruri	Trimestrale	Semestrale
Solfati	Trimestrale	Semestrale
Floruri	Trimestrale	Semestrale
IPA	Trimestrale	Semestrale
Fe, Mn	Trimestrale	Semestrale
As, Cu, Cd, Cr totale, Cr VI, Hg, Ni, Pb, Mg, V, Zn,	Trimestrale	Semestrale
Cianuri	Trimestrale	Semestrale
Azoto ammoniacale, nitroso e nitrico	Trimestrale	Semestrale
Fenoli	Trimestrale	Semestrale
Solventi organici aromatici	Trimestrale	Semestrale
Composti organoalogenati (compreso cloruro di vinile)	Annuale	Annuale
Solventi organici azotati	Annuale	Annuale
Solventi clorurati	Annuale	Annuale
Idrocarburi totali	Trimestrale	Semestrale
Livello di falda	Mensile	Semestrale

Tabella 3.2: Piano di controllo delle acque sotterranee, discarica per rifiuti pericolosi

Le analisi saranno svolte presso laboratori accreditati.

In Allegato C al presente elaborato sono riportate le metodiche con cui vengono effettuate le determinazioni analitiche per le acque sotterranee.

	054-004R01	RISPOSTA AL PUNTO 18 CAP. 14, MONITORAGGI SULLA RETE PIEZOMETRICA DELLE DISCARICHE	E01
Ī	Codice	Titolo	Rev.

3.3 <u>Livelli di guardia</u>

I livelli di guardia per la discarica per rifiuti pericolosi sono stati calcolati secondo i criteri descritti nel "Piano di Sorveglianza e Controllo" (rif. 08463-012R04E04, Studio Geotecnico Italiano) presentato ed approvato con prescrizioni dalle note del Sub-Commissario prot. 6/U/19/12/2014, approvate con D.L 1/2015 del 05/01/2015 convertito dalla legge 20 del 04/03/2015.

L'applicazione dei metodi proposti ai dati reali registrati durante il periodo di osservazione, ha portato ad una prima ridefinizione dei livelli di guardia nell'aggiornamento al "*Piano di Sorveglianza e Controllo*" datato 02/11/2015 (rif. 026-2015002R01E01, Desmos) e trasmesso agli Enti con nota DIR 434/15.

Successivamente, nel documento "Risposte alle osservazioni nota Ispra prot 220/16" del 17/06/2016 (rif. 026-2015011R01E01, Desmos 17/06/2016) sono stati riproposti i livelli di guardia sulla base delle osservazioni del verbale di visita ispettiva ARPA/ISPRA del 20/04/2016.

Le modalità di intervento in caso di superamento dei livelli di guardia sono, come previsto dal D.Lgs. n.36/03, contenute nel "*Piano di gestione operativa*" (Desmos Ingegneria Ambiente ed Energia, rif.: 005-2015 027R03E02, del 05/11/2015) a cui si rimanda per maggiori dettagli.

I dati impiegati per la definizione dei livelli di guardia si riferiscono al periodo Gennaio 2014 – Agosto 2015 (quindi prima dell'inizio dei conferimenti in discarica avvenuto in data 11/08/2015) e riguardano i piezometri P1-P2-P3-P6. Il periodo di osservazione ante apertura della discarica (avvenuta in Agosto 2015) è quindi di 20 mesi per tali piezometri. Per i pozzi P10-P11-P12 al momento della stesura del documento non si disponeva ancora di un periodo significativo per la definizione dei livelli di guardia (i primi campionamenti sono stati effettuati nel giugno 2015), per cui al momento per tali punti di monitoraggio i livelli di guardia non sono ancora stati definiti e sono in fase di studio.

Si riportano di seguito i livelli di guardia calcolati, rimandando ai documenti citati per maggiori dettagli sugli approcci adottati e sui dati utilizzati per le elaborazioni.

Per il pozzo P2 NUOVO, si dispone ad oggi di un numero insufficiente di analisi e non è pertanto possibile calcolare i relativi livelli di guardia; per tale punto di monitoraggio si farà pertanto riferimento ai livelli di guardia precedentemente calcolati per il pozzo P2. Per il nuovo P2 si procederà all'aggiornamento dei livelli di guardia quando sarà disponibile almeno un anno di osservazione.

	054-004R01	RISPOSTA AL PUNTO 18 CAP. 14, MONITORAGGI SULLA RETE PIEZOMETRICA DELLE DISCARICHE	E01
Ī	Codice	Titolo	Rev.

Pozzo P6 (monte)

PARAMETRO	U.M.	CSC D. LGS. 152/2006	PRECISIONE P	LIMITI X+2σ-P	LIMITI X+3σ+P
Conducibilità	[µS/cm]	-	± 115,3	2751	3408
рН	[-]	-	±0,10	7,34	7,75
Cloruri	[mg/l]	-	± 12,34	797,65	960,33
Solfati	[mg/l]	250	± 4,85	17,34	36,69
Azoto ammoniacale	[mg/l]	-	± 0,003	0,557	0,719
Azoto nitrico	[mg/l]	-	± 0,0002	26,6265	33,5076
Azoto nitroso	[mg/l]	-	± 0,0003	0,0577	0,0764
Cd	[µg/l]	5	± 0,1	0,9	1,2
Cr (VI),	[µg/l]	5	± 0,1	1,54	2,34
Cr tot	[µg/l]	50	± 0,8	8,56	13,96
Mn	[µg/l]	50	± 0,9	13,78	21,62
Hg	[µg/l]	1	± 0,07	0,35	0,70
Ni*	[µg/l]	20	± 0,6	19,40	20,60
Pb	[µg/l]	10	± 0,2	2,67	4,14
Cu	[µg/l]	1000	± 1	2,56	6,71
Zn	[µg/l]	3000	± 6,5	37,4	73,0

Tabella 3.3: Limiti di guardia per il pozzo di monte P6 definiti con il metodo statistico

PARAMETRO	U.M.	CSC D. LGS. 152/2006	PRECISIONE P	LIMITI X+2s-p	LIMITI X+3s+p
Fe*	[µg/l]	200	± 5	195	205
Ni*	[µg/l]	20	± 0,6	19,40	20,60
Idrocarburi totali*	[mg/l]	0,350	± 0,0122	0,3378	0,3622

^{*}valutato con valore limite prefissato pari al 100% della CSC

Tabella 3.4: Limiti di guardia per il pozzo di monte P6 definiti con il metodo del valore limite prefissato

054-004R01	RISPOSTA AL PUNTO 18 CAP. 14, MONITORAGGI SULLA RETE PIEZOMETRICA DELLE DISCARICHE	E01
Codice	Titolo	Rev.

Pozzo P1

PARAMETRO	U.M.	CSC D. Lgs. 152/2006	PRECISIONE P	LIMITI X+2s-P	LIMITI X+3s+p
Conducibilità	[µS/cm]	-	± 115,3	3199	3854
рН	[-]	-	±0,10	7,36	7,76
Cloruri	[mg/l]	-	± 12,34	846,18	964,11
Solfati	[mg/l]	250	± 4,85	134,93	162,67
Azoto ammoniacale	[mg/l]	-	± 0,003	0,360	0,431
Azoto nitrico	[mg/l]	-	± 0,0002	5,5153	6,0666
Azoto nitroso	[mg/l]	-	± 0,0003	0,0621	0,0777
Cd	[µg/l]	5	± 0,1	0,9	1,2
Cr (VI),	[µg/l]	5	± 0,1	1,69	2,47
Cr tot	[µg/l]	50	± 0,8	14,05	21,32
Fe	[µg/l]	200	± 5	113	171
Mn	[µg/l]	50	± 0,9	17,19	26,57
Hg	[µg/l]	1	± 0,07	0,45	0,82
Ni	[µg/l]	20	± 0,6	45,27	61,45
Pb	[µg/l]	10	± 0,2	1,33	2,17
Cu	[µg/l]	1000	± 1	0,74	4,05
Zn	[µg/l]	3000	± 6,5	710,0	1041,0

Tabella 3.5: Limiti di guardia per il pozzo P1 definiti con il metodo statistico

PARAMETRO	U.M.	CSC D. LGS. 152/2006	PRECISIONE P	Limiti X+2s-p	LIMITI X+3s+p
Idrocarburi totali*	[mg/l]	0,350	± 0,0122	0,3378	0,3622

^{*}valutato con valore limite prefissato pari al 100% della CSC

Tabella 3.6: Limiti di guardia per il pozzo P1 definiti con il metodo del valore limite prefissato

	054-004R01	RISPOSTA AL PUNTO 18 CAP. 14, MONITORAGGI SULLA RETE PIEZOMETRICA DELLE DISCARICHE	E01
Ī	Codice	Titolo	Rev.

Pozzo P2 (valle)²

PARAMETRO	U.M.	CSC D. Lgs. 152/2006	PRECISIONE P	LIMITI X+2s-p	LIMITI X+3s+p
Conducibilità	[µS/cm]	-	± 115,3	3784	4944
рН	[-]	-	±0,10	7,81	8,35
Cloruri	[mg/l]	-	± 12,34	829,26	1020,30
Solfati	[mg/l]	250	± 4,85	102,51	156,92
Azoto ammoniacale	[mg/l]	-	± 0,003	0,459	0,567
Azoto nitrico	[mg/l]	-	± 0,0002	6,4127	8,0545
Azoto nitroso	[mg/l]	-	± 0,0003	0,0614	0,0791
Cd	[µg/l]	5	± 0,1	0,9	1,2
Cr (VI),	[µg/l]	5	± 0,1	1,83	2,65
Cr tot	[µg/l]	50	± 0,8	16,90	24,99
Hg	[µg/l]	1	± 0,07	0,49	0,87
Ni	[µg/l]	20	± 0,6	43,63	59,60
Pb	[µg/l]	10	± 0,2	1,73	2,74
Cu	[µg/l]	1000	± 1	5,96	11,61
Zn	[µg/l]	3000	± 6,5	16,6	43,48

Tabella 3.7: Limiti di guardia per il pozzo di valle P2 definiti con il metodo statistico

PARAMETRO	U.M.	CSC D. LGS. 152/2006	PRECISIONE P	LIMITI X+2S-P	LIMITI X+3s+p
Fe*	[µg/l]	200	± 5	195	205
Mn*	[µg/l]	50	± 0,9	49,10	50,90
Idrocarburi totali*	[mg/l]	0,350	± 0,0122	0,3378	0,3622

^{*}valutato con valore limite prefissato pari al 100% della CSC

Tabella 3.8: Limiti di guardia per il pozzo di valle P2 definiti con il metodo del valore limite prefissato

² i limiti di guardia per il pozzo P2 saranno presi come riferimento per le concentrazioni rilevate nel piezometro P2 NUOVO finché non si disporrà di almeno un anno di osservazione per il nuovo piezometro P2

	054-004R01	RISPOSTA AL PUNTO 18 CAP. 14, MONITORAGGI SULLA RETE PIEZOMETRICA DELLE DISCARICHE	E01
Ī	Codice	Titolo	Rev.

Pozzo P3 (valle)

PARAMETRO	U.M.	CSC D. LGS. 152/2006	PRECISIONE P	LIMITI X+2S-P	LIMITI X+3s+p
Conducibilità	[µS/cm]	-	± 115,3	3170	3885
рН	[-]	-	±0,10	7,48	7,91
Cloruri	[mg/l]	-	± 12,34	851,52	1016,61
Solfati	[mg/l]	250	± 4,85	136,10	172,85
Azoto ammoniacale	[mg/l]	-	± 0,003	0,227	0,236
Azoto nitrico	[mg/l]	-	± 0,0002	6,1358	6,9697
Azoto nitroso	[mg/l]	-	± 0,0003	0,0602	0,0778
Cd	[µg/l]	5	± 0,1	0,9	1,2
Cr (VI),	[µg/l]	5	± 0,1	2,59	3,58
Cr tot	[µg/l]	50	± 0,8	19,41	27,60
Mn	[µg/l]	50	± 0,9	12,58	19,80
Hg	[µg/l]	1	± 0,07	0,45	0,82
Ni	[µg/l]	20	± 0,6	67,44	91,40
Pb	[µg/l]	10	± 0,2	0,86	1,49
Cu	[µg/l]	1000	± 1	0,19	3,27
Zn	[µg/l]	3000	± 6,5	65,1	111,3

Tabella 3.9: Limiti di guardia per il pozzo di valle P3 definiti con il metodo statistico

PARAMETRO	U.M.	CSC D. LGS. 152/2006	PRECISIONE P	LIMITI X+2S-P	LIMITI X+3s+p
Fe*	[µg/l]	200	± 5	195	205
Idrocarburi totali*	[mg/l]	0,350	± 0,0122	0,3378	0,3622

^{*}valutato con valore limite prefissato pari al 100% della CSC

Tabella 3.10: Limiti di guardia per il pozzo di valle P3 definiti con il metodo del valore limite prefissato

Pozzo P10, P11 e P12 (monte)

Per i pozzi P10-P11-P12 al momento della stesura del documento di aggiornamento del *Piano di Sorveglianza* e *Controllo* non si disponeva ancora di un periodo significativo per la definizione dei livelli di guardia (i primi campionamenti sono stati effettuati nel giugno 2015), per cui al momento per tali punti di monitoraggio i livelli di guardia non sono ancora stati definiti e sono in fase di studio. L'elaborazione dei livelli di guardia sarà inclusa nella prossima revisione del *Piano di Sorveglianza* e *Controllo*.

	054-004R01	RISPOSTA AL PUNTO 18 CAP. 14, MONITORAGGI SULLA RETE PIEZOMETRICA DELLE DISCARICHE	E01
Ī	Codice	Titolo	Rev.

3.3.1 Aggiornamento dei limiti di guardia

I livelli di guardia per la discarica per rifiuti pericolosi saranno aggiornati in caso di necessità in base agli esiti dei monitoraggi.

Per i punti di monitoraggio P10-P11-P12, essendo terminato da poco il primo anno di osservazione, sarà a breve aggiornato il *Piano di Sorveglianza* e *Controllo*, con la relativa elaborazione dei livelli di guardia elaborati con la metodologia più opportuna tra quelle presentate ed approvate.

054-004R01 Codice	MONITORAGGI SULLA RETE PIEZOMETRICA DELLE DISCARICHE Titolo	E01
054-004R01	MONITORAGGI SULLA RETE PIEZOMETRICA DELLE DISCARICHE	
054 004P01	RISPOSTA AL PUNTO 18 CAP. 14,	E01

4. VALIDAZIONE DEI DATI

La definizione delle modalità di campionamento ed analisi descritte nel presente documento costituisce di per sé il primo step della procedura di validazione.

I successivi passaggi della procedura di validazione dei dati sono proposti di seguito.

La validazione si attuerà tramite il confronto con le contranalisi dei campionamenti che saranno eseguiti da ARPA Puglia.

ILVA in Amministrazione straordinaria provvederà a trasmettere all'ente di controllo (ARPA Puglia) con adeguato anticipo, un calendario dei campionamenti previsti dai *Piani di Sorveglianza e Controllo* (Tabella 2-1, Tabella 3.2) in modo tale da permettere ad ARPA di programmare la presenza durante i campionamenti e l'eventuale prelievo di controcampioni.

Durante l'esecuzione dei campionamenti ARPA Puglia potrà effettuare controlli delle operazioni di campo, per verificarne la correttezza e la conformità rispetto al protocollo operativo e potrà procedere all'acquisizione dei controcampioni di acque sotterranee.

Ciascun campione di acque sotterranee sarà prelevato, a cura di ILVA in Amministrazione Straordinaria, in triplice aliquota:

- una per l'analisi;
- una per l'Ente di controllo (ARPA Puglia);
- un'aliquota da conservare per un eventuale contradditorio.

ILVA in Amministrazione Straordinaria garantirà la corretta custodia e conservazione della seconda e terza aliquota e l'integrità delle stesse.

In ogni caso dovrà garantire ad ARPA Puglia la possibilità di accedere in qualsiasi momento al luogo di custodia dei campioni, per consentirne la sigillatura e il controllo.

ILVA trasmetterà ad ARPA Puglia e ad ISPRA, i risultati delle analisi dei campionamenti effettuati secondo le modalità previste dal PMC.

A seguito della ricezione dei risultati analitici, ARPA Puglia, qualora non avesse già provveduto a prelevare i propri controcampioni durante il campionamento, procederà a ritirare presso la sede di custodia i campioni sui quali effettuare le controanalisi.

Per la procedura di validazione, si propone che il numero dei controcampioni da analizzare dall'ente di controllo sia pari ad almeno il 10% dei campioni prelevati. Considerando che i punti di monitoraggio delle due discariche in oggetto sono complessivamente 12 (P1, P2, P3, P4, P6, PV1, PV2, PV3, P10, P11, P12, PM5) e che i monitoraggi oggetto di validazione sono 4 all'anno (frequenze trimestrali, si vedano Tabella 2-1, Tabella 3.2), si propone pertanto per ogni anno di analisi, la controanalisi completa per 5 campioni di acque sotterranee relativi prelevati da 5 punti di monitoraggio della rete. I campioni

054-004R01	RISPOSTA AL PUNTO 18 CAP. 14, MONITORAGGI SULLA RETE PIEZOMETRICA DELLE DISCARICHE	E01
Codice	Titolo	Rev.

potranno essere prelevati in occasione di una singola campagna di monitoraggio e, comunque, saranno disponibili per un periodo non superiore ad un mese. Il laboratorio ARPA comunicherà la data di apertura campioni e di avvio delle analisi per poter eventualmente permettere al personale ILVA di assistere all'apertura dei campioni.

Come precedentemente sottolineato, le analisi saranno svolte presso laboratorio certificato; le metodiche analitiche sono riportate in Allegato C.

Quando i risultati dei controcampioni saranno in numero statisticamente significativo, si procederà alla validazione del dato tramite elaborazioni e test statistici appropriati e di uso comune per le procedure di validazione (es. T di Student, T di Wilcoxon, etc.).

Gli esiti dei test saranno trasmessi agli Enti competenti nella rispettive relazioni annuali previste dal D. Lgs. 36/2003.

Si precisa che nelle more della definizione delle procedure e dell'adeguamento per adottarle continueranno ad applicarsi la procedure attualmente in uso.

_	Codice	MONITORAGGI SULLA RETE PIEZOMETRICA DELLE DISCARICHE Titolo	Rev.
	054-004R01	RISPOSTA AL PUNTO 18 CAP. 14,	E01

Allegato A: ESTRATTO PIANO DI MONITORAGGIO ISPRA PMC_5, 23/06/2016 prot. n. 38027

Codice		MONITORAGGI SULLA RETE PIEZOMETRICA DELLE DISCARICHE Titolo	
054-004R01	RISPOSTA AL PUNTO 18 CAP. 14,		

ISPRA

Istituto Superiore per la Protezione e la Ricerca Ambientale

14. ATTUAZIONE DEL PIANO DI MONITORAGGIO E CONTROLLO

Il Gestore, ove non indicato diversamente, entro i 6 mesi successivi al rilascio del presente Piano di Monitoraggio e Controllo dovrà concordare con l'Autorità di controllo il cronoprogramma per l'adeguamento e completamento del sistema di monitoraggio prescritto. Nella seguente tabella viene riportato l'elenco di alcune procedure operative ancora aperte con la relativa tempistica per la loro conclusione. In particolare, viene indicato sia il termine, dalla data del rilascio del presente PMC, entro il quale il Gestore dovrà trasmettere all'Autorità di controllo la proposta di procedura sia il termine, dalla data di ricevimento della suddetta documentazione, entro il quale l'Autorità di controllo dovrà approvare, con eventuali modifiche e integrazioni, la procedura definitiva. Nelle more della definizione di tali procedure, il Gestore potrà continuare ad adottare quelle attualmente utilizzate.

N°	OGGETTO	PROVVEDIMENTO	TERMINE PER IL GESTORE PER LA PROPOSTA DI PROCEDURA	TERMINE PER L'AUTORITA' DI CONTROLLO PER L'APPROVAZIONE DELLA PROCEDURA
1	Metodologia di stima delle emissioni diffuse	Prescrizione 28 del decreto DVA-DEC- 2012-0000547 del 26 ottobre 2012	20 giorni	20 giorni
2	Stima e/o misura di ciascuna emissione non convogliata, comprensiva anche degli eventi anomali e degli eventi di "emergenza"	•	20 giorni	20 giorni
3	Protocollo per l'utilizzazione e la gestione delle centraline della qualità dell'aria per le analisi sui campioni di polveri sospese e di polveri depositate	Prescrizione 85 del decreto DVA-DEC- 2012-0000547 del 26 ottobre 2012	-	90 giorni
4	Protocollo per l'utilizzazione e la gestione delle centraline della qualità dell'aria per il sistema di monitoraggio ottico spettrale	Prescrizione 85 del decreto DVA-DEC- 2012-0000547 del 26 ottobre 2012	90 giorni	90 giorni
5	Gestione delle campagne di biomonitoraggio	Prescrizione 93 del decreto DVA-DEC- 2012-0000547 del 26 ottobre 2012	90 giorni	90 giorni
6	Attuazione del programma LDAR	Prescrizione 94 del decreto DVA-DEC- 2012-0000547 del 26 ottobre 2012	90 giorni	90 giorni

ISPRA

Istituto Superiore per la Protezione e la Ricerca Ambientale

N°	OGGETTO	PROVVEDIMENTO	TERMINE PER IL GESTORE PER LA PROPOSTA DI PROCEDURA	TERMINE PER L'AUTORITA' DI CONTROLLO PER L'APPROVAZIONE DELLA PROCEDURA
7	Gestione del campionamento di fondo scavo con terreno saturo	Art. 8 del D.L. 136/2013, convertito con L. 6/2014	20 giorni	20 giorni
8	Gestione degli scavi in caso di emergenza (ad es. rottura tubazioni)	-	20 giorni	20 giorni
9	Piano/programma di caratterizzazione e delle modalità di campionamento in caso di attività di bonifica	-	20 giorni	20 giorni
10	Rimozione del cumulo di polveri e delle scaglie in area parco minerale	UP2 delle modalità di gestione dei rifiuti (prot. 4/U/11-12- 2014) approvate con L. 20/2015	20 giorni	20 giorni
11	Gestione della validazione degli autocontrolli relativi al campionamento a lungo termine di PCDD/F dal camino E312	-	Procedura da attivare da subito con le modalità già definite nell'apposito Comitato tecnico, indicato al § 3.3.3 nota a margine della tabella 21	90 giorni
12	Emissioni visibili dalla cokeria	Prescrizione 43 del decreto DVA-DEC- 2012-0000547 del 26 ottobre 2012	20 giorni	20 giorni
13	Verifica analitica delle caratteristiche chimiche dei materiali qualificati come "sottoprodotti"	-	20 giorni	20 giorni
14	Piano di campionamento dei rifiuti standardizzato per ciascuna tipologia di rifiuto		20 giorni	20 giorni
15	Criteri di attuazione delle BAT sul rumore	UA21 del D.P.C.M. del 14 marzo 2014	20 giorni	20 giorni

ISPRA

Istituto Superiore per la Protezione e la Ricerca Ambientale

N°	OGGETTO	PROVVEDIMENTO	TERMINE PER IL GESTORE PER LA PROPOSTA DI PROCEDURA	TERMINE PER L'AUTORITA' DI CONTROLLO PER L'APPROVAZIONE DELLA PROCEDURA			
16	Definizione dei criteri per la validazione degli eventi emissivi rilevati dal sistema di video monitoraggio con eventuale quantificazione delle emissioni diffuse per tipologia di evento ove tecnicamente possibile	DVA-2013-0007520 del 27 marzo 2013	20 giorni	20 giorni			
17	Analisi e correlazione tra attività di monitoraggio effettuata presso le macchine caricatrici e scaricatrici delle batterie con altre tipologie di monitoraggi ad alta risoluzione temporale lungo tutto il perimetro dello stabilimento (fence monitoring)	Prescrizioni 44 e 89 del decreto DVA- DEC-2012-0000547 del 26 ottobre 2012	20 giorni dalla ricezione del parere da parte dell'Autorità, a valle del termine della sperimentazione	20 giorni			
18	Campagne di monitoraggio effettuate sulla rete piezometrica delle discariche e definizione della procedura per la validazione dei campionamenti	Note prot. 5/U/19- 12-2014 e 6/U/19- 12-2014 approvate con L. 20/2015	90 giorni	90 giorni			

Allegato B: STRATIGRAFIE DEI PUNTI DI MONITORAGGIO

	054-004R01	RISPOSTA AL PUNTO 18 CAP. 14, MONITORAGGI SULLA RETE PIEZOMETRICA DELLE DISCARICHE	E01
Ī	Codice	Titolo	Rev.

ml.0,00			1		2
wl. 3.00	EALEARE FRANTURATO		21,00		
ml. 12.00	CALLARE A STATI FRATTURATO	1	THANNER CREAM,		Centernalions we
m2.23,00	CALBARÉ CON TERRIPEIO ROSSO				Muetsm
mal. 24,00	EMERE BIFACO			-23 to -28,68	:
M. St. Ga	CALEARE FESSURATE AURO		TESSURATO ML, 33,00 ml 54,60 ml 54,60	Comment of the commen	Strhdiero&i ↑
Ml. 66.70	CALBARE FESSIVEATS		- wh 44,00		
quote riferite al p. c.	natura dei terreni	ntsse del pozzo	TUSATIONE PY PSO LUSTING LES TOTALE ME, SLID TUSATIONE ACCEPANY \$ 355 NPSS. Mps \$0.	quota di rinvenimento dell'ocqua rif, al p. c. quota del livello statico dell'acqua rif, ol p. c.	GEROCEASIONE OF

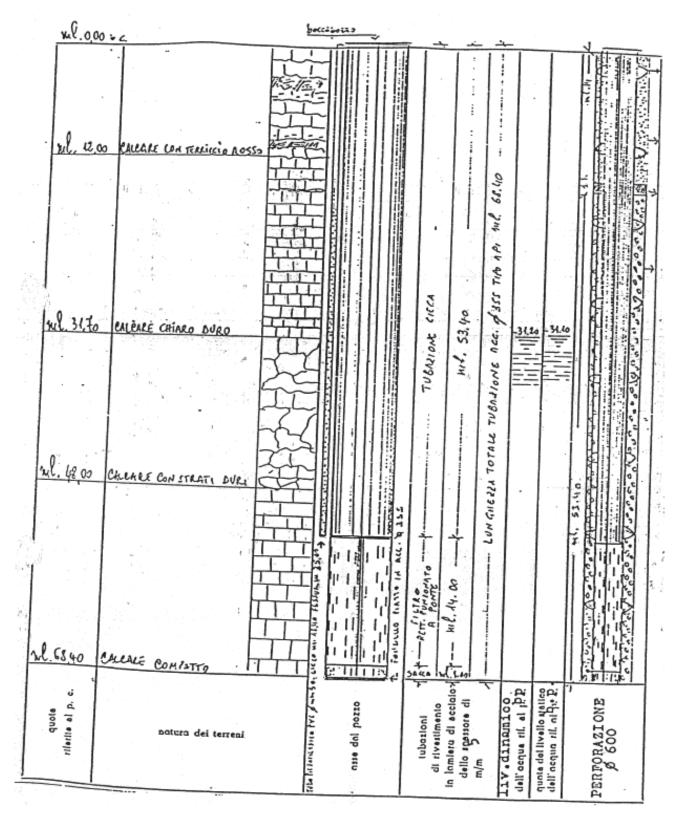
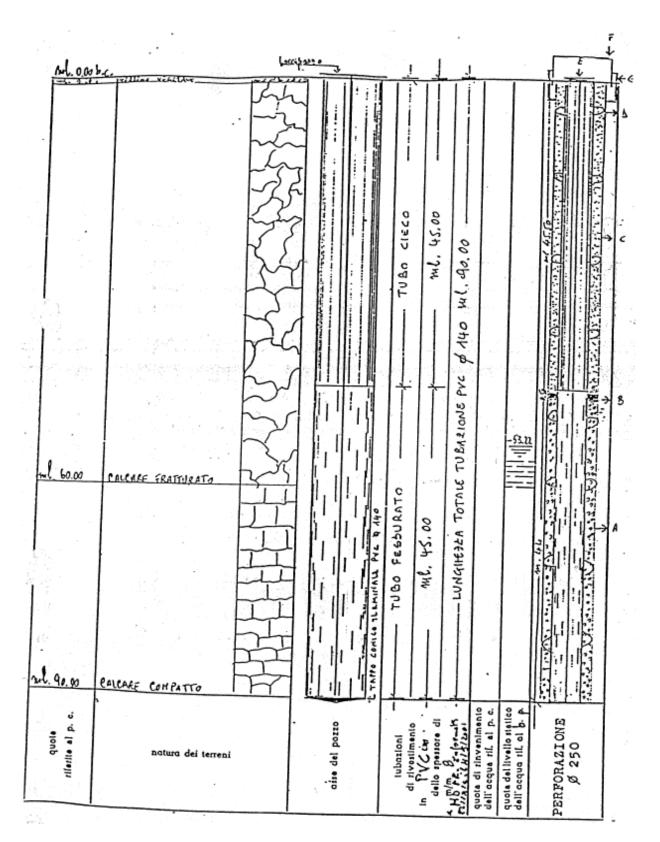
Stratigrafia Pozzo di monitoraggio P1

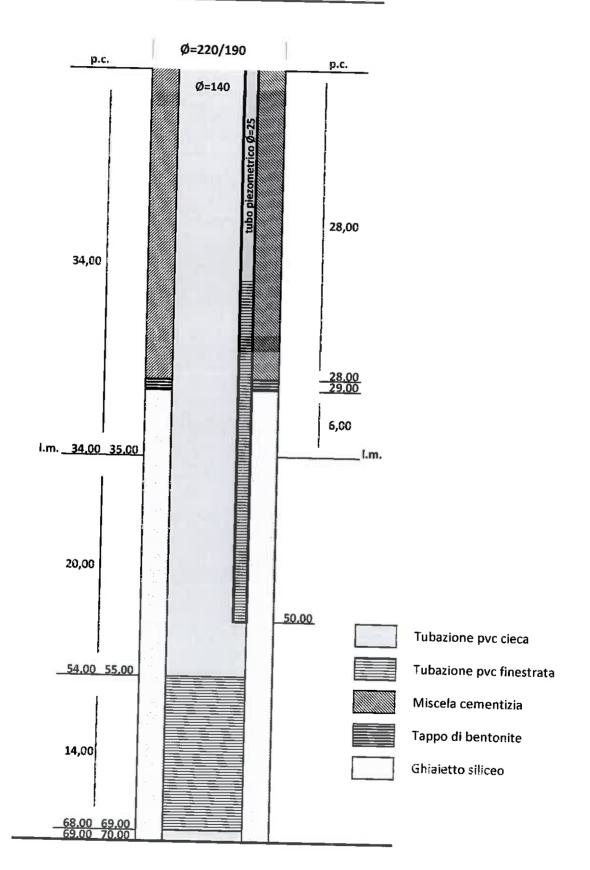
W. 0.00 p.c	bon	ansier	<u> </u>			1.
1. 19.00 1. 21.00	CALCARC STANCO CONSTITUTE STANCES CHIARS CONFATTS CALCARC FRATTYRATO CALCARC FRATTYRATO	30. arc marino franco da Arcina de A	- REINTROMMENTO - TUBARIONE CIECA. THE 14.00 - TOTALE TUBARIONE ACC. 1 \$355.7180 API ML. 16.60			1. v (1, 1, 24, 60)
ml. 66.60	CALCADE FLATIVILITO		57 (c) -37 (c)	,		
quote riferite al p. c.	natura dei terreni	one del pono	tubazioni di rivestimento in inmiera di acciolo dello rivestore di m/m 5	14 v dinamico	quota del livello sistico dell'ocquo sil. al P P	PERFORAZIONE

Stratigrafia Pozzo di monitoraggio P2

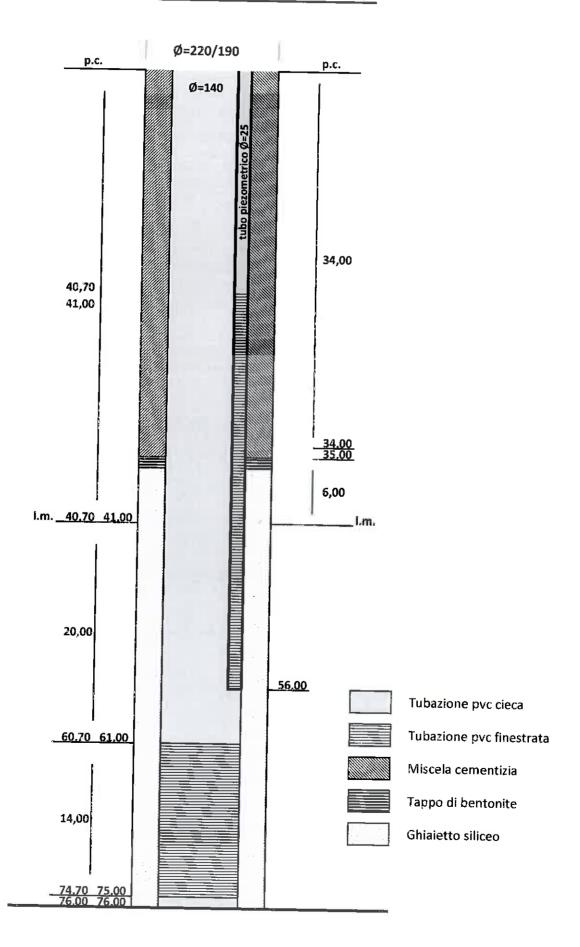
sul.0,00	+ wl 0.60 b.c >	n	+ 1		
	Cheans Frathurato		8.8		
nl. 800	COMENSES CON TERRICCIO ROSS-		73		
1	eneme		2 0162		
and times	EALLARE CON STRATE DE TERRICUS		CIECO.		
			FLESURATO wh 30,000	- <u>29,60</u> - <u>29,00</u>	
ml 35,00	EALGARE CONPATTO		DAATO	FFF	
શ્રી પ્લેજ	CALEARE PESSONATO		F.55v		
			TAPPO		Vouch Vouch
થી છે. o	CALCARE FESSURATO	50000 00000 5000 00000 50000000000	"L'11,00 -		
ML 53,00	CATCHICE TESSOCIATIO	50000 00000 50000 00000 50000 00000	24		1. July 1. 4
rul 69,00	Paranae Pour State	(9999 66696	wijes sace		
quote riferite al p. c.	natura dei terreni	osse del pozzo	WASHINGTONS FUL. 9 SO WENEVERS ACC. 110X 1355 SPESSING SOC WHITE SERVICE IN CREATER	the contraction of course the contraction of the co	Section 2

Stratigrafia Pozzo di monitoraggio P3

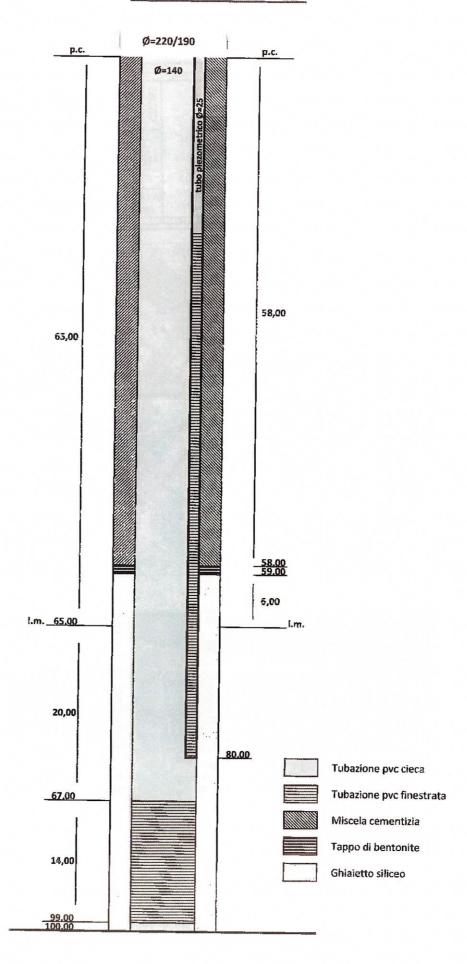

Figura 4-1: Stratigrafia Pozzo di monitoraggio P4

Stratigrafia Pozzo di monitoraggio P6


Pozzo di controllo - P 10 -

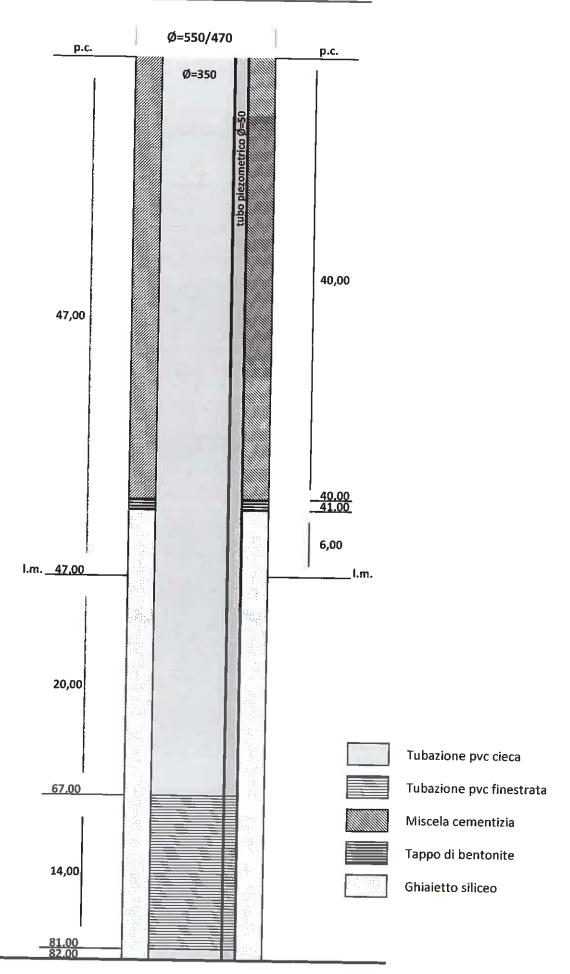
Committee		VELSON oni ed esplorazioni del s A SPA Viale Ce		w	Via Degli Stagnini, Tel. 0832 7852 ww.trivelsonda.co	m info@trivel	177 sonda.	com		Ordine II		1287-	-MP/GB	del 30	J/01/2	2015
Committee	ente: ILV	A SPA VIAIE CE	ertosa, 249 N	ILANO		Cantiere: Rea				i di Monitorage	io					
Deno	minazione	sondaggio	Coord	inate	Quota Ortometr.		zione l			later Gratie -	_	Perfo	oratore			
	P 10)			n.d.	Geon	. Scat	urch	io	Massimo Centonze						
			Profondità	Diametro	Metodo di	perforazione	T	-	mpiar	to di perforazion		_		messa	TS	٠.
		د د د دی	70 m	200 mm		e di Nucleo				SSENZA MI 28				1/15	7.5	
Profondità (m)	(disegno)		_				à falda	olle	nento				chema mentaz, ir foro	T	Schem lestime foro	ento
Profonc	Stratigrafia (disegno)		De	scrizione st	ratigrafica		Profondità falda	Scalpello	Rivestimento			Sensore di livello Diezometrico	Ellettropompa Tubazione mandata	Tubo	Riempimento	Profondità
24,00		Calcare bia	ncastro fratti	urato										: cieco		10,0 20,0
30,00		Calcare dole	omítico color	e dal bianca	estro al grigio			Ø=200 mm	Ø=140 mm			# W		tubazione in pvc finestrato Tubazione in pvc cieco	miscela cementizia	30,0 40,0 50,0
					Anr	Otazioni		=	÷						-	=

Pozzo di controllo - P 11 -

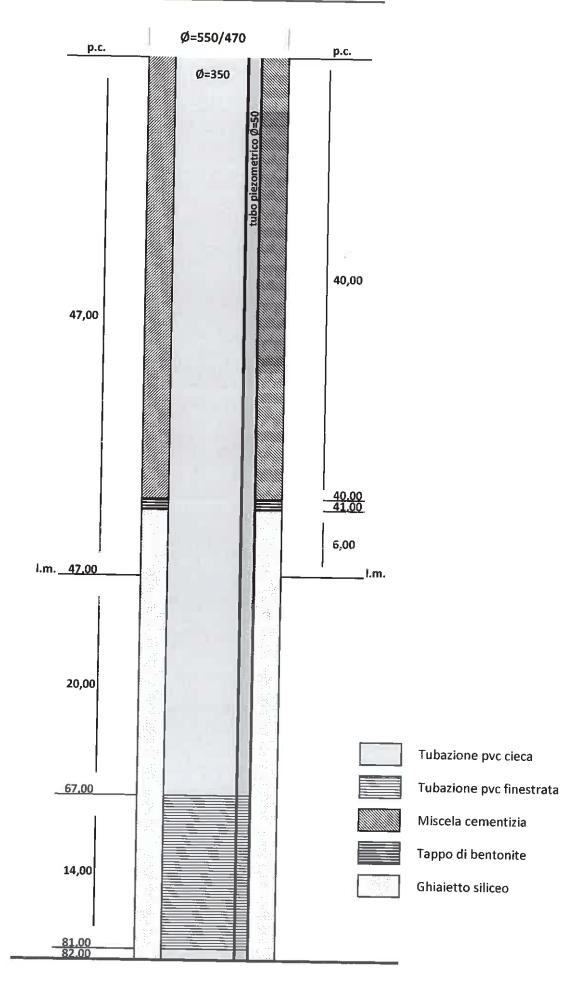


T	Via Degli Stagnini, 8 - 73018 Sq. Tel. 0832 785237 fax 0832 Perforazioni el esplorazioni del sottosuolo www.trivelsonda.com info@tr ommittente: ILVA SPA Viale Certosa, 249 MILANO Cantiere:									Ordine IL	/A 1	L287-N	MP/GB d	el 30	/01/2	015	
Committe				ILANO	vw.trivelsonda.co				Pos	i di Monitoraggi							
			, , , , , ,			ILVA Taranto					D						
Deno	minazione	sondaggio	Coord	linate	Quota Ortometr.	Direz				later Gratic	-	Perfor	ratore		_		
	P 11	L			n.d.	Geom.	eom. Scaturchio Massimo Centor								ρ		
			Profondità	Diametro	Metodo di	perforazione		li	npiar	nto di perforazione	_	_	TS	-			
	y= ~ -		76 m	200 mm	Distruzion	e di Nucleo			MA	ASSENZA MI 28				1/15			
	(ous							Γ			TT		chema nentaz, in		Schem lestime		
	dise						fald	و ا	£ S		1 [foro	4"	foro		
j a	afia (De	scrizione str	atigrafica		Profondità falda	Scalpello	Rivestimento			9 0	200	Γ	ą	æ	
Prof	Stratigrafia (disegno) Descrizione stratigrafia Descrizione stratigrafia						rofor	S	Rive			re di tiv ometric	tropom pre mar	Tubo	Riempimento	Profondità	
	, ž						-					Sensore di piezome	Ellec	-	Riem	Pro	
											 	닉		\vdash			
3,00			Mate	eriale di ripo	rto misto cava							j					
												•	Ħ			10,0	
		Materiale o	di riporto cos	tituito da sc	orie di altoforno,	addensato, con											
	Materiale di riporto costituito da scorie di altoforno, addensa elementi molto tenaci							l					Ц				
													П			20,0	
24,00		<u> </u>												cieco			
		-		_			ı						井	Tubazione in pvc cieco		1/4	
														ione		30,0	
														Tubaz	zia	****	
								mm	E E			١١٦	Π		enti		
							∇	Ø=200 mm	Ø=140 mm						cen	40,0	
							٧	0	9			1	<u> </u>		miscela cementizia		
															Ē		
		Calcare dol	omitico color	e dal hianca	etro al grigio							4	U			50,0	
		Quitare del	billideo coloi	e dai pianca	ari o ai BriBio							4			ı		
									ı							- [
						•			j					rato		60,0	
														finestrato	ŀ	4	
									- 1				#	n pvc		ı	
							l		-	i I			1	one		70,0	
														tubazione in pvc			
76,00													#			70.0	
					An	notazioni										7	

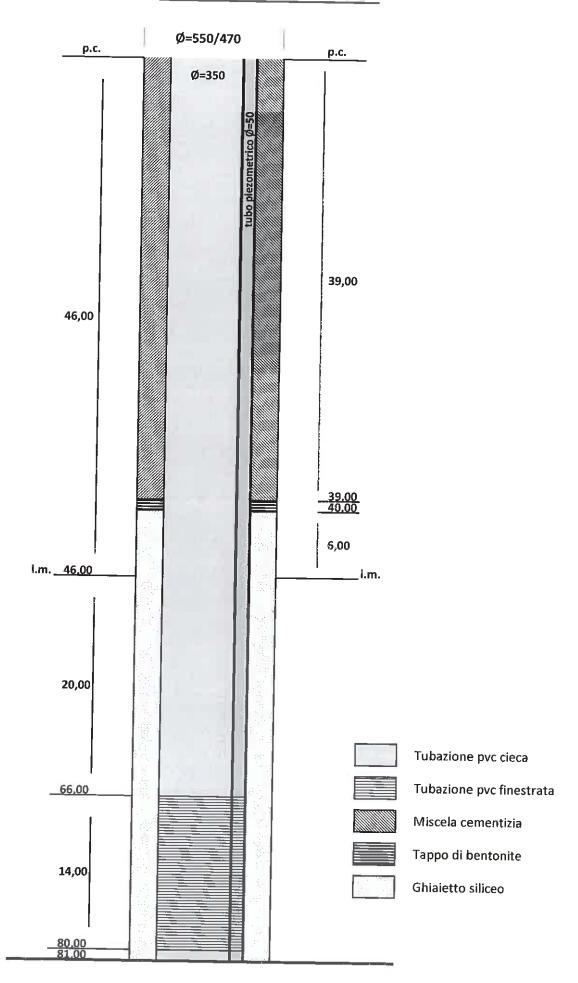
TRIVELSONDA S.R.L.


Pozzo di controllo - P 12 -

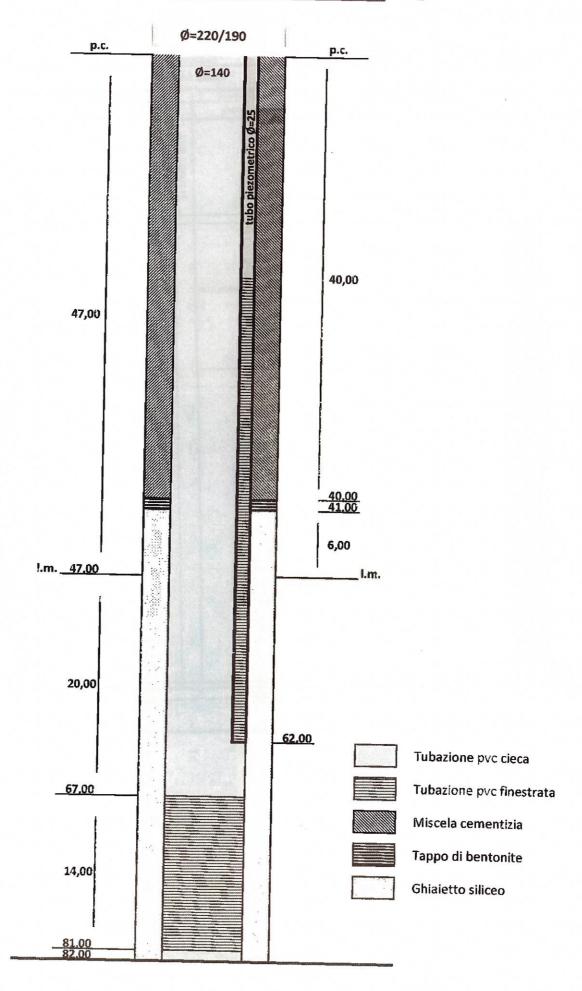
Materiale di riporto cossituito da scorie di altoforno, addensato, con elementi molto tenaci Calcare dolomitico colore dal biancastro al grigio Calcare dolomitico colore dal biancastro al grigio	Committ		VELSON oni ed esplorazioni del s A SPA Viale Ce		TILANO	vw.trivelsonda.co	Cantiere: Rea	lizza	ione		i di Monitoragg	io		Managagaa	innest della	DE BORROSS
P 12	Deno	minazione	sondaggio	Coor	linata	0.101					ater Gratie -					
Profondità Diametro Metodo di perforazione Impanto di perforazione Commossa IS 100 m 200 mm Distruzione di Nucleo MASSENZA MI 28 11/15 Descrizione stratigrafica Poscoria di altoforno, addensato, con elementi molto tenaci Materiale di riporto costituito da scorie di altoforno, addensato, con elementi molto tenaci Calcare dolomitico colore dal biancastro al grigio				Coon	aniate				-	-				-		
MASSINZA MI 28 1.175 (E) Page 1		TOTAL CONTRACTOR		Profondità	Diametro			Sca		-						
Descrizione stratigrafica Descrizione stratigra				-	ASSESSMENT OF THE PARTY NAMED IN			+				-		-	-	
Materiale di riporto costituito da scorie di altoforno, addensato, con elementi molto tenaci Calcare dolomitico colore dal biancastro al grigio	ndità (m)	ila (disegno)		De	scrizione stra	atigrafica		ità faida	ollo			П	Schema strumentaz.	T	Sche Illestin for	nento o
Materiale di riporto costituito da scorie di altoforno, addensato, con elementi molto tenaci Occidenti molto tenaci Calcare dolomitico colore dal biancastro al grigio	Profo	Stratigra						Profond	Scal	Rivesti			Sersore di Ilvalit plezometrico El ettropompa Tubazione mandar	Tubo	Riempiment	Profondità
Ahnotazioni			elementi m	olto tenaci			addensato, con		Ø=200 mm	Ø=140 mm				clone in pvc finestrato	ghiala	30,0 50,0 50,0 50,0


Pozzo di controllo - PV 1 -

ommittente: ILV		ottosuolo	/IIIANO	w.trivelsonda.co		sonda. Ilizzaz	ione		di Monitoraggio				· **.		,
Denominazione		Coor	dinate	Quota Ortometr.	Dire	zione	Lavor			P	erforato	ore			
PV1				n.d.	Geom	. Scat	turch	io		Mass	imo Cei	ntonz	e		
		Profondità	Diametro		erforazione		İr		o di perforazione		Section 1944	Comm	iessa	TS	
	er manageri,	82 m	600 mm	Distruzion	e di Nucleo	_	_	MA	SENZA MI 28				/15		
ità (m) (disegno)						a falda	 	ento			Scher strumen ford	ıtaz. in		Schen estime foro	ento
Profondità (m) Stratigrafia (disegno)		De	escrizione stra	tigrafica		Profondità falda	Scalpello	Rivestimento			Sensore di Ilvello plezometrico Ellettropompa Tubazione mandata		Tubo	Riempimento	Profondità
24,00	Materiale (stituito da scc elementi mol	rie di altoforno, to tenaci	addensato, co								ieco	612	10,
	C	alcare dolon	nitico calore d	al biancastro al	grigio	V	mm 00=¢	Ø=350 mm					Tubazione in pvc cieco	miscela cementizia	40,0 40,0
82,00												THIRTHIAN THE	tubazione in pvc finestrato	ghiaia	70,0 80.0


Pozzo di controllo - PV 2 -

ommitte		VELSON oni ed esplorazioni del s A SPA Viale Ce		ww	Tel. 0832 785		77 onda lizzaz	com		Ordine ILVA		286-MP/GB	Del 30	J/U1/	201
Deno	minazione	sondaggio	Coord	linate	Quota Ortometr.	ILVA Taranto Direz				later Gratie -	T.	Perforatore			
	PV2	2			n.d.	Geom						imo Centon	170		
	عن هم وسيد المجاد		Profondità	Diametro	Metodo di	perforazione				nto di perforazione	1000	TO	messa	a TS	- W
			82 m	600 mm	Distruzion	e di Nucleo			M	ASSENZA MI 28			9/15		
ità (m)	(disegno)	i					falda	2	ento			Schema strumentaz. ir foro	n al	Scher Hestim ford	nento
Profondità (m)	Stratigrafia (disegno)		De	scrizione stra	tigrafica		Profondità falda	Scalpello	Rivestimento			Sensore di Ilvalio piezometrico Ellettropompa Tubazione mandata	Tubo	Riempiraento	Profondità
24,00		Materiale (di riporto cos e	tituito da sco elementi moli	rie di altoforno, to tenaci	addensato, con						[]	ieco	- Control	20,
		Ca	alcare dolomi	itico colore d	al biancastro al	grigio	▼	Ø=600 mm	Ø=350 mm			PACTOR NATIONAL STREET PROPERTY OF STREET PROPERTY	Tubazione in pvc cieco	miscela cementizia	40,0 50,0
													tubazione in pvc finestrato	ghfaia	70,0 80,0
_					Ann	otazioni									-


Pozzo di controllo - PV 3 -

Committente: ILVA SPA Viale Certosa, 249 MILANO Cantiere: Realizzazione Pozzi di Monitoraggio ILVA Taranto - Area Cava Mater Gratie - Denominazione sondaggio Coordinate Quota Ortometr. PV3 Profondità Diametro Metodo di perforazione Profondità Ba m Goo mm Distruzione di Nucleo Massenza Mi 28 Oglia Guilla Schema Strumentaz. in foro Gordinate Descrizione stratigrafica Descrizione stratigrafica Cantiere: Realizzazione Pozzi di Monitoraggio ILVA Taranto - Area Cava Mater Gratie - Perforatore Massimo Centonze Commessa TS Oglia Guilla Schema Schema Schema strumentaz. in foro Gouland Schema allestimento foro Ogusulla Sch			VELSON oni ed esplorazioni del s			Tel. 0832 785	, 8 - 73018 Squinz: 237 fax 0832 7881 om info@trivels	77			Ordine IL	/A	1286-MP	/GB d	el 30	/01/2	2015
PV3	Committe	ente: ILV	A SPA Viale Ce	rtosa, 249 N	filano		Cantiere: Rea	lizza	zione	Poz		0					
PV3 Profondrià Diametro Metodo di perforazione Impunto di perfonzione Commusia Sul mi 600 mm Distruzione di Nucleo Masserva Masse	Deno	minazione	sondaggio	Coord	dinate	Quota Ortometr.					Mater Gratie -		Porforate	050			
Stam 600 man Distrusione di Nucleo MASSENZA MI 28 09/15 Stam 600 man Distrusione di Nucleo MASSENZA MI 28 09/15 Schema Strumenza, in all'astrone di Nucleo MASSENZA MI 28 09/15 Schema Strumenza, in all'astrone di Nucleo MASSENZA MI 28 09/15 Schema Strumenza, in all'astrone di Nucleo MASSENZA MI 28 09/15 Schema Strumenza, in all'astrone di Nucleo MASSENZA MI 28 09/15 Schema Strumenza, in all'astrone di Nucleo MASSENZA MI 28 09/15 Schema Strumenza, in all'astrone di Nucleo MASSENZA MI 28 09/15 Schema Strumenza, in all'astrone di Nucleo MASSENZA MI 28 09/15 Schema Strumenza, in all'astrone di Nucleo MASSENZA MI 28 09/15 Schema Strumenza, in all'astrone di Nucleo MASSENZA MI 28 09/15 Schema Strumenza, in all'astrone di Nucleo MASSENZA MI 28 09/15 Schema Strumenza, in all'astrone di Nucleo MASSENZA MI 28 09/15 Schema Strumenza, in all'astrone di Nucleo MASSENZA MI 28 09/15 Schema Strumenza, in all'astrone di Nucleo MASSENZA MI 28 09/15 Schema Strumenza, in all'astrone di Nucleo MASSENZA MI 28 09/15 Schema Strumenza, in all'astrone di Nucleo MASSENZA MI 28 09/15 Schema Strumenza, in all'astrone di Nucleo MASSENZA MI 28 09/15 Schema Strumenza, in all'astrone di Nucleo MASSENZA MI 28 09/15 Schema Strumenza, in all'astrone di Nucleo MASSENZA MI 28 09/15 Schema Strumenza, in all'astrone di Nucleo MASSENZA MI 28 09/15 Schema Strumenza, in all'astrone di Nucleo MASSENZA MI 28 09/15 Schema Strumenza, in all'astrone di Nucleo Massenza MI 28 09/15 Schema Strumenza, in all'astrone di Nucleo Massenza MI 28 09/15 Schema Strumenza, in all'astrone di Nucleo Massenza MI 28 09/15 Schema Strumenza, in all'astrone di Nucleo MI 28 09/15 Schema Strumenza, in all'astrone di Nucleo MI 28 09/15 Schema Strumenza, in all'astrone di Nucleo MI 28 09/15 Schema Strumenza, in all'astrone di Nucleo MI 28 09/15 Schema Strumenza, in all'astrone di Nucleo MI 28 09/15 Schema Strumenza, in all'astrone di Nucleo MI 28 09/15 Schema Strumenza, in all'astrone di Nucleo MI 28 09/15 Schema Strumenza, in all'astrone di Nucleo MI		PV3	3			n.d.											
Materiale di riporto costituito da scorie di altoforno, addensato, con elementi molto tenaci Calcare dolomitico colore dal biancastro al grigio Calcare dolomitico colore dal biancastro al grigio Estatua del riporto costituito da scorie dal biancastro al grigio Calcare dolomitico colore dal biancastro al grigio Estatua del riporto costituito da scorie dal biancastro al grigio Calcare dolomitico colore dal biancastro al grigio Calcare dolomitico colore dal biancastro al grigio Calcare dolomitico colore dal biancastro al grigio Anno del riporto costituito da scorie dal biancastro al grigio Calcare dolomitico colore dal biancastro al grigio Anno del riporto costituito da scorie dal biancastro al grigio Calcare dolomitico colore dal biancastro al grigio Anno del riporto costituito da scorie dal biancastro al grigio Anno del riporto costituito da scorie dal biancastro al grigio Anno del riporto costituito da scorie dal biancastro al grigio Anno del riporto costituito da scorie dal biancastro al grigio Anno del riporto costituito da scorie dal biancastro al grigio Anno del riporto costituito da scorie dal biancastro al grigio Anno del riporto costituito da scorie dal biancastro al grigio Anno del riporto costituito da scorie dal biancastro al grigio Anno del riporto costituito da scorie dal biancastro al grigio Anno del riporto costituito da scorie dal biancastro al grigio Anno del riporto costituito da scorie dal biancastro al grigio Anno del riporto costituito da scorie dal biancastro al grigio Anno del riporto costituito da scorie dal biancastro al grigio Anno del riporto costituito da scorie dal biancastro al grigio del riporto costituito da scorie dal biancastro al grigio del riporto costituito da scorie dal biancastro al grigio del riporto costituito da scorie dal biancastro al grigio del riporto costituito da scorie da la licordo del riporto costi						Metodo di	perforazione	I		mpia	nto di perforazione		5	A	CAMPAGES TOTAL TOTAL DATE SALES AND THE		
Materiale di riporto costituito da scorie di altoforno, addensato, con elementi molto tenaci 24.00 Calcare dolomitico colore dal biancastro al grigio Calcare dolomitico colore dal biancastro al grigio			en of the second	81 m	600 mm	Distruzion	e di Nucleo	L		M	ASSENZA MI 28						
Materiale di riporto costituito da scorie di altoforno, addensato, con elementi molto tenaci 24.00 Calcare dolomitico colore dal biancastro al grigio Calcare dolomitico colore dal biancastro al grigio	tà (m)	disegno						falda o nto					strumen	ıtaz. in		estim	ento
Materiale di riporto costituito da scorie di altoforno, addensato, con elementi molto tenaci 24,00 Multiporto del proprio costituito da scorie di altoforno, addensato, con elementi molto tenaci Multiporto del proprio costituito da scorie di altoforno, addensato, con elementi molto tenaci Multiporto del proprio costituito da scorie di altoforno, addensato, con elementi molto tenaci Multiporto del proprio costituito da scorie di altoforno, addensato, con elementi molto tenaci Multiporto del proprio costituito da scorie di altoforno, addensato, con elementi molto tenaci Multiporto del proprio costituito da scorie di altoforno, addensato, con elementi molto tenaci Multiporto del proprio costituito da scorie di altoforno, addensato, con elementi molto tenaci Multiporto del proprio costituito da scorie di altoforno, addensato, con elementi molto tenaci Multiporto del proprio costituito da scorie di altoforno, addensato, con elementi molto tenaci Multiporto del proprio costituito da scorie di altoforno, addensato, con elementi molto tenaci Multiporto del proprio costituito da scorie di altoforno, addensato, con elementi molto tenaci Multiporto del proprio costituito da scorie di altoforno, addensato, con elementi molto tenaci Multiporto del proprio costituito	Profondi	Stratigrafia (Descrizione stratigrafica					Profondità Scalpell	Rivestime			Sensore di livello piezometrico Elettropompa Tubazione mandara		Tubo	Riempimento	Profondità
Calcare dolomitico colore dal biancastro al grigio Calcare dolomitico colore dal biancastro al grigio Calcare dolomitico colore dal biancastro al grigio 70.0 80.0 80.0	24,00		Materiale (cieco	zizi	10,0 20,0
to the strate in prof. finestrate with the strate of the s			Ca	alcare dolom	itico colore d	al biancastro al	grigio		Ø=600 mm	Ø=350 mm					Tubazione in pvc	miscela cement	40,0 50,0
	81,00					Anı	notazion)							DO MATE TO MEST TO MES	tubazione in pvc finestrato	ghtaia	70,0 80,0
				/													7

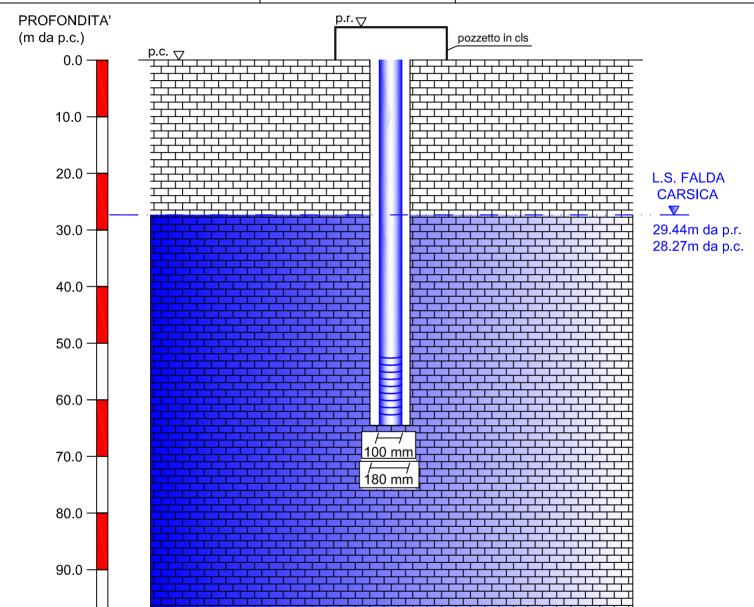
Pozzo di controllo - PM5 -

		A SPA Viale Ce		MILANO	w.trivelsonda.co		lizza	zione	Poz	i di Monitoraggio later Gratie -					
Denor		sondaggio	Coor	dinate	Quota Ortometr.	Direz	-	-	-		Perfo	ratore	10000.20000		-
	PM	5	Desfaudit		n.d.	Geom	Sca	-			Vlassimo	Centor	ize		
			Profondità 82 m	Diametro 200 mm		perforazione e di Nucleo	\vdash	1		sto di perforazione ASSENZA MI 28	Ŧ		messa	TS	
ità (m)	(disegno)	82 m 200 mm Distruzione di Nucleo								COENZA IMI ZA	Schema strumentaz. foro				ento
Profondità (m)	Stratigrafia (disegno)		Descrizione stratigrafica				Profondità falda Scalpello Rivestimento				Sensore di livello plezometrico	Ellettropompa Tubazione mandata	Tubo	Riempimento	Profondità
24,00												ieco	zia	10,0 20,0	
		Calcare dolomítico colore dal biancastro al grigio					V	Ø=200 mm	Ø=140 mm		<u> </u>		Tubazione in pvc cieco	miscela cementizia	30,0 40,0
													tubazione in pvc finestrato	ghlafa	70,0 80,0

COMMITTENTE: ILVA SpA in A.S. SITO: Stab. ILVA SpA - Area Cave

ID. POZZO: P.2

DATA INIZIO PERFORAZIONE: 10/06/2016 DATA FINE PERFORAZIONE: 15/06/2016 Coordinate (UTM WGS84):


Nord_X (m), Est_Y (m) 4489523,515, 686349,334

Quota p.c. (m slm): 31.308

Diametro perforaz.: 180mm Diametro pozzo.: 100mm ATTIVITA' GEOGNOSTICHE:

TOMA ABELE TRIVELLAZIONI s.r.l.
Via La Martella, 126
Tel./fax 0835.261746 - 381960
75100 Matera

75100 Matera e-mail: toma.abele@tomaabele.com P.IVA e Cod. Fisc. 00657550778 C.C.I.A.A. 64307

CARATTERISTICHE COSTRUTTIVE POZZO: MATERIALE PVC

Profondità Pozzo (m da p.c.): 65.00 m

100.0 -

Tratto Cieco 1) (m da p.c.): 0.00-53.00 m

Tratto Finestrato 2) (m da p.c.): 53.00-63.50 m

Tratto Cieco 3) (m da p.c.): 63.50-65.00 m

Calcari mediamente fratturati

Falda superficiale (accumuli idrici isolati)

Falda profonda (acquifero carsico)

Allegato C: METODICHE ANALITICHE

Codice		MONITORAGGI SULLA RETE PIEZOMETRICA DELLE DISCARICHE Titolo	Rev.
	054-004R01	RISPOSTA AL PUNTO 18 CAP. 14,	E01

MONITORA	GGIO POZZI DISCARICHE
Parametri Ricercati	M.d.p.
рН	ISO 10523:2008
Azoto ammoniacale	M.U. 2363:09
Azoto nitrico	UNI EN ISO 10304-1:2009
Nitriti	APAT CNR IRSA 4050 Man 29 2003
BOD5	S.M. 5210 B
Cianuri liberi	UNI EN ISO 14403 : 2005
Cianuri TOTALI	UNI EN ISO 14403 : 2005
Cloruri	UNI EN ISO 10304-1 : 2009
Conducibilità	UNI EN 27888:1995
Carboni Organico totale	UNI EN 1484:1999
Fluoruri	UNI EN ISO 10304-1:2009
Ossidabilità (kubel)	M.U. N. 943
Solfati	UNI EN ISO 10304-1:2009
Metalli	
Arsenico (As)	APAT CNR IRSA 3080 Man 29 2003
Cadmio (Cd)	UNI EN ISO 17294-2:2005
Calcio (Ca)	UNI EN ISO 17294-2:2005
Cromo esavalente (Cr VI)	EPA 7199 1996
Cromo totale (Cr)	UNI EN ISO 17294-2:2005
Ferro (Fe)	UNI EN ISO 11885 2009
Mangnesio (Mg)	UNI EN ISO 17294-2:2005
Manganese (MN)	UNI EN ISO 17294-2:2005
Mercurio (Hg)	UNI EN ISO 12846.2013
Nichel (Ni)	UNI EN ISO 17294-2:2005
Piombo (Pb)	UNI EN ISO 17294-2:2005
Potassio (K)	UNI EN ISO 17294-2:2005
Rame (Cu)	UNI EN ISO 17294-2:2005
Sodio (Na)	UNI EN ISO 17294-2:2005
Zinco (Zn)	UNI EN ISO 17294-2:2005

054-004R01	RISPOSTA AL PUNTO 18 CAP. 14, MONITORAGGI SULLA RETE PIEZOMETRICA DELLE DISCARICHE	E01
Codice	Titolo	Rev.

MONITORAGGIO POZZI DISCARICHE					
Parametri Ricercati	M.d.p.				
Composti aromatici					
Benzene	EPA 5030 C 2003 + EPA 8260 C 2006				
Etil-benzene	EPA 5030 C 2003 + EPA 8260 C 2007				
Xilene (m+p)	EPA 5030 C 2003 + EPA 8260 C 2008				
O - Xilene	EPA 5030 C 2003 + EPA 8260 C 2008				
Stirene	EPA 5030 C 2003 + EPA 8260 C 2009				
Toluene	EPA 5030 C 2003 + EPA 8260 C 2010				
Benzo (a) Antracene	EPA 3510 C 2007 + EPA 8270 D 2007				
Benzo (a) Pirene	EPA 3510 C 2007 + EPA 8270 D 2007				
Benzo (b) Fluorantene	EPA 3510 C 2007 + EPA 8270 D 2007				
Benzo (g.h.i.) Perilene	EPA 3510 C 2007 + EPA 8270 D 2007				
Benzo (k) Fluorantene	EPA 3510 C 2007 + EPA 8270 D 2007				
Crisene	EPA 3510 C 2007 + EPA 8270 D 2007				
DiBenzo (a,h) Antracene	EPA 3510 C 2007 + EPA 8270 D 2007				
Indeno (1,2,3, - cd) pirene	EPA 3510 C 2007 + EPA 8270 D 2007				
Pirene	EPA 3510 C 2007 + EPA 8270 D 2007				
cis - 1,2 - dicloetilene	EPA 5030C 2003 + EPA 8260C 2006				
trans- 1,2 - dicloroetilene	EPA 5030C 2003 + EPA 8260C 2006				
bromodiclorometano	EPA 5030C 2003 + EPA 8260C 2006				
cloruro di vinile	EPA 5030C 2003 + EPA 8260C 2006				
dibromoclorometano	EPA 5030C 2003 + EPA 8260C 2006				
tetracloroetilene	EPA 5030C 2003 + EPA 8260C 2006				
tribromometano	EPA 5030C 2003 + EPA 8260C 2006				
tricloroetilene	EPA 5030C 2003 + EPA 8260C 2006				
triclorometano	EPA 5030C 2003 + EPA 8260C 2006				
1,1 - dicloroetilene	EPA 5030C 2003 + EPA 8260C 2006				
1,2 - dicloetano	EPA 5030C 2003 + EPA 8260C 2006				
1,2 - dicloroetilene	EPA 5030C 2003 + EPA 8260C 2006				
1,2 -dicloropropano	EPA 5030C 2003 + EPA 8260C 2006				
Idrocarbuti totali (C10 - C40)	UNI EN ISO 9377 - 2: 2002				
pentaclorofenolo	EPA 3510C 2007 + EPA 827D 2007				
2- clorofenolo	EPA 3510C 2007 + EPA 827D 2007				
2,4 - diclorofenolo	EPA 3510C 2007 + EPA 827D 2007				
2,4,6 - triclorofenolo	EPA 3510C 2007 + EPA 827D 2007				

054-004R01	RISPOSTA AL PUNTO 18 CAP. 14, MONITORAGGI SULLA RETE PIEZOMETRICA DELLE DISCARICHE	E01
Codice	Titolo	Rev.