COMMITTENTE:

PROGETTAZIONE:

AADDOPPIO DELLA TRATTA GIAMPILIERI – FIUMEFREDDO ELABORATI GENERALI FABBRICATO FSA – Ricovero carrelli FA00 - Relazione di calcolo fabbricato tecnologico SCALA: - COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV. R S 2 S 0 0 D 7 8 C L F A 0 0 0 0 0 1 3 A		TTRICE F		/IARIA IV	ILOOMA	- CATA			
FABBRICATO FSA — Ricovero carrelli FA00 - Relazione di calcolo fabbricato tecnologico SCALA: - COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV. R S 2 S 0 0 D 7 8 C L F A 0 0 0 0 0 1 3 A Descrizione Redatto Data Verificato Data Approvato Data Autorizzato Data A Emissione A Ingletti Dic. 2017 S.Batter Dic. 2017 P.Carlesimo Dic. 2017 D. Tiberti	J.O. I	NFRASTR	UTTURI	E SUD					
COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV. R S 2 S 0 0 D T 8 C L F A 0 0 0 0 0 1 3 A Descrizione Redatto Data Verificato Data Approvato Data Autorizzato Data A Emissione A. Ingletti Dic. 2017 S.Bakta 2 Dic. 2017 P.Carlesimo Dic. 2017 D. Tiberti	ROO	SETTO DE	FINITIV	0					
FA00 - Relazione di calcolo fabbricato tecnologico SCALA: COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV. R S 2 S 0 0 D D 7 8 C L F A 0 0 0 0 0 1 3 A Descrizione Redatto Data Verificato Data Approvato Data Autorizzato Data A Emissione A. Ingletti Dic. 2017 S.Battorio Dic. 2017 P.Carlesimo Dic. 2017 D. Tiberti					GIAMPIL	_IERI – F	FIUMEFRI	EDDO	
R S 2 S 0 0 D 7 8 C L F A 0 0 0 0 0 0 0 1 3 A A Descrizione Redatto Data Verificato Data Approvato Data Autorizzato Data A Emissione A. Ingletti Dic. 2017 S.Battana Dic. 2017 P.Carlesimo Dic. 2017 D. Tiberti						tecnolo		CALA:	
R S 2 S 0 0 D 7 8 C L F A 0 0 0 0 0 0 0 1 3 A A Descrizione Redatto Data Verificato Data Approvato Data Autorizzato Data A Emissione A. Ingletti Dic. 2017 S.Battana Dic. 2017 P.Carlesimo Dic. 2017 D. Tiberti									
Descrizione Redatto Data Verificato Data Approvato Data Autorizzato Data A Emissione A. Ingletti Dic. 2017 S.Batterio Dic. 2017 P.Carlesimo Dic. 2017 D. Tiberti								-	
A Emissione A. Ingletti Dic. 2017 S.Batteria Dic. 2017 P.Carlesimo Dic. 2017 D. Tiberti	COMM	IESSA LOTTO) FASE E	ENTE TIPO	DOC. OPER	RA/DISCIPLIN	IA PROGR	- . REV.	
		2 S 0	0 D	78	CL F	A 0 0 0	0 0 1	3 A	Autorizzato Data
	R S	2 S 0 Descrizione Emissione	0 D	7 8 (Verificato S.Baktario	A O O C	Approvato P.Carlesimo	3 A	D. Tiberti

PROGETTO DEFINITIVO

RELAZIONI DI CALCOLO PER IL PROGETTO DEFINITIVO DEI FABBRICATI TIPOLOGICI – Giampilieri - Fiumefreddo

FABBRICATO FSA – Ricovero carrelli

00

FABBRICATO FSA CARRELLI Relazione di calcolo fabbricato tecnologico COMMESSA RS2S LOTTO CO

CODIFICA D78CL DOCUMENTO FA 00 00 013 REV.

FOGLIO 2 di 78

INDICE

1	IN	NTRODUZIONE	4
	1.1	DESCRIZIONE DELL'OPERA	
	1.2	NORMATIVA DI RIFERIMENTO	
2	D	DETTAGLI TECNICI	
	2.1	MODELLO STRUTTURALE	7
	2.2	MATERIALI UTILIZZATI	8
3	A	ANALISI DEI CARICHI	12
	3.1	PESO PROPRIO STRUTTURE	12
	3.2	CARICHI PERMANENTI NON STRUTTURALI	13
	3.3	SOVRACCARICO ACCIDENTALE	14
	3.4	AZIONE DELLA NEVE	15
	3.5	AZIONE DEL VENTO	16
	3.6	TAMPONATURE/PARAPETTO	18
	3.7	AZIONE SISMICA	19
	3.8	COMBINAZIONI DELLE AZIONI	26
4	A	ANALISI DINAMICA MODALE CON SPETTRO DI RISPOSTA	29
	4.1	Analisi modale	29
	4.2	DIAGRAMMA DELLE SOLLECITAZIONI	33
5	C.	CALCOLO DEL SOLAIO	38
	5.	5.1.1 Verifica di resistenza	41
	5.	5.1.2 Verifica di deformabilità	44
6	V	VERIFICA AGLI STATI LIMITE ULTIMI - ELEVAZIONE	45
	6.1	VERIFICA DI RESISTENZA DELLE TRAVI	49
	6.	5.1.1 Travata 59-71-57-40-33-28-23-18-10-11	49
	6.2	VERIFICA DI RESISTENZA DEI PILASTRI	54

PROGETTO DEFINITIVO

RELAZIONI DI CALCOLO PER IL PROGETTO DEFINITIVO DEI FABBRICATI TIPOLOGICI – Giampilieri - Fiumefreddo

FABBRICATO FSA – Ricovero carrelli

FABBRICATO FSA CARRELLI
Relazione di calcolo fabbricato tecnologico

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS2S 00 D78CL FA 00 00 013 A 3 di 78

	6.2.1	l Pilastrata 19	54
7	VER	RIFICA AGLI STATI LIMITE DI ESERCIZIO – ELEVAZIONE	56
7	.1	VERIFICA DI RESISTENZA DELLE TRAVI	56
	7.1.1	1 Travata 59-71-57-40-33-28-23-18-10-11	56
7	.2	VERIFICA DI RESISTENZA DEI PILASTRI	59
	7.2.1	l Pilastrata 19	59
7	.3	VERIFICA DELLO STATO LIMITE DI DANNO	61
8	CAL	COLO STRUTTURA DI FONDAZIONE	63
8	.1	CARATTERIZZAZIONE GEOTECNICA	63
8	.2	VERIFICA DI RESISTENZA	64
	8.2.1	1 Travata 136-137-112-108-100-101-102-103-104-99	64
8	.3	VERIFCA DI PORTANZA	70
9	VER	RIFICHE AL FUOCO	76
9	.1	RESISTENZA AL FUOCO:TRAVI	76
9	.2	RESISTENZA AL FUOCO:PILASTRI	77
9	.3	RESISTENZA AL FUOCO: SOLAI.	77
10	VER	RIFICHE DEGLI ELEMENTI NON STRUTTURALI	78
11	VER	RIFICA SOLETTA CONTROTERRA	78
12	INC	IDENZA ARMATURE	78
13	CON	NCLUSIONI	78

JTALFERR GRUPPO FEBROVIE DELLO STATO ITALIANE	TIPOLOGIC	DI CALCO I – Giampi	-		NITIVO DE	EI FABBRICATI
FABBRICATO FSA CARRELLI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo fabbricato tecnologico	RS2S	00	D78CL	FA 00 00 013		4 di 78

1 INTRODUZIONE

1.1 DESCRIZIONE DELL'OPERA

La presente relazione di calcolo ha per oggetto l'analisi e le verifiche strutturali del fabbricato di tipo "FSA CARRELLI".

L'edificio è costituito da un piano fuori terra e da una copertura piana.

La struttura è costituita da telai con pilastri e travi in cemento armato avente una pianta rettangolare di dimensioni pari a circa 63.0m x 20.6m. Le travi di copertura "emergenti" hanno sezione 40cm x 80cm. Tutti i pilastri hanno sezione di base di 40cm x 80cm. I solai di copertura a campata continua sono tutti costituiti da solaio in lastre di predalles; lo spessore totale del solaio di copertura è di 24 cm e comprende 4 cm di caldana superiore, 16 cm di alleggerimento e 4 cm di pannello di predalle inferiore.

La fondazione prevista è costituita da travi a "T" rovescia di dimensioni 1.5 x 1.0m.

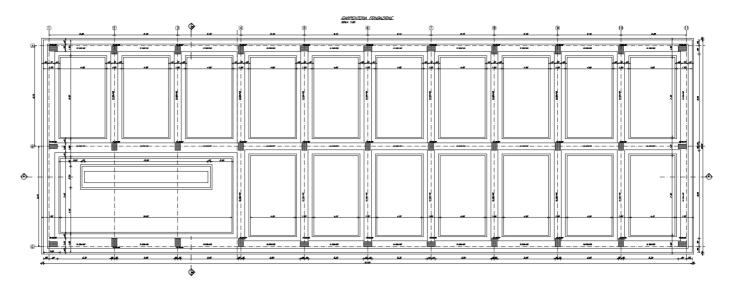


Figura 1-1. Carpenteria fondazioni.

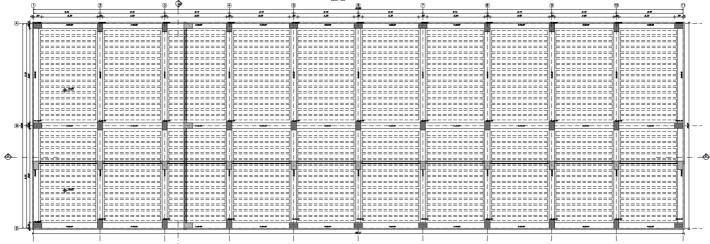


Figura 1-2. Carpenteria copertura.

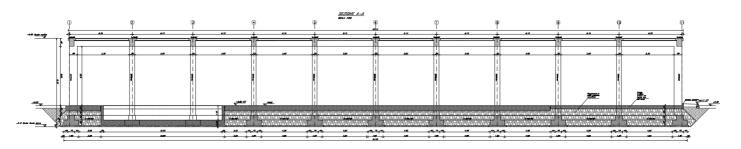


Figura 1-3. Sezione A

Figura 1-4. Sezione B

Il progetto di ciascun tipologico verrà eseguito considerando l'azione sismica del sito geografico più gravoso.

Si evidenzia nella tabella sottostante il sito di riferimento per il progetto del tipologico FSA CARRELLI.

П	FSA - Ricovero carrelli	75	1.5	112.5	37,787678	15.199535	63.00	0.273	2.646	0.338	C	T1

PROGETTO	DEFINITIVO	

RELAZIONI DI CALCOLO PER IL PROGETTO DEFINITIVO DEI FABBRICATI TIPOLOGICI – Giampilieri - Fiumefreddo

FABBRICATO FSA - Ricovero carrelli

FABBRICATO FSA CARRELLI Relazione di calcolo fabbricato tecnologico

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS2S	00	D78CL	FA 00 00 013	Α	6 di 78

1.2 NORMATIVA DI RIFERIMENTO

La progettazione è conforme alle normative vigenti nonché alle istruzioni dell'Ente FF.SS.

La normativa cui viene fatto riferimento nelle fasi di calcolo e progettazione è la seguente:

- Rif. [1] "Istruzione per la progettazione e l'esecuzione dei ponti ferroviari" (rif. RFI-DTC-ICI-PO-SP-INF-001-A);
- Rif. [2] Approvazione delle nuove norme tecniche per le costruzioni D.M. 14-01-08 (NTC-2008);
- Rif. [3] Circolare n. 617 del 2 febbraio 2009 Istruzioni per l'Applicazione Nuove Norme Tecniche Costruzioni di cui al Decreto Ministeriale 14 gennaio 2008;
- Rif. [4] Ordinanza del Presidente del Consiglio dei Ministri n. 3274 del 20/03/2003. Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica;
- Rif. [5] Decreto del Presidente del Consiglio dei Ministri del 21/10/2003;
- Rif. [6] Eurocodice 2: Progettazione delle strutture in calcestruzzo Parte 1.1: Regole generali e regole per gli edifici.
- Rif. [7] UNI ENV 1992-1-1 Parte 1-1:Regole generali e regole per gli edifici;
- Rif. [8] UNI EN 206-1/2001 Calcestruzzo. Specificazioni, prestazioni, produzione e conformità;
- Rif. [9] UNI EN 1998-5 Fondazioni ed opere di sostegno.

RELAZIONI TALFERR TIPOLOGIO		OLO PER IL F ilieri - Fiumefr	eddo	NITIVO DE	EI FABBRICATI
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO 7 di 78
-	RELAZIONI TIPOLOGIC FABBRICAT	RELAZIONI DI CALCO TIPOLOGICI – Giampi FABBRICATO FSA – F	RELAZIONI DI CALCOLO PER IL F TIPOLOGICI – Giampilieri - Fiumefr FABBRICATO FSA – Ricovero carre COMMESSA LOTTO CODIFICA	TIPOLOGICI – Giampilieri - Fiumefreddo FABBRICATO FSA – Ricovero carrelli COMMESSA LOTTO CODIFICA DOCUMENTO	RELAZIONI DI CALCOLO PER IL PROGETTO DEFINITIVO DE TIPOLOGICI – Giampilieri - Fiumefreddo FABBRICATO FSA – Ricovero carrelli COMMESSA LOTTO CODIFICA DOCUMENTO REV.

2 DETTAGLI TECNICI

2.1 MODELLO STRUTTURALE

L'analisi della struttura in esame è stata effettuata attraverso una modellazione agli elementi finiti.

La struttura è stata modellata con un modello numerico nelle tre dimensioni nello spazio, il sistema di riferimento assunto prevede una terna destrorsa il cui asse X è orientato in direzione nord e l'asse Z verticale positivo verso l'alto.

Il modello prevede un unico piano fuori terra. Travi e pilastri sono stati simulati con elementi *beam*, i solai mediante elementi *shell*. Questi ultimi, in accordo con le tessiture dei solai, sono stati utilizzati per la ripartizione dei carichi sulle travi mediante l'opzione uniform loads to frame (one-way distribution).

Agli elementi in c.a. ai fini delle verifiche sismiche è stata assegnata la rigidezza fessurata, abbattendo le rigidezze flessionali mediante assegnazione di stiffner modifiers.

Le fondazioni sono modellate con elementi *beam* suolo elastico alla Winkler, attraverso l'introduzione di molle verticali. La traslazione orizzontale è stata bloccata mediante *restraint* nei nodi alla base dei pilastri.

Tale assunzione nel modello di calcolo è giustificata ain quanto Sd > V:

- \bullet max azione orizzontale agente V=10276 kN (somma delle reazioni orizzontali alla base dei pilastri in combinazione sismica)
- max azione resistente $Sd = N * tang (\phi'/1.25) = 25372 * tang [(35°*<math>\pi$ /180)/1.25] = 17766 kN (somma delle reazioni verticali alla base dei pilastri in combinazione quasi permanente + peso delle fondazioni)

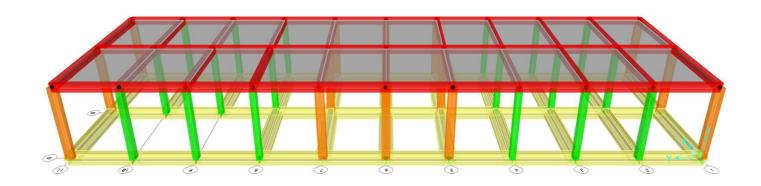


Figura 1-1. Vista estrusa del modello 3D

PROGET	TO DEF	OVITINI
---------------	--------	---------

RELAZIONI DI CALCOLO PER IL PROGETTO DEFINITIVO DEI FABBRICATI TIPOLOGICI – Giampilieri - Fiumefreddo

FOGLIO

8 di 78

FABBRICATO FSA – Ricovero carrelli

FABBRICATO FSA CARRELLI Relazione di calcolo fabbricato tecnologico

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.
RS2S	00	D78CL	FA 00 00 013	Α

2.2 MATERIALI UTILIZZATI

2.2.1 Calcestruzzo

Si riportano di seguito due tabelle riepilogative del tipo e delle caratteristiche del calcestruzzo adottato per i diversi elementi strutturali:

	Solaio in lastre predalles	Struttura in elevazione	Fondazioni
Classe di resistenza	C28/35	C28/35	C28/35
Classe di esposizione	XC3	XC3	XC2
Condizioni ambientali	ordinarie	ordinarie	ordinarie
Rapporto acqua/cemento		0,55	0,55

		Solaio in lastre predalles	Struttura in elevazione	Fondazioni
R _{ck}	(N/mm^2)	35	35	35
f_{ck}	(N/mm^2)	29	29	29
f_{cm}	(N/mm ²)	37	37	37
$\alpha_{\rm cc}$	(-)	0,85	0,85	0,85
γ _c	(-)	1,5	1,5	1,5
f_{cd}	(N/mm^2)	16.46	16.46	16.46
f_{ctm}	(N/mm ²)	2.80	2.80	2.80
Ec	(N/mm^2)	32588	32588	32588

Dove:

 R_{ck} = Resistenza cubica caratteristica a compressione

 $f_{ck} = 0.83 \cdot R_{ck} = Resistenza$ cilindrica caratteristica

 $f_{cm} = f_{ck} + 8 \text{ (N/mm}^2) = \text{Resistenza cilindrica media a compressione}$

 α_{cc} = Coefficiente per effetti a lungo termine e sfavorevoli: α_{cc} (t > 28gg) = 0.85

 $\gamma_c = 1.5$; viene ridotto a 1.4 per produzioni continuative di elementi o strutture soggette a controllo continuativo del calcestruzzo dal quale risulti un coefficiente di variazione (rapporto tra scarto quadratico medio e valore medio della resistenza) non superiore al 10%.

$$f_{cd} = \frac{\alpha_{cc} \cdot f_{ck}}{\gamma_c} = \text{Resistenza di calcolo a compressione}$$

 $f_{\text{ctm}} = 0.3 \cdot (f_{\text{ck}})^{2/3}$ [per classi \leq C50/60] = Resistenza cilindrica media a trazione

PROGETTO DEFINITIVO

RELAZIONI DI CALCOLO PER IL PROGETTO DEFINITIVO DEI FABBRICATI TIPOLOGICI – Giampilieri - Fiumefreddo

FABBRICATO FSA - Ricovero carrelli

FABBRICATO FSA CARRELLI Relazione di calcolo fabbricato tecnologico

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS2S	00	D78CL	FA 00 00 013	Α	9 di 78

 $f_{ctk} = 0.7 \cdot f_{ctm} = Resistenza$ cilindrica caratteristica a trazione

$$f_{ctd} = \frac{f_{ctk}}{\gamma_c} = Resistenza \ di \ calcolo \ a \ trazione$$

 $f_{cfm} = 1.2 \cdot f_{ctm} = Resistenza$ media a trazione per flessione

 $f_{\text{cfk}} = 0.7 \cdot \, f_{\text{cfm}} = Resistenza$ cilindrica caratteristica a trazione

$$E_{cm} = 22000 \cdot \left(\frac{f_{cm}}{10}\right)^{0.3} = Modulo \ Elastico$$

Coefficiente di Poisson:

Secondo quanto prescritto al punto 11.2.10.4 della NTC2008, per il coefficiente di Poisson può adottarsi, a seconda dello stato di sollecitazione, un valore compreso tra 0 (calcestruzzo fessurato) e 0.2 (calcestruzzo non fessurato).

Coefficiente di dilatazione termica:

In sede di progettazione, o in mancanza di una determinazione sperimentale diretta, per il coefficiente di dilatazione termica del calcestruzzo può assumersi un valore medio pari a 10 x 10⁻⁶ °C-1 (NTC2008 – 11.2.10.5).

PROGETTO	DEFINITIVO

RELAZIONI DI CALCOLO PER IL PROGETTO DEFINITIVO DEI FABBRICATI TIPOLOGICI – Giampilieri - Fiumefreddo

FABBRICATO FSA - Ricovero carrelli

FABBRICATO FSA CARRELLI Relazione di calcolo fabbricato tecnologico

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS2S	00	D78CL	FA 00 00 013	Α	10 di 78

2.2.2 Acciaio d'armatura in barre tonde ad aderenza migliorata

Si adotta acciaio tipo B450C come previsto al punto 11.3.2.1 delle NTC2008, per il quale si possono assumere le seguenti caratteristiche:

<u>Resistenza a trazione – compressione:</u>

 $f_{tk} = 540 \text{ N/mm}^2 = \text{Resistenza caratteristica di rottura}$

 $f_{yk} = 450 \; N/mm^2 = Resistenza \; caratteristica \; a \; snervamento \;$

$$f_{yd} = \frac{f_{yk}}{\gamma_s} = 391.3 \text{ N/mm}^2 = \text{Resistenza di calcolo}$$

dove:

 $\gamma_s = 1.15$ = Coefficiente parziale di sicurezza relativo all'acciaio.

Modulo Elastico: Es = 210000 N/mm²

2.2.3 Durabilità strutturale delle opere in c.a.

La durabilità di un'opera dipende dalle condizioni ambientali e dalle azioni di tipo chimico-fisiche che possono interessarne gli elementi strutturali nell'arco della vita utile della struttura. Tali azioni, non prese in conto nell'analisi strutturale, richiedono un'opportuna scelta del materiale strutturale ed adeguate disposizioni costruttive.

Il requisito di durabilità si ritiene soddisfatto quando la struttura, per il periodo di vita previsto, è in grado di assolvere le sue funzioni senza limitazioni d'uso essendo soggetta solo a manutenzione ordinaria.

Per ottenere strutture durabili la EN 206-1:2006 richiede che siano soddisfatti i seguenti criteri per i componenti realizzati in c.a.:

- classificazione degli elementi strutturali in idonee classi di esposizione;
- impiego di calcestruzzo di adeguata composizione;
- protezione dell'armatura metallica

Le condizioni ambientali prevalenti degli elementi strutturali, le tipologie di calcestruzzi ed i copri ferri minimi adottati, sono riportate nella seguente tabella:

PROGETTO I	DEFINITIVO
------------	------------

RELAZIONI DI CALCOLO PER IL PROGETTO DEFINITIVO DEI FABBRICATI

TIPOLOGICI - Giampilieri - Fiumefreddo

FABBRICATO FSA - Ricovero carrelli

FABBRICATO FSA CARRELLI Relazione di calcolo fabbricato tecnologico

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS2S	00	D78CL	FA 00 00 013	Α	11 di 78

	Campi di Impiego	Classe di esposizione ambientale (UNI EN 206)	Rapporto a/c max (UNI EN 206)	mailmina a	Classe di consistenza	Tipo di cemento	Copriferro mm (*)
1	- Impalcati in c.a. ordinari - Solette in c.a. gettate in opera in elevazione - Predalles con funzioni strutturali	XC3	0.55	C28/35	S4-S5	CEM I,II,III,IV,V	25
2	- Strutture in c.a. in elevazione	XC3	0.55	C28/35	S3-S4	CEM I,II,III,IV,V	30
3	- Solettoni e solette di fondazione - Fondazioni plinti e cordoli di collegamento - Setti interrati in c.a.	XC2	0.60	C25/30	S3-S4	CEM III,IV,V	40
4	- Magrone di riempimento e livellamento	X0		C12/15		CEM I,II,III,IV,V	

Secondo le prescrizioni delle NTC 2008, Tab. 4.1.III

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE		
Ordinarie	X0, XC1, XC2, XC3, XF1		
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3		
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4		

Per le classi XC2 e XC3 ricadiamo in condizioni ordinarie.

Scelta degli stati limite di fessurazione secondo la Tab. 4.1.IV delle NTC 2008

Gruppi di Condizioni		Combinazione	Armatura				
Gruppi di esigenze	ambientali	di azioni	Sensibile		Poco sensibile		
	ашыентан	di azioni	Stato limite	$\mathbf{w_d}$	Stato limite	$\mathbf{w_d}$	
	Ordinarie	frequente	ap. fessure	≤ w ₂	ap. fessure	≤ w ₃	
a	Ofdinarie	quasi permanente	ap. fessure	$\leq w_1$	ap. fessure	$\leq w_2$	
b	Ai	frequente	ap. fessure	$\leq w_1$	ap. fessure	$\leq w_2$	
ь	Aggressive	quasi permanente	decompressione	-	ap. fessure	$\leq w_1$	
Notes assessing		frequente	formazione fessure	-	ap. fessure	$\leq w_1$	
С	Molto aggressive	quasi permanente	decompressione	-	ap. fessure	$\leq w_1$	

Avendo armature poco sensibili abbiamo:

Limite di apertura delle fessure per Combinazione di azioni frequente \leq w3 = 0.4 mm

Limite di apertura delle fessure per Combinazione di azioni quasi perm. \leq w2 = 0.3 mm

PROGE"		

RELAZIONI DI CALCOLO PER IL PROGETTO DEFINITIVO DEI FABBRICATI TIPOLOGICI – Giampilieri - Fiumefreddo

FABBRICATO FSA – Ricovero carrelli

FABBRICATO FSA CARRELLI Relazione di calcolo fabbricato tecnologico

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS2S	00	D78CL	FA 00 00 013	Α	12 di 78

3 ANALISI DEI CARICHI

Come prescritto dalle NTC2008, sono state considerate agenti sulla struttura le seguenti condizioni di carico elementari, combinate tra loro in modo da determinare gli effetti più sfavorevoli ai fini delle verifiche dei singoli elementi strutturali:

- peso proprio strutture;
- carichi permanenti non strutturali;
- sovraccarico variabile;
- azione sismica;
- azione del vento;
- azione della neve;

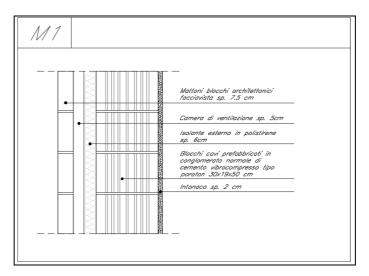
3.1 PESO PROPRIO STRUTTURE

Solaio di copertura

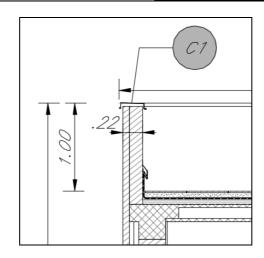
I solai di copertura a campata continua sono tutti costituiti da solaio in lastre di predalles; lo spessore totale del solaio di copertura è di 24 cm e comprende 4 cm di caldana superiore, 16 cm di alleggerimento e 4 cm di pannello di predalle inferiore.

Peso totale a metro quadrato = $3,35 \text{ kN/m}^2$

Struttura principale in c.a.

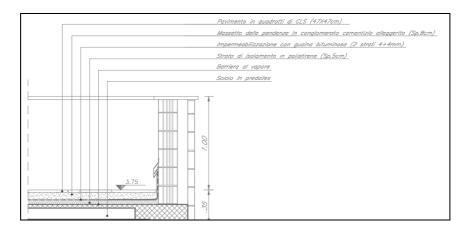

Il peso proprio degli elementi strutturali viene calcolato automaticamente dal programma considerando il peso specifico del cemento armato pari a :

$$\gamma_{c.a.} = 25 \text{ kN/m}^3$$



3.2 CARICHI PERMANENTI NON STRUTTURALI

• <u>Tamponamenti esterni</u>


	Descrizione				Height of wall (m) = Storey Ht-Beam Depth =		
		Spessore in		Densità		Peso	Carichi
Sl.no	TIPOLOGIA	(m)	Tipo	kN\m3		kN\m2	kN\m
1	Mattoni facciavista	0.075	Pieno	17	3.75	1.28	4.78
2	Blocchi cavi in CLS vibrocompresso	0.1	CLS	12	3.75	1.20	4.50
3	Intonaco	0.02	Pieno	20	3.75	0.40	1.50
					Tot:	2.88	10.78

	PARAPETTO - C1								
	Descrizione				Height of wall (m) = Storey Ht-Beam Depth =				
SI.no	TIPOLOGIA	Spessore in (m)	Tipo	Densità kN\m3		Peso kN\m2	Carichi kN\m		
1	Mattoni facciavista	0.075	Pieno	17	1	1.28	1.28		
2	Blocchi cavi in CLS vibrocompresso	0.145	CLS	12	1	1.74	1.74		
3	Intonaco	0.02	Pieno	20	1	0.40	0.40		
					Tot:	3.42	3.42		

Carichi permanenti non strutturali agenti in copertura

	COPERTURA - H5				
n°	Descrizione	Spessore [mm]	Densità [kN/m³]	Carico [kN/m²]	Note
1	47x47x40mm Quadrotti in CLS	30.0	25.0	0.8	
2	Massetto delle pendenze - (alleggerito)	100.0	14.0	1.4	
3	2 Strati guaina impermeabilizzante			0.2	
4	Isolante	20.0	0.1	0.1	•
5	Intonaco intradosso	20.0	20.0	0.4	

Totale carico copertura	2.80
-------------------------	------

• Carichi permanenti non strutturali agenti in fondazione

Sulle travi di fondazione insistono tamponature del tipo elencato di seguito:

TAMPONATURE - M1							
	Descrizione				Height of wall (m) = Storey Ht-Beam Depth =		
		Spessore in		Densità		Peso	Carichi
Sl.no	TIPOLOGIA	(m)	Tipo	kN\m3		kN\m2	kN\m
1	Mattoni facciavista	0.075	Pieno	17	3.75	1.28	4.78
2	Blocchi cavi in CLS vibrocompresso	0.1	CLS	12	3.75	1.20	4.50
3	Intonaco	0.02	Pieno	20	3.75	0.40	1.50
					Tot:	2.88	10.78

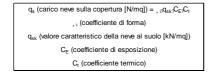

3.3 SOVRACCARICO ACCIDENTALE

• Carichi variabili agenti in copertura

Il sovraccarico assunto per la copertura è pari a 1,00 kN/m².

• Carichi variabili agenti in fondazione

Il sovraccarico che insiste sulla platea controterra è pari a 10,00 kN/m².

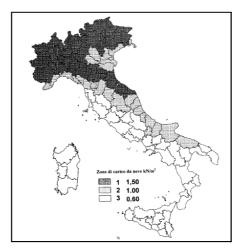


3.4 AZIONE DELLA NEVE

Le azioni della neve sono definite secondo il capitolo 3.4 delle NTC2008.

CALCOLO DELL'AZIONE DELLA NEVE

	Zona I - Alpina Aosta, Belluno, Bergamo, Biella, Bolzano, Brescia, Como, Cuneo, Lecco, Pordenone, Sondrio, Torino, Trento, Udine, Verbania, Vercelli, Vicenza.	$q_{sk} = 1,50 \text{ kN/mq}$ $q_{sk} = 1,39 \left[1+(a_s/728)^2\right] \text{kN/mq}$	a _s ? 200 m a _s > 200 m
	Zona I - Mediterranea Alessandria, Ancona, Asti, Bologna, Cremona, Forli-Cesena, Lodi, Miano, Modena, Novara, Parma, Pavia, Pesaro e Urbino, Pacenza, Ravenna, Reggio Emilia, Rimini, Treviso, Varese.	$q_{sk} = 1,50 \text{ kN/mq}$ $q_{sk} = 1,35 \left[1 + (a_{s}/602)^{2}\right] \text{kN/mq}$	a _s ? 200 m a _s > 200 m
	Zona II Arezzo, Ascoli Riceno, Bari, Campobasso, Chieti, Ferrara, Firenze, Foggia, Genova, Gorizia, Imperia, Isernia, La Spezia, Lucca, Macerata, Mantova, Massa Carrara, Padova, Perugia, Pescara, Pistoia, Prato, Rovigo, Savona, Teramo, Trieste, Venezia, Verona.	$q_{sk} = 1,00 \text{ kN/mq}$ $q_{sk} = 0.85 \left[1 + (a_s/481)^2\right] \text{ kN/mq}$	a _s ? 200 m a _s > 200 m
Ō	Zona III Agrigento, Avellino, Benevento, Brindisi, Cagliari, Caltanisetta, Carbonia-Iglesias, Caserta, Catania, Catanzaro, Cosenza, Crotone, Enna, Frosinone, Grosseto, L'Aquila, Latina, Lecce, Livorno, Matera, Medio Campidano, Messina, Napoli, Nuoro, Ogliastra, Olbia Tempio, Oristano, Palermo, Psa, Potenza, Ragusa, Reggio Calabria, Rieti, Roma, Salerno, Sassari, Siena, Siracusa, Taranto, Terni, Trapani, Vbo Valentia, Viterbo.	$q_{sk} = 0.60 \text{ kN/mq}$ $q_{sk} = 0.51 \left[1 + (a_g/481^2) \text{ kN/mq}\right]$	a _s ? 200 m a _s > 200 m

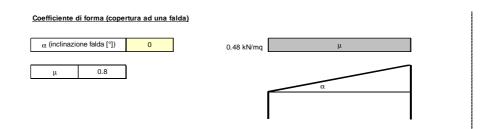


Valore carratteristicio della neve al suolo

a _s (altitudine sul livello del mare [m])	63
q _{sk} (val. caratt. della neve al suolo [kN/mq])	0.60

Coefficiente termico

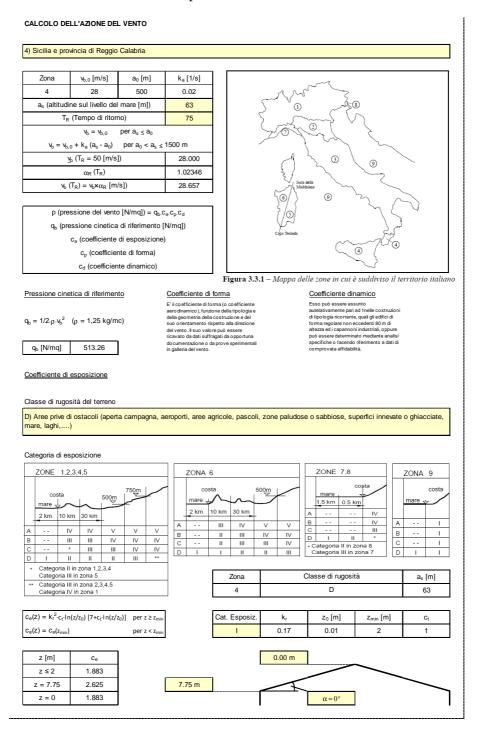
Il coefficiente termico può essere utilizzato per tener conto della riduzione del carico neve a causa dello scioglimento della stessa, causata dalla perdita di calore della costruzione. Tale coefficiente tiene conto delle proprietà di isolamento termico del materiale utilizzato in copertura. In assenza di uno specifico e documentato studio, deve essere utilizzato Ct = 1.



Coefficiente di esposizione

Topografia	Descrizione	C _E
Normale	Aree in cui non è presente una significativa rimozione di neve sulla costruzione prodotta dal vento, a causa del terreno, altre costruzioni o alberi.	1

Valore del carico della neve al suolo


q _s (carico della neve al suolo [kN/mq])	0.60

3.5 AZIONE DEL VENTO

Le azioni del vento sono definite secondo il capitolo 3.3 delle NTC2008.

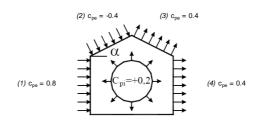
PROGETTO DEFINITIVO

RELAZIONI DI CALCOLO PER IL PROGETTO DEFINITIVO DEI FABBRICATI TIPOLOGICI – Giampilieri - Fiumefreddo

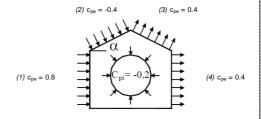
Strutture stagne

FABBRICATO FSA – Ricovero carrelli

FABBRICATO FSA CARRELLI Relazione di calcolo fabbricato tecnologico COMMESSA LOTTO CODIFICA


RS2S 00 D78CL

DOCUMENTO FA 00 00 013 REV. FOGLIO


A 17 di 78

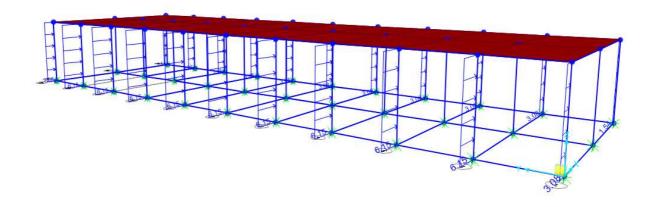
Coefficiente di forma (Edificio aventi una parete con aperture di superficie < 33% di quella totale)

(1)	Сp	p [kN/mq]
(1)	0.80	1.078
(2)	c _p	p [kN/mq]
(2)	-0.40	-0.387
(3)	Сp	p [kN/mq]
(3)	0.40	0.387
(4)	C _p	p [kN/mq]
(4)	0.40	0.539

(1)	Ср	p [kN/mq]
(1)	0.80	1.078
(2)	Cp	p [kN/mq]
(2)	-0.40	-0.387
(3)	Ср	p [kN/mq]
(3)	0.40	0.387
(4)	Ср	p [kN/mq]
(4)	0.40	0.539

Combinazione più sfavorevole:

	p [kN/mq]
(1)	1.078
(2)	-0.387
(3)	0.387
(4)	0.539


-0.387 kN/mq 0.387 kN/mq

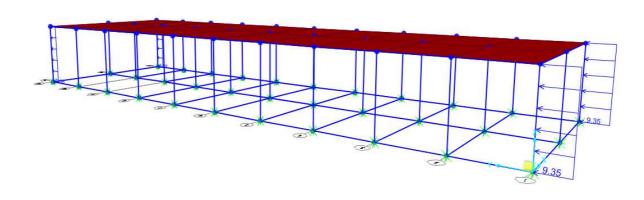
1.078 kN/mq

0.539 kN/mq

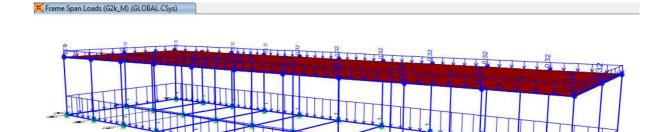
N.B. Se p (o c pe) è > 0 il verso è concorde con le frecce delle figure

Frame Span Loads (Vx) (GLOBAL CSys)

PROGETTO DEFINITIVO


RELAZIONI DI CALCOLO PER IL PROGETTO DEFINITIVO DEI FABBRICATI TIPOLOGICI – Giampilieri - Fiumefreddo

FABBRICATO FSA – Ricovero carrelli


FABBRICATO FSA CARRELLI Relazione di calcolo fabbricato tecnologico

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS2S	00	D78CL	FA 00 00 013	Α	18 di 78

3.6 TAMPONATURE/PARAPETTO

 $G2k_M = 0.32 * 10.78 = 3.44kN/m$

 $G2k_M = 1.00 * 10.78 = 10.78kN/m$

TALFERR GRUPPO FEBROVIE DELLO STATO ITALIANE	TIPOLOGIC	DI CALCO I – Giamp			NITIVO DE	EI FABBRICATI
FABBRICATO FSA CARRELLI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo fabbricato tecnologico	RS2S	00	D78CL	FA 00 00 013		19 di 78

3.7 AZIONE SISMICA

In questo paragrafo si riporta il calcolo dell'azione sismica secondo le modalità previste dalle "Nuove Norme Tecniche per le Costruzioni DM 14 gennaio 2008".

In base alla collocazione geografica del sito più gravoso si ritrovano i seguenti valori della griglia dei dati sismici:

Ed i relativi parametri caratteristici:

T _R	a _g	F _o	T _C
[anni]	[g]	[-]	[s]
30	0.086	2.526	0.242
50	0.106	2.523	0.256
72	0.121	2.525	0.267
101	0.136	2.533	0.274
140	0.152	2.539	0.282
201	0.170	2.549	0.291
475	0.219	2.585	0.315
975	0.267	2.640	0.335
2475	0.342	2.697	0.366

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	TIPOLOGIC	DI CALCO			NITIVO DE	EI FABBRICATI
FABBRICATO FSA CARRELLI Relazione di calcolo fabbricato tecnologico	COMMESSA RS2S	LOTTO 00	CODIFICA D78CL	DOCUMENTO	REV.	FOGLIO 20 di 78

In merito alla scelta della vita nominale il progetto realizza uffici direzionali di Trenitalia e pertanto colloca le opere all'interno del seguente tipo di costruzione:

• Opere ordinarie

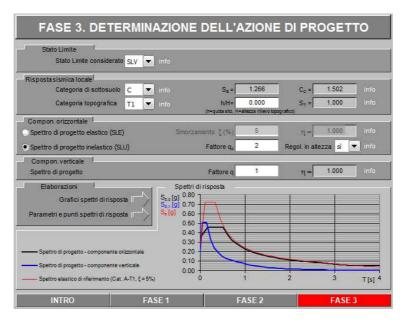
 $V_N \ge 75$ anni

In merito alla scelta della classe d'uso gli edifici si collocano in costruzioni con normali affollamenti, senza contenuti pericolosi per l'ambiente e in assenza di funzioni pubbliche e sociali essenziali, e pertanto:

• Costruzioni con normali affollamenti CLASSE d'uso III $C_u = 1.5$

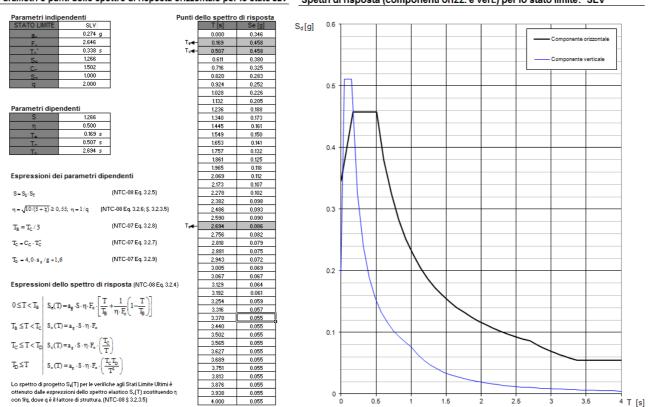
Anche le normative ferroviarie specifiche non prevedono particolari prescrizioni per questo tipo di costruzioni e destinazione d'uso.

Di seguito i parametri dell'azione simica differenziata per i vari Stati Limite.

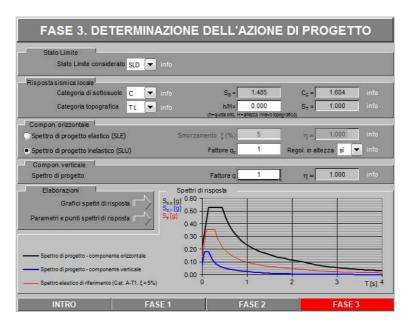

SLATO	T _R	a _g	F _o	T _c *
LIMITE	[anni]	[g]	[-]	[s]
SLO	68	0.118	2.525	0.265
SLD	113	0.141	2.535	0.277
SLV	1068	0.274	2.646	0.338
SLC	2193	0.331	2.690	0.362

Si considera il terreno di fondazione all'interno della classe di sottosuolo di tipo C.

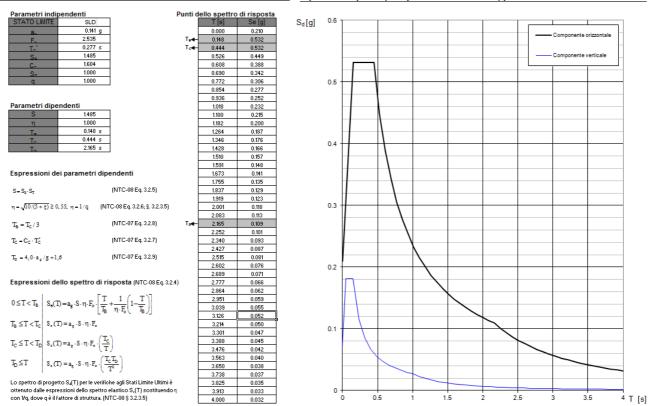
Si collocano il sito nella categoria topografica T1.


TIPOLOGICI	– Giampi	lieri - Fiumefr	eddo	NITIVO DE	I FABBRICATI
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO 21 di 78
	TIPOLOGICI FABBRICAT	TIPOLOGICI – Giampi FABBRICATO FSA – R COMMESSA LOTTO	TIPOLOGICI – Giampilieri - Fiumefr FABBRICATO FSA – Ricovero carre COMMESSA LOTTO CODIFICA	TIPOLOGICI – Giampilieri - Fiumefreddo FABBRICATO FSA – Ricovero carrelli COMMESSA LOTTO CODIFICA DOCUMENTO	FABBRICATO FSA – Ricovero carrelli COMMESSA LOTTO CODIFICA DOCUMENTO REV.

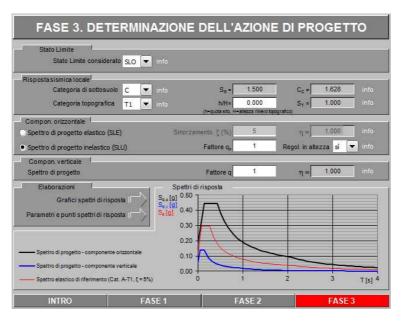
Seguono gli spettri in SLV:


Di seguito si riporta a titolo di esempio lo **spettro di progetto** per lo **Stato Limite di salvaguardia della Vita SLV** relativamente alle componenti **orizzontali**, con coefficiente di smorzamento strutturale canonico pari al 5%.

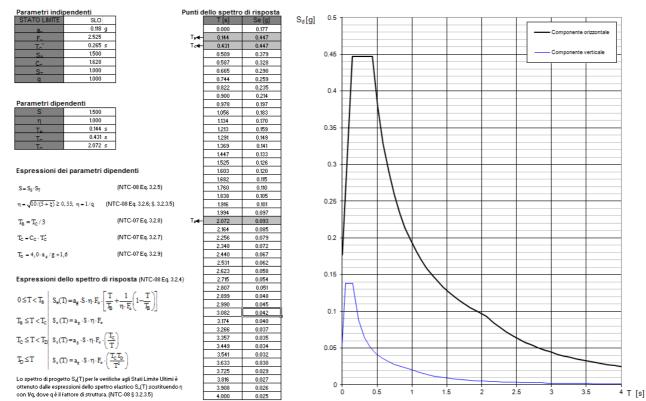
Parametri e punti dello spettro di risposta orizzontale per lo stato \$LV Spettri di risposta (componenti orizz. e vert.) per lo stato limite: SLV


STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	TIPOLOGICI	DI CALCO - Giampi	_		NITIVO DE	:I FABBRICATI
FABBRICATO FSA CARRELLI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
FABBRICATO FSA CARRELLI Relazione di calcolo fabbricato tecnologico	COMMESSA RS2S	LOTTO 00	CODIFICA D78CL	DOCUMENTO FA 00 00 013	REV.	FOGLIO 22 di 78

Seguono gli spettri in SLD:


Di seguito si riporta a titolo di esempio lo **spettro elastico** per lo **Stato Limite di salvaguardia della Vita SLD** relativamente alle componenti **orizzontali**, con coefficiente di smorzamento strutturale canonico pari al 5%.

Parametri e punti dello spettro di risposta orizzontale per lo stato \$LD Spettri di risposta (componenti orizz. e vert.) per lo stato limite: SLD


ITALFERR GRUPPO FEBROVIE DELLO STATO ITALIANE	TIPOLOGIC	DI CALCO I – Giampi	_		NITIVO DE	I FABBRICATI
FABBRICATO FSA CARRELLI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo fabbricato tecnologico	RS2S	00	D78CL	FA 00 00 013	Α	23 di 78

Seguono gli spettri in SLO:

Di seguito si riporta a titolo di esempio lo **spettro elastico** per lo **Stato Limite di salvaguardia della Vita SLO** relativamente alle componenti **orizzontali**, con coefficiente di smorzamento strutturale canonico pari al 5%.

Parametri e punti dello spettro di risposta orizzontale per lo stato \$LO Spettri di risposta (componenti orizz. e vert.) per lo stato limite: \$LO

	NITIVO

RELAZIONI DI CALCOLO PER IL PROGETTO DEFINITIVO DEI FABBRICATI TIPOLOGICI – Giampilieri - Fiumefreddo

FABBRICATO FSA - Ricovero carrelli

FABBRICATO FSA CARRELLI Relazione di calcolo fabbricato tecnologico

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS2S	00	D78CL	FA 00 00 013	Α	24 di 78

Calcolo del fattore di struttura

Il valore del fattore di struttura q da utilizzare per ciascuna direzione dell'azione sismica, dipende dalla tipologia strutturale, dal suo grado di iperstaticità e dai criteri di progettazione adottati e prende in conto le non linearità di materiale. Esso può essere calcolato mediante la seguente espressione:

$$q = q_0 \cdot K_R$$

dove:

q_o è il valore massimo del fattore di struttura

K_R è un fattore che dipende dalle caratteristiche di regolarità in altezza della costruzione.

Un problema importante è la scelta del valore base del coefficiente di comportamento q_0 , che risulta legato alla tipologia strutturale ed al livello di duttilità attesa. Osservando le tipologie strutturali riportate al punto 7.4.3.1 – NTC2008 si evince che l'edificio in esame può essere riconducibile ad un sistema a telaio.

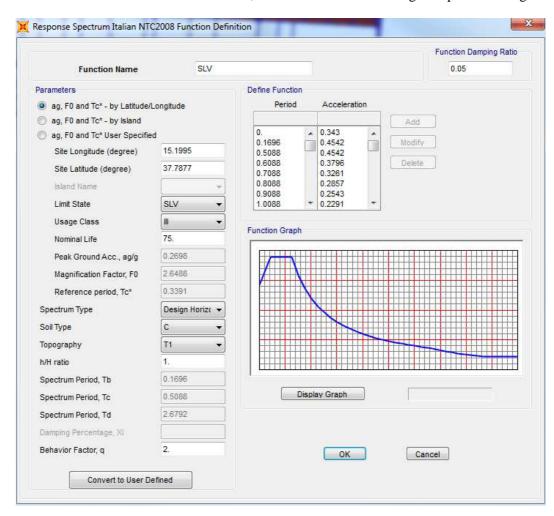
Per quanto riguarda il livello di duttilità attesa, si stabilisce di progettare il fabbricato in accordo con un comportamento strutturale dissipativo caratterizzato da Classe di Duttilità bassa (CD"B").

Pertanto, in base alla tabella 7.4.I delle NTC 2008, il coefficiente di comportamento q_0 può essere valutato come segue:

$$q_0 = 3.0 \cdot \frac{\alpha_u}{\alpha_1}$$

Trattandosi di una struttura a telaio ad un solo piano, in accordo con il paragrafo 7.4.3.2 delle NTC 2008, si assume:

$$\alpha_{\rm u}$$
 / $\alpha_{\rm 1}$ = 1.1


La costruzione risulta NON REGOLARE IN PIANTA pertanto si adotta come valore di α_u / α_l la media tra 1,0 e 1.1; essendo, poi, la struttura anche REGOLARE IN ALTEZZA si può assumere K_R =1. Pertanto il fattore di struttura al quale si farà riferimento per la definizione dello spettro di progetto è

$$q = 3.15$$

Tale valore è il massimo consentito dalla dalla norma per la tipologia strutturale considerata. Si sceglie un valore di struttura in modo da evitare che le sollecitazioni determinate dallo SLD siano superiori a quelle determinate dallo SLV. Pertanto, allo scopo di avere coerenti livelli di sollecitazione, si utilizza il seguente fattore di struttura:

Tale valore viene inserito direttamente nel SAP2000, come si evince nell'immagine riportata di seguito:

3.8 COMBINAZIONI DELLE AZIONI

Le azioni caratteristiche (carichi, distorsioni, variazioni termiche, ecc.) devono essere definite in accordo con quanto indicato nel capitolo 2 della Normativa. Per costruzioni civili o industriali di tipo corrente e per le quali non esistano regolamentazioni specifiche, le azioni di calcolo si ottengono combinando le azioni caratteristiche secondo le seguenti formule di correlazione:

Combinazione fondamentale, utilizzata per gli stati limite ultimi (SLU):

$$\gamma_{G1}\cdot G_1+\gamma_{G2}\cdot G_2+\gamma_{P}\cdot P+\gamma_{Q1}\cdot Q_{k1}+\gamma_{Q2}\cdot \psi_{02}\cdot Q_{k2}+\gamma_{Q3}\cdot \psi_{03}\cdot Q_{k3}+\dots$$

Combinazione frequente, impiegata per gli stati limite di esercizio reversibili (SLE):

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Combinazione quasi permanente, impiegata per gli effetti a lungo termine (SLE):

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Combinazione sismica, impiegata per gli stati limite ultimi (SLU) e di esercizio (SLE) connessi con l'azione sismica E:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$

Categoria/Azione variabile	ψ_{0j}	ψ_{1j}	Ψ 2j
Categoria A Ambienti ad uso residenziale	0,7	0,5	0,3
Categoria B Uffici	0,7	0,5	0,3
Categoria C Ambienti suscettibili di affollamento	0,7	0,7	0,6
Categoria D Ambienti ad uso commerciale	0,7	0,7	0,6
Categoria E Biblioteche, archivi, magazzini e ambienti ad uso industriale	1,0	0,9	0,8
Categoria F Rimesse e parcheggi (per autoveicoli di peso ≤ 30 kN)	0,7	0,7	0,6
Categoria G Rimesse e parcheggi (per autoveicoli di peso > 30 kN)	0,7	0,5	0,3
Categoria H Coperture	0,0	0,0	0,0
Vento	0,6	0,2	0,0
Neve (a quota ≤ 1000 m s.1.m.)	0,5	0,2	0,0
Neve (a quota > 1000 m s.l.m.)	0,7	0,5	0,2
Variazioni termiche	0,6	0,5	0,0

		Coefficiente γ _F	EQU	A1 STR	A2 GEO
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,9 1,1	1,0 1,3	1,0 1,0
Carichi permanenti non strutturali ⁽¹⁾	favorevoli sfavorevoli	γ _{G2}	0,0 1,5	0,0 1,5	0,0 1,3
Carichi variabili	favorevoli sfavorevoli	γ_{Qi}	0,0 1,5	0,0 1,5	0,0 1,3

⁽¹⁾Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare per essi gli stessi coefficienti validi per le azioni permanenti.

Figura 2. Tabelle 2.5.I e 2.6.I estratte dalle NTC08.

PROGETTO DEFINITIVO

RELAZIONI DI CALCOLO PER IL PROGETTO DEFINITIVO DEI FABBRICATI TIPOLOGICI – Giampilieri - Fiumefreddo

FABBRICATO FSA – Ricovero carrelli

FABBRICATO FSA CARRELLI
Relazione di calcolo fabbricato tecnologico

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS2S 00 D78CL FA 00 00 013 A 27 di 78

	_	Ť	_				 		_	0						_			
	DEAD	G1k	G2k	G2k_M	å	Qk_2	×	<i>></i>	Neve	SLV-Ex_q=1.00	SLV-Ey_q=1.00	SLV-Ex	SLV-Ey	SLD-Ex	SLD-Ey	SLD-Ex_n=0.67	SLD-Ey_n=0.67	SLO-Ex	SLO-Ey
01-SLU	1.30	1.30	1.50	1.50	1.50	1.05	0.90		0.75										
02-SLU	1.30		1.50	1.50	1.50	1.05		0.90	0.75										
03-SLU	1.30		1.50	1.50		1.50	0.90		0.75										
04-SLU	1.30		1.50	1.50		1.50		0.90	0.75										
05-SLU	1.30		1.50	1.50			1.50		0.75										
06-SLU	1.30	1.30		1.50				1.50	0.75										
07-SLU	1.30		1.50	1.50			0.90		1.50										
08-SLU	1.30		1.50	1.50				0.90											
09-SLVx_q=1.00	1.00	1.00	1.00	1.00						1.00	0.30								
10-SLVy_q=1.00	1.00		1.00	1.00						0.30	1.00								
1_4 - · · · ·		, =.00															1		
11-SLVx	1.00	1 00	1.00	1.00								1 00	0.30						
12-SLVy	1.00		1.00	1.00								0.30	1.00						
	1.00	1.00	1.00	1.00		l .						0.50	1.00						
13-SLDx	1.00	1 00	1.00	1.00										1.00	0.30				
14-SLDy	1.00		1.00	1.00										0.30	1.00				
14 3104	1.00	1.00	1.00	1.00					l					0.50	1.00				
15-SLDx_n=0.67	1.00	1.00	1.00	1.00												1.00	0.30		
16-SLDy_n=0.67	1.00		1.00	1.00												0.30	1.00		
, <u> </u>																			
17-SLOx	1.00	1.00	1.00	1.00														1.00	0.30
18-SLOy	1.00		1.00	1.00														0.30	1.00
,																			
19-R	1.00	1.00	1.00	1.00	1.00	0.70	0.60		0.50										
20-R	1.00		1.00	1.00	1.00	0.70		0.60											
21-R	1.00		1.00	1.00		1.00	0.60		0.50										
22-R	1.00		1.00	1.00		1.00		0.60	0.50										
23-R	1.00		1.00	1.00			1.00		0.50										
24-R	1.00		1.00	1.00				1.00	0.50										
25-R	1.00		1.00	1.00			0.60		1.00										
26-R	1.00		1.00	1.00				0.60	1.00										
27-FR	1.00	1.00	1.00	1.00															
28-FR	1.00		1.00	1.00			0.20												
29-FR	1.00		1.00	1.00				0.20											
30-FR	1.00		1.00	1.00				5.20	0.20										
- · · ·	1.00	1 1.00	1.00	1.00					0.20										
31-Q	1.00	1 00	1.00	1.00															
31-Q	1.00	1.00	1.00	1.00	1							l		I			l	<u> </u>	

PROGETTO DEFINITIVO

RELAZIONI DI CALCOLO PER IL PROGETTO DEFINITIVO DEI FABBRICATI

TIPOLOGICI - Giampilieri - Fiumefreddo

FABBRICATO FSA - Ricovero carrelli

FABBRICATO FSA CARRELLI Relazione di calcolo fabbricato tecnologico COMMESSA LOTTO CODIFICA DOCUMENTO RS2S D78CL 00 FA 00 00 013

REV. FOGLIO 28 di 78 Α

7					
	ı١	\sim	17	Δ	

DEAD	\rightarrow	Peso proprio elementi strutturali
G1k	\rightarrow	Carichi permanenti strutturali caratteristici
G2k	\rightarrow	Carichi permanenti non strutturali caratteristici
G2k_M	\rightarrow	Carichi permanenti non strutturali caratteristici (muratura esterna/parapetto)
Qk	\rightarrow	Carichi accidentali caratteristici (coperetura)
Qk_2	\rightarrow	Carichi accidentali caratteristici (piano terra)
Vx	\rightarrow	Azione del vento in direzione X
Vy	\rightarrow	Azione del vento in direzione Y
Neve	\rightarrow	Azione della neve in copertura
SLV-		
Ex_q=1.00 SLV-	\rightarrow	Spettro elastico SLV in direzione X
Ey q=1.00	\rightarrow	Spettro elastico SLV in direzione Y
SLV-Ex	\rightarrow	Spettro di progetto SLV in direzione X
SLV-Ey	\rightarrow	Spettro di progetto SLV in direzione Y
SLD-Ex	\rightarrow	Spettro elastico SLD in direzione X
SLD-Ey	\rightarrow	Spettro elastico SLD in direzione Y
SLD-		
Ex_n=0.67	\rightarrow	Spettro elastico SLD in direzione X - con η =2/3
SLD- Ey n=0.67	\rightarrow	Spettro elastico SLD in direzione Y - con η =2/3
SLO-Ex	\rightarrow	Spettro elastico SLO in direzione X
SLO-Ey	•	·
JLO-LY	\rightarrow	Spettro elastico SLO in direzione Y

Le azioni e le resistenze di calcolo sono state ottenute considerando:

- APPROCCIO 1: A1+M1+R1, per le verifiche strutturali;
- APPROCCIO 2: A1+M1+R3, per le verifiche geotecniche.

STALFERR GRUPPO FEBROVIE DELLO STATO ITALIANE	TIPOLOGIC	DI CALCO I – Giampi	-		NITIVO DE	EI FABBRICATI
FABBRICATO FSA CARRELLI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo fabbricato tecnologico	RS2S	00	D78CL	FA 00 00 013		29 di 78

4 ANALISI DINAMICA MODALE CON SPETTRO DI RISPOSTA

Per il calcolo delle sollecitazioni strutturali è stato impiegato il programma di calcolo agli elementi finiti SAP 19 + VISdella CSI.

4.1 ANALISI MODALE

La tabella riporta una sintesi dei risultati dell'analisi modale. I modi considerati per le verifiche sono quelli con massa partecipante significativa. Come da normativa, si è ritenuto opportuno a tal riguardo considerare tutti i modi con massa partecipante superiore al 5% e comunque un numero di modi la cui massa partecipante totale risulti superiore all'85%. La massa totale efficace dell'elevazione è pari a circa 1615 KN s²/m. Seguono alcune immagini rappresentative del modello di calcolo:

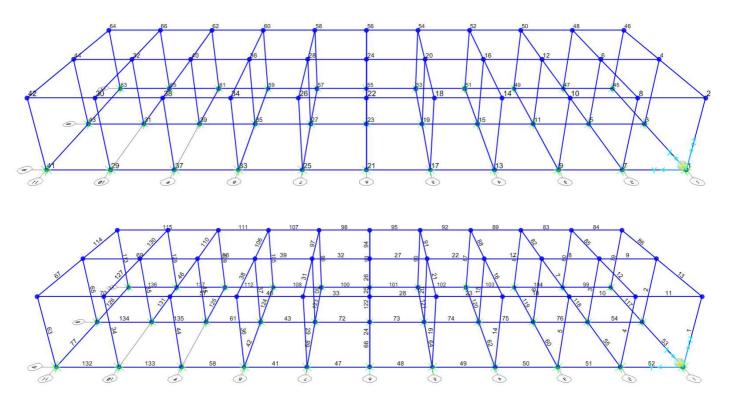


Figura 7-1 Modello di calcolo – Numerazione aste e nodi

Si riportano di seguito i periodi ed i modi di vibrare considerati significativi nell'analisi modale con la percentuale di massa partecipante a ciascun modo.

TABLE: Modal Participating Mass Ratios						
OutputCase			Period	UX	UY	RZ
Text	Text	Unitless	Sec	Unitless	Unitless	Unitless
MODAL	Mode	1	0.5487	85%	0%	4%
MODAL	Mode	2	0.5077	0%	89%	0%
MODAL	Mode	3	0.4981	4%	0%	82%
MODAL	Mode	4	0.1774	0%	0%	0%
MODAL	Mode	5	0.1713	0%	0%	0%
MODAL	Mode	6	0.1644	0%	0%	0%
MODAL	Mode	7	0.1606	0%	0%	0%
MODAL	Mode	8	0.1568	0%	0%	0%
MODAL	Mode	9	0.1529	0%	0%	0%
MODAL	Mode	10	0.1521	0%	0%	0%
MODAL	Mode	11	0.1518	0%	0%	0%
MODAL	Mode	12	0.1501	0%	0%	0%
MODAL	Mode	13	0.1453	0%	0%	0%
MODAL	Mode	14	0.1451	0%	0%	0%
MODAL	Mode	15	0.1449	0%	0%	0%
MODAL	Mode	16	0.1425	0%	0%	0%
		17				
MODAL	Mode		0.1413	0%	0%	0%
MODAL	Mode	18	0.1411	0%	0%	0%
MODAL	Mode	19	0.1392	0%	0%	0%
MODAL	Mode	20	0.1365	0%	0%	0%
MODAL	Mode	21	0.1360	0%	0%	0%
MODAL	Mode	22	0.1321	0%	0%	0%
MODAL	Mode	23	0.1275	0%	0%	0%
MODAL	Mode	24	0.1264	0%	0%	0%
MODAL	Mode	25	0.1218	0%	0%	0%
MODAL	Mode	26	0.1209	0%	0%	0%
MODAL	Mode	27	0.1203	0%	0%	0%
MODAL	Mode	28	0.1012	0%	0%	0%
MODAL	Mode	29	0.0916	0%	0%	0%
MODAL	Mode	30	0.0907	0%	0%	0%
MODAL	Mode	31	0.0889	0%	0%	0%
MODAL	Mode	32	0.0885	0%	0%	0%
MODAL	Mode	33	0.0879	0%	0%	0%
MODAL	Mode	34	0.0852	0%	0%	0%
MODAL	Mode	35	0.0842	0%	0%	0%
MODAL	Mode	36	0.0815	0%	0%	0%
MODAL	Mode	37	0.0797	0%	0%	0%
MODAL	Mode	38	0.0778	0%	0%	0%
MODAL	Mode	39	0.0757	0%	0%	0%
MODAL	Mode	40	0.0737	0%	0%	0%
MODAL	Mode	40	0.0728	0%	0%	0%
		42		0%		0%
MODAL	Mode		0.0682		0%	
MODAL	Mode	43	0.0661	0%	0%	0%
MODAL	Mode	44	0.0645	0%	0%	0%
MODAL	Mode	45	0.0642	0%	0%	0%
MODAL	Mode	46	0.0628	0%	0%	0%
MODAL	Mode	47	0.0618	0%	0%	0%
MODAL	Mode	48	0.0601	0%	0%	0%
MODAL	Mode	49	0.0591	0%	0%	0%
MODAL	Mode	50	0.0567	0%	0%	0%
MODAL	Mode	51	0.0564	0%	0%	0%
MODAL	Mode	52	0.0535	0%	0%	0%
MODAL	Mode	53	0.0533	0%	0%	0%
MODAL	Mode	53	0.0532	0%	0%	0%
MODAL						
	Mode	55	0.0463	0%	0%	0%
MODAL	Mode	56	0.0457	0%	0%	0%
MODAL	Mode	57	0.0433	0%	0%	0%
MODAL	Mode	58	0.0429	0%	0%	0%
MODAL	Mode	59	0.0420	0%	0%	0%
MODAL	Mode	60	0.0403	0%	0%	0%
MODAL	Mode	61	0.0400	0%	0%	0%
MODAL	Mode	62	0.0392	0%	0%	0%
MODAL	Mode	63	0.0356	0%	0%	0%
MODAL	Mode	64	0.0345	0%	0%	0%
MODAL	Mode	65	0.0336	0%	0%	0%
MODAL	Mode	66	0.0278	0%	0%	0%
MODAL	Mode	67	0.0270	0%	0%	0%
MODAL			0.0270			
	Mode	68		0%	0%	0%
MODAL	Mode	69	0.0210	0%	0%	0%
MODAL	Mode	70	0.0201	0%	0%	0%
MODAL	Mode	71	0.0200	0%	0%	0%
MODAL	Mode	72	0.0162	0%	2%	0%
MODAL	Mode	73	0.0111	0%	0%	0%
MODAL	Mode	74	0.0103	0%	0%	0%
MODAL	Mode	75	0.0095	0%	0%	0%
MODAL	Mode	76	0.0074	0%	0%	5%
MODAL	Mode	77	0.0071	6%	0%	0%
MODAL	Mode	78	0.0071	3%	0%	0%
	Mode	79	0.0033	0%	0%	7%
MODAL						

In accordo alla Normativa attuale la massa partecipante di tutti i modi considerati supera l'85% della massa totale della struttura.

TABLE: Modal Load Participation Ratios							
OutputCase	ItemType	Item	Static	Dynamic			
Text	Text	Text	Percent	Percent			
MODAL	Acceleration	UX	100	99			
MODAL	Acceleration	UY	100	99			
MODAL	Acceleration	UZ	99	96			

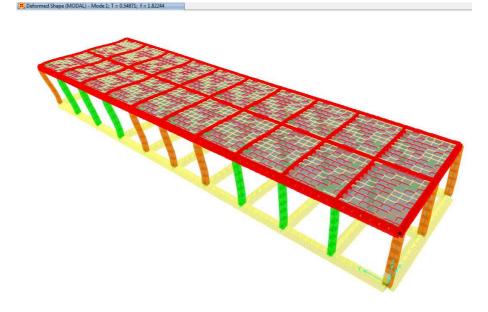


Figura 7-2 Primo modo di vibrazione (Traslazionale in X)

Performed Shape (MODAL) - Mode 2: T = 0.50771: f = 1.96962

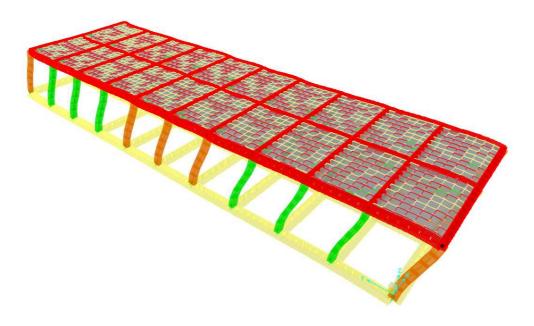


Figura 7-3 Secondo modo di vibrazione (Traslazionale in Y)

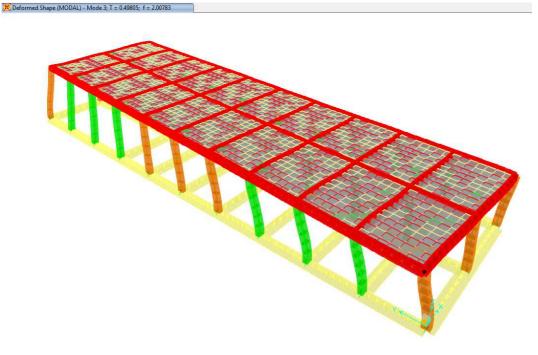


Figura 7-4 Terzo modo di vibrazione (Torsionale)

4.2 DIAGRAMMA DELLE SOLLECITAZIONI

💢 Axial Force Diagram (_ENV-SLU)

K Shear Force 2-2 Diagram (_ENV-SLU)

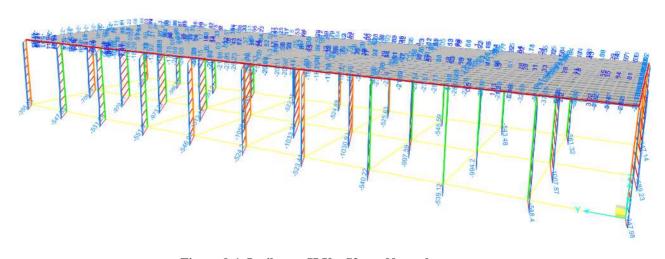


Figura 9-1. Inviluppo SLU – Sforzo Normale

Figura 9-1. Inviluppo SLU – Taglio V2

Moment 2-2 Diagram (_ENV-SLU)

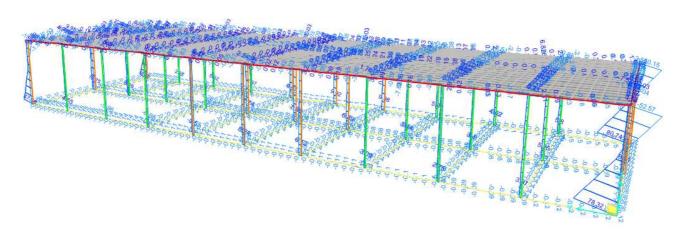


Figura 9-1. Inviluppo SLU – Taglio V3

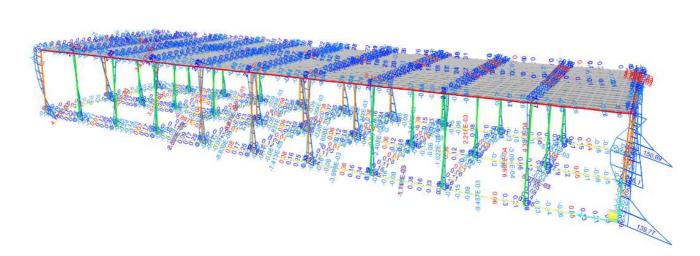


Figura 9-1. Inviluppo SLU – Momento flettente M2

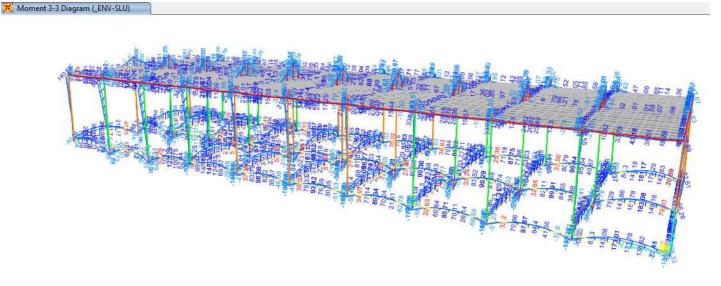


Figura 9-1. Inviluppo SLU – Momento flettente M3

🔀 Axial Force Diagram (_ENV-SLV)

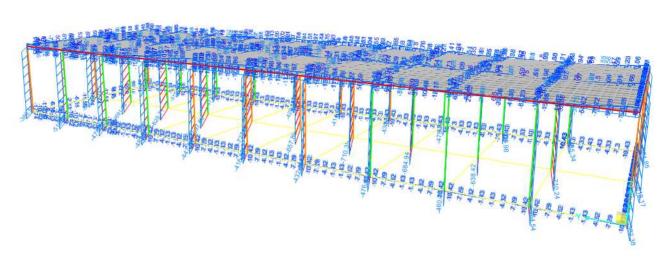


Figura 9-1. Inviluppo SLV – Sforzo Normale

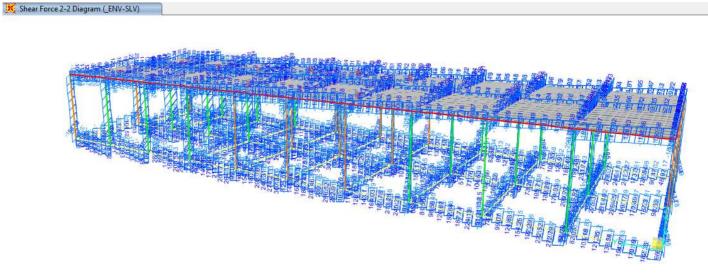


Figura 9-1. Inviluppo SLV – Taglio V2

K Shear Force 3-3 Diagram (_ENV-SLV)

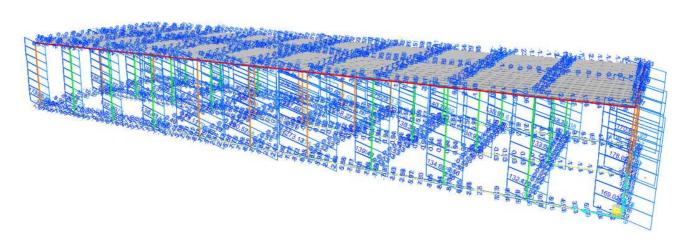


Figura 9-1. Inviluppo SLV – Taglio V3

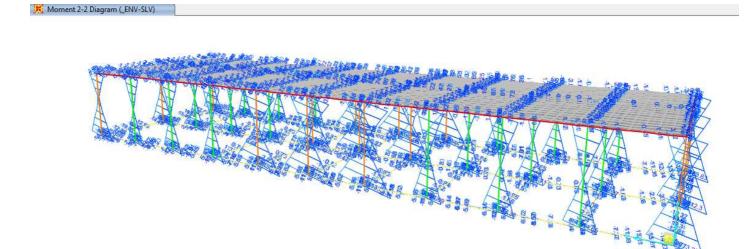


Figura 9-1. Inviluppo SLV – Momento flettente M2

Moment 3-3 Diagram (_ENV-SLV)

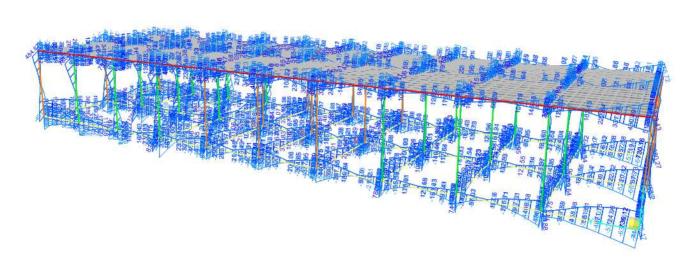
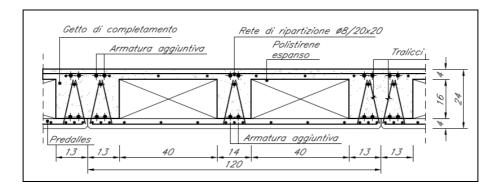


Figura 9-1. Inviluppo SLV – Momento flettente M3


STALFERR GRUPPO HEROVIE DELLO STATO ITALIANE	TIPOLOGIC	DI CALCO I – Giampi			NITIVO DE	EI FABBRICATI
FABBRICATO FSA CARRELLI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo fabbricato tecnologico	RS2S	00	D78CL	FA 00 00 013		38 di 78

5 CALCOLO DEL SOLAIO

Si riporta di seguito la verifica statica del solaio tipologico di massima campata. Le verifiche sono condotte per la striscia generica di 120cm. Le sollecitazioni e le deformazioni sono calcolate mediante gli schemi statici notevoli mentre la sezione è verificata con il software RC-SEC della GEOSTRU.

Solaio H = 4+16+4

È analizzata la generica sezione di 120cm, la predalle non è considerata collaborante.

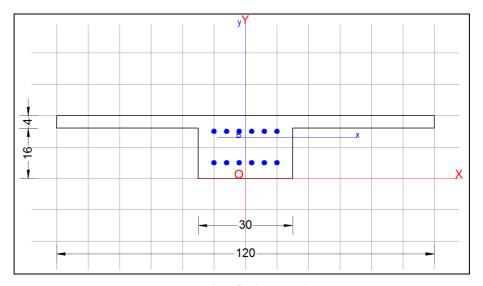
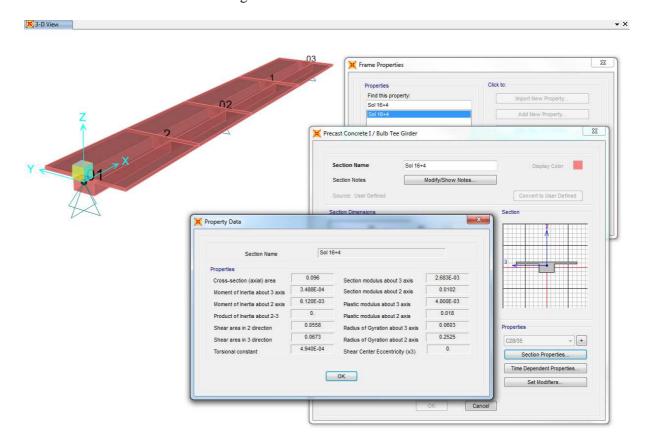
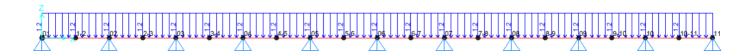
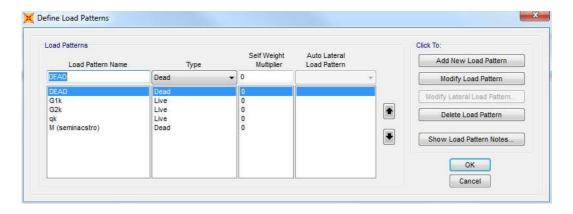



Figura 9-1. Sezione solaio


STALFERR GRUPPO FEBROVIE DELLO STATO ITALIANE	TIPOLOGICI	DI CALCO			NITIVO DE	:I FABBRICATI
FABBRICATO FSA CARRELLI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo fabbricato tecnologico	RS2S	00	D78CL	FA 00 00 013		39 di 78

Per la determinazione delle sollecitazioni agenti si è realizzato un modello a trave continua in SAP2000.

Load patterns



RELAZIONI DI CALCOLO PER IL PROGETTO DEFINITIVO DEI FABBRICATI TIPOLOGICI – Giampilieri - Fiumefreddo

FABBRICATO FSA - Ricovero carrelli

FABBRICATO FSA CARRELLI Relazione di calcolo fabbricato tecnologico
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS2S
 00
 D78CL
 FA 00 00 013
 A
 40 di 78

Load cases

G1k = 3.35

G2k = 2.80

qk = 1.00

M (semincastro) = $(G1k*1.3 + G2k*1.5 + qk*1.5)*l^2/16$

Load combinations

TABLE: Combination Definitions					
ComboName	ComboType	AutoDesign	CaseType	CaseName	ScaleFactor
Text	Text	Yes/No	Text	Text	Unitless
SLU	Linear Add	No	Linear Static	G1k	1.3
SLU			Linear Static	G2k	1.5
SLU			Linear Static	qk	1.5
SLE-δ1	Linear Add	No	Linear Static	G1k	1
SLE-δ1			Linear Static	G2k	1
SLE-δ2	Linear Add	No	Linear Static	qk	1
SLE- δ 1+ δ 2	Linear Add	No	Linear Static	G1k	1
SLE- δ 1+ δ 2			Linear Static	G2k	1
SLE- δ 1+ δ 2			Linear Static	qk	1
SLU+M (semincastro)	Envelope	No	Response Combo	SLU	1
SLU+M (semincastro)			Linear Static	М	1

5.1.1 Verifica di resistenza

Figura 9-1. Diagramma del momento

Figura 9-1. Diagramma del taglio

Descrizione Sezione:

Metodo di calcolo resistenza: Stati Limite Ultimi

Normativa di riferimento: N.T.C.

Tipologia sezione:

Forma della sezione:

Percorso sollecitazione:

Riferimento Sforzi assegnati:

Riferimento alla sismicità:

Sezione predefinita

a T o T rovescio

A Sforzo Norm. costante

Assi x,y principali d'inerzia

Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C28/35	
	Resistenza compress. di calcolo fcd:	15.86	MPa
	Resistenza compress. ridotta fcd':	7.930	MPa
	Deform. unitaria max resistenza ec2:	0.0020	
	Deformazione unitaria ultima ecu:	0.0035	
	Diagramma tensioni-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	32308.0	MPa
	Resis. media a trazione fctm:	2.760	MPa
ACCIAIO -	Tipo:	B450C	
710017110	Resist. caratt. a snervamento fyk:	450.00	MPa
	Resist, caratt, a rottura ftk:	450.00	MPa
	Resist. a snerv. di calcolo fyd:	391.30	MPa
	Resist. ultima di calcolo ftd:	391.30	MPa
	Deform. ultima di calcolo Epu:	0.068	
	Modulo Elastico Ef:	200000.0	MPa
	Diagramma tensioni-deformaz.:	Bilineare finito	

CARATTERISTICHE GEOMETRICHE ED ARMATURE SEZIONE

30.0	cm
16.0	cm
120.0	cm
4.0	cm
6Ø18	(15.3 cm ²)
6Ø18	(15.3 cm ²)
	16.0 120.0 4.0 6Ø18

RELAZIONI DI CALCOLO PER IL PROGETTO DEFINITIVO DEI FABBRICATI

FOGLIO

42 di 78

TIPOLOGICI - Giampilieri - Fiumefreddo

FABBRICATO FSA - Ricovero carrelli

FABBRICATO FSA CARRELLI Relazione di calcolo fabbricato tecnologico COMMESSA LOTTO CODIFICA DOCUMENTO REV. RS2S 00 D78CL FA 00 00 013 Α

Coprif.Inf.(dal baric. barre): cm Coprif.Sup.(dal baric. barre): 5.0 cm

ST.LIM.ULTIMI - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel baricentro (posit. se di compress.) Momento flettente [kNm] intorno all'asse x baric. della sezione Mx con verso positivo se tale da comprimere il lembo sup. della sezione VY Taglio [kN] in direzione parallela all'asse Y del riferim. generale

Momento torcente [kN m] MT

N°Comb.	N	Mx	Vy	MT
1	0.00	-48.18	0.00	0.00
2	0.00	35.41	0.00	0.00
3	0.00	0.10	41.00	0.00

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 4.1 cm Interferro netto minimo barre longitudinali: 2.2 cm Copriferro netto minimo staffe: 4.0 cm

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

S = combinazione verificata / N = combin. non verificata Ver

Ν Sforzo normale baricentrico assegnato [kN] (positivo se di compressione) Momento flettente assegnato [kNm] riferito all'asse x baricentrico Mx Sforzo normale ultimo [kN] nella sezione (positivo se di compress.) N ult Mx ult Momento flettente ultimo [kNm] riferito all'asse x baricentrico Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N ult, Mx ult) e (N, Mx)

Verifica positiva se tale rapporto risulta >=1.000

Yneutro Ordinata [cm] dell'asse neutro a rottura nel sistema di rif. X,Y,O sez.

Momento flettente allo snervamento [kNm] Mx sn. Rapp. di duttilità a rottura solo se N = 0 (travi) x/d

C.Rid Coeff. di riduz. momenti in travi continue [formula (4.1.1)NTC]

N°Comb	Ver	N	Mx	N ult	Mx ult	Mis.Sic.	Yn	M sn	x/d	C.Rid.	As Tesa
1	S	0.00	-48.18	0.13	-65.33	1.356	7.2	-64.78	0.48	1.00	15.3 (1.4)
2	S	0.00	35.41	0.02	81.47	2.301	15.4	76.31	0.31	0.82	15.3 (0.7)
3	S	0.00	0.10	0.02	81.47	814.662	15.4	76.31	0.31	0.82	15.3 (0.7)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max Deform. unit. massima del conglomerato a compressione Deform. unit. del conglomerato nella fibra a 3/7 dell'altezza efficace ec 3/7

Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) Yc max Deform. unit. minima nell'acciaio (negativa se di trazione) es min

Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.) Ys min es max Deform. unit. massima nell'acciaio (positiva se di compressione) Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.) Ys max

N°Comb	ec max	ec 3/7	Yc max	es min	Ys min	es max	Ys max
1	0.00350	-0.00069	0.0	0.00105	5.0	-0.00384	15.0
2	0.00350	-0.00303	20.0	-0.00031	15.0	-0.00792	5.0

RELAZIONI DI CALCOLO PER IL PROGETTO DEFINITIVO DEI FABBRICATI

TIPOLOGICI - Giampilieri - Fiumefreddo

FABBRICATO FSA - Ricovero carrelli

FABBRICATO FSA CARRELLI Relazione di calcolo fabbricato tecnologico COMMESSA LOTTO CODIFICA DOCUMENTO REV. **FOGLIO** RS2S 43 di 78 00 D78CL FA 00 00 013 Α

20.0 -0.00031 15.0 -0.00792 5.0

METODO SLU - VERIFICHE A TAGLIO SENZA ARMATURE TRASVERSALI (§ 4.1.2.1.3.1 NTC)

S = comb.verificata a taglio/ N = comb. non verificata Ver

Taglio agente [daN] uguale al taglio Vy di comb. (sollecit. retta) Vsdu

Vwct Taglio trazione resistente [kN] in assenza di staffe [formula (4.1.14)NTC]

d Altezza utile sezione [cm] bw Larghezza minima sezione [cm]

Rapporto geometrico di armatura longitudinale [<0.02] Ro

Scp Tensione media di compressione nella sezione [Mpa]

N°Comb	Ver	Vsdu	Vwct	d	bw	Ro	Scp
1	S	0.00	41.32	15.0	30.0	0.0200	0.00
2	S	0.00	41.32	15.0	30.0	0.0200	0.00
3	S	41.00	41.32	15.0	30.0	0.0200	0.00

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	TIPOLOGIC	DI CALCO I – Giampi	_		NITIVO DE	:I FABBRICATI
FABBRICATO FSA CARRELLI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo fabbricato tecnologico	RS2S	00	D78CL	FA 00 00 013		44 di 78

5.1.2 Verifica di deformabilità

La verifica di deformabilità è stata condotta secondo il capitolo 4.2.4.1 delle NTC2008. Il valore dello spostamento ortogonale all'asse dell'elemento è definito come:

$$\delta_{tot} = \delta_1 + \delta_2$$

essendo:

 δ_c = monta iniziale della trave;

 $\delta 1$ = spostamento elastico carichi permanenti;

 $\delta 2$ = spostamento elastico carichi variabili;

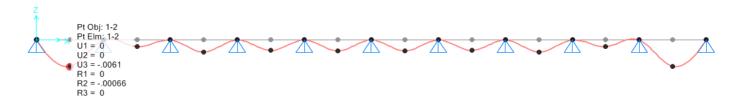


Figura 9-1. Spostamento elastico dovuto ai permanenti

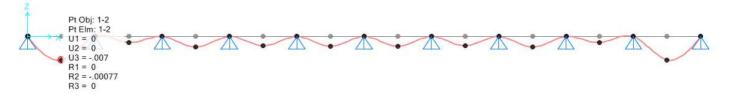


Figura 9-1. Spostamento elastico dovuto ai permanenti + variabili

$$\begin{array}{lll} \delta_1 = 0.60 \text{cm} & & & \\ \delta_2 = 0.10 \text{cm} & & < L/\ 250 = 2.46 \text{cm} & \text{ok} \\ \delta_{tot} = \delta_1 + \delta_2 = 0.70 \text{cm} & & < L/\ 200 = 3.07 \text{cm} & \text{ok} \end{array}$$

6 VERIFICA AGLI STATI LIMITE ULTIMI - ELEVAZIONE

Il codice di verifica utilizzato per la progettazione e la verifica degli elementi in c.a è l'NTC2008.

I coefficienti parziali di sicurezza relativi a calcestruzzo ed acciaio utilizzati nei calcoli sono, rispettivamente:

 $\gamma_{c} = 1,50$

 $\gamma_s = 1,15$

La conversione da resistenza cubica, R_{ck} , a resistenza cilindrica, f_{ck} , è effettuato attraverso un fattore di conversione constante pari a 0,83.

Azioni assiali e flettenti

Le verifiche di resistenza per azioni assiali e flettenti vengono effettuate per mezzo di domini di resistenza tridimensionali, calcolati con riferimento ai possibili campi di rottura delle sezioni.

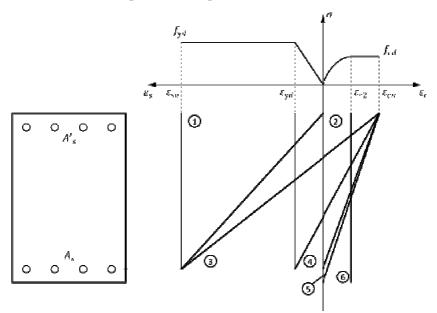


Figura 1: possibili campi di rottura della sezione

Per i materiali sono stati assunti i seguenti legami costitutivi:

• per il calcestruzzo è stato utilizzato un legame di tipo "stress-block", definito dai seguenti parametri

 $\varepsilon_{c4} = 0.07\%$

 $\varepsilon_{cu} = 0.35\%$

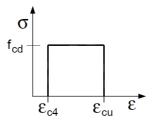


Figura 2: legame costitutivo di tipo stress-block

• per l'acciaio è stato utilizzato un legame di tipo "elastico-perfettamente plastico", definito dai seguenti parametri

Es = 200000 MPa

 $\varepsilon_{su} = 0.01$

Il fattore di riduzione della resistenza del calcestruzzo per azioni di lunga durata è stato assunto pari a $\alpha_{cc} = 0.85$.

Taglio

La resistenza degli elementi dotati di armatura trasversale resistente al taglio è calcolata attraverso il modello a traliccio descritto al § 4.1.2.1.3.2 della norma.

L'inclinazione θ dei puntoni di calcestruzzo compressi è determinata in automatico dal programma in modo da massimizzare la resistenza dell'elemento ed è limitata dalla seguente espressione: $1 \le \cot \theta \le 2.5$.

Tale procedura viene applicata per tutti gli elementi ad esclusione delle zone critiche di travi e pilastri primari di strutture in CDA, per le quali viene sempre assunto $\theta=45^{\circ}$.

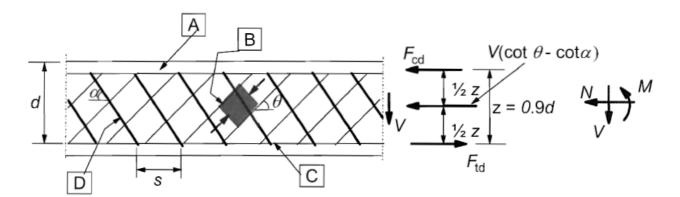


Figura 5: meccanismo resistente a taglio

Effetti delle imperfezioni

Gli effetti delle imperfezioni sono tenuti in considerazione per ogni combinazione che comporti la compressione del pilastro attraverso momenti aggiuntivi calcolati secondo l'approccio suggerito al § 5.2(5),(7) dell'EC2. I parametri di base che definiscono l'entità delle imperfezioni sono stati assunti pari a:

$$\theta_0 = 0,005$$

m = 1

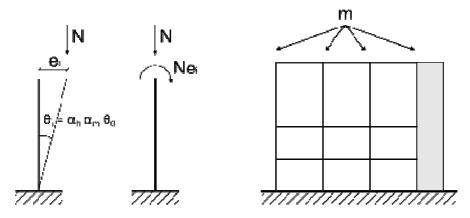


Figura 6: effetti delle imperfezioni geometriche

I momenti aggiuntivi derivanti vengono considerati in entrambe le direzioni principali separatamente.

Parametri sismici utilizzati

La struttura è classificata come struttura a telaio in classe di duttilità bassa. La progettazione e la verifica di tutti gli elementi primari sono state condotte in accordo alle disposizioni relative alla gerarchia delle resistenze e ai dettagli costruttivi riportati al capitolo 7 delle NTC 2008.

Stati limite di esercizio

Le verifiche agli stati limite di esercizio sono condotte con riferimento a condizioni ambientali ordinarie e una tipologia di armatura poco sensibile.

Il coefficiente di omogeneizzazione fra acciaio e calcestruzzo (n = E_s/E_c) è stato assunto pari a 15.

SITALFERR GRUPPO FEBROVIE DELLO STATO ITALIANE	TIPOLOGICI	DI CALCO – Giampi	-		nitivo de	:I FABBRICATI
FABBRICATO FSA CARRELLI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo fabbricato tecnologico	RS2S	00	D78CL	FA 00 00 013		48 di 78

Sistemi di riferimento e convenzioni di segno

Tutte le verifiche sono condotte con riferimento alle sollecitazioni espresse in un sistema di riferimento locale (2-3) baricentrico delle sezioni. Gli eventuali effetti dovuti alle imperfezioni e gli effetti del secondo ordine vengono aggiunti dopo aver ruotato le sollecitazioni locali nel sistema di riferimento principale; le sollecitazioni risultanti sono poi nuovamente proiettate nel sistema locale per le verifiche.

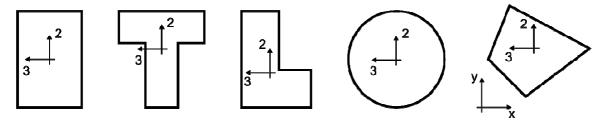


Figura 7: sistema di riferimento locale delle sezioni

Eventuali rotazioni assegnate alle aste sono espresse in senso antiorario a partire dalla configurazione di riferimento. I momenti flettenti sono positivi quando provocano compressione sulle facce positive della sezione individuate dal verso degli assi locali.

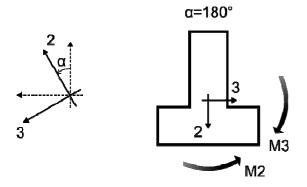


Figura 8: convenzioni di segno per rotazioni e momenti

6.1 VERIFICA DI RESISTENZA DELLE TRAVI

Si riportano di seguito le verifiche per la trave trasversale e longitudinale più sollecitata.

6.1.1 Travata 59-71-57-40-33-28-23-18-10-11

Geometria e materiali

Numero campate	10
Lunghezza campate [m]	6,15 - 6,15 - 6,15 - 6,15 - 6,15 - 6,15 - 6,15 - 6,15 - 6,15
Angolo di rotazione [°]	0
Tipo sezione	Rettangolare
Larghezza b [cm]	50,0
Altezza h [cm]	80,0
Copriferro superiore [cm]	5,0
Copriferro inferiore [cm]	5,0
Copriferro laterale [cm]	5,0
Rck [N/mm²]	33,73
Fyk [N/mm²]	450

Armature longitudinali della travata

Trave	Segmento	L		Arn	natura Longitudi	nale	
ITave	Segmento	[m]	Supe	Superiore		riore	Centrale
59	1	1,80	5-Ø20	3-Ø20	r (420	3-Ø20	
59	2	4,35	5-W2U		5- Ø 20		
71	1	6,15	5- Ø 20		5-Ø20		
57	1	6,15	5-Ø20		5-Ø20		
40	1	4,35	r #20		5-Ø20		
40	2	1,80	5-020	5-Ø20 3-Ø20		2-Ø20	
	1	1,75		3-Ø20		2-Ø20	
33	2	2,65	5- Ø 20		5-Ø20		
	3	1,75		3-Ø20		2-Ø20	
	1	1,75		3-Ø20		2-Ø20	
28	2	2,65	5- Ø 20		5-Ø20		
	3	1,75		3-Ø20		2-Ø20	
22	1	1,80	5-Ø20	3-Ø20	5-Ø20	2-Ø20	
23	2	4,35	5-W20		5-9/20		
18	1	6,15	5-Ø20		5-Ø20		
10	1	6,15	5-Ø20		5-Ø20		
11	1	4,35	5- Ø 20		E Ø20		
11	2	1,80	J 5-W2U	3-Ø20	5-Ø20	3-Ø20	

Verifiche PMM della travata nei confronti della resistenza

Tuesco	Sogmonto	Combinazion	N	M2	M3	δМЗ	D/C
Trave Segment	Segmento	е	[kN]	[kNm]	[kNm]	[kNm]	D/C
59	1	12-SLVy	118,4	7,790	-562,1	0,000	0,87
59	2	12-SLVy	13,30	8,277	-301,8	0,000	0,70
71	1	12-SLVy	65,23	7,895	-280,0	0,000	0,69
57	1	12-SLVy	111,6	9,017	-291,0	0,000	0,75
40	1	12-SLVy	42,22	7,395	-346,5	0,000	0,82

RELAZIONI DI CALCOLO PER IL PROGETTO DEFINITIVO DEI FABBRICATI TIPOLOGICI – Giampilieri - Fiumefreddo

FABBRICATO FSA – Ricovero carrelli

FABBRICATO FSA CARRELLI Relazione di calcolo fabbricato tecnologico
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS2S
 00
 D78CL
 FA 00 00 013
 A
 50 di 78

Trave	Segmento	Combinazion	N	M2	M3	δМЗ	D/C
liave	Segmento	е	[kN]	[kNm]	[kNm]	[kNm]	D/C
	2	12-SLVy	184,7	-5,635	-496,0	0,000	0,80
	1	12-SLVy	75,05	-5,577	-559,7	0,000	0,84
33	2	12-SLVy	118,0	405,2e-3	217,6	0,000	0,59
	3	12-SLVy	140,6	-6,085	-551,1	0,000	0,86
	1	12-SLVy	141,3	-5,964	-540,3	0,000	0,85
28	2	12-SLVy	117,1	332,6e-3	219,6	0,000	0,59
	3	12-SLVy	73,93	-6,051	-567,5	0,000	0,85
23	1	12-SLVy	188,9	-6,218	-480,4	0,000	0,78
23	2	12-SLVy	37,75	8,824	-340,6	0,000	0,81
18	1	12-SLVy	114,2	7,038	-268,7	0,000	0,70
10	1	12-SLVy	62,23	8,158	-289,1	0,000	0,71
11	1	12-SLVy	15,44	7,322	-318,0	0,000	0,74
11	2	12-SLVy	121,0	8,682	-541,2	0,000	0,84

Verifiche a taglio in direzione 2 della travata nei confronti della resistenza

Tueste	Campanta	d	Chaffa	Combinazion	VSd	VRd	D/C
Trave	Segmento	[cm]	Staffe	е	[kN]	[kN]	D/C
59	1	75,0	2-Ø10/150	12-SLVy	-169,1	691,5	0,24
39	2	75,0	2-010/130	12-SLVy	172,7	691,5	0,25
71	1	75,0	2-Ø10/150	12-SLVy	-119,8	691,5	0,17
57	1	75,0	2-Ø10/150	12-SLVy	127,0	691,5	0,18
40	1	75,0	2-Ø10/150	12-SLVy	-162,5	691,5	0,23
40	2	75,0	2-\(\rho\)10/150	12-SLVy	163,5	691,5	0,24
	1	75,0		12-SLVy	-206,4	691,5	0,30
33	2	75,0	2-Ø10/150	12-SLVy	186,1	691,5	0,27
	3	75,0		12-SLVy	209,6	691,5	0,30
	1	75,0		12-SLVy	-206,2	691,5	0,30
28	2	75,0	2-Ø10/150	12-SLVy	185,1	691,5	0,27
	3	75,0		12-SLVy	208,8	691,5	0,30
23	1	75,0	2-Ø10/150	12-SLVy	-159,9	691,5	0,23
23	2	75,0	2-910/150	12-SLVy	162,4	691,5	0,23
18	1	75,0	2-Ø10/150	12-SLVy	120,8	691,5	0,17
10	1	75,0	2-Ø10/150	12-SLVy	121,9	691,5	0,18
11	1	75,0	2-Ø10/150	12-SLVy	-177,6	691,5	0,26
11	2	75,0	2-910/150	12-SLVy	162,7	691,5	0,24

Verifiche a taglio della travata nei confronti della gerarchia delle resistenze

Trave	Sagmonto	d	Staffe	Vg	VEd	VRd	D/C
ITave	Segmento	[cm]	Staile	[kN]	[kN]	[kN]	D/C
59	1	75,0	2-Ø10/150	-99,13	386,4	691,5	0,56
39	2	75,0	2-910/130	-68,75	355,3	691,5	0,51
71	1	75,0	2-Ø10/150	-69,94	283,0	691,5	0,41
57	1	75,0	2-Ø10/150	-71,23	286,1	691,5	0,41
40	1	75,0	2-Ø10/150	-92,58	371,2	691,5	0,54
40	2	75,0	2-910/150	-34,29	311,5	691,5	0,45
	1	75,0		-106,8	473,4	691,5	0,68
33	2	75,0	2-Ø10/150	-83,49	449,9	691,5	0,65
	3	75,0		-45,37	411,3	691,5	0,59

RELAZIONI DI CALCOLO PER IL PROGETTO DEFINITIVO DEI FABBRICATI TIPOLOGICI – Giampilieri - Fiumefreddo

FABBRICATO FSA – Ricovero carrelli

FABBRICATO FSA CARRELLI Relazione di calcolo fabbricato tecnologico
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS2S
 00
 D78CL
 FA 00 00 013
 A
 51 di 78

Tuesse	Comments	d	Staffe	Vg	VEd	VRd	D/C
Trave	Segmento	[cm]	Statie	[kN]	[kN]	[kN]	D/C
	1	75,0		-105,1	472,4	691,5	0,68
28	2	75,0	2-Ø10/150	-81,71	449,0	691,5	0,65
	3	75,0		-43,54	410,6	691,5	0,59
23	1	75,0	2-Ø10/150	-86,44	382,6	691,5	0,55
23	2	75,0	2-910/150	-55,58	352,2	691,5	0,51
18	1	75,0	2-Ø10/150	-71,93	283,9	691,5	0,41
10	1	75,0	2-Ø10/150	-71,84	282,6	691,5	0,41
11	1	75,0	2-Ø10/150	-91,63	385,3	691,5	0,56
11	2	75,0	2-910/150	-32,76	326,1	691,5	0,47

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni caratteristiche

Tuesse	Commonto	Combinazio	N	M2	M3	σc,min	σc,lim	D/C
Trave	Segmento	ne	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
59	1	23-R	-4,941	350,2e-3	-35,54	-636,7e-3	-16,80	0,04
59	2	26-R	3,286	1,342	-38,12	-957,8e-3	-16,80	0,06
71	1	24-R	4,775	828,0e-3	-48,44	-1,142	-16,80	0,07
57	1	19-R	-11,79	2,256	-64,06	-1,634	-16,80	0,10
40	1	24-R	-1,313	988,3e-3	-49,97	-1,201	-16,80	0,07
40	2	19-R	-13,40	2,032	-50,50	-1,011	-16,80	0,06
	1	24-R	-5,323	765,3e-3	-48,46	-880,0e-3	-16,80	0,05
33	2	23-R	-14,32	-224,1e-3	20,94	-494,9e-3	-16,80	0,03
	3	19-R	-13,70	1,827	-47,52	-948,1e-3	-16,80	0,06
	1	24-R	-9,372	755,9e-3	-49,69	-908,5e-3	-16,80	0,05
28	2	23-R	-13,72	-217,1e-3	21,10	-496,8e-3	-16,80	0,03
	3	19-R	-11,61	1,642	-46,03	-907,4e-3	-16,80	0,05
23	1	24-R	-13,15	724,7e-3	-49,68	-914,0e-3	-16,80	0,05
25	2	19-R	-8,081	1,757	-43,78	-1,134	-16,80	0,07
18	1	24-R	-16,30	1,097	-44,82	-1,116	-16,80	0,07
10	1	19-R	-1,595	1,696	-54,03	-1,350	-16,80	0,08
11	1	23-R	-1,109	1,531	-57,93	-1,423	-16,80	0,08
11	2	24-R	-31,63	1,215	-28,72	-612,1e-3	-16,80	0,04

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni quasi permanenti

T	Commonto	Combinazio	N	M2	M3	σc,min	σc,lim	D/C
Trave	Segmento	ne	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
59	1	31-Q	-3,371	163,6e-3	-29,85	-524,6e-3	-12,60	0,04
59	2	31-Q	-3,363	1,219	-38,90	-975,1e-3	-12,60	0,08
71	1	31-Q	-3,726	881,1e-3	-40,38	-981,3e-3	-12,60	0,08
57	1	31-Q	-6,675	1,632	-61,12	-1,511	-12,60	0,12
40	1	31-Q	-2,969	933,9e-3	-44,05	-1,066	-12,60	0,08
40	2	31-Q	-5,438	1,241	-50,29	-942,5e-3	-12,60	0,07
	1	31-Q	-2,521	681,2e-3	-38,16	-694,6e-3	-12,60	0,06
33	2	31-Q	-2,170	-131,3e-3	20,76	-458,9e-3	-12,60	0,04
	3	31-Q	-4,390	1,114	-47,86	-890,9e-3	-12,60	0,07
	1	31-Q	-2,308	647,1e-3	-39,72	-718,3e-3	-12,60	0,06
28	2	31-Q	-1,586	-124,5e-3	20,86	-458,8e-3	-12,60	0,04
	3	31-Q	-3,298	1,025	-46,11	-853,3e-3	-12,60	0,07
23	1	31-Q	-1,763	614,8e-3	-40,73	-732,0e-3	-12,60	0,06

RELAZIONI DI CALCOLO PER IL PROGETTO DEFINITIVO DEI FABBRICATI TIPOLOGICI – Giampilieri - Fiumefreddo

FABBRICATO FSA – Ricovero carrelli

FABBRICATO FSA CARRELLI Relazione di calcolo fabbricato tecnologico
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS2S
 00
 D78CL
 FA 00 00 013
 A
 52 di 78

Trove S	Coamonto	Combinazio	N	M2	M3	σc,min	σc,lim	D/C
Trave	Trave Segmento	ne	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	Б/С
	2	31-Q	-3,204	1,357	-43,54	-1,090	-12,60	0,09
18	1	31-Q	-2,045	1,251	-42,93	-1,066	-12,60	0,08
10	1	31-Q	-470,0e-3	1,226	-54,43	-1,318	-12,60	0,10
11	1	31-Q	-623,9e-3	961,0e-3	-57,60	-1,367	-12,60	0,11
11	2	31-Q	1,454	-134,1e-3	27,71	-475,3e-3	-12,60	0,04

Verifica delle tensioni di esercizio nell'acciaio per combinazioni caratteristiche

Tuesse	Comments	Combinazio	N	M2	М3	σs	σs,lim	D/C
Trave	Segmento	ne	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
59	1	23-R	-4,941	350,2e-3	-35,54	20,10	360,0	0,06
59	2	24-R	7,904	1,320	-38,44	39,63	360,0	0,11
71	1	24-R	4,775	828,0e-3	-48,44	47,40	360,0	0,13
57	1	19-R	-11,79	2,256	-64,06	58,48	360,0	0,16
40	1	24-R	-1,313	988,3e-3	-49,97	47,17	360,0	0,13
40	2	19-R	-13,40	2,032	-50,50	28,37	360,0	0,08
	1	24-R	-5,323	765,3e-3	-48,46	27,61	360,0	0,08
33	2	26-R	-3,738	-142,9e-3	20,62	18,00	360,0	0,05
	3	19-R	-13,70	1,827	-47,52	26,43	360,0	0,07
	1	24-R	-9,372	755,9e-3	-49,69	27,59	360,0	0,08
28	2	26-R	-5,697	-137,6e-3	20,95	17,74	360,0	0,05
	3	19-R	-11,61	1,642	-46,03	25,79	360,0	0,07
22	1	24-R	-13,15	724,7e-3	-49,68	26,90	360,0	0,07
23	2	25-R	-7,222	1,543	-43,78	40,22	360,0	0,11
18	1	19-R	-4,421	1,679	-42,83	40,33	360,0	0,11
10	1	19-R	-1,595	1,696	-54,03	51,62	360,0	0,14
11	1	23-R	-1,109	1,531	-57,93	55,22	360,0	0,15
11	2	23-R	2,218	-189,6e-3	28,20	16,99	360,0	0,05

Verifiche di fessurazione

Tuovo	Coamonto	FREQ	QP
Trave	Segmento	Apertura fessure	Apertura fessure
Ε0	1	ОК	OK
59	2	ОК	OK
71	1	ОК	OK
57	1	ОК	ОК
40	1	ОК	OK
40	2	ОК	ОК
	1	ОК	ОК
33	2	ОК	OK
	3	ОК	ОК
	1	ОК	ОК
28	2	ОК	ОК
	3	ОК	ОК
23	1	ОК	OK
23	2	ОК	OK
18	1	OK	OK
10	1	OK	OK
11	1	OK	OK

RELAZIONI DI CALCOLO PER IL PROGETTO DEFINITIVO DEI FABBRICATI TIPOLOGICI – Giampilieri - Fiumefreddo

FABBRICATO FSA – Ricovero carrelli

FABBRICATO FSA CARRELLI Relazione di calcolo fabbricato tecnologico
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS2S
 00
 D78CL
 FA 00 00 013
 A
 53 di 78

Trava	Sagmenta	FREQ	QP
Trave	Segmento	Apertura fessure	Apertura fessure
	2	OK	ОК

6.2 VERIFICA DI RESISTENZA DEI PILASTRI

Si riportano di seguito le verifiche per il pilastro centrale e di bordo più sollecitato.

6.2.1 Pilastrata 19

Geometria e materiali

Numero piani	1	
Altezza piani [m]	7,65	
Angolo di rotazione [°]	0	
Tipo sezione	Rettangolare	
Larghezza b [cm]	80,0	
Altezza h [cm]	50,0	
Copriferro [cm]	5,0	
Rck [N/mm²]	33,73	
Fyk [N/mm²]	450	

Armature della pilastrata

Dilastra	Pilastro Segmento L [m]	L	Armatura Langitudinala	Staffe		
Pilastio		[m]	Armatura Longitudinale	Dir 2	Dir 3	
	1	1,65		4-Ø10/150	3-Ø10/150	
19	2	4,45	24-Ø24	4-Ø10/250	3-Ø10/250	
	3	1,55		4-Ø10/150	3-Ø10/150	

Verifiche PMM della pilastrata nei confronti della resistenza

Pilastro	Segmento	Combinazio	ß	ß	N	M2	M3	D/C
Filastio Segmento	ne	Pmaj	P _{min}	[kN]	[kNm]	[kNm]	<i>b</i> /c	
	1	12-SLVy			-280,1	-1,151e3	-170,2	0,85
19	2	12-SLVy	0,86	0,87	-261,0	-622,5	73,49	0,44
	3	12-SLVy			-203,6	970,2	232,5	0,78

Verifiche a taglio in direzione 2 della pilastrata nei confronti della resistenza

Pilastro Segmento		d	Staffe	Combinazion	VSd	VRd	D/C	
Pliastro	lastro Segmento [cm]		Statie	е	[kN]	[kN]	D/C	
	1	43,5	4-Ø10/150	11-SLVx	-120,3	802,5	0,15	
19	2	43,5	4-Ø10/250	11-SLVx	-120,3	481,5	0,25	
	3	43,5	4-Ø10/150	11-SLVx	-120,3	802,5	0,15	

Verifiche a taglio in direzione 3 della pilastrata nei confronti della resistenza

Pilastro	Cogmonto	d	Staffe	Combinazion	VSd	VRd	D/C	
Pilastro	Staffe [cm] Staffe		Starre	е	[kN]	[kN]	D/C	
	1	72,4	3-Ø10/150	12-SLVy	-106,8	958,7	0,29	
19	2	72,4	3-Ø10/250	12-SLVy	-106,8	600,8	0,46	
	3	72,4	3-Ø10/150	12-SLVy	-106,8	953,0	0,29	

Verifiche a taglio in direzione 2 della pilastrata nei confronti della gerarchia delle resistenze

Pilastro	Cogmonto	d	Ctoffo	VEd	VRd	D/C
	Segmento	[cm]	Staffe	[kN]	[kN]	D/C

RELAZIONI DI CALCOLO PER IL PROGETTO DEFINITIVO DEI FABBRICATI TIPOLOGICI – Giampilieri - Fiumefreddo

FABBRICATO FSA – Ricovero carrelli

FABBRICATO FSA CARRELLI Relazione di calcolo fabbricato tecnologico

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
RS2S	00	D78CL	FA 00 00 013	Α	55 di 78	

Pilastro	Segmento d Staffe		VEd	VRd	D/C	
	Segmento	[cm]	Stalle	[kN]	[kN]	D/C
	1	43,5	4-Ø10/150	278,0	802,5	0,35
19	2	43,5	4-Ø10/250	278,0	481,5	0,58
	3	43,5	4-Ø10/150	278,0	802,5	0,35

Verifiche a taglio in direzione 3 della pilastrata nei confronti della gerarchia delle resistenze

Pilastro	Commonto	d Staffe		VEd	VRd	D/C
	Segmento	[cm]	Stalle	[kN]	[kN]	D/C
	1	72,4	4-Ø10/150	472,8	957,4	0,49
19	2	72,4	4-Ø10/250	472,8	600,8	0,79
	3	72,4	4-Ø10/150	472,8	951,7	0,50

Verifiche di gerarchia PMM trave-pilastro

		Asse momento	MEd	Pilastro	Pilastro inferiore		Pilastro superiore		
		[°]	[kNm]	NSd [kN]	MRd [kNm]	NSd [kN]	MRd [kNm]		
10	I	-	-	-	-	-	-	-	
19	J	-	-	-	-	-	-	-	

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni caratteristiche

Pilastro	Coamonto	Combinazio	N	M2	M3	σc,min	σc,lim	D/C
Pilastro Seg	Segmento	ne	[kN]	[kN] [kNm] [kl	[kNm]	[N/mm²]	[N/mm²]	5/0
	1	20-R	-383,6	6,518	-52,26	-1,839	-16,80	0,11
19	2	20-R	-326,2	-2,550	103,3	-3,075	-16,80	0,18
	3	20-R	-307,1	-5,573	155,1	-4,476	-16,80	0,27

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni quasi permanenti

Pilastro	Coamonto	Combinazio	N	M2	M3	σc,min	σc,lim	D/C
Pilastro	Segmento	ne	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
	1	31-Q	-348,4	-6,505	-40,21	-1,503	-12,60	0,12
19	2	31-Q	-291,0	2,465	86,18	-2,589	-12,60	0,21
	3	31-Q	-271,9	5,455	128,3	-3,735	-12,60	0,30

Verifica delle tensioni di esercizio nell'acciaio per combinazioni caratteristiche

Pilastro Segmento	Combinazio	N	M2	M3	σs	σs,lim	D/C	
	ne	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	b/C	
	1	20-R	-383,6	6,518	-52,26	-24,11	360,0	0,07
19	2	20-R	-326,2	-2,550	103,3	-37,21	360,0	0,10
	3	20-R	-307,1	-5,573	155,1	67,82	360,0	0,19

Verifiche di fessurazione

Pilastro	Sagmenta	FREQ	QP		
Pilastro	Segmento	Apertura fessure	Apertura fessure		
	1	ОК	ОК		
19	2	OK	OK		
	3	OK	OK		

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	TIPOLOGIC	DI CALCO I – Giampi			NITIVO DE	EI FABBRICATI
FABBRICATO FSA CARRELLI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo fabbricato tecnologico	RS2S	00	D78CL	FA 00 00 013		56 di 78

7 VERIFICA AGLI STATI LIMITE DI ESERCIZIO – ELEVAZIONE

Per costruzioni di Classe III, per limitare i danneggiamenti strutturali, per tutti gli elementi strutturali, inclusi nodi e connessioni tra elementi, deve essere verificato che il valore di progetto di ciascuna sollecitazione (Ed) calcolato in presenza delle azioni sismiche corrispondenti allo SLD ed attribuendo ad η il valore di 2/3, sia inferiore al corrispondente valore della resistenza di progetto (Rd). calcolato secondo le regole specifiche indicate per ciascun tipo strutturale con riferimento alle situazioni eccezionali.

I coefficienti parziali di sicurezza relativi a calcestruzzo ed acciaio utilizzati nei calcoli sono, rispettivamente:

 $\gamma_c = 1,00$ $\gamma_s = 1,00$

7.1 VERIFICA DI RESISTENZA DELLE TRAVI

7.1.1 Travata 59-71-57-40-33-28-23-18-10-11

Geometria e materiali

Numero campate	10
Lunghezza campate [m]	6,15 - 6,15 - 6,15 - 6,15 - 6,15 - 6,15 - 6,15 - 6,15 - 6,15 - 6,15
Angolo di rotazione [°]	0
Tipo sezione	Rettangolare
Larghezza b [cm]	50,0
Altezza h [cm]	80,0
Copriferro superiore [cm]	5,0
Copriferro inferiore [cm]	5,0
Copriferro laterale [cm]	5,0
Rck [N/mm²]	33,73
Fyk [N/mm²]	450

Armature longitudinali della travata

Travo	Sagmenta	L		Arn	natura Longitudi	nale	
Trave	Segmento	[m]	Supe	Superiore		Inferiore	
F0	1	1,80	F (420	3-Ø20	r d20	3-Ø20	
59	2	4,35	5-Ø20		- 5-Ø20		
71	1	6,15	5-Ø20		5- Ø 20		
57	1	6,15	5-Ø20		5- Ø 20		
40	1	4,35	5- Ø 20		5-Ø20		
40	2	1,80	3-W2U	3-Ø20	3-W20	2-Ø20	
	1	1,75		3-Ø20	5-Ø20	2-Ø20	
33	2	2,65	5-Ø20				
	3	1,75		3-Ø20		2-Ø20	
	1	1,75		3-Ø20		2-Ø20	
28	2	2,65	5-Ø20		5- Ø 20		
	3	1,75		3-Ø20		2-Ø20	
23	1	1,80	5-Ø20	3-Ø20	5-Ø20	2-Ø20	
23	2	4,35	j 5-ψ20		5-Ø20		
18	1	6,15	5-Ø20		5- Ø 20		

RELAZIONI DI CALCOLO PER IL PROGETTO DEFINITIVO DEI FABBRICATI TIPOLOGICI - Giampilieri - Fiumefreddo

FABBRICATO FSA - Ricovero carrelli

00

FABBRICATO FSA CARRELLI Relazione di calcolo fabbricato tecnologico COMMESSA LOTTO RS2S

CODIFICA D78CL

DOCUMENTO FA 00 00 013

REV. Α

FOGLIO 57 di 78

Tuesse	Comments	L		Armatura Longitudinale					
Trave Segmento		[m]	Superiore		Infe	Centrale			
10	1	6,15	5- Ø 20		5- Ø 20				
11	1	4,35	r d20		r d20				
11	2	1,80	5- Ø 20	3- Ø 20	5- Ø 20	3-Ø20			

Verifiche PMM della travata nei confronti della resistenza

Trave	Segmento	Combinazion	N	M2	M3	δМЗ	D/C
ITave	Segmento	е	[kN]	[kNm]	[kNm]	[kNm]	Б/С
59	1	16- SLDy_n=0.67	79,87	5,393	-394,0	0,000	0,52
33	2	16- SLDy_n=0.67	8,021	6,016	-218,7	0,000	0,44
71	1	16- SLDy_n=0.67	43,04	5,783	-202,7	0,000	0,43
57	1	16- SLDy_n=0.67	74,26	6,647	-218,6	0,000	0,48
40	1	16- SLDy_n=0.67	27,80	5,344	-251,0	0,000	0,51
40	2	16- SLDy_n=0.67	124,5	-3,465	-355,3	0,000	0,50
	1	16- SLDy_n=0.67	50,12	-3,616	-395,2	0,000	0,51
33	2	16- SLDy_n=0.67	35,00	143,3e-3	167,9	0,000	0,35
	3	16- SLDy_n=0.67	94,47	-3,799	-392,3	0,000	0,53
	1	16- SLDy_n=0.67	95,47	-3,884	-382,5	0,000	0,52
28	2	16- SLDy_n=0.67	79,06	166,4e-3	153,7	0,000	0,36
	3	16- SLDy_n=0.67	49,23	-3,793	-403,0	0,000	0,52
23	1	16- SLDy_n=0.67	128,4	-4,055	-341,9	0,000	0,48
23	2	16- SLDy_n=0.67	24,73	6,419	-247,0	0,000	0,50
18	1	16- SLDy_n=0.67	77,36	5,150	-196,7	0,000	0,44
10	1	16- SLDy_n=0.67	42,37	5,932	-215,0	0,000	0,45
11	1	16- SLDy_n=0.67	10,35	5,330	-235,9	0,000	0,47
11	2	16- SLDy_n=0.67	83,26	6,064	-374,0	0,000	0,50

Verifiche a taglio in direzione 2 della travata nei confronti della resistenza

Trava	Sagmente	d	Staffe	Combinazion	VSd	VRd	D/C
Trave	Segmento	[cm]	Stalle	е	[kN]	[kN]	b/C

RELAZIONI DI CALCOLO PER IL PROGETTO DEFINITIVO DEI FABBRICATI TIPOLOGICI – Giampilieri - Fiumefreddo

FABBRICATO FSA – Ricovero carrelli

FABBRICATO FSA CARRELLI Relazione di calcolo fabbricato tecnologico
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS2S
 00
 D78CL
 FA 00 00 013
 A
 58 di 78

Trave	Segmento	d	Staffe	Combinazion	VSd	VRd	D/C
Trave	Jeginento	[cm]	Starre	е	[kN]	[kN]	5/6
59	1	75,0	2-Ø10/150	16- SLDy_n=0.67	-128,3	795,2	0,16
33	2	75,0	2 \$10,130	16- SLDy_n=0.67	131,7	795,2	0,17
71	1	75,0	2-Ø10/150	16- SLDy_n=0.67	-95,38	795,2	0,12
57	1	75,0	2-Ø10/150	16- SLDy_n=0.67	102,1	795,2	0,13
40	1	75,0	2-Ø10/150	16- SLDy_n=0.67	-124,0	795,2	0,16
40	2	75,0	2-910/130	16- SLDy_n=0.67	125,3	795,2	0,16
	1	75,0		16- SLDy_n=0.67	-153,9	795,2	0,19
33	2	75,0	2-Ø10/150	16- SLDy_n=0.67	133,5	795,2	0,17
	3	75,0		16- SLDy_n=0.67	157,0	795,2	0,20
	1	75,0		16- SLDy_n=0.67	-154,0	795,2	0,19
28	2	75,0	2-Ø10/150	16- SLDy_n=0.67	132,7	795,2	0,17
	3	75,0		16- SLDy_n=0.67	156,3	795,2	0,20
23	1	75,0	2-Ø10/150	16- SLDy_n=0.67	-122,5	795,2	0,15
23	2	75,0	2-\$10,130	16- SLDy_n=0.67	124,5	795,2	0,16
18	1	75,0	2-Ø10/150	16- SLDy_n=0.67	95,89	795,2	0,12
10	1	75,0	2-Ø10/150	16- SLDy_n=0.67	97,34	795,2	0,12
11	1	75,0	2-Ø10/150	16- SLDy_n=0.67	-137,1	795,2	0,17
	2	75,0	2-910/130	16- SLDy_n=0.67	122,1	795,2	0,15

7.2 VERIFICA DI RESISTENZA DEI PILASTRI

7.2.1 Pilastrata 19

Geometria e materiali

Numero piani	1	
Altezza piani [m]	7,65	
Angolo di rotazione [°]	0	
Tipo sezione	Rettangolare	
Larghezza b [cm]	80,0	
Altezza h [cm]	50,0	
Copriferro [cm]	5,0	
Rck [N/mm²]	33,73	
Fyk [N/mm²]	450	

Armature della pilastrata

Pilastro	Coamonto	L	Aumoture Longitudinale	Staffe		
Pilastro Segmenti	Segmento	[m]	Armatura Longitudinale	Dir 2	Dir 3	
	1	1,65		4-Ø10/150	3-Ø10/150	
19	2	4,45	24-Ø24	4-Ø10/250	3-Ø10/250	
	3	1,55		4-Ø10/150	3-Ø10/150	

Verifiche PMM della pilastrata nei confronti della resistenza

Pilastro	Sagmente	Combinazio	o	o	N	M2	M3	D/C
Pilastro	Segmento	ne	$oldsymbol{eta}_{maj}$	β _{min}	[kN]	[kNm]	[kNm]	D/C
		16-						
	1	SLDy_n=0.6						
		7			-301,9	-792,1	-127,9	0,49
		16-						
19	2	SLDy_n=0.6	0,86	0,87				
		7			-282,7	-429,0	50,18	0,24
		16-						
	3	SLDy_n=0.6						
		7			-225,4	663,7	202,4	0,46

Verifiche a taglio in direzione 2 della pilastrata nei confronti della resistenza

Pilastro	Commente	d	Chaffa	Combinazion	VSd	VRd	D/C
Pilastro Segmento		[cm]	Staffe	е	[kN]	[kN]	D/C
	1	43,5	4-Ø10/150	15- SLDx_n=0.67	-88,30	922,8	0,10
19	2	43,5	4-Ø10/250	15- SLDx_n=0.67	-88,30	553,7	0,16
	3	43,5	4-Ø10/150	15- SLDx_n=0.67	-88,30	922,8	0,10

Verifiche a taglio in direzione 3 della pilastrata nei confronti della resistenza

Pilastro	Sagmente	d	Staffe	Combinazion	VSd	VRd	D/C
Pilastro	Segmento	[cm]	Stalle	е	[kN]	[kN]	D/C

RELAZIONI DI CALCOLO PER IL PROGETTO DEFINITIVO DEI FABBRICATI TIPOLOGICI – Giampilieri - Fiumefreddo

FABBRICATO FSA – Ricovero carrelli

FABBRICATO FSA CARRELLI Relazione di calcolo fabbricato tecnologico
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS2S
 00
 D78CL
 FA 00 00 013
 A
 60 di 78

Pilastro	Commente	d Stoffe		Combinazion	VSd	VRd	D/C	
Pliastro	Pilastro Segmento [cm]		Staffe	е	[kN]	[kN]	D/C	
	1	72,4	3-Ø10/150	16- SLDy_n=0.67	-73,67	1,152e3	0,16	
19	2	72,4	3-Ø10/250	16- SLDy_n=0.67	-73,67	691,0	0,27	
	3	72,4	3-Ø10/150	16- SLDy_n=0.67	-73,67	1,152e3	0,16	

OGE.		

RELAZIONI DI CALCOLO PER IL PROGETTO DEFINITIVO DEI FABBRICATI TIPOLOGICI – Giampilieri - Fiumefreddo

FABBRICATO FSA – Ricovero carrelli

FABBRICATO FSA CARRELLI Relazione di calcolo fabbricato tecnologico

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS2S	00	D78CL	FA 00 00 013	Α	61 di 78

7.3 VERIFICA DELLO STATO LIMITE DI DANNO

Per le costruzioni ricadenti in classe d'uso III si deve verificare che l'azione sismica di progetto non produca danni agli elementi costruttivi senza funzione strutturale tali da rendere temporaneamente non operativa la costruzione.

Nel caso delle costruzioni civili e industriali questa condizione si può ritenere soddisfatta quando gli spostamenti interpiano ottenuti dall'analisi in presenza dell'azione sismica di progetto relativa allo SLO siano inferiori ai 2/3 di (0.005 h).

			DRIFT	- SLO - CAP_	7.3.7.2				
Joint	OutputCase	CaseType	StepType	U1	U2	Utot	h	2/3*0.005*h	
Text	Text	Text	Text	m	m	mm	m	mm	VERIFICA
2	17-SLOx	Combination	Max	0.0224	0.0076	23.66	7.75	25.83	ok
2	17-SLOx	Combination	Min	-0.0224	-0.0075	23.64	7.75	25.83	ok
4	17-SLOx	Combination	Max	0.0224	0.0074	23.61	7.75	25.83	ok
4	17-SLOx	Combination	Min	-0.0224	-0.0074	23.61	7.75	25.83	ok
6	17-SLOx	Combination	Max	0.0225	0.0074	23.74	7.75	25.83	ok
6	17-SLOx	Combination	Min	-0.0225	-0.0074	23.74	7.75	25.83	ok
8	17-SLOx	Combination	Max	0.0226	0.0076	23.79	7.75	25.83	ok
8	17-SLOx	Combination	Min	-0.0225	-0.0076	23.75	7.75	25.83	ok
10 10	17-SLOx	Combination	Max	0.0227	0.0076	23.93	7.75	25.83	ok
	17-SLOx	Combination	Min	-0.0227	-0.0075	23.89	7.75	25.83	ok
12 12	17-SLOx	Combination	Max	0.0227	0.0074	23.88	7.75	25.83	ok
14	17-SLOx 17-SLOx	Combination Combination	Min Max	-0.0227 0.0229	-0.0074 0.0075	24.08	7.75 7.75	25.83 25.83	ok ok
14	17-SLOX	Combination	Min	-0.0228	-0.0075	24.05	7.75	25.83	ok
16	17-SLOX	Combination	Max	0.0229	0.0073	24.04	7.75	25.83	ok
16	17-SLOX	Combination	Min	-0.0229	-0.0074	24.05	7.75	25.83	ok
18	17-SLOx	Combination	Max	0.0223	0.0075	24.24	7.75	25.83	ok
18	17-SLOx	Combination	Min	-0.0230	-0.0075	24.22	7.75	25.83	ok
20	17-SLOX	Combination	Max	0.0230	0.0073	24.20	7.75	25.83	ok
20	17-SLOx	Combination	Min	-0.0230	-0.0074	24.21	7.75	25.83	ok
22	17-SLOx	Combination	Max	0.0231	0.0074	24.29	7.75	25.83	ok
22	17-SLOx	Combination	Min	-0.0231	-0.0074	24.27	7.75	25.83	ok
24	17-SLOx	Combination	Max	0.0231	0.0074	24.27	7.75	25.83	ok
24	17-SLOx	Combination	Min	-0.0231	-0.0074	24.27	7.75	25.83	ok
26	17-SLOx	Combination	Max	0.0231	0.0074	24.26	7.75	25.83	ok
26	17-SLOx	Combination	Min	-0.0231	-0.0074	24.24	7.75	25.83	ok
28	17-SLOx	Combination	Max	0.0231	0.0074	24.24	7.75	25.83	ok
28	17-SLOx	Combination	Min	-0.0231	-0.0074	24.24	7.75	25.83	ok
30	17-SLOx	Combination	Max	0.0227	0.0075	23.89	7.75	25.83	ok
30	17-SLOx	Combination	Min	-0.0226	-0.0075	23.85	7.75	25.83	ok
32	17-SLOx	Combination	Max	0.0227	0.0074	23.85	7.75	25.83	ok
32	17-SLOx	Combination	Min	-0.0227	-0.0074	23.85	7.75	25.83	ok
34	17-SLOx	Combination	Max	0.0229	0.0075	24.13	7.75	25.83	ok
34	17-SLOx	Combination	Min	-0.0229	-0.0075	24.10	7.75	25.83	ok
36	17-SLOx	Combination	Max	0.0229	0.0074	24.10	7.75	25.83	ok
36	17-SLOx	Combination	Min	-0.0229	-0.0074	24.11	7.75	25.83	ok
38	17-SLOx	Combination	Max	0.0228	0.0075	24.00	7.75	25.83	ok
38	17-SLOx	Combination	Min	-0.0228	-0.0075	23.97	7.75	25.83	ok
40	17-SLOx	Combination	Max	0.0228	0.0074	23.97	7.75	25.83	ok
40	17-SLOx	Combination	Min	-0.0228	-0.0074	23.97	7.75	25.83	ok
42	17-SLOx	Combination	Max	0.0226	0.0075	23.78	7.75	25.83	ok
42	17-SLOx	Combination	Min	-0.0226	-0.0075	23.77	7.75	25.83	ok
44	17-SLOx	Combination	Max	0.0226	0.0074	23.75	7.75	25.83	ok
44	17-SLOx	Combination	Min	-0.0226	-0.0074	23.75	7.75	25.83	ok
46	17-SLOx	Combination	Max	0.0224	0.0075	23.65	7.75	25.83	ok
46	17-SLOx	Combination	Min	-0.0224	-0.0075	23.67	7.75	25.83	ok
48	17-SLOx	Combination	Max	0.0225	0.0076	23.75	7.75	25.83	ok
48	17-SLOx	Combination	Min	-0.0226	-0.0075	23.79	7.75	25.83	ok
50	17-SLOx	Combination	Max	0.0227	0.0075	23.89	7.75	25.83	ok
50	17-SLOx	Combination	Min	-0.0227	-0.0075	23.93	7.75	25.83	ok
52	17-SLOx	Combination	Max	0.0228	0.0075	24.04	7.75	25.83	ok
52	17-SLOx	Combination	Min	-0.0229	-0.0075	24.08	7.75	25.83	ok
54	17-SLOx	Combination	Max	0.0230	0.0075	24.21	7.75	25.83	ok
54	17-SLOx	Combination	Min	-0.0231	-0.0075	24.24	7.75	25.83	ok
56	17-SLOx	Combination	Max	0.0231	0.0074	24.26	7.75	25.83	ok
56	17-SLOx	Combination	Min	-0.0231	-0.0074	24.29	7.75	25.83	ok
58	17-SLOx	Combination	Max	0.0231	0.0074	24.23	7.75	25.83	ok
58	17-SLOx	Combination	Min	-0.0231	-0.0074	24.26	7.75	25.83	ok
60	17-SLOx	Combination	Max	0.0229	0.0075	24.09	7.75	25.83	ok
60	17-SLOx	Combination	Min	-0.0229	-0.0075	24.13	7.75	25.83	ok
62	17-SLOx	Combination	Max	0.0228	0.0075	23.96	7.75	25.83	ok
62	17-SLOx	Combination	Min	-0.0228	-0.0075	24.01	7.75	25.83	ok
64	17-SLOx	Combination	Max	0.0226	0.0075	23.77	7.75	25.83	ok
64	17-SLOx	Combination	Min	-0.0226	-0.0075	23.80	7.75	25.83	ok
66	17-SLOx	Combination	Max	0.0226	0.0075	23.84	7.75	25.83	ok
66	17-SLOx	Combination	Min	-0.0227	-0.0075	23.89	7.75	25.83	ok

RELAZIONI DI CALCOLO PER IL PROGETTO DEFINITIVO DEI FABBRICATI

TIPOLOGICI - Giampilieri - Fiumefreddo

FABBRICATO FSA – Ricovero carrelli

FABBRICATO FSA CARRELLI Relazione di calcolo fabbricato tecnologico COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RS2S D78CL 62 di 78 00 FA 00 00 013 Α

Joint	0	ConsTune		- SLO - CAP U1	_/.3./.2 U2	Utot	h	2/2*0 005*1	
Text	OutputCase Text	CaseType Text	StepType Text	m m	m m	mm	m m	2/3*0.005*h mm	VERIFICA
2	18-SLOy	Combination	Max	0.0068	0.0247	25.57	7.75	25.83	ok
2	18-SLOv	Combination	Min	-0.0068	-0.0246	25.56	7.75	25.83	ok
4	18-SLOy	Combination	Max	0.0068	0.0247	25.66	7.75	25.83	ok
4	18-SLOy	Combination	Min	-0.0068	-0.0247	25.66	7.75	25.83	ok
6	18-SLOy	Combination	Max	0.0068	0.0248	25.67	7.75	25.83	ok
6	18-SLOy	Combination	Min	-0.0068	-0.0248	25.67	7.75	25.83	ok
8	18-SLOy	Combination	Max	0.0068	0.0247	25.62	7.75	25.83	ok
8	18-SLOy	Combination	Min	-0.0068	-0.0247	25.60	7.75	25.83	ok
10	18-SLOy	Combination	Max	0.0069	0.0247	25.64	7.75	25.83	ok
10	18-SLOy	Combination	Min	-0.0068	-0.0247	25.62	7.75	25.83	ok
12	18-SLOy	Combination	Max	0.0068	0.0248	25.68	7.75	25.83	ok
12	18-SLOy	Combination	Min	-0.0069	-0.0247	25.68	7.75	25.83	ok
14	18-SLOy	Combination	Max	0.0069	0.0247	25.63	7.75	25.83	ok
14	18-SLOy	Combination	Min	-0.0069	-0.0247	25.62	7.75	25.83	ok
16	18-SLOy	Combination	Max	0.0069	0.0247	25.69	7.75	25.83	ok
16 18	18-SLOy	Combination Combination	Min Max	-0.0069 0.0069	-0.0247 0.0246	25.69 25.59	7.75	25.83	ok ok
	18-SLOy			0.000	0.02.0		7.75	25.83	
18 20	18-SLOy 18-SLOy	Combination Combination	Min Max	-0.0069 0.0069	-0.0246 0.0247	25.59 25.70	7.75 7.75	25.83 25.83	ok ok
20	18-SLOy	Combination	Min	-0.0069	-0.0247	25.70	7.75	25.83	ok
22	18-SLOy	Combination	Max	0.0069	0.0247	25.70	7.75	25.83	ok ok
22	18-SLOv	Combination	Min	-0.0069	-0.0246	25.56	7.75	25.83	ok
24	18-SLOy	Combination	Max	0.0069	0.0247	25.70	7.75	25.83	ok
24	18-SLOy	Combination	Min	-0.0069	-0.0247	25.70	7.75	25.83	ok
26	18-SLOy	Combination	Max	0.0069	0.0246	25.58	7.75	25.83	ok
26	18-SLOy	Combination	Min	-0.0069	-0.0246	25.58	7.75	25.83	ok
28	18-SLOy	Combination	Max	0.0069	0.0247	25.70	7.75	25.83	ok
28	18-SLOy	Combination	Min	-0.0069	-0.0247	25.70	7.75	25.83	ok
30	18-SLOy	Combination	Max	0.0069	0.0247	25.61	7.75	25.83	ok
30	18-SLOy	Combination	Min	-0.0068	-0.0247	25.61	7.75	25.83	ok
32	18-SLOy	Combination	Max	0.0069	0.0248	25.68	7.75	25.83	ok
32	18-SLOy	Combination	Min	-0.0069	-0.0248	25.68	7.75	25.83	ok
34	18-SLOy	Combination	Max	0.0069	0.0247	25.62	7.75	25.83	ok
34	18-SLOy	Combination	Min	-0.0069	-0.0247	25.61	7.75	25.83	ok
36	18-SLOy	Combination	Max	0.0069	0.0247	25.69	7.75	25.83	ok
36	18-SLOy	Combination	Min	-0.0069	-0.0247	25.70	7.75	25.83	ok
38	18-SLOy	Combination	Max	0.0069	0.0247	25.63	7.75	25.83	ok
38	18-SLOy	Combination	Min	-0.0069	-0.0247	25.62	7.75	25.83	ok
40	18-SLOy	Combination	Max	0.0069	0.0248	25.69	7.75	25.83	ok
40	18-SLOy	Combination	Min	-0.0069	-0.0248	25.69	7.75	25.83	ok
42	18-SLOy	Combination	Max	0.0068	0.0246	25.56	7.75	25.83	ok
42	18-SLOy	Combination	Min	-0.0068	-0.0246	25.57	7.75	25.83	ok
44 44	18-SLOy	Combination	Max	0.0068	0.0247	25.67	7.75	25.83	ok
	18-SLOy	Combination	Min	-0.0068	-0.0247	25.68	7.75	25.83	ok
46 46	18-SLOy 18-SLOy	Combination Combination	Max Min	-0.0068	0.0246 -0.0246	25.55 25.55	7.75 7.75	25.83 25.83	ok ok
46 48	18-SLOy	Combination	Max	0.0068	0.0246	25.55	7.75	25.83	ok ok
48	18-SLOy	Combination	Min	-0.0068	-0.0247	25.58	7.75	25.83	ok
50	18-SLOy	Combination	Max	0.0068	0.0247	25.60	7.75	25.83	ok
50	18-SLOy	Combination	Min	-0.0069	-0.0247	25.60	7.75	25.83	ok
52	18-SLOy	Combination	Max	0.0069	0.0247	25.59	7.75	25.83	ok
52	18-SLOy	Combination	Min	-0.0069	-0.0246	25.60	7.75	25.83	ok
54	18-SLOy	Combination	Max	0.0069	0.0246	25.56	7.75	25.83	ok
54	18-SLOy	Combination	Min	-0.0069	-0.0246	25.56	7.75	25.83	ok
56	18-SLOy	Combination	Max	0.0069	0.0246	25.53	7.75	25.83	ok
56	18-SLOy	Combination	Min	-0.0070	-0.0246	25.54	7.75	25.83	ok
58	18-SLOy	Combination	Max	0.0069	0.0246	25.55	7.75	25.83	ok
58	18-SLOy	Combination	Min	-0.0070	-0.0246	25.56	7.75	25.83	ok
60	18-SLOy	Combination	Max	0.0069	0.0246	25.58	7.75	25.83	ok
60	18-SLOy	Combination	Min	-0.0069	-0.0246	25.59	7.75	25.83	ok
62	18-SLOy	Combination	Max	0.0069	0.0247	25.59	7.75	25.83	ok
62	18-SLOy	Combination	Min	-0.0069	-0.0247	25.60	7.75	25.83	ok
64	18-SLOy	Combination	Max	0.0069	0.0246	25.54	7.75	25.83	ok
64	18-SLOy	Combination	Min	-0.0069	-0.0246	25.55	7.75	25.83	ok
66	18-SLOy	Combination	Max	0.0068	0.0246	25.57	7.75	25.83	ok
66	18-SLOy	Combination	Min	-0.0069	-0.0246	25.59	7.75	25.83	ok

dove:

Utot = $(U1^2 + U2^2)^{0.5}$

PROGETTO DEFINITIVO

RELAZIONI DI CALCOLO PER IL PROGETTO DEFINITIVO DEI FABBRICATI

TIPOLOGICI - Giampilieri - Fiumefreddo

FABBRICATO FSA - Ricovero carrelli

FABBRICATO FSA CARRELLI Relazione di calcolo fabbricato tecnologico

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS2S	00	D78CL	FA 00 00 013	Α	63 di 78

8 CALCOLO STRUTTURA DI FONDAZIONE

Le azioni trasmesse in fondazione derivano dall'analisi del comportamento dell'intera opera, in genere condotta esaminando la sola struttura in elevazione alla quale sono applicate le azioni statiche e sismiche.

Per le strutture progettate per CD "B" il dimensionamento delle strutture di fondazione e la verifica di sicurezza del complesso fondazione-terreno devono essere eseguiti assumendo come azioni in fondazione le resistenze degli elementi strutturali soprastanti. Più precisamente, la forza assiale negli elementi strutturali verticali derivante dalla combinazione delle azioni deve essere associata al concomitante valore resistente del momento flettente e del taglio; si richiede tuttavia che tali azioni risultino non maggiori di quelle trasferite dagli elementi soprastanti, amplificate con un γRd pari a 1,1 in CD "B", e comunque non maggiori di quelle derivanti da una analisi elastica della struttura in elevazione eseguita con un fattore di struttura q pari a 1.

Le fondazioni superficiali devono essere progettate per rimanere in campo elastico. Non sono quindi necessarie armature specifiche per ottenere un comportamento duttile.

8.1 CARATTERIZZAZIONE GEOTECNICA

Per le caratteristiche meccaniche dei rilevati, cautelativamente, si assumono i seguenti parametri:

peso volume $\gamma=19 \text{ kN/m}^3$;

angolo d'attrito $\phi'=35^{\circ}$;

coesione efficace c'=0.0 kPa.

Per tener conto dell'interazione terreno struttura nel modello di calcolo si è assunta una schematizzazione di suolo alla Winkler, implementando una costante di sottofondo elastico con un modulo pari Kv=10000 kN/m³.

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	TIPOLOGIC	DI CALCO I – Giampi			NITIVO DE	:I FABBRICATI
FABBRICATO FSA CARRELLI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo fabbricato tecnologico	RS2S	00	D78CL	FA 00 00 013		64 di 78

8.2 VERIFICA DI RESISTENZA

Si riportano di seguito le verifiche per la trave trasversale e longitudinale più sollecitata.

8.2.1 Travata 136-137-112-108-100-101-102-103-104-99

Geometria e materiali

Numero campate	10
Lunghezza campate [m]	6,15 - 6,15 - 6,15 - 6,15 - 6,15 - 6,15 - 6,15 - 6,15 - 6,15 - 6,15
Angolo di rotazione [°]	180
Tipo sezione	Т
Larghezza bf [cm]	150,0
Altezza h [cm]	100,0
Spessore anima bw [cm]	70,0
Spessore flangia tf [cm]	50,0
Copriferro superiore [cm]	5,0
Copriferro inferiore [cm]	5,0
Copriferro laterale [cm]	5,0
Rck [N/mm²]	30,12
Fyk [N/mm²]	450

Armature longitudinali della travata

T	C	L		Arm	atura Longitud	linale		
Trave	Segmento	[m]	Sup	eriore	Inf	Inferiore		
	1	1,55		2-Ø20+2-Ø20		2-Ø20+7-Ø20		
136	2	3,05	10-Ø20	2-Ø20+	9- Ø 20	2-Ø20+	2-Ø24	
	3	1,55		+		+		
137	1	1,55	8- Ø 20	3-Ø20 2-Ø20 9-Ø20		5-Ø20	2-Ø24	
137	2	4,60	8-9/20		9-020		2-1024	
112	1	6,15	8-Ø20		9- Ø 20		2-Ø24	
108	1	4,60	8- Ø 20		9- Ø 20		2-Ø24	
106	2	1,55	8-9/20	3-Ø20		6-Ø20	Z-WZ4 	
	1	1,55		3-Ø20		5-Ø20		
100	2	3,05	8-Ø20		9- Ø2 0		2- Ø 24	
	3	1,55		2-Ø20		5-Ø20		
	1	1,55		2-Ø20		5-Ø20		
101	2	3,05	8- Ø 20		9- Ø 20		2-Ø24	
	3	1,55		3-Ø20		5-Ø20		
102	1	1,55	8- Ø 20	3-Ø20	9- Ø 20	6-Ø20	2-Ø24	
102	2	4,60	8-9/20		9-020		2-9/24	
103	1	6,15	8-Ø20		9- Ø 20		2-Ø24	
104	1	4,60	8-Ø20		9- Ø 20		2-Ø24	
104	2	1,55	o-w20	2-Ø20	9-9/20	5-Ø20	2-1024	
	1	1,55		2-Ø20+2-Ø20	_	2-Ø20+7-Ø20		
99	2	3,05	10-Ø20	2-Ø20+	9- Ø 20	2-Ø20+	2-Ø24	
	3	1,55		+		+		

Verifiche PMM della travata nei confronti della resistenza

RELAZIONI DI CALCOLO PER IL PROGETTO DEFINITIVO DEI FABBRICATI TIPOLOGICI – Giampilieri - Fiumefreddo

FABBRICATO FSA – Ricovero carrelli

FABBRICATO FSA CARRELLI Relazione di calcolo fabbricato tecnologico
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS2S
 00
 D78CL
 FA 00 00 013
 A
 65 di 78

_		Combinazion	N	M2	M3	δМЗ	2/2
Trave	Segmento	е	[kN]	[kNm]	[kNm]	[kNm]	D/C
	1	10- SLVy_q=1.00	10,62	-18,75	1,407e3	0,000	0,90
136	2	10- SLVy_q=1.00	4,406	14,47	1,202e3	0,000	0,89
	3	10- SLVy_q=1.00	7,434	3,733	545,1	0,000	0,48
137	1	10- SLVy_q=1.00	10,62	-8,444	1,056e3	0,000	0,94
137	2	10- SLVy_q=1.00	10,62	-5,808	-663,5	0,000	0,67
112	1	10- SLVy_q=1.00	10,62	-4,423	-794,1	0,000	0,80
108	1	10- SLVy_q=1.00	10,62	-4,857	-671,8	0,000	0,67
108	2	10- SLVy_q=1.00	10,62	-4,512	1,108e3	0,000	0,90
	1	10- SLVy_q=1.00	10,62	-5,006	977,6	0,000	0,79
100	2	10- SLVy_q=1.00	4,406	2,057	355,5	0,000	0,39
	3	10- SLVy_q=1.00	10,62	5,008	1,041e3	0,000	0,92
	1	10- SLVy_q=1.00	10,62	-5,035	1,063e3	0,000	0,94
101	2	10- SLVy_q=1.00	4,406	2,073	355,1	0,000	0,39
	3	10- SLVy_q=1.00	10,62	-4,672	953,8	0,000	0,77
102	1	10- SLVy_q=1.00	10,62	-5,034	1,118e3	0,000	0,90
102	2	10- SLVy_q=1.00	10,62	-4,570	-653,6	0,000	0,66
103	1	10- SLVy_q=1.00	10,62	-4,979	-807,1	0,000	0,81
104	1	10- SLVy_q=1.00	10,62	-6,327	-666,4	0,000	0,67
104	2	10- SLVy_q=1.00	10,62	8,492	1,002e3	0,000	0,89
	1	10- SLVy_q=1.00	10,62	-18,80	1,418e3	0,000	0,90
99	2	10- SLVy_q=1.00	4,406	14,59	1,218e3	0,000	0,90
	3	10- SLVy_q=1.00	7,434	3,721	552,6	0,000	0,49

Verifiche a taglio in direzione 2 della travata nei confronti della resistenza

Tuovio	Commente	d	Staffe	Combinazion	VSd	VRd	D/C
Trave	Segmento	[cm]	Starre	е	[kN]	[kN]	D/C

RELAZIONI DI CALCOLO PER IL PROGETTO DEFINITIVO DEI FABBRICATI TIPOLOGICI – Giampilieri - Fiumefreddo

FABBRICATO FSA – Ricovero carrelli

FABBRICATO FSA CARRELLI Relazione di calcolo fabbricato tecnologico
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS2S
 00
 D78CL
 FA 00 00 013
 A
 66 di 78

		٦		C	VC4	VD4	
Trave	Segmento	d [cm]	Staffe	Combinazion e	VSd [kN]	VRd [kN]	D/C
	1	95,0		09- SLVx_q=1.00	-298,6	1,051e3	0,28
136	2	95,0	4-Ø10/250	10- SLVy_q=1.00	355,5	1,051e3	0,34
	3	95,0		10- SLVy_q=1.00	440,8	1,051e3	0,42
137	1	95,0	4-Ø10/250	10- SLVy_q=1.00	-456,4	1,051e3	0,43
137	2	95,0	4 \$10/230	10- SLVy_q=1.00	385,0	1,051e3	0,37
112	1	95,0	4-Ø10/250	09- SLVx_q=1.00	-386,5	1,051e3	0,37
108	1	95,0	- 4-Ø10/250	09- SLVx_q=1.00	-389,0	1,051e3	0,37
100	2	95,0	4-010/230	10- SLVy_q=1.00	464,0	1,051e3	0,44
	1	95,0		10- SLVy_q=1.00	-467,1	1,051e3	0,44
100	2	95,0	4-Ø10/250	10- SLVy_q=1.00	429,0	1,051e3	0,41
	3	95,0		10- SLVy_q=1.00	508,2	1,051e3	0,48
	1	95,0		10- SLVy_q=1.00	-518,0	1,051e3	0,49
101	2	95,0	4-Ø10/250	10- SLVy_q=1.00	-437,0	1,051e3	0,42
	3	95,0		10- SLVy_q=1.00	457,2	1,051e3	0,44
102	1	95,0	4-Ø10/250	10- SLVy_q=1.00	-472,1	1,051e3	0,45
102	2	95,0	4 \$10/230	10- SLVy_q=1.00	368,3	1,051e3	0,35
103	1	95,0	4-Ø10/250	10- SLVy_q=1.00	-379,1	1,051e3	0,36
104	1	95,0	4-Ø10/250	10- SLVy_q=1.00	-382,4	1,051e3	0,36
104	2	95,0	4-910/230	10- SLVy_q=1.00	439,7	1,051e3	0,42
	1	95,0		10- SLVy_q=1.00	-264,7	1,051e3	0,25
99	2	95,0	4-Ø10/250	10- SLVy_q=1.00	354,3	1,051e3	0,34
	3	95,0		10- SLVy_q=1.00	432,4	1,051e3	0,41

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni caratteristiche

Tuovo	Commente	Combinazio	N	M2	M3	σc,min	σc,lim	D/C
Trave	Segmento	ne	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C

RELAZIONI DI CALCOLO PER IL PROGETTO DEFINITIVO DEI FABBRICATI TIPOLOGICI – Giampilieri - Fiumefreddo

FABBRICATO FSA - Ricovero carrelli

FABBRICATO FSA CARRELLI Relazione di calcolo fabbricato tecnologico
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS2S
 00
 D78CL
 FA 00 00 013
 A
 67 di 78

T	Comments	Combinazio	N	M2	М3	σc,min	σc,lim	D/C
Trave	Segmento	ne	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
	1	24-R	0,000	-217,8e-3	112,2	-563,1e-3	-15,00	0,04
136	2	24-R	0,000	-59,23e-3	135,1	-777,9e-3	-15,00	0,05
	3	19-R	0,000	238,2e-3	-86,47	-812,5e-3	-15,00	0,05
127	1	19-R	0,000	-187,1e-3	-106,1	-857,0e-3	-15,00	0,06
137	2	19-R	0,000	208,6e-3	-120,9	-1,188	-15,00	0,08
112	1	19-R	0,000	232,6e-3	-146,5	-1,440	-15,00	0,10
100	1	19-R	0,000	-230,8e-3	-128,9	-1,276	-15,00	0,09
108	2	20-R	0,000	254,5e-3	-124,1	-966,9e-3	-15,00	0,06
	1	19-R	0,000	-211,3e-3	-116,2	-920,1e-3	-15,00	0,06
100	2	19-R	0,000	0,000	68,10	-467,1e-3	-15,00	0,03
	3	20-R	0,000	242,5e-3	-125,7	-1,016	-15,00	0,07
	1	19-R	0,000	-186,4e-3	-116,4	-940,0e-3	-15,00	0,06
101	2	19-R	0,000	0,000	68,98	-473,2e-3	-15,00	0,03
	3	20-R	0,000	231,9e-3	-124,7	-995,6e-3	-15,00	0,07
102	1	19-R	0,000	-166,1e-3	-112,3	-868,1e-3	-15,00	0,06
102	2	19-R	0,000	161,8e-3	-135,8	-1,336	-15,00	0,09
103	1	19-R	0,000	-160,5e-3	-131,5	-1,300	-15,00	0,09
104	1	19-R	0,000	-161,8e-3	-127,6	-1,262	-15,00	0,08
104	2	20-R	0,000	208,3e-3	-115,4	-932,3e-3	-15,00	0,06
	1	24-R	0,000	-373,6e-3	-96,75	-675,3e-3	-15,00	0,05
99	2	19-R	0,000	-22,18e-3	132,5	-763,7e-3	-15,00	0,05
	3	19-R	0,000	188,3e-3	-109,6	-1,032	-15,00	0,07

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni quasi permanenti

T		Combinazio	N	M2	M3	σc,min	σc,lim	D/6
Trave	Segmento	ne	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
	1	31-Q	0,000	-183,4e-3	79,35	-398,6e-3	-11,25	0,04
136	2	31-Q	0,000	-43,66e-3	113,0	-651,0e-3	-11,25	0,06
	3	31-Q	0,000	235,9e-3	-66,41	-623,0e-3	-11,25	0,06
137	1	31-Q	0,000	-184,3e-3	-85,29	-689,7e-3	-11,25	0,06
157	2	31-Q	0,000	203,8e-3	-100,6	-987,7e-3	-11,25	0,09
112	1	31-Q	0,000	223,7e-3	-125,4	-1,233	-11,25	0,11
108	1	31-Q	0,000	-222,5e-3	-107,9	-1,069	-11,25	0,10
108	2	31-Q	0,000	218,2e-3	-104,9	-817,8e-3	-11,25	0,07
	1	31-Q	0,000	-212,0e-3	-101,9	-806,3e-3	-11,25	0,07
100	2	31-Q	0,000	0,000	58,33	-400,1e-3	-11,25	0,04
	3	31-Q	0,000	208,3e-3	-106,5	-861,0e-3	-11,25	0,08
	1	31-Q	0,000	-202,8e-3	-102,3	-826,9e-3	-11,25	0,07
101	2	31-Q	0,000	0,000	59,17	-405,9e-3	-11,25	0,04
	3	31-Q	0,000	199,4e-3	-106,0	-846,1e-3	-11,25	0,08
102	1	31-Q	0,000	-195,2e-3	-99,89	-772,2e-3	-11,25	0,07
102	2	31-Q	0,000	193,2e-3	-114,7	-1,127	-11,25	0,10
103	1	31-Q	0,000	-192,5e-3	-111,3	-1,102	-11,25	0,10
104	1	31-Q	0,000	-188,7e-3	-106,6	-1,055	-11,25	0,09
104	2	31-Q	0,000	181,1e-3	-94,88	-766,8e-3	-11,25	0,07
00	1	31-Q	0,000	-147,2e-3	92,38	-463,4e-3	-11,25	0,04
99	2	31-Q	0,000	-26,31e-3	119,5	-688,6e-3	-11,25	0,06

RELAZIONI DI CALCOLO PER IL PROGETTO DEFINITIVO DEI FABBRICATI TIPOLOGICI – Giampilieri - Fiumefreddo

FOGLIO

68 di 78

FABBRICATO FSA – Ricovero carrelli

FABBRICATO FSA CARRELLI Relazione di calcolo fabbricato tecnologico
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.

 RS2S
 00
 D78CL
 FA 00 00 013
 A

Trava	Sagmonto	Combinazio	N	M2	M3	σc,min	σc,lim	D/C
Trave	Segmento	ne	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
	3	31-Q	0,000	215,4e-3	-88,16	-829,0e-3	-11,25	0,07

Verifica delle tensioni di esercizio nell'acciaio per combinazioni caratteristiche

Tuesse	Commonto	Combinazio	N	M2	M3	σs	σs,lim	D/C
Trave	Segmento	ne	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
	1	24-R	0,000	-217,8e-3	112,2	28,84	360,0	0,08
136	2	24-R	0,000	-59,23e-3	135,1	40,58	360,0	0,11
	3	19-R	0,000	238,2e-3	-86,47	35,15	360,0	0,10
127	1	19-R	0,000	-187,1e-3	-106,1	28,01	360,0	0,08
137	2	19-R	0,000	208,6e-3	-120,9	49,42	360,0	0,14
112	1	19-R	0,000	232,6e-3	-146,5	59,89	360,0	0,17
100	1	19-R	0,000	-230,8e-3	-128,9	52,96	360,0	0,15
108	2	20-R	0,000	254,5e-3	-124,1	30,74	360,0	0,09
	1	19-R	0,000	-211,3e-3	-116,2	30,61	360,0	0,09
100	2	19-R	0,000	0,000	68,10	30,36	360,0	0,08
	3	20-R	0,000	242,5e-3	-125,7	33,20	360,0	0,09
	1	19-R	0,000	-186,4e-3	-116,4	30,72	360,0	0,09
101	2	19-R	0,000	0,000	68,98	30,76	360,0	0,09
	3	20-R	0,000	231,9e-3	-124,7	33,09	360,0	0,09
102	1	19-R	0,000	-166,1e-3	-112,3	27,61	360,0	0,08
102	2	19-R	0,000	161,8e-3	-135,8	55,55	360,0	0,15
103	1	19-R	0,000	-160,5e-3	-131,5	53,97	360,0	0,15
104	1	19-R	0,000	-161,8e-3	-127,6	52,39	360,0	0,15
104	2	20-R	0,000	208,3e-3	-115,4	30,47	360,0	0,08
	1	19-R	0,000	-127,4e-3	104,5	26,86	360,0	0,07
99	2	19-R	0,000	-22,18e-3	132,5	39,82	360,0	0,11
	3	19-R	0,000	188,3e-3	-109,6	44,61	360,0	0,12

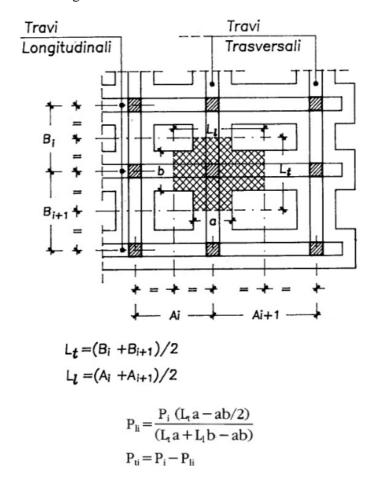
Verifiche di fessurazione

Tuous	Cammanta	FREQ	QP
Trave	Segmento	Apertura fessure	Apertura fessure
	1	OK	OK
136	2	OK	ОК
	3	OK	ОК
137	1	OK	ОК
157	2	OK	ОК
112	1	OK	ОК
108	1	OK	ОК
108	2	OK	ОК
	1	OK	ОК
100	2	OK	ОК
	3	ОК	ОК
	1	OK	ОК
101	2	OK	ОК
	3	OK	OK
102	1	OK	OK
102	2	ОК	ОК

RELAZIONI DI CALCOLO PER IL PROGETTO DEFINITIVO DEI FABBRICATI TIPOLOGICI – Giampilieri - Fiumefreddo

FABBRICATO FSA – Ricovero carrelli

FABBRICATO FSA CARRELLI Relazione di calcolo fabbricato tecnologico
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO


 RS2S
 00
 D78CL
 FA 00 00 013
 A
 69 di 78

Tuovo	Coamonto	FREQ	QP
Trave	Segmento	Apertura fessure	Apertura fessure
103	1	OK	ОК
104	1	ОК	OK
104	2	OK	ОК
	1	ОК	OK
99	2	OK	ОК
	3	OK	ОК

SITALFERR GRUPPO FEBROVIE DELLO STATO ITALIANE	RELAZIONI TIPOLOGIC	PROGETTO DEFINITIVO RELAZIONI DI CALCOLO PER IL PROGETTO DEFINITIVO DEI FABBRICATI TIPOLOGICI – Giampilieri - Fiumefreddo FABBRICATO FSA – Ricovero carrelli						
FABBRICATO FSA CARRELLI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione di calcolo fabbricato tecnologico	RS2S	00	D78CL	FA 00 00 013	Α	70 di 78		

8.3 VERIFCA DI PORTANZA

La verifica di portanza si effettua confrontando le pressioni indotte dalla sovrastruttura con il carico limite. Il carico del genrico pilastro Pi si ripartisce tra la trave longitudinale e trasversale in proporzione alla superfici di contatto con il terreno afferenti alle singole travi:

L'effetto del graticcio è già contemplato dal modello tridimensionale, pertanto per la verifica a carico limite sarà sufficiente confrontare le pressioni risultanti al di sotto delle travi longitudinali e trasversali in condizioni SLU/SLV con il carico limite del terreno nella zona di competenza (vedi campitura immagine sopra riportata).

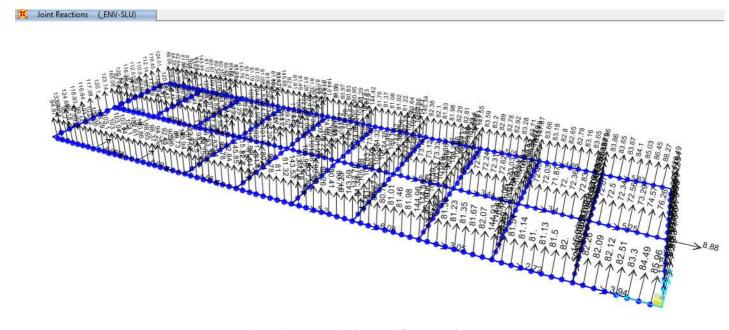


Figura 1-1. Pressioni agenti SLU [KN/m]

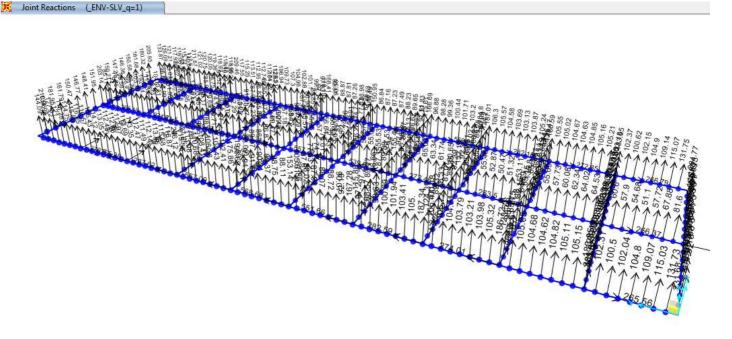


Figura 1-2. Pressioni agenti SLV [KN/m]

La massima pressione agente si ha in combinazione sismica: $q_{agente} = 210 \text{ kN}$.

RELAZIONI DI CALCOLO PER IL PROGETTO DEFINITIVO DEI FABBRICATI TIPOLOGICI – Giampilieri - Fiumefreddo

FABBRICATO FSA - Ricovero carrelli

FABBRICATO FSA CARRELLI Relazione di calcolo fabbricato tecnologico
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS2S
 00
 D78CL
 FA 00 00 013
 A
 72 di 78

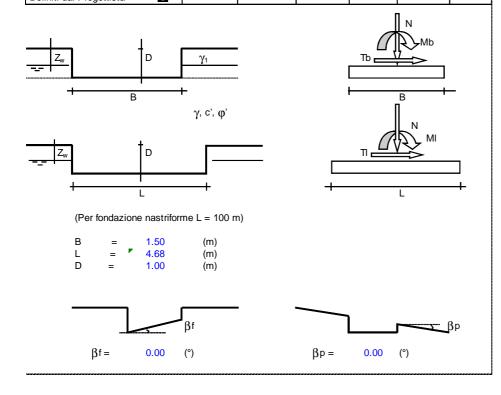
<u>Fondazioni Dirette</u> <u>Verifica in tensioni efficaci</u>

 $qlim = c'*Nc* sc*dc*ic*bc*gc*zc + q*Nq*sq*dq*iq*bq*gq*zq + 0,5*\gamma*B*N\gamma*s\gamma*d\gamma*i\gamma*b\gamma*g\gamma*z\gamma*dq*iq*bq*qq*zq + 0,5*\gamma*B*N\gamma*sq*d\gamma*iq*bq*gq*zq + 0,5*\disp*g*q*zq + 0,5*\disp*g*zq + 0,5*\$

D = Profondità del piano di appoggio

 e_B = Eccentricità in direzione B (e_B = Mb/N)

 e_L = Eccentricità in direzione L (e_L = MI/N) (per fondazione nastriforme e_L = 0; L^* = L)


 B^* = Larghezza fittizia della fondazione (B^* = B - 2^*e_B)

 L^* = Lunghezza fittizia della fondazione (L^* = L - 2^*e_L)

(per fondazione nastriforme le sollecitazioni agenti sono riferite all'unità di lunghezza)

coefficienti parziali

			az	ioni	proprietà d	lel terreno	resiste	enze
Metodo di calcolo		permanenti	temporanee variabili	tan φ'	c'	qlim	scorr	
	A1+M1+R1		1.30	1.50	1.00	1.00	1.00	1.00
Limite imo	A2+M2+R2		1.00	1.30	1.25	1.25	1.80	1.00
Stato Lim Ultimo	SISMA		1.00	1.00	1.25	1.25	1.80	1.00
Stat	A1+M1+R3	0	1.00	1.00	1.00	1.00	2.30	1.10
•,	SISMA		1.00	1.00	1.00	1.00	2.30	1.10
Tensioni Ammissibili		1.00	1.00	1.00	1.00	3.00	3.00	
Definiti dal Progettista		<u> </u>	1.00	1.00	1.25	1.25	2.30	1.10

RELAZIONI DI CALCOLO PER IL PROGETTO DEFINITIVO DEI FABBRICATI TIPOLOGICI - Giampilieri - Fiumefreddo

FABBRICATO FSA - Ricovero carrelli

FABBRICATO FSA CARRELLI Relazione di calcolo fabbricato tecnologico COMMESSA LOTTO CODIFICA **DOCUMENTO** REV. **FOGLIO** 73 di 78 RS2S 00 D78CL FA 00 00 013 Α

			AZIONI	
		valori d	di input	Valori di
		permanenti	temporanee	calcolo
N	[kN]	210.00		210.00
Mb	[kNm]	0.00		0.00
MI	[kNm]	0.00		0.00
Tb	[kN]	0.00		0.00
TI	[kN]	0.00		0.00
Н	[kN]	0.00	0.00	0.00

Peso unità di volume del terreno

19.00 (kN/mc) 19.00 (kN/mc) γ

Valori caratteristici di resistenza del terreno

Valori di progetto 0.00 (kN/mq) 0.00 (kN/mq) c' c' 35.00 35.00 (°) (°)

Profondità della falda

100.00 (m)

0.00 (m) B* = 1.50 (m) $e_B =$ L* = 0.00 (m) 4.68 (m) $e_L =$

q : sovraccarico alla profondità D

19.00 (kN/mq) q =

γ: peso di volume del terreno di fondazione

19.00 (kN/mc)

Nc, Nq, Nγ: coefficienti di capacità portante

 $Nq = tan^{2}(45 + \phi'/2)^{*}e^{(\pi^{*}tg\phi')}$

Nq = 33.30

 $Nc = (Nq - 1)/tan\phi'$

Nc = 46.12

 $N\gamma = 2*(Nq + 1)*tan\phi'$

Νγ = 48.03

RELAZIONI DI CALCOLO PER IL PROGETTO DEFINITIVO DEI FABBRICATI TIPOLOGICI - Giampilieri - Fiumefreddo

DOCUMENTO

FABBRICATO FSA - Ricovero carrelli

FABBRICATO FSA CARRELLI
Relazione di calcolo fabbricato tecnologico

OMMESSA	LOTTO
RS2S	00

COMMESSA

D78CL FA 00 00 013

CODIFICA

REV. Α

FOGLIO 74 di 78

s_c , s_q , s_γ : fattori di forma

S.	=	1	+	B*1	Na /	′ (L	*	Nc)	
uС	_	•	•	י ט	1 9 /	(-	-	140)	

s_c = 1.23

 $s_q = 1 + B*tan\phi' / L*$

1.22

 $s_{\gamma} = 1 - 0.4*B* / L*$

0.87 $S_{\gamma} =$

z_c, z_q, z_γ : <u>fattori di inerzia</u>

$$z_c = 1 - 0.32*kh$$

z_c = 0.87

0.73

 $z_q = (1 - kh/tg_{\phi})^{1/2}$

 $z_q =$

 $z_{\gamma} = zq$

0.73 $z_{\gamma} =$

$i_c,\,i_q,\,i_\gamma$: fattori di inclinazione del carico

$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*)$$

1.76

 $\theta = arctg(Tb/TI) =$

90.00 (°)

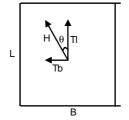
$$m_1 = (2 + L^* / B^*) / (1 + L^* / B^*) =$$

1.24

1.76 (-)

$$i_q = (1 - H/(N + B*L* c' \cot g\phi'))^m$$

1.00


 $i_c = i_q - (1 - i_q)/(Nq - 1)$

1.00

 $i_{v} = (1 - H/(N + B*L*c' \cot g_0'))^{(m+1)}$

1.00

(m=2 nel caso di fondazione nastriforme e $m=(m_b sin^2 \theta + m_l cos^2 \theta)$ in tutti gli altri casi)

d_c , d_q , d_γ : fattori di profondità del piano di appoggio

per D/B* \leq 1; d_q = 1 +2 D tan_{ϕ}' (1 - sen_{ϕ}')² / B* per D/B*> 1; $d_q = 1 + (2 \tan \phi' (1 - \sin \phi')^2) * \arctan (D / B*)$

 $d_q =$ 1.17

 $d_c = d_q - (1 - d_q) / (N_c tan_{\phi})$

 $d_c =$ 1.18

 $d_{\gamma} = 1$

 $d_{\gamma} =$ 1.00

RELAZIONI DI CALCOLO PER IL PROGETTO DEFINITIVO DEI FABBRICATI TIPOLOGICI – Giampilieri - Fiumefreddo

FABBRICATO FSA - Ricovero carrelli

FABBRICATO FSA CARRELLI
Relazione di calcolo fabbricato tecnologico

COMMESSA
LOTTO
CODIFICA
DOCUMENTO
REV.
FOGLIO
RS2S
00
D78CL
FA 00 00 013
A
75 di 78

0.00

0.00

$b_c,\,b_q,\,b_\gamma$: fattori di inclinazione base della fondazione

$$b_q = (1 - \beta_f tan_{\phi})^2$$

$$\beta_f + \beta_p =$$

$$\beta_f + \beta_p < 45^\circ$$

$$b_q = 1.00$$

$$b_c = b_q - (1 - b_q) / (N_c tan_{\phi})$$

$$b_c = 1.00$$

$$b_{\gamma} = b_{q}$$

$$b_{y} = 1.00$$

g_c , g_q , g_γ : fattori di inclinazione piano di campagna

$$g_q = (1 - tan\beta_p)^2$$

$$\beta_f + \beta_p =$$

$$\beta_f + \beta_p < 45^\circ$$

$$g_{q} = 1.00$$

$$g_c = g_q - (1 - g_q) / (N_c tan_{\phi})$$

$$g_c = 1.00$$

$$g_{\gamma} = g_{q}$$

$$g_{\gamma} = 1.00$$

Carico limite unitario

$$q_{lim} = 1100.72$$
 (kN/m²)

Pressione massima agente

$$q = N / B^* L^*$$

$$(kN/m^2)$$

Verifica di sicurezza capacità portante

$$q_{lim}/\gamma_R =$$

Le pressioni trasmesse dalla fondazione risultano inferiori al carico limite del terreno.

PROGETTO	DEFINITIVO
-----------------	-------------------

RELAZIONI DI CALCOLO PER IL PROGETTO DEFINITIVO DEI FABBRICATI TIPOLOGICI – Giampilieri - Fiumefreddo

FABBRICATO FSA - Ricovero carrelli

FABBRICATO FSA CARRELLI Relazione di calcolo fabbricato tecnologico

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS2S	00	D78CL	FA 00 00 013	Α	76 di 78

9 VERIFICHE AL FUOCO

Le verifiche di resistenza al fuoco sono state condotte secondo le prescrizioni dettate dal DM 16-02-2007

"Classificazione di resistenza al fuoco di prodotti ed elementi costruttivi di opere da costruzione".

(GU n. 74 del 29-3-2007- Suppl. Ordinario n. 87);

Nello specifico si è proceduto per la classificazione della resistenza al fuoco delle varie parti della struttura tramite il metodo tabellare semplificato, tale metodo consente di omettere la verifica analitica di resistenza al fuoco della sezione adottando un opportuno copriferro baricentrico delle barre longitudinali in base alla funzione degli elementi portanti, della loro esposizione al calore e della Classe di capacità di prestazione R che si vuole garantire.

Tutte le zone: R 120

Si effettuerà la definizione del copriferro minimo da adottare in base alla classe di resistenza al fuoco R minima che dobbiamo garantire.

9.1 RESISTENZA AL FUOCO:TRAVI

Riportiamo di seguito il prospetto D.6.1 relativo alle Travi in calcestruzzo armato ordinario e precompresso.

Classe	Combinazioni poss	bw			
30	b = 80 / a = 25	120 / 20	160 / 15	200 / 15	80
60	b = 120 / a = 40	160 / 35	200 / 30	300 / 25	100
90	b = 150 / a = 55	200 / 45	300 / 40	400 / 35	100
120	b = 200 / a = 65	240 / 60	300 / 55	500 / 50	120
180	b = 240 / a = 80	300 / 70	400 / 65	600 / 60	140
240	b = 280 / a = 90	350 / 80	500 / 75	700 / 70	160

I valori di a devono essere non inferiori ai minimi di regolamento per le opere di c.a. e c.a.p. In caso di armatura pre-tesa aumentare i valori di a di 15 mm. In presenza di intonaco i valori di b e a ne possono tenere conto nella maniera indicata nella tabella D.5.1. Per ricoprimenti di calcestruzzo superiori a 50 mm prevedere una armatura diffusa aggiuntiva che assicuri la stabilità del ricoprimento.

Classe di resistenza al fuoco R 120

Dal prospetto sopra si evince che per garantire la Classe R 120 è richiesta una larghezza minima delle travi pari a 300 mm con copriferro baricentrico pari a 55mm.

RELAZIONI DI CALCOLO PER IL PROGETTO DEFINITIVO DEI FABBRICATI TIPOLOGICI – Giampilieri - Fiumefreddo

FABBRICATO FSA - Ricovero carrelli

FABBRICATO FSA CARRELLI Relazione di calcolo fabbricato tecnologico

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS2S	00	D78CL	FA 00 00 013	Α	77 di 78

9.2 RESISTENZA AL FUOCO:PILASTRI

Riportiamo di seguito il prospetto D.6.2 relativo ai Pilastri in calcestruzzo armato ordinario e precompresso.

Classe	Esposto su	Esposto su un lato	
30	B = 200 / a = 30	300 / 25-	160 / 25
60	B = 250 / a = 45	350 /40	160 / 25
90	B = 350 / a = 50	450/40	160 / 25
120	B = 350 / a = 60	450 / 50	180 / 35
180	B = 450 / a = 70	-	230 / 55
240	•	-	300 / 70

I valori di a devono essere non inferiori ai minimi di regolamento per le opere di c.a. e c.a.p. In caso di armatura pre-tesa aumentare i valori di a di 15 mm. In presenza di intonaco i valori di a ne possono tenere conto nella maniera indicata nella tabella D.5.1. Per ricoprimenti di calcestruzzo superiori a 50 mm prevedere una armatura diffusa aggiuntiva che assicuri la stabilità del ricoprimento.

Si ricade nel caso di pilastri esposti su un lato.

Classe di resistenza al fuoco R 120

Dal prospetto sopra si evince che per garantire la Classe R 120 avendo pilastri esposti su un lato, è richiesta una larghezza minima dei pilastri pari a 180 mm e un copriferro baricentrico pari a 35 mm.

9.3 RESISTENZA AL FUOCO: SOLAI

Riportiamo di seguito il prospetto D.5.1 relativo alle solette e solai in calcestruzzo armato

Classe	30	60	90	120	180	240
Solette piene con armatura monodirezionale	H = 80 / a = 10	120/20	120 / 30	160 / 40	200 / 55	240 / 65
Solai misti di lamiera di acciaio con riempimento di calcestruzzo (1)	H = 80 / a = 10	120 / 20	120 / 30	160 / 40	200 / 55	240 / 65
Solai a travetti con alleggerimento (²)	H = 160 / a = 15	200 / 30	240 / 35	240 / 45	300 / 60	300 / 75
Solai a lastra con alleggerimento (3)	H = 160 / a = 15	200 / 30	240 / 35	240 / 45	300 / 60	300 / 75

I valori di a devono essere non inferiori ai minimi di regolamento per le opere di c.a. e c.a.p. In caso di armatura pre-tesa aumentare i valori di a di 15 mm. In presenza di intonaco i valori di H e a ne devono tenere conto nella seguente maniera: 10 mm di intonaco normale (definizione in D.4.1) equivale ad 10 mm di calcestruzzo; 10 mm di intonaco protettivo antincendio (definizione in D.4.1) equivale a 20 mm di calcestruzzo. Per ricoprimenti di calcestruzzo superiori a 50 mm prevedere una armatura diffusa aggiuntiva che assicuri la stabilità del ricoprimento.

- In caso di lamiera grecata H rappresenta lo spessore medio della soletta. Il valore di a non comprende lo spessore della lamiera. La lamiera ha unicamente funzione di cassero. In caso contrario la lamiera va protetta secondo quanto indicato in D.7.1
- (2) Deve essere sempre presente uno strato di intonaco normale di spessore non inferiore a 20 mm ovvero uno strato di intonaco isolante di spessore non inferiore a 10 mm.
- (3) In caso di alleggerimento in polistirene o materiali affini prevedere opportuni sfoghi delle sovrapressioni.

TALFERR GRUPPO FERROVIE DELLO STATO TIALIANE	TIPOLOGIC	DI CALCO	-		NITIVO DE	EI FABBRICATI
FABBRICATO FSA CARRELLI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo fabbricato tecnologico	RS2S	00	D78CL	FA 00 00 013		78 di 78

Classe di resistenza al fuoco R 120

Dal prospetto sopra si evince che per garantire la Classe R 120 per solai a travetti con alleggerimento, si deve avere uno spessore minimo pari a 240 mm ed un copri ferro baricentrico delle barre pari a 45 mm.

Si adotta solaio a predalle 4+16+4.

Copriferro baricentrico delle barre dei travetti (ϕ 16) = 40mm (predalle) + 8mm = 45mm

10 VERIFICHE DEGLI ELEMENTI NON STRUTTURALI

Come riportato nella Circolare Esplicativa 2 febbraio 2009 n° 617 al Par. C7.3.6.3, la prestazione consistente nell'evitare collassi fragili e prematuri e la possibile espulsione sotto l'azione sismica delle tamponature si può ritenere conseguita con l'inserimento di leggere reti da intonaco sui due lati della muratura, collegate tra loro ed alle strutture circostanti a distanza non superiore a 500 mm sia in direzione orizzontale sia in direzione verticale, ovvero con l'inserimento di elementi di armatura orizzontale nei letti di malta, a distanza non superiore a 500 mm.

Per le tamponature si prevedono nervature verticali collegate alla struttura superiore ed inferiore ogni 15 mq di superficie e comunque ad interasse non superiore a 3,50 m. Per i muri divisori interni si prevedono nervature verticali collegate alla struttura superiore ed inferiore ogni 20 mq di superficie e comunque ad interasse non superiore a 3,00 m.

11 VERIFICA SOLETTA CONTROTERRA

Come previsto nell'Eeurocodice EC2 si dispone un'armatura minima pari allo 0,2% dell'area del calcestruzzo. La soletta controterra è armata con doppia rete elettrosaldata \phi12/20cm in entrambe le direzioni.

12 INCIDENZA ARMATURE

Solaio di copertura	20	[kg/mq]
Travi	150	[kg/mc]
Pilastri	250	[kg/mc]
Travi di fondazione	100	[kg/mc]
Soletta controterra	20	[kg/mq]

13 CONCLUSIONI

Con la presente relazione si è proceduto al progetto e alla verifica del fabbricato in oggetto allo stato limite ultimo e allo stato limite di esercizio.