

# Società Autostrada Tirrenica p.A. GRUPPO AUTOSTRADE PER L'ITALIA S.p.A.

AUTOSTRADA (A12): ROSIGNANO - CIVITAVECCHIA
LOTTO 2

TRATTO: SAN PIETRO IN PALAZZI – SCARLINO **PROGETTO DEFINITIVO** 

INFRASTRUTTURA STRATEGICA DI PREMINENTE INTERESSE
NAZIONALE LE CUI PROCEDURE DI APPROVAZIONE SONO REGOLATE
DALL' ART. 161 DEL D.LGS. 163/2006

# AU- CORPO AUTOSTRADALE

OPERE D'ARTE MAGGIORI

PONTI E SOTTOVIA (L>10m)

AMPLIAMENTO SOTTOMA SP 14 DEL PARATINO
al km. 3+271.70

RELAZIONE DESCRITTIVA E DI CALCOLO

# IL RESPONSABILE PROGETTAZIONE SPECIALISTICA

Ing. Guido Furlanetto Ord. Ingg. Milano N.10984

RESPONSABILE UFFICIO STR

# IL RESPONSABILE INTEGRAZIONE PRESTAZIONI SPECIALISTICHE

Ing. Alessandro Alfi Ord. Ingg. Milano N. 20015

COORDINATORE GENERALE APS

#### IL DIRETTORE TECNICO

Ing. Maurizio Torresi Ord. Ingg. Milano N. 16492

RESPONSABILE DIREZIONE SVILUPPO INFRASTRUTTURE

|                       |            | _               | _    |   |      |             |   |        |   |                |   |    |               |    |      |        |   |           |
|-----------------------|------------|-----------------|------|---|------|-------------|---|--------|---|----------------|---|----|---------------|----|------|--------|---|-----------|
| RIFERIMENTO ELABORATO |            |                 |      |   |      |             |   |        |   |                |   |    |               |    |      | DATA:  | l | REVISIONE |
|                       | DIRETTORIO |                 |      |   |      | FILE        |   |        |   |                |   |    | FEBBRAIO 2011 | n. | data |        |   |           |
| WBS                   |            | codice commessa |      |   | N.F  | N.Prog.     |   | unita' |   | n. progressivo |   | )  | . 255         |    |      |        |   |           |
|                       |            |                 |      |   |      |             |   |        |   |                |   |    |               |    |      | SCALA: |   |           |
| STOS                  | I 1        | 2               | ₁1'  | 2 | .1∣2 | $ 0\rangle$ | 1 | IS     | Τ | R              | 6 | 4  | 0             | _  | _    | _      |   |           |
| 3102                  | 1''        | _               | . '' | _ | '  ~ | -           | ' |        | • | • •            | _ | ١. |               |    |      |        |   |           |

| SDE3 ingegneria           | ELABORAZIONE<br>GRAFICA<br>A CURA DI :                                   |
|---------------------------|--------------------------------------------------------------------------|
| autostrado europea        | ELABORAZIONE<br>PROGETTUALE<br>A CURA DI :                               |
| CONSULENZA<br>A CURA DI : | IL RESPONSABILE UFFICIO/UNITA' Ing. Guido Furlanetto O.I. Milano N.10984 |

#### RESPONSABILE DI COMMESSA

Ing. Michele Parrella Ord. Ingg. Avellino N. 933

COORDINATORE OPERATIVO DI PROGETTO

VISTO DEL COMMITTENTE



VISTO DEL CONCEDENTE



# **INDICE**

| 01. | GEN | NERALITA'                                      | 1  |
|-----|-----|------------------------------------------------|----|
| 01. | .01 | CARATTERISTICHE DELLA STRUTTURA ESISTENTE      | 1  |
| 01. | .02 | CARATTERISTICHE DELLA STRUTTURA DI AMPLIAMENTO | 1  |
| 01. | .03 | FASI REALIZZATIVE                              | 3  |
| 01. | .04 | SCHEMI DI CALCOLO                              | 3  |
| 02. | NO  | RMATIVA DI RIFERIMENTO                         | 4  |
| 03. | MA  | TERIALI                                        |    |
| 03. | .01 | STRUTTURA ESISTENTE                            | 5  |
| 03. | .02 | STRUTTURA IN AMPLIAMENTO                       | 7  |
| 04. | CAI | RATTERISTICHE GEOMETRICHE DELLE TRAVI          | 9  |
| 05. | AN  | ALISI DEI CARICHI                              | 10 |
| 05. | .01 | CARICHI DI FASE 1                              | 10 |
| 05. | .02 | CARICHI DI FASE 2                              | 11 |
| 05. | .03 | CARICHI DI FASE 3                              | 13 |
| 05. | .04 | CARICHI ORIZZONTALI                            |    |
| 05. | .05 | COMBINAZIONI DI CARICO                         | 18 |
| 06. | CAI | RATTERISTICHE DI SOLLECITAZIONE                |    |
| 06. | .01 | IMPALCATO                                      | 20 |
| 06. | .02 | REAZIONI SULLE SPALLE                          | 25 |
| 07. | VEF | RIFICHE DI RESISTENZA                          |    |
| 07. | .01 | IMPALCATO                                      | 26 |
| 07. | .02 | TRAVI AMPLIAMENTO                              | 26 |
| 07. | .03 | TRAVI ESISTENTI                                | 28 |
| 08. | VEF | RIFICA DELLE SPALLE                            | 30 |
| 08. | .01 | COMBINAZIONI DI CARICO                         | 31 |
| 08. | .02 | GEOMETRIA                                      | 32 |
| 08. | .03 | PARAGHIAIA                                     | 33 |
| 08. | .04 | PARAMENTO VERTICALE                            | 34 |
| 08. | .05 | CARICHI IN FONDAZIONE                          | 35 |

#### 01. GENERALITA'

Oggetto della presente relazione tecnica sono i calcoli strutturali per il dimensionamento degli interventi di ampliamento ed adeguamento antisismico dell'opera ST02 – Sottovia SP 14 Del Paratino facente parte del Lotto 2 della A12 Livorno – Civitavecchia.

#### 01.01 CARATTERISTICHE DELLA STRUTTURA ESISTENTE

L' opera esistente è costituita da un impalcato in singola campata di luce totale pari a circa 22.0m e luce di calcolo asse appoggio - asse appoggio pari a circa 20.5m, semplicemente appoggiato su due spalle.

L' impalcato è costituito da 27 travi prefabbricate e precompresse a I e dalla soletta in cls. gettato in opera dello spessore di circa 25 cm.

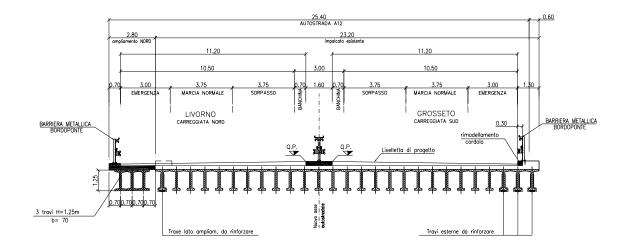
Le spalle sono del tipo a setto e fondate su zattera poggiata su pali di grande diametro. Nel paramento verticale sono previsti tiranti passivi (per le azioni orizzontali) realizzati con micropali iniettati a bassa pressione.

Per le spalle esistenti si prevede la rimozione e la ricostruzione del paraghiaia al fine di collocare i ritegni sismici longitudinali a ridosso della testata delle travi.

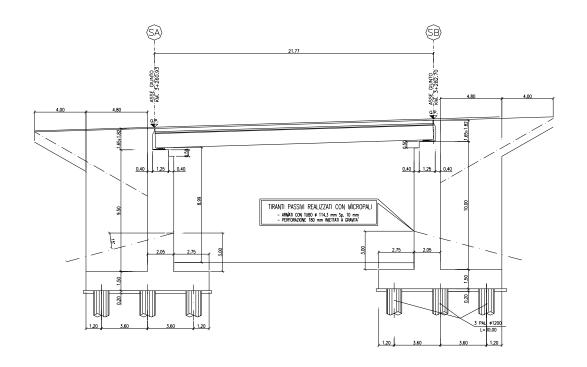
Per quanto riguarda il viadotto esistente, in mancanza di documentazione probante circa i calcoli specifici delle travi, in via cautelativa, sono stati previsti rinforzi con fibre di carbonio limitatamente alle travi maggiormente sollecitate, pur essendo i risultati della verifica eseguita senza rinforzi compresi nei limiti delle sollecitazioni previste dal regolamento.

In conclusione, le ipotesi progettuali assunte saranno soggette a riscontro mediante ulteriori indagini da effettuarsi nella fase successiva.

#### 01.02 CARATTERISTICHE DELLA STRUTTURA DI AMPLIAMENTO


E' previsto sul lato della esistente carreggiata Nord un ampliamento di larghezza pari a circa 2.8 m.

Il nuovo impalcato sarà solidarizzato al viadotto esistente a livello della soletta e sarà costituito da 3 travi in c.a.p. a I con sovrastante soletta collaborante in cls.


Gli ampliamenti delle spalle saranno realizzati con struttura analoga a quella esistente. Nel paramento verticale sono previsti tiranti passivi (per le azioni orizzontali) realizzati con micropali iniettati a bassa pressione.

I nuovi plinti, dello stesso spessore di quelli esistenti, saranno realizzati ciascuno su 3 pali di diametro  $\Phi$  1200 e lunghezza L = 30 m.

ST02 STR640.doc Pagina 1 di 35



# SEZIONE TRASVERSALE IMPALCATO AMPLIATO



SEZIONE LONGITUDINALE SULL'AMPLIAMENTO

ST02\_STR640.doc Pagina 2 di 35

#### 01.03 FASI REALIZZATIVE

Per l'opera in oggetto si prevedono in sintesi le seguenti fasi realizzative :

- 1. Realizzazione delle sottostrutture in affiancamento ad eccezione delle zone di collegamento; realizzazione dei rilevati in ampliamento a tergo spalle;
- 2. Montaggio travi in c.a.p. di ampliamento;
- 3. Getto delle solette ad eccezione delle zone comprese fra le parti nuove e l'esistente;
- 4. Collegamento delle sottostrutture,
- 5. Completamento getto solette;
- 6. Realizzazione manto e finiture.

Contemporaneamente alle operazioni di cui ai punti 1,2,3 e comunque prima delle fasi successive sarà effettuata la realizzazione delle apparecchiature di fine corsa.

Ad opera ampliata e solidarizzata verrà eseguita la sostituzione degli apparecchi di appoggio originali e la regolarizzazione dei baggioli.

#### 01.04 SCHEMI DI CALCOLO

Per la valutazione delle sollecitazioni sulle travi è stato considerato uno schema di calcolo di trave in semplice appoggio.

I carichi agenti in terza fase verranno determinati sulla base della corrispondente area d'influenza nelle condizioni di carico più gravose.

Per la determinazione delle sollecitazioni in testa alle spalle è stato utilizzato un foglio di calcolo.

ST02 STR640.doc Pagina 3 di 35

#### 02. NORMATIVA DI RIFERIMENTO

Tutti i calcoli sono stati eseguiti nel rispetto delle normative nazionali vigenti, con particolare riferimento a:

- Legge 5/1/1971 n° 1086 : "Norme per la disciplina delle opere in conglomerato cementizio armato, normale e precompresso, ed a struttura metallica".
- Legge 2/2/1974 n° 64 : "Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche".
- D.M. 14/1/2008: "Norme tecniche per le costruzioni".
- Circolare 2/2/2009 n° 617 :"Istruzioni per l'applicazione delle Nuove norme tecniche per le costruzioni di cui al D:M: 14 gennaio 2008".

ST02\_STR640.doc Pagina 4 di 35

# 03. MATERIALI

# 03.01 STRUTTURA ESISTENTE

| 03.01.01 | CALCESTRUZZO TRAVI PRECOMPRESSE                     |                                         |          |                  |
|----------|-----------------------------------------------------|-----------------------------------------|----------|------------------|
|          | Calcestruzzo travi precompresse CLASSE 45/55        |                                         |          |                  |
|          | Resistenza caratteristica a compressione cubica     | $R_{ck} =$                              | 55,00    | N/mm2            |
|          | Resistenza caratteristica a compressione cilindrica | $f_{ck} = 0.83 R_{ck} =$                | 45,65    | N/mm2            |
|          | Resistenza media a trazione                         | $f_{ctm} = 0.30 f_{ck}^{2/3} =$         | 3,74     | N/mm2            |
|          | Resistenza caratteristica a trazione                | $f_{ctk(5\%)} = 0.7 f_{ctm} =$          | 2,61     | N/mm2            |
|          | Coefficiente di sicurezza                           | $\gamma_c =$                            | 1,50     |                  |
|          | Resistenza di calcolo a compressione                | $f_{cd}$ = 0,85 $f_{ck}/\gamma_c$ =     | 25,87    | N/mm2            |
|          | Resistenza di calcolo a trazione                    | $f_{ctd} = f_{ctk(5\%)}/\gamma_c =$     | 1,74     | N/mm2            |
|          | Resistenza tangenziale di aderenza e di calcolo     | $f_{bd} = 2,25 f_{ctk(5\%)}/\gamma_c =$ | 3,92     | N/mm2            |
|          | Modulo elastico istantaneo di calcolo               | E <sub>cm</sub> =                       | 36416    | N/mm2            |
|          | Coefficiente di Poisson                             | ν =                                     | 0,20     |                  |
|          | Coefficiente di dilatazione termica                 | α =                                     | 1,00E-05 | °C <sup>-1</sup> |
| 03.01.02 | CALCESTRUZZO SOLETTE E TRASVERSI                    |                                         |          |                  |
|          | Calcestruzzo solette e trasversi CLASSE 28/35       |                                         |          |                  |
|          | Resistenza caratteristica a compressione cubica     | $R_{ck} =$                              | 35,00    | N/mm2            |
|          | Resistenza caratteristica a compressione cilindrica | $f_{ck} = 0.83 R_{ck} =$                | 29,05    | N/mm2            |
|          | Resistenza media a trazione                         | $f_{ctm} = 0.30 f_{ck}^{2/3} =$         | 2,77     | N/mm2            |
|          | Resistenza caratteristica a trazione                | $f_{ctk(5\%)} = 0.7 f_{ctm} =$          | 1,94     | N/mm2            |
|          | Coefficiente di sicurezza                           | $\gamma_c =$                            | 1,50     |                  |
|          | Resistenza di calcolo a compressione                | $f_{cd}$ = 0,85 $f_{ck}/\gamma_c$ =     | 16,46    | N/mm2            |
|          | Resistenza di calcolo a trazione                    | $f_{ctd} = f_{ctk(5\%)}/\gamma_c =$     | 1,29     | N/mm2            |
|          | Resistenza tangenziale di aderenza e di calcolo     | $f_{bd} = 2,25 f_{ctk(5\%)}/\gamma_c =$ | 2,91     | N/mm2            |
|          | Modulo elastico istantaneo di calcolo               | E <sub>cm</sub> =                       | 32588    | N/mm2            |
|          | Coefficiente di Poisson                             | ν =                                     | 0,20     |                  |
|          | Coefficiente di dilatazione termica                 | α =                                     | 1,00E-05 | °C <sup>-1</sup> |
| 03.01.03 | CALCESTRUZZO SPALLE                                 |                                         |          |                  |
|          | Calcestruzzo spalle CLASSE 25/30                    |                                         |          |                  |
|          | Resistenza caratteristica a compressione cubica     | $R_{ck} =$                              | 30,00    | N/mm2            |
|          | Resistenza caratteristica a compressione cilindrica | $f_{ck} = 0.83 R_{ck} =$                | 24,9     | N/mm2            |
|          | Resistenza media a trazione                         | $f_{ctm} = 0.30 f_{ck}^{2/3} =$         | 2,50     | N/mm2            |
|          | Resistenza caratteristica a trazione                | $f_{ctk(5\%)} = 0.7 f_{ctm} =$          | 1,75     | N/mm2            |
|          | Coefficiente di sicurezza                           | $\gamma_c =$                            | 1,50     |                  |
|          | Resistenza di calcolo a compressione                | $f_{cd}$ = 0,85 $f_{ck}/\gamma_c$ =     | 14,11    | N/mm2            |
|          | Resistenza di calcolo a trazione                    | $f_{ctd} = f_{ctk(5\%)}/\gamma_c =$     | 1,17     | N/mm2            |
|          | Resistenza tangenziale di aderenza e di calcolo     | $f_{bd} = 2,25 f_{ctk(5\%)}/\gamma_c =$ | 2,63     | N/mm2            |
|          | Modulo elastico istantaneo di calcolo               | E <sub>cm</sub> =                       | 31447    | N/mm2            |
|          | Coefficiente di Poisson                             | ν =                                     | 0,20     |                  |
|          | Coefficiente di dilatazione termica                 | α =                                     | 1,00E-05 | °C <sup>-1</sup> |

ST02\_STR640.doc Pagina 5 di 35

#### 03.01.04 CALCESTRUZZO PALI

#### Calcestruzzo pali CLASSE 20/25

| Resistenza caratteristica a compressione cubica     | R <sub>ck</sub> =                       | 25,00    | N/mm2            |
|-----------------------------------------------------|-----------------------------------------|----------|------------------|
| Resistenza caratteristica a compressione cilindrica | $f_{ck} = 0.83 R_{ck} =$                | 20,75    | N/mm2            |
| Resistenza media a trazione                         | $f_{ctm} = 0.30 f_{ck}^{2/3} =$         | 2,22     | N/mm2            |
| Resistenza caratteristica a trazione                | $f_{ctk(5\%)} = 0.7 f_{ctm} =$          | 1,55     | N/mm2            |
| Coefficiente di sicurezza                           | $\gamma_c =$                            | 1,50     |                  |
| Resistenza di calcolo a compressione                | $f_{cd}$ = 0,85 $f_{ck}/\gamma_c$ =     | 11,76    | N/mm2            |
| Resistenza di calcolo a trazione                    | $f_{ctd} = f_{ctk(5\%)}/\gamma_c =$     | 1,04     | N/mm2            |
| Resistenza tangenziale di aderenza e di calcolo     | $f_{bd} = 2,25 f_{ctk(5\%)}/\gamma_c =$ | 2,33     | N/mm2            |
| Modulo elastico istantaneo di calcolo               | E <sub>cm</sub> =                       | 30200    | N/mm2            |
| Coefficiente di Poisson                             | ν =                                     | 0,20     |                  |
| Coefficiente di dilatazione termica                 | α =                                     | 1,00E-05 | °C <sup>-1</sup> |

#### 03.01.05 ACCIAIO DI ARMATURA

#### Acciaio da cemento armato in barre ad aderenza migliorata

FeB44 k controllato in stabilimento

| Tensione caratteristica di rottura     | $f_{tk} =$                   | 540,00    | N/mm2            |
|----------------------------------------|------------------------------|-----------|------------------|
| Tensione caratteristica di snervamento | $f_{yk} =$                   | 430,00    | N/mm2            |
| Coefficiente di sicurezza              | $\gamma_s =$                 | 1,15      |                  |
| Resistenza di calcolo                  | $f_{yd} = f_{yk}/\gamma_s =$ | 373,91    | N/mm2            |
| Modulo elastico di calcolo             | E <sub>s</sub> =             | 200000,00 | N/mm2            |
| Coefficiente di Poisson                | ν =                          | 0,30      |                  |
| Coefficiente di dilatazione termica    | α =                          | 1,00E-05  | °C <sup>-1</sup> |

#### 03.01.06 ACCIAIO ARMONICO

#### Acciaio armonico

| Tensione caratteristica di rottura              | $f_{ptk} =$               | 1800,00   | N/mm2            |
|-------------------------------------------------|---------------------------|-----------|------------------|
| Tensione caratteristica all' 1% di deformazione | $f_{p(1)k} =$             | 1600,00   | N/mm2            |
| Coefficiente di sicurezza                       | $\gamma_s =$              | 1,15      |                  |
| Tensione massima al tiro                        | $\sigma_{spi}$ = 0,8*fptk | 1440,00   | N/mm2            |
| Modulo elastico di calcolo                      | E <sub>s</sub> =          | 200000,00 | N/mm2            |
| Coefficiente di Poisson                         | ν=                        | 0,30      |                  |
| Coefficiente di dilatazione termica             | α =                       | 1,00E-05  | °C <sup>-1</sup> |

ST02\_STR640.doc Pagina 6 di 35

#### STRUTTURA IN AMPLIAMENTO 03.02

#### **CALCESTRUZZO TRAVI PRECOMPRESSE** 03.02.01

Coefficiente di dilatazione termica

| Calcestruzzo travi precompresse CLASSE 45/55        |                                         |       |       |
|-----------------------------------------------------|-----------------------------------------|-------|-------|
| Resistenza caratteristica a compressione cubica     | R <sub>ck</sub> =                       | 55,00 | N/mm2 |
| Resistenza caratteristica a compressione cilindrica | $f_{ck} = 0.83 R_{ck} =$                | 45,65 | N/mm2 |
| Resistenza media a trazione                         | $f_{ctm} = 0.30 f_{ck}^{2/3} =$         | 3,74  | N/mm2 |
| Resistenza caratteristica a trazione                | $f_{ctk(5\%)} = 0.7 f_{ctm} =$          | 2,61  | N/mm2 |
| Coefficiente di sicurezza                           | $\gamma_c =$                            | 1,50  |       |
| Resistenza di calcolo a compressione                | $f_{cd}$ = 0,85 $f_{ck}/\gamma_c$ =     | 25,87 | N/mm2 |
| Resistenza di calcolo a trazione                    | $f_{ctd} = f_{ctk(5\%)}/\gamma_c =$     | 1,74  | N/mm2 |
| Resistenza tangenziale di aderenza e di calcolo     | $f_{bd} = 2,25 f_{ctk(5\%)}/\gamma_c =$ | 3,92  | N/mm2 |
| Modulo elastico istantaneo di calcolo               | E <sub>cm</sub> =                       | 36416 | N/mm2 |
| Coefficiente di Poisson                             | ν =                                     | 0,20  |       |

 $\alpha =$ 

1,00E-05 °C<sup>-1</sup>

#### CALCESTRUZZO SOLETTA E COPPELLE PREFABBRICATE 03.02.02

#### Calcestruzzo coppelle prefabbricate CLASSE 35/45

| Resistenza caratteristica a compressione cubica     | R <sub>ck</sub> =                       | 45,00    | N/mm2            |
|-----------------------------------------------------|-----------------------------------------|----------|------------------|
| Resistenza caratteristica a compressione cilindrica | $f_{ck} = 0.83 R_{ck} =$                | 37,35    | N/mm2            |
| Resistenza media a trazione                         | $f_{ctm} = 0.30 f_{ck}^{2/3} =$         | 3,27     | N/mm2            |
| Resistenza caratteristica a trazione                | $f_{ctk(5\%)} = 0.7 f_{ctm} =$          | 2,29     | N/mm2            |
| Coefficiente di sicurezza                           | $\gamma_c$ =                            | 1,50     |                  |
| Resistenza di calcolo a compressione                | $f_{cd}$ = 0,85 $f_{ck}/\gamma_c$ =     | 21,17    | N/mm2            |
| Resistenza di calcolo a trazione                    | $f_{ctd} = f_{ctk(5\%)}/\gamma_c =$     | 1,53     | N/mm2            |
| Resistenza tangenziale di aderenza e di calcolo     | $f_{bd} = 2,25 f_{ctk(5\%)}/\gamma_c =$ | 3,44     | N/mm2            |
| Modulo elastico istantaneo di calcolo               | E <sub>cm</sub> =                       | 34625    | N/mm2            |
| Coefficiente di Poisson                             | ν =                                     | 0,20     |                  |
| Coefficiente di dilatazione termica                 | α =                                     | 1,00E-05 | °C <sup>-1</sup> |
|                                                     |                                         |          |                  |

#### 03.02.03 **CALCESTRUZZO SPALLE**

#### Calcestruzzo coppelle prefabbricate CLASSE 28/35

| Resistenza caratteristica a compressione cubica     | $R_{ck} =$                              | 35,00    | N/mm2            |
|-----------------------------------------------------|-----------------------------------------|----------|------------------|
| Resistenza caratteristica a compressione cilindrica | $f_{ck} = 0.83 R_{ck} =$                | 29,05    | N/mm2            |
| Resistenza media a trazione                         | $f_{ctm} = 0.30 f_{ck}^{2/3} =$         | 2,77     | N/mm2            |
| Resistenza caratteristica a trazione                | $f_{ctk(5\%)} = 0.7 f_{ctm} =$          | 1,94     | N/mm2            |
| Coefficiente di sicurezza                           | $\gamma_c =$                            | 1,50     |                  |
| Resistenza di calcolo a compressione                | $f_{cd}$ = 0,85 $f_{ck}/\gamma_c$ =     | 16,46    | N/mm2            |
| Resistenza di calcolo a trazione                    | $f_{ctd} = f_{ctk(5\%)}/\gamma_c =$     | 1,29     | N/mm2            |
| Resistenza tangenziale di aderenza e di calcolo     | $f_{bd} = 2,25 f_{ctk(5\%)}/\gamma_c =$ | 2,91     | N/mm2            |
| Modulo elastico istantaneo di calcolo               | E <sub>cm</sub> =                       | 32588    | N/mm2            |
| Coefficiente di Poisson                             | ν =                                     | 0,20     |                  |
| Coefficiente di dilatazione termica                 | α =                                     | 1,00E-05 | °C <sup>-1</sup> |

ST02\_STR640.doc Pagina 7 di 35

#### 03.02.04 CALCESTRUZZO PALI

#### Calcestruzzo pali CLASSE 20/25

| Resistenza caratteristica a compressione cubica     | R <sub>ck</sub> =                       | 25,00    | N/mm2            |
|-----------------------------------------------------|-----------------------------------------|----------|------------------|
| Resistenza caratteristica a compressione cilindrica | $f_{ck} = 0.83 R_{ck} =$                | 20,75    | N/mm2            |
| Resistenza media a trazione                         | $f_{ctm} = 0.30 f_{ck}^{2/3} =$         | 2,22     | N/mm2            |
| Resistenza caratteristica a trazione                | $f_{ctk(5\%)} = 0.7 f_{ctm} =$          | 1,55     | N/mm2            |
| Coefficiente di sicurezza                           | $\gamma_c$ =                            | 1,50     |                  |
| Resistenza di calcolo a compressione                | $f_{cd}$ = 0,85 $f_{ck}/\gamma_c$ =     | 11,76    | N/mm2            |
| Resistenza di calcolo a trazione                    | $f_{ctd} = f_{ctk(5\%)}/\gamma_c =$     | 1,04     | N/mm2            |
| Resistenza tangenziale di aderenza e di calcolo     | $f_{bd} = 2,25 f_{ctk(5\%)}/\gamma_c =$ | 2,33     | N/mm2            |
| Modulo elastico istantaneo di calcolo               | E <sub>cm</sub> =                       | 30200,00 | N/mm2            |
| Coefficiente di Poisson                             | ν =                                     | 0,20     |                  |
| Coefficiente di dilatazione termica                 | α =                                     | 1,00E-05 | °C <sup>-1</sup> |

#### 03.02.05 ACCIAIO DI ARMATURA

#### Acciaio da cemento armato in barre ad aderenza migliorata

B450C controllato in stabilimento

| Tensione caratteristica di rottura     | $f_{tk} =$                   | 540,00    | N/mm2            |
|----------------------------------------|------------------------------|-----------|------------------|
| Tensione caratteristica di snervamento | $f_{yk} =$                   | 450,00    | N/mm2            |
| Coefficiente di sicurezza              | $\gamma_s =$                 | 1,15      |                  |
| Resistenza di calcolo                  | $f_{yd} = f_{yk}/\gamma_s =$ | 391,30    | N/mm2            |
| Modulo elastico di calcolo             | $E_s =$                      | 200000,00 | N/mm2            |
| Coefficiente di Poisson                | ν=                           | 0,30      |                  |
| Coefficiente di dilatazione termica    | α =                          | 1,00E-05  | °C <sup>-1</sup> |

#### 03.02.06 ACCIAIO ARMONICO

#### Acciaio armonico

| Tensione caratteristica di rottura              | $f_{ptk} =$                      | 1860,00   | N/mm2            |
|-------------------------------------------------|----------------------------------|-----------|------------------|
| Tensione caratteristica all' 1% di deformazione | $f_{p(1)k} =$                    | 1670,00   | N/mm2            |
| Coefficiente di sicurezza                       | $\gamma_s =$                     | 1,15      |                  |
| Tensione massima al tiro                        | $\sigma_{\text{spi}}$ = 0,8*fptk | 1488,00   | N/mm2            |
| Modulo elastico di calcolo                      | E <sub>s</sub> =                 | 200000,00 | N/mm2            |
| Coefficiente di Poisson                         | ν =                              | 0,30      |                  |
| Coefficiente di dilatazione termica             | α =                              | 1,00E-05  | °C <sup>-1</sup> |

ST02\_STR640.doc Pagina 8 di 35

#### 04. CARATTERISTICHE GEOMETRICHE DELLE TRAVI

Nelle seguenti tabelle sono riassunte le caratteristiche geometriche delle sezioni delle travi

Si adotta la seguente simbologia :

A = Area della sezione [ m<sup>2</sup> ]

J<sub>yy</sub> = momento di inerzia della sezione sul piano verticale [ m<sup>4</sup> ]

Si indica inoltre con:

T1: trave principale in c.a.p. in ampliamento

T2: trave principale in c.a.p. esistente

Si terrà conto delle seguenti fasi costruttive :

Fase 1 : posizionamento delle travi in ampliamento e getto della soletta

Fase 2 : solidarizzazione della struttura dell' ampliamento all' esistente e posa

in opera dei sovraccarichi permanenti ; ritiro e viscosità

Fase 3 : effetto dei sovraccarichi accidentali

|                       | T1          | T2        |
|-----------------------|-------------|-----------|
| fase 1                | Trave       | Trave     |
| Tase 1                | ampliamento | esistente |
| Α                     | 0,3200      | 0,3142    |
| <b>y</b> <sub>G</sub> | 0,625       | 0,7237    |
| J <sub>yy</sub>       | 0,0680      | 0,0637    |

|                       | T1          | T2        |
|-----------------------|-------------|-----------|
| fase 2-3              | Trave       | Trave     |
| 1436 2 3              | ampliamento | esistente |
| Α                     | 0,4583      | 0,478     |
| <b>y</b> <sub>G</sub> | 0,845       | 0.955     |
| $J_{yy}$              | 0,1223      | 0,1134    |

Ai fini delle verifiche dell' impalcato non si considera l' effetto sismico perché non significativo.

ST02 STR640.doc Pagina 9 di 35

#### 05. ANALISI DEI CARICHI

Sono state considerate per le varie fasi di carico le seguenti condizioni di carico.

#### 05.01 CARICHI DI FASE 1

#### 05.01.01 PESI PROPRI STRUTTURALI (g1)

Il peso proprio degli elementi in calcestruzzo (travi e soletta) è stato calcolato considerando un peso specifico  $\gamma$  = 25 kN/m<sup>3</sup>.

- Travi dell' ampliamento

$$g_{1.1} = 0.32 \times 25 = 8,00 \text{ kN/m}$$

- Soletta dell' ampliamento

$$g_{1,2} = 0.25 \times 0.70 \times 25 = 4.38 \text{ kN/m}$$
 (trave interna)

$$g_{1,2} = 0.25 \times 1.05 \times 25 = 6.56 \text{ kN/m}$$
 (trave di bordo)

- Travi esistenti

$$g_{1,1} = 0.3142 \times 25 = 7.86 \text{ kN/m}$$

- Soletta esistente

$$g_{1.2} = 0.25 \times 0.86 \times 25 = 5.38 \text{ kN/m}$$

Il carico complessivo dell'impalcato risulta:

$$g1 = 8,00x3+7.86x27+25x25.4x0.25 = 395 KN/m$$

Il carico gravante sulla spalla risulta:

$$R(g1) = 395*22/2 = 4343 \text{ KN}$$

ST02\_STR640.doc Pagina 10 di 35

#### 05.02 CARICHI DI FASE 2

#### 05.02.01 SOVRACCARICHI PERMANENTI (g2)

Il progetto in esame prevede :

- Cordolo esterno esistente  $g_{2,1} = 1,30 \times 0.30 \times 25 = 9,75 \text{ kN/m}$ - Cordolo centrale esistente  $g_{2,1} = 1,60 \times 0.30 \times 25 = 12,00 \text{ kN/m}$ - Cordolo esterno ampliamento  $g_{2,1} = 0,70 \times 0.30 \times 25 = 5,25 \text{ kN/m}$ 

- Guard rail  $g_{2,2} = 1.50 \text{ kN/m}$ - Asfalto  $g_{2,3} = 3.00 \text{ kN/m}^2$ 

Considerando che la larghezza della sede stradale è pari a 21.80 m, il carico permanente complessivo di seconda fase è pari a:

$$g2 = 9.75 + 12.00 + 5.25 + 3x1.50 + 3.00x21.80 = 96.9 \text{ KN/m}$$

Il carico sulle travi esistenti risulta:

q2 (trave interna esistente) = 3x0.86 = 2.58 KN/m

g2 (trave di bordo esistente) = 0.86x0.3x25+1.50 = 7.95 KN/m

Il carico sulle travi di ampliamento risulta:

g2 (trave interna ampliamento) = 3x0.70 = 2.1 KN/m

g2 (trave di bordo ampliamento) = 5.25+3x0.35+1.50 = 7.8 KN/m

Il carico di seconda fase gravante sulla spalla risulta:

$$R(g2) = 96.9x22/2 = 1066 KN$$

#### 05.02.02 RITIRO SOLETTA AMPLIAMENTO (ε2)

Il calcolo delle deformazioni da ritiro soletta è stato eseguito secondo quanto specificato nel D.M. 14/01/2008 (par. 11.2.10.6).

Risulta:

$$\begin{array}{l} A_c = 20 \; x\underline{280} \; = 1867 \; cm^2 \\ u = 93.3 \; cm \\ h_0 = 2 \; x \; A_c \; / \; u = 400 \; mm \\ k_h = 0,725 \\ \text{U.R. } 75 \; \% \\ \epsilon_{cd,\infty} = k_h \; x \; \epsilon_{c0} = - \; 0.725 \; x \; 0.000285 = - \; 0.000207 \\ \epsilon_{ca} \; = -2.5 \; x \; (f_{ck} - 10) \; x \; 10^{-6} = -0.0000683 \end{array}$$

Complessivamente risulta:

$$\varepsilon_{cs} = -0.000275$$

ST02 STR640.doc Pagina 11 di 35

#### 05.02.03 VISCOSITA' SOLETTA AMPLIAMENTO (ε3)

Il calcolo del coefficiente di viscosità per il cls della soletta è stato eseguito secondo quanto specificato nel D.M. 14/01/2008 (par. 11.2.10.7).

#### Risulta:

- Carichi di 2 fase

$$A_c = 20 \times \frac{280}{3} = 1867 \text{ cm}^2$$

$$u = 93.3 cm$$

$$h_0 = 2 \times A_c / u = 400 \text{ mm}$$

$$t_0 = 7 \text{ gg.}$$
  
U.R. 75 %

$$\phi_{(\infty,7)} = 2.433$$

$$E'_c = 34625/(1 + 2.433) = 10085 MPa$$

- Carichi di 3 fase

$$A_c = 20 \times \frac{280}{3} = 1867 \text{ cm}^2$$

$$u = 93.3 cm$$

$$h_0 = 2 \times A_c / u = 400 \text{ mm}$$

$$t_0$$
 = 60 gg. U.R. 75 %

$$\phi_{(\infty,60)}$$
 = 1.653

$$E'_c = 34625/(1 + 1.653) = 13051 \text{ MPa}$$

ST02\_STR640.doc Pagina 12 di 35

#### 05.03 CARICHI DI FASE 3

#### 05.03.01 VARIAZIONI TERMICHE

Si considera una variazione termica uniforme pari a  $\Delta T = \pm 15$  °C a tutta la struttura.

#### 05.03.02 CARICHI MOBILI (q1)

Sono stati adottai i carichi mobili per ponti di prima categoria che, considerata la larghezza della somma delle carreggiate pari a 23.40m (si trascura la presenza del cordolo centrale), consistono in 7 colonne di carico delle seguenti intensità:

| posizione         | carico asse<br>Qik [kN] | qik [kN/m²] |
|-------------------|-------------------------|-------------|
| corsia numero 1   | 300                     | 9,00        |
| corsia numero 2   | 200                     | 2,50        |
| corsia numero 3   | 100                     | 2,50        |
| Corsie numeri 4/8 | -                       | 2,50        |

Le diverse disposizioni dei sovraccarichi si differenziano in base allo studio qualitativo delle superfici di influenza della struttura per le diverse caratteristiche di sollecitazione che di volta in volta vengono massimizzate/minimizzate. In particolare si è fissata l' attenzione sulla sezione di mezzeria e di appoggio.

Il carico massimo di terza fase che l'impalcato trasferisce alle spalle risulta pari a:

R (Qk) = 2x(300+200+100) = 1200 KN R (qk) = (9x3+2.5x23.4)x22/2 = 940 KN

ST02 STR640.doc Pagina 13 di 35

#### 05.04 CARICHI ORIZZONTALI

I seguenti contributi, agenti tutti in terza fase, vengono considerati in aggiunta ai precedenti esclusivamente per il dimensionamento e la verifica delle sottostrutture in quanto i loro effetti non sono significativi sull' impalcato.

#### 05.04.01 AZIONE DI FRENAMENTO (q3)

La forza di frenamento/accelerazione è funzione del carico verticale totale agente sulla corsia convenzionale n.1 ed è uguale a :

180 kN 
$$< q_3 = 0.6 \times 2 \times Q_{1k} + 0.10 \times q_{1k} \times w_1 \times L < 900 kN$$

Nel caso in esame (lunghezza dell' impalcato pari a 22 m), nell'ipotesi che il carico tandem sia in corrispondenza dell'appoggio, la forza di frenamento su ciascuna spalla risulta:

$$q_3 = 0.6 \times 2 \times 300 + 0.10 \times 9.00 \times 3.00 \times 22/2 = 390 \text{ kN}$$

che si ripartisce tra gli appoggi nel seguente modo:

 $q_3$  (trave esistente) = 390x(25.4 - 2.8)/25.4/27 = 12.9 KN

 $q_3$  (trave ampliamento) = 390x2.8/25.4/3 = 14.3 KN

#### 05.04.02 FORZA CENTRIFUGA (q4)

Essendo il raggio di curvatura della strada maggiore di 1500 m il valore della forza centrifuga è nullo.

#### 05.04.03 **VENTO** (q5)

La pressione del vento è pari a :

$$p = q_b x c_e x c_p x c_d$$

dove:

q<sub>b</sub> è la pressione cinetica di riferimento

ce è il coefficiente di esposizione

c<sub>p</sub> è il coefficiente di forma

cd è il coefficiente dinamico

La pressione cinetica di riferimento espressa in N/m<sup>2</sup> è data dalla seguente espressione :

$$q_b = 1/2 \rho v_b^2$$

Nel caso in esame :

 $\rho$  = 1.25 kg/m<sup>3</sup> densità dell' aria v<sub>b</sub> = 27 m/sec essendo l' opera ubicata in zona 3

ST02 STR640.doc Pagina 14 di 35

l' opera inoltre risulta ubicata in categoria Il per cui risulta :

$$k_r = 0.19$$
  
 $z_0 = 0.05 \text{ m}$   
 $z_{min} = 4.0 \text{ m}$   
 $z = 11 \text{ m}$ 

il coefficiente di esposizione vale allora :

$$c_e = 0.19^2 \times \ln(11/0.05) \times [7 + 1 \times \ln(11/0.05)] = 2.4$$

Il coefficiente di forma vale :

$$c_p = 2.4 - \phi = 1.4$$

Complessivamente si ha:

$$p = 0.5 \times 1.25 \times 27,00^2 \times 2.40 \times 1.40 \times 1.00 \cong 1.5 \text{ kN/m}^2$$

Tale pressione è stata applicata sulla superficie esposta della struttura e sui carichi transitanti, assimilati ad una parete rettangolare continua di altezza pari a 3.00 m a partire dal piano stradale.

Il carico complessivo dovuto al vento trasferito a ciascuna spalla risulta pari a:

```
h = 1.25+0.25 + 0.10 + 3.00 = 4.60m
Ht (vento) = 1.5x4.60x22.00/2 = 76 KN
Mt (vento) = 76x2.83 = 215 KN x m
essendo
```

d = 2.83 la distanza della risultante della forza dalla testa del paramento

Tale forza si ripartisce tra gli appoggi nel seguente modo:

Ponte carico

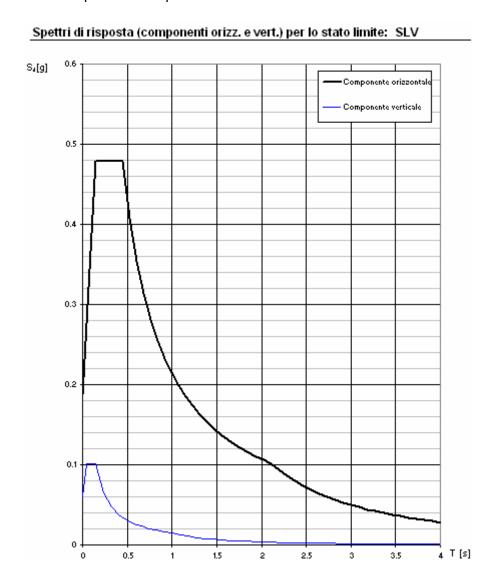
 $q_5$  (trave esistente) =  $q_5$  (trave ampliamento) = 76/(27+3) = 2.6 KN

Ponte scarico

 $q_5$  (trave esistente) =  $q_5$  (trave ampliamento) = 2.6x1.60/4.60 = 0.9 KN

#### 05.04.04 SISMA (q6)

Nel seguente paragrafo si riporta la descrizione e la valutazione dell' azione sismica secondo le specifiche del D.M. 14/01/2008.


I parametri assunti alla base del calcolo sono i seguenti :

ST02 STR640.doc Pagina 15 di 35

Dal programma 'Spettri NTC – ver. 1.0.3' del Consiglio Superiore LL PP, si ricavano i seguenti parametri dello spettro di risposta relativo al sito in esame (Coordinate :  $43^{\circ}18' N - 10^{\circ}32' E$ ).

La forza sismica orizzontale trasferita dall'impalcato a ciascuna spalla in condizioni sismiche (si considera assente il sovraccarico accidentale) risulta pari a:

Si riportano di seguito gli spettri di risposta per lo stato limite di salvaguardia della vita, utilizzando i parametri sopra elencati.



ST02\_STR640.doc Pagina 16 di 35

#### Parametri indipendenti

| STATO LIMITE     | SLV     |
|------------------|---------|
| $a_q$            | 0.125 g |
| F <sub>o</sub>   | 2.549   |
| T <sub>C</sub> * | 0.279 s |
| S <sub>S</sub>   | 1.500   |
| C <sub>C</sub>   | 1.600   |
| S <sub>T</sub>   | 1.000   |
| q                | 1.000   |

#### Parametri dipendenti

| S              | 1.500   |
|----------------|---------|
| Ξ              | 1.000   |
| $T_B$          | 0.149 s |
| T <sub>C</sub> | 0.447 s |
| T <sub>D</sub> | 2.101 s |

#### Espressioni dei parametri dipendenti

$$S = S_S \cdot S_T \tag{NTC-08 Eq. 3.2.5} \label{eq:states}$$

$$\eta = \sqrt{10/(5+\xi)} \ge 0.55$$
;  $\eta = 1/q$  (NTC-08 Eq. 3.2.6; §. 3.2.3.5)

$$T_{\rm B} = T_{\rm C} / 3$$
 (NTC-07 Eq. 3.2.8)

$$T_C = C_C \cdot T_C^* \tag{NTC-07 Eq. 3.2.7} \label{eq:ntc-07}$$

$$T_D = 4.0 \cdot a_g / g + 1.6$$
 (NTC-07 Eq. 3.2.9)

#### Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 &\leq T < T_B & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[ \frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left( 1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \\ T_C &\leq T < T_D & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left( \frac{T_C}{T} \right) \\ T_D &\leq T & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left( \frac{T_C T_D}{T^2} \right) \end{split}$$

Lo spettro di progetto  $S_d(T)$  per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico  $S_e(T)$  sostituendo  $\eta$ con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

#### Punti dello spettro di risposta

|                  | T [s]          | Se [g]         |
|------------------|----------------|----------------|
|                  | 0.000          | 0.188          |
| T <sub>B</sub> ← | 0.149          | 0.479          |
| T <sub>C</sub> ◀ | 0.447          | 0.479          |
|                  | 0.525          | 0.407          |
|                  | 0.604          | 0.354          |
|                  | 0.683          | 0.313          |
|                  | 0.762          | 0.281          |
|                  | 0.841          | 0.255          |
|                  | 0.919          | 0.233          |
|                  | 0.998          | 0.214          |
|                  | 1.077          | 0.199          |
|                  | 1.156          | 0.185          |
|                  | 1.235          | 0.173          |
|                  | 1.313          | 0.163          |
|                  | 1.392          | 0.154          |
|                  | 1.471          | 0.146          |
|                  | 1.550          | 0.138          |
|                  | 1.629          | 0.131          |
|                  | 1.707          | 0.125          |
|                  | 1.786          | 0.120          |
|                  | 1.865          | 0.115          |
|                  | 1.944          | 0.110          |
|                  | 2.023          | 0.106          |
| $T_D \leftarrow$ | 2.101          | 0.102          |
|                  | 2.192          | 0.094          |
|                  | 2.282          | 0.086          |
|                  | 2.373          | 0.080          |
|                  | 2.463          | 0.074          |
|                  | 2.553          | 0.069          |
|                  | 2.644          | 0.064          |
|                  | 2.734          | 0.060          |
|                  | 2.825          | 0.056          |
|                  | 2.915          | 0.053          |
|                  | 3.005<br>3.096 | 0.050<br>0.047 |
|                  | 3.186          | 0.047          |
|                  |                |                |
|                  | 3.277<br>3.367 | 0.042          |
|                  | 3.458          | 0.040<br>0.038 |
|                  | 3.548          | 0.036          |
|                  | 3.638          | 0.036          |
|                  | 3.729          | 0.034          |
|                  | 3.819          | 0.032          |
|                  | 3.910          | 0.031          |
|                  | 4.000          | 0.028          |
|                  | 7.000          | 0.020          |

ST02 STR640.doc Pagina 17 di 35

#### 05.05 COMBINAZIONI DI CARICO

In osservanza ai punti 5.1.3.12 e 5.2.3 del D.M. 14/01/2008 le condizioni elementari di carico sono state combinate considerando gli stati limite di esercizio, ultimi e di salvaguardia della vita (sisma).

#### 05.05.01 COMBINAZIONI DI CARICO PER L'IMPALCATO

Nella seguente tabella si riportano le combinazioni di carico considerate.

|              | IMPALCATO | g1+g2 | ε2  | ε3   | q1                             | q3  | q4  | q5  | q6 |
|--------------|-----------|-------|-----|------|--------------------------------|-----|-----|-----|----|
|              | SLE (QP)  | 1     | 1   | 0,5  | 0                              | 0   | 0   | 0   | 0  |
| SLE          | SLE (FR)  | 1     | 1   | 0,6  | 0,75 Qik<br>0,4 qik            | 0   | 0   | 0   | 0  |
|              | SLE (R)   | 1     | 1   | 0,6  | 1 Qik<br>1 qik                 | 0   | 0   | 0   | 0  |
|              | STR1      | 1,35  | 1,2 | 0,72 | 0                              | 0   | 0   | 1,5 | 0  |
|              | STR2      | 1,35  | 1,2 | 0,72 | 1,35                           | 0   | 0   | 0,9 | 0  |
| SLU<br>(STR) | STR3      | 1,35  | 1,2 | 0,72 | 1,35x0,75 Qik<br>1,35x0,40 qik | 1,5 | 0   | 0,9 | 0  |
| (3111)       | STR4      | 1,35  | 1,2 | 0,72 | 1,35x0,75 Qik<br>1,35x0,40 qik | 0   | 1,5 | 0,9 | 0  |

Ognuno dei precedenti stati limite è costituito da quattro combinazioni in relazione alle diverse posizioni dei sovraccarichi sull' impalcato.

Come già enunciato al par. 5.3.2 per l'impalcato si possono considerare fino a otto colonne di carico.

Ai fini del calcolo delle travi, per massimizzare le caratteristiche di sollecitazione, si sono considerate quattro colonne di carico nella posizione eccentrica più gravosa in cui i carichi tandem sono stati disposti in asse alla mezzeria negli schemi di carico 1 ( $M_{max}$  impalcato ampliamento) e 3 ( $M_{max}$  impalcato esistente), e in prossimità degli appoggi di una spalla per gli schemi di carico 2 ( $V_{max}$  impalcato ampliamento), 4 ( $V_{max}$  impalcato esistente).

In particolare, negli schemi di carico 1 e 2, il sovraccarico accidentale è stato posizionato nella carreggiata NORD; mentre negli schemi di carico 3 e 4, il sovraccarico accidentale è stato posizionato nella carreggiata SUD.

ST02 STR640.doc Pagina 18 di 35

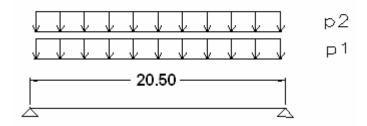
#### 05.05.02 COMBINAZIONI DI CARICO PER LE SOTTOSTRUTTURE

Nella seguente tabella si riportano le combinazioni di carico considerate

|              | SPALLE | g1+g2 | ε2  | ε3   | q1                             | q3  | q4  | q5   | q6 |
|--------------|--------|-------|-----|------|--------------------------------|-----|-----|------|----|
|              | STR1   | 1,35  | 1,2 | 0,72 | 0                              | 0   | 0   | 1,5  | 0  |
|              | STR2   | 1,35  | 1,2 | 0,72 | 1,35                           | 0   | 0   | 0,9  | 0  |
| SLU<br>(STR) | STR3   | 1,35  | 1,2 | 0,72 | 1,35x0,75 Qik<br>1,35x0,40 qik | 1,5 | 0   | 0,9  | 0  |
|              | STR4   | 1,35  | 1,2 | 0,72 | 1,35x0,75 Qik<br>1,35x0,40 qik | 0   | 1,5 | 0,9  | 0  |
|              | GEO1   | 1     | 1   | 0,6  | 0                              | 0   | 0   | 1,3  | 0  |
|              | GEO2   | 1     | 1   | 0,6  | 1,15                           | 0   | 0   | 0,78 | 0  |
| SLU<br>(GEO) | GEO3   | 1     | 1   | 0,6  | 1,15x0,75 Qik<br>1,15x0,40 qik | 1,3 | 0   | 0,78 | 0  |
|              | GEO4   | 1     | 1   | 0,6  | 1,15x0,75 Qik<br>1,15x0,40 qik | 0   | 1,3 | 0,78 | 0  |
| SLV          | SLV    | 1     | 1   | 0    | 0                              | 0   | 0   | 0    | 1  |

Per le combinazioni sismiche è stato considerato lo stato limite di salvaguardia SLV che comprende due combinazioni in cui il sisma nelle due direzioni (longitudinale, trasversale) è combinato come segue.

ST02\_STR640.doc Pagina 19 di 35


#### 06. CARATTERISTICHE DI SOLLECITAZIONE

#### 06.01 IMPALCATO

Nelle seguenti tabelle si riassumono i valori delle caratteristiche di sollecitazioni massime nei vari elementi strutturali per le combinazioni di carico di cui al par. 5.5.1.

#### 06.01.01 FASE 1

Per la prima fase lo schema di calcolo è il seguente :



dove, con riferimento al par. 5.1.1 i carichi valgono (valori caratteristici) :

#### Travi dell' ampliamento

 $p_1 = 8.00 \text{ kN/m}$ 

 $p_2 = 6.56 \text{ kN/m}$ 

P = 14.56 kN

Risulta:

|              |          | tra    | ıvi amp | liamento |       |
|--------------|----------|--------|---------|----------|-------|
|              | FASE 1   | mezze  | eria    | appog    | gio   |
|              |          | M(kNm) | V(kN)   | M(kNm)   | V(kN) |
|              | SLE (QP) | 765    | -       | 0        | 149   |
| SLE          | SLE (FR) | 765    | -       | 0        | 149   |
|              | SLE (R)  | 765    | -       | 0        | 149   |
|              | STR1     | 1033   | -       | 0        | 201   |
| SLU<br>(STR) | STR2     | 1033   | -       | 0        | 201   |
|              | STR3     | 1033   | -       | 0        | 201   |
|              | STR4     | 1033   | -       | 0        | 201   |

ST02\_STR640.doc Pagina 20 di 35

# Travi esistenti

 $p_1 = 7.86 \text{ kN/m}$ 

 $p_2 = 5.38 \text{ kN/m}$ 

P = 13.24 kN

# Risulta:

|       |          |        | travi es | sistenti |       |
|-------|----------|--------|----------|----------|-------|
|       | FASE 1   | mezze  | eria     | appog    | gio   |
|       |          | M(kNm) | V(kN)    | M(kNm)   | V(kN) |
|       | SLE (QP) | 696    | -        | 0        | 136   |
| SLE   | SLE (FR) | 696    | -        | 0        | 136   |
|       | SLE (R)  | 696    | -        | 0        | 136   |
|       | STR1     | 940    | -        | 0        | 184   |
| SLU   | STR2     | 940    | -        | 0        | 184   |
| (STR) | STR3     | 940    | -        | 0        | 184   |
|       | STR4     | 940    | -        | 0        | 184   |

#### 06.01.02 FASE 2

# Travi dell' ampliamento

 $g_2 = 7.80 \text{ kN/m}$ 

#### Risulta:

|       |          | travi ampliamento |       |        |       |
|-------|----------|-------------------|-------|--------|-------|
|       | FASE 2   | mezze             | eria  | appog  | gio   |
|       |          | M(kNm)            | V(kN) | M(kNm) | V(kN) |
|       | SLE (QP) | 410               | -     | 0      | 80    |
| SLE   | SLE (FR) | 410               | -     | 0      | 80    |
|       | SLE (R)  | 410               | -     | 0      | 80    |
|       | STR1     | 554               | -     | 0      | 108   |
| SLU   | STR2     | 554               | -     | 0      | 108   |
| (STR) | STR3     | 554               | -     | 0      | 108   |
|       | STR4     | 554               | -     | 0      | 108   |

ST02\_STR640.doc Pagina 21 di 35

#### Travi esistenti

 $g_2 = 7,95 \text{ kN/m}$ 

#### Risulta:

|       |          |                | travi es | sistenti     |       |
|-------|----------|----------------|----------|--------------|-------|
|       | FASE 2   | FASE 2 mezzeri |          | ria appoggio |       |
|       |          | M(kNm)         | V(kN)    | M(kNm)       | V(kN) |
|       | SLE (QP) | 418            | ı        | 0            | 81    |
| SLE   | SLE (FR) | 418            | -        | 0            | 81    |
|       | SLE (R)  | 418            | 1        | 0            | 81    |
|       | STR1     | 564            | ı        | 0            | 109   |
| SLU   | STR2     | 564            | -        | 0            | 109   |
| (STR) | STR3     | 564            | -        | 0            | 109   |
|       | STR4     | 564            | -        | 0            | 109   |

Per effetto del ritiro e della viscosità, con riferimento ai par. 5.2.2 e 5.2.3 si ha nella sezione di mezzeria delle travi dell' ampliamento :

$$\varepsilon$$
 = - 0.000275  
A<sub>c</sub> = 1867 cm<sup>2</sup>  
E = 10085 MPa

#### -SLE

N = 
$$-0.000275 \times 10085 \times 1867/10 = -518 \text{ kN}$$
 compressione M =  $518 \times (1.40 - 0.845) = 287 \text{ kNm}$ 

#### -SLU

$$N = -1.2 \times 518 = -622 \text{ kN}$$
 compressione  $M = 1.2 \times 287 = 344 \text{ kNm}$ 

ST02\_STR640.doc Pagina 22 di 35

#### 06.01.03 FASE 3

# Travi dell' ampliamento

 $Q_1$ = 2x150 = 300 KN q1= 9x0.7 = 6.3 KN/m

|       |          | tra             | ıvi amp | liamento | ı     |
|-------|----------|-----------------|---------|----------|-------|
|       | FASE 3   | FASE 3 mezzeria |         | appoggio |       |
|       |          | M(kNm)          | V(kN)   | M(kNm)   | V(kN) |
|       | SLE (QP) | 0               | 0       | 0        | 0     |
| SLE   | SLE (FR) | 1286            | 113     | 0        | 251   |
|       | SLE (R)  | 1869            | 150     | 0        | 365   |
|       | STR1     | 0               | 0       | 0        | 0     |
| SLU   | STR2     | 2523            | 203     | 0        | 493   |
| (STR) | STR3     | 1736            | 152     | 0        | 339   |
|       | STR4     | 1736            | 152     | 0        | 339   |

# Travi esistenti

 $Q_1$ = 2x150 = 300 KN q1= 9x0.86 = 7.74 KN/m

|       |          |        | travi es | sistenti |       |
|-------|----------|--------|----------|----------|-------|
|       | FASE 3   | mezze  | eria     | appog    | gio   |
|       |          | M(kNm) | V(kN)    | M(kNm)   | V(kN) |
|       | SLE (QP) | 0      | 0        | 0        | 0     |
| SLE   | SLE (FR) | 1316   | 113      | 0        | 257   |
|       | SLE (R)  | 1945   | 150      | 0        | 379   |
|       | STR1     | 0      | 0        | 0        | 0     |
| SLU   | STR2     | 2626   | 203      | 0        | 512   |
| (STR) | STR3     | 1777   | 152      | 0        | 346   |
|       | STR4     | 1777   | 152      | 0        | 346   |

ST02\_STR640.doc Pagina 23 di 35

Per effetto delle variazioni termiche, con riferimento al par. 5.3.1 si ha nella sezione di mezzeria delle travi dell' ampliamento :

$$\begin{split} \epsilon &= \pm \, 0.00001 \, x \, 15 = \pm \, 0.00015 \\ A_c &= 1867 \, cm^2 \\ E &= 13051 \, MPa \\ -SLE \, (QP \,) \\ N &= \pm \, 0.5 \, x \, 0.00015 \, x \, 13051 \, x \, 1867 \, /10 = \pm \, 183 \, kN \\ M &= \pm \, 183 \, x \, (1.4 - 0.845) = \pm \, 102 \, kNm \\ -SLE \, (FR,R) \\ N &= \pm \, 0.6 \, x \, 0.00015 \, x \, 13051 \, x \, 1867 \, /10 = \pm \, 219 \, kN \\ M &= \pm \, 219 \, x \, (1.4 - 0.845) = \pm \, 122 \, kNm \\ -SLU \\ N &= \pm \, 0.72 \, x \, 0.00015 \, x \, 13051 \, x \, 1867 \, /10 = \pm \, 263 \, kN \end{split}$$

 $M = \pm 263 \text{ x } (1.4 - 0.845) = \pm 146 \text{ kNm}$ 

ST02\_STR640.doc Pagina 24 di 35

# 06.02 REAZIONI SULLE SPALLE

Nelle seguenti tabelle si riassumono i valori delle reazioni agli appoggi sulle singole travi per le condizioni di carico elementari e per combinate secondo i coefficienti di cui al par. 5.5.1.

|                          | Travi ampliamento |       |        | Travi esistenti |       |        |
|--------------------------|-------------------|-------|--------|-----------------|-------|--------|
| Azione                   | N                 | Hlong | Htrasv | N               | Hlong | Htrasv |
| AZIONE                   | kN                | kN    | kN     | kN              | kN    | kN     |
| g1+g2                    | 246.0             | 0.0   | 0.0    | 233.0           | 0.0   | 0.0    |
| Carichi mobili Qik       | 300.0             | 0.0   | 0.0    | 300.0           | 0.0   | 0.0    |
| Carichi mobili qik       | 69.0              | 0.0   | 0.0    | 85.0            | 0.0   | 0.0    |
| Frenamento (q3)          | 0.0               | 14.3  | 0.0    | 0.0             | 12.9  | 0.0    |
| Centrifuga (q4)          | 0.0               | 0.0   | 0.0    | 0.0             | 0.0   | 0.0    |
| Vento ponte scarico (q5) | 0.0               | 0.0   | 0.9    | 0.0             | 0.0   | 0.9    |
| Vento ponte carico (q5)  | 0.0               | 0.0   | 2.6    | 0.0             | 0.0   | 2.6    |
| El+0,3Et (q6)            | 0.0               | 46.1  | 13.8   | 0.0             | 43.7  | 13.1   |
| 0,3El+Et (q6)            | 0.0               | 13.8  | 46.1   | 0.0             | 13.1  | 43.7   |

|           |               | Travi ampliamento |       | Travi esistenti |     | enti  |        |
|-----------|---------------|-------------------|-------|-----------------|-----|-------|--------|
| Gruppo    | Combinazione  | N                 | Hlong | Htrasv          | N   | Hlong | Htrasv |
|           | Combinazione  | kN                | kN    | kN              | kN  | kN    | kN     |
|           | STR1          | 332               | 0     | 4               | 315 | 0     | 4      |
| SLU (STR) | STR2          | 744               | 0     | 2               | 753 | 0     | 2      |
| 3LO (31K) | STR3          | 587               | 21    | 2               | 583 | 19    | 2      |
|           | STR4          | 587               | 0     | 2               | 583 | 0     | 2      |
|           | GEO1          | 246               | 0     | 1               | 233 | 0     | 1      |
| SLU(GEO)  | GEO2          | 670               | 0     | 2               | 676 | 0     | 2      |
| JLU(GLU)  | GEO3          | 536               | 19    | 2               | 531 | 17    | 2      |
|           | GEO4          | 536               | 0     | 2               | 531 | 0     | 2      |
| SISMA     | El+0,3Et (q6) | 320               | 46    | 14              | 310 | 44    | 13     |
| (SLV)     | 0,3El+Et (q6) | 320               | 14    | 46              | 310 | 13    | 44     |

ST02\_STR640.doc Pagina 25 di 35

#### 07. VERIFICHE DI RESISTENZA

#### 07.01 IMPALCATO

#### 07.02 TRAVI AMPLIAMENTO

#### 07.02.01 SEZIONE DI MEZZERIA

Con riferimento ai paragrafi precedenti le sollecitazioni massime risultano :

- Fase 1

$$M = 765 \text{ kNm}$$
 SLE  $V = 0$ 

- Fase 2

- Fase 3

Nella corrente fase della progettazione si sono scelte da catalogo travi in c.a.p. con caratteristiche dimensionali e di armatura adatte alle sollecitazioni di progetto.

ST02\_STR640.doc Pagina 26 di 35

#### 07.02.02 SEZIONE DI APPOGGIO

Con riferimento ai paragrafi precedenti le sollecitazioni massime risultano :

- Fase 1

$$M = 0 \text{ kNm}$$
 SLU  $V = 201 \text{ kN}$ 

- Fase 2

- Fase 3

Nella corrente fase della progettazione si sono scelte da catalogo travi in c.a.p. con caratteristiche dimensionali e di armatura adatte alle sollecitazioni di progetto.

ST02\_STR640.doc Pagina 27 di 35

#### 07.03 TRAVI ESISTENTI

#### 07.03.01 SEZIONE DI MEZZERIA

Con riferimento ai paragrafi precedenti le sollecitazioni massime risultano :

- Fase 1

| M = 696 kNm | SLE |
|-------------|-----|
| V = 0  KN   |     |

- Fase 2

$$M = 418 \text{ kNm}$$
 SLE  $V = 0 \text{ kN}$ 

$$M = 564 \text{ kNm}$$
 SLU  $V = 0 \text{ kN}$ 

- Fase 3

$$M = 1945 \text{ kNm}$$
 SLE  $V = 0 \text{ kN}$ 

$$M = 2626 \text{ kNm}$$
 SLU  $V = 0 \text{ kN}$ 

In mancanza della documentazione di progetto relativa alle travi esistenti, non è possibile procedere alla loro verifica. Si rimanda ad una successiva fase di progetto la verifica delle travi di impalcato.

ST02\_STR640.doc Pagina 28 di 35

#### 07.03.02 SEZIONE DI APPOGGIO

Con riferimento ai paragrafi precedenti le sollecitazioni massime risultano :

- Fase 1

$$M = 0 \text{ kNm}$$
 SLU  $V = 184 \text{ kN}$ 

- Fase 2

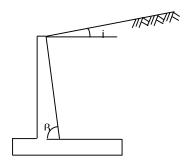
$$M = 0 \text{ kNm}$$
 SLU  $V = 109 \text{ kN}$ 

- Fase 3

$$M = 0 \text{ kNm}$$
 SLE  $V = 379 \text{ kN}$ 

$$M = 0 \text{ kNm}$$
 SLU  $V = 512 \text{ kN}$ 

In mancanza della documentazione di progetto relativa alle travi esistenti, non è possibile procedere alla loro verifica. Si rimanda ad una successiva fase di progetto la verifica delle travi di impalcato.


ST02\_STR640.doc Pagina 29 di 35

#### 08. VERIFICA DELLE SPALLE

Con riferimento alle indicazioni del DM-2008, l'effetto delle spinte è valutato con i metodi tradizionali dell'equilibrio limite. Nel caso particolare (spalla su pali), la spinta statica è calcolata utilizzando il coefficiente di spinta a riposo, la sovraspinta sismica è valutata con il metodo di Mononobe-Okabe ed applicata ad h/2, il coefficiente  $\beta$  è assunto pari a 1. Si riporta nel seguito il calcolo dei coefficienti di spinta sismica secondo Mononobe-Okabe.

#### Calcolo K statico

|                                                                 |            | [RAD]  | [DEG] |
|-----------------------------------------------------------------|------------|--------|-------|
| Angolo di attrito del terreno                                   | $\phi =$   | 0.6109 | 35    |
| Angolo di attrito muro-terreno                                  | $\delta =$ | 0.3054 | 17.5  |
| Inclinazione dell'intradosso del muro con l'orizzontale         | $\beta =$  | 1.5708 | 90    |
| Inclinazione superficie libera del terrapieno con l'orizzontale | i =        | 0.0000 | 0     |



 $\beta' = 1.3995$  i' = 0.1713

Ka = 0.246 Coefficiente di spinta attiva

Ko = 0.426 Coefficiente di spinta a riposo

#### Calcolo K sismico (Mononobe-Okabe)

Kh = 0.1875 Coefficiente sismico orizzontale (agxS)

 $\theta = 0.1853$  (rad)

. . . . .

Ks = 0.369 (spinta sismica)

Ks - Ka = 0.123 (incremento di spinta sismica)

Il calcolo delle sollecitazioni globali è condotto attraverso un foglio di calcolo, riportato di seguito, dove sono indicati la geometria, i parametri di calcolo, le sollecitazioni di ingresso e le azioni elementari, per ogni combinazione di carico considerata. A tergo della spalla si è considerato un sovraccarico accidentale pari a 20KN/m2 in condizioni statiche e nullo in condizioni sismiche, mentre per il terreno si è considerato un peso di volume di 20KN/m3.

ST02\_STR640.doc Pagina 30 di 35

## 08.01 COMBINAZIONI DI CARICO

Si riportano di seguito le combinazioni di carico considerate per l'analisi delle spalle:

#### 08.01.01 Stato Limite di esercizio - SLE (combinazione rara)

|                    | γi (SLE1) | γi (SLE2) |
|--------------------|-----------|-----------|
|                    |           |           |
| Peso proprio       | 1.00      | 1.00      |
| Permanenti         | 1.00      | 1.00      |
| Carichi mobili (+) | 0.75      | 1.00      |
| Frenatura          | 1.00      | 0         |
| Vento              | 0.60      | 0.60      |

#### 08.01.02 Stato Limite Ultimo Statico - SLU

A1-STR

|                | γi (SLU1) | γi (SLU2) |
|----------------|-----------|-----------|
| Peso proprio   | 1.35      | 1.35      |
| Permanenti     | 1.50      | 1.50      |
| Carichi mobili | 1.01      | 1.35      |
| Frenatura      | 1.35      | 0         |
| Vento          | 0.90      | 0.90      |

#### A2-GEO

|                | γi (SLU1) | γi (SLU2) |
|----------------|-----------|-----------|
| Peso proprio   | 1.00      | 1.00      |
| Permanenti     | 1.30      | 1.30      |
| Carichi mobili | 0.86      | 1.15      |
| Frenatura      | 1.15      | 0         |
| Vento          | 0.78      | 0.78      |

#### 08.01.03 Stato Limite Ultimo Sismico - SLV

Sisma Longitudinale SL

|              | γi   |
|--------------|------|
| Peso proprio | 1.00 |
| Permanenti   | 1.00 |
| Sisma Long.  | 1.00 |
| Sisma Trasv. | 0.30 |

#### Sisma Trasversale ST

|              | γi   |
|--------------|------|
| Peso proprio | 1.00 |
| Permanenti   | 1.00 |
| Sisma Long.  | 0.30 |
| Sisma Trasv. | 1.00 |

ST02\_STR640.doc Pagina 31 di 35

## 08.02 **GEOMETRIA**

Si riportano di seguito i dati di input relativi alla geometria delle spalle in oggetto:

| alla  |
|-------|
|       |
| 0.40  |
| 2.05  |
| 0.90  |
| 2.70  |
| 1.25  |
|       |
| 26.00 |
| 24.80 |
| 28.00 |
|       |
| 1.80  |
| 9.50  |
| 0.35  |
| 1.50  |
|       |
| 90    |
| no    |
|       |

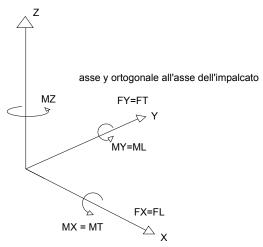
Si riportano di seguito i carichi trasmessi dall'impalcato considerati per il calcolo: Carichi verticali (KN)

| P1   | P2   | P3   |
|------|------|------|
| 4343 | 1066 | 2058 |

Forze longitudinali (KN)

| Frenatura | Sisma L |
|-----------|---------|
| 390       | 1014    |

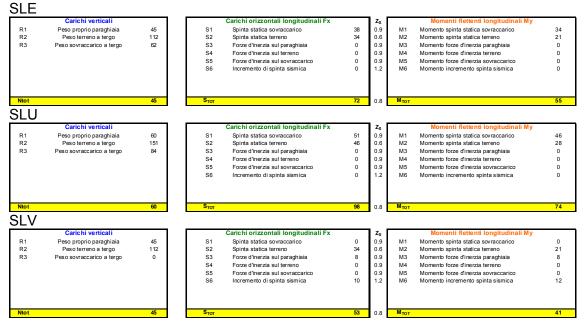
Forze trasversali (KN) e relativi bracci (m)


| Vento | Hv   | Sisma T | Hs   |
|-------|------|---------|------|
| 82    | 2.83 | 1014    | 1.63 |

Momenti trasversali (KNxm)

| M3 (es) | M3 (amp) | M vento | M sisma T |
|---------|----------|---------|-----------|
| 12452   | -12452   | 231     | 1653      |

ST02\_STR640.doc Pagina 32 di 35


I carichi di seguito riportati vengono espressi sulla base del seguente sistema di riferimento:



asse x parallelo all'asse impalcato

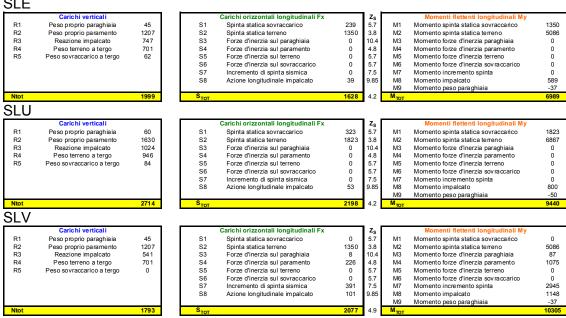
#### 08.03 PARAGHIAIA

Si riporta di seguito alla base del paraghiaia il calcolo delle caratteristiche di sollecitazione globali (espresse in t e txm) eseguito su una larghezza di 24.80m (larghezza media interna tra i muri andatori):



Ripartendo le caratteristiche di sollecitazione sulla larghezza considerata di 24.80m (larghezza di calcolo), le caratteristiche di sollecitazione massime a metro lineare risultano:

|            | SLE  | SLU  | SLV  |
|------------|------|------|------|
| N (KN/m)   | 18.0 | 24.3 | 18.0 |
| T (KN/m)   | 29.2 | 39.2 | 21.4 |
| M (KNxm/m) | 22.1 | 29.8 | 16.4 |


ST02 STR640.doc Pagina 33 di 35

#### 08.04 PARAMENTO VERTICALE

Le caratteristiche di sollecitazione alla base del paramento, vengono determinate con riferimento ai seguenti carichi trasmessi in testa dall'impalcato:

|         | SLE  | SLU   | SLV  |
|---------|------|-------|------|
| N (KN)  | 7467 | 10240 | 5409 |
| FL (KN) | 390  | 527   | 1014 |

Si riporta di seguito alla base del paramento il calcolo delle caratteristiche di sollecitazione globali (espresse in t e txm) eseguito su una larghezza di 24.80:



Ripartendo le caratteristiche di sollecitazione sulla larghezza considerata di 24.80, le caratteristiche di sollecitazione massime a metro lineare risultano:

|            | SLE  | SLU  | SLV  |
|------------|------|------|------|
| N (KN/m)   | 806  | 1095 | 723  |
| T (KN/m)   | 656  | 886  | 838  |
| M (KNxm/m) | 2818 | 3806 | 4155 |

ST02 STR640.doc Pagina 34 di 35

#### 08.05 CARICHI IN FONDAZIONE

Si riportano di seguito per ogni fase di carico analizzata i valori massimi delle caratteristiche di sollecitazione calcolati all'intradosso della fondazione nel baricentro della sezione :

| ST02 - Sottovia Paratino - A12 - Lotto2 - Spalle                             |        |         |         |          |          |
|------------------------------------------------------------------------------|--------|---------|---------|----------|----------|
|                                                                              | N (KN) | FL (KN) | FT (KN) | ML (KNm) | MT (KNm) |
| PESO SPALLA                                                                  | 19940  |         |         | -10956   | 0        |
| PESO TERRENO - Peso di volume 2 t/m3                                         | 7006   |         |         | -16639   | 0        |
| PESO SOVRACCARICO - Q = 2x24.8x1.25 = 62 t, eccentricità el = -2.375, et = 0 | 620    |         |         | -1473    | 0        |
| SPINTA STATICA TERRENO - Ko = 0.426                                          |        | 18165   | 0       | 77504    | 0        |
| SPINT A STATICA SOVRACCARICO - Ko = 0.426                                    |        | 2707    | 0       | 17327    | 0        |
| PESO PROPRIO IMPALCATO (PRIMA FASE) - R1 = 4343 KN                           | 4343   |         |         | -1954    | 0        |
| SOVRACCARICHI PERMANENTI IMPALCATO (SECONDA FASE) - R2 = 1066 KN             | 1066   |         |         | -480     | 0        |
| CARICHI MOBILI - R3 = 2058 KN, M3T = 12452 KNm                               | 2058   |         |         | -926     | 12452    |
| FRENATURA - Ff L = 390 KN                                                    |        | 390     |         | 4423     |          |
| VENTO - Fv T =82 KN, MvT = 231 KNm                                           |        |         | 82      |          | 1158     |
| FORZA D'INERZIA LONGITUDINALE IMPALCATO - FSL = 1014 KN                      |        | 1014    |         | 11511    |          |
| FORZA D'INERZIA TRASVERSALE IMPALCATO - FST = 1014 KN, MS T =1653 KNm        |        |         | 1014    |          | 13164    |
| FORZE D'INERZIA SPALLA - C = 0.1875g                                         |        | 3739    |         | 17532    |          |
| FORZE D'INERZIA TERRENO - C = 0.1875g                                        |        | 1314    |         | 9392     |          |
| FORZE D'INERZIA SOVRACCARICO - C = 0.1875g                                   |        | 116     |         | 1488     |          |
| INCREMENTO SPINTA SISMICA TERRENO Ksis - Ka = 0.123                          |        | 5259    | 253     | 33658    | 1618     |
| INCREMENTO SPINTA SISMICA SOVRACCARICO Ksis - Ka = 0.123                     |        | 784     | 40      | 5016     | 253      |

Dalla combinazione di tali valori si hanno le seguenti caratteristiche di sollecitazione massime in fondazione:

|                             | N (KN) | FL (KN) | FT (KN) | ML (KNm) | MT (KNm) |
|-----------------------------|--------|---------|---------|----------|----------|
| sle 01 - frenatura          | 34518  | 21262   | 49      | 67057    | 10034    |
| sle 02                      | 35033  | 20872   | 49      | 62402    | 13147    |
| slu 01 (A1 STR) - frenatura | 46759  | 28704   | 74      | 90322    | 13650    |
| slu 02 (A1 STR)             | 47454  | 28178   | 74      | 84171    | 17853    |
| slu 01 (A2 GEO) - frenatura | 35162  | 21726   | 64      | 69850    | 11643    |
| slu 02 (A2 GEO)             | 35754  | 21278   | 64      | 64498    | 15223    |
| si                          | 32355  | 28177   | 1896    | 110175   | 12512    |
| st                          | 32355  | 21169   | 6319    | 66285    | 41706    |

Sulla base dei dati ad oggi disponibili non è stato possibile formulare delle ipotesi esaustive circa la tipologia delle fondazioni esistenti (dirette o profonde). Di conseguenza, non è stato possibile condurre verifiche di resistenza in fondazione sulle strutture esistenti. Tuttavia le parti di fondazione in ampliamento sono state definite sulla base della quota parte di carichi agenti su di esse, nonché delle caratteristiche meccaniche dei terreni di fondazione, garantendo i minimi livelli di sicurezza richiesti dalla normativa in vigore. Tali assunzioni saranno oggetto di verifica nelle successive fasi.

STR640.doc Pagina 35 di 35