COMMITTENTE

PROGETTAZIONE:

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI – FIUMEFREDDO

Lotto 2: Taormina (e) – Giampilieri (e)

VI07 - VIADOTTO SATANO

SCALA:
-

COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV.

R S 2 S 0 2 D 0 9 C L V I 0 7 0 5 0 0 1 A

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	A orizato Data
А	EMISSIONE ESECUTIVA	D.Guerci	Genn.2018	A Ferri	Genn.2018	P.Carlesimo	Genn.2018	A.Vatozzi Cen≘.2018
					L			n e de
								SAR S. Section of the
								Mile Man
								Gott.
								205

File: RS2S02D09CLVI0705001A.docx n. Exb.: 2031

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

DIRETTRICE FERROVIARIA MESSINA-CATANIA-PALERMO

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO
RS2S 02 D 09 CL VI0705 001 A 2 di 103

INDICE

1	INT	RODUZIONE	6
2	DO	CUMENTI CORRELATI	6
3	NOI	RMATIVA DI RIFERIMENTO	6
4	CAF	RATTERISITICHE DEI MATERIALI	8
5	ANA	ALISI DEI CARICHI	9
	5.1	PESI PROPRI E PERMANENTI PORTATI	9
6	MO	DELLO DI CALCOLO	11
	6.1	NOTE	11
	6.2	LIMITI TENSIONALI	12
	6.3	VERIFICA A FESSURAZIONE	12
	6.4	LEGENDA	12
7	CAI	LCOLO E VERIFICA PILA 2	13
	7.1	AZIONE SISMICA	13
	7.2	Dati generali	14
	7.3	ANALISI SISMICA	15
	7.4	CARICHI DA TRAFFICO	17
	7.5	VENTO	18
	7.6	AZIONI CARATTERISTICHE E DATI FONDAZIONE	20
	7.7	COMBINAZIONI DI CARICO	21
	7.8	VERIFICA A PRESSOFLESSIONE PILA	22
	7.9	VERIFICA A TAGLIO PILA	24
	7.10	CARICHI SUI PALI	28
	7.11	VERIFICA PALO PER FORZE ORIZZONTALI	29
	7.11	1.1 Capacità portante orizzontale (Broms)	29

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 3 di 103

	7.11	.2 Resistenza strutturale	.30
	7.11	.3 Taglio strutturale	.31
	7.12	VERIFICA PLINTO	32
8	CAL	COLO E VERIFICA PILA 8	.34
	8.1	AZIONE SISMICA	.34
	8.2	Dati generali	.34
	8.3	ANALISI SISMICA	.35
	8.4	CARICHI DA TRAFFICO	37
	8.5	VENTO	38
	8.6	AZIONI CARATTERISTICHE E DATI FONDAZIONE	.40
	8.7	COMBINAZIONI DI CARICO	.41
	8.8	VERIFICA A PRESSOFLESSIONE PILA	.41
	8.9	VERIFICA A TAGLIO PILA	.43
	8.10	CARICHI SUI PALI	.44
	8.11	VERIFICA PALO PER FORZE ORIZZONTALI	.45
	8.11	.1 Capacità portante orizzontale (Broms)	.45
	8.12	VERIFICA PLINTO	.46
9	CAL	COLO E VERIFICA PILA 3	.47
	9.1	AZIONE SISMICA	.47
	9.2	Dati generali	.47
	9.3	ANALISI SISMICA	.48
	9.4	CARICHI DA TRAFFICO	.50
	9.5	VENTO	.51
	9.6	AZIONI CARATTERISTICHE E DATI FONDAZIONE	.53
	9.7	COMBINAZIONI DI CARICO	54

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 4 di 103

9.8	VERIFICA A PRESSOFLESSIONE PILA	54
9.9	VERIFICA A TAGLIO PILA	56
9.10	CARICHI SUI PALI	60
9.11	VERIFICA PALO PER FORZE ORIZZONTALI	61
9.11	1.1 Capacità portante orizzontale (Broms)	61
9.11	1.2 Resistenza strutturale	62
9.11	1.3 Taglio strutturale	63
9.12	VERIFICA PLINTO	64
10 CAI	LCOLO E VERIFICA PILA 4	65
10.1	AZIONE SISMICA	65
10.2	Dati generali	65
10.3	ANALISI SISMICA	66
10.4	CARICHI DA TRAFFICO	68
10.5	VENTO	69
10.6	AZIONI CARATTERISTICHE E DATI FONDAZIONE	71
10.7	COMBINAZIONI DI CARICO	72
10.8	VERIFICA A PRESSOFLESSIONE PILA	72
10.9	VERIFICA A TAGLIO PILA	74
10.10	CARICHI SUI PALI	75
10.11	VERIFICA PALO PER FORZE ORIZZONTALI	76
10.1	11.1 Capacità portante orizzontale (Broms)	76
10.1	11.2 Resistenza strutturale	77
10.1	11.3 Taglio strutturale	<i>7</i> 8
10.12	VERIFICA PLINTO	79
11 CAI	I COLO E VERIFICA PILA 1	81

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO
RS2S 02 D 09 CL VI0705 001 A 5 di 103

	11.1	AZIONE SISMICA	81
	11.2	DATI GENERALI	81
	11.3	ANALISI SISMICA	82
	11.4	CARICHI DA TRAFFICO	84
	11.5	Vento	85
	11.6	AZIONI CARATTERISTICHE E DATI FONDAZIONE	87
	11.7	COMBINAZIONI DI CARICO	88
	11.8	VERIFICA A PRESSOFLESSIONE PILA	88
	11.9	VERIFICA A TAGLIO PILA	90
	11.10	CARICHI SUI PALI.	94
	11.11	VERIFICA PALO PER FORZE ORIZZONTALI	95
	11.1	1.1 Capacità portante orizzontale (Broms)	95
	11.12	VERIFICA PLINTO	96
12	VEF	RIFICA CAPACITA' PORTANTE VERTICALE PALO	98
13	ESC	URSIONE APPOGGI E GIUNTI	100
1 /	CAL	DICULODIZZONTALI ADDOCCI	103

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 6 di 103

1 INTRODUZIONE

Oggetto della presente relazione è la verifica strutturale delle pile del Viadotto Satano VI07, nell'ambito del progetto raddoppio della tratta Giampilieri – Fiumefreddo.

Gli impalcati presenti sono tutti a doppio binario e piattaforma da 13.70m. Sono presenti un impalcato in acciaio – calcestruzzo di luce 50m in asse pila e un impalcato in CAP di luce 25 m in asse pila. Tutti gli impalcati sono in semplice appoggio.

Le pile sono tutte a sezione scatolare bi-cellulare con dimensioni fuori tutto 11.80x3.20m. L'altezza massima delle pile è di 12.80m. Il pulvino è uguale per tutte le pile, con spessore di 2m e dimensioni pari a quelle del fusto pila.

Tutte le pile sono fondate su pali Φ 1500.

Il calcolo effettuato per la pila 4 è valido anche per le pile 5,6,e7

L'approccio utilizzato per la verifica delle fondazioni è l'approccio 2.

2 DOCUMENTI CORRELATI

[C1] **RS2S-02-D-09-RB-VI07-03-001:** Relazione geotecnica e di calcolo fondazioni;

3 NORMATIVA DI RIFERIMENTO

- [N1] **Legge 05/01/1971 n°1086:** Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso, ed a struttura metallica;
- [N2] **Legge 02/02/1974 n°64:** Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche;
- [N3] **D.M. del 14 Gennaio 2008:** Nuove norme tecniche per le costruzioni;
- [N4] **C.M. 02/02/2009 n.617:** *Istruzioni per l'applicazione delle "Norme tecniche per le costruzioni*;
- [N5] **RFI DTC SI PS MA IFS 001 A del 30/12/2016:** *Manuale di progettazione delle opere civili Parte II Sezione 2 Ponti e Strutture*;
- [N6] **RFI DTC SI PS SP IFS 001 A del 30/12/2016:** Capitolato generale tecnico di appalto delle opere civili Parte II Sezione 6 Opere in conglomerato cementizio e in acciaio;
- [N7] **UNI EN 1991-1-4:2005:** Eurocodice 1 Azioni sulle strutture Parte 1-4: Azioni in generale Azioni del vento;
- [N8] UNI EN 1992-1-1:2005: Eurocodice 2 Progettazione delle strutture di calcestruzzo Parte 1-1: Regole generali e regole per gli edifici;
- [N9] **UNI EN 1992-2:2006:** Eurocodice 2 Progettazione delle strutture di calcestruzzo Parte 2: Ponti;

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 7 di 103

- [N10] UNI EN 1993-1-1:2005: Eurocodice 3 Progettazione delle strutture di acciaio Parte 1-1: Regole generali e regole per gli edifici;
- [N11] **UNI EN 1993-2:2007:** *Eurocodice 3 Progettazione delle strutture di acciaio Parte 2: Ponti;*
- [N12] **UNI EN 1998-1:2005:** Eurocodice 8 Progettazione delle struttura per la resistenza sismica Parte 1: Regole generali, azioni sismiche e regole per gli edifici;
- [N13] **UNI EN 1998-2:2006:** Eurocodice 8 Progettazione delle struttura per la resistenza sismica Parte 2: Ponti;
- [N14] **STI 2014 REGOLAMENTO UE N.1299/2014** DELLA COMMISSIONE del 18 Novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sistema "infrastruttura" del sistema ferroviario dell'Unione Europea.

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 - VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S VI0705 001 09 CL. 8 di 103 D Α

CARATTERISITICHE DEI MATERIALI

GETTI IN OPERA

CALCESTRUZZO MAGRO E GETTO DI LIVELLAMENTO

- CLASSE DI RESISTENZA MINIMA C12/15
- TIPO CEMENTO CEM I÷V
- CLASSE DI ESPOSIZIONE AMBIENTALE : XO

CALCESTRUZZO PALI/DIAFRAMMI DI FONDAZIONE,

- CLASSE DI RESISTENZA MINIMA C35/45

- TIPO CEMENTO CEM III+V
 RAPPORTO A/C : \leq 0.45
 CLASSE MINIMA DI CONSISTENZA : \$4
 CLASSE DI ESPOSIZIONE AMBIENTALE : XA3
- COPRIFERRO MINIMO = 60 mm
- DIAMETRO MASSIMO INERTI: 32 mm

CALCESTRUZZO FONDAZIONE PILE, SPALLE E SOLETTONI

- CLASSE DI RESISTENZA MINIMA C35/45

- CLASSE DI RESISTENZA MINIMA C35/+5
 TIPO CEMENTO CEM III÷V
 RAPPORTO A/C : ≤ 0.45
 CLASSE MINIMA DI CONSISTENZA : S4
 CLASSE DI ESPOSIZIONE AMBIENTALE : XA3
- COPRIFERRO = 40 mm
- DIAMETRO MASSIMO INERTI: 25 mm

CALCESTRUZZO ELEVAZIONE PILE (COMPRESI PULVINI, BAGGIOLI E RITEGNI), SPALLE E STRUTTURE SCATOLARI

- CLASSE DI RESISTENZA MINIMA C32/40

- CLASSE DI RESISTENZA MINIMA C32/40
 TIPO CEMENTO CEM III÷V
 RAPPORTO A/C: ≤ 0.50
 CLASSE MINIMA DI CONSISTENZA: S4
 CLASSE DI ESPOSIZIONE AMBIENTALE: XC4
 COPRIFERRO = 40 mm (*)
 DIAMETRO MASSIMO INERTI: 25 mm

CALCESTRUZZO SOLETTE IMPALCATO

- CLASSE DI RESISTENZA MINIMA C32/40
- TIPO CEMENTO CEM I÷V RAPPORTO A/C : ≤ 0.50
- CLASSE MINIMA DI CONSISTENZA :
- CLASSE DI ESPOSIZIONE AMBIENTALE : XC4 COPRIFERRO = 40 mm (*) DIAMETRO MASSIMO INERTI : 20 mm

ACCIAIO ORDINARIO PER CALCESTRUZZO ARMATO

IN BARRE E RETI ELETTROSALDATE

B450C saldabile che presenta le seguenti caratteristiche

- Tensione di snervamento caratteristica
- Tensione caratteristica a rottura
- fyk > 450 N/mm² ftk > 540 N/mm² 1.15≤ ftk/fyk < 1.35

(*): I VALORI DI COPRIFERRO RIPORTATI SI RIFERISCONO AD OPERE. CON VITA NOMINALE DI 75 ANNI. PER COSTRUZIONI CON VITA NOMINALE. DI 100 ANNI TALI VALORI DOVRANNO ESSERE AUMENTATI DI 5 mm.

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 9 di 103

5 ANALISI DEI CARICHI

Si riporta solo il dettaglio dei permanenti portati. Tutti gli altri carichi sono definiti nei paragrafi successivi.

5.1 Pesi propri e permanenti portati

Impalcato in c.a.p.

Travi impalcato									
0	Parti simili	Ripetizioni	Spessore(m)	Larghezza(m)		unghezza(m)		p(KN/mc-mq)	Peso (kN)
Sezione corrente Sezione in testata	4				1.0932 1.9730	19.2	83.96 0.00	25 25	2098.9
Sezione in testata Sezione media	4				1.5331	5.10	31.28	25 25	0.0 781.9
Sezione media	4				1.5551	5.10	31.20	25	701.9
sommano						24.30	115.23		2880.8
Traswersi									
	Parti simili	Ripetizioni		Larghezza(m)	Area(mq) L	unghezza(m)		p(KN/mc-mq)	Peso (kN)
Trasversi interni	2		0.325	1.825		9.64	11.44	25	285.9
Trasversi di testata	2		0.425	1.6		9.64	13.11	25	327.8
Fori a detrarre trasversi interni	-4	2	0.325		0.5473		-1.42	25	-35.6
Fori a detrarre trasversi di testata	-4	2	0.425		0.5473		-1.86	25	-46.5
sommano							21.26		531.6
Soletta									
	Parti simili	Ripetizioni	Spessore(m)	Larghezza(m)	Area(mq) L	unghezza(m)	Volume(m3)	p(KN/mc-mq)	Peso (kN)
Soletta	1	1	0.355	13.7		25.00	121.59	25	3039.7
sommano							121.59		3039.7
Riepilogo	Peso (kN)	ez (m)	Sz (kNm/m)	L(m)	Peso (kN/ml)				
Travi	2880.8	0.00	0.0	25.00	115.23				
Trasversi	531.6	0.00	0.0	25.00	21.26				
Soletta	3039.7	0.00	0.0	25.00	121.59				
sommano	6452.1	0.00	0.0		258.1				
	≈ 6452.0								
Lunghezza	25.00 r	m							
Lunghezza Larghezza	25.00 r 13.70 r								
•		m							

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO
RS2S 02 D 09 CL VI0705 001 A 10 di 103

Totale permanenti G

392.3

19 616

Pesi propri	Ripetizioni	Spessore	Larghezza m	Area Lur mg	nghezza m	Volume mc	p kN/mc-mg	Peso kN/ml	L	Pto
Impalcato CAP (travi+soletta)	1	111		тіц	111	1.0000	258.1	258.1	25	6 45
paratic of it (italifosiotta)	·						pesi propri G1	258.1		6 45
Permanenti portati	Ripetizioni	Spessore	Larghezza	Area Lur	nghezza	Volume	р	Peso	L	Pto
	-	m	m	mq	m	тс	kN/mc-mq	kN/ml		
Muri paraballast	0			0.1433		0.0000	25	0.0	25	
Muri banchina FFPP - in sx	1			0.4000		0.4000	25	10.0	25	25
Muri banchina FFPP - in dx	1			0.5000		0.5000	25	12.5	25	31:
Muri banchina stazione	0			1.8100		0.0000	25	0.0	25	
Cordolo in sx	1	0.14				0.1148	25	2.9	25	72
Cordolo in dx	1	0.14	0.82			0.1148	25	2.9	25	7:
Velette	2			0.09		0.1800	25	4.5	25	11:
Ballast+ impermab. sottoballast + armamento	1	0.8	7.9			6.3200	18	113.8	25	2 84
Incremento per rialzo in curva	2			0.250		0.5000	20	10.0	25	250
Canalette	2			0.085		0.1700	25	4.3	25	106
Impermeabilizzazione marciapiedi	2					0.1780	20	3.6	25	89
Impermeabilizzazione banchina stazione	0	0.05				0.0000	20	0.0	25	
Impermeabilizzazione soletta sotto banchina	0	0.05				0.0000	20	0.0	25	
Barriere antirumore	2		4			8.0000	4	32.0	25	80
Telaio FFPP	2					2.0000	1.5	3.0	25	7
Impianti	2					2.0000	1.5	3.0	25	75
Impianti banchina stazione	0					0.0000	3	0.0	25	(
					To	tale permane	enti portati G2	202.3		5 058
Impalcato in acciaio – cls						Totale	permanenti G	460.4		11 510
Impalcato in acciaio – cls Pesi propri	Ripetizioni	•	Larghezza	Area Lur	•	Volume	ρ	Peso	L	11 510 Pto
Pesi propri	<u> </u>	Spessore m	Larghezza m	Area Lur mq	nghezza m	Volume mc	p kN/mc-mq	Peso kN/ml		Pto
Pesi propri Carpenteria metallica	, <u>-</u> 1	, <u>m</u>	m		•	Volume mc 1.0000	р <u>kN/mc-mq</u> 65	Peso <u>kN/ml</u> 65.0	50	Pto:
Pesi propri	<u> </u>	•	m		•	Volume mc 1.0000 5.0005	p kN/mc-mq 65 25	Peso kN/ml 65.0 125.0		Pto 3 250 6 25
Pesi propri Carpenteria metallica	, <u>-</u> 1	, <u>m</u>	m		•	Volume mc 1.0000 5.0005	р <u>kN/mc-mq</u> 65	Peso <u>kN/ml</u> 65.0	50	Pto 3 250 6 25
Pesi propri Carpenteria metallica	, <u>-</u> 1	0.365 Spessore	m 13.7 Larghezza	mq Area Lur	m nghezza	Volume mc 1.0000 5.0005 Totale	kN/mc-mq 65 25 Desi propri G1	Peso <u>kN/ml</u> 65.0 125.0 190.0 Peso	50	9 50:
Pesi propri Carpenteria metallica Soletta Permanenti portati	r 1 1 1 Ripetizioni	0.365 Spessore	13.7	mq Area Lur mq	m	Volume mc 1.0000 5.0005 Totale Volume mc	kN/mc-mq 65 25 pesi propri G1 p kN/mc-mq	Peso kN/ml 65.0 125.0 190.0 Peso kN/ml	50 50	3 250 6 25 9 50
Pesi propri Carpenteria metallica Soletta Permanenti portati Muri paraballast	Ripetizioni 0	0.365 Spessore	m 13.7 Larghezza	Area Lur mq 0.1433	m nghezza	Volume mc 1.0000 5.0005 Totale Volume mc 0.0000	p kN/mc-mq 65 25 pesi propri G1 p kN/mc-mq 25	Peso kN/ml 65.0 125.0 190.0 Peso kN/ml 0.0	50 50 <i>L</i>	9 50°
Pesi propri Carpenteria metallica Soletta Permanenti portati Muri paraballast Muri banchina FFPP - in sx	Ripetizioni 0	0.365 Spessore	m 13.7 Larghezza	Area Lur mq 0.1433 0.4000	m nghezza	Volume mc 1.0000 5.0005 Totale Volume mc 0.0000 0.4000	p kN/mc-mq 65 25 pesi propri G1 p kN/mc-mq 25 25	Peso kN/ml 65.0 125.0 190.0 Peso kN/ml 0.0 10.0	50 50 <i>L</i> 50 50	Ptoo 3 250 6 25° 9 50° Ptoo (
Pesi propri Carpenteria metallica Soletta Permanenti portati Muri paraballast Muri banchina FFPP - in sx Muri banchina FFPP - in dx	- 1 1 1 Ripetizioni - 0 1 1	0.365 Spessore	m 13.7 Larghezza	Area Lur mq 0.1433 0.4000 0.5000	m nghezza	Volume mc 1.0000 5.0005 Totale Volume mc 0.0000 0.4000 0.5000	p kN/mc-mq 65 25 Desi propri G1 p kN/mc-mq 25 25 25	Peso kN/ml 65.0 125.0 190.0 Peso kN/ml 0.0 10.0 12.5	50 50 <i>L</i> 50 50 50	Pto: 3 250 6 257 9 500 Pto: (500 628
Pesi propri Carpenteria metallica Soletta Permanenti portati Muri paraballast Muri banchina FFPP - in sx Muri banchina FFPP - in dx Muri banchina stazione	- 1 1 1 Ripetizioni - 0 1 1 1 0	0.365 Spessore	m 13.7 Larghezza m	Area Lur mq 0.1433 0.4000	m nghezza	Volume mc 1.0000 5.0005 Totale Volume mc 0.0000 0.4000 0.5000 0.0000	p kN/mc-mq 65 25 Desi propri G1 p kN/mc-mq 25 25 25 25	Peso kN/ml 65.0 125.0 190.0 Peso kN/ml 0.0 10.0 12.5 0.0	50 50 <i>L</i> 50 50 50 50	Pto: 3 250 6 25 9 50 Pto: (500 625
Pesi propri Carpenteria metallica Soletta Permanenti portati Muri paraballast Muri banchina FFPP - in sx Muri banchina FFPP - in dx Muri banchina stazione Cordolo in sx	Ripetizioni - 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.365 Spessore m	m 13.7 Larghezza m 0.82	Area Lur mq 0.1433 0.4000 0.5000	m nghezza	Volume mc 1.0000 5.0005 Totale Volume mc 0.0000 0.4000 0.5000 0.0000 0.1148	p kN/mc-mq 65 25 Desi propri G1 p kN/mc-mq 25 25 25 25 25	Peso kN/ml 65.0 125.0 190.0 Peso kN/ml 0.0 10.0 12.5 0.0 2.9	50 50 <i>L</i> 50 50 50 50 50	Pto 3 256 6 25 9 50 Pto (500 629
Pesi propri Carpenteria metallica Soletta Permanenti portati Muri paraballast Muri banchina FFPP - in sx Muri banchina FFPP - in dx Muri banchina stazione Cordolo in sx Cordolo in dx	Ripetizioni - 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.365 Spessore m	m 13.7 Larghezza m 0.82	Area Lur mq 0.1433 0.4000 0.5000 1.8100	m nghezza	Volume mc 1.0000 5.0005 Totale p Volume mc 0.0000 0.4000 0.5000 0.0000 0.1148 0.1148	p kN/mc-mq 65 25 Desi propri G1 p kN/mc-mq 25 25 25 25 25 25	Peso kN/ml 65.0 125.0 190.0 Peso kN/ml 0.0 10.0 12.5 0.0 2.9 2.9	50 50 <i>L</i> 50 50 50 50 50 50	Pto: 3 256 6 25 9 50 Pto: (500 628 (144 144
Pesi propri Carpenteria metallica Soletta Permanenti portati Muri paraballast Muri banchina FFPP - in sx Muri banchina FFPP - in dx Muri banchina stazione Cordolo in sx Cordolo in dx Velette	Ripetizioni	0.365 Spessore m	13.7 Larghezza m 0.82 0.82	Area Lur mq 0.1433 0.4000 0.5000	m nghezza	Volume mc 1.0000 5.0005 Totale Volume mc 0.0000 0.4000 0.5000 0.0000 0.1148 0.1148 0.1800	p kN/mc-mq 65 25 Desi propri G1 p kN/mc-mq 25 25 25 25 25 25 25 25	Peso kN/ml 65.0 125.0 190.0 Peso kN/ml 0.0 10.0 12.5 0.0 2.9 2.9 4.5	50 50 <i>L</i> 50 50 50 50 50 50 50	Pto 3 250 6 25- 9 50 Pto (500 629 (144- 144- 229
Pesi propri Carpenteria metallica Soletta Permanenti portati Muri paraballast Muri banchina FFPP - in sx Muri banchina FFPP - in dx Muri banchina stazione Cordolo in sx Cordolo in dx Velette Ballast+ impermab. sottoballast + armamento	Ripetizioni	0.365 Spessore m 0.14 0.14	13.7 Larghezza m 0.82 0.82	Area Lur mq 0.1433 0.4000 0.5000 1.8100	m nghezza	Volume mc 1.0000 5.0005 Totale Volume mc 0.0000 0.4000 0.5000 0.1148 0.1148 0.1800 6.3200	p kN/mc-mq 65 25 Desi propri G1 p kN/mc-mq 25 25 25 25 25 25 25 25	Peso kN/ml 65.0 125.0 190.0 Peso kN/ml 0.0 10.0 12.5 0.0 2.9 2.9 4.5 113.8	50 50 50 <i>L</i> 50 50 50 50 50 50 50	Pto 3 250 6 25 9 50 Pto (500 629 (144 229 5 688
Pesi propri Carpenteria metallica Soletta Permanenti portati Muri paraballast Muri banchina FFPP - in sx Muri banchina FFPP - in dx Muri banchina stazione Cordolo in sx Cordolo in dx Velette Ballast+ impermab. sottoballast + armamento Incremento per rialzo in curva	Ripetizioni - 0 1 1 1 2 1 2	0.365 Spessore m 0.14 0.14	13.7 Larghezza m 0.82 0.82	Area Lur mq 0.1433 0.4000 0.5000 1.8100 0.09	m nghezza	Volume mc 1.0000 5.0005 Totale Volume mc 0.0000 0.4000 0.5000 0.0000 0.1148 0.1148 0.1800 6.3200 0.5000	p kN/mc-mq 65 25 Desi propri G1 p kN/mc-mq 25 25 25 25 25 25 25 25	Peso kN/ml 65.0 125.0 190.0 Peso kN/ml 0.0 10.0 12.5 0.0 2.9 4.5 113.8 10.0	50 50 50 <i>L</i> 50 50 50 50 50 50 50 50	Pto 3 25: 6 25: 9 50 Pto 50: 14. 14. 122: 5 68: 50:
Pesi propri Carpenteria metallica Soletta Permanenti portati Muri paraballast Muri banchina FFPP - in sx Muri banchina FFPP - in dx Muri banchina stazione Cordolo in sx Cordolo in dx Velette Ballast+ impermab. sottoballast + armamento Incremento per rialzo in curva Canalette	Ripetizioni - 0 1 1 1 2 1 2 2	0.365 Spessore m 0.14 0.14	13.7 Larghezza m 0.82 0.82 7.9	Area Lur mq 0.1433 0.4000 0.5000 1.8100	m nghezza	Volume mc 1.0000 5.0005 Totale Volume mc 0.0000 0.4000 0.5000 0.1148 0.1148 0.11800 6.3200 0.5000 0.1700	p kN/mc-mq 65 25 Desi propri G1 p kN/mc-mq 25 25 25 25 25 25 25 25 25 25 25 25 25	Peso kN/ml 65.0 125.0 190.0 Peso kN/ml 0.0 10.0 12.5 0.0 2.9 2.9 4.5 113.8 10.0 4.3	50 50 50 50 50 50 50 50 50 50 50	Pto 3 255 9 50 Pto 144 144 225 5 686 500 21:
Pesi propri Carpenteria metallica Soletta Permanenti portati Muri paraballast Muri banchina FFPP - in sx Muri banchina FFPP - in dx Muri banchina stazione Cordolo in sx Cordolo in dx Velette Ballast+ impermab. sottoballast + armamento Incremento per rialzo in curva Canalette Impermeabilizzazione marciapiedi	Ripetizioni	0.365 Spessore m 0.14 0.14 0.8	m 13.7 Larghezza m 0.82 0.82 7.9	Area Lur mq 0.1433 0.4000 0.5000 1.8100 0.09	m nghezza	Volume mc 1.0000 5.0005 Totale Volume mc 0.0000 0.4000 0.5000 0.0000 0.1148 0.1148 0.1800 6.3200 0.5000 0.1700 0.1780	p kN/mc-mq 65 25 Desi propri G1 p kN/mc-mq 25 25 25 25 25 25 25 25 25 25 25 25 25	Peso kN/ml 65.0 125.0 190.0 Peso kN/ml 0.0 10.0 12.5 0.0 2.9 2.9 4.5 113.8 10.0 4.3 3.6	50 50 50 50 50 50 50 50 50 50 50 50 50	Pto 3 25i 6 25 9 50 Pto 500 62i 144 144 22: 5 68i 500 21:
Pesi propri Carpenteria metallica Soletta Permanenti portati Muri paraballast Muri banchina FFPP - in sx Muri banchina FFPP - in dx Muri banchina stazione Cordolo in sx Cordolo in dx Velette Ballast+ impermab. sottoballast + armamento Incremento per rialzo in curva Canalette Impermeabilizzazione marciapiedi Impermeabilizzazione banchina stazione	Ripetizioni	0.365 Spessore m 0.14 0.14 0.8 0.05 0.05	13.7 Larghezza m 0.82 0.82 7.9 1.78 4.47	Area Lur mq 0.1433 0.4000 0.5000 1.8100 0.09	m nghezza	Volume mc 1.0000 5.0005 Totale p Volume mc 0.0000 0.4000 0.5000 0.0000 0.1148 0.1148 0.1800 6.3200 0.5000 0.1700 0.1780 0.0000	p kN/mc-mq 65 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 2	Peso kN/ml 65.0 125.0 190.0 Peso kN/ml 0.0 10.0 12.5 0.0 2.9 2.9 4.5 113.8 10.0 4.3 3.6 0.0	50 50 50 50 50 50 50 50 50 50 50 50 50 5	9 50 Pto 50 62 14 14 22 5 68 50 21 17
Pesi propri Carpenteria metallica Soletta Permanenti portati Muri paraballast Muri banchina FFPP - in sx Muri banchina FFPP - in dx Muri banchina stazione Cordolo in sx Cordolo in dx Velette Ballast+ impermab. sottoballast + armamento Incremento per rialzo in curva Canalette Impermeabilizzazione marciapiedi Impermeabilizzazione banchina stazione Impermeabilizzazione soletta sotto banchina	Ripetizioni	0.365 Spessore m 0.14 0.14 0.8 0.05 0.05 0.05	13.7 Larghezza m 0.82 0.82 7.9 1.78 4.47 3.67	Area Lur mq 0.1433 0.4000 0.5000 1.8100 0.09	m nghezza	Volume mc 1.0000 5.0005 Totale Volume mc 0.0000 0.4000 0.5000 0.0000 0.1148 0.1148 0.1800 6.3200 0.5000 0.1780 0.0000 0.1780 0.0000 0.0000	p kN/mc-mq 65 25 Desi propri G1 p kN/mc-mq 25 25 25 25 25 25 25 25 25 25 25 25 25	Peso kN/ml 65.0 125.0 190.0 Peso kN/ml 0.0 10.0 12.5 0.0 2.9 2.9 4.5 113.8 10.0 4.3 3.6 0.0 0.0	50 50 50 50 50 50 50 50 50 50 50 50 50 5	9 50 Pto 50 62 5 68 50 21.
Pesi propri Carpenteria metallica Soletta Permanenti portati Muri paraballast Muri banchina FFPP - in sx Muri banchina FFPP - in dx Muri banchina stazione Cordolo in sx Cordolo in dx Velette Ballast+ impermab. sottoballast + armamento Incremento per rialzo in curva Canalette Impermeabilizzazione marciapiedi Impermeabilizzazione banchina stazione Impermeabilizzazione soletta sotto banchina Barriere antirumore	Ripetizioni	0.365 Spessore m 0.14 0.14 0.8 0.05 0.05 0.05 1	13.7 Larghezza m 0.82 0.82 7.9 1.78 4.47	Area Lur mq 0.1433 0.4000 0.5000 1.8100 0.09	m nghezza	Volume mc 1.0000 5.0005 Totale Volume mc 0.0000 0.4000 0.5000 0.1148 0.1148 0.1800 6.3200 0.5000 0.1700 0.1780 0.0000 8.0000	p kN/mc-mq 65 25 25 25 25 25 25 25 25 25 25 25 25 25	Peso kN/ml 65.0 125.0 190.0 Peso kN/ml 0.0 10.0 12.5 0.0 2.9 4.5 113.8 10.0 4.3 3.6 0.0 0.0 32.0	50 50 50 50 50 50 50 50 50 50 50 50 50 5	Pto 3 25i 6 25 9 50 Pto 50i 62i 144 144 22i 5 68i 50i 21: 17i 6
Pesi propri Carpenteria metallica Soletta Permanenti portati Muri paraballast Muri banchina FFPP - in sx Muri banchina FFPP - in dx Muri banchina stazione Cordolo in sx Cordolo in dx Velette Ballast+ impermab. sottoballast + armamento Incremento per rialzo in curva Canalette Impermeabilizzazione marciapiedi Impermeabilizzazione soletta sotto banchina Barriere antirumore Telaio FFPP	Ripetizioni - 0 1 1 1 2 1 2 2 0 0 0 2 2	0.365 Spessore m 0.14 0.14 0.8 0.05 0.05 0.05 1	13.7 Larghezza m 0.82 0.82 7.9 1.78 4.47 3.67	Area Lur mq 0.1433 0.4000 0.5000 1.8100 0.09	m nghezza	Volume mc 1.0000 5.0005 Totale Volume mc 0.0000 0.4000 0.5000 0.1148 0.1148 0.1180 6.3200 0.5000 0.1700 0.1780 0.0000 8.0000 2.0000 2.0000	p kN/mc-mq 65 25 Desi propri G1 p kN/mc-mq 25 25 25 25 25 25 25 25 25 25 20 20 20 4	Peso kN/ml 65.0 125.0 190.0 Peso kN/ml 0.0 10.0 12.5 0.0 2.9 2.9 4.5 113.8 10.0 4.3 3.6 0.0 0.0 32.0 3.0	50 50 50 50 50 50 50 50 50 50 50 50 50 5	Pto 3 255 9 50 Pto 144 122: 5 680 500 21: 176 1 600 156
Pesi propri Carpenteria metallica Soletta Permanenti portati Muri paraballast Muri banchina FFPP - in sx Muri banchina FFPP - in dx Muri banchina stazione Cordolo in sx Cordolo in dx Velette Ballast+ impermab. sottoballast + armamento Incremento per rialzo in curva Canalette Impermeabilizzazione marciapiedi Impermeabilizzazione banchina stazione Impermeabilizzazione soletta sotto banchina Barriere antirumore	Ripetizioni	0.365 Spessore 0.14 0.14 0.8 0.05 0.05 1	13.7 Larghezza m 0.82 0.82 7.9 1.78 4.47 3.67	Area Lur mq 0.1433 0.4000 0.5000 1.8100 0.09	m nghezza	Volume mc 1.0000 5.0005 Totale Volume mc 0.0000 0.4000 0.5000 0.1148 0.1148 0.1800 6.3200 0.5000 0.1700 0.1780 0.0000 8.0000	p kN/mc-mq 65 25 Desi propri G1 p kN/mc-mq 25 25 25 25 25 25 25 25 25 25 25 25 25	Peso kN/ml 65.0 125.0 190.0 Peso kN/ml 0.0 10.0 12.5 0.0 2.9 4.5 113.8 10.0 4.3 3.6 0.0 0.0 32.0	50 50 50 50 50 50 50 50 50 50 50 50 50 5	Pto: 3 256 6 25 9 50' Pto: (500 625 (144

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 11 di 103

6 MODELLO DI CALCOLO

Per il calcolo della pila è stato impostato un foglio di calcolo elettronico che analizza tutte le condizioni di carico necessarie.

Il foglio elettronico contiene tutte le informazioni necessarie ai fini del calcolo della pila e della palificata, sia dal punto di vista della geometria che delle azioni.

L'analisi sismica è stata effettuata con l'analisi statica lineare semplificata (7.9.4.1.di [N3]), sostituita dall'analisi dinamica modale qualora le ipotesi di calcolo necessaria per l'analisi semplificata non fossero soddisfatte.

6.1 Note

Vengono evidenziati alcuni punti facilitare la comprensione delle tabelle successive

- Nella verifica a pressoflessione della pila viene riportata la sezione di calcolo con l'armatura inserita, e vengono riepilogati i risultati. L'output completo della verifica viene omesso per brevità.
- I carichi da traffico sono stati calcolati a parte mediante modello FEM in SAP2000 nel quale vengono fatti transitare tutti i treni di carico con analisi "moving load". Vengono poi riepilogate solo le azioni caratteristiche. Si omette la descrizione del modello.
- Per il vento a ponte scarico, la superficie investita dal vento è pari all'impronta della struttura, più due volte l'altezza della barriera
- L'attrito considerato in condizioni statiche è pari al 3%. In condizione sismica tale valore viene ridotto al 50%
- I fattori di struttura utilizzati sono
 - o q=1.5 per verifiche a presso-flessione fusto pila
 - o q=1.5/1.1=1.36 per verifica a capacità portante verticale dei pali e verifica a flessione plinto
 - o q=1 per verifiche a taglio elementi strutturali (vedi anche punto successivo), verifiche a capacità portante orizzontale dei pali, reazioni agli appoggi, denti di arresto e ritegni sismici.
 - Solo per la verifica a taglio dello spiccato della pila, il criterio adottato è quello della gerarchia delle resistenze così come indicato al punto 7.9.5 di [N3].

6.2 Limiti tensionali

Materiale	SLE qp	SLE rara
C32/40	$\sigma_{\rm c} \le 0.40 * f_{\rm ck} = 12.8 \; {\rm MPa}$	$\sigma_{\rm c} \le 0.55 * f_{\rm ck} = 17.6 \; {\rm MPa}$
C35/45	$\sigma_{\rm c} \le 0.40 * f_{\rm ck} = 14.0 \; {\rm MPa}$	$\sigma_{c} \le 0.55* f_{ck} = 19.25 \text{ MPa}$
acciaio c.a.		$\sigma_{\rm s} \le 0.75^* f_{\rm yk} = 337.5 \text{MPa}$

6.3 Verifica a fessurazione

Si riportano i limiti fessurativi considerati

Elemento	Classe di esposizione	Condizione	Classe di resistenza	Copriferro minimo	Limite fessurativo SLE rara
	esposizione		resisteriza	1111111110	Idia
Elevazione	XC4	Aggressiva	C32/40	40+10=	w1=0.200 mm
				50 mm	
Plinti	XA3	Molto	C35/45	40+20=	w1=0.200 mm
		aggressiva		60 mm	
Pali di	XA3	Molto	C35/45	60 mm	w1=0.200 mm
fondazione		aggressiva			

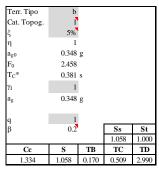
Ad eccezione dei pali, il copriferro degli elementi che ricadono in condizioni aggressive o molto aggressive, è stato aumentato, rispettivamente, di 10 o 20mm.

6.4 Legenda

• Verifica a pressoflessione pila: la tensione dell'armatura è di trazione se negativa

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

DIRETTRICE FERROVIARIA MESSINA-CATANIA-PALERMO

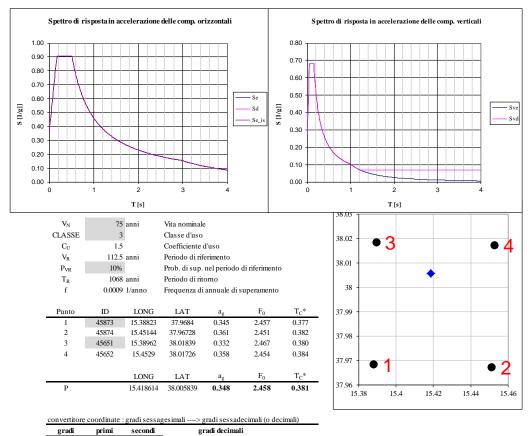

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 13 di 103

7 CALCOLO E VERIFICA PILA 2

7.1 Azione sismica



componente	Ss	St		
F_{v}	1.957		1.000	1.000
	S	TB	TC	TD
	1.000	0.050	0.150	1.000
a	1			

Per avere il valore di S(T)				
T	0.00	0.00		
	orizz	vert		
$S_e(T)$	0.368	0.277		
$S_e(T)$ $S_d(T)$	0.368	0.277		

Valore massimo dello spettro (plateau)					
	orizz	vert			
$S_e(T)$	0.904	0.680			
$S_d(T)$	0.904	0.680			

21.02

7.01

38.005839 15.418614

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 14 di 103

7.2 Dati generali

Dati fusto pila e pulvino	L(m)	T(m)	H(m)	A(mq)	P(kN)
Fusto pila	3.2	11.8	10.8	15.67	4 231
Pulvino	3.2	11.8	2		1 888
Peso totale pila					6 119

Geometria

Distanza pf - sottotrave (in asse appoggi) Distanza sottotrave - testa pila Distanza pf - testa pila Distanza centro rotazione appoggi - testa pila Distanza baricentro masse impalcato - testa pila h1 3.99 m 4.49 m 0.4 m 3.69 m	Altezza totale pila, compreso pulvino	h	12.8 m
Distanza sottotrave - testa pila h2 0.5 m Distanza pf - testa pila h3 4.49 m Distanza centro rotazione appoggi - testa pila h4 0.4 m			
Distanza pf - testa pila h3 4.49 m Distanza centro rotazione appoggi - testa pila h4 0.4 m	Distanza pf - sottotrave (in asse appoggi)	h1	3.99 m
Distanza centro rotazione appoggi - testa pila h4 0.4 m	Distanza sottotrave - testa pila	h2	0.5 m
	Distanza pf - testa pila	h3	4.49 m
Distanza baricentro masse impalcato - testa pila h5 3.69 m	Distanza centro rotazione appoggi - testa pila	h4	0.4 m
	Distanza baricentro masse impalcato - testa pila	h5	3.69 [°] m
Distanza pf - spiccato pila h6 17.29 m	Distanza pf - spiccato pila	h6	17.29 m
Distanza pf - intradosso fondazione h7 20.79 m	Distanza pf - intradosso fondazione	h7	20.79 m

Impalcato		sx	dx	totale
Tipo appoggio		M	F	
Luce in asse pila		25	50	m
Distanza asse appoggi - asse pila		1.1	1	m
Luce in asse appoggi		22.8	48	m
Pesi propri	G1	258.1	190.0	kN/ml
Permanenti portati	G2	202.3	202.3	kN/ml
Permanenti	G	460.4	392.3	kN/ml
Peso treno equivalente x0.2	Q1x0.2	46	45	kN/ml
Massa sismica	M	506.4	437.3	kN/ml
Pesi propri	G1	3 226	4 750	7 976 kN
Permanenti portati	G2	2 529	5 058	7 586 kN
Permanenti	G	5 755	9 808	15 563 kN
Massa sismica	M	6 330	10 933	17 263 kN

PROGETTO DEFINITIVO

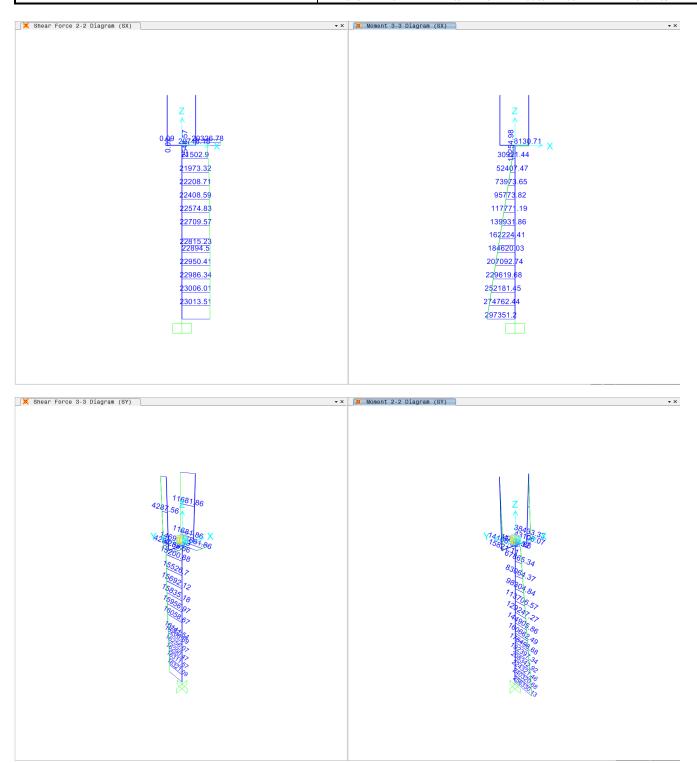
RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO
RS2S 02 D 09 CL VI0705 001 A 15 di 103

7.3 Analisi sismica

Analisi sismica		Semplificata			Dinamica mo	dale	
Direzione		Long	Trasv	Vert			
Dist baricentro masse impal - spiccato pila	hp	13.2	16.49	16.49 m			
Modulo elastico pila	Ec	33 346	33 346	33 346 MPa	Tipo analisi eff	ettuata	
Inerzia pila (Area pila per verticale)	If	21.3	172.4	15.7 m4	2	inamica moda	ale
Riduzione per rigidezza fessurata		1.0	1.0	1.0 -			
Rigidezza oscillatore elementare equivalente		9.26E+05	3.85E+06	3.17E+07 kN/m			
Massa sismica impalcato	Pi	21 865	17 263	17 263 kN			
Massa efficace pila	Ppeff	3 612	3 612	3 612 kN			
Massa complessiva	P=Pi+Ppeff	25 477	20 874	20 874 kN			
1/5 Massa sismica impalcato	1/5*Pi	4 373	3 453	3 453 kN			
Massa efficace pila	Ppeff	3 612	3 612	3 612 kN			
Verifica requisito	Ppeff≤1/5*Pi ?	si	no	no -			
Periodo proprio	Т	0.33	0.15	0.05 sec	0.35	0.17	0.04 sec
	q	Ordin	ata spettrale	(S)			
	1	0.904	0.835	0.680 g			
	1.36	0.665	0.627	0.680 g			
	1.5	0.603	0.573	0.680 g			
	q	Taglio/Sfor	Norm allo spi	ccato pila	Taglio/Sfor N	Norm allo spice	cato pila
	1	23 036	17 439	14 196 kN	23 013	16 321	13 115 kN
	1.36	16 939	13 083	14 196 kN	16 925	12 045	13 115 kN
	1.5	15 358	11 954	14 196 kN	15 347	10 937	13 115 kN
	q		to allo spicca	to pila	Momento	o allo spiccato	pila
	1	304 080	287 563	kNm	297 351	256 330	kNm
	1.36	223 588	215 742	kNm	218 642	189 039	kNm
	1.5	202 720	197 122	kNm	198 236	171 594	kNm
		Rapporto ris	ultati dinam	ica modale - semplificata		Norm allo spice	
					1.00	0.94	0.92 -
					1.00	0.92	0.92 -
					1.00	0.91	0.92 -
						o allo spiccato	pila
					0.98	0.89	-
					0.98	0.88	-
					0.98	0.87	-



PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 16 di 103

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 09 CL VI0705 001 17 di 103 D

7.4 Carichi da traffico

a quota testa pila

Carico verticale da traffico ferroviario

	N°binari	Azioni quota testa pila (a (kN;kNm)
	2	N	ML	MT
Condizione	N max	8 367	1 759	1 699
Condizione	ML max	6 168	6 166	1 103
Condizione	MT max	4 528	958	9 045
Condizione	Inviluppo	8 367	6 166	9 045

Carico verticale massimo da traffico sul piano appoggi

		SX	dx
Carico verticale	N max	3 559	6 168
Luce impalcato asse appoggi	Lc	22.8	48
Coefficiente dinamico	Ф3	1.202	1.051
Carico verticale dinamizzato	N	4 278	6 483

Attrito		SX	dx	
Permanenti	G	5 755	9 808 kN	
Carico mobile dinamizzato	Q1*Φ	4 278	6 483 kN	
O#-it di -tt-it idi-itt		0.00		

ML

11 696 kNm

Coefficiente di attrito in condizione statiche		0.03
Attrito permanente	maxG*0.2*Φ	59 kN
Attrito mobili dinamizzati	$maxQ^*\Phi$	194 kN

Frenatura luce campata carica L 50 m a livello binario HL 2 605 kN

Serpeggio		
a livello binario	HT	210 kN
a quota testa pila	MT	943 kNm

Centrifuga		
raggio planimetrico	R	1 300 m
velocità di progetto	V	160 km/h
lunghezza di influenza		50 m

raggio planimetrico	R	1 300	m		
velocità di progetto	V	160	km/h		
lunghezza di influenza		50	m		
Reazione del singolo treno	Qv				
Sulla pila	v (km/h)	alfa	f	Coeff	Qv (kN) FT (kN)
LM71 v>120; caso a	160	1	0.79	0.123	3 491 429
LM71 v>120; caso b	120	1.1	1.00	0.096	3 840 368
LM71 v≤120; caso a	120	1.1	1.00	0.096	3 840 368
LM71 (caso utilizzato)					429
SW2	100	1	1.00	0.061	4 528 274
Valore utilizzato					703
Al piano appoggi - sx	v (km/h)	alfa	f	Coeff	Qv (kN) FT (kN)
LM71 v>120; caso a	160	1	0.79	0.123	1 535 188
LM71 v>120; caso b	120	1.1	1.00	0.096	1 688
LM71 v≤120; caso a	120	1.1	1.00	0.096	1 688 162
LM71 (caso utilizzato)					162
SW2	100	1	1.00	0.061	1 879 114
Valore utilizzato					276
Al piano appoggi - dx	v (km/h)	alfa	f	Coeff	Qv (kN) FT (kN)
LM71 v>120; caso a	160	1	0.79	0.123	2 552 313
LM71 v>120; caso b	120	1.1	1.00	0.096	2 807 269
LM71 v≤120; caso a	120	1.1	1.00	0.096	2 807 269
LM71 (caso utilizzato)					269
SW2	100	1	1.00	0.061	3 303 200
Valore utilizzato					469

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 - VIADOTTO SATANOPROGETTOLOTTO FASE ENTECOD.DOC.PROG.REV.FOGLIORELAZIONE DI CALCOLO PILERS2S02D09CLVI0705001A18 di103

7.5 Vento

Azione del vento - generale - NTC08 e EC 1-1-4:2005 Condizione (ponte carico o scarico)		scarico	carico	
Altitudine sul livello del mare	20	scanco 25	carico 25 m	
	as Z		25 III 4 -	
Zona Parametri		28	4 - 25 m	10
Parametri	V _{b,0}	500	500 m	
	a_0			
Parametri	k _a	0.020	0.020 1/	
Velocità di riferimento (Tr=50 anni)	$v_b = v_{b0} + k_a^* (a_s - a_0)$	28 75	25 m	
Periodo di ritorno considerato	T _R	1.02	75 ar 1.02 -	nni
Velocità di riferimento	α_{r}	28.7		10
	V _b		25.6 m	
Densità dell'aria	ρ	1.25	1.25 kg	-
pressione cinetica di riferimento	$q_b = 0.5^* \rho^* v_b^2$	0.51	0.41 kl	V/m2
Classe di rugosità del terreno		D'	D	
Distanza dalla costa		< 10 km		
Altitudine sul livello del mare		< 500 m	< 500 m	
Categoria di esposizione del sito	Cat	2	2	
Vento su impalcato	•			
Altezza di riferimento per l'impalcato (EC punto 8.3.1(6))	Z	12	12 m	
parametri	k_r	0.19	0.19	
parametri	z_0	0.05	0.05 m	
parametri	z_{min}	4	4 m	
parametri	Z _{max}	200	200 m	
Coefficiente di topografia	c_{t}	1	1	
coefficiente di esposizione (z≤z_min)	$c_e(z_{min})$	1.80	1.80 -	
coefficiente di esposizione (z)	c _e (z)	2.47	2.47 -	
Coefficiente di esposizione	C _e	2.47	2.47 -	
Larghezza impalcato	b	13.7	13.7 m	
Altezza totale impalcato (comprese le barriere o treno)	dtot	8.53	8.53 m	
Rapporto di forma	b/dtot	1.61	1.61 -	
Coefficiente di forza (figura 8.3 EC)	cfx	1.95	1.95 -	
Riepilogo				
Pressione cinetica di riferimento	q_b	0.51	0.41 kl	V/m2
Coefficiente di esposizione	Ce	2.47	2.47 -	
Coefficiente di forza	cfx	1.95	1.95 -	
Altezza di riferimento (EC punto 8.3.1 (4) e (5))	d	12.53 [*]	8.53 -	
Forza statica equivalente a m/l	f=prodotto	30.97	16.81 kl	N/ml
Pressione statica equivalente	p=f/dtot	2.47	1.97 kl	V/m2
Pressione statica equivalente (minima considerata)	pmin	1.50	1.50 kl	V/m2
Forza statica equivalente a m/l considerata	f	30.97	16.81 ki	V/ml
Vento impalcato a ponte scarico		SX	dx	totale
Forza statica equivalente	f	30.97	30.97	kN/m
Luce impalcato	L	25	50	m
Forza trasversale al piano appoggi	FT=f*L/2	387	774	1 161 kN
Momento trasversale al piano appoggi	MT=FT*(dtot/2+h2)	1 845	3 689	5 534 kNm
/ento impalcato a ponte carico		SX	dx	totale
Forza statica equivalente	f	16.81	16.81	kN/m
Luce impalcato	L	25	50	m
Forza trasversale al piano appoggi	FT=f*L/2	210	420	630 kN
Momento trasversale al piano appoggi	MT=FT*(dtot/2+h2)	1 001	2 002	3 003 kNm

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO
RS2S 02 D 09 CL VI0705 001 A 19 di 103

Vento su pila e pulvino		scarico	carico
Altezza di riferimento per pila e pulvino (EC punto 7.6(2))	Z	12.8	12.8 m
Coefficiente di esposizione (z)	$c_{e}(z)$	2.51	2.51 -
Coefficiente di esposizione	Ce	2.51	2.51 -
Pulvino			
Dimensione ortogonale alla direzione del vento	b	3.2	3.2 m
Dimensione parallela alla direzione del vento	d	11.8	11.8 m
Rapporto di forma	d/b	3.69	3.69 -
Coefficiente di forza (figura 7.23 EC)	cf0	1.32	1.32 -
Riepilogo			
Pressione cinetica di riferimento	q_b	0.51	0.41 kN/m2
Coefficiente di esposizione	C _e	2.51	2.51 -
Coefficiente di forza	cf0	1.32	1.32 -
Dimensione parallela alla direzione del vento	b	3.2	3.2 -
Forza statica equivalente a m/l	f=prodotto	5.45	4.35 kN/ml
Pressione statica equivalente	p=f/b	1.70	1.36 kN/m2
Pressione statica equivalente (minima considerata)	pmin	0.00	0.00 kN/m2
Forza statica equivalente a m/l considerata	f	5.45	4.35 kN/ml
Lunghezza dell'elemento	L	2	2 m
Forza statica equivalente	FT=f*H	10.9	8.7 kN
Pila			
Dimensione ortogonale alla direzione del vento	b	3.2	3.2 m
Dimensione parallela alla direzione del vento	d	11.8	11.8 m
Rapporto di forma	d/b	3.69	3.69 -
Coefficiente di forza (figura 7.23 EC)	cf0	1.32	1.32 -
Riepilogo			
Pressione cinetica di riferimento	q_b	0.51	0.41 kN/m2
Coefficiente di esposizione	C _e	2.51	2.51 -
Coefficiente di forza	cf0	1.32	1.32 -
Dimensione parallela alla direzione del vento	b	3.2	3.2 -
Forza statica equivalente a m/l	f=prodotto	5.45	4.35 kN/ml
Pressione statica equivalente	p=f/b	1.70	1.36 kN/m2
Pressione statica equivalente (minima considerata)	pmin	0.00	0.00 kN/m2
Forza statica equivalente a m/l considerata	f	5.45	4.35 kN/ml
Lunghezza dell'elemento	L	10.8	10.8 m
Forza statica equivalente	FT=f*H	58.9	46.9 kN

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 20 di 103

7.6 Azioni caratteristiche e dati fondazione

Azioni allo spiccato pila	Valori cara	tteristici			
	N	HL	HT	ML	MT
	kN	kN	kN	kNm	kNm
Impalcato - Pesi propri	7 976			1 201	
Impalcato - Permamenti portati	7 586			2 276	
Traffico ferroviario - Carico verticale - Nmax	8 367			1 759	1 699
Traffico ferroviario - Carico verticale - ML max	6 168			6 166	1 103
Traffico ferroviario - Carico verticale - MT max	4 528			958	9 045
Traffico ferroviario - Carico verticale - inviluppo	8 367			6 166	9 045
Traffico ferroviario - Frenatura		2 605		45 040	
Traffico ferroviario - Centrifuga			703		13 421
Traffico ferroviario - Serpeggio			210		3 631
Vento a ponte scarico - Impalcato			1 161		20 400
Vento a ponte scarico - Pulvino			11		129
Vento a ponte scarico - Pila			59		318
Vento a ponte carico - Impalcato			630		11 071
Vento a ponte carico - Pulvino			9		103
Vento a ponte carico - Pila			47		253
Attrito - Permanente		59		777	
Attrito - Carichi mobili dinamizzati		194		2 567	
Sisma q=1 - Long 100%		23 013		297 351	
Sisma q=1 - Trasv 100%			16 321		256 330
Sisma q=1 - Vert 100%	13 115				
Sisma q=1.36 - Long 100%		16 925		218 642	
Sisma q=1.36 - Trasv 100%			12 045		189 039
Sisma q=1.36 - Vert 100%	13 115				
Sisma q=1.5 - Long 100%		15 347		198 236	
Sisma q=1.5 - Trasv 100%			10 937		171 594
Sisma q=1.5 - Vert 100%	13 115				
Pila - Peso proprio	6 119				
Pesi fondazione e rinterro	Valori caratteristici				
Fondazione - Peso proprio	23 822				
Ricoprimento plinto - Peso proprio	25 325				

Dati plinto e riempimento				
	dir Long	dir Trasv	spessore	n° pali
Numero file pali	4	4		16
Interasse pali (m)	4.5	4.5		
Distanza dal bordo (m)	1.5	1.5		
Dimensioni plinto (m)	16.5	16.5	3.5	
Modulo minimo palificata (m)	60	60		
Diametro pali (m)	1.5			
Area pila fuori tutto	37.76	mq		
Spessore riempimento	6	m		
Peso specifico riemp.	18	kN/m3		

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

DIRETTRICE FERROVIARIA MESSINA-CATANIA-PALERMO

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 21 di 103

7.7 Combinazioni di carico

		primario		second										
		primario		Second										
	SLE_qp	SLE_Rara_Fess_T raffico_gr4_Nma		SLE_Rara_Fess_T raffico_gr4_MTm	ento_ponte_scar			SLE_Rara_Traffic o_gr1_MTmax			SLE_Rara_Traffic o_gr3_MTmax			
Impalcato - Pesi propri	1	, x	dx 1	dx 1	ico	1	1	1	1	1	1	1		
Impalcato - Permamenti portati	1	1	1	1	1	1	1	1	1	1	1	1		
Traffico ferroviario - Carico verticale - Nmax	_	Nota 1	_	_	Ö	1		_	1	_	_	Ö		
Traffico ferroviario - Carico verticale - ML max			Nota 1		o		1			1		o o		
Traffico ferroviario - Carico verticale - MT max				Nota 1	0			1			1	0		
Traffico ferroviario - Carico verticale - inviluppo														
Traffico ferroviario - Frenatura		Nota 1	Nota 1	Nota 1	0	0.5	0.5	0.5	- 1	1	1	0		
Traffico ferroviario - Centrifuga		Nota 1	Nota 1	Nota 1	0	1	1	1	0.5	0.5	0.5	0		
Traffico ferroviario - Serpeggio		Nota 1	Nota 1	Nota 1	0	1	1	1	0.5	0.5		0		
Vento a ponte scarico - Impalcato		11010 1	11010 2	11010.2	1			•	0.5	0.5	0.5	1		
Vento a ponte scarico - Pulvino					1							1		
Vento a ponte scarico - Pila					1							1		
Vento a ponte carico - Impalcato		0.6	0.6	0.6	-	0.6	0.6	0.6	0.6	0.6	0.6	-		
Vento a ponte carico - Pulvino		0.6	0.6	0.6		0.6	0.6	0.6	0.6	0.6	0.6			
Vento a ponte carico - Pila		0.6		0.6		0.6		0.6						
Attrito - Permanente	1	1	1	1	1	1	1	1	1	1	1	1		
Attrito - Carichi mobili dinamizzati	· '	0.6	0.6	0.6	0	1	1	1	1	1	1	1		
Pila - Peso proprio	1	1	1	1	1	1	1	1	1	1	1	1	i	
Fondazione - Peso proprio	1	1	1	1	1	1	1	1	1	1	1	1		
	1	1	1	1	1	1	- 1	1	1	1	1	1	1	
Ricoprimento plinto - Peso proprio	1	1	1	1	1	- 1	- 1	1	1	1	1	1		
	SLUup_A1_Traffi co_gr1_Nmax	SLUup_A1_Traffi co_gr1_MLmax		SLUup_A1_Traffi co_gr3_Nmax	SLUup_A1_Traffi co_gr3_MLmax		SLUup_A1_Vent o_ponte_scarico			SLUIow_A1_Traff ico_gr1_MTmax				
Impalcato - Pesi propri	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1	1	1	1	1	1	1
Impalcato - Permamenti portati	1.5	1.5		1.5	1.5			1	1	1	1	1	1	1
Traffico ferroviario - Carico verticale - Nmax	1.45		1.3	1.45	1.3		0	1.45		-	1.45	-	-	0
Traffico ferroviario - Carico verticale - ML max	1.43	1.45		1.43	1.45		0	2.43	1.45		1.40	1.45		0
Traffico ferroviario - Carico verticale - MT max			1.45			1.45	0			1.45			1.45	0
Traffico ferroviario - Carico verticale - inviluppo			1.43			2.43	-			1.40			1.40	0
Traffico ferroviario - Frenatura	0.725	0.725	0.725	1.45	1.45	1.45		0.725	0.725	0.725	1.45	1.45	1.45	0
Traffico ferroviario - Centrifuga	1.45		1.45	0.725	0.725	0.725	. 0	1.45	1.45	1.45	0.725	0.725	0.725	0
Traffico ferroviario - Serpeggio	1.45			0.725	0.725		0	1.45	1.45	1.45	0.725	0.725	0.725	0
Vente a pente scarico - Impalcato	1.43	1.43	1.43	0.725	0.723	0.725	1.5	1.43	1.45	1.43	0.723	0.723	0.725	15
Vento a ponte scarico - Impalcato							1.5							1.5
Vento a ponte scarico - Pulvino Vento a ponte scarico - Pila							1.5							1.5
	0.0	0.9	0.9	0.0	0.9	0.9	1.3	0.0	0.9	0.9	0.9	0.0	0.9	1.5
Vento a ponte carico - Impalcato	0.9	0.5		0.9	0.9	0.5		0.9	0.9			0.9	0.9	
Vento a ponte carico - Pulvino	0.9		0.9	0.9	0.9			0.9	0.9	0.9	0.9	0.9	0.9	
Vento a ponte carico - Pila Attrito - Permanente	1.35			1.35	1.35		1.35	0.9	0.9	0.9	0.9	0.9	0.9	1
								4.45	4 45	4.45	1 1 1	4.45	4 45	1
Attrito - Carichi mobili dinamizzati	1.45			1.45	1.45			1.45	1.45	1.45	1.45	1.45	1.45	0
Pila - Peso proprio	1.35			1.35	1.35			1	1	1	1	1	1	1
Fondazione - Peso proprio	1.35			1.35	1.35			1	1	1	1	1	1	1
Ricoprimento plinto - Peso proprio	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1	1	1	1	1	1	1
	SLV_PrevX_Zpos	SLV_PrevY_Zpos	SLV_PrevZpos	SLV_PrevX_Zneg	SLV_PrevY_Zneg	SLV_PrevZneg								
Impalcato - Pesi propri	1	. 1	1	1	1	1	1							
Impalcato - Permamenti portati	1	1	1	1	1	1	1							
Traffico ferroviario - Carico verticale - Nmax							1							
Traffico ferroviario - Carico verticale - ML max	l						1							
Traffico ferroviario - Carico verticale - MT max						1	1							
Traffico ferroviario - Carico verticale - inviluppo	0.2	0.2	0.2	0.2	0.2	0.2								
Traffico ferroviario - Frenatura	0.2			0.2	0.2		1							
Traffico ferroviario - Centrifuga	0.2			0.2	0.2		1							
Traffico ferroviario - Serpeggio	0.2			0.2	0.2									
Vento a ponte scarico - Impalcato	0	0		0	0		1							
Vento a ponte scarico - Pulvino	0	0	0	0	0		1							
Vento a ponte scarico - Pila	0	0	0	0	0	0								
Vento a ponte carico - Impalcato							1							
Vento a ponte carico - Pulvino														
Vento a ponte carico - Pila														
Attrito - Permanente	0.5	0.5	0.5	0.5	0.5	0.5								
Attrito - Carichi mobili dinamizzati	0.1	0.1	0.1	0.1	0.1	0.1								
Sisma - Long 100%	1	0.3	0.3	1	0.3									
Sisma - Trasv 100%	0.3		0.3	0.3	1	0.3								
Sisma - Vert 100%	0.3		1	-0.3	-0.3									
Pila - Peso proprio	1	. 1	1	1	1	. 1								
Fondazione - Peso proprio	1	. 1	1	1	1	. 1								
Ricoprimento plinto - Peso proprio	1		1	1	1	1								

Nota1: 0.8 per singolo binario; 0.6 per doppio binario; 0.4 per 3 binari o più.

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

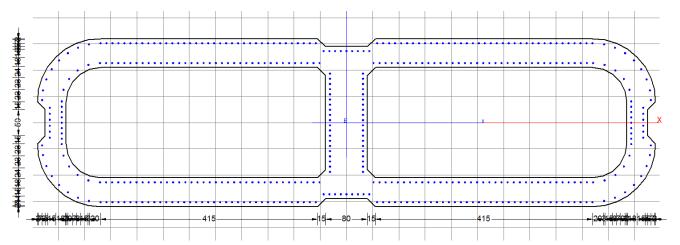
VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 22 di 103

7.8 Verifica a pressoflessione pila

Azioni allo spiccato pila - Valori combinati						wk	SC	SS	c.s.(>1)
Combinazione	N	HL	HT	ML	MT	mm	MPa	MPa	-
SLE_qp	21 682	59	0	4 254	0	0.000	1.19	12.3	
SLE_Rara_Fess_Traffico_gr4_Nmax	26 702	1 739	960	33 875	18 107	0.036	2.96	-21.1	
SLE_Rara_Fess_Traffico_gr4_MLmax	25 383	1 739	960	36 518	17 750	0.056	3.00	-30.3	
SLE_Rara_Fess_Traffico_gr4_MTmax	24 399	1 739	960	33 394	22 515	0.051	2.96	-27.7	
SLE_Rara_Fess_Vento_ponte_scarico	21 682	59	1 232	4 254	20 848	0.000	1.60	5.9	
SLE_Rara_Traffico_gr1_Nmax	30 049	1 556	1 325	31 101	25 608		3.12	-13.5	
SLE_Rara_Traffico_gr1_MLmax	27 850	1 556	1 325	35 508	25 012		3.25	-25.4	
SLE_Rara_Traffico_gr1_MTmax	26 210	1 556	1 325	30 300	32 954		3.15	-22.7	
SLE_Rara_Traffico_gr3_Nmax	30 049	2 859	869	53 621	17 082		3.80	-59.9	
SLE_Rara_Traffico_gr3_MLmax	27 850	2 859	869	58 028	16 486		3.81	-77.3	
SLE_Rara_Traffico_gr3_MTmax	26 210	2 859	869	52 820	24 428		3.80	-72.4	
SLE_Rara_Vento_ponte_scarico	21 682	59	1 232	4 254	20 848		1.60	5.9	
SLUup_A1_Traffico_gr1_Nmax	42 540	2 251	1 942	45 012	37 474				5.11
SLUup_A1_Traffico_gr1_MLmax	39 352	2 251	1 942	51 402	36 609				4.48
SLUup_A1_Traffico_gr1_MTmax	36 974	2 251	1 942	43 850	48 126				5.00
SLUup_A1_Traffico_gr3_Nmax	42 540	4 139	1 280	77 667	25 111				3.08
SLUup_A1_Traffico_gr3_MLmax	39 352	4 139	1 280	84 056	24 247				2.81
SLUup_A1_Traffico_gr3_MTmax	36 974	4 139	1 280	76 505	35 763				3.03
SLUup_A1_Vento_ponte_scarico	30 408	80	1 847	6 084	31 271				17.80
SLUlow_A1_Traffico_gr1_Nmax	33 814	2 230	1 942	43 182	37 474				5.13
SLUlow_A1_Traffico_gr1_MLmax	30 625	2 230	1 942	49 572	36 609				4.46
SLUlow_A1_Traffico_gr1_MTmax	28 247	2 230	1 942	42 020	48 126				5.03
SLUlow_A1_Traffico_gr3_Nmax	33 814	4 119	1 280	75 837	25 111				3.03
SLUlow_A1_Traffico_gr3_MLmax	30 625	4 119	1 280	82 226	24 247				2.75
SLUlow_A1_Traffico_gr3_MTmax	28 247	4 119	1 280	74 674	35 763				2.98
SLUlow_A1_Vento_ponte_scarico	21 682	59	1 847	4 254	31 271				18.82
SLVq1_PrevX_Zpos	27 290	23 583	5 079	311 715	82 119				-
SLVq1_PrevY_Zpos	27 290	7 474	16 504	103 569	261 550				_
SLVq1_PrevZpos	36 470	7 474	5 079	103 569	82 119				-
SLVq1_PrevX_Zneg	19 421	23 583	5 079	311 715	82 119				_
SLVq1 PrevY Zneg	19 421	7 474	16 504	103 569	261 550				-
SLVq1_PrevZneg	10 240	7 474	5 079	103 569	82 119				-
SLVq1.36_PrevX_Zpos	27 290	17 495	3 797	233 006	61 932				-
SLVq1.36 PrevY Zpos	27 290	5 648	12 228	79 956	194 259				-
SLVq1.36_PrevZpos	36 470	5 648	3 797	79 956	61 932				_
SLVq1.36 PrevX Zneg	19 421	17 495	3 797	233 006	61 932				-
SLVq1.36_PrevY_Zneg	19 421	5 648	12 228	79 956	194 259				-
SLVq1.36_PrevZneg	10 240	5 648	3 797	79 956	61 932				-
SLVq1.50_PrevX_Zpos	27 290	15 917	3 464	212 600	56 698				1.05
SLVq1.50_PrevY_Zpos	27 290	5 174	11 120	73 835	176 814				2.31
SLVq1.50_PrevZpos	36 470	5 174	3 464	73 835	56 698				3.07
SLVq1.50_PrevX_Zneg	19 421	15 917	3 464	212 600	56 698				1.01
SLVq1.50_PrevY_Zneg	19 421	5 174	11 120	73 835	176 814				2.29
SLVq1.50_PrevZneg	10 240	5 174	3 464	73 835	56 698				2.69

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE


DIRETTRICE FERROVIARIA MESSINA-CATANIA-PALERMO

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 23 di 103

Riepilogo verifica spiccato	wk	sc	SS	c.s.(>1)			
	mm	MPa	MPa	-			
SLS_qp	0.000	1.19	12.3				
SLS_Rara_Fess	0.056	3.00	-30.3				
SLS_Rara		3.81	-77.3				
SLU_A1				2.75			
SLV - q=1				-			
SLV - q=1.36				-			
SLV - q=1.5				1.01			

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 24 di 103

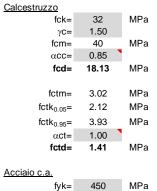
7.9 Verifica a taglio pila

La verifica viene condotta per le singole anime ripartendo il carico in base ai rapporti di rigidezza a taglio.

Anima	num	b	h	Α	k=A/Atot
-	-	m	m	mq	-
laterale	1	0.4	2.5	1	0.23
laterale	1	0.4	2.5	1	0.23
centrale	1	0.8	2.9	2.32	0.54
somma				4.32	1

Pila		2	2
Direzione		Long	Trasv
Altezza pila	H(m)	12.8	12.8
fattore di struttura	q	1.5	1.5
fattore di sovraresistenza (eq 7.9.7)		1	1
fattore di sovraresistenza filtrato (eq 7.9.7)	grd	1	1
taglio derivante dall'analisi (con q=1)	V	23 583	16 504
momento corrispondente alla base della pila (con q=1))	М	311 715	261 550
taglio derivante dall'analisi (con q)	Ved	15 917	11 120
momento corrispondente alla base della pila (con q)	Med	212 600	176 814
momento resistente alla base della pila	Mrd	214 726	404 904
Rapporto di sovraresistenza	Mrd/Med	1.01	2.29
Tipo sezione (EC 8-2; eq 6.11)		critica	non critica
angolo inclinazione bielle compresse	Teta	45	da calc
limite superiore per Vgr	Vgr,max=V	23 583	16 504
taglio di progetto per la gerarchia della resistenza (da calcolo) (eq. 7.9.12)	Vgr	16 076	25 465
taglio di progetto per la gerarchia della resistenza (filtrato)	Vgr	16 076	16 504
fattore di sicurezza aggiuntivo per la resistenza a taglio (eq 7.9.10)	grd	0.76	1.24
fattore di sicurezza aggiuntivo per la resistenza a taglio, filtrato (eq 7.9.10)	grd	1.00	1.24
Riassumendo			
Taglio di calcolo	Vgr	16 076	16 504
fattore di sicurezza aggiuntivo filtrato (eq 7.9.10)	grd	1.00	1.24
angolo inclinazione bielle compresse	Teta	45	da calc

PROGETTO DEFINITIVO


RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

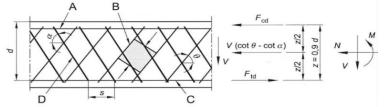
PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 25 di 103

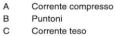
Taglio longitudinale - Setto centrale

Verifica a taglio secondo EC2-2

Nsd= 0 kN Sforzo normale

Geometria bw = 0.800Larghezza (6.16) m h= 2.900 Altezza totale m Copriferro c = 0.100m d = 2.800Altezza utile m Ac= 2.32 ma Area

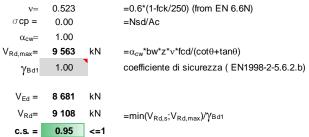

Elementi CA e CAP armati a taglio


1.15

391.3

γs=

fyd=

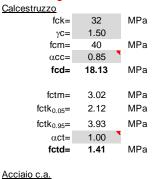


Armatura a taglio

Resistenza lato acciaio (staffe)

φw=	14	mm	Diametro staffa			
n=	12.00	-	Numero braccia			
Asw=	18.47	cm2				
Z=	2.52	m	=0.9*d			
senα=	1		angolo tra le staffe e l'asse della trave	e (=90°	per staffe	verticali)
ρW=	1.15	%	$=Asw/(s*bw*sin\alpha)*100 >=$	0.10	%	=(0.08*radq(fck))/fyk*100
S=	0.2	m	=passo staffe <=	2.10	m	$=0.75*d*(1+cot\alpha)$
θ=	45.0	0	=arcsen(radq(Asw*fyd)/(bw*s*acw*n*f	cd))		
		_	inclinazione puntone compresso, varia	abile tra	45° to 2	1.8°
tanθ=	1.00	-	valore tra 1 (for q=45°) e 0.4			
cotθ=	1.00	-	valore tra 1 (for q=45°) and 2.5			
ρw,max=	4.52	=	$A_{sw,max}*fyd/(bw*s)<=1/2*\alpha_{cw}*\nu*fcd=$	4.74		
Asw/s,ins =	92.36	cm2/m	Area staffe inserita			
$V_{Rd,s} =$	9 108	kN	=Asw/s*z* fywd *cotθ			

PROGETTO DEFINITIVO


RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 - VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S VI0705 001 D 09 CL26 di 103

Taglio longitudinale - Setto laterale

Verifica a taglio secondo EC2-2

<u>Taglio</u>		γ	
Gk	0	x1.00=	0 kN
Pk	0	x1.00=	0 kN
Qk	0	x1.00=	0 kN
Aed	16 076	x0.23=	3697 kN
		V _{Ed} =	3697 kN

Nsd= 0 Sforzo normale

Geometria bw = 0.400

Larghezza (6.16) m h= 2.500 m Altezza totale c = 0.100Copriferro Altezza utile d = 2.400m Ac= 1.00 mq

В

C

Corrente compresso

Puntoni

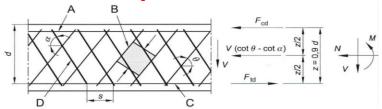
Corrente teso Armatura a taglio

Elementi CA e CAP armati a taglio

450

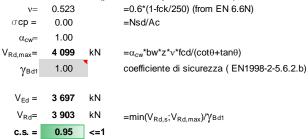
1.15

391.3


MPa

MPa

fyk=

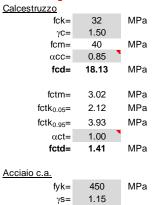

γs=

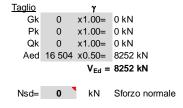
fyd=

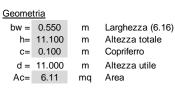
Resistenza lato acciaio (staffe)

φw=	14	mm	Diametro stalia		
n=	6.00	-	Numero braccia		
Asw=	9.24	cm2			
z=	2.16	m	=0.9*d		
senα=	1		angolo tra le staffe e l'asse della		affe verticali)
ρW=	1.15	%	$=Asw/(s*bw*sin\alpha)*100>=$	0.10 %	= (0.08*radq(fck))/fyk*100
s=	0.2	m	=passo staffe <=	1.80 m	$=0.75*d*(1+cot\alpha)$
θ=	45.0	۰	=arcsen(radq(Asw*fyd)/(bw*s*ad	cw*n*fcd))	
			inclinazione puntone compresso	o, variabile tra 45° t	o 21.8°
tanθ=	1.00	-	valore tra 1 (for q=45°) e 0.4		
cotθ=	1.00	-	valore tra 1 (for q=45°) and 2.5		
ρw,max=	4.52	=	$A_{sw,max}*fyd/(bw*s)<=1/2*\alpha_{cw}*\nu^*$	fcd = 4.74	
Asw/s,ins =	46.18	cm2/m	Area staffe inserita		
$V_{Rd,s} =$	3 903	kN	=Asw/s*z* fywd *cotθ		

PROGETTO DEFINITIVO


RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

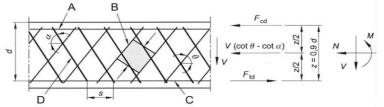

VI07 - VIADOTTO SATANO RELAZIONE DI CALCOLO PILE


PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 09 CLVI0705 001 27 di 103 D

Taglio trasversale

Verifica a taglio secondo EC2-2

Corrente compresso


Puntoni Corrente teso Armatura a taglio

Elementi CA e CAP armati a taglio

391.3

MPa

fyd=

Resistenza lato acciaio (staffe)

Numero braccia	φw=	14	mm	Diametro staffa				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	n=	2.00	-	Numero braccia				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Asw=	3.08	cm2					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	z=	9.90	m	=0.9*d				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	senα=	1		angolo tra le staffe e l'asse della trav	ле (=90° р	er staffe	verticali)	
$\theta = 21.8 \qquad \circ \qquad = \operatorname{arcsen}(\operatorname{radq}(\operatorname{Asw^*fyd})/(\operatorname{bw^*s^*acw^*n^*fcd}))$ inclinazione puntone compresso, variabile tra 45° to 21.8° $\tan\theta = 0.40 \qquad - \qquad \text{valore tra 1 (for q=45°) e 0.4}$ $\cot\theta = 2.50 \qquad - \qquad \text{valore tra 1 (for q=45°) and } 2.5$ $\rho w, \max = 1.10 \qquad = \qquad A_{sw,\max} * fyd/(bw^*s) <= 1/2 * \alpha_{cw} * \nu * fcd = 4.74$	ρ w =	0.28	%	=Asw/(s*bw*sinα)*100 >=	0.10	%	=(0.08*radq(fck))/fyk*100	
tanθ= 0.40 cotθ= 2.50 - valore tra 1 (for q=45°) e 0.4 cotθ= 2.50 - valore tra 1 (for q=45°) and 2.5 $\rho w, max= 1.10 = A_{sw,max}*fyd/(bw*s)<=1/2*\alpha_{cw}*v*fcd = 4.74$	s=	0.2	m	=passo staffe <=	8.25	m	$=0.75*d*(1+cot\alpha)$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	θ=	21.8	۰	=arcsen(radq(Asw*fyd)/(bw*s*acw*n	*fcd))			
$\cot\theta = 2.50$ - valore tra 1 (for q=45°) and 2.5 ρw , max = 1.10 = $A_{sw,max}$ *fyd/(bw*s)<=1/2* α_{cw} *v*fcd = 4.74				inclinazione puntone compresso, vai	riabile tra	45° to 2	1.8°	
$\rho w, max = 1.10 = A_{sw,max} *fyd/(bw*s) <= 1/2* \alpha_{cw}* v*fcd = 4.74$	tanθ=	0.40	-	valore tra 1 (for q=45°) e 0.4				
,	cotθ=	2.50	-	valore tra 1 (for q=45°) and 2.5				
Asw/s,ins = 15.39 cm2/m Area staffe inserita	ρw,max=	1.10	=	$A_{sw,max}$ *fyd/(bw*s)<=1/2* α_{cw} *v*fcd =	4.74			
	Asw/s,ins =	15.39	cm2/m	Area staffe inserita				

V_{Rd,s}= **14 910** $kN = Asw/s*z* fywd *cot\theta$

ν=	0.523		=0.6*(1-fck/250) (from EN 6.6N)
σcp =	0.00		=Nsd/Ac
$\alpha_{\text{cw}} =$	1.00		
$V_{Rd,max} =$	17 812	kN	$=\alpha_{cw}^*bw^*z^*v^*fcd/(cot\theta+tan\theta)$
γBd1	1.24		coefficiente di sicurezza (EN1998-2-5.6.2.b)
$V_{Ed} =$	8 252	kN	
$V_{Rd}=$	12 024	kN	=min($V_{Rd,s}$; $V_{Rd,max}$)/ γ_{Bd1}
c.s. =	0.69	<=1	

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

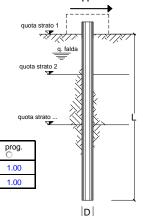
PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 28 di 103

7.10 Carichi sui pali

Azioni all'intradosso fondazione - Valori combinati						Carichi sui	pali	
Combinazione	N	HL	HT	ML	MT	Np max	Np min	Hp max
SLE_qp	70 829	59	0	4 461	0	4 502	4 353	4
SLE_Rara_Fess_Traffico_gr4_Nmax	75 849	1 739	960	39 961	21 467	5 765	3 717	125
SLE_Rara_Fess_Traffico_gr4_MLmax	74 529	1 739	960	42 605	21 110	5 720	3 597	125
SLE_Rara_Fess_Traffico_gr4_MTmax	73 545	1 739	960	39 480	25 875	5 686	3 508	125
SLE_Rara_Fess_Vento_ponte_scarico	70 829	59	1 232	4 461	25 160	4 921	3 934	78
SLE_Rara_Traffico_gr1_Nmax	79 196	1 556	1 325	36 547	30 245	6 063	3 837	128
SLE_Rara_Traffico_gr1_MLmax	76 997	1 556	1 325	40 954	29 649	5 990	3 636	128
SLE_Rara_Traffico_gr1_MTmax	75 357	1 556	1 325	35 746	37 592	5 933	3 488	128
SLE_Rara_Traffico_gr3_Nmax	79 196	2 859	869	63 628	20 123	6 346	3 554	187
SLE_Rara_Traffico_gr3_MLmax	76 997	2 859	869	68 034	19 527	6 272	3 353	187
SLE_Rara_Traffico_gr3_MTmax	75 357	2 859	869	62 826	27 470	6 215	3 205	187
SLE_Rara_Vento_ponte_scarico	70 829	59	1 232	4 461	25 160	4 921	3 934	78
SLUup_A1_Traffico_gr1_Nmax	108 889	2 251	1 942	52 891	44 271	8 425	5 187	186
SLUup_A1_Traffico_gr1_MLmax	105 700	2 251	1 942	59 280	43 406	8 318	4 895	186
SLUup_A1_Traffico_gr1_MTmax	103 322	2 251	1 942	51 729	54 923	8 236	4 681	186
SLUup_A1_Traffico_gr3_Nmax	108 889	4 139	1 280	92 153	29 591	8 835	4 777	271
SLUup_A1_Traffico_gr3_MLmax	105 700	4 139	1 280	98 543	28 727	8 728	4 486	271
SLUup_A1_Traffico_gr3_MTmax	103 322	4 139	1 280	90 991	40 243	8 645	4 271	271
SLUup_A1_Vento_ponte_scarico	96 757	80	1 847	6 364	37 736	6 783	5 313	116
SLUIow_A1_Traffico_gr1_Nmax	82 961	2 230	1 942	50 987	44 271	6 773	3 598	185
SLUIow_A1_Traffico_gr1_MLmax	79 772	2 230	1 942	57 377	43 406	6 666	3 307	185
SLUIow_A1_Traffico_gr1_MTmax	77 394	2 230	1 942	49 825	54 923	6 583	3 092	185
SLUlow_A1_Traffico_gr3_Nmax	82 961	4 119	1 280	90 253	29 591	7 183	3 188	270
SLUlow_A1_Traffico_gr3_MLmax	79 772	4 119	1 280	96 642	28 727	7 076	2 897	270
SLUlow_A1_Traffico_gr3_MTmax	77 394	4 119	1 280	89 091	40 243	6 993	2 682	270
SLUlow_A1_Vento_ponte_scarico	70 829	59	1 847	4 461	37 736	5 131	3 724	116
SLVq1_PrevX_Zpos	76 437	23 583	5 079	394 255	99 895	13 014	-3 458	1 508
SLVq1_PrevY_Zpos	76 437	7 474	16 504	129 728	319 314	12 262	-2 706	1 133
SLVq1_PrevZpos	85 617	7 474	5 079	129 728	99 895	9 179	1 525	565
SLVq1_PrevX_Zneg	68 568	23 583	5 079	394 255	99 895	12 522	-3 950	1 508
SLVq1_PrevY_Zneg	68 568	7 474	16 504	129 728	319 314	11 770	-3 198	1 133
SLVq1_PrevZneg	59 387	7 474	5 079	129 728	99 895	7 539	-115	565
SLVq1.36_PrevX_Zpos	76 437	17 495	3 797	294 238	75 221	10 935	-1 380	1 119
SLVq1.36_PrevY_Zpos	76 437	5 648	12 228	99 724	237 057	10 391	-835	842
SLVq1.36_PrevZpos	85 617	5 648	3 797	99 724	75 221	8 267	2 436	426
SLVq1.36_PrevX_Zneg	68 568	17 495	3 797	294 238	75 221	10 444	-1872	1 119
SLVq1.36_PrevY_Zneg	68 568	5 648	12 228	99 724	237 057	9 899	-1 327	842
SLVq1.36_PrevZneg	59 387	5 648	3 797	99 724	75 221	6 628	796	426
SLVq1.50_PrevX_Zpos	76 437	15 917	3 464	268 309	68 822	10 397	-841	1 019
SLVq1.50_PrevY_Zpos	76 437	5 174	11 120	91 944	215 734	9 906	-350	767
SLVq1.50_PrevZpos	85 617	5 174	3 464	91 944	68 822	8 031	2 672	390
SLVq1.50_PrevX_Zneg	68 568	15 917	3 464	268 309	68 822	9 905	-1 333	1 019
SLVq1.50_PrevY_Zneg	68 568	5 174	11 120	91 944	215 734	9 414	-842	767
SLVq1.50_PrevZneg	59 387	5 174	3 464	91 944	68 822	6 392	1 033	390
Riepilogo carichi sui pali	Np max	Np min	Hp max					
SLS_qp	4 502	4 353	4					
SLS_Rara_Fess	5 765	3 508	125					
SLS_Rara	6 346	3 205	187					
SLU_A1	8 835	2 682	271					
SLV - q=1	13 014	-3 950	1 508					
SLV - q=1.36	10 935	-1872	1 119					
SLV - q=1.5	10 397	-1 333	1 019					

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO


VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 09 CL VI0705 001 29 di 103

7.11 Verifica palo per forze orizzontali

7.11.1 Capacità portante orizzontale (Broms)

	coefficie	nti parziali		Α	١ -	M	R		
	Metodo	di calcolo		permanenti γ _G	variabili γα	γ _{φ'}	γ _{cu}	γт	
	A1+M1+R	11	0	1.30	1.50	1.00	1.00	1.00	
SLU	A2+M1+R	2	0	1.00	1.30	1.00	1.00	1.60	l
S	A1+M1+R	13	0	1.30	1.50	1.00	1.00	1.30	
	SISMA		•	1.00	1.00	1.00	1.00	1.30	
DM88			0	1.00	1.00	1.00	1.00	1.00	l
definiti d	al progettist	а	0	1.00	1.00	1.00	1.00	1.30	l
									•
n	1	2	3	4	5	7	≥10 ○	T.A.	
*	4.70	4.05	4.00	4.55	4.50	4.45	4.40	4.00	Г

n	1	2	3	4	5	7	≥10 ○	T.A.	prog.
ξ_3	1.70	1.65	1.60	1.55	1.50	1.45	1.40	1.00	1.00
ξ4	1.70	1.55	1.48	1.42	1.34	1.28	1.21	1.00	1.00

						Parametri m	edi	Parametri minimi			
strati terreno	descrizione	quote	γ	γ'	φ	k _p	Cu	φ	k_p	Cu	
		(m)	(kN/m ³)	(kN/m ³)	(°)		(kPa)	(°)		(kPa)	
p.c.=strato 1		100.00	20	10	32.5	3.32		32.5	3.32		
☐ strato 2						1.00			1.00		
☐ strato 3						1.00			1.00		
☐ strato 4						1.00			1.00		
☐ strato 5						1.00			1.00		
☐ strato 6						1.00			1.00		

Quota falda 100.00 (m) Diametro del palo D 1.50 (m) Lunghezza del palo L Momento di plasticizzazione palo My 9 969.00 (kNm) Step di calcolo

palo impedito di ruotare

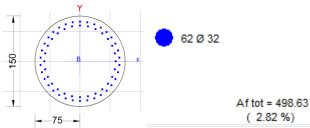
o palo libero

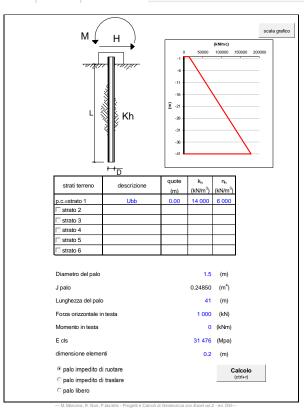
Calcolo

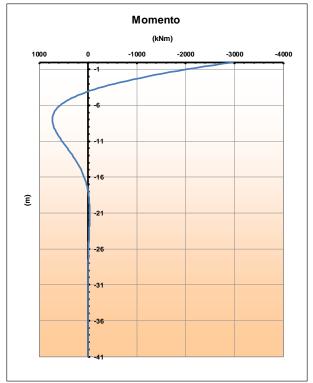
	H Me	edio				<u>H 1</u>	minimo		
Palo lungo	4	4 055	(kN)				4 055	(kN)	
Palo intermedio	33	2 987	(kN)				32 987	(kN)	
Palo corto	125	5 663	(kN)				125 663	(kN)	
	H _{med} 4	4 055	(kN)	Palo lungo		H_{min}	4 055	(kN)	Palo lungo
	H _k = Mi	in(H _{med}	/ξ ₃ ; R _{mir}	√ ξ ₄)		2 458	(kN)	
	Coefficiente di	gruppo	palificat	a:	k =	0.8	((-)	
	$H_d = (I$	H _k /γ _T)*I	•			1 512	(kN)	
	Carico Assiale	e Perma	anente (C	S):	G =	1 508	(kN)	
	Carico Assiale	variab	ile (Q):		Q =	0	(kN)	
	$F_d = G \cdot \gamma_G$; + Q · γ	_Q =			1 508	(kN)	
	c.s. = H	ld / Fd	=			1.00	((-)	

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

DIRETTRICE FERROVIARIA MESSINA-CATANIA-PALERMO


PROGETTO DEFINITIVO


RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO


PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 30 di 103

7.11.2 Resistenza strutturale

Verifica strutturale palo	Np	Hp max	Hp max/k	Mp max	Mrd	wk	SC	SS	c.s.(>1)
		kN	kN	kNm	kNm	mm	MPa	MPa	-
SLS_qp	0	4	5	15		0.001	0.04	-0.9	
SLS_Rara_Fess	0	125	156	463		0.034	1.17	-26.6	
SLS_Rara	0	187	234	692			1.76	-39.7	
SLU_A1	0	271	339	1 003	9 969				9.94
SLV - q=1	0	1 508	1 885	5 580	9 969				1.79
SLV - q=1.36	0	1 119	1 399	4 140	9 969				2.41
SLV - q=1.5	0	1 019	1 274	3 770	9 969				2.64
Costante elastica - Matlock Reese		α=Mp/Hp	2.96						
Coefficiente di gruppo		k	0.8						
Taglio massimo palo (con coeff di gruppo)		Hp max / I	<						
Momento elastico sul palo (con coeff di gruppo)		Mp max =	(Hp max / k	()* α					

VI07 - VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

DIRETTRICE FERROVIARIA MESSINA-CATANIA-PALERMO

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S VI0705 001 D 09 CL31 di 103

7.11.3 Taglio strutturale

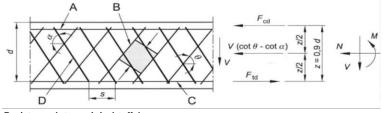
Verifica a taglio secondo EC2-2

<u>Calcestruzzo</u>		
fck=	25	MPa
γ c =	1.50	
fcm=	33	MPa
αcc=	0.85	
fcd=	14.17	MPa
fctm=	2.56	MPa
fctk _{0.05} =	1.80	MPa
fctk _{0.95} =	3.33	MPa
αct=	1.00	
fctd=	1.20	MPa

NTC08 - 7.9.5.2.2 In assenza di calcoli più accurati, per sezioni circolari di calcestruzzo di raggior in cui l'armatura sia distribuita su una circonferenza di raggio rs, l'altezza utile della sezione ai fini del calcolo della resistenza a taglio può essere calcolata come

$$d = r + \frac{2r_s}{\pi}$$

<u>Taglio</u> x1.00= 0 kN Gk x1.00= 0 kN Pk 0 Qk 0 x1.00= 0 kN Aed 1 885 x1.00= 1885 kN V_{Ed} = 1885 kN


Nsd= 0 Sforzo normale

m

Geometria bw = d = 1.172h= 1.172

Larghezza (6.16) m Altezza totale c= 0.087 Copriferro Altezza utile d = 1.172m 1.37 mq Area r = 0.750Raggio palo m Raggio armatura verticale rs = r-c = 0.663m

Elementi CA e CAP armati a taglio

Diametro staffa

Α	Corrente compresso
В	Puntoni
C	Corrente teso
D	Armatura a taglio

Resistenza lato acciaio (staffe)

V_{Rd,s}= **3 177**

14

mm

n=	4.00	-	Numero braccia				
Asw=	6.16	cm2					
z=	1.05	m	=0.9*d				
senα=	1		angolo tra le staffe e l'asse della t	trave (=90°	per staff	e verticali)
ρ w =	0.26	%	$=Asw/(s*bw*sin\alpha)*100 >=$		0.09	%	=(0.08*radq(fck))/fyk*100
s=	0.2	m	=passo staffe <=		0.88	m	=0.75*d*(1+cotα)
θ=	21.8	0	=arcsen(radq(Asw*fyd)/(bw*s*acv	v*n*fc	d))		
			inclinazione puntone compresso,	variab	ile tra	45° to	21.8°
tanθ=	0.40	-	valore tra 1 (for q=45°) e 0.4				
cotθ=	2.50	-	valore tra 1 (for q=45°) and 2.5				
ρw,max=	1.03	=	$A_{sw,max}$ *fyd/(bw*s)<=1/2* α_{cw} *v*fc	:d =	3.83		
Asw/s,ins =	30.79	cm2/m	Area staffe inserita				

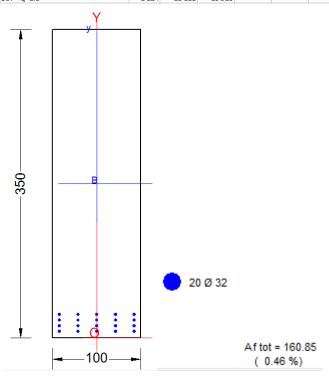
Resistenza lato calcestruzzo (puntone compresso inclinato)

ν= σ cp =	0.540 0.00		=0.6*(1-fck/250) (from EN 6.6N) =Nsd/Ac
$\alpha_{cw} = V_{Rd.max} =$	1.00 3 261	kN	$=\alpha_{cw}^*bw^*z^*v^*fcd/(\cot\theta+\tan\theta)$
γBd1	1.25		coefficiente di sicurezza (EN1998-2-5.6.2.b)
$V_{Ed} =$	1 885	kN	
V _{Rd} =	2 542	kN	=min($V_{Rd,s}$; $V_{Rd,max}$)/ γ_{Bd1}
c.s. =	0.74	<=1	

 $kN = Asw/s*z* fywd *cot\theta$

O ITALIANE RADDOPPIO DELLA TRATTA GIAMPILIERI– FIUMEFREDDO

PROGETTO DEFINITIVO


DIRETTRICE FERROVIARIA MESSINA-CATANIA-PALERMO

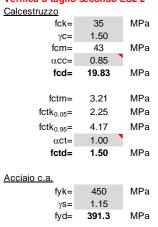
VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 32 di 103

7.12 Verifica plinto

		plinto	riemp	somma											
peso specifico	kN/m3	25	18												
spessore	m	3.5	6												
peso a mq	kN/mq	87.5	108	195.5											
sbalzo plinto e riemp	m	6.65	6.65												
peso totale a m/l	kN/m	582	718	1300											
momento nella sezione di verifica	kNm/m	1935	2388	4323											
Larghezza di influenza per pali	m	2.95	=	Tpila/n°pa	i dir T										
		Fila	a 1	Fila	12	Fila	a 3	Effetto	pali	Effetto p	ali a m/l	p.p.plinto	+rinterro	Soll. di p	rogetto
		N	braccio	N	braccio	N	braccio	T	М	T	M		М	Т	M
		kN	m	kN	m	kN	m	kN	kNm	kN/m	kNm/m	kN/m	kNm/m	kN/m	kNm/m
SLS_qp	kN	4 502	5.15	0		0		4 502	23 185	1 526	7 859	-1300	-4323	226	3 537
SLS_Rara_Fess	kN	5 765	5.15	0		0		5 765	29 690	1 954	10 064	-1300	-4323	654	5 742
SLS_Rara	kN	6 346	5.15	0		0		6 346	32 682	2 151	11 079	-1300	-4323	851	6 756
SLU_A1	kN	8 835	5.15	0		0		8 835	45 500	2 995	15 424	-1300	-4323	1 695	11 101
SLV - q=1	kN	13 014	5.15	0		0		13 014	67 022	4 412	22 719	-1300	-4323	3 111	18 397
SLV - q=1.36	kN	10 935	5.15	0		0		10 935	56 315	3 707	19 090	-1300	-4323	2 407	14 767
SLV - q=1.5	kN	10 397	5.15	0		0		10 397	53 545	3 524	18 151	-1300	-4323	2 224	13 828
	Soll. di	progetto			Verifica										
	Т	М	Mrd	wk	sc	SS	c.s.(>1)								
	kN/m	kNm/m	kNm/m	mm	MPa	MPa	-								
SLS_qp	226	3 537		0.108	2.26	-77									
SLS_Rara_Fess	654	5 742		0.176	3.67	-125									
SLS_Rara	851	6 756			4.32	-147									
SLU_A1	1 695	11 101	19 920				1.79								
SLV - q=1	3 111	18 397	19 920				1.08								
SLV - q=1.36	2 407	14 767	19 920				1.35								
SLV - q=1.5	2 224	13 828	19 920				1.44								

PROGETTO DEFINITIVO


RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 33 di 103

Si fornisce un quantitativo di armatura a taglio, da realizzare con spille o considerando i cavallotti.

Verifica a taglio secondo EC2-2

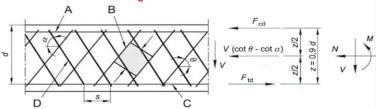
<u>Taglio</u>		γ		
Gk	0	x1.00=	0 kN	
Pk	0	x1.00=	0 kN	
Qk	0	x1.00=	0 kN	
Aed	3 111	x1.00=	3111 k	κN
		V _{Ed} =	3111 k	κN

Nsd= 0 kN

Geome	<u>tria</u>		
bw =	1.000	m	Larghezza (6.16)
h=	3.500	m	Altezza totale
c=	0.100	m	Copriferro
d =	3.400	m	Altezza utile
Ac=	3.50	mq	Area

В

C


Sforzo normale

Corrente compresso

Puntoni

Corrente teso

Elementi CA e CAP armati a taglio

Resistenza lato acciaio (staffe)

φw=	20	mm	Diametro staffa
n=	2.00		Numero braccia
Asw=	6.28	cm2	
z=	3.06	m	=0.9*d
senα=	1		angolo tra le staffe e l'asse della trave (=90° per staffe verticali)
ρ w =	0.13	%	$= Asw/(s*bw*sin\alpha)*100$
s=	0.48	m	=passo staffe <= $2.55 \text{ m} = 0.75 \text{ d}^{\star}(1+\cot\alpha)$
θ=	21.8	0	=arcsen(radq(Asw*fyd)/(bw*s*acw*n*fcd))
			inclinazione puntone compresso, variabile tra 45° to 21.8°
tanθ=	0.40	-	valore tra 1 (for q=45°) e 0.4
cotθ=	2.50	-	valore tra 1 (for q=45°) and 2.5
ρw,max=	0.51	=	$A_{sw,max}$ *fyd/(bw*s)<=1/2* α_{cw} *v*fcd = 5.12
Asw/s,ins =	13.09	cm2/m	Area staffe inserita
$V_{Rd,s} =$	3 919	kN	=Asw/s*z* fywd *cotθ

		(1	,
v=	0.516		=0.6*(1-fck/250) (from EN 6.6N)
σcp =	0.00		=Nsd/Ac
$\alpha_{\text{cw}}\!\!=\!$	1.00		
$V_{Rd,max} =$	10 798	kN	$=\alpha_{cw}^*bw^*z^*v^*fcd/(cot\theta+tan\theta)$
γ _{Bd1}	1.25		coefficiente di sicurezza (EN1998-2-5.6.2.b)
$V_{Ed} =$	3 111	kN	
$V_{Rd} =$	3 135	kN	=min($V_{Rd,s}$; $V_{Rd,max}$)/ γ_{Bd1}
c.s. =	0.99	<=1	

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 34 di 103

8 CALCOLO E VERIFICA PILA 8

8.1 Azione sismica

La stessa della pila precedente.

8.2 Dati generali

Dati fusto pila e pulvino	L(m)	T(m)	H(m)	A(mq) P(kN)
Fusto pila	3.2	11.8	9.6	15.67 3 761
Pulvino	3.2	11.8	2	1 888
Peso totale pila				5 649
Geometria				
Altezza totale pila, compreso pulvino	h	11.6 m		
Distanza pf - sottotrave (in asse appoggi)	h1	3.99 m		
Distanza sottotrave - testa pila	h2	0.5 m		
Distanza pf - testa pila	h3	4.49 m		
Distanza centro rotazione appoggi - testa pila	h4	0.4 m		
Distanza baricentro masse impalcato - testa pila	h5	3.69 m		
Distanza pf - spiccato pila	h6	16.09 m		
Distanza pf - intradosso fondazione	h7	19.59 m		
Impalcato		SX	dx	totale
Tipo appoggio		M	F	
Luce in asse pila		25	50	m
Distanza asse appoggi - asse pila		1.1	1	m
Luce in asse appoggi		22.8	48	m
Pesi propri	G1	258.1	190.0	kN/ml
Permanenti portati	G2	202.3	202.3	kN/ml
Permanenti	G	460.4	392.3	kN/mI
Peso treno equivalente x0.2	Q1x0.2	46	45	kN/mI
Massa sismica	M	506.4	437.3	kN/mI
Pesi propri	G1	3 226	4 750	7 976 kN
Permanenti portati	G2	2 529	5 058	7 586 kN
Permanenti	G	5 755	9 808	15 563 kN
Massa sismica	M	6 330	10 933	17 263 kN

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

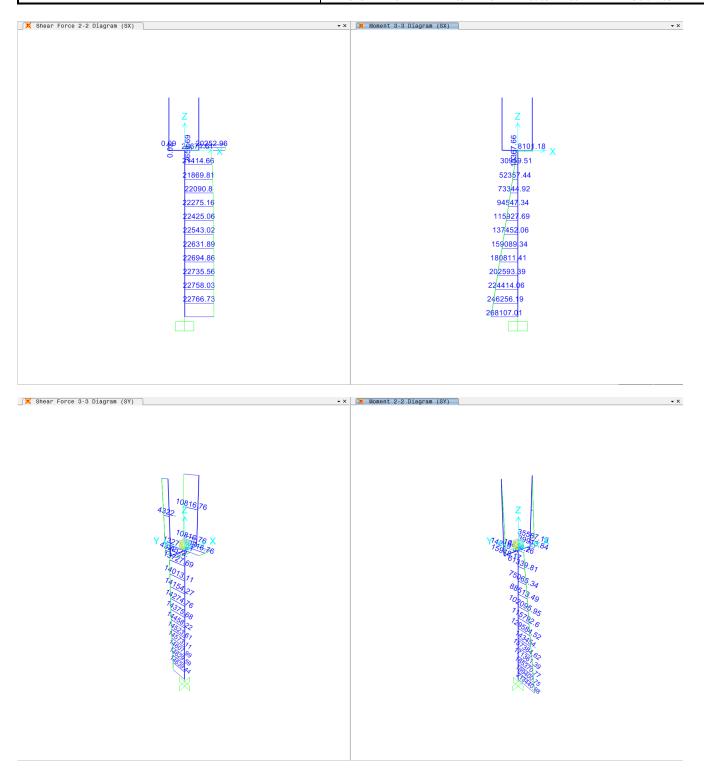
VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO
RS2S 02 D 09 CL VI0705 001 A 35 di 103

8.3 Analisi sismica

Analisi sismica	;	Semplificata			Dinamica modale			
Direzione		Long	Trasv	Vert				
Dist baricentro masse impal - spiccato pila	hp	12	15.29	15.29 m				
Modulo elastico pila	Ec	33 346	33 346	33 346 MPa	Tipo analisi eff	ettuata		
Inerzia pila (Area pila per verticale)	lf	21.3	172.4	15.7 m4	2 D	inamica moda	ale	
Riduzione per rigidezza fessurata		1.0	1.0	1.0 -				
Rigidezza oscillatore elementare equivalente		1.23E+06	4.82E+06	3.42E+07 kN/m				
Massa sismica impalcato	Pi	21 865	17 263	17 263 kN				
Massa efficace pila	Ppeff	3 377	3 377	3 377 kN				
Massa complessiva	P=Pi+Ppeff	25 242	20 639	20 639 kN				
1/5 Massa sismica impalcato	1/5*Pi	4 373	3 453	3 453 kN				
Massa efficace pila	Ppeff	3 377	3 377	3 377 kN				
Verifica requisito	Ppeff≤1/5*Pi ?	si	si	si -				
Periodo proprio	Т	0.29	0.13	0.05 sec	0.30	0.15	0.04 sec	
	q Ordinata spettrale (S)							
	1	0.904	0.783	0.674 g				
	1.36	0.665	0.598	0.674 g				
	1.5	0.603	0.550	0.674 g				
	q	Taglio/Sfor I	Norm allo spi	Taglio/Sfor Norm allo spiccato pila				
	1	22 824	16 160	13 920 kN	22 766	14 639	12 655 kN	
	1.36	16 782	12 336	13 920 kN	16 743	10 963	12 655 kN	
	1.5	15 216	11 345	13 920 kN	15 182	10 011	12 655 kN	
	q Momento allo spiccato pila			to pila	Momento allo spiccato pila			
	1	273 886	247 080	kNm	268 107	213 440	kNm	
	1.36	201 387	188 622	kNm	197 139	159 730	kNm	
	1.5	182 591	173 466	kNm	178 739	145 807	kNm	
	1	Rapporto risultati dinamica modale - semplificata			Taglio/Sfor Norm allo spiccato pila			
					1.00	0.91	0.91 -	
					1.00	0.89	0.91 -	
					1.00	0.88	0.91 -	
						allo spiccato	pila	
					0.98	0.86	-	
					0.98	0.85	-	
					0.98	0.84	_	

PROGETTO DEFINITIVO


RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 – VIADOTTO SATANO

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO

RELAZIONE DI CALCOLO PILE

RS2S 02 D 09 CL VI0705 001 A 36 di 103

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S D 09 CL VI0705 001 37 di 103 A

8.4 Carichi da traffico

Carico verticale da traffico ferroviario

	N°binari	Azioni quo	(kN;kNm)	
	2	N	ML	MT
Condizione	N max	8 367	1 759	1 699
Condizione	ML max	6 168	6 166	1 103
Condizione	MT max	4 528	958	9 045
Condizione	Inviluppo	8 367	6 166	9 045

Carico verticale massimo da traffico sul piano appoggi

		5.8	ux
Carico verticale	N max	3 559	6 168
Luce impalcato asse appoggi	Lc	22.8	48
Coefficiente dinamico	Ф3	1.202	1.051
Carico verticale dinamizzato	N	4 278	6 483

Attrito		SX	dx	
Permanenti	G	5 755	9 808 kN	_
Carico mobile dinamizzato	Q1*Φ	4 278	6 483 kN	

Coefficiente di attrito in condizione statiche		0.03
Attrito permanente	maxG*0.2*Φ	59 kN
Attrito mobili dinamizzati	maxQ*Φ	194 kN

Attrito permanente	maxG*0.2*Φ	59 kN
Attrito mobili dinamizzati	$maxQ^*\Phi$	194 kN

Frenatura	•	
luce campata carica	L	50 m
a livello binario	HL	2 605 kN
a quota testa pila	ML	11 696 kNm

Serpeggio a livello binario НТ 210 kN 943 kNm a quota testa pila MT

Centrifuga		
raggio planimetrico	R	1 300 m
velocità di progetto	V	160 km/h
lunghezza di influenza		50 m

lunghezza di influenza		50	m		
Reazione del singolo treno	Qv				
Sulla pila	v (km/h)	alfa	f	Coeff	Qv (kN) FT (kN)
LM71 v>120; caso a	160	1	0.79	0.123	3 491 429
LM71 v>120; caso b	120	1.1	1.00	0.096	3 840 368
LM71 v≤120; caso a	120	1.1	1.00	0.096	3 840 368
LM71 (caso utilizzato)					429
SW2	100	1	1.00	0.061	4 528 274
Valore utilizzato					703
Al piano appoggi - sx	v (km/h)	alfa	f	Coeff	Qv (kN) FT (kN)
LM71 v>120; caso a	160	1	0.79	0.123	1 535 _ 188
LM71 v>120; caso b	120	1.1	1.00	0.096	1 688
LM71 v≤120; caso a	120	1.1	1.00	0.096	1 688 162
LM71 (caso utilizzato)					162
SW2	100	1	1.00	0.061	1 879 114
Valore utilizzato					276
Al piano appoggi - dx	v (km/h)	alfa	f	Coeff	Qv (kN) FT (kN)
LM71 v>120; caso a	160	1	0.79	0.123	2 552 313
LM71 v>120; caso b	120	1.1	1.00	0.096	2 807 269
LM71 v≤120; caso a	120	1.1	1.00	0.096	2 807 269
LM71 (caso utilizzato)					269
SW2	100	1	1.00	0.061	3 303 200
Valore utilizzato					469

Azione del vento - generale - NTC08 e EC 1-1-4:2005

DIRETTRICE FERROVIARIA MESSINA-CATANIA-PALERMO

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO
RS2S 02 D 09 CL VI0705 001 A 38 di 103

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

8.5 Vento

Azione dei vento - generale - NTC08 e EC 1-1-4:2005				
Condizione (ponte carico o scarico)		scarico	carico	
Altitudine sul livello del mare	as	25	25 m	
Zona	Z	4	4 -	
Parametri	V b,0	28	25 m	
Parametri	a_0	500	500 m	
Parametri	k _a	0.020	0.020 1/	S
Velocità di riferimento (Tr=50 anni)	$v_b = v_{b0} + k_a^* (a_s - a_0)$	28	25 m	/s
Periodo di ritorno considerato	T _R	75	75 an	nni
	α_{f}	1.02	1.02 -	
Velocità di riferimento	V_D	28.7	25.6 m	/s
Densità dell'aria	ρ	1.25	1.25 kg	
pressione cinetica di riferimento	$q_b = 0.5*\rho*v_b^2$	0.51	0.41 kN	
Classe di rugosità del terreno	η _D =0.0 β • _D	D'	D	V
Distanza dalla costa		< 10 km	D	
			. 500	
Altitudine sul livello del mare	0-1	< 500 m	< 500 m	
Categoria di esposizione del sito Vento su impalcato	Cat	2	2	
Altezza di riferimento per l'impalcato (EC punto 8.3.1(6))	Z	12	12 m	
parametri	k_r	0.19	0.19	
parametri	z_0	0.05	0.05 m	
parametri	Z _{min}	4	4 m	
parametri	Z _{max}	200	200 m	
Coefficiente di topografia	Ct	1	1	
coefficiente di esposizione (z≤z_min)	c _e (z _{min})	1.80	1.80 -	
coefficiente di esposizione (z)	C _e (Z)	2.47	2.47 -	
Coefficiente di esposizione	C _e	2.47	2.47 -	
Larghezza impalcato	b	13.7	13.7 m	
Altezza totale impalcato (comprese le barriere o treno)	dtot	8.53	8.53 m	
Rapporto di forma	b/dtot	1.61	1.61 -	
Coefficiente di forza (figura 8.3 EC)	cfx	1.95	1.95 -	
Coefficiente di 1012a (figura 0.3 EG)	CIX	1.93	1.95 -	
Riepilogo				
Pressione cinetica di riferimento	q_b	0.51	0.41 kN	N/m2
Coefficiente di esposizione	C _e	2.47	2.47 -	
Coefficiente di forza	cfx	1.95	1.95 -	
Altezza di riferimento (EC punto 8.3.1 (4) e (5))	d	12.53	8.53 -	
Forza statica equivalente a m/l	f=prodotto	30.97	16.81 kN	√/ml
Pressione statica equivalente	f/altat			1/ 0
. receive etalica equitalente	p=f/dtot	2.47	1.97 kN	N/MZ
•	p=i/atot pmin	2.47 1.50	1.97 kN 1.50 kN	
Pressione statica equivalente (minima considerata)	'		_	\/m2
Pressione statica equivalente (minima considerata) Forza statica equivalente a m/l considerata	pmin	1.50 30.97	1.50 kN 16.81 kN	N/m2 N/mI
Pressione statica equivalente (minima considerata) Forza statica equivalente a m/l considerata Vento impalcato a ponte scarico	pmin f	1.50 30.97 sx	1.50 kN 16.81 kN dx	N/m2 N/mI totale
Pressione statica equivalente (minima considerata) Forza statica equivalente a m/l considerata Vento impalcato a ponte scarico Forza statica equivalente	pmin f	1.50 30.97 sx 30.97	1.50 kN 16.81 kN dx 30.97	N/m2 N/mI totale kN/m
Pressione statica equivalente (minima considerata) Forza statica equivalente a m/l considerata Vento impalcato a ponte scarico Forza statica equivalente Luce impalcato	pmin f f L	1.50 30.97 sx 30.97 25	1.50 kN 16.81 kN dx 30.97 50	N/m2 N/mI totale kN/m m
Pressione statica equivalente (minima considerata) Forza statica equivalente a m/l considerata Vento impalcato a ponte scarico Forza statica equivalente Luce impalcato Forza trasversale al piano appoggi	f f L FT=f*L/2	1.50 30.97 sx 30.97 25 387	1.50 kN 16.81 kN dx 30.97 50 774	N/m2 N/mI totale kN/m m 1 161 kN
Pressione statica equivalente (minima considerata) Forza statica equivalente a m/l considerata Vento impalcato a ponte scarico Forza statica equivalente Luce impalcato Forza trasversale al piano appoggi	pmin f f L	1.50 30.97 sx 30.97 25	1.50 kN 16.81 kN dx 30.97 50	N/m2 N/mI totale kN/m m
Pressione statica equivalente (minima considerata) Forza statica equivalente a m/l considerata Vento impalcato a ponte scarico Forza statica equivalente Luce impalcato Forza trasversale al piano appoggi Momento trasversale al piano appoggi	f f L FT=f*L/2	1.50 30.97 sx 30.97 25 387	1.50 kN 16.81 kN dx 30.97 50 774	N/m2 N/mI totale kN/m m 1 161 kN
Pressione statica equivalente (minima considerata) Forza statica equivalente a m/l considerata Vento impalcato a ponte scarico Forza statica equivalente Luce impalcato Forza trasversale al piano appoggi Momento trasversale al piano appoggi Vento impalcato a ponte carico	f f L FT=f*L/2	1.50 30.97 sx 30.97 25 387 1 845	1.50 kN 16.81 kN dx 30.97 50 774 3 689	N/m2 N/mI totale kN/m m 1 161 kN 5 534 kNm
Pressione statica equivalente (minima considerata) Forza statica equivalente a m/l considerata Vento impalcato a ponte scarico Forza statica equivalente Luce impalcato Forza trasversale al piano appoggi Momento trasversale al piano appoggi Vento impalcato a ponte carico	f L FT=f*L/2 MT=FT*(dtot/2+h2)	1.50 30.97 sx 30.97 25 387 1 845	1.50 kN 16.81 kN dx 30.97 50 774 3 689 dx	N/m2 N/mI totale kN/m m 1 161 kN 5 534 kNm
Pressione statica equivalente (minima considerata) Forza statica equivalente a m/l considerata Vento impalcato a ponte scarico Forza statica equivalente Luce impalcato Forza trasversale al piano appoggi Momento trasversale al piano appoggi Vento impalcato a ponte carico Forza statica equivalente	f L FT=f*L/2 MT=FT*(dtot/2+h2)	1.50 30.97 sx 30.97 25 387 1 845 sx 16.81	1.50 kN 16.81 kN dx 30.97 50 774 3 689 dx 16.81	totale kN/m n 1 161 kN 5 534 kNm totale

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 39 di 103

Vento su pila e pulvino		scarico	carico
Altezza di riferimento per pila e pulvino (EC punto 7.6(2))	Z	11.6	11.6 m
Coefficiente di esposizione (z)	c _e (z)	2.45	2.45 -
Coefficiente di esposizione	Ce	2.45	2.45 -
Pulvino			
Dimensione ortogonale alla direzione del vento	b	3.2	3.2 m
Dimensione parallela alla direzione del vento	d	11.8	11.8 m
Rapporto di forma	d/b	3.69	3.69 -
Coefficiente di forza (figura 7.23 EC)	cf0	1.32	1.32 -
Riepilogo			
Pressione cinetica di riferimento	q_b	0.51	0.41 kN/m2
Coefficiente di esposizione	C _e	2.45	2.45 -
Coefficiente di forza	cf0	1.32	1.32 -
Dimensione parallela alla direzione del vento	b	3.2	3.2 -
Forza statica equivalente a m/l	f=prodotto	5.31	4.23 kN/ml
Pressione statica equivalente	p=f/b	1.66	1.32 kN/m2
Pressione statica equivalente (minima considerata)	pmin	0.00	0.00 kN/m2
Forza statica equivalente a m/l considerata	f	5.31	4.23 kN/ml
Lunghezza dell'elemento	L	2	2 m
Forza statica equivalente	FT=f*H	10.6	8.5 kN
Pila			
Dimensione ortogonale alla direzione del vento	b	3.2	3.2 m
Dimensione parallela alla direzione del vento	d	11.8	11.8 m
Rapporto di forma	d/b	3.69	3.69 -
Coefficiente di forza (figura 7.23 EC)	cf0	1.32	1.32 -
Riepilogo	CIO	1.32	1.32 -
Pressione cinetica di riferimento	q _b	0.51	0.41 kN/m2
Coefficiente di esposizione	Чb С _e	2.45	2.45 -
Coefficiente di forza	cf0	1.32	1.32 -
Dimensione parallela alla direzione del vento	b	3.2	3.2 -
Forza statica equivalente a m/l	f=prodotto	5.31	4.23 kN/ml
Pressione statica equivalente	p=f/b	1.66	1.32 kN/m2
Pressione statica equivalente (minima considerata)	pmin	0.00	0.00 kN/m2
Forza statica equivalente a m/l considerata	f	5.31	4.23 kN/ml
Lunghezza dell'elemento	 	9.6	9.6 m
Forza statica equivalente	∟ FT=f*H	51.0	40.7 kN
i viza stativa equivalente	ri=i n	31.0	40.7 KIN

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 40 di 103

8.6 Azioni caratteristiche e dati fondazione

Azioni allo spiccato pila	Valori cara	tteristici			
	N	HL	HT	ML	MT
	kN	kN	kN	kNm	kNm
Impalcato - Pesi propri	7 976			1 201	
Impalcato - Permamenti portati	7 586			2 276	
Traffico ferroviario - Carico verticale - Nmax	8 367			1 759	1 699
Traffico ferroviario - Carico verticale - ML max	6 168			6 166	1 103
Traffico ferroviario - Carico verticale - MT max	4 528			958	9 045
Traffico ferroviario - Carico verticale - inviluppo	8 367			6 166	9 045
Traffico ferroviario - Frenatura		2 605		41 914	
Traffico ferroviario - Centrifuga			703		12 577
Traffico ferroviario - Serpeggio			210		3 379
Vento a ponte scarico - Impalcato			1 161		19 007
Vento a ponte scarico - Pulvino			11		113
Vento a ponte scarico - Pila			51		245
Vento a ponte carico - Impalcato			630		10 315
Vento a ponte carico - Pulvino			8		90
Vento a ponte carico - Pila			41		195
Attrito - Permanente		59		706	
Attrito - Carichi mobili dinamizzati		194		2 334	
Sisma q=1 - Long 100%		22 766		268 107	
Sisma q=1 - Trasv 100%			14 639		213 440
Sisma q=1 - Vert 100%	12 655				
Sisma q=1.36 - Long 100%		16 743		197 139	
Sisma q=1.36 - Trasv 100%			10 963		159 730
Sisma q=1.36 - Vert 100%	12 655				
Sisma q=1.5 - Long 100%		15 182		178 739	
Sisma q=1.5 - Trasv 100%			10 011		145 807
Sisma q=1.5 - Vert 100%	12 655				
Pila - Peso proprio	5 649				
Pesi fondazione e rinterro	Valori cara	tteristici			
Fondazione - Peso proprio	23 822				
Ricoprimento plinto - Peso proprio	10 552				

Dati plinto e riempimento				
	dir Long	dir Trasv	spessore	n° pali
Numero file pali	4	4		16
Interasse pali (m)	4.5	4.5		
Distanza dal bordo (m)	1.5	1.5		
Dimensioni plinto (m)	16.5	16.5	3.5	
Modulo minimo palificata (m)	60	60		
Diametro pali (m)	1.5			
Area pila fuori tutto	37.76	mq		
Spessore riempimento	2.5	m		
Peso specifico riemp.	18	kN/m3		

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

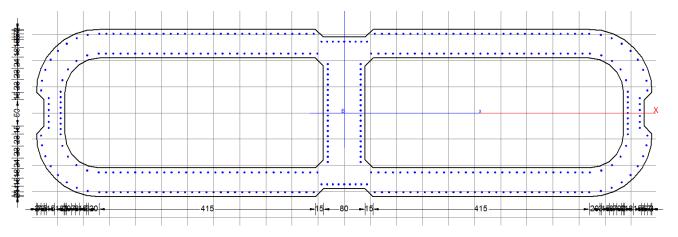
PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 41 di 103

8.7 Combinazioni di carico

Identiche alla pila precedente.

8.8 Verifica a pressoflessione pila

Azioni allo spiccato pila - Valori combinati						wk	SC	SS	c.s.(>1)
Combinazione	N	HL	HT	ML	MT	mm	MPa	MPa	-
SLE_qp	21 212	59	0	4 184	0	0.000	1.20	12.4	
SLE_Rara_Fess_Traffico_gr4_Nmax	26 232	1 739	956	31 788	16 954	0.034	2.91	-18.7	
SLE_Rara_Fess_Traffico_gr4_MLmax	24 913	1 739	956	34 432	16 596	0.058	2.96	-28.7	
SLE_Rara_Fess_Traffico_gr4_MTmax	23 929	1 739	956	31 307	21 361	0.050	2.92	-25.7	
SLE_Rara_Fess_Vento_ponte_scarico	21 212	59	1 224	4 184	19 365	0.000	1.59	6.3	
SLE_Rara_Traffico_gr1_Nmax	29 579	1 556	1 321	29 234	24 016		3.07	-11.4	
SLE_Rara_Traffico_gr1_MLmax	27 380	1 556	1 321	33 641	23 420		3.21	-23.5	
SLE_Rara_Traffico_gr1_MTmax	25 740	1 556	1 321	28 433	31 362		3.10	-20.7	
SLE_Rara_Traffico_gr3_Nmax	29 579	2 859	865	50 191	16 037		3.75	-58.2	
SLE_Rara_Traffico_gr3_MLmax	27 380	2 859	865	54 598	15 441		3.76	-77.8	
SLE_Rara_Traffico_gr3_MTmax	25 740	2 859	865	49 390	23 384		3.75	-71.9	
SLE_Rara_Vento_ponte_scarico	21 212	59	1 224	4 184	19 365		1.59	6.3	
SLUup_A1_Traffico_gr1_Nmax	41 906	2 251	1 936	42 312	35 140				5.02
SLUup_A1_Traffico_gr1_MLmax	38 717	2 251	1 936	48 702	34 276				4.34
SLUup_A1_Traffico_gr1_MTmax	36 339	2 251	1 936	41 150	45 793				4.86
SLUup_A1_Traffico_gr3_Nmax	41 906	4 139	1 274	72 700	23 572				3.02
SLUup_A1_Traffico_gr3_MLmax	38 717	4 139	1 274	79 090	22 708				2.73
SLUup A1 Traffico gr3 MTmax	36 339	4 139	1 274	71 538	34 224				2.96
SLUup_A1_Vento_ponte_scarico	29 774	80	1 835	5 989	29 047				17.70
SLUlow A1 Traffico gr1 Nmax	33 344	2 230	1 936	40 507	35 140				5.00
SLUlow_A1_Traffico_gr1_MLmax	30 155	2 230	1 936	46 896	34 276				4.31
SLUIow A1 Traffico gr1 MTmax	27 777	2 230	1 936	39 345	45 793				4.90
SLUlow A1 Traffico gr3 Nmax	33 344	4 119	1 274	70 895	23 572				2.95
SLUIow A1 Traffico gr3 MLmax	30 155	4 119	1 274	77 284	22 708				2.66
SLUIow A1 Traffico gr3 MTmax	27 777	4 119	1 274	69 733	34 224				2.90
SLUlow_A1_Vento_ponte_scarico	21 212	59	1 835	4 184	29 047				18.67
SLVq1 PrevX Zpos	26 682	23 336	4 575	281 787	69 033				-
SLVq1_PrevY_Zpos	26 682	7 400	14 822	94 112	218 441				-
SLVq1 PrevZpos	35 540	7 400	4 575	94 112	69 033				-
SLVq1_PrevX_Zneg	19 089	23 336	4 575	281 787	69 033				-
SLVq1_PrevY_Zneg	19 089	7 400	14 822	94 112	218 441				-
SLVq1 PrevZneg	10 230	7 400	4 575	94 112	69 033				_
SLVq1.36_PrevX_Zpos	26 682	17 313	3 472	210 819	52 920				-
SLVq1.36_PrevY_Zpos	26 682	5 593	11 146	72 822	164 731				_
SLVq1.36 PrevZpos	35 540	5 593	3 472	72 822	52 920				_
SLVq1.36 PrevX Zneg	19 089	17 313	3 472	210 819	52 920				_
SLVq1.36_PrevY_Zneg	19 089	5 593	11 146	72 822	164 731				_
SLVq1.36 PrevZneg	10 230	5 593	3 472	72 822	52 920				_
SLVq1.50_PrevX_Zpos	26 682	15 752	3 186	192 419	48 743				1.05
SLVq1.50 PrevY Zpos	26 682	5 125	10 194	67 302	150 808				2.43
SLVq1.50 PrevZpos	35 540	5 125	3 186	67 302	48 743				3.08
SLVq1.50 PrevX Zneg	19 089	15 752	3 186	192 419	48 743				1.00
SLVq1.50_PrevY_Zneg	19 089	5 125	10 194	67 302	150 808				2.37
SLVq1.50_PrevZneg	10 230	5 125	3 186	67 302	48 743				2.66


DIRETTRICE FERROVIARIA MESSINA-CATANIA-PALERMO

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO
RS2S 02 D 09 CL VI0705 001 A 42 di 103

Riepilogo verifica spiccato	wk	sc	SS	c.s.(>1)			
	mm	MPa	MPa	-			
SLS_qp	0.000	1.20	12.4				
SLS_Rara_Fess	0.058	2.96	-28.7				
SLS_Rara		3.76	-77.8				
SLU_A1				2.66			
SLV - q=1				-			
SLV - q=1.36				-			
SLV - q=1.5				1.00			

384 Ø 32

Af tot = 3088.31 (1.97 %)

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 43 di 103

8.9 Verifica a taglio pila

La verifica viene condotta per le singole anime ripartendo il carico in base ai rapporti di rigidezza a taglio.

Anima	num	b	h	Α	k=A/Atot
-	-	m	m	mq	-
laterale	1	0.4	2.5	1	0.23
laterale	1	0.4	2.5	1	0.23
centrale	1	0.8	2.9	2.32	0.54
somma				4.32	1

Pila		8	8
Direzione		Long	Trasv
Altezza pila	H(m)	11.6	11.6
fattore di struttura	q	1.5	1.5
fattore di sovraresistenza (eq 7.9.7)		1	1
fattore di sovraresistenza filtrato (eq 7.9.7)	grd	1	1
taglio derivante dall'analisi (con q=1)	V	23 336	14 822
momento corrispondente alla base della pila (con q=1))	M	281 787	218 441
taglio derivante dall'analisi (con q)	Ved	15 752	10 194
momento corrispondente alla base della pila (con q)	Med	192 419	150 808
momento resistente alla base della pila	Mrd	192 419	357 415
Rapporto di sovraresistenza	Mrd/Med	1.00	2.37
Tipo sezione (EC 8-2; eq 6.11)		critica	non critica
angolo inclinazione bielle compresse	Teta	45	da calc
limite superiore per Vgr	Vgr,max=V	23 336	14 822
taglio di progetto per la gerarchia della resistenza (da calcolo) (eq. 7.9.12)	Vgr	15 752	24 160
taglio di progetto per la gerarchia della resistenza (filtrato)	Vgr	15 752	14 822
fattore di sicurezza aggiuntivo per la resistenza a taglio (eq 7.9.10)	grd	0.75	1.22
fattore di sicurezza aggiuntivo per la resistenza a taglio, filtrato (eq 7.9.10)	grd	1.00	1.22
Riassumendo			
Taglio di calcolo	Vgr	15 752	14 822
fattore di sicurezza aggiuntivo filtrato (eq 7.9.10)	grd	1.00	1.22
angolo inclinazione bielle compresse	Teta	45	da calc

Le sollecitazioni sono simili e inferiori a quelle della pila 2. Per la verifica quindi si rimanda a quella della pila 2.

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 44 di 103

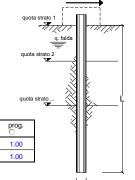
8.10 Carichi sui pali

Azioni all'intradosso fondazione - Valori combi	nati					Carichi sui	pali	
Combinazione	N	HL	HT	ML	MT	Np max	Np min	Hp max
SLE_qp	55 586	59	0	4 390	0	3 548	3 401	4
SLE_Rara_Fess_Traffico_gr4_Nmax	60 606	1 739	956	37 875	20 300	4 758	2 819	125
SLE_Rara_Fess_Traffico_gr4_MLmax	59 287	1 739	956	40 519	19 942	4 714	2 698	125
SLE Rara Fess Traffico gr4 MTmax	58 303	1 739	956	37 394	24 707	4 679	2 609	125
SLE_Rara_Fess_Vento_ponte_scarico	55 586	59	1 224	4 390	23 649	3 942	3 007	77
SLE_Rara_Traffico_gr1_Nmax	63 953	1 556	1 321	34 680	28 639	5 053	2 942	128
SLE_Rara_Traffico_gr1_MLmax	61 754	1 556	1 321	39 087	28 043	4 979	2 741	128
SLE_Rara_Traffico_gr1_MTmax	60 114	1 556	1 321	33 879	35 985	4 922	2 593	128
SLE Rara Traffico gr3 Nmax	63 953	2 859	865	60 198	19 065	5 319	2 677	187
SLE_Rara_Traffico_gr3_MLmax	61 754	2 859	865	64 604	18 469	5 245	2 476	187
SLE_Rara_Traffico_gr3_MTmax	60 114	2 859	865	59 396	26 411	5 188	2 328	187
SLE_Rara_Vento_ponte_scarico	55 586	59	1 224	4 390	23 649	3 942	3 007	77
SLUup A1 Traffico gr1 Nmax	88 311	2 251	1 936	50 191	41 916	7 055	3 985	186
SLUup_A1_Traffico_gr1_MLmax	85 122	2 251	1 936	56 580	41 052	6 948	3 693	186
SLUup_A1_Traffico_gr1_MTmax	82 744	2 251	1 936	49 029	52 569	6 865	3 479	186
SLUup_A1_Traffico_gr3_Nmax	88 311	4 139	1 274	87 187	28 031	7 440	3 600	271
SLUup_A1_Traffico_gr3_MLmax	85 122	4 139	1 274	93 576	27 167	7 333	3 308	271
SLUup_A1_Traffico_gr3_MTmax	82 744	4 139	1 274	86 025	38 683	7 250	3 094	271
SLUup A1 Vento ponte scarico	76 178	80	1 835	6 269	35 469	5 457	4 066	115
SLUlow A1 Traffico gr1 Nmax	67 718	2 230	1936	48 312	41 916	5 737	2 729	185
SLUlow_A1_Traffico_gr1_MLmax	64 529	2 230	1936	54 701	41 052	5 629	2 438	185
SLUlow A1 Traffico gr1 MTmax	62 151	2 230	1936	47 150	52 569	5 547	2 223	185
SLUlow_A1_Traffico_gr3_Nmax	67 718	4 119	1 274	85 311	28 031	6 122	2 344	270
SLUIow A1 Traffico gr3 MLmax	64 529	4119	1 274	91 701	27 167	6 015	2 052	270
SLUlow_A1_Traffico_gr3_MTmax	62 151	4119	1 274	84 149	38 683	5 932	1 838	270
SLUlow_A1_Vento_ponte_scarico	55 586	59	1835	4 390	35 469	4 139	2 810	115
SLVq1_PrevX_Zpos	61 056	23 336	4 575	363 463	85 045	11 292	-3 659	1 487
SLVq1_PrevY_Zpos	61 056	7 400	14 822	120 012	270 318	10 322	-2 689	1 036
SLVq1_PrevZpos	69 914	7 400	4 575	120 012	85 045	7 788	953	544
SLVq1_PrevX_Zneg	53 463	23 336	4 575	363 463	85 045	10 817	-4 133	1 487
SLVq1_PrevY_Zneg	53 463	7 400	14 822	120 012	270 318	9 847	-3 164	1 036
SLVq1_PrevZneg	44 604	7 400	4 575	120 012	85 045	6 206	-629	544
SLVq1.36_PrevX_Zpos	61 056	17 313	3 472	271 415	65 072	9 425	-1 792	1 104
	61 056	5 593	11 146	92 397	203 742	8 752	-1 119	780
SLVq1.36_PrevY_Zpos	69 914	5 593	3 472	92 397	65 072	6 995	1 746	412
SLVq1.36_PrevZpos								
SLVq1.36_PrevX_Zneg	53 463	17 313	3 472	271 415	65 072 203 742	8 950 8 278	-2 266	1 104
SLVq1.36_PrevY_Zneg	53 463	5 593	11 146	92 397			-1594	780
SLVq1.36_PrevZneg	44 604	5 593	3 472	92 397	65 072	5 413	164	412
SLVq1.50_PrevX_Zpos	61 056	15 752	3 186	247 551	59 894	8 941	-1 308	1 005
SLVq1.50_PrevY_Zpos	61 056	5 125	10 194	85 239	186 487	8 345	-712	714
SLVq1.50_PrevZpos	69 914	5 125	3 186	85 239	59 894	6 789	1 951	378
SLVq1.50_PrevX_Zneg	53 463	15 752	3 186	247 551	59 894	8 466	-1 782	1 005
SLVq1.50_PrevY_Zneg	53 463	5 125	10 194	85 239	186 487	7 871	-1 187	714
SLVq1.50_PrevZneg	44 604	5 125	3 186	85 239	59 894	5 207	369	378
Riepilogo carichi sui pali	Np max	Np min	Hp max					
SLS_qp	3 548	3 401	пр IIIax 4					
SLS Rara Fess	4 758	2 609	125					
SLS_Rara	5 319	2 328	187					
SLU_A1	7 440	1838	271					
SLV - q=1	11 292	-4 133	1 487					
SLV - q=1.36	9 425	-2 266	1 104					
SLV - q=1.5	8 941	-1 782	1 005					

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 - VIADOTTO SATANO RELAZIONE DI CALCOLO PILE


PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 09 CLVI0705 001 45 di 103

8.11 Verifica palo per forze orizzontali

Le sollecitazioni sono simili e inferiori a quelle della pila 2. Si riporta solo la verifica con Broms visto le caratteristiche diverse del terreno. Per il resto, vale quanto fatto sulla pila 2.

8.11.1 Capacità portante orizzontale (Broms)

	coefficier	nti parziali			١	M		R
	Metodo	di calcolo		permanenti	variabili			
	Wetodo	ii calcolo		γG	γο	γ _φ .	Ycu	γт
	A1+M1+R	1	0	1.30	1.50	1.00	1.00	1.00
SLU	A2+M1+R	2	0	1.00	1.30	1.00	1.00	1.60
ន	A1+M1+R	3	0	1.30	1.50	1.00	1.00	1.30
	SISMA		•	1.00	1.00	1.00	1.00	1.30
DM88	•		0	1.00	1.00	1.00	1.00	1.00
definiti d	al progettista	a	0	1.00	1.00	1.00	1.00	1.30
n	1	2	3	4	5	7	≥10	T.A.
		9		~	~	~		

						Parametri m	edi	Para	ametri minir	ni
strati terreno	descrizione	quote	γ	γ'	φ	k _p	Cu	φ	k _p	c_{u}
		(m)	(kN/m ³)	(kN/m ³)	(°)		(kPa)	(°)		(kPa)
p.c.=strato 1		100.00	19.5	9.5	34	3.54		34	3.54	
☐ strato 2						1.00			1.00	
□ strato 3						1.00			1.00	
□ strato 4						1.00			1.00	
□ strato 5						1.00			1.00	
□ strato 6						1.00			1.00	

Quota falda 100 Diametro del palo D 1.50 Lunghezza del palo L Momento di plasticizzazione palo My 9 700.00 (kNm) Step di calcolo 0.01 (m)

• palo impedito di ruotare • palo libero

Calcolo (ctrl+r)

	<u>H</u>	medio				H n	<u>ninimo</u>		
Palo lungo		4 002	(kN)				4 002	(kN)	
Palo intermedio		12 778	(kN)				12 778	(kN)	
Palo corto		47 254	(kN)				47 254	(kN)	
	H_{med}	4 002	(kN)	Palo lungo		H_{min}	4 002	(kN)	Palo lungo
	H _k =	= Min(H _{med}	/ξ ₃ ; R _{mi}	n/ξ4)		2 425		(kN)	
	Coefficiente	di gruppo	palificat	ta:	k =	0.8		(-)	
	H _d	= (H _k /γ _T)*l	(1 492		(kN)	
	Carico Ass	iale Perma	nente (0	G):	G =	1 487		(kN)	
	Carico Ass	iale variab	ile (Q):		Q =	0		(kN)	
	$F_d = G$	· γ _G + Q · γ	Q =			1 487		(kN)	
	c.s.	= Hd / Fd	=			1.00		(-)	

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

DIRETTRICE FERROVIARIA MESSINA-CATANIA-PALERMO

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 46 di 103

8.12 Verifica plinto

		plinto	riemp	somma											
peso specifico	kN/m3	25	18												
spessore	m	3.5	2.5												
peso a mq	kN/mq	87.5	45	132.5											
sbalzo plinto e riemp	m	6.65	6.65												
peso totale a m/l	kN/m	582	299	881											
momento nella sezione di verifica	kNm/m	1935	995	2930											
Larghezza di influenza per pali	m	2.95	=	Tpila/n°pa	li dir T										
		Fila	n 1	Fila	a 2	Fila	a 3	Effetto	pali	Effetto p	ali a m/l	p.p.plinto	+rinterro	Soll. di p	rogetto
		N	braccio		braccio	N	braccio	Т	М	Т	М		М	Т	М
		kN	m		m	kN	m	kN	kNm	kN/m	kNm/m		kNm/m	kN/m	kNm/m
SLS qp	kN	3 548	5.15	0		0		3 548	18 272	1 203	6 194	-881	-2930	322	3 264
SLS Rara Fess	kN	4 758	5.15	0		0		4 758	24 504	1 613	8 306	-881	-2930	732	5 377
SLS_Rara	kN	5 319	5.15	0		0		5 319	27 393	1 803	9 286	-881	-2930	922	6 356
SLU_A1	kN	7 440	5.15	0		0		7 440	38 316	2 522	12 988	-881	-2930	1 641	10 059
SLV - q=1	kN	11 292	5.15	0		0		11 292	58 154	3 828	19 713	-881	-2930	2 947	16 783
SLV - q=1.36	kN	9 425	5.15	0		0		9 425	48 539	3 195	16 454	-881	-2930	2 314	13 524
SLV - q=1.5	kN	8 941	5.15	0		0		8 941	46 046	3 031	15 609	-881	-2930	2 150	12 679
	Soll. di	progetto			Verifica										
	Т	М	Mrd	wk	sc	SS	c.s.(>1)								
	kN/m	kNm/m	kNm/m	mm	MPa	MPa	-								
SLS_qp	322	3 264		0	0.00	0									
SLS_Rara_Fess	732	5 377		0	0.00	0									
SLS_Rara	922	6 356			0	0									
SLU_A1	1 641	10 059	0				0.00								
SLV - q=1	2 947	16 783	0				0.00								
SLV - q=1.36	2 314	13 524	0				0.00								
SLV - q=1.5	2 150	12 679	0				0.00								

Le sollecitazioni sono simili e inferiori a quelle della pila 2. Il plinto viene armato allo stesso modo.

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 47 di 103

9 CALCOLO E VERIFICA PILA 3

9.1 Azione sismica

La stessa della pila precedente.

9.2 Dati generali

Dati fusto pila e pulvino	L(m)	T(m)	H(m)	A(mq)	P(kN)
Fusto pila	3.2	11.8	10.7	15.67	4 192
Pulvino	3.2	11.8	2		1 888
Peso totale pila					6 080
Geometria					
Altezza totale pila, compreso pulvino	h	12.7 m			
Distanza pf - sottotrave (in asse appoggi)	h1	3.99 m			
Distanza sottotrave - testa pila	h2	0.5 m			
Distanza pf - testa pila	h3	4.49 m			
Distanza centro rotazione appoggi - testa pila	h4	0.4 m			
Distanza baricentro masse impalcato - testa pila	h5	3.69 m			
Distanza pf - spiccato pila	h6	17.19 m			
Distanza pf - intradosso fondazione	h7	20.69 m			
Impalcato		SX	dx	totale	
Tipo appoggio		M	F		
Luce in asse pila		50	25	m	
Distanza asse appoggi - asse pila		1	1.1	m	
Luce in asse appoggi		48	22.8	m	
Pesi propri	G1	190.0	258.1	kN/r	nl
Permanenti portati	G2	202.3	202.3	kN/r	nl
Permanenti	G	392.3	460.4	kN/r	nl
Peso treno equivalente x0.2	Q1x0.2	45	46	kN/r	nl
Massa sismica	M	437.3	506.4	kN/r	nl
Pesi propri	G1	4 750	3 226	7 976 kN	
Permanenti portati	G2	5 058	2 529	7 586 kN	
Permanenti	G	9 808	5 755	15 563 kN	
Massa sismica	M	10 933	6 330	17 263 kN	

PROGETTO DEFINITIVO

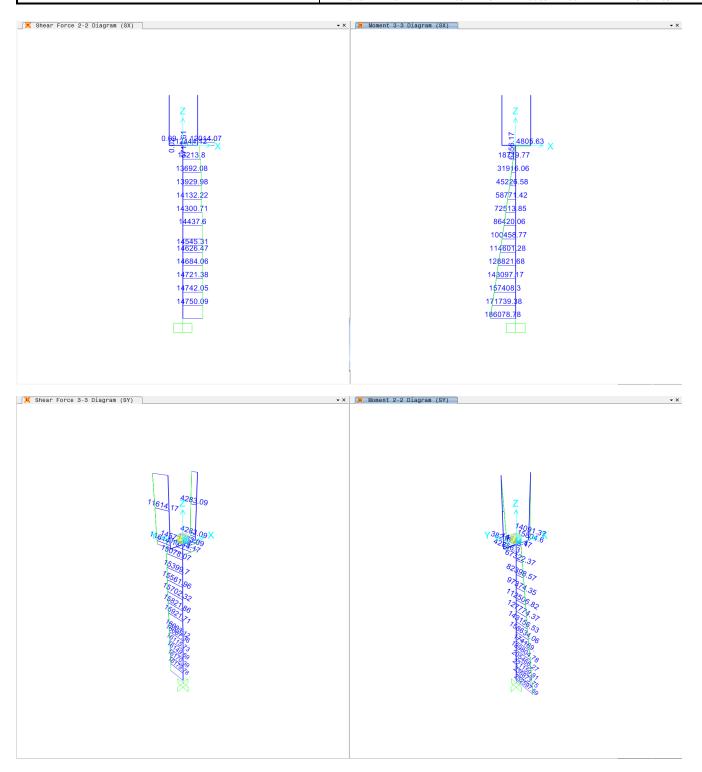
RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO
RS2S 02 D 09 CL VI0705 001 A 48 di 103

9.3 Analisi sismica

Analisi sismica		Semplificata			Dinamica mo	dale	
Direzione		Long	Trasv	Vert			
Dist baricentro masse impal - spiccato pila	hp	13.1	16.39	16.39 m			
Modulo elastico pila	Ec	33 346	33 346	33 346 MPa	Tipo analisi eff		
nerzia pila (Area pila per verticale)	If	21.3	172.4	15.7 m4	2 D	inamica moda	ale
Riduzione per rigidezza fessurata		1.0	1.0	1.0 -			
Rigidezza oscillatore elementare equivalente		9.48E+05	3.92E+06	3.19E+07 kN/m			
Massa sismica impalcato	Pi	12 660	17 263	17 263 kN			
Massa efficace pila	Ppeff	3 592	3 592	3 592 kN			
Massa complessiva	P=Pi+Ppeff	16 252	20 855	20 855 kN			
/5 Massa sismica impalcato	1/5*Pi	2 532	3 453	3 453 kN			
/lassa efficace pila	Ppeff	3 592	3 592	3 592 kN			
/erifica requisito	Ppeff≤1/5*Pi ?	no	no	no -			
Periodo proprio	Т	0.26	0.15	0.05 sec	0.27	0.17	0.04 sec
	q	Ordin	ata spettrale	(S)			
	1	0.904	0.831	0.680 g			
	1.36	0.665	0.624	0.680 g			
	1.5	0.603	0.571	0.680 g			
	q	Taglio/Sfor	Norm allo spi	ccato pila	Taglio/Sfor N	lorm allo spice	cato pila
	1	14 695	17 329	14 183 kN	14 750	16 179	13 080 kN
	1.36	10 805	13 019	14 183 kN	10 850	11 955	13 080 kN
	1.5	9 797	11 902	14 183 kN	9 840	10 860	13 080 kN
	q	Moment	o allo spicca	to pila	Momento	allo spiccato	pila
	1	192 509	284 025	kNm	186 078	252 597	kNm
	1.36	141 551	213 387	kNm	136 825	186 504	kNm
	1.5	128 340	195 074	kNm	124 056	169 370	kNm
		Rapporto ris	ultati dinami	ica modale - semplificata		lorm allo spice	cato pila
					1.00	0.93	0.92 -
					1.00	0.92	0.92 -
					1.00	0.91	0.92 -
						allo spiccato	pila
					0.97	0.89	-
					0.97	0.87	-
					0.97	0.87	_



PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 49 di 103

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S D 09 CL VI0705 001 50 di 103

9.4 Carichi da traffico

Carico verticale da traffico ferroviario

	N°binari	Azioni quo	la (kN;kNm)		
	2	N	ML	MT	
Condizione	N max	8 367	1 759	1 699	
Condizione	ML max	6 168	6 166	1 103	
Condizione	MT max	4 528	958	9 045	
Condizione	Inviluppo	8 367	6 166	9 045	

Carico verticale massimo da traffico sul piano appoggi

		SX	dx
Carico verticale	N max	6 168	3 559
Luce impalcato asse appoggi	Lc	48	22.8
Coefficiente dinamico	Ф3	1.051	1.202
Carico verticale dinamizzato	Ν	6 483	4 278

Attrito		sx	dx	
Permanenti	G	9 808	5 755 kN	
Carico mobile dinamizzato	Q1*Φ	6 483	4 278 kN	

Coefficiente di attrito in condizione statiche		0.03
Attrito permanente	maxG*0.2*Φ	59 kN
Attrito mobili dinamizzati	$maxQ^*\Phi$	194 kN

Frenatura	•		
luce campata carica	L	-	25 m

luce campata carica	L	25 M
a livello binario	HL	1 783 kN
a quota testa pila	ML	8 006 kNm

Serpeggio		
a livello binario	HT	210 kN
a quota testa pila	MT	943 kNm

Centrifuga			
raggio planimetrico	R	1 300 m	n
velocità di progetto	V	160 k	m/h
lunghezza di influenza		25 m	n

raggio planimetrico	R	1 300	m		
velocità di progetto	V	160	km/h		
lunghezza di influenza		25	m		
Reazione del singolo treno	Qv				
Sulla pila	v (km/h)	alfa	f	Coeff	Qv (kN) FT (kN)
LM71 v>120; caso a	160	1	0.82	0.127	3 491 443
LM71 v>120; caso b	120	1.1	1.00	0.096	3 840 368
LM71 v≤120; caso a	120	1.1	1.00	0.096	3 840 368
LM71 (caso utilizzato)					443
SW2	100	1	1.00	0.061	4 528 274
Valore utilizzato					718
Al piano appoggi - sx	v (km/h)	alfa	f	Coeff	Qv (kN) FT (kN)
LM71 v>120; caso a	160	1	0.82	0.127	2 552 324
LM71 v>120; caso b	120	1.1	1.00	0.096	2 807 269
LM71 v≤120; caso a	120	1.1	1.00	0.096	2 807 269
LM71 (caso utilizzato)					269
SW2	100	1	1.00	0.061	3 303 200
Valore utilizzato					469
Al piano appoggi - dx	v (km/h)	alfa	f	Coeff	Qv (kN) FT (kN)
LM71 v>120; caso a	160	1	0.82	0.127	1 535 195
LM71 v>120; caso b	120	1.1	1.00	0.096	1 688
LM71 v≤120; caso a	120	1.1	1.00	0.096	1 688 162
LM71 (caso utilizzato)					162
SW2	100	1	1.00	0.061	1 879 114
Valore utilizzato					276

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 - VIADOTTO SATANOPROGETTOLOTTO FASE ENTE COD.DOC.PROG. REV.FOGLIORELAZIONE DI CALCOLO PILERS2S02D09CLVI0705001A51 di 103

9.5 Vento

Azione del vento - generale - NTC08 e EC 1-1-4:2005	*				_
Condizione (ponte carico o scarico)		scarico	carico		
Altitudine sul livello del mare	as	25	25 m	1	
Zona	Z	4	4 -		
Parametri	$V_{b,0}$	28	25 m	ı/s	
Parametri	a_0	500	500 m	1	
Parametri	k _a	0.020	0.020 1/	/s	
Velocità di riferimento (Tr=50 anni)	$v_b = v_{b0} + k_a^* (a_s - a_0)$	28	25 m	ı/s	
Periodo di ritorno considerato	T _R	75 [*]	75 aı	nni	
	α_{f}	1.02	1.02 -		
Velocità di riferimento	v _b	28.7	25.6 m	ı/s	
Densità dell'aria	ρ	1.25	1.25 kg		
pressione cinetica di riferimento	$q_b = 0.5^* \rho^* v_b^2$	0.51	0.41 kl	-	
•	η _b =0.5 ρ ν _b	0.51 D		14/1112	
Classe di rugosità del terreno			D		
Distanza dalla costa		< 10 km	F00		
Altitudine sul livello del mare	0.1	< 500 m	< 500 m		
Categoria di esposizione del sito	Cat	2	2		
Vento su impalcato					_
Altezza di riferimento per l'impalcato (EC punto 8.3.1(6))	Z	12	12 m	1	
parametri	k_r	0.19	0.19		
parametri	z_0	0.05	0.05 m		
parametri	z_{min}	4	4 m	1	
parametri	Z _{max}	200	200 m	1	
Coefficiente di topografia	Ct	1	1		
coefficiente di esposizione (z≤z_min)	c _e (z _{min})	1.80	1.80 -		
coefficiente di esposizione (z)	c _e (z)	2.47	2.47 -		
Coefficiente di esposizione	C _e	2.47	2.47 -		
Larghezza impalcato	b	13.7	13.7 m	1	
Altezza totale impalcato (comprese le barriere o treno)	dtot	8.53	8.53 m	1	
Rapporto di forma	b/dtot	1.61	1.61 -		
Coefficiente di forza (figura 8.3 EC)	cfx	1.95	1.95 -		
Riepilogo					
Pressione cinetica di riferimento	q_b	0.51	0.41 k	N/m2	•
Coefficiente di esposizione	C _e	2.47	2.47 -		
Coefficiente di forza	cfx	1.95	1.95 -		
Altezza di riferimento (EC punto 8.3.1 (4) e (5))	d	12.53	8.53 -		_
Forza statica equivalente a m/l	f=prodotto	30.97	16.81 k	N/mI	-
Pressione statica equivalente	p=f/dtot	2.47	1.97 kl	N/m2	
Pressione statica equivalente (minima considerata)	pmin	1.50	1.50 kl	N/m2	
Forza statica equivalente a m/l considerata	· f	30.97	16.81 k	N/mI	
Vento impalcato a ponte scarico		sx	dx	totale	
Forza statica equivalente	f	30.97	30.97		kN/m
Luce impalcato Luce impalcato	L	50	25		m
·	FT=f*L/2	774	387	1 161	
Forza trasversale al piano appoddi		3 689	1 845	5 534	
	MT=FT*(dtot/2+h2)				
Momento trasversale al piano appoggi	M I=F I^(dtot/2+h2)	sx	dx	totale	
Momento trasversale al piano appoggi Vento impalcato a ponte carico		sx 16.81	dx 16.81	totale	kN/m
Forza trasversale al piano appoggi Momento trasversale al piano appoggi Vento impalcato a ponte carico Forza statica equivalente Luce impalcato	f	16.81	16.81	totale	
Momento trasversale al piano appoggi Vento impalcato a ponte carico				totale	kN/m m kN

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO
RS2S 02 D 09 CL VI0705 001 A 52 di 103

Vento su pila e pulvino		scarico	carico
Altezza di riferimento per pila e pulvino (EC punto 7.6(2))	Z	12.7	12.7 m
Coefficiente di esposizione (z)	$c_{e}(z)$	2.51	2.51 -
Coefficiente di esposizione	C _e	2.51	2.51 -
Pulvino			
Dimensione ortogonale alla direzione del vento	b	3.2	3.2 m
Dimensione parallela alla direzione del vento	d	11.8	11.8 m
Rapporto di forma	d/b	3.69	3.69 -
Coefficiente di forza (figura 7.23 EC)	cf0	1.32	1.32 [*] -
Riepilogo			
Pressione cinetica di riferimento	q_b	0.51	0.41 kN/m2
Coefficiente di esposizione	C _e	2.51	2.51 -
Coefficiente di forza	cf0	1.32	1.32 -
Dimensione parallela alla direzione del vento	b	3.2	3.2 -
Forza statica equivalente a m/l	f=prodotto	5.44	4.34 kN/ml
Pressione statica equivalente	p=f/b	1.70	1.36 kN/m2
Pressione statica equivalente (minima considerata)	pmin	0.00	0.00 kN/m2
Forza statica equivalente a m/l considerata	f	5.44	4.34 kN/ml
Lunghezza dell'elemento	L	2	2 m
Forza statica equivalente	FT=f*H	10.9	8.7 kN
Pila			
	b	3.2	3.2 m
<u> </u>		_	
·	d/b	_	-
··		_	
Pressione cinetica di riferimento	Дh	0.51	0.41 kN/m2
Coefficiente di esposizione	•	2.51	2.51 -
Coefficiente di forza		1.32	1.32 -
	b	3.2	3.2 -
	f=prodotto	5.44	4.34 kN/ml
	·	1.70	1.36 kN/m2
	•	0.00	0.00 kN/m2
·	f	5.44	4.34 kN/ml
Lunghezza dell'elemento	i	10.7	10.7 m
			10.7 111
Forza statica equivalente a m/l considerata Lunghezza dell'elemento Forza statica equivalente Pila Dimensione ortogonale alla direzione del vento Dimensione parallela alla direzione del vento Rapporto di forma Coefficiente di forza (figura 7.23 EC) Riepilogo Pressione cinetica di riferimento Coefficiente di esposizione Coefficiente di forza Dimensione parallela alla direzione del vento Forza statica equivalente a m/l Pressione statica equivalente (minima considerata) Forza statica equivalente a m/l considerata	f L FT=f*H b d d/b cf0 q _b c _e cf0 b f=prodotto p=f/b pmin	3.2 10.9 3.2 11.8 3.69 1.32 0.51 2.51 1.32 3.2 5.44 1.70 0.00 5.44	4.34 kN/ml 2 m 8.7 kN 3.2 m 11.8 m 3.69 - 1.32 - 0.41 kN/m2 2.51 - 1.32 - 3.2 - 4.34 kN/ml 1.36 kN/m2 0.00 kN/m2 4.34 kN/ml

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 53 di 103

9.6 Azioni caratteristiche e dati fondazione

Azioni allo spiccato pila	Valori cara	tteristici			
	N	HL	HT	ML	MT
	kN	kN	kN	kNm	kNm
Impalcato - Pesi propri	7 976			1 201	
Impalcato - Permamenti portati	7 586			2 276	
Traffico ferroviario - Carico verticale - Nmax	8 367			1 759	1 699
Traffico ferroviario - Carico verticale - ML max	6 168			6 166	1 103
Traffico ferroviario - Carico verticale - MT max	4 528			958	9 045
Traffico ferroviario - Carico verticale - inviluppo	8 367			6 166	9 045
Traffico ferroviario - Frenatura		1 783		30 650	
Traffico ferroviario - Centrifuga			718		13 630
Traffico ferroviario - Serpeggio			210		3 610
Vento a ponte scarico - Impalcato			1 161		20 284
Vento a ponte scarico - Pulvino			11		127
Vento a ponte scarico - Pila			58		311
Vento a ponte carico - Impalcato			630		11 008
Vento a ponte carico - Pulvino			9		101
Vento a ponte carico - Pila			46		248
Attrito - Permanente		59		771	
Attrito - Carichi mobili dinamizzati		194		2 548	
Sisma q=1 - Long 100%		14 750		186 078	
Sisma q=1 - Trasv 100%			16 179		252 597
Sisma q=1 - Vert 100%	13 080				
Sisma q=1.36 - Long 100%		10 850		136 825	
Sisma q=1.36 - Trasv 100%			11 955		186 504
Sisma q=1.36 - Vert 100%	13 080				
Sisma q=1.5 - Long 100%		9 840		124 056	
Sisma q=1.5 - Trasv 100%			10 860		169 370
Sisma q=1.5 - Vert 100%	13 080				
Pila - Peso proprio	6 080				
Pesi fondazione e rinterro	Valori cara	tteristici			
Fondazione - Peso proprio	23 822				
Ricoprimento plinto - Peso proprio	18 572				

Dati plinto e riempimento				
	dir Long	dir Trasv	spessore	n° pali
Numero file pali	4	4		16
Interasse pali (m)	4.5	4.5		
Distanza dal bordo (m)	1.5	1.5		
Dimensioni plinto (m)	16.5	16.5	3.5	
Modulo minimo palificata (m)	60	60		
Diametro pali (m)	1.5			
Area pila fuori tutto	37.76	mq		
Spessore riempimento	4.4	m		
Peso specifico riemp.	18	kN/m3		

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

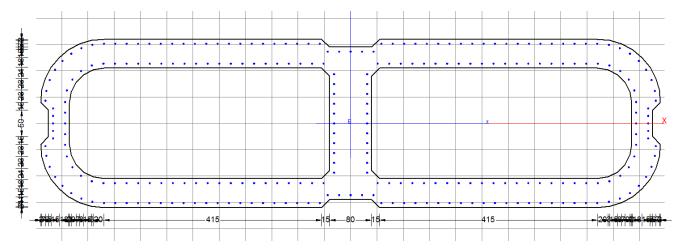
PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 54 di 103

9.7 Combinazioni di carico

Identiche alla pila precedente.

9.8 Verifica a pressoflessione pila

Azioni allo spiccato pila - Valori combinati						wk	sc	SS	c.s.(>1)
Combinazione	N	HL	HT	ML	MT	mm	MPa	MPa	-
SLE_qp	21 643	59	0	4 248	0	0.000	1.32	13.6	
SLE_Rara_Fess_Traffico_gr4_Nmax	26 663	1 246	968	25 223	18 179	0.015	2.84	-7.6	
SLE_Rara_Fess_Traffico_gr4_MLmax	25 344	1 246	968	27 866	17 821	0.034	2.93	-14.7	
SLE_Rara_Fess_Traffico_gr4_MTmax	24 360	1 246	968	24 742	22 587	0.031	2.84	-13.1	
SLE_Rara_Fess_Vento_ponte_scarico	21 643	59	1 231	4 248	20 724	0.000	1.76	6.8	
SLE_Rara_Traffico_gr1_Nmax	30 010	1 145	1 339	23 880	25 754		3.09	-5.3	
SLE_Rara_Traffico_gr1_MLmax	27 811	1 145	1 339	28 287	25 158		3.23	-14.7	
SLE_Rara_Traffico_gr1_MTmax	26 171	1 145	1 339	23 079	33 101		3.09	-13.2	
SLE_Rara_Traffico_gr3_Nmax	30 010	2 037	876	39 205	17 134		3.68	-33.8	
SLE_Rara_Traffico_gr3_MLmax	27 811	2 037	876	43 612	16 538		3.72	-59.4	
SLE_Rara_Traffico_gr3_MTmax	26 171	2 037	876	38 404	24 481		3.69	-50.6	
SLE_Rara_Vento_ponte_scarico	21 643	59	1 231	4 248	20 724		1.76	6.8	
SLUup_A1_Traffico_gr1_Nmax	42 488	1 655	1 963	34 543	37 684				4.72
SLUup_A1_Traffico_gr1_MLmax	39 299	1 655	1 963	40 932	36 820				3.95
SLUup_A1_Traffico_gr1_MTmax	36 921	1 655	1 963	33 381	48 336				4.57
SLUup A1 Traffico gr3 Nmax	42 488	2 947	1 290	56 764	25 185				2.99
SLUup_A1_Traffico_gr3_MLmax	39 299	2 947	1 290	63 154	24 321				2.63
SLUup_A1_Traffico_gr3_MTmax	36 921	2 947	1 290	55 602	35 837				2.90
SLUup_A1_Vento_ponte_scarico	30 355	80	1 846	6 077	31 085				13.85
SLUlow A1 Traffico gr1 Nmax	33 775	1 634	1 963	32 715	37 684				4.71
SLUIow_A1_Traffico_gr1_MLmax	30 586	1 634	1 963	39 104	36 820				3.88
SLUIow_A1_Traffico_gr1_MTmax	28 208	1 634	1 963	31 553	48 336				4.52
SLUlow A1 Traffico gr3 Nmax	33 775	2 927	1 290	54 936	25 185				2.90
SLUIow_A1_Traffico_gr3_MLmax	30 586	2 927	1 290	61 325	24 321				2.54
SLUlow_A1_Traffico_gr3_MTmax	28 208	2 927	1 290	53 774	35 837				2.81
SLUlow A1 Vento ponte scarico	21 643	59	1 846	4 248	31 085				14.31
SLVq1_PrevX_Zpos	27 240	15 156	5 040	197 559	81 037				_
SLVq1_PrevY_Zpos	27 240	4 831	16 365	67 304	257 855				-
SLVq1 PrevZpos	36 396	4 831	5 040	67 304	81 037				_
SLVq1_PrevX_Zneg	19 392	15 156	5 040	197 559	81 037				_
SLVq1 PrevY Zneg	19 392	4 831	16 365	67 304	257 855				_
SLVq1 PrevZneg	10 236	4 831	5 040	67 304	81 037				_
SLVq1.36 PrevX Zpos	27 240	11 256	3 773	148 306	61 209				
SLVq1.36 PrevY Zpos	27 240	3 661	12 141	52 528	191 762				_
SLVq1.36 PrevZpos	36 396	3 661	3 773	52 528	61 209				_
SLVq1.36 PrevX Zneg	19 392	11 256	3 773	148 306	61 209				_
SLVq1.36 PrevY Zneg	19 392	3 661	12 141	52 528	191 762				_
SLVq1.36 PrevZneg	10 236	3 661	3 773	52 528	61 209				
SLVq1.50 PrevX Zpos	27 240	10 246	3 444	135 537	56 069				1.12
SLVq1.50 PrevY Zpos	27 240	3 358	11 046	48 698	174 628				2.16
SLVq1.50_PrevZpos	36 396	3 358	3 444	48 698	56 069				3.21
SLVq1.50_FrevX_Zneg	19 392	10 246	3 444	135 537	56 069				1.05
SLVq1.50_FrevY_Zneg	19 392	3 358	11 046	48 698	174 628				2.08
SLVq1.50_PrevZneg	10 236	3 358	3 444	48 698	56 069				2.62


DIRETTRICE FERROVIARIA MESSINA-CATANIA-PALERMO

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 55 di 103

Riepilogo verifica spiccato	wk	sc	ss	c.s.(>1)			
	mm	MPa	MPa	-			
SLS_qp	0.000	1.32	13.6				
SLS_Rara_Fess	0.034	2.93	-14.7				
SLS_Rara		3.72	-59.4				
SLU_A1				2.54			
SLV - q=1				-			
SLV - q=1 SLV - q=1.36				-			
SLV - q=1.5				1.05			

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 56 di 103

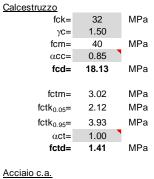
9.9 Verifica a taglio pila

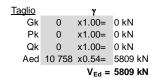
La verifica viene condotta per le singole anime ripartendo il carico in base ai rapporti di rigidezza a taglio.

Anima	num	b	h	Α	k=A/Atot
-	-	m	m	mq	-
laterale	1	0.4	2.5	1	0.23
laterale	1	0.4	2.5	1	0.23
centrale	1	0.8	2.9	2.32	0.54
somma				4.32	1

Pila		3	3
Direzione		Long	Trasv
Altezza pila	H(m)	12.7	12.7
fattore di struttura	q	1.5	1.5
fattore di sovraresistenza (eq 7.9.7)		1	1
fattore di sovraresistenza filtrato (eq 7.9.7)	grd	1	1
tantia dari pota dallianaliai (ann. n. 4)		45.450	40.005
taglio derivante dall'analisi (con q=1)	V	15 156	16 365
momento corrispondente alla base della pila (con q=1))	M	197 559	257 885
taglio derivante dall'analisi (con q)	Ved	10 246	11 046
momento corrispondente alla base della pila (con q)	Med	135 537	174 628
momento resistente alla base della pila	Mrd	142 314	780 587
Rapporto di sovraresistenza	Mrd/Med	1.05	4.47
Tipo sezione (EC 8-2; eq 6.11)		critica	non critica
angolo inclinazione bielle compresse	Teta	45	da calc
limite superiore per Vgr	Vgr,max=V	15 156	16 365
taglio di progetto per la gerarchia della resistenza (da calcolo) (eq. 7.9.12)	Vgr	10 758	49 376
taglio di progetto per la gerarchia della resistenza (filtrato)	Vgr	10 758	16 365
fattore di sicurezza aggiuntivo per la resistenza a taglio (eq 7.9.10)	grd	0.82	1.24
fattore di sicurezza aggiuntivo per la resistenza a taglio, filtrato (eq 7.9.10)	grd	1.00	1.24
Riassumendo			
Taglio di calcolo	Vgr	10 758	16 365
fattore di sicurezza aggiuntivo filtrato (eq 7.9.10)	grd	1.00	1.24
angolo inclinazione bielle compresse	Teta	45	da calc

PROGETTO DEFINITIVO


RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO


VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 57 di 103

Taglio longitudinale - Setto centrale

Verifica a taglio secondo EC2-2

Nsd= 0 kN Sforzo normale

<u>Geometria</u>

bw =	0.800	m	Larghezza (6.16)
h=	2.900	m	Altezza totale
c=	0.100	m	Copriferro
d =	2.800	m	Altezza utile
Ac=	2.32	mq	Area

Corrente compresso

Corrente teso Armatura a taglio

Elementi CA e CAP armati a taglio

fyk=

 $\gamma s = fyd =$


450

1.15

391.3

MPa

MPa

Resistenza lato acciaio (staffe)

5.5.5 <u>-</u> u .u		ω,					
φ w =	14	mm	Diametro staffa				
n=	8.00	-	Numero braccia				
Asw=	12.32	cm2					
z=	2.52	m	=0.9*d				
senα=	1		angolo tra le staffe e l'asse della	trave	(=90°	per staff	e verticali)
ρW=	0.77	%	$=Asw/(s*bw*sin\alpha)*100 >=$		0.10	%	=(0.08*radq(fck))/fyk*100
s=	0.2	m	=passo staffe <=		2.10	m	$=0.75*d*(1+cot\alpha)$
θ=	45.0	0	=arcsen(radq(Asw*fyd)/(bw*s*ac	w*n*fc	d))		
			inclinazione puntone compresso	, varial	bile tra	45° to	21.8°
tanθ=	1.00	-	valore tra 1 (for q=45°) e 0.4				
cotθ=	1.00	-	valore tra 1 (for q=45°) and 2.5				
ρw,max=	3.01	=	$A_{sw,max}*fyd/(bw*s) \le 1/2*\alpha_{cw}*v*fe$	cd =	4.74		
Asw/s,ins =	61.58	cm2/m	Area staffe inserita				

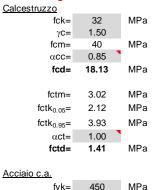
Resistenza lato calcestruzzo (puntone compresso inclinato)

6 072

ν=	0.523		=0.6*(1-fck/250) (from EN 6.6N)
σ cp =	0.00		=Nsd/Ac
$\alpha_{\text{cw}}\!\!=\!$	1.00		
$V_{Rd,max}$ =	9 563	kN	$=\alpha_{cw}^*bw^*z^*v^*fcd/(cot\theta+tan\theta)$
γ_{Bd1}	1.00		coefficiente di sicurezza (EN1998-2-5.6.2.b)
.,	5 000		
V _{Ed} =	5 809	kN	
V_{Rd} =	6 072	kN	=min($V_{Rd,s}$; $V_{Rd,max}$)/ γ_{Bd1}
c.s. =	0.96	<=1	

 $kN = Asw/s*z* fywd *cot\theta$

PROGETTO DEFINITIVO


RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 - VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 09 CLVI0705 001 58 di 103 D

Taglio longitudinale - Setto laterale

Verifica a taglio secondo EC2-2

<u>Taglio</u>		γ	
Gk	0	x1.00=	0 kN
Pk	0	x1.00=	0 kN
Qk	0	x1.00=	0 kN
Aed	10 758	x0.23=	2474 kN
		V _{Ed} =	2474 kN

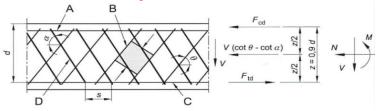
Nsd= 0 Sforzo normale

(

Geome ⁻	<u>tria</u>		
bw =	0.400	m	Larghezza (6.16)
h=	2.500	m	Altezza totale
c=	0.100	m	Copriferro
d =	2.400	m	Altezza utile
Ac=	1.00	mq	Area

Corrente compresso

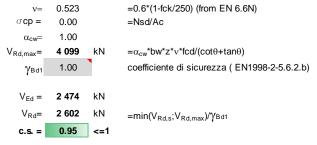
Puntoni Corrente teso Armatura a taglio


Elementi CA e CAP armati a taglio

1.15

391.3

fyk= γs=


fyd=

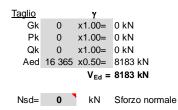
Resistenza lato acciaio (staffe)

φ w =	14	mm	Diametro staffa				
n=	4.00	-	Numero braccia				
Asw=	6.16	cm2					
z=	2.16	m	=0.9*d				
senα=	1		angolo tra le staffe e l'asse della trave	e (=90°	per staf	fe verticali)	
ρw=	0.77	%	$=Asw/(s*bw*sin\alpha)*100 >=$	0.10	%	=(0.08*radq(fck))/fyk*100	
s=	0.2	m	=passo staffe <=	1.80	m	$=0.75*d*(1+cot\alpha)$	
θ=	45.0	0	=arcsen(radq(Asw*fyd)/(bw*s*acw*n*fcd))				
			inclinazione puntone compresso, vari	abile tra	a 45° to	21.8°	
tanθ=	1.00	-	valore tra 1 (for q=45°) e 0.4				
cotθ=	1.00	-	valore tra 1 (for q=45°) and 2.5				
ρ w ,max=	3.01	=	$A_{sw,max}$ *fyd/(bw*s)<=1/2* α_{cw} *v*fcd =	4.74			
Asw/s,ins =	30.79	cm2/m	Area staffe inserita				
$V_{Rd,s} =$	2 602	kN	=Asw/s*z* fywd *cotθ				

Resistenza lato calcestruzzo (puntone compresso inclinato)

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

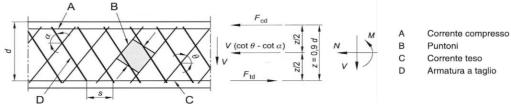

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 59 di 103

Taglio trasversale

Verifica a taglio secondo EC2-2

Calcestruzzo			
fck=	32	MPa	
γc=	1.50		
fcm=	40	MPa	
αcc=	0.85		
fcd=	18.13	MPa	
fctm=	3.02	MPa	
fctk _{0.05} =	2.12	MPa	
fctk _{0.95} =	3.93	MPa	
αct=	1.00		
fctd=	1.41	MPa	
Acciaio c.a.			
fyk=	450	MPa	
fyk= γs=	1.15		

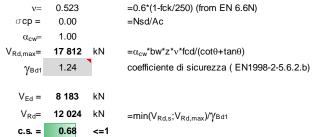


<u>Geometria</u> bw = 0.550m Larghezza (6.16) h= 11.100 Altezza totale m Copriferro c= 0.100 m d = 11.000Altezza utile m Ac= 6.11 mq Area

Elementi CA e CAP armati a taglio

391.3

fyd=



Resistenza lato acciaio (staffe)

V_{Rd,s}= **14 910**

φ w =	14	mm	Diametro staffa	Diametro staffa							
n=	2.00	-	Numero braccia								
Asw=	3.08	cm2									
z=	9.90	m	=0.9*d								
senα=	1		angolo tra le staffe e l'asse della	a trave (=9	0° per stat	ffe verticali)					
ρ w =	0.28	%	$=Asw/(s*bw*sin\alpha)*100 >=$	0.	10 %	=(0.08*radq(fck))/fyk*100					
s=	0.2	m	=passo staffe <=	8.2	25 m	$=0.75*d*(1+cot\alpha)$					
θ=	21.8	0	=arcsen(radq(Asw*fyd)/(bw*s*ac	cw*n*fcd))							
			inclinazione puntone compresso	o, variabile	tra 45° to	21.8°					
tanθ=	0.40	-	valore tra 1 (for q=45°) e 0.4								
cotθ=	2.50	-	valore tra 1 (for q=45°) and 2.5								
ρw,max=	1.10	=	$A_{sw,max}$ *fyd/(bw*s)<=1/2* α_{cw} * ν *	fcd = 4.7	74						
Asw/s,ins =	15.39	cm2/m	Area staffe inserita								

Resistenza lato calcestruzzo (puntone compresso inclinato)

 $kN = Asw/s*z* fywd *cot\theta$

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

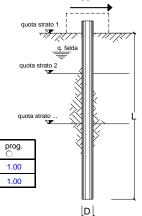
PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 60 di 103

9.10 Carichi sui pali

Azioni all'intradosso fondazione - Valori combinati						Carichi sui	pali	
Combinazione	N	HL	HT	ML	MT	Np max	Np min	Hp max
SLE_qp	64 036	59	0	4 455	0	4 077	3 928	4
SLE_Rara_Fess_Traffico_gr4_Nmax	69 056	1 246	968	29 584	21 567	5 169	3 464	99
SLE_Rara_Fess_Traffico_gr4_MLmax	67 737	1 246	968	32 227	21 209	5 125	3 343	99
SLE_Rara_Fess_Traffico_gr4_MTmax	66 753	1 246	968	29 103	25 975	5 091	3 255	99
SLE_Rara_Fess_Vento_ponte_scarico	64 036	59	1 231	4 455	25 032	4 494	3 511	78
SLE_Rara_Traffico_gr1_Nmax	72 403	1 145	1 339	27 888	30 441	5 498	3 554	111
SLE_Rara_Traffico_gr1_MLmax	70 204	1 145	1 339	32 294	29 845	5 424	3 353	111
SLE_Rara_Traffico_gr1_MTmax	68 564	1 145	1 339	27 086	37 787	5 367	3 205	111
SLE_Rara_Traffico_gr3_Nmax	72 403	2 037	876	46 335	20 200	5 635	3 417	139
SLE_Rara_Traffico_gr3_MLmax	70 204	2 037	876	50 741	19 604	5 561	3 216	139
SLE_Rara_Traffico_gr3_MTmax	68 564	2 037	876	45 533	27 547	5 504	3 068	139
SLE_Rara_Vento_ponte_scarico	64 036	59	1 231	4 455	25 032	4 494	3 511	78
SLUup_A1_Traffico_gr1_Nmax	99 719	1 655	1 963	40 336	44 555	7 648	4 818	161
SLUup_A1_Traffico_gr1_MLmax	96 530	1 655	1 963	46 725	43 690	7 541	4 527	161
SLUup_A1_Traffico_gr1_MTmax	94 152	1 655	1 963	39 173	55 207	7 458	4 312	161
SLUup_A1_Traffico_gr3_Nmax	99 719	2 947	1 290	67 079	29 700	7 846	4 620	202
SLUup_A1_Traffico_gr3_MLmax	96 530	2 947	1 290	73 468	28 836	7 739	4 329	202
SLUup A1 Traffico gr3 MTmax	94 152	2 947	1 290	65 916	40 352	7 656	4 114	202
SLUup_A1_Vento_ponte_scarico	87 587	80	1 846	6 357	37 546	6 206	4 743	116
SLUlow_A1_Traffico_gr1_Nmax	76 168	1 634	1 963	38 434	44 555	6 144	3 378	160
SLUlow_A1_Traffico_gr1_MLmax	72 980	1 634	1 963	44 823	43 690	6 037	3 087	160
SLUlow_A1_Traffico_gr1_MTmax	70 602	1 634	1 963	37 272	55 207	5 954	2 872	160
SLUIow A1 Traffico gr3 Nmax	76 168	2 927	1 290	65 180	29 700	6 342	3 180	200
SLUlow_A1_Traffico_gr3_MLmax	72 980	2 927	1 290	71 570	28 836	6 235	2 888	200
SLUlow_A1_Traffico_gr3_MTmax	70 602	2 927	1 290	64 018	40 352	6 153	2 674	200
SLUlow_A1_Vento_ponte_scarico	64 036	59	1846	4 455	37 546	4 703	3 303	116
SLVq1_PrevX_Zpos	69 634	15 156	5 040	250 605	98 677	10 174	-1 469	999
SLVq1_PrevY_Zpos	69 634	4 831	16 365	84 213	315 132	11 008	-2 303	1 067
SLVq1 PrevZpos	78 790	4 831	5 040	84 213	98 677	7 973	1877	437
SLVq1_PrevX_Zneg	61 786	15 156	5 040	250 605	98 677	9 683	-1 959	999
SLVq1_PrevY_Zneg	61 786	4 831	16 365	84 213	315 132	10 518	-2 794	1 067
SLVq1_PrevZneg	52 630	4 831	5 040	84 213	98 677	6 338	242	437
SLVq1.36_PrevX_Zpos	69 634	11 256	3 773	187 702	74 414	8 721	-16	742
SLVq1.36_PrevY_Zpos	69 634	3 661	12 141	65 342	234 255	9 346	-641	793
SLVq1.36_PrevZpos	78 790	3 661	3 773	65 342	74 414	7 254	2 596	329
SLVq1.36_PrevX_Zneg	61 786	11 256	3 773	187 702	74 414	8 231	-506	742
SLVq1.36_PrevY_Zneg	61 786	3 661	12 141	65 342	234 255	8 855	-1 131	793
SLVq1.36 PrevZneg	52 630	3 661	3 773	65 342	74 414	5 619	961	329
SLVq1.50 PrevX Zpos	69 634	10 246	3 444	171 398	68 123	8 345	361	676
SLVq1.50_PrevY_Zpos	69 634	3 358	11 046	60 451	213 289	8 915	-210	722
SLVq1.50_PrevZpos	78 790	3 358	3 444	60 451	68 123	7 068	2 782	301
SLVq1.50_PrevX_Zneg	61 786	10 246	3 444	171 398	68 123	7 854	-130	676
SLVq1.50 PrevY Zneg	61 786	3 358	11 046	60 451	213 289	8 424	-700	722
SLVq1.50_PrevZneg	52 630	3 358	3 444	60 451	68 123	5 433	1 147	301
SEVQ1.30_FTEVZHEB	32 030	3 330	3 444	00 431	00 123	3 433	1 147	301
Riepilogo carichi sui pali	Np max	Np min	Hp max					
SLS_qp	4 077	3 928	4					
SLS_Rara_Fess	5 169	3 255	99					
SLS Rara	5 635	3 068	139					
SLU A1	7 846	2 674	202					
SLV - q=1	11 008	-2 794	1 067					
SLV - q=1 SLV - q=1.36	9 346	-2 794	793					
SLV - q=1.36 SLV - q=1.5	8 915	-1131	793					

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO


VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 61 di 103

9.11 Verifica palo per forze orizzontali

9.11.1 Capacità portante orizzontale (Broms)

	coefficier	ti parziali		A		N	1	R	quot	
	Metodo di calcolo			permanenti γ _G	variabili γα	γ _{φ'}	γcu	γт		
	A1+M1+R	1	0	1.30	1.50	1.00	1.00	1.00		
SLU	A2+M1+R	2	0	1.00	1.30	1.00	1.00	1.60	quota	
S	A1+M1+R	3	0	1.30	1.50	1.00	1.00	1.30	1	
	SISMA		•	1.00	1.00	1.00	1.00	1.30	1	
DM88			0	1.00	1.00	1.00	1.00	1.00	1	
definiti d	al progettista	a	0	1.00	1.00	1.00	1.00	1.30	quota	
									=	
n	1	2	3	4	5 ()	7	≥10 ○	T.A.	prog.	
ξ3	1.70	1.65	1.60	1.55	1.50	1.45	1.40	1.00	1.00	

						Parametri m	edi	Para	ametri minii	mi
strati terreno	descrizione	quote	γ	γ'	φ	k _p	Cu	φ	k _p	Cu
		(m)	(kN/m ³)	(kN/m ³)	(°)		(kPa)	(°)		(kPa)
p.c.=strato 1		100.00	20	10	32.5	3.32		32.5	3.32	
☐ strato 2						1.00			1.00	
☐ strato 3						1.00			1.00	
☐ strato 4						1.00			1.00	
☐ strato 5						1.00			1.00	
☐ strato 6						1.00			1.00	

 Quota falda
 100.00 (m)

 Diametro del palo D
 1.50 (m)

 Lunghezza del palo L
 41.00 (m)

 Momento di plasticizzazione palo My
 9 969.00 (kNm)

 Step di calcolo
 0.01 (m)

● palo impedito di ruotare

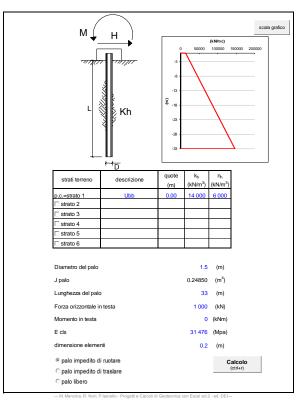
O palo libero

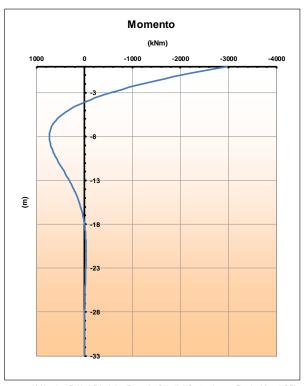
Calcolo (ctrl+r)

	<u>H medio</u>			<u>H 1</u>	<u>minimo</u>	
Palo lungo	4 055	(kN)			4 055 (kl	N)
Palo intermedio	32 987	(kN)			32 987 (kl	N)
Palo corto	125 663	(kN)			125 663 (kľ	N)
	H _{med} 4 055	(kN)	Palo lungo	H _{min}	4 055 (kř	N) Palo lungo
	H _k = Min(H _{med}	/ξ ₃ ; R _{mir}	2 458	(kN)		
	Coefficiente di gruppo	palificat	ta: k =	0.8	(-)	
	$H_{d} = (H_{k}/\gamma_{T})^{*}$	k		1 512	(kN)	
	Carico Assiale Perma	anente (0	G): G =	= 1 508	(kN)	
	Carico Assiale variab	ile (Q):	Q =	= 0	(kN)	
	$F_d = G \cdot \gamma_G + Q \cdot \gamma_G$	(q =		1 508	(kN)	
	c.s. = Hd / Fd	=		1.00	(-)	

DIRETTRICE FERROVIARIA MESSINA-CATANIA-PALERMO


PROGETTO DEFINITIVO


RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO


PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 62 di 103

9.11.2 Resistenza strutturale

Verifica strutturale palo	Np	Hp max	Hp max/k	Mp max	Mrd	wk	sc	SS	c.s.(>1)
		kN	kN	kNm	kNm	mm	MPa	MPa	-
SLS_qp	0	4	5	15		0.003	0.05	-1.4	
SLS_Rara_Fess	0	99	124	366		0.062	1.25	-34.4	
SLS_Rara	0	139	174	514			1.75	-48.4	
SLU_A1	0	202	253	747	6 063				8.12
SLV - q=1	0	1 067	1 334	3 948	6 063				1.54
SLV - q=1.36	0	793	991	2 934	6 063				2.07
SLV - q=1.5	0	722	903	2 671	6 063				2.27
Costante elastica - Matlock Reese		α=Mp/Hp	2.96						
Coefficiente di gruppo		k	0.8						
Taglio massimo palo (con coeff di gruppo)		Hp max / k							
Momento elastico sul palo (con coeff di gruppo)		Mp max =	(Hp max / l	()* α					

DIRETTRICE FERROVIARIA MESSINA-CATANIA-PALERMO

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 63 di 103

9.11.3 Taglio strutturale

Verifica a taglio secondo EC2-2 Calcestruzzo

<u>struzzo</u>		
fck=	35	MPa
γc=	1.50	
fcm=	43	MPa
αcc=	0.85	
fcd=	19.83	MPa
fctm=	3.21	MPa
$fctk_{0.05} =$	2.25	MPa
fctk _{0.95} =	4.17	MPa
		•
αct=	1.00	
αct= fctd=	1.00 1.50	MPa

 $\begin{tabular}{lll} Acciaio c.a. & & & & & MPa \\ fyk = & 450 & & & MPa \\ \gamma s = & 1.15 & & & \\ fyd = & 391.3 & & MPa \end{tabular}$

NTC08 - 7.9.5.2.2
In assenza di calcoli più accurati, per sezioni circolari di calcestruzzo di raggio r in cui l'armatura sia distribuita su una circonferenza di raggio rs, l'altezza utile della sezione ai fini del calcolo della resistenza a taglio può essere calcolata come

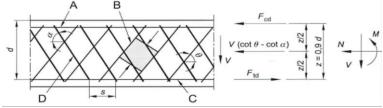
$$d=r+\frac{2r_s}{\pi}$$

 Taglio
 γ

 Gk
 0
 x1.00=
 0 kN

 Pk
 0
 x1.00=
 0 kN

 Qk
 0
 x1.00=
 0 kN


 Aed
 1 334
 x1.00=
 1334 kN

 V_{Ed} = 1334 kN

 Nsd=
 0
 kN
 Sforzo normale

<u>Geometria</u> Larghezza (6.16) bw = d = 1.172m h= 1.172 m Altezza totale c= 0.087 Copriferro m 1.172 Altezza utile 1.37 Area Ac= ma r = 0.750Raggio palo m rs = r-c = 0.663Raggio armatura verticale

Elementi CA e CAP armati a taglio

mm Diametro staffa

Α	Corrente compresso
В	Puntoni
C	Corrente teso
D	Armatura a taglio

Resistenza lato acciaio (staffe)

V_{Rd,s}= 1 816

Α

14

n=	2.00	-	Numero braccia			
Asw=	3.08	cm2				
z=	1.05	m	=0.9*d			
senα=	1		angolo tra le staffe e l'asse della trave	e (=90°	per staf	fe verticali)
ρ w =	0.15	%	$=Asw/(s*bw*sin\alpha)*100 >=$	0.11	%	= (0.08*radq(fck))/fyk*100
s=	0.175	m	=passo staffe <=	0.88	m	$=0.75*d*(1+cot\alpha)$
θ=	21.8	0	=arcsen(radq(Asw*fyd)/(bw*s*acw*n*	fcd))		
			inclinazione puntone compresso, vari	abile tr	a 45° to	21.8°
tanθ=	0.40	-	valore tra 1 (for q=45°) e 0.4			
cotθ=	2.50	-	valore tra 1 (for q=45°) and 2.5			
ρw,max=	0.59	=	$A_{sw,max}$ *fyd/(bw*s)<=1/2* α_{cw} *v*fcd =	5.12		
Asw/s,ins =	17.59	cm2/m	Area staffe inserita			

Resistenza lato calcestruzzo (puntone compresso inclinato)

ν=	0.516		=0.6*(1-fck/250) (from EN 6.6N)
σ cp =	0.00		=Nsd/Ac
$\alpha_{\text{cw}} =$	1.00		
$V_{Rd,max}$ =	4 363	kN	$=\alpha_{cw}^*bw^*z^*v^*fcd/(cot\theta+tan\theta)$
γ _{Bd1}	1.25		coefficiente di sicurezza (EN1998-2-5.6.2.b)
$V_{Ed} =$	1 334	kN	
$V_{Rd} =$	1 452	kN	=min($V_{Rd,s}$; $V_{Rd,max}$)/ γ_{Bd1}
c.s. =	0.92	<=1	

 $kN = Asw/s*z* fywd *cot\theta$

DIRETTRICE FERROVIARIA MESSINA-CATANIA-PALERMO

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 64 di 103

9.12 Verifica plinto

		plinto	riemp	somma											
peso specifico	kN/m3	25	18												
spessore	m	3.5	4.4												
peso a mq	kN/mq	87.5	79.2	166.7											
sbalzo plinto e riemp	m	6.65	6.65												
peso totale a m/l	kN/m	582	527	1109											
momento nella sezione di verifica	kNm/m	1935	1751	3686											
Larghezza di influenza per pali	m	2.95	-	Tpila/n°pa	li dir T										
		Fila	1	Fila	a 2	Fila	3	Effetto	pali	Effetto p	ali a m/l	p.p.plinto	+rinterro	Soll. di p	rogetto
		N	braccio	N	braccio	N	braccio	Т	. М	Ť	M		М	T	М
		kN	m	kN	m	kN	m	kN	kNm	kN/m	kNm/m	kN/m	kNm/m	kN/m	kNm/m
SLS_qp	kN	4 077	5.15	0		0		4 077	20 997	1 382	7 117	-1109	-3686	273	3 432
SLS_Rara_Fess	kN	5 169	5.15	0		0		5 169	26 620	1 752	9 024	-1109	-3686	644	5 338
SLS_Rara	kN	5 635	5.15	0		0		5 635	29 020	1 910	9 837	-1109	-3686	802	6 151
SLU_A1	kN	7 846	5.15	0		0		7 846	40 407	2 660	13 697	-1109	-3686	1 551	10 011
SLV - q=1	kN	11 008	5.15	0		0		11 008	56 691	3 732	19 217	-1109	-3686	2 623	15 531
SLV - q=1.36	kN	9 346	5.15	0		0		9 346	48 132	3 168	16 316	-1109	-3686	2 060	12 630
SLV - q=1.5	kN	8 915	5.15	0		0		8 9 1 5	45 912	3 022	15 563	-1109	-3686	1 913	11 878
	Soll. di	progetto			Verifica										
	Т	М	Mrd	wk	sc	SS	c.s.(>1)								
	kN/m	kNm/m	kNm/m	mm	MPa	MPa	-								
SLS_qp	273	3 432		0	0.00	0									
SLS_Rara_Fess	644	5 338		0	0.00	0									
SLS_Rara	802	6 151			0	0									
SLU_A1	1 551	10 011	0				0.00								
SLV - q=1	2 623	15 531	0				0.00								
SLV - q=1.36	2 060	12 630	0				0.00								
SLV - q=1.5	1 913	11 878	0				0.00								

Le sollecitazioni sono simili e inferiori a quelle della pila 2. Il plinto viene armato allo stesso modo.

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 65 di 103

10 CALCOLO E VERIFICA PILA 4

10.1 Azione sismica

La stessa della pila precedente.

10.2 Dati generali

Dati fusto pila e pulvino	L(m)	T(m)	H(m)	A(mq) P(kN)
Fusto pila	3.2	11.8	9.29	15.67 3 639
Pulvino	3.2	11.8	2	1 888
Peso totale pila				5 527
Geometria				
Altezza totale pila, compreso pulvino	h	11.29 m		
Distanza pf - sottotrave (in asse appoggi)	h1	3.29 m		
Distanza sottotrave - testa pila	h2	0.5 m		
Distanza pf - testa pila	h3	3.79 m		
Distanza centro rotazione appoggi - testa pila	h4	0.4 <mark> m</mark>		
Distanza baricentro masse impalcato - testa pila	h5	2.99 m		
Distanza pf - spiccato pila	h6	15.08 m		
Distanza pf - intradosso fondazione	h7	17.58 m		
Impalcato		SX	dx	totale
Tipo appoggio		M	F	
Luce in asse pila		25	25	m
Distanza asse appoggi - asse pila		1.1	1.1	m
Luce in asse appoggi		22.8	22.8	m
Pesi propri	G1	258.1	258.1	kN/ml
Permanenti portati	G2	202.3	202.3	kN/ml
Permanenti	G	460.4	460.4	kN/ml
Peso treno equivalente x0.2	Q1x0.2	46	46	kN/ml
Massa sismica	М	506.4	506.4	kN/ml
Pesi propri	G1	3 226	3 226	6 453 kN
Permanenti portati	G2	2 529	2 529	5 058 kN
Permanenti	G	5 755	5 755	11 510 kN
Massa sismica	M	6 330	6 330	12 660 kN

PROGETTO DEFINITIVO

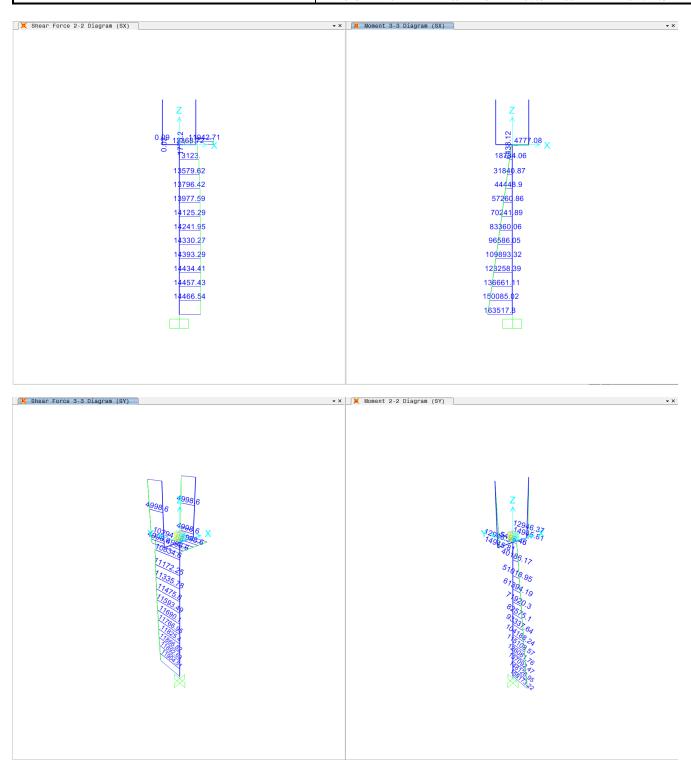
RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO
RS2S 02 D 09 CL VI0705 001 A 66 di 103

10.3 Analisi sismica

Analisi sismica	Semplificata			Dinamica mo	dale		
Direzione		Long	Trasv	Vert			
Dist baricentro masse impal - spiccato pila	hp	11.69	14.28	14.28 m			
Modulo elastico pila	Ec	33 346	33 346	33 346 MPa	Tipo analisi eff	ettuata	
nerzia pila (Area pila per verticale)	lf	21.3	172.4	15.7 m4	2 D	inamica moda	le
Riduzione per rigidezza fessurata		1.0	1.0	1.0 -			
Rigidezza oscillatore elementare equivalente		1.33E+06	5.92E+06	3.66E+07 kN/m			
Massa sismica impalcato	Pi	12 660	12 660	12 660 kN			
Massa efficace pila	Ppeff	3 316	3 316	3 316 kN			
Massa complessiva	P=Pi+Ppeff	15 976	15 976	15 976 kN			
/5 Massa sismica impalcato	1/5*Pi	2 532	2 532	2 532 kN			
Massa efficace pila	Ppeff	3 316	3 316	3 316 kN			
Verifica requisito	Ppeff≤1/5*Pi ?	no	no	no -			
Periodo proprio	Т	0.22	0.10	0.04 sec	0.23	0.12	0.04 sec
	q	Ordinata spettrale (S)					
	1	0.904	0.697	0.615 g			
	1.36	0.665	0.550	0.615 g			
	1.5	0.603	0.512	0.615 g			
	q	Taglio/Sfor	Norm allo spi	ccato pila	Taglio/Sfor N	lorm allo spico	ato pila
	1	14 446	11 143	9 823 kN	14 466	11 904	9 443 kN
	1.36	10 622	8 793	9 823 kN	10 641	9 246	9 443 kN
	1.5	9 630	8 184	9 823 kN	9 650	8 557	9 443 kN
	q	Moment	o allo spicca	to pila	Momento	allo spiccato	pila
	1	168 870	159 119	kNm	163 518	159 173	kNm
	1.36	124 169	125 561	kNm	120 235	123 550	kNm
	1.5	112 580	116 860	kNm	109 014	114 314	kNm
		Rapporto ris	ultati dinami	ca modale - semplificata		lorm allo spico	
					1.00	1.07	0.96 -
					1.00	1.05	0.96 -
					1.00	1.05	0.96 -
						allo spiccato	pila
					0.97	1.00	-
					0.97	0.98	-
					0.97	0.98	-



PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 67 di 103

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 68 di 103

10.4 Carichi da traffico

Carico verticale da traffico ferroviario

	N°binari	Azioni quota testa pila (kN;kN			
	2	N	ML	MT	
Condizione	N max	5 762	354	824	
Condizione	ML max	3 553	3 920	548	
Condizione	MT max	3 030	-446	6 045	
Condizione	Inviluppo	5 762	3 920	6 045	

Carico verticale massimo da traffico sul piano appoggi

		37	u٨
Carico verticale	N max	3 559	3 559
Luce impalcato asse appoggi	Lc	22.8	22.8
Coefficiente dinamico	Ф3	1.202	1.202
Carico verticale dinamizzato	N	4 278	4 278

Attrito		sx	dx
Permanenti	G	5 755	5 755 kN
Carico mobile dinamizzato	Q1*Φ	4 278	4 278 kN
Coefficiente di attrito in condizione statiche		0.03	

Coefficiente di attrito in condizione statiche		0.03
Attrito permanente	maxG*0.2*Φ	35 kN
Attrito mobili dinamizzati	$maxQ^*\Phi$	128 kN

Frenatura	•	
luce campata carica	L	25 m
a livello binario	HL	1 783 kN
a guota testa pila	ML	6 758 kNm

Serpeggio		
a livello binario	HT	210 kN
a quota testa pila	MT	796 kNm

Centrifuga		
raggio planimetrico	R	1 300 m
velocità di progetto	V	160 km/h
lunghezza di influenza		25 [°] m
Reazione del singolo treno	Ov	

Reazione del singolo treno	Qv				
Sulla pila	v (km/h)	alfa	f	Coeff	Qv (kN) FT (kN)
LM71 v>120; caso a	160	1	0.82	0.127	2 485 316
LM71 v>120; caso b	120	1.1	1.00	0.096	2 733 262
LM71 v≤120; caso a	120	1.1	1.00	0.096	2 733 262
LM71 (caso utilizzato)					5 316
SW2	100	1	1.00	0.061	3 030 184
Valore utilizzato					499
Al piano appoggi - sx	v (km/h)	alfa	f	Coeff	Qv (kN) FT (kN)
LM71 v>120; caso a	160	1	0.82	0.127	1 535 195
LM71 v>120; caso b	120	1.1	1.00	0.096	1 688 162
LM71 v≤120; caso a	120	1.1	1.00	0.096	1 688 162
LM71 (caso utilizzato)					162
SW2	100	1	1.00	0.061	1 879 114
Valore utilizzato					276
Al piano appoggi - dx	v (km/h)	alfa	f	Coeff	Qv (kN) FT (kN)
LM71 v>120; caso a	160	1	0.82	0.127	1 535 195
LM71 v>120; caso b	120	1.1	1.00	0.096	1 688 162
LM71 v≤120; caso a	120	1.1	1.00	0.096	1 688 162
LM71 (caso utilizzato)					162
SW2	100	1	1.00	0.061	1 879 114
Valore utilizzato					276

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO
RS2S 02 D 09 CL VI0705 001 A 69 di 103

10.5 Vento

Azione del vento - generale - NTC08 e EC 1-1-4:2005 Condizione (ponte carico o scarico)		scarico	carico		-
Altitudine sul livello del mare	as	25	25 m		
Zona	as Z		4 -	l	
		28	25 m	10	
Parametri	V _{b,0}	20 500	500 m		
Parametri	a_0				
Parametri	k _a	0.020	0.020 1/		
Velocità di riferimento (Tr=50 anni)	$v_b = v_{b0} + k_a^* (a_s - a_0)$	28	25 m		
Periodo di ritorno considerato	T _R	75	75 aı	าทเ	
	α_{r}	1.02	1.02 -		
Velocità di riferimento	V_{b}	28.7	25.6 m		
Densità dell'aria	ρ	1.25	1.25 kg	g/m3	
pressione cinetica di riferimento	$q_b = 0.5 p^* v_b^2$	0.51	0.41 kl	V/m2	
Classe di rugosità del terreno		D [*]	D		
Distanza dalla costa		< 10 km			
Altitudine sul livello del mare		< 500 m	< 500 m		
Categoria di esposizione del sito	Cat	2	2		
Vento su impalcato	•		_		
Altezza di riferimento per l'impalcato (EC punto 8.3.1(6))	Z	12	12 m		-
parametri	k _r	0.19	0.19		
parametri	z_0	0.05	0.05 m	1	
parametri	Z _{min}	4	4 m		
parametri	Z _{max}	200	200 m		
Coefficiente di topografia	-max C _t	1	1		
coefficiente di esposizione (z≤z_min)	C _e (Z _{min})	1.80	1.80 -		
coefficiente di esposizione (z)	C _e (Z)	2.47	2.47 -		
Coefficiente di esposizione	C _e (2)	2.47	2.47 -		
Larghezza impalcato	b	13.7	13.7 m		
Altezza totale impalcato (comprese le barriere o treno)	dtot	7.83	7.83 m		
	b/dtot	1.75	1.75 -	l	
Rapporto di forma		1.75	1.75 -		
Coefficiente di forza (figura 8.3 EC)	cfx	1.91	1.91 -		
Riepilogo					_
Pressione cinetica di riferimento	q_b	0.51	0.41 kl	V/m2	
Coefficiente di esposizione	Ce	2.47	2.47 -		
Coefficiente di forza	cfx	1.91	1.91 -		
Altezza di riferimento (EC punto 8.3.1 (4) e (5))	d	11.83	7.83 -		
Forza statica equivalente a m/l	f=prodotto	28.64	15.11 kl	V/ml	-
Pressione statica equivalente	p=f/dtot	2.42	1.93 kl		
Pressione statica equivalente (minima considerata)	pmin	1.50	1.50 kl		
Forza statica equivalente a m/l considerata	f	28.64	15.11 kl		
Vento impalcato a ponte scarico		ev	dx	totale	
Forza statica equivalente	f	28.64	28.64	iolaie	kN/ml
·					
Luce impalcato	L ET 4*1/2	25 250	25 25 0	740	m LAI
Forza trasversale al piano appoggi	FT=f*L/2	358	358	716	
Momento trasversale al piano appoggi	MT=FT*(dtot/2+h2)	1 580	1 580	3 161	KNM
Vento impalcato a ponte carico		sx	dx	totale	
Forza statica equivalente	f	15.11	15.11		kN/m
Luce impalcato	L	25	25		m
Forza trasversale al piano appoggi	FT=f*L/2	189	189	378	
ruiza trasversale ai piario appoqui	1 1-1 42	103	103	310	

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 70 di 103

Vento su pila e pulvino		scarico	carico
Altezza di riferimento per pila e pulvino (EC punto 7.6(2))	Z	11.29	11.29 m
Coefficiente di esposizione (z)	$c_{e}(z)$	2.43	2.43 -
Coefficiente di esposizione	Ce	2.43	2.43 -
Pulvino			
Dimensione ortogonale alla direzione del vento	b	3.2	3.2 m
Dimensione parallela alla direzione del vento	d	11.8	11.8 m
Rapporto di forma	d/b	3.69	3.69 -
Coefficiente di forza (figura 7.23 EC)	cf0	1.32	1.32 [*] -
Riepilogo			
Pressione cinetica di riferimento	q _b	0.51	0.41 kN/m2
Coefficiente di esposizione	C _e	2.43	2.43 -
Coefficiente di forza	cf0	1.32	1.32 -
Dimensione parallela alla direzione del vento	b	3.2	3.2 -
Forza statica equivalente a m/l	f=prodotto	5.27	4.20 kN/ml
Pressione statica equivalente	p=f/b	1.65	1.31 kN/m2
Pressione statica equivalente (minima considerata)	pmin	0.00	0.00 kN/m2
Forza statica equivalente a m/l considerata	· f	5.27	4.20 kN/ml
Lunghezza dell'elemento	L	2	2 m
Forza statica equivalente	FT=f*H	10.5	8.4 kN
Pila			
Dimensione ortogonale alla direzione del vento	b	3.2	3.2 m
Dimensione parallela alla direzione del vento	d	11.8	11.8 m
Rapporto di forma	d/b	3.69	3.69 -
Coefficiente di forza (figura 7.23 EC)	cf0	1.32	1.32 [*] -
Riepilogo			
Pressione cinetica di riferimento	q _b	0.51	0.41 kN/m2
Coefficiente di esposizione	C _e	2.43	2.43 -
Coefficiente di forza	cf0	1.32	1.32 -
Dimensione parallela alla direzione del vento	b	3.2	3.2 -
Forza statica equivalente a m/l	f=prodotto	5.27	4.20 kN/ml
Pressione statica equivalente	p=f/b	1.65	1.31 kN/m2
Pressione statica equivalente (minima considerata)	pmin	0.00	0.00 kN/m2
Forza statica equivalente a m/l considerata	· f	5.27	4.20 kN/ml
Lunghezza dell'elemento	L	9.29	9.29 m
Forza statica equivalente	FT=f*H	49.0	39.1 kN

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 71 di 103

10.6 Azioni caratteristiche e dati fondazione

Azioni allo spiccato pila	Valori carat	tteristici			
	N	HL	HT	ML	MT
	kN	kN	kN	kNm	kNm
Impalcato - Pesi propri	6 453			0	
Impalcato - Permamenti portati	5 058			0	
Traffico ferroviario - Carico verticale - Nmax	5 762			354	824
Traffico ferroviario - Carico verticale - ML max	3 553			3 920	548
Traffico ferroviario - Carico verticale - MT max	3 030			446	6 045
Traffico ferroviario - Carico verticale - inviluppo	5 762			3 920	6 045
Traffico ferroviario - Frenatura		1 783		26 888	
Traffico ferroviario - Centrifuga			499		8 426
Traffico ferroviario - Serpeggio			210		3 167
Vento a ponte scarico - Impalcato			716		11 244
Vento a ponte scarico - Pulvino			11		109
Vento a ponte scarico - Pila			49		228
Vento a ponte carico - Impalcato			378		5 933
Vento a ponte carico - Pulvino			8		87
Vento a ponte carico - Pila			39		181
Attrito - Permanente		35		404	
Attrito - Carichi mobili dinamizzati		128		1 500	
Sisma q=1 - Long 100%		14 466		163 518	
Sisma q=1 - Trasv 100%			11 904		159 173
Sisma q=1 - Vert 100%	9 443				
Sisma q=1.36 - Long 100%		10 641		120 235	
Sisma q=1.36 - Trasv 100%			9 246		123 550
Sisma q=1.36 - Vert 100%	9 443				
Sisma q=1.5 - Long 100%		9 650		109 014	
Sisma q=1.5 - Trasv 100%			8 557		114 314
Sisma q=1.5 - Vert 100%	9 443				
Pila - Peso proprio	5 527				
Pesi fondazione e rinterro	Valori carat	teristici			
Fondazione - Peso proprio	12 375				
Ricoprimento plinto - Peso proprio	5 769				

Dati plinto e riempimento				
	dir Long	dir Trasv	spessore	n° pali
Numero file pali	3	4		12
Interasse pali (m)	4.5	4.5		
Distanza dal bordo (m)	1.5	1.5		
Dimensioni plinto (m)	12	16.5	2.5	
Modulo minimo palificata (m)	36	45		
Diametro pali (m)	1.5			
Area pila fuori tutto	37.76	mq		
Spessore riempimento	2	m		
Peso specifico riemp.	18	kN/m3		

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

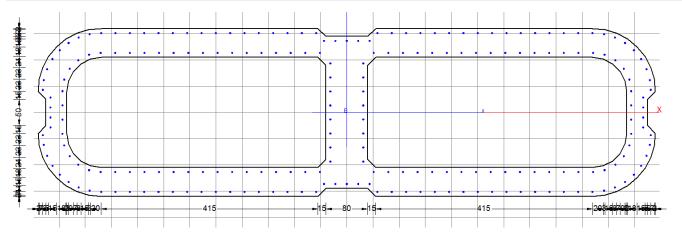
PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 72 di 103

10.7 Combinazioni di carico

Identiche alla pila precedente.

10.8 Verifica a pressoflessione pila

Azioni allo spiccato pila - Valori combinati						wk	SC	SS	c.s.(>1)
Combinazione	N	HL	HT	ML	MT	mm	MPa	MPa	-
SLE_qp	17 038	35	0	404	0	0.000	0.95	13.6	
SLE_Rara_Fess_Traffico_gr4_Nmax	20 495	1 182	681	17 650	11 171	0.004	2.08	-2.6	
SLE_Rara_Fess_Traffico_gr4_MLmax	19 170	1 182	681	19 789	11 006	0.016	2.14	-7.4	
SLE_Rara_Fess_Traffico_gr4_MTmax	18 856	1 182	681	17 704	14 304	0.013	2.09	-6.1	
SLE_Rara_Fess_Vento_ponte_scarico	17 038	35	776	404	11 581	0.000	1.22	9.3	
SLE_Rara_Traffico_gr1_Nmax	22 800	1 055	965	15 703	16 138		2.23	-0.3	
SLE_Rara_Traffico_gr1_MLmax	20 591	1 055	965	19 268	15 862		2.29	-6.7	
SLE_Rara_Traffico_gr1_MTmax	20 068	1 055	965	15 794	21 359		2.22	-5.3	
SLE_Rara_Traffico_gr3_Nmax	22 800	1 946	610	29 146	10 342		2.76	-24.1	
SLE_Rara_Traffico_gr3_MLmax	20 591	1 946	610	32 712	10 066		2.77	-50.4	
SLE_Rara_Traffico_gr3_MTmax	20 068	1 946	610	29 238	15 562		2.80	-40.2	
SLE_Rara_Vento_ponte_scarico	17 038	35	776	404	11 581		1.22	9.3	
SLUup_A1_Traffico_gr1_Nmax	32 114	1 526	1 412	22 728	23 586				6.01
SLUup_A1_Traffico_gr1_MLmax	28 911	1 526	1 412	27 899	23 186				4.82
SLUup_A1_Traffico_gr1_MTmax	28 153	1 526	1 412	22 861	31 156				5.64
SLUup A1 Traffico gr3 Nmax	32 114	2 819	897	42 222	15 181				3.33
SLUup_A1_Traffico_gr3_MLmax	28 911	2 819	897	47 392	14 781				2.89
SLUup A1 Traffico gr3 MTmax	28 153	2 819	897	42 355	22 751				3.18
SLUup_A1_Vento_ponte_scarico	23 760	47	1 164	545	17 371				25.37
SLUlow A1 Traffico gr1 Nmax	25 393	1 514	1 412	22 587	23 586				5.71
SLUlow_A1_Traffico_gr1_MLmax	22 190	1 514	1 412	27 757	23 186				4.54
SLUIow A1 Traffico gr1 MTmax	21 431	1 514	1 412	22 720	31 156				5.34
SLUlow_A1_Traffico_gr3_Nmax	25 393	2 806	897	42 081	15 181				3.14
SLUIow A1 Traffico gr3 MLmax	22 190	2 806	897	47 251	14 781				2.72
SLUIow A1 Traffico gr3 MTmax	21 431	2 806	897	42 213	22 751				3.01
SLUlow A1 Vento ponte scarico	17 038	35	1 164	404	17 371				24.13
SLVq1 PrevX Zpos	21 023	14 853	3 714	170 032	51 280				
SLVq1_PrevY_Zpos	21 023	4 727	12 046	55 569	162 701				-
SLVq1_PrevZpos	27 633	4 727	3 714	55 569	51 280				-
SLVq1_PrevX_Zneg	15 357	14 853	3 714	170 032	51 280				-
SLVq1_PrevY_Zneg	15 357	4 727	12 046	55 569	162 701				-
SLVq1 PrevZneg	8 747	4 727	3 714	55 569	51 280				-
SLVq1.36_PrevX_Zpos	21 023	11 028	2 916	126 749	40 593				-
SLVq1.36 PrevY Zpos	21 023	3 580	9 388	42 584	127 078				-
SLVq1.36 PrevZpos	27 633	3 580	2 916	42 584	40 593				-
SLVq1.36 PrevX Zneg	15 357	11 028	2 916	126 749	40 593				_
SLVq1.36_PrevY_Zneg	15 357	3 580	9 388	42 584	127 078				-
SLVq1.36 PrevZneg	8 747	3 580	2 916	42 584	40 593				_
SLVq1.50_PrevX_Zpos	21 023	10 037	2 709	115 528	37 822				1.10
SLVq1.50 PrevY Zpos	21 023	3 282	8 699	39 218	117 842				2.61
SLVq1.50 PrevZpos	27 633	3 282	2 709	39 218	37 822				3.35
SLVq1.50 PrevX Zneg	15 357	10 037	2 709	115 528	37 822				1.04
SLVq1.50_PrevY_Zneg	15 357	3 282	8 699	39 218	117 842				2.48
SLVq1.50_PrevZneg	8 747	3 282	2 709	39 218	37 822				2.78


DIRETTRICE FERROVIARIA MESSINA-CATANIA-PALERMO

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 73 di 103

Riepilogo verifica spiccato	wk	sc	SS	c.s.(>1)			
	mm	MPa	MPa	-			
SLS_qp	0.000	0.95	13.6				
SLS_Rara_Fess	0.016	2.14	-7.4				
SLS_Rara		2.80	-50.4				
SLU_A1				2.72			
SLV - q=1				-			
SLV - q=1.36				-			
SLV - q=1.5				1.04			

218 Ø 32

Af tot = 1753.26 (1.12 %)

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 74 di 103

10.9 Verifica a taglio pila

La verifica viene condotta per le singole anime ripartendo il carico in base ai rapporti di rigidezza a taglio.

Anima	num	b	h	Α	k=A/Atot
-	-	m	m	mq	-
laterale	1	0.4	2.5	1	0.23
laterale	1	0.4	2.5	1	0.23
centrale	1	0.8	2.9	2.32	0.54
somma				4.32	1

		•	
Pila		4	4
Direzione		Long	Trasv
Altezza pila	H(m)	11.29	11.29
fattore di struttura	q	1.5	1.5
fattore di sovraresistenza (eq 7.9.7)		1	1
fattore di sovraresistenza filtrato (eq 7.9.7)	grd	1	1
taglio derivante dall'analisi (con q=1)	V	14 853	12 046
momento corrispondente alla base della pila (con q=1))	M	170 032	162 701
taglio derivante dall'analisi (con q)	Ved	10 037	8 699
momento corrispondente alla base della pila (con q)	Med	115 528	117 842
momento resistente alla base della pila	Mrd	120 149	292 248
Rapporto di sovraresistenza	Mrd/Med	1.04	2.48
Tipo sezione (EC 8-2; eq 6.11)		critica	non critica
angolo inclinazione bielle compresse	Teta	45	da calc
limite superiore per Vgr	Vgr,max=V	14 853	12 046
taglio di progetto per la gerarchia della resistenza (da calcolo) (eq. 7.9.12)	Vgr	10 438	21 574
taglio di progetto per la gerarchia della resistenza (filtrato)	Vgr	10 438	12 046
fattore di sicurezza aggiuntivo per la resistenza a taglio (eq 7.9.10)	grd	0.81	1.17
fattore di sicurezza aggiuntivo per la resistenza a taglio, filtrato (eq 7.9.10)	grd	1.00	1.17
Riassumendo			
Taglio di calcolo	Vgr	10 438	12 046
fattore di sicurezza aggiuntivo filtrato (eq 7.9.10)	grd	1.00	1.17
angolo inclinazione bielle compresse	Teta	45	da calc

Le sollecitazioni sono simili e inferiori a quelle della pila 3. Per la verifica quindi si rimanda a quella della pila 3.

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 75 di 103

10.10 Carichi sui pali

zioni all'intradosso fondazione - Valori combinati						Carichi sui	pali	
Combinazione	N	HL	HT	ML	MT	Np max	Np min	Hp max
SLE_qp	35 181	35	0	492	0	2 946	2 919	3
SLE_Rara_Fess_Traffico_gr4_Nmax	38 639	1 182	681	20 605	12 874	4 079	2 362	114
SLE_Rara_Fess_Traffico_gr4_MLmax	37 313	1 182	681	22 744	12 708	4 024	2 196	114
SLE_Rara_Fess_Traffico_gr4_MTmax	36 999	1 182	681	20 659	16 006	4 013	2 154	114
SLE_Rara_Fess_Vento_ponte_scarico	35 181	35	776	492	13 521	3 246	2 618	65
SLE_Rara_Traffico_gr1_Nmax	40 943	1 055	965	18 340	18 550	4 334	2 491	120
SLE_Rara_Traffico_gr1_MLmax	38 734	1 055	965	21 906	18 275	4 243	2 214	120
SLE_Rara_Traffico_gr1_MTmax	38 211	1 055	965	18 432	23 771	4 225	2 145	120
SLE_Rara_Traffico_gr3_Nmax	40 943	1 946	610	34 011	11 867	4 621	2 204	170
SLE_Rara_Traffico_gr3_MLmax	38 734	1 946	610	37 577	11 591	4 530	1 927	170
SLE_Rara_Traffico_gr3_MTmax	38 211	1 946	610	34 103	17 087	4 512	1 858	170
SLE_Rara_Vento_ponte_scarico	35 181	35	776	492	13 521	3 246	2 618	65
SLUup_A1_Traffico_gr1_Nmax	56 608	1 526	1 412	26 543	27 116	6 058	3 378	174
SLUup_A1_Traffico_gr1_MLmax	53 405	1 526	1 412	31 714	26 716	5 926	2 976	174
SLUup_A1_Traffico_gr1_MTmax	52 647	1 526	1 412	26 676	34 686	5 900	2 876	174
SLUup_A1_Traffico_gr3_Nmax	56 608	2 819	897	49 269	17 424	6 474	2 962	247
SLUup_A1_Traffico_gr3_MLmax	53 405	2 819	897	54 440	17 024	6 341	2 560	247
SLUup_A1_Traffico_gr3_MTmax	52 647	2 819	897	49 402	24 993	6 315	2 460	247
SLUup A1 Vento ponte scarico	48 253	47	1 164	663	20 281	4 491	3 552	98
SLUlow_A1_Traffico_gr1_Nmax	43 536	1 514	1 412	26 372	27 116	4 964	2 293	173
SLUlow_A1_Traffico_gr1_MLmax	40 333	1 514	1 412	31 542	26 716	4 831	1 892	173
SLUlow_A1_Traffico_gr1_MTmax	39 575	1 514	1 412	26 505	34 686	4 805	1 791	173
SLUlow A1 Traffico gr3 Nmax	43 536	2 806	897	49 096	17 424	5 379	1 878	246
SLUlow_A1_Traffico_gr3_MLmax	40 333	2 806	897	54 266	17 024	5 247	1 476	246
SLUlow A1 Traffico gr3 MTmax	39 575	2 806	897	49 228	24 993	5 221	1 376	246
SLUlow A1 Vento ponte scarico	35 181	35	1 164	492	20 281	3 397	2 468	98
SLVq1_PrevX_Zpos	39 167	14 853	3 714	207 164	60 565	10 365	-3 836	1 276
SLVq1_PrevY_Zpos	39 167	4 727	12 046	67 387	192 816	9 421	-2 892	1 079
SLVq1_PrevZpos	45 777	4 727	3 714	67 387	60 565	7 033	597	501
SLVq1_PrevX_Zneg	33 501	14 853	3 714	207 164	60 565	9 893	-4 308	1 276
SLVq1 PrevY Zneg	33 501	4 727	12 046	67 387	192 816	8 949	-3 364	1 079
SLVq1_PrevZneg	26 891	4 727	3 714	67 387	60 565	5 459	-976	501
SLVq1.36_PrevX_Zpos	39 167	11 028	2 916	154 319	47 883	8 615	-2 086	951
SLVq1.36_PrevY_Zpos	39 167	3 580	9 388	51 534	150 548	8 041	-1513	838
SLVq1.36_PrevZpos	45 777	3 580	2 916	51 534	47 883	6 311	1 320	385
SLVq1.36_PrevX_Zneg	33 501	11 028	2 916	154 319	47 883	8 143	-2 558	951
SLVq1.36_PrevY_Zneg	33 501	3 580	9 388	51 534	150 548	7 569	-1 985	838
SLVq1.36_PrevZneg	26 891	3 580	2 916	51 534	47 883	4 737	-254	385
SLVq1.50_PrevX_Zpos	39 167	10 037	2 709	140 620	44 595	8 162	-1 633	867
SLVq1.50_PrevY_Zpos	39 167	3 282	8 699	47 423	139 590	7 684	-1 155	775
SLVq1.50_PrevZpos	45 777	3 282	2 709	47 423	44 595	6 124	1 507	355
SLVq1.50_PrevX_Zneg	33 501	10 037	2 709	140 620	44 595	7 689	-2 105	867
SLVq1.50_PrevY_Zneg	33 501	3 282	8 699	47 423	139 590	7 212	-1 627	775
SLVq1.50_PrevZneg	26 891	3 282	2 709	47 423	44 595	4 550	-67	355
Riepilogo carichi sui pali	Np max	Np min	Hp max					
SLS_qp	2 946	2 919	3					
SLS_Rara_Fess	4 079	2 154	114					
SLS_Rara	4 621	1 858	170					
SLU_A1	6 474	1 376	247					
	10 365	-4 308	1 276					
SLV - q=1.36	8 615	-2 558	951					
SLV - q=1.5	8 162	-2 105	867					

PROGETTO DEFINITIVO

D

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 76 di 103

10.11 Verifica palo per forze orizzontali

10.11.1 Capacità portante orizzontale (Broms)

	coefficier	nti parziali		4	١	N	1	R	quot	a strato 1	
	Metodo d	di calcolo		permanenti γ _G	variabili γ _Q	$\gamma_{\phi'}$	γ _{cu}	γт		g, falda	/ ₄ 22.
	A1+M1+R	1	0	1.30	1.50	1.00	1.00	1.00]	q. falda	
SLU	A2+M1+R	2	0	1.00	1.30	1.00	1.00	1.60	quota	strato 2	
S	A1+M1+R	3	0	1.30	1.50	1.00	1.00	1.30]	8	
	SISMA		•	1.00	1.00	1.00	1.00	1.30		\leq	
DM88			0	1.00	1.00	1.00	1.00	1.00		<u>>></u>	
definiti da	l progettista	а	0	1.00	1.00	1.00	1.00	1.30	quota	strato	
									-	_	
n	1	2	3	4	50	7	≥10 ○	T.A.	prog.		l F
ξ_3	1.70	1.65	1.60	1.55	1.50	1.45	1.40	1.00	1.00		
ξ4	1.70	1.55	1.48	1.42	1.34	1.28	1.21	1.00	1.00	1	

						Parametri m	edi	Par	ametri minii	mi
strati terreno	descrizione	quote	γ	γ'	φ	k _p	Cu	φ	k_p	Cu
		(m)	(kN/m ³)	(kN/m ³)	(°)		(kPa)	(°)		(kPa)
p.c.=strato 1		100.00	19.5	9.5	34	3.54		34	3.54	
☐ strato 2						1.00			1.00	
□ strato 3						1.00			1.00	
☐ strato 4						1.00			1.00	
☐ strato 5						1.00			1.00	
☐ strato 6						1.00			1.00	

 Quota falda
 100 (m)

 Diametro del palo D
 1.50 (m)

 Lunghezza del palo L
 25.00 (m)

 Momento di plasticizzazione palo My
 7 919.00 (kNm)

 Step di calcolo
 0.01 (m)

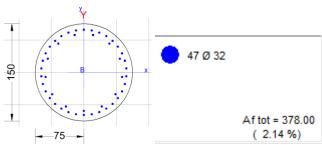
€ palo impedito di ruotare

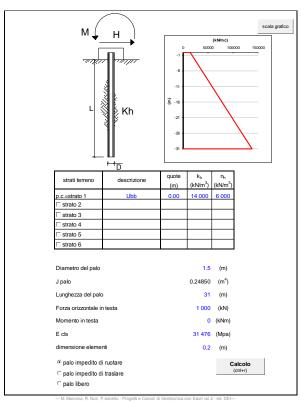
O palo libero

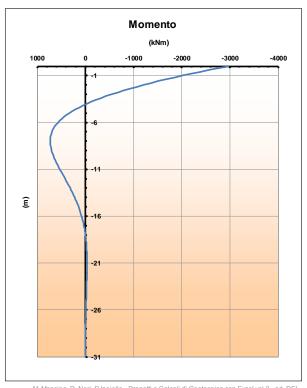
Calcolo (ctrl+r)

	<u>н</u>	medio				<u>H r</u>	ninimo		
Palo lungo		3 491	(kN)				3 491	(kN)	
Palo intermedio		12 658	(kN)				12 658	(kN)	
Palo corto		47 254	(kN)				47 254	(kN)	
	H_{med}	3 491	(kN)	Palo lungo		H _{min}	3 491	(kN)	Palo lungo
	H _k =	= Min(H _{med}	/ξ ₃ ; R _{mir}	_n /ξ ₄)		2 116		(kN)	
	Coefficiente	di gruppo	palificat	ta:	k =	0.8		(-)	
	H _d	= (H _k /γ _T)*l	k			1 302	((kN)	
	Carico Ass	iale Perma	anente (C	G =	1 276		(kN)		
	Carico Ass	iale variab	ile (Q):		Q =	0		(kN)	
	F _d = G	· γ _G + Q · γ	_Q =			1 276	((kN)	
	c.s.	= Hd / Fd	=			1.02		(-)	

DIRETTRICE FERROVIARIA MESSINA-CATANIA-PALERMO


PROGETTO DEFINITIVO

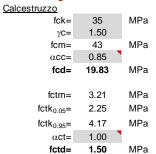

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO


PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 09 CLVI0705 001 77 di 103 D A

10.11.2 Resistenza strutturale

Verifica strutturale palo	Np	Hp max	Hp max/k	Mp max	Mrd	wl	sc sc	SS	c.s.(>1)
		kN	kN	kNm	kNm	mn	MPa	MPa	-
SLS_qp	0	3	4	11		0.003	0.03	-0.8	
SLS_Rara_Fess	0	114	143	422		0.046	1.23	-30.5	
SLS_Rara	0	170	213	629			1.84	-45.5	
SLU_A1	0	247	309	914	7 919				8.66
SLV - q=1	0	1 276	1 595	4 721	7 919				1.68
SLV - q=1.36	0	951	1 189	3 519	7 919				2.25
SLV - q=1.5	0	867	1 084	3 208	7 919				2.47
Costante elastica - Matlock Reese		α=Mp/Hp	2.96						
Coefficiente di gruppo		k	0.8						
Taglio massimo palo (con coeff di gruppo)		Hp max / I	<						
Momento elastico sul palo (con coeff di gruppo)		Mp max =	(Hp max / k	()* α					

DIRETTRICE FERROVIARIA MESSINA-CATANIA-PALERMO


PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 78 di 103

10.11.3 Taglio strutturale

Verifica a taglio secondo EC2-2

Acciaio c.a.
$$fyk = 450 \ ys = 1.15 \ fyd = 391.3 MPa$$

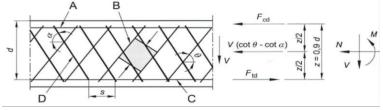
NTC08 - 7.9.5.2.2
In assenza di calcoli più accurati, per sezioni circolari di calcestruzzo di raggio r in cui l'armatura sia distribuita su una circonferenza di raggio rs, l'altezza utile della sezione ai fini del calcolo della resistenza a taglio può essere calcolata come

$$d=r+\frac{2r_{s}}{\pi}$$

 Taglio
 γ

 Gk
 0
 x1.00=
 0 kN

 Pk
 0
 x1.00=
 0 kN


 Qk
 0
 x1.00=
 0 kN

 Aed
 1 595
 x1.00=
 1595 kN

 V_{Ed} = 1595 kN

Nsd= 0 kN Sforzo normale

Elementi CA e CAP armati a taglio

Α	Corrente compresso
В	Puntoni

C Corrente teso
D Armatura a taglio

Resistenza lato acciaio (staffe)

As۱

φw=	16	mm	Diametro stalia				
n=	2.00	-	Numero braccia				
Asw=	4.02	cm2					
z=	1.05	m	=0.9*d				
senα=	1		angolo tra le staffe e l'asse della trave	(=90°	per staf	fe verticali)	
ρw=	0.17	%	$=Asw/(s*bw*sin\alpha)*100>=$	0.11	%	=(0.08*radq(fck))/fyk*100	
s=	0.2	m	=passo staffe <=	0.88	m	=0.75*d*(1+cotα)	
θ=	21.8	0	=arcsen(radq(Asw*fyd)/(bw*s*acw*n*f	cd))			
			inclinazione puntone compresso, varia	abile tr	a 45° to	21.8°	
tanθ=	0.40	-	valore tra 1 (for q=45°) e 0.4				
cotθ=	2.50	-	valore tra 1 (for q=45°) and 2.5				
ρw,max=	0.67	=	$A_{sw,max}$ *fyd/(bw*s)<=1/2* α_{cw} *v*fcd =	5.12			
sw/s,ins =	20.11	cm2/m	Area staffe inserita				
, -							

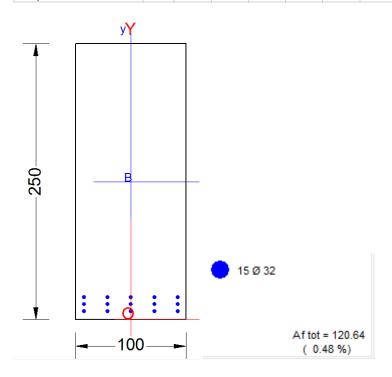
Resistenza lato calcestruzzo (puntone compresso inclinato)

2 075

ν=	0.516	-	=0.6*(1-fck/250) (from EN 6.6N)
σ cp =	0.00		=Nsd/Ac
$\alpha_{\text{cw}} =$	1.00		
$V_{Rd,max} =$	4 363	kN	$=\alpha_{cw}^*bw^*z^*v^*fcd/(cot\theta+tan\theta)$
γ_{Bd1}	1.25		coefficiente di sicurezza (EN1998-2-5.6.2.b)
V _{Ed} =	1 595	kN	
$V_{Rd}=$	1 660	kN	=min($V_{Rd,s}$; $V_{Rd,max}$)/ γ_{Bd1}
c.s. =	0.96	<=1	

 $kN = Asw/s*z* fywd *cot\theta$

PROGETTO DEFINITIVO


RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

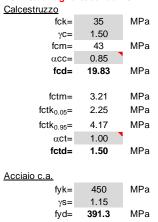
VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 79 di 103

10.12 Verifica plinto

		plinto	riemp	somma											
peso specifico	kN/m3	25	18												
spessore	m	2.5	2												
peso a mq	kN/mq	62.5	36	98.5											
sbalzo plinto e riemp	m	4.4	4.4												
peso totale a m/l	kN/m	275	158	433											
momento nella sezione di verifica	kNm/m	605	348	953											
Larghezza di influenza per pali	m	2.95	=	Tpila/n°pal	i dir T										
		Fila	1	Fila	12	Fila	13	Effetto	pali	Effetto p	ali a m/l	p.p.plinto	+rinterro	Soll. di p	rogetto
		N	braccio	N	braccio	N	braccio	Т	М	Т	М		М	Т	M
		kN	m	kN	m	kN	m	kN	kNm	kN/m	kNm/m	kN/m	kNm/m	kN/m	kNm/m
SLS_qp	kN	2 946	2.9	0		0		2 946	8 543	999	2 896	-433	-953	565	1 943
SLS_Rara_Fess	kN	4 079	2.9	0		0		4 079	11 829	1 383	4 010	-433	-953	949	3 056
SLS_Rara	kN	4 621	2.9	0		0		4 621	13 401	1 566	4 543	-433	-953	1 133	3 589
SLU_A1	kN	6 474	2.9	0		0		6 474	18 775	2 195	6 364	-433	-953	1 761	5 411
SLV - q=1	kN	10 365	2.9	0		0		10 365	30 059	3 514	10 189	-433	-953	3 080	9 236
SLV - q=1.36	kN	8 615	2.9	0		0		8 615	24 984	2 920	8 469	-433	-953	2 487	7 516
SLV - q=1.5	kN	8 162	2.9	0		0		8 162	23 670	2 767	8 024	-433	-953	2 333	7 070
	Soll. di ı	orogetto			Verifica										
	Т	М	Mrd	wk	sc	SS	c.s.(>1)								
	kN/m	kNm/m	kNm/m	mm	MPa	MPa	-								
SLS_qp	565	1 943		0.116	2.42	-80									
SLS_Rara_Fess	949	3 056		0.183	3.81	-125									
SLS_Rara	1 133	3 589			4.48	-147									
SLU_A1	1 761	5 411	10 563				1.95								
SLV - q=1	3 080	9 236	10 563				1.14								
SLV - q=1.36	2 487	7 516	10 563				1.41								
SLV - q=1.5	2 333	7 070	10 563				1.49								

PROGETTO DEFINITIVO


RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 80 di 103

Si fornisce un quantitativo di armatura a taglio, da realizzare con spille o considerando i cavallotti.

Verifica a taglio secondo EC2-2

<u>Taglio</u>		γ	
Gk	0	x1.00=	0 kN
Pk	0	x1.00=	0 kN
Qk	0	x1.00=	0 kN
Aed	3 080	x1.00=	3080 kN
		$V_{Ed} =$	3080 kN

Nsd= 0

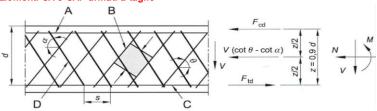
Ac= 2.50

 $\begin{tabular}{lll} \hline Geometria & & & & \\ \hline bw = & 1.000 & m & Larghezza (6.16) \\ \hline h = & 2.500 & m & Altezza totale \\ \hline c = & 0.100 & m & Copriferro \\ \hline d = & 2.400 & m & Altezza utile \\ \hline \end{tabular}$

mq

В

C


Sforzo normale

Corrente compresso

Puntoni

Corrente teso

Elementi CA e CAP armati a taglio

Resistenza lato acciaio (staffe)

φ w =	20	mm	Diametro staffa
n=	2.00		Numero braccia
Asw=	6.28	cm2	
z=	2.16	m	=0.9*d
senα=	1		angolo tra le staffe e l'asse della trave (=90° per staffe verticali)
ρ w =	0.18	%	=Asw/(s*bw*sinα)*100
s=	0.34	m	=passo staffe <= 1.80 m = 0.75 *d*(1+cot α)
θ=	21.8	0	=arcsen(radq(Asw*fyd)/(bw*s*acw*n*fcd))
			inclinazione puntone compresso, variabile tra 45° to 21.8°
tanθ=	0.40	-	valore tra 1 (for q=45°) e 0.4
cotθ=	2.50	-	valore tra 1 (for q=45°) and 2.5
ρw,max=	0.72	=	$A_{sw,max}*fyd/(bw*s) <= 1/2*\alpha_{cw}*v*fcd = 5.12$
Asw/s,ins =	18.48	cm2/m	Area staffe inserita
$V_{Rd,s}$ =	3 905	kN	=Asw/s*z* fywd *cotθ

Resistenza lato calcestruzzo (puntone compresso inclinato)

		(15-	,
ν=	0.516		=0.6*(1-fck/250) (from EN 6.6N)
σcp =	0.00		=Nsd/Ac
$\alpha_{\text{cw}} =$	1.00		
$V_{Rd,max} =$	7 622	kN	$=\alpha_{cw}^*bw^*z^*v^*fcd/(cot\theta+tan\theta)$
γ_{Bd1}	1.25		coefficiente di sicurezza (EN1998-2-5.6.2.b)
$V_{Ed} =$	3 080	kN	
V_{Rd} =	3 124	kN	=min($V_{Rd,s}$; $V_{Rd,max}$)/ γ_{Bd1}
c.s. =	0.99	<=1	

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO
RS2S 02 D 09 CL VI0705 001 A 81 di 103

11 CALCOLO E VERIFICA PILA 1

11.1 Azione sismica

La stessa della pila precedente.

11.2 Dati generali

Dati fusto pila e pulvino	L(m)	T(m)	H(m)	A(mq) P(kN)
Fusto pila	3.2	11.8	4.09	15.67 1 602
Pulvino	3.2	11.8	2	1 888
Peso totale pila				3 490
Geometria				
Altezza totale pila, compreso pulvino	h	6.09 m		
Distanza pf - sottotrave (in asse appoggi)	h1	3.29 m		
Distanza sottotrave - testa pila	h2	0.5 m		
Distanza pf - testa pila	h3	3.79 m		
Distanza centro rotazione appoggi - testa pila	h4	0.4 m		
Distanza baricentro masse impalcato - testa pila	h5	2.99 m		
Distanza pf - spiccato pila	h6	9.88 m		
Distanza pf - intradosso fondazione	h7	12.38 m		
Impalcato		SX	dx	totale
Tipo appoggio		М	F	
Luce in asse pila		25	25	m
Distanza asse appoggi - asse pila		1.1	1.1	m
Luce in asse appoggi		22.8	22.8	m
Pesi propri	G1	258.1	258.1	kN/ml
Permanenti portati	G2	202.3	202.3	kN/ml
Permanenti	G	460.4	460.4	kN/ml
Peso treno equivalente x0.2	Q1x0.2	46	46	kN/ml
Massa sismica	M	506.4	506.4	kN/ml
	0.4	2 222	0.000	0.450 LN
Pesi propri	G1	3 226	3 226	6 453 kN
Permanenti portati	G2	2 529	2 529	5 058 kN
Permanenti	G	5 755	5 755	11 510 kN
Massa sismica	M	6 330	6 330	12 660 kN

PROGETTO DEFINITIVO

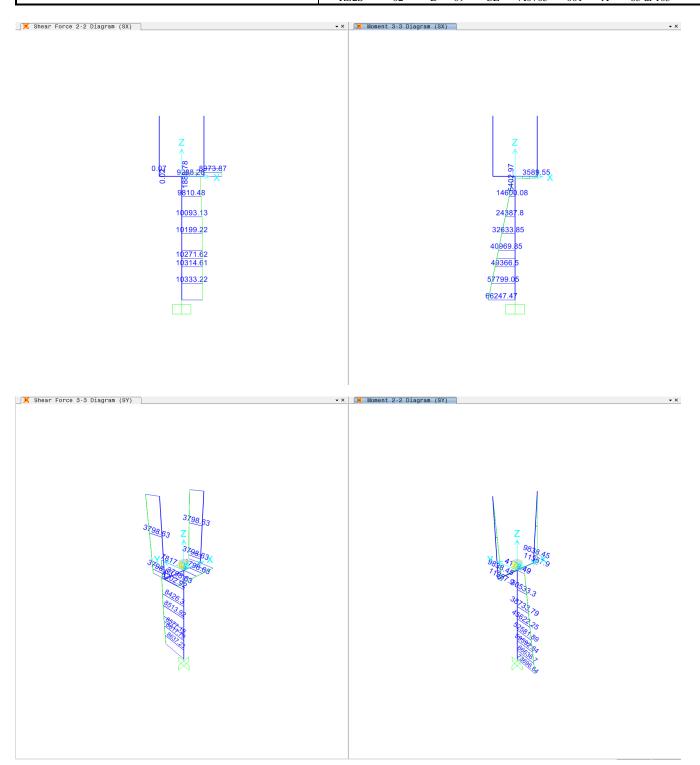
RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 82 di 103

11.3 Analisi sismica

Analisi sismica		Semplificata			Dinamica mod	dale	
Direzione		Long	Trasv	Vert			
Dist baricentro masse impal - spiccato pila	hp	6.49	9.08	9.08 m			
Modulo elastico pila	Ec	33 346	33 346	33 346 MPa	Tipo analisi effe	ettuata	
Inerzia pila (Area pila per verticale)	If	21.3	172.4	15.7 m4	2 Di	namica moda	le
Riduzione per rigidezza fessurata		1.0	1.0	1.0 -			
Rigidezza oscillatore elementare equivalente		7.79E+06	2.30E+07	5.75E+07 kN/m			
Massa sismica impalcato	Pi	12 660	12 660	12 660 kN			
Massa efficace pila	Ppeff	2 297	2 297	2 297 kN			
Massa complessiva	P=Pi+Ppeff	14 957	14 957	14 957 kN			
I/5 Massa sismica impalcato	1/5*Pi	2 532	2 532	2 532 kN			
Massa efficace pila	Ppeff	2 297	2 297	2 297 kN			
Verifica requisito	Ppeff≤1/5*Pi ?	si	si	si -			
Periodo proprio	Т	0.09	0.05	0.03 sec	0.10	0.06	0.02 sec
	q	Ordinata spettrale (S)					
	1	0.646	0.530	0.538 g			
	1.36	0.522	0.457	0.538 g			
	1.5	0.490	0.439	0.538 g			
	q	Taglio/Sfor	Norm allo spi	ccato pila	Taglio/Sfor N	orm allo spico	ato pila
	1	9 660	7 921	8 041 kN	10 333	8 637	7 250 kN
	1.36	7 805	6 841	8 041 kN	8 149	7 264	7 250 kN
	1.5	7 324	6 561	8 041 kN	7 583	6 908	7 250 kN
	q	Moment	o allo spiccat	to pila	Momento	allo spiccato	pila
	1	62 696	71 920	kNm	66 248	73 696	kNm
	1.36	50 652	62 119	kNm	52 237	61 974	kNm
	1.5	47 530	59 578	kNm	48 605	58 936	kNm
	1	Rapporto ris	ultati dinami	ca modale - semplificata		orm allo spico	
					1.07	1.09	0.90 -
					1.04	1.06	0.90 -
					1.04	1.05	0.90 -
						allo spiccato	pila
					1.06	1.02	-
					1.03	1.00	-
					1.02		_



DIRETTRICE FERROVIARIA MESSINA-CATANIA-PALERMO

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 83 di 103

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S D 09 CL VI0705 001 84 di 103

11.4 Carichi da traffico

Carico	verticale	da	traffico	ferroviario

	N°binari	Azioni quota testa pila (a (kN;kNm)
	2	N	ML	MT
Condizione	N max	5 762	354	824
Condizione	ML max	3 553	3 920	548
Condizione	MT max	3 030	-446	6 045
Condizione	Inviluppo	5 762	3 920	6 045

Carico verticale massimo da traffico sul piano appoggi

		37	ux
Carico verticale	N max	3 559	3 559
Luce impalcato asse appoggi	Lc	22.8	22.8
Coefficiente dinamico	Ф3	1.202	1.202
Carico verticale dinamizzato	N	4 278	4 278

Attrito		sx	dx	
Permanenti	G	5 755	5 755 kN	
Carico mobile dinamizzato	Q1*Φ	4 278	4 278 kN	
Coefficients di attrita in condizione atatiche		0.02		

Coefficiente di attrito in condizione statiche		0.03
Attrito permanente	$maxG*0.2*\Phi$	35 kN
Attrito mobili dinamizzati	$maxQ^*\Phi$	128 kN

Frenatura

luce campata carica	L	25 m
a livello binario	HL	1 783 kN
a quota tosta nila	MI	6 758 kNm

Serpeggio

a livello binario	HT	210 kN
a quota testa pila	MT	796 kNm

Centrifuga

raggio planimetrico	R	1 300 m
velocità di progetto	V	160 km/h
lunghezza di influenza		25 [°] m
Reazione del singolo treno	Qv	

Reazione del singolo treno

Reazione dei singolo treno	٩v				
Sulla pila	v (km/h)	alfa	f	Coeff	Qv (kN) FT (kN)
LM71 v>120; caso a	160	1	0.82	0.127	2 485 316
LM71 v>120; caso b	120	1.1	1.00	0.096	2 733 262
LM71 v≤120; caso a	120	1.1	1.00	0.096	2 733 262
LM71 (caso utilizzato)					316
SW2	100	1	1.00	0.061	3 030 184
Valore utilizzato					499
Al piano appoggi - sx	v (km/h)	alfa	f	Coeff	Qv (kN) FT (kN)
LM71 v>120; caso a	160	1	0.82	0.127	1 535 195
LM71 v>120; caso b	120	1.1	1.00	0.096	1 688 162
LM71 v≤120; caso a	120	1.1	1.00	0.096	1 688 162
LM71 (caso utilizzato)					162
SW2	100	1	1.00	0.061	1 879 114
Valore utilizzato					276
Al piano appoggi - dx	v (km/h)	alfa	f	Coeff	Qv (kN) FT (kN)
LM71 v>120; caso a	160	1	0.82	0.127	1 535 195
LM71 v>120; caso b	120	1.1	1.00	0.096	1 688 162
LM71 v≤120; caso a	120	1.1	1.00	0.096	1 688 _ 162
LM71 (caso utilizzato)					162
SW2	100	1	1.00	0.061	1 879 114
Valore utilizzato					276

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 - VIADOTTO SATANOPROGETTOLOTTO FASE ENTECOD.DOC.PROG.REV.FOGLIORELAZIONE DI CALCOLO PILERS2S02D09CLVI0705001A85 di 103

11.5 Vento

Azione del vento - generale - NTC08 e EC 1-1-4:2005	•			
Condizione (ponte carico o scarico)		scarico	carico	
Altitudine sul livello del mare	as	25	25 m	1
Zona	Z	4	4 -	
Parametri	$V_{b,0}$	28	25 m	ı/s
Parametri	a_0	500	500 m	Ì
Parametri	k _a	0.020	0.020 1/	's
Velocità di riferimento (Tr=50 anni)	$v_b = v_{b0} + k_a^*(a_s - a_0)$	28	25 m	ı/s
Periodo di ritorno considerato	T _R	75	75 aı	nni
	α_{f}	1.02	1.02 -	
Velocità di riferimento	V_{D}	28.7	25.6 m	ı/s
Densità dell'aria	ρ	1.25	1.25 kg	g/m3
pressione cinetica di riferimento	$q_b = 0.5^* \rho^* v_b^2$	0.51	0.41 kl	-
Classe di rugosità del terreno	40 0:0 b 10	D'	D	· · · · · –
Distanza dalla costa		< 10 km	D	
Altitudine sul livello del mare		< 500 m	< 500 m	
	Cot	2 300 111	2 300 111	
Categoria di esposizione del sito	Cat		2	
Vento su impalcato Altezza di riferimento per l'impalcato (EC punto 8.3.1(6))	7	12	12 m	
	Z			I
parametri	k _r	0.19	0.19	
parametri	z_0	0.05	0.05 m	
parametri	Z _{min}	4	4 m	
parametri	Z _{max}	200	200 m	ı
Coefficiente di topografia	Ct	1	1	
coefficiente di esposizione (z≤z_min)	$c_e(z_{min})$	1.80	1.80 -	
coefficiente di esposizione (z)	c _e (z)	2.47	2.47 -	
Coefficiente di esposizione	Ce	2.47	2.47 -	
Larghezza impalcato	b	13.7	13.7 m	1
Altezza totale impalcato (comprese le barriere o treno)	dtot	7.83	7.83 m	1
Rapporto di forma	b/dtot	1.75	1.75 -	
Coefficiente di forza (figura 8.3 EC)	cfx	1.91	1.91 -	
Riepilogo				
Pressione cinetica di riferimento	q_b	0.51	0.41 kl	N/m2
Coefficiente di esposizione	C _e	2.47	2.47 -	
Coefficiente di forza	cfx	1.91	1.91 -	
Altezza di riferimento (EC punto 8.3.1 (4) e (5))	d	11.83	7.83 -	
Forza statica equivalente a m/l	f=prodotto	28.64	15.11 kl	N/ml
Pressione statica equivalente	p=f/dtot	2.42	1.93 kl	
Pressione statica equivalente (minima considerata)	pmin	1.50	1.50 kl	
Forza statica equivalente a m/l considerata	, t	28.64	15.11 kl	
Vento impalcato a ponte scarico		sx	dx	totale
Forza statica equivalente	f	28.64	28.64	kN/m
Luce impalcato	L	25	25	m
Forza trasversale al piano appoggi	FT=f*L/2	358	358	716 kN
Momento trasversale al piano appoggi	MT=FT*(dtot/2+h2)	1 580	1 580	3 161 kNm
Vento impalcato a ponte carico		SX	dx	totale
Forza statica equivalente	f	15.11	15.11	kN/m
·			25	
Luce impalcato	L	20	20	111
Luce impalcato Forza trasversale al piano appoggi	∟ FT=f*L/2	25 189	1 89	m 378 kN

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO
RS2S 02 D 09 CL VI0705 001 A 86 di 103

Vento su pila e pulvino		scarico	carico
Altezza di riferimento per pila e pulvino (EC punto 7.6(2))	Z	6.09	6.09 m
Coefficiente di esposizione (z)	$c_{e}(z)$	2.05	2.05 -
Coefficiente di esposizione	C _e	2.05	2.05 -
Pulvino			
Dimensione ortogonale alla direzione del vento	b	3.2	3.2 m
Dimensione parallela alla direzione del vento	d	11.8	11.8 m
Rapporto di forma	d/b	3.69	3.69 -
Coefficiente di forza (figura 7.23 EC)	cf0	1.32	1.32 [*] -
Riepilogo			
Pressione cinetica di riferimento	q_b	0.51	0.41 kN/m2
Coefficiente di esposizione	C _e	2.05	2.05 -
Coefficiente di forza	cf0	1.32	1.32 -
Dimensione parallela alla direzione del vento	b	3.2	3.2 -
Forza statica equivalente a m/l	f=prodotto	4.44	3.54 kN/ml
Pressione statica equivalente	p=f/b	1.39	1.11 kN/m2
Pressione statica equivalente (minima considerata)	pmin	0.00	0.00 kN/m2
Forza statica equivalente a m/l considerata	f	4.44	3.54 kN/ml
Lunghezza dell'elemento	L	2	2 m
Forza statica equivalente	FT=f*H	8.9	7.1 kN
Pila			
Dimensione ortogonale alla direzione del vento	b	3.2	3.2 m
Dimensione parallela alla direzione del vento	d	11.8	11.8 m
Rapporto di forma	d/b	3.69	3.69 -
Coefficiente di forza (figura 7.23 EC)	cf0	1.32	1.32 -
Riepilogo			
Pressione cinetica di riferimento	q _b	0.51	0.41 kN/m2
Coefficiente di esposizione	C _e	2.05	2.05 -
Coefficiente di forza	cf0	1.32	1.32 -
Dimensione parallela alla direzione del vento	b	3.2	3.2 -
Forza statica equivalente a m/l	f=prodotto	4.44	3.54 kN/ml
Pressione statica equivalente	p=f/b	1.39	1.11 kN/m2
Pressione statica equivalente (minima considerata)	pmin	0.00	0.00 kN/m2
Forza statica equivalente a m/l considerata	' f	4.44	3.54 kN/ml
Lunghezza dell'elemento	L	4.09	4.09 m
Forza statica equivalente	FT=f*H	18.2	14.5 kN

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 87 di 103

11.6 Azioni caratteristiche e dati fondazione

Azioni allo spiccato pila	Valori carat	teristici			
	N	HL	HT	ML	MT
	kN	kN	kN	kNm	kNm
Impalcato - Pesi propri	6 453			0	
Impalcato - Permamenti portati	5 058			0	
Traffico ferroviario - Carico verticale - Nmax	5 762			354	824
Traffico ferroviario - Carico verticale - ML max	3 553			3 920	548
Traffico ferroviario - Carico verticale - MT max	3 030			446	6 045
Traffico ferroviario - Carico verticale - inviluppo	5 762			3 920	6 045
Traffico ferroviario - Frenatura		1 783		17 616	
Traffico ferroviario - Centrifuga			499		5 830
Traffico ferroviario - Serpeggio			210		2 075
Vento a ponte scarico - Impalcato			716		7 521
Vento a ponte scarico - Pulvino			9		45
Vento a ponte scarico - Pila			18		37
Vento a ponte carico - Impalcato			378		3 968
Vento a ponte carico - Pulvino			7		36
Vento a ponte carico - Pila			14		30
Attrito - Permanente		35		224	
Attrito - Carichi mobili dinamizzati		128		833	
Sisma q=1 - Long 100%		10 333		66 248	
Sisma q=1 - Trasv 100%			8 637		73 696
Sisma q=1 - Vert 100%	7 250				
Sisma q=1.36 - Long 100%		8 149		52 237	
Sisma q=1.36 - Trasv 100%			7 264		61 974
Sisma q=1.36 - Vert 100%	7 250				
Sisma q=1.5 - Long 100%		7 583		48 605	
Sisma q=1.5 - Trasv 100%			6 908		58 936
Sisma q=1.5 - Vert 100%	7 250				
Pila - Peso proprio	3 490				
Pesi fondazione e rinterro	Valori caratteristici				
Fondazione - Peso proprio	9 000				
Ricoprimento plinto - Peso proprio	2 868				

Dati plinto e riempimento				
	dir Long	dir Trasv	spessore	n° pali
Numero file pali	3	3		9
Interasse pali (m)	4.5	4.5		
Distanza dal bordo (m)	1.5	1.5		
Dimensioni plinto (m)	12	12	2.5	
Modulo minimo palificata (m)	27	27		
Diametro pali (m)	1.5			
Area pila fuori tutto	37.76	mq		
Spessore riempimento	1.5	m		
Peso specifico riemp.	18	kN/m3		

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

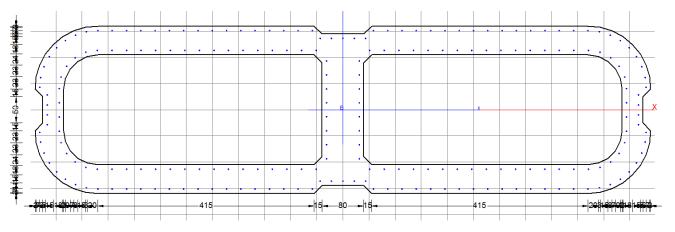
PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 88 di 103

11.7 Combinazioni di carico

Identiche alla pila precedente.

11.8 Verifica a pressoflessione pila

Azioni allo spiccato pila - Valori combinati						wk	sc	SS	c.s.(>1)
Combinazione	N	HL	HT	ML	MT	mm	MPa	MPa	-
SLE_qp	15 001	35	0	225	0	0.000	0.89	12.9	
SLE_Rara_Fess_Traffico_gr4_Nmax	18 458	1 182	666	11 507	7 659	0.000	1.75	2.7	
SLE_Rara_Fess_Traffico_gr4_MLmax	17 133	1 182	666	13 646	7 493	0.001	1.77	-0.4	
SLE_Rara_Fess_Traffico_gr4_MTmax	16 819	1 182	666	11 562	10 791	0.000	1.73	0.1	
SLE_Rara_Fess_Vento_ponte_scarico	15 001	35	744	225	7 604	0.000	1.08	9.9	
SLE_Rara_Traffico_gr1_Nmax	20 763	1 055	949	10 220	11 150		1.91	4.7	
SLE_Rara_Traffico_gr1_MLmax	18 554	1 055	949	13 786	10 874		1.93	-0.5	
SLE_Rara_Traffico_gr1_MTmax	18 031	1 055	949	10 311	16 371		1.88	0.4	
SLE_Rara_Traffico_gr3_Nmax	20 763	1 946	595	19 028	7 198		2.21	-2.6	
SLE_Rara_Traffico_gr3_MLmax	18 554	1 946	595	22 594	6 922		2.31	-18.5	
SLE_Rara_Traffico_gr3_MTmax	18 031	1 946	595	19 119	12 418		2.25	-10.5	
SLE_Rara_Vento_ponte_scarico	15 001	35	744	225	7 604		1.08	9.9	
SLUup_A1_Traffico_gr1_Nmax	29 364	1 526	1 388	14 796	16 289				6.46
SLUup A1 Traffico gr1 MLmax	26 161	1 526	1 388	19 967	15 889				4.63
SLUup_A1_Traffico_gr1_MTmax	25 403	1 526	1 388	14 929	23 858				5.87
SLUup A1 Traffico gr3 Nmax	29 364	2 819	874	27 568	10 557				3.54
SLUup_A1_Traffico_gr3_MLmax	26 161	2 819	874	32 738	10 158				2.86
SLUup_A1_Traffico_gr3_MTmax	25 403	2 819	874	27 701	18 127				3.31
SLUup_A1_Vento_ponte_scarico	21 009	47	1 115	303	11 406				26.74
SLUIow A1 Traffico gr1 Nmax	23 356	1 514	1 388	14 718	16 289				5.97
SLUIow_A1_Traffico_gr1_MLmax	20 153	1 514	1 388	19 888	15 889				4.27
SLUIow_A1_Traffico_gr1_MTmax	19 394	1 514	1 388	14 850	23 858				5.42
SLUlow A1 Traffico gr3 Nmax	23 356	2 806	874	27 489	10 557				3.27
SLUIow_A1_Traffico_gr3_MLmax	20 153	2 806	874	32 660	10 158				2.63
SLUlow_A1_Traffico_gr3_MTmax	19 394	2 806	874	27 622	18 127				3.05
SLUIow A1 Vento ponte scarico	15 001	35	1 115	225	11 406				24.57
SLVq1_PrevX_Zpos	18 328	10 720	2 733	70 751	24 899				_
SLVq1_PrevY_Zpos	18 328	3 487	8 779	24 377	76 486				-
SLVq1 PrevZpos	23 403	3 487	2 733	24 377	24 899				_
SLVq1_PrevX_Zneg	13 978	10 720	2 733	70 751	24 899				_
SLVq1 PrevY Zneg	13 978	3 487	8 779	24 377	76 486				_
SLVq1 PrevZneg	8 903	3 487	2 733	24 377	24 899				_
SLVq1.36 PrevX Zpos	18 328	8 536	2 322	56 740	21 383				
SLVq1.36 PrevY Zpos	18 328	2 832	7 406	20 174	64 764				_
SLVq1.36 PrevZpos	23 403	2 832	2 322	20 174	21 383				_
SLVq1.36_PrevX_Zneg	13 978	8 536	2 322	56 740	21 383				_
SLVq1.36 PrevY Zneg	13 978	2 832	7 406	20 174	64 764				_
SLVq1.36 PrevZneg	8 903	2 832	2 322	20 174	21 383				_
SLVq1.50 PrevX Zpos	18 328	7 970	2 215	53 108	20 471				1.57
SLVq1.50_FrevY_Zpos	18 328	2 662	7 050	19 085	61 726				3.57
SLVq1.50_PrevZpos	23 403	2 662	2 215	19 085	20 471				4.61
SLVq1.50_FrevX_Zneg	13 978	7 970	2 215	53 108	20 471				1.46
SLVq1.50_FrevX_Zneg	13 978	2 662	7 050	19 085	61 726				3.34
SLVq1.50_FrevT_zneg	8 903	2 662	2 215	19 085	20 471				3.63


DIRETTRICE FERROVIARIA MESSINA-CATANIA-PALERMO

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 89 di 103

Riepilogo verifica spiccato	wk	sc	SS	c.s.(>1)			
	mm	MPa	MPa	-			
SLS_qp	0.000	0.89	12.9				
SLS_Rara_Fess	0.001	1.77	-0.4				
SLS_Rara		2.31	-18.5				
SLU_A1				2.63			
SLV - q=1				0.00			
SLV - q=1 SLV - q=1.36				0.00			
SLV - q=1.5				1.46			

218 Ø 24

Af tot = 986.21 (0.63 %)

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 90 di 103

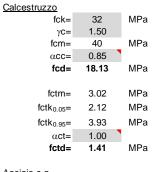
11.9 Verifica a taglio pila

La verifica viene condotta per le singole anime ripartendo il carico in base ai rapporti di rigidezza a taglio.

Anima	num	b	h	Α	k=A/Atot
-	-	m	m	mq	-
laterale	1	0.4	2.5	1	0.23
laterale	1	0.4	2.5	1	0.23
centrale	1	0.8	2.9	2.32	0.54
somma				4.32	1

Pila		1	1
Direzione		Long	Trasv
Altezza pila	H(m)	6.09	6.09
fattore di struttura	q	1.5	1.5
fattore di sovraresistenza (eq 7.9.7)		1	1
fattore di sovraresistenza filtrato (eq 7.9.7)	grd	1	1
taglio derivante dall'analisi (con q=1)	V	10 720	8 779
momento corrispondente alla base della pila (con q=1))	M	70 751	76 486
taglio derivante dall'analisi (con q)	Ved	7 970	7 050
momento corrispondente alla base della pila (con q)	Med	53 108	61 726
momento resistente alla base della pila	Mrd	77 538	206 165
Rapporto di sovraresistenza	Mrd/Med	1.46	3.34
Tipo sezione (EC 8-2; eq 6.11)		non critica	non critica
angolo inclinazione bielle compresse	Teta	da calc	da calc
limite superiore per Vgr	Vgr,max=V	10 720	8 779
taglio di progetto per la gerarchia della resistenza (da calcolo) (eq. 7.9.12)	Vgr	11 636	23 547
taglio di progetto per la gerarchia della resistenza (filtrato)	Vgr	10 720	8 779
fattore di sicurezza aggiuntivo per la resistenza a taglio (eq 7.9.10)	grd	1.13	1.05
fattore di sicurezza aggiuntivo per la resistenza a taglio, filtrato (eq 7.9.10)	grd	1.13	1.05
Riassumendo			
Taglio di calcolo	Vgr	10 720	8 779
fattore di sicurezza aggiuntivo filtrato (eq 7.9.10)	grd	1.13	1.05
angolo inclinazione bielle compresse	Teta	da calc	da calc

PROGETTO DEFINITIVO


RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

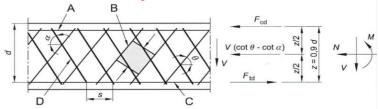
VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 91 di 103

Taglio longitudinale - Setto centrale

Verifica a taglio secondo EC2-2

<u>Taglio</u>		γ	
Gk	0	x1.00=	0 kN
Pk	0	x1.00=	0 kN
Qk	0	x1.00=	0 kN
Aed	10 720	x0.54=	5789 kN
		V _{Ed} =	5789 kN


Nsd= 0 kN Sforzo normale

	fctd=	1.41	MPa
Acciaio c	<u>.a.</u>		
	fyk=	450	MPa
	γs=	1.15	
	fvd=	391.3	MPa

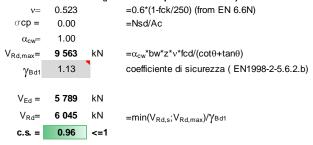
Geometria

COITIC	tiia		
bw =	0.800	m	Larghezza (6.16)
h=	2.900	m	Altezza totale
c=	0.100	m	Copriferro
d =	2.800	m	Altezza utile
Ac=	2.32	mq	Area

Elementi CA e CAP armati a taglio

mm Diametro staffa

Armatura a taglio


Puntoni Corrente teso

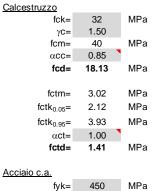
Resistenza lato acciaio (staffe)

14

φw=	14	1111111	Diametro Stalla		
n=	9.00	-	Numero braccia		
Asw=	13.85	cm2			
z=	2.52	m	=0.9*d		
senα=	1		angolo tra le staffe e l'asse della	trave (=90° per stat	ffe verticali)
ρw=	0.87	%	$=Asw/(s*bw*sin\alpha)*100 >=$	0.10 %	=(0.08*radq(fck))/fyk*100
s=	0.2	m	=passo staffe <=	2.10 m	=0.75*d*(1+cotα)
θ=	45.0	0	=arcsen(radq(Asw*fyd)/(bw*s*acv	w*n*fcd))	
			inclinazione puntone compresso,	, variabile tra 45° to	21.8°
tanθ=	1.00	-	valore tra 1 (for q=45°) e 0.4		
cotθ=	1.00	-	valore tra 1 (for q=45°) and 2.5		
ρ w ,max=	3.39	=	$A_{sw,max}$ *fyd/(bw*s)<=1/2* α_{cw} *v*fo	cd = 4.74	
Asw/s,ins =	69.27	cm2/m	Area staffe inserita		
$V_{Rd,s}$ =	6 831	kN	=Asw/s*z* fywd *cotθ		

Resistenza lato calcestruzzo (puntone compresso inclinato)

PROGETTO DEFINITIVO


RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 - VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S VI0705 001 D 09 CL92 di 103

Taglio longitudinale - Setto laterale

Verifica a taglio secondo EC2-2

<u>Taglio</u>		γ	
Gk	0	x1.00=	0 kN
Pk	0	x1.00=	0 kN
Qk	0	x1.00=	0 kN
Aed	10 720	x0.23=	2466 kN
		V _{Ed} =	2466 kN

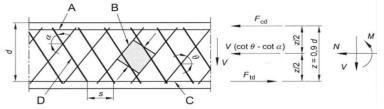
Nsd= 0 Sforzo normale

Geometria

bw = 0.400Larghezza (6.16) m h= 2.500 Altezza totale m Copriferro c = 0.100m d = 2.400Altezza utile m Ac= 1.00 ma Area

Corrente compresso

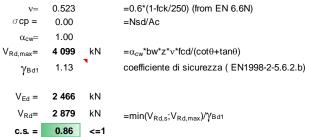
Puntoni Corrente teso Armatura a taglio


Elementi CA e CAP armati a taglio

1.15

391.3

γs=

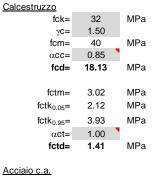

fyd=

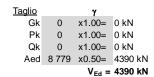
Resistenza lato acciaio (staffe)

φw=	14	mm	Diametro staffa							
n=	5.00		Numero braccia							
Asw=	7.70	cm2								
z=	2.16	m	=0.9*d							
senα=	1		angolo tra le staffe e l'asse della tra	ave (=90° per sta	affe verticali)					
ρW=	0.96	%	=Asw/(s*bw*sinα)*100 >=	0.10 %	=(0.08*radq(fck))/fyk*100					
S=	0.2	m	=passo staffe <=	1.80 m	$=0.75*d*(1+cot\alpha)$					
θ=	45.0	٥	=arcsen(radq(Asw*fyd)/(bw*s*acw*n*fcd))							
			inclinazione puntone compresso, v	ariabile tra 45° t	o 21.8°					
tanθ=	1.00	-	valore tra 1 (for q=45°) e 0.4							
cotθ=	1.00	-	valore tra 1 (for q=45°) and 2.5							
ρ w,max=	3.76	=	$A_{sw,max}$ *fyd/(bw*s)<=1/2* α_{cw} * ν *fcd	= 4.74						
Asw/s,ins =	38.48	cm2/m	Area staffe inserita							
$V_{Rd,s} =$	3 253	kN	=Asw/s*z* fywd *cotθ							

Resistenza lato calcestruzzo (puntone compresso inclinato)

PROGETTO DEFINITIVO


RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO


VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 93 di 103

Taglio trasversale

Verifica a taglio secondo EC2-2

Nsd= **0** kN Sforzo normale

Geometria

0000			
bw =	0.550	m	Larghezza (6.16)
h=	11.100	m	Altezza totale
c=	0.100	m	Copriferro
d =	11.000	m	Altezza utile
Ac=	6.11	mq	Area

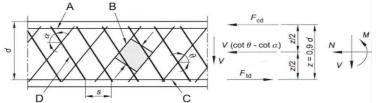
Corrente compresso

Puntoni Corrente teso Armatura a taglio

Elementi CA e CAP armati a taglio

450

1.15


391.3

MPa

MPa

fyk=

 $\gamma s = fyd =$

Resistenza lato acciaio (staffe)

V_{Rd,s}= **14 910**

olotoliza late	acciaic (ci	u,					
φw=	14	mm	Diametro staffa				
n=	2.00	-	Numero braccia				
Asw=	3.08	cm2					
z=	9.90	m	=0.9*d				
senα=	1		angolo tra le staffe e l'asse delle	a trave (=9	90°	per sta	affe verticali)
ρw=	0.28	%	=Asw/(s*bw*sin α)*100 >=	0.	10	%	=(0.08*radq(fck))/fyk*100
s=	0.2	m	=passo staffe <=	8.	25	m	$=0.75*d*(1+cot\alpha)$
θ =	21.8	0	=arcsen(radq(Asw*fyd)/(bw*s*a	cw*n*fcd)))		
			inclinazione puntone compress	o, variabile	e tra	45° to	o 21.8°
tanθ=	0.40	-	valore tra 1 (for q=45°) e 0.4				
cotθ=	2.50	-	valore tra 1 (for q=45°) and 2.5				
ρw,max=	1.10	=	$A_{sw,max}*fyd/(bw*s)<=1/2*\alpha_{cw}*v^*$	*fcd = 4.	74		
Asw/s,ins =	15.39	cm2/m	Area staffe inserita				

Resistenza lato calcestruzzo (puntone compresso inclinato)

onza lato	ou i o o o ci ui	(60	michie compresse memate,
ν=	0.523		=0.6*(1-fck/250) (from EN 6.6N)
σcp =	0.00		=Nsd/Ac
$\alpha_{\text{cw}} =$	1.00		
$V_{Rd,max} =$	17 812	kN	$=\alpha_{cw}$ *bw*z*v*fcd/(cot θ +tan θ)
γ_{Bd1}	1.05		coefficiente di sicurezza (EN1998-2-5.6.2.b)
$V_{Ed} =$	4 390	kN	
V_{Rd} =	14 200	kN	=min($V_{Rd,s}$; $V_{Rd,max}$)/ γ_{Bd1}
c.s. =	0.31	<=1	

 $kN = Asw/s*z* fywd *cot\theta$

DIRETTRICE FERROVIARIA MESSINA-CATANIA-PALERMO

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 94 di 103

11.10 Carichi sui pali

Azioni all'intradosso fondazione - Valori con	mbinati					Carichi sui	pali	
Combinazione	N	HL	HT	ML	MT	Np max	Np min	Hp max
SLE_qp	26 869	35	0	312	0	2 997	2 974	4
SLE_Rara_Fess_Traffico_gr4_Nmax	30 326	1 182	666	14 462	9 324	4 251	2 489	151
SLE_Rara_Fess_Traffico_gr4_MLmax	29 001	1 182	666	16 601	9 158	4 177	2 269	151
SLE_Rara_Fess_Traffico_gr4_MTmax	28 687	1 182	666	14 517	12 456	4 187	2 189	151
SLE_Rara_Fess_Vento_ponte_scarico	26 869	35	744	312	9 464	3 348	2 624	83
SLE_Rara_Traffico_gr1_Nmax	32 631	1 055	949	12 857	13 523	4 603	2 649	158
SLE_Rara_Traffico_gr1_MLmax	30 422	1 055	949	16 423	13 247	4 480	2 282	158
SLE_Rara_Traffico_gr1_MTmax	29 899	1 055	949	12 949	18 743	4 496	2 149	158
SLE_Rara_Traffico_gr3_Nmax	32 631	1 946	595	23 893	8 685	4 833	2 420	227
SLE_Rara_Traffico_gr3_MLmax	30 422	1 946	595	27 459	8 409	4 709	2 052	227
SLE_Rara_Traffico_gr3_MTmax	29 899	1 946	595	23 984	13 906	4 726	1 919	227
SLE_Rara_Vento_ponte_scarico	26 869	35	744	312	9 464	3 348	2 624	83
SLUup_A1_Traffico_gr1_Nmax	45 387	1 526	1 388	18 611	19 759	6 465	3 622	230
SLUup_A1_Traffico_gr1_MLmax	42 184	1 526	1 388	23 782	19 359	6 285	3 090	230
SLUup A1 Traffico gr1 MTmax	41 425	1 526	1 388	18 744	27 328	6 310	2 897	230
SLUup_A1_Traffico_gr3_Nmax	45 387	2 819	874	34 615	12 742	6 797	3 290	328
SLUup_A1_Traffico_gr3_MLmax	42 184	2 819	874	39 786	12 343	6 618	2 757	328
SLUup_A1_Traffico_gr3_MTmax	41 425	2 819	874	34 748	20 312	6 643	2 564	328
SLUup A1 Vento ponte scarico	37 032	47	1 115	421	14 193	4 656	3 574	124
SLUlow A1 Traffico gr1 Nmax	35 224	1 514	1 388	18 503	19 759	5 331	2 497	229
SLUlow_A1_Traffico_gr1_MLmax	32 021	1 514	1 388	23 673	19 359	5 152	1 965	229
SLUlow A1 Traffico gr1 MTmax	31 263	1 514	1 388	18 635	27 328	5 176	1 772	229
SLUlow A1 Traffico gr3 Nmax	35 224	2 806	874	34 504	12 742	5 664	2 164	327
SLUIow_A1_Traffico_gr3_MLmax	32 021	2 806	874	39 675	12 343	5 485	1 632	327
SLUIow_A1_Traffico_gr3_MTmax	31 263	2 806	874	34 637	20 312	5 509	1 439	327
SLUlow A1 Vento ponte scarico	26 869	35	1 115	312	14 193	3 523	2 449	124
SLVq1_PrevX_Zpos	30 197	10 720	2 733	97 551	31 732	8 144	-1 433	1 230
SLVq1_PrevY_Zpos	30 197	3 487	8 779	33 095	98 434	8 227	-1516	1 050
SLVq1_PrevZpos	35 272	3 487	2 733	33 095	31 732	6 321	1 519	493
SLVq1_PrevX_Zneg	25 847	10 720	2 733	97 551	31 732	7 661	-1916	1 230
SLVq1_PrevY_Zneg	25 847	3 487	8 779	33 095	98 434	7 744	-1999	1 050
SLVq1 PrevZneg	20 772	3 487	2 733	33 095	31 732	4 709	-93	493
SLVq1.36_PrevX_Zpos	30 197	8 536	2 322	78 080	27 188	7 255	-543	983
SLVq1.36_PrevY_Zpos	30 197	2 832	7 406	27 254	83 279	7 450	-738	882
SLVq1.36_PrevZpos	35 272	2 832	2 322	27 254	27 188	5 936	1 903	407
SLVq1.36_PrevX_Zneg	25 847	8 536	2 322	78 080	27 188	6 771	-1026	983
SLVq1.36_PrevY_Zneg	25 847	2 832	7 406	27 254	83 279	6 966	-1 221	882
SLVq1.36_PrevZneg	20 772	2 832	2 322	27 254	27 188	4 325	292	407
SLVq1.50_PrevX_Zpos	30 197	7 970	2 215	73 033	26 009	7 024	-313	920
SLVq1.50 PrevY Zpos	30 197	2 662	7 050	25 740	79 351	7 248	-537	838
SLVq1.50_FTeVT_2pos SLVq1.50 PrevZpos	35 272	2 662	2 215	25 740	26 009	5 836	2 003	385
SLVq1.50_PrevX_Zneg	25 847	7 970	2 215	73 033	26 009	6 541	-796	920
SLVq1.50_PrevY_Zneg	25 847	2 662	7 050	25 740	79 351	6 765	-1020	838
SLVq1.50_PrevZneg	20 772	2 662	2 215	25 740	26 009	4 225	392	385
SLVq1.30_Prevzneg	20 7 7 2	2 002	2 2 1 3	25 740	20 009	4 225	392	363
Riepilogo carichi sui pali	Np max	Np min	Hp max					
SLS qp	2 997	2 974	4					
SLS Rara Fess								
	4 251	2 189	151					
SLS_Rara	4 833	1 919	227					
SLU_A1	6 797	1 439	328					
SLV - q=1	8 227	-1 999	1 230					
SLV - q=1.36	7 450	-1 221	983					
SLV - q=1.5	7 248	-1 020	920					

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 95 di 103

11.11 Verifica palo per forze orizzontali

Le sollecitazioni sono simili e inferiori a quelle della pila 4. Si riporta solo la verifica con Broms visto le caratteristiche diverse del terreno. Per il resto, vale quanto fatto sulla pila 4.

11.11.1 Capacità portante orizzontale (Broms)

	coefficier	nti parziali		Α	١	N	1	R	quot	a strato 1	Ш	1
	Metodo	di calcolo		permanenti γ _G	variabili γα	γ_{ϕ^i}	γ̄cu	γт		q. falda	11	13/13/
	A1+M1+R	:1	0	1.30	1.50	1.00	1.00	1.00		=		l
SLU	A2+M1+R	2	0	1.00	1.30	1.00	1.00	1.60	quota	a strato 2	╢	
SI	A1+M1+R	3	0	1.30	1.50	1.00	1.00	1.30		ž		l
	SISMA		•	1.00	1.00	1.00	1.00	1.30		>		Ŀ
88MC			0	1.00	1.00	1.00	1.00	1.00		*		E .
definiti da	al progettista	а	0	1.00	1.00	1.00	1.00	1.30	quota	strato		<u> </u>
										~	1	§
n	1	2	3	4 O	5 ()	7	≥10	T.A.	prog.	*		ľ.
ξ_3	1.70	1.65	1.60	1.55	1.50	1.45	1.40	1.00	1.00			l
ξ4	1.70	1.55	1.48	1.42	1.34	1.28	1.21	1.00	1.00			l

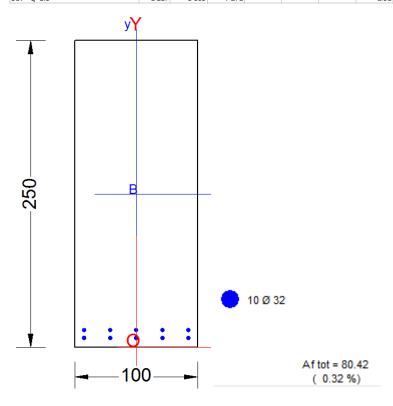
						Parametri m	edi	Para	ametri minii	mi
strati terreno	descrizione	quote	γ	γ'	φ	k _p	Cu	φ	k _p	Cu
		(m)	(kN/m^3)	(kN/m ³)	(°)		(kPa)	(°)		(kPa)
p.c.=strato 1		100.00	20	10	32.5	3.32		32.5	3.32	
□ strato 2						1.00			1.00	
☐ strato 3						1.00			1.00	
□ strato 4						1.00			1.00	
strato 5						1.00			1.00	
☐ strato 6						1.00			1.00	

Quota falda	100.00	(m)
Diametro del palo D	1.50	(m)
Lunghezza del palo L	41.00	(m)
Momento di plasticizzazione palo My	7 919.00	(kNm)
Step di calcolo	0.01	(m)

palo impedito di ruotare	Calcolo
○ palo libero	(ctrl+r)

	H medio			H mir	nimo	
Palo lungo	3 482	(kN)			3 482 (kN)
Palo intermedio	32 889	(kN)		32	2 889 (kN)
Palo corto	125 663	(kN)		125	5 663 (kN)
	H _{med} 3 482	(kN)	Palo lungo	H _{min}	3 482 (kN) Palo lungo
	$H_k = Min(H_m)$	_{ed} /ξ ₃ ; R _{mir}	√ ξ 4)	2 110	(kN)	
	Coefficiente di grupp	a: k =	8.0	(-)		
	$H_d = (H_k/\gamma_T)$)*k		1 299	(kN)	
	Carico Assiale Pern	nanente (C	G): G=	1 230	(kN)	
	Carico Assiale varia	bile (Q):	Q =	0	(kN)	
	$F_d = G \cdot \gamma_G + Q$	γ _Q =		1 230	(kN)	
	c.s. = Hd / Fe	1.06	(-)			

DIRETTRICE FERROVIARIA MESSINA-CATANIA-PALERMO


PROGETTO DEFINITIVO

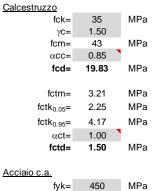
RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 96 di 103

11.12 Verifica plinto

		plinto	riemp	somma											
peso specifico	kN/m3	25	18												
spessore	m	2.5	1.5												
peso a mq	kN/mq	62.5	27	89.5											
sbalzo plinto e riemp	m	4.4	4.4												
peso totale a m/l	kN/m	275	119	394											
momento nella sezione di verifica	kNm/m	605	261	866											
Larghezza di influenza per pali	m	4.5	=	i pali											
		Fila	1	Fila	12	Fila	Fila 3		Effetto pali		Effetto pali a m/l		+rinterro	Soll. di progetto	
		N	braccio		braccio	N	braccio	Т	М	Т	М		М	Т	
		kN	m	kN	m	kN	m	kN	kNm	kN/m	kNm/m	kN/m	kNm/m	kN/m	kNm/m
SLS_qp	kN	2 997	2.9	0		0		2 997	8 691	666	1 931	-394	-866	272	1 065
SLS_Rara_Fess	kN	4 251	2.9	0		0		4 251	12 328	945	2 740	-394	-866	551	1 873
SLS_Rara	kN	4 833	2.9	0		0		4 833	14 016	1 074	3 115	-394	-866	680	2 248
SLU_A1	kN	6 797	2.9	0		0		6 797	19 711	1 510	4 380	-394	-866	1 117	3 514
SLV - q=1	kN	8 227	2.9	0		0		8 227	23 858	1 828	5 302	-394	-866	1 434	4 435
SLV - q=1.36	kN	7 450	2.9	0		0		7 450	21 605	1 656	4 801	-394	-866	1 262	3 935
SLV - q=1.5	kN	7 248	2.9	0		0		7 248	21 019	1 611	4 671	-394	-866	1 217	3 805
	Soll. di	progetto		Verifica											
	Т	М	Mrd	wk	sc	SS	c.s.(>1)								
	kN/m	kNm/m	kNm/m	mm	MPa	MPa	-								
SLS_qp	272	1 065		0.101	1.51	-62									
SLS_Rara_Fess	551	1 873		0.177	2.65	-109									
SLS_Rara	680	2 248			3.19	-131									
SLU_A1	1 117	3 514	7 271				2.07								
SLV - q=1	1 434	4 435	7 271				1.64								
SLV - q=1.36	1 262	3 935	7 271				1.85								
SLV - q=1.5	1 217	3 805	7 271				1.91								

PROGETTO DEFINITIVO


RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 97 di 103

Si fornisce un quantitativo di armatura a taglio, da realizzare con spille o considerando i cavallotti.

Verifica a taglio secondo EC2-2

<u>Taglio</u>		γ	
Gk	0	x1.00=	0 kN
Pk	0	x1.00=	0 kN
Qk	0	x1.00=	0 kN
Aed	1 434	x1.00=	1434 kN
		V _{Ed} =	1434 kN

Nsd= 0

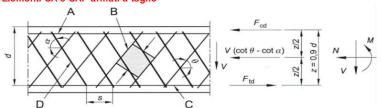
Ac= 2.50

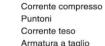
ma

Area

kN

Sforzo normale

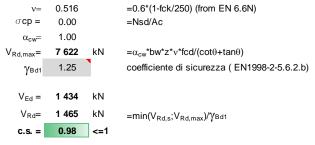

Elementi CA e CAP armati a taglio


1.15

391.3

γs=

fyd=



Resistenza lato acciaio (staffe)

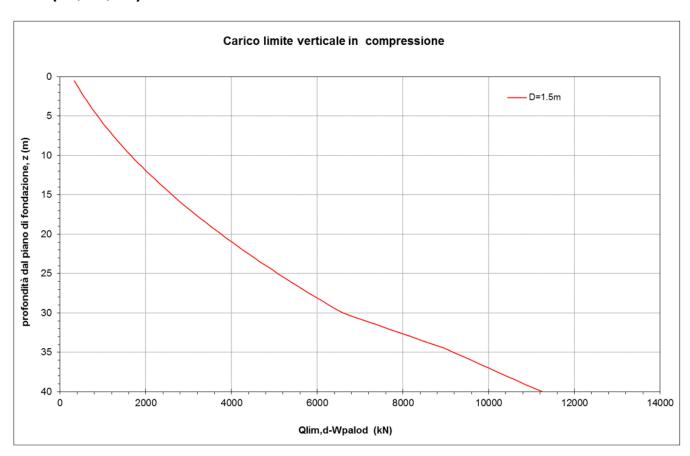
φw=	20	mm	Diametro staffa			
n=	2.00	-	Numero braccia			
Asw=	6.28	cm2				
z=	2.16	m	=0.9*d			
senα=	1		angolo tra le staffe e l'asse della trave	(=90°	per sta	iffe verticali)
ρW=	0.09	%	$=Asw/(s*bw*sin\alpha)*100$			
s=	0.725	m	=passo staffe <=	1.80	m	$=0.75*d*(1+cot\alpha)$
θ=	21.8	0	=arcsen(radq(Asw*fyd)/(bw*s*acw*n*f	cd))		
			inclinazione puntone compresso, varia	abile tra	a 45° to	21.8°
tanθ=	0.40	-	valore tra 1 (for q=45°) e 0.4			
cotθ=	2.50	-	valore tra 1 (for q=45°) and 2.5			
ρw,max=	0.34	=	$A_{sw,max}$ *fyd/(bw*s)<=1/2* α_{cw} *v*fcd =	5.12		
Asw/s,ins =	8.67	cm2/m	Area staffe inserita			
$V_{Rd,s}=$	1 831	kN	=Asw/s*z* fywd *cotθ			

Resistenza lato calcestruzzo (puntone compresso inclinato)

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

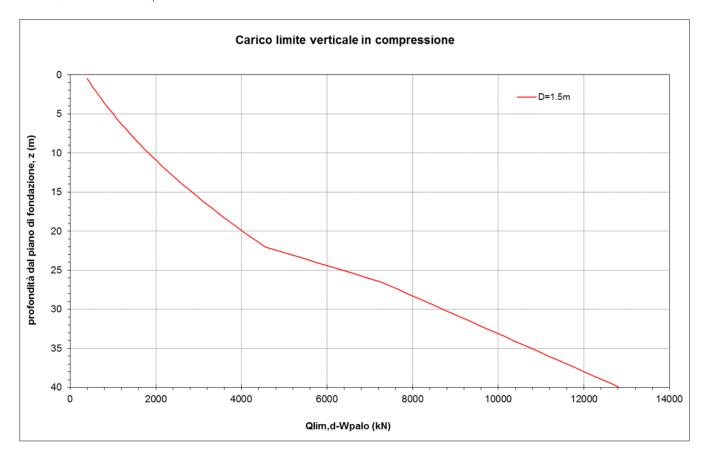

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 98 di 103

12 VERIFICA CAPACITA' PORTANTE VERTICALE PALO

Il carico totale viene confrontato con la curva di capacità portante. Le curve comprendono già il peso proprio del palo e partono dalla quota testa palo.

Opera 🛒	Binario 🔻	Pila/Spall	n° pali	Nmax (kN)	Lpalo (m)
VI07	Entrambi	P1	9	7 450	32
VI07	Entrambi	P2	16	10 935	41
VI07	Entrambi	Р3	16	9 350	33
VI07	Entrambi	P4	12	8 615	31
VI07	Entrambi	P5	12	8 615	31
VI07	Entrambi	P6	12	8 615	31
VI07	Entrambi	Р7	12	8 615	31
VI07	Entrambi	P8	16	9 450	33

VI07 (SA, P1, P2)


PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 99 di 103

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

VI07 (da P3 a SB)

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 100 di 103

13 ESCURSIONE APPOGGI E GIUNTI

Vista l'elevata sismicità del sito $(a_g>0.25g)$, l'escursione totale massima EL è governata dal valore minimo richiesto da [N5] al punto 2.5.2.1.5.1

L 25 m luce totale impalcato

Per garantire un valore minimo di escursione, in funzione della sismicità del sito, il valore di EL dovrà essere asunto non minore di

per $a_q(SLV) \ge 0.25g$ E_L 3.3*L/1000+0.1 182.5 mm

0.15m 150.0 mm

 $\mbox{per } a_g(\mbox{SLV}) < 0.25g \qquad \qquad \mbox{E}_L \qquad \qquad 2.3^*\mbox{L}/1000 + 0.073 \qquad \qquad 130.5 \mbox{ mm}$

0.10m 100.0 cm

E_L 182.5 mm

Risulta quindi

EL 182.5 mm escursione totale longitunale

Vincoli degli impalcato, corsa degli appoggi, varchi

In direzione longitudinale:

La corsa degli apparecchi d'appoggio deve essere pari a:

± E_L 182.5 mm

 $\pm E_{L}/2 \pm max(15mm;E_{L}/8)$ 114.1 mm $\approx +/-115$ mm $\pm E_{L}/2$ 91.3 mm $\pm E_{L}/8$ 22.8 mm

L'escursione dei giunti deve essere pari a:

± E₁/2 ± 10mm 101.3 mm ≈ +/- 105 mm

L'ampiezza dei varchi, a temperatura media ambiente, deve essere pari a:

 V_0 20.0 mm

 $V \ge E_1/2 + V_0$ 111.3 mm \approx 115 mm

La distanza tra il ritegno sismico longitudinale e la testata della trave supportata dal vincolo mobile, deve essere pari a:

V - V₀/2 101.3 mm ≈ 105 mm

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 101 di 103

L 50 m luce totale impalcato

Per garantire un valore minimo di escursione, in funzione della sismicità del sito, il valore di EL dovrà essere asunto non minore di

 $per \ a_g(SLV) \geq 0.25g \\ \hspace{1.5cm} E_L \\ \hspace{1.5cm} 3.3^*L/1000 + 0.1 \\ \hspace{1.5cm} 265.0 \ mm$

0.15m 150.0 mm

per $a_g(SLV) < 0.25g$ E_L 2.3*L/1000+0.073 188.0 mm

0.10m 100.0 cm

E_L **265** mm

Risulta quindi

E_L 265.0 mm escursione totale longitunale

Vincoli degli impalcato, corsa degli appoggi, varchi

In direzione longitudinale:

La corsa degli apparecchi d'appoggio deve essere pari a: $\pm E_L$ 265.0 mm

 $\pm E_{L}/2 \pm max(15mm; E_{L}/8)$ 165.6 mm $\approx +/-170$ mm $\pm E_{L}/2$ 132.5 mm $\pm E_{L}/8$ 33.1 mm

L'escursione dei giunti deve essere pari a:

± E_L/2 ± 10mm 142.5 mm ≈ +/- 145 mm

L'ampiezza dei varchi, a temperatura media ambiente, deve essere pari a:

 V_0 20.0 mm

 $V \ge E_1/2 + V_0$ 152.5 mm \approx 155 mm

La distanza tra il ritegno sismico longitudinale e la testata della trave supportata dal vincolo mobile, deve essere pari a:

 $V - V_0/2$ 142.5 mm \approx 145 mm

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO
RS2S 02 D 09 CL VI0705 001 A 102 di 103

\//07 \//ADOT	TO CATANO				
VI07 - VIADOT	IO SATANO				
SPALLA FISSA		LATO FIUN	//EFREDDO		
PILA/SPALLA	Impalcato supportat o lato mobile	o lato appoggi		Ampiezz a varchi a livello soletta	Varco trave - ritegno longitudi nale
				V	
		mm	mm	mm	mm
SA	FISSA	-	± 50	50	5
P1	CAP - 25m	± 115	± 105	115	105
P2	CAP - 25m	± 115	± 105	115	105
Р3	AC - 50m	± 170	± 145	155	145
P4	CAP - 25m	± 115	± 105	115	105
P5	CAP - 25m	± 115	± 105	115	105
P6	CAP - 25m	± 115	± 105	115	105
P7	CAP - 25m	± 115	± 105	115	105
P8	CAP - 25m	± 115	± 105	115	105
SB	AC - 50m	± 170	± 145	155	145

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI07 – VIADOTTO SATANO RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0705 001 A 103 di 103

14 CARICHI ORIZZONTALI APPOGGI

Si riporta il calcolo delle azioni massime orizzontali agli appoggi che si ottengono in condizione sismiche. Il calcolo viene effettuato in favore di sicurezza con l'accelerazione massima elastica, e per ogni tipologia di impalcato.

Per i carichi verticali si rimanda alla relazione dell'impalcato.

			L	В	n°Bin	DIR	g	q*0.2	m	М	Smax	FH-MAX/ 1 FILA	QL	QTc	QTS	FH	n°APP/ 1 FILA	F-APP
	T	-	m▽	m▽	m▽	~	kN/m ▼	kN/m ▼	kN/m▼	kN ▼	₽	kN ▼	۲	*		•	*	kN▼
VI07		CAP	25	13.7	2	L	460.4	51.90	512.3	12 808	0.904	11 578	1 783			11 935	2	5 967
VI07		CAP	25	13.7	2	Т	460.4	51.90	512.3	12 808	0.904	5 789		276	210	5 886	1	5 886
VI07		AC	50	13.7	2	L	392.3	45.50	437.8	21 890	0.904	19 789	2 605			20 310	4	5 077
VI07		AC	50	13.7	2	Т	392.3	45.50	437.8	21 890	0.904	9 894		469	210	10 030	1	10 030