COMMITTENTE

PROGETTAZIONE:

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI – FIUMEFREDDO

Lotto 2: Taormina (e) – Giampilieri (e)

VI08 – VIADOTTO ALI'

Relazione di calcolo pile

SCALA:
-

COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV.

R S 2 S 0 2 D 0 9 C L V I 0 8 0 5 0 0 1 A

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Atorizato Data
Α	EMISSIONE ESECUTIVA	D.Guerci	Genn.2018	A.Ferri	Genn.2018/	P Carlesimo	Genn.2018	A,Vittozzi e n,2018
				A	- 6	ne	٥	A 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
								S.p.
								Az da Az
								TA Para
								Pott Page
					l			2 2

File: RS2S02D09CLVI0805001A.docx n. Eab.: 2049

VI08 – VIADOTTO ALI' RELAZIONE DI CALCOLO PILE

DIRETTRICE FERROVIARIA MESSINA-CATANIA-PALERMO

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO
RS2S 02 D 09 CL VI0805 001 A 2 di 33

INDICE

1	IN	VTRODUZIONE	4
2	D	OCUMENTI CORRELATI	4
3	N	ORMATIVA DI RIFERIMENTO	4
4	C	ARATTERISITICHE DEI MATERIALI	6
5	A	NALISI DEI CARICHI	7
	5.1	PESI PROPRI E PERMANENTI PORTATI	7
6	M	ODELLO DI CALCOLO	8
	6.1	Note	8
	6.2	Limiti tensionali	9
	6.3	VERIFICA A FESSURAZIONE	9
	6.4	Legenda	9
7	C	ALCOLO E VERIFICA	.10
	7.1	AZIONE SISMICA	.10
	7.2	Dati generali	.11
	7.3	Analisi sismica	.12
	7.4	CARICHI DA TRAFFICO	.14
	7.5	Vento	.15
	7.6	AZIONI CARATTERISTICHE E DATI FONDAZIONE	.17
	7.7	COMBINAZIONI DI CARICO	.18
	7.8	VERIFICA A PRESSOFLESSIONE PILA	.19
	7.9	VERIFICA A TAGLIO PILA	.21
	7.10	VERIFICA CAPACITÀ PORTANTE VERTICALE PALO	.25
	7.11	VERIFICA PALO PER FORZE ORIZZONTALI	.27
	7.	11.1 Capacità portante orizzontale (Broms)	.27

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI08 – VIADOTTO ALI'	
RELAZIONE DI CALCOLO PILE	

PROGETTO	LOTTO	FAS	SE ENT	ΓE C	COD.	DOC.	PROC	G. REV	. FOGLIC
RS2S	02	D	09	CL	VI08	05	001 A	. 3	di 33

	7.11.2 Resistenza strutturale	28
	7.11.3 Taglio strutturale	29
	7.12 VERIFICA PLINTO	30
8	ESCURSIONE APPOGGI E GIUNTI	32
9	CARICHI ORIZZONTALI APPOGGI	33

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI08 – VIADOTTO ALI' RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0805 001 A 4 di 33

1 INTRODUZIONE

Oggetto della presente relazione è la verifica strutturale delle pile del Viadotto Alì VI08, nell'ambito del progetto raddoppio della tratta Giampilieri – Fiumefreddo.

E' presente un'unica tipologia di impalcato in acciaio – calcestruzzo di luce 40m in asse pila, piattaforma da 13.70m a doppio binario.

Le pile sono tutte a sezione scatolare bi-cellulare con dimensioni fuori tutto 11.80x3.20m. L'altezza massima delle pile è di 13.97m. Il pulvino è uguale per tutte le pile, con spessore di 2m e dimensioni pari a quelle del fusto pila.

Tutte le pile sono fondate su pali Φ 1500.

Il calcolo effettuato per la pila 1 vale anche per la Pila 2

L'approccio utilizzato per la verifica delle fondazioni è l'approccio 2.

2 DOCUMENTI CORRELATI

[C1] **RS2S-02-D-09-RB-VI08-03-001:** Relazione geotecnica e di calcolo fondazioni;

3 NORMATIVA DI RIFERIMENTO

- [N1] **Legge 05/01/1971 n°1086:** Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso, ed a struttura metallica;
- [N2] **Legge 02/02/1974 n°64:** Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche;
- [N3] **D.M. del 14 Gennaio 2008:** Nuove norme tecniche per le costruzioni;
- [N4] **C.M. 02/02/2009 n.617:** *Istruzioni per l'applicazione delle "Norme tecniche per le costruzioni*;
- [N5] **RFI DTC SI PS MA IFS 001 A del 30/12/2016:** *Manuale di progettazione delle opere civili Parte II Sezione 2 Ponti e Strutture*;
- [N6] **RFI DTC SI PS SP IFS 001 A del 30/12/2016:** Capitolato generale tecnico di appalto delle opere civili Parte II Sezione 6 Opere in conglomerato cementizio e in acciaio;
- [N7] **UNI EN 1991-1-4:2005:** Eurocodice 1 Azioni sulle strutture Parte 1-4: Azioni in generale Azioni del vento;
- [N8] UNI EN 1992-1-1:2005: Eurocodice 2 Progettazione delle strutture di calcestruzzo Parte 1-1: Regole generali e regole per gli edifici;
- [N9] **UNI EN 1992-2:2006:** Eurocodice 2 Progettazione delle strutture di calcestruzzo Parte 2: Ponti;

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI08 – VIADOTTO ALI' RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0805 001 A 5 di 33

- [N10] UNI EN 1993-1-1:2005: Eurocodice 3 Progettazione delle strutture di acciaio Parte 1-1: Regole generali e regole per gli edifici;
- [N11] **UNI EN 1993-2:2007:** *Eurocodice 3 Progettazione delle strutture di acciaio Parte 2: Ponti;*
- [N12] **UNI EN 1998-1:2005:** Eurocodice 8 Progettazione delle struttura per la resistenza sismica Parte 1: Regole generali, azioni sismiche e regole per gli edifici;
- [N13] **UNI EN 1998-2:2006:** Eurocodice 8 Progettazione delle struttura per la resistenza sismica Parte 2: Ponti;
- [N14] **STI 2014 REGOLAMENTO UE N.1299/2014** DELLA COMMISSIONE del 18 Novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sistema "infrastruttura" del sistema ferroviario dell'Unione Europea.

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI08 - VIADOTTO ALI' RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S VI0805 09 CL 001 D Α 6 di 33

CARATTERISITICHE DEI MATERIALI

GETTI IN OPERA

CALCESTRUZZO MAGRO E GETTO DI LIVELLAMENTO

- CLASSE DI RESISTENZA MINIMA C12/15
- TIPO CEMENTO CEM I÷V
- CLASSE DI ESPOSIZIONE AMBIENTALE : XO

CALCESTRUZZO PALI/DIAFRAMMI DI FONDAZIONE,

- CLASSE DI RESISTENZA MINIMA C35/45

- TIPO CEMENTO CEM III+V
 RAPPORTO A/C : \(\leq 0.45 \)
 CLASSE MINIMA DI CONSISTENZA : \$4
 CLASSE DI ESPOSIZIONE AMBIENTALE : XA3
- COPRIFERRO MINIMO = 60 mm
- DIAMETRO MASSIMO INERTI: 32 mm

CALCESTRUZZO FONDAZIONE PILE, SPALLE E SOLETTONI

- CLASSE DI RESISTENZA MINIMA C35/45

- CLASSE DI RESISTENZA MINIMA C35/+5
 TIPO CEMENTO CEM III÷V
 RAPPORTO A/C : ≤ 0.45
 CLASSE MINIMA DI CONSISTENZA : S4
 CLASSE DI ESPOSIZIONE AMBIENTALE : XA3
- COPRIFERRO = 40 mm
- DIAMETRO MASSIMO INERTI: 25 mm

CALCESTRUZZO ELEVAZIONE PILE (COMPRESI PULVINI, BAGGIOLI E RITEGNI), SPALLE E STRUTTURE SCATOLARI

- CLASSE DI RESISTENZA MINIMA C32/40

- CLASSE DI RESISTENZA MINIMA C32/40
 TIPO CEMENTO CEM III÷V
 RAPPORTO A/C: ≤ 0.50
 CLASSE MINIMA DI CONSISTENZA: S4
 CLASSE DI ESPOSIZIONE AMBIENTALE: XC4
 COPRIFERRO = 40 mm (*)
 DIAMETRO MASSIMO INERTI: 25 mm

CALCESTRUZZO SOLETTE IMPALCATO

- CLASSE DI RESISTENZA MINIMA C32/40
- TIPO CEMENTO CEM I÷V RAPPORTO A/C : ≤ 0.50
- CLASSE MINIMA DI CONSISTENZA :
- CLASSE DI ESPOSIZIONE AMBIENTALE : XC4 COPRIFERRO = 40 mm (*) DIAMETRO MASSIMO INERTI : 20 mm

ACCIAIO ORDINARIO PER CALCESTRUZZO ARMATO

IN BARRE E RETI ELETTROSALDATE

B450C saldabile che presenta le seguenti caratteristiche

- Tensione di snervamento caratteristica
- fyk > 450 N/mm² ftk > 540 N/mm² 1.15≤ ftk/fyk < 1.35
- Tensione caratteristica a rottura

(*): I VALORI DI COPRIFERRO RIPORTATI SI RIFERISCONO AD OPERE. CON VITA NOMINALE DI 75 ANNI. PER COSTRUZIONI CON VITA NOMINALE. DI 100 ANNI TALI VALORI DOVRANNO ESSERE AUMENTATI DI 5 mm.

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI08 – VIADOTTO ALI' RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0805 001 A 7 di 33

5 ANALISI DEI CARICHI

Si riporta solo il dettaglio dei permanenti portati. Tutti gli altri carichi sono definiti nei paragrafi successivi.

5.1 Pesi propri e permanenti portati

Pesi propri	Ripetizioni	Spessore	Larghezza	Area Lu	nghezza	Volume	р	Peso	L	Ptot
	-	m	m	mq	m	mc	kN/mc-mq	kN/mI		
Carpenteria metallica	1					1.0000	60	60.0	40	2 400
Soletta	1	0.355	13.7			4.8635	25	121.6	40	4 864
						Totale	pesi propri G1	181.6		7 264
Permanenti portati	Ripetizioni	Spessore	Larghezza	Area Lu	nghezza	Volume	р	Peso	L	Ptot
	-	m	m	mq	m	mc	kN/mc-mq	kN/mI		
Muri paraballast	0			0.1433		0.0000	25	0.0	40	0
Muri banchina FFPP - in sx	1			0.4000		0.4000	25	10.0	40	400
Muri banchina FFPP - in dx	1			0.4000		0.4000	25	10.0	40	400
Muri banchina stazione	0			1.8100		0.0000	25	0.0	40	0
Cordolo in sx	1	0.14	0.82			0.1148	25	2.9	40	115
Cordolo in dx	1	0.14	0.82			0.1148	25	2.9	40	115
Velette	2			0.09		0.1800	25	4.5	40	180
Ballast+ impermab. sottoballast + armamento	1	0.8	7.9			6.3200	18	113.8	40	4 550
Incremento per rialzo in curva	0			0.250		0.0000	20	0.0	40	0
Canalette	2			0.085		0.1700	25	4.3	40	170
Impermeabilizzazione marciapiedi	2	0.05	1.78			0.1780	20	3.6	40	142
Impermeabilizzazione banchina stazione	0	0.05	4.47			0.0000	20	0.0	40	0
Impermeabilizzazione soletta sotto banchina	0	0.05	3.67			0.0000	20	0.0	40	0
Barriere antirumore	2	1	4			8.0000	4	32.0	40	1 280
Telaio FFPP	2					2.0000	1.5	3.0	40	120
Impianti	2					2.0000	1.5	3.0	40	120
Impianti banchina stazione	0					0.0000	3	0.0	40	0
					To	tale permane	enti portati G2	189.8		7 592
						Totale	permanenti G	371.4		14 856

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI08 – VIADOTTO ALI' RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0805 001 A 8 di 33

6 MODELLO DI CALCOLO

Per il calcolo della pila è stato impostato un foglio di calcolo elettronico che analizza tutte le condizioni di carico necessarie.

Il foglio elettronico contiene tutte le informazioni necessarie ai fini del calcolo della pila e della palificata, sia dal punto di vista della geometria che delle azioni.

L'analisi sismica è stata effettuata con l'analisi statica lineare semplificata (7.9.4.1.di [N3]), sostituita dall'analisi dinamica modale qualora le ipotesi di calcolo necessaria per l'analisi semplificata non fossero soddisfatte.

6.1 Note

Vengono evidenziati alcuni punti facilitare la comprensione delle tabelle successive

- Nella verifica a pressoflessione della pila viene riportata la sezione di calcolo con l'armatura inserita, e vengono riepilogati i risultati. L'output completo della verifica viene omesso per brevità.
- I carichi da traffico sono stati calcolati a parte mediante modello FEM in SAP2000 nel quale vengono fatti transitare tutti i treni di carico con analisi "moving load". Vengono poi riepilogate solo le azioni caratteristiche. Si omette la descrizione del modello.
- Per il vento a ponte scarico, la superficie investita dal vento è pari all'impronta della struttura, più due volte l'altezza della barriera
- L'attrito considerato in condizioni statiche è pari al 3%. In condizione sismica tale valore viene ridotto al 50%
- I fattori di struttura utilizzati sono
 - o q=1.5 per verifiche a presso-flessione fusto pila
 - o q=1.5/1.1=1.36 per verifica a capacità portante verticale dei pali e verifica a flessione plinto
 - o q=1 per verifiche a taglio elementi strutturali (vedi anche punto successivo), verifiche a capacità portante orizzontale dei pali, reazioni agli appoggi, denti di arresto e ritegni sismici.
 - Solo per la verifica a taglio dello spiccato della pila, il criterio adottato è quello della gerarchia delle resistenze così come indicato al punto 7.9.5 di [N3].

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI08 – VIADOTTO ALI' RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0805 001 A 9 di 33

6.2 Limiti tensionali

Materiale	SLE qp	SLE rara
C32/40	$\sigma_{\rm c} \le 0.40 * f_{\rm ck} = 12.8 \; {\rm MPa}$	$\sigma_{\rm c} \le 0.55 * f_{\rm ck} = 17.6 \; {\rm MPa}$
C35/45	$\sigma_{\rm c} \le 0.40 * f_{\rm ck} = 14.0 \; {\rm MPa}$	$\sigma_{c} \le 0.55* f_{ck} = 19.25 \text{ MPa}$
acciaio c.a.		$\sigma_{\rm s} \le 0.75^* f_{\rm yk} = 337.5 \text{MPa}$

6.3 Verifica a fessurazione

Si riportano i limiti fessurativi considerati

Elemento	Classe di esposizione	Condizione	Classe di resistenza	Copriferro minimo	Limite fessurativo SLE rara
Elevazione	XC4	Aggressiva	C32/40	40+10=	w1=0.200 mm
				50 mm	
Plinti	XA3	Molto	C35/45	40+20=	w1=0.200 mm
		aggressiva		60 mm	
Pali di	XA3	Molto	C35/45	60 mm	w1=0.200 mm
fondazione		aggressiva			

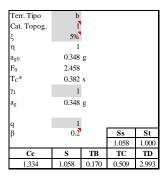
Ad eccezione dei pali, il copriferro degli elementi che ricadono in condizioni aggressive o molto aggressive, è stato aumentato, rispettivamente, di 10 o 20mm.

6.4 Legenda

• Verifica a pressoflessione pila: la tensione dell'armatura è di trazione se negativa

VI08 – VIADOTTO ALI' RELAZIONE DI CALCOLO PILE

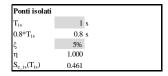
DIRETTRICE FERROVIARIA MESSINA-CATANIA-PALERMO

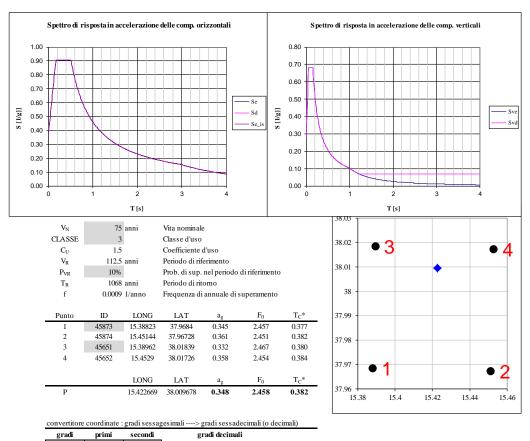

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0805 001 A 10 di 33

7 CALCOLO E VERIFICA


7.1 Azione sismica



component	Ss	St		
F_v	1.958		1.000	1.000
	S	TB	TC	TD
	1.000	0.050	0.150	1.000
a	1			

Per avere il valore di S(T)					
T	0.00	0.00			
	orizz	vert			
S _e (T)	0.368	0.278			
$S_e(T)$ $S_d(T)$	0.368	0.278			
0.1700	0.070	0.000			

Valore massimo dello spettro (plateau)								
	orizz	vert						
$S_e(T)$	0.905	0.682						
$S_d(T)$	0.905	0.682						

34.84

38.009678

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI08 – VIADOTTO ALI' RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO
RS2S 02 D 09 CL VI0805 001 A 11 di 33

7.2 Dati generali

Dati fusto pila e pulvino	L(m)	T(m)	H(m)	A(mq)	P(kN)
Fusto pila	3.2	11.8	11.97	15.67	4 689
Pulvino	3.2	11.8	2		1 888
Peso totale pila					6 577

Geometria

Altezza totale pila, compreso pulvino	h	13.97 m
Distanza pf - sottotrave (in asse appoggi)	h1	3.79 m
Distanza sottotrave - testa pila	h2	0.5 m
Distanza pf - testa pila	h3	4.29 m
Distanza centro rotazione appoggi - testa pila	h4	0.4 m
Distanza baricentro masse impalcato - testa pila	h5	3.49 m
Distanza pf - spiccato pila	h6	18.26 m
Distanza pf - intradosso fondazione	h7	21.76 m

Impalcato		SX	dx	totale
Tipo appoggio		М	F	
Luce in asse pila		40	40	m
Distanza asse appoggi - asse pila		1	1	m
Luce in asse appoggi		38	38	m
Pesi propri	G1	181.6	181.6	kN/ml
Permanenti portati	G2	189.8	189.8	kN/ml
Permanenti	G	371.4	371.4	kN/ml
Peso treno equivalente x0.2	Q1x0.2	43	43	kN/ml
Massa sismica	M	414.4	414.4	kN/ml
Pesi propri	G1	3 632	3 632	7 264 kN
Permanenti portati	G2	3 796	3 796	7 592 kN
Permanenti	G	7 428	7 428	14 856 kN
Massa sismica	M	8 288	8 288	16 576 kN

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI08 – VIADOTTO ALI' RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0805 001 A 12 di 33

7.3 Analisi sismica

Analisi sismica		Semplificata			Dinamica modale		
Direzione		Long	Trasv	Vert	<u></u>		
Dist baricentro masse impal - spiccato pila	hp	14.37	17.46	17.46 m			
Modulo elastico pila	Ec	33 346	33 346	33 346 MPa	Tipo analisi eff	ettuata	
Inerzia pila (Area pila per verticale)	lf	21.3	172.4	15.7 m4	2 D	inamica moda	ile
Riduzione per rigidezza fessurata		1.0	1.0	1.0 -			
Rigidezza oscillatore elementare equivalente		7.18E+05	3.24E+06	2.99E+07 kN/m			
Massa sismica impalcato	Pi	16 576	16 576	16 576 kN			
Massa efficace pila	Ppeff	3 841	3 841	3 841 kN			
Massa complessiva	P=Pi+Ppeff	20 417	20 417	20 417 kN			
1/5 Massa sismica impalcato	1/5*Pi	3 315	3 315	3 315 kN			
Massa efficace pila	Ppeff	3 841	3 841	3 841 kN			
Verifica requisito	Ppeff≤1/5*Pi ?	no	no	no -			
Periodo proprio	Т	0.34	0.16	0.05 sec	0.34	0.17	0.04 sec
	q	Ordin	ata spettrale	(S)			
	1	0.905	0.873	0.682 g			
	1.36	0.666	0.648	0.682 g			
	1.5	0.604	0.589	0.682 g			
	q	Taglio/Sfor	Norm allo spi	ccato pila	Taglio/Sfor N	lorm allo spice	cato pila
	1	18 486	17 816	13 928 kN	18 550	18 520	13 715 kN
	1.36	13 593	13 222	13 928 kN	13 644	13 626	13 715 kN
	1.5	12 324	12 030	13 928 kN	12 373	12 357	13 715 kN
	q	Moment	o allo spiccat	to pila	Momento	allo spiccato	pila
	1	265 650	311 062	kNm	258 133	306 106	kNm
	1.36	195 331	230 848	kNm	189 807	225 080	kNm
	1.5	177 100	210 052	kNm	172 093	204 074	kNm
		Rapporto ris	ultati dinami	ica modale - semplificata		lorm allo spice	cato pila
					1.00	1.04	0.98 -
					1.00	1.03	0.98 -
					1.00	1.03	0.98 -
						allo spiccato	pila
					0.97	0.98	-
					0.97	0.98	-
					0.97	0.97	_

VI08 - VIADOTTO ALI'

RELAZIONE DI CALCOLO PILE

DIRETTRICE FERROVIARIA MESSINA-CATANIA-PALERMO

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO
RS2S 02 D 09 CL VI0805 001 A 13 di 33

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

PROG. REV. FOGLIO

14 di 33

001

VI08 – VIADOTTO ALI'

PROGETTO LOTTO FASE ENTE COD. DOC.

RELAZIONE DI CALCOLO PILE

RS2S 02 D 09 CL VI0805 (

7.4 Carichi da traffico

SW2

Valore utilizzato

	N°binari	Azioni quo	Azioni quota testa pila		
	2	N	ML	MT	
Condizione	N max	8 591	836	1 309	
Condizione	ML max	5 176	5 174	689	
Condizione	MT max	4 539	296	9 079	
Condizione	Inviluppo	8 591	5 174	9 079	

Carico verticale massimo da traffico sul piano appoggi

		SX	dx
Carico verticale	N max	5 176	5 176
Luce impalcato asse appoggi	Lc	38	38
Coefficiente dinamico	Ф3	1.092	1.092
Carico verticale dinamizzato	N	5 653	5 653

Attrito		sx	dx
Permanenti	G	7 428	7 428 kN
Carico mobile dinamizzato	Q1* Φ	5 653	5 653 kN
Coefficiente di attrito in condizione statiche		0.03	
Attrito permanente	maxG*0.2*Φ	45 kN	
Attrito mobili dinamizzati	maxQ*Φ	170 kN	

Frenatura	•	
luce campata carica	L	40 m
a livello binario	HL	2 255 kN
a quota testa pila	ML	9 674 kNm

Serpeggio a livello binario HT 210 kN

a quota testa pila MT 901 kNm Centrifuga

raggio planimetrico	R	#########	m
velocità di progetto	V	160	km/h
lunghezza di influenza		40	m
Reazione del singolo treno	Qv		

.	<i>a a a a a a a a a a</i>	.,				
Sulla pila	v (km/h)	alfa	f	Coeff	Qv (kN)	FT (kN)
LM71 v>120; caso a	160	1	0.80	0.000	3 684	0
LM71 v>120; caso b	120	1.1	1.00	0.000	4 052	0
LM71 v≤120; caso a	120	1.1	1.00	0.000	4 052	0
LM71 (caso utilizzato)						0
SW2	100	1	1.00	0.000	4 539	0
Valore utilizzato						0
Al piano appoggi - sx	v (km/h)	alfa	f	Coeff	Qv (kN)	FT (kN)
LM71 v>120; caso a	160	1	0.80	0.000	2 213	0
LM71 v>120; caso b	120	1.1	1.00	0.000	2 434	0
LM71 v≤120; caso a	120	1.1	1.00	0.000	2 434	0
LM71 (caso utilizzato)						0
SW2	100	1	1.00	0.000	2 711	0
Valore utilizzato						0
	4 4 1	16	,	o "	0 (11)	FT (1.10)
Al piano appoggi - dx	v (km/h)	alfa	f	Coeff	Qv (kN)	FT (kN)
LM71 v>120; caso a	160	1	0.80	0.000	2 213	0
LM71 v>120; caso b	120	1.1	1.00	0.000	2 434	0
LM71 v≤120; caso a	120	1.1	1.00	0.000	2 434	0
LM71 (caso utilizzato)						0

100

1.00

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI08 – VIADOTTO ALI' RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO
RS2S 02 D 09 CL VI0805 001 A 15 di 33

7.5 Vento

Condizione (ponte carico o scarico)		scarico	carico		
Altitudine sul livello del mare	as	25	25 m	ı	
Zona	Z	4	4 -		
Parametri	V _{b,0}	28	25 m	/s	
Parametri	a_0	500	500 m	ı	
Parametri	k _a	0.020	0.020 1/	's	
Velocità di riferimento (Tr=50 anni)	$v_b = v_{b0} + k_a^* (a_s - a_0)$	28	25 m	ı/s	
Periodo di ritorno considerato	T _R	75	75 ar	nni	
	α_{r}	1.02	1.02 -		
/elocità di riferimento	V_{b}	28.7	25.6 m	ı/s	
Densità dell'aria	ρ	1.25	1.25 kg	g/m3	
pressione cinetica di riferimento	$q_b = 0.5 p^* v_b^2$	0.51	0.41 kl	N/m2	
Classe di rugosità del terreno		D	D		
Distanza dalla costa		< 10 km			
Altitudine sul livello del mare		< 500 m	< 500 m		
Categoria di esposizione del sito	Cat	2	2		
/ento su impalcato	\				
Altezza di riferimento per l'impalcato (EC punto 8.3.1(6))	Z	12	12 m	1	
parametri	k_r	0.19	0.19		
parametri	z_0	0.05	0.05 m		
parametri	z_{min}	4	4 m		
parametri	Z _{max}	200	200 m	l	
Coefficiente di topografia	c_t	1	1		
coefficiente di esposizione (z≤z_min)	$c_e(z_{min})$	1.80	1.80 -		
coefficiente di esposizione (z)	$c_{e}(z)$	2.47	2.47 -		
Coefficiente di esposizione	C _e	2.47	2.47 -		
Larghezza impalcato	b	13.7	13.7 m		
Altezza totale impalcato (comprese le barriere o treno)	dtot	8.32	8.32 m	l	
Rapporto di forma	b/dtot	1.65	1.65 -		
Coefficiente di forza (figura 8.3 EC)	cfx	1.94	1.94 -		
Riepilogo					
Pressione cinetica di riferimento	q_b	0.51	0.41 kl	N/m2	
Coefficiente di esposizione	C _e	2.47	2.47 -		
Coefficiente di forza	cfx	1.94	1.94 -		
Altezza di riferimento (EC punto 8.3.1 (4) e (5))	d	12.32	8.32 -		_
Forza statica equivalente a m/l	f=prodotto	30.28	16.30 kl	N/ml	
Pressione statica equivalente	p=f/dtot	2.46	1.96 kl	N/m2	
Pressione statica equivalente (minima considerata)	pmin	1.50	1.50 kl	N/m2	
Forza statica equivalente a m/l considerata	f	30.28	16.30 kl	N/ml	
Vento impalcato a ponte scarico		sx	dx	totale	
Forza statica equivalente	f	30.28	30.28		kN/m
Luce impalcato	Ĺ	40	40		m
Forza trasversale al piano appoggi	FT=f*L/2	606	606	1 211	
Momento trasversale al piano appoggi	MT=FT*(dtot/2+h2)	2 822	2 822	5 643	
/ento impalcato a ponte carico		SX	dx	totale	
Forza statica equivalente	f	16.30	16.30	.3.0.0	kN/m
Luce impalcato	Ĺ	40	40		m
Forza trasversale al piano appoggi	FT=f*L/2	326	326	652	

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI08 – VIADOTTO ALI' RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0805 001 A 16 di 33

Z	13.97	13.97 m
c _e (z)	2.57	2.57 -
Ce	2.57	2.57 -
b	_	3.2 m
d	_	11.8 m
		3.69 -
cf0	1.32	1.32 -
q_b		0.41 kN/m2
C _e	2.57	2.57 -
cf0	1.32	1.32 -
b	3.2	3.2 -
f=prodotto	5.58	4.44 kN/ml
p=f/b	1.74	1.39 kN/m2
pmin	0.00	0.00 kN/m2
f	5.58	4.44 kN/ml
L	2	2 m
FT=f*H	11.2	8.9 kN
h	3.2	3.2 m
	_	11.8 m
-	_	3.69 -
	_	1.32 -
CIO	1.02	1.02
<u> </u>	0.51	0.41 kN/m2
• •		2.57 -
	_	1.32 -
	_	3.2 -
		4.44 kN/ml
•		1.39 kN/m2
•		0.00 kN/m2
•		4.44 kN/ml
I		11.97 m
FT=f*H	_	53.2 kN
	c _e (z) c _e b d d/b cf0 q _b c _e cf0 b f=prodotto p=f/b pmin f L	Ce(z) 2.57 Ce 2.57 D 3.2 d 11.8 d/b 3.69 cf0 1.32 Qb 0.51 Ce 2.57 cf0 1.32 b 3.2 f=prodotto 5.58 D 1.74 pmin 0.00 f 5.58 L 2 FT=f*H 11.2 D 3.2 d 11.8 d/b 3.69 cf0 1.32 D 3.2 f=prodotto 5.58 D=f/b 1.74 pmin 0.00 f 5.58 L 11.97

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI08 – VIADOTTO ALI' RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0805 001 A 17 di 33

7.6 Azioni caratteristiche e dati fondazione

Azioni allo spiccato pila	Valori cara	tteristici			
	N	HL	HT	ML	MT
	kN	kN	kN	kNm	kNm
Impalcato - Pesi propri	7 264			0	
Impalcato - Permamenti portati	7 592			0	
Traffico ferroviario - Carico verticale - Nmax	8 591			836	1 309
Traffico ferroviario - Carico verticale - ML max	5 176			5 174	689
Traffico ferroviario - Carico verticale - MT max	4 539			296	9 079
Traffico ferroviario - Carico verticale - inviluppo	8 591			5 174	9 079
Traffico ferroviario - Frenatura		2 255		41 176	
Traffico ferroviario - Centrifuga			0		0
Traffico ferroviario - Serpeggio			210		3 835
Vento a ponte scarico - Impalcato			1 211		22 561
Vento a ponte scarico - Pulvino			11		145
Vento a ponte scarico - Pila			67		399
Vento a ponte carico - Impalcato			652		12 146
Vento a ponte carico - Pulvino			9		115
Vento a ponte carico - Pila			53		318
Attrito - Permanente		45		640	
Attrito - Carichi mobili dinamizzati		170		2 437	
Sisma q=1 - Long 100%		18 550		258 133	
Sisma q=1 - Trasv 100%			18 520		306 106
Sisma q=1 - Vert 100%	13 715				
Sisma q=1.36 - Long 100%		13 644		189 807	
Sisma q=1.36 - Trasv 100%			13 626		225 080
Sisma q=1.36 - Vert 100%	13 715				
Sisma q=1.5 - Long 100%		12 373		172 093	
Sisma q=1.5 - Trasv 100%			12 357		204 074
Sisma q=1.5 - Vert 100%	13 715				
Pila - Peso proprio	6 577				
Pesi fondazione e rinterro	Valori cara	tteristici			
Fondazione - Peso proprio	30 319				
Ricoprimento plinto - Peso proprio	41 680				

Dati plinto e riempimento				
	dir Long	dir Trasv	spessore	n° pali
Numero file pali	4	5		20
Interasse pali (m)	4.5	4.5		
Distanza dal bordo (m)	1.5	1.5		
Dimensioni plinto (m)	16.5	21	3.5	
Modulo minimo palificata (m)	75	90		
Diametro pali (m)	1.5			
Area pila fuori tutto	37.76	mq		
Spessore riempimento	7.5	m		
Peso specifico riemp.	18	kN/m3		

VI08 – VIADOTTO ALI' RELAZIONE DI CALCOLO PILE

DIRETTRICE FERROVIARIA MESSINA-CATANIA-PALERMO

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0805 001 A 18 di 33

7.7 Combinazioni di carico

		primario		second										
		primario		Second										
	SLE_qp	SLE_Rara_Fess_T raffico_gr4_Nma		SLE_Rara_Fess_T raffico_gr4_MTm	ento_ponte_scar			SLE_Rara_Traffic o_gr1_MTmax			SLE_Rara_Traffic o_gr3_MTmax			
Impalcato - Pesi propri	1	, x	dx 1	dx 1	ico	1	1	1	1	1	1	1		
Impalcato - Permamenti portati	1	1	1	1	1	1	1	1	1	1	1	1		
Traffico ferroviario - Carico verticale - Nmax	_	Nota 1	_	_	Ö	1		_	1	_	_	Ö		
Traffico ferroviario - Carico verticale - ML max			Nota 1		o o		1			1		o o		
Traffico ferroviario - Carico verticale - MT max				Nota 1	0			1			1	0		
Traffico ferroviario - Carico verticale - inviluppo														
Traffico ferroviario - Frenatura		Nota 1	Nota 1	Nota 1	0	0.5	0.5	0.5	- 1	1	1	0		
Traffico ferroviario - Centrifuga		Nota 1	Nota 1	Nota 1	0	1	1	1	0.5	0.5	0.5	0		
Traffico ferroviario - Serpeggio		Nota 1	Nota 1	Nota 1	0	1	1	1	0.5	0.5		0		
Vento a ponte scarico - Impalcato		11010 1	11010 2	11010.2	1			•	0.5	0.5	0.5	1		
Vento a ponte scarico - Pulvino					1							1		
Vento a ponte scarico - Pila					1							1		
Vento a ponte carico - Impalcato		0.6	0.6	0.6	-	0.6	0.6	0.6	0.6	0.6	0.6	-		
Vento a ponte carico - Pulvino		0.6	0.6	0.6		0.6	0.6	0.6	0.6	0.6	0.6			
Vento a ponte carico - Pila		0.6		0.6		0.6		0.6						
Attrito - Permanente	1	1	1	1	1	1	1	1	1	1	1	1		
Attrito - Carichi mobili dinamizzati	· '	0.6	0.6	0.6	0	1	1	1	1	1	1	1		
Pila - Peso proprio	1	1	1	1	1	1	1	1	1	1	1	1	i	
Fondazione - Peso proprio	1	1	1	1	1	1	1	1	1	1	1	1		
	1	1	1	1	1	1	- 1	1	1	1	1	1	1	
Ricoprimento plinto - Peso proprio	1	1	1	1	1	- 1	- 1	1	1	1	1	1		
	SLUup_A1_Traffi co_gr1_Nmax	SLUup_A1_Traffi co_gr1_MLmax		SLUup_A1_Traffi co_gr3_Nmax	SLUup_A1_Traffi co_gr3_MLmax		SLUup_A1_Vent o_ponte_scarico			SLUIow_A1_Traff ico_gr1_MTmax				
Impalcato - Pesi propri	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1	1	1	1	1	1	1
Impalcato - Permamenti portati	1.5	1.5		1.5	1.5			1	1	1	1	1	1	1
Traffico ferroviario - Carico verticale - Nmax	1.45		1.3	1.45	1.3		0	1.45		-	1.45	-	-	0
Traffico ferroviario - Carico verticale - ML max	1.43	1.45		1.43	1.45		0	2.43	1.45		1.40	1.45		0
Traffico ferroviario - Carico verticale - MT max			1.45			1.45	0			1.45			1.45	0
Traffico ferroviario - Carico verticale - inviluppo			1.43			2.43	-			1.40			1.40	0
Traffico ferroviario - Frenatura	0.725	0.725	0.725	1.45	1.45	1.45		0.725	0.725	0.725	1.45	1.45	1.45	0
Traffico ferroviario - Centrifuga	1.45		1.45	0.725	0.725	0.725	. 0	1.45	1.45	1.45	0.725	0.725	0.725	0
Traffico ferroviario - Serpeggio	1.45			0.725	0.725		0	1.45	1.45	1.45	0.725	0.725	0.725	0
Vente a pente scarico - Impalcato	1.43	1.43	1.43	0.725	0.723	0.725	1.5	1.43	1.45	1.43	0.723	0.723	0.725	1.5
Vento a ponte scarico - Impalcato							1.5							1.5
Vento a ponte scarico - Pulvino Vento a ponte scarico - Pila							1.5							1.5
	0.0	0.9	0.9	0.0	0.9	0.9	1.3	0.0	0.9	0.9	0.9	0.0	0.9	1.5
Vento a ponte carico - Impalcato	0.9	0.5		0.9	0.9	0.5		0.9	0.9			0.9	0.9	
Vento a ponte carico - Pulvino	0.9		0.9	0.9	0.9			0.9	0.9	0.9	0.9	0.9	0.9	
Vento a ponte carico - Pila Attrito - Permanente	1.35			1.35	1.35		1.35	0.9	0.9	0.9	0.9	0.9	0.9	1
								4.45	4 45	4.45	1 1 1	4.45	4 45	1
Attrito - Carichi mobili dinamizzati	1.45			1.45	1.45			1.45	1.45	1.45	1.45	1.45	1.45	0
Pila - Peso proprio	1.35			1.35	1.35			1	1	1	1	1	1	1
Fondazione - Peso proprio	1.35			1.35	1.35			1	1	1	1	1	1	1
Ricoprimento plinto - Peso proprio	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1	1	1	1	1	1	1
	SLV_PrevX_Zpos	SLV_PrevY_Zpos	SLV_PrevZpos	SLV_PrevX_Zneg	SLV_PrevY_Zneg	SLV_PrevZneg								
Impalcato - Pesi propri	1	. 1	1	1	1	1	1							
Impalcato - Permamenti portati	1	1	1	1	1	1	1							
Traffico ferroviario - Carico verticale - Nmax							1							
Traffico ferroviario - Carico verticale - ML max	l						1							
Traffico ferroviario - Carico verticale - MT max						1	1							
Traffico ferroviario - Carico verticale - inviluppo	0.2	0.2	0.2	0.2	0.2	0.2								
Traffico ferroviario - Frenatura	0.2			0.2	0.2		1							
Traffico ferroviario - Centrifuga	0.2			0.2	0.2		1							
Traffico ferroviario - Serpeggio	0.2			0.2	0.2									
Vento a ponte scarico - Impalcato	0	0		0	0		1							
Vento a ponte scarico - Pulvino	0	0	0	0	0		1							
Vento a ponte scarico - Pila	0	0	0	0	0	0								
Vento a ponte carico - Impalcato							1							
Vento a ponte carico - Pulvino														
Vento a ponte carico - Pila														
Attrito - Permanente	0.5	0.5	0.5	0.5	0.5	0.5								
Attrito - Carichi mobili dinamizzati	0.1	0.1	0.1	0.1	0.1	0.1								
Sisma - Long 100%	1	0.3	0.3	1	0.3									
Sisma - Trasv 100%	0.3		0.3	0.3	1	0.3								
Sisma - Vert 100%	0.3		1	-0.3	-0.3									
Pila - Peso proprio	1	. 1	1	1	1	. 1								
Fondazione - Peso proprio	1	. 1	1	1	1	. 1								
Ricoprimento plinto - Peso proprio	1		1	1	1	1								

Nota1: 0.8 per singolo binario; 0.6 per doppio binario; 0.4 per 3 binari o più.

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

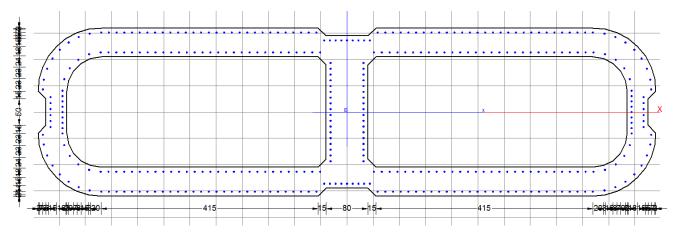
VI08 – VIADOTTO ALI' RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0805 001 A 19 di 33

7.8 Verifica a pressoflessione pila

Azioni allo spiccato pila - Valori combinati						wk	sc	SS	c.s.(>1)
Combinazione	N	HL	HT	ML	MT	mm	MPa	MPa	
SLE_qp	21 434	45	0	641	0	0.000	1.09	15.5	
SLE_Rara_Fess_Traffico_gr4_Nmax	26 588	1 500	555	27 311	10 634	0.010	2.59	-6.8	
SLE Rara Fess Traffico gr4 MLmax	24 539	1 500	555	29 913	10 263	0.029	2.62	-15.7	
SLE_Rara_Fess_Traffico_gr4_MTmax	24 157	1 500	555	26 987	15 297	0.023	2.60	-12.6	
SLE_Rara_Fess_Vento_ponte_scarico	21 434	45	1 289	641	23 106	0.000	1.60	7.4	
SLE_Rara_Traffico_gr1_Nmax	30 025	1 342	639	24 502	12 692		2.66	-1.1	
SLE_Rara_Traffico_gr1_MLmax	26 610	1 342	639	28 840	12 072		2.69	-9.9	
SLE_Rara_Traffico_gr1_MTmax	25 973	1 342	639	23 962	20 462		2.63	-7.4	
SLE_Rara_Traffico_gr3_Nmax	30 025	2 470	534	45 091	10 775		3.48	-41.5	
SLE Rara Traffico gr3 MLmax	26 610	2 470	534	49 428	10 155		3.43	-65.4	
SLE_Rara_Traffico_gr3_MTmax	25 973	2 470	534	44 550	18 545		3.49	-56.9	
SLE_Rara_Vento_ponte_scarico	21 434	45	1 289	641	23 106		1.60	7.4	
SLUup_A1_Traffico_gr1_Nmax	42 531	1 941	948	35 464	18 780				5.92
SLUup_A1_Traffico_gr1_MLmax	37 579	1 941	948	41 754	17 882				4.92
SLUup A1 Traffico gr1 MTmax	36 656	1 941	948	34 681	30 047				5.72
SLUup A1 Traffico gr3 Nmax	42 531	3 576	795	65 317	16 000				3.25
SLUup_A1_Traffico_gr3_MLmax	37 579	3 576	795	71 607	15 101				2.89
SLUup_A1_Traffico_gr3_MTmax	36 656	3 576	795	64 534	27 267				3.16
SLUup A1 Vento ponte scarico	30 074	61	1 934	865	34 658				17.42
SLUIow A1 Traffico gr1 Nmax	33 891	1 926	948	35 240	18 780				5.69
SLUIow A1 Traffico gr1 MLmax	28 939	1 926	948	41 530	17 882				4.72
SLUlow_A1_Traffico_gr1_MTmax	28 015	1 926	948	34 457	30 047				5.51
SLUlow_A1_Traffico_gr3_Nmax	33 891	3 561	795	65 093	16 000				3.11
SLUlow_A1_Traffico_gr3_MLmax	28 939	3 561	795	71 382	15 101				2.76
SLUlow A1 Traffico gr3 MTmax	28 015	3 561	795	64 310	27 267				3.02
SLUlow A1 Vento ponte scarico	21 434	45	1 934	641	34 658				16.89
SLVq1_PrevX_Zpos	27 266	19 041	5 599	267 967	94 415				-
SLVq1_PrevY_Zpos	27 266	6 056	18 563	87 274	308 689				-
SLVq1_PrevZpos	36 867	6 056	5 599	87 274	94 415				-
SLVq1_PrevX_Zneg	19 037	19 041	5 599	267 967	94 415				-
SLVq1 PrevY Zneg	19 037	6 056	18 563	87 274	308 689				_
SLVq1_PrevZneg	9 437	6 056	5 599	87 274	94 415				-
SLVq1.36_PrevX_Zpos	27 266	14 135	4 130	199 641	70 107				-
SLVq1.36 PrevY Zpos	27 266	4 584	13 669	66 777	227 663				-
SLVq1.36_PrevZpos	36 867	4 584	4 130	66 777	70 107				-
SLVq1.36_PrevX_Zneg	19 037	14 135	4 130	199 641	70 107				_
SLVq1.36 PrevY Zneg	19 037	4 584	13 669	66 777	227 663				-
SLVq1.36 PrevZneg	9 437	4 584	4 130	66 777	70 107				_
SLVq1.50 PrevX Zpos	27 266	12 864	3 750	181 927	63 805				1.07
SLVq1.50_PrevY_Zpos	27 266	4 203	12 400	61 462	206 657				2.12
SLVq1.50_PrevZpos	36 867	4 203	3 750	61 462	63 805				3.18
SLVq1.50_PrevX_Zneg	19 037	12 864	3 750	181 927	63 805				1.02
SLVq1.50 PrevY Zneg	19 037	4 203	12 400	61 462	206 657				2.07
SLVq1.50 PrevZneg	9 437	4 203	3 750	61 462	63 805				2.73

VI08 – VIADOTTO ALI' RELAZIONE DI CALCOLO PILE


DIRETTRICE FERROVIARIA MESSINA-CATANIA-PALERMO

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO
RS2S 02 D 09 CL VI0805 001 A 20 di 33

Riepilogo verifica spiccato	wk	sc	SS	c.s.(>1)			
	mm	MPa	MPa	-			
SLS_qp	0.000	1.09	15.5				
SLS_Rara_Fess	0.029	2.62	-15.7				
SLS_Rara		3.49	-65.4				
SLU_A1				2.76			
SLV - q=1				-			
SLV - q=1.36				-			
SLV - q=1.5				1.02			

364 Ø 32

Af tot = 2927.46 (1.87 %)

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI08 – VIADOTTO ALI' RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0805 001 A 21 di 33

7.9 Verifica a taglio pila

La verifica viene condotta per le singole anime ripartendo il carico in base ai rapporti di rigidezza a taglio.

Anima	num	b	h	Α	k=A/Atot
-	-	m	m	mq	-
laterale	1	0.4	2.5	1	0.23
laterale	1	0.4	2.5	1	0.23
centrale	1	0.8	2.9	2.32	0.54
somma				4.32	1

Pila		1	1
Direzione		Long	Trasv
Altezza pila	H(m)	13.97	13.97
fattore di struttura	q	1.5	1.5
fattore di sovraresistenza (eq 7.9.7)		1	1
fattore di sovraresistenza filtrato (eq 7.9.7)	grd	1	1
taglio derivante dall'analisi (con q=1)	V	19 041	18 563
momento corrispondente alla base della pila (con q=1))	M	267 967	308 689
taglio derivante dall'analisi (con q)	Ved	12 864	12 400
momento corrispondente alla base della pila (con q)	Med	181 927	206 657
momento resistente alla base della pila	Mrd	185 566	427 780
Rapporto di sovraresistenza	Mrd/Med	1.02	2.07
Tipo sezione (EC 8-2; eq 6.11)		critica ı	non critica
angolo inclinazione bielle compresse	Teta	45	da calc
limite superiore per Vgr	Vgr,max=V	19 041	18 563
taglio di progetto per la gerarchia della resistenza (da calcolo) (eq. 7.9.12)	Vgr	13 121	25 668
taglio di progetto per la gerarchia della resistenza (filtrato)	Vgr	13 121	18 563
fattore di sicurezza aggiuntivo per la resistenza a taglio (eq 7.9.10)	grd	0.78	1.25
fattore di sicurezza aggiuntivo per la resistenza a taglio, filtrato (eq 7.9.10)	grd	1.00	1.25
Riassumendo			
Taglio di calcolo	Vgr	13 121	18 563
fattore di sicurezza aggiuntivo filtrato (eq 7.9.10)	grd	1.00	1.25
angolo inclinazione bielle compresse	Teta	45	da calc

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI08 - VIADOTTO ALI' RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S D 09 CL VI0805 001 22 di 33 Α

Taglio longitudinale - Setto centrale

Verifica a taglio secondo EC2-2

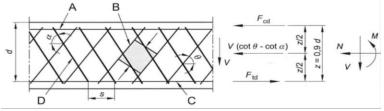
Calcestruzzo		
fck=	32	MPa
γc=	1.50	
fcm=	40	MPa
αcc=	0.85	
fcd=	18.13	MPa
fctm=	3.02	MPa
$fctk_{0.05} =$	2.12	MPa
fctk _{0.95} =	3.93	MPa
αct=	1.00	
fctd=	1.41	MPa
Acciaio c.a.		
fyk=	450	MPa

<u>Taglio</u>		γ	
Gk	0	x1.00=	0 kN
Pk	0	x1.00=	0 kN
Qk	0	x1.00=	0 kN
Aed	13 121	x0.54=	7085 kN
		V _{Ed} =	7085 kN

Nsd= 0 kN Sforzo normale

<u>Geometria</u>

bw =	0.800	m	Larghezza (6.16)
h=	2.900	m	Altezza totale
c=	0.100	m	Copriferro
d =	2.800	m	Altezza utile
Ac=	2.32	mq	Area


Elementi CA e CAP armati a taglio

fyd=

1.15

391.3

MPa

Α	Corrente compresso
В	Puntoni
C	Corrente teso
D	Armatura a taglio

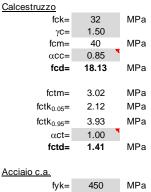
Resistenza lato acciaio (staffe)

φw=	14	mm	Diametro staffa						
n=	10.00	-	Numero braccia						
Asw=	15.39	cm2							
z=	2.52	m	=0.9*d						
senα=	1		angolo tra le staffe e l'asse della trave (=90° per staffe verticali)						
ρ w =	0.96	%	$=Asw/(s*bw*sin\alpha)*100>=$	0.10 %		=(0.08*radq(fck))/fyk*100			
s=	0.2	m	=passo staffe <=	2.10 m		=0.75*d*(1+cotα)			
θ=	45.0	0	=arcsen(radq(Asw*fyd)/(bw*s*acw*n*fcd))						
			inclinazione puntone compresso, va	riabile tra 45	5° to 2′	1.8°			
tanθ=	1.00	-	valore tra 1 (for q=45°) e 0.4						
cotθ=	1.00	-	valore tra 1 (for q=45°) and 2.5						
ρ w ,max=	3.76	=	$A_{sw,max}*fyd/(bw*s) <= 1/2*\alpha_{cw}*v*fcd =$	= 4.74					
Asw/s,ins =	76.97	cm2/m	Area staffe inserita						
$V_{Rd,s}$ =	7 590	kN	=Asw/s*z* fywd *cotθ						

Resistenza lato calcestruzzo (puntone compresso inclinato)

ciiza iato	carec su u	-20 (pu	mone compresso memato,
ν=	0.523		=0.6*(1-fck/250) (from EN 6.6N)
σ cp =	0.00		=Nsd/Ac
$\alpha_{\text{cw}}\!\!=\!$	1.00		
$V_{Rd,max}$ =	9 563	kN	$=\alpha_{cw}^*bw^*z^*v^*fcd/(cot\theta+tan\theta)$
γ_{Bd1}	1.00		coefficiente di sicurezza (EN1998-2-5.6.2.b)
$V_{Ed} =$	7 085	kN	
V_{Rd} =	7 590	kN	=min($V_{Rd,s}$; $V_{Rd,max}$)/ γ_{Bd1}
c.s. =	0.93	<=1	

PROGETTO DEFINITIVO


RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI08 – VIADOTTO ALI' RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0805 001 A 23 di 33

Taglio longitudinale - Setto laterale

Verifica a taglio secondo EC2-2

 Taglio
 γ

 Gk
 0
 x1.00=
 0 kN

 Pk
 0
 x1.00=
 0 kN

 Qk
 0
 x1.00=
 0 kN

 Aed
 13 121
 x0.23=
 3018 kN

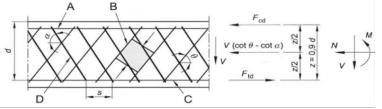
 V_{Ed} = 3018 kN

Nsd= 0 kN Sforzo normale

Geometria

0000			
bw =	0.400	m	Larghezza (6.16)
h=	2.500	m	Altezza totale
c=	0.100	m	Copriferro
d =	2.400	m	Altezza utile
Ac=	1.00	mq	Area

Elementi CA e CAP armati a taglio


1.15

391.3

MPa

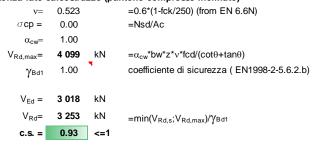
γs=

fyd=

A Corrente compresso

B Puntoni

Corrente teso Armatura a taglio


Resistenza lato acciaio (staffe)

φ w =	14	mm	Diametro staffa			
n=	5.00	-	Numero braccia			
Asw=	7.70	cm2				
z=	2.16	m	=0.9*d			
senα=	1		angolo tra le staffe e l'asse della trav	e (=90°	per staffe	e verticali)
ρW=	0.96	%	$=Asw/(s*bw*sin\alpha)*100 >=$	0.10	%	=(0.08*radq(fck))/fyk*100
s=	0.2	m	=passo staffe <=	1.80	m	$=0.75*d*(1+cot\alpha)$
θ=	45.0	۰	=arcsen(radq(Asw*fyd)/(bw*s*acw*n*	fcd))		
			inclinazione puntone compresso, var	iabile tr	a 45° to 2	21.8°
tanθ=	1.00	-	valore tra 1 (for q=45°) e 0.4			
cotθ=	1.00	-	valore tra 1 (for q=45°) and 2.5			
ρw,max=	3.76	=	$A_{sw.max}*fyd/(bw*s) \le 1/2*\alpha_{cw}*v*fcd =$	4.74		
-						
Asw/s,ins =	38.48	cm2/m	Area staffe inserita			

Resistenza lato calcestruzzo (puntone compresso inclinato)

3 253

 $V_{Rd,s}=$

 $kN = Asw/s*z* fywd *cot\theta$

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI08 - VIADOTTO ALI' RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S D 09 CL VI0805 001 24 di 33 Α

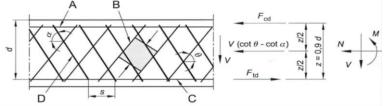
Taglio trasversale

Verifica a taglio secondo EC2-2

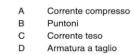
<u>Calcestruzzo</u>		
fck=	32	MPa
γc=	1.50	
fcm=	40	MPa
αcc=	0.85	
fcd=	18.13	MPa
fctm=	3.02	MPa
fctk _{0.05} =	2.12	MPa
fctk _{0.95} =	3.93	MPa
αct=	1.00	
fctd=	1.41	MPa

<u>Taglio</u>		γ	
Gk	0	x1.00=	0 kN
Pk	0	x1.00=	0 kN
Qk	0	x1.00=	0 kN
Aed	18 563	x0.50=	9282 kN
		V	0282 FM

Nsd= 0 kN Sforzo normale


	icia-	1.41	IVII
Acciaio c	<u>.a.</u>		
	fyk=	450	MPa
	γS=	1.15	

fyd=


Geome	<u>tria</u>		
bw =	0.550	m	Larghezza (6.16)
h=	11.100	m	Altezza totale
c=	0.100	m	Copriferro
d =	11.000	m	Altezza utile
Ac=	6.11	mq	Area

Elementi CA e CAP armati a taglio

391.3

Diametro staffa

Resistenza lato acciaio (staffe) φw=

14

mm

n=	2.00	-	Numero braccia		
Asw=	3.08	cm2			
z=	9.90	m	=0.9*d		
senα=	1		angolo tra le staffe e l'asse della trave		affe verticali)
ρ w =	0.28	%	$=Asw/(s*bw*sin\alpha)*100>=$	0.10 %	=(0.08*radq(fck))/fyk*100
s=	0.2	m	=passo staffe <=	8.25 m	$=0.75*d*(1+cot\alpha)$
θ=	21.8	0	=arcsen(radq(Asw*fyd)/(bw*s*acw*n*f	cd))	
			inclinazione puntone compresso, varia	abile tra 45° to	o 21.8°
tanθ=	0.40	-	valore tra 1 (for q=45°) e 0.4		
cotθ=	2.50	-	valore tra 1 (for q=45°) and 2.5		
ρw,max=	1.10	=	$A_{sw,max}*fyd/(bw*s) <= 1/2*\alpha_{cw}*v*fcd =$	4.74	
Asw/s,ins =	15.39	cm2/m	Area staffe inserita		
$V_{Rd.s} =$	14 910	kN	=Asw/s*z* fywd *cotθ		
,-					

Resistenza lato calcestruzzo (puntone compresso inclinato)

	**	• •
0.523		=0.6*(1-fck/250) (from EN 6.6N)
0.00		=Nsd/Ac
1.00		
17 812	kN	$=\alpha_{cw}^*bw^*z^*v^*fcd/(cot\theta+tan\theta)$
1.25		coefficiente di sicurezza (EN1998-2-5.6.2.b)
9 282	kN	
11 928	kN	=min(V _{Rd,s} ;V _{Rd,max})/γ _{Bd1}
0.78	<=1	
	0.00 1.00 17 812 1.25 9 282 11 928	0.00 1.00 17 812 kN 1.25 9 282 kN 11 928 kN

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI08 – VIADOTTO ALI' RELAZIONE DI CALCOLO PILE

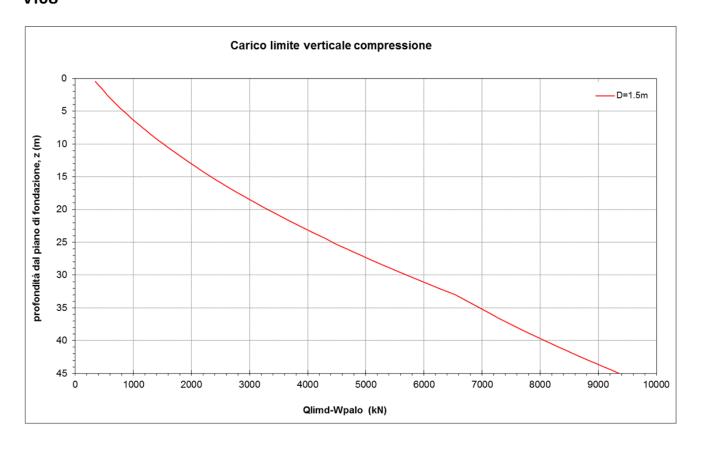
PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0805 001 A 25 di 33

7.10 Verifica capacità portante verticale palo

Azioni all'intradosso fondazione - Valori con	mbinati					Carichi sui	pali	
Combinazione	N	HL	HT	ML	MT	Np max	Np min	Hp max
SLE_qp	93 432	45	0	798	0	4 683	4 661	3
SLE_Rara_Fess_Traffico_gr4_Nmax	98 587	1 500	555	32 561	12 577	5 504	4 356	80
SLE_Rara_Fess_Traffico_gr4_MLmax	96 538	1 500	555	35 163	12 205	5 432	4 223	80
SLE_Rara_Fess_Traffico_gr4_MTmax	96 156	1 500	555	32 237	17 239	5 430	4 187	80
SLE_Rara_Fess_Vento_ponte_scarico	93 432	45	1 289	798	27 617	4 990	4 355	65
SLE_Rara_Traffico_gr1_Nmax	102 023	1 342	639	29 199	14 928	5 657	4 546	75
SLE_Rara_Traffico_gr1_MLmax	98 608	1 342	639	33 537	14 308	5 537	4 325	75
SLE_Rara_Traffico_gr1_MTmax	97 971	1 342	639	28 659	22 698	5 533	4 265	75
SLE_Rara_Traffico_gr3_Nmax	102 023	2 470	534	53 736	12 644	5 959	4 245	127
SLE_Rara_Traffico_gr3_MLmax	98 608	2 470	534	58 073	12 024	5 839	4 023	127
SLE_Rara_Traffico_gr3_MTmax	97 971	2 470	534	53 195	20 414	5 835	3 963	127
SLE_Rara_Vento_ponte_scarico	93 432	45	1 289	798	27 617	4 990	4 355	65
SLUup_A1_Traffico_gr1_Nmax	139 729	1 941	948	42 258	22 098	7 796	6 178	109
SLUup_A1_Traffico_gr1_MLmax	134 778	1 941	948	48 547	21 200	7 622	5 857	109
SLUup_A1_Traffico_gr1_MTmax	133 854	1 941	948	41 475	33 365	7 617	5 769	109
SLUup_A1_Traffico_gr3_Nmax	139 729	3 576	795	77 833	18 783	8 233	5 740	184
SLUup A1 Traffico gr3 MLmax	134 778	3 576	795	84 123	17 884	8 060	5 419	184
SLUup A1 Traffico gr3 MTmax	133 854	3 576	795	77 050	30 049	8 054	5 332	184
SLUup A1 Vento ponte scarico	127 272	61	1 934	1 079	41 427	6 839	5 889	97
SLUlow A1 Traffico gr1 Nmax	105 889	1 926	948	41 981	22 098	6 100	4 490	108
SLUlow_A1_Traffico_gr1_MLmax	100 938	1 926	948	48 271	21 200	5 927	4 168	108
SLUlow_A1_Traffico_gr1_MTmax	100 014	1 926	948	41 198	33 365	5 921	4 081	108
SLUlow_A1_Traffico_gr3_Nmax	105 889	3 561	795	77 556	18 783	6 538	4 052	183
SLUlow_A1_Traffico_gr3_MLmax	100 938	3 561	795	83 846	17 884	6 364	3 731	183
SLUlow_A1_Traffico_gr3_MTmax	100 014	3 561	795	76 773	30 049	6 359	3 644	183
SLUlow_A1_Vento_ponte_scarico	93 432	45	1 934	798	41 427	5 143	4 201	97
SLVq1_PrevX_Zpos	99 265	19 041	5 599	334 611	114 012	10 692	-765	993
SLVq1_PrevY_Zpos	99 265	6 056	18 563	108 470	373 660	10 562	-634	977
SLVq1 PrevZpos	108 866	6 056	5 599	108 470	114 012	8 157	2 731	413
SLVq1_PrevX_Zneg	91 036	19 041	5 599	334 611	114 012	10 281	-1 176	993
SLVq1_PrevY_Zneg	91 036	6 056	18 563	108 470	373 660	10 150	-1 046	977
SLVq1 PrevZneg	81 436	6 056	5 599	108 470	114 012	6 785	1 359	413
SLVq1.36_PrevX_Zpos	99 265	14 135	4 130	249 114	84 562	9 225	703	737
SLVq1.36_PrevY_Zpos	99 265	4 584	13 669	82 821	275 505	9 129	798	721
SLVq1.36_PrevZpos	108 866	4 584	4 130	82 821	84 562	7 488	3 400	309
SLVq1.36 PrevX Zneg	91 036	14 135	4 130	249 114	84 562	8 813	291	737
SLVq1.36_PrevY_Zneg	91 036	4 584	13 669	82 821	275 505	8 718	387	721
SLVq1.36 PrevZneg	81 436	4 584	4 130	82 821	84 562	6 116	2 028	309
SLVq1.50 PrevX Zpos	99 265	12 864	3 750	226 951	76 930	8 845	1 083	670
SLVq1.50 PrevY Zpos	99 265	4 203	12 400	76 173	250 057	8 758	1 170	655
SLVq1.50_PrevZpos	108 866	4 203	3 750	76 173	76 930	7 314	3 573	282
SLVq1.50_PrevX_Zneg	91 036	12 864	3 750	226 951	76 930	8 433	672	670
SLVq1.50_PrevY_Zneg	91 036	4 203	12 400	76 173	250 057	8 346	758	655
SLVq1.50 PrevZneg	81 436	4 203	3 750	76 173	76 930	5 943	2 202	282
SEVQ1.30_FTEVZITEB	81 430	4 203	3 7 3 0	70173	70 330	3 343	2 202	202
Riepilogo carichi sui pali	Np max	Np min	Hp max					
SLS_qp	4 683	4 661	3					
SLS_Rara_Fess	5 504	4 187	80					
SLS_Rara	5 959	3 963	127					
SLU_A1	8 233	3 644	184					
	10 692	-1 176	993					
SLV - q=1.36	9 225	291	737					
SLV - q=1.5	8 845	672	670					

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO


VI08 – VIADOTTO ALI' RELAZIONE DI CALCOLO PILE

PROGETTO	LOTTO	FAS	SE EN	TE CO	OD.	DOC.	. P	ROG.	REV.	FOGLIO	,
RS2S	02	D	09	CL	VI08	05	001	Α	26 (di 33	

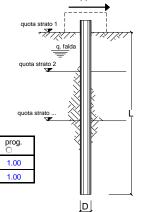
Il carico totale viene confrontato con la curva di capacità portante. Le curve comprendono già il peso proprio del palo e partono dalla quota testa palo.

Opera 📭	Binario 🔻	Pila/Spalla 🗾	n° pali 🔻	Nmax (k	Lpalo (🔽
VI08	Entrambi	P1	20	9 225	45
VI08	Entrambi	P2	20	9 225	45

VI08

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO


VI08 – VIADOTTO ALI' RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0805 001 A 27 di 33

7.11 Verifica palo per forze orizzontali

7.11.1 Capacità portante orizzontale (Broms)

	coefficie	nti parziali		P		M	R	
	Metodo	di calcolo		permanenti γ _G	variabili γο	γ _{φ'}	γcu	γт
	A1+M1+R	11	0	1.30	1.50	1.00	1.00	1.00
SLU	A2+M1+R	2	0	1.00	1.30	1.00	1.00	1.60
S	A1+M1+R	:3	0	1.30	1.50	1.00	1.00	1.30
	SISMA		•	1.00	1.00	1.00	1.00	1.30
88MC			0	1.00	1.00	1.00	1.00	1.00
definiti d	lal progettista	а	0	1.00	1.00	1.00	1.00	1.30
				<u>.</u>	<u> </u>			
n	1	2	3	4	5	7	≥10	T.A.

n	1	2	3	4	5	7	≥10 ○	T.A.	prog.
ξ ₃	1.70	1.65	1.60	1.55	1.50	1.45	1.40	1.00	1.00
ξ ₄	1.70	1.55	1.48	1.42	1.34	1.28	1.21	1.00	1.00

						Parametri m	edi	Para	ametri minir	ni
strati terreno	descrizione	quote	γ	γ'	φ	k _p	Cu	φ	k_p	Cu
		(m)	(kN/m ³)	(kN/m ³)	(°)		(kPa)	(°)		(kPa)
p.c.=strato 1		100.00	18	8	34	3.54		34	3.54	
□ strato 2						1.00			1.00	
□ strato 3						1.00			1.00	
☐ strato 4						1.00			1.00	
☐ strato 5						1.00			1.00	
☐ strato 6						1.00			1.00	

 Quota falda
 100.00
 (m)

 Diametro del palo D
 1.50
 (m)

 Lunghezza del palo L
 45.00
 (m)

 Momento di plasticizzazione palo My
 5 939.00
 (kNm)

 Step di calcolo
 0.01
 (m)

© palo impedito di ruotare

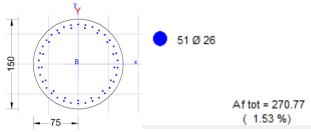
O palo libero

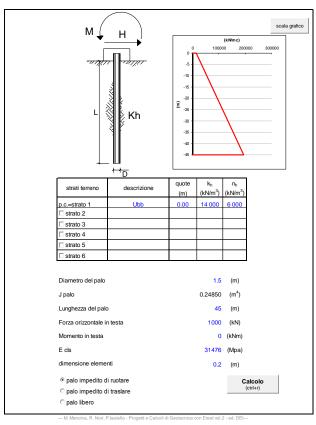
Calcolo	
(ctrl+r)	

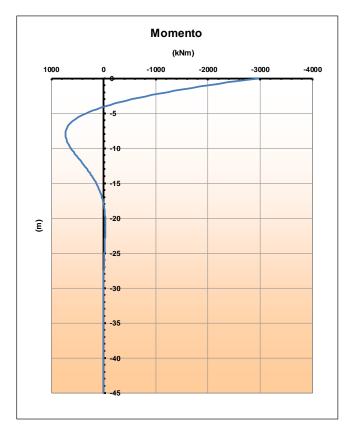
	н	medio				н	minimo		
Palo lungo		2 727	(kN)				2 727	(kN)	
Palo intermedio		33 679	(kN)				33 679	(kN)	
Palo corto		128 928	(kN)				128 928	(kN)	
	H _{med}	2 727	(kN)	Palo lungo		H _{min}	2 727	(kN)	Palo lungo
	H _k =	: Min(H _{med}	/ξ ₃ ; R _{mir}	√ 5 4)		1 653		(kN)	
	Coefficiente	di gruppo	palificat	ta:	k =	0.8		(-)	
	H _d :	= (H _k /γ _T)*I	κ			1 017		(kN)	
	Carico Assi	iale Perma	anente (C	S):	G =	993		(kN)	
	Carico Assi	iale variab	ile (Q):		Q =	0		(kN)	
	F _d = G-	γ _G + Q · γ	_Q =			993		(kN)	
	C.S. :	= Hd / Fd	=			1.02		(-)	

VI08 – VIADOTTO ALI' RELAZIONE DI CALCOLO PILE

DIRETTRICE FERROVIARIA MESSINA-CATANIA-PALERMO


PROGETTO DEFINITIVO


RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO


PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0805 001 A 28 di 33

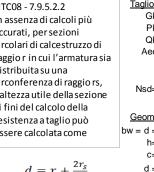
7.11.2 Resistenza strutturale

Verifica strutturale palo	Np	Hp max	Hp max/k	Mp max	Mrd	wk	SC	SS	c.s.(>1)
		kN	kN	kNm	kNm	mm	MPa	MPa	-
SLS_qp	0	3	4	11		0.002	0.04	-1.1	
SLS_Rara_Fess	0	80	100	296		0.046	1.04	-28.9	
SLS_Rara	0	127	159	470			1.65	-45.9	
SLU_A1	0	184	230	681	5 939				8.72
SLV - q=1	0	993	1 241	3 674	5 939				1.62
SLV - q=1.36	0	737	921	2 727	5 939				2.18
SLV - q=1.5	0	670	838	2 479	5 939				2.40

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI08 - VIADOTTO ALI' RELAZIONE DI CALCOLO PILE


PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S VI0805 001 D 09 CL29 di 33

7.11.3 Taglio strutturale

Verifica a taglio secondo EC2-2

$$\begin{array}{c|cccc} Taglio & \gamma & \\ \hline Gk & 0 & x1.00= & 0 \text{ kN} \\ Pk & 0 & x1.00= & 0 \text{ kN} \\ Qk & 0 & x1.00= & 0 \text{ kN} \\ Aed & 1 & 241 & x1.00= & 1241 \text{ kN} \\ \hline & V_{Ed} = & 1241 \text{ kN} \\ \hline \end{array}$$

Nsd= 0 kΝ Sforzo normale

Geometria

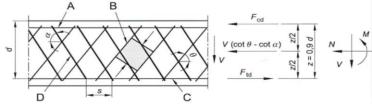
Larghezza (6.16) bw = d = 1.172m h= 1.172 Altezza totale c = 0.087m Copriferro d = 1.172m Altezza utile Ac= 1.37 Area mq r = 0.750Raggio palo m Raggio armatura verticale rs = r-c = 0.663m

Elementi CA e CAP armati a taglio

450

1.15

391.3


MPa

MPa

fyk=

γs=

fyd=

Corrente compresso В Puntoni

C Corrente teso Armatura a taglio

Resistenza lato acciaio (staffe)

1 589

 $V_{Rd,s} =$

	(,				
φ w =	14	mm	Diametro staffa			
n=	2.00	-	Numero braccia			
Asw=	3.08	cm2				
z=	1.05	m	=0.9*d			
senα=	1		angolo tra le staffe e l'asse della trave			fe verticali)
ρ w =	0.13	%	$=Asw/(s*bw*sin\alpha)*100 >=$	0.11	%	= (0.08*radq(fck))/fyk*100
s=	0.2	m	=passo staffe <=	0.88	m	$=0.75*d*(1+cot\alpha)$
θ=	21.8	۰	=arcsen(radq(Asw*fyd)/(bw*s*acw*n*f	cd))		
			inclinazione puntone compresso, varia	abile tra	a 45° to	21.8°
tanθ=	0.40	-	valore tra 1 (for q=45°) e 0.4			
cotθ=	2.50	-	valore tra 1 (for q=45°) and 2.5			
ρw,max=	0.51	=	$A_{sw,max}*fyd/(bw*s) \le 1/2*\alpha_{cw}*v*fcd =$	5.12		
Asw/s,ins =	15.39	cm2/m	Area staffe inserita			

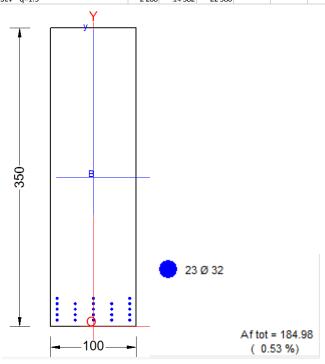
Resistenza lato calcestruzzo (puntone compresso inclinato)

		**	• •
ν=	0.516		=0.6*(1-fck/250) (from EN 6.6N)
$\sigma cp =$	0.00		=Nsd/Ac
$\alpha_{\text{cw}}\!\!=\!$	1.00		
$V_{Rd,max}$ =	4 363	kN	$=\alpha_{cw}^*bw^*z^*v^*fcd/(cot\theta+tan\theta)$
γ_{Bd1}	1.25		coefficiente di sicurezza (EN1998-2-5.6.2.b)
$V_{Ed} =$	1 241	kN	
V_{Rd} =	1 271	kN	=min($V_{Rd,s}$; $V_{Rd,max}$)/ γ_{Bd1}
c.s. =	0.98	<=1	

 $kN = Asw/s*z* fywd *cot\theta$

VI08 – VIADOTTO ALI' RELAZIONE DI CALCOLO PILE

DIRETTRICE FERROVIARIA MESSINA-CATANIA-PALERMO


PROGETTO DEFINITIVO

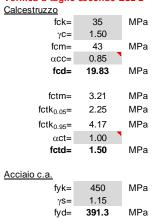
RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

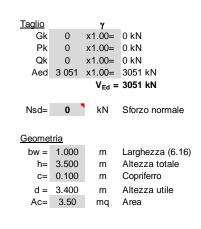
PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0805 001 A 30 di 33

7.12 Verifica plinto

		plinto	riemp	somma											
peso specifico	kN/m3	25	18												
spessore	m	3.5	7.5												
peso a mq	kN/mq	87.5	135	222.5											
sbalzo plinto e riemp	m	6.65	6.65												
peso totale a m/l	kN/m	582	898	1480											
momento nella sezione di verifica	kNm/m	1935	2985	4920											
Larghezza di influenza per pali	m	2.36	Tpila/n°pal	i dir T											
		Fila	a 1	Fila	12	Fila	13	Effetto	pali	Effetto p	ali a m/l	p.p.plinto	+rinterro	Soll. di p	rogetto
		N	braccio	N	braccio	N	braccio	Т	М	Т	M		М	Т	M
		kN	m	kN	m	kN	m	kN	kNm	kN/m	kNm/m	kN/m	kNm/m	kN/m	kNm/m
SLS_qp	kN	4 683	5.15	0		0		4 683	24 117	1 984	10 219	-1480	-4 920	505	5 300
SLS_Rara_Fess	kN	5 504	5.15	0		0		5 504	28 346	2 332	12 011	-1480	-4 920	853	7 091
SLS_Rara	kN	5 959	5.15	0		0		5 959	30 689	2 525	13 004	-1480	-4 920	1 045	8 084
SLU_A1	kN	8 233	5.15	0		0		8 233	42 400	3 489	17 966	-1480	-4 920	2 009	13 046
SLV - q=1	kN	10 692	5.15	0		0		10 692	55 064	4 531	23 332	-1480	-4 920	3 051	18 412
SLV - q=1.36	kN	9 225	5.15	0		0		9 225	47 509	3 909	20 131	-1 480	-4 920	2 429	15 211
SLV - q=1.5	kN	8 845	5.15	0		0		8 845	45 552	3 748	19 302	-1 480	-4 920	2 268	14 382
	Soll. di	progetto			Verifica										
	Т	M	Mrd	wk	sc	SS	c.s.(>1)								
	kN/m	kNm/m	kNm/m	mm	MPa	MPa	-								
SLS_qp	505	5 300		0.141	3.26	-103									
SLS_Rara_Fess	853	7 091		0.189	4.36	-137									
SLS_Rara	1 045	8 084			4.97	-156									
SLU_A1	2 009	13 046	22 580				1.73								
SLV - q=1	3 051	18 412	22 580				1.23								
SLV - q=1.36	2 429	15 211	22 580				1.48								
SLV - q=1.5	2 268	14 382	22 580				1.57								

PROGETTO DEFINITIVO


RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO


VI08 – VIADOTTO ALI' RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0805 001 A 31 di 33

Si fornisce un quantitativo di armatura a taglio, da realizzare con spille o considerando i cavallotti.

Verifica a taglio secondo EC2-2

Elementi CA e CAP armati a taglio

Α	Corrente compresse
В	Puntoni
C	Corrente teso

Armatura a taglio

Resistenza lato acciaio (staffe)

φ w =	20	mm	Diametro staffa			
n=	2.00	-	Numero braccia			
Asw=	6.28	cm2				
z=	3.06	m	=0.9*d			
senα=	1		angolo tra le staffe e l'asse della trave	(=90°	per staff	fe verticali)
ρ w =	0.13	%	=Asw/(s*bw*sin α)*100			
s=	0.49	m	=passo staffe <=	2.55	m	$=0.75*d*(1+cot\alpha)$
θ =	21.8	0	=arcsen(radq(Asw*fyd)/(bw*s*acw*n*fe	cd))		
			inclinazione puntone compresso, varia	abile tra	a 45° to	21.8°
tanθ=	0.40	-	valore tra 1 (for q=45°) e 0.4			
cotθ=	2.50	-	valore tra 1 (for q=45°) and 2.5			
ρw,max=	0.50	=	$A_{sw,max}$ *fyd/(bw*s)<=1/2* α_{cw} * ν *fcd =	5.12		
	10.00	0/				
Asw/s,ins =	12.82	cm2/m	Area staffe inserita			
V _{Rd,s} =	3 839	kN	=Asw/s*z* fywd *cotθ			

Resistenza lato calcestruzzo (puntone compresso inclinato)

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI08 – VIADOTTO ALI' RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0805 001 A 32 di 33

8 ESCURSIONE APPOGGI E GIUNTI

Vista l'elevata sismicità del sito $(a_g>0.25g)$, l'escursione totale massima EL è governata dal valore minimo richiesto da [N5] al punto 2.5.2.1.5.1

L 40 m luce totale impalcato

Per garantire un valore minimo di escursione, in funzione della sismicità del sito, il valore di EL dovrà essere asunto non minore di

 $per \ a_g(SLV) \geq 0.25g \\ \hspace{0.5in} E_L \\ \hspace{0.5in} 3.3^*L/1000 + 0.1 \\ \hspace{0.5in} 232.0 \ mm$

0.15m 150.0 mm

 $\mbox{per } a_g(\mbox{SLV}) < 0.25g \qquad \qquad \mbox{E}_L \qquad \qquad 2.3^*\mbox{L}/1000 + 0.073 \qquad \qquad 165.0 \ \mbox{mm}$

0.10m 100.0 cm

E_L **232** mm

Risulta quindi

E_L 232.0 mm escursione totale longitunale

Vincoli degli impalcato, corsa degli appoggi, varchi

In direzione longitudinale:

La corsa degli apparecchi d'appoggio deve essere pari a: ± E_L 232.0 mm

 $\pm E_{L}/2 \pm max(15mm; E_{L}/8)$ 145.0 mm $\approx +/-145$ mm $\pm E_{L}/2$ 116.0 mm $\pm E_{L}/8$ 29.0 mm

L'escursione dei giunti deve essere pari a:

± E_L/2 ± 10mm 126.0 mm ≈ +/- 130 mm

L'ampiezza dei varchi, a temperatura media ambiente, deve essere pari a:

V₀ 20.0 mm

 $V \ge E_L/2 + V_0$ 136.0 mm \approx 140 mm

La distanza tra il ritegno sismico longitudinale e la testata della trave supportata dal vincolo mobile, deve essere pari a:

V - V₀/2 126.0 mm ≈ **130** mm

PROGETTO DEFINITIVO

RADDOPPIO DELLA TRATTA GIAMPILIERI- FIUMEFREDDO

VI08 – VIADOTTO ALI' RELAZIONE DI CALCOLO PILE

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS2S 02 D 09 CL VI0805 001 A 33 di 33

VI08 - VIADOT SPALLA FISSA											
PILA/SPALLA	Impalcato supportat o lato mobile	Corsa appoggi	Escursion e giunti a livello soletta	•	Varco trave - ritegno longitudi nale						
				V							
		mm	mm	w mm	mm						
SA	FISSA	mm -	mm ± 50	-	mm 5						
SA P1	FISSA AC - 40m	mm - ± 145		mm							
		-	± 50	mm 50	5						

9 CARICHI ORIZZONTALI APPOGGI

Si riporta il calcolo delle azioni massime orizzontali agli appoggi che si ottengono in condizione sismiche. Il calcolo viene effettuato in favore di sicurezza con l'accelerazione massima elastica, e per ogni tipologia di impalcato.

Per i carichi verticali si rimanda alla relazione dell'impalcato.

			L	В	n°Bin	DIR	g	q*0.2	m	М	Smax	FH-MAX/ 1 FILA	QL	QTc	QTS	FH	n°APP/ 1 FILA	F-APP
	Ţ	~	m▽	m▼	m▼	-	kN/m ▼	kN/m ▼	kN/m ▼	kN ▼	g ▼	kN ▼	Þ	*	-	Þ	•	kN ▼
VI08		AC	40	13.7	2	L	371.4	45.00	416.4	16 656	0.905	15 074	2 255			15 525	4	3 881
VI08		AC	40	13.7	2	Т	371.4	45.00	416.4	16 656	0.905	7 537		0	210	7 579	1	7 579