COMMITTENTE:

ALTA SORVEGLIANZA:

CUP: F81H92000000008

GENERAL CONTRACTOR:

GENERAL CONTRACTOR

Consorzio Cociv

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE OBIETTIVO N. 443/01

TRATTA A.V. /A.C. TERZO VALICO DEI GIOVI PROGETTO ESECUTIVO

CANTIERE OPERATIVO RADIMERO-COP20 VERIFICA STABILITA' GABBIONI Relazione di calcolo

	Ing. N.Meistro								
	COMMESSA LOTTO		C V	1 -	DOC.	OPERA/DISCI	PLINA 0 1	PROGR.	REV.
Prog	gettazione :								
Rev	Descrizione	Redatto	Data	Verificato	Data	Progettista Integratore	Data	IL PROGETT	TISTA
A00	Prima Emissione	A&T	31/01/2018	COCIV	31/01/2018	A.Mancarella	31/01/2018	COCILIO CON CONTROL CO	ntegrati Veloci
								Dott. Ing. Al lo Me Ordine ingegneri n. 6271 R	ncarella rov. TO
	<u> </u>			l .	I I				0.000
l		n. Elab.:				HIE: IG51-00	-E-CV-CL-C	A20-01-012-A0	U.DOCX

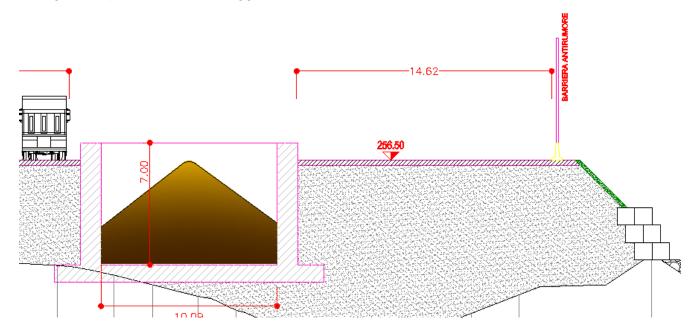
ITALFERR S.p.A.

Foglio 3 di 54

INDICE

1.	PREMESSA	4
2.	NORMATIVE DI RIFERIMENTO	5
3.	SISMICITA'	6
3.1.	Zone sismiche	6
3.2.	Calcolo dell'azione sismica di progetto	7
4.	PARAMETRI GEOTECNICI	9
5.	PROVE PER LA QUALIFICA DEL MATERIALE DI RIEMPIMENTO	10
5.1.	Prove antecedenti la posa	10
5.2.	Prove in sito per la verifica della posa del materiale	10
6.	VERIFICHE DI STABILITA'	11
6.1.	Valori caratteristici e valori di calcolo	11
6.2.	Spinta in presenza di sisma	12
6.3.	Verifica a ribaltamento	13
6.4.	Verifica a scorrimento	13
6.5.	Verifica al carico limite	14
6.6.	Verifica alla stabilità globale	15
7.	RISULTATI ANALISI	17
8.	CONCLUSIONI	54

Foglio 4 di 54


1. PREMESSA

Il progetto definitivo in oggetto si situa nell'ambito di quello più generale relativo alla "Linea AV-AC Milano Genova – Terzo Valico dei Giovi", la cui progettazione e realizzazione è stata affidata da Rete Ferroviaria Italiana S.p.A. (RFI) al Consorzio COCIV, in qualità di General Contractor. L'intervento ricade nel Comune di Arquata Scrivia (AL).

La seguente relazione è stata redatta al fine di verificare la stabilità di un versante protetto con gabbioni metallici, in prossimità di alcune vasche per lo stoccaggio di smarino proveniente dalle TBM presenti presso il cantiere COP 20. La stabilità dovrà essere garantita a fronte di una spinta del terreno del versante e dal passaggio di un certo numero di mezzi gommati per il trasporto di tale smarino.

La stabilità del versante inclinato è affidata ad un insieme di tre gabbioni, che poggiano su un magrone di 10 cm.

Di seguito è riportata la sezione oggetto della verifica.

Foglio 5 di 54

2. NORMATIVE DI RIFERIMENTO

- D.M.11/03/1988: "Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione ed il collaudo delle opere di sostegno delle terre e delle opere di fondazione.
- Istruzioni relative alle "Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione ed il collaudo delle opere di sostegno delle terre e delle opere di fondazione" - Cir. Dir. Cen. Tecn. n° 97/81.
- Circ. LL.PP. 24/09/1988 n. 30483 "Norme tecniche per terreni e fondazioni Istruzioni applicative"
- D.M. LL.PP. 09/01/1996 Norme tecniche per l'esecuzione ed il collaudo delle opere in cemento armato normale e precompresso e per le strutture metalliche.
- Circ. LL.PP. 10/04/1997 n.65 Istruzioni per l'applicazione delle "Norme tecniche per le costruzioni in zone sismiche" di cui al D.M. 16/01/1996.
- Circ. LL.PP. 04/07/1996 n. 156 AA.GG./STC Istruzioni per l'applicazione delle "Norme tecniche relative ai criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi" di cui al D.M. 16/01/1996.
- OPCM 2788 del 12/06/1998 "Individuazione delle zone ad elevato rischio sismico del territorio nazionale"
- OPCM 3274 del 20/03/2003 Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica
- DGR 216 del 17/03/2017 "Aggiornamento della classificazione sismica del territorio della Regione Liguria"
- D.M. 14/01/2008 "Norme tecniche per le costruzioni" GU n°29 del 4/2/2008
- Circolare 02/02/2009 n. 617 del Ministero delle Infrastrutture e dei Trasporti approvata dal Consiglio Superiore dei Lavori Pubblici "Istruzioni per l'applicazione delle "Nuove norme tecniche per le costruzioni" - Gazzetta Ufficiale del 26.02.2009 n. 47, supplemento ordinario n. 27.

Foglio 6 di 54

3. SISMICITA'

La classificazione sismica attribuisce all'intero territorio nazionale valori differenti del grado di sismicità da prendere in considerazione nella progettazione delle opere.

Ai fini della definizione dell'azione sismica di progetto deve essere valutata anche l'influenza delle condizioni litologiche e morfologiche locali sulle caratteristiche del moto del suolo in superficie, mediante studi specifici di risposta sismica locale.

La classificazione può essere basata sulla stima dei valori della velocità media delle onde sismiche di taglio VS ovvero sul numero medio di colpi NSPT ovvero sulla coesione non drenata media cu. In base alle grandezze sopra definite si identificano le seguenti categorie del suolo di fondazione:

- A Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di Vs30 superiori a 800 m/s, eventualmente comprendenti in superficie uno strato di alterazione, con spessore massimo pari a 3 m.
- B Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di Vs30 compresi tra 360 m/s e 800 m/s (ovvero resistenza penetrometrica media NSPT > 50 nei terreni a grana grossa, o coesione non drenata media cu>250 kPa nei terreni a grana fine).
- C Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina molto
 consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle
 proprietà meccaniche con la profondità e da valori di Vs30 compresi tra 180 e 360 m/s (ovvero
 15 < NSPT < 50 nei terreni a grana grossa e 70 <cu<250 kPa nei terreni a grana fina).
- D Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di Vs30 inferiori a 180 m/s (ovvero NSPT < 15 nei terreni a grana grossa e cu<70 kPa nei terreni a grana fina).
- E Terreni dei sottosuoli di tipo C o D per spessore non superiore a 20 m, posti sul substrato di riferimento (con Vs30 > 800 m/s).

Il suolo di fondazione appartiene alla categoria C mentre come categoria topografica è stata considerata la T1.

3.1. ZONE SISMICHE

Ai fini dell'applicazione di queste norme, il territorio italiano è suddiviso in zone sismiche, ciascuna contrassegnata da un diverso valore del parametro a_g = accelerazione orizzontale massima convenzionale su suolo di categoria A. I valori convenzionali di a_g , espressi come frazione dell'accelerazione di gravità g, da adottare in ciascuna delle zone sismiche del territorio nazionale sono riferiti ad una probabilità di superamento del 10% in 50 anni ed assumono i valori riportati nella Tabella.

ore di a _a

1	0.35g
2	0.25g
3	0.15g
4	0.05g

Foglio

7 di 54

Le zone 1, 2 e 3 possono essere suddivise in sottozone caratterizzate da valori di ag intermedi rispetto a quelli riportati nella tabella e intervallati da valori non minori di 0,025.

L'area in studio si sviluppa nel comune di Arquata Scrivia (AL) ed in base alla nuova classificazione sismica della Regione Piemonte è sita in zona 3 (vedi tabella seguente):

Piemonte	٨	
PROVINCIA	COMUNE	CLASSIF. SISMICA
Alessandria	Acqui Terme	3
Alessandria	Albera Ligure	3
Alessandria	Alessandria	3
Alessandria	Alfiano Natta	4
Alessandria	Alice Bel Colle	3
Alessandria	Alluvioni Cambiò	3
Alessandria	Altavilla Monferrato	4
Alessandria	Alzano Scrivia	3
Alessandria	Arquata Scrivia	3
Alessandria	Avolasca	3
Alessandria	Balzola	4
Alessandria	Basaluzzo	3
Alessandria	Bassignana	4
Alessandria	Belforte Monferrato	3
Alessandria	Bergamasco	4
Alessandria	Berzano di Tortona	3
Alessandria	Bistagno	4
Alessandria	Borghetto di Borbera	3
Alessandria	Borgoratto Alessandrino	3
Alessandria	Borgo San Martino	4
Alessandria	Bosco Marengo	3
Alessandria	Bosio	3

3.2. CALCOLO DELL'AZIONE SISMICA DI PROGETTO

Le azioni sismiche di progetto si definiscono a partire dalla "pericolosità sismica di base" del sito di costruzione, definita in termini di accelerazione orizzontale massima attesa ag in condizioni di campo libero su sito di riferimento con superficie topografica orizzontale (di categoria C), nonché di ordinate dello spettro di risposta elastico in accelerazione ad essa corrispondente Se(T), con riferimento a prefissate probabilità di eccedenza PVR nel periodo di riferimento VR. In alternativa è ammesso l'uso di accelerogrammi, purché correttamente commisurati alla pericolosità sismica del sito.

Le forme spettrali sono definite, per ciascuna delle probabilità di superamento nel periodo di riferimento PVR, a partire dai valori dei seguenti parametri su sito di riferimento rigido orizzontale:

a_q - accelerazione orizzontale massima al sito;

Foglio 8 di 54

- F₀ valore massimo di fattore di amplificazione dello spettro in accelerazione orizzontale;
- T*_C periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

Per il calcolo dei parametri sopra citati sono stati considerati i seguenti parametri:

- Classe d'uso: classe nella quale sono suddivise le opere, con riferimento alle conseguenze di una interruzione di operatività o di un eventuale collasso;
- Vita nominale dell'opera V_N: intesa come il numero di anni nel quale la struttura, purchè soggetta alla manutenzione ordinaria, deve poter essere usata per lo scopo al quale è destinata (da questo valore viene calcolato il Periodo di riferimento per l'azione sismica V_R come:

$$V_R = V_N * C_U$$

dove Cu è il coefficiente d'uso);

 Probabilità di superamento nel periodo di riferimento P_{VR}: in funzione dello stato limite di riferimento.

Nel caso dell'opera in oggetto sono considerati i seguenti valori:

Classe d'uso II: normali affollamenti.

Vita nominale VN: ≤ 10 anni: opere provvisorie – opere provvisionali – Strutture in fase costruttiva

Coefficiente d'uso CU: 1.0 relativo alla classe d'uso I.

Periodo di riferimento per l'azione sismica: $V_R=V_N*C_U=10*1.0=10$ anni.

Foglio 9 di <u>5</u>4

4. PARAMETRI GEOTECNICI

Sulla base delle indagini svolte l'assetto stratigrafico dell'area risulta:

- da p.c. a 7.0 m da p.c.: depositi alluvionali recenti (fl3) costituiti da limi e limi sabbioso argillosi
- da 7.0 m a 10.0 m da p.c.: marne ed argilliti alterate e degradate (fascia di alterazione della formazione di Costa Areasa)
- da 10.0 m da p.c.: alternanze di strati marnoso-argillosi ed arenacei (formazione di Costa Areasa)

Nella tabella seguente sono riportati i parametri geotecnici caratteristici da utilizzarsi per i calcoli.

			Parametri	caratteristici	
Strato	Denominazione	Υ	С	φ'	E
		(kN/m ³)	(kg/cm ²)	(°)	(kg/cm ²)
1	Depositi alluvionali recenti	21.0	0.0	28	300
2	Fascia di alterazione della formazione di Costa Areasa	21.0	1.0	26	1000
3	Formazione di Costa Areasa	24.0	3.0	26	15000
	Materiale del rilevato	20.0	0.0	38	-

dove:

γ = peso di volume

c = coesione

 φ' = angolo d'attrito

E = modulo di deformazione

L'angolo di attrito del materiale del rilevato è stato assunto pari a 38° in fase di analisi, tale dato dovrà essere verificato tramite le prove di seguito riportate.

Nell'area oggetto della relazione la falda risulta assente.

Foglio 10 di 54

PROVE PER LA QUALIFICA DEL MATERIALE DI RIEMPIMENTO

Per la definizione e la classificazione del materiale di riempimento, si dovrà prevedere di eseguire una serie di prove prima e dopo la posa, in modo che anche durante la fase di riempimento la realizzazione sia eseguita a regola d'arte. Tutte le prove saranno condotte nel rispetto delle norme nazionali e sulla scorta di dati e pubblicazioni provenienti da studi e bibliografia nota e disponibile.

5.1. Prove antecedenti la posa

Per identificare la tipologia di materiale e selezionare terreno avente le caratteristiche desiderate devono essere eseguite le seguenti prove:

- N.1 Analisi granulometrica (B.U. del CNR n.23);
- N.1 Prova Proctor Modificato (ASTM D 1557/78);
- N. 2 Prove di taglio;

Il fine è valutare ed individuare i parametri geotecnici, con particolare attenzione al "peso di volume ottimo", nonché al "contenuto di umidità ottimo".

5.2. Prove in sito per la verifica della posa del materiale

Una volta eseguita la fase di riempimento con il materiale selezionato, si prevedono le seguenti prove, che dovranno essere effettuate ogni 2500 m²:

- Densità in sito (ASTM D 1556 90);
- Prova su piastra (CNR 146 PS051);

Le prove dovranno essere eseguite a diverse profondità, la densità richiesta dovrà essere sempre maggiore del 95% rispetto a quella ottenuta per il rispetto del materiale in laboratorio con il Proctor Modificato.

Una volta terminate le prove dovrà essere eseguita una relazione che riporti i risultati, con la verifica dell'angolo di attrito.

Foglio 11 di 54

VERIFICHE DI STABILITA'

L'analisi di stabilità è stata eseguita attraverso il programma AZTEC Informatica MAX10.10, di seguito è riportato lo svolgimento dell'analisi. Il calcolo del muro di sostegno viene eseguito secondo le diverse fasi:

- Verifica a ribaltamento
- Verifica a scorrimento sul piano di posa
- Verifica della capacità portante
- Verifica della stabilità globale

6.1. VALORI CARATTERISTICI E VALORI DI CALCOLO

Effettuando il calcolo tramite gli Eurocodici è necessario fare la distinzione fra i parametri caratteristici ed i valodi di calcolo (o di progetto) sia delle azioni che delle resistenze.

I valori di calcolo si ottengono dai valori caratteristici mediante l'applicazione di opportuni coefficienti di sicurezza parziali g. In particolare si distinguono combinazioni di carico di tipo A1-M1 nelle quali vengono incrementati i carichi e lasciati inalterati i parametri di resistenza del terreno e combinazioni di carico di tipo A2-M2 nelle quali vengono ridotti i parametri di resistenza del terreno e incrementati i soli carichi variabili.

Metodo di Culmann

Il metodo di Culmann adotta le stesse ipotesi di base del metodo di Coulomb. La differenza sostanziale è che mentre Coulomb considera un terrapieno con superficie a pendenza costante e carico uniformemente distribuito (il che permette di ottenere una espressione in forma chiusa per il coefficiente di spinta) il metodo di Culmann consente di analizzare situazioni con profilo di forma generica e carichi sia concentrati che distribuiti comunque disposti. Inoltre, rispetto al metodo di Coulomb, risulta più immediato e lineare tener conto della coesione del masso spingente. Il metodo di Culmann, nato come metodo essenzialmente grafico, si è evoluto per essere trattato mediante analisi numerica (noto in questa forma come metodo del cuneo di tentativo). Come il metodo di Coulomb anche questo metodo considera una superficie di rottura rettilinea.

I passi del procedimento risolutivo sono i seguenti:

- si impone una superficie di rottura (angolo di inclinazione r rispetto all'orizzontale) e si considera il cuneo di spinta delimitato dalla superficie di rottura stessa, dalla parete su cui si calcola la spinta e dal profilo del terreno;
- si valutano tutte le forze agenti sul cuneo di spinta e cioè peso proprio (W), carichi sul terrapieno, resistenza per attrito e per coesione lungo la superficie di rottura (R e C) e resistenza per coesione lungo la parete (A);
- dalle equazioni di equilibrio si ricava il valore della spinta S sulla parete.

Questo processo viene iterato fino a trovare l'angolo di rottura per cui la spinta risulta massima.

Foglio 12 di 54

La convergenza non si raggiunge se il terrapieno risulta inclinato di un angolo maggiore dell'angolo d'attrito del terreno.

Nei casi in cui è applicabile il metodo di Coulomb (profilo a monte rettilineo e carico uniformemente distribuito) i risultati ottenuti col metodo di Culmann coincidono con quelli del metodo di Coulomb.

Le pressioni sulla parete di spinta si ricavano derivando l'espressione della spinta S rispetto all'ordinata z. Noto il diagramma delle pressioni è possibile ricavare il punto di applicazione della spinta.

6.2. SPINTA IN PRESENZA DI SISMA

Per tener conto dell'incremento di spinta dovuta al sisma si fa riferimento al metodo di Mononobe-Okabe (cui fa riferimento la Normativa Italiana).

La Normativa Italiana suggerisce di tener conto di un incremento di spinta dovuto al sisma nel modo seguente.

Detta e l'inclinazione del terrapieno rispetto all'orizzontale e b l'inclinazione della parete rispetto alla verticale, si calcola la spinta S' considerando un'inclinazione del terrapieno e della parte pari a

$$\varepsilon' = \varepsilon + \theta$$

$$\beta' = \beta + \theta$$

dove $q = arctg(kh/(1\pm kv))$ essendo kh il coefficiente sismico orizzontale e kv il coefficiente sismico verticale, definito in funzione di kh.

In presenza di falda a monte, g assume le seguenti espressioni:

Terreno a bassa permeabilità

$$\theta = \arctan[(\gamma_{\text{sat}}/(\gamma_{\text{sat}}-\gamma_{\text{w}}))^*(k_{\text{h}}/(1\pm k_{\text{v}}))]$$

Terreno a permeabilità elevata

$$\theta = \arctan[(\gamma/(\gamma_{sat} - \gamma_w))^*(k_h/(1 \pm k_v))]$$

Detta S la spinta calcolata in condizioni statiche l'incremento di spinta da applicare è espresso da

$$\Delta S = AS' - S$$

dove il coefficiente A vale

$$A = \frac{\cos^2(\beta + \theta)}{\cos^2\beta \cos\theta}$$

In presenza di falda a monte, nel coefficiente A si tiene conto dell'influenza dei pesi di volume nel calcolo di q.

Foglio 13 di 54

Adottando il metodo di Mononobe-Okabe per il calcolo della spinta, il coefficiente A viene posto pari a

Tale incremento di spinta è applicato a metà altezza della parete di spinta nel caso di forma rettangolare del diagramma di incremento sismico, allo stesso punto di applicazione della spinta statica nel caso in cui la forma del diagramma di incremento sismico è uguale a quella del diagramma statico.

Oltre a questo incremento bisogna tener conto delle forze d'inerzia orizzontali e verticali che si destano per effetto del sisma. Tali forze vengono valutate come

$$F_{iH} = k_h W$$
 $F_{iV} = \pm k_v W$

dove W è il peso del muro, del terreno soprastante la mensola di monte ed i relativi sovraccarichi e va applicata nel baricentro dei pesi.

Il metodo di Culmann tiene conto automaticamente dell'incremento di spinta. Basta inserire nell'equazione risolutiva la forza d'inerzia del cuneo di spinta. La superficie di rottura nel caso di sisma risulta meno inclinata della corrispondente superficie in assenza di sisma.

6.3. VERIFICA A RIBALTAMENTO

La verifica a ribaltamento consiste nel determinare il momento risultante di tutte le forze che tendono a fare ribaltare il muro (momento ribaltante Mr) ed il momento risultante di tutte le forze che tendono a stabilizzare il muro (momento stabilizzante Ms) rispetto allo spigolo a valle della fondazione e verificare che il rapporto Ms/Mr sia maggiore di un determinato coefficiente di sicurezza n_r.

Eseguendo il calcolo mediante gli eurocodici si puo impostare $\eta_r >= 1.0$.

Deve quindi essere verificata la seguente diseguaglianza

Il momento ribaltante Mr è dato dalla componente orizzontale della spinta S, dalle forze di inerzia del muro e del terreno gravante sulla fondazione di monte (caso di presenza di sisma) per i rispettivi bracci. Nel momento stabilizzante interviene il peso del muro (applicato nel baricentro) ed il peso del terreno gravante sulla fondazione di monte. Per quanto riguarda invece la componente verticale della spinta essa sarà stabilizzante se l'angolo d'attrito terra-muro δ è positivo, ribaltante se δ è negativo. δ è positivo quando è il terrapieno che scorre rispetto al muro, negativo quando è il muro che tende a scorrere rispetto al terrapieno (questo può essere il caso di una spalla da ponte gravata da carichi notevoli). Se sono presenti dei tiranti essi contribuiscono al momento stabilizzante.

Questa verifica ha significato solo per fondazione superficiale e non per fondazione su pali.

6.4. VERIFICA A SCORRIMENTO

Per la verifica a scorrimento del muro lungo il piano di fondazione deve risultare che la somma di tutte le forze parallele al piano di posa che tendono a fare scorrere il muro deve essere minore di tutte le forze, parallele al piano di scorrimento, che si oppongono allo scivolamento, secondo un certo

Foglio 14 di 54

coefficiente di sicurezza. La verifica a scorrimento sisulta soddisfatta se il rapporto fra la risultante delle forze resistenti allo scivolamento Fr e la risultante delle forze che tendono a fare scorrere il muro Fs risulta maggiore di un determinato coefficiente di sicurezza η_s

Eseguendo il calcolo mediante gli Eurocodici si può impostare η_s>=1.0

Le forze che intervengono nella Fs sono: la componente della spinta parallela al piano di fondazione e la componente delle forze d'inerzia parallela al piano di fondazione.

La forza resistente è data dalla resistenza d'attrito e dalla resistenza per adesione lungo la base della fondazione. Detta N la componente normale al piano di fondazione del carico totale gravante in fondazione e indicando con δf l'angolo d'attrito terreno-fondazione, con ca l'adesione terreno-fondazione e con Br la larghezza della fondazione reagente, la forza resistente può esprimersi come

$$F_r = N tg \delta_f + c_a B_r$$

La Normativa consente di computare, nelle forze resistenti, una aliquota dell'eventuale spinta dovuta al terreno posto a valle del muro. In tal caso, però, il coefficiente di sicurezza deve essere aumentato opportunamente. L'aliquota di spinta passiva che si può considerare ai fini della verifica a scorrimento non può comunque superare il 50 percento.

Per quanto riguarda l'angolo d'attrito terra-fondazione, δf , diversi autori suggeriscono di assumere un valore di δf pari all'angolo d'attrito del terreno di fondazione.

6.5. VERIFICA AL CARICO LIMITE

Il rapporto fra il carico limite in fondazione e la componente normale della risultante dei carichi trasmessi dal muro sul terreno di fondazione deve essere superiore a η_q . Cioè, detto Q_u , il carico limite ed R la risultante verticale dei carichi in fondazione, deve essere:

$$\frac{Q_u}{R} >= \eta_q$$

Eseguendo il calcolo mediante gli Eurocodici si può impostare η_q>=1.0

Terzaghi ha proposto la seguente espressione per il calcolo della capacità portante di una fondazione superficiale.

$$q_u = cN_cs_c + qN_q + 0.5B\gamma N_\gamma s_\gamma$$

La simbologia adottata è la seguente:

Foglio 15 di 54

c coesione del terreno in fondazione;

γ peso di volume del terreno in fondazione;

B larghezza della fondazione;

D profondità del piano di posa;

q pressione geostatica alla quota del piano di posa.

I fattori di capacità portante sono espressi dalle seguenti relazioni:

$$N_{q} = \frac{e^{2(0.75\pi - \phi/2)tg(\phi)}}{2cos^{2}(45 + \phi/2)}$$

$$N_c = (N_a - 1)ctg\phi$$

$$N_{\gamma} = \frac{tg\phi \quad K_{p\gamma}}{(------1)} - 1)$$

I fattori di forma s_c e s_γ che compaiono nella espressione di q_u dipendono dalla forma della fondazione. In particolare valgono 1 per fondazioni nastriformi o rettangolari allungate e valgono rispettivamente 1.3 e 0.8 per fondazioni quadrate.

termine $K_{p\gamma}$ che compare nell'espressione di N_{γ} non ha un'espressione analitica. Pertanto si assume per N_{γ} l'espressione proposta da Meyerof

$$N_{v} = (N_{o} - 1)tg(1.4*\phi)$$

6.6. VERIFICA ALLA STABILITÀ GLOBALE

La verifica alla stabilità globale del complesso muro+terreno deve fornire un coefficiente di sicurezza non inferiore a η_q

Eseguendo il calcolo mediante gli Eurocodici si può impostare η_q>=1.0

Viene usata la tecnica della suddivisione a strisce della superficie di scorrimento da analizzare. La superficie di scorrimento viene supposta circolare e determinata in modo tale da non avere intersezione con il profilo del muro o con i pali di fondazione. Si determina il minimo coefficiente di sicurezza su una maglia di centri di dimensioni 10x10 posta in prossimità della sommità del muro. Il numero di strisce è pari a 50.

Il coefficiente di sicurezza fornito da Fellenius si esprime secondo la seguente formula:

Foglio 16 di 54

dove n è il numero delle strisce considerate, b_i e α_i sono la larghezza e l'inclinazione della base della striscia i_{esima} rispetto all'orizzontale, W_i è il peso della striscia i_{esima} e c_i e ϕ_i sono le caratteristiche del terreno (coesione ed angolo di attrito) lungo la base della striscia.

Inoltre u_i ed l_i rappresentano la pressione neutra lungo la base della striscia e la lunghezza della base della striscia ($l_i = b_i/\cos\alpha_i$).

Quindi, assunto un cerchio di tentativo lo si suddivide in n strisce e dalla formula precedente si ricava η . Questo procedimento viene eseguito per il numero di centri prefissato e viene assunto come coefficiente di sicurezza della scarpata il minimo dei coefficienti così determinati.

Foglio 17 di 54

7. RISULTATI ANALISI

N.T.C. 2008 - Approccio 1

Simbologia adottata

Coefficiente parziale sfavorevole sulle azioni permanenti γGsfav Coefficiente parziale favorevole sulle azioni permanenti γ_{Gfav} Coefficiente parziale sfavorevole sulle azioni variabili γQsfav Coefficiente parziale favorevole sulle azioni variabili γ_{Qfav} Coefficiente parziale di riduzione dell'angolo di attrito drenato $\gamma_{tan\phi'}$ Coefficiente parziale di riduzione della coesione drenata γc Coefficiente parziale di riduzione della coesione non drenata γ_{cu} Coefficiente parziale di riduzione del carico ultimo γ_{qu}

 γ_{γ} Coefficiente parziale di riduzione della resistenza a compressione uniassiale delle rocce

Coefficienti di partecipazione combinazioni statiche

Coefficienti parziali per le azioni o per l'effetto delle azioni:

Carichi	Effetto		A1	A2	EQU	HYD
Permanenti	Favorevole	γ̃Gfav	1,00	1,00	0,90	0,90
Permanenti	Sfavorevole	γGsfav	1,30	1,00	1,10	1,30
Variabili	Favorevole	γQfav	0,00	0,00	0,00	0,00
Variabili	Sfavorevole	γQsfav	1,50	1,30	1,50	1,50
Coefficienti parziali	per i parametri geotecn	ici del terreno:				
Parametri			M1	M2	<i>M</i> 2	M1
Tangente dell'angolo di attrito		γ _{tanφ'}	1,00	1,25	1,25	1,00
Coesione efficace	γ _{c'}	1,00	1,25	1,25	1,00	
Resistenza non dre	γ _{cu}	1,00	1,40	1,40	1,00	
Resistenza a comp	γ_{qu}	1,00	1,60	1,60	1,00	
Peso dell'unità di vo	γ_{γ}	1,00	1,00	1,00	1,00	

Coefficienti di partecipazione combinazioni sismiche

Coefficienti parziali per le azioni o per l'effetto delle azioni:

Carichi	Effetto		A1	A2	EQU	HYD
Permanenti	Favorevole	γ̈Gfav	1,00	1,00	1,00	0,90
Permanenti	Sfavorevole	γ̈Gsfav	1,00	1,00	1,00	1,30

Foglio 18 di 54

		IG51-	-00-E-CV-CL-C	CA20-01-012-7	A00.DOCX		
Variabili	Favorevole	γQfav	0,00	0,00	0,00	0,00	
Variabili	Sfavorevole	γ̈Qsfav	1,00	1,00	1,00	1,50	
Coefficienti parzial	i per i parametri geotecr	nici del terreno:					
Parametri			M1	M2	<i>M</i> 2	M1	
Tangente dell'angolo di attrito		γ _{tanφ'}	1,00	1,25	1,25	1,00	
Coesione efficace		γc'	1,00	1,25	1,25	1,00	
Resistenza non drenata		γ_{cu}	1,00	1,40	1,40	1,00	
Resistenza a compressione uniassiale		γ_{qu}	1,00	1,60	1,60	1,00	

 γ_{γ}

1,00

1,00

1,00

1,00

FONDAZIONE SUPERFICIALE

Peso dell'unità di volume

Coefficienti parziali γ_R per le verifiche agli stati limite ultimi STR e GEO

Verifica	Coefficienti parzia		
	R1	R2	R3
Capacità portante della fondazione	1,00	1,00	1,40
Scorrimento	1,00	1,00	1,10
Resistenza del terreno a valle	1,00	1,00	1,40
Stabilità globale		1,10	

Geometria muro e fondazione

Descrizione Muro a gradoni in pietrame

Descrizione dei gradoni

Simbologia adottata

Nr.	numero d'ordine del gradone (a partire dall'alto)
Bs	base superiore del gradone espressa in [m]
Bi	base inferiore del gradone espressa in [m]
Hg	altezza del gradone espressa in [m]
α_{e}	inclinazione esterna del gradone espressa in [°]
α_{i}	inclinazione interna del gradone espressa in [°]

Nr.	Bs	Bi	Hg	α_{e}	α_{i}
1	1,80	1,71	1,00	5,00	-10,00
2	1,90	1,81	1,00	5,00	-10,00

Foglio 19 di 54

Altezza del paramento 2,00 [m]

Fondazione

Lunghezza mensola fondazione di valle	0,10 [m]
Lunghezza mensola fondazione di monte	0,00 [m]
Lunghezza totale fondazione	1,86 [m]
Inclinazione piano di posa della fondazione	10,00 [°]
Spessore estremità fondazione di valle	1,00 [m]
Spessore all'incastro fondazione di valle	1,00 [m]
Spessore all'incastro fondazione di monte	1,00 [m]
Spessore estremità fondazione di monte	0,00 [m]
Spessore magrone	0,10 [m]

Materiali utilizzati per la struttura

Pietrame

 $\label{eq:pesospecifico} Peso specifico & 1800,0 \ [kg/mc] \\ Tensione ammissibile a compressione σ_c & 6,0 \ [kg/cmq] \\ Angolo di attrito interno ϕ_p & 40,00 \ [°] \\ Resistenza a taglio τ_p & 0,1 \ [kg/cmq] \\ \end{tabular}$

Geometria profilo terreno a monte del muro

Simbologia adottata e sistema di riferimento

(Sistema di riferimento con origine in testa al muro, ascissa X positiva verso monte, ordinata Y positiva verso l'alto)

0,00

[°]

N numero ordine del punto

X ascissa del punto espressa in [m]

Y ordinata del punto espressa in [m]

A inclinazione del tratto espressa in [°]

N	X	Υ	Α
1	3,37	2,73	39,01
2	16,17	2,73	0,00

Terreno a valle del muro

Inclinazione terreno a valle del muro rispetto all'orizzontale

Foglio 20 di 54

Altezza del rinterro rispetto all'attacco fondaz.valle-paramento 0,00 [m]

Descrizione terreni

Simbologia adottata

 Nr.
 Indice del terreno

 Descrizione
 Descrizione terreno

 γ Peso di volume del terreno espresso in [kg/mc]

 γ_s Peso di volume saturo del terreno espresso in [kg/mc]

 ϕ Angolo d'attrito interno espresso in [°]

 δ Angolo d'attrito terra-muro espresso in [ro]

 c Coesione espressa in [kg/cmq]

 c_a Adesione terra-muro espressa in [kg/cmq]

Descrizione	γ	γ_{s}	ф	δ	С	Ca
Terreno 1	2000	2000	38.00	21.33	0,000	0,000
Terreno 2	2100	2100	28.00	18.67	0,010	0,010

Stratigrafia

Simbologia adottata

N Indice dello strato

H Spessore dello strato espresso in [m]

a Inclinazione espressa in [°]

Kw Costante di Winkler orizzontale espressa in Kg/cm²/cm

Ks Coefficiente di spinta
Terreno Terreno dello strato

Nr.	Н	а	Kw	Ks	Terreno
1	0,00	0,00	0,00	0,00	Terreno 1
2	3,00	0,00	0,00	0,00	Terreno 1
3	10,00	0,00	0,61	0,00	Terreno 2

Foglio 21 di 54

Condizioni di carico

Simbologia e convenzioni di segno adottate

Carichi verticali positivi verso il basso.

Carichi orizzontali positivi verso sinistra.

Momento positivo senso antiorario.

- X Ascissa del punto di applicazione del carico concentrato espressa in [m]
- F_x Componente orizzontale del carico concentrato espressa in [kg]
- F_v Componente verticale del carico concentrato espressa in [kg]
- M Momento espresso in [kgm]
- X_i Ascissa del punto iniziale del carico ripartito espressa in [m]
- X_f Ascissa del punto finale del carico ripartito espressa in [m]
- Q_i Intensità del carico per x=X_i espressa in [kg/m]
- Q_f Intensità del carico per x=X_f espressa in [kg/m]
- D/C Tipo carico : D=distribuito C=concentrato

Condizione nº 1 (Condizione 1)

D Profilo $X_{i}=3.73$ $X_{f}=7.73$ $Q_{i}=2000.00$ $Q_{f}=2000.00$

Descrizione combinazioni di carico

Simbologia adottata

F/S Effetto dell'azione (FAV: Favorevole, SFAV: Sfavorevole)

 γ Coefficiente di partecipazione della condizione

 Ψ Coefficiente di combinazione della condizione

Combinazione nº 1 - Caso A1-M1 (STR)

	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	FAV	1,00	1.00	1,00
Peso proprio terrapieno	FAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,30	1.00	1,30
Condizione 1	SFAV	1.30	1.00	1.30

Combinazione nº 2 - Caso A2-M2 (GEO)

	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Condizione 1	SFAV	1.00	1.00	1.00

Foglio 22 di 54

Combinazione nº 3 - Caso EQU (SLU)

	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	FAV	0,90	1.00	0,90
Peso proprio terrapieno	FAV	0,90	1.00	0,90
Spinta terreno	SFAV	1,10	1.00	1,10
Condizione 1	SFAV	1.10	1.00	1.10

Combinazione nº 4 - Caso A2-M2 (GEO-STAB)

	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Condizione 1	SFAV	1.00	1.00	1.00

Combinazione n° 5 - Caso A1-M1 (STR) - Sisma Vert. negativo

	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Condizione 1	SFAV	1.00	1.00	1.00

Combinazione nº 6 - Caso A1-M1 (STR) - Sisma Vert. positivo

	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Condizione 1	SFAV	1.00	1.00	1.00

Combinazione nº 7 - Caso A2-M2 (GEO) - Sisma Vert. positivo

	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Condizione 1	SFAV	1.00	1.00	1.00

Combinazione nº 8 - Caso A2-M2 (GEO) - Sisma Vert. negativo

S/F	γ	Ψ	γ*Ψ

IG51-00-E-CV-CL-CA20-01-012-A00.DOCX	Foglio
1931-00-L-CV-CL-CA20-01-012-A00.DOCA	23 di 54

Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Condizione 1	SFAV	1.00	1.00	1.00

Combinazione nº 9 - Caso EQU (SLU) - Sisma Vert. negativo

	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	FAV	1,00	1.00	1,00
Peso proprio terrapieno	FAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Condizione 1	SFAV	1.00	1.00	1.00

Combinazione nº 10 - Caso EQU (SLU) - Sisma Vert. positivo

	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	FAV	1,00	1.00	1,00
Peso proprio terrapieno	FAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Condizione 1	SFAV	1.00	1.00	1.00

Combinazione nº 11 - Caso A2-M2 (GEO-STAB) - Sisma Vert. positivo

	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Condizione 1	SFAV	1.00	1.00	1.00

Combinazione nº 12 - Caso A2-M2 (GEO-STAB) - Sisma Vert. negativo

	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Condizione 1	SFAV	1.00	1.00	1.00

Impostazioni di analisi

Calcolo della portanza metodo di Terzaghi

Foglio 24 di 54

Coefficiente correttivo su $N\gamma$ per effetti cinematici (combinazioni sismiche SLU): 1,00 Coefficiente correttivo su $N\gamma$ per effetti cinematici (combinazioni sismiche SLE): 1,00

Impostazioni avanzate

Diagramma correttivo per eccentricità negativa con aliquota di parzializzazione pari a 0.00

Quadro riassuntivo coeff. di sicurezza calcolati

Simbologia adottata

C Identificativo della combinazione

Tipo Tipo combinazione
Sisma Combinazione sismica

 CS_{SCO} Coeff. di sicurezza allo scorrimento CS_{RIB} Coeff. di sicurezza al ribaltamento CS_{OLIM} Coeff. di sicurezza a carico limite CS_{STAB} Coeff. di sicurezza a stabilità globale

С	Tipo	Sisma	CS _{sco}	CS _{rib}	cs _{qlim}	CS _{stab}
1	A1-M1 - [1]		1,93		8,70	
2	A2-M2 - [1]		1,18		3,71	
3	EQU - [1]			2,07		
4	STAB - [1]					1,16
5	A1-M1 - [2]	Orizzontale + Verticale negativo	2,59		9,47	
6	A1-M1 - [2]	Orizzontale + Verticale positivo	2,59		9,36	
7	A2-M2 - [2]	Orizzontale + Verticale positivo	1,08		3,48	
8	A2-M2 - [2]	Orizzontale + Verticale negativo	1,09		3,52	
9	EQU - [2]	Orizzontale + Verticale negativo		2,30		
10	EQU - [2]	Orizzontale + Verticale positivo		2,32		
11	STAB - [2]	Orizzontale + Verticale positivo				1,14
12	STAB - [2]	Orizzontale + Verticale negativo				1,14

Foglio 25 di 54

Analisi della spinta e verifiche

Sistema di riferimento adottato per le coordinate :

Origine in testa al muro (spigolo di monte)

Ascisse X (espresse in [m]) positive verso monte

Ordinate Y (espresse in [m]) positive verso l'alto

Le forze orizzontali sono considerate positive se agenti da monte verso valle

Le forze verticali sono considerate positive se agenti dall'alto verso il basso

Calcolo riferito ad 1 metro di muro

Tipo di analisi

Calcolo della spinta metodo di Culmann
Calcolo del carico limite metodo di Terzaghi
Calcolo della stabilità globale metodo di Fellenius
Calcolo della spinta in condizioni di Spinta attiva

Sisma

Identificazione del sito

 Latitudine
 44.687990

 Longitudine
 8.885708

Comune Arquata Scrivia
Provincia Alessandria
Regione Piemonte

Punti di interpolazione del reticolo 15586 - 15807 - 15808

Tipo di opera

Tipo di costruzione Opera provvisoria

Vita nominale 10 anni

Classe d'uso II - Normali affollamenti e industrie non

pericolose

Vita di riferimento 10 anni

Combinazioni SLU

Accelerazione al suolo a_g 0.43 [m/s^2]

Coefficiente di amplificazione per tipo di sottosuolo (S) 1.50

Foglio 26 di 54

Coefficiente di amplificazione topografica (St)	1.00
Coefficiente riduzione (β_m)	0.18
Rapporto intensità sismica verticale/orizzontale	0.50

Coefficiente di intensità sismica orizzontale (percento) $k_h=(a_g/g^*\beta_m^*St^*S)=1.19$ Coefficiente di intensità sismica verticale (percento) $k_v=0.50 * k_h=0.60$

Forma diagramma incremento sismico Stessa forma diagramma statico

Partecipazione spinta passiva (percento) 50,0

Lunghezza del muro 10,00 [m]

Peso muro 10346,75 [kg]
Baricentro del muro X=-1,16 Y=-1,59

Superficie di spinta

Punto inferiore superficie di spinta X = -0.41 Y = -3.31Punto superiore superficie di spinta X = 0.21 Y = 0.17

Altezza della superficie di spinta 3,48 [m] Inclinazione superficie di spinta(rispetto alla verticale) -10,00 [°]

COMBINAZIONE n° 1

Peso muro favorevole e Peso terrapieno favorevole

Risultante dei carichi applicati in dir. verticale

Resistenza passiva a valle del muro

Valore della spinta statica	5495,89	[kg]		
Componente orizzontale della spinta statica	5396,27	[kg]		
Componente verticale della spinta statica	1041,65	[kg]		
Punto d'applicazione della spinta	X = -0.20	[m]	Y = -2,12	[m]
Inclinaz. della spinta rispetto alla normale alla superficie	20,93	[°]		
Inclinazione linea di rottura in condizioni statiche	46,61	[°]		
Peso terrapieno gravante sulla fondazione a monte	1021,09	[kg]		
Baricentro terrapieno gravante sulla fondazione a monte	X = -0.15	[m]	Y = -1,38	[m]
<u>Risultanti</u>				
Risultante dei carichi applicati in dir. orizzontale	5396,27	[kg]		

12409,49

-1454,16

[kg]

[kg]

Foglio 27 di 54

Sforzo normale sul piano di posa della fondazione	13158,01	[kg]
Sforzo tangenziale sul piano di posa della fondazione	3159,41	[kg]
Eccentricità rispetto al baricentro della fondazione	0,10	[m]
Lunghezza fondazione reagente	1,89	[m]
Risultante in fondazione	13532,00	[kg]
Inclinazione della risultante (rispetto alla normale)	13,50	[°]
Momento rispetto al baricentro della fondazione	1283,30	[kgm]
Carico ultimo della fondazione	114411,04	[kg]

Tensioni sul terreno

Lunghezza fondazione reagente	1,89	[m]
Tensione terreno allo spigolo di valle	0,9146	[kg/cmq]

Tensione terreno allo spigolo di monte 0,4813 [kg/cmq]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 31.61$	$N_{q} = 17.81$	$N_{\gamma} = 13.71$
Fattori forma	$s_c = 1,00$	$s_0 = 1,00$	$s_v = 1,00$

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 31.61$ $N'_{q} = 17.81$ $N'_{\gamma} = 13.71$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento	1.93
Coefficiente di sicurezza a carico ultimo	8.70

Sollecitazioni nel muro e verifica delle sezioni

Combinazione nº 1

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

Le verifiche sono effettuate assumendo una base della sezione B=100 cm

H altezza della sezione espressa in [cm]

N sforzo normale [kg]

M momento flettente [kgm]

T taglio [kg]

e eccentricità dello sforzo rispetto al baricentro [cm]

 $\sigma_{\!\scriptscriptstyle p}$ tensione di compressione massima nel pietrame in [kg/cmq]

Ms momento stabilizzante [kgm]
Mr momento ribaltante [kgm]

Foglio 28 di 54

Cs coeff. di sicurezza allo scorrimento
Cr coeff. di sicurezza al ribaltamento

Nr.	Υ	Н	N	M	Т	е	σ_{p}	Ms	Mr	Cs	Cr
1	0,00	180,00	0	0	0	0,00	0,00			0,00	
2	0,10	179,11	323	-2	12	0,51	0,02			97,89	
3	0,20	178,22	645	-6	35	0,89	0,04			40,77	
4	0,30	177,33	965	-11	69	1,17	0,05			24,69	
5	0,40	176,45	1283	-17	112	1,34	0,07			17,48	
6	0,50	175,56	1600	-22	165	1,40	0,09			13,48	
7	0,60	174,67	1915	-26	226	1,36	0,10			10,96	
8	0,70	173,78	2229	-27	296	1,23	0,12			9,24	
9	0,80	172,89	2541	-25	374	1,00	0,14			8,00	
10	0,90	172,00	2851	-19	460	0,67	0,16			7,06	
11	1,00	171,12	3160	-8	554	0,26	0,18			6,33	
12	1,00	190,00	3160	-307	553	9,71	0,12			6,51	
13	1,10	189,10	3504	-290	654	8,29	0,14			5,94	
14	1,20	188,21	3846	-268	763	6,97	0,16			5,47	
15	1,30	187,31	4186	-239	880	5,70	0,18			5,06	
16	1,40	186,42	4525	-202	1008	4,45	0,21			4,69	
17	1,50	185,52	4863	-156	1146	3,20	0,23			4,37	
18	1,60	184,63	5198	-100	1291	1,92	0,26			4,09	
19	1,71	183,73	5532	-33	1443	0,60	0,30			3,85	
20	1,81	182,84	5865	44	1602	0,75	0,33			3,64	
21	1,91	181,94	6195	134	1768	2,16	0,36			3,45	
22	2,01	181,05	6527	239	1941	3,66	0,40			3,29	
23	2,11	180,15	6872	371	2120	5,39	0,45			3,15	
24	2,21	179,26	7214	515	2305	7,13	0,50			3,02	
25	2,31	178,36	7552	671	2496	8,89	0,55			2,90	

COMBINAZIONE n° 2

Valore della spinta statica	6395,34	[kg]		
Componente orizzontale della spinta statica	6347,04	[kg]		
Componente verticale della spinta statica	784,55	[kg]		
Punto d'applicazione della spinta	X = -0.18	[m]	Y = -2,01	[m]
Inclinaz. della spinta rispetto alla normale alla superficie	17,05	[°]		

Foglio 29 di 54

Inclinazione linea di rottura in condizioni statiche	41,45	[°]	
Peso terrapieno gravante sulla fondazione a monte	1021,09	[kg]	
Baricentro terrapieno gravante sulla fondazione a monte	X = -0,15	[m] Y = -1,38 [m	1]
<u>Risultanti</u>			
Risultante dei carichi applicati in dir. orizzontale	6347,04	[kg]	
Risultante dei carichi applicati in dir. verticale	12152,38	[kg]	
Resistenza passiva a valle del muro	-1200,35	[kg]	
Sforzo normale sul piano di posa della fondazione	13069,91	[kg]	
Sforzo tangenziale sul piano di posa della fondazione	4140,38	[kg]	
Eccentricità rispetto al baricentro della fondazione	0,25	[m]	
Lunghezza fondazione reagente	1,89	[m]	
Risultante in fondazione	13710,04	[kg]	
Inclinazione della risultante (rispetto alla normale)	17,58	[°]	
Momento rispetto al baricentro della fondazione	3247,00	[kgm]	
Carico ultimo della fondazione	48484,64	[kg]	
<u>Tensioni sul terreno</u>			
Lunghezza fondazione reagente	1,89	[m]	
Tensione terreno allo spigolo di valle	1,2415	[kg/cmq]	
Tensione terreno allo spigolo di monte	0,1451	[kg/cmq]	

Coeff. capacità portante	$N_c = 21.81$	$N_{q} = 10.28$	$N_{\gamma} = 5.86$
Fattori forma	$s_c = 1.00$	$s_0 = 1,00$	$s_v = 1,00$

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

$$N'_{c} = 21.81$$
 $N'_{q} = 10.28$ $N'_{\gamma} = 5.86$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento	1.18
Coefficiente di sicurezza a carico ultimo	3.71

Foglio 30 di 54

Sollecitazioni nel muro e verifica delle sezioni

Combinazione n° 2

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

Le verifiche sono effettuate assumendo una base della sezione B=100 cm

- H altezza della sezione espressa in [cm]
- N sforzo normale [kg]
- M momento flettente [kgm]
- T taglio [kg]
- e eccentricità dello sforzo rispetto al baricentro [cm]
- σ_{p} tensione di compressione massima nel pietrame in [kg/cmq]
- Ms momento stabilizzante [kgm]
- Mr momento ribaltante [kgm]
- Cs coeff. di sicurezza allo scorrimento
- Cr coeff. di sicurezza al ribaltamento

Nr.	Υ	Н	N	M	Т	е	σ_{p}	Ms	Mr	Cs	Cr
1	0,00	180,00	0	0	0	0,00	0,00			0,00	
2	0,10	179,11	323	0	41	0,11	0,02			28,44	
3	0,20	178,22	645	0	102	0,05	0,04			14,10	
4	0,30	177,33	965	3	172	0,34	0,06			9,88	
5	0,40	176,45	1283	10	251	0,74	0,07			7,80	
6	0,50	175,56	1600	20	340	1,25	0,10			6,54	
7	0,60	174,67	1915	36	437	1,85	0,12			5,68	
8	0,70	173,78	2229	57	542	2,56	0,14			5,05	
9	0,80	172,89	2541	85	656	3,36	0,16			4,57	
10	0,90	172,00	2851	121	777	4,26	0,19			4,18	
11	1,00	171,12	3160	166	907	5,25	0,22			3,87	
12	1,00	190,00	3160	-133	906	4,20	0,14			3,98	
13	1,10	189,10	3504	-79	1043	2,25	0,17			3,72	
14	1,20	188,21	3846	-15	1188	0,40	0,20			3,51	
15	1,30	187,31	4186	58	1340	1,40	0,23			3,32	
16	1,40	186,42	4525	144	1499	3,17	0,27			3,15	
17	1,50	185,52	4863	241	1665	4,95	0,30			3,01	
18	1,60	184,63	5198	350	1838	6,74	0,34			2,88	
19	1,71	183,73	5532	473	2017	8,55	0,39			2,76	
20	1,81	182,84	5865	610	2203	10,40	0,43			2,65	
21	1,91	181,94	6195	761	2395	12,29	0,48			2,55	
22	2,01	181,05	6527	931	2594	14,26	0,53			2,46	

Foglio 31 di 54

onsorzio	Collegamen	ti <i>I</i> ntegrati V eloci			GRUPPO FERR	OVIE DELLO STA	TO ITALIANE				
						IG51-00	-E-CV-CL-CA2	20-01-012-7	A00.DOC	X	
	0.44	100.15	0070	4400	0700	10.11	0.50			0.00	
23	2,11	180,15	6872	1130	2798	16,44	0,59			2,38	-
24	2,21	179,26	7214	1343	3009	18,62	0,65			2,31	-
25	2,31	178,36	7552	1572	3225	20,82	0,72			2,24	-
CON	MBINA.	ZIONE n° (<u>3</u>								
Valc	re dell	a spinta sta	atica				7038,35	[kg]			
Con	nponen	te orizzont	ale della s	spinta sta	tica		6985,20	[kg]			
Con	nponen	te verticale	e della spi	nta static		863,35	[kg]				
Pun	to d'ap	plicazione	della spin	ta		X = -0.18	3 [m]	Y = -	2,01	[m]	
Incli	naz. de	ella spinta i	rispetto all	a normal	erficie	17,05	[°]				
Incli	nazion	e linea di r	ottura in c	ondizioni		41,45	[°]				
Pes	o terraj	oieno grava	ante sulla	fondazio	ne a mont	e	918,98	[kg]			
Bari	centro	terrapieno	gravante	sulla fond	dazione a	monte	X = -0,15	5 [m]	Y = -	1,38	[m]
<u>Risı</u>	<u>ıltanti</u>										
Risu	ıltante	dei carichi	applicati i	n dir. oriz	zontale		6985,20	[kg]			
Risu	ıltante	dei carichi	applicati i	n dir. vert	icale		11094,40) [kg]			
Res	istenza	passiva a	valle del	muro			-1080,31	[kg]			
Mon	nento r	ibaltante ri	spetto allo	spigolo	a valle		6775,10	[kgm]			
Mon	nento s	tabilizzant	e rispetto	allo spigo	olo a valle		14036,95	[kgm]			
Sfor	zo nori	male sul pi	ano di pos	sa della fo	ondazione)	12138,82	2 [kg]			
Sfor	zo tanç	genziale su	ıl piano di	posa del	la fondazi	one	4952,56	[kg]			
Ecc	entricita	à rispetto a	ıl baricentı	o della fo	ondazione		0,34	[m]			
Lunghezza fondazione reagente							1,79	[m]			
Risultante in fondazione						13110,25	5 [kg]				
Inclinazione della risultante (rispetto alla norn					normale)		22,20	[°]			
Mon	nento r	ispetto al b	aricentro	della fond	dazione		4180,12	[kgm]			
COE	<u> FFICI</u>	ENTI DI SI	CUREZZ	<u>4</u>							
Coe	fficient	e di sicure:	zza a ribal	tamento			2.07				

Foglio 32 di 54

Sollecitazioni nel muro e verifica delle sezioni

Combinazione n° 3

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

Le verifiche sono effettuate assumendo una base della sezione B=100 cm

- H altezza della sezione espressa in [cm]
- N sforzo normale [kg]
- M momento flettente [kgm]
- T taglio [kg]
- e eccentricità dello sforzo rispetto al baricentro [cm]
- σ_{p} tensione di compressione massima nel pietrame in [kg/cmq]
- Ms momento stabilizzante [kgm]
- Mr momento ribaltante [kgm]
- Cs coeff. di sicurezza allo scorrimento
- Cr coeff. di sicurezza al ribaltamento

Nr.	Υ	Н	N	М	Т	е	σ_{p}	Ms	Mr	Cs	Cr
1	0,00	180,00						0	0		0,00
2	0,10	179,11						273	2		139,17
3	0,20	178,22						551	10		56,71
4	0,30	177,33						831	25		33,71
5	0,40	176,45						1114	48		23,29
6	0,50	175,56						1399	80		17,43
7	0,60	174,67						1686	123		13,72
8	0,70	173,78						1975	177		11,18
9	0,80	172,89						2267	242		9,35
10	0,90	172,00						2560	321		7,97
11	1,00	171,12						2856	414		6,90
12	1,00	190,00						3431	413		8,30
13	1,10	189,10						3793	521		7,28
14	1,20	188,21						4156	645		6,45
15	1,30	187,31						4522	785		5,76
16	1,40	186,42						4890	942		5,19
17	1,50	185,52						5260	1117		4,71
18	1,60	184,63						5632	1311		4,29
19	1,71	183,73						6006	1525		3,94
20	1,81	182,84						6382	1759		3,63
21	1,91	181,94						6761	2014		3,36
22	2,01	181,05						7141	2290		3,12

ハーフィーハリートー()	V-CL-CA20-01-012-A00.DOCX	
	V CL C/120 01 012 /100.DOC/	

Foglio 33 di 54

23	2,11	180,15	 	 	 7522	2589	 2,91
24	2,21	179,26	 	 	 7906	2910	 2,72
25	2,31	178,36	 	 	 8292	3256	 2,55

Stabilità globale muro + terreno

Combinazione nº 4

Le ascisse X sono considerate positive verso monte

Le ordinate Y sono considerate positive verso l'alto

Origine in testa al muro (spigolo contro terra)

W peso della striscia espresso in [kg]

α angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)

φ angolo d'attrito del terreno lungo la base della striscia

c coesione del terreno lungo la base della striscia espressa in [kg/cmq]

b larghezza della striscia espressa in [m]

u pressione neutra lungo la base della striscia espressa in [kg/cmq]

Metodo di Fellenius

Numero di cerchi analizzati 36

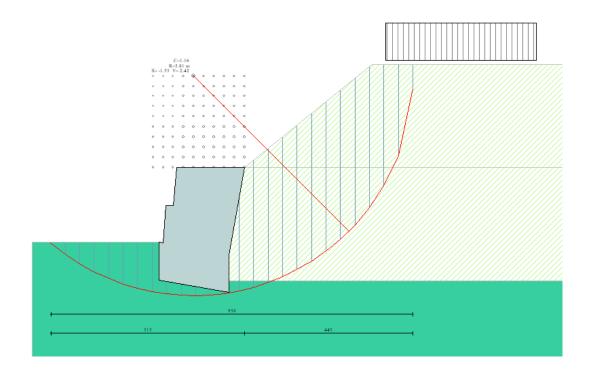
Numero di strisce 25

Cerchio critico

Coordinate del centro X[m]= -1,35 Y[m]= 2,42

Raggio del cerchio R[m]= 5,81

Ascissa a valle del cerchio Xi[m]= -5,13


Ascissa a monte del cerchio Xs[m]= 4,45

Larghezza della striscia dx[m]= 0,38

Coefficiente di sicurezza C= 1.16

Le strisce sono numerate da monte verso valle

Foglio 34 di 54

Caratteristiche delle strisce

Striscia	w	α(°)	Wsin_α	b/cosα	ф	С	u
1	1936,74	77.72	1892,41	1,80	32.01	0,00	0,00
2	2832,04	64.42	2554,45	0,89	32.01	0,00	0,00
3	2677,56	56.60	2235,47	0,70	32.01	0,00	0,00
4	2920,14	50.22	2244,00	0,60	32.01	0,00	0,00
5	3003,41	44.61	2109,09	0,54	32.01	0,00	0,00
6	3031,39	39.50	1928,29	0,50	32.01	0,00	0,00
7	3016,41	34.75	1719,44	0,47	32.01	0,00	0,00
8	2966,06	30.26	1494,84	0,44	32.01	0,00	0,00
9	2885,37	25.97	1263,66	0,43	32.01	0,00	0,00
10	2778,05	21.84	1033,27	0,41	29.57	0,00	0,00
11	2649,91	17.81	810,70	0,40	23.04	0,01	0,00
12	2504,37	13.88	600,88	0,39	23.04	0,01	0,00
13	2366,91	10.02	411,69	0,39	23.04	0,01	0,00
14	2317,62	6.20	250,17	0,39	23.04	0,01	0,00
15	2345,35	2.40	98,39	0,38	23.04	0,01	0,00
16	2353,47	-1.38	-56,58	0,38	23.04	0,01	0,00
17	1951,27	-5.17	-175,67	0,38	23.04	0,01	0,00
18	1077,36	-8.98	-168,09	0,39	23.04	0,01	0,00

Consorzio Collegamenti Integrati Veloci			GRUPPO FERRO	GRUPPO FERROVIE DELLO STATO ITALIANE					
				IG51-00-E	-CV-CL-CA2	0-01-012-A0	0.DOCX	Foglio 35 di 54	
19	957,81	-12.83	-212,65	0,39	23.04	0,01	0,00		
20	876,33	-16.74	-252,40	0,40	23.04	0,01	0,00		
21	772,19	-20.73	-273,37	0,41	23.04	0,01	0,00		
22	647,83	-24.84	-272,11	0,42	32.01	0,00	0,00		
23	498,20	-29.08	-242,15	0,44	32.01	0,00	0,00		

0,46

0,49

32.01

32.01

0,00

0,00

0,00

0,00

-176,28

-65,89

-33.51

-38.18

 $\Sigma W_i = 49791,68 \text{ [kg]}$

24

25

 $\Sigma W_{i} \sin \alpha_{i} = 18751,57 \text{ [kg]}$

 $\Sigma W_i \cos \alpha_i \tan \phi_i = 21419,59 \text{ [kg]}$

319,30

106,59

 $\Sigma c_i b_i / \cos \alpha_i = 354,11 \text{ [kg]}$

COMBINAZIONE n° 5

Valore della spinta statica	4218,95	[kg]		
Componente orizzontale della spinta statica	4142,44	[kg]		
Componente verticale della spinta statica	799,87	[kg]		
Punto d'applicazione della spinta	X = -0.20	[m]	Y = -2,12	[m]
Inclinaz. della spinta rispetto alla normale alla superficie	20,93	[°]		
Inclinazione linea di rottura in condizioni statiche	46,61	[°]		
Incremento sismico della spinta	193,45	[kg]		
Punto d'applicazione dell'incremento sismico di spinta	X = -0.20	[m]	Y = -2,12	[m]
Inclinazione linea di rottura in condizioni sismiche	46,17	[°]		
Peso terrapieno gravante sulla fondazione a monte	1021,09	[kg]		
Baricentro terrapieno gravante sulla fondazione a monte	X = -0.15	[m]	Y = -1,38	[m]
Inerzia del muro	123,57	[kg]		
Inerzia verticale del muro	-61,79	[kg]		
Inerzia del terrapieno fondazione di monte	12,19	[kg]		
Inerzia verticale del terrapieno fondazione di monte	-6,10	[kg]		
<u>Risultanti</u>				
Risultante dei carichi applicati in dir. orizzontale	4468,14	[kg]		
Risultante dei carichi applicati in dir. verticale	12136,50	[kg]		

Foglio 36 di 54

Resistenza passiva a valle del muro	-1454,16	[kg]
Sforzo normale sul piano di posa della fondazione	12728,00	[kg]
Sforzo tangenziale sul piano di posa della fondazione	2292,78	[kg]
Eccentricità rispetto al baricentro della fondazione	0,05	[m]
Lunghezza fondazione reagente	1,89	[m]
Risultante in fondazione	12932,86	[kg]
Inclinazione della risultante (rispetto alla normale)	10,21	[°]
Momento rispetto al baricentro della fondazione	670,58	[kgm]
Carico ultimo della fondazione	120482,35	[kg]

Tensioni sul terreno

Lunghezza fondazione reagente	1,89	[m]
Tensione terreno allo spigolo di valle	0,7884	[kg/cmq]
Tensione terreno allo spigolo di monte	0,5619	[kg/cmq]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 31.61$	$N_q = 17.81$	$N_{\gamma} = 13.71$
Fattori forma	$s_c = 1.00$	$s_{c} = 1.00$	$s_{v} = 1.00$

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

$$N'_{c} = 31.61$$
 $N'_{q} = 17.81$ $N'_{\gamma} = 13.71$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento	2.59
Coefficiente di sicurezza a carico ultimo	9.47

Foglio 37 di 54

Sollecitazioni nel muro e verifica delle sezioni

Combinazione n° 5

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

Le verifiche sono effettuate assumendo una base della sezione B=100 cm

- H altezza della sezione espressa in [cm]
- N sforzo normale [kg]
- M momento flettente [kgm]
- T taglio [kg]
- e eccentricità dello sforzo rispetto al baricentro [cm]
- $\sigma_{\!p}$ tensione di compressione massima nel pietrame in [kg/cmq]
- Ms momento stabilizzante [kgm]
- Mr momento ribaltante [kgm]
- Cs coeff. di sicurezza allo scorrimento
- Cr coeff. di sicurezza al ribaltamento

Nr.	Υ	Н	N	M	Т	е	σ_{p}	Ms	Mr	Cs	Cr
1	0,00	180,00	0	0	0	0,00	0,00			0,00	
2	0,10	179,11	323	-2	14	0,48	0,02			85,82	
3	0,20	178,22	645	-5	36	0,85	0,04			39,35	
4	0,30	177,33	965	-11	68	1,14	0,05			25,08	
5	0,40	176,45	1283	-17	107	1,34	0,07			18,33	
6	0,50	175,56	1600	-23	154	1,45	0,09			14,45	
7	0,60	174,67	1915	-28	208	1,48	0,10			11,94	
8	0,70	173,78	2229	-32	269	1,43	0,12			10,20	
9	0,80	172,89	2541	-33	336	1,31	0,14			8,91	
10	0,90	172,00	2851	-32	410	1,11	0,16			7,93	
11	1,00	171,12	3160	-26	490	0,83	0,18			7,16	
12	1,00	190,00	3160	-325	489	10,28	0,11			7,36	
13	1,10	189,10	3504	-315	576	9,00	0,13			6,74	
14	1,20	188,21	3846	-302	669	7,84	0,15			6,23	
15	1,30	187,31	4186	-283	768	6,75	0,18			5,79	
16	1,40	186,42	4525	-258	877	5,70	0,20			5,39	
17	1,50	185,52	4863	-226	994	4,65	0,22			5,04	
18	1,60	184,63	5198	-187	1116	3,59	0,25			4,73	
19	1,71	183,73	5532	-139	1245	2,51	0,28			4,47	
20	1,81	182,84	5865	-83	1379	1,41	0,31			4,23	

Foglio 38 di 54

Consorzio	C ollegament	ti Integrati Veloci			GRUPPO FERRO	VIE DELLO STA	TO ITALIANE						
					IG51-00-E-CV-CL-CA20-01-012-A00.DOCX								
21	1,91	181,94	6195	-17	1518	0,27	0,34			4,02		-	
22	2,01	181,05	6527	62	1663	0,94	0,37			3,84		-	
23	2,11	180,15	6872	164	1813	2,39	0,41			3,68		-	
24	2,21	179,26	7214	276	1969	3,82	0,45			3,53		-	
25	2,31	178,36	7552	397	2129	5,26	0,50			3,40		-	
CO	MBINA.	ZIONE n° (<u>6</u>										
Valo	ore dell	a spinta sta	atica				4218,95	[kg]					
Con	nponen	ite orizzont	ale della s	pinta sta	tica		4142,44	[kg]					
Con	nponen	ite verticale	e della spin	ta static	a		799,87	[kg]					
Pun	ito d'ap	plicazione	della spinta	a			X = -0.20	[m]	Υ =	= -2,12	[m]		
Incl	inaz. de	ella spinta i	rispetto alla	a normal	e alla supe	erficie	20,93	[°]					
Incli	inazion	e linea di r	ottura in co	ondizioni	statiche		46,61	[°]					
Incr	emento	sismico d	ella spinta				244,24	[kg]					
Pun	ito d'ap	plicazione	dell'increm	ento sis	mico di spi	nta	X = -0.20	[m]	Y =	= -2,12	[m]		
Incl	inazion	e linea di r	ottura in co	ondizioni	sismiche		46,17	[°]					
Pes	o terra	pieno grava	ante sulla f	ondazio	ne a monte	Э	1021,09	[kg]					
Bar	icentro	terrapieno	gravante s	sulla fond	dazione a r	monte	X = -0.15	[m]	Υ =	= -1,38	[m]		
	zia del						123,57	[kg]					
		ticale del m					61,79	[kg]					
		terrapieno					12,19	[kg]					
Iner	zia vert	ticale del te	errapieno fo	ondazior	ne di monte	Э	6,10	[kg]					
Risi	<u>ultanti</u>												
Rist	ultante	dei carichi	applicati in	dir. oriz	zontale		4518,02	[kg]					
		dei carichi			icale		12281,89	[kg]					
		ı passiva a					-1454,16	[kg]					
Sfo	rzo nori	male sul pi	ano di pos	a della fo	ondazione		12879,85	[kg]					
		genziale su				one	2316,65	[kg]					
Ecc	entricita	à rispetto a	l baricentro	o della fo	ondazione		0,05	[m]					
Lun	ghezza	fondazion	e reagente)			1,89	[m]					
Rist	ultante	in fondazio	ne				13086,53	[kg]					
Incl	inazion	e della risu	ıltante (risp	etto alla	normale)		10,20	[°]					

Foglio 39 di 54

Momento rispetto al baricentro della fondazione 674,32 [kgm]
Carico ultimo della fondazione 120527,16 [kg]

Tensioni sul terreno

Lunghezza fondazione reagente 1,89 [m]

Tensione terreno allo spigolo di valle 0,7971 [kg/cmq]
Tensione terreno allo spigolo di monte 0,5694 [kg/cmq]

Fattori per il calcolo della capacità portante

Coeff. capacità portante $N_c = 31.61$ $N_q = 17.81$ $N_{\gamma} = 13.71$

Fattori forma $s_c = 1,00$ $s_q = 1,00$ $s_{\gamma} = 1,00$

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 31.61$ $N'_{q} = 17.81$ $N'_{\gamma} = 13.71$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 2.59

Coefficiente di sicurezza a carico ultimo 9.36

Sollecitazioni nel muro e verifica delle sezioni

Combinazione n° 6

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

Le verifiche sono effettuate assumendo una base della sezione B=100 cm

H altezza della sezione espressa in [cm]

N sforzo normale [kg]

M momento flettente [kgm]

T taglio [kg]

e eccentricità dello sforzo rispetto al baricentro [cm]

σ_p tensione di compressione massima nel pietrame in [kg/cmq]

Ms momento stabilizzante [kgm]

Mr momento ribaltante [kgm]

Cs coeff. di sicurezza allo scorrimento

Cr coeff. di sicurezza al ribaltamento

Foglio 40 di 54

Nr.	Υ	Н	N	M	Т	е	σ_{p}	Ms	Mr	Cs	Cr
1	0,00	180,00	0	0	0	0,00	0,00			0,00	
2	0,10	179,11	323	-2	14	0,47	0,02			85,14	
3	0,20	178,22	645	-5	37	0,85	0,04			39,01	
4	0,30	177,33	965	-11	68	1,13	0,05			24,85	
5	0,40	176,45	1283	-17	108	1,32	0,07			18,16	
6	0,50	175,56	1600	-23	155	1,43	0,09			14,31	
7	0,60	174,67	1915	-28	210	1,46	0,10			11,82	
8	0,70	173,78	2229	-31	271	1,40	0,12			10,09	
9	0,80	172,89	2541	-32	340	1,27	0,14			8,82	
10	0,90	172,00	2851	-30	414	1,06	0,16			7,85	
11	1,00	171,12	3160	-24	495	0,77	0,18			7,08	
12	1,00	190,00	3160	-323	494	10,22	0,11			7,28	
13	1,10	189,10	3504	-313	582	8,94	0,13			6,67	
14	1,20	188,21	3846	-299	676	7,76	0,15			6,17	
15	1,30	187,31	4186	-279	777	6,66	0,18			5,73	
16	1,40	186,42	4525	-253	886	5,59	0,20			5,33	
17	1,50	185,52	4863	-220	1004	4,53	0,22			4,99	
18	1,60	184,63	5198	-180	1128	3,46	0,25			4,68	
19	1,71	183,73	5532	-131	1258	2,37	0,28			4,42	
20	1,81	182,84	5865	-73	1393	1,25	0,31			4,19	
21	1,91	181,94	6195	-6	1534	0,09	0,34			3,98	
22	2,01	181,05	6527	74	1681	1,14	0,37			3,80	
23	2,11	180,15	6872	179	1833	2,60	0,41			3,64	
24	2,21	179,26	7214	292	1990	4,05	0,46			3,49	
25	2,31	178,36	7552	416	2152	5,51	0,50			3,36	

COMBINAZIONE n° 7

Valore della spinta statica	6395,34	[kg]		
Componente orizzontale della spinta statica	6347,04	[kg]		
Componente verticale della spinta statica	784,55	[kg]		
Punto d'applicazione della spinta	X = -0.18	[m]	Y = -2,01	[m]
Inclinaz. della spinta rispetto alla normale alla superficie	17,05	[°]		
Inclinazione linea di rottura in condizioni statiche	41,45	[°]		

Foglio 41 di 54

Incremento sismico della spinta	302,89	[kg]		
Punto d'applicazione dell'incremento sismico di spinta	X = -0.18	[m]	Y = -2,01	[m]
Inclinazione linea di rottura in condizioni sismiche	41,02	[°]		
Peso terrapieno gravante sulla fondazione a monte	1021,09	[kg]		
Baricentro terrapieno gravante sulla fondazione a monte	X = -0.15	[m]	Y = -1,38	[m]
Inerzia del muro	123,57	[kg]		
Inerzia verticale del muro	61,79	[kg]		
Inerzia del terrapieno fondazione di monte	12,19	[kg]		
Inerzia verticale del terrapieno fondazione di monte	6,10	[kg]		
<u>Risultanti</u>				
Risultante dei carichi applicati in dir. orizzontale	6783,41	[kg]		
Risultante dei carichi applicati in dir. verticale	12257,42	[kg]		
Resistenza passiva a valle del muro	-1200,35	[kg]		
Sforzo normale sul piano di posa della fondazione	13249,13	[kg]		
Sforzo tangenziale sul piano di posa della fondazione	4551,88	[kg]		
Eccentricità rispetto al baricentro della fondazione	0,28	[m]		
Lunghezza fondazione reagente	1,89	[m]		
Risultante in fondazione	14009,25	[kg]		
Inclinazione della risultante (rispetto alla normale)	18,96	[°]		
Momento rispetto al baricentro della fondazione	3740,40	[kgm]		
Carico ultimo della fondazione	46118,25	[kg]		
<u>Tensioni sul terreno</u>				
Lunghezza fondazione reagente	1,89	[m]		
Tensione terreno allo spigolo di valle	1,3343	[kg/cmq]	
Tensione terreno allo spigolo di monte	0,0713	[kg/cmq]	

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 21.81$	$N_q = 10.28$	$N_{\gamma} = 5.86$
Fattori forma	$s_c = 1.00$	$s_{\alpha} = 1.00$	$s_{x} = 1.00$

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

$$N'_{c} = 21.81$$
 $N'_{q} = 10.28$ $N'_{\gamma} = 5.86$

Foglio 42 di 54

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 1.08

Coefficiente di sicurezza a carico ultimo 3.48

Sollecitazioni nel muro e verifica delle sezioni

Combinazione nº 7

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

Le verifiche sono effettuate assumendo una base della sezione B=100 cm

H altezza della sezione espressa in [cm]

N sforzo normale [kg]

M momento flettente [kgm]

T taglio [kg]

e eccentricità dello sforzo rispetto al baricentro [cm]

 $\sigma_{\!p}$ tensione di compressione massima nel pietrame in [kg/cmq]

Ms momento stabilizzante [kgm]

Mr momento ribaltante [kgm]

Cs coeff. di sicurezza allo scorrimento

Cr coeff. di sicurezza al ribaltamento

Nr.	Υ	Н	N	М	Т	е	σ_{p}	Ms	Mr	Cs	Cr
1	0,00	180,00	0	0	0	0,00	0,00			0,00	
2	0,10	179,11	323	0	47	0,02	0,02			24,74	
3	0,20	178,22	645	2	115	0,24	0,04			12,47	
4	0,30	177,33	965	6	193	0,65	0,06			8,80	
5	0,40	176,45	1283	15	280	1,17	0,08			6,99	
6	0,50	175,56	1600	29	377	1,80	0,10			5,88	
7	0,60	174,67	1915	49	484	2,54	0,12			5,13	
8	0,70	173,78	2229	75	599	3,38	0,14			4,58	
9	0,80	172,89	2541	110	722	4,32	0,17			4,15	
10	0,90	172,00	2851	153	854	5,37	0,20			3,81	
11	1,00	171,12	3160	206	994	6,51	0,23			3,53	
12	1,00	190,00	3160	-93	993	2,94	0,15			3,63	
13	1,10	189,10	3504	-30	1143	0,85	0,18			3,40	
14	1,20	188,21	3846	44	1300	1,15	0,21			3,21	
15	1,30	187,31	4186	130	1464	3,11	0,25			3,04	

Foglio 43 di 54

Consorzio	C ollegament	i Integrati Veloci			GRUPPO FERROVIE DELLO STATO ITALIANE									
						IG51-00	-E-CV-CL-CA2	20-01-012-	-A00.DC	OCX				
												_		
16	1,40	186,42	4525	228	1636	5,05	0,28			2,89				
17	1,50	185,52	4863	340	1815	6,99	0,32			2,76				
18	1,60	184,63	5198	465	2002	8,95	0,36			2,64				
19	1,71	183,73	5532	605	2195	10,94	0,41			2,53				
20	1,81	182,84	5865	761	2395	12,97	0,46			2,44				
21	1,91	181,94	6195	932	2602	15,05	0,51			2,35				
22	2,01	181,05	6527	1123	2815	17,21	0,57			2,27				
23	2,11	180,15	6872	1345	3035	19,57	0,63			2,20				
24	2,21	179,26	7214	1583	3261	21,95	0,70			2,13				
25	2,31	178,36	7552	1838	3493	24,34	0,77			2,07				
00	MDINIA.	710NF 20 (2											
<u>co</u>	IVIDIINA	ZIONE nº 8	<u> </u>											
Val	ore della	a spinta sta	atica				6395,34	[kg]						
		te orizzont		spinta sta	tica		6347,04	[kg]						
		te verticale					784,55	[kg]						
	•	plicazione	•				X = -0.18		Y =	= -2,01	[m]			
		ella spinta ı	•		e alla sup	erficie	17,05	[°]		,				
		e linea di r	•		•		41,45	[°]						
Incr	emento	sismico d	ella spinta	ì			226,13	[kg]						
Pur	nto d'ap _l	plicazione	dell'incren	nento sis	mico di sp	inta	X = -0.18	B [m]	Y =	= -2,01	[m]			
Incl	inazione	e linea di r	ottura in c	ondizioni	sismiche		41,02	[°]						
Pes	o terrap	pieno grava	ante sulla	fondazio	ne a mont	е	1021,09	[kg]						
Bar	icentro	terrapieno	gravante	sulla fond	dazione a	monte	X = -0.15	[m]	Y =	= -1,38	[m]			
Ine	zia del	muro					123,57	[kg]						
Ine	zia vert	icale del m	nuro				-61,79	[kg]						
Ine	zia del	terrapieno	fondazior	ne di mon	ite		12,19	[kg]						
Inei	zia vert	icale del te	errapieno	fondazior	ne di mont	e	-6,10	[kg]						
	<u>ultanti</u>			p .			6- 0- 5-							
		dei carichi					6707,23	[kg]						
		dei carichi			icale		12112,24							
		passiva a					-1200,35							
Sfo	rzo norr	nale sul pi	ano di pos	sa della fo	ondazione		13092,92	2 [kg]						

IG51-00-F-CV-CL-CA20-01-012-A00 DOCX		_	_					_		_		_	_	_	_									
	Y	\sim	\cap	\Box	٦	ገՐ	Δι	<u>つ</u> _	١1	_^	١1	_^	\cap	า	^ Δ	_(\sim I	\/_	\sim	_F_	ገቦ	۱_۲	25	14

Foglio 44 di 54

Sforzo tangenziale sul piano di posa della fondazione	4502,06	[kg]
Eccentricità rispetto al baricentro della fondazione	0,28	[m]
Lunghezza fondazione reagente	1,89	[m]
Risultante in fondazione	13845,33	[kg]
Inclinazione della risultante (rispetto alla normale)	18,98	[°]
Momento rispetto al baricentro della fondazione	3701,24	[kgm]
Carico ultimo della fondazione	46091,89	[kg]

Tensioni sul terreno

Lunghezza fondazione reagente	1,89	[m]
Tensione terreno allo spigolo di valle	1,3194	[kg/cmq]
Tensione terreno allo spigolo di monte	0,0696	[kg/cmq]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 21.81$	$N_{q} = 10.28$	$N_{\gamma} = 5.86$
Fattori forma	$s_c = 1,00$	$s_0 = 1,00$	$s_{v} = 1,00$

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

$N'_{c} = 21.81$	$N'_{a} = 10.28$	$N'_{yy} = 5.86$
11 ~ - 21.01	$111_{\circ} - 10.20$	11 0.00

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento	1.09
Coefficiente di sicurezza a carico ultimo	3.52

Sollecitazioni nel muro e verifica delle sezioni

Combinazione nº 8

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

Le verifiche sono effettuate assumendo una base della sezione B=100 cm

H altezza della sezione espressa in [cm]

N sforzo normale [kg]

M momento flettente [kgm]

T taglio [kg]

e eccentricità dello sforzo rispetto al baricentro [cm]

 σ_{p} tensione di compressione massima nel pietrame in [kg/cmq]

Ms momento stabilizzante [kgm]
Mr momento ribaltante [kgm]

Foglio 45 di 54

Cs coeff. di sicurezza allo scorrimento
Cr coeff. di sicurezza al ribaltamento

Nr.	Υ	н	N	M	Т	е	σ_{p}	Ms	Mr	Cs	Cr
1	0,00	180,00	0	0	0	0,00	0,00			0,00	
2	0,10	179,11	323	0	47	0,02	0,02			25,00	
3	0,20	178,22	645	1	114	0,23	0,04			12,60	
4	0,30	177,33	965	6	191	0,62	0,06			8,90	
5	0,40	176,45	1283	14	277	1,13	0,08			7,06	
6	0,50	175,56	1600	28	373	1,74	0,10			5,95	
7	0,60	174,67	1915	47	478	2,47	0,12			5,18	
8	0,70	173,78	2229	73	592	3,29	0,14			4,63	
9	0,80	172,89	2541	107	714	4,22	0,17			4,19	
10	0,90	172,00	2851	150	845	5,24	0,20			3,85	
11	1,00	171,12	3160	201	983	6,37	0,23			3,57	
12	1,00	190,00	3160	-98	983	3,09	0,15			3,67	
13	1,10	189,10	3504	-35	1130	1,01	0,18			3,44	
14	1,20	188,21	3846	37	1285	0,97	0,21			3,24	
15	1,30	187,31	4186	122	1448	2,91	0,24			3,07	
16	1,40	186,42	4525	218	1618	4,82	0,28			2,92	
17	1,50	185,52	4863	328	1796	6,74	0,32			2,79	
18	1,60	184,63	5198	451	1980	8,67	0,36			2,67	
19	1,71	183,73	5532	589	2171	10,64	0,41			2,56	
20	1,81	182,84	5865	742	2369	12,64	0,45			2,46	
21	1,91	181,94	6195	910	2573	14,69	0,51			2,37	
22	2,01	181,05	6527	1098	2784	16,83	0,56			2,29	
23	2,11	180,15	6872	1317	3001	19,17	0,62			2,22	
24	2,21	179,26	7214	1552	3225	21,51	0,69			2,15	
25	2,31	178,36	7552	1803	3455	23,88	0,76			2,09	

COMBINAZIONE n° 9

Valore della spinta statica	6395,34	[kg]
Componente orizzontale della spinta statica	6347,04	[kg]
Componente verticale della spinta statica	784.55	[ka]

Foglio 46 di 54

Punto d'applicazione della spinta	X = -0,18	[m]	Y = -2,01	[m]
Inclinaz. della spinta rispetto alla normale alla superficie	17,05	[°]		
Inclinazione linea di rottura in condizioni statiche	41,45	[°]		
Incremento sismico della spinta	226,13	[kg]		
Punto d'applicazione dell'incremento sismico di spinta	X = -0.18	[m]	Y = -2,01	[m]
Inclinazione linea di rottura in condizioni sismiche	41,02	[°]		
Peso terrapieno gravante sulla fondazione a monte	1021,09	[kg]		
Baricentro terrapieno gravante sulla fondazione a monte	X = -0.15	[m]	Y = -1,38	[m]
Inerzia del muro	123,57	[kg]		
Inerzia verticale del muro	-61,79	[kg]		
Inerzia del terrapieno fondazione di monte	12,19	[kg]		
Inerzia verticale del terrapieno fondazione di monte	-6,10	[kg]		
<u>Risultanti</u>				
Risultante dei carichi applicati in dir. orizzontale	6707,23	[kg]		
Risultante dei carichi applicati in dir. verticale	12112,24	[kg]		
Resistenza passiva a valle del muro	-1200,35	[kg]		
Momento ribaltante rispetto allo spigolo a valle	6650,11	[kgm]		
Momento stabilizzante rispetto allo spigolo a valle	15290,19	[kgm]		
Sforzo normale sul piano di posa della fondazione	13092,92	[kg]		
Sforzo tangenziale sul piano di posa della fondazione	4502,06	[kg]		
Eccentricità rispetto al baricentro della fondazione	0,28	[m]		
Lunghezza fondazione reagente	1,89	[m]		
Risultante in fondazione	13845,33	[kg]		
Inclinazione della risultante (rispetto alla normale)	18,98	[°]		
Momento rispetto al baricentro della fondazione	3701,24	[kgm]		

2.30

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a ribaltamento

Foglio 47 di 54

Sollecitazioni nel muro e verifica delle sezioni

Combinazione nº 9

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

Le verifiche sono effettuate assumendo una base della sezione B=100 cm

- H altezza della sezione espressa in [cm]
- N sforzo normale [kg]
- M momento flettente [kgm]
- T taglio [kg]
- e eccentricità dello sforzo rispetto al baricentro [cm]
- $\sigma_{\!p}$ tensione di compressione massima nel pietrame in [kg/cmq]
- Ms momento stabilizzante [kgm]
- Mr momento ribaltante [kgm]
- Cs coeff. di sicurezza allo scorrimento
- Cr coeff. di sicurezza al ribaltamento

Nr.	Υ	Н	N	M	Т	е	σ_{p}	Ms	Mr	Cs	Cr
1	0,00	180,00						0	0		0,00
2	0,10	179,11						301	2		146,67
3	0,20	178,22						607	10		60,78
4	0,30	177,33						915	25		36,41
5	0,40	176,45						1225	48		25,28
6	0,50	175,56						1537	81		18,99
7	0,60	174,67						1851	123		15,00
8	0,70	173,78						2167	177		12,25
9	0,80	172,89						2485	242		10,26
10	0,90	172,00						2804	320		8,76
11	1,00	171,12						3126	411		7,60
12	1,00	190,00						3758	411		9,14
13	1,10	189,10						4151	517		8,02
14	1,20	188,21						4546	639		7,11
15	1,30	187,31						4943	777		6,36
16	1,40	186,42						5342	931		5,74
17	1,50	185,52						5743	1103		5,21
18	1,60	184,63						6146	1293		4,75
19	1,71	183,73						6550	1502		4,36
20	1,81	182,84						6957	1731		4,02

Foglio 48 di 54

C	onsorzio (Collegamenti	Integrati Veloci			GRUPPO FERROVIE	DELLO STATO	DITALIANE							
		<u> </u>				ļ	G51-00-l	E-CV-CL-(CA20-(01-012	2-A00.	DOCX			
	21	1,91	181,94						736	5	1980		•	3,72	
	22	2,01	181,05						777	5	2249		•	3,46	
	23	2,11	180,15						818	6	2541		•	3,22	
	24	2,21	179,26						860	0	2854		•	3,01	
	25	2,31	178,36						901	5	3191		-	2,83	
	CON	MBINAZ	ZIONE n° 10												
	Valo	re della	a spinta statio	ca				6395,	34	[kg]					
			·	e della spinta	stat	tica		6347,		[kg]					
		-		lella spinta sta				784,5	5	[kg]					
	Pun	to d'app	olicazione de	ella spinta				X = -0	,18	[m]	•	Y = -2,01	[1	m]	
	Incli	naz. de	ella spinta risp	petto alla norr	nale	e alla superfi	cie	17,05		[°]					
	Incli	nazione	e linea di rott	ura in condizi	oni	statiche		41,45		[°]					
	Incre	emento	sismico dell	a spinta				302,8	9	[kg]					
	Pun	to d'app	olicazione de	ell'incremento	sisr	nico di spinta	a	X = -0	,18	[m]	•	Y = -2,01	[1	m]	
	Incli	nazione	e linea di rott	ura in condizi	oni	sismiche		41,02		[°]					
	Pes	o terrap	oieno gravan	te sulla fonda	zior	ne a monte		1021,	09	[kg]					
	Bari	centro t	terrapieno gr	avante sulla f	ond	lazione a mo	nte	X = -0	,15	[m]	,	Y = -1,38	[1	m]	
	Iner	zia del	muro					123,5	7	[kg]					
	Iner	zia vert	icale del mur	ro				61,79		[kg]					
	Iner	zia del 1	terrapieno fo	ndazione di n	non	te		12,19		[kg]					
	Iner	zia vert	icale del terr	apieno fondaz	zion	e di monte		6,10		[kg]					
	<u>Rist</u>	<u>ıltanti</u>													
	Risu	ıltante d	dei carichi ap	plicati in dir.	oriz	zontale		6783,	41	[kg]					
	Risu	ıltante d	dei carichi ap	plicati in dir. v	vert	icale		12257	7 ,42	[kg]					
	Res	istenza	passiva a va	alle del muro				-1200	,35	[kg]					
	Mon	nento ri	baltante risp	etto allo spigo	olo a	a valle		6642,	86	[kgn	n]				
	Mon	nento s	tabilizzante r	rispetto allo sp	oigo	lo a valle		15391	,02	[kgn	n]				
	Sfor	zo norn	nale sul pian	o di posa dell	a fo	ndazione		13249),13	[kg]					
	Sfor	zo tang	jenziale sul p	piano di posa	dell	a fondazione	:	4551,	88	[kg]					
	Ecce	entricità	rispetto al b	aricentro dell	a fo	ndazione		0,28		[m]					
	Lun	ghezza	fondazione i	reagente				1,89		[m]					
	Risu	ıltante i	n fondazione)				14009	,25	[kg]					

2.32

Foglio 49 di 54

Inclinazione della risultante (rispetto alla normale) 18,96 [°]

Momento rispetto al baricentro della fondazione 3740,40 [kgm]

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a ribaltamento

Sollecitazioni nel muro e verifica delle sezioni

Combinazione nº 10

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

Le verifiche sono effettuate assumendo una base della sezione B=100 cm

H altezza della sezione espressa in [cm]

N sforzo normale [kg]

M momento flettente [kgm]

T taglio [kg]

e eccentricità dello sforzo rispetto al baricentro [cm]

 $\sigma_{\!\scriptscriptstyle p}$ tensione di compressione massima nel pietrame in [kg/cmq]

Ms momento stabilizzante [kgm]

Mr momento ribaltante [kgm]

Cs coeff. di sicurezza allo scorrimento

Cr coeff. di sicurezza al ribaltamento

Nr.	Υ	Н	N	M	T	е	σ_{p}	Ms	Mr	Cs	Cr
1	0,00	180,00						0	0		0,00
2	0,10	179,11						301	2		145,16
3	0,20	178,22						607	10		60,14
4	0,30	177,33						915	25		36,03
5	0,40	176,45						1225	49		25,01
6	0,50	175,56						1537	82		18,79
7	0,60	174,67						1851	125		14,84
8	0,70	173,78						2167	179		12,12
9	0,80	172,89						2485	245		10,15
10	0,90	172,00						2804	324		8,67
11	1,00	171,12						3126	416		7,52
12	1,00	190,00						3758	416		9,04
13	1,10	189,10						4151	523		7,94
14	1,20	188,21						4546	646		7,04

	- chi o goni i o i i									
				IG51-00-E	-CV-CL-C	CA20-01-0	012-A00.DO	СХ		Foglio 50 di 54
15	1,30	187,31	 	 		4943	785		6,30	
16	1,40	186,42	 	 		5342	941		5,68	
17	1,50	185,52	 	 		5743	1115		5,15	
18	1,60	184,63	 	 		6146	1307		4,70	
19	1,71	183,73	 	 		6550	1519		4,31	
20	1,81	182,84	 	 		6957	1750		3,98	
21	1,91	181,94	 	 		7365	2001		3,68	
22	2,01	181,05	 	 		7775	2274		3,42	
23	2,11	180,15	 	 		8186	2569		3,19	
24	2,21	179,26	 	 		8600	2886		2,98	
25	2,31	178,36	 	 		9015	3226		2,79	

Stabilità globale muro + terreno

Combinazione n° 11

Le ascisse X sono considerate positive verso monte

Le ordinate Y sono considerate positive verso l'alto

Origine in testa al muro (spigolo contro terra)

W peso della striscia espresso in [kg]

- α $\,$ angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)
- φ angolo d'attrito del terreno lungo la base della striscia
- c coesione del terreno lungo la base della striscia espressa in [kg/cmq]
- b larghezza della striscia espressa in [m]
- u pressione neutra lungo la base della striscia espressa in [kg/cmq]

Metodo di Fellenius

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m]= -1,35 Y[m]= 2,42

Raggio del cerchio R[m]= 5,81

Ascissa a valle del cerchio Xi[m]= -5,13

Ascissa a monte del cerchio Xs[m]= 4,45

Larghezza della striscia dx[m]= 0,38

Coefficiente di sicurezza C= 1.14

Le strisce sono numerate da monte verso valle

Foglio 51 di 54

Caratteristiche delle strisce

Striscia	W	α(°)	Wsin $lpha$	b/cosα	ф	С	u
1	1936,74	77.72	1892,41	1,80	32.01	0,00	0,00
2	2832,04	64.42	2554,45	0,89	32.01	0,00	0,00
3	2677,56	56.60	2235,47	0,70	32.01	0,00	0,00
4	2920,14	50.22	2244,00	0,60	32.01	0,00	0,00
5	3003,41	44.61	2109,09	0,54	32.01	0,00	0,00
6	3031,39	39.50	1928,29	0,50	32.01	0,00	0,00
7	3016,41	34.75	1719,44	0,47	32.01	0,00	0,00
8	2966,06	30.26	1494,84	0,44	32.01	0,00	0,00
9	2885,37	25.97	1263,66	0,43	32.01	0,00	0,00
10	2778,05	21.84	1033,27	0,41	29.57	0,00	0,00
11	2649,91	17.81	810,70	0,40	23.04	0,01	0,00
12	2504,37	13.88	600,88	0,39	23.04	0,01	0,00
13	2366,91	10.02	411,69	0,39	23.04	0,01	0,00
14	2317,62	6.20	250,17	0,39	23.04	0,01	0,00
15	2345,35	2.40	98,39	0,38	23.04	0,01	0,00
16	2353,47	-1.38	-56,58	0,38	23.04	0,01	0,00
17	1951,27	-5.17	-175,67	0,38	23.04	0,01	0,00
18	1077,36	-8.98	-168,09	0,39	23.04	0,01	0,00
19	957,81	-12.83	-212,65	0,39	23.04	0,01	0,00
20	876,33	-16.74	-252,40	0,40	23.04	0,01	0,00
21	772,19	-20.73	-273,37	0,41	23.04	0,01	0,00
22	647,83	-24.84	-272,11	0,42	32.01	0,00	0,00
23	498,20	-29.08	-242,15	0,44	32.01	0,00	0,00
24	319,30	-33.51	-176,28	0,46	32.01	0,00	0,00
25	106,59	-38.18	-65,89	0,49	32.01	0,00	0,00

 $\Sigma W_i = 49791,68 \text{ [kg]}$

 $\Sigma W_i sin \alpha_i = 18751,57 \text{ [kg]}$

 $\Sigma W_i cos \alpha_i tan \phi_i = 21419,59 \text{ [kg]}$

 $\Sigma c_i b_i / \cos \alpha_i = 354,11 \text{ [kg]}$

Foglio 52 di 54

Stabilità globale muro + terreno

Combinazione nº 12

Le ascisse X sono considerate positive verso monte

Le ordinate Y sono considerate positive verso l'alto

Origine in testa al muro (spigolo contro terra)

- W peso della striscia espresso in [kg]
- α angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)
- φ angolo d'attrito del terreno lungo la base della striscia
- c coesione del terreno lungo la base della striscia espressa in [kg/cmq]
- b larghezza della striscia espressa in [m]
- u pressione neutra lungo la base della striscia espressa in [kg/cmq]

Metodo di Fellenius

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m]=-1,35 Y[m]=2,42

Raggio del cerchio R[m]= 5,81

Ascissa a valle del cerchio Xi[m]= -5,13

Ascissa a monte del cerchio Xs[m]= 4,45

Larghezza della striscia dx[m]= 0,38

Coefficiente di sicurezza C= 1.14

Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	W	α(°)	$\text{Wsin}\alpha$	b/cosα	ф	С	u
1	1936,74	77.72	1892,41	1,80	32.01	0,00	0,00
2	2832,04	64.42	2554,45	0,89	32.01	0,00	0,00
3	2677,56	56.60	2235,47	0,70	32.01	0,00	0,00
4	2920,14	50.22	2244,00	0,60	32.01	0,00	0,00
5	3003,41	44.61	2109,09	0,54	32.01	0,00	0,00
6	3031,39	39.50	1928,29	0,50	32.01	0,00	0,00
7	3016,41	34.75	1719,44	0,47	32.01	0,00	0,00
8	2966,06	30.26	1494,84	0,44	32.01	0,00	0,00
9	2885,37	25.97	1263,66	0,43	32.01	0,00	0,00

IG51-00-E-CV-CL-CA20-01-012-A00.DOCX	Foglio 53 di 54

10	2778,05	21.84	1033,27	0,41	29.57	0,00	0,00
11	2649,91	17.81	810,70	0,40	23.04	0,01	0,00
12	2504,37	13.88	600,88	0,39	23.04	0,01	0,00
13	2366,91	10.02	411,69	0,39	23.04	0,01	0,00
14	2317,62	6.20	250,17	0,39	23.04	0,01	0,00
15	2345,35	2.40	98,39	0,38	23.04	0,01	0,00
16	2353,47	-1.38	-56,58	0,38	23.04	0,01	0,00
17	1951,27	-5.17	-175,67	0,38	23.04	0,01	0,00
18	1077,36	-8.98	-168,09	0,39	23.04	0,01	0,00
19	957,81	-12.83	-212,65	0,39	23.04	0,01	0,00
20	876,33	-16.74	-252,40	0,40	23.04	0,01	0,00
21	772,19	-20.73	-273,37	0,41	23.04	0,01	0,00
22	647,83	-24.84	-272,11	0,42	32.01	0,00	0,00
23	498,20	-29.08	-242,15	0,44	32.01	0,00	0,00
24	319,30	-33.51	-176,28	0,46	32.01	0,00	0,00
25	106,59	-38.18	-65,89	0,49	32.01	0,00	0,00

 $\Sigma W_i = 49791,68 \text{ [kg]}$

 $\Sigma W_i \sin \alpha_i = 18751,57 \text{ [kg]}$

 $\Sigma W_i cos \alpha_i tan \phi_i = 21419,59 [kg]$

 $\Sigma c_i b_i / \cos \alpha_i = 354,11 \text{ [kg]}$

Foglio 54 di 54

8. CONCLUSIONI

- Sulla base di quanto sopra riportato sono state effettuate le verifiche secondo le NTC08, ovvero:
 - Verifica a ribaltamento
 - Verifica a scorrimento sul piano di posa
 - Verifica della capacità portante
 - Verifica della stabilità globale
- L'angolo di attrito del materiale del rilevato è stato assunto pari a 38° in fase di analisi, tale dato dovrà essere verificato tramite le prove riportate.
- Dovrà essere inoltre eseguita una relazione che riporti i risultati delle prove effettuate in laboratorio e in sito, con la verifica dell'angolo di attrito.
- Il suolo di fondazione appartiene alla categoria C e categoria topografica è T1.
- Le verifiche eseguite con le condizioni di sopra riportate risultano essere soddisfatte