
Regione Puglia

Provincia di Foggia

Comuni di San Paolo di Civitate e Poggio Imperiale

OGGETTO:

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO DI PRODUZIONE DI ENERGIA ELETTRICA DA FONTE EOLICA DI POTENZA PARI A 42 MW

COMMITTENTE:	TITOLO TAVOLA:	
**IVPCpower6	ANALISI ANEMOLO Re	GICA E STIMA DI PRODUCIBILITA' lazione Tecnica
	SCALA:	N° TAVOLA:
REVISIONE : 00	DATA: Luglio 2018	R02
PROGETTISTI:	ALFONS	

Regione Puglia Comuni di Poggio Imperiale e San Paolo di Civitate (FG)	
ANALISI ANEMOLOGICA E	
STIMA DI PRODUCIBILITÀ Relazione Tecnica	

Indice

L	PREM	ESSA	3
2	ANEN	OMETRIA	4
	2.1	Stazione anemometrica Les01	4
	2.2	Stazione anemometrica Pgi09	7
	2.3	Stazione anemometrica Spc01	10
	2.4	Verifica del posizionamento storico dei dati anemometrici	13
3	CENT	RALE EOLICA	14
	3.1	Configurazione d'impianto	14
	3.2	Aerogeneratore Vestas V150-4.2 MW	14
1	ANALI	ISI DI PRODUCIBILITÀ	16
	4.1	Modello orografico digitale	16
	4.2	Risultati dell'analisi anemologica	16
	4.3	Producibilità netta di impianto	17

Informazioni documento

Categoria documento	Relazione Tecnica
Progetto	Centrale Eolica nei Comuni di Poggio Imperiale e San Paolo di Civitate (FG)
Titolo documento	Analisi anemologica e stima di producibilità
Cliente	IVPC Power6 Srl
Numero di pagine	18
Revisione	00
Data Registrazione	Luglio 2018

1 PREMESSA

La Società I.V.P.C. Power6 Srl intende realizzare un Parco Eolico nei Comuni di Poggio Imperiale e San Paolo di Civitate (FG).

La presente analisi anemologica e di producibilità si pone come obiettivo la quantificazione delle potenzialità eoliche del sito e la stima di producibilità delle turbine previste per l'installazione sull'area di progetto.

Lo studio prevede inizialmente l'elaborazione dei dati acquisiti da stazioni di misura della velocità e direzione vento posizionate in prossimità del sito, preceduta da eventuali operazioni di filtraggio per l'esclusione di valori non ammissibili.

Successivamente, l'insieme di dati di vento selezionato come maggiormente rappresentativo viene associato ad un modello digitale del territorio, opportunamente esteso intorno all'area d'interesse, per costituire l'input del codice di simulazione anemologica WASP⁽¹⁾. Il modello territoriale, o DTM, fornisce al software tutte le informazioni legate all'andamento altimetrico del terreno, alla distribuzione di rugosità superficiale ed, eventualmente, alla presenza di ostacoli naturali o infrastrutturali che possono esercitare un sensibile effetto indotto sul regime anemologico locale.

Attraverso l'applicazione di un particolare algoritmo di estrapolazione dei dati sperimentali raccolti sulla singola posizione di una o più stazioni anemometriche, WASP è in grado di calcolare la distribuzione, e quindi la mappatura, a varie altezze rispetto al suolo, dei principali parametri anemologici caratterizzanti l'area circostante il punto di misura. I valori di tali parametri, calcolati su ciascuna delle posizioni previste per l'installazione delle turbine, ed associati alle curve di prestazioni del modello di aerogeneratore selezionato, permettono di operare una stima del valore di produzione di energia media annua attesa dall'impianto, al netto delle perdite per scia aerodinamica indotte dagli effetti d'interferenza reciproca tra le turbine.

⁽¹⁾ WAsP (Wind Atlas Analysis and Application Program), codice di simulazione anemologica sviluppato in Danimarca presso il RISØ National Laboratory, Centro di prova e certificazione per turbine eoliche.

2 ANEMOMETRIA

Il sito del Progetto oggetto della presente relazione è stato monitorato da tre stazioni anemometriche installate nei Comuni di Lesina, Poggio Imperiale e San Paolo di Civitate, denominate rispettivamente *Les01*, *Pgi09* e *Spc01*.

Ogni stazione è stata equipaggiata con tre sensori di velocità e due sensori di direzione posizionati a diverse altezze dal suolo. Come prescritto dalla normativa IEC 61400 i sensori di rilevazione sono stati montati avendo cura di ridurre al minimo i disturbi di flusso di vento nei pressi degli stessi. Sia i sensori di velocità che di direzione sono stati montati su aste di lunghezza pari a 8.5 diametri del palo di sostegno (la normativa prevede un minimo di 7 diametri) e il sensore di direzione si trova ad un'altezza inferiore di 1.5 metri rispetto al sensore di velocità corrispondente.

I dati provenienti da ciascun sensore di rilevazione sono stati inizialmente esaminati per evidenziare eventuali anomalie o intervalli temporali di mancata acquisizione.

La disponibilità di acquisizioni a diverse altezze dal suolo ha consentito di stimare il coefficiente di Wind Shear locale. Tale parametro caratterizza il profilo di strato limite atmosferico della velocità vento rispetto al suolo, come definito dalla formula riportata di seguito:

$$V_h = V_{ref} \left(\frac{h}{h_{ref}}\right)^{\alpha}$$

essendo:

 α = coefficiente di wind shear; V_h = velocità vento ad altezza h; V_{ref} = velocità vento ad altezza di riferimento h= h_{ref} .

Sono state calcolate le relative *distribuzioni statistiche di Weibull*, ovvero le curve teoriche interpolanti gli istogrammi di distribuzione delle frequenze di occorrenza sperimentali, discretizzate per intervalli di velocità vento pari a 1 m/s. Tali andamenti sono univocamente determinati attraverso il calcolo dei due parametri di Weibull, A e k.

2.1 Stazione anemometrica Les01

Il sistema di monitoraggio della stazione anemometrica Les01, installato nel Comune di Lesina (FG), è costituito da tre sensori di velocità del tipo NRG #40C Anemometer posti alle altezze di 10, 30 e 40 metri sls e da due sensori di direzione del tipo NRG #200P Wind Direction Vane, 10K posti alle altezze di 28.5 e 38.5 metri sls.

La stazione anemometrica è stata installata il 13 aprile 2007 ed è stata disinstallata il 15 luglio 2011. I dati, che coprono un periodo di oltre 4 anni, sono stati registrati per mezzo di un datalogger *Nomad2* della *Second Wind* con una frequenza di acquisizione oraria dalla data di installazione fino al 16 ottobre 2008. Dopo tale data la frequenza di acquisizione è stata settata a 10 minuti.

A seguito dell'analisi e validazione dei dati registrati, la disponibilità di dati validi è risultato pari a circa il 96% per il sensore anemometrico posto a 40 metri e il 99% per i due sensori anemometrici posti alle altezze inferiori (10 e 30 metri). La disponibilità di dati validi dei sensori di direzione è di circa il 98% per il sensore posto a 40 metri e il 96% per il sensore posto a 30 metri sul suolo.

La caratterizzazione ed i risultati delle elaborazioni eseguite sono sintetizzati dalle tabelle e dai diagrammi riportati di seguito.

IDENTIFICAZIONE STAZIONE			
Codice		Les01	
n° sensori velocità	3 (h=10m, h=30m, h=40m)		
n° sensori direzione		(h=28.5m, h=38.5	-
			•
COLLOCAZIONE GEOGRAFICA			
Regione, Comune (Provincia)		Puglia, Lesina (FG)
PUNTO D'INSTALLAZIONE			
Sistema di coordinate geografiche		UTM – WGS84	
Fuso		33	
Longitudine [m]		531 763	
Latitudine [m]		4 632 446	
Altitudine [m slm]		23	
ACQUISIZIONE DATI		1	
Altezza dal suolo sensori velocità sls	h=10m	h=30m	h=40m
Frequenza di acquisizione	oraria (13 apr 07 ÷ 16 ott 08)		
Data di installazione	10 min (16 ott 08 ÷ 15 lug 11)		
Data di installazione Ultimo rilievo dati	13 aprile 2007 15 luglio 2011		
n° anni	4.3		
Eventi complessivi (f=1 ora)	13 247		
Eventi ammissibili (f=1 ora)	13 247	13 224	13 247
Eventi complessivi (f=10 min)	13 2 17	144 287	10 2 17
Eventi ammissibili (f=10 min)	142 389	142 035	134 651
Disponibilità di periodo	99%	99%	96%
, , , , , , , , ,		I	I
ELABORAZIONI			
Altezza dal suolo sensori velocità	h=10m	h=30m	h=40m
Velocità vento media di periodo misurata [m/s]	4.15	5.03	5.23
Coefficiente di scala, A _{Weibull} [m/s]	4.52	5.54	5.74
Coefficiente di forma, k _{Weibull}	1.370	1.487	1.496
Coefficiente di Wind Shear	0.173		

Tab. 1.1 Stazione anemometrica Les01: Caratterizzazione e sintesi elaborazioni

	h=10 m sls		h=10 m sls h=30 m sls			h=40 m sls		
Anno	Velo	cità	Velocità [Dir	Velocità		Dir
	%	m/s	%	m/s	%	%	m/s	%
13 apr – 31 dic 2007	100%	4,01	100%	4,83	100%	100%	5,09	100%
2008	100%	4,06	100%	4,96	95%	100%	5,22	100%
2009	100%	4,15	100%	5,09	94%	100%	5,34	99%
2010	100%	4,40	100%	5,26	97%	97%	5,40	97%
1 gen – 15 lug 2011	93%	4,05	92%	4,87	93%	71%	4,64	93%
Media	99%	4.15	99%	5.03	96%	96%	5.23	98%

Tab. 1.2 Stazione anemometrica Les01: medie annue

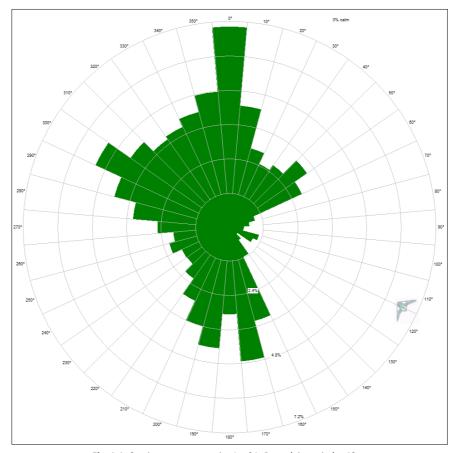


Fig. 1.1 Stazione anemometrica Les01: Rosa dei venti - h= 40 m

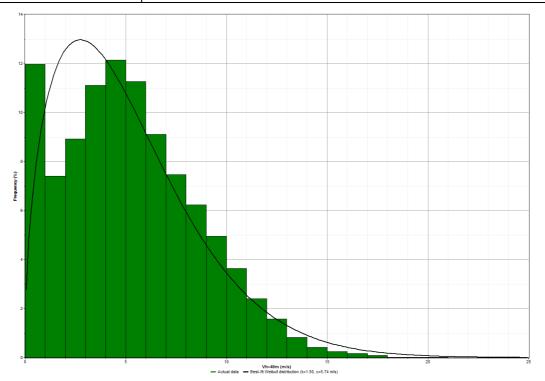


Fig. 1.2 Stazione anemometrica Les01: Curva teorica di Weibull - h=40m

2.2 Stazione anemometrica Pgi09

Il sistema di monitoraggio della stazione anemometrica Pgi09, installato nel Comune di Poggio Imperiale, è costituito da tre sensori di velocità del tipo NRG #40C Anemometer posti alle altezze di 10, 30 e 40 metri sls e da due sensori di direzione del tipo NRG #200P Wind Direction Vane, 10K posti alle altezze di 28.5 e 38.5 metri sls.

La stazione anemometrica è stata installata il 6 giugno 2007 ed è stata disinstallata il 24 settembre 2013. I dati, che coprono un periodo di oltre 6 anni, sono stati registrati per mezzo di un datalogger *Nomad2* della *Second Wind* con una frequenza di acquisizione oraria dalla data di installazione fino al 16 ottobre 2008. Dopo tale data la frequenza di acquisizione è stata settata a 10 minuti.

A seguito dell'analisi e validazione dei dati registrati, la disponibilità di dati validi è risultato pari a circa il 95% per il sensore anemometrico posto a 10 metri, il 99% per il sensore anemometrico posto a 30 metri e il 98% per il sensore anemometrico posto a 40 metri. La disponibilità di dati validi dei sensori di direzione è di circa il 94% per il sensore posto a 40 metri e il 99% per il sensore posto a 30 metri sul suolo.

La caratterizzazione ed i risultati delle elaborazioni eseguite sono sintetizzati dalle tabelle e dai diagrammi riportati di seguito.

IDENTIFICAZIONE STAZIONE		D-:00	
Codice	Pgi09		
n° sensori velocità		n=10m, h=30m, h=	
n° sensori direzione	2	2 (h=28.5m, h=38.5	m)
COLLOCAZIONE GEOGRAFICA			
Regione, Comune (Provincia)	Pug	ia, Poggio Imperia	le (FG)
regione, containe (Frovincia)	. 48	, . 088.0	
PUNTO D'INSTALLAZIONE			
Sistema di coordinate geografiche		UTM – WGS84	
Fuso		33	
Longitudine [m]		526 418	
Latitudine [m]		4 630 618	
Altitudine [m slm]		61	
ACQUISIZIONE DATI		,	
Altezza dal suolo sensori velocità sls	h=10m	h=30m	h=40m
Frequenza di acquisizione	oraria (06 giu 07 ÷ 16 ott 08)		
rrequenza di deguisizione	10 min (16 ott 08 ÷ 24 set 13)		
Data di installazione	6 giugno 2007		
Ultimo rilievo dati	24 settembre 2013		
n° anni	6.3		
Eventi complessivi (f=1 ora)	11 529		
Eventi ammissibili (f=1 ora)	11 529	11 951	11 951
Eventi complessivi (f=10 min)		259 770	
Eventi ammissibili (f=10 min)	248 738	257 103	255 830
Disponibilità di periodo	95%	99%	98%
ELABORAZIONI	h 10	h 20	h 40
Altezza dal suolo sensori velocità	h=10m	h=30m	h=40m
Velocità vento media di periodo misurata [m/s]	4.23	5.40	5.67
Coefficiente di scala, A _{Weibull} [m/s]	4.72	6.05	6.35
Coefficiente di forma, k _{Weibull}	1.759	1.854	1.850
Coefficiente di Wind Shear		0.223	

 Tab. 1.3 Stazione anemometrica Pgi09: Caratterizzazione e sintesi elaborazioni

	h=10 m sls		h=10 m sls h=30 m sls			h=40 m sls		
Anno	Velo	cità	Velo	ocità	Dir	Velocità		Dir
	%	m/s	%	m/s	%	%	m/s	%
6 giu – 31 dic 2007	97%	4.33	100%	5.53	100%	100%	5.77	100%
2008	97%	4.08	100%	5.35	100%	100%	5.60	100%
2009	85%	4.25	100%	5.37	100%	100%	5.60	100%
2010	100%	4.23	100%	5.43	100%	100%	5.69	100%
2011	92%	3.98	92%	5.10	91%	92%	5.39	91%
2012	100%	4.41	100%	5.64	100%	97%	5.91	72%
1 gen – 24 set 2013	100%	4.37	100%	5.44	100%	100%	5.77	100%
Media	95%	4.23	98%	5.40	99%	98%	5.67	94%

Tab. 1.4 Stazione anemometrica Pgi09: medie annue

Fig. 1.3 Stazione anemometrica Pgi09: Rosa dei venti - h= 40 m

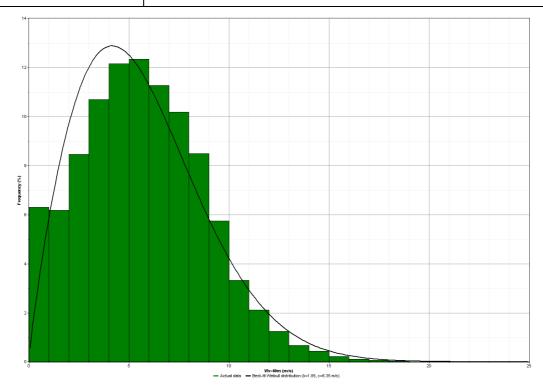


Fig. 1.4 Stazione anemometrica Pgi09: Curva teorica di Weibull - h=40m

2.3 Stazione anemometrica Spc01

Il sistema di monitoraggio della stazione anemometrica Spc01 è costituito da tre sensori di velocità del tipo NRG #40C Anemometer posti alle altezze di 20, 30 e 50 metri sls e da due sensori di direzione del tipo NRG #200P Wind Direction Vane, 10K posti alle altezze di 28.5 e 48.5 metri sls.

La stazione anemometrica è stata installata il giorno 8 luglio 2011 ed è stata disinstallata il 29 agosto 2012. I dati, registrati per mezzo di un datalogger *Nomad2* della *Second Wind* con frequenza a 10 minuti, coprono un periodo di circa 14 mesi.

A seguito dell'analisi e validazione dei dati registrati, la disponibilità di dati validi è risultato pari a circa il 90% per il sensore anemometrico posto a 50 metri e il 100% per i due sensori anemometrici posti alle altezze inferiori (20 e 30 metri sul suolo). La disponibilità di dati validi dei sensori di direzione è di circa il 96% per entrambi i sensori.

La caratterizzazione ed i risultati delle elaborazioni eseguite sono sintetizzati dalle tabelle e dai diagrammi riportati di seguito.

IDENTIFICAZIONE STAZIONE			
Codice		Spc01	
n° sensori velocità	3 (h=20m, 30m e 50m)		
n° sensori direzione		2 (h=28.5m e 48.5n	·
		`	,
COLLOCAZIONE GEOGRAFICA			
Regione, Comune (Provincia)	Puglia	San Paolo di Civita	ate (FG)
PUNTO D'INSTALLAZIONE			
Sistema di coordinate geografiche		UTM – WGS84	
Fuso		33	
Longitudine [m]		521 255	
Latitudine [m]		4 624 141	
Altitudine [m slm]		150	
	1		
ACQUISIZIONE DATI			
Altezza dal suolo sensori velocità sls	h=20m	h=30m	h=50m
Frequenza di acquisizione	10 minuti		
Data di installazione	8 luglio 2011		
Ultimo rilievo dati	29 agosto 2012		
n° mesi	14		
Eventi complessivi		60 163	
Eventi ammissibili	60 104	60 088	54 019
Disponibilità di periodo	100%	100%	90%
ELABORAZIONI			
Altezza dal suolo sensori velocità	h=20m	h=30m	h=50m
Velocità vento media di periodo misurata [m/s]	5.01	5.41	5.81
Coefficiente di scala, A _{Weibull} [m/s]	5.74	6.10	6.54
Coefficiente di forma, k _{Weibull}	2.057	2.082	2.077
Coefficiente di Wind Shear		0.154	

 Tab. 1.5
 Stazione anemometrica Spc01: Caratterizzazione e sintesi elaborazioni

	h=20 m sls h=30 m sls			h=50 m sls				
Mese	Velo	cità	Velo	cità	Dir	Velocità		Dir
	%	m/s	%	m/s	%	%	m/s	%
8-31 lug 2011	100%	4,72	100%	5,07	100%	99%	5,55	100%
ago 2011	100%	4,46	100%	4,71	100%	100%	4,98	100%
set 2011	100%	4,49	100%	4,81	100%	100%	5,19	100%
ott 2011	100%	4,81	100%	5,08	76%	100%	5,60	76%
nov 2011	100%	4,28	100%	4,40	100%	100%	4,80	100%
dic 2011	100%	5,35	100%	5,68	100%	100%	6,28	100%
gen 2012	100%	5,56	100%	5,88	100%	35%	5,52	100%
feb 2012	99%	6,68	99%	7,12	73%	99%	7,72	67%
mar 2012	100%	5,59	100%	5,96	100%	100%	6,44	100%
apr 2012	100%	5,30	100%	5,75	100%	100%	6,32	100%
mag 2012	100%	5,37	100%	5,70	100%	100%	6,10	100%
giu 2012	100%	4,61	100%	4,86	100%	100%	5,23	100%
lug 2012	100%	5,03	100%	5,31	100%	100%	5,66	100%
1-29 ago 2012	100%	5,12	100%	5,41	100%	23%	5,41	100%
Media	100%	5.10	100%	5.41	96%	90%	5.81	96%

Tab. 1.6 Stazione anemometrica Spc01: medie mensili

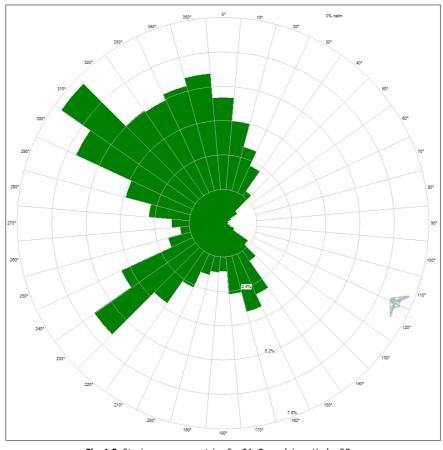


Fig. 1.5 Stazione anemometrica Spc01: Rosa dei venti - h= 50 m

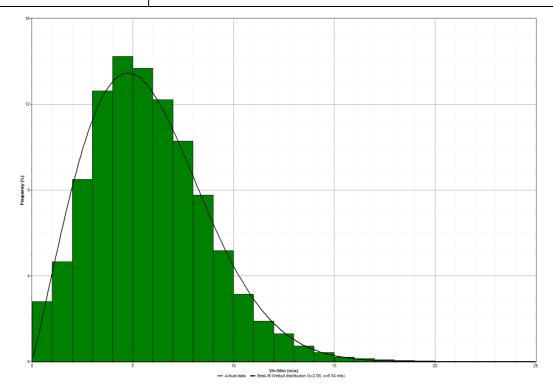


Fig. 1.6 Stazione anemometrica Spc01: Curva teorica di Weibull - h=50m

2.4 Verifica del posizionamento storico dei dati anemometrici

Il processo di valutazione della stima della velocità del vento di lungo periodo permette di definire un corretto collocamento dei dati di velocità del vento rilevati in sito rispetto a serie storiche di lungo periodo. La valutazione è effettuata utilizzando i dati di ventosità rilevati da diversi anni, possibilmente dieci o più, da una o più stazioni anemometriche storiche di riferimento e mettendo in correlazione i dati rilevati contemporaneamente dalle stazioni storiche con quelli rilevati nel sito di cui si vuole valutare la velocità vento media di lungo periodo.

Per le stazioni anemometriche Les01, Pgi09 e Spc01, installate nei pressi del sito di progetto, sono disponibili una quantità considerevole di dati registrati nell'arco di oltre 4, 6 e 1 anno rispettivamente. Tuttavia, data la durata della campagna anemometrica inferiore ai dieci anni di misurazione e i differenti periodi temporali di rilevazione delle tre stazioni anemometriche, si è ritenuto opportuno verificare il posizionamento storico delle velocità medie rilevate dalle stazioni con ulteriori serie di dati, anche in considerazione di una riduzione del grado di incertezza ad essa associato. Per tale valutazione sono stati utilizzati i dati delle stazioni anemometriche "storiche" disponibili nella banca dati del Gruppo IVPC.

Utilizzando i dati rilevati dalle stazioni storiche in contemporaneità con le stazioni installate in sito, è stata effettuata un'analisi di correlazione che ha permesso di calcolare i fattori correttivi da applicare ai dati di ciascuna stazione per allinearli al valore medio annuo atteso nel lungo periodo. In particolare l'analisi ha evidenziato che il periodo di acquisizione della stazione anemometrica Pgi09 ben rappresenta il valore medio atteso sul lungo periodo, i dati della stazione Les01 sono stati, invece, diminuiti del 2% e quelli della stazione Spc01 incrementati del 1% al fine di allineare i dati disponibili al valore atteso.

3 CENTRALE EOLICA

3.1 Configurazione d'impianto

Il progetto prevede l'installazione di n°10 aerogeneratori Vestas V150-4.2 MW. La disposizione attualmente prevista per le turbine è riportata nella tabella sottostante.

Turbina	Comune	UTM –	Altitudine	
Turbina	Comune	Long. E [m]	Lat. N [m]	[m]
WTG1	Poggio Imperiale (FG)	528594	4631877	30
WTG2	Poggio Imperiale (FG)	528952	4631804	30
WTG3	Poggio Imperiale (FG)	529302	4631907	23
WTG4	San Paolo di Civitate (FG)	522177	4624911	127
WTG5	San Paolo di Civitate (FG)	525674	4625783	88
WTG6	San Paolo di Civitate (FG)	524617	4623165	90
WTG7	San Paolo di Civitate (FG)	525229	4623103	87
WTG8	San Paolo di Civitate (FG)	526006	4623552	81
WTG9	San Paolo di Civitate (FG)	526615	4623709	76
WTG10	San Paolo di Civitate (FG)	524000	4622965	98

Tab. 3.1 Coordinate geografiche puntuali turbine d'impianto

3.2 Aerogeneratore Vestas V150-4.2 MW

La centrale eolica in progetto sarà realizzata con aerogeneratori modello Vestas V150 da 4200 kW di potenza nominale, costruiti dalla società Vestas.

Si tratta di turbine tripala a velocità variabile e controllo di potenza/coppia attraverso la regolazione del passo delle pale; il diametro del rotore è pari a 150 metri e l'altezza mozzo prevista è di 155 metri sls. L'inizio della produzione di energia elettrica avviene per una velocità del vento pari a 3 m/s; il distacco, o messa in bandiera, per una velocità del vento maggiore di 24.5 m/s. Le principali caratteristiche tecniche dell'aerogeneratore sono riassunte di seguito.

Potenza nominale	4200 kW
n° pale	3
Diametro rotore	150 m
Area spazzata	17 671 m ²
Altezza mozzo rotore	155.0 m
Tipologia torre	tubolare
Temperatura di funzionamento	-40°C ÷ 50°C
Velocità vento di avvio	3.0 m/s
Velocità vento nominale	12.0 m/s
Velocità vento di stacco	24.5 m/s

Tab. 3.2 Estratto delle specifiche tecniche della turbina Vestas V150-4.2MW

La curva di potenza elettrica della turbina, disponibile per valori discreti di altitudine, è stata interpolata per la quota di 230 m slm, pari all'altitudine media, ad altezza mozzo, del futuro impianto e corrispondente ad una densità dell'aria di 1,200 kg/m³.

Per il calcolo delle perdite di energia da interferenza aerodinamica tra le macchine (effetto scia) è stata inoltre implementata, alle medesime condizioni di densità dell'aria, la curva del coefficiente di spinta aerodinamica (C_t) in funzione della velocità vento.

Velocità vento [m/s] Potenza [kW] Ct 3.0 79 0.889	
3.0 79 0.889	
1	
3.5 168 0.847	
4.0 278 0.830	
4.5 415 0.829	
5.0 584 0.824	
5.5 792 0.820	
6.0 1040 0.815	
6.5 1332 0.810	
7.0 1674 0.804	
7.5 2058 0.796 8.0 2494 0.787	
8.0 2494 0.787 8.5 2959 0.763	
9.0 3403 0.704	
9.5 3761 0.629	
10.0 4009 0.550	
10.5 4131 0.471	
11.0 4187 0.402	
11.5 4198 0.345	
12.0 4200 0.299	
12.5 4200 0.261	
13.0 4200 0.230	
13.5 4200 0.205	
14.0 4200 0.183	
14.5 4200 0.164	
15.0 4200 0.148	
15.5 4200 0.134	
16.0 4200 0.122	
16.5 4200 0.112	
17.0 4200 0.103	
17.5 4200 0.095	
18.0 4200 0.088 18.5 4200 0.081	
19.0 4200 0.081 19.0 4200 0.075	
19.0 4200 0.075 19.5 4200 0.070	
20.0 4200 0.065	
20.5 4186 0.061	
21.0 3870 0.053	
21.5 3373 0.044	
22.0 2745 0.034	
22.5 2154 0.026	
23.0 1805 0.021	
23.5 1526 0.018	
24.0 1283 0.015	
24.5 1116 0.013	

Tab. 3.3 Curva di potenza e Curva di spinta utilizzate per la simulazione

4 ANALISI DI PRODUCIBILITÀ

4.1 Modello orografico digitale

È stato realizzato un modello orografico digitale che descrive l'andamento altimetrico dell'area geografica interessata dalla simulazione del campo di vento.

Il modello digitale è stato utilizzato come input per la simulazione del campo di vento sul sito, eseguita con il codice di calcolo *WASP 9*. Per la definizione del livello di rugosità superficiale del terreno è stato assunto:

- un valore uniforme per z₀ (lunghezza di rugosità) pari a 0.03, caratteristico di un'area geografica con orografia dolce, con pochi alberi e case sparse, sul resto del territorio.

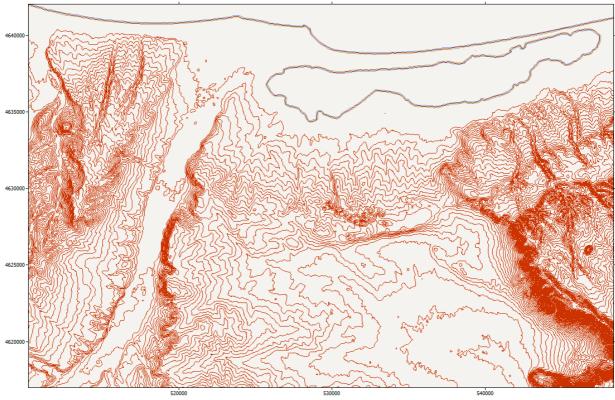


Fig. 4.1 Modello orografico digitale per simulazione WASP 11.5

4.2 Risultati dell'analisi anemologica

La stima della resa energetica d'impianto è stata eseguita calcolando la producibilità per ciascuna delle 10 turbine costituenti l'impianto.

La velocità vento su ogni posizione è stata calcolata attraverso l'applicazione WAsP dell'atlante di vento estrapolato dalle acquisizioni delle stazioni anemometriche Les01, Pgi09 e Spc01 descritte nei paragrafi precedenti.

Per il calcolo della resa energetica, al netto delle perdite per effetto scia da interferenza aerodinamica, è stata applicata, secondo un modello conservativo di scia, una costante k di decadimento (wake decay constant) pari a:

$$k = \frac{0.5}{\ln\left(\frac{h_{\text{mozzo}}}{z_0}\right)}$$

L'osservazione del prospetto sintetico della tabella sottostante evidenzia che l'impianto, secondo la configurazione prevista, attende una producibilità complessiva di 156.172 GWh/anno, al netto delle perdite per effetto scia aerodinamica pari al 4.39%; tale dato di resa energetica corrisponde a 3718 ore equivalenti medie annue unitarie di funzionamento a potenza nominale.

Turbina	V _{h mozzo} [m/s]	Resa energetica annua [GWh/anno]		
		Lorda	Netta	Perdite per scia
WTG1	7.16	16.673	16.435	1.43%
WTG2	7.13	16.557	15.564	5.98%
WTG3	7.07	16.335	15.847	2.98%
WTG4	7.08	16.470	15.693	4.72%
WTG5	7.08	16.493	15.563	5.64%
WTG6	6.96	16.081	15.212	5.41%
WTG7	6.98	16.160	15.290	5.38%
WTG8	7.02	16.268	15.527	4.56%
WTG9	7.02	16.260	15.667	3.65%
WTG10	6.95	16.043	15.373	4.18%
Totale		163.339	156.172	
Media unitaria	7.04	16.334	15.617	4.39%

Tab.4.1 Producibilità media annua di centrale

4.3 Producibilità netta di impianto

Ai fini del calcolo della producibilità netta di impianto, ovvero quella effettivamente immessa in rete e dunque fatturata ai fini della vendita dell'energia, sono stati considerati i seguenti fattori di perdita:

Fattore	Perdita
Efficienza elettrica	3.0%
Disponibilità	3.5%
Isteresi per elevata velocità vento	0.5%
Lavori di manutenzione sottostazione	0.2%
Ghiaccio e depositi sulle pale	0.5%

Tabella 4.2 Fattori di perdita produzione netta d'impianto

Pertanto, sulla base delle suddette considerazioni, si può stimare che la *producibilità*

Centrale Eolica nei Comuni di <i>Poggio Imperiale e San Paolo di Civitate (FG)</i>
Analisi anemologica e stima di producibilità
18/07/2018

 $\underline{netta\ media\ annua\ (P_{50})}$ della centrale eolica in progetto sia pari a **144.451 GWh/anno**, corrispondente a **3439** ore equivalenti medie unitarie a potenza nominale.