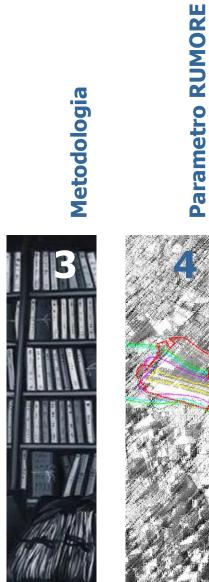


Aeroporto «Il Caravaggio» di Bergamo Orio al Serio **Piano di Sviluppo Aeroportuale 2030**


Studio di Impatto Ambientale Analisi ambientale delle alternative

Indice

Metodologia



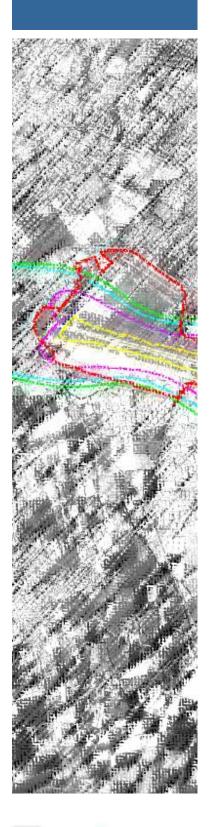
Metodologia

Presupposti

L'impianto metodologico sviluppato ai fini dell'analisi ambientale delle alternative di intervento, muove dal riconoscimento della loro differente natura, ossia del loro essere riferite a 2 distinti, ancorché correlati, ambiti tematici.

Ciascuna delle alternative sviluppate è difatti rileggibile in funzione di due distinte tipologie di parametri di costruzione:

- Ruolo dello scalo, con riferimento alla tipologia ed all'entità del traffico aereo che l'aeroporto intende operare, quale esito del ruolo da questo assolto all'interno del sistema aeroportuale
- Configurazione fisica, con riferimento all'assetto dello scalo nelle parti airside e land side


Logica di lavoro

La scelta dei parametri e degli indicatori attraverso i quali condurre l'analisi ed il confronto ambientale tra le alternative, è stata operata in modo tale da dare

conto della diversità dei parametri di costruzione di dette alternative

Parametro costruzione	Parametro confronto	Indicatore confronto
Ruolo	Rumore	Entità della porzione territoriale e della popolazione residente interessata dall'impronta acustica determinata dal traffico aereo
Ruolo	Atmosfera	Emissioni CO2 prodotte dal traffico aereo nelle fasi di atterraggio e decollo
Ruolo	Atmosfera	Emissioni CO2 prodotte dai mezzi rampa
Configurazione fisica	Atmosfera	Emissioni CO2 prodotte dal traffico aereo in fase di taxiway
Configurazione fisica	Energia	Emissioni CO2 prodotte da consumi elettrici e di metano

La composizione della flotta aeromobili e le modalità di utilizzo della pista e delle rotte di volo Le curve isolivello LVA al 2013 e la popolazione esposta

Strutturazione del confronto

Definizione delle alternative poste a confronto Dati caratteristici degli scenari di confronto

Sviluppo degli scenari

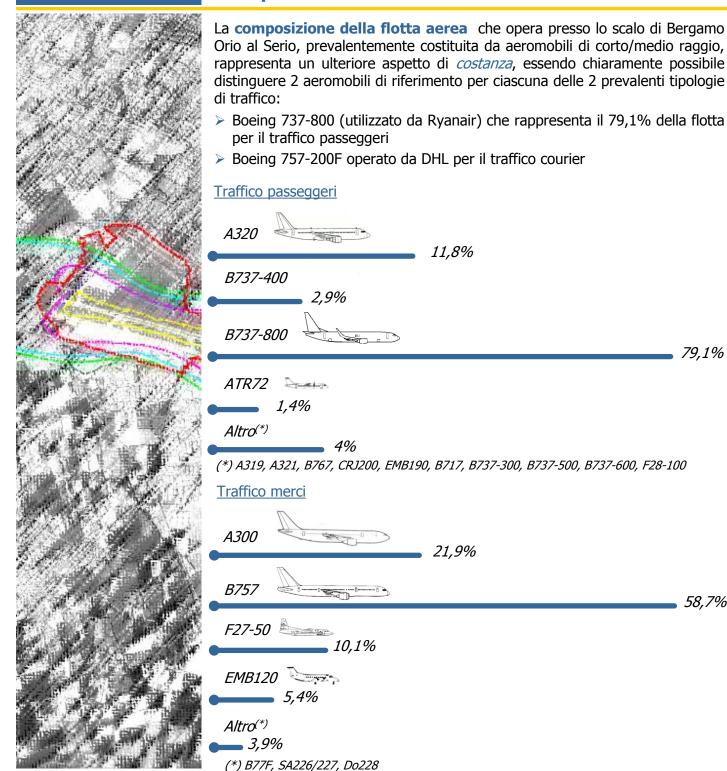
Modellazione acustica degli scenari e calcolo delle superfici impegnate dall'impronta acustica e della popolazione esposta

Confronto degli scenari

Confronto tra gli scenari alternativi e lo stato attuale 2013 in termini di curve di isolivello acustico

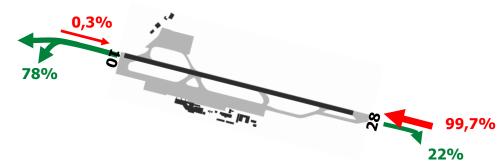
Popolazione esposta

Quantificazione in ciascuno scenario alternativo per popolazione esposta

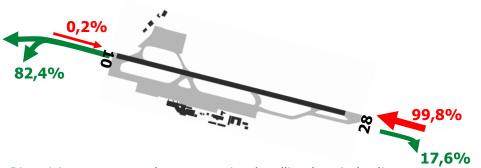

Quadro di raffronto

Confronto tra lo scenario attuale e gli scenari alternativi in termini di:

- Entità dell'impronta acustica, distinta in aree di rispetto
- Entità della popolazione esposta distinta per aree di rispetto



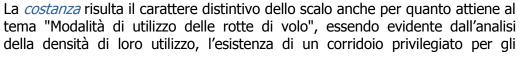
Composizione della flotta aerea e modalità d'uso della pista di volo

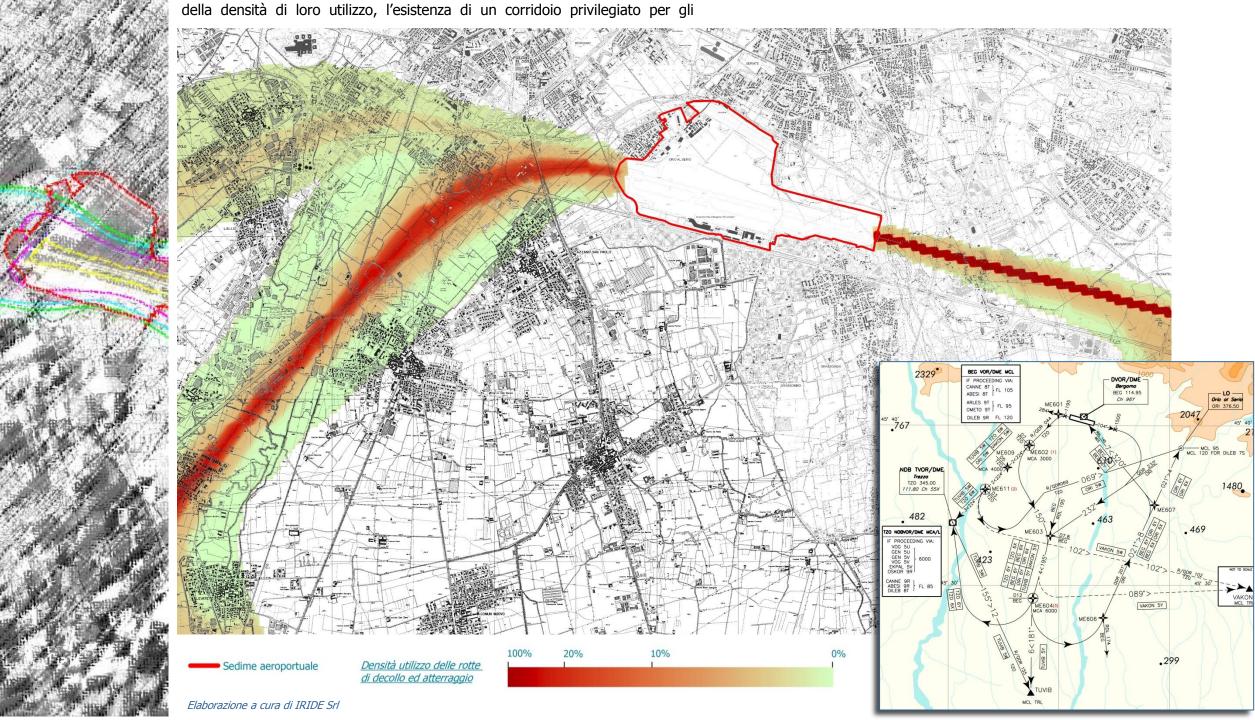


La modalità d'uso della pista di volo costituisce una costante in quanto sono definiti 2 distinti modelli per i voli diurni e per quelli notturni, ciascuno dei quali con una preponderante ripartizione nell'utilizzo delle tesate.

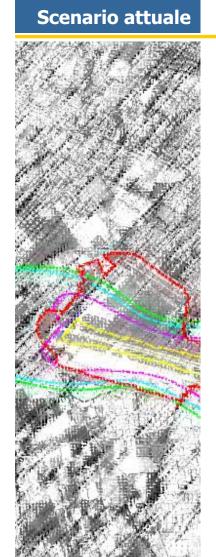
- > Per i voli diurni, la ripartizione dell'utilizzo della pista di volo privilegia i movimenti per direzione 28.
- > Per i voli notturni, si predilige una configurazione dell'aeroporto del tipo opposite single runway operations (atterraggi per 28 e decolli per 10) in modo da limitare i sorvoli sui centri abitati posti ad ovest dell'aeroporto (Bergamo, Orio al Serio, Azzano San Paolo, etc.)

Ripartizione percentuale in funzione del numero totale dei movimenti


Ripartizione percentuale atterraggi e decolli nel periodo diurno


79,1%

58.7%


Modalità di utilizzo delle rotte

atterraggi e soprattutto per i decolli per 28, i quali di fatto ricalcano il tracciato dell'Autostrada A4

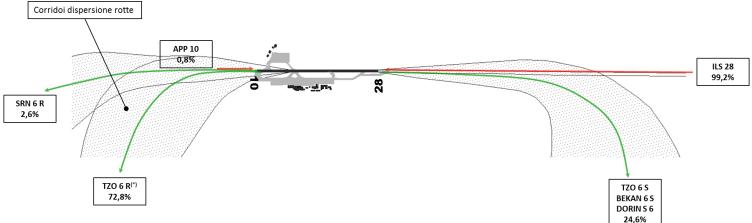
Curve isolivello LVA al 2013

Il clima acustico attraverso il modello previsionale INM

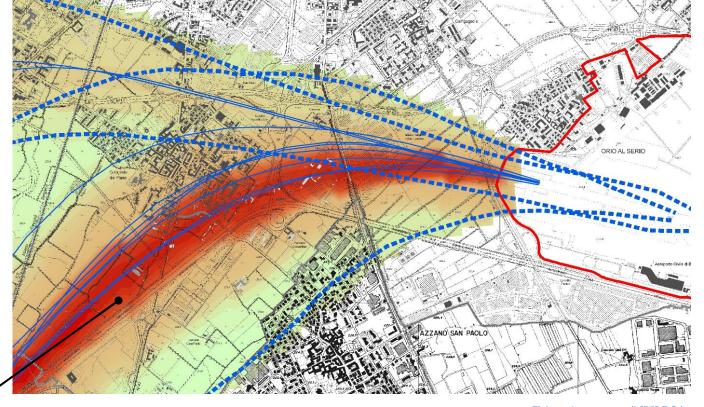
Attraverso l'utilizzo del software previsionale INM (*Integrated Noise Model*), sviluppato dalla FAA, è possibile valutare l'impronta acustica indotta dagli aeromobili in decollo ed atterraggio in un giorno caratteristico definito come il giorno medio nelle tre settimane di maggior traffico così come individuate dal DM 31 ottobre 1997.

A partire dai dati di traffico relativi all'anno 2013 sono stati identificati tutti i dati necessari per la valutazione del rumore aeronautico:

- Volume traffico e composizione della mix di flotta;
- Utilizzo piste e rotte di volo;
- Dispersione delle rotte di decollo a partire dai tracciati radar e dalle procedure AIP Italia;
- Ripartizione voli nel periodo diurno (6:00-23:00) e notturno (23:00-6:00);
- Procedure di decollo ed atterraggio.


Isc	ofoniche LVA	Area [kmq]
Α	60-65 dB(A)	8,3
В	65-75 dB(A)	4
С	> 75 dB(A)	0,7

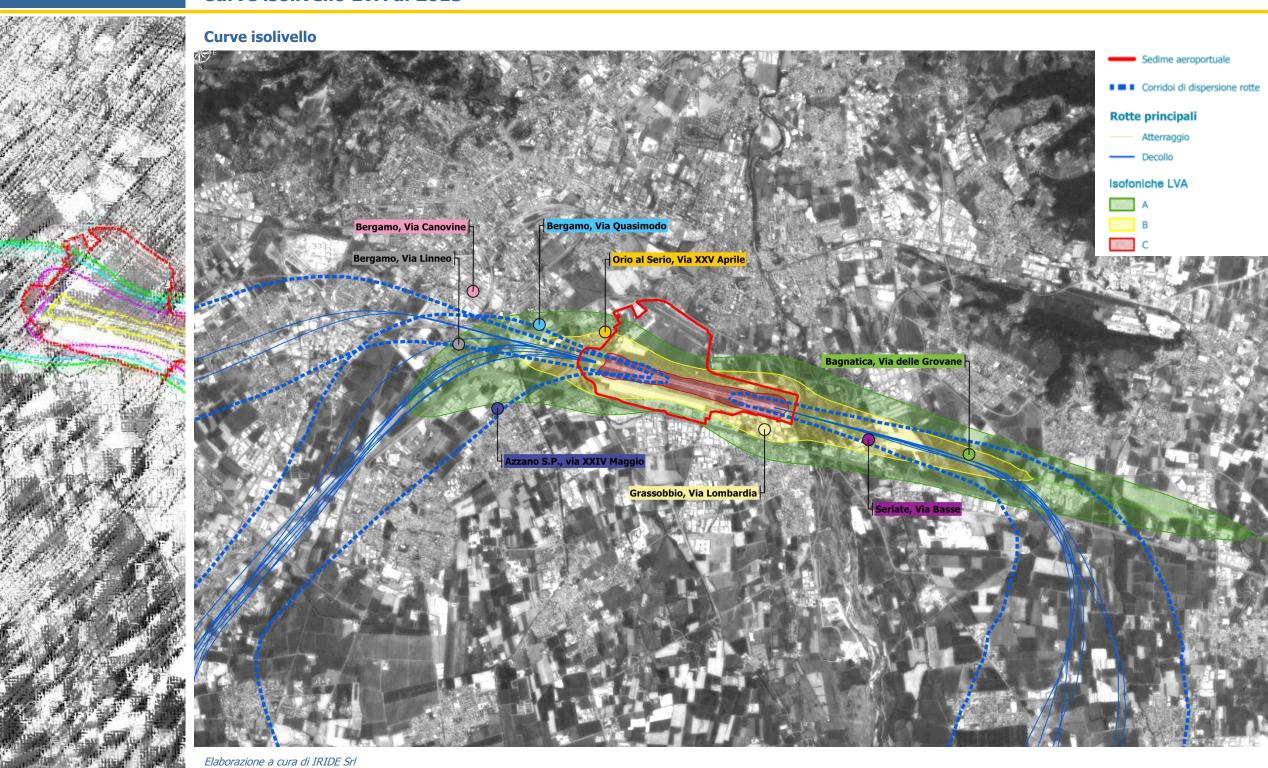
A partire dalla densità di utilizzo rotte si sono individuate le principali direttrici per le principali tipologie di aeromobili (B737-800, B757, A300, etc.).


Al fine di valutare con maggior dettaglio il rumore indotto e il relativo impatto sul territorio è stata considerata la dispersione delle rotte per ciascuna rotta principale attraverso l'individuazione di uno specifico «corridoio».

Elaborazione a cura di IRIDE Srl

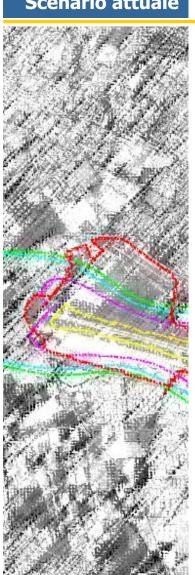
Rotte principali di decollo

Volume di traffico giornaliero					
Anno 2013 Bus					
Massimo	Minimo	Medio	LVA		
253	5	191	215		

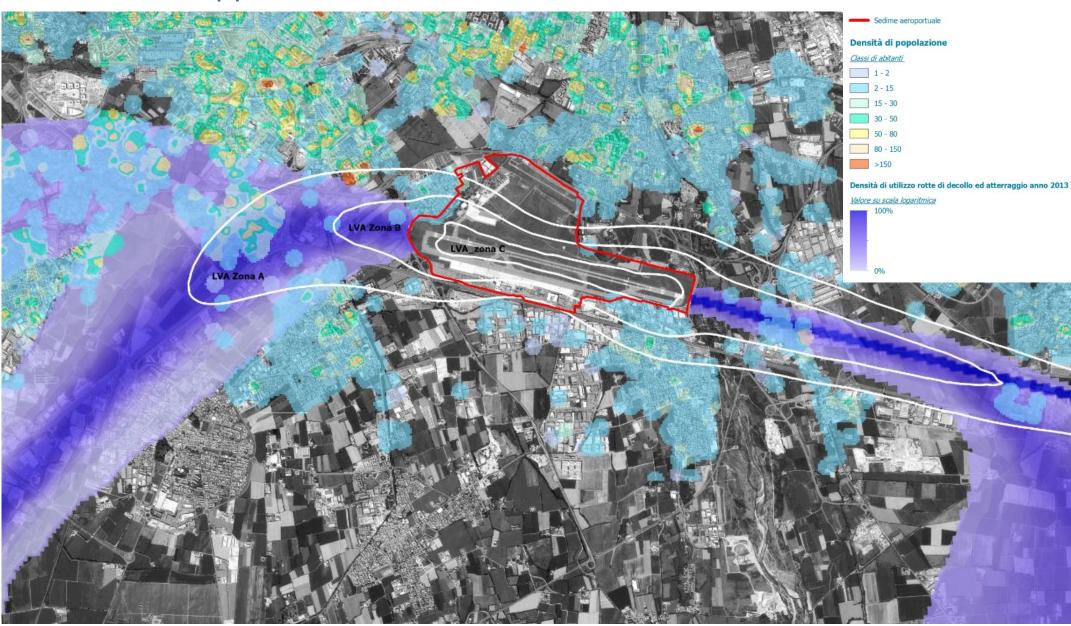


Elaborazione a cura di IRIDE Sri

Curve isolivello LVA al 2013



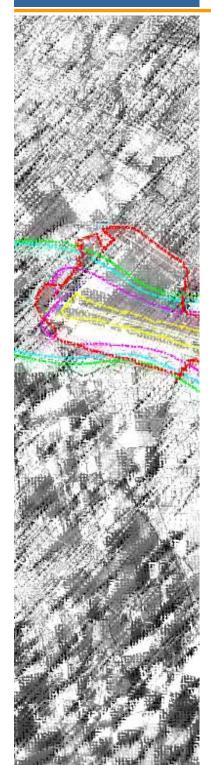
Scenario attuale


Popolazione esposta

Il calcolo della popolazione esposta si basa sui dati forniti dalle amministrazioni dei territori comunali nell'intorno dell'aeroporto. In particolare è stata stimata la popolazione più esposta al rumore aeronautico considerando le isolivello in termini di LVA dei 60, 65 e 75 dB(A) che individuano le fasce di pertinenza acustica A, B e C.

Isofoniche LVA		Area [kmq]	Abitanti
Α	60-65 dB(A)	8,3	5919
В	65-75 dB(A)	4	1414
С	> 75 dB(A)	0,7	0

Densità di utilizzo rotte e di popolazione


Elaborazione a cura di IRIDE Srl

Strutturazione

Costruzione delle alternative poste a confronto: ambiti tematici e scenari

Scenari di ruolo

Gli scenari di traffico sono l'esito di atteggiamenti e conseguenti politiche differenti assunte dalla Società di gestione nei confronti della domanda di trasporto aereo, che sono correlate ad un diverso posizionamento dello scalo.

Gli scenari oggetto di analisi ambientale sono tre e sono desunti dal PSA.

Scenario 1:

Politica di non intervento rispetto alla dinamica di evoluzione della domanda che cresce in modo lineare secondo il trend tendenziale

• Volume passeggeri: **14 milioni**

Volume cargo: 174.489 tonnellate

Scenario 2:

Politica di intervento, con orientamento alla sola componente passeggeri della domanda di trasporto

Volume passeggeri: 14 milioni

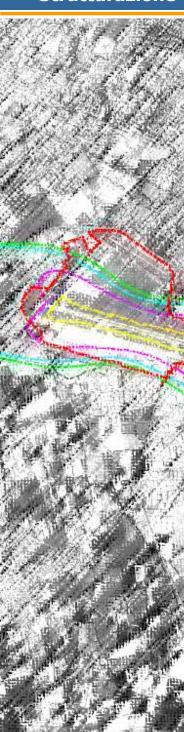
Scenario 3:

Politica di intervento, con orientamento alla sola componente passeggeri della domanda di trasporto ed acquisizione di ulteriori quote di traffico

• Volume passeggeri: **17 milioni**

Scenari di traffico

Per quanto riguarda il numero di *movimenti annui* sono state effettuate tre stime di crescita al variare del coefficiente di riempimento medio degli aeromobili. Per ciascun scenario sono state individuate pertanto tre previsioni di crescita: massima, media e minima.


	Previsione	di crescita mas	ssima	Prevision	e di crescita n	nedia	Prevision	e di crescita r	minima
		passeggeri	102.266		passeggeri	91.874		passeggeri	86.770
Scenario 1	117.196	cargo	12.830		cargo	12.278	100.277	cargo	11.357
		av.generale	2100		av.generale	2.100		av.generale	2.100
Scenario 2	104.366	passeggeri	102.266	93.974	passeggeri	91.874	88.870	passeggeri	86.770
		cargo	0		cargo	0		cargo	0
		av.generale	2.100		av.generale	2.100		av.generale	2.100
		passeggeri	124.735		passeggeri	112.106		passeggeri	105.903
Scenario 3	126.835	cargo	0	114.206	cargo	0	108.003	cargo	0
		av.generale	2.100		av.generale	2.100		av.generale	2.100

Strutturazione

Costruzione delle alternative poste a confronto: ambiti tematici e scenari

Scenari operativi

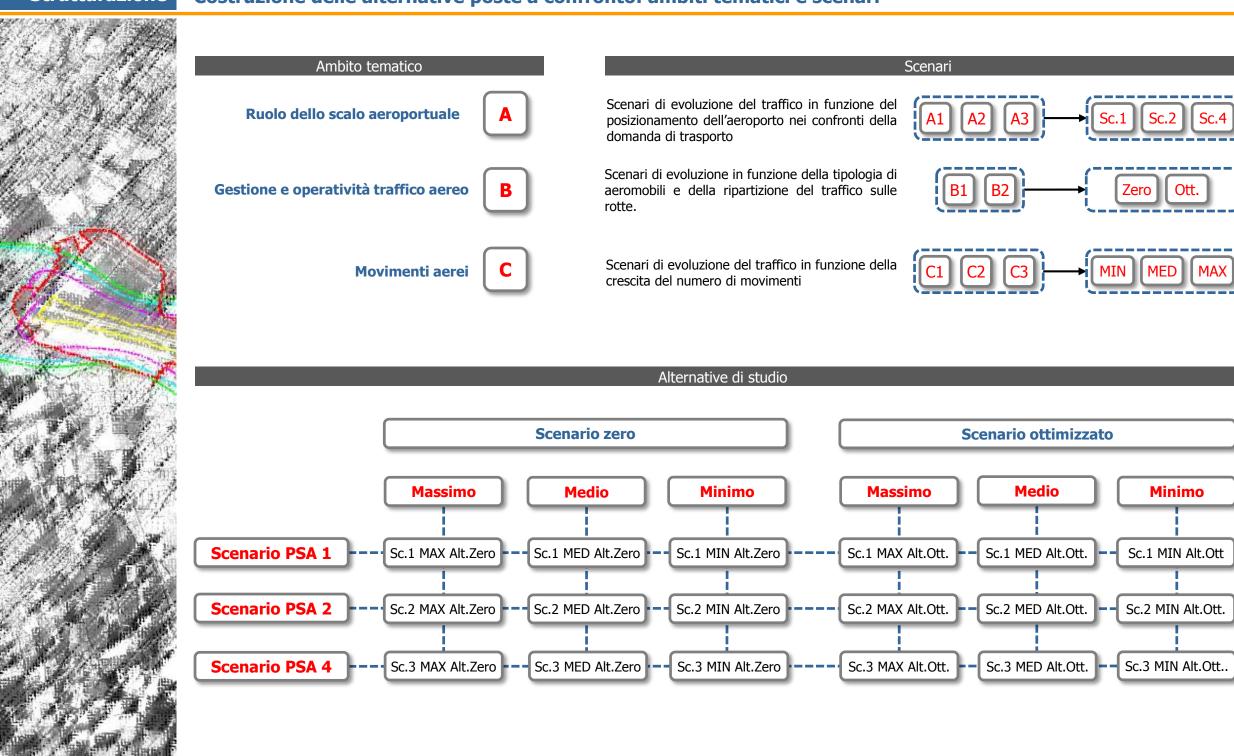
Per la valutazione del rumore indotto dalle attività aeronautiche nelle diverse alternative di traffico considerate sono stati ipotizzati due scenari operativi differenti. Nello specifico:

Scenario Zero:

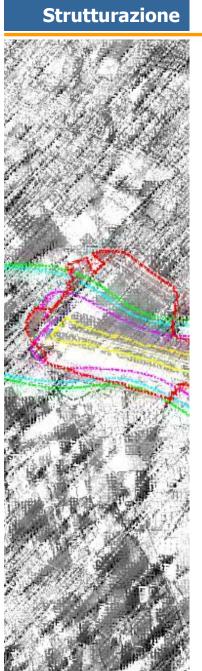
Politica di non intervento rispetto all'attuale modalità di gestione del traffico aereo

- Rotte e procedure di decollo immutate
- Flotta aeromobili invariata

Politica di intervento, con orientamento al contenimento delle emissioni acustiche


- Nuova rotta PRNAV di decollo su pista 28 per aeromobili di classe C
- Nuova distribuzione traffico su più rotte
- Flotta aeromobili: nuovi Boeing 737-800 Max e Airbus A320 Neo

Strutturazione


Costruzione delle alternative poste a confronto: ambiti tematici e scenari

Dati caratteristici degli scenari di analisi

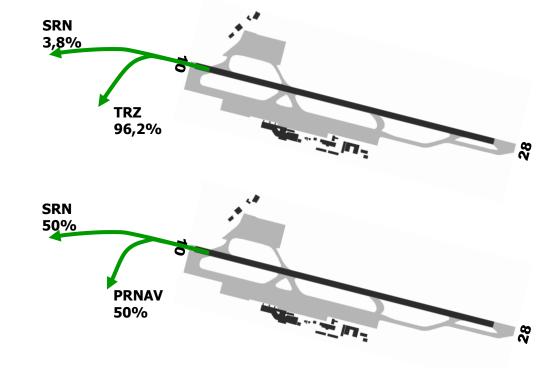
Dati di base

Stante il quadro delle alternative precedentemente descritto per ognuno degli scenari alternativi è stato definito il traffico aereo caratterizzante il **Busy Day LVA** utilizzato come input nel modello di simulazione INM per la valutazione del rumore aeroportuale.

La differenza tra le alternative zero e gli scenari ottimizzati risiede nella diversa composizione della flotta aerea e della differente distribuzione delle operazioni di decollo per pista 28 sulle diverse rotte.

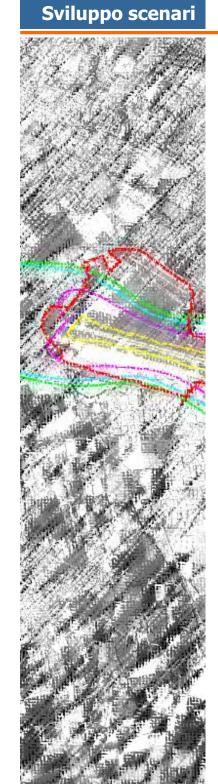
Il numero di movimenti del Busy Day deriva dall'incremento del volume annuo di voli.

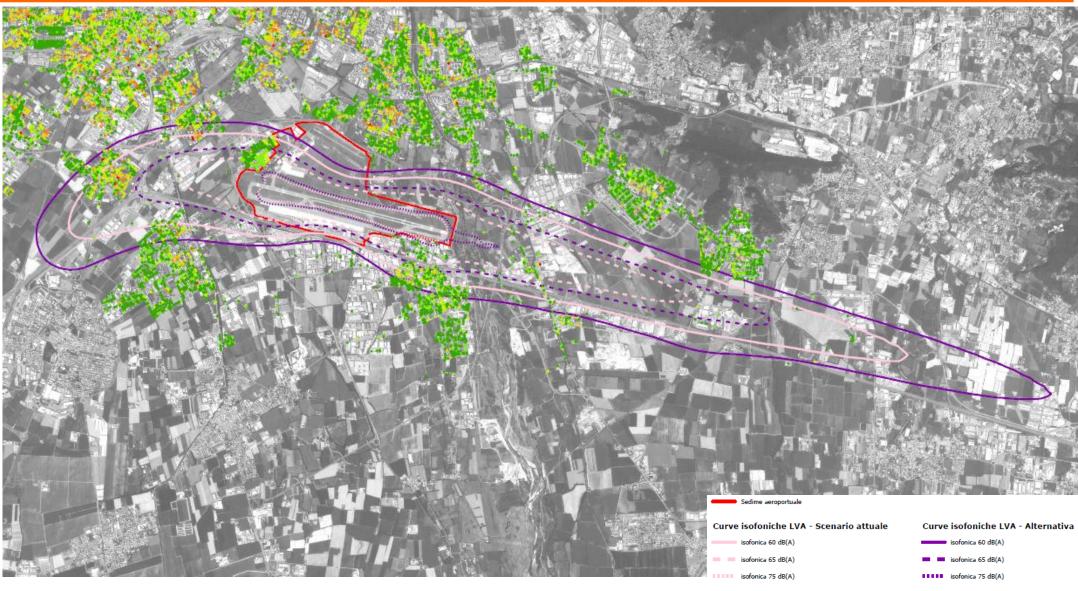
	Prevision	e di crescita n	ninima	Prevision	ne di crescita	media	Previsione	e di crescita i	massima
		Giorno	88,1%		Giorno	88,1%		Giorno	88,1%
Scenario 1	300	Notte	11,9%	318	Notte	11,9%	351	Notte	11,9%
Scenario 1	300	<i>RWY 28</i>	87,3%	210	RWY 28	87,3%	331	RWY 28	87,3%
		<i>RWY 10</i>	12,7		RWY 10	12,7		<i>RWY 10</i>	12,7
		Giorno	92,4%		Giorno	92,4%		Giorno	92,4%
Scenario 2	269	Notte	7,6%	/X5	Notte	7,6%	1 315	Notte	7,6%
SCETIATIO 2		<i>RWY 28</i>	89,1%		RWY 28	89,1%		RWY 28	89,1%
		RWY 10	10,9%		RWY 10	10,9%		RWY 10	10,9%
		Giorno	92,4%		Giorno	92,4%		Giorno	92,4%
Scenario 3	227	Notte	7,6%	347	Notte	7,6%	382	Notte	7,6%
	327	RWY 28	89,1%	34/	RWY 28	89,1%	362	RWY 28	89,1%
		RWY 10	10,9%		RWY 10	10,9%		RWY 10	10,9%


Scenario zero

Gli scenari «zero» derivano da una invarianza della modalità di gestione delle operazioni di decollo per pista 28 e da una mix di flotta che non tiene conto dell'evoluzione del parco aereo.

Scenario ottimizzato

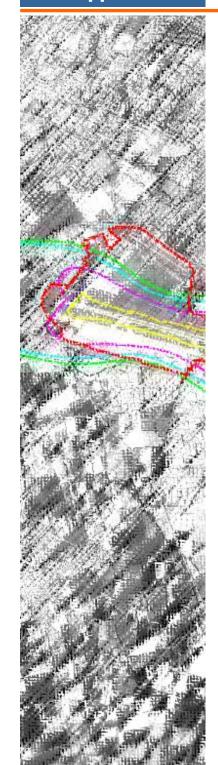

Gli scenari ottimizzati derivano da una diversa modalità di gestione del traffico aereo e da un miglioramento della mix di flotta.

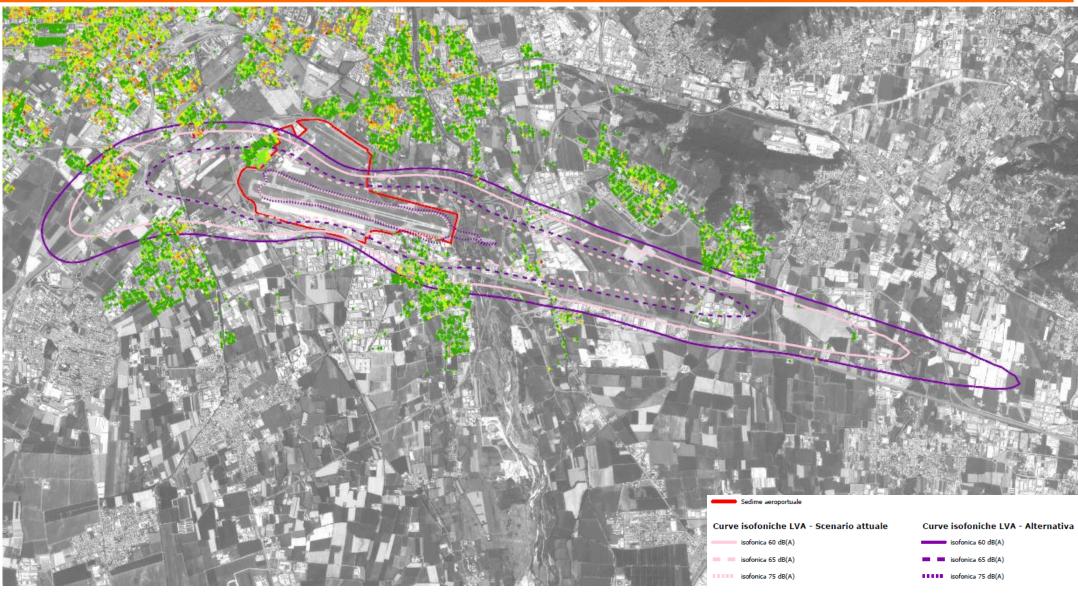

- Gestione del traffico aereo: introduzione nuova procedura PRNAV per aeromobili classe C e distribuzione traffico tra nuova rotta e SRN 50%
- Evoluzione flotta aeromobili: sostituzione del 50% della flotta Boeing 737-800 e Airbus A320 con i rispettivi futuri modelli più performanti (Boeing 737-800 MAX e Airbus A320 Neo).

Scenario 1 – Alternativa zero – Crescita massima

Isofoniche LVA		Area [km2]	Abitanti
Α	60 < LVA < 65	11,52	10276
В	65 < LVA < 75	5,15	1913
С	LVA > 75	0,09	0

La superficie è calcolata escludendo il sedime aeroportuale


Densità abitativa

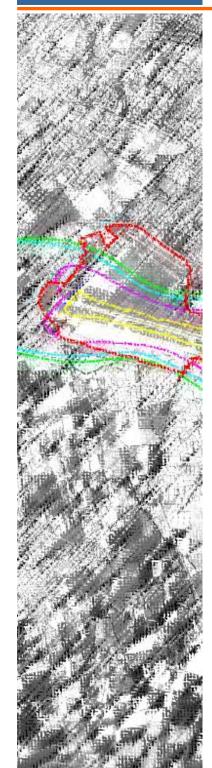

- 1-5
- 6 10
- 11 25
- 26 9
- 51 10
- 101 198

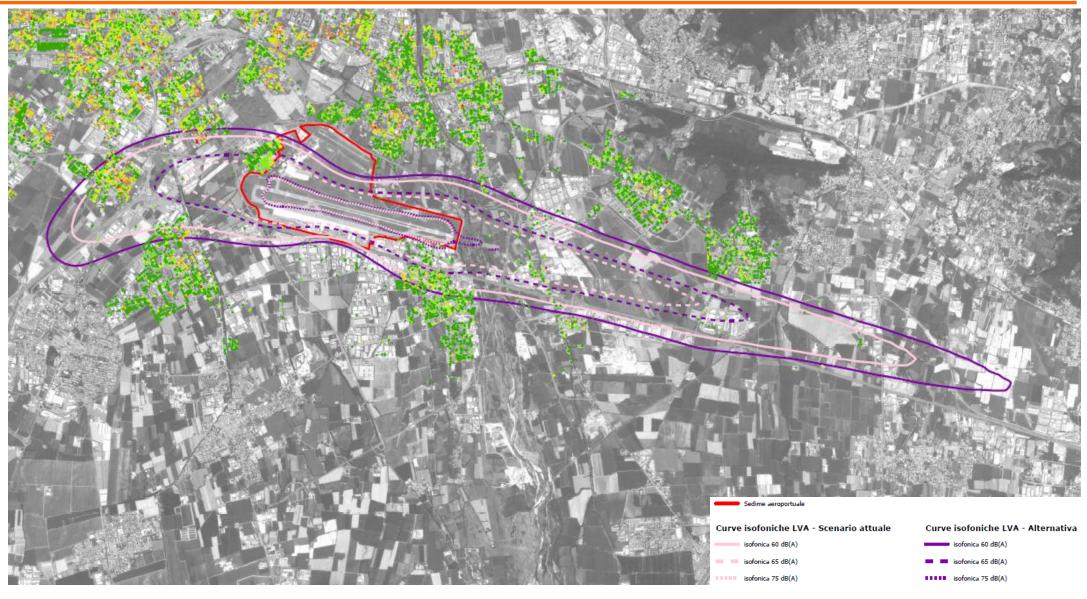
Scenario 1 – Alternativa zero – Crescita media

Isofo	oniche LVA	Area [km2]	Abitanti
Α	60 < LVA < 65	10,75	9613
В	65 < LVA < 75	4,63	1775
С	LVA > 75	0,07	0

La superficie è calcolata escludendo il sedime aeroportuale

Densità abitativa


- 1-5
- 6 10
- 11 25
- 26 9
- 51 100
- 101 198



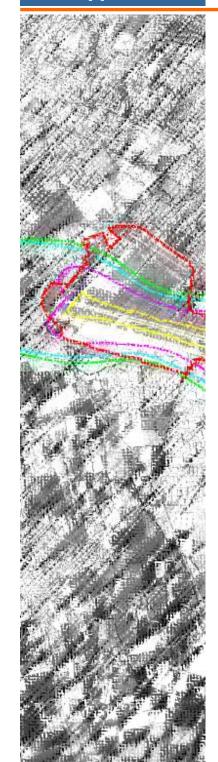
Sviluppo scenari

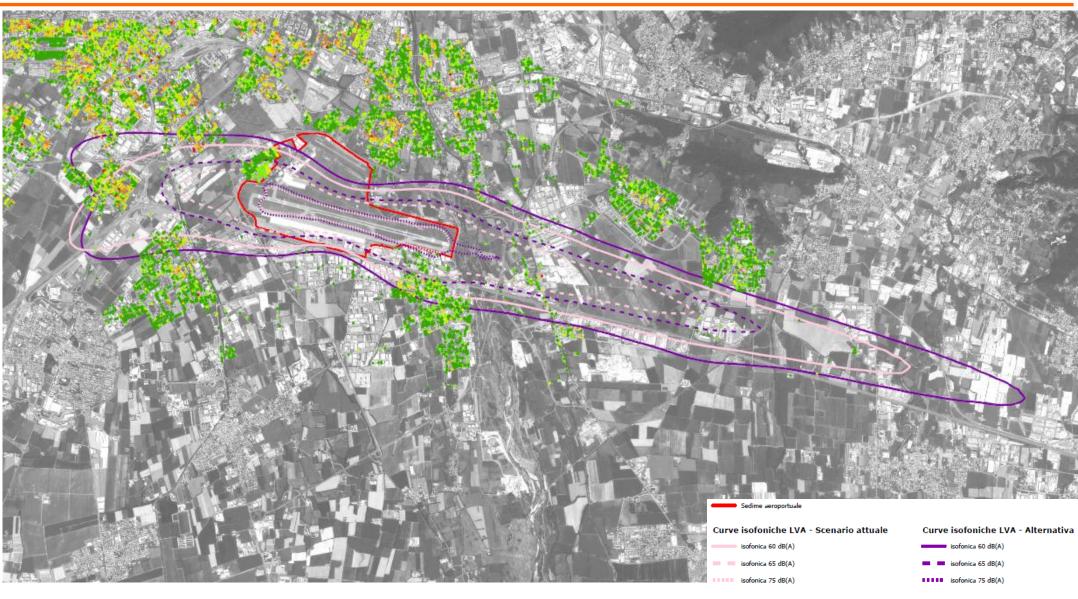
Scenario 1 – Alternativa zero – Crescita minima

Isofoniche LVA		Area [km2]	Abitanti
Α	60 < LVA < 65	10,29	9185
В	65 < LVA < 75	4,33	1713
С	LVA > 75	0,05	0

La superficie è calcolata escludendo il sedime aeroportuale

Densità abitativa


- 1-5
- 6 10
- 11 25
- 26 9
- 51 100
- 101 198



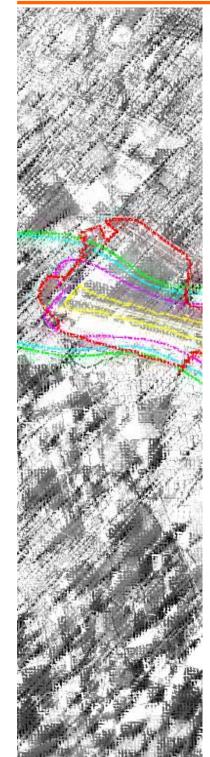
Sviluppo scenari

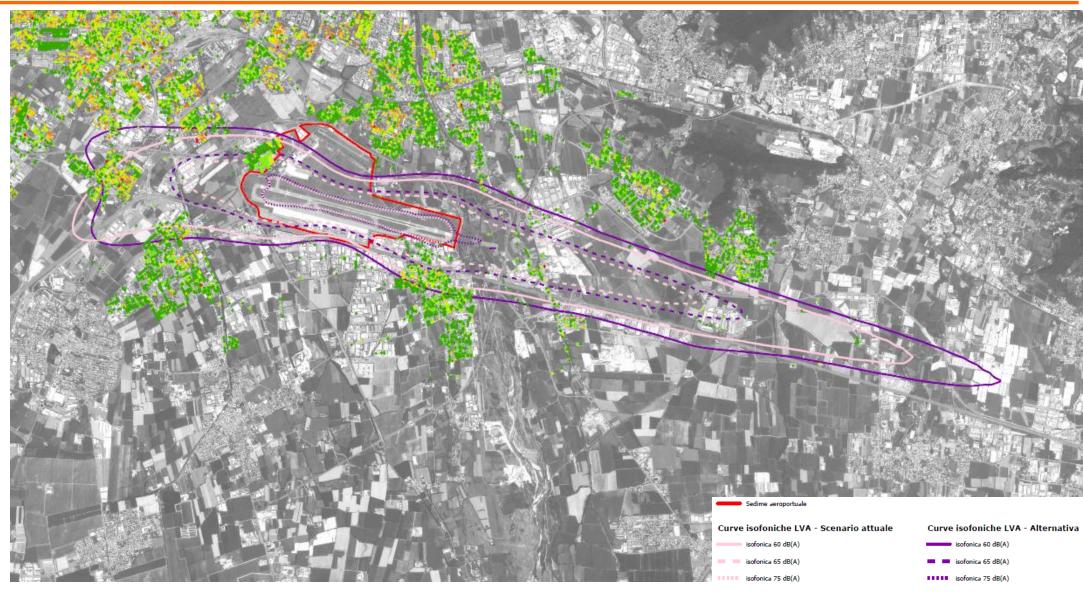
Scenario 1 – Alternativa ottimizzata – Crescita massima

Isofoniche LVA		Area [km2]	Abitanti
Α	60 < LVA < 65	10,76	10318
В	65 < LVA < 75	4,63	1811
С	LVA > 75	0,07	0

La superficie è calcolata escludendo il sedime aeroportuale

Densità abitativa


- 1-5
- 6 10
- 11 25
- 26 5
- 51 100
- 101 198

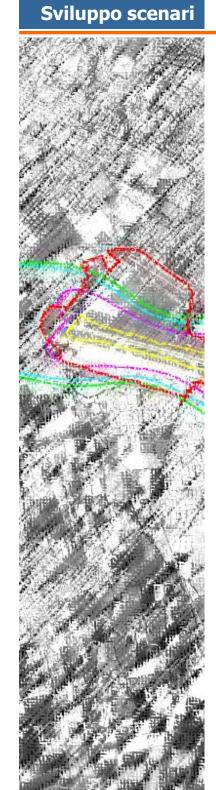


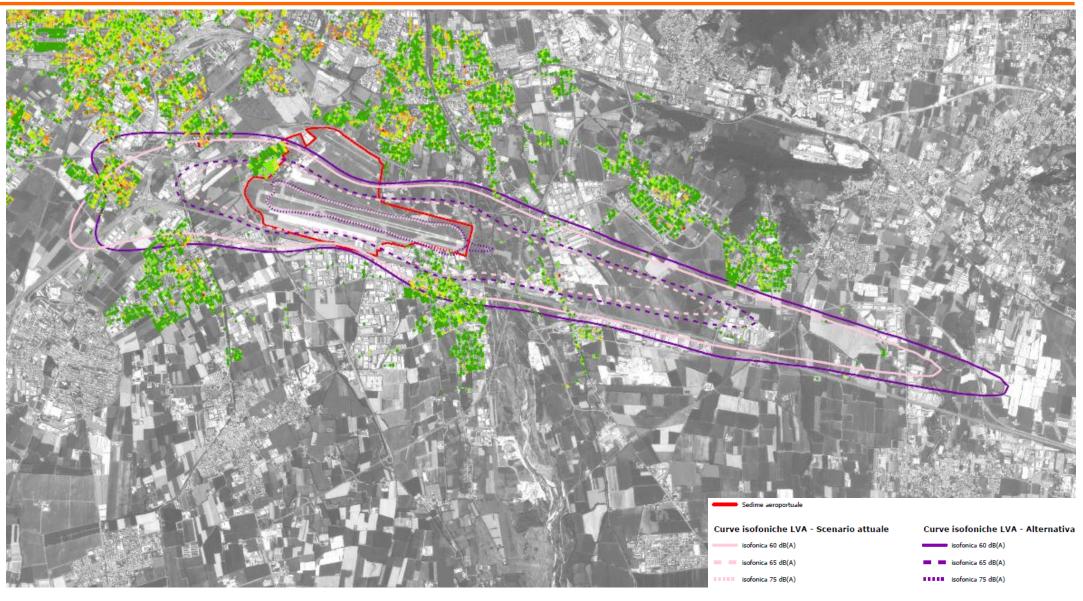
Sviluppo scenari

Scenario 1 – Alternativa ottimizzata – Crescita media

Isofo	oniche LVA	Area [km2]	Abitanti
Α	60 < LVA < 65	9,92	9146
В	65 < LVA < 75	4,20	1694
С	LVA > 75	0,05	0

La superficie è calcolata escludendo il sedime aeroportuale

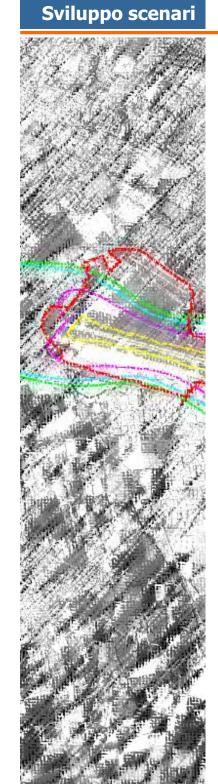

Densità abitativa


- 1-5
- 6 10
- 11 25
- 26 5
- 51 100
- 101 198

Scenario 1 – Alternativa ottimizzata – Crescita minima

Isofo	oniche LVA	Area [km2]	Abitanti
Α	60 < LVA < 65	9,40	8394
В	65 < LVA < 75	3,91	1603
C	LVA > 75	0,04	0

La superficie è calcolata escludendo il sedime aeroportuale

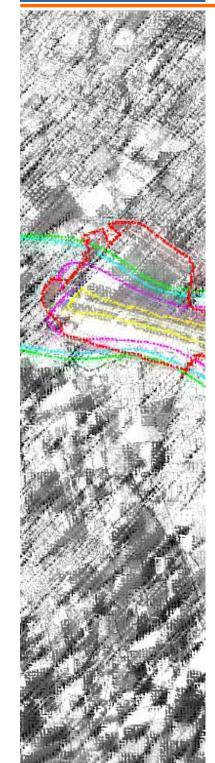

Densità abitativa

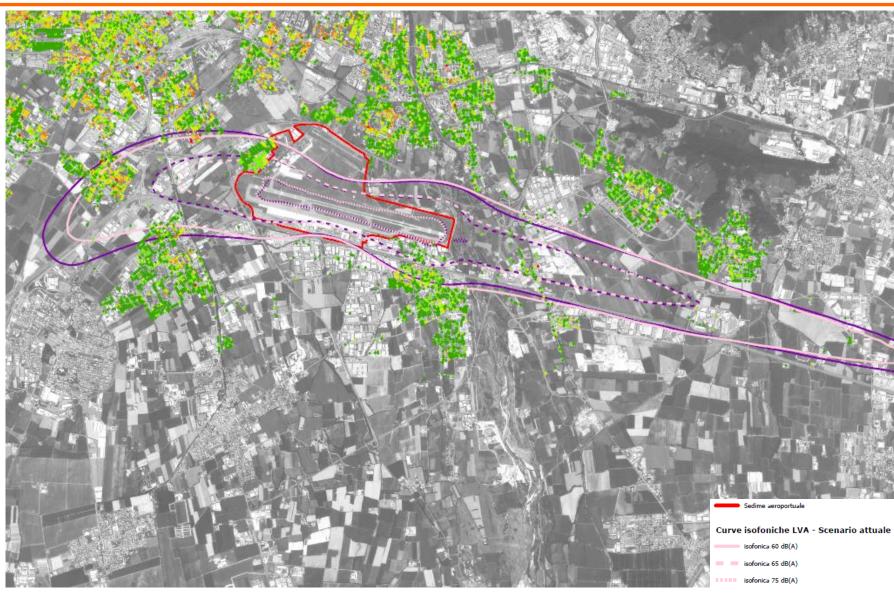
- 1-5
- 6 10
- 11 25
- 26 5
- 51 100
- 101 198

Scenario 2 – Alternativa zero – Crescita massima

Isofo	oniche LVA	Area [km2]	Abitanti
Α	60 < LVA < 65	9,39	8672
В	65 < LVA < 75	3,51	1497
С	LVA > 75	0,02	0

La superficie è calcolata escludendo il sedime aeroportuale


Densità abitativa


- 1-5
- 6 10
- 11 25
- 26 5
- 51 100
- 101 198

Scenario 2 – Alternativa zero – Crescita media

Isofoniche LVA		Area [km2] Abitan	
Α	60 < LVA < 65	8,72	7868
В	65 < LVA < 75	3,06	1411
С	LVA > 75	0,02	0

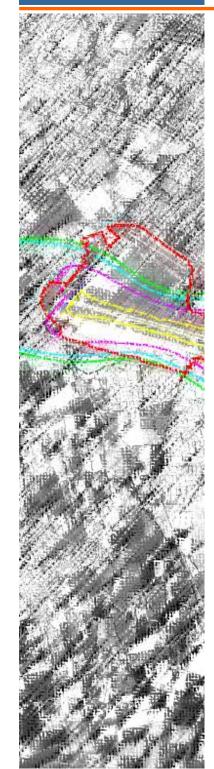
La superficie è calcolata escludendo il sedime aeroportuale

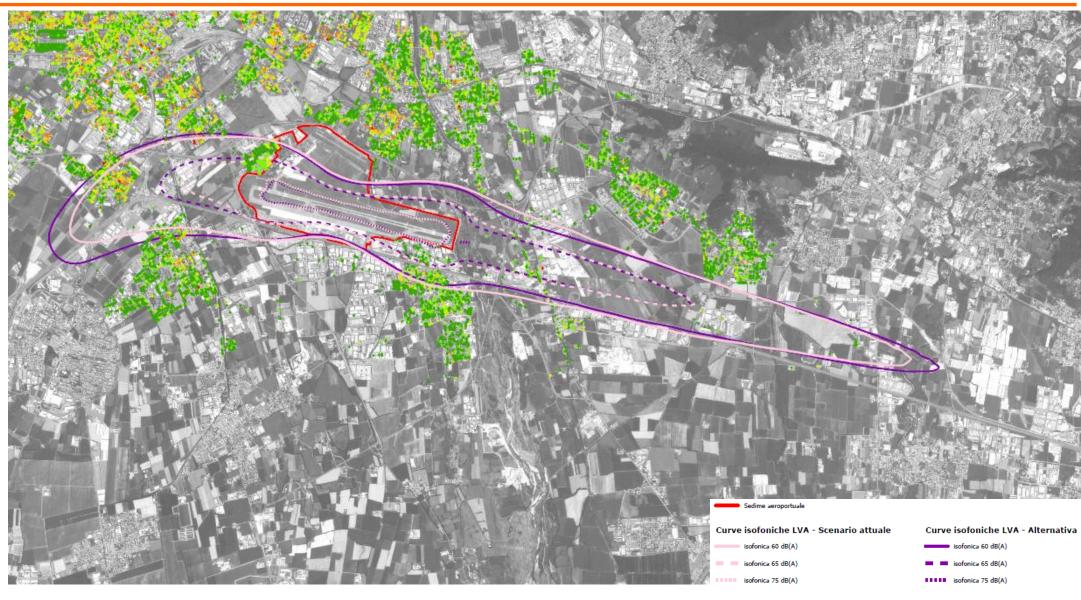
Densità abitativa

Classi di abitanti per edificio

- 1-5
- 6 10
- 11 25
- 26 9
- 51 10
- 101 198

Curve isofoniche LVA - Alternativa


isofonica 65 dB(A)


isofonica 75 dB(A)

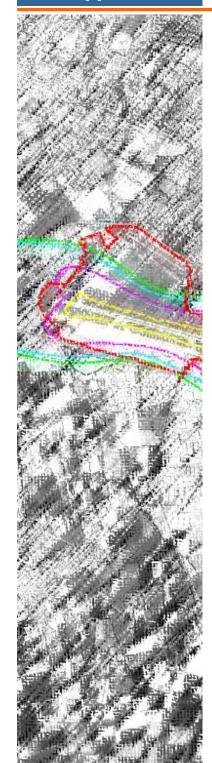
Sviluppo scenari

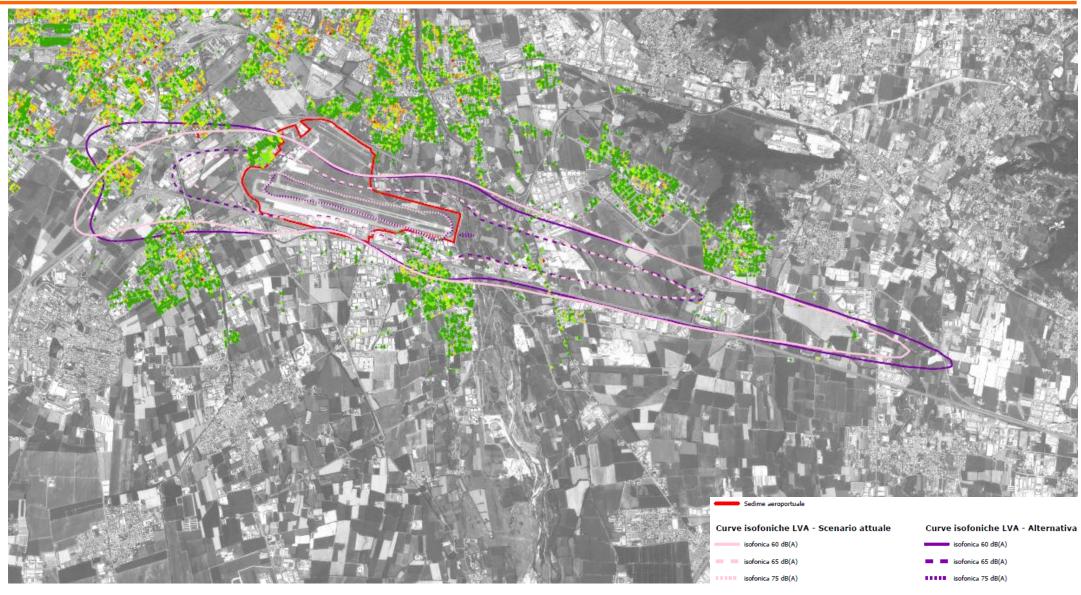
Scenario 2 – Alternativa zero – Crescita minima

Isofoniche LVA		Area [km2]	Abitanti
Α	60 < LVA < 65	8,27	7423
В	65 < LVA < 75	2,78	1321
С	LVA > 75	0,02	0

La superficie è calcolata escludendo il sedime aeroportuale

Densità abitativa


- 1-5
- 6 10
- 11 25
- 26 5
- 51 10
- 101 198

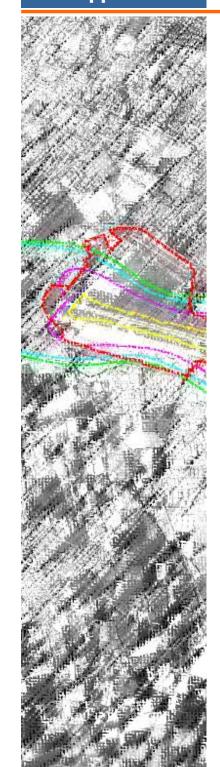


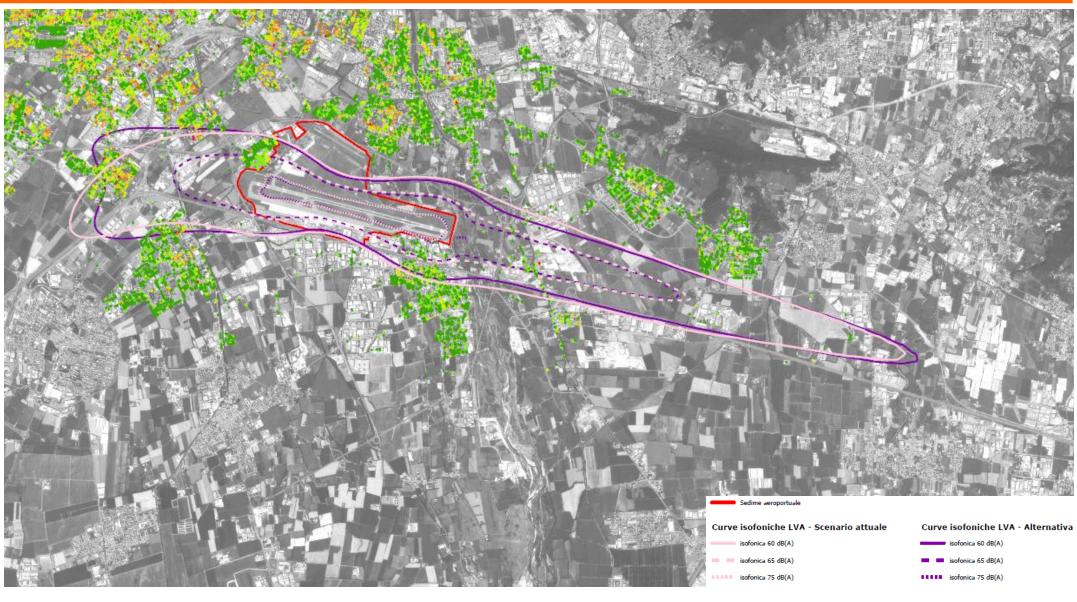
Sviluppo scenari

Scenario 2 – Alternativa ottimizzata – Crescita massima

Isofoniche LVA		Area [km2]	Abitanti
Α	60 < LVA < 65	8,54	8377
В	65 < LVA < 75	2,99	1403
С	LVA > 75	0,01	0

La superficie è calcolata escludendo il sedime aeroportuale

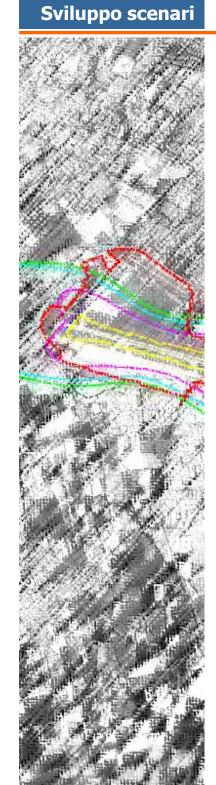

Densità abitativa


- 1-5
- 6 10
- 11 25
- 26 9
- 51 100
- 101 198

Scenario 2 – Alternativa ottimizzata – Crescita media

Isofoniche LVA		Area [km2]	Abitanti
Α	60 < LVA < 65	7,77	7243
В	65 < LVA < 75	2,61	1282
C	LVA > 75	0,01	0

La superficie è calcolata escludendo il sedime aeroportuale


Densità abitativa

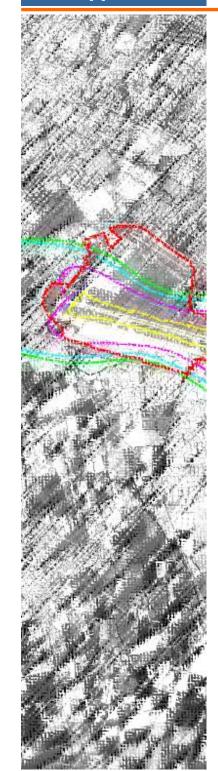

- 1-5
- 6 10
- 11 25
- o 26 9
- 51 100
- 101 198

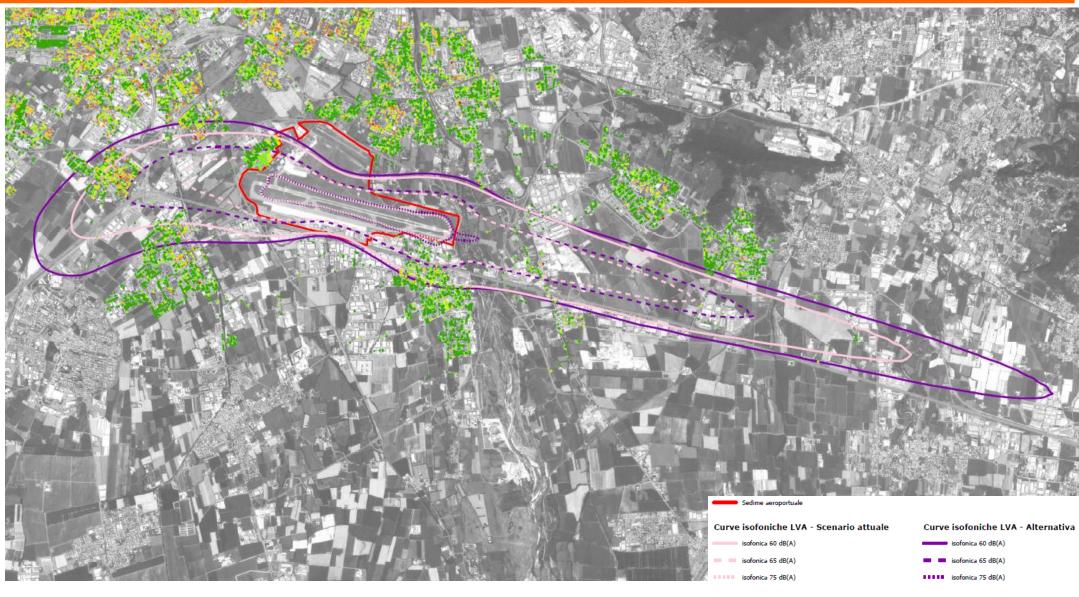
Scenario 2 – Alternativa ottimizzata – Crescita minima

Isofo	oniche LVA	Area [km2]	Abitanti
Α	60 < LVA < 65	7,30	6487
В	65 < LVA < 75	2,36	1198
С	LVA > 75	0,01	0

La superficie è calcolata escludendo il sedime aeroportuale

Densità abitativa


- 1-5
- 6 10
- 11 25
- 26 50
- 51 100
- 101 198

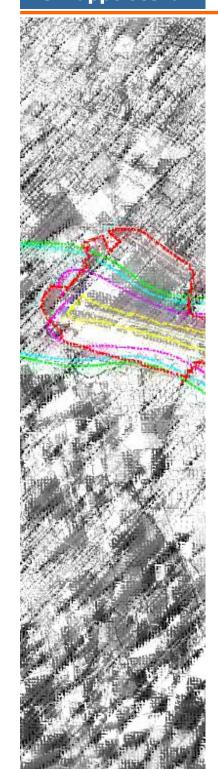


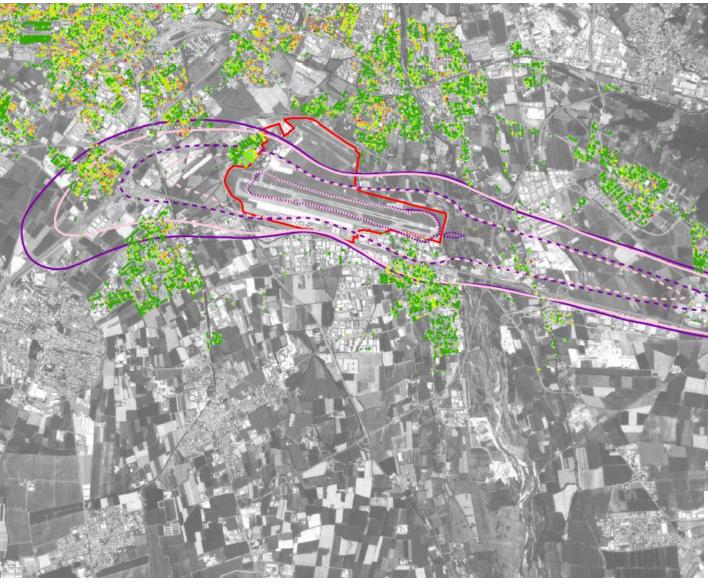
Sviluppo scenari

Scenario 3 – Alternativa zero – Crescita massima

Isofoniche LVA		Area [km2]	Abitanti
Α	60 < LVA < 65	10,94	9890
В	65 < LVA < 75	4,49	1756
С	LVA > 75	0,05	0

La superficie è calcolata escludendo il sedime aeroportuale


Densità abitativa


- 1-5
- 6 10
- 11 25
- 26 5
- 51 100
- 101 198

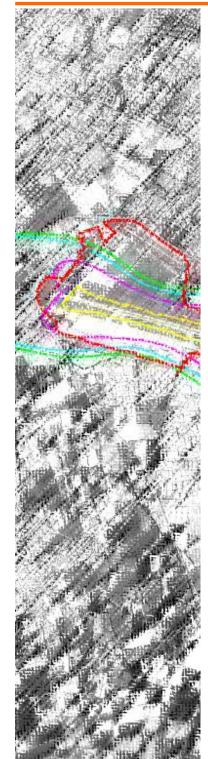
Scenario 3 – Alternativa zero – Crescita media

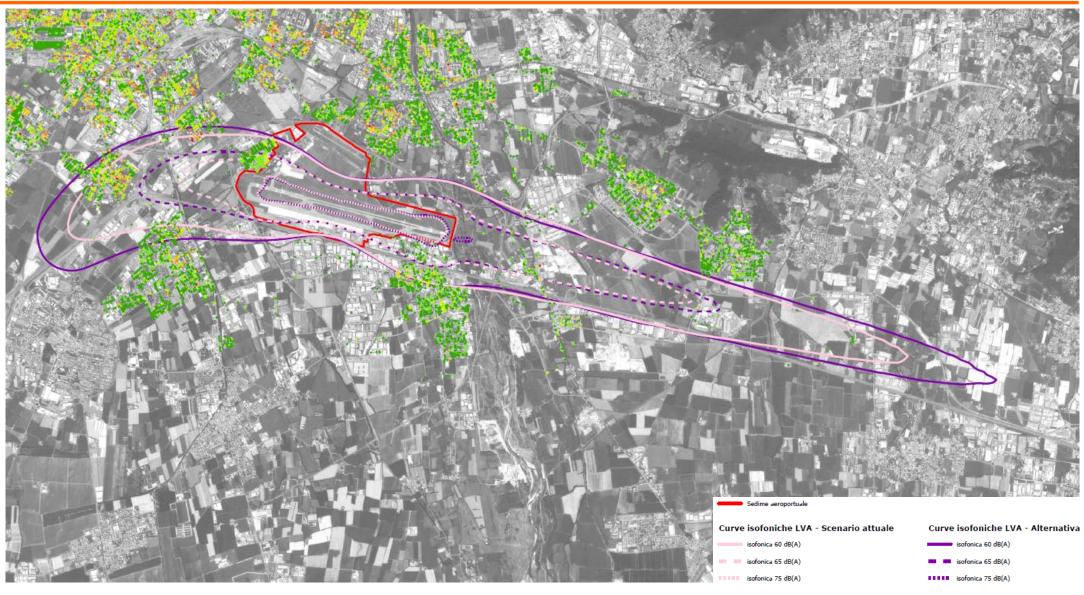
			Sedime aeroportuale	
			Curve isofoniche LVA - Scenario attuale isofonica 60 dB(A) isofonica 65 dB(A) isofonica 75 dB(A)	Curve isofoniche LVA - Alternativa isofonica 60 dB(A) isofonica 65 dB(A) isofonica 75 dB(A)
Isofoniche LVA	Area [km2] Abitanti		Densità abitativa Classi di abitanti per edificio 1 - 5	

60 < LVA < 65 9347 10,14 65 < LVA < 75 3,97 1593

LVA > 75 La superficie è calcolata escludendo il sedime aeroportuale

0,05


- 101 198

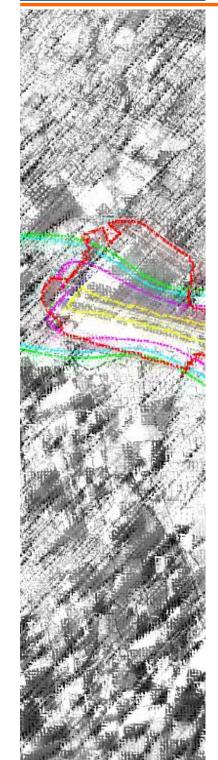


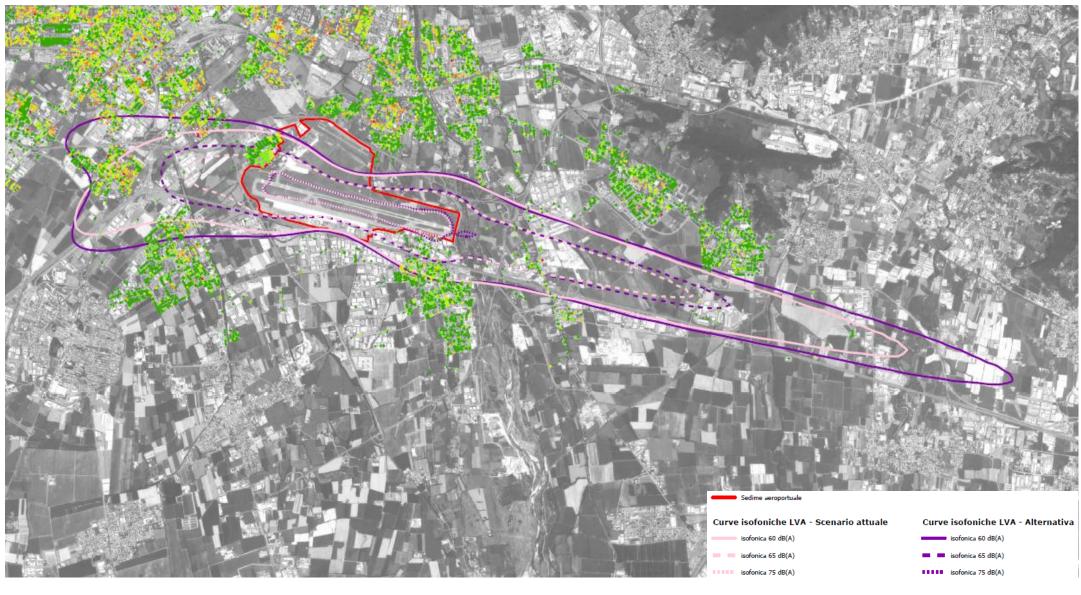
Sviluppo scenari

Scenario 3 – Alternativa zero – Crescita minima

Isofo	oniche LVA	Area [km2]	Abitanti
Α	60 < LVA < 65	9,63	8934
В	65 < LVA < 75	3,64	1499
С	LVA > 75	0,01	0

La superficie è calcolata escludendo il sedime aeroportuale

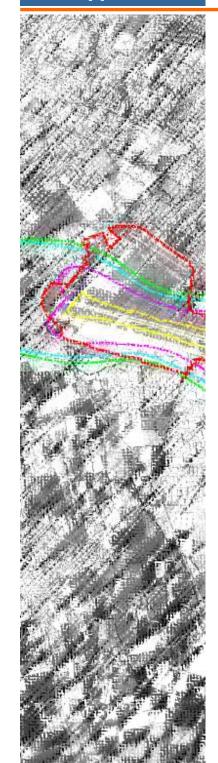

Densità abitativa

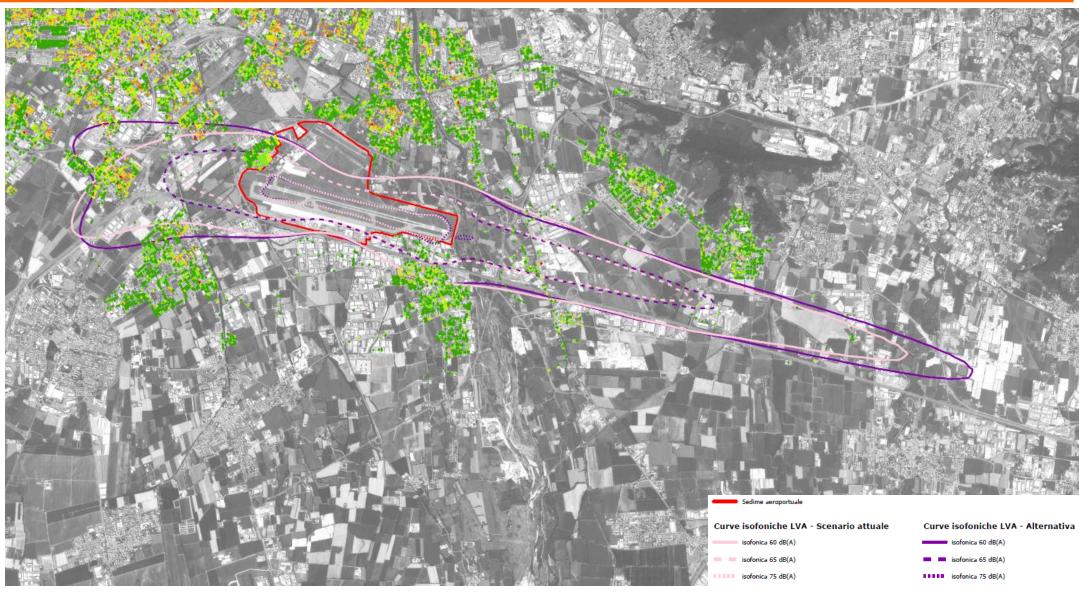

- 1-5
- 6 10
- 11 25
- o 26 50
- 51 100
- 101 198

Scenario 3 – Alternativa ottimizzata – Crescita massima

Isofoniche LVA		Area [km2]	Abitanti
Α	60 < LVA < 65	10,24	10754
В	65 < LVA < 75	3,81	1593
С	LVA > 75	0,01	0

La superficie è calcolata escludendo il sedime aeroportuale

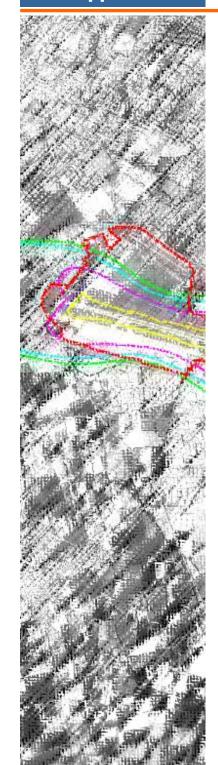

Densità abitativa

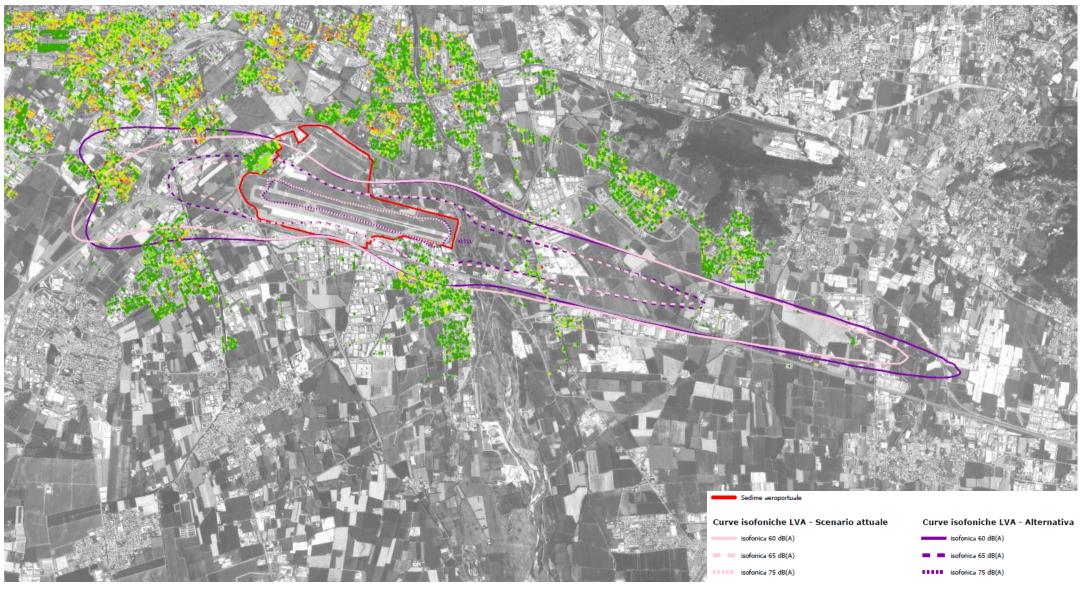

- 1-5
- 6 10
- 11 25
- 26 5
- 51 10
- 101 198

Scenario 3 – Alternativa ottimizzata – Crescita media

Isofo	oniche LVA	Area [km2]	Abitanti
Α	60 < LVA < 65	9,29	9526
В	65 < LVA < 75	3,38	1484
С	LVA > 75	0,01	0

La superficie è calcolata escludendo il sedime aeroportuale


Densità abitativa

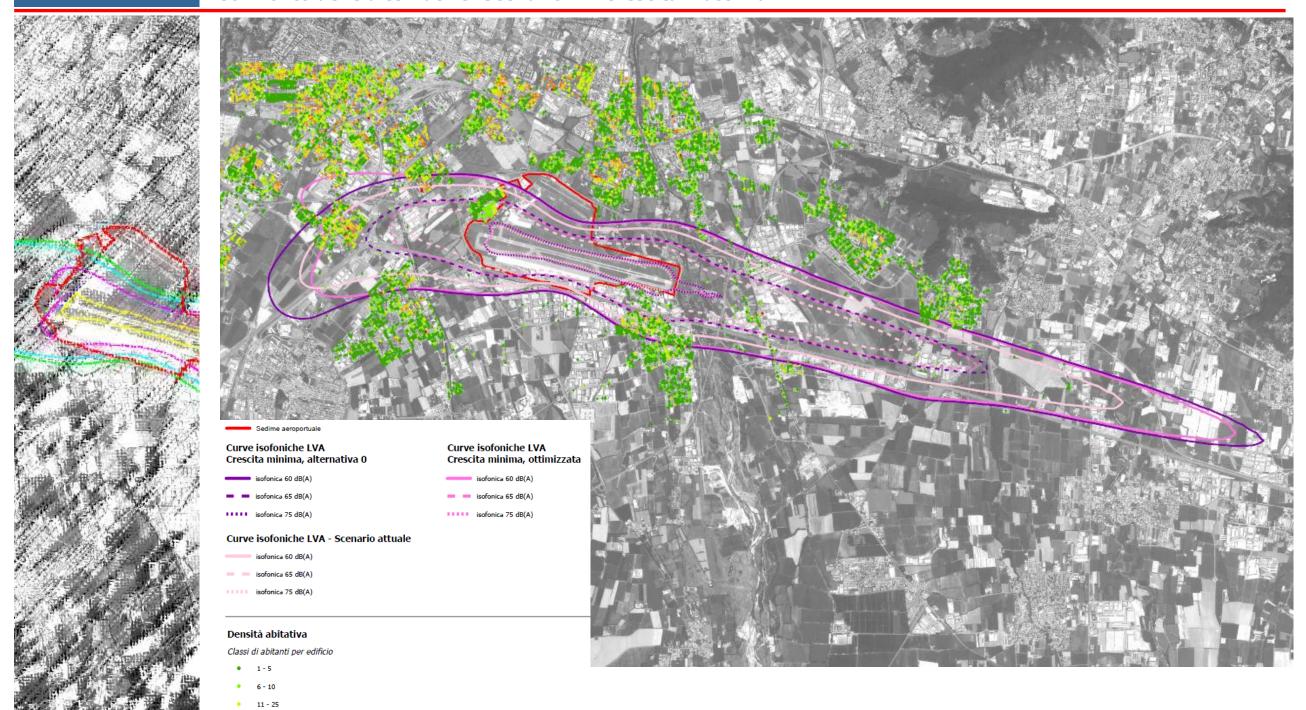

- 1 5
- 6 10
- 11 25
- 26 !
- 51 100
- 101 198

Scenario 3 – Alternativa ottimizzata – Crescita minima

Isofoniche LVA		Area [km2]	Abitanti
Α	60 < LVA < 65	8,77	8637
В	65 < LVA < 75	3,09	1451
С	LVA > 75	0,01	0

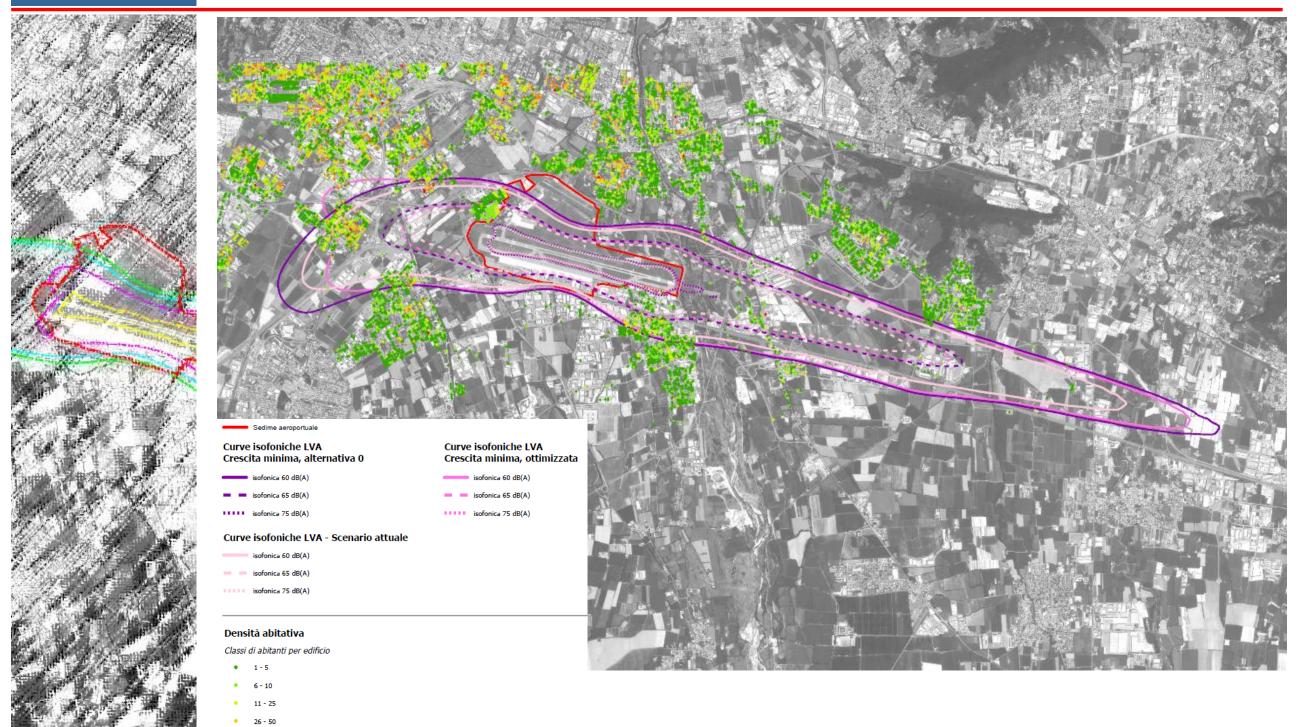
La superficie è calcolata escludendo il sedime aeroportuale

Densità abitativa


- 1-5
- 6 10
- 11 25
- 26 5
- 51 100
- 101 198

Confronto scenari

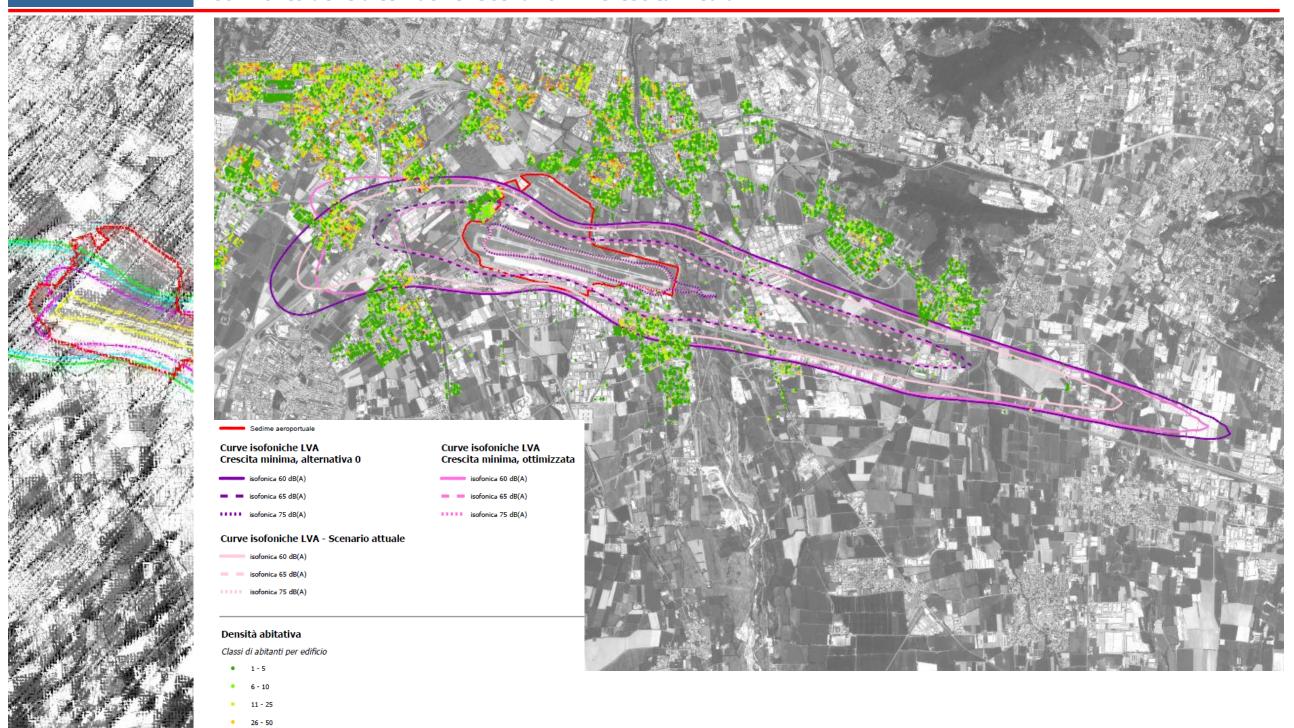
Confronto delle alternative: Scenario 1 – Crescita massima



26 - 50
51 - 100
101 - 198

Confronto degli scenari

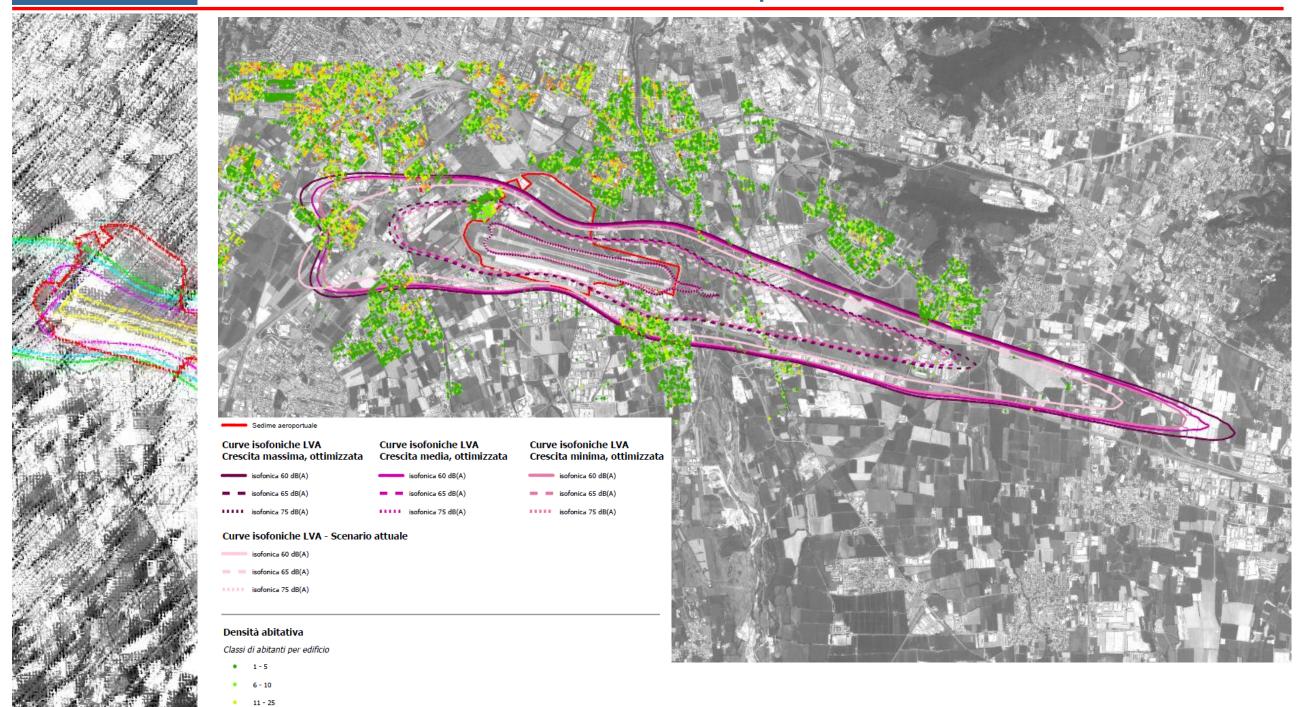
Confronto delle alternative: Scenario 1 – Crescita minima



51 - 100
 101 - 198

Confronto degli scenari

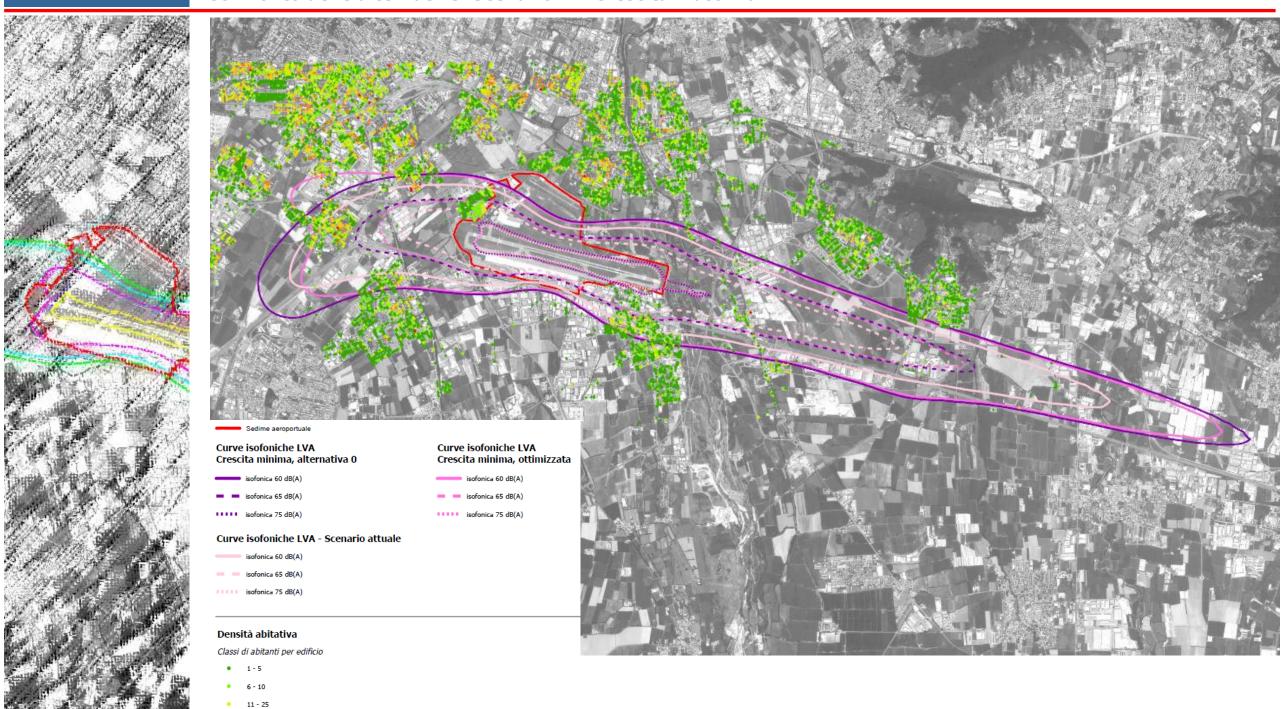
Confronto delle alternative: Scenario 1 – Crescita media



51 - 100
 101 - 198

Confronto degli scenari

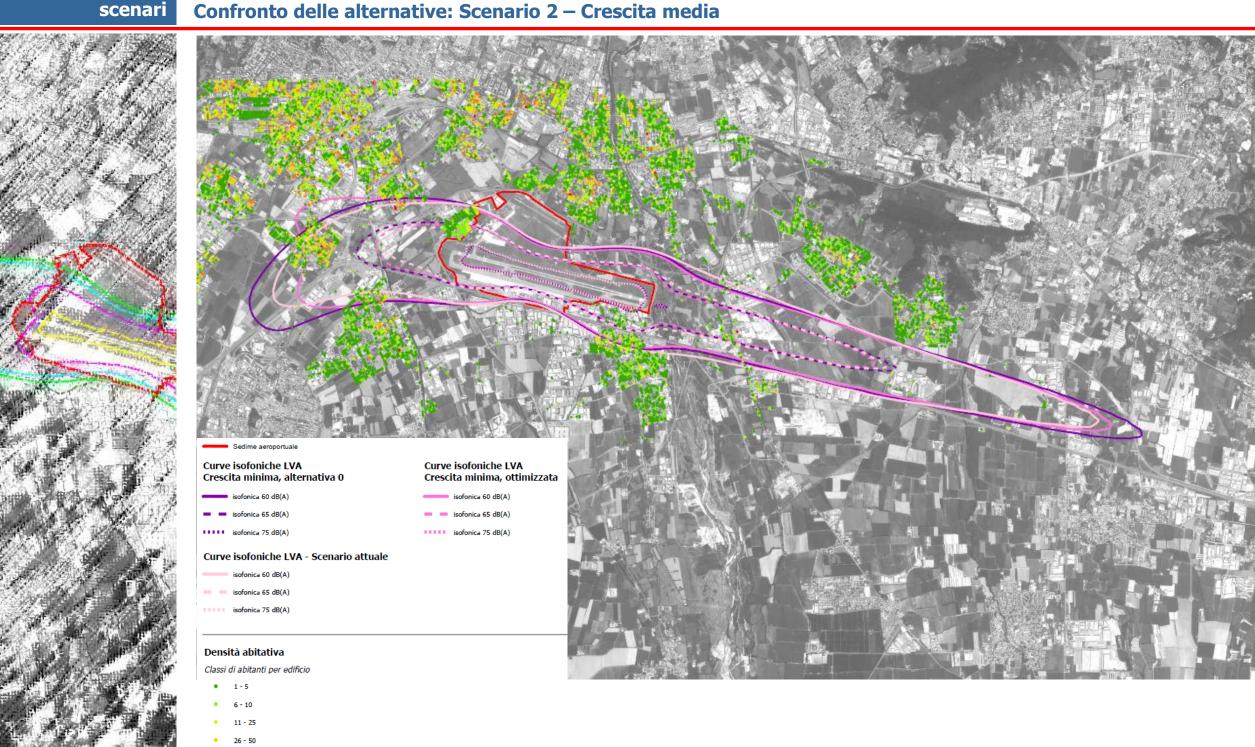
Confronto delle alternative: Scenario 1 – Ottimizzazione operativa



26 - 50
51 - 100
101 - 198

Confronto degli scenari

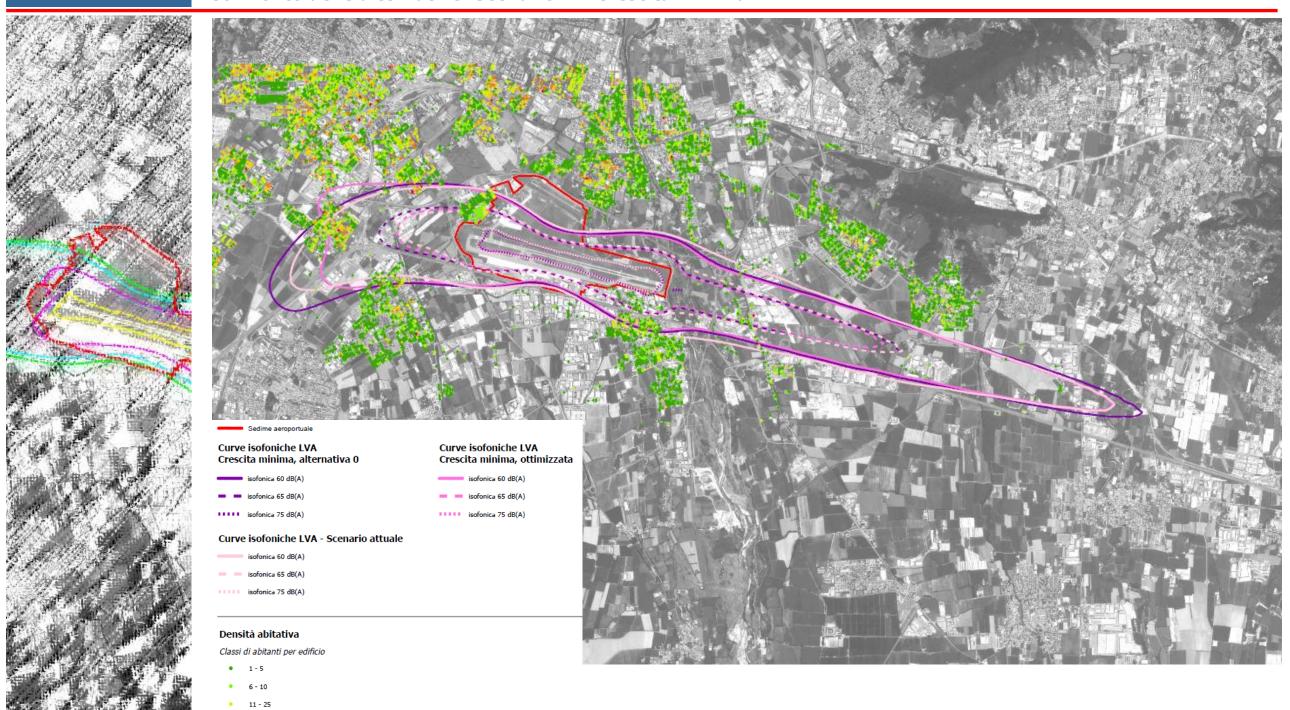
Confronto delle alternative: Scenario 2 – Crescita massima



26 - 50
 51 - 100
 101 - 198

Confronto degli

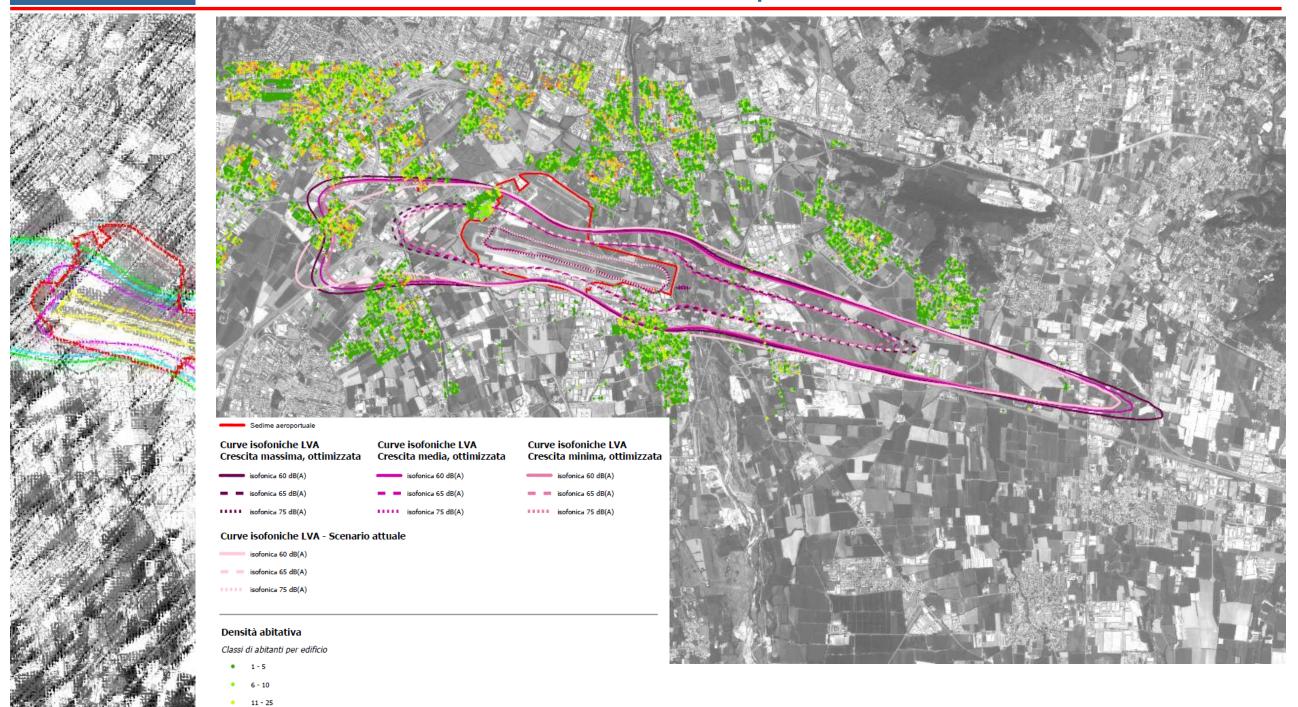
Confronto delle alternative: Scenario 2 – Crescita media



• 51 - 100 • 101 - 198

Confronto degli scenari

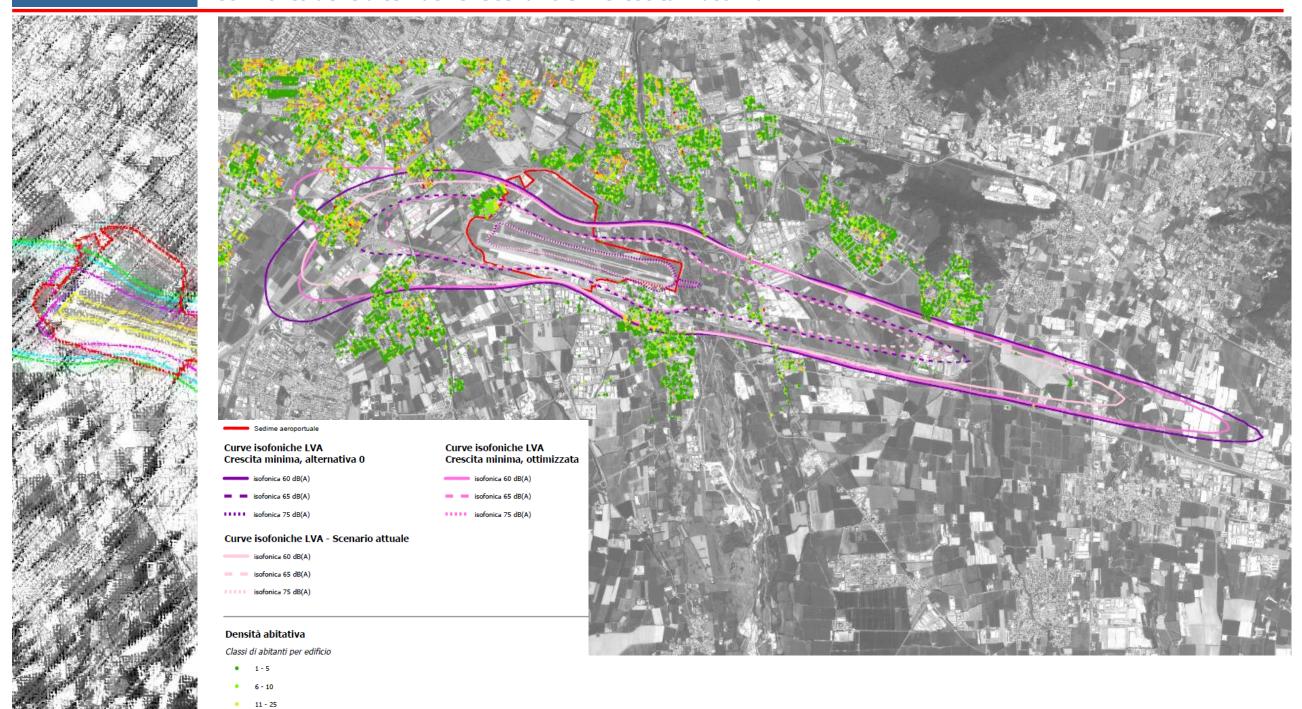
Confronto delle alternative: Scenario 2 – Crescita minima



26 - 50
 51 - 100
 101 - 198

Confronto degli scenari

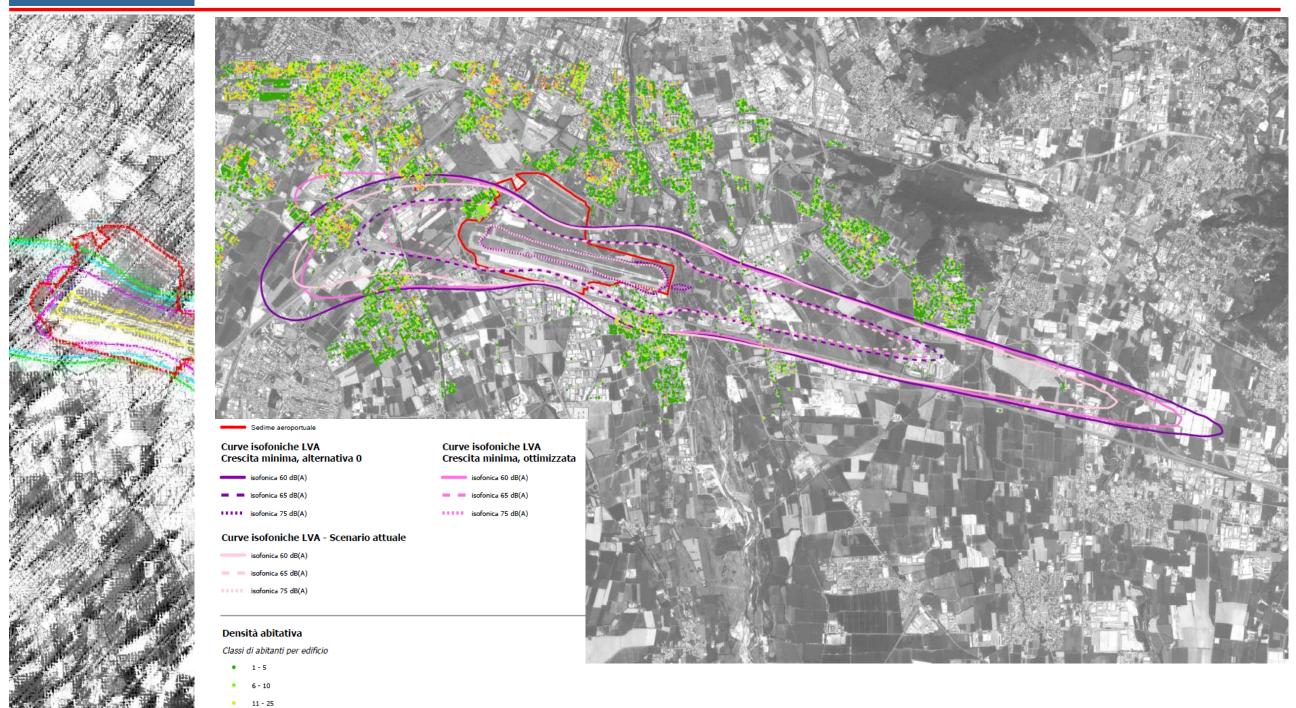
Confronto delle alternative: Scenario 2 – Ottimizzazione operativa



26 - 50
51 - 100
101 - 198

Confronto degli scenari

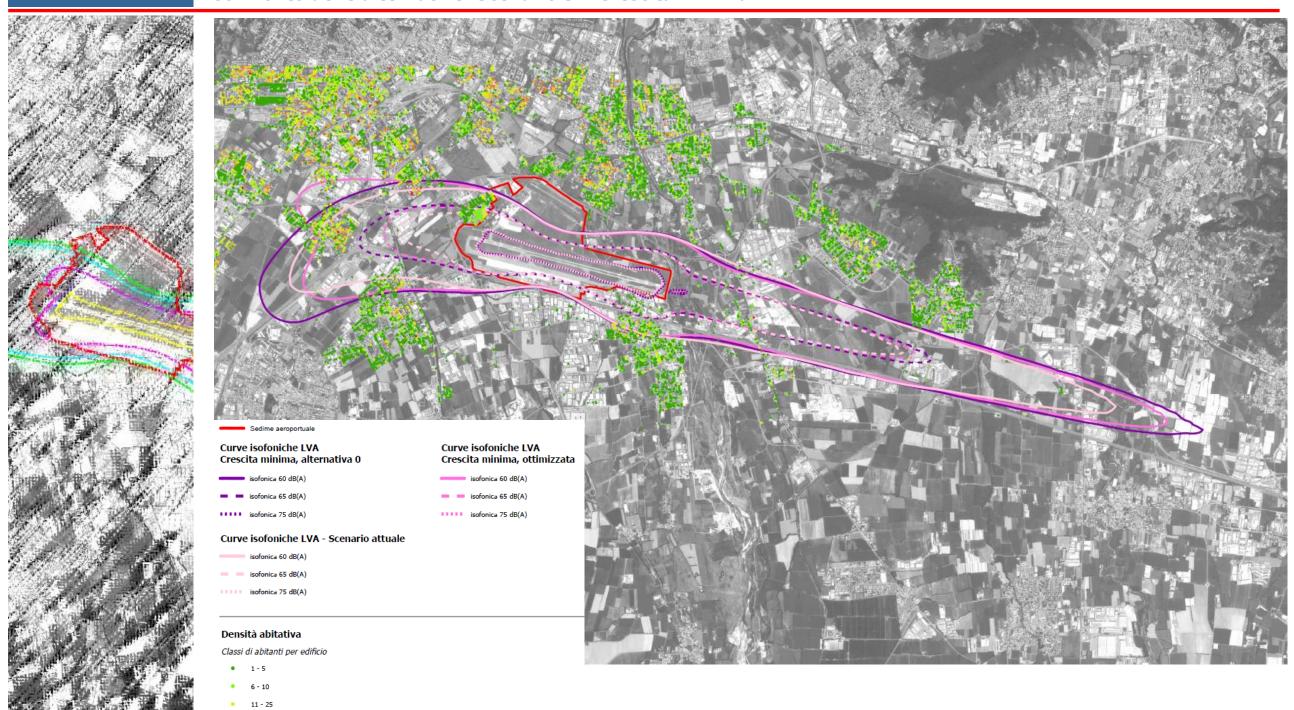
Confronto delle alternative: Scenario 3 – Crescita massima



26 - 50
51 - 100
101 - 198

Confronto degli scenari

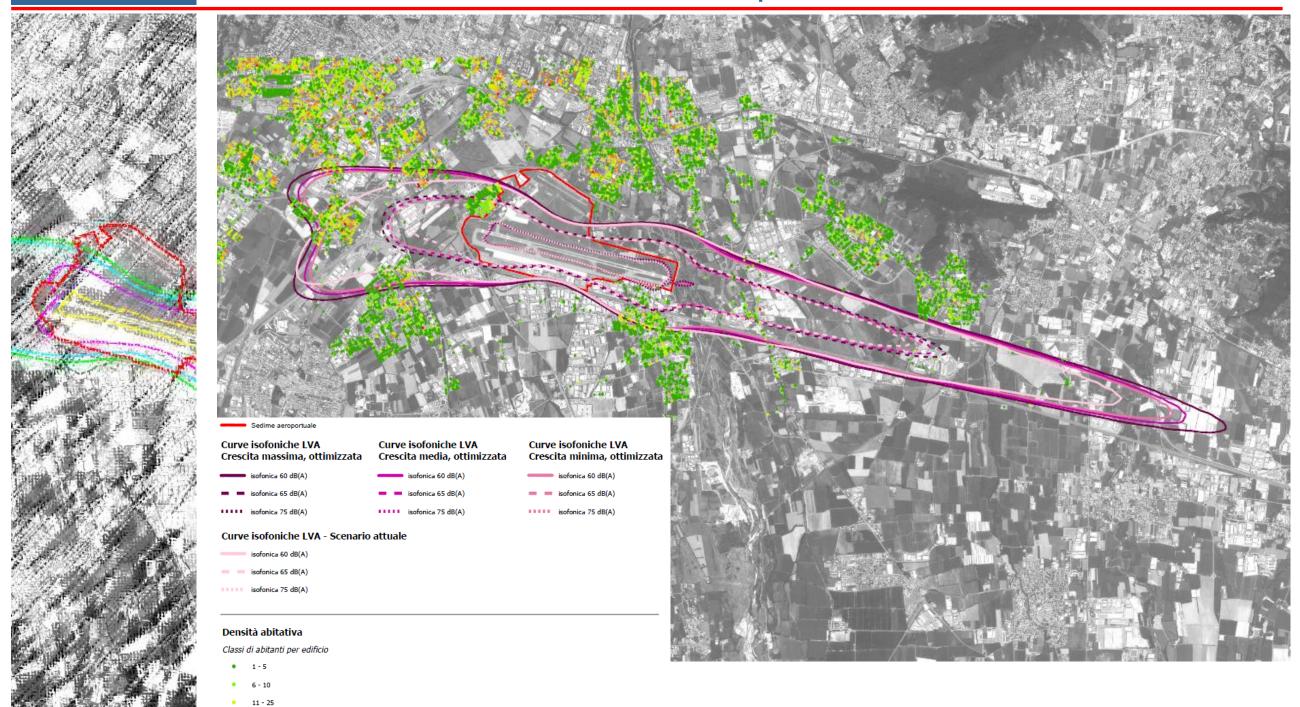
Confronto delle alternative: Scenario 3 – Crescita media



26 - 50
 51 - 100
 101 - 198

Confronto degli scenari

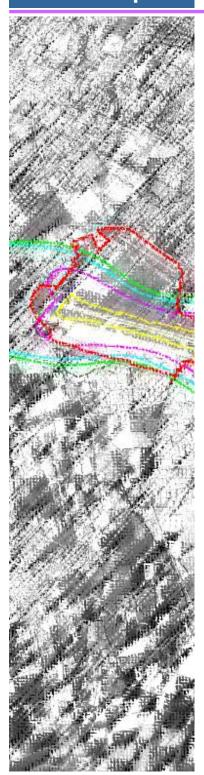
Confronto delle alternative: Scenario 3 – Crescita minima



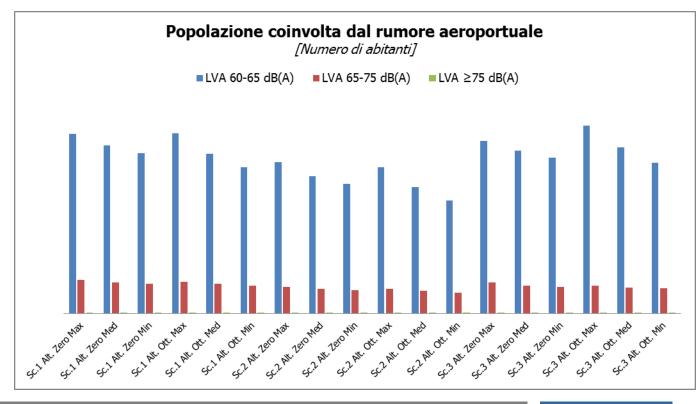
26 - 50
51 - 100
101 - 198

Confronto scenari

Confronto delle alternative: Scenario 3 – Ottimizzazione operativa



26 - 50
51 - 100
101 - 198


Popolazione esposta

Popolazione esposta

In analogia alla caratterizzazione del clima acustico allo stato attuale, il calcolo della popolazione esposta si basa sui dati forniti dalle amministrazioni dei territori comunali nell'intorno dell'aeroporto. In particolare è stata stimata la popolazione esposta al rumore aeronautico per ciascun scenario costituente l'analisi delle alternative considerando le isolivello in termini di LVA dei 60, 65 e 75 dB(A) che individuano le fasce di pertinenza acustica A, B e C.

Scenario	Zona A	Zona B	Zona C
	60 < LVA < 65	65 < LVA < 75	LVA > 75
Scenario 1 - Alternativa zero - Crescita massima	10276	1913	0
Scenario 1 - Alternativa zero - Crescita media	9613	1775	0
Scenario 1 - Alternativa zero - Crescita minima	9185	1713	0
Scenario 1 - Alternativa ottimizzata - Crescita massima	10318	1811	0
Scenario 1 - Alternativa ottimizzata - Crescita media	9146	1694	0
Scenario 1 - Alternativa ottimizzata - Crescita minima	8394	1603	0
Scenario 2 - Alternativa zero - Crescita massima	8672	1497	0
Scenario 2 - Alternativa zero - Crescita media	7868	1411	0
Scenario 2 - Alternativa zero - Crescita minima	7423	1321	0
Scenario 2 - Alternativa ottimizzata - Crescita massima	8377	1403	0
Scenario 2 - Alternativa ottimizzata - Crescita media	7243	1282	0
Scenario 2 - Alternativa ottimizzata - Crescita minima	6487	1198	0
Scenario 3 - Alternativa zero - Crescita massima	9890	1756	0
Scenario 3 - Alternativa zero - Crescita media	9347	1593	0
Scenario 3 - Alternativa zero - Crescita minima	8934	1499	0
Scenario 3 - Alternativa ottimizzata - Crescita massima	10754	1593	0
Scenario 3 - Alternativa ottimizzata - Crescita media	9526	1484	0
Scenario 3 - Alternativa ottimizzata - Crescita minima	8637	1451	0

Parametro ATMOSFER

Scenario attuale

Inquadramento dell'aeroporto nel contesto emissivo locale

Strutturazione del confronto

Definizione delle alternative poste a confronto La costruzione degli scenari di confronto

Sviluppo degli scenari

Sviluppo degli scenari rispetto a:

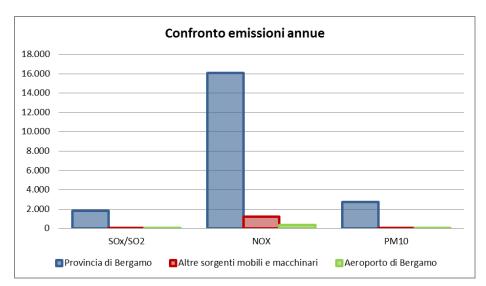
- Contributo emissivo dal traffico aereo nelle fasi di atterraggio e decollo
 - Contributo emissivo dei mezzi rampa
 - Contributo emissivo del traffico aereo in fase di taxiway

Quadro di raffronto

Confronto tra gli scenari Confronto tra lo scenario attuale e gli scenari alternativi

Stato attuale

Inquadramento dell'aeroporto nel contesto emissivo locale


Analisi dei dati emissivi aeroportuali 2013

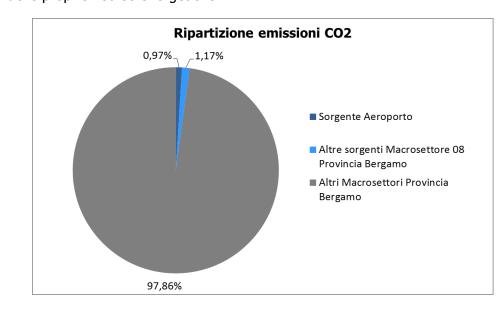
Le emissioni aeroportuali sono state stimate mediante il modello previsionale EDMS (Emissions and Dispersion Modeling System) per PM10, NOx e SOx sulla base dei dati relativi alle fonti emissive sopra citate riferiti all'anno 2013.

	Emissioni t/anno		
	NOx	S0x	PM10
Traffico aereo	332,143	22,338	1,791
Sorgenti aeronautiche (APU)	3,538	0,411	0,375
Sorgenti aeroportuali (GSE)	19,392	0,032	2,030
Sorgenti stazionarie (caldaie, etc.)	0,920	0,006	0,074
Traffico veicolare indotto	18,565	0,030	1,323
Totale	374,56	22,82	5,59

L'analisi delle emissioni prodotte da tutte le attività aeronautiche ed aeroportuali caratterizzanti l'aeroporto, evidenzia che il contributo maggiore in termini di inquinanti prodotti è dato principalmente dalle emissioni di Ossidi di azoto (NOx) e, in modo marginale, di Ossidi di zolfo (SOx).

Il confronto tra le emissioni prodotte dalla sorgente aeroportuale, dall'insieme di quelle presenti nel territorio della provincia di Bergamo e da quelle relative alla sorgente "Altre sorgenti mobili e macchinari", sulla scorta dei dati INEMAR per PM10, Ossidi di Azoto e Ossidi di Zolfo, evidenzia come l'aeroporto di Bergamo rappresenti l'1,2% delle emissioni complessive della Provincia di SO2, il 2,3% delle emissioni complessive di NOx e lo 0,2% di PM10.

Airport Carbon Accreditation – Carbon Footprint



SACBO aderisce all'iniziativa europea dell'Airport Council International, denominata Airport Carbon Accreditation, finalizzata a promuovere un concreto contributo da parte degli aeroporti alla lotta contro i cambiamenti climatici.

Sorgente	Componente	CO2 (t	/anno)
	Traffico aereo	60.224	
Aeroporto	GSE	1.169	68.890
	Sorgenti stazionarie	1.733	
	Fabbisogno energetico	5.764	
Provincia di	Macrosettore "Altre sorgenti mobili e macchinari"	152.078	7.096.995
Bergamo Altri macrosettori		6.944.917	7.030.333

contributo emissivo dell'aeroporto (traffico aereo ed infrastruttura aeroportuale) rappresenta circa lo 0,97% del totale quantitativo di CO2 prodotta annualmente dall'insieme delle altre sorgenti presenti nella Provincia di Bergamo

Nel 2014, l'aeroporto di Bergamo ha raggiunto il livello di accreditamento «Mapping», attestando l'attenzione di SACBO all'inquinamento atmosferico, in termini di CO2 prodotta, mediante una corretta gestione delle proprie risorse energetiche.

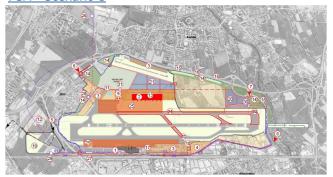
Strutturazione

Ambiti tematici e scenari

Scenari di ruolo

Gli scenari di traffico sono l'esito di atteggiamenti e conseguenti politiche differenti assunte dalla Società di gestione nei confronti della domanda di trasporto aereo, che sono correlate ad un diverso posizionamento dello scalo.

Gli scenari oggetto di analisi ambientale sono tre e sono desunti dal PSA.


PSA - Scenario 2

PSA - Scenario 3

Scenari di traffico

Per quanto riguarda il numero di *movimenti annui* sono state effettuate tre stime di crescita al variare del coefficiente di riempimento medio degli aeromobili. Per ciascun scenario sono state individuate pertanto tre previsioni di crescita: massima, media e minima.

Per le analisi ambientali volte alla valutazione del contributo emissivo indotto dall'aeroporto sono state considerate le previsioni di crescita media per ciascun scenario.

	Previsione	di crescita mas	ssima	Prevision	e di crescita n	nedia	Prevision	e di crescita r	ninima
		passeggeri	102.266		passeggeri	91.874		passeggeri	86.770
Scenario 1	Scenario 1 117.196	cargo	12.830	106.252	cargo	12.278		cargo	11.357
		av.generale	2100		av.generale	2.100		av.generale	2.100
		passeggeri	102.266	93.974	passeggeri	91.874	88.870	passeggeri	86.770
Scenario 2	Scenario 2 104.366	cargo	0		cargo	0		cargo	0
		av.generale	2.100		av.generale	2.100		av.generale	2.100
		passeggeri	124.735		passeggeri	112.106		passeggeri	105.903
Scenario 3 126.835	cargo	0	114.206	cargo	0	108.003	cargo	0	
	av.generale	2.100		av.generale	2.100		av.generale	2.100	

Strutturazione

Parametri di confronto

Le analisi ambientali relative ai diversi scenari infrastrutturali individuati dal PSA sono state condotte in termini di emissioni atmosferiche di CO2.

Parametri di costruzione per valenza ambientale

1. Volume di traffico aereo

- 2. Localizzazione e tipologia delle attività aeroportuali svolte all'interno del sedime
- 3. Tipologia ed entità dei volumi di traffico aereo originati

Parametri confronto

Inquinamento atmosferico

Indicatori

- Differenza del contributo emissivo prodotto dai movimenti aerei
- Differenza di contributo prodotto dalle attività di piazzale
- Differenza di contributo emissivo prodotto dagli aeromobili durante il rullaggio lungo le taxiway per testata 28
- Differenza di contributo emissivo prodotto dagli aeromobili durante il rullaggio lungo le taxiway per testata 10

Contributo emissivo traffico aereo

Incrementi di traffico aereo comportano incrementi di emissioni di inquinanti. La stima è stata condotta attraverso il software EDMS

• Contributo emissivo mezzi rampa GSE

I GSE si differenziano in funzione della tipologia di attività aeroportuale: supporto al traffico aereo, manutenzione e/o gestione infrastrutture di volo, etc.

Relativamente alle attività di supporto al traffico aereo i mezzi rampa si differenziano ulteriormente in funzione della tipologia di velivolo (aeromobile destinato al traffico passeggeri o al trasporto di merci).

L'analisi delle alternative si traduce pertanto nella valutazione del diverso contributo emesso dalle attività di piazzale in funzione del diverso scenario di ruolo assunto dallo scalo aeroportuale.

• Contributo emissivo aeromobili in fase di taxiway

Per quanto riguarda invece l'emissione prodotta dagli aeromobili, se quella relativa alle fasi di decollo e di atterraggio rappresenta il contributo emissivo più significativo e più rilevante per la valutazione degli impatti atmosferici, questa risulta di fatto poco significativa nell'analisi delle alternative in quanto direttamente proporzionale al numero di movimenti aerei previsti per lo specifico scenario di riferimento.

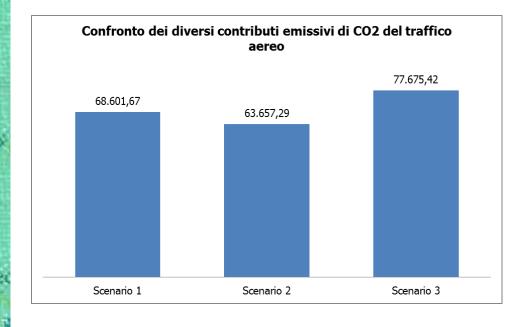
Al contrario la diversa distribuzione delle piazzole di sosta degli aeromobili sia in termini di localizzazione che di numero in funzione della componente di traffico, induce un differente utilizzo delle taxiway di collegamento tra apron e testata pista, e dei relativi tempi di percorrenza, che influenza la quantità di emissioni prodotte anche a parità di volume di traffico aereo.

Sviluppo analisi

Contributo emissivo traffico aereo

The region of the second

Il contributo emissivo di CO2 legato al traffico aereo per gli scenari alternativi è volo (decollo e atterraggio) in la fase di rullaggio è oggetto di successive stato stimato attraverso il software EDMS. La stima è relativa alle sole fasi di approfondite analisi.



A riguardo in questo caso il differente layout previsto per lo scenario 1 nelle due ipotesi previste dal PSA non incide sulle emissioni prodotto dagli aeromobili.

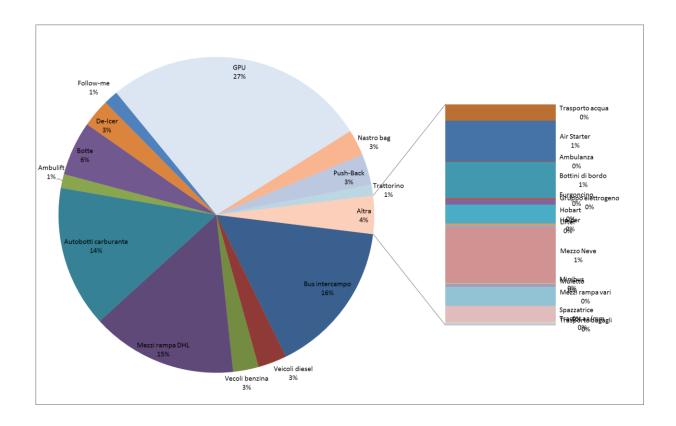
I movimenti aerei annuali sono stati desunti dalle previsioni di traffico previste per i quattro scenari considerando esclusivamente la crescita media:

Scenario 1: 106.252 movimenti Scenario 2: 93.974 movimenti Scenario 3: 114.206 movimenti

	Scenario 1	Scenario 2	Scenario 3
CO2 (t/anno)	68.601,67	63.657,29	77.675,42

Sviluppo analisi

Contributo emissivo mezzi rampa GSE


La metodologia di lavoro utilizzata per la stima delle emissioni nei diversi scenari di progetto prevede dapprima la stima delle emissioni di anidride carbonica allo stato attuale differenziate per componente di traffico e tipologia di attività e in seconda fase l'individuazione dei singoli contributi ai diversi scenari infrastrutturali previsti dal PSA in funzione dell'incremento atteso del numero di movimenti.

1. Individuazione delle emissioni di CO2 prodotte dai mezzi rampa allo stato attuale

L'individuazione dei diversi mezzi GSE presenti in ambito air-side e dei relativi contributi emissivi si basa sui risultati ottenuti in fase di *Airport Carbon Accreditation*. Per ciascuna tipologia di mezzo a partire dai volumi annui di carburante consumato si sono stimate le relative emissioni di anidride carbonica. I fattori di emissione considerati in funzione della tipologia di carburante sono i seguenti:

Veicoli/mezzi benzina: 2,2845 kg CO2/lVeicoli/mezzi diesel: 2,6171 kg CO2/l

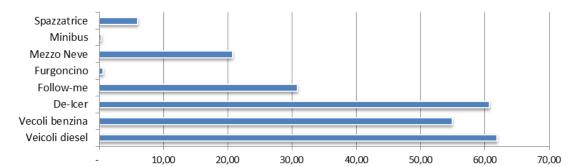
Tipologia	Carburante	Litri consumati	t CO2
Bus intercampo	Diesel	126.587,4	331,3
Veicoli diesel	Diesel	23.633,0	61,8
Vecoli benzina	Benzina	24.021,4	54,9
Mezzi rampa DHL	Diesel	119.695,5	313,3
Autobotti carburante	Diesel	116.226,7	304,2
Trasporto acqua	Diesel	2.312,6	6,1
Air Starter	Diesel	5.734,4	15,0
Ambulanza	Diesel	107,8	0,3
Ambulift	Diesel	11.410,8	29,9
Botte	Diesel	44.531,9	116,5
Bottini di bordo	Diesel	5.164,2	13,5
De-Icer	Diesel	23.188,9	60,7
Follow-me	Diesel	11.779,0	30,8
Furgoncino	Diesel	228,2	0,6
GPU	Diesel	216.727,5	567,2
Gruppo elettrogeno	Diesel	699,8	1,8
Hobart	Diesel	2.659,8	7,0
Holder	Diesel	234,1	0,6
Lifter	Diesel	305,9	0,8
Mezzo Neve	Diesel	7.913,5	20,7
Minibus	Diesel	121,6	0,3
Muletto	Diesel	408,3	1,1
Mezzi rampa vari	Diesel	2.704,9	7,1
Nastro bag	Diesel	21.408,1	56,0
Push-Back	Diesel	25.226,3	66,0
Spazzatrice	Diesel	2.287,8	6,0
Tractor aa/mm	Diesel	209,5	0,5
Trasporto bagagli	Diesel	251,2	0,7
Trattorino	Diesel	8.990,2	23,5

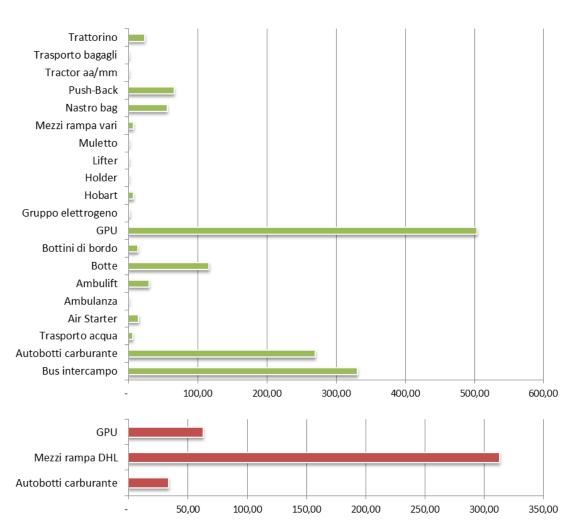
Contributo emissivo mezzi rampa GSE

2. Ripartizione dei contributi emissivi per tipologie di attività

In seconda fase si distinguono i diversi contributi emissivi dei mezzi rampa in funzione delle tipologie di attività aeroportuali. Nello specifico si individuano tre gruppi:

- GSE per le attività di gestione/manutenzione delle infrastrutture air-side

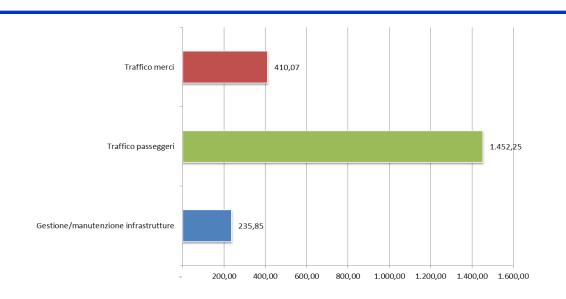

Tipologia	Carburante	Litri consumati	t CO2
Veicoli diesel	Diesel	23.633,00	61,85
Vecoli benzina	Benzina	24.021,40	54,88
De-Icer	Diesel	23.188,91	60,69
Follow-me	Diesel	11.778,97	30,83
Furgoncino	Diesel	228,22	0,60
Mezzo Neve	Diesel	7.913,52	20,71
Minibus	Diesel	121,58	0,32
Spazzatrice	Diesel	2.287,77	5,99


- GSE di supporto agli aeromobili per il trasporto passeggeri

,,		, ,	, 55
Tipologia	Carburante	Litri consumati	t CO2
Bus intercampo	Diesel	126.587,38	331,29
Autobotti carburante	Diesel	103.313,15	270,38
Trasporto acqua	Diesel	2.312,60	6,05
Air Starter	Diesel	5.734,39	15,01
Ambulanza	Diesel	107,80	0,28
Ambulift	Diesel	11.410,75	29,86
Botte	Diesel	44.531,93	116,54
Bottini di bordo	Diesel	5.164,17	13,52
GPU	Diesel	192.647,68	504,18
Gruppo elettrogeno	Diesel	699,82	1,83
Hobart	Diesel	2.659,80	6,96
Holder	Diesel	234,09	0,61
Lifter	Diesel	305,88	0,80
Muletto	Diesel	408,27	1,07
Mezzi rampa vari	Diesel	2.704,87	7,08
Nastro bag	Diesel	21.408,14	56,03
Push-Back	Diesel	25.226,28	66,02
Tractor aa/mm	Diesel	209,49	0,55
Trasporto bagagli	Diesel	251,16	0,66
Trattorino	Diesel	8.990,18	23,53

- GSE di supporto agli aeromobili per il trasporto delle merci

Tipologia	Carburante	Litri consumati	t CO2
Autobotti carburante	Diesel	12.913,53	33,80
Mezzi rampa DHL	Diesel	119.695,47	313,26
GPU	Diesel	24.079,81	63,02

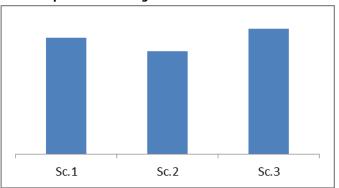


Contributo emissivo mezzi rampa GSE

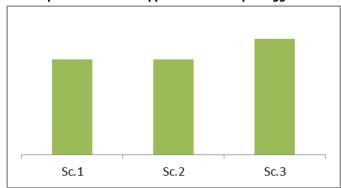
Stante quindi i dati riportati nelle tabelle precedenti, complessivamente si distinguono tre diverse tipologie di sorgenti GSE.

Tipologia Tipologia	t CO2
Gestione/manutenzione infrastrutture	235,85
Traffico passeggeri	1.452,25
Traffico merci	410,07

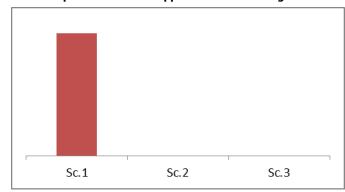
3. Stima dei diversi contributi emissivi ai diversi scenari di progetto


La stima delle emissioni prodotte dai mezzi rampa è funzione dell'incremento del numero di movimenti atteso in ciascuno degli scenari di ruolo assunto.

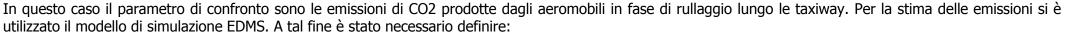
Operativamente, si è ipotizzato un incremento proporzionale delle emissioni di CO2 dei mezzi rampa, in funzione della crescita del traffico aereo passeggeri, cargo e totale.


Per quanto riguarda lo scenario 1, per il quale il PSA prevede due ipotesi infrastrutturali che si differenziano di fatto nella localizzazione delle piazzole di sosta dedicate agli aeromobili cargo, il calcolo delle emissioni di CO2 risulta invariante dalla configurazione in quanto in entrambe le ipotesi il numero di movimenti aerei atteso risulta invariante.

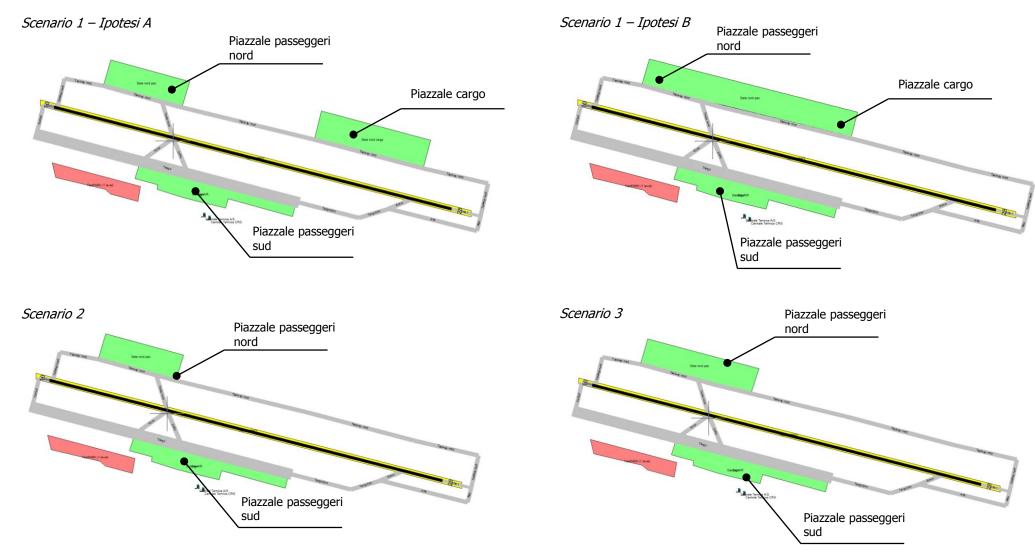
Tipologia	Sc.1	Sc.2	Sc.3
Gestione/manutenzione infrastrutture	348,35	307,28	374,95
Traffico passeggeri	2.128,55	2.128,55	2.597,29
Traffico merci	642,61	ı	-


Confronto del contributo emissivo di CO2 dei mezzi rampa per le attività di gestione e manutenzione.

Confronto del contributo emissivo di CO2 dei mezzi rampa per le attività di supporto al traffico passeggeri



Confronto del contributo emissivo di CO2 dei mezzi rampa per le attività di supporto al traffico cargo


Contributo emissivo aeromobili in fase di taxiway

- il layout infrastrutturale di ciascun scenario con particolare riferimento alla localizzazione delle piazzole di sosta e delle taxiway di collegamento;
- la distribuzione del traffico aereo in funzione delle piazzole di sosta (apron nord, sud e cargo);
- il tempo medio di percorrenza delle vie di rullaggio per la fase di taxi in e taxi out;
- la ripartizione dei movimenti per testate pista.

1. Definizione del layout infrastrutturale

Ciascun scenario è stato ricostruito all'interno del modello EDMS. In particolare sono state inserite le nuove vie di rullaggio e i nuovi piazzali di sosta degli aeromobili in funzione della configurazione prevista.

Contributo emissivo aeromobili in fase di taxiway

2. Distribuzione del traffico aereo in funzione delle piazzole di sosta

Per ciascun scenario si definisce il numero di movimenti destinati a ciascun piazzale. Tutte le configurazioni individuate dal PSA prevedono la presenza di un nuovo piazzale destinato al traffico passeggeri a nord dimensionato in funzione del traffico complessivo atteso. Questo comporterà una distribuzione dei numero di aerei tra il sistema infrastrutturale a nord e quello attuale a sud. Nello specifico si è ipotizzata una distribuzione del traffico proporzionale al numero di piazzole di sosta disponibili nei due piazzali.

	_		
Traffico passeggeri	Sc.1	Sc.2	Sc.3
Piazzola di sosta apron sud	19,00	19,00	19,00
Piazzole di sosta apron nord	10,00	10,00	14,00

Traffico passeggeri	Sc.1	Sc.2	Sc.3
Movimenti apron sud	30.097	30.097	32.273
Movimenti apron nord	15.840	15.840	23.780

In questo caso non si è fatta distinzione tra le due ipotesi previste nello scenario 1 in quanto, seppur si prevede un numero di piazzole totali inferiori nell'ipotesi B, gli stand destinati al traffico passeggeri e cargo rimangono invariati in quanto necessari a soddisfare la domanda. La differenza risiede sono nella destinazione d'uso di alcune piazzole che nell'ipotesi B risulta essere condivisa per le due tipologie di traffico. Ad ogni modo in entrambi i casi si soddisfa la domanda attesa. Relativamente invece agli aeromobili cargo, è previsto un nuovo piazzale dedicato in area nord pertanto in questo caso non si assiste ad una distribuzione del traffico nei due diversi sistemi.

Traffico cargo	Sc.1	Sc.2	Sc.3
Piazzola di sosta apron sud	20,00	-	-
Piazzole di sosta apron nord	-	-	-

Traffico passeggeri	Sc.1	Sc.2	Sc.3
Movimenti apron sud	•	-	-
Movimenti apron nord	12.278	1	-

3. Percorsi di rullaggio e tempi di percorrenza

Le emissioni prodotte dagli aeromobili nelle operazioni di rullaggio dipendono dal tempo medio di percorrenza delle vie di rullaggio nelle fasi di taxi in e taxi out. In funzione quindi della configurazione infrastrutturale prevista in ciascun scenario di progetto, è necessario individuare un tempo di percorrenza medio in funzione dei diversi piazzali.

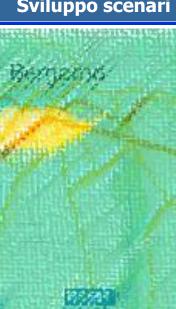
Questi sono stati ipotizzati considerando gli attuali tempi di taxiway rispetto alla configurazione infrastrutturale presente.

Traffico passeggeri	Sc.1-A	Sc.1-B	Sc.2	Sc.3
Apron sud	Taxi time (min)			
Taxi in	3,00	3,00	3,00	3,00
Taxi out	9,00	9,00	9,00	9,00
Apron nord	Taxi time (min)			
Taxi in	5,00	4,00	3,00	4,00
Taxi out	8,00	9,00	9,00	9,00

Traffico cargo	Sc.1-A	Sc.1-B	Sc.2	Sc.3
Apron nord	Taxi time (min)			
Taxi in	4,00	4,00	3,00	4,00
Taxi out	8,00	9,00	9,00	9,00

4. Ripartizione traffico aereo su testate piste

Per la distribuzione del traffico aereo sulle testate piste in funzione delle operazioni di volo si è fatto riferimento alle percentuali relative allo stato attuale.

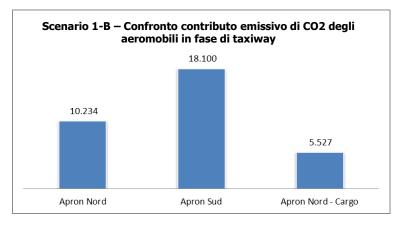

Traffico passeggeri	RWY28	RWY 10
Decolli	40,8%	9,1%
Atterraggi	50,0%	0,1%

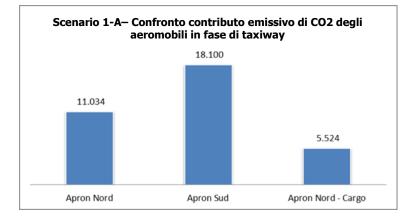
Traffico cargo	RWY28	RWY 10
Decolli	21,6%	28,8%
Atterraggi	49,6%	0,0%

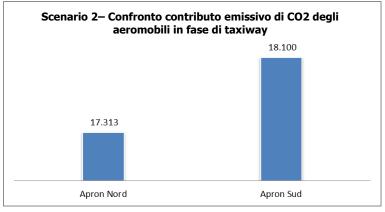
Contributo emissivo aeromobili in fase di taxiway

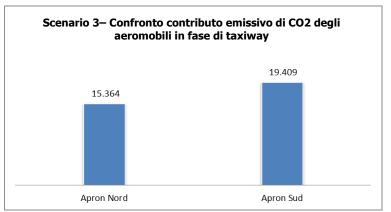
4. Stima dei contributi emissivi

Per ciascun scenario si è stimato il contributo emissivo legato alle diverse operazioni di rullaggio.


La stima è stata effettuata considerando due tipologie di aeromobili, ciascuna rappresentativa della componente di traffico aereo. In particolare:


- Traffico passeggeri: Boeing 737-800
- Traffico cargo courier: Boeing 757-200


Per i fattori di emissione si è fatto riferimento a quanto contenuto all'interno del database di EDMS per tutte le tipologie di aeromobile.


Traffico passeggeri	Apron Nord		Apro	n Sud
Scenario	Taxi in	Taxi out	Taxi in	Taxi out
Scenario 1-A	4.879	6.155	5.995	12.105
Scenario 1-B	3.863	6.371	5.995	12.105
Scenario 2	8.110	9.203	5.995	12.105
Scenario 4	5.799	9.565	6.428	12.981

Traffico cargo	Apron Nord		
Scenario	Taxi in Taxi		
Scenario 1-A	2.166	3.358	
Scenario 1-B	2.051	3.475	

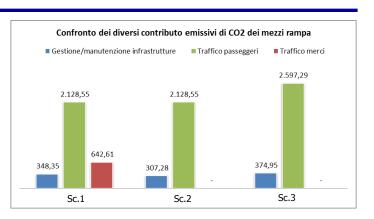
Quadro raffronto

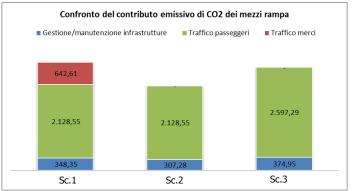
Contributo emissivo – Analisi dei risultati

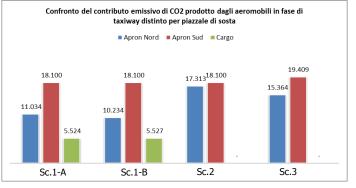
• Contributo emissivo traffico aereo

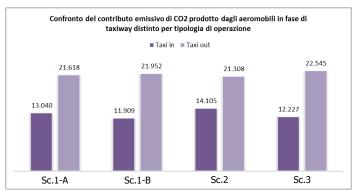
	Sc. 1	Sc. 2	Sc. 3
CO2 (t/anno)	68.601,67	63.657,29	77.675,42

• Contributo emissivo mezzi rampa GSE

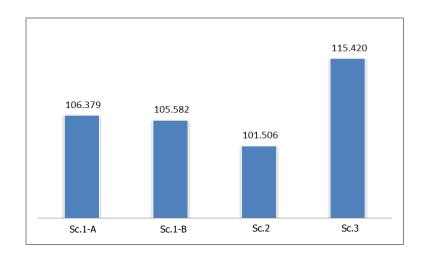

Tipologia	Sc. 1	Sc. 2	Sc. 3
Gestione/manutenzione infrastrutture	348,35	307,28	374,95
Traffico passeggeri	2.128,55	2.128,55	2.597,29
Traffico merci	642,61	•	•


	Sc. 1	Sc. 2	Sc. 3
CO2 (t/anno)	3.120	2.436	2.972

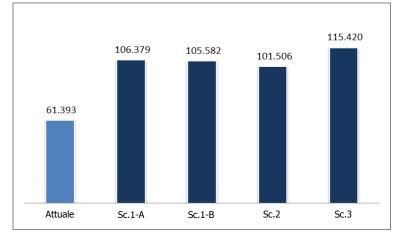

• Contributo emissivo aeromobili in fase di taxiway

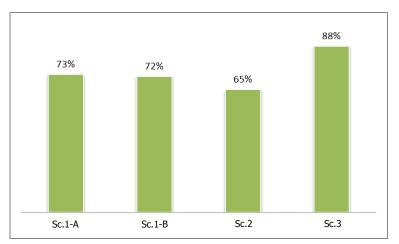

	Apron	Nord	Apro	n Sud	Ca	rgo
Scenario	Taxi in	Taxi out	Taxi in	Taxi out	Taxi in	Taxi out
Scenario 1-A	4.879	6.155	5.995	12.105	2.166	3.358
Scenario 1-B	3.863	6.371	5.995	12.105	2.051	3.475
Scenario 2	8.110	9.203	5.995	12.105	-	-
Scenario 4	5.799	9.565	6.428	12.981	-	-

	Sc. 1-A	Sc. 1-B	Sc. 2	Sc. 3
CO2 (t/anno)	34.658	33.861	35.413	34.773


Quadro raffronto

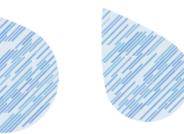
Analisi dei risultati – Confronto con lo scenario attuale

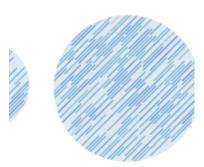

Considerando i diversi contributi emissivi, le tonnellate di CO2 complessive prodotte dalle diverse sorgenti aeroportuali per ciascun scenario sono:


	Scenario 1-A	Scenario 1-B	Scenario 2	Scenario 3
CO2 (t/anno)	106.379	105.582	101.506	115.420

Il confronto con lo scenario attuale evidenzia un incremento del contributo emissivo di anidride carbonica in relazione principalmente all'evoluzione del traffico aereo atteso per ciascun scenario alternativo. Relativamente allo scenario 1, per il quale si prevedono due layout differenti, la diversa distribuzione dei piazzali e il conseguente diverso utilizzo della nuova taxiway nord, incide marginalmente (circa l'1%) in termini di CO2 prodotta.

Attuale	Scenario 1-A	Scenario 1-B	Scenario 2	Scenario 3
61.393	106.379	105.582	101.506	115.420
	73%	72%	65%	88%




Il confronto dei valori di CO2 stimati con i dati emissivi INEMAR relativi alla Provincia di Bergamo, evidenzia come la sorgente aeroportuale rappresenti mediamente l'1,5% del contributo emissivo totale provinciale in termini di CO2 attestando pertanto la bassa significatività della sorgente rispetto al contesto territoriale di riferimento.

	Scenario 1-A	Scenario 1-B	Scenario 2	Scenario 3
CO2 (t/anno)	34.658	33.861	35.413	34.773

Scenario attuale

Quantificazione dei consumi energetici Quantificazione delle emissioni di CO2 derivanti dai consumi energetici

Strutturazione del confronto

Definizione delle alternative poste a confronto La costruzione degli scenari di confronto

Sviluppo degli scenari

Sviluppo degli scenari rispetto a:

- Emissioni derivanti da consumi energia elettrica
 - Emissioni derivanti da consumi metano

Quadro di raffronto

Confronto tra llo scenario attuale e gli scenari alternativi

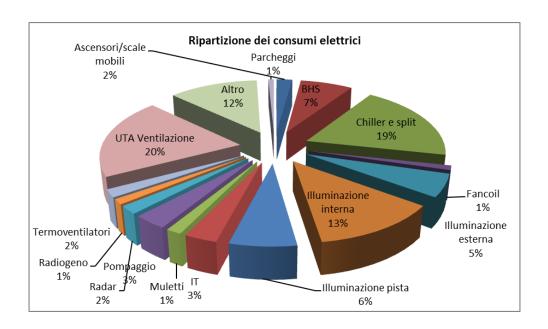
Scenario attuale

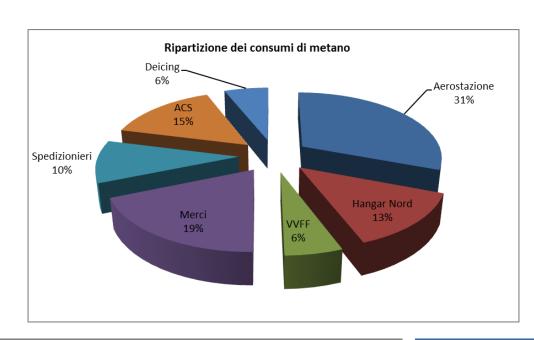
Consumi energetici

Consumi elettrici

L'attuale modello di gestione dei fabbisogni energetici aeroportuali prevede la produzione di energia termica per il riscaldamento invernale e la produzione di acqua calda sanitaria attraverso centrali termiche localizzate all'interno

dell'aeroporto e l'approvvigionamento dalla rete nazionale per i fabbisogni elettrici (tra cui la climatizzazione dell'aerostazione).





Tipologia	Consumo annuo [MWh]	%
Ascensori/scale mobili	291	2,18%
BHS	963	7,20%
Chiller e split	2.547	19,05%
Fancoil	147	1,10%
Illuminazione esterna	733	5,48%
Illuminazione interna	1.688	12,63%
Illuminazione pista	865	6,47%
Π	425	3,18%
Muletti	200	1,50%
Pompaggio	445	3,33%
Radar	263	1,97%
Radiogeno	170	1,27%
Termoventilatori	253	1,89%
UTA Ventilazione	2.642	19,76%
Altro	1.638	12,25%
Parcheggi	100	0,75%
Totale		13.370

• Consumi metano

Tipologia	Consumo annuo [STD mc]	%
Aerostazione	250.186	30,81%
Hangar Nord	109.055	13,43%
VVFF	44.905	5,53%
Merci	153.961	18,96%
Spedizionieri	83.395	10,27%
ACS	121.804	15,00%
Deicing	48.722	6,00%
Totale		812.028

Emissioni CO2 [tonn]

%

2,18%

7,20%

5.162

112,36

371,81

Scenario attuale

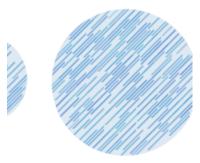
Emissioni di CO2 da consumi energetici

Nell'ambito della Airport Carbon Accreditation sono stati valutati i contributi emissivi delle sorgenti stazionarie presenti in aeroporto e dei relativi consumi elettrici in termini di CO2.

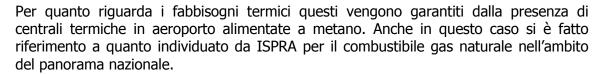
Emissioni da consumi elettrici

I fabbisogni elettrici stimati in precedenza vengono forniti direttamente dalla rete elettrica nazionale. E' possibile pertanto quantificare le emissioni di anidride carbonica ipotizzando un fattore emissivo medio che tiene conto del parco nazionale delle centrali per la produzione di energia elettrica. Nello specifico si è fatto riferimento a quanto calcolato da ISPRA nell'ambito del consumo di energia elettrica in Ital

Fattore di emissione: 0,3861 t_{CO2}/


annica Malin enacifich el a faith fitarimanth a nilanth			•
el rapporto <i>«Fattori di emissione per la produzione ed il</i>	Chiller e split	983,40	19,05%
talia».	Fancoil	56,76	1,10%
	Illuminazione esterna	283,01	5,48%
₂ /MWh	Illuminazione interna	651,74	12,63%
	Illuminazione pista	333,98	6,47%
	Π	164,09	3,18%
	Muletti	77,22	1,50%
	Pompaggio	171,81	3,33%
	Radar	101,54	1,97%
	Radiogeno	65,64	1,27%
	Termoventilatori	97,68	1,89%
	UTA Ventilazione	1.020,08	19,76%
	Altro	632,43	12,25%
	Parcheggi	38,61	0,75%

Totale


BHS

Tipologia

Ascensori/scale mobili

Emissioni da consumi metano

Fattore di emissione: 1,9510 kg_{CO2}/STD mc

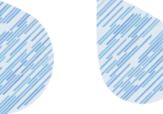
Tipologia	Emissioni CO2 [tonn]	%
Aerostazione	488	0,06%
Hangar Nord	213	0,03%
VVFF	88	0,01%
Merci	300	0,04%
Spedizionieri	163	0,02%
ACS	238	0,03%
Deicing	95	0,01%
Totale		1.583

Strutturazione

Ambiti tematici e scenari

Scenari di ruolo

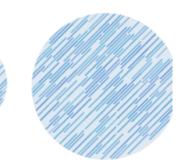
Gli scenari di traffico sono l'esito di atteggiamenti e conseguenti politiche. Gli scenari oggetto di analisi ambientale sono tre e sono desunti dal PSA. differenti assunte dalla Società di gestione nei confronti della domanda di trasporto aereo, che sono correlate ad un diverso posizionamento dello scalo.


Scenario 1:

Politica di non intervento rispetto alla dinamica di evoluzione della domanda che cresce in modo lineare secondo il trend tendenziale

Volume passeggeri: 14 milioni

Volume cargo: 174.489 tonnellate



Scenario 2:

Politica di intervento, con orientamento alla sola componente passeggeri della domanda di trasporto

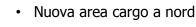
Volume passeggeri: 14 milioni

Scenario 3:


Politica di intervento, con orientamento alla sola componente passeggeri della domanda di trasporto ed acquisizione di ulteriori quote di traffico

Volume passeggeri: 17 milioni

Per ciascun scenario è stato sviluppato un layout infrastrutturale in funzione del ruolo assunto dalla Società di gestione nei confronti della domanda di trasporto aereo.



Scenario 1:

Traffico passeggeri 14 MPax+ Traffico courier

· Incremento volumi attuale aerostazione

Scenario 2:

Traffico passeggeri 14 MPax

Incremento volumi attuale aerostazione

Scenario 3:

Traffico passeggeri 17 MPax

Incremento volumi attuale aerostazione

Nuova aerostazione a nord del sedime

Strutturazione

Parametri di confronto

Le analisi ambientali relative ai diversi scenari infrastrutturali individuati dal PSA sono state condotte in termini di emissioni atmosferiche di CO2.

Parametri di costruzione per valenza ambientale

Parametri confronto

Indicatori

1. Volume di traffico aereo

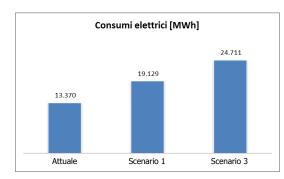
Energia

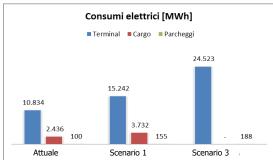
- Entità dei consumi energetici
- Emissioni di CO2

Attuale

Differenza di contributo emissivo di CO2

Fabbisogni energetici


Nell'ambito del PSA sono stati stimati i fabbisogni energetici per lo scenario 1 e 4 sia in termini di consumi elettrici che in termini di metano. Per lo scenario 2 i consumi sono stati desunti da quanto previsto per lo scenario 1 eliminando la quota parte relativa al settore cargo.



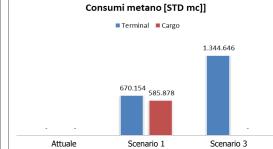
Scenario	Consumo annuo [MWh]	Terminal	Cargo	Parcheggi
Attuale	13.370	10.834	2.436	100
Scenario 1	19.129	15.242	3.732	155
Scenario 4	24.711	24.523	-	188

Fonte: dati PSA

- Consumi metano

Scenario	Consumo annuo [STD mc]	Terminal	Cargo	Parcheggi
Attuale	812.028	-	-	-
Scenario 1	1.256.031	670.154	585.878	-
Scenario 3	1.344.646	1.344.646	-	-

Fonte: dati PSA


Consumi metano [STD mc]]

1.256.031

1.344.646

812.028

Attuale Scenario 1 Scenario 3

Allo stato attuale i consumi di metano sono così ripartiti:

• Traffico passeggeri: 330.000 STDmc ca.

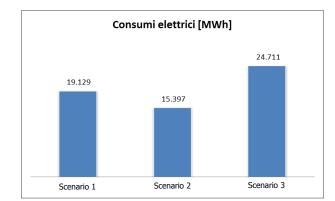
Traffico merci: 125.000 STDmc ca.Area nord: 125.000 STDmc ca.

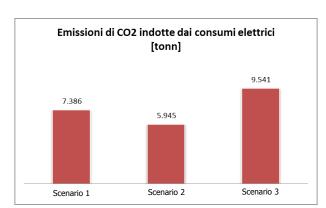
• Vigili del Fuoco: 59.000 STDmc ca.

Contributo emissivo CO2

Il contributo emissivo in termini di anidride carbonica è stato calcolato in funzione dell'incremento dei consumi elettrici e di metano. Per la stima dei quantitativi di CO2 sono stati utilizzati gli stessi fattori di emissione.

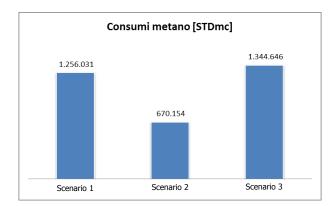
Seppur il PSA preveda tra le possibili soluzioni volte all'efficientamento energetico una centrale cogenerativa per la produzione combinata di energia elettrica, energia termica e frigorifera, il reale risparmio in termini di CO2 non è quantificabile in via previsionale perché strettamente dipendente dalle caratteristiche progettuali ed impiantistiche della centrale stessa.

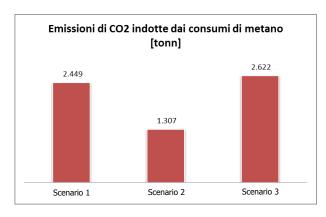

• Consumi elettrici



Scenario	Consumo annuo [MWh]
Scenario 1	19.129
Scenario 2	15.397
Scenario 3	24.711

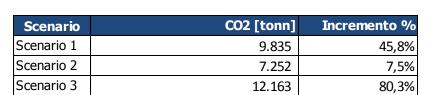
CO2 [tonn]
7.386
5.945
9.541

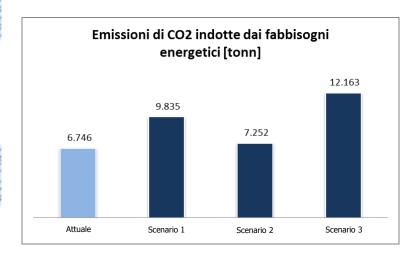


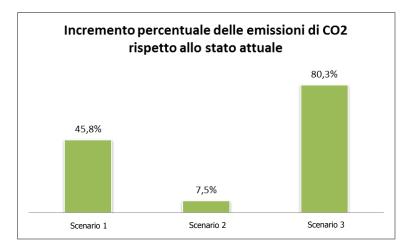

• Consumi metano

Scenario	Consumo annuo [STD mc]
Scenario 1	1.256.031
Scenario 2	670.154
Scenario 3	1.344.646

CO2 [tonn]
2.449
1.307
2.622




Quadro raffronto


Contributo emissivo – Analisi dei risultati

Complessivamente le emissioni di anidride carbonica connesse ai fabbisogni energetici dell'aeroporto risultano i seguenti per ciascun scenario individuato dal PSA:

Attuale	6.746

