COMMITTENTE

PROGETTAZIONE:

File: IF0H02D11CLOC0005001A.doc

n. Elab.: 0L 033_01

DIRI	EZIONE TECNIO	CA										
U.O.	INFRASTRUT	TURE CI	ENTRO)								
PROGETTO DEFINITIVO												
ITINERARIO NAPOLI-BARI.												
RADDOPPIO TRATTA CANCELLO - BENEVENTO.												
II LC	TTO FUNZION	ALE FR	ASSO	TELESI	NO – V	ITULAN	10.					
MUF	RI DI PROTEZIONE											
Rela	azione di calcolo							SCALA:				
								-				
СОМ	MESSA LOTTO FAS	E ENTE	TIPO DOC	C. OPERA/	DISCIPLIN	A PROC	GR. RE	/.				
I F	0 H 0 2 D	1 1	CL	O C (0 0 0 5	0 0	1 A					
Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data				
А	EMISSIONE	M.Piscitelli	Novembre 2017	F.Bayetta	Novembre 2017	F.Cerrone	Novembre 2017	F.Arduini Novembre 2017				
				V J								

ITINERARIO NAPOLI-BARI. RADDOPPIO TRATTA CANCELLO – BENEVENTO. II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO.

Muro Di protezione – Relazione di calcolo

COMMESSA IF0H

LOTTO

02 D 11

CODIFICA CL

DOCUMENTO
OC000 5001

REV.

FOGLIO 2 di 32

INDICE

1.	GENE	RALITA'	4
1.1	DE	SCRIZIONE DELL'OPERA	4
1.2	Un	ITÀ DI MISURA	7
2.	NORM	1ATIVA DI RIFERIMENTO	8
2.1	EL	ABORATI DI RIFERIMENTO	8
3.	MATE	ERIALI	9
3.1	CL	ASSI DI ESPOSIZIONE E COPRIFERRI	9
3.2	Са	LCESTRUZZO PER ELEVAZIONI (C 32/40)	11
3.3	Са	LCESTRUZZO PER PALI DI FONDAZIONE (C 25/30)	12
3.4	Са	LCESTRUZZO MAGRO PER GETTI DI LIVELLAMENTO/SOTTOFONDAZIONI (C12/15)	13
3.5	AC	CIAIO IN BARRE D'ARMATURA PER C.A. (B450C)	14
4.	CARA	TTERIZZAZIONE SISMICA DEL SITO	15
5.	CRITE	ERI GENERALI PER LE VERIFICHE STRUTTURALI	16
5.1	VE	RIFICHE ALLO SLU	16
	5.1.1	Pressoflessione	16
	5.1.2	Taglio	17
5.2	VE	RIFICA SLE	19
	5.2.1	Verifiche alle tensioni	19
	5.2.2	Verifiche a fessurazione	20
6.	RISUI	TATI E VERIFICHE MURI DI PROTEZIONE	21
6.1	Az	IONI ECCEZIONALI DA URTO	21
	6.1.1	Muro Di protezione Tipo A ($D \le 5m$)	22
	6.1.2	Muro Di protezione Tipo B (5m < $D \le 15m$)	23
6.2	VE	RIFICA PALI DI FONDAZIONE A CARICO LIMITE ORIZZONTALE	23
	6.2.1	Muro Di protezione Tipo A ($D \le 5m$)	25

ITINERARIO NAPOLI-BARI. RADDOPPIO TRATTA CANCELLO – BENEVENTO. II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO.

Muro Di protezione – Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IFOH 02 D 11 CL 0C000 5001 A 3 di 32

	6.2.2	Muro Di protezione Tipo B $(5m < D \le 15m)$	28
6.3	VEF	RIFICA MURO ELEVAZIONE	31
	6.3.1	Muro Di protezione Tipo A $(D \le 5m)$	31
	6.3.2	Muro Di protezione Tipo B (5m $<$ D \leq 15m)	32

1. GENERALITA'

Il presente documento si inserisce nell'ambito della redazione degli elaborati tecnici di progetto definitivo del Raddoppio dell'Itinerario Ferroviario Napoli-Bari nella Tratta Cancello-Benevento/ 2° Lotto Funzionale Frasso Telesino – Vitulano.

Le Analisi e verifiche nel seguito esposte fanno in particolare riferimento ai muri di protezione in c.a. previsti a margine dell'asse principale del tracciato di progetto.

1.1 Descrizione dell'opera

Le opere in questione sono elencate nel dettaglio nella tabella seguente e sono suddivise in due tipologie in relazione alla distanza "D" che intercorre tra il paramento del muro e l'asse del binario più vicino. In particolare:

- Tipologia manufatto A: D ≤ 5m

- Tipologia manufatto B: 5m< D ≤ 15m

						Sezione	B.A	.R.
Lotto	Lato	pk inizio	pk fine	lunghezze parziali	TIPOLOGIA Manufatto	tipologica Margine Sede	(Tipologia)	Codice
1	Pari	18+717	18+940	223.0	Α	Α	Н4	BA6a
	Pari	31+400	31+460	60.0	Α	F	Assente	-
	Pari	31+460	31+468	7.8	Α	Α	H4	BA45
		31+468	31+632	163.7	Α	Α	H4	DA43
	Dispari	37+520	37+617	97.2	В	72	Assente	-
2	Dispari	37+617	37+690	73.2	В	Q	Assente	-
	Dispari	37+690	37+862	171.9	В	N	H5	BA47
	Dispari	37+862	37+979	117.1	В	N	H7	BA48
	Pari	38+536	38+694	157.7	Α	Α	H6	BA53
	Pari	38+724	38+778	54.0	Α	Α	H2	BA55
		39+808	39+852	44.0	Α	Α	H6	
	Pari	39+852	40+050	198.0	В	N	H6	BA59
		40+093	40+375	282.5	В	N	Н6	
3	Pari	40+375	40+404	28.7	В	N	H4	BA60
3	Fall	40+550	40+626	75.9	Α	Α	H4	DAUU
	Pari	40+626	40+898	272.1	Α	Α	Н8	BA61
	Dispari	39+522	39+555	33.0	В	Q	Assente	-
	Dispari	39+555	39+747	192.0	Α	Α	H7	BA62

Tabella 1: Elenco opere

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		TRATTA	CANCELLO -	- BENEVENTO. ELESINO – VITUL	ANO.	
Muro Di protezione – Relazione di calcolo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	IF0H	02 D 11	CL	OC000 5001	Α	5 di 32

Tale distinzione consente di differenziare le azioni eccezionali da urto di progetto in accordo al paragrafo 3.6.3.4 delle NTC2008.

Di seguito si riportano alcune immagini rappresentative delle opere in oggetto. Per ulteriori dettagli si rimanda agli elaborati grafici di riferimento.

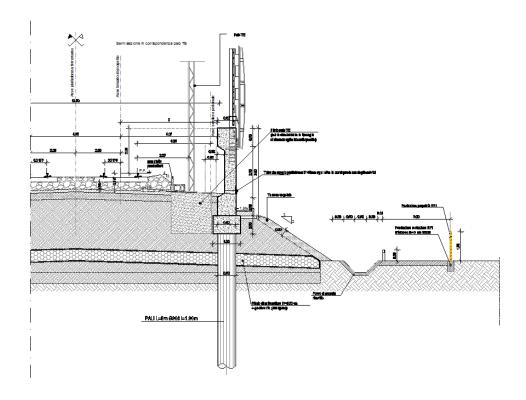


Figura 1 – Sezione trasversale muro di protezione tipo A

PROSPETTO MURO ANTISVIO TIPO "A"

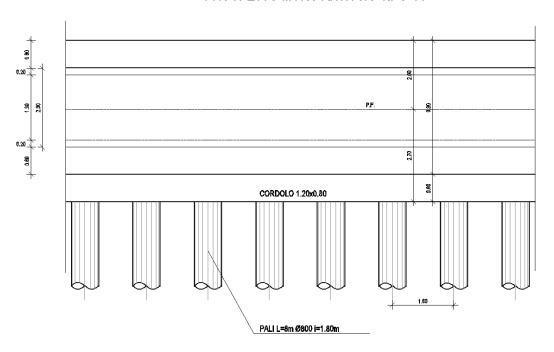


Figura 2 – Prospetto muro di protezione tipo A

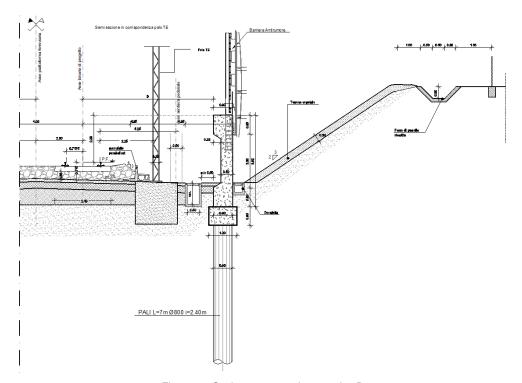


Figura 3 – Sezione trasversale muro tipo B

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		TRATTA	CANCELLO -	- BENEVENTO. ELESINO – VITUL	.ANO.	
Muro Di protezione – Relazione di calcolo	COMMESSA IF0H	LOTTO 02 D 11	CODIFICA CL	DOCUMENTO OC000 5001	REV.	FOGLIO 7 di 32

PROSPETTO MURO ANTISVIO TIPO "B"

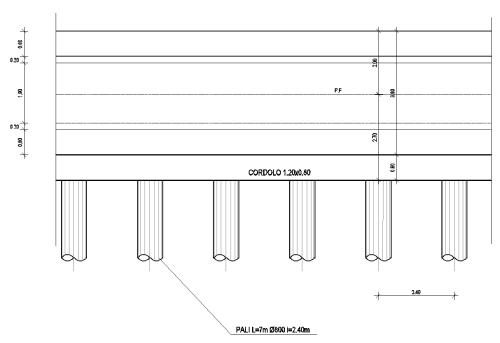


Figura 4 – Prospetto muro tipo B

Nel seguito della presente relazione è affrontato il dimensionamento strutturale e geotecnico delle opere definite in precedenza.

1.2 Unità di misura

Nel seguito si adotteranno le seguenti unità di misura:

per le lunghezze ⇒ m, mm

per i carichi ⇒ kN, kN/m2, kN/m3

per le azioni di calcolo ⇒ kN, kNm

ullet per le tensioni \Rightarrow MPa

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		TRATTA	CANCELLO -	- BENEVENTO. ELESINO – VITUL	ANO.	
Muro Di protezione – Relazione di calcolo	COMMESSA	LOTTO 02 D 11	CODIFICA	DOCUMENTO OC000 5001	REV.	FOGLIO 8 di 32

2. NORMATIVA DI RIFERIMENTO

Di seguito si riporta l'elenco generale delle Normative Nazionali ed internazionali vigenti alla data di redazione del presente documento, quale riferimento per la redazione degli elaborati tecnici e/o di calcolo dell'intero progetto nell'ambito della quale si inserisce l'opera oggetto della presente relazione:

- Rif. [1] Ministero delle Infrastrutture, DM 14 gennaio 2008, «Nuove Norme Tecniche per le Costruzioni»
- Rif. [2] Ministero delle Infrastrutture e Trasporti, circolare 2 febbraio 2009, n. 617 C.S.LL.PP., «Istruzioni per l'applicazione delle Nuove norme tecniche per le costruzioni di cui al decreto ministeriale 14 gennaio 2008»
- Rif. [3] Manuale di Progettazione delle Opere Civili: PARTE I / Aspetti Generali (RFI DTC SI MA IFS 001 A)
- Rif. [4] Manuale di Progettazione delle Opere Civili: PARTE II Sezione 1 / Ambiente e Geologia (RFI DTC SI AG MA IFS 001 A rev 30/12/2016)
- Rif. [5] Manuale di Progettazione delle Opere Civili: PARTE II Sezione 2 / Ponti e Strutture (RFI DTC SI PS MA IFS 001 A– rev 30/12/2016)
- Rif. [6] Manuale di Progettazione delle Opere Civili: PARTE II Sezione 3 / Corpo Stradale (RFI DTC SI CS MA IFS 001 A– rev 30/12/2016)
- Rif. [7] Manuale di Progettazione delle Opere Civili: PARTE II Sezione 4 / Gallerie (RFI DTC SI GA MA IFS 001 A– rev 30/12/2016)
- Rif. [8] Manuale di Progettazione delle Opere Civili: PARTE II Sezione 5 / Prescrizioni per i Marciapiedi e le Pensiline delle Stazioni Ferroviarie a servizio dei Viaggiatori (RFI DTC SI CS MA IFS 002 A– rev 30/12/2016)
- Rif. [9] Manuale di Progettazione delle Opere Civili: PARTE II Sezione 6 / Sagome e Profilo minimo degli ostacoli (RFI DTC SI CS MA IFS 003 A– rev 30/12/2016)
- Rif. [10] Regolamento (UE) N.1299/2014 della Commissione del 18 Novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione europea
- Rif. [11] Eurocodice 1 Azioni sulle strutture, Parte 1-4: Azioni in generale Azioni del vento (UNI EN 1991-1-4)
- Rif. [12] UNI 11104: Calcestruzzo : Specificazione, prestazione, produzione e conformità Istruzioni complementari per l'applicazione della EN 206-1

2.1 Elaborati di riferimento

Costituiscono parte integrante di quanto esposto nel presente documento, l'insieme degli elaborati di progetto specifici relativi all'opera in esame e riportati in elenco elaborati.

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		TRATTA	CANCELLO -	- BENEVENTO. ELESINO – VITUL	ANO.	
Muro Di protezione – Relazione di calcolo	COMMESSA IF0H	LOTTO 02 D 11	CODIFICA CL	DOCUMENTO OC000 5001	REV.	FOGLIO 9 di 32

3. MATERIALI

Di seguito si riportano le caratteristiche dei materiali previsti per la realizzazione delle strutture oggetto di calcolo nell'ambito del presente documento:

3.1 CLASSI DI ESPOSIZIONE E COPRIFERRI

Con riferimento alle specifiche di cui alla norma UNI EN 206-1-2006, si definiscono di seguito le classe di esposizione del calcestruzzo delle diversi parti della struttura oggetto dei dimensionamenti di cui al presente documento:

Soletta di Fondazione: XC2;

Elevazioni: XC4;

• Pali di fondazione: XC2

Classe esposizione norma UNI 9858	Classe esposizione norma UNI 11104 UNI EN 206 –1	Descrizione dell'ambienne	Esempio	Massimo rapporto a/c	Minima Classe di resistenza	Contenuto minimo in aria (%)					
1 Assenza	a di rischio di	corrosione o attacco									
1	X0	Per calcestruzzo privo di armatura o inserti metallici: tutte le esposizioni eccetto dove o è gelo disgelo, o attacco chimico. Calcestruzzi con armatura o inserti metallici:in ambiente molto asciutto.	Interno di edifici con umidità relativa molto bassa. Caloestruzzo non armato all'interno di edifici. Caloestruzzo non armato inmerso in suolo non aggressiva o in acqua non aggressiva . Caloestruzzo non armato soggetto a cidi di bagnato asciutto ma non soggetto adrassione, gelo o attasco chimico.	-	C 12/15						
2 Corresione indotta da carbonatazione Neta - La condición di unitità si riferizone a quelle presenti nel copriferro o nel ricoprimento di inserti metallici, ma in moli casi su può consideram che tali condición il retatro quelle dell'ambiente circostante in questi casa la classificazione dell'ambiente circostante può essere adequata. Questo può non essere il caso se ciè vua barriera fina il calesterario e il suo ambiente.											
2 a	XC1	Asciutto o permanentemente bagnato.	Interni di edifici con umidità relativa bassa. Calcestruzzo armato ordinario o precompresso con le superfici all'interno di strutture con eccezione delle parti esposte a condensa, o immerse i acqua. Parti di strutture di contenimento	0,60	C 25/30						
2 a	XC2	Bagnato, raramente asciutto.	0,60	C 25/30							
5 a	хсз	Umidità moderata.	Calcestruzzo armato ordinario o precompresso in esterni con superfici esterne riparate dalla pioggia, o in interni con umidità da moderata ad alta.	0,55	C 28/35						
4 a 5 b	XC4	Ciclicamente asciutto e bagnato.	Calcestruzzo armato ordinario o precompresso in esterni con superfici soggette a alternanze di asciutto ed umido. Calcestruzzi a vista in ambienti urbani. Superfici a contatto con l'acqua non comprese nella classe XC2.	0,50	C 32/40						
3 Corrosi	one indotta d	a cloruri esclusi quelli	provenenti dall'acqua di mare								
5 a	XD1	Umidità moderata.	Calcestruzzo armato ordinario o precompresso in superfici o parti di ponti e viadotti esposti a spruzzi d'acqua contenenti cloruri.	0,55	C 28/35						
4 a 5 b	XD2	Bagnato, raramente asciutto.	Calcestruzzo armato ordinario o precompresso in elementi strutturali totalmente immersi in acqua anche industriale contenete cloruri (Piscine).	0,50	C 32/40						
5 c	XD3	Ciclicamente bagnato e asciutto.	Calcestruzzo armato ordinario o precompresso, di elementi strutturali direttamente soggetti agli agenti disgelanti o agli spruzzi contenenti agenti disgelanti. Calcestruzzo armato ordinario o precompresso, elementi con una superficie immersa in acqua contenente cloruri e l'altre esposta all'aria. Parti di ponti, pevimentazioni e parcheggi per suto.	0,45	C 35/45						

Classe esposizione norma UNI 9858	Classe esposizione norma UNI 11104 UNI EN 206 –1	Descrizione dell'ambiente	Esemplo	Massimo rapporto a/c	Minima Classe di resistenza	Contenuto minimo in aria (%)
4 Corrosi	one indotta	da cloruri presenti nell'a	acqua di mare			
4 a 5 b	XS1	Esposto alla salsedine marina ma non direttamente in contatto con l'acqua di mare.	Calcestruzzo armato ordinario o precompresso con elementi strutturali sulle coste o in prossimità.	0,50	C 32/40	
	XS2	Permanentemente sommerso.	Calcestruzzo armato ordinario o precompresso di strutture marine completamente immersi in acqua.	0,45	C 35/45	
	XS3	Zone esposte agli spruzzi o alle marea.	Calcestruzzo armato ordinario o precompresso con elementi strutturali esposti alla battigia o alle zone soggette agli spruzzi ed onde del mare.	0,45	C 35/45	
5 Attacco	dei cicli di g	elo/disgelo con o senza				
2 b	XF1	Moderata saturazione d'acqua,in assenza di agente disgelante.	Superfici verticali di calcestruzzo come facciate e colonne esposte alla pioggia ed al gelo. Superfici non verticali e non soggette alla completa saturazione ma esposte al gelo, alla pioggia o all'acqua.	0,50	C 32/40	
3	XF2	Moderata saturazione d'acqua, in presenza di agente disgelante.	Elementi come parti di ponti che in altro modo sarebbero classificati come XF1 ma che sono esposti direttamente o indirettamente agli agenti disgelanti.	0,50	C 25/30	3,0
2 b	XF3	Elevata saturazione d'acqua, in assenza di agente disgelante	Superfici orizzontali în edifici dove l'acqua può accumularsi e che possono essere soggetti ai fenomeni di gelo, elementi soggetti a frequenti bagnature ed esposti al gelo.	0,50	C 25/30	3,0
3	XF4	Elevata saturazione d'acqua, con presenza di agente antigelo oppure acqua di mare.	Superfici orizzontali quali strade o pavimentazioni esposte al gelo ed ai sali disgelanti in modo diretto o indiretto, elementi esposti al gelo e soggetti a frequenti bagnature in presenza di agenti disgelanti o di acqua di mare.	0,45	C 28/35	3,0
6 Attacco	chimico**					
5 a	XA1	Ambiente chimicamente debolmente aggressivo secondo il prospetto 2 della UNI EN 206-1	Contenitori di fanghi e vasche di decantazione. Contenitori e vasche per acque reflue.	0,55	C 28/35	
4 a 5 b	XA2	Ambiente chimicamente moderatamente aggressivo secondo il prospetto 2 della UNI EN 206-1	Elementi strutturali o pareti a contatto di terreni aggressivi.	0,50	C 32/40	
5 c	XA3	Ambiente chimicamente fortemente aggressivo secondo il prospetto 2 della UNI EN 206-1	Elementi strutturali o pareti a contatto di acque industriali fortemente aggressive. Contentori di foraggi, mangimi e liquame provenienti dall'allevamento animale. Torri di raffreddamento di fumi di gas di scarico industriali.	0,45	C 35/45	

Classi di esposizione secondo norma UNI - EN 206-2006

La determinazione delle classi di resistenza dei conglomerati dei conglomerati, di cui ai successivi paragrafi, sono state inoltre determinate tenendo conto delle classi minime stabilite dalla stessa norma UNI-EN 11104, di cui alla successiva tabella:

a	-	1
9	g.	1
ď	lic q	ы
		1
		1
		1

UNI 11104:2004

prospetto 4 Valori limiti per la composizione e le proprietà del calcestruzzo

									Classi di	esposizio	ne							
	Nessun rischio di corrosione dell'armatura		Corrosione delle armature ndotta dalla carbonatazione			Corrosione delle armature indotta da cloruri					Attac	co da cicli	di gelo/d	Ambiente aggressivo per attacco chimico				
						Acqua di mare (Cloruri provenienti da altre fonti									
	X0	XC1	XC2	XC3	XC4	XS1	XS2	XS3	XD1	XD2	XD3	XF1	XF2	XF3	XF4	XA1	XA2	XA3
Massimo rapporto a/c	-	0,	0,60 0,55 0,5		0,50	0,50 0,45 0,55		0,55	0,50	0,45	0,50	0,50 0,4		0,45	0,55	0,50	0,45	
Minima classe di resistenza*)	C12/15	C25	5/30	C28/35	C32/40	C32/40	C3	5/45	C28/35	C32/40	C35/45	32/40	25/	30	28/35	28,35	32/40	35/45
Minimo contenuto in cemento (kg/m³)	-	30	300 320		340	340	3	60	320	340	360	320	320 340 360		360	320	340	360
Contenuto minimo in aria (%)							3,0ª)											
Altri requisiti												Aggregati conformi alla UNI EN 12620 di adeguata resistenza al gelo/disgelo						

Nel prospetto 7 della UNI EN 206-1 viene riportata la classe C8/10 che corrisponde a specifici calcestruzzi destinati a sottofondazioni e ricoprimenti. Per tale classe dovrebbero essere definite le prescrizioni di durabilità nei riguardi di acque o terreni aggressivi.

Classi di resistenza minima del calcestruzzo secondo UNI – 11104

I copriferri di progetto adottati per le barre di armatura, tengono infine conto inoltre delle prescrizioni di cui alla Tabella C4.1.IV della Circolare n617 del 02-02-09; si è in particolare previsto di adottare i seguenti Copriferri minimi espressi in mm

Fondazione ed elevazioni: 40 mm

Pali di fondazione: 60 mm

Quando il calcestruzzo non contiene aria aggiunta, le sue prestazioni devono essere verificate rispetto ad un calcestruzzo aerato per il quale è provata la resistenza al gelo/disgelo, da determinarsi secondo UNI 7087, per la relativa classe di esposizione.

Qualora la presenza di solfati comporti le classi di esposizione XA2 e XA3 è essenziale utilizzare un cemento resistente ai solfati secondo UNI 9156.

	TALFER E DELLO STATO ITA				O TRATTA	CANCELLO -	– BENEVENTO. ELESINO – VITUL	.ANO.
Muro Di protezi	ione – Relazione	e di calco	olo	COMMESSA IF0H	LOTTO 02 D 11	CODIFICA	DOCUMENTO OC000 5001	REV.
Valore caratte	40 eristico della i 33.2	resisten MPa resisten MPa	nza a compres nza a compres (0,83*R _{ck})				-	-
f _{cm} =	41.2	MPa	(fck+8)					
Resistenza a		1						
f _{ctm} =	3.10	MPa	Valore medic	0				
f _{ctk,0,05} = Resistenza a flessione:	2.17 trazione per	MPa	Valore carati	teristico frat	tile 5%			
f _{cfm} =	3.7	MPa	Valore medic)				
f _{cfk,0,05} =	2.6	MPa	Valore carati	teristico frat	tile 5%			
Coefficiente p	oarziale per le	verificl	he agli SLU:					
γ _c =	1.5							

Per situazioni di carico eccezionali, tale valore va considerato pari ad 1,0

MPa

MPa

MPa

Per spessori minori di 50mm e calcestruzzi ordinari, tale valore va ridotto del 20%

°C⁻¹

MPa

Tensione di aderenza di calcolo acciaio-calcestruzzo

(0,85*fck/γs)

 $(f_{ctk\ 0.05}/\gamma s)$

 $\text{(2,25*}f_{ctk^*}\eta/\gamma_{\mathrm{S}})$

Modulo di elasticità tangenziale:

G_{cm}=

14018

1,2*fctd

Resistenza di calcolo a compressione allo SLU:

Resistenza di calcolo a trazione diretta allo SLU:

Resistenza di calcolo a trazione per flessione SLU:

18.8

f_{ctd f}=

E_{cm}=

Modulo di Poisson: v = 0.

η=

 $f_{bd} =$

1.45

1.74

33643

0.00001

1.00

3.25

Modulo di elasticità normale :

Coefficiente di dilatazione lineare

FOGLIO 11 di 32

Nel caso di armature molto addensate, o ancoraggi in zona tesa tale valore va diviso per 1,5

Tensioni massime per la verifica agli SLE (Prescrizioni Manuale RFI Parte 2-Sezione 2)

 $\sigma_{\text{cmax QP}}$ = (0,40 f_{cK}) = 13.28 MPa (Combinazione di Carico Quasi Permanente)

 $\sigma_{\text{cmax R}}$ = (0,55 f_{cK}) = 18.26 MPa (Combinazione di Carico Caratteristica - Rara)

Per spessori minori di 50mm e calcestruzzi ordinari, tale valori vanno ridotti del 20%

3.3	Calce	estruzzo per	Pali di Fond	lazione (C 25/30)
Valore	cara	tteristico della	a resistenza a	compressione cubica a 28 gg:
	R _{ck} =	30	MPa	
Valore	cara	tteristico della	a resistenza a	n compressione cilindrica a 28 gg:
	f _{ck} =	24.9	MPa	$(0.83*R_{ck})$
Resist	enza	a compressio	ne cilindrica	media:
	f _{cm} =	32.9	MPa	(fck+8)
Resist	enza	a trazione ass	siale:	
	f _{ctm} =	2.56	MPa	Valore medio
	Г		1	
f _{ctk}	, _{0,05} =	1.79	MPa	Valore caratteristico frattile 5%
Resist	enza	a trazione per	flessione:	
	f _{cfm} =	3.1	MPa	Valore medio
	٠ [,	
f _{cfk}	.0.05=	2.1	MPa	Valore caratteristico frattile 5%
Coeffi	ciente	e parziale per	le verifiche a	gli SLU:
	γ _c =	1.5		
Per situa	azioni d	i carico ecceziona	<u>li, tale valore va c</u>	onsiderato pari ad 1,0
Resist		di calcolo a c	-	
	f _{cd} =	14.1	MPa	$(0.85 \text{*fck/}\gamma \text{s})$
Resist	enza	di calcolo a tr	azione diretta	a allo SLU:
	f _{ctd} =	1.19	MPa	$(f_{\text{ctk }0.05}/\gamma s)$
Resist	enza	di calcolo a tr	azione per flo	essione SLU:
f	ctd f=	1.43	MPa	1,2*fctd
Per spes	ssori mi	inori di 50mm e ca	lcestruzzi ordinar	i, tale valore va ridotto del 20%
Modul	o di o	Jasticità norm	nalo :	Modulo di alasticità tangonziale:

Modulo di elasticità normale :Modulo di elasticità tangenziale: $E_{cm}=$ 31447MPa $G_{cm}=$ 13103MPa

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		TRATTA	CANCELLO -	- BENEVENTO. ELESINO – VITUL	.ANO.	
Muro Di protezione – Relazione di calcolo	COMMESSA	LOTTO 02 D 11	CODIFICA	DOCUMENTO OC000 5001	REV.	FOGLIO

Modulo di F	Poisson:	
ν=	0.2	
Coefficiente	e di dilatazione	e lineare
α=	0.00001	°C ⁻¹

Tensione di aderenza di calcolo acciaio-calcestruzzo

$$η = 1.00$$
 $f_{bd} = 2.69$
MPa $(2,25*f_{ctk*}η/γs)$

Nel caso di armature molto addensate, o ancoraggi in zona tesa tale valore va diviso per 1,5

Tensioni massime per la verifica agli SLE (Prescrizioni Manuale RFI Parte 2-Sezione 2)

$$\sigma_{cmax\ QP}$$
 = (0,40 f_{cK}) = 9.96 MPa (Combinazione di Carico Quasi Permanente)
$$\sigma_{cmax\ R}$$
 = (0,55 f_{cK}) = 13.70 MPa (Combinazione di Carico Caratteristica - Rara)

Per spessori minori di 50mm e calcestruzzi ordinari, tale valori vanno ridotti del 20%

3.4 Calcestruzzo magro per Getti di livellamento/sottofondazioni (C12/15)

Valore caratteristico della resistenza a compressione cubica a 28 gg:

R_{ck}= 15 MPa

Valore caratteristico della resistenza a compressione cilindrica a 28 gg:

 $f_{ck} = 12.5$ MPa $(0.83*R_{ck})$

Resistenza a compressione cilindrica media:

 f_{cm} = 20.5 MPa (fck+8)

Si omettono resistenze e/o tensioni di calcolo, essendo tale conglomerato previsto per parti d'opera senza funzioni strutturali.

3.5 Acciaio in barre d'armatura per c.a. (B450C)

Tensione caratteristica di rottura:

Tensione caratteristica allo snervamento:

 f_{vk} = 450 MPa (frattile al 5%)

Fattore di sovraresistenza (nel caso di impiego di legame costitutivo tipo bilineare con incrudimento)

 $k=f_{tk}/f_{vk}=$ 1.20 MPa

Allungamento a rottura (nel caso di impiego di legame costitutivo tipo bilineare con incrudimento)

 $(A_{at})_k = \varepsilon_{uk} = 7.5$ %

 $\varepsilon_{ud} = 0.9 \ \varepsilon_{uk} = 6.75$ %

Coefficiente parziale per le verifiche agli SLU:

 $\gamma_c = 1.15$

Per situazioni di carico eccezionali, tale valore va considerato pari ad 1,0

Resistenza di calcolo allo SLU:

 f_{yd} = 391.3 MPa (f_{yk}/γ_s)

Modulo di elasticità :

E_f= **210000** MPa

Tensione massima per la verifica agli SLE (Prescrizioni Manuale RFI Parte 2-Sezione 2)

 $\sigma_{s max} = (0.75 f_{vK}) = 360$ MPa Combinazione di Carico Caratteristica(Rara)

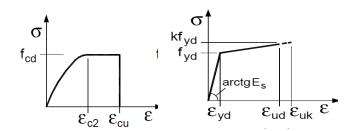
GRUPPO FERROVIE DELLO STATO ITALIANE		TRATTA	CANCELLO -	- BENEVENTO. ELESINO – VITUL	ANO.	
Muro Di protezione – Relazione di calcolo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	IF0H	02 D 11	CL	OC000 5001	Α	15 di 32

4. CARATTERIZZAZIONE SISMICA DEL SITO

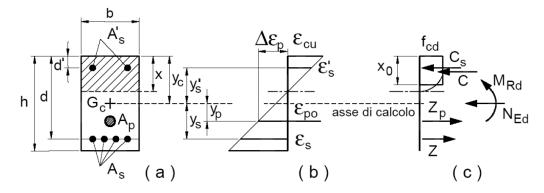
Considerando le masse degli elementi strutturali, l'azione sismica genera sollecitazioni inferiori a quelle date dall'azione eccezionale dell'urto da traffico ferroviario, con le quali non va comunque combinata.

Si trascurano pertanto gli effetti sulle strutture dovuti alle azioni sismiche in quanto non dimensionanti.

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	RADDOPPIO	TRATTA	ITINERARIO NAPOLI-BARI. RADDOPPIO TRATTA CANCELLO – BENEVENTO. II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO.			
Muro Di protezione – Relazione di calcolo	COMMESSA IFOH	LOTTO 02 D 11	CODIFICA CL	DOCUMENTO	REV.	FOGLIO


5. CRITERI GENERALI PER LE VERIFICHE STRUTTURALI

I criteri generali di verifica utilizzati per la valutazione delle capacità resistenti delle sezioni, per la condizione SLU, e per le massime tensioni nei materiali nonché per il controllo della fessurazione, relativamente agli SLE, sono quelli definiti al p.to 4.1.2 del DM 14.01.08.


5.1 VERIFICHE ALLO SLU

5.1.1 Pressoflessione

La determinazione della capacità resistente a flessione/pressoflessione della generica sezione, viene effettuata con i criteri di cui al punto 4.1.2.1.2.4 delle NTC08, secondo quanto riportato schematicamente nelle figure seguito, tenendo conto dei valori delle resistenze e deformazioni di calcolo riportate al paragrafo dedicato alle caratteristiche dei materiali:

Legami costitutivi Calcestruzzo ed Acciaio -

Schema di riferimento per la valutazione della capacità resistente a pressoflessione generica sezione -

La verifica consisterà nel controllare il soddisfacimento della seguente condizione:

ITINERARIO NAPOLI-BARI.

RADDOPPIO TRATTA CANCELLO - BENEVENTO.

II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO.

Muro Di protezione - Relazione di calcolo

COMMESSA IF0H

CODIFICA

DOCUMENTO

REV. **FOGLIO**

LOTTO 02 D 11 OC000 5001 17 di 32

$$M_{Rd} = M_{Rd}(N_{Ed}) \ge M_{Ed}$$

dove

è il valore di calcolo del momento resistente corrispondente a N_{Ed}; M_{Rd}

è il valore di calcolo della componente assiale (sforzo normale) dell'azione; N_{Ed}

è il valore di calcolo della componente flettente dell'azione. M_{Ed}

5.1.2 Taglio

La resistenza a taglio VRd della membratura priva di armatura specifica risulta pari a:

$$V_{Rd} = \left\{0.18 \cdot k \cdot \frac{\left(100 \cdot \rho_1 \cdot f_{ck}\right)^{1/3}}{\gamma_c + 0.15 \cdot \sigma_{cp}}\right\} \cdot b_w \cdot d \ge v_{min} + 0.15 \cdot \sigma_{cp} \cdot b_w d$$

Dove:

•
$$v_{\min} = 0.035 \cdot k^{3/2} \cdot f_{ck}^{1/2}$$
;

•
$$k = 1 + (200/d)^{1/2} \le 2$$
;

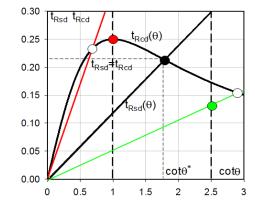
•
$$\rho_1 = A_{sw}/(b_w^*d)$$

- d = altezza utile per piedritti soletta superiore ed inferiore;
- b_w= 1000 mm larghezza utile della sezione ai fini del taglio.

In presenza di armatura, invece, la resistenza a taglio V_{Rd} è il minimo tra la resistenza a taglio trazione V_{Rsd} e la resistenza a taglio compressione V_{Rcd}

$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot \sin \alpha$$

$$V_{Rcd} = 0.9 \cdot d \cdot b_{w} \cdot \alpha_{c} \cdot f_{cd} \cdot \frac{\left(ctg\alpha + ctg\theta\right)}{\left(1 + ctg^{2}\theta\right)}$$


Essendo:

$$1 \le \operatorname{ctg} \theta \le 2.5$$

		TRATTA	CANCELLO -	- BENEVENTO. ELESINO – VITUL	ANO.	
Muro Di protezione – Relazione di calcolo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	IF0H	02 D 11	CL	OC000 5001	Α	18 di 32

Per quanto riguarda in particolare le verifiche a taglio per elementi armati a taglio, si è fatto riferimento al metodo del traliccio ad inclinazione variabile, in accordo a quanto prescritto al punto 4.1.2.1.3 delle NTC08, considerando ai fini delle verifiche, un angolo θ di inclinazione delle bielle compresse del traliccio resistente tale da rispettare la condizione.

$$1 \le \text{ctg } \theta \le 2.5$$
 $45^{\circ} \ge \theta \ge 21.8^{\circ}$

- Se la $\cot \theta^*$ è compresa nell'intervallo (1,0-2,5) è possibile valutare il taglic resistente $V_{Rd}(=V_{Rcd}=V_{Rsd})$
- Se la $\cot\theta^*$ è maggiore di 2.5 la crisi è da attribuirsi all'armatura trasversale e il taglio resistente $V_{Rd}(=V_{Rsd})$ coincide con il massimo taglio sopportate dalle armature trasversali valutabile per una $\cot\theta=2,5$.
- Se la $\cot\theta^*$ è minore di 1.0 la crisi è da attribuirsi alle bielle compresse e taglio resistente $V_{Rd}(=V_{Rcd})$ coincide con il massimo taglio sopportato dalle bielle di calcestruzzo valutabile per una $\cot\theta=1,0$.

L'angolo effettivo di inclinazione delle bielle (θ) assunto nelle verifiche è stato in particolare valutato, nell'ambito di un problema di verifica, tenendo conto di quanto di seguito indicato :

$$\cot \theta^* = \sqrt{\frac{v \cdot \alpha_c}{\omega_{sw}} - 1}$$

(θ^* angolo di inclinazione delle bielle cui corrisponde la crisi contemporanea di bielle compresse ed armature)

dove

$$v = f'cd / fcd = 0.5$$

f 'cd = resistenza a compressione ridotta del calcestruzzo d'anima

f cd = resistenza a compressione di calcolo del calcestruzzo d'anima

 ω_{sw} : Percentuale meccanica di armatura trasversale.

$$\omega_{sw} = \frac{A_{sw} f_{yd}}{b s f_{cd}}$$

5.2 VERIFICA SLE

La verifica nei confronti degli Stati limite di esercizio, consiste nel controllare, con riferimento alle sollecitazioni di calcolo corrispondenti alle Combinazioni di Esercizio il tasso di Lavoro nei Materiali e l'ampiezza delle fessure attesa, secondo quanto di seguito specificato

5.2.1 Verifiche alle tensioni

La verifica delle tensioni in esercizio consiste nel controllare il rispetto dei limiti tensionali previsti per il calcestruzzo e per l'acciaio per ciascuna delle combinazioni di carico caratteristiche "Rara" e "Quasi Permanente"; i valori tensionali nei materiali sono valutati secondo le note teorie di analisi delle sezioni in c.a. in campo elastico e con calcestruzzo "non reagente" adottando come limiti di riferimento, trattandosi nel caso in specie di opere Ferroviarie, quelli indicati nel documento " Specifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario RFI DTC INC PO SP IFS 001 A del 30-12-16 ", ovvero:

Strutture in c.a.

Tensioni di compressione del calcestruzzo

Devono essere rispettati i seguenti limiti per le tensioni di compressione nel calcestruzzo:

- per combinazione di carico caratteristica (rara): 0,55 f_{ek};
- per combinazioni di carico quasi permanente: 0,40 f_{ck};
- per spessori minori di 5 cm, le tensioni normali limite di esercizio sono ridotte del 30%.

Tensioni di trazione nell'acciaio

Per le armature ordinarie, la massima tensione di trazione sotto la combinazione di carico caratteristica (rara) non deve superare $0.75~f_{\gamma k}$.

ITINERARIO NAPOLI-BARI. RADDOPPIO TRATTA CANCELLO – BENEVENTO. II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO.					
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RADDOPPIC II LOTTO FU	RADDOPPIO TRATTA II LOTTO FUNZIONAL COMMESSA LOTTO	RADDOPPIO TRATTA CANCELLO - II LOTTO FUNZIONALE FRASSO TE COMMESSA LOTTO CODIFICA	RADDOPPIO TRATTA CANCELLO – BENEVENTO. II LOTTO FUNZIONALE FRASSO TELESINO – VITUL COMMESSA LOTTO CODIFICA DOCUMENTO	RADDOPPIO TRATTA CANCELLO – BENEVENTO. II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO. COMMESSA LOTTO CODIFICA DOCUMENTO REV.

5.2.2 Verifiche a fessurazione

La verifica a fessurazione consiste nel controllo dell'ampiezza massima delle fessure per le combinazioni di carico di esercizio i cui valori limite sono stabiliti, nell'ambito del progetto di opere ferroviarie, nel documento RFI DTC SICS MA IFS 001 A – 2.5.1.8.3.2.4 (*Manuale di progettazione delle opere civili del 30/12/2016*).

In particolare l'apertura convenzionale delle fessure δ_f dovrà rispettare i seguenti limiti:

- $\delta_f \le w_1 = 0.2 \, mm$ per tutte le strutture in condizioni ambientali aggressive o molto aggressive (così come identificate nel par. 4.1.2.2.4.3 del DM 14.1.2008 Tab 4.1.III), per tutte le strutture a permanente contatto con il terreno e per le zone non ispezionabili di tutte le strutture;
- $\delta_f \leq w_2 = 0.3 \ mm$ per strutture in condizioni ambientali ordinarie.

Tabella 4.1.III – Descrizione delle condizioni ambientali

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

<u>Tabella 4.1.III – DM 14.01.2008</u>

In definitiva, nel caso in esame, con riferimento alle indicazioni della tabella di cui in precedenza, si adotta il limite **w1=0,20 mm** sia per le parti in elevazione che per quelle in fondazione, in quanto in entrambi i casi trattasi di strutture a permanente contatto col terreno.

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		TRATTA	CANCELLO -	- BENEVENTO. ELESINO – VITUL	ANO.	
Muro Di protezione – Relazione di calcolo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	IF0H	02 D 11	CL	OC000 5001	Α	21 di 32

6. RISULTATI E VERIFICHE MURI DI PROTEZIONE

6.1 Azioni eccezionali da urto

Con riferimento al paragrafo 3.6.3.4 delle NTC il quale afferma che:

"All'occorrenza di un deragliamento può verificarsi il rischio di collisione fra i veicoli deragliati e le strutture adiacenti la ferrovia. Queste ultime dovranno essere progettate in modo da resistere alle azioni conseguenti ad una tale evenienza.

Dette azioni devono determinarsi sulla base di una specifica analisi di rischio, tenendo conto della presenza di eventuali elementi protettivi o sacrificali (respingenti) ovvero di condizioni di impianto che possano ridurre il rischio di accadimento dell'evento (marciapiedi, controrotaie, ecc.).

In mancanza di specifiche analisi di rischio possono assumersi le seguenti azioni statiche equivalenti, in funzione della distanza di degli elementi esposti dall'asse del binario:

- per 5 m < d ≤ 15 m:
 - 4000 kN in direzione parallela alla direzione di marcia dei convogli ferroviari;
 - 1500 kN in direzione perpendicolare alla direzione di marcia dei convogli ferroviari;
- per 5 m < d \leq 15 m:
 - 2000 kN in direzione parallela alla direzione di marcia dei convogli ferroviari;
 - 750 kN in direzione perpendicolare alla direzione di marcia dei convogli ferroviari;
- per d > 15 m pari a zero in entrambe le direzioni.

Queste forze dovranno essere applicate a 1,80 m dal piano del ferro e non dovranno essere considerate agenti simultaneamente"

Per quanto concerne la distribuzione di questa forza sul paramento si è considerata una ripartizione nel paramento secondo un angolo di 45 gradi a partire dal punto di applicazione della forza.

In particolare si ha:

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		TRATTA	CANCELLO -	- BENEVENTO. :LESINO – VITUL	ANO.	
Muro Di protezione – Relazione di calcolo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	IF0H	02 D 11	CL	OC000 5001	Α	22 di 32

PROSPETTO TIPO MURO ANTISVIO

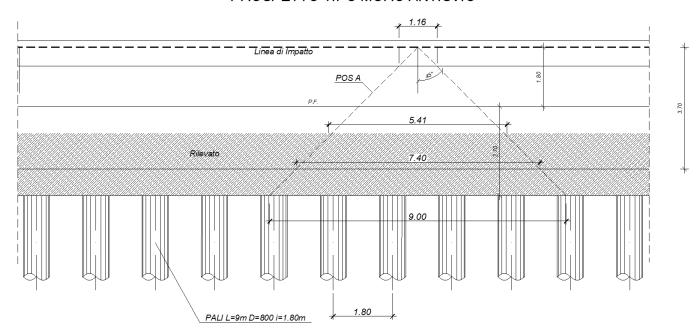


Figura 5: Schema diffusione azione eccezionale da urto sul paramento del muro

Pertanto per le due tipologie di palo definite in premessa si ha:

6.1.1 Muro Di protezione Tipo A $(D \le 5m)$

H svio = 1500.0kN (Azione eccezionale da urto da traffico ferroviario par.3.6.3.4 NTC2008)

Ld (m) = 9.0 m (lunghezza di diffusione longitudinale del carico da urto)

Hsvio,d = 166.7 kN/m (Hsvio / Ld)

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		TRATTA	CANCELLO	– BENEVENTO. ELESINO – VITUL	.ANO.	
Muro Di protezione – Relazione di calcolo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	IF0H	02 D 11	CL	OC000 5001	Α	23 di 32

6.1.2 Muro Di protezione Tipo B $(5m < D \le 15m)$

H svio = 750.0kN (Azione eccezionale da urto da traffico ferroviario par.3.6.3.4 NTC2008)

Ld (m) = 9.0 m (lunghezza di diffusione longitudinale del carico da urto)

Hsvio,d = 83.3 kN/m(Hsvio/Ld)

6.2 Verifica pali di fondazione a carico limite orizzontale

Per la verifica del carico limite orizzontale si utilizza la teoria di Broms e si considerano pali con rotazione in testa impedita.

Le equazioni con cui si determina il carico limite a forze orizzontali dei pali sono definite di seguito al variare del tipo di meccanismo considerato.

In terreni coesivi si ha:

$$\begin{array}{ll} \underline{\textit{Palo corto:}} & \qquad \qquad H = 9c_u d^2 \bigg(\frac{L}{d} - 1.5 \bigg) \\ \\ \underline{\textit{Palo intermedio:}} & \qquad \qquad H = -9c_u d^2 \bigg(\frac{L}{d} + 1.5 \bigg) + 9c_u d^2 \sqrt{2 \bigg(\frac{L}{d} \bigg)^2 + \frac{4}{9} \frac{M_y}{c_u d^3} + 4.5} \\ \\ \underline{\textit{Palo lungo:}} & \qquad \qquad H = -13.5c_u d^2 + c_u d^2 \sqrt{182.25 + 36 \frac{M_y}{c_u d^3}} \end{array}$$

dove:

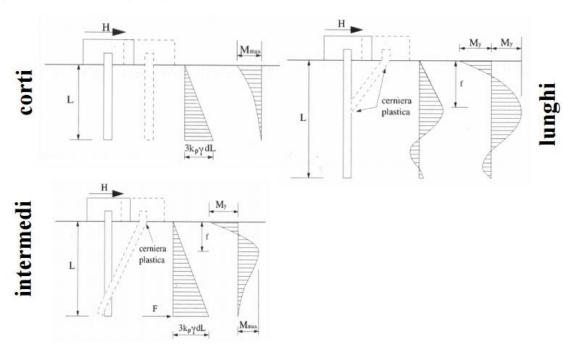
H = carico limite orizzontale del palo;

cu = resistenza non drenata del terreno;

My = momento di plasticizzazione del palo;

L = lunghezza del palo;

d = diametro del palo.


In terreni incoerenti si ha (vedasi figura seguente):

$$\begin{array}{ll} {\it Palo \ corto:} & H = 1.5 k_p \gamma d^3 {\left(\frac{L}{d}\right)}^2 \\ \\ {\it Palo \ intermedio:} & H = \frac{1}{2} k_p \gamma d^3 {\left(\frac{L}{d}\right)}^2 + \frac{M_y}{L} \\ \\ {\it Palo \ lungo:} & H = k_p \gamma d^3 \sqrt[3]{\left(3.676 \, \frac{M_y}{k_p \gamma d^4}\right)^2} \end{array}$$

Dove, oltre ai termini già definiti,

kp = coefficiente di spinta passiva.

Il valore di H dovrà essere confrontato con il massimo valore del taglio agente sul palo al variare delle combinazioni (V_{pd}); il valore determinato con la teoria di Broms dovrà essere ridotto secondo quanto prevede la normativa vigente.

$$H \lim = \frac{H}{\xi \cdot \gamma_T} \ge Vpd$$

dove:

H = valore limite in funzione del meccanismo attivato;

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI-BARI. RADDOPPIO TRATTA CANCELLO – BENEVENTO. II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO.					
Muro Di protezione – Relazione di calcolo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	IFOH	02 D 11	CL	OC000 5001	Α	25 di 32

 ξ = fattore di correlazione in funzione delle verticali indagate;

My = 2121.2 (kNm) (momento di plasticizzazione)

 $\gamma_{\rm T}$ = fattore di resistenza laterale secondo la tabella di seguito riportata.

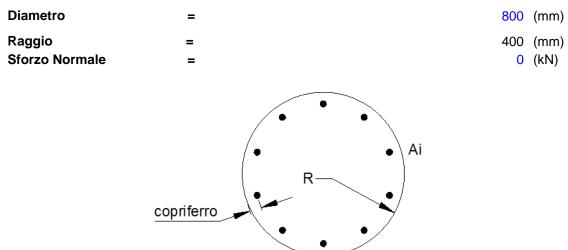
Coefficiente parziale γ_T per le verifiche agli stati limite ultimi di pali soggetti a carichi trasversali

Resistenze Caratteristiche (R)	R1	R2	R3
Resistenza laterale:	1.00	1.60	1.30

Nel caso in esame per le due tipologie di muri di protezione definiti in premessa si ha:

6.2.1 Muro Di protezione Tipo A $(D \le 5m)$

H svio = 1500.0 kN(Azione eccezionale da urto da traffico ferroviario par.3.6.3.4 NTC2008) Ld(m) = 9.0 m(lunghezza di diffusione longitudinale del carico da urto) Hsvio,d = 166.7 kN/m(Hsvio/Ld) ip = 1.8(interasse pali) (eccentricità verticale carico-testa palo effettiva) ev = 4.51.2 m (eccentricità verticale aggiuntiva fino a quota reazione terreno ≅1,5 D) e = D = 0.8 m(Diametro palo) (lunghezza effettiva palo) Lp = 8.0 mLp' = 6.8(lunghezza di palo reagente alle azioni orizzontali) $\phi' = 30.0$ ° (Angolo di attrito terreni) KP = 3.0(Coefficiente di Spinta Passiva - Teoria di Rankine) $y = 20.0 \text{ kN/m}^3$ (Peso unità volume terreno) H svio p = 300.0 kN(taglio sul palo) Mtp = 1710.0 (kN m) (momento massimo a testa palo)


		TRATTA	- BENEVENTO. ELESINO – VITUL	ANO.		
Muro Di protezione – Relazione di calcolo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	IF0H	02 D 11	CL	OC000 5001	Α	26 di 32

VALUTAZIONE CARICO LIMITE PALO CORTO

$$H_{LIM} = 604$$
 kN
 $e/D = 7.13$
 $f = 2.89$ m
 $M_{MAX} = 1889$ KNm OK PALO CORTO
 $\xi = 1.4$
 $R = 1.3$
 $H_{d} = 332$ kN
 $cs = 1.11$

Dove il momento di plasticizzazione My è valutato nel modo seguente:

Calcolo del momento di plasticizzazione di una sezione circolare

D

Caratteristiche dei Materiali

calcestruzzo

Rck = 30 (Mpa) fck = 25 (Mpa) γ c = 1.0

 $\alpha_{\rm cc} = 0.85$

 $fcd = \alpha_{cc} fck / \gamma c =$ 21.25 (Mpa)

Acciaio

tipo di acciaio ■ B450C ▼

fyk = 450 (Mpa)

 $\gamma s = 1$

 $fyd = fyk / \gamma s = 450.0 \text{ (Mpa)}$

Es = 206000 (Mpa)

 ϵ_{vs} = 0.218% ϵ_{uk} = 10.000%

Armature

numero			diametro (mn	n)	area (mm²)	copriferro (mm)
36		ф	26	<u>+</u>	19113	80
0	٠	ф	30	+	0	150
0	٠	ф	0	+	0	0

Calcolo

Momento di Plasticizzazione

My = 2121.2 (kN m) Inserisci

	RADDOPPIO	ITINERARIO NAPOLI–BARI. RADDOPPIO TRATTA CANCELLO – BENEVENTO. II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO.					
Muro Di protezione – Relazione di calcolo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
	IF0H	02 D 11	CL	OC000 5001	Α	28 di 32	

6.2.2 Muro Di protezione Tipo B $(5m < D \le 15m)$

750.0 kN (Azione eccezionale da urto da traffico ferroviario par.3.6.3.4 NTC2008) H svio = Ld(m) =(lunghezza di diffusione longitudinale del carico da urto) 9.0 m Hsvio,d = 83.3 kN/m(Hsvio/Ld) ip(m) =(interasse pali) ev(m) =4.5 m (eccentricità verticale carico-testa palo effettiva) e(m) =1.2 m (eccentricità verticale aggiuntiva fino a quota reazione terreno ≅1,5 D) D(m) =(Diametro palo) 0.8 m Lp(m) =7.0 m (lunghezza effettiva palo) Lp'(m) =(lunghezza di palo reagente alle azioni orizzontali) 5.8 m 30.0 ° (Angolo di attrito terreni) (Coefficiente di Spinta Passiva - Teoria di Rankine) KP =3.0 **20.0** kN/m³ (Peso unità volume terreno) γ = H svio p = 200.0 kN(taglio sul palo) Mtp =1140.0(kN m) (momento massimo a testa palo)

VALUTAZIONE CARICO LIMITE CARATTERISTICO PALO CORTO

My =1216.6(kN m) (momento di plasticizzazione)

 $H_{LIM} = 407 \text{ kN}$ e/D = 7.13f = 2.38 m

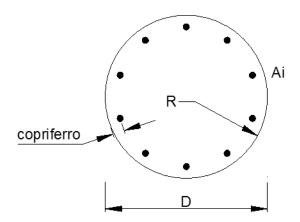
 $M_{MAX} = 1134 \text{ KNm}$

OK PALO CORTO

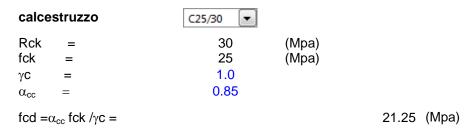
ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI-BARI. RADDOPPIO TRATTA CANCELLO – BENEVENTO. II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO.					
Muro Di protezione – Relazione di calcolo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	IF0H	02 D 11	CL	OC000 5001	Α	29 di 32

 $\xi = 1.4$

R = 1.3


 $H_d = 224 \text{ kN}$

cs= 1.12


Dove il momento di plasticizzazione My è valutato nel modo seguente:

Calcolo del momento di plasticizzazione di una sezione circolare

Caratteristiche dei Materiali

lacksquare

B450C

Acciaio

tipo di acciaio

fyk =

450 (Mpa)

γs =

1

 $fyd = fyk / \gamma s =$

450.0 (Mpa)

Es = 206000 (Mpa)

 $\epsilon_{ys} = \epsilon_{uk} = \epsilon_{uk}$

0.218% 10.000%

Armature

numero			diametro (m	nm)	area (mm²)	copriferro (mm)
22		ф	24	<u>+</u>	9953	80
0	٠	ф	30	\$	0	150
0	٠	ф	0	‡	0	0

Calcolo

Momento di Plasticizzazione

My = 1216.6 (kN m)

Inserisci

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI-BARI. RADDOPPIO TRATTA CANCELLO – BENEVENTO. II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO.					
Muro Di protezione – Relazione di calcolo	COMMESSA IF0H	LOTTO 02 D 11	CODIFICA CL	DOCUMENTO OC000 5001	REV.	FOGLIO 31 di 32

6.3 Verifica Muro elevazione

6.3.1 Muro Di protezione Tipo A $(D \le 5m)$

SEZIONE DI SOMMITA

Ld (m) = 1.0 m (lunghezza di diffusione longitudinale del carico da urto)

V = 1500 KN/m

SLU

CLS: C32/40

В	Н	С	Af	Af '	Af t	
cm	cm	cm	AI	Ai	AIL	
100	50	6	10φ24	5 \(\phi 24	1φ12/20x10	

M	N	Т	Mrd	C.S. NM min	Trd long *	C.S. T min (Trd/T)	
kNm	KN	KN	kNm	C.S. NW IIIII	KN	C.S. 1 IIIII (110/1)	
0	0	1500	-	-	1685	1.12	

* θ = 21,8

SEZIONE DI BASE (ext cordolo pali)

Ld (m) = 4.0 m (lunghezza di diffusione longitudinale del carico da urto)

ev(m) = 3.7 m (eccentricità verticale linea impatto - testa cordolo)

M = 1387.5 KNm/m

CLS: C32/40

В	Н	С	Af	Af '	Af t	
cm	cm	cm	Ai	Ai	Ait	
100	82	6	10+10 φ24	5 \(\phi 24	1φ12/20x20	

М	N	T	Mrd	C.S. NM min	Trd long *	C.S. T min (Trd/T)	
kNm	KN	KN	kNm	C.S. NIVI IIIIII	KN	C.S. 1 IIIII (110/1)	
1388	0	0	2421	1.74			

SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI-BARI. RADDOPPIO TRATTA CANCELLO – BENEVENTO. II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO.						
Muro Di protezione – Relazione di calcolo	COMMESSA IF0H	LOTTO 02 D 11	CODIFICA CL	DOCUMENTO OC000 5001	REV.	FOGLIO 32 di 32	

6.3.2 Muro Di protezione Tipo B $(5m < D \le 15m)$

SEZIONE DI SOMMITA

Ld (m) = 1.0 m (lunghezza di diffusione longitudinale del carico da urto)

V = 750 KN/m

SLU

CLS: C32/40

В	Н	С	Af	Δf'	Af t	
m	m	cm	AI	Ai		
100	50	6	5 ¢ 24	5 \(\phi 18	1φ12/20x20	

M	N	Т	Mrd	C.S. NM min	Trd long *	C.S. T min (Trd/T)	
kNm	KN	KN	kNm	C.S. NIVI IIIIII	KN	C.S. 1 IIIII (110/1	
0	0	750	-	-	1260	1.68	

* θ = 21,8

SEZIONE DI BASE (ext cordolo pali)

Ld (m) = 4.0 m (lunghezza di diffusione longitudinale del carico da urto)

ev(m) = 3.7 m (eccentricità verticale linea impatto - testa cordolo)

M = 693.8 KNm/m

CLS: C32/40

В	Н	С	Af	Δf'	Af t	
m	m	cm	Ai	AI	AIL	
100	82	6	10 φ 24	5 \(\phi 18	1φ12/20x20	

M	N	T	Mrd	C.S. NM min	Trd long *	C.S. T min (Trd/T)	
kNm	KN	KN	kNm	C.S. NIVI IIIIII	KN	C.3. 1 IIIII (110/1)	
0	0	0	1297	1.87			