

Società Autostrada Tirrenica p.A. GRUPPO AUTOSTRADE PER L'ITALIA S.p.A.

AUTOSTRADA (A12): ROSIGNANO — CIVITAVECCHIA
LOTTO 3

TRATTO: SCARLINO - GROSSETO SUD

PROGETTO DEFINITIVO

INFRASTRUTTURA STRATEGICA DI PREMINENTE INTERESSE
NAZIONALE LE CUI PROCEDURE DI APPROVAZIONE SONO REGOLATE
DALL' ART. 161 DEL D.LGS. 163/2006

AU- CORPO AUTOSTRADALE

OPERE D'ARTE MINORI TOMBINI CIRCOLARI TIPOLOGIE PROLUNGAMENTI

RELAZIONE DESCRITTIVA E DI CALCOLO PROLUNGAMENTO TOMBINO CIRCOLARE IN CLS E OPERE DI SBOCCO (≥ Ø 2500)

IL RESPONSABILE PROGETTAZIONE SPECIALISTICA

Ing. Guido Furlanetto Ord. Ingg. Milano N.10984

RESPONSABILE UFFICIO STR

IL RESPONSABILE INTEGRAZIONE PRESTAZIONI SPECIALISTICHE

Ing. Alessandro Alfi Ord. Ingg. Milano N. 20015

COORDINATORE GENERALE APS

IL DIRETTORE TECNICO

Ing. Maurizio Torresi Ord. Ingg. Milano N. 16492

RESPONSABILE DIREZIONE SVILUPPO INFRASTRUTTURE

RIFERIMENTO ELABORATO					DATA:		REVISIONE
	DIRETTORIO			FILE	FEBBRAIO 2011	n.	data
 	codice commessa	N.Prog.	unita'	n. progressivo	1200.000		
	1				SCALA:		
'	1 1 2 1 2 1 2	02	ISITIRI4	4 0 8			
				ELABORAZIONE			
		\neg		GRAFICA			

RESPONSABILE DI COMMESSA

Ing. Michele Parrella Ord. Ingg. Avellino N. 933

COORDINATORE OPERATIVO DI PROGETTO

VISTO DEL COMMITTENTE

VISTO DEL CONCEDENTE

INDICE

IN	DICE		. 1
1.	INTRO	DDUZIONE	. 4
	1.1	DESCRIZIONE GENERALE DELLE OPERE	. 4
	1.2	VITA NOMINALE E CLASSE D'USO DELLE OPERE	. 4
	1.3	NORMATIVA DI RIFERIMENTO	. 5
	1.4	MATERIALI	. 5
	1.5	PARAMETRI GEOTECNICI	6
	1.6	DEFINIZIONE DEI PARAMETRI SISMICI	. 7
	1.7	CATEGORIA DI SOTTOSUOLO E CONDIZIONI TOPOGRAFICHE	. 8
	1.8	COEFFICIENTI SISMICI	8
2.	ANAL	ISI DEI CARICHI	. 9
	2.1	CARICHI PERMANENTI	. 9
	2.2	CARICO MOBILE	. 9
	2.3	FRENAMENTO E FORZA CENTRIFUGA	10
	2.4	CARICO TERMICO	10
	2.5	CARICO IDROSTATICO	10
	2.6	PRESSIONE GEOSTATICA	10
	2.7	SPINTA SUI PIEDRITTI	10
3.	TOM	BINI CIRCOLARI DN < 4500 mm	12
	3.1	ANALISI DEI CARICHI	13
	3.2	ANALISI DELLE SOLLECITAZIONI	16
	3.3	TUBO DIA 3300	20
	3.4	TUBO DIA 3600	22
	IMBOC	CHI DEI TOMBINI CIRCOLARI DN<4500 mm	24
	ANALISI	E VERIFICHE SVOLTE CON L'AUSILIO DI CODICI DI CALCOLO	25
N	ORMATI	VA DI RIFERIMENTO	30
M	ODELLA	ZIONE DEI MATERIALI	32
	LEGEND	A TABELLA DATI MATERIALI	32
	TABE	LLA DATI MATERIALI	32
M	ODELLA	ZIONE DELLE SEZIONI	33
	LEGEND	A TABELLA DATI SEZIONI	33

MODELLAZIONE STRUTTURA: NODI	34
LEGENDA TABELLA DATI NODI	34
TABELLA DATI NODI	34
MODELLAZIONE STRUTTURA: ELEMENTI TRAVE	36
TABELLA DATI TRAVI	36
MODELLAZIONE DELLE AZIONI	37
LEGENDA TABELLA DATI AZIONI	37
SCHEMATIZZAZIONE DEI CASI DI CARICO	39
LEGENDA TABELLA CASI DI CARICO	39
DEFINIZIONE DELLE COMBINAZIONI	40
LEGENDA TABELLA COMBINAZIONI DI CARICO	40
AZIONE SISMICA	41
VALUTAZIONE DELL' AZIONE SISMICA	41
RISULTATI ANALISI SISMICHE	42
LEGENDA TABELLA ANALISI SISMICHE	42
RISULTATI NODALI	45
LEGENDA RISULTATI NODALI	45
RISULTATI OPERE DI FONDAZIONE	49
LEGENDA RISULTATI OPERE DI FONDAZIONE	49
LEGENDA RISULTATI ELEMENTI TIPO TRAVE	51
VERIFICHE ELEMENTI TRAVE C.A.	58
LEGENDA TABELLA VERIFICHE ELEMENTI TRAVE C.A	58
STATI LIMITE D' ESERCIZIO	61
LEGENDA TABELLA STATI LIMITE D' ESERCIZIO	61
VERIFICA A FESSURAZIONE MURO(sle)	62

NOTA:

"Le ipotesi progettuali assunte saranno soggette a riscontro mediante ulteriori indagini sulle opere da effettuarsi in una fase successiva".

1. INTRODUZIONE

Nel presente elaborato descrittivo sono riportati i criteri progettuali e le verifiche strutturali eseguite per il dimensionamento e le verifiche di resistenza delle opere necessarie per l'adeguamento, dei tombini in calcestruzzo armato di diametro maggiore di 2500 mm fino a 4500 mm esistenti, alle esigenze del nuovo tracciato del lotto 3 della autostrada A12.

In ordine nella relazione sono descritte le opere in oggetto, sono riportate le norme adottate ed i materiali impiegati, vengono identificati i carichi agenti e in fine vengono riportate le verifiche nelle sezioni significative.

1.1 DESCRIZIONE GENERALE DELLE OPERE.

I tombini che necessitano di un intervento di adeguamento della loro lunghezza alle esigenze del nuovo tracciato e/o della nuova sezione trasversale sono sinteticamente elencati nella tabella seguente in ordine di progressiva:

sez.	Progressiva	LOTTO 3 PARTE 1	tipo	Diametro.	Scheda
*10	2+447.836	Tombino circolare in cls	TC	3300	T151
		LOTTO 3 PARTE 2			
*42	8+346.811	Tombino circolare in cls	TC	3600	T225

Le opere di imbocco e di sbocco avranno una sezione ad U e saranno realizzate con elementi in cemento armato a becco di flauto gettati in opera. Tali elementi ad U saranno composti da una platea di fondazione, su cui si innestano i due muri laterali di altezza variabile a seguire il rilevato e da un muro frontale di delimitazione e di collegamento con il tombino. Lo spessore di tutti gli elementi che compongono la U sarà costante.

Gli elementi che saranno pressi in esame nella presente relazione saranno:

La struttura il calcestruzzo armato del prolungamento del tombino.

Gli elementi in cemento armato dell'imbocco e sbocco becco di flauto.

1.2 VITA NOMINALE E CLASSE D'USO DELLE OPERE

Considerato che le opere oggetto della presente relazione sono opere ordinarie di normale importanza, le azioni di origine sismica sono state calcolate in riferimento ad una vita nominale di $V_N = 50$ anni.

In considerazione del fatto che i manufatti fanno parte di una rete viaria di tipo A, gli si attribuisce una classe d'uso IV ("Reti viarie di tipo A o B, di cui al D. M. 5 novembre 2001, n. 6792 [...]. Ponti e reti viarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico [...]").

L'attribuzione della classe d'uso IV, in combinazione con una vita nominale, si traduce nel considerare un periodo di riferimento dell'azione sismica $V_R = V_N \times C_U = 100$ anni.

1.3 NORMATIVA DI RIFERIMENTO

Le verifiche vengono effettuate nello spirito del metodo semiprobabilistico agli stati limite.

- · Legge 5 Novembre 1971, N. 1086 "Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso ed a struttura metallica";
- · Legge 2 Febbraio 1974, N. 64 "Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche";
- · D.M. 14 gennaio 2008 pubblicato su S.O. n. 30 alla G.U. 4 febbraio 2008, n. 29 –"Approvazione delle nuove norme tecniche per le costruzioni";
- · UNI EN 11104 marzo 2004 "Calcestruzzo: specificazione, prestazione, produzione e conformità", Istruzioni complementari per l'applicazione delle EN 206-1;
- · UNI EN 206-1 ottobre 2006 "Calcestruzzo: specificazione, prestazione, produzione e conformità";
- · Eurocodice 2. Progettazione delle strutture di calcestruzzo. Parte 1-1: Regole generali e regole per gli edifici;
- · Model Code 1990, CEB-FIP.

1.4 MATERIALI

I manufatti in cemento armato della presente relazione sono stati assimilati a tombini circolari e/o tombini scatolari e per la loro costruzione sono stati adottati i seguenti materiali:

- CALCESTRUZZO PER GETTI IN OPERA -

Fondazione e/o Elevazione (vedi tabella materiali)

Classe di esposizione	XC4	(ciclicamente bagnato,	e asciuto) aggressive
Apertura fessure per armatura poco sensibile	carico frequente		\leq w ₂ = 0.30 mm
	Carico	quasi permanente	\leq w ₁ = 0.20 mm

Conforme alla norma EN 206-1

Classe di resistenza minima		C32/40		
Resistenza caratteristica a compressione R_{ck}		40	MPa	
		_		

Resistenza cilindrica caratteristica a compressione $f_{cd} = \alpha \times f_{ck} / \gamma_c = 0.85 \times 32/1.50 = 18.13 \text{ MPa}$

Resistenza cilindrica media $f_{cm} = f_{ck} + 8 = 32 + 8 = 40 \text{ MPa}$

Modulo elastico E $E= 22000(f_{cm}/10)^{0.3} = 22000 \times (40/10)^{0.3} = 33345 \text{ MPa}$

Coefficiente di dilatazione termica 1.20 E-05

Classe di consistenza (slump) S3 (100-150 mm)

 $\begin{array}{ll} \mbox{Dimensione massima aggregato } D_{\mbox{\scriptsize max}} & 25 \mbox{ mm} \\ \mbox{Contenuto minimo di cemento} & 300 \mbox{ Kg/mc} \\ \mbox{Copriferro} & 40 \mbox{ mm} \end{array}$

- CALCESTRUZZO PER MAGRONE DI PULIZIA E LIVELLAMENTO

C 12/15 classe di resistenza.

- ACCIAIO PER ARMATURE ORDINARIE

Classe	B450C	
Tensione di snervamento nominale f _{y,nom}	450	MPa
Tensione di rottura nominale f _{t nom}	540	MPa

Tensione di snervamento di progetto fyd=fyk/ \tilde{a} s fyd = 450/1.15 = 391 MPa

Modulo elastico E 210000 MPa

Coefficiente di dilatazione termica 1.20 E-05

1.5 PARAMETRI GEOTECNICI

È stata assunta per le opere in esame la seguente caratterizzazione geotecnica:

a) Terreni di ricoprimento e rilevato stradale

Peso volume $\tilde{a} = 18 \text{ kN/m}^3$ Peso volume saturo $\tilde{a}_s = 21 \text{ kN/m}^3$ Angolo di attrito $\ddot{o} = 32^\circ$ Coesione 0.000 MPa

b) Terreni di rinfianco

 $\begin{array}{lll} \text{Peso volume} & & \widetilde{a} = 18 \text{ kN/m}^3 \\ \text{Peso volume saturo} & & \widetilde{a}_s = 21 \text{ kN/m}^3 \\ \text{Angolo di attrito} & & \ddot{o} = 30^\circ \\ \text{Coesione} & & 0.000 \text{ MPa} \\ \text{Costante di Winkler} & & 0.000 \text{ MPa/mm} \\ \end{array}$

b) terreno di fondazione dei manufatti scatolari

Coesione 0.000 MPa

Costante di Winkler 0.015 MPa/mm 1500 t/mc Pressione ammissibile 0.200 MPa (2 kg/cm2)

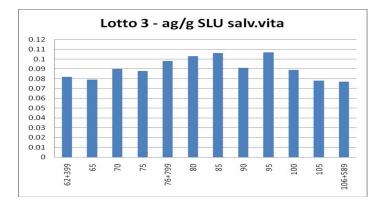
Dalle indicazione sui luoghi non si riscontra la presenza di falda.

1.6 DEFINIZIONE DEI PARAMETRI SISMICI

L'azione sismica adottata fa riferimento ai seguenti parametri:

- V_N vita nominale dell'opera 50 anni

- Classe d'uso dell'opera IV (opere strategiche)


- Coefficiente d'uso Cu = 2

- Periodo di riferimento $V_R = 2 \times 50 = 100 \text{ anni}$

- TR periodo medio di ritorno 949 anni. - Probabilità di superamento nel V_{R} 10%

È stata eseguita una valutazione di parametri sismici lungo l'asse stradale ogni 5000 m e sono stati determinati i valori dei parametri sismici di base a_g , F_0 , T_c^* , secondo le indicazioni del le NTC2008 LOTTO 3

Località	Lat.	Long.	Progr.	a _g / g	Fo	T _c * (s)
Localita	Lat.	LONG.	rrogr.	ug/B	'0	1 C (3)
Fine 2.5 inizio 3.1	42.96151049	10.83698273	62+399	0.082	2.780	0.290
	42.95504052	10.86599350	65+000	0.079	2.790	0.290
	42.95045460	10.92616081	70+000	0.090	2.730	0.290
	42.91972639	10.96100807	75+000	0.088	2.740	0.290
Fine 3.1 inizio 3.2	42.92148630	10.96486900	76+799	0.098	2.690	0.290
	42.91205766	11.01688385	80+000	0.103	2.650	0.290
	42.88621581	11.07164383	85+000	0.106	2.640	0.290
	42.883849	11.076643	<mark>86+000</mark>	0.106	2.640	0.290
	42.84683492	11.07842445	90+000	0.091	2.720	0.290
	42.80163548	11.09567642	95+000	0.107	2.640	0.290
	42.78330708	11.14468575	100+000	0.089	2.740	0.290
	42.74058273	11.14073753	105+000	0.078	2.800	0.300
Fine 3.2	42.72765881	11.13610268	106+589	0.077	2.810	0.300

nel istogramma a lato sono diagrammate i valori di $a_{\rm g}/g$ lungo l'asse stradale.

Si sceglie di dimensionare le opere considerando il valore di accelerazione maggiore riscontrato tra i comuni interessati dall'intervento (i parametri Fo e Tc* sono relativi al comune con ag massima).

Lotto 3 - SLU

 $a_g = 0,106 g$

 $F_0 = 2,640$

 $T_c^* = 0.290 \text{ s}$

1.7 CATEGORIA DI SOTTOSUOLO E CONDIZIONI TOPOGRAFICHE

Ai fini della definizione dell'azione sismica di progetto, ed in riferimento alle caratteristiche medie dei terreni interessati dall'opera e dalla topografia del territorio, si è assunto:

Categoria di sottosuolo D - depositi di terreni a grana grossa scarsamente addensati o terreni a grana fina scarsamente consistenti.

Categoria topografica T1 – superficie pianeggiante, pendii e rilievi isolati con inclinazione media i \leq 15°da cui si sono derivati i valori dei coefficienti di amplificazione stratigrafica S_s e C_c , e topografica S_T sotto riportati:

Per sottosuolo categoria D – Lotto 3

$$S_s = 2.4 - 1.5 \text{ x } F_0 \text{ x } a_g / g = 1.980$$
 dove $0.09 \le S_s \le 1.80$ si assume $S_s = 1.80$

 $S_T = 1.0$ per categoria topografica T1

1.8 COEFFICIENTI SISMICI

Sulla base dei parametri di cui al paragrafo precedente sono stati calcolati i coefficienti sismici kh e kv:

$$k_h = \beta_m x S_s x S_T x a_g / g = 1.00 x 1.80 x 1.00 x 0.106 = 0.191$$

 $k_v = \pm 0.5 k_h = \pm 0.095$

avendo assunto β_m unitario per opere che non siano in grado di subire spostamenti relativi rispetto al terreno (condizioni k_0 di spinta a riposo).

2.ANALISI DEI CARICHI

Vengono di seguito riportati i tipi di carico ed azioni esterne agenti sulla struttura (se presenti caso per caso):

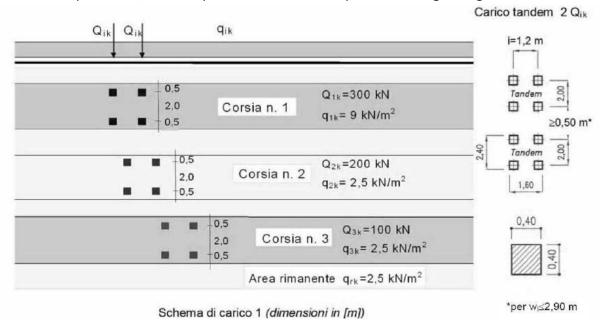
carichi permanenti;

carico mobile;

carico idrostatico (assente);

azione sismica.

2.1 CARICHI PERMANENTI


I carichi permanenti (pesi propri) e permanenti portati dalla struttura assunti sono:

- peso proprio del calcestruzzo armato 25.00 kN/m³;
- peso proprio del terreno di ricoprimento 18.00 kN/m³;
- peso proprio del terreno di rinfianco e di fondazione 18.00 kN/m³;
- peso proprio della pavimentazione stradale 3.00 kN/m² (solo la parte bituminosa 15 cm)

2.2 CARICO MOBILE

Si sono adottati i carichi stabiliti convenzionalmente dalla normativa specifica per il calcolo dei ponti stradali di prima categoria. La larghezza della corsia convenzionale è pari a 3.00 m.

Tale schema è costituito da carichi concentrati su due assi in tandem, applicati su impronte di pneumatico di forma quadrata e lato 0,40 m di intensità pari a Q_{1k} = 300 kN, Q_{2k} = 200 kN e Q_{3k} = 100 kN rispettivamente per la corsia 1,2 e 3 e da carichi uniformemente distribuiti pari a q_{1k} = 9.00 kN/m², q_{2k} = 2.50 kN/m² e q_{3k} = 2.50 kN/m² rispettivamente per le corsie 1,2 e 3. La parte rimanente della carreggiata è caricata solo con un carico uniforme q = 2.50 KN/m². La disposizione dei carichi è riportata nella figura seguente.

Nella disposizione dei carichi si è tenuto conto della diffusione secondo un angolo pari a 45° all'interno della pavimentazione e di H/V = 1/2 all'interno del rilevato o del terreno di ricoprimento.

Per tutti i carichi mobili è già considerato (incluso nei valori) il corrispondente coefficiente di incremento dinamico.

Nel capitolo relativo ai tombini sarà specificato il carico applicato.

La struttura è stata schematizzata a striscia di larghezza unitaria, considerando un'opportuna larghezza collaborante per la diffusione dei carichi mobili.

2.3 FRENAMENTO E FORZA CENTRIFUGA

Le azioni orizzontali agenti a livello pavimentazione applicate dai pneumatici si considerano trascurabili per le strutture in esame in quanto si considera che vengano adeguatamente diffuse all'interno della pavimentazione e nel ricoprimento della struttura ed inoltre, qualora venissero considerate, dovrebbero essere combinate con i valori frequenti dei carichi variabili verticali determinando una condizione di carico non dimensionante.

2.4 CARICO TERMICO

I tubi, realizzati in cemento armato, sono completamente interrati e all'interno o scorre acqua e/o aria quindi si ipotizza che non si sviluppa un gradiente termico tra la faccia contro terra e la faccia esposta. Le opere di imbocco/ sbocco sono da una parte interrati mentre dall'altra sono esposti all'aria esterna. Si

assume quindi che potrebbe esserci una distribuzione termica variabile, per questo motivo in questa fase della progettazione si assume una armatura orizzontale di distribuzione che può assorbire le tensioni pari a 50% della armatura principale verticale.

2.5 CARICO IDROSTATICO

Non viene considerato un carico idrostatico perché sono strutture che convogliano l'acqua ma non sono a tenuta idraulica.

2.6 PRESSIONE GEOSTATICA

la pressione in calotta viene calcolata come prodotto tra il peso di volume del terreno per l'altezza del ricoprimento (Spessore dello strato di terreno superiore).

Quindi la pressione in calotta è fornita dalla seguente relazione:

 $Pv = \tilde{a} \times H$

Se sul profilo del piano campagna sono presenti dei sovraccarichi, concentrati e/o distribuiti, la diffusione di questi nel terreno avviene secondo quello descritto nel paragrafo dei carichi mobili.

2.7 SPINTA SUI PIEDRITTI

2.7.1 Spinta in presenza di falda

Le strutture in esame non sono interessate dalla presenza di falda.

2.7.2 Spinta a Riposo

Si assume che sui piedritti agisca la spinta del terreno calcolata in condizioni di riposo.

Il coefficiente di spinta a riposo è espresso dalla relazione

$$K_0 = 1 - \sin \circ = 1 - \sin (32^\circ) = 0.470$$

dove ö rappresenta l'angolo d'attrito interno del terreno di rinfianco.

Quindi la pressione laterale, ad una generica profondità z e la spinta totale sulla parete di altezza H valgono

$$\sigma$$
 = \tilde{a} z K_0 + $p_v K_0$

$$S = 1/2 \tilde{a} H^2 K_0 + p_v K_0 H$$

dove p_v è la pressione verticale agente in corrispondenza della calotta.

Spinta del terreno nel caso di sisma e strutture rigide. (Wood)

Nel caso di strutture rigide completamente vincolate, in modo tale che non può svilupparsi nel terreno uno stato di spinta attiva, nonché nel caso di muri verticali con terrapieno a superficie orizzontale, l'incremento dinamico di spinta del terreno può essere calcolato con la formulazione di Wood come:

incremento totale

 $\Delta P_d = \alpha \tilde{a} H^2$

KN

incremento unitario

 $p = \alpha \tilde{a} H$

KN/m

coefficiente di spinta

 $\alpha = a_g/g * S_s * \beta_m * S_T = 0.106 \times 1.80 \times 1.00 \times 1.00 = 0.191$

H è l'altezza sulla quale agisce la spinta, mentre Il punto di applicazione va preso a metà altezza.

Lotto 3

Incremento unitario spinta terra per effetto dinamica

 $p=0.191 \times 18 \times Z \text{ KN/m}^2$

Azioni sismiche inerziali

Le azioni sismiche inerziali sono calcolate come prodotto della massa della struttura per l'accelerazione sismica del sito. Sono applicate in una sola direzione orizzontale in quanto il calcolo della struttura viene eseguito per una lunghezza unitaria. Le accelerazioni sismiche da considerare sono state riportate nel capitolo relativo.

3.TOMBINI CIRCOLARI DN < 4500 mm

Per le condotte di grande diametro (superiore a 500 mm) la posa in opera deve, specialmente per quelle in conglomerato cementizio, essere realizzata su una sella in conglomerato cementizio. La sella deve avere uno spessore minimo, in corrispondenza della generatrice inferiore della tubazione, di 0,25D, con un minimo di 0,1 m; la base d'appoggio della sella sul fondo non dev'essere inferiore a (D + 0,2) m. La sella deve essere continua, ma con una riduzione della sezione in corrispondenza dei giunti a bicchiere per l'accoppiamento fra tubi o fra tubi ed eventuali pezzi speciali. La condotta è comunque da ricoprire fino a 30 cm sopra la generatrice superiore con sabbia o terra selezionata.

I carichi che sono stati considerati sono i seguenti:

- Peso proprio del tubo
- Carico del terreno
- Carico accidentale
- Sisma

Molto importante è definire il tipo di rapporto fra la tubazione, il piano di posa e il terreno; possiamo avere due diversi casi (in entrambi bisogna comunque creare un letto di posa con un materiale adeguato come precedentemente descritto):

2 posa della condotta su una trincea scavata e successivamente riempita;

2 posa della condotta su terreno naturale poi ricoperto con un rilevato.

Nel caso in esame abbiamo sempre considerato la condotta su terreno naturale ricoperto poi con un rilevato.

Saranno esaminati i momenti in corrispondenza delle seguenti sezioni

- 1. Sezione di testa (mezzeria della calotta superiore)
- 2. Sezione di fianco (mezzeria parete laterale)
- 3. Sezione di fondo (mezzeria della calotta inferiore)

Dall'elenco dei tombini del lotto 3 sono state raggruppate le seguenti dimensioni e ricoprimenti per i tombini in calcestruzzo armato:

diametro (mm)	Hmin	Hmax	Hmin carico	Hmax carico
3300		7.20		
3600		2.23		

Le condotte in considerazione sono tutte realizzate con conglomerato cementizio vibro-compresso armato. Il controllo del loro coefficiente di elasticità mostra che sono tutte condotte rigide (indeformabili) rispetto alla deformabilità trasversale del terreno.

Infatti il rapporto

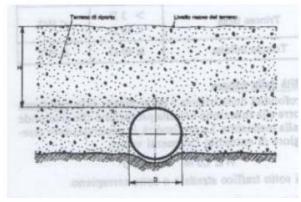
$$n = (E_t / E) (r / s)^3$$

Risulta sempre inferiore ad uno.

Avendo indicato con:

Et = modulo elastico del terreno = 150 daN/cm2

E = modulo elastico del calcestruzzo = 350000 daN/cm2


r = raggio medio = r=(D-s)/2

s = spessore

diam (mm)	spess. (mm)	rm (mm)	coef. Elast n
3300	450	1513	0.014
3600	450	1650	0.018

Considerando la tipologia di posa della tubazione in relazione al terreno circostante abbiamo sempre la condizione di posa in trincea infinita o terrapieno (proiezione positiva).

In questo tipo di posa la sommità del tubo sporge sul livello naturale del terreno, e in questo caso, per condotte rigide, si può considerare che sul tubo grava tutto il prisma di terreno sovrastante a partire dalla generatrice superiore.

3.1 ANALISI DEI CARICHI

Carico del terreno

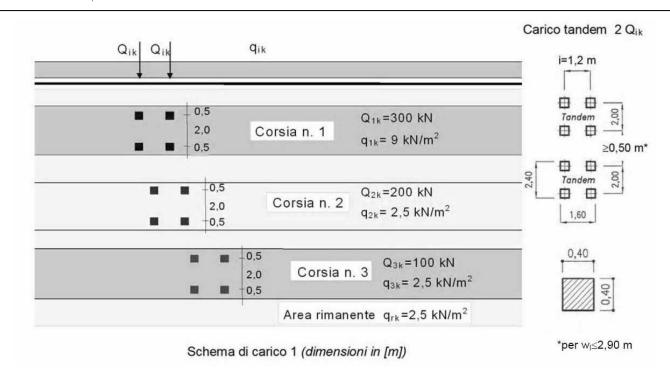
Sono state considerate le seguenti caratteristiche del terreno di copertura del tubo:

peso volume $\tilde{a} = 18 \text{ KN/m2}$ angolo d'attrito interno $\ddot{O} = 32^{\circ}$

Coeff. spinta attiva Ka = 0.307Coeff. spinta quiete $K_0 = 0.470$

Quindi la pressione unitaria verticale sarà $q_u = \tilde{a} \times H$

Per la spinta laterale sui fianchi della condotta sarà considerata la spinta di quiete KO

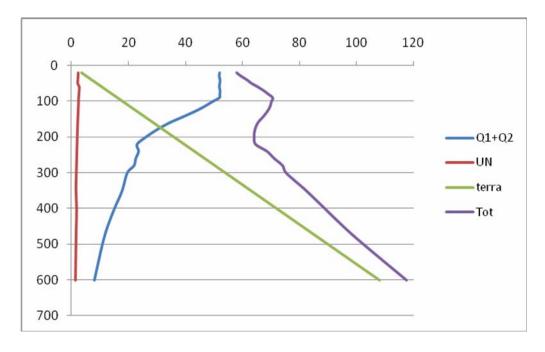

 $q_1 = q_u \times K_0$ a livello testa tubo

 $q_2 = q_1 + (D+2 \times s) \times K_0 \times \tilde{a}$ a livello fondo tubo

Carico stradale

Sono stati considerati i carichi stradali per ponti stradali di prima categoria della NTC2008. La larghezza della corsia convenzionale è di 3.00 m. Per tutti i carichi mobili è già considerato il corrispondente coefficiente di incremento dinamico.

Di seguito è riportata la disposizione dei carichi considerata.


Nel grafico seguente è riportato l'andamento delle pressioni all'interno del terreno in funzione della profondità, considerando la disposizione dei carichi come da normativa.

È stata considerata la condizione più sfavorevole per il tubo con tre assi tandem allineati (due corsie più la corsia d'emergenza)

Come si vede dal grafico il carico unitario si mantiene quasi costante fino ad una profondità di circa 1.00 m (l'effetto della distribuzione viene compensato dalla vicinanza degli assi).

Da questo livello il carico unitario diminuisce con il quadrato dell'altezza di ricoprimento e alla profondità di circa 2.50/3.00 m si risente l'influenza degli altri assi tandem. Come si vede l'effetto del peso del terreno cresce rapidamente e già alla profondità di 1.80 m diventa maggiore dell'effetto del carico stradale.

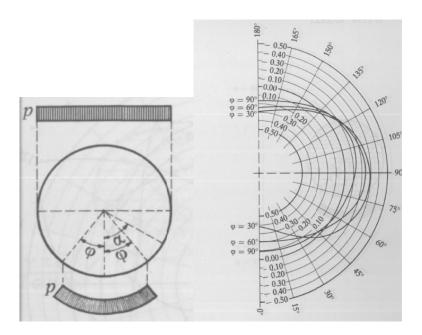
L'effetto del carico accidentale uniforme q è piccolo rispetto agli altri.

	Q1+Q2	unif	Terra	totale
Z (cm)	KN/m2	KN/m2	KN/m2	KN/m2
10	52.08	2.5	1.8	56.38
20	51.92	2.43	3.6	57.95
30	51.79	2.37	5.4	59.56
40	52.08	2.31	7.2	61.59
50	51.96	2.25	9	63.21
60	51.84	2.81	10.8	65.45
70	52.08	2.74	12.6	67.42
80	51.98	2.67	14.4	69.05
90	51.83	2.56	16.2	70.59
100	49.61	2.56	18	70.17
120	45.29	2.44	21.6	69.33
140	40.00	2.35	25.2	67.55
160	34.30	2.25	28.8	65.35
180	29.74	2.17	32.4	64.31
200	26.00	2.09	36	64.09
220	22.96	2.02	39.6	64.58
240	23.46	1.95	43.2	68.61
260	22.47	1.89	46.8	71.16
280	21.85	1.83	50.4	74.08
300	19.50	1.76	54	75.26
350	17.70	1.65	63	82.35
400	14.98	1.86	72	88.84
450	12.58	1.75	81	95.33
500	10.76	1.64	90	102.4
600	7.95	1.47	108	117.42

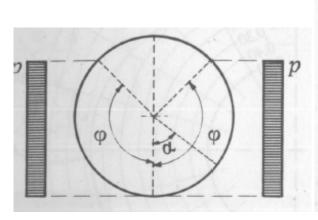
Sisma

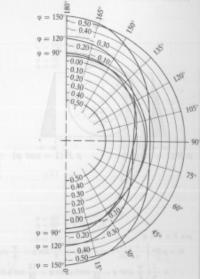
Si considera che la condotta (rigida) con si deforma e non si sposta durante il sisma e quindi viene applicata la spinta sismica secondo l'ipotesi di Wood.

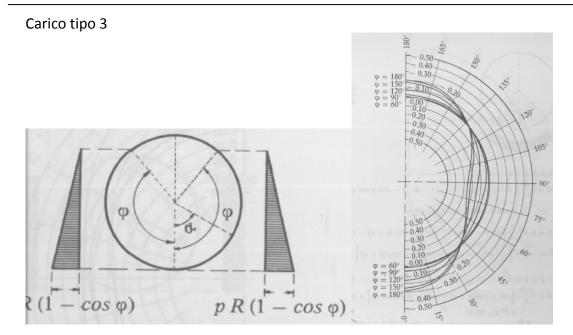
Si trascura la massa del tubo e l'effetto della massa del terreno gravante sulla condotta.


3.2 ANALISI DELLE SOLLECITAZIONI

Come già detto l'analisi delle sollecitazioni sarà condotta nelle seguenti sezioni


- 1. Sezione di testa (mezzeria della calotta superiore)
- 2. Sezione di fianco (mezzeria parete laterale)
- 3. Sezione di fondo (mezzeria della calotta inferiore)


Per il calcolo degli effetti dei carichi sulla condotta vengono utilizzati 3 tipi di carico elementari opportunamente combinati tra di loro per avere gli effetti sulla condotta dovuti ai carchi applicati, e qui di seguito illustrati.


Carico tipo 1

Carico tipo 2

Nella seguente tabella sono riportati i coefficienti che per il tipo di posa adottato forniscono le sollecitazioni in corrispondenza delle sezioni in esame.

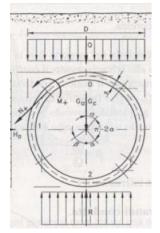
		UN.TESTA	UN.FIANCO	TRIANG.
		CARICO 1	CARICO 2	CARICO 3
	FI =	0.78540	3.14159	3.14159
fondo	ALFA=	0.0000	0.00000	0.00000
	M =	0.27655	-0.75000	-0.29170
	N =	0.96221	-1.00000	-1.375
	T =	0	0.00000	0.00000
	FI =	0.78540	3.14159	3.14159
fianco	ALFA=	1.57080	1.57080	1.57080
	M =	-0.2714	-0.25000	0.25000
	N =	-1.0000	0.00000	0.00000
	T =	-0.0378	-0.31831	0.125
	FI =	0.78540	3.14159	3.14159
testa	ALFA=	3.14159	3.14159	3.14159
	M =	0.2663	-0.75000	-0.20230
	N =	0.0378	-1.00000	-0.625
	T =	0.0000	0.00000	0.00000

Dove:

Alfa indica la posizione angolare della sezione di verifica a partire dal fondo tubo, mentre FI indica l'estensione angolare del carico a partire dal fondo del tubo. Sia le sezioni che l'estensione del carico sono simmetrici rispetto ad un piano verticale passante per il centro del tubo.

Tali coefficienti devono essere moltiplicati per ogni tipo di carico elementare e per ogni sollecitazione con un fattore pari a:

Carico elementare tipo 1


per il momento p x R² per lo sforzo normale p x R

per il taglio

pxR

dove p è il carico uniforme verticale a livello della testa del tubo ed R è il raggio esterno.

Il carico elementare 1 sarà utilizzato per il calcolo dell'effetto del peso proprio della condotta (uniformemente distribuito sulla proiezione del diametro), del peso del rinterro fino al livello della generatrice superiore e per l'azione dei carichi accidentali considerati uniformemente distribuiti fino al livello della generatrice superiore.

Una generica disposizione dei carichi di questo tipo è indicata nello schema a fianco.

Carico elementare tipo 2

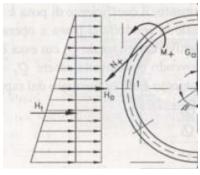
I coefficienti moltiplicativi sono:

per il momento p x R²
per lo sforzo normale p x R
per il taglio p x R

dove p è il carico uniforme orizzontale sul fianco del tubo ed R è il raggio esterno.

Per il carico tipo 3 i coefficienti moltiplicativi sono:

per il momento p x R²
per lo sforzo normale p x R
per il taglio p x R


dove p = $\gamma \times D_e \times K / (2 \times R) = \gamma \times K \hat{e}$ il carico orizzontale massimo a livello fondo tubo con

R = raggio esterno D_e = diametro esterno

K = 0.470 coefficiente di spinta di quiete

γ.= 18 KN/m³ peso volume del terreno

Questi due carichi elementari sono stati utilizzati per la valutazione dell'effetto della spinta laterale sui fianchi della condotta e per la valutazione degli effetti dell'azione sismica (Wood).

Per il calcolo degli effetti di questo tipo il carico esso viene scomposto in due contributi:

un carico uniformemente distribuito sull'altezza del fianco della condotta (carico elementare tipo2) e un carico triangolare sempre sull'altezza del tubo.(carico elementare tipo 3).

Il carico elementare tipo 2 verrà utilizzato anche per il calcolo dell'effetto sismico.

Dalla tabella riepilogativa seguente sono riportati i valori utilizzati per le verifiche delle sezioni della condotta, arrotondando i valori a

favore della sicurezza, e riportando nelle ultime tre colone evidenziate, la condizione dimensionante e il carico accidentale totale applicato.

diametro (mm)	Ht_ril.	Htmin_str	Htmax_str	Ht_ril.(m)	Ht_str(m)	Qacc tot (KN/m2
3300	7.20			7.20		0
3600	2.23			2.30		0

Dove

Ht ril è il ricoprimento di solo rilevato senza carico

Ht_str è il ricoprimento in corrispondenza della carreggiata.

Come si può notare sopra questi tubi non è applicato un carico accidentale.

Per la verifica delle sezioni dei tubi sono stati presi in considerazione nelle combinazioni dei carichi i seguenti fattori :

Peso proprio 1.30 Rinterro 1.50 Accidentale 1.50

Condizione sismica

Peso proprio 1.00 Rinterro 1.00 Accidentale 0.20 Sisma 1.00

Di seguito sono riportate le verifiche per i vari tipi di condotta:

DN 3300 DN 3600

3.3 TUBO DIA 3300

DN 3300 mm Spessore 450 mm De 4200 mm Peso proprio 35.343 KN/m²

Ricoprimento 7.20 m (senza carico)

Carico accidentale Q= 0.00 KN/m²

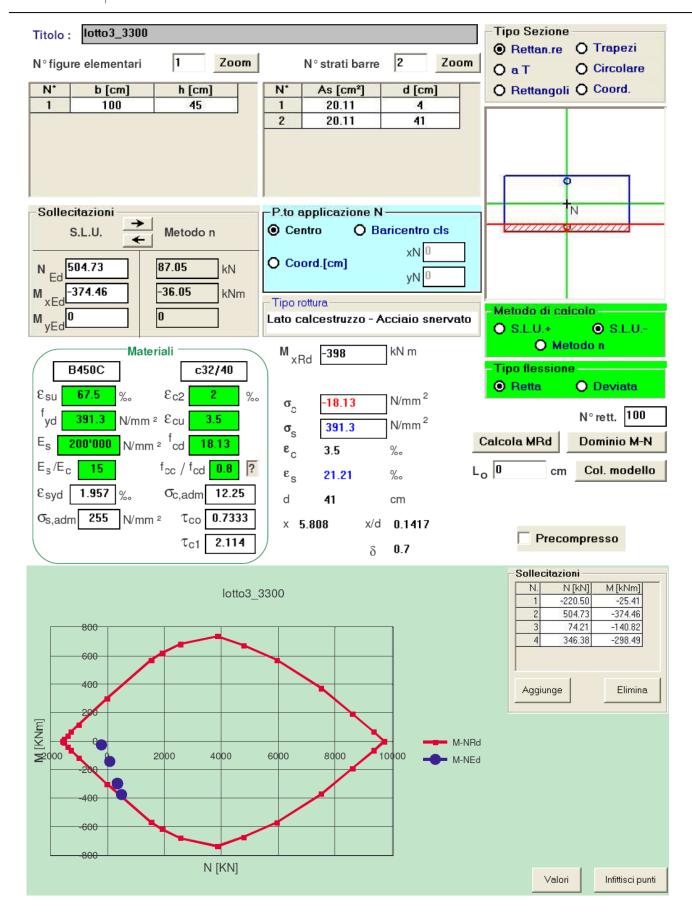
	I _			I -						
	Z =	7.2	m	sisma	Wood					
	Ko =	0.47		39.19	KN/m	di altezza	3			
	pv =	129.6	KN/m2							
	De =	4.2	m		Q =	0	KN/m2			
	Po =	60.91	KN/m2		G=	35.343	KN/m2			
	p2 =	35.53	KN/m2							
	terra	terra	terra	terra	peso pr.	sisma	Q	Q	ď	
	carico 1	carico 2	carico 3	totale	carico 1	carico 2	carico 1	carico 2	totale	
fondo	158.06	-201.47	-10.88	-54.29	43.10	-129.63	0.00	0.0	0.00	M (KNm)
	261.87	-127.92	-48.86	85.10	71.42	-82.31	0.00	0.00	0.00	N (KN)
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V (KN)
fianco	-155.14	-67.16	9.33	-212.97	-42.31	-43.21	0.00	0.0	0.00	M (KNm)
	-272.16	0.00	0.00	-272.16	-74.22	0.00	0.00	0.00	0.00	N (KN)
	10.29	-86.63	34.02	-42.33	2.81	-26.20	0.00	0.00	0.00	V (KN)
testa	152.23	-201.47	-7.55	-56.79	41.51	-129.63	0.00	0.0	0.00	M (KNm)
	10.29	-127.92	-22.21	-139.84	2.81	-82.31	0.00	0.00	0.00	N (KN)
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V (KN)

Forza assiale (-) = compressione, Momento flettente (+) = tese fibre interne Si esegue solo la verifica di resistenza SLU per la sezione più sollecitata Combinazione 1

M = 43.10x1.30 + (-54.29)x1.50 = -25.41 KNm N = 71.42x1.30 + 85.10x1.50 = 220.50 KN

Combinazione 2

M =-42.31x1.30-212.97x1.50=-374.46 KNm N =-74.22x1.30-272.16x1.50=-504.73 KN


Combinazione 3

M = 43.10-54.29-129.63 = -140.82 KNm N = 71.42+85.10-82.31 = 74.21 KN

Combinazione 4

M = -42.31-212.97-43.21 = -298.49 KNm N = -74.22-272.16 =-346.38 KN

Si considera un doppio strato di armatura 10+10 Ø 16 al metro

3.4 TUBO DIA 3600

DN 3600 mm Spessore 450 mm De 4500 mm Peso proprio 35.343 KN/m²

Ricoprimento 2.30 m (senza carico)

Carico accidentale Q= 0.00 KN/m²

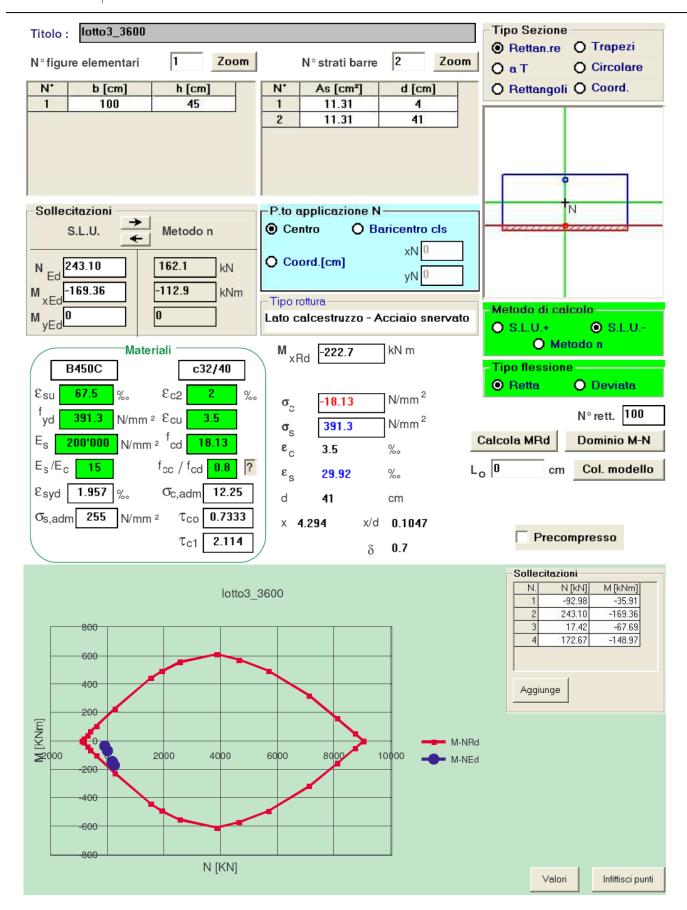
	1	l	l		l					
	Z =	2.3	m	sisma	Wood					
	Ko =	0.47		23.38	KN/m	di altezza	9			
	pv =	41.4	KN/m2							
	De =	4.5	m		Q =	0	KN/m2			
	Po =	19.46	KN/m2		G=	35.343	KN/m2			
	p2 =	38.07	KN/m2							
	terra	terra	terra	terra	peso pr.	sisma	Q	Q	ď	
	carico 1	carico 2	carico 3	totale	carico 1	carico 2	carico 1	carico 2	totale	
fondo	57.96	-73.88	-12.49	-28.41	49.48	-88.76	0.00	0.0	0.00	M (KNm)
	89.63	-43.78	-52.35	-6.50	76.52	-52.60	0.00	0.00	0.00	N (KN)
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V (KN)
fianco	-56.89	-24.63	10.71	-70.81	-48.57	-29.59	0.00	0.0	0.00	M (KNm)
	-93.15	0.00	0.00	-93.15	-79.52	0.00	0.00	0.00	0.00	N (KN)
	3.52	-29.65	11.64	-14.49	3.01	-16.74	0.00	0.00	0.00	V (KN)
testa	55.82	-73.88	-8.66	-26.72	47.66	-88.76	0.00	0.0	0.00	M (KNm)
	3.52	-43.78	-23.79	-64.05	3.01	-52.60	0.00	0.00	0.00	N (KN)
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V (KN)

Forza assiale (-) = compressione, Momento flettente (+) = tese fibre interne Si esegue solo la verifica di resistenza SLU per la sezione più sollecitata Combinazione 1

M = 49.48x1.30 + (-28.41)x1.00 = 35.91 KNm N = 76.52x1.30 - 6.50x1.00 = 92.98 KN

Combinazione 2

M =-48.57x1.30-70.81x1.50=-169.36 KNm N =-79.52x1.30-93.15x1.50=-243.10 KN


Combinazione 3

M = 49.48-28.41-88.76 = -67.69 KNm N = 76.52-6.50-52.60 = 17.42 KN

Combinazione 4

M = -48.57-70.81-29.59 = -148.97 KNm N = -79.52-93.15 = -172.67 KN

Si considera un doppio strato di armatura $\ 10+10 \ \varnothing \ 12 \ al \ metro$

IMBOCCHI DEI TOMBINI CIRCOLARI DN<4500 mm

Di seguito sono riportati i risultati di calcolo ottenuti dal programma di analisi strutturale ProSap. Il calcolo è relativo agli imbocchi a becco di flauto per i tombini di DN maggiore di 2500 mm fino a 4500 mm. L'altezza e la larghezza di queste opere è di 500 cm e il loro spessore 60 cm.

Contenuti della relazione:

RELAZIONE DI CALCOLO STRUTTURALE

- Origine e Caratteristiche dei Codici di Calcolo
- Affidabilità dei codici utilizzati
- Validazione dei codici
- Tipo di analisi svolta
- Modalità di presentazione dei risultati
- Informazioni generali sull'elaborazione
- Giudizio motivato di accettabilità dei risultati

STAMPA DEI DATI DI INGRESSO

- Normative prese a riferimento
- Criteri adottati per le misure di sicurezza
- Criteri seguiti nella schematizzazione della struttura, dei vincoli e delle sconessioni
- Interazione tra terreno e struttura
- Legami costitutivi adottati per la modellazione dei materiali e dei terreni
- Schematizzazione delle azioni, condizioni e combinazioni di carico
- Metodologie numeriche utilizzate per l'analisi strutturale
- -Metodologie numeriche utilizzate per la progettazione e la verifica degli elementi strutturali

STAMPA DEI RISULTATI

RELAZIONE DI CALCOLO STRUTTURALE

ANALISI E VERIFICHE SVOLTE CON L'AUSILIO DI CODICI DI CALCOLO

La presente relazione di calcolo strutturale, in conformità al punto §10.1 del DM 14/01/08, è comprensiva di una descrizione generale dell'opera e dei criteri generali di analisi e verifica. Segue inoltre le indicazioni fornite al §10.2 del DM stesso per quanto concerne analisi e verifiche svolte con l'ausilio di codici di calcolo.

ocalizzazione della struttura				
Località	CECINA (LI)			
Comune	CECINA (LI)			
Provincia	Livorno			
Regione	TOSCANA			
Longitudine	11.077			
Latitudine	42.884			

Parametri della struttura						
Classe d'uso	Vita Vn [anni]	Coeff. Uso	Periodo Vr [anni]			
IV	50.0	2.0	100.0			

Descrizione generale della struttura

La struttura in oggetto è una struttura tipica che deve servire i tombini circolari in c.a. lungo l'autostrada A12 – Lotto3. L'imbocco è realizzato tramite una struttura in C.A ad U, dove i due muri ai lati della luce sono collegati dalla platea di fondazione che hanno in comune.

La struttura non ha carichi variabili esterni.

A tergo dei muri sono posizionati dei filtri che evitano il ristagno dell'acqua, e l'unica spinta considerata è quella del terreno e la corrispondente spinta sismica.

Sia la platea di fondazione che i muri laterali hanno lo stesso spessore costante.

Di seguito si indicano l'origine e le caratteristiche dei codici di calcolo utilizzati riportando titolo, produttore e distributore, versione, estremi della licenza d'uso:

Origine e Caratteristiche dei Codici di Calcolo				
Titolo:	PRO_SAP PROfessional Structural Analysis Program			
Versione:	PROFESSIONAL (build 2010-07-152)			
Produttore-Distributore:	2S.I. Software e Servizi per l'Ingegneria s.r.l., Ferrara			
Codice Licenza:	Licenza dsi2525			

Un attento esame preliminare della documentazione a corredo del software *ha consentito di valutarne l'affidabilità e soprattutto l'idoneità al caso specifico*. La documentazione, fornita dal produttore e distributore del software, contiene una esauriente descrizione delle basi teoriche e degli algoritmi impiegati, l'individuazione dei campi d'impiego, nonché casi prova interamente risolti e commentati, corredati dei file di input necessari a riprodurre l'elaborazione:

Affidabilità dei codici utilizzati

2S.I. ha verificato l'affidabilità e la robustezza del codice di calcolo attraverso un numero significativo di casi prova in cui i risultati dell'analisi numerica sono stati confrontati con soluzioni teoriche.

E' possibile reperire la documentazione contenente alcuni dei più significativi casi trattati al seguente link: http://www.2si.it/Software/Affidabilità.htm

Nel prosieguo si indicano tipo di analisi strutturale condotta (statico,dinamico, lineare o non lineare) e il metodo adottato per la risoluzione del problema strutturale nonché le metodologie seguite per la verifica o per il progetto-verifica delle sezioni. Si riportano le combinazioni di carico adottate e, nel caso di calcoli non lineari, i percorsi di carico seguiti; le configurazioni studiate per la struttura in esame sono risultate effettivamente esaustive per la progettazione-verifica.

Tipo di analisi strutturale				
Statica lineare	SI			
Statica non lineare	NO			
Sismica statica lineare	SI			
Sismica dinamica lineare	NO			
Sismica statica non lineare (prop. masse)	NO			
Sismica statica non lineare (prop. modo)	NO			
Sismica statica non lineare (triangolare)	NO			
Non linearità geometriche (fattore P delta)	NO			
Progetto-verifica degli elementi				
Progetto cemento armato	D.M. 14-01-2008			
Progetto acciaio	D.M. 14-01-2008			
Progetto legno	D.M. 14-01-2008			
Progetto muratura	D.M. 14-01-2008			
Azione sismica				
Norma applicata per l' azione sismica	D.M. 14-01-2008			

Combinazioni dei casi di carico	ombinazioni dei casi di carico				
APPROCCIO PROGETTUALE	Approccio 1				
Tensioni ammissibili	NO				
SLU	SI				
SLV (SLU con sisma)	SI				
SLC	NO				
SLD	SI				
SLO	NO				
SLU GEO A2 (per approccio 1)	SI				
SLU EQU	SI				
Combinazione caratteristica (rara)	SI				
Combinazione frequente	SI				
Combinazione quasi permanente (SLE)	SI				
SLA (accidentale quale incendio)	NO				

La verifica della sicurezza degli elementi strutturali avviene con i metodi della scienza delle costruzioni. L'analisi strutturale è condotta con il metodo degli spostamenti per la valutazione dello stato tensodeformativo indotto da carichi statici. L'analisi strutturale è condotta con il metodo dell'analisi modale e dello spettro di risposta in termini di accelerazione per la valutazione dello stato tensodeformativo indotto da carichi dinamici (tra cui quelli di tipo sismico).

L'analisi strutturale viene effettuata con il metodo degli elementi finiti. Il metodo sopraindicato si basa sulla schematizzazione della struttura in elementi connessi solo in corrispondenza di un numero prefissato di punti denominati nodi. I nodi sono definiti dalle tre coordinate cartesiane in un sistema di riferimento globale. Le incognite del problema (nell'ambito del metodo degli spostamenti) sono le componenti di spostamento dei nodi riferite al sistema di riferimento globale (traslazioni secondo X, Y, Z, rotazioni attorno X, Y, Z). La soluzione del problema si ottiene con un sistema di equazioni algebriche lineari i cui termini noti sono costituiti dai carichi agenti sulla struttura opportunamente concentrati ai nodi:

K * **u** = **F** dove **K** = matrice di rigidezza

u = vettore spostamenti nodali

F = vettore forze nodali

Dagli spostamenti ottenuti con la risoluzione del sistema vengono quindi dedotte le sollecitazioni e/o le tensioni di ogni elemento, riferite generalmente ad una terna locale all'elemento stesso.

Il sistema di riferimento utilizzato è costituito da una terna cartesiana destrorsa XYZ. Si assume l'asse Z verticale ed orientato verso l'alto.

Gli elementi utilizzati per la modellazione dello schema statico della struttura sono i seguenti:

· Elemento tipo **TRUSS** (biella-D2)

· Elemento tipo **BEAM** (trave-D2)

Elemento tipo **MEMBRANE** (membrana-D3)

Elemento tipo **PLATE** (piastra-guscio-D3)

Elemento tipo **BOUNDARY** (molla)

· Elemento tipo *STIFFNESS* (matrice di rigidezza)

· Elemento tipo **BRICK** (elemento solido)

· Elemento tipo **SOLAIO** (macro elemento composto da più membrane)

Modello strutturale realizzato con:					
nodi	8				
elementi D2 (per aste, travi, pilastri)	8				
elementi D3 (per pareti, platee, gusci)	0				
elementi solaio	0				
elementi solidi	0				
Dimensione del modello strutturale [cm]:					
X min =	0.00				
Xmax =	0.00				
Ymin =	970.00				
Ymax =	1690.00				
Zmin =	0.00				
Zmax =	530.00				
Strutture verticali:					
Elementi di tipo asta	NO				
Pilastri	SI				
Pareti	NO				
Setti (a comportamento membranale)	NO				
Strutture non verticali:					
Elementi di tipo asta	NO				
Travi	NO				
Gusci	NO				
Membrane	NO				
Orizzontamenti:					
Solai con la proprietà piano rigido	NO				
Solai senza la proprietà piano rigido	NO				
Tipo di vincoli:					
Nodi vincolati rigidamente	SI				
Nodi vincolati elasticamente	NO				
Nodi con isolatori sismici	NO				
Fondazioni puntuali (plinti/plinti su palo)	NO				
Fondazioni di tipo trave	SI				
Fondazioni di tipo platea	NO				
Fondazioni con elementi solidi	NO				

Modalità di presentazione dei risultati.

La presente relazione, oltre a illustrare in modo esaustivo i dati in ingresso e i risultati delle analisi in forma tabellare, riporta una serie di immagini:

per i dati in ingresso:

- modello solido della struttura
- numerazione di nodi e ed elementi

per le combinizioni più significative (statisticamente più gravose per la struttura)

- diagrammi e inviluppi delle azioni interne
- mappe delle pressioni sul terreno

Informazioni generali sull'elaborazione e giudizio motivato di accettabilità dei risultati.

Il programma prevede una serie di controlli automatici (check) che consentono l'individuazione di errori di modellazione. Al termine dell'analisi un controllo automatico identifica la presenza di spostamenti o rotazioni abnormi. Si può pertanto asserire che l' elaborazione sia corretta e completa. I risultati delle elaborazioni sono stati sottoposti a controlli che ne comprovano l'attendibilità. Tale valutazione ha compreso il confronto con i risultati di semplici calcoli, eseguiti con metodi tradizionali e adottati, anche in fase di primo proporzionamento della struttura. Inoltre, sulla base di considerazioni riguardanti gli stati tensionali e deformativi determinati, si è valutata la validità delle scelte operate in sede di schematizzazione e di modellazione della struttura e delle azioni. Si allega al termine della presente relazione elenco sintetico dei controlli svolti (verifiche di equilibrio tra reazioni vincolari e carichi applicati, comparazioni tra i risultati delle analisi e quelli di valutazioni semplificate, etc.) .

NORMATIVA DI RIFERIMENTO

- 1. D.Min. Infrastrutture Min. Interni e Prot. Civile 14 Gennaio 2008 e allegate "Norme tecniche per le costruzioni".
- 2. D.Min. Infrastrutture e trasporti 14 Settembre 2005 e allegate "Norme tecniche per le costruzioni".
- 3. D.M. LL.PP. 9 Gennaio 1996 "Norme tecniche per il calcolo, l'esecuzione ed il collaudo delle strutture in cemento armato, normale e precompresso e per le strutture metalliche".
- 4. D.M. LL.PP. 16 Gennaio 1996 "Norme tecniche relative ai <<Criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi>>".
- 5. D.M. LL.PP. 16 Gennaio 1996 "Norme tecniche per le costruzioni in zone sismiche".
- 6. Circolare 4/07/96, n.156AA.GG./STC. istruzioni per l'applicazione delle "Norme tecniche relative ai <<Criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi>>" di cui al D.M. 16/01/96.
- 7. Circolare 10/04/97, n.65AA.GG. istruzioni per l'applicazione delle "Norme tecniche per le costruzioni in zone sismiche" di cui al D.M. 16/01/96.
- 8. D.M. LL.PP. 20 Novembre 1987 "Norme tecniche per la progettazione, esecuzione e collaudo degli edifici in muratura e per il loro consolidamento".
- 9. Circolare 4 Gennaio 1989 n. 30787 "Istruzioni in merito alle norme tecniche per la progettazione, esecuzione e collaudo degli edifici in muratura e per il loro consolidamento".
- 10. D.M. LL.PP. 11 Marzo 1988 "Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione".
- 11. D.M. LL.PP. 3 Dicembre 1987 "Norme tecniche per la progettazione, esecuzione e collaudo delle costruzioni prefabbricate".
- 12. UNI 9502 Procedimento analitico per valutare la resistenza al fuoco degli elementi costruttivi di conglomerato cementizio armato, normale e precompresso edizione maggio 2001
- 13. Ordinanza del Presidente del Consiglio dei Ministri n. 3274 del 20 marzo 2003 "Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica" e successive modificazioni e integrazioni.
- 14. UNI EN 1990:2006 13/04/2006 Eurocodice 0 Criteri generali di progettazione strutturale.
- 15. UNI EN 1991-1-1:2004 01/08/2004 Eurocodice 1 Azioni sulle strutture Parte 1-1: Azioni in generale Pesi per unità di volume, pesi propri e sovraccarichi per gli edifici.
- 16. UNI EN 1991-2:2005 01/03/2005 Eurocodice 1 Azioni sulle strutture Parte 2: Carichi da traffico sui ponti.
- 17. UNI EN 1991-1-3:2004 01/10/2004 Eurocodice 1 Azioni sulle strutture Parte 1-3: Azioni in generale Carichi da neve.
- 18. UNI EN 1991-1-4:2005 01/07/2005 Eurocodice 1 Azioni sulle strutture Parte 1-4: Azioni in generale Azioni del vento.
- 19. UNI EN 1991-1-5:2004 01/10/2004 Eurocodice 1 Azioni sulle strutture Parte 1-5: Azioni in generale Azioni termiche.
- 20. UNI EN 1992-1-1:2005 24/11/2005 Eurocodice 2 Progettazione delle strutture di calcestruzzo Parte 1-1: Regole generali e regole per gli edifici.
- 21. UNI EN 1992-1-2:2005 01/04/2005 Eurocodice 2 Progettazione delle strutture di calcestruzzo Parte 1-2: Regole generali Progettazione strutturale contro l'incendio.
- 22. UNI EN 1993-1-1:2005 01/08/2005 Eurocodice 3 Progettazione delle strutture di acciaio Parte 1-1: Regole generali e regole per gli edifici.
- 23. UNI EN 1993-1-8:2005 01/08/2005 Eurocodice 3 Progettazione delle strutture di acciaio Parte 1-8: Progettazione dei collegamenti.
- 24. UNI EN 1994-1-1:2005 01/03/2005 Eurocodice 4 Progettazione delle strutture composte acciaio-calcestruzzo Parte 1-1: Regole generali e regole per gli edifici.
- 25. UNI EN 1994-2:2006 12/01/2006 Eurocodice 4 Progettazione delle strutture composte acciaio-calcestruzzo Parte 2: Regole generali e regole per i ponti.
- 26. UNI EN 1995-1-1:2005 01/02/2005 Eurocodice 5 Progettazione delle strutture di legno Parte 1-1: Regole generali Regole comuni e regole per gli edifici.
- 27. UNI EN 1995-2:2005 01/01/2005 Eurocodice 5 Progettazione delle strutture di legno Parte 2: Ponti.
- 28. UNI EN 1996-1-1:2006 26/01/2006 Eurocodice 6 Progettazione delle strutture di muratura Parte 1-1: Regole generali per strutture di muratura armata e non armata.
- 29. UNI EN 1996-3:2006 09/03/2006 Eurocodice 6 Progettazione delle strutture di muratura Parte 3: Metodi di calcolo semplificato per strutture di muratura non armata.

- 30. UNI EN 1997-1:2005 01/02/2005 Eurocodice 7 Progettazione geotecnica Parte 1: Regole generali.
- 31. UNI EN 1998-1:2005 01/03/2005 Eurocodice 8 Progettazione delle strutture per la resistenza sismica Parte 1: Regole generali, azioni sismiche e regole per gli edifici.
- 32. UNI EN 1998-3:2005 01/08/2005 Eurocodice 8 Progettazione delle strutture per la resistenza sismica Parte 3: Valutazione e adeguamento degli edifici.

UNI EN 1998-5:2005 01/01/2005 Eurocodice 8 - Progettazione delle strutture per la resistenza sismica - Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici.

NOTA sul capitolo "normativa di riferimento": riporta l' elenco delle normative implementate nel software. Le norme utilizzate per la struttura oggetto della presente relazione sono indicate nel precedente capitolo "RELAZIONE DI CALCOLO STRUTTURALE" "ANALISI E VERIFICHE SVOLTE CON L'AUSILIO DI CODICI DI CALCOLO". Laddove nei capitoli successivi vengano richiamate norme antecedenti al DM 14.01.08 è dovuto o a progettazione simulata di edifico esistente o ad applicazione del punto 2.7 del DM 14.01.08

MODELLAZIONE DEI MATERIALI

LEGENDA TABELLA DATI MATERIALI

Il programma consente l'uso di materiali diversi. Sono previsti i seguenti tipi di materiale:

1	materiale tipo cemento armato
2	materiale tipo acciaio
3	materiale tipo muratura
4	materiale tipo legno
5	materiale tipo generico

I materiali utilizzati nella modellazione sono individuati da una sigla identificativa ed un codice numerico (gli elementi strutturali richiamano quest'ultimo nella propria descrizione). Per ogni materiale vengono riportati in tabella i seguenti dati:

Young	modulo di elasticità normale
Poisson	coefficiente di contrazione trasversale
G	modulo di elasticità tangenziale
Gamma	peso specifico
Alfa	coefficiente di dilatazione termica

I dati soprariportati vengono utilizzati per la modellazione dello schema statico e per la determinazione dei carichi inerziali e termici. In relazione al tipo di materiale vengono riportati inoltre:

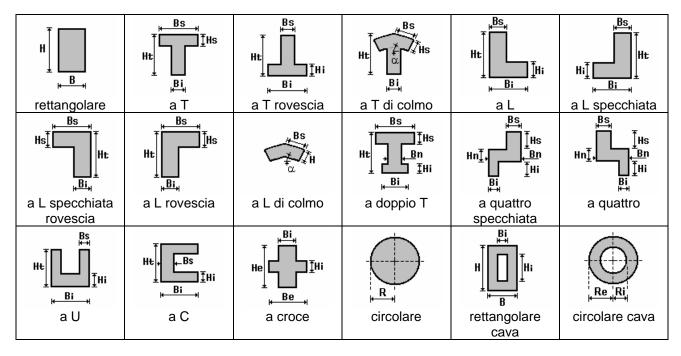
		Lamellare	lamellare o massiccio
		Modulo E0,05	Modulo elastico parallelo caratteristico
		Resist. fvk	Resistenza caratteristica (tensione amm. per REGLES) per taglio
		Resist. fmk	Resistenza caratteristica (tensione amm. per REGLES) per flessione
		Resist. ft0k	Resistenza caratteristica (tensione amm. per REGLES) per trazione
4	legno	Resist. fc0k	Resistenza caratteristica (tensione amm. per REGLES) per compressione
		Resist. Fk Resist. Fvko	resistenza caratteristica a compressione resistenza caratteristica a taglio
3	muratura	_	
		Sadmt	tensione ammissibile per spess. t>40 mm
		Fdt Sadm	resistenza di calcolo per spess. t>40 mm tensione ammissibile
		Fd Edt	resistenza di calcolo
		Fy	tensione di snervamento
2	acciaio	Ft	tensione di rottura a trazione
		Fctm	resistenza media a trazione semplice
		Rck	resistenza caratteristica cubica
1	cemento armato	·	•
		in relazione al tipo di ma	ateriale vengono riportati inoltre:

TABELLA DATI MATERIALI

ld	Tipo / Note		Young	Poisson	G	Gamma	Alfa	
		daN/cm2	daN/cm2		daN/cm2	daN/cm3		
4	Calcestruzzo Classe C32/40		3.360e+05	0.12	1.500e+05	2.50e-03	1.00e-05	
	Rck	400.0						
	fctm	31.0						

MODELLAZIONE DELLE SEZIONI

LEGENDA TABELLA DATI SEZIONI


Il programma consente l'uso di sezioni diverse. Sono previsti i sequenti tipi di sezione:

- 1 sezione di tipo generico
- 2 profilati semplici
- 3 profilati accoppiati e speciali

Le sezioni utilizzate nella modellazione sono individuate da una sigla identificativa ed un codice numerico (gli elementi strutturali richiamano quest'ultimo nella propria descrizione). Per ogni sezione vengono riportati in tabella i sequenti dati:

10.000.00	ogueria daa.
Area	area della sezione
A V2	area della sezione/fattore di taglio (per il taglio in direzione 2)
A V3	area della sezione/fattore di taglio (per il taglio in direzione 3)
Jt	fattore torsionale di rigidezza
J2-2	momento d'inerzia della sezione riferito all'asse 2
J3-3	momento d'inerzia della sezione riferito all'asse 3
W2-2	modulo di resistenza della sezione riferito all'asse 2
W3-3	modulo di resistenza della sezione riferito all'asse 3
Wp2-2	modulo di resistenza plastico della sezione riferito all'asse 2
Wp3-3	modulo di resistenza plastico della sezione riferito all'asse 3

I dati soprariportati vengono utilizzati per la determinazione dei carichi inerziali e per la definizione delle rigidezze degli elementi strutturali; qualora il valore di Area V2 (e/o Area V3) sia nullo la deformabilità per taglio V2 (e/o V3) è trascurata. La valutazione delle caratteristiche inerziali delle sezioni è condotta nel riferimento 2-3 dell'elemento.

Per quanto concerne i profilati semplici ed accoppiati l'asse 2 del riferimento coincide con l'asse x riportato nei più diffusi profilatari.

Per quanto concerne le sezioni di tipo generico (tipo 1.):

i valori dimensionali con prefisso B sono riferiti all'asse 2

i valori dimensionali con prefisso H sono riferiti all'asse 3

	rea .	A V2	A V3	Jt	J 2-2	J 3-3	W 2-2	W 3-3	Wp 2-2	Wp 3-3
С	cm2	cm2	cm2	cm4	cm4	cm4	cm3	cm3	cm3	cm3
3	00.00	5000.00	5000.00	4.478e+06	5.000e+06	1.800e+06	1.000e+05	6.000e+04	1.500e+05	9.000e+04
10	golare: b=100.00 h	golare: b=100.00 h 6000.00	golare: b=100.00 h 6000.00 5000.00	golare: b=100.00 h 6000.00 5000.00 5000.00	golare: b=100.00 h 6000.00 5000.00 5000.00 4.478e+06	golare: b=100.00 h 6000.00 5000.00 5000.00 4.478e+06 5.000e+06	golare: b=100.00 h 6000.00 5000.00 5000.00 4.478e+06 5.000e+06 1.800e+06	golare: b=100.00 h 6000.00 5000.00 5000.00 4.478e+06 5.000e+06 1.800e+06 1.000e+05	golare: b=100.00 h 6000.00 5000.00 5000.00 4.478e+06 5.000e+06 1.800e+06 1.000e+05 6.000e+04	golare: b=100.00 h 6000.00 5000.00 5000.00 4.478e+06 5.000e+06 1.800e+06 1.000e+05 6.000e+04 1.500e+05

MODELLAZIONE STRUTTURA: NODI

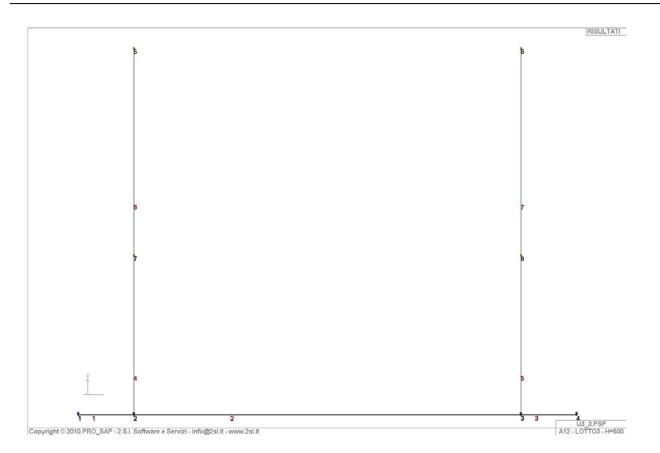
LEGENDA TABELLA DATI NODI

Il programma utilizza per la modellazione nodi strutturali.

Ogni nodo è individuato dalle coordinate cartesiane nel sistema di riferimento globale (X Y Z).

Ad ogni nodo è eventualmente associato un codice di vincolamento rigido, un codice di fondazione speciale, ed un set di sei molle (tre per le traslazioni, tre per le rotazioni). Le tabelle sottoriportate riflettono le succitate possibilità. In particolare per ogni nodo viene indicato in tabella:

Nodo	numero del nodo.
X	valore della coordinata X
Υ	valore della coordinata Y
Z	valore della coordinata Z


Per i nodi ai quali sia associato un codice di vincolamento rigido, un codice di fondazione speciale o un set di molle viene indicato in tabella:

Nodo	numero del nodo.
X	valore della coordinata X
Υ	valore della coordinata Y
Z	valore della coordinata Z
Note	eventuale codice di vincolo (es. v=110010 sei valori relativi ai sei gradi di libertà previsti per il nodo TxTyTzRxRyRz, il valore 1 indica che lo spostamento o rotazione relativo è impedito, il valore 0 indica che lo spostamento o rotazione relativo è libero).
Note	(FS = 1, 2,) eventuale codice del tipo di fondazione speciale (1, 2, fanno riferimento alle tipologie: plinto, palo, plinto su pali,) che è collegato al nodo. (ISO = "id SIGLA") indice e sigla identificativa dell' eventuale isolatore sismico assegnato al nodo
Rig. TX	valore della rigidezza dei vincoli elastici eventualmente applicati al nodo, nello specifico TX (idem per TY, TZ, RX, RY, RZ).

Per strutture sismicamente isolate viene inoltre inserita la tabella delle caratteristiche per gli isolatori utilizzati; le caratteristiche sono indicate in conformità al cap. 7.10 del D.M. 14/01/08

TABELLA DATI NODI

Nodo	Х	Υ	Z	Nodo	Х	Υ	Z	Nodo	Х	Y	Z
	cm	cm	cm		cm	cm	cm		cm	cm	cm
5	0.0	1050.0	530.0	6	0.0	1610.0	530.0	7	0.0	1050.0	230.0
8	0.0	1610.0	230.0								
Nodo	X	Υ	Z	No	te	Rig. TX	Rig. TY	Rig. TZ	Rig. RX	Rig. RY	Rig. RZ
	cm	cm	cm			daN/cm	daN/cm	daN/cm	daN cm/rad	daN cm/rad	daN cm/rad
1	0.0	970.0	0.0	v=01000	00			60.0			
2	0.0	1050.0	0.0	v=01000	00			60.0			
3	0.0	1610.0	0.0	v=01000	00			60.0			
4	0.0	1690.0	0.0	v=01000	00			60.0			

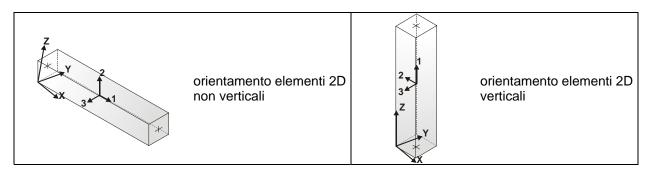

MODELLAZIONE STRUTTURA: ELEMENTI TRAVE

TABELLA DATI TRAVI

Il programma utilizza per la modellazione elementi a due nodi denominati in generale travi.

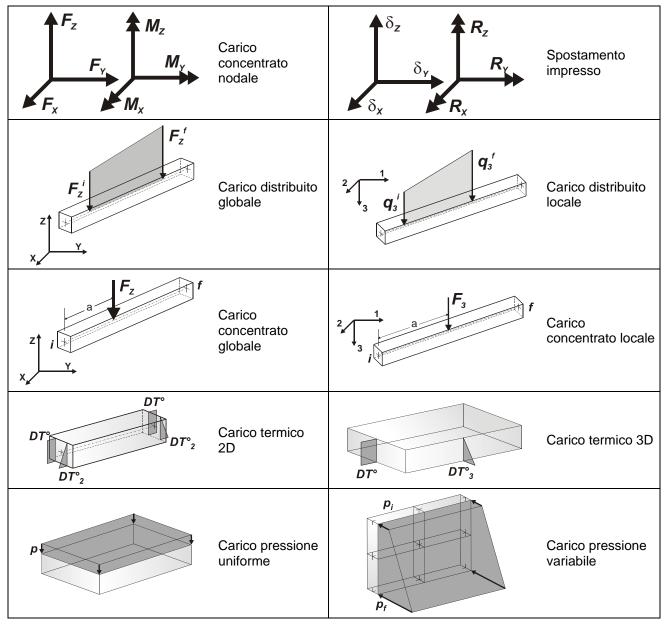
Ogni elemento trave è individuato dal nodo iniziale e dal nodo finale.

Ogni elemento è caratterizzato da un insieme di proprietà riportate in tabella che ne completano la modellazione.

In particolare per ogni elemento viene indicato in tabella:

Elem.	numero dell'elemento
Note	codice di comportamento: trave, trave di fondazione, pilastro, asta, asta tesa,
	asta compressa
Nodo I (J)	numero del nodo iniziale (finale)
Mat.	codice del materiale assegnato all'elemento
Sez.	codice della sezione assegnata all'elemento
Rotaz.	valore della rotazione dell'elemento, attorno al proprio asse, nel caso in cui l'orientamento di default non sia adottabile; l'orientamento di default prevede per gli elementi non verticali l'asse 2 contenuto nel piano verticale e l'asse 3 orizzontale, per gli elementi verticali l'asse 2 diretto secondo X negativo e l'asse 3 diretto secondo Y negativo
Svincolo I (J)	codici di svincolo per le azioni interne; i primi sei codici si riferiscono al nodo iniziale, i restanti sei al nodo finale (il valore 1 indica che la relativa azione interna non è attiva)
Wink V	costante di sottofondo (coefficiente di Winkler) per la modellazione della trave su suolo elastico
Wink O	costante di sottofondo (coefficiente di Winkler) per la modellazione del suolo elastico orizzontale

Elem.	Note	Nodo I	Nodo J	Mat.	Sez.	Rotaz. gradi	Svincolo I	Svincolo J	Wink V daN/cm3	Wink O daN/cm3
1	Trave f.	1	2	4	1	-			1.50	0.50
2	Trave f.	2	3	4	1				1.50	0.50
3	Trave f.	3	4	4	1				1.50	0.50
4	Pilas.	2	7	4	1	90.00				
5	Pilas.	3	8	4	1	90.00				
6	Pilas.	7	5	4	1	90.00				
7	Pilas.	8	6	4	1	90.00				


MODELLAZIONE DELLE AZIONI

LEGENDA TABELLA DATI AZIONI

Il programma consente l'uso di diverse tipologie di carico (azioni). Le azioni utilizzate nella modellazione sono individuate da una sigla identificativa ed un codice numerico (gli elementi strutturali richiamano quest'ultimo nella propria descrizione). Per ogni azione applicata alla struttura viene di riportato il codice, il tipo e la sigla identificativa. Le tabelle successive dettagliano i valori caratteristici di ogni azione in relazione al tipo. Le tabelle riportano infatti i seguenti dati in relazione al tipo:

1	carico concentrato nodale
	6 dati (forza Fx, Fy, Fz, momento Mx, My, Mz)
2	spostamento nodale impresso
	6 dati (spostamento Tx,Ty,Tz, rotazione Rx,Ry,Rz)
3	carico distribuito globale su elemento tipo trave
	7 dati (fx,fy,fz,mx,my,mz,ascissa di inizio carico)
	7 dati (fx,fy,fz,mx,my,mz,ascissa di fine carico)
4	carico distribuito locale su elemento tipo trave
	7 dati (f1,f2,f3,m1,m2,m3,ascissa di inizio carico)
	7 dati (f1,f2,f3,m1,m2,m3,ascissa di fine carico)
5	carico concentrato globale su elemento tipo trave
	7 dati (Fx,Fy,Fz,Mx,My,Mz,ascissa di carico)
6	carico concentrato locale su elemento tipo trave
	7 dati (F1, F2, F3, M1, M2, M3, ascissa di carico)
7	variazione termica applicata ad elemento tipo trave
	7 dati (variazioni termiche: uniforme, media e differenza in altezza e larghezza al
	nodo iniziale e finale)
8	carico di pressione uniforme su elemento tipo piastra
	1 dato (pressione)
9	carico di pressione variabile su elemento tipo piastra
	4 dati (pressione, quota, pressione, quota)
10	variazione termica applicata ad elemento tipo piastra
	2 dati (variazioni termiche: media e differenza nello spessore)
11	carico variabile generale su elementi tipo trave e piastra
	1 dato descrizione della tipologia
	4 dati per segmento (posizione, valore, posizione, valore)
	la tipologia precisa l'ascissa di definizione, la direzione del carico, la modalità di carico
	e la larghezza d'influenza per gli elementi tipo trave
12	gruppo di carichi con impronta su piastra
	9 dati (numero di ripetizioni in direzione X e Y, valore di ciascun carico, posizione
	centrale del primo, dimensioni dell' impronta, interasse tra i carichi

d	Tipo	Pos.	fx	fy	fz	mx	my	mz
		cm	daN/cm	daN/cm	daN/cm	daN	daN	daN
	DG:xi=0.0 xf=300.00 Fyi=25.38 Spinta terra SX_300	0.0	0.0	25.38	0.0	0.0	0.0	0.0
		300.00	0.0	0.0	0.0	0.0	0.0	0.0
2	DG:xi=0.0 xf=300.00 Fyi=-25.38 Spinta terra DX_300	0.0	0.0	-25.38	0.0	0.0	0.0	0.0
		300.00	0.0	0.0	0.0	0.0	0.0	0.0
3	DG:Fyi=18.22 Fyf=18.22 Spinta Wood_SX (SLU)	0.0	0.0	18.22	0.0	0.0	0.0	0.0
		0.0	0.0	18.22	0.0	0.0	0.0	0.0
1	DG:Fyi=-18.22 Fyf=-18.22 Spinta Wood_DX (SLU)	0.0	0.0	-18.22	0.0	0.0	0.0	0.0
		0.0	0.0	-18.22	0.0	0.0	0.0	0.0
5	DG:Fzi=-90.00 Fzf=-90.00 Peso Terra	0.0	0.0	0.0	-90.00	0.0	0.0	0.0
		0.0	0.0	0.0	-90.00	0.0	0.0	0.0
3	DG:xi=0.0 xf=230.00 Fyi=44.42 Fyf=25.38 Spinta terra SX_530	0.0	0.0	44.42	0.0	0.0	0.0	0.0
		230.00	0.0	25.38	0.0	0.0	0.0	0.0
	DG:xi=0.0 xf=230.00 Fyi=-44.42 Fyf=-25.38 Spinta Terra DX 530	0.0	0.0	-44.42	0.0	0.0	0.0	0.0
		230.00	0.0	-25.38	0.0	0.0	0.0	0.0
;	DG:Fyi=8.97 Fyf=8.97 Spinta Wood_SX (SLE)	0.0	0.0	8.97	0.0	0.0	0.0	0.0
		0.0	0.0	8.97	0.0	0.0	0.0	0.0
)	DG:Fyi=-8.97 Fyf=-8.97 Spinta Wood_DX (SLE)	0.0	0.0	-8.97	0.0	0.0	0.0	0.0
		0.0	0.0	-8.97	0.0	0.0	0.0	0.0

SCHEMATIZZAZIONE DEI CASI DI CARICO

LEGENDA TABELLA CASI DI CARICO

Il programma consente l'applicazione di diverse tipologie di casi di carico.

Sono previsti i seguenti 11 tipi di casi di carico:

	Sigla	Tipo	Descrizione
1	Ggk	Α	caso di carico comprensivo del peso proprio struttura
2	Gk	NA	caso di carico con azioni permanenti
3	Qk	NA	caso di carico con azioni variabili
4	Gsk	Α	caso di carico comprensivo dei carichi permanenti sui solai e sulle coperture
5	Qsk	Α	caso di carico comprensivo dei carichi variabili sui solai
6	Qnk	Α	caso di carico comprensivo dei carichi di neve sulle coperture
7	Qtk	SA	caso di carico comprensivo di una variazione termica agente sulla struttura
8	Qvk	NA	caso di carico comprensivo di azioni da vento sulla struttura
9	Esk	SA	caso di carico sismico con analisi statica equivalente
10	Edk	SA	caso di carico sismico con analisi dinamica
11	Pk	NA	caso di carico comprensivo di azioni derivanti da coazioni, cedimenti e
			precompressioni

Sono di <u>tipo automatico A</u> (ossia non prevedono introduzione dati da parte dell'utente) i seguenti casi di carico: 1-Ggk; 4-Gsk; 5-Qsk; 6-Qnk.

Sono di <u>tipo semi-automatico SA</u> (ossia prevedono una minima introduzione dati da parte dell'utente) i seguenti casi di carico:

7-Qtk, in quanto richiede solo il valore della variazione termica;

9-Esk e 10-Edk, in quanto richiedono il valore dell'angolo di ingresso del sisma e l'individuazione dei casi di carico partecipanti alla definizione delle masse.

Sono di tipo <u>non automatico NA</u> ossia prevedono la diretta applicazione di carichi generici agli elementi strutturali (si veda il precedente punto Modellazione delle Azioni) i restanti casi di carico.

Nella tabella successiva vengono riportati i casi di carico agenti sulla struttura, con l'indicazione dei dati relativi al caso di carico stesso:

Numero Tipo e Sigla identificativa, Valore di riferimento del caso di carico (se previsto).

In successione, per i casi di carico non automatici, viene riportato l'elenco di nodi ed elementi direttamente caricati con la sigla identificativa del carico.

Per i casi di carico di tipo sismico (9-Esk e 10-Edk), viene riportata la tabella di definizione delle masse: per ogni caso di carico partecipante alla definizione delle masse viene indicata la relativa aliquota (partecipazione) considerata. Si precisa che per i caso di carico 5-Qsk e 6-Qnk la partecipazione è prevista localmente per ogni elemento solaio o copertura presente nel modello (si confronti il valore Sksol nel capitolo relativo agli elementi solaio) e pertanto la loro partecipazione è di norma pari a uno.

		<u> </u>	o partecipazione e di norma pari a uno.
CDC	Tipo	Sigla Id	Note
1	Ggk	CDC=Ggk (peso proprio della struttura)	
2	Gk	CDC=G2k (permanente spinta terra)	D2: 1 Azione: DG:Fzi=-90.00 Fzf=-90.00 Peso Terra
			D2: 3 Azione: DG:Fzi=-90.00 Fzf=-90.00 Peso Terra
			D2: 4 Azione: DG:xi=0.0 xf=230.00 Fyi=44.42 Fyf=25.38 Spinta terra SX_530
			D2: 5 Azione: DG:xi=0.0 xf=230.00 Fyi=-44.42 Fyf=-25.38 Spinta Terra DX 530
			D2: 6 Azione: DG:xi=0.0 xf=300.00 Fyi=25.38 Spinta terra SX_300
			D2: 7 Azione: DG:xi=0.0 xf=300.00 Fyi=-25.38 Spinta terra DX_300
3	Esk	CDC=Es (statico SLU) alfa=90.00 (ecc. 0)	partecipazione:1.00 per 1 CDC=Ggk (peso proprio della struttura)
4	Qk	CDC=Qk (Spinta Wood SX_SLU)	D2: 4 Azione: DG:Fyi=18.22 Fyf=18.22 Spinta Wood_SX (SLU)
			D2: 6 Azione: DG:Fyi=18.22 Fyf=18.22 Spinta Wood_SX (SLU)
5	Qk	CDC=Qk (Spinta Wood DX_SLU)	D2: 5 Azione: DG:Fyi=-18.22 Fyf=-18.22 Spinta Wood_DX (SLU)
			D2: 7 Azione: DG:Fyi=-18.22 Fyf=-18.22 Spinta Wood_DX (SLU)
6	Esk	CDC=Es (statico SLD) alfa=90.00 (ecc. 0)	come precedente CDC sismico
7	Qk	CDC=Qk (Spinta wood SX_SLE)	D2: 4 Azione: DG:Fyi=8.97 Fyf=8.97 Spinta Wood_SX (SLE)
			D2: 6 Azione: DG:Fyi=8.97 Fyf=8.97 Spinta Wood_SX (SLE)
8	Qk	CDC=Qk (Spinta Wood DX_SLE)	D2: 5 Azione: DG:Fyi=-8.97 Fyf=-8.97 Spinta Wood_DX (SLE)
			D2: 7 Azione: DG:Fyi=-8.97 Fyf=-8.97 Spinta Wood_DX (SLE)

DEFINIZIONE DELLE COMBINAZIONI

LEGENDA TABELLA COMBINAZIONI DI CARICO

Il programma combina i diversi tipi di casi di carico (CDC) secondo le regole previste dalla normativa vigente. Le combinazioni previste sono destinate al controllo di sicurezza della struttura ed alla verifica degli spostamenti e delle sollecitazioni.

La prima tabella delle combinazioni riportata di seguito comprende le seguenti informazioni: *Numero, Tipo, Sigla identificativa*. Una seconda tabella riporta il *peso nella combinazione*, assunto per ogni caso di carico.

Cmb	Tipo	Sigla Id	effetto P-delta
1	SLU	Comb. SLU A1 1	
2	SLU	Comb. SLU A1 2	
3	SLU (Terr. A2)	Comb. SLU A2 3	
4	SLU (Terr. G)	Comb. SLU TIPO EQU 4	
5	SLU (Terr. G)	Comb. SLU TIPO EQU 5	
6	SLU	Comb. SLU A1 (SLV sism.) 6	
7	SLU	Comb. SLU A1 (SLV sism.) 7	
8	SLD(sis)	Comb. SLE (SLD Danno sism.) 8	
9	SLD(sis)	Comb. SLE (SLD Danno sism.) 9	
10	SLU (Terr. A2)	Comb. SLU A2 (SLV sism.) 10	
11	SLU (Terr. A2)	Comb. SLU A2 (SLV sism.) 11	
12	SLE(r)	Comb. SLE(rara) 12	
13	SLE(f)	Comb. SLE(freq.) 13	
14	SLE(p)	Comb. SLE(perm.) 14	

Cmb	CDC	CDC	CDC	CDC	CDC	CDC	CDC	CDC	CDC	CDC	CDC	CDC	CDC	CDC
	1/15	2/16	3/17	4/18	5/19	6/20	7/21	8/22	9/23	10/24	11/25	12/26	13/27	14/28
1	1.30	1.50	0.0	0.0	0.0	0.0	0.0	0.0						
2	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0						
3	1.00	1.30	0.0	0.0	0.0	0.0	0.0	0.0						
4	1.10	1.50	0.0	0.0	0.0	0.0	0.0	0.0						
5	0.90	0.0	0.0	0.0	0.0	0.0	0.0	0.0						
6	1.00	1.00	-1.00	0.0	1.00	0.0	0.0	0.0						
7	1.00	1.00	1.00	1.00	0.0	0.0	0.0	0.0						
8	1.00	1.00	0.0	0.0	0.0	-1.00	0.0	1.00						
9	1.00	1.00	0.0	0.0	0.0	1.00	1.00	0.0						
10	1.00	1.00	-1.00	0.0	1.00	0.0	0.0	0.0						
11	1.00	1.00	1.00	1.00	0.0	0.0	0.0	0.0						
12	1.00	1.00	0.0	0.0	0.0	1.00	1.00	0.0						
13	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0						
14	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0						

AZIONE SISMICA

VALUTAZIONE DELL' AZIONE SISMICA

L'azione sismica sulle costruzioni è valutata a partire dalla "pericolosità sismica di base", in condizioni ideali di sito di riferimento rigido con superficie topografica orizzontale.

Allo stato attuale, la pericolosità sismica su reticolo di riferimento nell'intervallo di riferimento è fornita dai dati pubblicati sul sito http://esse1.mi.ingv.it/. Per punti non coincidenti con il reticolo di riferimento e periodi di ritorno non contemplati direttamente si opera come indicato nell' allegato alle NTC (rispettivamente media pesata e interpolazione).

L' azione sismica viene definita in relazione ad un periodo di riferimento Vr che si ricava, per ciascun tipo di costruzione, moltiplicandone la vita nominale per il coefficiente d'uso (vedi tabella Parametri della struttura). Fissato il periodo di riferimento Vr e la probabilità di superamento Pver associata a ciascuno degli stati limite considerati, si ottiene il periodo di ritorno Tr e i relativi parametri di pericolosità sismica (vedi tabella successiva):

ag: accelerazione orizzontale massima del terreno;

Fo: valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;

T*c: periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale;

Parametri dell	Parametri della struttura										
Classe d'uso Vita Vn [anni] Coeff. Uso Periodo Vr Tipo di suolo Categoria											
			[anni]		topografica						
IV	50.0	2.0	100.0	D	T1						

Individuati su reticolo di riferimento i parametri di pericolosità sismica si valutano i parametri spettrali riportati in tabella:

S è il coefficiente che tiene conto della categoria di sottosuolo e delle condizioni topografiche mediante la relazione seguente S = Ss*St (3.2.5)

Fo è il fattore che quantifica l'amplificazione spettrale massima, su sito di riferimento rigido orizzontale

Fv è il fattore che quantifica l'amplificazione spettrale massima verticale, in termini di accelerazione orizzontale massima del terreno ag su sito di riferimento rigido orizzontale

Tb è il periodo corrispondente all'inizio del tratto dello spettro ad accelerazione costante.

Tc è il periodo corrispondente all'inizio del tratto dello spettro a velocità costante.

Td è il periodo corrispondente all'inizio del tratto dello spettro a spostamento costante.

ld nodo	Longitudine	Latitudine	Distanza
			Km
Loc.	11.077	42.884	
24051	11.034	42.859	4.425
24052	11.103	42.860	3.401
23830	11.101	42.910	3.509
23829	11.032	42.909	4.572

SL	Pver	Tr	ag	Fo	T*c
		Anni	g		sec
SLO	81.0	60.0	0.043	2.590	0.240
SLD	63.0	101.0	0.052	2.600	0.260
SLV	10.0	949.0	0.106	2.640	0.290
SLC	5.0	1950.0	0.129	2.670	0.290

SL	ag	S	Fo	Fv	Tb	Tc	Td
	g				sec	sec	sec
SLO	0.043	1.800	2.590	0.726	0.204	0.612	1.772
SLD	0.052	1.800	2.600	0.802	0.212	0.637	1.809
SLV	0.106	1.800	2.640	1.161	0.224	0.673	2.024
SLC	0.129	1.800	2.670	1.294	0.224	0.673	2.115

RISULTATI ANALISI SISMICHE

LEGENDA TABELLA ANALISI SISMICHE

Il programma consente l'analisi di diverse configurazioni sismiche.

Sono previsti, infatti, i seguenti casi di carico:

9. Esk caso di carico sismico con analisi statica equivalente

10. Edk caso di carico sismico con analisi dinamica

Ciascun caso di carico è caratterizzato da un angolo di ingresso e da una configurazione di masse determinante la forza sismica complessiva (si rimanda al capitolo relativo ai casi di carico per chiarimenti inerenti questo aspetto).

Nella colonna Note, in funzione della norma in uso sono riportati i parametri fondamentali che caratterizzano

l'azione sismica: in particolare possono essere presenti i sequenti valori:

n particolare possono essere presenti i seguenti valori:
Angolo di ingresso dell'azione sismica orizzontale
Fattore di importanza dell'edificio, in base alla categoria di appartenenza
Zona sismica
Accelerazione orizzontale massima sul suolo
Categoria di profilo stratigrafico del suolo di fondazione
Fattore dipendente dalla tipologia strutturale
Fattore dipendente dalla stratigrafia e dal profilo topografico
Classe di duttilità della struttura – "A" duttilità alta, "B" duttilità bassa
Fattore di riduzione dello spettro elastico per lo stato limite di danno
Periodo proprio di vibrazione della struttura
Coefficiente dipendente dal periodo proprio T1 e dal numero di piani della struttura
Valore delle ordinate dello spettro di progetto per lo stato limite ultimo, componente orizzontale
(verticale Svd)
Valore delle ordinate dello spettro elastico ridotta del fattore SLD per lo stato limite di danno,
componente orizzontale (verticale Sve)
Valore dell' ordinata dello spettro in uso nel tratto costante
Numero di modi di vibrare della struttura considerati nell'analisi dinamica

Per ciascun caso di carico sismico viene riportato l'insieme di dati sottoriportati (le masse sono espresse in unità di forza):

a) analisi sismica statica equivalente:

- quota, posizione del centro di applicazione e azione orizzontale risultante, posizione del baricentro delle rigidezze, rapporto r/Ls (per strutture a nucleo), indici di regolarità e/r secondo EC8 4.2.3.2
- azione sismica complessiva

b) analisi sismica dinamica con spettro di risposta:

- quota, posizione del centro di massa e massa risultante, posizione del baricentro delle rigidezze, rapporto r/Ls (per strutture a nucleo), indici di regolarità e/r secondo EC8 4.2.3.2
- frequenza, periodo,accelerazione spettrale, massa eccitata nelle tre direzioni globali per tutti i modi
- massa complessiva ed aliquota di massa complessiva eccitata.

Per ciascuna combinazione sismica definita SLD o SLO viene riportato il livello di deformazione etaT (dr) degli elementi strutturali verticali. Per semplicità di consultazione il livello è espresso anche in unità 1000*etaT/h da confrontare direttamente con i valori forniti nella norma (es. 5 per edifici con tamponamenti collegati rigidamente alla struttura, 10.0 per edifici con tamponamenti collegati elasticamente, 3 per edifici in muratura ordinaria, 4 per edifici in muratura armata).

Qualora si applichi il D.M. 96 (vedi NOTA sul capitolo "normativa di riferimento") l'analisi sismica dinamica può essere comprensiva di sollecitazione verticale contemporanea a quella orizzontale, nel qual caso è effettuata una sovrapposizione degli effetti in ragione della radice dei quadrati degli effetti stessi. Per ciascuna combinazione sismica - analisi effettuate con il D.M. 96 (vedi NOTA sul capitolo "normativa di riferimento") - viene riportato il livello di deformazione etaT, etaP e etaD degli elementi strutturali verticali. Per semplicità di consultazione il livello è espresso in unità 1000*etaT/h da confrontare direttamente con il valore 2 o 4 per la verifica.

Per gli edifici sismicamente isolati si riportano di seguito le verifiche condotte sui dispositivi di isolamento. Le verifiche sono effettuate secondo l' allegato 10.A dell'Ordinanza 3274 e smi. In particolare la tabella, per ogni combinazione SLU (SLC per il DM 14-01-2008) sismica riporta il codice di verifica e i valori utilizzati per la verifica: spostamento dE, area ridotta e dimensione A2, azione verticale, deformazioni di taglio dell' elastomero e tensioni nell' acciaio.

Node	Node di appaggio dell' icolatore
Nodo	Nodo di appoggio dell' isolatore
Cmb	Combinazione oggetto della verifica
Verif.	Codice di verifica ok – verifica positiva , NV – verifica negativa, ND – verifica non completata
dE	Spostamento relativo tra le due facce (amplificato del 20% per Ordinanza 3274 e smi)
	combinato con la regola del 30%
Ang fi	Angolo utilizzato per il calcolo dell' area ridotta Ar (per dispositivi circolari)
V	Azione verticale agente
Ar	Area ridotta efficace
Dim A2	Dimensione utile per il calcolo della deformazione per rotazione
Sig s	Tensione nell' inserto in acciaio
Gam c(a,s,t)	Deformazioni di taglio dell' elestomero
Vcr	Carico critico per instabilità

Affinchè la verifica sia positiva deve essere:

- 1) V > 0
- 2) Sig s < fyk
- 3) Gam t < 5
- 4) Gam s < Gam * (caratteristica dell' elastomero)
- 5) Gam s < 2
- 6) V < 0.5 Vcr

CDC	Tipo	Sigla Id	Note
3	Esk	CDC=Es (statico SLU) alfa=90.00 (ecc. 0)	
			categoria suolo: D
			fattore di sito S = 1.800
			ordinata spettro (tratto Tb-Tc) = 0.210 g
			angolo di ingresso:90.00
			eccentricità aggiuntiva: nulla
			periodo proprio T1: 0.273 sec.
			fattore di struttura q: 2.400
			fattore per spost. mu d: 4.451
			classe di duttilità CD: B
			coefficiente Lambda: 1.000
			ordinata spettro Sd(T1): 0.210

Quota		Tot. parziale	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	rapp. r/Ls		rapp. ey/ry
cm	daN	daN	daN	cm	cm	cm	cm	cm	cm			
530.00	1479.06	1479.06	4500.00	0.0	1330.00	0.0	0.0	0.0	1330.00	1.732	0.0	0.0
230.00	1133.95	2613.01	7950.00	0.0	1330.00	0.0	0.0	0.0	1330.00	1.732	0.0	0.0
Risulta	2613.01		1.245e+04									

CDC	Tipo	Sigla Id	Note
6	Esk	CDC=Es (statico SLD) alfa=90.00 (ecc. 0)	
			categoria suolo: D
			fattore di sito S = 1.800
			ordinata spettro (tratto Tb-Tc) = 0.243 g
			angolo di ingresso:90.00
			eccentricità aggiuntiva: nulla
			periodo proprio T1: 0.273 sec.
			coefficiente Lambda: 1.000
			ordinata spettro Se(T1): 0.243

Quota	Forza	Tot.	M Sismica	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	rapp. r/Ls	rapp.	rapp.
	Sismica	parziale	x g								ex/rx	ey/ry
cm	daN	daN	daN	cm	cm	cm	cm	cm	cm			
530.00	1715.00	1715.00	4500.00	0.0	1330.00	0.0	0.0	0.0	1330.00	1.732	0.0	0.0
230.00	1314.83	3029.83	7950.00	0.0	1330.00	0.0	0.0	0.0	1330.00	1.732	0.0	0.0
Risulta	3029.83		1.245e+04									

Cmb	Pilas. 100	0 etaT/h	etaT cm	inter. h cm	Pilas. 100	00 etaT/h	etaT cm	inter. h cm	Pilas. 100	00 etaT/h	etaT cm	inter. h cm
8	4	0.07	0.02	230.0	5	1.90	0.44	230.0	6	0.14	0.04	300.0
	7	2.37	0.71	300.0								
9	4	1.90	0.44	230.0	5	0.07	0.02	230.0	6	2.37	0.71	300.0
	7	0.14	0.04	300.0								
Cmb	100	0 etaT/h 2.37										

RISULTATI NODALI

LEGENDA RISULTATI NODALI

Il controllo dei risultati delle analisi condotte, per quanto concerne i nodi strutturali, è possibile in relazione alle tabelle sottoriportate.

Una <u>prima tabella</u> riporta infatti per ogni nodo e per ogni combinazione (o caso di carico) gli spostamenti nodali.

Una <u>seconda tabella</u> riporta per ogni nodo a cui sia associato un vincolo rigido e/o elastico o una fondazione speciale e per ogni combinazione (o caso di carico) i valori delle azioni esercitate dalla struttura sui vincoli (reazioni vincolari cambiate di segno).

Una <u>terza tabella</u>, infine riassume per ogni nodo le sei combinazioni in cui si attingono i valori minimi e massimi della reazione Fz, della reazione Mx e della reazione My.

Nodo	Cmb	Traslazione X	Traslazione Y	Traslazione Z	Rotazione X	Rotazione Y	Rotazione Z
		cm	cm	cm			
1	1	0.0	0.0	-0.45	-5.72e-04	0.0	0.0
1	2	0.0	0.0	-0.28	2.01e-04	0.0	0.0
1	3	0.0	0.0	-0.35	-5.21e-04	0.0	0.0
1	4	0.0	0.0	-0.39	-6.12e-04	0.0	0.0
1	5	0.0	0.0	-0.25	1.81e-04	0.0	0.0
1	6	0.0	0.0	-0.56	1.75e-04	0.0	0.0
1	7	0.0	0.0	0.04	-1.95e-03	0.0	0.0
1	8	0.0	0.0	-0.51	1.11e-04	0.0	0.0
1	9	0.0	0.0	-0.09	-1.34e-03	0.0	0.0
1	10	0.0	0.0	-0.56	1.75e-04	0.0	0.0
1	11	0.0	0.0	0.04	-1.95e-03	0.0	0.0
1	12	0.0	0.0	-0.09	-1.34e-03	0.0	0.0
1	13	0.0	0.0	-0.34	-3.54e-04	0.0	0.0
1	14	0.0	0.0	-0.34	-3.54e-04	0.0	0.0
2	1	0.0	0.0	-0.49	-5.84e-04	0.0	0.0
2	2	0.0	0.0	-0.26	2.05e-04	0.0	0.0
2	3 4	0.0	0.0	-0.39	-5.32e-04	0.0	0.0
2 2	4 5	0.0 0.0	0.0	-0.44	-6.25e-04	0.0	0.0
2	5 6	0.0	0.0 0.0	-0.24 -0.55	1.84e-04	0.0 0.0	0.0 0.0
2	7	0.0	0.0	-0.33 -0.11	1.72e-04 -1.96e-03	0.0	0.0
2	8	0.0	0.0	-0.50	1.07e-04	0.0	0.0
2	9	0.0	0.0	-0.20	-1.36e-03	0.0	0.0
2	10	0.0	0.0	-0.55	1.72e-04	0.0	0.0
2	11	0.0	0.0	-0.11	-1.96e-03	0.0	0.0
2	12	0.0	0.0	-0.20	-1.36e-03	0.0	0.0
2	13	0.0	0.0	-0.36	-3.62e-04	0.0	0.0
2	14	0.0	0.0	-0.36	-3.62e-04	0.0	0.0
3	1	0.0	0.0	-0.49	5.84e-04	0.0	0.0
3	2	0.0	0.0	-0.26	-2.05e-04	0.0	0.0
3	3	0.0	0.0	-0.39	5.32e-04	0.0	0.0
3	4	0.0	0.0	-0.44	6.25e-04	0.0	0.0
3	5	0.0	0.0	-0.24	-1.84e-04	0.0	0.0
3	6	0.0	0.0	-0.11	1.96e-03	0.0	0.0
3	7	0.0	0.0	-0.55	-1.72e-04	0.0	0.0
3	8	0.0	0.0	-0.20	1.36e-03	0.0	0.0
3	9	0.0	0.0	-0.50	-1.07e-04	0.0	0.0
3	10	0.0	0.0	-0.11	1.96e-03	0.0	0.0
3	11	0.0	0.0	-0.55	-1.72e-04	0.0	0.0
3	12	0.0	0.0	-0.50	-1.07e-04	0.0	0.0
3	13	0.0	0.0	-0.36	3.62e-04	0.0	0.0
3	14	0.0	0.0	-0.36	3.62e-04	0.0	0.0
4	1	0.0	0.0	-0.45	5.72e-04	0.0	0.0
4	2	0.0	0.0	-0.28	-2.01e-04	0.0	0.0
4	3	0.0	0.0	-0.35	5.21e-04	0.0	0.0
4	4	0.0	0.0	-0.39	6.12e-04	0.0	0.0
4	5	0.0	0.0	-0.25	-1.81e-04	0.0	0.0
4	6	0.0	0.0	0.04	1.95e-03	0.0	0.0
4	7	0.0	0.0	-0.56	-1.75e-04	0.0	0.0

4	8	0.0	0.0	-0.09	1.34e-03	0.0	0.0
4	9	0.0	0.0	-0.51	-1.11e-04	0.0	0.0
4	10	0.0	0.0	0.04	1.95e-03	0.0	0.0
4	11	0.0	0.0	-0.56	-1.75e-04	0.0	0.0
4	12	0.0	0.0	-0.51	-1.11e-04	0.0	0.0
4 4	13 14	0.0 0.0	0.0 0.0	-0.34 -0.34	3.54e-04 3.54e-04	0.0 0.0	0.0 0.0
5	14	0.0	0.61	-0.54 -0.50	-1.27e-03	0.0	0.0
5	2	0.0	-0.11	-0.26	2.05e-04	0.0	0.0
5	3	0.0	0.54	-0.40	-1.13e-03	0.0	0.0
5	4	0.0	0.63	-0.44	-1.31e-03	0.0	0.0
5	5	0.0	-0.10	-0.24	1.84e-04	0.0	0.0
5	6	0.0	0.03	-0.55	-9.12e-05	0.0	0.0
5	7	0.0	1.61	-0.11	-3.36e-03	0.0	0.0
5	8	0.0	0.06	-0.50	-1.25e-04	0.0	0.0
5 5	9 10	0.0 0.0	1.15 0.03	-0.20 -0.55	-2.41e-03 -9.12e-05	0.0 0.0	0.0 0.0
5	11	0.0	1.61	-0.55 -0.11	-3.36e-03	0.0	0.0
5	12	0.0	1.15	-0.20	-2.41e-03	0.0	0.0
5	13	0.0	0.39	-0.37	-8.21e-04	0.0	0.0
5	14	0.0	0.39	-0.37	-8.21e-04	0.0	0.0
6	1	0.0	-0.61	-0.50	1.27e-03	0.0	0.0
6	2	0.0	0.11	-0.26	-2.05e-04	0.0	0.0
6	3	0.0	-0.54	-0.40	1.13e-03	0.0	0.0
6	4	0.0	-0.63	-0.44	1.31e-03	0.0	0.0
6	5	0.0	0.10	-0.24	-1.84e-04	0.0	0.0
6	6 7	0.0 0.0	-1.61 -0.03	-0.11 -0.55	3.36e-03	0.0 0.0	0.0 0.0
6 6	8	0.0	-0.03 -1.15	-0.20	9.12e-05 2.41e-03	0.0	0.0
6	9	0.0	-0.06	-0.50	1.25e-04	0.0	0.0
6	10	0.0	-1.61	-0.11	3.36e-03	0.0	0.0
6	11	0.0	-0.03	-0.55	9.12e-05	0.0	0.0
6	12	0.0	-0.06	-0.50	1.25e-04	0.0	0.0
6	13	0.0	-0.39	-0.37	8.21e-04	0.0	0.0
6	14	0.0	-0.39	-0.37	8.21e-04	0.0	0.0
7	1	0.0	0.23	-0.49	-1.20e-03	0.0	0.0
7 7	2	0.0	-0.05	-0.26	2.05e-04	0.0	0.0
7	3 4	0.0 0.0	0.20 0.24	-0.40 -0.44	-1.07e-03 -1.24e-03	0.0 0.0	0.0 0.0
7	5	0.0	-0.04	-0.24	1.84e-04	0.0	0.0
7	6	0.0	3.67e-03	-0.55	-9.90e-05	0.0	0.0
7	7	0.0	0.62	-0.11	-3.13e-03	0.0	0.0
7	8	0.0	0.02	-0.50	-1.41e-04	0.0	0.0
7	9	0.0	0.44	-0.20	-2.23e-03	0.0	0.0
7	10	0.0	3.67e-03	-0.55	-9.90e-05	0.0	0.0
7	11	0.0	0.62	-0.11	-3.13e-03	0.0	0.0
7	12 13	0.0	0.44	-0.20	-2.23e-03	0.0	0.0
7 7	14	0.0 0.0	0.15 0.15	-0.37 -0.37	-7.74e-04 -7.74e-04	0.0 0.0	0.0 0.0
8	1	0.0	-0.23	-0.49	1.20e-03	0.0	0.0
8	2	0.0	0.05	-0.26	-2.05e-04	0.0	0.0
8	3	0.0	-0.20	-0.40	1.07e-03	0.0	0.0
8	4	0.0	-0.24	-0.44	1.24e-03	0.0	0.0
8	5	0.0	0.04	-0.24	-1.84e-04	0.0	0.0
8	6	0.0	-0.62	-0.11	3.13e-03	0.0	0.0
8	7	0.0	-3.67e-03	-0.55	9.90e-05	0.0	0.0
8	8	0.0	-0.44	-0.20	2.23e-03	0.0	0.0
8 8	9 10	0.0 0.0	-0.02 -0.62	-0.50 -0.11	1.41e-04 3.13e-03	0.0 0.0	0.0 0.0
8	11	0.0	-3.67e-03	-0.55	9.90e-05	0.0	0.0
8	12	0.0	-0.02	-0.50	1.41e-04	0.0	0.0
8	13	0.0	-0.15	-0.37	7.74e-04	0.0	0.0
8	14	0.0	-0.15	-0.37	7.74e-04	0.0	0.0
NI I -		T	To all all and a V	Total and a second	D-1	Data-lawa V	D-1 7
Nodo		Traslazione X 0.0	Traslazione Y -1.61	Traslazione Z -0.56	Rotazione X -3.36e-03	Rotazione Y 0.0	Rotazione Z 0.0
		0.0	1.61	0.04	3.36e-03	0.0	0.0
		0.0	1.01	0.04	3.555 00	0.0	0.0
Nodo	Cmb	Azione X	Azione Y	Azione Z	Azione RX	Azione RY	Azione RZ
		daN	daN	daN	daN cm	daN cm	daN cm
1	1	0.0	4.47	-26.90	0.0	0.0	0.0
1	2	0.0	0.0	-16.75	0.0	0.0	0.0
1 1	3 4	0.0 0.0	3.87 4.47	-21.19 -23.55	0.0 0.0	0.0 0.0	0.0 0.0
1	5	0.0	0.0	-23.55 -15.08	0.0	0.0	0.0
•	3	0.0	0.0	10.00	0.0	0.0	0.0

	•		2.05	00.77	2.0	2.2	0.0
1	6	0.0	2.65	-33.77	0.0	0.0	0.0
1	7	0.0	5.74	2.50	0.0	0.0	0.0
1	8	0.0	2.60	-30.37	0.0	0.0	0.0
1	9	0.0	4.56	-5.50	0.0	0.0	0.0
1	10	0.0	2.65	-33.77	0.0	0.0	0.0
1	11	0.0	5.74	2.50	0.0	0.0	0.0
1	12	0.0	4.56	-5.50	0.0	0.0	0.0
1	13	0.0	2.98	-20.17	0.0	0.0	0.0
1	14	0.0	2.98	-20.17	0.0	0.0	0.0
2	1	0.0	1.775e+04	-29.64	0.0	0.0	0.0
2	2	0.0	0.0	-15.79	0.0	0.0	0.0
2	3	0.0	1.538e+04	-23.69	0.0	0.0	0.0
2	4	0.0	1.775e+04	-26.48	0.0	0.0	0.0
2							
2	5	0.0	0.0	-14.21	0.0	0.0	0.0
2	6	0.0	1.052e+04	-32.93	0.0	0.0	0.0
2	7	0.0	2.279e+04	-6.83	0.0	0.0	0.0
2	8	0.0	1.032e+04	-29.84	0.0	0.0	0.0
2	9	0.0	1.810e+04	-11.94	0.0	0.0	0.0
2	10	0.0	1.052e+04	-32.93	0.0	0.0	0.0
2	11	0.0	2.279e+04	-6.83	0.0	0.0	0.0
2	12	0.0	1.810e+04	-11.94	0.0	0.0	0.0
2	13	0.0	1.183e+04	-21.86	0.0	0.0	0.0
2	14	0.0	1.183e+04	-21.86	0.0	0.0	0.0
3	1	0.0	-1.775e+04	-29.64	0.0	0.0	0.0
3	2	0.0	0.0	-15.79	0.0	0.0	0.0
	3						
3		0.0	-1.538e+04	-23.69	0.0	0.0	0.0
3	4	0.0	-1.775e+04	-26.48	0.0	0.0	0.0
3	5	0.0	0.0	-14.21	0.0	0.0	0.0
3	6	0.0	-2.279e+04	-6.83	0.0	0.0	0.0
3	7	0.0	-1.052e+04	-32.93	0.0	0.0	0.0
3	8	0.0	-1.810e+04	-11.94	0.0	0.0	0.0
3	9	0.0	-1.032e+04	-29.84	0.0	0.0	0.0
3	10	0.0	-2.279e+04	-6.83	0.0	0.0	0.0
3	11	0.0	-1.052e+04	-32.93	0.0	0.0	0.0
3	12	0.0	-1.032e+04	-29.84	0.0	0.0	0.0
3	13	0.0	-1.183e+04	-21.86	0.0	0.0	0.0
3	14	0.0	-1.183e+04	-21.86	0.0	0.0	0.0
4							
	1	0.0	-4.47	-26.90	0.0	0.0	0.0
4	2	0.0	0.0	-16.75	0.0	0.0	0.0
4	3	0.0	-3.87	-21.19	0.0	0.0	0.0
4	4	0.0	-4.47	-23.55	0.0	0.0	0.0
4	5	0.0	0.0	-15.08	0.0	0.0	0.0
4	6	0.0	-5.74	2.50	0.0	0.0	0.0
4	7	0.0	-2.65	-33.77	0.0	0.0	0.0
4	8	0.0	-4.56	-5.50	0.0	0.0	0.0
4	9	0.0	-2.60	-30.37	0.0	0.0	0.0
4	10	0.0	-5.74	2.50	0.0	0.0	0.0
4	11	0.0	-2.65	-33.77	0.0	0.0	0.0
•			-2.60			0.0	
4	12	0.0		-30.37	0.0		0.0
4	13	0.0	-2.98	-20.17	0.0	0.0	0.0
4	14	0.0	-2.98	-20.17	0.0	0.0	0.0
Nodo		Azione X	Azione Y	Azione Z	Azione RX	Azione RY	Azione RZ
		0.0	-2.279e+04	-33.77	0.0	0.0	0.0
		0.0	2.279e+04	2.50	0.0	0.0	0.0
Nodo	Cmb	Azione X	Azione Y	Azione Z	Azione RX	Azione RY	Azione RZ
Nouo	Cilib						
		daN	daN	daN	daN cm	daN cm	daN cm
1	6	0.0	2.65	-33.77	0.0	0.0	0.0
	7	0.0	5.74	2.50	0.0	0.0	0.0
	1	0.0	4.47	-26.90	0.0	0.0	0.0
	1	0.0	4.47	-26.90	0.0	0.0	0.0
	1	0.0	4.47	-26.90	0.0	0.0	0.0
	1	0.0	4.47	-26.90	0.0	0.0	0.0
2	6	0.0	1.052e+04	-32.93	0.0	0.0	0.0
4	7	0.0	2.279e+04	-6.83	0.0	0.0	0.0
	1	0.0	1.775e+04	-29.64	0.0	0.0	0.0
	1	0.0	1.775e+04	-29.64	0.0	0.0	0.0
	1	0.0	1.775e+04	-29.64	0.0	0.0	0.0
	1	0.0	1.775e+04	-29.64	0.0	0.0	0.0
3	7	0.0	-1.052e+04	-32.93	0.0	0.0	0.0
	6	0.0	-2.279e+04	-6.83	0.0	0.0	0.0
	1	0.0	-1.775e+04	-29.64	0.0	0.0	0.0
	1	0.0	-1.775e+04	-29.64	0.0	0.0	0.0
	i	0.0	-1.775e+04	-29.64	0.0	0.0	0.0
					0.0		0.0

	1	0.0	-1.775e+04	-29.64	0.0	0.0	0.0
4	7	0.0	-2.65	-33.77	0.0	0.0	0.0
	6	0.0	-5.74	2.50	0.0	0.0	0.0
	1	0.0	-4.47	-26.90	0.0	0.0	0.0
	1	0.0	-4.47	-26.90	0.0	0.0	0.0
	1	0.0	-4.47	-26.90	0.0	0.0	0.0
	1	0.0	-4.47	-26.90	0.0	0.0	0.0

RISULTATI OPERE DI FONDAZIONE

LEGENDA RISULTATI OPERE DI FONDAZIONE

Il controllo dei risultati delle analisi condotte, per quanto concerne le opere di fondazione, è possibile in relazione alle tabelle sottoriportate.

La prima tabella è riferita alle fondazioni tipo palo e plinto su pali.

Per questo tipo di fondazione vengono riportate le sei componenti di sollecitazione (espresse nel riferimento globale della struttura) per ogni palo componente l'opera.

In particolare viene riportato:

<u>colare viene</u>	riportato.							
Nodo	numero del nodo a cui è applicato il plinto							
Tipo	codice corrispondente al nome assegnato al tipo di plinto di fondazione:							
	3) palo singolo (PALO)							
	4) plinto su palo							
	5) plinto su due pali (<i>PL.2P</i>)							
	6) plinto su tre pali (<i>PL.3P</i>)							
	7) plinto su quattro pali (<i>PL.4P</i>)							
	8) plinto rettangolare su cinque pali (<i>PL.5P.R</i>)							
	9) plinto pentagonale su cinque pali (<i>PL.5P</i>)							
	10) plinto su sei pali (<i>PL.6P</i>)							
Palo	numero del palo							
Comb.	combinazione di carico in cui si verificano le sei componenti di sollecitazione.							
Quota	quota assoluta della sezione del palo per cui si riportano le sei componenti di							
	sollecitazione.							

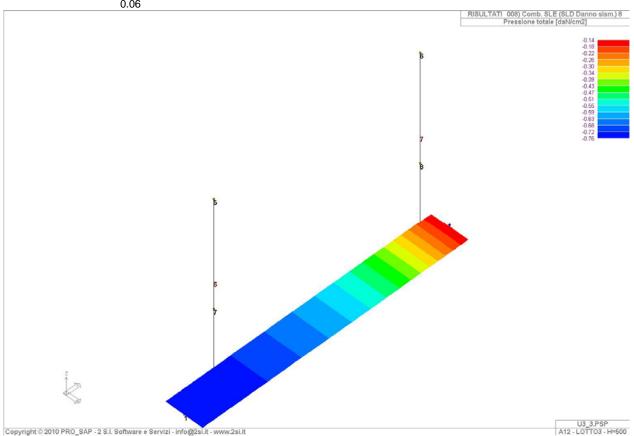
L'azione Fz (corrispondente allo sforzo normale nel palo) è costante poiché il peso del palo stesso non è considerato nella modellazione.

La seconda tabella è riferita alle fondazioni tipo plinto su suolo elastico.

Per questo tipo di fondazione vengono riportate le pressioni nei quattro vertici dell'impronta sul terreno. In particolare viene riportato:

Nodo		numero del nodo a cui è applicato il plinto
Tipo		Codice identificativo del nome assegnato al plinto
area		area dell'impronta del plinto
Wink O	Wink V	coefficienti di Winkler (orizzontale e verticale) adottati
Comb		Combinazione di carico in cui si verificano i valori riportati
Pt (P1 P2	P3 P4)	valori di pressione nei vertici

La terza tabella è riferita alle fondazioni tipo platea su suolo elastico.


Per questo tipo di fondazione vengono riportate le pressioni in ogni vertice (nodo) degli elementi costituenti la platea.

La quarta tabella è riferita alle fondazioni tipo trave su suolo elastico.

Per questo tipo di fondazione vengono riportate le pressioni alle estremità dell'elemento e la massima (in valore assoluto) pressione lungo lo sviluppo dell'elemento.

Vengono inoltre riportati, con funzione statistica, i valori massimo e minimo delle pressioni che compaiono nella tabella.

Elem.	Cmb	Pt ini	Pt fin	Pt max	Cmb	Pt ini	Pt fin	Pt max	Cmb	Pt ini	Pt fin	Pt max
		daN/cm2	daN/cm2	daN/cm2	_	daN/cm2	daN/cm2	daN/cm2	_	daN/cm2	daN/cm2	daN/cm2
1	1	-0.67	-0.74	-0.74	2	-0.42	-0.39	-0.42	3	-0.53	-0.59	-0.59
	4	-0.59	-0.66	-0.66	5	-0.38	-0.36	-0.38	6	-0.84	-0.82	-0.84
	7	0.06	-0.17	-0.17	8	-0.76	-0.75	-0.76	9	-0.14	-0.30	-0.30
	10	-0.84	-0.82	-0.84	11	0.06	-0.17	-0.17	12	-0.14	-0.30	-0.30
	13	-0.50	-0.55	-0.55	14	-0.50	-0.55	-0.55				
2	1	-0.74	-0.74	-0.82	2	-0.39	-0.39	-0.39	3	-0.59	-0.59	-0.67
	4	-0.66	-0.66	-0.76	5	-0.36	-0.36	-0.36	6	-0.82	-0.17	-0.81
	7	-0.17	-0.82	-0.82	8	-0.75	-0.30	-0.74	9	-0.30	-0.75	-0.75
	10	-0.82	-0.17	-0.81	11	-0.17	-0.82	-0.82	12	-0.30	-0.75	-0.75
	13	-0.55	-0.55	-0.59	14	-0.55	-0.55	-0.59				
3	1	-0.74	-0.67	-0.74	2	-0.39	-0.42	-0.42	3	-0.59	-0.53	-0.59
	4	-0.66	-0.59	-0.66	5	-0.36	-0.38	-0.38	6	-0.17	0.06	-0.16
	7	-0.82	-0.84	-0.84	8	-0.30	-0.14	-0.29	9	-0.75	-0.76	-0.76
	10	-0.17	0.06	-0.16	11	-0.82	-0.84	-0.84	12	-0.75	-0.76	-0.76
	13	-0.55	-0.50	-0.54	14	-0.55	-0.50	-0.54				
Elem.		Pt ini -0.84 0.06	Pt fin	Pt max		Pt ini	Pt fin	Pt max		Pt ini	Pt fin	Pt max

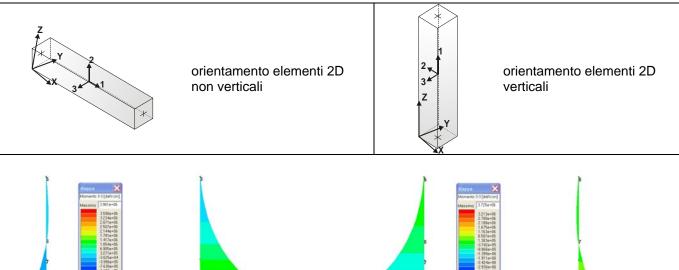
RISULTATI ELEMENTI TIPO TRAVE

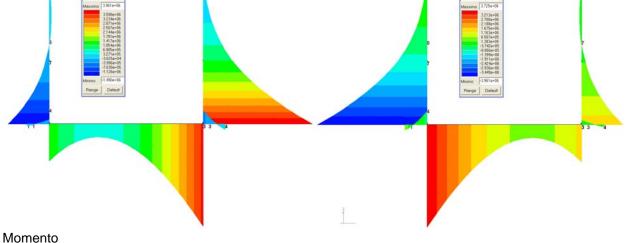
LEGENDA RISULTATI ELEMENTI TIPO TRAVE

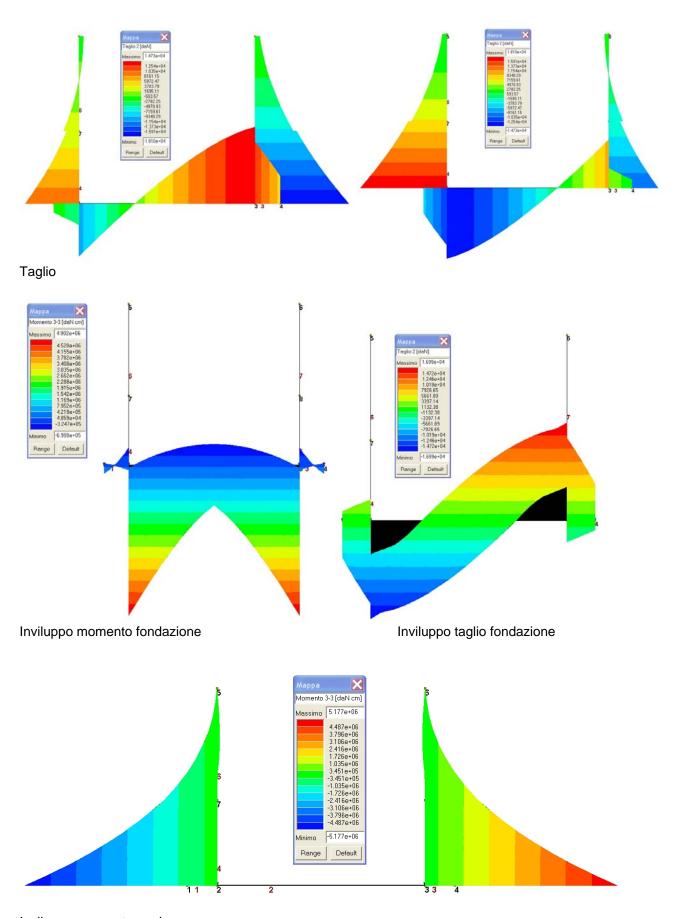
Il controllo dei risultati delle analisi condotte, per quanto concerne gli elementi tipo trave, è possibile in relazione alle tabelle sottoriportate.

Gli elementi vengono suddivisi, in relazione alle proprietà in elementi:

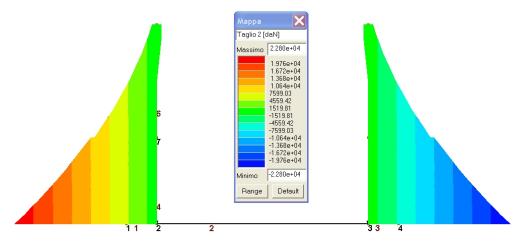
- tipo pilastro
- tipo trave in elevazione
- tipo trave in fondazione


Per ogni elemento, e per ogni combinazione (o caso di carico) vengono riportati i risultati più significativi.


Per gli elementi tipo *pilastro* sono riportati in tabella i seguenti valori:


1 of gir olofficiti	r apo phaotro sono riportati in tabella i segueriti valori.
Pilas.	numero dell'elemento pilastro
Cmb	combinazione in cui si verificano i valori riportati
M3 mx/mn	momento flettente in campata M3 max (prima riga) / min (seconda riga)
M2 mx/mn	momento flettente in campata M2 max (prima riga) / min (seconda riga)
D2/D3	freccia massima in direzione 2 (prima riga) / direzione 3 (seconda riga)
Q2/Q3	carico totale in direzione 2 (prima riga) / direzione 3 (seconda riga)
Pos.	ascissa del punto iniziale e finale dell'elemento
N, V2, ecc	sei componenti di sollecitazione al piede ed in sommità dell'elemento

Per gli elementi tipo *trave in elevazione* sono riportati, oltre al numero dell'elemento, i medesimi risultati visti per i pilastri.


Per gli elementi tipo *trave in fondazione* (trave f.) sono riportati, oltre al numero dell'elemento, i medesimi risultati visti per i pilastri e la massima pressione sul terreno.

Inviluppo momento muri

Inviluppo taglio muri

Pilas.	Cmb M3 mx/mn N	//2 mx/mn	D2/D3	Q2/Q3	Pos.	N	V 2	V 3	т	M 2 M 3
	daN cm	daN cm	cm	daN	cm	daN	daN	daN	daN cm	daN cm daN cm
4	1-5.711e+05	0.0	-0.23 -	1.204e+04	0.0 -	1.034e+04	1.775e+04	0.0	0.0	0.0-3.143e+06
	-3.143e+06	0.0	0.0	0.0	115.0	-8092.50	1.091e+04	0.0	0.0	0.0 -1.511e+06
					230.0	-5850.00	5710.50	0.0	0.0	0.0 -5.711e+05
4	2 0.0	0.0	0.05	0.0	0.0	-7950.00	0.0	0.0	0.0	0.0 0.0
	0.0	0.0	0.0	0.0	115.0	-6225.00	0.0	0.0	0.0	0.0 0.0
					230.0	-4500.00	0.0	0.0	0.0	0.0 0.0
4	3 -4.949e+05	0.0	-0.20 -	1.044e+04	0.0	-7950.00	1.538e+04	0.0	0.0	0.0 -2.724e+06
	-2.724e+06	0.0	0.0	0.0	115.0	-6225.00	9455.03	0.0	0.0	0.0 -1.310e+06
					230.0	-4500.00	4949.10	0.0	0.0	0.0 -4.949e+05
4	4-5.711e+05	0.0		1.204e+04	0.0		1.775e+04	0.0	0.0	0.0 -3.143e+06
	-3.143e+06	0.0	0.0	0.0	115.0		1.091e+04	0.0	0.0	0.0 -1.511e+06
					230.0	-4950.00	5710.50	0.0	0.0	0.0 -5.711e+05
4	5 0.0	0.0	0.04	0.0	0.0	-7155.00	0.0	0.0	0.0	0.0 0.0
	0.0	0.0	0.0	0.0	115.0	-5602.50	0.0	0.0	0.0	0.0 0.0
4	0.4.50005	0.0	0.4000	0007.00	230.0	-4050.00	0.0	0.0	0.0	0.0 0.0
4	6-1.588e+05	0.0	6.19e-03	-8027.00	0.0		1.053e+04	0.0	0.0 0.0	0.0 -1.573e+06
	-1.573e+06	0.0	0.0	0.0	115.0 230.0	-6225.00 -4500.00	5966.60 2500.50	0.0 0.0	0.0	0.0 -6.352e+05 0.0 -1.588e+05
4	7-1.422e+06	0.0	0.62	1.222e+04	0.0		2.280e+04	0.0	0.0	0.0-1.366e+03
4	-5.177e+06	0.0	0.02 -	0.0	115.0		1.614e+04	0.0	0.0	0.0-3.177e+00 0.0-2.948e+06
	3.1776100	0.0	0.0	0.0	230.0		1.058e+04	0.0	0.0	0.0 -2.3-00 +00 0.0 -1.422e+06
4	8 -1.235e+05	0.0	-0.02	-8027.00	0.0		1.032e+04	0.0	0.0	0.0 -1.490e+06
•	-1.490e+06	0.0	0.0	0.0	115.0	-6225.00	5758.18	0.0	0.0	0.0 -5.758e+05
		0.0	0.0	0.0	230.0	-4500.00	2292.08	0.0	0.0	0.0 -1.235e+05
4	9-1.042e+06	0.0	-0.44 -	1.009e+04	0.0	-7950.00	1.810e+04	0.0	0.0	0.0-3.961e+06
	-3.961e+06	0.0	0.0	0.0	115.0	-6225.00	1.251e+04	0.0	0.0	0.0 -2.211e+06
					230.0	-4500.00	8012.92	0.0	0.0	0.0 -1.042e+06
4	10-1.588e+05	0.0	6.19e-03	-8027.00	0.0	-7950.00	1.053e+04	0.0	0.0	0.0 -1.573e+06
	-1.573e+06	0.0	0.0	0.0	115.0	-6225.00	5966.60	0.0	0.0	0.0 -6.352e+05
					230.0	-4500.00	2500.50	0.0	0.0	0.0 -1.588e+05
4	11 -1.422e+06	0.0		1.222e+04	0.0		2.280e+04	0.0	0.0	0.0 -5.177e+06
	-5.177e+06	0.0	0.0	0.0	115.0		1.614e+04	0.0	0.0	0.0 -2.948e+06
					230.0		1.058e+04	0.0	0.0	0.0 -1.422e+06
4	12-1.042e+06	0.0	-	1.009e+04	0.0		1.810e+04	0.0	0.0	0.0 - 3.961e+06
	-3.961e+06	0.0	0.0	0.0	115.0		1.251e+04	0.0	0.0	0.0 -2.211e+06
4	13-3.807e+05	0.0	-0.15	-8027.00	230.0	-4500.00	8012.92 1.183e+04	0.0 0.0	0.0 0.0	0.0 -1.042e+06 0.0 -2.095e+06
4	-2.095e+06	0.0	0.0	0.0	115.0	-6225.00	7273.10	0.0	0.0	0.0 -2.095e+06 0.0 -1.007e+06
	-2.0936+00	0.0	0.0	0.0	230.0	-4500.00	3807.00	0.0	0.0	0.0 - 3.807e+05
4	14 -3.807e+05	0.0	-0.15	-8027.00	0.0		1.183e+04	0.0	0.0	0.0 -3.007 C + 05
7	-2.095e+06	0.0	0.0	0.0	115.0	-6225.00	7273.10	0.0	0.0	0.0 -2.003c+06
	2.0000100	0.0	0.0	0.0	230.0	-4500.00	3807.00	0.0	0.0	0.0 -3.807e+05
5	1 3.143e+06	0.0	0.23	1.204e+04			-1.775e+04	0.0	0.0	0.0 3.143e+06
•	5.711e+05	0.0	0.0	0.0	115.0		-1.091e+04	0.0	0.0	0.0 1.511e+06
					230.0	-5850.00	-5710.50	0.0	0.0	0.0 5.711e+05
5	2 0.0	0.0	-0.05	0.0	0.0	-7950.00	0.0	0.0	0.0	0.0 0.0
	0.0	0.0	0.0	0.0	115.0	-6225.00	0.0	0.0	0.0	0.0 0.0
					230.0	-4500.00	0.0	0.0	0.0	0.0
5	3 2.724e+06	0.0	0.20	1.044e+04	0.0	-7950.00	-1.538e+04	0.0	0.0	0.0 2.724e+06

	4.949e+05	0.0	0.0	0.0	115.0	-6225.00 -9455.03	0.0	0.0	0.0 1.310e+06
					230.0	-4500.00 -4949.10	0.0	0.0	0.0 4.949e+05
5	4 3.143e+06	0.0	0.24	1.204e+04	0.0	-8745.00 -1.775e+04	0.0	0.0	0.0 3.143e+06
	5.711e+05	0.0	0.0	0.0	115.0	-6847.50 -1.091e+04	0.0	0.0	0.0 1.511e+06
					230.0	-4950.00 -5710.50	0.0	0.0	0.0 5.711e+05
5	5 0.0	0.0	-0.04	0.0	0.0	-7155.00 0.0	0.0	0.0	0.0
	0.0	0.0	0.0	0.0	115.0	-5602.50 0.0	0.0	0.0	0.0 0.0
_					230.0	-4050.00 0.0	0.0	0.0	0.0 0.0
5	6 5.177e+06	0.0		1.222e+04	0.0	-7950.00 -2.280e+04	0.0	0.0	0.0 5.177e+06
	1.422e+06	0.0	0.0	0.0	115.0	-6225.00 -1.614e+04	0.0	0.0	0.0 2.948e+06
_	7 4 570 00		0.40.00	0007.00	230.0	-4500.00 -1.058e+04	0.0	0.0	0.0 1.422e+06
5	7 1.573e+06	0.0	-6.19e-03	8027.00	0.0	-7950.00 -1.053e+04	0.0	0.0	0.0 1.573e+06
	1.588e+05	0.0	0.0	0.0	115.0	-6225.00 -5966.60	0.0	0.0	0.0 6.352e+05
_	0.000400	0.0	0.44	4.00004	230.0	-4500.00 -2500.50	0.0	0.0	0.0 1.588e+05
5	8 3.961e+06	0.0		1.009e+04	0.0	-7950.00 -1.810e+04	0.0	0.0	0.0 3.961e+06
	1.042e+06	0.0	0.0	0.0	115.0 230.0	-6225.00 -1.251e+04 -4500.00 -8012.92	0.0 0.0	0.0 0.0	0.0 2.211e+06 0.0 1.042e+06
5	9 1.490e+06	0.0	0.02	8027.00	0.0	-7950.00 -1.032e+04	0.0	0.0	0.0 1.042e+06 0.0 1.490e+06
5	1.235e+05	0.0	0.02	0.0	115.0	-6225.00 -5758.18	0.0	0.0	0.0 1.450c100 0.0 5.758e+05
	1.2000100	0.0	0.0	0.0	230.0	-4500.00 -2292.08	0.0	0.0	0.0 1.235e+05
5	10 5.177e+06	0.0	0.62	1.222e+04	0.0	-7950.00 -2.280e+04	0.0	0.0	0.0 5.177e+06
Ŭ	1.422e+06	0.0	0.0	0.0	115.0	-6225.00 -1.614e+04	0.0	0.0	0.0 2.948e+06
					230.0	-4500.00 -1.058e+04	0.0	0.0	0.0 1.422e+06
5	11 1.573e+06	0.0	-6.19e-03	8027.00	0.0	-7950.00 -1.053e+04	0.0	0.0	0.0 1.573e+06
	1.588e+05	0.0	0.0	0.0	115.0	-6225.00 -5966.60	0.0	0.0	0.0 6.352e+05
					230.0	-4500.00 -2500.50	0.0	0.0	0.0 1.588e+05
5	12 1.490e+06	0.0	0.02	8027.00	0.0	-7950.00 -1.032e+04	0.0	0.0	0.0 1.490e+06
	1.235e+05	0.0	0.0	0.0	115.0	-6225.00 -5758.18	0.0	0.0	0.0 5.758e+05
					230.0	-4500.00 -2292.08	0.0	0.0	0.0 1.235e+05
5	13 2.095e+06	0.0	0.15	8027.00	0.0	-7950.00 -1.183e+04	0.0	0.0	0.0 2.095e+06
	3.807e+05	0.0	0.0	0.0	115.0	-6225.00 -7273.10	0.0	0.0	0.0 1.007e+06
					230.0	-4500.00 -3807.00	0.0	0.0	0.0 3.807e+05
5	14 2.095e+06	0.0	0.15	8027.00	0.0	-7950.00 -1.183e+04	0.0	0.0	0.0 2.095e+06
	3.807e+05	0.0	0.0	0.0	115.0	-6225.00 -7273.10	0.0	0.0	0.0 1.007e+06
_					230.0	-4500.00 -3807.00	0.0	0.0	0.0 3.807e+05
6	1 0.0	0.0	-0.38	-5710.50	0.0	-5850.00 5710.50	0.0	0.0	0.0 -5.711e+05
	-5.711e+05	0.0	0.0	0.0	150.0	-2925.00 1427.62	0.0	0.0	0.0 -7.138e+04
_	0 00	0.0	0.00	0.0	300.0	0.0 0.0	0.0	0.0	0.0 0.0
6	2 0.0	0.0 0.0	0.06	0.0	0.0	-4500.00 0.0	0.0	0.0	0.0 0.0 0.0 0.0
	0.0	0.0	0.0	0.0	150.0 300.0	-2250.00 0.0 0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0 0.0 0.0
6	3 0.0	0.0	-0.34	-4949.10	0.0	-4500.00 4949.10	0.0	0.0	0.0 -4.949e+05
U	-4.949e+05	0.0	0.0	0.0	150.0	-2250.00 1237.27	0.0	0.0	0.0 -4.9496+03 0.0 -6.186e+04
	4.0400100	0.0	0.0	0.0	300.0	0.0 0.0	0.0	0.0	0.0 0.1000104
6	4 0.0	0.0	-0.39	-5710.50	0.0	-4950.00 5710.50	0.0	0.0	0.0 -5.711e+05
Ü	-5.711e+05	0.0	0.0	0.0	150.0	-2475.00 1427.62	0.0	0.0	0.0 -7.138e+04
					300.0	0.0 0.0	0.0	0.0	0.0 0.0
6	5 0.0	0.0	0.06	0.0	0.0	-4050.00 0.0	0.0	0.0	0.0 0.0
	0.0	0.0	0.0	0.0	150.0	-2025.00 0.0	0.0	0.0	0.0 0.0
					300.0	0.0 0.0	0.0	0.0	0.0 0.0
6	6 6.334e+04	0.0	-0.03	-3807.00	0.0	-4500.00 3067.47	0.0	0.0	0.0 -1.588e+05
	-1.588e+05	0.0	0.0	0.0	150.0	-2250.00 212.22	0.0	0.0	0.0 6.334e+04
_	_				300.0	0.0 -739.53	0.0	0.0	0.0 0.0
6	7 0.0	0.0	-0.99	-9273.00	0.0	-4500.00 1.001e+04	0.0	0.0	0.0 -1.422e+06
	-1.422e+06	0.0	0.0	0.0	150.0	-2250.00 4424.28	0.0	0.0	0.0 -3.635e+05
6	8 8.104e+04	0.0	-0.04	-3807.00	300.0	0.0 739.53 -4500.00 2949.50	0.0 0.0	0.0 0.0	0.0 0.0 0.0 -1.235e+05
6	-1.235e+05	0.0	0.04	-3807.00	150.0	-4500.00 2949.50 -2250.00 94.25	0.0	0.0	0.0 -1.235e+05 0.0 8.104e+04
	-1.2336+05	0.0	0.0	0.0	300.0	0.0 -857.50	0.0	0.0	0.0 8.104e+04
6	9 0.0	0.0	-0.71	-6498.00	0.0	-4500.00 7355.50	0.0	0.0	0.0 -1.042e+06
O	-1.042e+06	0.0	0.0	0.0	150.0	-2250.00 3154.75	0.0	0.0	0.0 -2.771e+05
	1.0120100	0.0	0.0	0.0	300.0	0.0 857.50	0.0	0.0	0.0 0.0
6	10 6.334e+04	0.0	-0.03	-3807.00	0.0	-4500.00 3067.47	0.0	0.0	0.0 -1.588e+05
	-1.588e+05	0.0	0.0		150.0	-2250.00 212.22	0.0	0.0	0.0 6.334e+04
					300.0	0.0 -739.53	0.0	0.0	0.0 0.0
6	11 0.0	0.0	-0.99	-9273.00	0.0	-4500.00 1.001e+04	0.0	0.0	0.0 -1.422e+06
	-1.422e+06	0.0	0.0	0.0	150.0	-2250.00 4424.28	0.0	0.0	0.0 - 3.635e + 05
					300.0	0.0 739.53	0.0	0.0	0.0 0.0
6	12 0.0	0.0	-0.71	-6498.00	0.0	-4500.00 7355.50	0.0	0.0	0.0 -1.042e+06
	-1.042e+06	0.0	0.0	0.0	150.0	-2250.00 3154.75	0.0	0.0	0.0 -2.771e+05
_					300.0	0.0 857.50	0.0	0.0	0.0 0.0
6	13 0.0	0.0	-0.24	-3807.00	0.0	-4500.00 3807.00	0.0	0.0	0.0 -3.807e+05
	-3.807e+05	0.0	0.0	0.0	150.0	-2250.00 951.75	0.0	0.0	0.0 -4.759e+04
6	14 00	0.0	0.04	2007.00	300.0	0.0 0.0	0.0	0.0	0.0 0.0
6	14 0.0 -3.807e+05	0.0 0.0	-0.24 0.0			-4500.00 3807.00 -2250.00 951.75	0.0 0.0	0.0	0.0 -3.807e+05 0.0 -4.759e+04
	-3.00/0+05	0.0	0.0	0.0	150.0	0.0 0.0		0.0 0.0	0.0 -4.759e+04
					500.0	0.0 0.0	0.0	0.0	0.0 0.0

7	1 5.710e+05	5 0.0	0.38	5710.50	0.0	-5850.00	-5710.50	0.0	0.0	0.0 5.710e+05
	0.0		0.0	0.0	150.0	-2925.00	-1427.62	0.0	0.0	0.0 7.138e+04
					300.0	0.0	0.0	0.0	0.0	0.0 0.0
7	2 0.0	0.0	-0.06	0.0	0.0	-4500.00	0.0	0.0	0.0	0.0 0.0
	0.0	0.0	0.0	0.0	150.0	-2250.00	0.0	0.0	0.0	0.0 0.0
					300.0	0.0	0.0	0.0	0.0	0.0 0.0
7	3 4.949e+05	0.0	0.34	4949.10	0.0	-4500.00	-4949.10	0.0	0.0	0.0 4.949e+05
	0.0	0.0	0.0	0.0	150.0	-2250.00	-1237.27	0.0	0.0	0.0 6.186e+04
					300.0	0.0	0.0	0.0	0.0	0.0 0.0
7	4 5.710e+05		0.39	5710.50	0.0	-4950.00	-5710.50	0.0	0.0	0.0 5.710e+05
	0.0	0.0	0.0	0.0	150.0	-2475.00	-1427.62	0.0	0.0	0.0 7.138e+04
_					300.0	0.0	0.0	0.0	0.0	0.0 0.0
7	5 0.0		-0.06	0.0	0.0	-4050.00	0.0	0.0	0.0	0.0 0.0
	0.0	0.0	0.0	0.0	150.0	-2025.00	0.0	0.0	0.0	0.0 0.0
-	0.4.40000		0.00	0070.00	300.0	0.0	0.0	0.0	0.0	0.0 0.0
7	6 1.422e+06		0.99	9273.00	0.0 150.0	-4500.00 - -2250.00	-1.001e+04 -4424.28	0.0 0.0	0.0 0.0	0.0 1.422e+06 0.0 3.635e+05
	0.0	0.0	0.0	0.0	300.0	0.0	-739.53	0.0	0.0	0.0 3.6356+05
7	7 1.588e+05	5 0.0	0.03	3807.00	0.0	-4500.00	-3067.47	0.0	0.0	0.0 1.588e+05
,	-6.334e+04		0.03	0.0	150.0	-2250.00	-212.22	0.0	0.0	0.0 1.366e+03
	0.0040104	0.0	0.0	0.0	300.0	0.0	739.53	0.0	0.0	0.0 0.00
7	8 1.042e+06	0.0	0.71	6498.00	0.0	-4500.00	-7355.50	0.0	0.0	0.0 1.042e+06
•	0.0		0.0	0.0	150.0	-2250.00	-3154.75	0.0	0.0	0.0 2.771e+05
	0.0	0.0	0.0	0.0	300.0	0.0	-857.50	0.0	0.0	0.0 0.0
7	9 1.235e+05	5 0.0	0.04	3807.00	0.0	-4500.00	-2949.50	0.0	0.0	0.0 1.235e+05
	-8.104e+04		0.0	0.0	150.0	-2250.00	-94.25	0.0	0.0	0.0 -8.104e+04
					300.0	0.0	857.50	0.0	0.0	0.0 0.0
7	10 1.422e+06	0.0	0.99	9273.00	0.0	-4500.00	-1.001e+04	0.0	0.0	0.0 1.422e+06
	0.0		0.0	0.0	150.0	-2250.00	-4424.28	0.0	0.0	0.0 3.635e+05
					300.0	0.0	-739.53	0.0	0.0	0.0 0.0
7	11 1.588e+05	0.0	0.03	3807.00	0.0	-4500.00	-3067.47	0.0	0.0	0.0 1.588e+05
	-6.334e+04	1 0.0	0.0	0.0	150.0	-2250.00	-212.22	0.0	0.0	0.0 -6.334e+04
					300.0	0.0	739.53	0.0	0.0	0.0 0.0
7	12 1.235e+05		0.04	3807.00	0.0	-4500.00	-2949.50	0.0	0.0	0.0 1.235e+05
	-8.104e+04	1 0.0	0.0	0.0	150.0	-2250.00	-94.25	0.0	0.0	0.0 -8.104e+04
					300.0	0.0	857.50	0.0	0.0	0.0 0.0
7	13 3.807e+05		0.24	3807.00	0.0	-4500.00	-3807.00	0.0	0.0	0.0 3.807e+05
	0.0	0.0	0.0	0.0	150.0	-2250.00	-951.75	0.0	0.0	0.0 4.759e+04
_	44.0.007.00	- 00	0.04	0007.00	300.0	0.0	0.0	0.0	0.0	0.0 0.0
7	14 3.807e+05		0.24	3807.00	0.0	-4500.00	-3807.00	0.0	0.0	0.0 3.807e+05
7	14 3.807e+05		0.24 0.0	3807.00 0.0	0.0 150.0	-4500.00 -2250.00	-3807.00 -951.75	0.0 0.0	0.0 0.0	0.0 3.807e+05 0.0 4.759e+04
7					0.0	-4500.00	-3807.00	0.0	0.0	0.0 3.807e+05
	0.0	0.0	0.0	0.0	0.0 150.0	-4500.00 -2250.00 0.0	-3807.00 -951.75 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 3.807e+05 0.0 4.759e+04
7 Pilas.	0.0 M3 mx/m r	0.0 n M2 mx/mn	0.0 D 2 / D 3	0.0 Q 2 / Q 3	0.0 150.0 300.0	-4500.00 -2250.00 0.0	-3807.00 -951.75 0.0 V 2	0.0 0.0 0.0 V 3	0.0 0.0 0.0	0.0 3.807e+05 0.0 4.759e+04
	0.0	0.0 n M2 mx/mn 0.0	0.0 D 2 / D 3 -0.99 -	0.0	0.0 150.0 300.0	-4500.00 -2250.00 0.0 N	-3807.00 -951.75 0.0 V 2	0.0 0.0 0.0	0.0 0.0 0.0	0.0 3.807e+05 0.0 4.759e+04
	0.0 M3 mx/mr -5.177e+06	0.0 n M2 mx/mn 0.0	0.0 D 2 / D 3 -0.99 -	0.0 Q 2 / Q 3 1.222e+04	0.0 150.0 300.0	-4500.00 -2250.00 0.0 N	-3807.00 -951.75 0.0 V 2 -2.280e+04	0.0 0.0 0.0 V 3 0.0	0.0 0.0 0.0 T 0.0	0.0 3.807e+05 0.0 4.759e+04
	0.0 M3 mx/mr -5.177e+06	0.0 n M2 mx/mn 0.0	0.0 D 2 / D 3 -0.99 -	0.0 Q 2 / Q 3 1.222e+04	0.0 150.0 300.0	-4500.00 -2250.00 0.0 N	-3807.00 -951.75 0.0 V 2 -2.280e+04	0.0 0.0 0.0 V 3 0.0	0.0 0.0 0.0 T 0.0	0.0 3.807e+05 0.0 4.759e+04
Pilas.	0.0 M3 mx/mr -5.177e+06 5.177e+06	0.0 0.0 0.0 0.0 0.0 0.0	0.0 D 2 / D 3 -0.99 0.99	0.0 Q 2 / Q 3 1.222e+04 1.222e+04	0.0 150.0 300.0	-4500.00 -2250.00 0.0 N 1.034e+04- 0.0	-3807.00 -951.75 0.0 V 2 -2.280e+04 2.280e+04	0.0 0.0 0.0 V 3 0.0 0.0	0.0 0.0 0.0 T 0.0 0.0	0.0 3.807e+05 0.0 4.759e+04 0.0 0.0
	0.0 M3 mx/mr -5.177e+06 5.177e+06	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 D 2 / D 3 -0.99 0.99 D 2 / D 3	0.0 Q 2 / Q 3 1.222e+04 1.222e+04	0.0 150.0 300.0	-4500.00 -2250.00 0.0 N 1.034e+04 0.0	-3807.00 -951.75 0.0 V 2 -2.280e+04 2.280e+04	0.0 0.0 0.0 V 3 0.0 0.0	0.0 0.0 0.0 T 0.0 0.0	0.0 3.807e+05 0.0 4.759e+04 0.0 0.0
Pilas. Trave f.	0.0 M3 mx/mr -5.177e+06 5.177e+06	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 D 2 / D 3 -0.99 0.99 D 2 / D 3 cm	0.0 Q 2 / Q 3 1.222e+04 1.222e+04 Pt daN/cm2	0.0 150.0 300.0	-4500.00 -2250.00 0.0 N -1.034e+04- 0.0 N daN	-3807.00 -951.75 0.0 V 2 -2.280e+04 2.280e+04 V 2 daN	0.0 0.0 0.0 V 3 0.0 0.0	0.0 0.0 0.0 T 0.0 0.0	0.0 3.807e+05 0.0 4.759e+04 0.0 0.0 M 2 M 3 daN cm daN cm
Pilas.	0.0 M3 mx/mr -5.177e+06 5.177e+06 Cmb M3 mx/mr daN cm	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 D 2 / D 3 -0.99 0.99 D 2 / D 3	0.0 Q 2 / Q 3 1.222e+04 1.222e+04	0.0 150.0 300.0	-4500.00 -2250.00 0.0 N 1.034e+04 0.0	-3807.00 -951.75 0.0 V 2 -2.280e+04 2.280e+04 V 2 daN -5085.86	0.0 0.0 0.0 V 3 0.0 0.0	0.0 0.0 0.0 T 0.0 0.0	0.0 3.807e+05 0.0 4.759e+04 0.0 0.0
Pilas. Trave f.	0.0 M3 mx/mr -5.177e+06 5.177e+06 Cmb M3 mx/mr daN cm 1 2.045e+05	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 D 2 / D 3 -0.99 0.99 D 2 / D 3 cm -0.05	0.0 Q 2 / Q 3 1.222e+04 1.222e+04 Pt daN/cm2	0.0 150.0 300.0 Pos. cm 0.0	-4500.00 -2250.00 0.0 N -1.034e+04- 0.0 N daN 4.47	-3807.00 -951.75 0.0 V 2 -2.280e+04 2.280e+04 V 2 daN	0.0 0.0 0.0 V 3 0.0 0.0 V 3 daN 0.0	0.0 0.0 0.0 T 0.0 0.0	0.0 3.807e+05 0.0 4.759e+04 0.0 0.0 M 2 M 3 daN cm daN cm 0.0 2.045e+05
Pilas. Trave f.	0.0 M3 mx/mr -5.177e+06 5.177e+06 Cmb M3 mx/mr daN cm 1 2.045e+05	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 D 2 / D 3 -0.99 0.99 D 2 / D 3 cm -0.05	0.0 Q 2 / Q 3 1.222e+04 1.222e+04 Pt daN/cm2	0.0 150.0 300.0 Pos. cm 0.0 40.0	-4500.00 -2250.00 0.0 N -1.034e+04- 0.0 N daN 4.47	-3807.00 -951.75 0.0 V 2 -2.280e+04 2.280e+04 V 2 daN -5085.86 -8507.69 -1.179e+04 1624.42	0.0 0.0 0.0 V 3 0.0 0.0 V 3 daN 0.0	0.0 0.0 0.0 T 0.0 0.0 T daN cm 0.0 0.0	0.0 3.807e+05 0.0 4.759e+04 0.0 0.0 M 2 M 3 daN cm daN cm 0.0 2.045e+05 0.0-6.781e+04
Pilas. Trave f.	0.0 M3 mx/mr -5.177e+06 5.177e+06 Cmb M3 mx/mr daN cm 1 2.045e+05 -4.743e+05	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 D 2 / D 3 -0.99 0.99 D 2 / D 3 cm -0.05 0.0	0.0 Q 2 / Q 3 1.222e+04 1.222e+04 Pt daN/cm2 -0.74	0.0 150.0 300.0 Pos. cm 0.0 40.0 80.0 0.0 40.0	-4500.00 -2250.00 0.0 N -1.034e+04 0.0 N daN 4.47 4.47	-3807.00 -951.75 0.0 V 2 -2.280e+04 2.280e+04 V 2 daN -5085.86 -8507.69 -1.179e+04 1624.42 2675.79	0.0 0.0 0.0 V 3 0.0 0.0 V 3 daN 0.0 0.0 0.0	0.0 0.0 0.0 T 0.0 0.0 4aN cm 0.0 0.0 0.0 0.0	0.0 3.807e+05 0.0 4.759e+04 0.0 0.0 M 2 M 3 daN cm daN cm 0.0 2.045e+05 0.0-6.781e+04 0.0-4.743e+05 0.0-6.431e+04 0.0 2.186e+04
Pilas. Trave f. 1	0.0 M3 mx/mr -5.177e+06 5.177e+06 Cmb M3 mx/mr daN cm 1 2.045e+05 -4.743e+05 2 1.491e+05 -6.431e+04	0 0.0 n M2 mx/mn 0 0.0 n M2 mx/mn n daN cm 0 0.0 0 0.0 0 0.0 0 0.0	D 2 / D 3 -0.99 0.99 D 2 / D 3 cm -0.05 0.0 -0.02	0.0 Q 2 / Q 3 1.222e+04 1.222e+04 Pt daN/cm2 -0.74	0.0 150.0 300.0 Pos. cm 0.0 40.0 80.0 40.0 80.0	-4500.00 -2250.00 0.0 N 1.034e+04- 0.0 N daN 4.47 4.47 4.47 0.0 0.0 0.0	-3807.00 -951.75 0.0 V 2 -2.280e+04 2.280e+04 V 2 daN -5085.86 -8507.69 -1.179e+04 1624.42 2675.79 3679.16	0.0 0.0 0.0 V 3 0.0 0.0 V 3 daN 0.0 0.0 0.0 0.0	0.0 0.0 0.0 T 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 3.807e+05 0.0 4.759e+04 0.0 0.0 M 2 M 3 daN cm daN cm 0.0 2.045e+05 0.0 -6.781e+04 0.0 -4.743e+05 0.0 -6.431e+04 0.0 2.186e+04 0.0 1.491e+05
Pilas. Trave f.	0.0 M3 mx/mr -5.177e+06 5.177e+06 Cmb M3 mx/mr daN cm 1 2.045e+05 -4.743e+05 2 1.491e+05 -6.431e+04 3 1.854e+05	0 0.0 1 M2 mx/mn 0.0 0.0 1 M2 mx/mn 1 daN cm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	D2/D3 -0.99 0.99 D2/D3 cm -0.05 0.0 -0.02 -0.04	0.0 Q 2 / Q 3 1.222e+04 1.222e+04 Pt daN/cm2 -0.74	0.0 150.0 300.0 Pos. cm 0.0 40.0 80.0 0.0 40.0 80.0 0.0	-4500.00 -2250.00 0.0 N 1.034e+04- 0.0 N daN 4.47 4.47 4.47 0.0 0.0 0.0 0.0	-3807.00 -951.75 0.0 V 2 -2.280e+04 2.280e+04 V 2 daN -5085.86 -8507.69 -1.179e+04 1624.42 2675.79 3679.16 -4613.50	0.0 0.0 0.0 V 3 0.0 0.0 V 3 daN 0.0 0.0 0.0 0.0	0.0 0.0 0.0 T 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 3.807e+05 0.0 4.759e+04 0.0 0.0 M 2 M 3 daN cm daN cm 0.0 2.045e+05 0.0-6.781e+04 0.0 -4.743e+05 0.0-6.431e+04 0.0 2.186e+04 0.0 1.491e+05 0.0 1.854e+05
Pilas. Trave f. 1	0.0 M3 mx/mr -5.177e+06 5.177e+06 Cmb M3 mx/mr daN cm 1 2.045e+05 -4.743e+05 2 1.491e+05 -6.431e+04	0 0.0 1 M2 mx/mn 0.0 0.0 1 M2 mx/mn 1 daN cm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	D 2 / D 3 -0.99 0.99 D 2 / D 3 cm -0.05 0.0 -0.02	0.0 Q 2 / Q 3 1.222e+04 1.222e+04 Pt daN/cm2 -0.74	0.0 150.0 300.0 Pos. cm 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0	-4500.00 -2250.00 0.0 N 1.034e+04- 0.0 N daN 4.47 4.47 0.0 0.0 0.0 0.0 3.87 3.87	-3807.00 -951.75 0.0 V 2 -2.280e+04 2.280e+04 V 2 daN -5085.86 -8507.69 -1.179e+04 1624.42 2675.79 3679.16 -4613.50 -7712.26	0.0 0.0 0.0 V 3 0.0 0.0 V 3 daN 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 T 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 3.807e+05 0.0 4.759e+04 0.0 0.0 0.0 0.0 0.0 0.0 2.045e+05 0.0-6.781e+04 0.0-4.743e+05 0.0-6.431e+04 0.0 2.186e+04 0.0 1.491e+05 0.0 1.854e+05 0.0-6.154e+04
Pilas. Trave f. 1 1	0.0 M3 mx/mr -5.177e+06 5.177e+06 5.177e+06 Cmb M3 mx/mr daN cm 1 2.045e+05 -4.743e+05 -6.431e+04 3 1.854e+05 -4.299e+05	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 D 2 / D 3 -0.99 0.99 D 2 / D 3 cm -0.05 0.0 -0.02 0.0 -0.04 0.0	0.0 Q 2 / Q 3 1.222e+04 1.222e+04 Pt daN/cm2 -0.74 -0.42 -0.59	0.0 150.0 300.0 Pos. cm 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0	-4500.00 -2250.00 0.0 N 1.034e+04- 0.0 N daN 4.47 4.47 0.0 0.0 0.0 0.0 3.87 3.87 3.87	-3807.00 -951.75 0.0 V 2 -2.280e+04 2.280e+04 V 2 daN -5085.86 -8507.69 -1.179e+04 1624.42 2675.79 3679.16 -4613.50 -7712.26	0.0 0.0 0.0 V 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 T 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 3.807e+05 0.0 4.759e+04 0.0 0.0 0.0 0.0 0.0 0.0 2.045e+05 0.0 -6.781e+04 0.0 -4.743e+05 0.0 -6.431e+04 0.0 2.186e+04 0.0 1.491e+05 0.0 1.854e+05 0.0 -6.154e+04 0.0 -4.299e+05
Pilas. Trave f. 1	0.0 M3 mx/mr -5.177e+06 5.177e+06 5.177e+06 Cmb M3 mx/mr daN cm 1 2.045e+05 -4.743e+05 -6.431e+04 3 1.854e+05 -4.299e+05 4 2.174e+05	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 D 2 / D 3 -0.99 0.99 D 2 / D 3 cm -0.05 0.0 -0.02 0.0 -0.04 0.0 -0.05	0.0 Q 2 / Q 3 1.222e+04 1.222e+04 Pt daN/cm2 -0.74	0.0 150.0 300.0 Pos. cm 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0	-4500.00 -2250.00 0.0 N 1.034e+04- 0.0 N daN 4.47 4.47- 0.0 0.0 0.0 3.87 3.87 4.47	-3807.00 -951.75 0.0 V 2 -2.280e+04 2.280e+04 V 2 daN -5085.86 -8507.69 -1.179e+04 1624.42 2675.79 3679.16 -4613.50 -7712.26 -1.069e+04 -5410.74	0.0 0.0 0.0 V 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 0.0 0.0 T 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 3.807e+05 0.0 4.759e+04 0.0 0.0 0.0 0.0 0.0 0.0 2.045e+05 0.0 -6.781e+04 0.0 -4.743e+05 0.0 -6.431e+04 0.0 2.186e+04 0.0 1.491e+05 0.0 1.854e+05 0.0 -6.154e+04 0.0 -4.299e+05 0.0 2.174e+05
Pilas. Trave f. 1 1	0.0 M3 mx/mr -5.177e+06 5.177e+06 5.177e+06 Cmb M3 mx/mr daN cm 1 2.045e+05 -4.743e+05 -6.431e+04 3 1.854e+05 -4.299e+05	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 D 2 / D 3 -0.99 0.99 D 2 / D 3 cm -0.05 0.0 -0.02 0.0 -0.04 0.0	0.0 Q 2 / Q 3 1.222e+04 1.222e+04 Pt daN/cm2 -0.74 -0.42 -0.59	0.0 150.0 300.0 Pos. cm 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0	-4500.00 -2250.00 0.0 N 1.034e+04- 0.0 N daN 4.47 4.47- 0.0 0.0 0.0 3.87 3.87 4.47 4.47	-3807.00 -951.75 0.0 V 2 -2.280e+04 2.280e+04 V 2 daN -5085.86 -8507.69 -1.179e+04 1624.42 2675.79 3679.16 -4613.50 -7712.26 -1.069e+04 -5410.74 -9042.85	0.0 0.0 0.0 V 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 0.0 0.0 T 0.0 0.0 0.0 0.0 0.0 0.0 0.	M 2 M 3 daN cm daN cm 0.0 2.045e+05 0.0 -6.781e+04 0.0 1.85e+04 0.0 1.85e+05 0.0 -6.431e+04 0.0 1.85e+06 0.0 -6.154e+05 0.0 -6.154e+04 0.0 -4.299e+05 0.0 2.174e+05 0.0 -7.219e+04
Pilas. Trave f. 1 1 1	0.0 M3 mx/mr -5.177e+06 5.177e+06 5.177e+06 Cmb M3 mx/mr daN cm 1 2.045e+05 -4.743e+05 -6.431e+05 -6.431e+05 -4.299e+05 4 2.174e+05 -5.041e+05	0 0.0 1 M2 mx/mn 0.0 0.0 1 M2 mx/mn 1 daN cm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 D 2 / D 3 -0.99 0.99 D 2 / D 3 cm -0.05 0.0 -0.02 0.0 -0.04 0.0 -0.05 0.0	0.0 Q 2 / Q 3 1.222e+04 1.222e+04 Pt daN/cm2 -0.74 -0.42 -0.59	0.0 150.0 300.0 Pos. cm 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0	-4500.00 -2250.00 0.0 N 1.034e+04- 0.0 0.0 4.47 4.47 4.47- 0.0 0.0 0.0 0.0 3.87 3.87 3.87 4.47 4.47	-3807.00 -951.75 0.0 V 2 -2.280e+04 2.280e+04 2.280e+04 -5085.86 -8507.69 -1.179e+04 1624.42 2675.79 3679.16 -4613.50 -7712.26 -1.069e+04 -5410.74 -9042.85 -1.253e+04	0.0 0.0 0.0 V 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 0.0 0.0 7 0.0 0.0 0.0 0.0 0.0 0.0 0.	M 2 M 3 daN cm daN cm 0.0 2.045e+05 0.0 -6.781e+04 0.0 2.186e+04 0.0 2.186e+04 0.0 1.854e+05 0.0 -6.154e+05 0.0 -6.154e+04 0.0 2.174e+05 0.0 2.174e+05 0.0 -7.219e+04 0.0 -5.041e+05
Pilas. Trave f. 1 1	0.0 M3 mx/mr -5.177e+06 5.177e+06 5.177e+06 Cmb M3 mx/mr daN cm 1 2.045e+05 -4.743e+05 -6.431e+05 -6.431e+05 -4.299e+05 4 2.174e+05 -5.041e+05 5 1.342e+05	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 D 2 / D 3 -0.99 0.99 D 2 / D 3 cm -0.05 0.0 -0.02 0.0 -0.04 0.0 -0.05 0.0 -0.05	0.0 Q 2 / Q 3 1.222e+04 1.222e+04 Pt daN/cm2 -0.74 -0.42 -0.59	0.0 150.0 300.0 Pos. cm 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0	-4500.00 -2250.00 0.0 N 1.034e+04- 0.0 M daN 4.47 4.47 4.47- 0.0 0.0 0.0 3.87 3.87 3.87 4.47 4.47 4.47	-3807.00 -951.75 0.0 V 2 -2.280e+04 2.280e+04 V 2 daN -5085.86 -8507.69 -1.179e+04 1624.42 2675.79 3679.16 -4613.50 -7712.26 1.069e+04 -5410.74 -9042.85 1.253e+04 1461.98	0.0 0.0 0.0 0.0 V 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 0.0 0.0 7 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 3.807e+05 0.0 4.759e+04 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.743e+05 0.0 -6.781e+04 0.0 -4.743e+05 0.0 -6.431e+04 0.0 1.491e+05 0.0 1.854e+05 0.0 -6.154e+04 0.0 -4.299e+05 0.0 2.174e+05 0.0 -7.219e+04 0.0 -5.041e+05 0.0 -5.788e+04
Pilas. Trave f. 1 1 1	0.0 M3 mx/mr -5.177e+06 5.177e+06 5.177e+06 Cmb M3 mx/mr daN cm 1 2.045e+05 -4.743e+05 -6.431e+05 -6.431e+05 -4.299e+05 4 2.174e+05 -5.041e+05	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 D 2 / D 3 -0.99 0.99 D 2 / D 3 cm -0.05 0.0 -0.02 0.0 -0.04 0.0 -0.05 0.0	0.0 Q 2 / Q 3 1.222e+04 1.222e+04 Pt daN/cm2 -0.74 -0.42 -0.59	0.0 150.0 300.0 Pos. cm 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0	-4500.00 -2250.00 0.0 N 1.034e+04- 0.0 M daN 4.47 4.47 4.47 4.47 4.47 4.47 4.47 4.4	-3807.00 -951.75 0.0 V 2 -2.280e+04 2.280e+04 V 2 dN -5085.86 -8507.69 -1.179e+04 1624.42 2675.79 3679.16 -4613.50 -7712.26 1.069e+04 -5410.74 -9042.85 -1.253e+04 1461.98 2408.21	0.0 0.0 0.0 0.0 V 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 0.0 0.0 7 0.0 0.0 0.0 0.0 0.0 0.0 0.	M 2 M 3 daN cm daN cm 0.0 2.045e+05 0.0 -6.781e+04 0.0 2.186e+04 0.0 -4.743e+05 0.0 -6.431e+04 0.0 1.854e+05 0.0 -6.154e+04 0.0 -4.299e+05 0.0 2.174e+05 0.0 7.219e+04 0.0 -5.041e+05 0.0 -5.041e+05 0.0 -5.788e+04 0.0 1.967e+04
Pilas. Trave f. 1 1 1	0.0 M3 mx/mr -5.177e+06 5.177e+06 5.177e+06 Cmb M3 mx/mr daN cm 1 2.045e+05 -4.743e+05 -6.431e+04 3 1.854e+05 -4.299e+05 4 2.174e+05 -5.041e+05 5 1.342e+05 -5.788e+04	0 0.0 1 M2 mx/mn 0.0 0.0 1 M2 mx/mn 1 daN cm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 D 2 / D 3 -0.99 0.99 D 2 / D 3 cm -0.05 0.0 -0.02 0.0 -0.04 0.0 -0.05 0.0 -0.01 0.0	0.0 Q 2 / Q 3 1.222e+04 1.222e+04 Pt daN/cm2 -0.74 -0.42 -0.59 -0.66 -0.38	0.0 150.0 300.0 Pos. cm 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0	-4500.00 -2250.00 0.0 N 1.034e+04- 0.0 N daN 4.47 4.47 4.47 0.0 0.0 0.0 3.87 3.87 4.47 4.47 4.47 4.47	-3807.00 -951.75 0.0 V 2 -2.280e+04 2.280e+04 V 2 daN -5085.86 -8507.69 -1.179e+04 1624.42 2675.79 3679.16 -4613.50 -7712.26 -1.069e+04 -5410.74 -9042.85 -1.253e+04 1461.98 2408.21 3311.25	0.0 0.0 0.0 0.0 V 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 0.0 0.0 7 0.0 0.0 0.0 0.0 0.0 0.0 0.	M 2 M 3 daN cm daN cm 0.0 2.045e+05 0.0 -6.781e+04 0.0 2.045e+05 0.0 -6.431e+04 0.0 2.186e+04 0.0 1.491e+05 0.0 -6.154e+04 0.0 -4.749e+05 0.0 -6.154e+04 0.0 -7.219e+04 0.0 -7.219e+04 0.0 -5.041e+05 0.0 -5.788e+04 0.0 1.967e+04 0.0 1.342e+05
Pilas. Trave f. 1 1 1	0.0 M3 mx/mr -5.177e+06 5.177e+06 5.177e+06 Cmb M3 mx/mr daN cm 1 2.045e+05 -4.743e+05 -6.431e+04 3 1.854e+05 -4.299e+05 4 2.174e+05 -5.041e+05 5 1.342e+05 -5.788e+04 6 4.926e+04	0 0.0 1 M2 mx/mn 0.0 0.0 1 M2 mx/mn 1 daN cm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 D 2 / D 3 -0.99 0.99 D 2 / D 3 cm -0.05 0.0 -0.02 0.0 -0.04 0.0 -0.05 0.0 -0.01 0.0	0.0 Q 2 / Q 3 1.222e+04 1.222e+04 Pt daN/cm2 -0.74 -0.42 -0.59	0.0 150.0 300.0 Pos. cm 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 0.0 40.0 80.0	-4500.00 -2250.00 0.0 N 1.034e+04-0.0 0.0 M daN 4.47 4.47 4.47 0.0 0.0 0.0 3.87 3.87 3.87 4.47 4.47 4.47 4.47 4.47 4.47	-3807.00 -951.75 0.0 V 2 -2.280e+04 2.280e+04 V 2 daN -5085.86 -8507.69 -1.179e+04 1624.42 2675.79 3679.16 -4613.50 -7712.26 -1.069e+04 -5410.74 -9042.85 -1.253e+04 1461.98 2408.21 3311.25 -1197.75	0.0 0.0 0.0 0.0 V 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 0.0 0.0 7 0.0 0.0 0.0 0.0 0.0 0.0 0.	M2 M3 daN cm daN cm 0.0 2.045e+05 0.0 -6.781e+04 0.0 2.045e+05 0.0 -6.781e+04 0.0 -4.743e+05 0.0 -6.431e+04 0.0 1.491e+05 0.0 1.854e+04 0.0 1.491e+05 0.0 -6.154e+04 0.0 -7.219e+04 0.0 -5.0788e+04 0.0 1.967e+04 0.0 1.342e+05 0.0 4.926e+04
Pilas. Trave f. 1 1 1	0.0 M3 mx/mr -5.177e+06 5.177e+06 5.177e+06 Cmb M3 mx/mr daN cm 1 2.045e+05 -4.743e+05 -6.431e+04 3 1.854e+05 -4.299e+05 4 2.174e+05 -5.041e+05 5 1.342e+05 -5.788e+04	0 0.0 1 M2 mx/mn 0.0 0.0 1 M2 mx/mn 1 daN cm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 D 2 / D 3 -0.99 0.99 D 2 / D 3 cm -0.05 0.0 -0.02 0.0 -0.04 0.0 -0.05 0.0 -0.01 0.0	0.0 Q 2 / Q 3 1.222e+04 1.222e+04 Pt daN/cm2 -0.74 -0.42 -0.59 -0.66 -0.38	0.0 150.0 300.0 Pos. cm 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 60.0 60.0 60.0 80.0 80.0 60.0 6	-4500.00 -2250.00 0.0 N 1.034e+04-0.0 0.0 M daN 4.47 4.47 4.47 0.0 0.0 0.0 3.87 3.87 3.87 4.47 4.47 4.47 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	-3807.00 -951.75 0.0 V 2 -2.280e+04 2.280e+04 V 2 daN -5085.86 -8507.69 -1.179e+04 1624.42 2675.79 3679.16 -4613.50 -7712.26 1.069e+04 -5410.74 -9042.85 1.253e+04 1461.98 2408.21 3311.25 -1197.75 -2041.75	0.0 0.0 0.0 0.0 V 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 0.0 0.0 7 0.0 0.0 0.0 0.0 0.0 0.0 0.	M 2 M 3 daN cm daN cm 0.0 2.045e+05 0.0 -6.781e+04 0.0 0.0 -6.431e+04 0.0 2.186e+04 0.0 1.491e+05 0.0 -6.154e+04 0.0 2.174e+05 0.0 -7.219e+04 0.0 -7.219e+04 0.0 -5.788e+04 0.0 1.967e+04 0.0 1.342e+05 0.0 4.926e+04 0.0 -1.539e+04
Pilas. Trave f. 1 1 1 1	M3 mx/mr -5.177e+06 5.177e+06 5.177e+06 5.177e+06 Cmb M3 mx/mr daN cm 1 2.045e+05 -4.743e+05 -6.431e+04 3 1.854e+05 -4.299e+05 4 2.174e+05 -5.041e+05 5 1.342e+05 -5.788e+04 6 4.926e+04 -1.146e+05	0 0.0 1 M2 mx/mn 0.0 0.0 1 M2 mx/mn 1 daN cm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 D 2 / D 3 -0.99 0.99 D 2 / D 3 cm -0.05 0.0 -0.02 0.0 -0.04 0.0 -0.05 0.0 -0.05 0.0 0.01 0.0	0.0 Q 2 / Q 3 1.222e+04 1.222e+04 Pt daN/cm2 -0.74 -0.42 -0.59 -0.66 -0.38 -0.84	0.0 150.0 300.0 Pos. cm 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 80.0 0.0 40.0 80.0 8	-4500.00 -2250.00 0.0 N 1.034e+04-0.0 0.0 N daN 4.47 4.47-0.0 0.0 0.0 3.87 3.87 4.47 4.47-0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	-3807.00 -951.75 0.0 V 2 -2.280e+04 2.280e+04 2.280e+04 -5085.86 -8507.69 -1.179e+04 1624.42 2675.79 3679.16 -4613.50 -7712.26 -1.069e+04 -5410.74 -9042.85 -1.253e+04 1461.98 2408.21 3311.25 -1197.75 -2041.75 -2927.87	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 T 0.0 0.0 0.0 0.0 0.0 0.	M 2 M 3 daN cm daN cm 0.0 2.045e+05 0.0 -6.781e+04 0.0 0.0 -6.781e+04 0.0 -4.743e+05 0.0 -6.431e+04 0.0 2.186e+04 0.0 1.491e+05 0.0 -6.154e+04 0.0 -4.299e+05 0.0 -7.219e+04 0.0 -7.219e+04 0.0 -7.88e+04 0.0 1.967e+04 0.0 1.967e+04 0.0 1.342e+05 0.0 4.926e+04 0.0 -1.539e+04 0.0 -1.539e+04 0.0 -1.146e+05
Pilas. Trave f. 1 1 1	M3 mx/mr -5.177e+06 5.177e+06 5.177e+06 5.177e+06 Cmb M3 mx/mr daN cm 1 2.045e+05 -4.743e+05 -6.431e+02 3 1.854e+05 -4.299e+05 4 2.174e+05 -5.041e+05 -5.788e+02 6 4.926e+04 -1.146e+05 7 2.524e+05	0 0.0 1 M2 mx/mn 0.0 0.0 1 M2 mx/mn 1 daN cm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 D 2 / D 3 -0.99 0.99 D 2 / D 3 cm -0.05 0.0 -0.02 0.0 -0.04 0.0 -0.05 0.0 -0.05 0.0 -0.10 0.0 -0.16	0.0 Q 2 / Q 3 1.222e+04 1.222e+04 Pt daN/cm2 -0.74 -0.42 -0.59 -0.66 -0.38	0.0 150.0 300.0 Pos. cm 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 8	-4500.00 -2250.00 0.0 N 1.034e+04-0.0 0.0 N daN 4.47 4.47-0.0 0.0 0.0 0.0 3.87 3.87 4.47 4.47-4.47 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	-3807.00 -951.75 0.0 V 2 -2.280e+04 2.280e+04 2.280e+04 -5085.86 -8507.69 1.179e+04 1624.42 2675.79 3679.16 -4613.50 -7712.26 1.069e+04 -5410.74 -9042.85 1.253e+04 1461.98 2408.21 3311.25 -1197.75 -2041.75 -2927.87 -6312.21	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 T 0.0 0.0 0.0 0.0 0.0 0.	M 2 M 3 daN cm daN cm 0.0 2.045e+05 0.0 -6.781e+04 0.0 0.0-6.431e+04 0.0 -1.86e+04 0.0 1.491e+05 0.0 -6.154e+04 0.0 -4.299e+05 0.0 -7.219e+04 0.0 -7.219e+04 0.0 1.967e+04 0.0 1.967e+04 0.0 1.967e+04 0.0 1.967e+05 0.0 4.926e+04 0.0 -1.539e+04 0.0 -1.539e+04 0.0 -1.146e+05 0.0 2.524e+05
Pilas. Trave f. 1 1 1 1	M3 mx/mr -5.177e+06 5.177e+06 5.177e+06 5.177e+06 Cmb M3 mx/mr daN cm 1 2.045e+05 -4.743e+05 -6.431e+04 3 1.854e+05 -4.299e+05 4 2.174e+05 -5.041e+05 5 1.342e+05 -5.788e+04 6 4.926e+04 -1.146e+05	0 0.0 1 M2 mx/mn 0.0 0.0 1 M2 mx/mn 1 daN cm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 D 2 / D 3 -0.99 0.99 D 2 / D 3 cm -0.05 0.0 -0.02 0.0 -0.04 0.0 -0.05 0.0 -0.05 0.0 0.01 0.0	0.0 Q 2 / Q 3 1.222e+04 1.222e+04 Pt daN/cm2 -0.74 -0.42 -0.59 -0.66 -0.38 -0.84	0.0 150.0 300.0 Pos. cm 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 80.0 0.0 40.0 80.0 8	-4500.00 -2250.00 0.0 N 1.034e+04-0.0 0.0 N daN 4.47 4.47-0.0 0.0 0.0 0.0 3.87 3.87 4.47 4.47-4.47 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	-3807.00 -951.75 0.0 V 2 -2.280e+04 2.280e+04 2.280e+04 -5085.86 -8507.69 -1.179e+04 1624.42 2675.79 3679.16 -4613.50 -7712.26 -1.069e+04 -5410.74 -9042.85 -1.253e+04 1461.98 2408.21 3311.25 -1197.75 -2041.75 -2927.87	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 T 0.0 0.0 0.0 0.0 0.0 0.	M 2 M 3 daN cm daN cm 0.0 2.045e+05 0.0 -6.781e+04 0.0 -2.045e+05 0.0 -6.431e+04 0.0 2.186e+04 0.0 1.491e+05 0.0 -6.154e+04 0.0 -4.299e+05 0.0 -6.154e+04 0.0 -7.219e+04 0.0 -7.219e+04 0.0 -5.041e+05 0.0 -5.788e+04 0.0 1.967e+04 0.0 1.342e+05 0.0 4.926e+04 0.0 -1.539e+04 0.0 -1.539e+04 0.0 -1.539e+04
Pilas. Trave f. 1 1 1 1	M3 mx/mr -5.177e+06 5.177e+06 5.177e+06 5.177e+06 Cmb M3 mx/mr daN cm 1 2.045e+05 -4.743e+05 -6.431e+02 3 1.854e+05 -4.299e+05 4 2.174e+05 -5.041e+05 -5.788e+02 6 4.926e+04 -1.146e+05 7 2.524e+05	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 D 2 / D 3 -0.99 0.99 D 2 / D 3 cm -0.05 0.0 -0.02 0.0 -0.04 0.0 -0.05 0.0 -0.05 0.0 -0.10 0.0 -0.16	0.0 Q 2 / Q 3 1.222e+04 1.222e+04 Pt daN/cm2 -0.74 -0.42 -0.59 -0.66 -0.38 -0.84	0.0 150.0 300.0 Pos. cm 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 8	-4500.00 -2250.00 0.0 N 1.034e+04-0.0 0.0 N daN 4.47 4.47-0.0 0.0 0.0 0.0 3.87 3.87 4.47 4.47-4.47 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	-3807.00 -951.75 0.0 V 2 -2.280e+04 2.280e+04 2.280e+04 -5085.86 -8507.69 -1.179e+04 1624.42 2675.79 3679.16 -4613.50 -7712.26 -1.069e+04 -5410.74 -9042.85 -1.253e+04 1461.98 2408.21 3311.25 -1197.75 -2041.75 -2927.87 -6312.21 -1.053e+04	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 T 0.0 0.0 0.0 0.0 0.0 0.	M 2 M 3 daN cm daN cm 0.0 2.045e+05 0.0 -6.781e+04 0.0 0.0-6.431e+04 0.0 -1.86e+04 0.0 1.491e+05 0.0 -6.154e+04 0.0 -4.299e+05 0.0 -7.219e+04 0.0 -7.219e+04 0.0 1.967e+04 0.0 1.967e+04 0.0 1.967e+04 0.0 1.926e+04 0.0 -1.539e+04 0.0 -1.539e+04 0.0 -1.146e+05 0.0 2.524e+05 0.0 2.524e+05 0.0 2.524e+05 0.0 -8.599e+04
Pilas. Trave f. 1 1 1 1 1	M3 mx/mr -5.177e+06 5.177e+06 5.177e+06 5.177e+06 5.177e+06 6.177e+06 2.045e+05 -4.743e+05 -6.431e+05 -6.431e+05 -4.299e+05 4.2.174e+05 -5.041e+05 5.1.342e+05 -5.788e+04 6.4.926e+04 -1.146e+05 7.2.524e+05 -5.837e+05	0 0.0 1 M2 mx/mn 0.0 0.0 1 M2 mx/mn 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 D 2 / D 3 -0.99 0.99 D 2 / D 3 cm -0.05 0.0 -0.02 0.0 -0.04 0.0 -0.05 0.0 -0.01 0.0 -0.01 0.0 -0.01 0.0 -0.01	0.0 Q 2 / Q 3 1.222e+04 1.222e+04 Pt daN/cm2 -0.74 -0.42 -0.59 -0.66 -0.38 -0.84 -0.17	0.0 150.0 300.0 Pos. cm 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 8	-4500.00 -2250.00 0.0 N 1.034e+04-0.00 A1.034e+04-0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	-3807.00 -951.75 0.0 V 2 -2.280e+04 2.280e+04 2.280e+04 -5085.86 -8507.69 -1.179e+04 -1624.42 2675.79 3679.16 -4613.50 -7712.26 -1.069e+04 -5410.74 -9042.85 -1.253e+04 1461.98 2408.21 3311.25 -1197.75 -2041.75 -2927.87 -6312.21 -1.053e+04 -1.428e+04	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 T 0.0 0.0 T daN cm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	M 2 M 3 daN cm daN cm 0.0 2.045e+05 0.0 -6.781e+04 0.0 2.045e+05 0.0 -6.781e+04 0.0 2.186e+04 0.0 1.491e+05 0.0 -6.154e+04 0.0 -4.743e+05 0.0 -6.154e+04 0.0 -7.219e+04 0.0 -7.219e+04 0.0 1.342e+05 0.0 1.967e+04 0.0 1.342e+05 0.0 4.926e+04 0.0 -1.539e+04 0.0 -1.146e+05 0.0 2.524e+05 0.0 2.524e+05 0.0 2.524e+05 0.0 2.524e+05 0.0 2.524e+05 0.0 2.524e+05 0.0 -8.599e+04 0.0 -5.837e+05
Pilas. Trave f. 1 1 1 1 1	M3 mx/mr -5.177e+06 5.177e+06 5.177e+06 5.177e+06 6.177e+06 Cmb M3 mx/mr daN cm 1 2.045e+05 -4.743e+05 -6.431e+04 3 1.854e+05 -6.431e+04 4 2.174e+05 -5.041e+05 5 1.342e+05 -5.788e+04 6 4.926e+04 -1.146e+05 7 2.524e+05 -5.837e+05 8 6.948e+04 -1.615e+05	0 0.0 1 M2 mx/mn 0.0 0.0 1 M2 mx/mn 1 daN cm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 D 2 / D 3 -0.99 0.99 D 2 / D 3 cm -0.05 0.0 -0.02 0.0 -0.04 0.0 -0.05 0.0 -0.01 0.0 -0.01 0.0 -0.16 0.0 -8.93e-03 0.0	0.0 Q 2 / Q 3 1.222e+04 1.222e+04 1.222e+04 Pt daN/cm2 -0.74 -0.42 -0.59 -0.66 -0.38 -0.84 -0.17 -0.76	0.0 150.0 300.0 Pos. cm 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 8	-4500.00 -2250.00 0.0 N 1.034e+04-04-0.0 0.0 N daN 4.47 4.47 4.47 4.47 4.47 4.47 4.47 4.47 4.47 4.47 4.47 4.47 5.65 2.65 2.65 5.74 5.74-5.74 5.74-5.74 5.74-5.60 2.60 2.60 2.60	-3807.00 -951.75 0.0 V 2 -2.280e+04 2.280e+04 2.280e+04 -5085.86 -8507.69 -1.179e+04 1624.42 2675.79 3679.16 -4613.50 -7712.26 -1.069e+04 -5410.74 -9042.85 -1.253e+04 1461.98 2408.21 3311.25 -1197.75 -2041.75 -2927.87 -6312.21 1.053e+04 1.428e+04 -1706.56 -2882.84 -4086.07	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 T 0.0 0.0 0.0 0.0 0.0 0.	M 2 M 3 daN cm daN cm 0.0 2.045e+05 0.0 -6.781e+04 0.0 -6.781e+04 0.0 -4.743e+05 0.0 -6.431e+04 0.0 1.491e+05 0.0 1.854e+05 0.0 -6.154e+04 0.0 -1.7219e+05 0.0 2.174e+05 0.0 -7.219e+04 0.0 -5.041e+05 0.0 -5.788e+04 0.0 1.967e+04 0.0 1.342e+05 0.0 4.926e+04 0.0 -1.146e+05 0.0 2.524e+05 0.0 2.524e+05 0.0 6.948e+04 0.0 -5.837e+05 0.0 6.948e+04 0.0 -2.222e+04 0.0 -2.222e+04 0.0 -1.615e+05
Pilas. Trave f. 1 1 1 1 1	M3 mx/mr -5.177e+06 5.177e+06 5.177e+06 5.177e+06 5.177e+06 Cmb M3 mx/mr daN cm 1 2.045e+05 -4.743e+05 -6.431e+04 3 1.854e+05 -6.431e+04 4 2.174e+05 -5.041e+05 5 1.342e+05 -5.788e+04 6 4.926e+04 -1.146e+05 7 2.524e+05 -5.837e+05 8 6.948e+04 -1.615e+05 9 2.088e+05	0 0.0 1 M2 mx/mn 0.0 0.0 1 M2 mx/mn 1 daN cm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 D 2 / D 3 -0.99 0.99 D 2 / D 3 cm -0.05 0.0 -0.02 0.0 -0.04 0.0 -0.05 0.0 -0.01 0.0 -0.16 0.0 -8.93e-03 0.0 -0.11	0.0 Q 2 / Q 3 1.222e+04 1.222e+04 Pt daN/cm2 -0.74 -0.42 -0.59 -0.66 -0.38 -0.84 -0.17	0.0 150.0 300.0 Pos. cm 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 8	-4500.00 -2250.00 0.0 N 1.034e+04-04-0.0 N daN 4.47 4.47 4.47 0.0 0.0 0.0 3.87 3.87 3.87 4.47 4.47 4.47 4.47 5.74 5.74 5.74 5.7	-3807.00 -951.75 0.0 V 2 -2.280e+04 2.280e+04 2.280e+04 -5085.86 -8507.69 -1.179e+04 1624.42 2675.79 3679.16 -4613.50 -7712.26 -1.069e+04 -5410.74 -9042.85 -1.253e+04 1461.98 2408.21 3311.25 -1197.75 -2041.75 -2927.87 -6312.21 1.053e+04 -1428e+04 -1706.56 -2882.84 -4086.07 -5213.52	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 T 0.0 0.0 0.0 0.0 0.0 0.	M 2 M 3 daN cm daN cm 0.0 2.045e+05 0.0 -6.781e+04 0.0 -2.045e+05 0.0 -6.781e+04 0.0 -2.186e+04 0.0 1.491e+05 0.0 -6.154e+04 0.0 1.854e+05 0.0 -6.154e+04 0.0 -7.219e+04 0.0 -7.219e+04 0.0 -5.041e+05 0.0 -7.219e+04 0.0 1.967e+04 0.0 1.342e+05 0.0 4.926e+04 0.0 1.342e+05 0.0 6.5837e+04 0.0 -1.539e+04 0.0 -1.539e+04 0.0 -1.539e+04 0.0 -1.615e+05 0.0 6.948e+04 0.0 -2.222e+04 0.0 -1.615e+05 0.0 2.088e+05
Pilas. Trave f. 1 1 1 1 1	M3 mx/mr -5.177e+06 5.177e+06 5.177e+06 5.177e+06 6.177e+06 Cmb M3 mx/mr daN cm 1 2.045e+05 -4.743e+05 -6.431e+04 3 1.854e+05 -6.431e+04 4 2.174e+05 -5.041e+05 5 1.342e+05 -5.788e+04 6 4.926e+04 -1.146e+05 7 2.524e+05 -5.837e+05 8 6.948e+04 -1.615e+05	0 0.0 1 M2 mx/mn 0.0 0.0 1 M2 mx/mn 1 daN cm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 D 2 / D 3 -0.99 0.99 D 2 / D 3 cm -0.05 0.0 -0.02 0.0 -0.04 0.0 -0.05 0.0 -0.01 0.0 -0.01 0.0 -0.16 0.0 -8.93e-03 0.0	0.0 Q 2 / Q 3 1.222e+04 1.222e+04 1.222e+04 Pt daN/cm2 -0.74 -0.42 -0.59 -0.66 -0.38 -0.84 -0.17 -0.76	0.0 150.0 300.0 Pos. cm 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0 8	-4500.00 -2250.00 0.0 N 1.034e+04-04-0.0 0.0 N daN 4.47 4.47 4.47 4.47 4.47 4.47 4.47 4.47 4.47 4.47 4.47 4.47 5.65 2.65 2.65 5.74 5.74-5.74 5.74-5.74 5.74-5.60 2.60 2.60 2.60	-3807.00 -951.75 0.0 V 2 -2.280e+04 2.280e+04 2.280e+04 -5085.86 -8507.69 -1.179e+04 1624.42 2675.79 3679.16 -4613.50 -7712.26 -1.069e+04 -5410.74 -9042.85 -1.253e+04 1461.98 2408.21 3311.25 -1197.75 -2041.75 -2927.87 -6312.21 1.053e+04 1.428e+04 -1706.56 -2882.84 -4086.07	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 T 0.0 0.0 0.0 0.0 0.0 0.	M 2 M 3 daN cm daN cm 0.0 2.045e+05 0.0 -6.781e+04 0.0 -6.781e+04 0.0 -4.743e+05 0.0 -6.431e+04 0.0 1.491e+05 0.0 1.854e+05 0.0 -6.154e+04 0.0 -1.7219e+05 0.0 2.174e+05 0.0 -7.219e+04 0.0 -5.041e+05 0.0 -5.788e+04 0.0 1.967e+04 0.0 1.342e+05 0.0 4.926e+04 0.0 -1.146e+05 0.0 2.524e+05 0.0 2.524e+05 0.0 6.948e+04 0.0 -5.837e+05 0.0 6.948e+04 0.0 -2.222e+04 0.0 -2.222e+04 0.0 -1.615e+05

					80.0	4.56-1.187e+04	0.0	0.0	0.0 -4.832e+05
1	10 4.926e+04	0.0	0.01	-0.84	0.0	2.65 -1197.75	0.0	0.0	0.0 4.926e+04
	-1.146e+05	0.0	0.0		40.0	2.65 -2041.75	0.0	0.0	0.0-1.539e+04
					80.0	2.65 -2927.87	0.0	0.0	0.0 -1.146e+05
1	11 2.524e+05	0.0	-0.16	-0.17	0.0	5.74 -6312.21	0.0	0.0	0.0 2.524e+05
	-5.837e+05	0.0	0.0		40.0	5.74 -1.053e+04 5.74 -1.428e+04	0.0	0.0	0.0 -8.599e+04
1	12 2.088e+05	0.0	-0.11	-0.30	80.0 0.0	4.56 -5213.52	0.0 0.0	0.0 0.0	0.0 -5.837e+05 0.0 2.088e+05
1	-4.832e+05	0.0	0.0	-0.30	40.0	4.56 -8702.81	0.0	0.0	0.0 -7.064e+04
	4.0020100	0.0	0.0		80.0	4.56 -1.187e+04	0.0	0.0	0.0 -4.832e+05
1	13 1.278e+05	0.0	-0.03	-0.55	0.0	2.98 -3173.98	0.0	0.0	0.0 1.278e+05
	-2.963e+05	0.0	0.0		40.0	2.98 -5315.02	0.0	0.0	0.0 -4.230e+04
					80.0	2.98 -7371.50	0.0	0.0	0.0 -2.963e+05
1	14 1.278e+05	0.0	-0.03	-0.55	0.0	2.98 -3173.98	0.0	0.0	0.0 1.278e+05
	-2.963e+05	0.0	0.0		40.0	2.98 -5315.02	0.0	0.0	0.0 -4.230e+04
0	4 0 070 00	0.0	0.00	0.00	80.0	2.98 -7371.50	0.0	0.0	0.0 -2.963e+05
2	1 2.873e+06 4.463e+05	0.0	-0.06	-0.82	0.0 280.0	-1.28 -1.699e+04 -1.28 0.0	0.0 0.0	0.0 0.0	0.0 2.873e+06 0.0 4.463e+05
	4.4036+03	0.0	0.0		560.0	-1.28 1.699e+04	0.0	0.0	0.0 4.463e+05 0.0 2.873e+06
2	2 8.481e+04	0.0	0.04	-0.39	0.0	0.0 -5862.72	0.0	0.0	0.0 2.073e+00 0.0 8.481e+04
-	-6.980e+05	0.0	0.0	0.00	280.0	0.0 0.0	0.0	0.0	0.0 -6.980e+05
					560.0	0.0 5862.72	0.0	0.0	0.0 8.481e+04
2	3 2.480e+06	0.0	-0.05	-0.67	0.0	-1.11 -1.398e+04	0.0	0.0	0.0 2.480e+06
	4.752e+05	0.0	0.0		280.0	-1.11 0.0	0.0	0.0	0.0 4.752e+05
_					560.0	-1.11 1.398e+04	0.0	0.0	0.0 2.480e+06
2	4 2.856e+06	0.0	-0.06	-0.76	0.0	-1.28 -1.581e+04	0.0	0.0	0.0 2.856e+06
	5.859e+05	0.0	0.0		280.0	-1.28 0.0	0.0	0.0	0.0 5.859e+05
2	5 7.633e+04	0.0	0.03	-0.36	560.0 0.0	-1.28 1.581e+04 0.0 -5276.45	0.0 0.0	0.0 0.0	0.0 2.856e+06 0.0 7.633e+04
2	-6.282e+05	0.0	0.03	-0.50	280.0	0.0 -3270.43	0.0	0.0	0.0 -6.282e+05
	0.2020100	0.0	0.0		560.0	0.0 5276.45	0.0	0.0	0.0 7.633e+04
2	6 4.902e+06	0.0	0.43	-0.82	0.0	-1.20 -9412.79	0.0	0.0	0.0 1.452e+06
	7.769e+05	0.0	0.0		280.0	-1.20 7475.54	0.0	0.0	0.0 1.291e+06
					560.0	-1.20 1.611e+04	0.0	0.0	0.0 4.902e+06
2	7 4.902e+06	0.0	0.43	-0.82	0.0	-1.20 -1.611e+04	0.0	0.0	0.0 4.902e+06
	7.769e+05	0.0	0.0		280.0	-1.20 -7475.54	0.0	0.0	0.0 1.291e+06
0	0. 2.7250+06	0.0	0.20	0.75	560.0	-1.20 9412.79	0.0	0.0	0.0 1.452e+06
2	8 3.725e+06 4.740e+05	0.0 0.0	0.30 0.0	-0.75	0.0 280.0	-1.02 -1.013e+04 -1.02 5126.26	0.0 0.0	0.0 0.0	0.0 1.359e+06 0.0 7.395e+05
	4.7406+03	0.0	0.0		560.0	-1.02	0.0	0.0	0.0 7.395e+05 0.0 3.725e+06
2	9 3.725e+06	0.0	0.30	-0.75	0.0	-1.02 -1.473e+04	0.0	0.0	0.0 3.725e+06
_	4.740e+05	0.0	0.0	• • • • • • • • • • • • • • • • • • • •	280.0	-1.02 -5126.26	0.0	0.0	0.0 7.395e+05
					560.0	-1.02 1.013e+04	0.0	0.0	0.0 1.359e+06
2	10 4.902e+06	0.0	0.43	-0.82	0.0	-1.20 -9412.79	0.0	0.0	0.0 1.452e+06
	7.769e+05	0.0	0.0		280.0	-1.20 7475.54	0.0	0.0	0.0 1.291e+06
0	44 4 000 00	0.0	0.40	0.00	560.0	-1.20 1.611e+04	0.0	0.0	0.0 4.902e+06
2	11 4.902e+06 7.769e+05	0.0 0.0	0.43 0.0	-0.82	0.0 280.0	-1.20 -1.611e+04 -1.20 -7475.54	0.0 0.0	0.0 0.0	0.0 4.902e+06 0.0 1.291e+06
	7.7036+03	0.0	0.0		560.0	-1.20 -7473.34	0.0	0.0	0.0 1.452e+06
2	12 3.725e+06	0.0	0.30	-0.75	0.0	-1.02 -1.473e+04	0.0	0.0	0.0 3.725e+06
	4.740e+05	0.0	0.0		280.0	-1.02 -5126.26	0.0	0.0	0.0 7.395e+05
					560.0	-1.02 1.013e+04	0.0	0.0	0.0 1.359e+06
2	13 1.927e+06	0.0	-0.03	-0.59	0.0	-0.85 -1.211e+04	0.0	0.0	0.0 1.927e+06
	2.045e+05	0.0	0.0		280.0	-0.85 0.0	0.0	0.0	0.0 2.045e+05
0	44 4 007 00	0.0	0.00	0.50	560.0	-0.85 1.211e+04	0.0	0.0	0.0 1.927e+06
2	14 1.927e+06 2.045e+05	0.0 0.0	-0.03 0.0	-0.59	0.0 280.0	-0.85 -1.211e+04 -0.85 0.0	0.0 0.0	0.0 0.0	0.0 1.927e+06 0.0 2.045e+05
	2.0436+03	0.0	0.0		560.0	-0.85 1.211e+04	0.0	0.0	0.0 2.043e+03 0.0 1.927e+06
3	1 2.045e+05	0.0	-0.05	-0.74	0.0	4.47 1.179e+04	0.0	0.0	0.0 -4.743e+05
-	-4.743e+05	0.0	0.0	• • • •	40.0	4.47 8507.69	0.0	0.0	0.0 -6.781e+04
					80.0	4.47 5085.86	0.0	0.0	0.0 2.045e+05
3	2 1.491e+05	0.0	-0.02	-0.42	0.0	0.0 -3679.16	0.0	0.0	0.0 1.491e+05
	-6.431e+04	0.0	0.0		40.0	0.0 -2675.79	0.0	0.0	0.0 2.186e+04
_					80.0	0.0 -1624.42	0.0	0.0	0.0 -6.431e+04
3	3 1.854e+05	0.0	-0.04	-0.59	0.0	3.87 1.069e+04	0.0	0.0	0.0 -4.299e+05
	-4.299e+05	0.0	0.0		40.0 80.0	3.87 7712.26 3.87 4613.50	0.0	0.0	0.0 -6.154e+04 0.0 1.854e+05
3	4 2.174e+05	0.0	-0.05	-0.66	0.0	4.47 1.253e+04	0.0 0.0	0.0 0.0	0.0 1.854e+05 0.0 -5.041e+05
3	-5.041e+05	0.0	0.00	3.00	40.0	4.47 9042.85	0.0	0.0	0.0 - 7.219e+04
	2.00.00	0.0	0.0		80.0	4.47 5410.74	0.0	0.0	0.0 2.174e+05
3	5 1.342e+05	0.0	-0.01	-0.38	0.0	0.0 -3311.25	0.0	0.0	0.0 1.342e+05
	-5.788e+04	0.0	0.0		40.0	0.0 -2408.21	0.0	0.0	0.0 1.967e+04
					80.0	0.0 -1461.98	0.0	0.0	0.0 -5.788e+04
3	6 2.524e+05	0.0	-0.16	-0.17	0.0	5.74 1.428e+04	0.0	0.0	0.0 -5.837e+05
	-5.837e+05	0.0	0.0		40.0	5.74 1.053e+04	0.0	0.0	0.0 -8.599e+04
3	7 4.926e+04	0.0	0.01	-0.84	80.0 0.0	5.74 6312.21 2.65 2927.87	0.0 0.0	0.0 0.0	0.0 2.524e+05 0.0 -1.146e+05
3	1 7.320 0 704	0.0	0.01	-0.04	0.0	2.00 2321.01	0.0	0.0	0.0 - 1.1406403

	-1.146e+05	0.0	0.0		40.0	2.65	2041.75	0.0	0.0	0.0-1.539e+04
					80.0	2.65	1197.75	0.0	0.0	0.0 4.926e+04
3	8 2.088e+05	0.0	-0.11	-0.30	0.0	4.56	1.187e+04	0.0	0.0	0.0-4.832e+05
	-4.832e+05	0.0	0.0		40.0	4.56	8702.81	0.0	0.0	0.0 -7.064e+04
					80.0	4.56	5213.52	0.0	0.0	0.0 2.088e+05
3	9 6.948e+04	0.0	-8.93e-03	-0.76	0.0	2.60	4086.07	0.0	0.0	0.0 -1.615e+05
	-1.615e+05	0.0	0.0		40.0	2.60	2882.84	0.0	0.0	0.0 -2.222e+04
					80.0	2.60	1706.56	0.0	0.0	0.0 6.948e+04
3	10 2.524e+05	0.0	-0.16	-0.17	0.0	5.74	1.428e+04	0.0	0.0	0.0 -5.837e+05
	-5.837e+05	0.0	0.0		40.0	5.74	1.053e+04	0.0	0.0	0.0 -8.599e+04
					80.0	5.74	6312.21	0.0	0.0	0.0 2.524e+05
3	11 4.926e+04	0.0	0.01	-0.84	0.0	2.65	2927.87	0.0	0.0	0.0 -1.146e+05
	-1.146e+05	0.0	0.0		40.0	2.65	2041.75	0.0	0.0	0.0 - 1.539e + 04
					80.0	2.65	1197.75	0.0	0.0	0.0 4.926e+04
3	12 6.948e+04	0.0	-8.93e-03	-0.76	0.0	2.60	4086.07	0.0	0.0	0.0 -1.615e+05
	-1.615e+05	0.0	0.0		40.0	2.60	2882.84	0.0	0.0	0.0 -2.222e+04
					80.0	2.60	1706.56	0.0	0.0	0.0 6.948e+04
3	13 1.278e+05	0.0	-0.03	-0.55	0.0	2.98	7371.50	0.0	0.0	0.0 -2.963e+05
	-2.963e+05	0.0	0.0		40.0	2.98	5315.02	0.0	0.0	0.0 -4.230e+04
					80.0	2.98	3173.98	0.0	0.0	0.0 1.278e+05
3	14 1.278e+05	0.0	-0.03	-0.55	0.0	2.98	7371.50	0.0	0.0	0.0 -2.963e+05
	-2.963e+05	0.0	0.0		40.0	2.98	5315.02	0.0	0.0	0.0 -4.230e+04
					80.0	2.98	3173.98	0.0	0.0	0.0 1.278e+05
Trave f.	M3 mx/mn M	2 mx/mn	D 2 / D 3	Pt		N	V 2	V 3	Т	
	-6.980e+05	0.0	-0.16	-0.84		-1.28 -	1.699e+04	0.0	0.0	
	4.902e+06	0.0	0.43	-0.17		5.74	1.699e+04	0.0	0.0	

VERIFICHE ELEMENTI TRAVE C.A.

LEGENDA TABELLA VERIFICHE ELEMENTI TRAVE C.A.

In tabella vengono riportati per ogni elemento il numero dello stesso ed il codice di verifica.

Nel caso in cui si sia proceduto alla progettazione con le tensioni ammissibili vengono riportate le massime tensioni nell'elemento (massima compressione nel calcestruzzo, massima compressione media nel calcestruzzo, massima tensione nell'acciaio, massima tensione tangenziale) con l'indicazione delle combinazioni in cui si sono attinti i rispettivi valori.

Nel caso in cui si sia proceduto alla progettazione con il metodo degli stati limite vengono riportati il rapporto x/d, le verifiche per sollecitazioni proporzionali e la verifica per compressione media con l'indicazione delle combinazioni in cui si sono attinti i rispettivi valori.

Per gli elementi tipo pilastro sono riportati numero e diametro dei ferri di vertice, numero e diametro di ferri disposti lungo i lati L1 (paralleli alla base della sezione) e lungo i lati L2 (paralleli all'altezza della sezione).

Per gli elementi tipo trave sono riportati infine le quantità di armatura inferiore e superiore.

In particolare i simboli utilizzati con il metodo delle tensioni ammissibili assumono il seguente significato:

M_P X Y	Numero della pilastrata e posizione in pianta
M_TZPP	Numero della travata, quota media pilastrata iniziale e finale (nodo in assenza di
	pilastrata)
Pilas. o Trave	numero identificativo dell'elemento
Note	Viene riportato il codice relativo alla sezione(s) e relativo al materiale(m);
	nella terza riga viene riportato il valore delle snellezze in direzione 2-2 e 3-3
Stato	Codici di verifica relativi alle tensioni normali e alle tensioni tangenziali
Quota	Ascissa del punto di verifica
%Af	Percentuale di area di armatura rispetto a quella di calcestruzzo
Armat. long.	Numero e diametro dei ferri di armatura longitudinale: ferri di vertice + ferri di lato
	(vedi seguente figura)
Af inf.	Area di armatura longitudinale posta all'intradosso della trave
Af sup	Area di armatura longitudinale posta all'estradosso della trave
Sc max	Massima tensione di compressione del calcestruzzo
Sc med	Massima tensione media di compressione del calcestruzzo
Sf max	Tensione massima nell'acciaio
staffe	Vengono riportati i dati del tratto di staffatura in cui cade la sezione di verifica;
	in particolare: numero dei bracci, diametro, passo, lunghezza tratto
Tau max	Tensione massima tangenziale nel cls
Rif. comb	Combinazioni in cui si generano i seguenti valori di tensione:
	Sc max, Sc med, Sf max, Tau max
AfV	area dell'armatura atta ad assorbire le azioni di taglio
AfT	area dell'armatura atta ad assorbire le azioni di torsione
Scorr. P	Scorrimento dei piegati
Af long.	Area del ferro longitudinale aggiuntivo per assorbire la torsione
_	

Mentre i simboli utilizzati con il metodo degli stati limite assumono il seguente significato:

r. snell.	Rapporto λ su λ^* : valore superiore a 1 per elementi snelli, caso in cui viene effettuata la verifica con il metodo diretto dello stato di equilibrio
Verifica(verif.)	rapporto Sd/Su con sollecitazioni ultime proporzionali o a sforzo normale costante: valore minore o uguale a 1 per verifica positiva
ver.sis	rapporto Nd/Nu con Nu calcolato come al punto 7.4.4.2.2.1; valore minore o uguale a 1 per verifica positiva

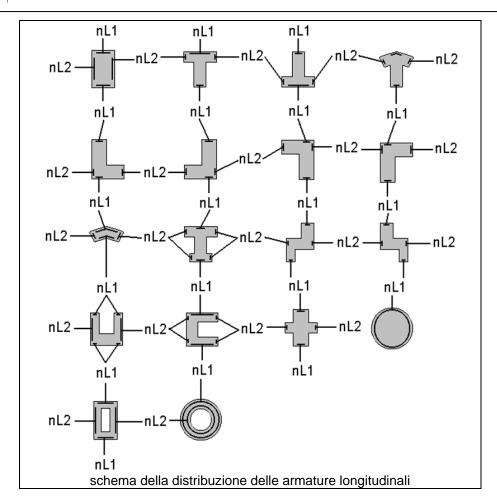
ver.V/T	rapporto Sd/Su con sollecitazioni taglianti e torcenti proporzionali valore minore o uguale a 1 per verifica positiva
x/d	rapporto tra posizione dell'asse neutro e altezza utile alla rottura della sezione (per sola flessione)

Per gli elementi progettati secondo il criterio della gerarchia delle resistenze (pilastri e travi) si riporta una ulteriore tabella di seguito descritta:

M negativo i	Valore del momento resistente negativo (positivo) all' estremità iniziale i (finale f) della trave
V M-i M+f	Taglio generato dai momenti resistenti negativo i e positivo f (positivo i e negativo f)
V totale	Massimo valore assoluto ottenuto per combinazione del taglio isostatico e dei tagli concomitanti (p.to 7.4.4.1.1.)
Verif. V	Rapporto tra il taglio massimo e Vr1 (p.to 7.4.4.1.2.2);
Sovr. 2-2 i	Sovraresistenza del pilastro (come da formula 7.4.4). Rapporto tra i momenti resistenti delle travi e dei pilastri. Il valore del fattore rispettivamente per il momento 2-2 (3-3) alla base i ed alla sommità f del pilastro deve essere maggiore del gammaRd adottato
M 2-2 i	Valore del momento resistente rispettivamente per 2-2 (3-3) alla base i ed alla sommità f del pilastro (massimo momento in presenza dello sforzo normale di calcolo)
Luce per V	Luce di calcolo per la definizione del taglio (generato dai momenti resistenti)
V M2-2	Valore del taglio generato dai momenti resistenti 2-2 (3-3)

Per i nodi trave-pilastro viene riportata la seguente tabella relativa al calcolo delle armature di confinamento e alla verifica di resistenza del nodo (richiesta solo per strutture in classe di duttilità alta); le caselle vuote indicano parametri non riportati in quanto non necessari.

Stato	Esito della verifica (come da formula 7.4.8) per resistenza a compressione del nodo (solo CDA)
I 7.4.29	Passo delle staffe di confinamento come richiesto dalla formula 7.4.29
Bj2(3)	Dimensione del nodo per il taglio in direzione 2 (3)
Hjc2(2)	Distanza tra le giaciture di armatura del pilastro per il taglio in direzione 2 (3)
V. 7.4.8	Rapporto tra il taglio Vjbd e il taglio resistente come da formula 7.4.8 (solo CDA)
I 7.4.10	Passo delle staffe valutato in funzione della formula 7.4.10 (solo CDA)


Pilas.

Note

Stato

Quota

%Af r. snell.

		0.50	30.00	18.00	0.13	0.90	0.11	3.73	0.0		0.0	0.0	
Trave		%Af 0.50	Af inf. 30.00	Af. sup 18.00	x/d 0.13	verif. 0.90	ver. V/T 0.11	Af V 3.73	Af T 0.0	Sc	orr. P <i>A</i>	Af long.	
	80.0	0.30	18.0	18.0	0.10	0.08	0.04	1.5	0.0	2d10/30 L=80	0.0	0.0	6,6
s=1,m=		0.30	18.0	18.0	0.10	0.03	0.07	2.4	0.0	2d10/30 L=80	0.0	0.0	6,6
3 ok,o		0.30	18.0	18.0	0.10	0.17	0.10	3.3	0.0	2d10/30 L=80	0.0	0.0	6,6
	560.0	0.50	30.0	16.0	0.13	0.90	0.11	3.7	0.0	2d10/30 L=560	0.0	0.0	6,6
s=1,m=	4 280.0	0.27	16.0	16.0	0.10	0.43	0.05	1.7	0.0	2d10/30 L=560	0.0	0.0	6,7
2 ok,o		0.50	30.0	16.0	0.13	0.90	0.11	3.7	0.0	2d10/30 L=560	0.0	0.0	7,7
0 .,	80.0	0.30	18.0	18.0	0.10	0.17	0.10	3.3	0.0	2d10/30 L=80	0.0	0.0	7,7
s=1,m=		0.30	18.0	18.0	0.10	0.03	0.07	2.4	0.0	2d10/30 L=80	0.0	0.0	7,7
1 ok,o		0.30	18.0	18.0	0.10	0.08	0.04	1.5	0.0	2d10/30 L=80	0.0	0.0	7,7
Trave Not	e Pos.	%Af	Af inf.	Af. sup	x/d	verif.	ver. V/T	Af V	Af T	Staffe Sc L=cm	orr. P A	Af long. F	Rif. cmb
				0.90	0.05			0.9	3	0.01		0.14	
Pilas.				%Af	r. snell.			veri	f. v	er. rid	ve	r. V/T	
[b=1.0;	1.0]	5	30.0	0.46	0.05	4d14 14	I+0 d14	0.	0	0.0 2+2d10/20 L=3	00 4.5	8e-03-85	8993460,7,7
	4 01		0.08	0.46	0.05	4d14 14		0.1		07e-03 2+2d10/20 L=3		0.03	6,7,6
7 s=1,r	n=4 ok		30.0	0.46	0.05	4d14 14		0.4		13e-03 2+2d10/20 L=3		0.06	6,7,6
[b=1.0;			30.0	0.40	0.05		3+0 d16	0.	-	0.0 2+2d12/20 L=3			8993460,7,7
			0.08	0.40	0.05	4d16 8	3+0 d16	0.1		07e-03 2+2d12/20 L=3		0.03	7,7,7
6 s=1,r	n=4 ok	ok 2,	30.0	0.40	0.05	4d16 8	3+0 d16	0.5	3 6.1	13e-03 2+2d12/20 L=3	00	0.06	7,7,7
[b=1.0;	1.0]	2	30.0	0.52	0.05	4d20 6	6+0 d20	0.4	2 6.1	13e-03 2+2d12/20 L=2	30	0.07	6,7,6
0 0 .,.			15.0	0.90	0.05		3+0 d24	0.5	-	48e-03 2+2d12/20 L=2		0.10	6,7,6
5 s=1,r		ok -	0.0	0.90	0.05		3+0 d24	0.9	_	0.01 2+2d12/20 L=2		0.14	6,7,6
[b=1.0;	1 01		230.0	0.52	0.05		6+0 d20	0.4		13e-03 2+2d12/20 L=2		0.07	7,7,7
4 5=1,1	11=4 UK		15.0	0.90	0.05		3+0 d24	0.5	-	48e-03 2+2d12/20 L=2		0.14	7,7,7
4 s=1,r	m_4 ok	.ok	cm 0.0	0.90	0.05	4424.9	3+0 d24	0.9	2	L=0.01 2+2d12/20 L=2		0.14	7,7,7

Armat. long.

verif.

ver. rid

Staffe ver. V/T Rif. cmb

STATI LIMITE D' ESERCIZIO

LEGENDA TABELLA STATI LIMITE D'ESERCIZIO

In tabella vengono riportati i valori di interesse per il controllo degli stati limite d'esercizio.

In particolare vengono riportati, in relazione al tipo di elemento strutturale, i risultati relativi alle tre categorie di combinazione considerate:

- Combinazioni rare
- Combinazioni frequenti
- Combinazioni quasi permanenti.

I valori di interesse sono i seguenti:

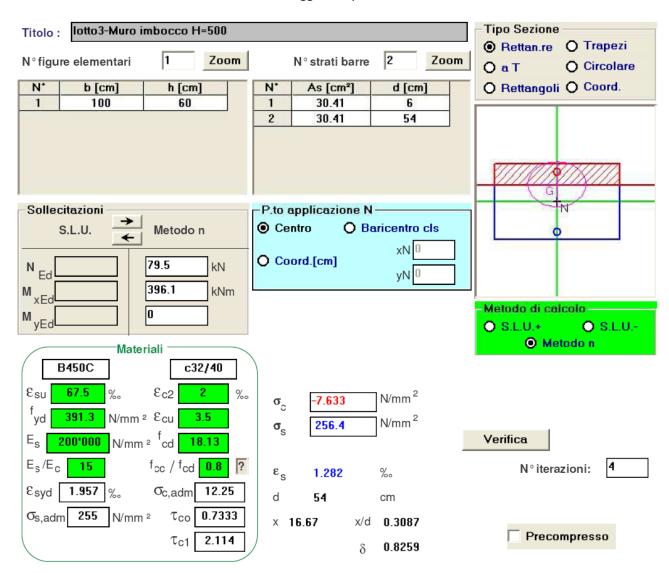
1 Valon ai	interesse sono i seguenti.
rRfck	rapporto tra la massima compressione nel calcestruzzo e la tensione fck in
	combinazioni rare [normalizzato a 1]
rRfyk	rapporto tra la massima tensione nell'acciaio e la tensione fyk in combinazioni rare
	[normalizzato a 1]
rPfck	rapporto tra la massima compressione nel calcestruzzo e la tensione fck in
	combinazioni quasi permanenti [normalizzato a 1]
wR	apertura caratteristica delle fessure in combinazioni rare [mm]
wF	apertura caratteristica delle fessure in combinazioni frequenti [mm]
wP	apertura caratteristica delle fessure in combinazioni quasi permanenti [mm]
dR	massima deformazione in combinazioni rare
dF	massima deformazione in combinazioni frequenti
dP	massima deformazione in combinazioni quasi permanenti

Per ognuno dei nove valori soprariportati viene indicata (Rif.cmb) la combinazione in cui si è verificato.

In relazione al tipo di elemento strutturale i valori sono selezionati nel modo seguente:

pilastri	rRfck	rRfyk	rPfck	per sezioni significative
travi	rRfck	rRfyk	rPfck	per sezioni significative
	wR	wF	wP	per sezioni significative
	dR	dF	dΡ	massimi in campata
setti e gusci	rRfck	rRfyk	rPfck	massimi nei nodi dell'elemento
	wR	wF	wP	massimi nei nodi dell'elemento

Si precisa che i valori di massima deformazione per travi sono riferiti al piano verticale (piano locale 1-2 con momenti flettenti 3-3).


IIIOIIICIII	HOLLO	$1111 \cup 0$											
Pilas.	P	os.	rRfck	rRfyk	rPfck	Rif. cmb		Pos.	rRfck	rRfy	/k	rPfck	Rif. cmb
		cm						cm					
4		0.0	0.39	0.78	0.28	12,12,14		115.0	0.22	0.4	13	0.14	12,12,14
	23	30.0	0.13	0.33	0.07	12,12,14							
5		0.0	0.15	0.27	0.28	12,12,14		115.0	0.06	0.0	9	0.14	12,12,14
	23	30.0	0.02	0.01	0.07	12,12,14							
6		0.0	0.15	0.42	0.07	12,12,14		150.0	0.04	0.1	0 8.2	23e-03	12,12,14
	30	0.00	0.0	0.0	0.0	0,0,0							
7		0.0	0.02	0.01	0.07	12,12,14		150.0	0.01	0.0)1 8.0	00e-03	12,12,14
	30	0.00	0.0	0.0	0.0	0,0,0							
Pilas.			rRfck	rRfyk	rPfck				rRfck	rRfy	⁄k	rPfck	
			0.39	0.78	0.28					•			
Trave	Pos.	rRfck	rRfyk	rPfck	Rif. cmb	wR	wF	wP	Rif. cmb	dR	dF	dP	Rif. cmb
	cm					mm	mm	mm		cm	cm	cm	
1	0.0	0.03	0.07		12,12,14	0.0	0.0	0.0	0,0,0	0.22	0.06	0.06	12,13,14
		8.79e-03	0.02		12,12,14	0.0	0.0	0.0	0,0,0				
	80.0	0.06	0.15		12,12,14	0.0	0.0	0.0	0,0,0				
2	0.0	0.39	0.71	0.27	12,12,14	0.25	0.12	0.12	12,13,14	0.79	0.07	0.07	12,13,14
	280.0	0.10	0.26		12,12,14	0.0	0.0	0.0	0,0,0				
	560.0	0.14	0.26	0.27	12,12,14	0.0	0.12	0.12	0,13,14				
3	0.0	0.02	0.05		12,12,14	0.0	0.0	0.0	0,0,0	0.02	0.06	0.06	12,13,14
	40.0	2.76e-03	6.98e-03	7.02e-03	12,12,14	0.0	0.0	0.0	0,0,0				
	80.0	8.65e-03	0.02	0.02	12,12,14	0.0	0.0	0.0	0,0,0				
Trave		rRfck	rRfyk	rPfck		wR	wF	wP		dR	dF	dP	
		0.39	0.71	0.27		0.25	0.12	0.12		0.79	0.07	0.07	

VERIFICA A FESSURAZIONE MURO(sle)

Nel paragrafo seguente viene eseguita la verifica a fessurazione della sezione del piede del muro.

Calcolo delle tensioni della sezione fessurata soggetta a pressoflessione allo SLE.

STATO LIMITE DI APERTURA DELLE FESSURE - Rif. UNI EN 1992-1-1: 2005 Par.7.3

Geometria della sezione Altezza della sezione [mm] Larghezza della sezione [mm] Altezza utile della sezione [mm] Distanza tra asse armatura e lembo compresso [mm] Ricoprimento dell'armatura 48 [mm] Armatura tesa ordinaria Numero di ferri tesi presenti nella sezione [-] Diametro dei ferri tesi presenti nella sezione [mm] 22 3041 [mm²] Area dei ferri tesi presenti nella sezione Armatura tesa di infittimento Numero di ferri tesi presenti nella sezione $n_{f,2}$ 0 [-] Diametro dei ferri tesi presenti nella sezione Þf.2 0 [mm] 0 [mm²] Area dei ferri tesi presenti nella sezione A_{sf.2} Caratteristiche dei materiali Resistenza caratteristica cilindrica dal calcestruzzo 33.2 [MPa] Resistenza a trazione media del calcestruzzo 3.1 [MPa] ctm Ecm Modulo di elasticità del calcestruzzo 33643 [MPa] 450 [MPa] Resistenza a snervamento dell'acciaio Modulo di elasticità dell'acciaio 200000 [MPa] DETERMINAZIONE DELL'AMPIEZZA DELLE FESSURE σ_s 256.4 [MPa] Tensione nell'armatura tesa considerando la sezione fessurata Asse neutro della sezione 166.7 [mm] Breve Tipo e durata dei carichi applicati Coefficiente di omogeneizzazione α_{e} 5.94 [-] A_s 3041 [mm2] Area totale delle armature presenti nella zona tesa Area efficace tesa di calcestruzzo A_{c,eff.1} 150000 [mm2] 144433 [mm2] A_{c,eff.2} 300000 [mm2] A_{c,eff,3} 144433 [mm²] A_{c,eff,min} 7.1 Area tesa efficace (casi tipici) figura Legenda a) Trave Livello del baricentro dell'acciaio b) Piastra Area tesa efficace, Acet Rapporto tra l'area di acciaio teso e quella di calcestruzzo teso 0.02106 [-] Pp,eff Resistenza efficace media del calcestruzzo 3.1 [MPa] f_{ct,eff} Fattore di durata del carico k, 0.6 [-] Differenza tra la deformazione nell'acciaio e nel cls $[\epsilon_{\text{sm}}\text{-}\epsilon_{\text{cm}}]_{\text{min}}$ 0.000769 [-] $[\epsilon_{sm} - \epsilon_{cm}]_{calc.}$ 0.000785 [-] 0.000785 [-] $[\epsilon_{sm}-\epsilon_{cm}]$ 125 [mm] Spaziatura tra le barre (calcolata tra i baricentri dei ferri) S Diametro equivalente delle barre 22.00 [mm] ϕ_{eq} Spaziatura massima di riferimento 295 [mm] 0.800 [-] Coefficienti k per il calcolo dell'ampiezza di fessurazione k_1 k_2 0.500 [-] 3.400 [-] k₃ k_4 0.425

Distanza massima tra le fessure	S _{r,max.1}	341 [mm]
	S _{r,max.2}	563 [mm]
	S _{r,max}	341 [mm]
Ampiezza limite delle fessure per la combinazione di calcolo pertinente	Wklim	0.30 [mm]

prospetto 7.1N Valori raccomandati di w_{max} (mm)

Classe di esposizione	Elementi di calcestruzzo armato normale e precompresso con cavi non aderenti	Elementi precompressi con cavi aderenti		
	Combinazione di carico quasi-permanente	Combinazione di carico frequente		
X0, XC1	0,41	0,2		
XC2, XC3, XC4		0,22		
XD1, XD2, XS1, XS2, XS3	0,3	Decompressione		

Nota 1 Per le classi di esposizione X0, XC1, l'ampiezza delle fessure non influenza la durabilità e questo limite è posto per garantire un aspetto accettabile. In assenza di requisiti relativi all'aspetto questo limite può essere mitigato.

Nota 2 Per queste classi di esposizione, inoltre, si raccomanda che la decompressione sia verificata sotto la combinazione di carico quasi-permanente.

Tabella 4.1.III - Descrizione delle condizioni ambientali

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Tabella 4.1.IV - Criteri di scelta dello stato limite di fessurazione

Gruppi di esigenze	Condizioni	Combinazione di azioni	Armatura							
	ambientali		Sensibile	Poco sensibile						
	ambientan	or azioni	Stato limite	Wd	Stato limite	Wd				
а	Ordinarie	frequente	ap. fessure	$\leq \mathbf{w}_2$	ap. fessure	$\leq w_3$				
		quasi permanente	ap. fessure	≤ w ₁	ap. fessure	$\leq w_2$				
100	Ai	frequente	ap. fessure	$\leq w_1$	ap. fessure	$\leq w_2$				
ь	Aggressive	quasi permanente	decompressione	-	ap. fessure	$\leq w_1$				
F2	Molto aggressive	frequente	formazione fessure	1	ap. fessure	$\leq w_1$				
C		quasi permanente	decompressione	-	ap. fessure	$\leq w_1$				

w₁, w₂, w₃ sono definiti al § 4.1.2.2.4.1, il valore di calcolo w_d, è definito al § 4.1.2.2.4.6.