

"AUTORIZZAZIONE INTEGRATA AMBIENTALE" Piattaforme Barbara T e Barbara T2

IDENTIFICAZIONE E QUANTIFICAZIONE DEGLI EFFETTI DELLE EMISSIONI IN ARIA E CONFRONTO CON SQA PER LA PROPOSTA IMPIANTISTICA PER LA QUALE SI RICHIEDE L'AUTORIZZAZIONE

ALLEGATO D.6

Eni SpA
Distretto Centro Settentrionale

Data 09/2018

AUTORIZZAZIONE INTEGRATA AMBIENTALE Piattaforme BARBARA T – BARBARA T2 ALLEGATO D.6

Rev.

Fg di 2 49

INDICE

INDICE
PREMESSA
1 QUADRO NORMATIVO IN MATERIA DI QUALITÀ DELL'ARIA
1.2 Riferimenti internazionali
2 DISPERSIONE DEGLI INQUINANTI IN ATMOSFERA
2.1 Descrizione del modello di dispersione
2.2 Area di calcolo
2.4 Sorgenti di emissione
2.5 Risultati della simulazione33
3 STATO DI QUALITÀ DELL'ARIA NELLA ZONA COSTIERA
3.1 Analisi dati di qualità dell'aria41 4 BIBLIOGRAFIA E SITOGRAFIA49
T DIDEIOGIALIA E SITOGIALIA
INDICE DELLE FIGURE
Figura 1. Evoluzione a puff del pennacchio11
Figura 2. Area di studio con ubicazione delle piattaforme del Gruppo Omogeneo Falconara
dei ricettori sulla costa15
Figura 3. Ubicazione delle stazioni di rilevamento dati meteo utilizzate
Figura 4. Ubicazione delle stazioni Rete Regionale della Qualità dell'Aria della Regione
Marche. Cerchiate in nero le stazioni prese in riferimento per la presente analisi40
Figura 5. Concentrazioni medie orarie di O ₃ - anni 2015-2016-2017 (Fonte: ARPAM - RRQA)
- Stazione di Pesaro-Via Scarpellini47
Figura 6. Concentrazioni medie orarie di O₃- anni 2015-2016-2017 (Fonte: ARPAM - RRQA)
- Stazione di Ancona - Cittadella47
Figura 7. Concentrazioni medie orarie di O₃- anni 2015-2016-2017 (Fonte: ARPAM - RRQA)
- Stazione di Civitanova Marche - Ippodromo48
INDICE DELLE TABELLE
Tabella 1. Valori limite per la protezione della salute umana o per l'ambiente nel suo
complesso (D.Lgs. 155/2010)
Tabella 2. Valori critici per la protezione della vegetazione (D. Lgs. 155/2010) 8
Tabella 3. Valore obiettivo per la frazione PM _{2,5} delle polveri sottili (D. Lgs. 155/2010) 8
Tabella 4. Valore limite per idrocarburi (DPCM 28 marzo 1983)
Tabella 5. Valore guida per inquinanti (World Health Organization) 9
Tabella 6. Elenco delle piattaforme che costituiscono il Gruppo Omogeneo Falconara16
Tabella 7. Elenco dei ricettori costieri considerati

Data 09/2018

AUTORIZZAZIONE INTEGRATA AMBIENTALE Piattaforme BARBARA T – BARBARA T2 ALLEGATO D.6

Rev.

Fg di 3 49

Tabella 8. Stazioni di rilevamento dati meteo utilizzate 19
Tabella 9. Tassi di emissione di SOx delle sorgenti considerate
Tabella 10. Tassi di emissione di NOx delle sorgenti considerate 25
Tabella 11. Tassi di emissione di CO delle sorgenti considerate 28
Tabella 12. Tassi di emissione di Polveri Sottili delle sorgenti considerate30
Tabella 13. Tassi di emissione di Idrocarburi delle sorgenti considerate
Tabella 14. Confronto delle concentrazioni di Ossidi di Zolfo (SO ₂) calcolate dal modello
CALPUFF sulla linea di costa con i valori limite per la protezione della salute umana34
Tabella 15. Confronto delle concentrazioni di Ossidi di Zolfo (SO ₂) calcolate dal modello
CALPUFF sulla linea di costa con i valori limite per la protezione della vegetazione34
Tabella 16. Confronto delle concentrazioni di Ossidi di azoto (NO2) calcolate dal modello
CALPUFF sulla linea di costa con i valori limite per la protezione della salute umana35
Tabella 17. Confronto delle concentrazioni di Ossidi di azoto (NOx) calcolate dal modello
CALPUFF sulla linea di costa con i valori limite per la protezione della vegetazione35
Tabella 18. Confronto delle concentrazioni di Monossido di carbonio (CO) calcolate dal
modello CALPUFF sulla linea di costa con i valori limite per la protezione della salute umana 36
Tabella 19. Confronto delle concentrazioni di Polveri sottili (PM ₁₀) calcolate dal modello
CALPUFF sulla linea di costa con i valori limite per la protezione della salute umana36
Tabella 20. Confronto delle concentrazioni di Idrocarburi calcolate dal modello CALPUFF sulla
linea di costa con i valori limite37
Tabella 21. Stazioni della Rete Regionale della Qualità dell'Aria della Regione Marche39
Tabella 22. Concentrazioni massime medie orarie di SO ₂ - anni 2015-2016-2017 (Fonte:
elaborazione PROGER su base dati ARPAM - RRQA)41
Tabella 23. Concentrazioni massime medie giornaliere di SO ₂ – anni 2015-2016-2017 (Fonte:
elaborazione PROGER su base dati ARPAM - RRQA)42
Tabella 24. Concentrazioni massime medie orarie di NO ₂ - anni 2015-2016-2017 (Fonte:
elaborazione PROGER su base dati ARPAM - RRQA)42
Tabella 25. Concentrazioni medie annuali di NO ₂ – anni 2015-2016-2017 (Fonte: elaborazione
PROGER su base dati ARPAM - RRQA)43
Tabella 26. Concentrazioni massime medie orarie di CO- anni 2015-2016-2017 (Fonte:
elaborazione PROGER su base dati ARPAM - RRQA)43
Tabella 27. Concentrazioni massime medie orarie di PM ₁₀ - anni 2015-2016-2017 (Fonte:
elaborazione PROGER su base dati ARPAM - RRQA)44
Tabella 28. Concentrazioni medie annuali di PM ₁₀ - anni 2015-2016-2017 (Fonte:
elaborazione PROGER su base dati ARPAM - RRQA)45

Data 09/2018

AUTORIZZAZIONE INTEGRATA AMBIENTALE
Piattaforme BARBARA T -
BARBARA T2
ALLEGATO D.6

Rev. Fg 00 4

Fg di 4 49

Tabella	29.	Concentrazioni	medie	annuali	di	PM _{2,5} -	anni	2015-2016-2017	(Fonte
elaborazione PROGER su base dati ARPAM - RRQA)45									
Tabella	30.	Concentrazioni	medie	annuali	di	C ₆ H ₆ –	anni	2015-2016-2017	(Fonte
elaborazione PROGER su base dati ARPAM - RRQA)46									

Data 09/2018

AUTORIZZAZIONE INTEGRATA AMBIENTALE Piattaforme BARBARA T -BARBARA T2 ALLEGATO D.6

Rev. Fg 00 5 49

di

PREMESSA

La presente relazione riporta lo studio della dispersione degli inquinanti in atmosfera emessi delle piattaforme del Gruppo Omogeneo di Falconara, a cui appartengono Barbara T e Barbara T2, attraverso l'applicazione del sistema modellistico CALMET-CALPUFF.

Le simulazioni, riferite allo scenario emissivo effettivo dell'anno 2017, hanno la funzione di fornire un quadro oggettivo dell'impatto atmosferico provocato delle piattaforme offshore sulla zona costiera prospiciente il tratto di mare in cui ricadono Barbara T e T2.

L'impatto è stato quantificato attraverso il confronto, per i diversi inquinanti emessi dalle piattaforme, fra i livelli di concentrazione in aria ambiente indotti dagli effluenti gassosi emessi dal Gruppo Omogeneo di Falconara e gli standard di qualità dell'aria. La presente relazione riporta anche la valutazione della qualità dell'aria della zona costiera prospiciente il tratto di mare in cui ricadono le piattaforme del Gruppo. Tale analisi è stata effettuata utilizzando i dati rilevati dalla Rete Regionale della Qualità dell'Aria della Regione Marche.

QUADRO NORMATIVO IN MATERIA DI QUALITÀ DELL'ARIA

1.1 Normativa nazionale

La disciplina contro l'inquinamento atmosferico fa ricorso a due strategie diverse:

- 1. controllo delle fonti inquinanti e fissazione di standard di emissione,
- 2. controllo sulla qualità dell'aria e fissazione di standard di qualità dell'aria. Attualmente, in Italia, la materia è disciplinata dal D.Lgs. 152/06 e s.m.i. (Testo Unico Ambientale) per quanto riguarda le emissioni di inquinanti e dal D.Lgs. 155/10 e s.m.i. per quanto riguarda la qualità dell'aria.

Il **D.Lgs. n. 155 del 13 agosto 2010** "Attuazione della direttiva 2008/50/CE relativa alla qualità dell'aria ambiente e per un'aria più pulita in Europa" definisce gli obiettivi e gli standard di qualità dell'aria, nonché la valutazione per il monitoraggio del rispetto degli standard ed il raggiungimento degli obiettivi in attuazione della Direttiva

Data 09/2018

AUTORIZZAZIONE INTEGRATA AMBIENTALE Piattaforme BARBARA T – BARBARA T2 ALLEGATO D.6

Rev. Fg di 00 6 49

2008/50/Ce del Parlamento europeo e del Consiglio del 21/5/2008, relativa alla qualità dell'aria ambiente e per un'aria più pulita in Europa, e delle nuove disposizioni di attuazione nazionale della Direttiva 2004/107/Ce del Parlamento europeo e del Consiglio del 15/12/2004, concernente l'arsenico, il cadmio, il mercurio, il nickel e gli idrocarburi policiclici aromatici nell'aria ambiente.

Nello specifico il decreto:

- regolamenta la gestione della qualità dell'aria, per il biossido di zolfo, biossido di azoto, ossidi di azoto, PM₁₀, PM_{2,5}, piombo, benzene, monossido di carbonio, ozono, oltre che i suddetti inquinanti della Direttiva 2004/107/CE, andando per questi a definire i valori limite, valori obiettivo, obiettivi a lungo termine, soglie di informazione e di allarme, livelli critici, obbligo di concentrazione e obiettivo di riduzione delle esposizioni;
- indica gli strumenti attraverso cui deve essere effettuata la valutazione della qualità dell'aria, la zonizzazione e la classificazione del territorio in zone e agglomerati, la rilevazione ed il monitoraggio dei livelli di inquinamento atmosferico, effettuati mediante reti di monitoraggio e l'impiego di tecniche modellistiche, l'inventario delle emissioni e gli scenari emissivi;
- indica, in caso di superamento dei valori limite, dei livelli critici, dei valori obiettivo, delle soglie di informazione e allarme, le competenze (Regioni, Province autonome, Stato) e le modalità affinché siano intraprese misure, che non comportino costi sproporzionati, necessarie per agire sulle principali sorgenti di emissione per raggiungere gli standard e gli obiettivi (Piani) non-ché provvedimenti per informare il pubblico in modo adequato e tempestivo;
- disciplina l'attività di comunicazione di informazioni relative alla qualità dell'aria.

I principali parametri, stabiliti dal D.Lgs. 155/2010, di interesse per la verifica eseguita in questo studio sono:

 valore limite: livello fissato (in termini di concentrazione) in base alle conoscenze scientifiche, incluse quelle relative alle migliori tecnologie disponibili, al fine di evitare, prevenire o ridurre gli effetti nocivi per la salute umana o

AUTORIZZAZIONE INTEGRATA AMBIENTALE
Piattaforme BARBARA T –
BARBARA T2
ALLEGATO D.6

Rev.	Fg	di
00	7	49

per l'ambiente nel suo complesso, che deve essere raggiunto entro un termine prestabilito e che non deve essere successivamente superato;

- periodo di mediazione: periodo di tempo durante il quale i dati raccolti in tutto il periodo di riferimento sono utilizzati per calcolare il valore limite;
- livello critico: livello fissato in base alle conoscenze scientifiche, oltre il quale possono sussistere effetti negativi diretti su recettori quali gli alberi, le altre piante o gli ecosistemi naturali, esclusi gli esseri umani;
- valore obiettivo: livello fissato al fine di evitare, prevenire o ridurre effetti nocivi per la salute umana o per l'ambiente nel suo complesso, da conseguire, ove possibile, entro una data prestabilita.

Di seguito si riportano tali parametri per gli inquinanti di interesse (rif. § 2.4).

Inquinante	Periodo di Me- diazione Indice Valore Limito		Valore Limite	Note
SO ₂	1 ora	massimo nell'anno	350 μg/m³	da non superare più di 24 volte per anno civi- le
	1 giorno	massimo nell'anno	massimo nell'anno 125 μg/m³	
NO	1 ora	massimo nell'anno	200 μg/m³	da non superare più di 18 volte l'anno civile
NO ₂	anno civile	media	40 μg/m³	
CO 8 ore		massimo nell'anno	10 mg/m³	
PM ₁₀	1 giorno	massimo nell'anno	50 μg/m³	da non superare più di 35 volte l'anno civile
LIMITO	anno civile	media	40 μg/m³	
Benzene	anno civile	media	5 μg/m³	

Tabella 1. Valori limite per la protezione della salute umana o per l'ambiente nel suo complesso (D.Lgs. 155/2010)

Inquinante	Periodo di Mediazione	Indice	Valore Critico
50	anno civile	media	20 μg/m³
SO ₂	periodo invernale (1ºottobre-31 marzo)	media	20 μg/m³
NO _x	anno civile	media	30 μg/m³

Tryyy T	SpA Distretto tro Settentrionale	Data 09/2018	AUTORIZZAZIONE INTEGRATA AMBIENTALE Piattaforme BARBARA T – BARBARA T2 ALLEGATO D.6	Rev. 00	Fg 8	di 49	
---------	-------------------------------------	-----------------	---	------------	---------	----------	--

Tabella 2. Valori critici per la protezione della vegetazione (D. Lgs. 155/2010)

In	quinante	Periodo di Me- diazione	Indice	Valore obiettivo	Data entro la quale dovrebbe essere raggiun- to il valore obiettivo
	PM _{2,5}	anno civile	media	25 μg/m³	1° gennaio 2010

Tabella 3. Valore obiettivo per la frazione PM_{2,5} delle polveri sottili (D. Lgs. 155/2010)

Come mostrano le tabelle precedenti, il D. Lgs. 155/2010 e s.m.i. fornisce valori limite solo per gli NO_2 , SO_2 , PM_{10} , $PM_{2,5}$, CO, e C_6H_6 ., fra gli inquinanti di interesse per il presente studio (rif. § 2.4).

Per quanto riguarda gli Idrocarburi può farsi riferimento al **DPCM 28 marzo 1983** che fissa, per il precursore di Ozono "Idrocarburi Totali Non Metanici espressi come C" un valore limite per la concentrazione media di 3 ore consecutive, da applicare solo nelle zone e nei periodi dell'anno nei quali si siano verificati superamenti significativi del limi-te di Ozono.

Inquinante	Periodo di mediazione	Indice	Valore limite
Idrocarburi (COVNM)	3 ore	massimo nell'anno	200 μg/m³

Tabella 4. Valore limite per idrocarburi (DPCM 28 marzo 1983)

1.2 Riferimenti internazionali

L'evoluzione delle caratteristiche quali-quantitative della contaminazione ambientale da parte di composti chimici inquinanti di origine antropica ha reso necessaria la definizione e il periodico aggiornamento di valori limite, standard di qualità, metodologie di controllo e norme tecniche (quali le caratteristiche merceologiche dei combustibili, il controllo dei processi industriali, la pianificazione territoriale, ecc.). Alcuni organismi scientifici internazionali, tra questi la World Health Organization (WHO), hanno fissato linee guida per la protezione della salute umana anche per la qualità dell'aria ("Air

quella del 2000.

Quality Guidelines for Europe"). Dette linee guida derivano dalla conoscenza dei rapporti causa/effetto e dalla individuazione della concentrazione di effetto nullo sull'uomo. Esse sono relative solo ad un certo numero di inquinanti atmosferici per i quali le conoscenze scientifiche, relative agli effetti sull'uomo, sono state giudicate sufficientemente accettabili. La loro periodica revisione è prevista dall'ufficio WHO competente (European Center for Environment and Health) e attualmente l'edizione più recente è

Rev.

00

di

49

Fg

9

I "valori guida di qualità dell'aria" che indicano i "livelli di concentrazione nell'aria degli inquinanti, associati a tempi di esposizione, al di sotto dei quali non sono attesi effetti avversi per la salute, secondo le evidenze scientifiche disponibili" dei pollutanti di interesse, ed in particolare per l'idrogeno solforato, sono riportati nella seguente tabella.

Inquinante	Periodo di media- zione	Valore Guida	Note
NO ₂	1 ora	200 μg/m³	
1102	anno	40 μg/m³	
	15 minuti	100 μg/m³	
со	30 minuti	60 μg/m³	
	1 ora	30 μg/m³	
	8 ore	10 μg/m³	
ПС	30 minuti	7 μg/m³	valore di sicurezza per evitare odore fastidioso
H₂S	1 giorno	150 μg/m³	valore di sicurezza per evitare irritazione oculare

Tabella 5. Valore guida per inquinanti (World Health Organization)

2 DISPERSIONE DEGLI INQUINANTI IN ATMOSFERA

L'analisi di dispersione con il modello CALPUFF (§ 2.1) è eseguita, sulla base del campo meteorologico ricostruito con dati meteo previsionali ed osservati del 2014 (§ 2.3), coprendo l'arco temporale dell'intero anno.

Data **09/2018** AUTORIZZAZIONE INTEGRATA AMBIENTALE Piattaforme BARBARA T – BARBARA T2 ALLEGATO D.6

Rev. Fg 10

di

49

La simulazione è eseguita all'interno di un'area di calcolo nella quale ricadono tutte le sorgenti di emissione delle piattaforme del Gruppo Omogeneo Falconara ed i recettori sensibili, corrispondenti ai principali agglomerati urbani e agli elementi ambientali di rilievo, situati lungo la costa antistante il campo a mare (§ 2.2).

Lo scenario emissivo preso in esame è quello effettivo dell'anno 2017, facendo riferimento alle fonti realmente attive, alla loro durata, alle quantità di inquinanti effettivamente emesse (§ 2.4).

Sono analizzati gli inquinanti significativi per i processi svolti sulle piattaforme del campo (§ 2.4).

Le immissioni di inquinanti nell'aria ambiente sono confrontate con gli standard di qualità ambientale, SQA (§ 2.5).

2.1 Descrizione del modello di dispersione

Le simulazioni sono state condotte utilizzando il modello non stazionario CALPUFF (Scire et al., 2000, v 5.8.4), in catena col modello meteorologico diagnostico CALMET (Scire et al., 2000, v.584) ed il post-processore CALPOST (Scire et al., 2000, v.6.221) per l'elaborazione degli output prodotti dagli altri due modelli.

<u>CALPUFF</u> è un modello non stazionario, multi strato e multi specie, che consente di simulare gli effetti di condizioni meteorologiche variabili nel tempo e nello spazio, come nei casi di: domini di grandi dimensioni, orografica complessa, calme di vento, presenza di specchi d'acqua, discontinuità terra-mare, ecc. La diffusione degli inquinanti è simulata attraverso una serie continua di puff in cui la distribuzione degli inquinanti è di tipo gaussiano.

Il software può simulare l'evoluzione spazio-temporale di emissioni di varia natura (areali, puntiformi, lineari e volumetriche) anche variabili nel tempo, simulando fenomeni di rimozione (sia secca che umida) e semplici interazioni chimiche.

Pur essendo prevista l'opzione dell'utilizzo di dati meteorologici puntuali (similmente ai più comuni modelli gaussiani stazionari), le piene potenzialità del codice di CALPUFF vengono attivate se utilizzato in congiunzione con i campi meteorologici tridimensionali generati da CALMET.

Eni SpA Distretto Centro Settentrionale	Data 09/2018	AUTORIZZAZIONE INTEGRATA AMBIENTALE Piattaforme BARBARA T – BARBARA T2 ALLEGATO D.6	Rev. 00	Fg 11	di 49
---	-----------------	---	------------	----------	----------

I modelli a puff rappresentano la naturale evoluzione dei modelli gaussiani in quanto introducono nella semplice formulazione di base la variabilità delle condizioni meteorologiche, delle emissioni e le disomogeneità del territorio. Dal punto di vista matematico l'emissione di inquinante da parte di una sorgente viene schematizzato attraverso l'emissione di una successione di elementi, chiamati puff, che si spostano sul territorio seguendo un campo di vento tridimensionale variabile sia nello spazio che nel tempo.

La concentrazione totale in un punto è ottenuta sommando il contributo di tutti i puff. I puff emessi da ogni sorgente si muovono nel tempo sul territorio: il centro del puff viene trasportato dal campo di vento tridimensionale mentre la diffusione causata dalla turbolenza atmosferica provoca l'allargamento del puff ed è descritta da funzioni di dispersione analoghe a quelle usate nei modelli gaussiani.

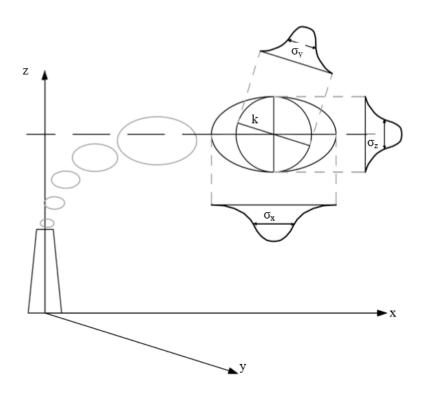


Figura 1. Evoluzione a puff del pennacchio

Rispetto ai semplici modelli gaussiani i modelli a puff sono particolarmente indicati nelle situazioni di orografia complessa dove il campo meteorologico non può essere supposto costante: per questo motivo questi modelli sono spesso accoppiati con mo-

Data 09/2018

AUTORIZZAZIONE INTEGRATA AMBIENTALE Piattaforme BARBARA T – BARBARA T2 ALLEGATO D.6

Rev. Fg 00 12

di

49

delli diagnostici mass-consistent che permettono di ricostruire un campo di vento tridimensionale per ogni intervallo temporale simulato a partire da dati locali misurati. È inoltre interessante osservare che tali modelli possono essere applicati anche in condizioni di calma di vento in quanto il termine di velocità del vento a denominatore presente nell'equazione gaussiana non è presente nell'equazione che descrive il moto dei puff.

La trattazione matematica del modello è piuttosto complessa e si rinvia al manuale tecnico di CALPUFF per ulteriori approfondimenti (Scire et al., 2000).

Il modello CALPUFF è tra quelle raccomandati dall'agenzia per la protezione dell'ambiente americana (EPA, Environmental Protection Agency) nelle proprie linee guida sulla modellistica per la qualità dell'aria (40 CFR Part 51 Appendix W - Guideline on Air Quality Models), per simulazione long-range oppure per domini locali caratterizzate da calme di vento e condizioni meteorologiche e orografia complesse.

La scelta del modello CALPUFF (in catena col CALMET) per il caso in studio è allineata anche alle indicazioni del DM 1 ottobre 2002 n. 261 (abrogato da D.Lgs. 155/2010) "Regolamento recante le direttive tecniche per la valutazione preliminare della qualità dell'aria ambiente, i criteri per l'elaborazione del piano e dei programmi di cui agli articoli 8 e 9 del decreto legislativo 4 agosto 1999, n, 351", che nell'Allegato 1 fornisce importanti indicazioni sulle caratteristiche generali dei modelli matematici e recita: "La valutazione della complessità dell'area su cui si effettua la valutazione deve tenere conto delle caratteristiche orografiche del territorio, di disomogeneità superficiali (discontinuità terra-mare, città - campagna, acque interne) e condizioni meteo-diffusive non omogenee (calma di vento negli strati bassi della troposfera, inversioni termiche eventualmente associate a regimi di brezza); l'uso di modelli analitici (gaussiani e non) si considera generalmente appropriato nel caso di siti non complessi, mentre qualora le disomogeneità spaziali e temporali siano rilevanti per la dispersione, è opportuno ricorrere all'uso di modelli numerici tridimensionali, articolati in un preprocessore meteorologico (dedicato principalmente alla ricostruzione del campo di vento) e in un modello di diffusione".

Data 09/2018

AUTORIZZAZIONE INTEGRATA AMBIENTALE Piattaforme BARBARA T – BARBARA T2 ALLEGATO D.6

Rev. Fg 00 13

di

49

<u>CALMET</u> è un modello meteorologico diagnostico, in grado di ricostruire campi orari tridimensionali di vento e bidimensionale di altre variabili meteorologiche, su domini di calcolo con orografia complessa a partire da osservazioni meteorologiche misurate al suolo e da almeno un profilo verticale.

CALMET ricostruisce il campo di vento in due successivi passi. Nel primo step la stima iniziale del campo di vento (*initial-guess wind field*) viene modificata in base agli effetti cinematici del terreno, delle correnti di versante e agli effetti di bloccaggio.

Lo Step 2 consiste in una procedura di analisi oggettiva (*objective analysis*) che consente di introdurre dati osservati (*observation data*) dalle stazioni meteo all'interno del campo prodotto dallo Step 1, ottenendo così il campo di vento finale. Nei diversi punti del dominio di simulazione i dati misurati hanno un peso che decresce con l'aumentare della distanza dalla stazione di misura.

CALMET consente, inoltre, di utilizzare come input campi di vento tridimensionali, che possono rappresentare meglio i flussi di circolazioni locali come le brezze marine e le correnti vallive, prodotti da modelli meteorologici di tipo prognostico, come ad esempio MM4/MM5, WRF, ecc., che possono essere introdotti in CALMET in uno dei tre diversi modi:

- come campo di vento iniziale per essere modificato nello Step 1 in base agli effetti cinematici del terreno
- in sostituzione dello Step 1
- come dati osservati nello Step 2.

La trattazione matematica del modello è piuttosto complessa e si rinvia al manuale tecnico di CALMET per ulteriori approfondimenti (Scire et al., 2000).

Nel caso in esame si adotta la prima modalità sopraccitata, utilizzando dati meteorologici prognostici elaborati dal modello MM5. Ciò consente di utilizzare dati distribuiti su una spaziatura orizzontale significativamente più grande e con diversa risoluzione verticale, ottenendo una ricostruzione del campo di vento più consistente e realistica, rispetto all'uso di dati puntuali (misure da stazioni al suolo e profilometriche).

I dati prognostici MM5 sono quindi utilizzati come campo di vento iniziale (initialguess wind field) che viene corretto dal CALMET in base agli effetti cinematici del ter-

Data 09/2018

AUTORIZZAZIONE INTEGRATA AMBIENTALE Piattaforme BARBARA T – BARBARA T2 ALLEGATO D.6

Rev.

Fg di 14 49

reno (Step 1). Successivamente nello Step 2 (*objective analysis*) il campo di vento prodotto nello Step 1 è corretto sulla base di dati osservati (*observation data*) in cinque stazioni meteo, presenti sulla costa prospicente l'area a mare nella quale ricadono le piattaforme, forniti in input al modello (si rimanda a tal proposito al § 2.3).

L'output di CALMET consiste di campi su griglia tridimensionale delle componenti U, V, W del vento e della temperatura dell'aria e campi bidimensionali di parametri di turbolenza e temperatura, densità dell'aria, radiazione solare a onde corte, umidità relativa definita alla superficie nelle stazioni meteorologiche, letti in input dal modello CALPUFF.

CALPOST è un post-processore preposto all'estrazione dei file in uscita da CALPUFF per ricavare i dati sintetici di interesse, come: concentrazioni degli inquinanti, flussi di deposizione, numero di superamenti di una prefissata soglia, sulla base di differenti intervalli di mediazione temporali.

Quindi, la funzione di questo post processore è quella di analizzare l'output di CALPUFF in modo da estrarre i risultati desiderati e schematizzarli in un formato idoneo ad una buona visualizzazione. Infatti, attraverso CALPOST, si ottengono matrici che riportano i valori di ricaduta calcolati per ogni nodo della griglia definita e nei recettori sensibili, relativi alle emissioni di singole sorgenti e per l'insieme di esse.

Le stime modellistiche sono inficiate da un certo livello di incertezza. Secondo la "Guideline on Air Quality Models" (40 CFR Part 51 Appendix W - Guideline on Air Quality Models, US-EPA) i modelli sono più affidabili per stime di concentrazioni medie di lungo periodo, piuttosto che per concentrazioni di breve periodo in specifici siti e che le stime relative ai massimi di concentrazione vanno ritenute ragionevolmente affidabili come ordine di grandezza. Sovrastima dei massimi dell'ordine del 10 fino al 40% sono citati come tipici. La normativa italiana (D. Lgs 155/2010, Allegato I), similmente, prevede un'incertezza del 50% per le medie annue e per le medie orarie e giornaliere.

2.2 Area di calcolo

L'area di calcolo, riportata in Figura 2, comprende l'insieme delle piattaforme del Gruppo Omogeneo Falconara, ed alcuni fra i centri abitati più vicini ubicati lungo costa

Data 09/2018 AUTORIZZAZIONE INTEGRATA AMBIENTALE Piattaforme BARBARA T – BARBARA T2 ALLEGATO D.6

Rev. Fg 00 15

di

49

adriatica antistante, potenzialmente interessati dalle ricadute dei composti emessi dalle piattaforme; lungo la costa sono presenti anche alcune aree protette quali SIC e ZPS.

Figura 2. Area di studio con ubicazione delle piattaforme del Gruppo Omogeneo Falconara dei ricettori sulla costa

Il dominio di calcolo adottato per le simulazioni numeriche, rappresentato dalla mappa di Figura 2, ha un'estensione di 200 km x 200 km.

eni	Eni SpA Distretto Centro Settentrionale	Data 09/2018	AUTORIZZAZIONE INTEGRATA AMBIENTALE Piattaforme BARBARA T – BARBARA T2 ALLEGATO D.6	Rev.	Fg 16	di 49
-----	--	-----------------	---	------	----------	----------

In Tabella 8 è riportato l'elenco e l'ubicazione delle piattaforme considerate mentre in Tabella 9 è riportato l'elenco e l'ubicazione dei ricettori sensibili.

	Lat	itudine N	ord	Lor	ngitudine	Est	Distanza dalla costa
Piattaforma	gradi	primi	secondi	gradi	primi	secondi	(km)
Barbara A	44	2	47,620	13	48	13,024	58
Barbara B	44	5	27,480	13	44	29,690	59
Barbara C	44	4	34,360	13	46	55,266	59
Barbara T	44	4	35,867	13	46	53,386	59
Barbara D	44	1	47,002	13	48	34,162	56
Barbara E	44	5	9,131	13	45	27,783	59
Barbara F	44	2	58,331	13	49	2,097	59
Barbara G	44	3	48,000	13	47	48,000	60
Barbara H	44	4	7,464	13	45	46,278	60
Barbara NW	44	6	32,517	13	38	56,040	55
Barbara T2	44	4	37,000	13	46	55,000	60
Bonaccia	43	35	20,724	14	21	35,142	58
Bonaccia NW	43	35	59,289	14	20	8,604	57
Calipso	43	49	36,39	13	51	49,02	35
Calpurnia	43	53	56,022	14	9	14,876	58
Clara Ovest	43	49	40,493	13	42	42,013	28
Clara Nord	43	56	17,79	13	58	36,619	50
Clara Est	43	46	44,454	14	4	18,786	45
Clara NW	43	48	7,723	14	1	23,862	43
Fauzia	44	3	20,359	13	33	14,967	53
Elettra	43	45	49,461	14	12	55,024	53

Tabella 6. Elenco delle piattaforme che costituiscono il Gruppo Omogeneo Falconara

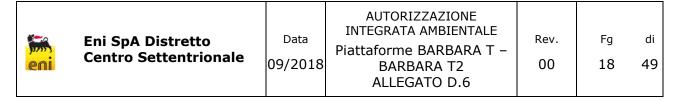
	Lat	itudine N	ord	Longitudine Est			
Ricettore	gradi	primi	secondi	gradi	primi	secondi	
Pesaro	43	54	45,88	12	55	0,33	
Senigallia	43	43	8,46	13	13	59,21	
Ancona	43	37	0,72	13	31	11,03	

Eni SpA Distretto Centro Settentrionale	Data 09/2018	AUTORIZZAZIONE INTEGRATA AMBIENTALE Piattaforme BARBARA T – BARBARA T2 ALLEGATO D.6	Rev. 00	Fg 17	di 49
---	-----------------	---	------------	----------	----------

Ricettore	Lat	itudine N	ord	Longitudine Est			
Ricettore	gradi	primi	secondi	gradi	primi	secondi	
Porto Recanati	43	26	15,03	13	39	44,52	
Porto Civitanova	43	18	16,43	13	43	10,02	
ZPS IT5310024 - Colle San Bartolo e litorale pesarese	43	52	57,52	12	57	43,95	
ZPS IT5310022 - Fiume Metauro da Piano di Zucca alla foce	43	49	44,15	13	3	17,53	
ZPS IT5320015 - Monte Conero	43	34	1,66	13	35	53,47	

Tabella 7. Elenco dei ricettori costieri considerati

2.3 Dati Meteo


La definizione del campo meteorologico è stata effettuata sulla base del campo di vento iniziale prodotto mediante il modello meteorologico MM5, corretto con dati osservati in 5 stazioni di rilevamento dati meteo.

L'MM5 (Grell et al, 1994a) è un modello prognostico a scala limitata, non idrostatico, che tiene conto della morfologia del terreno, sviluppato per simulare o predire la circolazione atmosferica a scala regionale o a mesoscala.

Il modello, sviluppato dalla Pennsylvania State University (PSU) e dal National Center for Atmospheric Research (NCAR) è di pubblico dominio ed è continuamente aggiornato e sostenuto da contributi provenienti da comunità scientifiche internazionali, nel campo della fisica atmosferica.

Il modello MM5 elabora le previsioni meteorologiche di circolazione generale a partire dai dati meteorologici forniti da una vasta rete globale di stazioni sinottiche e dati satellitari restituendoli su un dominio tridimensionale a griglia, in un formato adatto per l'ingresso al modello meteorologico CALMET. Esso utilizza le equazioni primitive dei moti atmosferici per calcolare come il campo di vento si comporta tra celle della griglia, sotto l'influenza dell'orografia e dell'uso del suolo.

I file utilizzati, prodotti dal modello MM5, contengono le informazioni meteorologiche orarie dell'intero anno 2014 su un dominio di dimensioni 200 x 200 km (coincidenti

con quelle del dominio di calcolo), avente una risoluzione spaziale di 12 km e 18 livelli di quota. L'area sottesa da questo dominio è riportata in Figura 2.

Analogamente le osservazioni meteo misurate nelle seguenti 5 stazioni di rilevamento prese in esame, sono a scansione oraria per l'intero anno 2014:

1. Rete Idrometeorologica Regionale dell'Emilia Romagna:

stazione Ravenna Urbana

stazione Rimini Urbana

2. Rete Mareografica Nazionale:

stazione Ravenna

stazione Ancona

3. Rete Eni:

stazione sulla piattaforma Barbara C.

Le grandezze meteorologiche misurate ed utilizzate nel presente studio sono:

- temperatura (°C)
- precipitazione (mm)
- pressione atmosferica (mbar)
- umidità relativa (%)
- direzione del vento (°N)
- velocità del vento (m/s).

In Tabella 8 sono riportate le loro coordinate geografiche e i parametri rilevati nelle stazioni considerate, mentre la Figura 3 riporta la loro collocazione sul territorio.

Stazione		Coordinate WGS84 UTM fuso 33		Precipita- zione (mm)	Pressione Atmosfe- rica (mbar)	Umidità Relativa (%)	Velocità (m/s) e direzione (°N) ven- to
	Est (m)	Nord (m)					
RIRER-Ravenna Urbana	277083	4921.81	Sì	Sì	Sì	Sì	Sì

eni	Eni SpA Distretto Centro Settentrionale	Data 09/2018	AUTORIZZAZIONE INTEGRATA AMBIENTALE Piattaforme BARBARA T – BARBARA T2 ALLEGATO D.6	Rev.	Fg 19	di 49
-----	--	--------------	---	------	----------	----------

RIRER-Rimini Urbana	305520	4881100	Sì	Sì	Sì	Sì	Sì
RMN-Ravenna	379508	4831281	Sì	No	Sì	Sì	Sì
RMN-Ancona	283968	4930120	Sì	No	Sì	Sì	Sì
Eni-Barbara C	402433	4881209	Sì	Sì	Sì	Sì	Sì

Tabella 8. Stazioni di rilevamento dati meteo utilizzate

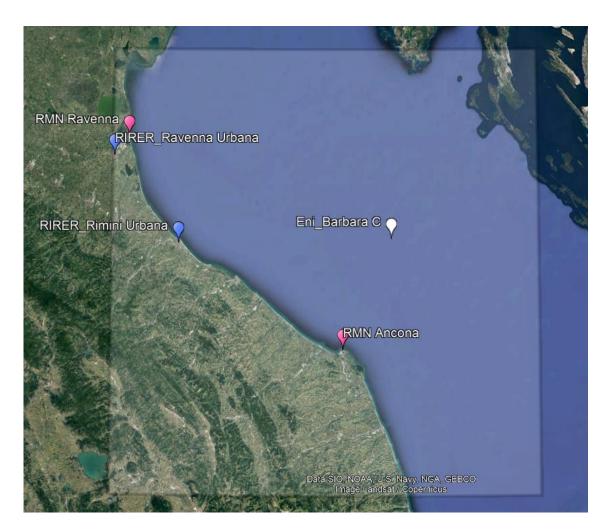


Figura 3. Ubicazione delle stazioni di rilevamento dati meteo utilizzate

2.4 Sorgenti di emissione

Lo scenario più rappresentativo delle emissioni del Gruppo Omogeneo Falconara è stato assunto coincidente con la situazione effettiva attuale; pertanto è stato preso in

Data 09/2018

AUTORIZZAZIONE INTEGRATA AMBIENTALE Piattaforme BARBARA T – BARBARA T2 ALLEGATO D.6

Rev.

Fg di 20 49

esame l'ultimo anno di esercizio, ossia il 2017, facendo riferimento alle fonti realmente attive, alla loro durata, alle quantità di inquinanti effettivamente emesse.

Sono analizzati gli inquinanti significativi per i processi svolti sulle piattaforme del campo, quali:

- biossido di zolfo, SO₂, presente nei fumi di combustione dei motori a gasolio (motori gru, motocompressori, gruppi elettrogeni di servizio e di emergenza), cautelativamente considerato pari alla totalità degli ossidi di zolfo;
- biossido di azoto, NO₂, presente nei fumi di combustione delle macchine a gas e diesel e del gas bruciato nei bracci di spurgo (turbine, generatori a gas, motori a gasolio, bruciatori spurgo) cautelativamente considerato pari alla totalità degli ossidi di azoto;
- monossido di carbonio, CO, presente nei fumi di combustione delle macchine a gas e diesel e del gas bruciato nei bracci di spurgo (turbine, generatori a gas, motori a gasolio, bruciatori spurgo);
- polveri sottili, PM₁₀ e PM_{2,5}, presenti nei fumi di combustione delle macchine a gas e diesel (generatori a gas, motori a gasolio) cautelativamente considerati pari alle polveri totali (PTS);
- Idrocarburi, emessi dagli sfiati delle apparecchiature (serbatoi glicole, degaser, candele) e dai bruciatori di spurgo.

Con la denominazione "Idrocarburi" si intende l'insieme di componenti idrocarburici, quindi i composti organici volatili (COV) in generale e il Glicole Dietilenico ove presente.

Si assumono nulle le emissioni di idrogeno solforato H₂S, essendo il gas estratto da giacimento esente da zolfo; le emissioni di ossidi di zolfo derivano esclusivamente dalla combustione di gasolio.

Per le sorgenti emissive delle due piattaforme di compressione Barbara T e Barbara T2, la portata dei fumi, i flussi di massa degli inquinanti e la durata delle emissioni sono definiti sulla base dei monitoraggi eseguiti sui punti di emissioni, i cui risultati sono contenuti anche nei Report Ambientali AIA – Anno di esercizio 2017.

Data 09/2018

AUTORIZZAZIONE INTEGRATA AMBIENTALE Piattaforme BARBARA T – BARBARA T2 ALLEGATO D.6

Rev.

Fg di 21 49

Tutte le emissioni legate ad operazione di emergenza (come l'azionamento di motori diesel di emergenza e le depressurizzazioni di emergenza degli impianti in candela) sono trascurate.

Per le simulazioni di tipo short term¹, sotto ipotesi conservativa, si assume la contemporaneità degli eventi di breve durata (spurgo pozzi ed emissioni saltuarie in genere) di tutto il campo; per gli ossidi di azoto si considerano attivi contemporaneamente i 3 bracci di spurgo con flussi di massa maggiori sui 12 presenti in tutto il campo. Mentre per le simulazioni "long term" il dato relativo alla durata delle emissioni è inserito in input al software utilizzando fattori di emissioni a tasso variabile su diverse scale temporali. Per ogni sorgente, si selezionano le modalità che permettono di definire un quadro emissivo il più possibile coincidente con i dati di base disponibili, vale a dire: le ore di funzionamento annue e la periodicità di esercizio.

I tassi di emissione di tutte le sorgenti del Gruppo Omogeneo Falconara, che costituiscono il quadro emissivo del 2017, sono riportati nelle seguenti Tabelle.

Sorgenti di e	missioni di	SOx (assimilati a	SO ₂)					
Piattaforma	Camino	Descrizione	Altezza camino	Diametro Camino	Tempe- ratura	Portata fumi	Flusso di massa inqui- nante	Durata Emissio- ne
			m	m	K	Nm³/h	g/s	ore/anno
Barbara H	BARBHH	Motore gru	22	0,08	723	403	0,0088	50
Barbara C	BARCII	Motore gru	28	0,1	723	403	0,0088	50
Barbara C	BARTE7	Motore gru	31	0,1	723	403	0,0088	50
Barbara D	BARDGG	Motore gru	18	0,15	723	707	0,0155	50
Barbara E	BAREGG	Motore gru	28	0,15	723	707	0,0155	50
Barbara F	BARFGG	Motore gru	28	0,15	723	707	0,0155	50
Barbara G	BARGGG	Motore gru	26	0,2	733	696	0,0106	50
Barbara H	BARHHH	Motore gru	28	0,15	723	671	0,0149	50
Barbara NW	BARNWDD	Gruppo elettro- geno gasolio ser- vizio	23	0,1	723	210	0,0206	7.5

¹ Sono effettuate simulazioni di tipo:

a) "short term" per valutare la dispersione degli inquinanti emessi su scala temporale oraria e giornaliera per il periodo di riferimento, per lo studio di episodi critici;

b) "long term" per valutare gli effetti di esposizione accumulata ottenendo dei valori medi annuali di concentrazione.

Data 09/2018 AUTORIZZAZIONE INTEGRATA AMBIENTALE Piattaforme BARBARA T – BARBARA T2 ALLEGATO D.6

Rev.

Fg di 22 49

Sorgenti di e	emissioni di	SOx (assimilati a	SO ₂)					
Bonaccia	BONAII	Motore gru	28	0,15	723	670	0,0149	50
Calipso	CALIDD	Gruppo elettro- geno gasolio ser- vizio	19,3	0,05	723	210	0,0206	480
	CALIFF	Motore gru	20	0,05	723	420	0,0412	480
Calpurnia	CALPDD	Gruppo elettro- geno gasolio ser- vizio	18	0,05	723	210	0,0206	480
Clara N	CLARNDD	Gruppo elettro- geno gasolio ser- vizio	18	0,05	723	210	0,0206	480
Clara E	CLAREDD	Gruppo elettro- geno gasolio ser- vizio	18	0,05	723	210	0,0206	480

Tabella 9. Tassi di emissione di SOx delle sorgenti considerate

Sorgenti d	i emissioni di	NOx (assimilati a	NO ₂)					
Piatta- forma	Camino	Descrizione	Altezza camino	Diametro Camino	Tempe- ratura	Portata fumi	Flusso di massa inqui- nante	Durata Emissio- ne
			m	m	K	Nm³/h	g/s	ore/anno
	BARAEE	Motogeneratore GS1	24	0,08	723	427	0,0534	52
Barbara A	BARAFF	Motogeneratore GS2	24	0,08	723	427	0,0534	360
	BARAGG	Microturbina 1	24	0,2	548	357	0,0018	8760
	BARAHH	Microturbina 2	24	0,2	548	357	0,0018	8760
	BARBCC*	Bruciatori spurgo	15,5	0,05	293	28500,04	11,8038	6
Barbara B	BARBEE	Gruppo elettro- geno gas	15,5	0,15	723	931	0,1034	4380
	BARBFF	Gruppo elettro- geno gas	15,5	0,15	723	931	0,1034	4380
	BARBHH	Motore gru	22	0,08	723	403	0,3582	50
Barbara C	BARCCC	Bruciatori spurgo	14,5	0,05	293	17451,77	7,2279	6
Dai Dai a C	BARCII	Motore gru	28	0,1	723	403	0,3582	50
	BARTE1	Turbogas 360MT101	36,9	1,2	773	57404,38	0,3508	2900
	BARTE2	Turbogas 360MT201	36,9	1,2	773	57404,38	0,3508	2900
	BARTE3	Turbogas 360MT301	36,9	1,2	773	57404,38	0,3508	2900
Barbara T	BARTE4	Gruppo elettro- geno gas 470MG101	10,5	0,2	723	1403	0,1559	6300
-	BARTE5	Gruppo elettro- geno gas 470MG201	10,5	0,2	723	1403	0,1559	6300
	BARTE6	Gruppo elettro- geno gas 470MG301	10,5	0,2	723	1403	0,1559	6300
	BARTE7	Motore gru	31	0,1	723	403	0,3582	50
Barbara D	BARDCC**	Bruciatori spurgo	13	0,1	293	10822,8	4,4824	6

Data 09/2018

AUTORIZZAZIONE INTEGRATA AMBIENTALE Piattaforme BARBARA T – BARBARA T2 ALLEGATO D.6

Rev.

Fg di 23 49

Sorgenti d	i emissioni di	NOx (assimilati a	NO ₂)					
Piatta- forma	Camino	Descrizione	Altezza camino	Diametro Camino	Tempe- ratura	Portata fumi	Flusso di massa inqui- nante	Durata Emissio- ne
	BARDDD	Gruppo elettro- geno gas	18	0,15	723	1434	0,1593	4380
	BARDEE	Gruppo elettro- geno gas	18	0,15	723	1434	0,1593	4380
	BARDGG	Motore gru	18	0,15	723	707	0,6284	50
	BARECC**	Bruciatori spurgo	15	0,1	293	17136,1	7,0972	18
	BAREDD	Gruppo elettro- geno gas	16,5	0,2	723	1202	0,1336	4380
Barbara E	BAREEE	Gruppo elettro- geno gas	16,5	0,2	723	1202	0,1336	4380
	BAREGG	Motore gru	28	0,15	723	707	0,6284	50
	BARFCC**	Bruciatori spurgo	15	0,1	293	901,9	0,3735	6
Barbara F	BARFDD	Gruppo elettro- geno gas	16,5	0,2	723	1202	0,1336	4380
Dai Dai a F	BARFEE	Gruppo elettro- geno gas	16,5	0,2	723	1202	0,1336	4380
	BARFGG	Motore gru	28	0,15	723	707	0,6284	50
	BARGCC*	Bruciatori spurgo	16,9	0,1	473	267333	110,7204	5
Dawhaus C	BARGDD	Gruppo elettro- geno gas	15,5	0,25	788	445	0,0494	8760
Barbara G	BARGEE	Gruppo elettro- geno gas	15,5	0,25	788	445	0,0494	8760
	BARGGG	Motore gru	26	0,2	733	696	0,6187	50
	BARHCC**	Bruciatori spurgo	17	0,1	473	260650	107,9525	30
Dawhawa II	BARHFF	Gruppo elettro- geno gas	4	0,15	723	580	0,0644	4380
Barbara H	BARHFFbis	Gruppo elettro- geno gas	4	0,15	723	580	0,0644	4380
	BARHHH	Motore gru	28	0,15	723	671	0,5964	50
Barbara NW	BARNWDD	Gruppo elettro- geno gasolio ser- vizio	23	0,1	723	210	0,3145	7.5
INVV	BARNWEE**	Bruciatore spur- go	22	0,1	473	70895	29,3623	48
	BART2E1	Turbogas 360MT004	35,5	1,2	773	57404,38	0,3508	6700
	BART2E2	Turbogas 360MT005	35,5	1,2	773	57404,38	0,3508	6700
	BART2E3	Turbogas 360MT006	35,5	1,2	773	57404,38	0,3508	6700
	BART2E4	Turbogas 360MT007	35,5	1,2	773	57404,38	0,3508	6700
Barbara T2	BART2E5	Gruppo elettro- geno gas 470MG004	19,5	0,25	723	2466	0,4329	5840
	BART2E6	Gruppo elettro- geno gas 470MG005	19,5	0,25	723	2466	0,4329	5840
	BART2E8	Motore gru 630YA001	31,5	0,15	723	660	0,3645	50
	BART2E9	Motore gru 630YA002	31,5	0,15	723	660	0,3645	50
Bonaccia	BONACC1	Gruppo elettro- geno gas	4	0,15	723	580	0,0644	4380
				•			•	

Data 09/2018

AUTORIZZAZIONE INTEGRATA AMBIENTALE Piattaforme BARBARA T – BARBARA T2 ALLEGATO D.6

Rev.

Fg di 24 49

Sorgenti d	di emissioni di	NOx (assimilati a	NO ₂)					
Piatta- forma	Camino	Descrizione	Altezza camino	Diametro Camino	Tempe- ratura	Portata fumi	Flusso di massa inqui- nante	Durata Emissio- ne
	BONACC2	Gruppo elettro- geno gas	4	0,15	723	580	0,0644	4380
	BONAHH	Candela AP spurgo	40	0,273	473	405527	3,0415	64
	BONAII	Motore gru	28	0,15	723	670	0,5956	50
	BONANWAA2 **	Bruciatori spurgo	21,5	0,08	473	22600	9,3602	24
Bonaccia NW	BONANWDD1	Gruppo elettro- geno gasolio ser- vizio	24,5	0,05	723	158	0,0368	560
	BONANWDD2	Motore gru	24,5	0,15	473	760	0,1305	150
	CALIBB	Generatore ORMAT	27	0,1	703	120	0,0001	8760
Calipso	CALIDD	Gruppo elettro- geno gasolio ser- vizio	19,3	0,05	723	210	0,0002	480
	CALIEE	Candela di spur- go	19,3	0,2	473	12980	0,0097	48
	CALIFF	Motore gru	20	0,05	723	420	0,0003	480
Calpurnia	CALPDD	Gruppo elettro- geno gasolio ser- vizio	18	0,05	723	210	0,0314	480
	CALPEE*	Bruciatore spur- go	21,7	0,2	473	648473	268,5759	60
	CLARNBB	Generatori ORMAT	21,9	0,1	473	120	0,0001	8760
Clara N	CLARNDD	Gruppo elettro- geno gasolio ser- vizio	18	0,05	723	210	0,0314	480
	CLARNEE**	Bruciatore spur- go	21,7	0,2	473	648473	268,5759	60
	CLAREBB	Generatori ORMAT	21,9	0,1	473	120	0,0001	8760
Clara E	CLAREDD	Gruppo elettro- geno gasolio ser- vizio	18	0,05	723	210	0,0314	480
	CLAREEE**	Bruciatore spur- go	21,7	0,2	473	648473	268,5759	48
	CLARNWAA2*	Bruciatori spurgo	22	0,08	473	22600	9,3602	24
	CLARNWBB1	Microturbina a gas	25,8	0,2	582	1518	0,0080	4380
Clara NW	CLARNWBB2	Microturbina a gas	25,8	0,2	582	1519	0,0080	4380
	CLARNWDD1	Gruppo elettro- geno gasolio ser- vizio	25	0,05	473	1777	0,2860	70
	CLARNWDD2	Motore diesel	25	0,15	473	760	0,1305	150
	ELETAA2	Bruciatori spurgo	23,2	0,08	473	22523	9,3283	24
Elettra	ELETBB1	Microturbina 1	25,8	0,2	582	1518	0,0080	8760
	ELETBB2	Microturbina 2	25,8	0,2	582	1518	0,0080	8760
	FAUZAA2**	Bruciatori spurgo	23,2	0,08	473	22523	9,3283	24
Fauzia	FAUZBB	Microturbina	25,9	0,02	582	1518	0,0080	8760
	FAUZDD	Gruppo elettro-	25,9	0,15	473	1777	0,2860	70

Data 09/2018

AUTORIZZAZIONE INTEGRATA AMBIENTALE Piattaforme BARBARA T – BARBARA T2 ALLEGATO D.6

Rev.

Fg di 25 49

Sorgenti di emissioni di NOx (assimilati a NO ₂)									
Piatta- forma	Camino	Descrizione	Altezza camino	Diametro Camino	Tempe- ratura	Portata fumi	Flusso di massa inqui- nante	Durata Emissio- ne	
		geno gasolio ser- vizio							

Note

Tabella 10. Tassi di emissione di NOx delle sorgenti considerate

^{*}Bruciatori di spurgo assunti in esercizio contemporaneo per la simulazione su periodo di mediazione orario

^{**}Bruciatori assunti non in esercizio per la simulazione su periodo di mediazione orario

Data 09/2018

AUTORIZZAZIONE INTEGRATA AMBIENTALE Piattaforme BARBARA T – BARBARA T2 ALLEGATO D.6

Rev.

Fg di 26 49

Sorgenti di	emissioni d	100				1		I
Piatta- forma	Camino	Descrizione	Altezza camino	Diametro Camino	Tempe- ratura	Portata fumi	Flusso di massa inqui- nante	Durata Emissio- ne
			m	m	K	Nm³/h	g/s	ore/anno
	BARAEE	Motogeneratore GS1	24	0,08	723	427	0,0617	52
Barbara A	BARAFF	Motogeneratore GS2	24	0,08	723	427	0,0617	360
	BARAGG	Microturbina 1	24	0,2	548	357	0,0021	8760
	BARAHH	Microturbina 2	24	0,2	548	357	0,0021 04 0,9833 0,1345 0,1345 0,0582 77 0,6021 0,0582 38 0,1618 38 0,1618 0,2027 0,2027 0,2027 0,2027 0,0582 ,8 0,3734	8760
	BARBCC	Bruciatori spurgo	15,5	0,05	293	28500,04	0,9833	6
Daubaua D	BARBEE	Gruppo elettro- geno gas	15,5	0,15	723	931	0,1345	4380
Barbara B	BARBFF	Gruppo elettro- geno gas	15,5	0,15	723	931	0,1345	4380
	BARBHH	Motore gru	22	0,08	723	403	0,0582	50
Barbara C	BARCCC	Bruciatori spurgo	14,5	0,05	293	17451,77	0,6021	6
Darbara C	BARCII	Motore gru	28	0,1	723	403	0,0582	50
	BARTE1	Turbogas 360MT101	36,9	1,2	773	57404,38	0,1618	2900
_	BARTE2	Turbogas 360MT201	36,9	1,2	773	57404,38	0,1618	2900
	BARTE3	Turbogas 360MT301	36,9	1,2	773	57404,38	0,1618	2900
Barbara T	BARTE4	Gruppo elettro- geno gas 470MG101	10,5	0,2	723	1403	0,2027	6300
	BARTE5	Gruppo elettro- geno gas 470MG201	10,5	0,2	723	1403	0,2027	6300
	BARTE6	Gruppo elettro- geno gas 470MG301	10,5	0,2	723	1403	0,2027	6300
	BARTE7	Motore gru	31	0,1	723	403	0,0582	50
	BARDCC	Bruciatori spurgo	13	0,1	293	10822,8	0,3734	6
Davida D	BARDDD	Gruppo elettro- geno gas	18	0,15	723	1434	0,2071	4380
Barbara D	BARDEE	Gruppo elettro- geno gas	18	0,15	723	1434	0,2071	4380
	BARDGG	Motore gru	18	0,15	723	707	0,1021	50
	BARECC	Bruciatori spurgo	15	0,1	293	17136,1	0,5912	18
Dawba 5	BAREDD	Gruppo elettro- geno gas	16,5	0,2	723	1202	0,1736	4380
Barbara E	BAREEE	Gruppo elettro- geno gas	16,5	0,2	723	1202	0,1736	4380
	BAREGG	Motore gru	28	0,15	723	707	0,1021	50
	BARFCC	Bruciatori spurgo	15	0,1	293	901,9	0,0311	6
Barbara F	BARFDD	Gruppo elettro- geno gas	16,5	0,2	723	1202	0,1736	4380
	BARFEE	Gruppo elettro- geno gas	16,5	0,2	723	1202	0,1736	4380
	BARFGG	Motore gru	28	0,15	723	707	0,1021	50

Data 09/2018

AUTORIZZAZIONE INTEGRATA AMBIENTALE Piattaforme BARBARA T – BARBARA T2 ALLEGATO D.6

Rev.

Fg di 27 49

Sorgenti d	li emissioni di	СО						
Piatta- forma	Camino	Descrizione	Altezza camino	Diametro Camino	Tempe- ratura	Portata fumi	Flusso di massa inqui- nante	Durata Emissio- ne
	BARGCC	Bruciatori spurgo	16,9	0,1	473	267333	9,2230	5
Barbara G	BARGDD	Gruppo elettro- geno gas	15,5	0,25	788	445	0,0643	8760
Dai Dai a G	BARGEE	Gruppo elettro- geno gas	15,5	0,25	788	445	0,0643	8760
	BARGGG	Motore gru	26	0,2	733	696	0,1005	50
	BARHCC	Bruciatori spurgo	17	0,1	473	260650	8,9924	30
Barbara H	BARHFF	Gruppo elettro- geno gas	4	0,15	723	580	0,0838	4380
раграга п	BARHFFbis	Gruppo elettro- geno gas	4	0,15	723	580	0,0838	4380
	BARHHH	Motore gru	28	0,15	723	671	0,0969	50
Barbara	BARNWDD	Gruppo elettro- geno gasolio ser- vizio	23	0,1	723	210	0,2219	7,5
NW	BARNWEE	Bruciatore spur- go	22	0,1	473	70895	2,4459	48
	BART2E1	Turbogas 360MT004	35,5	1,2	773	57404,38	0,1618	6700
	BART2E2	Turbogas 360MT005	35,5	1,2	773	57404,38	0,1618	6700
	BART2E3	Turbogas 360MT006	35,5	1,2	773	57404,38	0,1618	6700
	BART2E4	Turbogas 360MT007	35,5	1,2	773	57404,38	0,1618	6700
Barbara T2	BART2E5	Gruppo elettro- geno gas 470MG004	19,5	0,25	723	2466	0,3946	5840
	BART2E6	Gruppo elettro- geno gas 470MG005	19,5	0,25	723	2466	0,3946	5840
	BART2E8	Motore gru 630YA001	31,5	0,15	723	660	0,0237	50
	BART2E9	Motore gru 630YA002	31,5	0,15	723	660	0,0237	50
	BONACC1	Gruppo elettro- geno gas	4	0,15	723	580	0,0838	4380
Bonaccia	BONACC2	Gruppo elettro- geno gas	4	0,15	723	580	0,0838	4380
	BONAHH	Candela AP spurgo	40	0,273	473	405527	3,7173	64
	BONAII	Motore gru	28	0,15	723	670	0,0968	50
	BONANWAA2	Bruciatori spurgo	21,5	0,08	473	22600	0,7797	24
Bonaccia NW	BONANWDD1	Gruppo elettro- geno gasolio ser- vizio	24,5	0,05	723	158	0,0126	560
	BONANWDD2	Motore gru	24,5	0,15	473	760	0,2728	150
	CALIBB	Generatore ORMAT	27	0,1	703	120	0,0011	8760
Calipso	CALIDD	Gruppo elettro- geno gasolio ser- vizio	19,3	0,05	723	210	0,2219	480
	CALIEE	Candela di spur- go	19,3	0,2	473	12980	0,1190	48

Data 09/2018

AUTORIZZAZIONE INTEGRATA AMBIENTALE Piattaforme BARBARA T – BARBARA T2 ALLEGATO D.6

Rev.

Fg di 28 49

Sorgenti d	di emissioni di	со						
Piatta- forma	Camino	Descrizione	Altezza camino	Diametro Camino	Tempe- ratura	Portata fumi	Flusso di massa inqui- nante	Durata Emissio- ne
	CALIFF	Motore gru	20	0,05	723	420	0,1308	480
Calpurnia	CALPDD	Gruppo elettro- geno gasolio ser- vizio	18	0,05	723	210	0,2219	480
	CALPEE	Bruciatore spur- go	21,7	0,2	473	648473	nante 0,1308 0,2219 22,3723 0,0011 0,2219 22,3723 0,0011 0,2219	60
	CLARNBB	Generatori ORMAT	21,9	0,1	473	120	0,0011	8760
Clara N	CLARNDD	Gruppo elettro- geno gasolio ser- vizio	18	0,05	723	210	0,2219	480
	CLARNEE	Bruciatore spur- go	21,7	0,2	473	648473	22,3723	60
	CLAREBB	Generatori ORMAT	21,9	0,1	473	120	0,0011	8760
Clara E	CLAREDD	Gruppo elettro- geno gasolio ser- vizio	18	0,05	723	210	0,2219	480
	CLAREEE	Bruciatore spur- go	21,7	0,2	473	648473	22,3723	48
	CLARNWAA2	Bruciatori spurgo	22	0,08	473	22600	0,7797	24
	CLARNWBB1	Microturbina a gas	25,8	0,2	582	1518	0,0211	4380
Clara NW	CLARNWBB2	Microturbina a gas	25,8	0,2	582	1519	0,0211	4380
	CLARNWDD1	Gruppo elettro- geno gasolio ser- vizio	25	0,05	473	1777	0,0168	70
	CLARNWDD2	Motore diesel	25	0,15	473	760	0,2728	150
	ELETAA2	Bruciatori spurgo	23,2	0,08	473	22523	0,7770	24
Elettra	ELETBB1	Microturbina 1	25,8	0,2	582	1518	0,0211	8760
	ELETBB2	Microturbina 2	25,8	0,2	582	1518	0,0211	8760
	FAUZAA2	Bruciatori spurgo	23,2	0,08	473	22523	0,7770	24
Fa=ia	FAUZBB	Microturbina	25,9	0,02	582	1518	0,0211	8760
Fauzia	FAUZDD	Gruppo elettro- geno gasolio ser- vizio	25,9	0,15	473	1777	0,0168	70

Tabella 11. Tassi di emissione di CO delle sorgenti considerate

Data 09/2018

AUTORIZZAZIONE INTEGRATA AMBIENTALE Piattaforme BARBARA T – BARBARA T2 ALLEGATO D.6

Rev.

Fg di 29 49

Sorgenti d	i emissioni di	Polveri sottili (as	similate a	PM ₁₀)				
Piatta- forma	Camino	Descrizione	Altezza camino	Diametro Camino	Tempe- ratura	Portata fumi	Flusso di massa inqui- nante	Durata Emissio- ne
			m	m	K	Nm³/h	g/s	ore/anno
Barbara A	BARAEE	Motogeneratore GS1	24	0,08	723	427	0,0123	52
	BARAFF	Motogeneratore GS2	24	0,08	723	427	0,0123	360
Barbara B	BARBEE	Gruppo elettro- geno gas	15,5	0,15	723	931	0,0269	4380
	BARBFF	Gruppo elettro- geno gas	15,5	0,15	723	931	0,0269	4380
	BARBHH	Motore gru	22	0,08	723	403	0,0116	50
Barbara C	BARCII	Motore gru	28	0,1	723	403	0,0116	50
Barbara T	BARTE4	Gruppo elettro- geno gas 470MG101	10,5	0,2	723	1403	0,0405	6300
	BARTE5	Gruppo elettro- geno gas 470MG201	10,5	0,2	723	1403	0,0405	6300
	BARTE6	Gruppo elettro- geno gas 470MG301	10,5	0,2	723	1403	0,0405	6300
	BARTE7	Motore gru	31	0,1	723	403	0,0116	50
Barbara D	BARDDD	Gruppo elettro- geno gas	18	0,15	723	1434	0,0414	4380
	BARDEE	Gruppo elettro- geno gas	18	0,15	723	1434	0,0414	4380
	BARDGG	Motore gru	18	0,15	723	707	0,0204	50
Barbara E	BAREDD	Gruppo elettro- geno gas	16,5	0,2	723	1202	0,0347	4380
	BAREEE	Gruppo elettro- geno gas	16,5	0,2	723	1202	0,0347	4380
	BAREGG	Motore gru	28	0,15	723	707	0,0204	50
Barbara F	BARFDD	Gruppo elettro- geno gas	16,5	0,2	723	1202	0,0347	4380
	BARFEE	Gruppo elettro- geno gas	16,5	0,2	723	1202	0,0347	4380
	BARFGG	Motore gru	28	0,15	723	707	0,0204	50
Barbara G	BARGDD	Gruppo elettro- geno gas	15,5	0,25	788	445	0,0129	8760
	BARGEE	Gruppo elettro- geno gas	15,5	0,25	788	445	0,0129	8760
	BARGGG	Motore gru	26	0,2	733	696	0,0201	50
Barbara H	BARHFF	Gruppo elettro- geno gas	4	0,15	723	580	0,0161	4380
	BARHFFbis	Gruppo elettro- geno gas	4	0,15	723	580	0,0161	4380
	BARHHH	Motore gru	28	0,15	723	671	0,0186	50
Barbara NW	BARNWDD	Gruppo elettro- geno gasolio ser- vizio	23	0,1	723	210	0,0128	7,5
Barbara T2	BART2E5	Gruppo elettro- geno gas 470MG004	19,5	0,25	723	2466	0,0178	5840

Data 09/2018

AUTORIZZAZIONE INTEGRATA AMBIENTALE Piattaforme BARBARA T – BARBARA T2 ALLEGATO D.6

Rev.

Fg di 30 49

Sorgenti d	di emissioni di	Polveri sottili (as	similate a	PM ₁₀)				
Piatta- forma	Camino	Descrizione	Altezza camino	Diametro Camino	Tempe- ratura	Portata fumi	Flusso di massa inqui- nante	Durata Emissio- ne
	BART2E6	Gruppo elettro- geno gas 470MG005	19,5	0,25	723	2466	0,0178	5840
	BART2E8	Motore gru 630YA001	31,5	0,15	723	660	0,0053	50
	BART2E9	Motore gru 630YA002	31,5	0,15	723	660	0,0053	50
Bonaccia	BONACC1	Gruppo elettro- geno gas	4	0,15	723	580	0,0161	4380
	BONACC2	Gruppo elettro- geno gas	4	0,15	723	580	0,0161	4380
	BONAHH	Candela AP spurgo	40	0,273	473	405527	0,0563	64
	BONAII	Motore gru	28	0,15	723	670	0,0186	50
Bonaccia NW	BONANWDD1	Gruppo elettro- geno gasolio ser- vizio	24,5	0,05	723	158	0,0013	560
	BONANWDD2	Motore gru	24,5	0,15	473	760	0,0029	150
Calipso	CALIBB	Generatore ORMAT	27	0,1	703	120	1,7E-05	8760
	CALIDD	Gruppo elettro- geno gasolio ser- vizio	19,3	0,05	723	210	0,0128	480
	CALIEE	Candela di spur- go	19,3	0,2	473	12980	0,0018	48
	CALIFF	Motore gru	20	0,05	723	420	0,0257	480
Calpurnia	CALPDD	Gruppo elettro- geno gasolio ser- vizio	18	0,05	723	210	0,0128	480
Clara Nord	CLARNBB	Generatori ORMAT	21,9	0,1	473	120	1,7E-05	8760
	CLARNDD	Gruppo elettro- geno gasolio ser- vizio	18	0,05	723	210	0,0128	480
Clara Est	CLAREBB	Generatori ORMAT	21,9	0,1	473	120	1,7E-05	8760
	CLAREDD	Gruppo elettro- geno gasolio ser- vizio	18	0,05	723	210	0,0128	480
Fauzia	FAUZDD	Gruppo elettro- geno gasolio ser- vizio	25,9	0,15	473	1777	0,0060	70

Tabella 12. Tassi di emissione di Polveri Sottili delle sorgenti considerate

Data 09/2018

AUTORIZZAZIONE INTEGRATA AMBIENTALE Piattaforme BARBARA T – BARBARA T2 ALLEGATO D.6

Rev.

Fg di 31 49

Sorgenti d	i emissioni di	Idrocarburi						
Piatta- forma	Camino	Descrizione	Altezza camino	Diametro Camino	Tempe- ratura	Portata fumi	Flusso di massa inqui- nante	Durata Emissio- ne
			m	m	K	Nm³/h	g/s	ore/anno
Barbara A	BARAB1BP	Candela Nord BP	21,5	0,15	293	0,06	2,5E-05	8760
Daivala A	BARAB1AP	Candela Nord AP	21,5	0,15	293	200	8,2E-02	0,32
	BARBBB	Candela BP	39,5	0,3	293	0,15	5,9E-06	8760
Barbara B	BARBCC	Bruciatori spurgo	15,5	0,05	293	28500,04	0,0982	6
	BARBDD	Candela AP	39,5	0,3	293	200	7,9E-03	0,5
	BARCAA	Candela BP	48,5	0,3	293	0,14	6,2E-06	8760
Barbara C	BARCCC	Bruciatori spurgo	14,5	0,05	293	17451,76 5	0,0601	6
	BARTE8	Candela BP	56,5	0,25	323	1,3	5,7E-05	5
	BARTE9	Candela AP	56,5	0,25	293	377	1,7E-02	5
Barbara T	BARTE10	Sfiato vapori olio TB101	29	0,08	293	20	5,6E-03	2900
	BARTE11	Sfiato vapori olio TB201	29	0,08	293	20	5,6E-03	2900
	BARTE12	Sfiato vapori olio TB301	29	0,08	293	20	5,6E-03	2900
	BARDAA	Candela AP	49	0,3	293	200	1,6E-02	0,25
Barbara D	BARDBB	Candela BP	49	0,3	293	0,17	1,4E-05	8760
	BARDCC	Bruciatori spurgo	13	0,1	293	10822,8	0,0373	6
	BAREAA	Candela AP	54	0,3	293	200	7,1E-03	0,25
Barbara E	BAREBB	Candela BP	54	0,2	293	0,17	6,0E-06	8760
	BARECC	Bruciatori spurgo	15	0,1	293	17136,1	0,0590	18
	BARFAA	Candela AP	54	0,3	293	200	7,1E-03	0,25
Barbara F	BARFBB	Candela BP	54	0,2	293	0,63	2,2E-05	8760
	BARFCC	Bruciatori spurgo	15	0,1	293	901,9	0,0031	6
	BARGAA	Candela BP	59	0,1	293	100	3,6E-03	292
Barbara G	BARGBB	Candela AP	59	0,3	293	160	5,7E-03	0,25
	BARGCC	Bruciatori spurgo	16,9	0,1	473	267333	0,9208	5
	BARHAA	Candela BP de- gasatore	48	0,1	293	0,5	3,8E-06	8760
	BARHBB	Candela AP trap- ppola	48	0,3	293	110	5,3E-03	0,25
Barbara H	BARHCC	Bruciatori spurgo	17	0,1	473	260650	0,8978	30
	BAFHDD	Candela AP sepa- ratore prova	48	0,3	293	860	4,1E-02	0,25
	BARHEE	Candela AP sepa- ratore prod	48	0,3	293	860	4,1E-02	0,25
	BARNWAA	Candela manu- tenzione	22	0,1	293	255	7,7E-03	1,5
Barbara NW	BARNWBB	Candela trapp- pola	22	0,1	293	80	2,4E-03	0,25
	BARNWEE	Bruciatore spur- go	22	0,1	473	70895	0,2442	48

Data 09/2018

AUTORIZZAZIONE INTEGRATA AMBIENTALE Piattaforme BARBARA T – BARBARA T2 ALLEGATO D.6

Rev.

Fg di 32 49

Sorgenti d	di emissioni di	Idrocarburi						
Piatta- forma	Camino	Descrizione	Altezza camino	Diametro Camino	Tempe- ratura	Portata fumi	Flusso di massa inqui- nante	Durata Emissio- ne
Barbara	BART2E10	Candela BP	64,5	0,3	323	0,1026	0,0000	8760
T2	BART2E11	Candela AP	64,5	0,3	293	1613	0,2182	6
	BONAAA	Candela AP pur- ga	40	0,273	293	5,45	0,0172	8760
	BONABB	Candela BP pur- ga	40	0,06	293	0,68	0,0021	8760
Bonaccia	BONADD	Candela BP de- gasatore	40	0,06	293	218	0,6878	438
	BONAEE	Candela BP ser- batoio acque	40	0,06	293	119	0,3754	110
	BONAFF	Candela AP ma- nutenzione	40	0,273	293	72	0,2272	9
	BONANWAA1	Candela AP ma- nutenzione	48,5	0,3	293	120,5	0,0020	8
Bonaccia NW	BONANWAA2	Bruciatori spurgo	21,5	0,08	473	22600	0,0778	24
	BONANWHH	Candela BP de- gaser	48,5	0,07	293	0,1	8,2E-07	8760
Calipso	CALICCa	Serbatoio glicole respirazione	17,4	0,75	293	0,9	2,4E-06	4380
Calipso	CALICCb	Serbatoio glicole caricamento	17,4	0,75	293	10	2,6E-05	22,5
	CALPAA	Candela manu- tenzione	21,7	0,2	293	186	0,0067	12
	CALPEE	Bruciatore spur- go	21,7	0,2	473	648473	2,2336	60
Calpurnia	CALPFF	Candela purga	21,7	0,2	293	0,9	3,2E-05	8760
	CALPGG	Candela serba- toio calma	21,7	0,2	293	1	3,6E-05	120
	CALPHH	Candela degasa- tore	21,7	0,2	293	9,5	3,4E-04	120
	CLARNAA	Candela manu- tenzione	21,7	0,2	293	186	0,0074	12
Clara Nord	CLARNEE	Bruciatore spur- go	21,7	0,2	473	648473	2,2336	60
	CLARNFF	Candela purga	21,7	0,2	293	0,9	3,6E-05	8760
	CLAREAA	Candela manu- tenzione	21,7	0,2	293	186	0,0088	12
Clara Est	CLAREEE	Bruciatore spur- go	21,7	0,2	473	648473	2,2336	48
	CLAREFF	Candela purga	21,7	0,2	293	0,9	4,8E-05	8760
	CLARNWAA1	Candela AP ma- nutenzione	52	0,3	293	138,6	0,0023	8
Clara NW	CLARNWAA2	Bruciatori spurgo	22	0,08	473	22600	0,0778	24
	CLARNWHH	Candela BP de- gaseer	52	0,08	293	0,628	5,2E-06	8760
Elettra	ELETAA2	Bruciatori spurgo	23,2	0,08	473	22523	0,0776	24
	FAUZAA1	Candela AP ma- nutenzione	44,9	0,15	281	625	0,0146	4
	FAUZAA2	Bruciatori spurgo	23,2	0,08	473	22523	0,0776	24
Fauzia	FAUZBB	Microturbina	25,9	0,02	582	1518	0,0021	8760
	FAUZDD	Gruppo elettro- geno gasolio ser- vizio	25,9	0,15	473	1777	0,0060	70

Eni SpA Distre Centro Settent		AUTORIZZAZIONE INTEGRATA AMBIENTALE Piattaforme BARBARA T – BARBARA T2 ALLEGATO D.6	Rev.	Fg 33	di 49	
----------------------------------	--	---	------	----------	----------	--

Sorgenti d	Sorgenti di emissioni di Idrocarburi									
Piatta- forma	Camino	Descrizione	Altezza camino	Diametro Camino	Tempe- ratura	Portata fumi	Flusso di massa inqui- nante	Durata Emissio- ne		
	FAUZHH	Candela BP de- gaser	44,9	0,08	293	0,097	2,2E-06	8760		

Tabella 13. Tassi di emissione di Idrocarburi delle sorgenti considerate

2.5 Risultati della simulazione

Nel seguito si riportano i risultati delle simulazioni di dispersione in atmosfera eseguite con il modello Calpuff, corrispondenti alle concentrazioni nell'aria ambiente al livello del suolo degli inquinanti: SOx, NOx, CO, Polveri Sottili, Idrocarburi. In particolare, per ogni inquinanti considerati sono stati calcolati i valori degli indici di legge nel periodo di mediazione associato in corrispondenza dei ricettori di interesse (da Tabella 14 a Tabella 20) individuati lungo la costa adriatica antistante. Data la tipologia di ricettori in esame (centri abitati e aree della rete Natura 2000) nell'analisi che segue si è fatto riferimento agli indicatori ed ai limiti imposti per la protezione della salute umana e per la protezione della vegetazione.

Come si può osservare, tutti i limiti di legge previsti sono ampiamente rispettati in ogni punto del territorio.

Inquinante	Ossidi di zolfo (assimilati a SO ₂)	
Periodo di mediazione	1 ora	1 giorno
Indice	massimo nell'anno	massimo nell'anno
Recettori	μg/m³	μg/m³
Pesaro	0,027	0,0084
Senigallia	0,033	0,0094
Ancona	0,043	0,012
Porto Recanati	0,030	0,016
Porto Civitanova	0,025	0,015
Valore massimo	0,043	0,016
Valori limite	350	125

Tabella 14. Confronto delle concentrazioni di Ossidi di Zolfo (SO₂) calcolate dal modello CALPUFF sulla linea di costa con i valori limite per la protezione della salute umana

Inquinante	Ossidi di zolfo (as- similati a SO ₂)
Periodo di mediazione	anno
Indice	media
Recettori	μg/m³
ZPS IT5310024 - Colle San Bartolo e litorale pesarese	1,69 e-5
ZPS IT5310022 - Fiume Metauro da Piano di Zucca alla foce	1,89 e-5
ZPS IT5320015 - Monte Conero	4,09 e-5
Valore massimo	4,09 e-5
Valori limite	20

Tabella 15. Confronto delle concentrazioni di Ossidi di Zolfo (SO₂) calcolate dal modello CALPUFF sulla linea di costa con i valori limite per la protezione della vegetazione

Inquinante	Ossidi di azoto (assimilati a NO2)	
Periodo di mediazione	1 ora	anno
Indice	massimo nell'anno	media
Recettori	μg/m³	μg/m³
Pesaro	22,51	0,043
Senigallia	19,77	0,064
Ancona	35,48	0,098
Porto Recanati	22,95	0,095
Porto Civitanova	22,27	0,084
Valore massimo	35,48	0,098
Valori limite	200	40

Tabella 16. Confronto delle concentrazioni di Ossidi di azoto (NO₂) calcolate dal modello CALPUFF sulla linea di costa con i valori limite per la protezione della salute umana

Inquinante	Ossidi di azoto (NO _x)
Periodo di mediazione	anno
Indice	media
Recettori	μg/m³
ZPS IT5310024 - Colle San Bartolo e litorale pesarese	0,045
ZPS IT5310022 - Fiume Metauro da Piano di Zucca alla foce	0,052
ZPS IT5320015 - Monte Conero	0,102
Valore massimo	0,102
Valori limite	30

Tabella 17. Confronto delle concentrazioni di Ossidi di azoto (NO_x) calcolate dal modello CALPUFF sulla linea di costa con i valori limite per la protezione della vegetazione

AUTORIZZAZIONE INTEGRATA AMBIENTALE Piattaforme BARBARA T – BARBARA T2 ALLEGATO D.6

Rev. Fg 00 36

di

49

Inquinante	Monossido di Carbonio (CO)	
Periodo di mediazione	8 ore	
Indice	massimo nell'anno	
Recettori	mg/m³	
Pesaro	0,0022	
Senigallia	0,0027	
Ancona	0,0033	
Porto Recanati	0,0048	
Porto Civitanova	0,0043	
Valore massimo	0,0048	
Valori limite	10	

Tabella 18. Confronto delle concentrazioni di Monossido di carbonio (CO) calcolate dal modello CALPUFF sulla linea di costa con i valori limite per la protezione della salute umana

Inquinante	Polveri Sottili (assimilate a PM ₁₀)	
Periodo di mediazione	1 giorno	anno
Indice	massimo nell'anno	media
Recettori	μg/m³	μg/m³
Pesaro	0,018	0,0006
Senigallia	0,012	0,0008
Ancona	0,026	0,0014
Porto Recanati	0,022	0,0013
Porto Civitanova	0,021	0,0011
Valore massimo	0,026	0,0014
Valori limite	50	40

Tabella 19. Confronto delle concentrazioni di Polveri sottili (PM₁₀) calcolate dal modello CALPUFF sulla linea di costa con i valori limite per la protezione della salute umana

Eni SpA Distretto Centro Settentrionale	Data 09/2018	AUTORIZZAZIONE INTEGRATA AMBIENTALE Piattaforme BARBARA T – BARBARA T2 ALLEGATO D.6	Rev.	Fg 37	di 49
---	--------------	---	------	----------	----------

I valori delle concentrazioni di Polveri Sottili calcolate in corrispondenza dei recettori presi in esame sono tali da rispettare anche il limite in media annua imposto dalla normativa, pari a 25 μ g/m³ per le PM_{2,5}, quindi anche nell'ipotesi conservativa che tutte le polveri emesse siano assimilabili alla frazione PM_{2,5}, non si riscontrerebbero criticità.

Inquinante	Idrocarburi
Periodo di mediazione	3 ore
Indice	massimo nell'anno
Recettori	μg/m³
Pesaro	0,341
Senigallia	0,315
Ancona	0,497
Porto Recanati	0,580
Porto Civitanova	0,555
Valore massimo	0,580
Valori limite (per COVNM)	200

Tabella 20. Confronto delle concentrazioni di Idrocarburi calcolate dal modello CALPUFF sulla linea di costa con i valori limite

Il contributo aggiuntivo, che ciascun inquinante del processo determina al livello di inquinamento nell'area geografica d'interesse, risulta trascurabile rispetto al corrispettivo standard di qualità dell'aria.

Inoltre, come si può notare dal capitolo seguente, il contributo apportato dalle piattaforme del Gruppo Omogeneo Falconara non influenza la qualità dell'aria delle zone costiere prospicienti.

3 STATO DI QUALITÀ DELL'ARIA NELLA ZONA COSTIERA

L'analisi dello stato di qualità dell'aria della zona costiera prospiciente il tratto di mare in cui ricadono le piattaforme del Gruppo Omogeneo Falconara, eseguita perché indi-

Eni SpA Distretto Centro Settentrionale

Data 09/2018

AUTORIZZAZIONE INTEGRATA AMBIENTALE Piattaforme BARBARA T – BARBARA T2 ALLEGATO D.6

Rev. Fg di 00 38 49

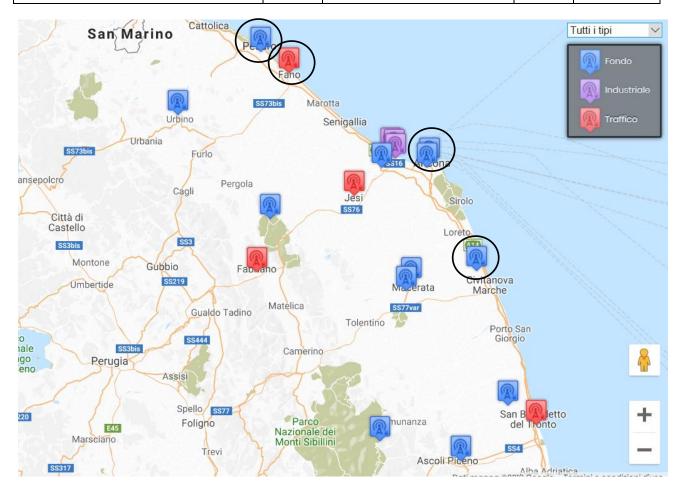
cativa dell'interferenza che queste possono avere sulla matrice aria, è riferita ai dati rilevati dalla Rete Regionale della Qualità dell'Aria della Regione Marche.

La Regione Marche è dotata infatti di una rete di stazioni di monitoraggio in siti fissi dei principali atmosferici individuati dal D. Lgs. 155/2010 (PM₁₀, PM_{2,5}, NO₂, SO₂, CO, Pb, Benzene, B(a)p, As, Ni, Cd, Ozono troposferico). Le stazioni di monitoraggio sono state acquisite in comodato d'uso dalla Regione e sono gestite dall'Agenzia Regionale per la Protezione dell'Ambiente Marche (ARPAM) e sono rappresentative dell'esposizione media della popolazione conformemente a quanto stabilito dalla normativa vigente.

Con DGR 1129/2006 è stata individuata la rete di monitoraggio atmosferico regionale; con DGR 238/2007 sono stati individuati i punti di campionamento per la misurazione continua in siti fissi dell'ozono.

Le stazioni di monitoraggio della qualità dell'aria, elencate nella seguente Tabella 21, vengono classificate, in base a quanto stabilito dalla Decisione 2001/752/CE, rispetto alle fonti di emissione dominanti in: Traffico (T), Fondo (B), Industriale (I) e rispetto alla zona e alle caratteristiche della zona in cui sono collocate in: Urbano (U), Suburbano (S) e Rurale (R).

Data 09/2018 AUTORIZZAZIONE INTEGRATA AMBIENTALE Piattaforme BARBARA T – BARBARA T2 ALLEGATO D.6


Rev. Fg 00 39

Fg di 39 49

Stazione	Tipo stazione	Tipo zona
Ancona Cittadella (AN)	Fondo	Urbana
Ascoli Piceno Monticelli (AP)	Fondo	Urbana
Chiaravalle/2 (AN)	Fondo	Suburbana
Civitanova Marche - Ippodromo (MC)	Fondo	Rurale
Fabriano (AN)	Traffico	Urbana
Falconara Acquedotto (AN)	Industriale	Suburbana
Falconara Alta (AN)	Industriale	Suburbana
Falconara Scuola (AN)	Industriale	Suburbana
Fano - Via Monte Grappa (PU)	Traffico	Urbana
Genga - Parco Gola della Rossa (AN)	Fondo	Rurale
Jesi (AN)	Traffico	Urbana
Laboratorio Mobile (AN)	Fondo	Urbana
Laboratorio Mobile MC (MC)	Fondo	Urbana
Macerata - Collevario (MC)	Fondo	Urbana
Montemonaco (AP)	Fondo	Rurale
Pesaro - Via Scarpellini (PU)	Fondo	Urbana
San Benedetto (AP)	Traffico	Urbana
Urbino - Via Neruda (PU)	Fondo	Suburbana
Ripatransone (AP)	Fondo	Rurale

Tabella 21. Stazioni della Rete Regionale della Qualità dell'Aria della Regione Marche

Eni SpA Distretto Centro Settentrionale	Data 09/2018	AUTORIZZAZIONE INTEGRATA AMBIENTALE Piattaforme BARBARA T – BARBARA T2 ALLEGATO D.6	Rev.	Fg 40	di 49
---	--------------	---	------	----------	----------

Figura 4. Ubicazione delle stazioni Rete Regionale della Qualità dell'Aria della Regione Marche. Cerchiate in nero le stazioni prese in riferimento per la presente analisi

Le piattaforme del Gruppo Falconara distano mediamente circa 54 km della costa marchigiana, in una posizione prospiciente alle stazioni di monitoraggio della qualità dell'aria distribuite lungo il litorale fra Fano e Civitanova Marche. La presente analisi è riferita ai dati rilevati nelle 4 stazioni di seguito elencate, situate in prossimità della linea di costa, avendo escluso le stazioni di Falconara perché presumibilmente influenzate dalla presenza della Raffineria:

- Pesaro Via Scarpellini (Codice stazione: 1104105, Longitudine 12.919033;
 Latitudine 43.893365, Tipo di stazione: Fondo, Tipo di zona: Urbana)
- Fano Via Monte Grappa (Codice stazione: 1104102, Longitudine 13.018053; Latitudine 43.839486, Tipo di stazione: Traffico, Tipo di zona: Urbana)

NE PROPERTY OF THE PROPERTY OF	SpA Distretto tro Settentrionale	Data 09/2018	AUTORIZZAZIONE INTEGRATA AMBIENTALE Piattaforme BARBARA T – BARBARA T2 ALLEGATO D.6	Rev.	Fg 41	di 49
--	-------------------------------------	-----------------	---	------	-----------------	----------

- Ancona Cittadella (Codice stazione: 1104223, Longitudine 13.510830; Latitudine 43.612386, Tipo di stazione: Fondo, Tipo di zona: Urbana).
- Civitanova Marche Ippodromo (Codice stazione: 1104305, Longitudine 13.674541; Latitudine 43.336382, Tipo di stazione: Fondo, Tipo di zona: Rurale).

I dati esaminati sono relativi al periodo 2015 \div 2017 e agli inquinanti significativi per i processi svolti sulle piattaforme del campo, ossia: SO_2 , NO_2 , CO, PM_{10} , $PM_{2,5}$, Benzene, oltre che Ozono.

3.1 Analisi dati di qualità dell'aria

L'inquinante biossido di zolfo (SO_2) è monitorato soltanto nelle stazioni di Fano - Monte Grappa e Ancona – Cittadella. Nei tre anni di osservazione presi in riferimento le medie orarie (Tabella 22) e le medie annue (Tabella 23) risultano sempre ampliamente al di sotto dei valori limite. La centralina di Ancona rileva concentrazioni maggiori rispetto a quella di Fano.

SO ₂ - Massima media oraria nell'anno - μg/m³								
Anno	20	2015 2016 2017		15 2016 2017		2016		17
Stazioni	Valore	n° sup	Valore	n° sup	Valore	n° sup		
Pesaro – Via Scarpellini	-	-	-	-	-	-		
Fano – Via Monte Grappa	9,1	0	8,2	0	8,5	0		
Ancona – Cittadella	43,9	0	112,7	0	53,7	0		
Civitanova Marche – Ippodromo	-	-	-	-	-	-		
Valori limite (D. Lgs 155/2010 e smi)	350	24	350	24	350	24		

Tabella 22. Concentrazioni massime medie orarie di SO₂– anni 2015-2016-2017 (Fonte: elaborazione PROGER su base dati ARPAM - RRQA)

SO ₂ - Massima media giornaliera nell'anno - μg/m³						
Anno	2015	2016	2017			

Eni SpA Distretto Centro Settentrionale	Data 09/2018	AUTORIZZAZIONE INTEGRATA AMBIENTALE Piattaforme BARBARA T – BARBARA T2 ALLEGATO D.6	Rev.	Fg 42	di 49
---	-----------------	---	------	----------	----------

Stazioni	Valore	N° sup	Valore	N° sup	Valore	N° sup
Pesaro – Via Scarpellini	-	-	-	-	-	-
Fano – Via Monte Grappa	7,5	0	7	0	6,5	0
Ancona – Cittadella	10,2	0	14,9	0	10,1	0
Civitanova Marche – Ippodromo	-	-	-	-	-	-
Valori limite (D. Lgs 155/2010 e smi)	125	3	125	3	125	3

Tabella 23. Concentrazioni massime medie giornaliere di SO₂– anni 2015-2016-2017 (Fonte: elaborazione PROGER su base dati ARPAM - RRQA)

La Tabella 24 e la Tabella 25 mostrano che, nel corso del periodo 2015 \div 2017, in tutte le stazioni prese in esame, le concentrazioni medie orarie e medie annue di Biossido di azoto (NO₂) rispettano i limiti normativi di 200 μ g/m³ su base oraria e 40 μ g/m³su base annua.

Osservando i dati si evince che le concentrazioni risultano maggiori nei centri urbani (Fano, Pesaro e Ancona), verosimilmente influenzate dalla presenza di traffico urbano e da fonti puntuali di emissione, e nettamente minori nella zona rurale di Civitanova.

NO ₂ - Massima media oraria nell'anno - μg/m³								
Anno	2015		2016		2015 2016		20	17
Stazioni	Valore	N° sup	Valore	N° sup	Valore	N° sup		
Pesaro – Via Scarpellini	100,4	0	83,1	0	83,8	0		
Fano – Via Monte Grappa	108,2	0	124,1	0	138,3	0		
Ancona – Cittadella	122,9	0	111,3	0	90,1	0		
Civitanova Marche – Ippodromo	79,4	0	39,1	0	37,9	0		
Valori limite (D. Lgs 155/2010 e smi)	200	18	200	18	200	18		

Tabella 24. Concentrazioni massime medie orarie di NO₂– anni 2015-2016-2017 (Fonte: elaborazione PROGER su base dati ARPAM - RRQA)

NE PROPERTY OF THE PROPERTY OF	tro Sottontrionale	Data 9/2018	AUTORIZZAZIONE INTEGRATA AMBIENTALE Piattaforme BARBARA T – BARBARA T2 ALLEGATO D.6	Rev. 00	Fg 43	di 49	
--	--------------------	----------------	---	------------	----------	----------	--

NO ₂ - Media annuale - μg/m³							
Stazioni / Anno	2015	2016	2017				
Pesaro – Via Scarpellini	25,5	24,4	21,3				
Fano – Via Monte Grappa	28,4	30,3	32,2				
Ancona – Cittadella	25,4	21,1	15,5				
Civitanova Marche – Ippodromo	9,2	9,3	8,1				
Valori limite (D. Lgs 155/2010 e smi)	40						

Tabella 25. Concentrazioni medie annuali di NO₂– anni 2015-2016-2017 (Fonte: elaborazione PROGER su base dati ARPAM - RRQA)

I dati relativi alle concentrazioni di Biossido di carbonio (CO) sono disponibili come medie orarie, i cui massimi nei tre anni di riferimento sono riportati nella seguente Tabella 26 e confrontati con il valore limite stabilito dal D. Lgs 155/2010 relativo alla media massima giornaliera calcolata su 8 ore. Trattasi di una comparazione cautelativa, poiché all'aumentare del periodo di mediazione le concentrazioni medie si riducono.

Si registra un ampio margine rispetto al valore limite preso in riferimento.

CO - Massima media oraria nell'anno - mg/m³					
Stazioni / Anno	2015	2016	2017		
Pesaro – Via Scarpellini	1,6	1,5	6,5		
Fano – Via Monte Grappa	2,6	2,2	3,4		
Ancona – Cittadella	1,2	1,2	1,4		
Civitanova Marche – Ippodromo	-	-	-		
Valori limite media massima giornaliera calcolata su 8 ore (D. Lgs 155/2010 e smi)	10				

Tabella 26. Concentrazioni massime medie orarie di CO- anni 2015-2016-2017 (Fonte: elaborazione PROGER su base dati ARPAM - RRQA)

Data 09/2018 AUTORIZZAZIONE INTEGRATA AMBIENTALE Piattaforme BARBARA T – BARBARA T2 ALLEGATO D.6

Rev.

Fg di 44 49

Fra gli inquinanti atmosferici esaminati, per la fascia costiera marchigiana la situazione più critica si registra per le polveri sottili (PM_{10}). In particolare, nelle stazioni di *Pesaro-Via Scalpellini* e *Fano - Via Monte Grappa*, si rilevano dei superamenti del valore limite in numero maggiore di quello consentito dalla legge, nel 2015 e nel 2017 (Tabella 27).

La situazione rientra nel rispetto del limite normativo, passando alle concentrazioni medie annue (Tabella 28).

Per tutte le centraline, nel corso del triennio, si osserva un trend decrescente delle concentrazioni di PM₁₀, facendo ipotizzare un'evoluzione in via di miglioramento.

Analogamente al NO_2 le concentrazioni di PM_{10} risultano maggiori nei centri urbani (Fano, Pesaro e Ancona), verosimilmente influenzate dalla presenza di traffico urbano e da fonti puntuali di emissione, e nettamente minori nella zona rurale di Civitanova.

PM ₁₀ - Massima media oraria nell'anno - μg/m³							
Anno	2015		2016		2017		
Stazioni	Valore	N° sup	Valore	N° sup	Valore	N° sup	
Pesaro – Via Scarpellini	115,2	45	96	35	94	38	
Fano – Via Monte Grappa	104,4	41	86,3	33	100,7	35	
Ancona – Cittadella	95,8	19	77,8	13	77,2	18	
Civitanova Marche – Ippodromo	58,6	3	40,3	0	46,3	0	
Valori limite (D. Lgs 155/2010 e smi)	50	35	50	35	50	35	

Tabella 27. Concentrazioni massime medie orarie di PM₁₀- anni 2015-2016-2017 (Fonte: elaborazione PROGER su base dati ARPAM - RRQA)

PM ₁₀ - Media annuale - μg/m³					
Stazioni / Anno	2015	2016	2017		
Pesaro – Via Scarpellini	34,1	31,3	31		
Fano – Via Monte Grappa	33,3	27,7	29		
Ancona – Cittadella	29,2	25,6	25,1		

eni	Eni SpA Distretto Centro Settentrionale	Data 09/2018	AUTORIZZAZIONE INTEGRATA AMBIENTALE Piattaforme BARBARA T – BARBARA T2 ALLEGATO D.6	Rev.	Fg 45	di 49
-----	--	--------------	---	------	----------	----------

Civitanova Marche – Ippodromo	19,2	15,9	17,2
Valori limite (D. Lgs 155/2010 e smi)		40	

Tabella 28. Concentrazioni medie annuali di PM₁₀– anni 2015-2016-2017 (Fonte: elaborazione PROGER su base dati ARPAM - RRQA)

Il monitoraggio delle $PM_{2,5}$ mostra che nel del triennio considerato non sono stati registrati superamenti della concentrazione media annuale, rispetto al valore limite di 25 $\mu g/m^3$; dunque gli esiti del monitoraggio sono perfettamente in linea con quanto previsto dalla normativa (Tabella 29).

La centralina posizionata in zona rurale (Civitanova) rileva anche per questo inquinante concentrazioni minori rispetto alle stazioni in zone urbane (Pesaro, Fano, Ancona).

PM _{2,5} - Media annuale - μg/m³					
Stazioni / Anno	2015	2016	2017		
Pesaro – Via Scarpellini	16,0	17,4	17,0		
Fano – Via Monte Grappa	-	-	-		
Ancona – Cittadella	17,7	14,4	15,1		
Civitanova Marche – Ippodromo	12,5	10,4	10,6		
Valori limite (D. Lgs 155/2010 e smi)		25	•		

Tabella 29. Concentrazioni medie annuali di PM_{2,5}– anni 2015-2016-2017 (Fonte: elaborazione PROGER su base dati ARPAM - RRQA)

Anche il Benzene (C_6H_6) rispetta sempre il valore limite normativo (Tabella 30). Le concentrazioni maggiori si riscontrano nella stazione di Fano.

Benzene - Media annuale - μg/m³					
Stazioni / Anno	2015	2016	2017		
Pesaro – Via Scarpellini	-	-	-		
Fano – Via Monte Grappa	2,2	2,1	1,9		

eni	Eni SpA Distretto Centro Settentrionale	Data 09/2018	AUTORIZZAZIONE INTEGRATA AMBIENTALE Piattaforme BARBARA T – BARBARA T2 ALLEGATO D.6	Rev.	Fg 46	di 49
-----	--	--------------	---	------	----------	----------

Ancona – Cittadella	0,9	0,8	0,7
Civitanova Marche – Ippodromo	0,4	0,3	0,4
Valori limite (D. Lgs 155/2010 e smi)	5		

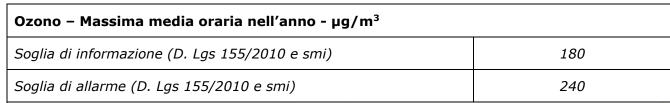
Tabella 30. Concentrazioni medie annuali di C₆H₆– anni 2015-2016-2017 (Fonte: elaborazione PROGER su base dati ARPAM - RRQA)

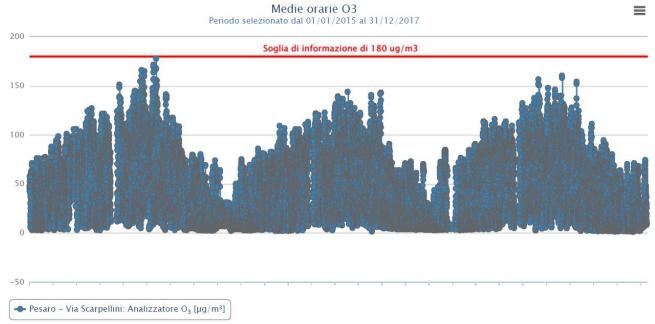
Per l'Ozono (O_3) si è ritenuto più significativo riportate i seguenti grafici (Figura 5 ÷ Figura 7) con l'andamento delle concentrazioni medie orarie nel triennio di riferimento, per le stazioni nelle quali questo inquinante viene monitorato: *Pesaro – Via Scarpellini*, *Ancona – Cittadella*, *Civitanova Marche – Ippodromo*.

Si osserva come il valore soglia di informazione di 180 μ g/m³ è sempre rispettato, a meno di un unico superamento registrato a Civitanova nel 2015. Con un margine maggiore risulta sempre rispettata anche la soglia di allarme pari a 240 μ g/m³.

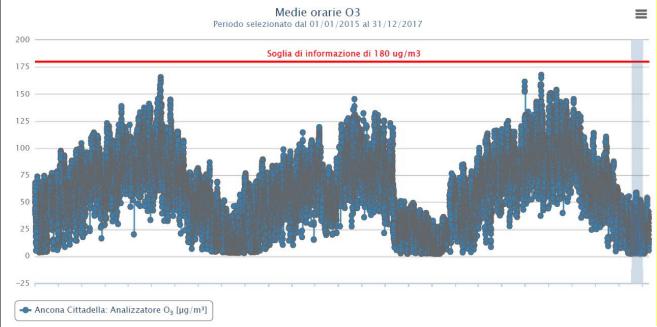
A Pesaro si registra una variabilità maggiore delle concentrazioni rispetto alle altre due stazioni. Come per gli altri inquinanti, nella stazione di Civitanova, sita in zona rurale, il tenore di O_3 è minore rispetto alle stazioni di tipo urbano.

Ozono – Massima media oraria nell'anno - μg/m³			
Soglia di informazione (D. Lgs 155/2010 e smi)	180		
Soglia di allarme (D. Lgs 155/2010 e smi)	240		




Eni SpA Distretto Centro Settentrionale

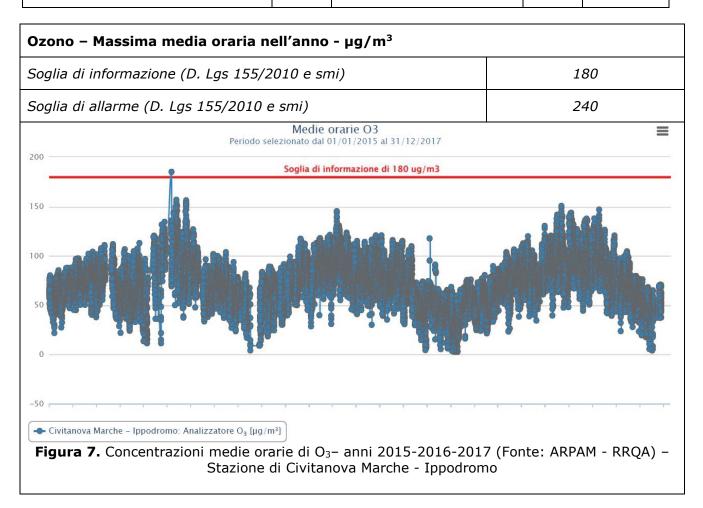
Data 09/2018 AUTORIZZAZIONE INTEGRATA AMBIENTALE Piattaforme BARBARA T – BARBARA T2 ALLEGATO D.6


Rev.

Fg di 47 49

Figura 5. Concentrazioni medie orarie di O₃– anni 2015-2016-2017 (Fonte: ARPAM - RRQA) – Stazione di Pesaro-Via Scarpellini

Figura 6. Concentrazioni medie orarie di O₃- anni 2015-2016-2017 (Fonte: ARPAM - RRQA) - Stazione di Ancona - Cittadella


Eni SpA Distretto Centro Settentrionale

Data 09/2018

AUTORIZZAZIONE INTEGRATA AMBIENTALE Piattaforme BARBARA T – BARBARA T2 ALLEGATO D.6

Rev.

Fg di 48 49

La valutazione globale della qualità dell'aria del tratto di fascia costiera marchigiana di riferimento, ha evidenziato un buono stato di qualità relativamente a tutti gli inquinanti, a meno di una lieve criticità riscontrata per le polveri sottili PM_{10} , con un numero massimo di superamenti del valore limite, pari a 45, registrato a Pesaro nel 2015, a fronte di un numero consentito di 35, comunque, con un andamento delle concentrazioni in diminuzione nel corso del periodo $2015 \div 2017$.

Dall'analisi di tutti i dati si evince che le concentrazioni maggiori si rilevano nelle zone urbane, nelle quali la presenza di traffico e/o di altre sorgenti puntuali di emissioni tende a ridurre la qualità dell'aria; questo effetto è indipendente da quello possibilmente provocato dalla presenza a mare delle piattaforme off-shore del Gruppo Falconara, che, distanti più di 50 Km dal litorale e dai recettori sensibili, si giudicano non influenzabili lo stato di qualità dell'aria nella zona costiera.

Data **09/2018** AUTORIZZAZIONE INTEGRATA AMBIENTALE Piattaforme BARBARA T – BARBARA T2 ALLEGATO D.6

Rev. Fg di 00 49 49

4 BIBLIOGRAFIA E SITOGRAFIA

Decreto Legislativo n. 155 del 13 agosto 2010 "Attuazione della direttiva 2008/50/CE relativa alla qualità dell'aria ambiente e per un'aria più pulita in Europa"

World Health Organization Regional Office for Europe Copenhagen - Air Quality Guidelines for Europe, Second Edition, 2000

Deserti, Lollobrigida, Angelino, CTN-ACE, Rapporto 2004 - I modelli per la valutazione e gestione della qualità dell'aria: normativa, strumenti, applicazioni

Scire, Strimaitis, Yamartino, Earth Tech, A User's Guide for the CALPUFF Dispersion Model, Gennaio 2000

Scire, Strimaitis, Yamartino, Earth Tech, A User's Guide for the CALMET Meteorological Model, Gennaio 2000

Environmental Protection Agency, 40 CFR Ch, I (7–1–11 Edition) Appendix W to Part 51—Guideline on Air Quality Models

Calmanti, Dell'Aquila, ENEA, Report RdS/2011/66 -Modello climatico regionale

https://simc.arpae.it/dext3r/

https://www.mareografico.it

http://www.arpa.marche.it/index.php/qualita-dell-aria-oqqi