
REGIONE PUGLIA

PORTO DI SAN FOCA S.P.A.

Porto Turistico-Stazionamento

PROGETTO DEFINITIVO PER L'AMPLIAMENTO E COMPLETAMENTO DEL PORTO DI SAN FOCA ADEGUATO ALLE RISULTANZE DELLE PROVE SUL MODELLO FISICO REALIZZATO DAL POLITECNICO DI BARI

CALCOLI PER IL DIMENSIONAMENTO IMPIANTI

PROGETTISTI

Ing. Antonio Candido Ing. Donato Candido Ing. Luigi Del Grosso Ing. Franco Gallo

SETTEMBRE 2018

INT.TAV. 2

Rev.

RELAZIONE DI CALCOLO PER IL DIMENSIONAMENTO DEGLI IMPIANTI

PREMESSA

Oggetto della presente relazione è la produzione dei calcoli preliminari degli impianti da realizzare nell'area richiesta per ampliamento della concessione demaniale marittima, area portuale in San Foca comune di Melendugno, da parte della "Porto di San Foca S.r.l.", a servizio delle attività portuali da diporto, con annesse attività commerciali ed artigiane a terra.

1. CALCOLI DI DIMENSIONAMENTO DEGLI IMPIANTI TERMICI

SERVIZI ED ATTIVITÀ' COMMERCIALI

DATI GENERALI DI PROGETTO

Dati generali

Descrizione progetto

Ubicazione edificio

Committente : Porto di San Foca S.p.A.

Progettazione edile Progettazione tecnica

Installazione

Caratteristiche luogo di edificazione

Ubicazione edificio : LECCE
Altezza s.l.m. (m): 49,00
Gradi giorno : 1153
Zona Climatica : C

Dati geoclimatici

Località climatica di riferimento : LECCE
Temperatura esterna di progetto (°C): 0,00
Conduttività termica del terreno (W/mK): 2,00
Temperatura del terreno (°C): 12,50
Durata periodo di riscaldamento (giorni): 137
Velocità del vento (m/s): 4,00

Situazione ambientale : Edificio in complesso urbano Correzione della temperatura esterna (°C) : 0

Temperatura esterna di progetto adottata (°C): 0,00

LISTA STRUTTURE EDILIZIE

Codice Descrizione Tipo Peso Spessore Trasmittanza Colore

			(kg/m²)	m	W/m²K		
FIN	FINESTRA 1.5x1.5	CF	0,00	0,000	1,9261	M	
PARETE	MURO ISOLATO IN MAT.(est)	VE	408,00	0,420	0,3890	M	
PAV	PAVIMENTO AL SUOLO	PS	631,00	0,480	0,4030	M	
SOLAIO	SOLAIO ESTERNO	SE	616,00	0,394	0,3780	C	

CARATTERISTICHE TERMICHE DEL COMPONENTE FINESTRATO

Codice : FIN

Descrizione : FINESTRA 1.5x1.5

: FINESTRA ESTERNA CON VETROCAMERA

Tipo : CF Componente finestrato

Serramento	Ag	Af + Ap	Lg	Kg	Kf + Kp	KI	Kw
Singolo	1,56	0,90	7,60	1,5900	2,0000	0,0600	1,9260

LEGENDA

Ag Area del vetro Af Area del telaio Ap Area del pannello

Lg Lunghezza della superficie vetrata

Kg Trasmittanza termica dell'elemento vetrato W/m²K
Kf Trasmittanza termica del telaio W/m²K
Kp Trasmittanza termica del pannello W/m²K
KI Trasmittanza lineica (nulla in caso di singolo vetro) W/m²K
Kw Trasmittanza termica totale del serramento W/m²K

VERIFICA IGROMETRICA UNI EN ISO 13788

Codice : FIN

Descrizione : FINESTRA 1.5x1.5

: FINESTRA ESTERNA CON VETROCAMERA

Tipo : CF Componente finestrato

CONDIZIONI AL CONTORNO

Temperatura esterna : Media mensile (UNI 10349)
Umidità relativa esterna : Media mensile (UNI 10349)
Temperatura interna : Media mensile (UNI 10349)

Temperatura interna °C : UNI13788 NA.1.2 Classe di umidità : 1 - Magazzini

Media delle temp. est. minime annuali °C: 0

VERIFICA CONDENSAZIONE SUPERFICIALE

UNI EN ISO 13788 5.4

Fattore di temperatura, fRsi : 0,750 Fattore di temperatura massimo, fRsi max : 0,254

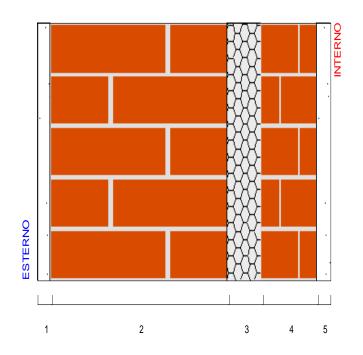
La struttura non è soggetta a fenomeni di condensa superficiale. (fRsi max <= fRsi)

Verifica: positiva

CARATTERISTICHE TERMICHE E IGROMETRICHE DELLA STRUTTURA EDILIZIA

Codice : PARETE

Descrizione : MURO ISOLATO IN MAT.(est)


: MURO ESTERMO IN MATTONI CON ISOLAMENTO

Tipo : VE Verticale verso l'esterno

Caratteristiche degli strati (dall'esterno verso l'interno):

Codice	Descrizione	s m	λ W/mK	C W/m²K	ρ kg/m³	δa⋅10¹² kg/s⋅m⋅Pa	δυ·10 ¹² kg/s·m·Pa	R a m²K/W
01 INT09 02 MUR11 03 ISO93 04 MUR03 05 INT08	Ambiente esterno Resistenza superficiale esterna Intonaco di cemento Muratura in mattoni (esterno) Stiferite tipo P3 Muratura in mattoni (interno) Intonaco calce e cemento Resistenza superficiale interna Ambiente interno	0,02000 0,25000 0,05000 0,08000 0,02000	1,400 0,470 0,031 0,360 0,900	70,000 1,880 0,620 4,500 45,000	2000 1000 30 1000 1800	5,00 24,00 2,34 24,00 5,00	12,00 24,00 2,34 24,00 12,00	0,040 0,014 0,532 1,613 0,222 0,022 0,130

Totali struttura:

VERIFICA IGROMETRICA UNI EN ISO 13788

Codice : PARETE

Descrizione : MURO ISOLATO IN MAT.(est)

: MURO ESTERMO IN MATTONI CON ISOLAMENTO

Tipo : VE Verticale verso l'esterno

CONDIZIONI AL CONTORNO

Temperatura esterna : Media mensile (UNI 10349) Umidità relativa esterna : Media mensile (UNI 10349)

Temperatura interna °C : UNI13788 NA.1.2 Classe di umidità : 1 - Magazzini

Umidità relativa massima accettabile %: 80

PROPRIETA' DEI MATERIALI

Materiale	Spessore m	R m²K/W	Rv(µ)	Sp.eq.(sd) m	
Resistenza superficiale estern		0,04			
Intonaco di cemento	0,02	0,014	38	0,76	
Muratura in mattoni (esterno)	0,25	0,532	8	2,00	
Stiferite tipo P3	0,05	1,613	80	4,00	
Muratura in mattoni (interno)	0,08	0,222	8	0,64	
Intonaco calce e cemento	0,02	0,022	38	0,76	
Resistenza superficiale intern		0,25			

VERIFICA CONDENSAZIONE SUPERFICIALE UNI EN ISO 13788 5.3

Mese critico : FEBBRAIO Fattore di temperatura, fRsi : 0,907 Fattore di temperatura massimo, fRsi max : 0,397

La struttura non è soggetta a fenomeni di condensa superficiale. (fRsi max <= fRsi)

Verifica: positiva

VERIFICA CONDENSAZIONE INTERSTIZIALE UNI EN ISO 13788 6.4

Non si verifica condensazione in nessuna interfaccia per nessun mese. La struttura non è soggetta a fenomeni di condensa interstiziale.

Verifica: positiva

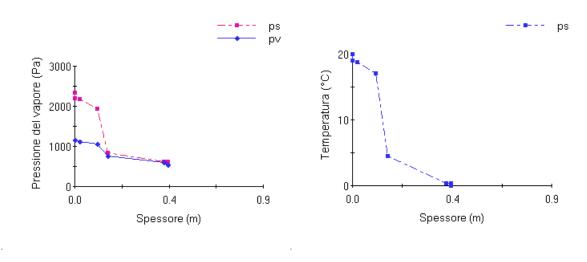
VERIFICA IGROMETRICA - GLASER -

Codice : PARETE

Descrizione : MURO ISOLATO IN MAT.(est)

: MURO ESTERMO IN MATTONI CON ISOLAMENTO

Tipo : VE Verticale verso l'esterno


Condizioni T interna P interna T esterna P esterna al contorno [K] [Pa] [K] [Pa]

Invernale	20,00	1169	0,00	550
Estiva	20,00	1871	20,00	1637

Caratteristiche degli strati (dall'esterno verso l'interno):

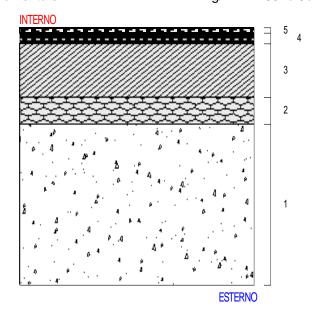
Codice Descrizione	s m	λ W/mK	C W/m²K	ρ kg/m³	δa⋅10¹² kg/s⋅m⋅Pa	δu⋅10¹² ıkg/s⋅m⋅Pa	R m²K/W	°C	ps Pa	pv Pa
Ambiente esterno Resistenza superficiale esterna							0.040	0,0 0.0	611 611	550 550
01 INT09Intonaco di cemento	0,02000	1,400	70,000	2000	5,00	12,00	0,040	0,0	625	550 550
02 MUR11Muratura in mattoni (estern	0,25000	0,470	1,880	1000	24,00	24,00	0,532	0,4	630	607
03 ISO93Stiferite tipo P3	0,05000	0,031	0,620	30	2,34	2,34	1,613	4,6	846	757
04 MUR03Muratura in mattoni (interno	0,08000	0,360	4,500	1000	24,00	24,00	0,222	17,1	1949	1064
05 INT08Intonaco calce e cemento	0,02000	0,900	45,000	1800	5,00	12,00	0,022	18,8	2173	1112
Resistenza superficiale interna							0,130	19,0	2196	1169
Ambiente interno								20,0	2338	1169

La struttura non è soggetta a fenomeni di condensa interstiziale. La differenza minima di pressione tra quella di saturazione e quella reale è pari a dP [Pa]: 23

CARATTERISTICHE TERMICHE E IGROMETRICHE DELLA STRUTTURA EDILIZIA

Codice : PAV

Descrizione : PAVIMENTO AL SUOLO


: PAVIMENTO AL SUOLO CON ISOLAMENTO

Tipo : PS Pavimento al suolo

Caratteristiche degli strati (dall'esterno verso l'interno):

Codice	Descrizione	s m	λ W/mK	C W/m²K	ρ kg/m³	δa⋅10¹² kg/s⋅m⋅Pa	δυ·10 ¹² kg/s·m·Pa	R a m²K/W
01 MSR16 02 ISO93 03 CLS025 04 SOT01 05 PAV07	Ambiente esterno Resistenza superficiale esterna Ciotoli e pietre frantumate Stiferite tipo P3 St. chiusa arg. esp. (scant.) Sottofondo sabbia-cemento Piastrelle di gres Resistenza superficiale interna Ambiente interno	0,30000 0,05000 0,10000 0,02000 0,01000	0,700 0,031 0,480 1,400 0,980	2,333 0,620 4,800 70,000 98,000	1500 30 1200 2000 1900	37,50 2,34 1,90 8,50 18,00	37,50 2,34 2,90 8,50 24,00	0,040 0,429 1,613 0,208 0,014 0,010 0,170

Totali struttura:

VERIFICA IGROMETRICA UNI EN ISO 13788

Codice : PAV

Descrizione : PAVIMENTO AL SUOLO

: PAVIMENTO AL SUOLO CON ISOLAMENTO

Tipo : PS Pavimento al suolo

CONDIZIONI AL CONTORNO

Temperatura esterna : Media mensile (UNI 10349) Umidità relativa esterna : Media mensile (UNI 10349)

Temperatura interna °C : UNI13788 NA.1.2 Classe di umidità : 1 - Magazzini

Umidità relativa massima accettabile %: 80

PROPRIETA' DEI MATERIALI

Materiale	Spessore m	R m²K/W	Rv(µ)	Sp.eq.(sd) m	
Resistenza superficiale estern		0			
Ciotoli e pietre frantumate	0,3	0,429	5	1,50	
Stiferite tipo P3	0,05	1,613	80	4,00	
St. chiusa arg. esp. (scant.)	0,1	0,208	99	9,90	
Sottofondo sabbia-cemento	0,02	0,014	22	0,44	
Piastrelle di gres	0,01	0,01	10	0,10	
Resistenza superficiale intern		0,25			

VERIFICA CONDENSAZIONE SUPERFICIALE UNI EN ISO 13788 5.3

Mese critico : GENNAIO

Fattore di temperatura, fRsi : 0,903 Fattore di temperatura massimo, fRsi max : 1,359

La struttura è soggetta a fenomeni di condensa superficiale. (fRsi max > fRsi)

Verifica: positiva

VERIFICA CONDENSAZIONE INTERSTIZIALE UNI EN ISO 13788 6.4

Non si verifica condensazione in nessuna interfaccia per nessun mese. La struttura non è soggetta a fenomeni di condensa interstiziale.

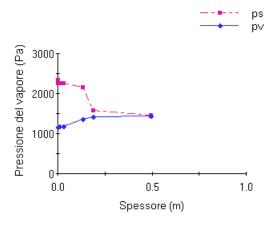
Verifica: positiva

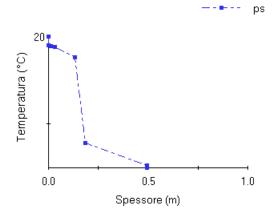
VERIFICA IGROMETRICA - GLASER -

Codice : PAV

Descrizione : PAVIMENTO AL SUOLO

: PAVIMENTO AL SUOLO CON ISOLAMENTO


Tipo : PS Pavimento al suolo


Condizioni	T interna	P interna	T esterna	P esterna
al contorno	[K]	[Pa]	[K]	[Pa]
Invernale	20,00	1169	12,50	1449
Estiva	20,00	1871	20,00	1637

Caratteristiche degli strati (dall'esterno verso l'interno):

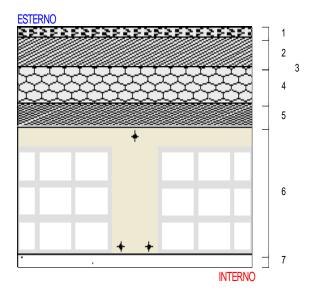
Codice Descrizione	s m	λ W/mK	C W/m²K	ρ kg/m³ l	δa⋅10¹² kg/s⋅m⋅Pa	δu⋅10 ¹² ikg/s⋅m⋅Pa	R m²K/W	°C	ps Pa	pv Pa
Ambiente esterno Resistenza superficiale esterna 01 MSR16Ciotoli e pietre frantumate 02 ISO93Stiferite tipo P3 03 CLS025St. chiusa arg. esp. (scant.) 04 SOT01Sottofondo sabbia-cemento 05 PAV07Piastrelle di gres Resistenza superficiale interna Ambiente interno	0,30000 0,05000 0,10000 0,02000 0,01000	0,700 0,031 0,480 1,400 0,980	2,333 0,620 4,800 70,000 98,000	1500 30 1200 2000 1900	37,50 2,34 1,90 8,50 18,00	37,50 2,34 2,90 8,50 24,00	0,040 0,429 1,613 0,208 0,014 0,010 0,170	12,5 12,5 12,6 13,9 18,8 19,4 19,5 19,5 20,0	1449 1449 1461 1590 2168 2255 2261 2265 2338	1449 1449 1449 1423 1353 1179 1171 1169 1169

La struttura non è soggetta a fenomeni di condensa interstiziale. La differenza minima di pressione tra quella di saturazione e quella reale è pari a dP [Pa]: 167

CARATTERISTICHE TERMICHE E IGROMETRICHE DELLA STRUTTURA EDILIZIA

Codice : SOLAIO

Descrizione : SOLAIO ESTERNO


: SOLAIO ESTERNO CON ISOLAMENTO E BARRIERA AL VAPORE

Tipo : SE Solaio verso l'esterno

Caratteristiche degli strati (dall'esterno verso l'interno):

Codice	Descrizione	s m	λ W/mK	C W/m²K	ρ kg/m³	δa⋅10¹² kg/s⋅m⋅Pa	δυ·10 ¹² kg/s·m·Pa	R a m²K/W
01 PAV01 02 CLS001 03 BVA07 04 ISO91 05 CLS091 06 SOL03 07 INT08	Ambiente esterno Resistenza superficiale esterna Piastrelle di porcellana Strutt. chiusa (int. o prot.) Carta e cartone ben bitumati Stiferite tipo BB CLS in genere (int. o est.) Soletta in laterizio Intonaco calce e cemento Resistenza superficiale interna Ambiente interno	0,02000 0,05000 0,00400 0,06000 0,04000 0,20000 0,02000	1,000 1,160 0,230 0,028 0,830 0,940 0,900	50,000 23,200 57,500 0,467 20,750 4,700 45,000	2300 2000 1100 35 1700 1800 1800	1,00 1,90 0,03 2,34 1,90 24,00 5,00	1,00 2,90 0,03 2,34 2,90 24,00 12,00	0,040 0,020 0,043 0,017 2,143 0,048 0,213 0,022 0,100

Totali struttura:

VERIFICA IGROMETRICA UNI EN ISO 13788

Codice : SOLAIO

Descrizione : SOLAIO ESTERNO

: SOLAIO ESTERNO CON ISOLAMENTO E BARRIERA AL VAPORE

Tipo : SE Solaio verso l'esterno

CONDIZIONI AL CONTORNO

Temperatura esterna : Media mensile (UNI 10349) Umidità relativa esterna : Media mensile (UNI 10349)

Temperatura interna °C : UNI13788 NA.1.2 Classe di umidità : 1 - Magazzini

Umidità relativa massima accettabile %: 80

PROPRIETA' DEI MATERIALI

Materiale	Spessore m	R m²K/W	Rv(µ)	Sp.eq.(sd) m	
Resistenza superficiale estern		0,04			
Piastrelle di porcellana	0,02	0,02	188	3,76	
Strutt. chiusa (int. o prot.)	0,05	0,043	99	4,95	
Carta e cartone ben bitumati	0,004	0,017	7500	30,00	
Stiferite tipo BB	0,06	2,143	80	4,80	
CLS in genere (int. o est.)	0,04	0,048	99	3,96	
Soletta in laterizio	0,2	0,213	8	1,60	
Intonaco calce e cemento	0,02	0,022	38	0,76	
Resistenza superficiale intern		0.25			

VERIFICA CONDENSAZIONE SUPERFICIALE UNI EN ISO 13788 5.3

Mese critico : FEBBRAIO Fattore di temperatura, fRsi : 0,911 Fattore di temperatura massimo, fRsi max : 0,397

La struttura non è soggetta a fenomeni di condensa superficiale. (fRsi max <= fRsi)

Verifica: positiva

VERIFICA CONDENSAZIONE INTERSTIZIALE UNI EN ISO 13788 6.4

Non si verifica condensazione in nessuna interfaccia per nessun mese. La struttura non è soggetta a fenomeni di condensa interstiziale.

Verifica: positiva

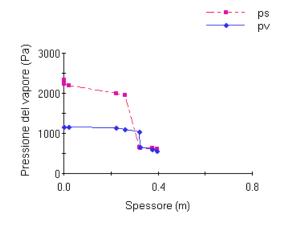
VERIFICA IGROMETRICA - GLASER -

Codice : SOLAIO

Descrizione : SOLAIO ESTERNO

: SOLAIO ESTERNO CON ISOLAMENTO E BARRIERA AL VAPORE

Tipo : SE Solaio verso l'esterno


Condizioni T interna P interna T esterna P esterna al contorno [K] [Pa] [K] [Pa]


Invernale	20,00	1169	0,00	551
Estiva	20,00	1871	20,00	1637

Caratteristiche degli strati (dall'esterno verso l'interno):

Codice Descrizione	s m	$^{\lambda}$ W/mK	C W/m²K	ρ kg/m³	δa⋅10¹² kg/s⋅m⋅Pa	δu∙10¹² kg/s∙m∙Pa	R a m²K/W	T °C	ps Pa	pv Pa
Ambiente esterno								0,0	611	551
Resistenza superficiale esterna							0,040	0,0	611	551
01 PAV01Piastrelle di porcellana	0,02000	1,000	50,000	2300	1,00	1,00	0,020	0,3	625	551
02 CLS001Strutt. chiusa (int. o prot.)	0,05000	1,160	23,200	2000	1,90	2,90	0,043	0,5	632	598
03 BVA07Carta e cartone ben bituma	0,00400	0,230	57,500	1100	0,03	0,03	0,017	0,8	647	659<
04 ISO91Stiferite tipo BB	0,06000	0,028	0,467	35	2,34	2,34	2,143	0,9	653	1032<
05 CLS091CLS in genere (int. o est.)	0,04000	0,830	20,750	1700	1,90	2,90	0,048	17,1	1951	1092
06 SOL03Soletta in laterizio	0,20000	0,940	4,700	1800	24,00	24,00	0,213	17,5	1996	1141
07 INT08Intonaco calce e cemento	0,02000	0,900	45,000	1800	5,00	12,00	0,022	19,1	2208	1160
Resistenza superficiale interna							0,100	19,2	2231	1169
Ambiente interno								20,0	2338	1169

La struttura è soggetta a fenomeni di condensa. La quantità stagionale di condensato è pari a 0,088 kg/mq.

SUPERFICI DISPERDENTI/CALCOLO DISPERSIONI TERMICHE LOCALI

Locale : 000001 Punto informazione Piano : 0

Impianto termico : NEG 1 Punto informazione Zona termica : 1 informazione

Categoria d'uso : E.8 Attività industriali ed artigianali

Dispersioni del locale

Esp.	Struttura		Trasmit. (W/m²K)	Area (m²)	Dt coeff. (°C) esp.	dispers. (W)	H (W/K)	cod. ostr.	Fs A eq. (m²)
NE	FIN	FINESTRA 1.5x1.5	1,9261	0,50	18,0 1,20	21	0,96		0,077
NE	PARETE	MURO ISOLATO IN MAT.(est)	0,3890	22,30	18,0 1,20	187	8,68		0,208
NO	FIN	FINESTRA 1.5x1.5	1,9261	16,64	18,0 1,15	663	32,05		2,547
NO	PARETE	MURO ISOLATO IN MAT.(est)	0,3890	21,36	18,0 1,15	172	8,31		0,199
OR	SOLAIO	SOLAIO ESTERNO	0,3780	60,00	18,0 1,00	408	22,68		0,218

Т	PAV	PAVIMENTO AL SUOLO	0,4030	60,00	5,5 1,00	472 24,18	
Totale				180,80		1923	
Poten Magg Margi Poten Poten Poten	iorazione di ne di sicure za dispersa za totale dis	per trasmissione spersioni per trasmissione zza per Vicini Assenti spersa per trasmissione per ventilazione ta			(m²): (W): (W): (W): (W): (W): (W): (W): (W	180,80 1923 0 0 0 1923 396 0 2319	
	ibuti dovuti a cità termica	a sorgenti interne energia		•	/mese): MJ/°C):	933,00 1,788	

Sistema di regolazione:

Tipologia di prodotto:

Terminale di erogazione:

Solo ambiente con regolatore

Regolatore si/no a differenziale

Bocchette in sistemi di aria calda

Rendimento di emissione: 0,92

SUPERFICI DISPERDENTI/CALCOLO DISPERSIONI TERMICHE LOCALI

Locale : 000002 Negozio nautica Piano : 0

Impianto termico : NEG 2 Attività Commerciale Zona termica : 2 negozio per la nautica

Categoria d'uso : E.5 Edifici adibiti ad attività commerciali.

Dispersioni del locale

Esp.	Struttura		Trasmit. (W/m²K)	Area (m²)	Dt coeff. (°C) esp.	dispers. H (W) (W/K)	cod.	A eq. (m²)
NE NE OR T	FIN PARETE SOLAIO PAV	FINESTRA 1.5x1.5 MURO ISOLATO IN MAT.(est) SOLAIO ESTERNO PAVIMENTO AL SUOLO	1,9261 0,3890 0,3780 0,4030	20,16 17,84 45,00 45,00	20,0 1,20 20,0 1,20 20,0 1,00 7,5 1,00	932 38,83 167 6,94 340 17,01 477 18,14		3,086 0,167 0,163
Totale				128,00		1916		
Poten Magg Margi Poten Poten Poten Poten	za dispersa iorazione di ne di sicure za dispersa za totale di	a per Vicini Assenti spersa per trasmissione a per ventilazione ata			(m²): (W): (W): (W): (W): (W): (W): (W): (W	128,00 1916 0 0 0 1916 330 0 2246		
	buti dovuti cità termica	a sorgenti interne energia		,	/mese): (MJ/°C):	933,00 0,000		

Sistema di regolazione:

Tipologia di prodotto:

Terminale di erogazione:

Solo ambiente con regolatore

Regolatore si/no a differenziale

Bocchette in sistemi di aria calda

Rendimento di emissione: 0,92

SUPERFICI DISPERDENTI/CALCOLO DISPERSIONI TERMICHE LOCALI

Locale : 000003 Negozio nautica Piano : 0

Impianto termico : NEG 3 Negozio per la nautica Zona termica : 3 Negozio per la nautica

Categoria d'uso : E.5 Edifici adibiti ad attività commerciali.

Temperatura interna di progetto (°C): 20,00 Ricambi d'aria naturali (vol/h): 0,30 Superficie in pianta locale (m²): 60,00 Volume netto locale (m³): 210,00

Dispersioni del locale

Esp.	Struttura		Trasmit. (W/m²K)	Area (m²)	Dt coeff. (°C) esp.	dispers. (W)	H (W/K)	cod. ostr.	Fs	A eq. (m²)
NE	FIN	FINESTRA 1.5x1.5	1,9261	20,16	20,0 1,20	932	38,83			3,086
NE	PARETE	MURO ISOLATO IN MAT.(est)	0,3890	17,84	20,0 1,20	167	6,94			0,167
OR	SOLAIO	SOLAIO ESTERNO	0,3780	45,00	20,0 1,00	340	17,01			0,163
Т	PAV	PAVIMENTO AL SUOLO	0,4030	45,00	7,5 1,00	477	18,14			
Totale				128,00		1916				
Supe	rficie disper	dente totale			(m²):	128	,00			
Poter	nza dispersa	a per trasmissione			(W):	19	916			
Magg	iorazione d	ispersioni per trasmissione			(W):		0			
	ine di sicure	•			(W):		0			
_		a per Vicini Assenti			(W):		0			
	•	ispersa per trasmissione			(W):	19	916			
		a per ventilazione			(W):		330			
	nza recuper				(W):	•	0			
					. ,	20	-			
roter	nza totale di	spersa			(W):	22	246			
Contr	ibuti dovuti	a sorgenti interne energia		(MJ	l/mese):	933	,00			
Capa	cità termica	1		` (MJ/°C):	0.0	000			

Sistema di regolazione:

Tipologia di prodotto:

Terminale di erogazione:

Solo ambiente con regolatore

Regolatore si/no a differenziale

Bocchette in sistemi di aria calda

Rendimento di emissione: 0,92

SUPERFICI DISPERDENTI/CALCOLO DISPERSIONI TERMICHE LOCALI

Locale : 000004 Negozio alimentari Piano : 0

Impianto termico : NEG 4 Alimentari Zona termica : 4 Alimentari

Categoria d'uso : E.5 Edifici adibiti ad attività commerciali.

Temperatura interna di progetto (°C): 20,00 Ricambi d'aria naturali (vol/h): 0,30 Superficie in pianta locale (m²): 60,00 Volume netto locale (m³): 210,00

Dispersioni del locale

Esp. Struttura Trasmit. Area Dt coeff. dispers. cod. Fs Н A eq. (W/m^2K) (m²)(W) (W/K) (°C) esp. ostr. (m²)

NE FIN FINESTRA 1.5x1.5 1,9261 20,16 20,0 1,20 932 38,83 3,086

NE SE SE OR T	PARETE FIN PARETE SOLAIO PAV	MURO ISOLATO IN MAT.(est) FINESTRA 1.5x1.5 MURO ISOLATO IN MAT.(est) SOLAIO ESTERNO PAVIMENTO AL SUOLO	0,3890 1,9261 0,3890 0,3780 0,4030	17,84 0,50 16,60 45,00 45,00	20,0 1,20 20,0 1,10 20,0 1,10 20,0 1,00 7,5 1,00	167 21 142 340 477	6,94 0,00 6,46 17,01 18,14	0,167 0,077 0,155 0,163
Totale				145,10		2079		-
Potenz Maggie Margir Potenz Potenz Potenz Potenz	za dispersa orazione di ne di sicure za dispersa za totale di	per Vicini Assenti spersa per trasmissione per ventilazione ata			(m²): (W): (W): (W): (W): (W): (W): (W): (W	20	,10 079 0 0 0 0 0 079 140 0	
	buti dovuti a ità termica	a sorgenti interne energia		•	I/mese): (MJ/°C):	933 1,3	,00 359	

Sistema di regolazione: Tipologia di prodotto: Terminale di erogazione: Rendimento di emissione: Solo ambiente con regolatore Regolatore si/no a differenziale Bocchette in sistemi di aria calda

0,92

TOTALI ZONE/IMPIANTO														
Codice		Descrizione	Volume (m³)	Trasm. (W)	Magg. (W)	Marg. (W)	VA (W)	Ventil. (W)	Recup. (W)	Totale (W)				
NEG 1	1	informazione	210,0	1923	0	0	0	396	0	2319				
		Punto informa	210,0	1923	0	0	0	396	0	2319				
NEG 2	2	negozio per la	157,5	1916	0	0	0	330	0	2246				
		Attività Comm	157,5	1916	0	0	0	330	0	2246				
NEG 3	3	Negozio per la	157,5	1916	0	0	0	330	0	2246				
		Negozio per la	157,5	1916	0	0	0	330	0	2246				
NEG 4	4	Alimentari	210,0	2079	0	0	0	440	0	2519				
		Alimentari	210,0	2079	0	0	0	440	0	2519				
			735,0	7834	0	0	0	1496	0	9330				

		RI	IEPILO	GO D	DISPE	RSION	11					
Locale	Volume Imp. m³	Zona	Vent.	T. (°C)	Ric. (n/h)	Trasm. (W)	Magg. (W)	Marg. (W)	VA (W)	Ventil. (W)	Recup. (W)	Totale (W)
000001 Punto informazione 000002 Negozio nautica 000003 Negozio nautica 000004 Negozio alimentari	210,0 NEG 2 210,0 NEG 2 210,0 NEG 3 210,0 NEG 4	2 2 3		18,0 20,0 20,0 20,0	0,30	1923 1916 1916 2079	0 0 0 0	0 0 0 0	0 0 0	396 330 330 440	0 0 0	2319 2246 2246 2519
Totali	840,0					7834	0	0	0	1496	0	9330

DISPERSIONI DELL'EDIFICIO RIPARTITE PER STRUTTURA

Impianto termico : NEG 1 Punto informazione

Le dispersioni sono espresse in (W) e non tengono conto di eventuali maggiorazioni

Codice	Ucd W/m²K	Area (m²)	N	ΝE	E	SE	S	SO	0	ΝO	Т	OR	Altro	Totale
PARETE	0,3890	44	-	187	-	-	-	_	-	172	-	-		359
SOLAIO	0,3780	60	-	-	-	-	-	-	-	-	-	408	-	408
PAV	0,4030	60	-	-	-	-	-	-	-	-	472	-	-	472
FIN	1,9261	17	-	21	-	-	-	-	-	663	-	-	-	684
Totali		181		208						835	472	408		1923

DISPERSIONI DELL'EDIFICIO RIPARTITE PER STRUTTURA

Impianto termico : NEG 2 Attività Commerciale

Le dispersioni sono espresse in (W) e non tengono conto di eventuali maggiorazioni

Codice	Ucd W/m²K	Area (m²)	N	ΝE	E	SE	S	SO	0	ΝO	Τ	OR	Altro	Totale
PARETE	0,3890	18	-	167	-	-	-	-	-	-	-	-	-	167
SOLAIO	0,3780	45	-	-	-	-	-	-	-	-	-	340	-	340
PAV	0,4030	45	-	-	-	-	-	-	-	-	477	-	-	477
FIN	1,9261	20	-	932	-	-	-	-	-	-	-	-	-	932
Totali		128		1099							477	340		1916

DISPERSIONI DELL'EDIFICIO RIPARTITE PER STRUTTURA

Impianto termico : NEG 3 Negozio per la nautica

Le dispersioni sono espresse in (W) e non tengono conto di eventuali maggiorazioni

Codice	Ucd W/m²K	Area (m²)	N	ΝE	Ε	SE	S	SO	0	ΝO	Т	OR	Altro	Totale
PARETE	0,3890	18	_	167	_	-	_	_	-	-	-	-		167
SOLAIO	0,3780	45	-	-	-	-	-	-	-	-	-	340	-	340
PAV	0,4030	45	-	-	-	-	-	-	-	-	477	-	-	477
FIN	1,9261	20	-	932	-	-	-	-	-	-	-	-	-	932
Totali		128		1099							477	340		1916

DISPERSIONI DELL'EDIFICIO RIPARTITE PER STRUTTURA

Impianto termico : NEG 4 Alimentari

Le dispersioni sono espresse in (W) e non tengono conto di eventuali maggiorazioni

Codice	Ucd W/m²K	Area (m²)	N	ΝE	Ε	SE	S	SO	0	ΝO	Т	OR	Altro	Totale
PARETE	0,3890	34	-	167	-	142	-	-	-	-	-		-	309
SOLAIO	0,3780	45	-	-	-	-	-	-	-	-	-	340	-	340
PAV	0,4030	45	-	-	-	-	-	-	-	-	477	-	-	477
FIN	1,9261	21	-	932	-	21	-	-	-	-	-	-	-	953
Totali		145		1099		163		-		-	477	340		2079

TRASMITTANZA TERMICA MEDIA

Impianto termico : NEG 1 Punto informazione

Locale	Esposiz	ione	U medio (W/m²K)	% P.T. (%)	U limite (W/m²K)	Verifica	
000001 Punto informazione	NE	Nord-Est	0,389	0,00	0,460	Si	
	NO	Nord-Ovest	0,389	0,00	0,460	Si	
	OR	Esterno, orizzontale	0,378	0,00	0,420	Si	

TRASMITTANZA TERMICA MEDIA

Impianto termico : NEG 2 Attività Commerciale

Locale	Esposizi	one	U medio (W/m²K)	% P.T. (%)	U limite (W/m²K)	Verifica
000002 Negozio nautica	NE	Nord-Est	0,389	0,00	0,460	Si
	OR	Esterno, orizzontale	0,378	0,00	0,420	Si

TRASMITTANZA TERMICA MEDIA

Impianto termico : NEG 3 Negozio per la nautica

Locale Esposizione U medio % P.T. U limite Verifica (W/m²K) (%) (W/m²K)

NE	Nord-Est	0,389	0,00	0,460	Si
OR	Esterno, orizzontale	0,378	0.00	0,420	Si

TRA	SMI	$TT\Delta N$	17Δ T	TERM	IC A	MEDIA

Impianto termico : NEG 4 Alimentari

Locale	Esposiz	ione	U medio (W/m²K)	% P.T. (%)	U limite (W/m²K)	Verifica
000004 Negozio alimentari	NE	Nord-Est	0,389	0,00	0,460	Si
	SE	Sud-Est	0,389	0,00	0,460	Si
	OR	Esterno, orizzontale	0,378	0,00	0,420	Si

RIEPILOGO DISPERSIONI PER IMPIANTO

Imp	Zona	Locale	Volume m³	Vent.	T. Ric. (°C) (n/h)	Trasm. (W)	Magg. (W)	Marg. (W)	VA (W)	Ventil. (W)	Recup. (W)	Totale (W)
NEG 1	1	000001 Punto informazio	n 210 0		18.0 0.3	1923	0	0	0	396	0	2319
NEG 2	2	000001 Vanto informazio	210.0		20.0 0.3	1916	0	0	0	330	0	2246
NEG 3	3	000003 Negozio nautica	- , -		20,0 0,3	1916	Ö	Ö	Ö	330	Ō	2246
NEG 4	4	000004 Negozio alimenta			20,0 0,3	2079	0	0	0	440	0	2519
Totali			840,0			7834	0	0	0	1496	0	9330

DATI GENERALI DI PROGETTO

Dati generali

Descrizione progetto

Ubicazione edificio

Committente : Porto di San Foca S.p.A.

Progettazione edile

Progettazione tecnica

Installazione

Caratteristiche luogo di edificazione

Ubicazione edificio : LECCE
Altezza s.l.m. (m): 49,00
Gradi giorno : 1153
Zona Climatica : C

Dati geoclimatici

Località climatica di riferimento : LECCE
Temperatura esterna di progetto (°C): 0,00
Conduttività termica del terreno (W/mK): 2,00
Temperatura del terreno (°C): 12,50
Durata periodo di riscaldamento (giorni): 137

Velocità del vento (m/s): 4,00

Situazione ambientale : Edificio in complesso urbano Correzione della temperatura esterna (°C) : 0

Temperatura esterna di progetto adottata (°C): 0,00

PARAMETRI CLIMATICI DELLA LOCALITA'

Ubicazione edificio : LECCE
Altezza s.l.m. (m): 49
Zona climatica : C
Gradi giorno : 1153

Durata periodo di riscaldamento (gg): 137 (dal 15.11 al 31.3)

Latitudine : 40° 21" Longitudine : 18° 10"

Zona geografica : 3 - Italia centrale e meridionale

Zona di vento : 2
Velocità del vento : 4
Direzione prevalente vento : N

Categoria terreno : (non disponibile)

Conduttività termica terreno (W/mK): 2,0000 Temperatura terreno (°C): 12,50

Località climatica di riferimento : LECCE Temperatura minima di progetto dell'aria esterna secondo norma UNI 5364

e successivi aggiornamenti (°C): 0,00

Valori medi mensili:

Tmg = Temperatura giornaliera media mensile dell'aria esterna (°C)

H = Irradiazione solare giornaliera media mensile (MJ/m²)

PVap = Pressione parziale del vapore d'acqua nell'aria esterna (Pa)

Tmg (°C) PVap (Pa) H (MJ/m²)

		S	SO-SE	O-E	NO-NE	N	OR
9.00	1003	11,10	8,80	5,28	2,50	2,18	6,79
9,30	1084	12,33	10,47	7,28	3,87	2,98	9,79
11,40	979	11,94	11,55	9,53	6,01	4,11	13,59
14,69	1009	11,23	12,99	12,64	9,12	5,76	18,88
18,89	1204	10,19	13,57	15,22	12,19	8,24	23,59
23,39	1507	9,62	13,65	16,53	13,94	10,03	26,09
26,10	1735	10,33	14,74	17,45	14,15	9,49	27,19
25,89	2073	12,22	15,46	16,01	11,60	6,76	24,00
23,00	1808	13,88	14,46	12,55	7,84	4,53	17,90
18,50	1504	14,49	12,68	9,13	4,79	3,33	12,29
14,30	1121	11,12	8,97	5,64	2,80	2,39	7,38
10,69	1097	10,31	8,06	4,64	2,15	1,95	5,90
	11,40 14,69 18,89 23,39 26,10 25,89 23,00 18,50 14,30	9,30 1084 11,40 979 14,69 1009 18,89 1204 23,39 1507 26,10 1735 25,89 2073 23,00 1808 18,50 1504 14,30 1121	9,00 1003 11,10 9,30 1084 12,33 11,40 979 11,94 14,69 1009 11,23 18,89 1204 10,19 23,39 1507 9,62 26,10 1735 10,33 25,89 2073 12,22 23,00 1808 13,88 18,50 1504 14,49 14,30 1121 11,12	9,00 1003 11,10 8,80 9,30 1084 12,33 10,47 11,40 979 11,94 11,55 14,69 1009 11,23 12,99 18,89 1204 10,19 13,57 23,39 1507 9,62 13,65 26,10 1735 10,33 14,74 25,89 2073 12,22 15,46 23,00 1808 13,88 14,46 18,50 1504 14,49 12,68 14,30 1121 11,12 8,97	9,00 1003 11,10 8,80 5,28 9,30 1084 12,33 10,47 7,28 11,40 979 11,94 11,55 9,53 14,69 1009 11,23 12,99 12,64 18,89 1204 10,19 13,57 15,22 23,39 1507 9,62 13,65 16,53 26,10 1735 10,33 14,74 17,45 25,89 2073 12,22 15,46 16,01 23,00 1808 13,88 14,46 12,55 18,50 1504 14,49 12,68 9,13 14,30 1121 11,12 8,97 5,64	9,00 1003 11,10 8,80 5,28 2,50 9,30 1084 12,33 10,47 7,28 3,87 11,40 979 11,94 11,55 9,53 6,01 14,69 1009 11,23 12,99 12,64 9,12 18,89 1204 10,19 13,57 15,22 12,19 23,39 1507 9,62 13,65 16,53 13,94 26,10 1735 10,33 14,74 17,45 14,15 25,89 2073 12,22 15,46 16,01 11,60 23,00 1808 13,88 14,46 12,55 7,84 18,50 1504 14,49 12,68 9,13 4,79 14,30 1121 11,12 8,97 5,64 2,80	9,00 1003 11,10 8,80 5,28 2,50 2,18 9,30 1084 12,33 10,47 7,28 3,87 2,98 11,40 979 11,94 11,55 9,53 6,01 4,11 14,69 1009 11,23 12,99 12,64 9,12 5,76 18,89 1204 10,19 13,57 15,22 12,19 8,24 23,39 1507 9,62 13,65 16,53 13,94 10,03 26,10 1735 10,33 14,74 17,45 14,15 9,49 25,89 2073 12,22 15,46 16,01 11,60 6,76 23,00 1808 13,88 14,46 12,55 7,84 4,53 18,50 1504 14,49 12,68 9,13 4,79 3,33 14,30 1121 11,12 8,97 5,64 2,80 2,39

Dati climatici medi stagionali:

Temperatura dell'aria esterna (°C): 10,61 Irradianza sul piano orizzontale (W/m²): 104,00

Dati climatici per il mese di massima insolazione (MARZO):

PAVIMENTO AL SUOLO

FINESTRA 1.5x1.5

(°C): 11,40 (W/m²): 157,00

2,5841

0,54

0,4030

1,9261

1,9260

	LISTA STRUTTURE EDILIZIE DI PROGETTO													
Codice	Descrizione	Tipo	Densità (kg/m³)	Spess. (m)	Fc	Ff	g	C kJ/m²⋅K	Ufen W/m²K	Ucd W/m²K				
PARETE SOLAIO	MURO ISOLATO IN MAT.(VE SF	408,00 616.00	0,4200 0.3940				2,5841 2,6527	0,3890 0.3780	0,3890 0.3780				

0,4800

0,45 0,63

CARATTERISTICHE DEI LOCALI RISCALDATI

Impianto termico : NEG 1 Punto informazione Zona : 1 informazione Locale : 000001 Punto informazione

Categoria dest. uso : E.8 Attività industriali ed artigianali

PS

CF

631,00

Superfici opache

PAV

FIN

Esp.	Codice	Descrizione	Area (m²)	dt (°C)	co esp. (C MJ/°C	Fs C)	Fer	а	A eq. m²	Ufen (W/m²K)	Ucd (W/m²K)	Pt (W)
NE	PARETE	MURO ISOLATO IN	22,30	18,0	1,20		1,00	1,00	0,60	0,208	0,3890	0,3890	187
NO	PARETE	MURO ISOLATO IN	21,36	18,0	1,15		1,00	1,00	0,60	0,199	0,3890	0,3890	172
OR	SOLAIO	SOLAIO ESTERNO	60,00	18,0	1,00		1,00	0,80	0,30	0,218	0,3780	0,3780	408
Totali			103,66			1,139)						767
Supe	rfici tra	sparenti											
Esp.	Codice	Descrizione	Area	dt	СО	Fs	F	c F	=f (g Aed	ı. Ufen	Ucd	Pt
·			(m²)	(°C)	esp.				·	m²	(W/m²K) (W/m²K)	(W)
NE	FIN	FINESTRA 1.5x1.5	0,50	18,0	1,20	1,00	0,	45 O,	63 0,	54 0,07	7 1,9260	1,9261	21
NO	FIN	FINESTRA 1.5x1.5	16,64	18,0	1,15	1,00	0,	45 0,	63 0,	54 2,54	7 1,9260	1,9261	663
Totali			17,14										684
Pavir	nenti di	sperdenti verso il te	rreno										
Esp.	Codice	Descrizione	Area	dt	С		Р	Fpc	Z		Hg	Ucd	Pt
			(m²)	(°C)	(MJ/°	C) (m)		(m))	W/K V	V/m²K	(W)
Т	PAV	PAVIMENTO AL SUOLO	60,00	5,5		32	2,00				C	,4030	472
Totali			60,00		1,298	3							472

RIEPILOGO DISPERSIONI LOCALI

Impianto termico : NEG 1 Punto informazione

La potenza termica dispersa per trasmissione comprende anche l'eventuale maggiorazione.

Locale	Volume (m³)	Temp. (°C)	ric. (1/h)	vol./h (m³/h)	Qtra (W)	Qven (W)	Qtot (W)	S.disp. (m²)	Qi (MJ/mese)	c.t. (MJ/°C)
000001 Punto informazione	210,0	18,00	0,30	63,00	1923	396	2319	180,8	933,00	1,79
	210,0			63,0	1923	396	2319	180,8	933,00	1,79

DISPERSIONI DELL'EDIFICIO RIPARTITE PER STRUTTURA

Impianto termico : NEG 1 Punto informazione

Le dispersioni sono espresse in (W) e non tengono conto di eventuali maggiorazioni

Codice	Ucd W/m²K	Area (m²)	N	ΝE	E	SE	S	SO	0	ΝO	T	OR	Altro	Totale
PARETE	0,3890	44	-	187	-	-	-	-	-	172	-	-	-	359
SOLAIO	0,3780	60	-	-	-	-	-	-	-	-	-	408	-	408
PAV	0,4030	60	-	-	-	-	-	-	-	-	472	-	-	472
FIN	1,9261	17	-	21	-	-	-	-	-	663	-	-	-	684
Totali		181		208						835	472	408		1923

			TOTA	ALI ZONE	/IMPIAN	ГО				
Codice		Descrizione	Volume (m³)	Trasm. (W)	Magg. (W)	Marg. (W)	VA (W)	Ventil. (W)	Recup. (W)	Totale (W)
NEG 1	1	informazione Punto informa	210,0 210,0	1923 1923	0 0	0 0	0 0	396 396	0 0	2319 2319
			210,0	1923	0	0	0	396	0	2319

Impianto termico :NEG 1 Punto informazione

COEFFICIENTE DI DISPERSIONE VOLUMICO DI PROGETTO (UNI 10379)

Potenza termica dispersa per trasmissione (W) : 1923
Volume lordo delle parti di edificio riscaldato (m³) : 300,00
Temperatura interna di progetto (°C) : 20,00
Temperatura esterna minima di progetto (°C) : 0,00

Coefficiente di dispersione volumico di progetto

Metodo di calcolo selezionato (UNI 10379)

SELEZIONE DEL METODO DI CALCOLO (UNI 10379)

(W/m³·K) : 0,320

Α

Area equivalente soleggiata dell'edificio	(m²)	:	1,63
Irradianza media stagionale sul piano orizzontale	(W/m²)	:	104,00
Volume lordo delle parti di edificio riscaldato	(m³)	:	300,00
Apporti interni	(W/m^3)	:	0,00
Indice volumico degli apporti gratuiti	(W/m^3)	:	0,565
Coefficiente di dispersione volumico di progetto	(W/m³·K)	:	0,320
Numero di volumi d'aria ricambiati (val. medio 24h)	` (n/h)	:	0,30
Temperatura interna di progetto	(°C)	:	20,00
Temperatura media stagionale dell'aria esterna	(°C)	:	10,61
Indice volumico delle dispersioni	(W/m^3)	:	3,964
Indice degli apporti / indice delle dispersioni		:	0,143
Rapporto Superficie trasparente/utile (10,7982 / 60)		:	0,18

SIMBOLI, DEFINIZIONI E UNITA' DI MISURA

Qt Qg Qv Qu Qa	Energia scambiata per trasmissione con l'ambiente esterno Energia scambiata per trasmissione con il terreno Energia scambiata per ventilazione Energia scambiata per trasmissione con ambienti adiacenti Energia scambiata con zone a temperatura fissata	(MJ) (MJ) (MJ) (MJ)
QI	Energia scambiata per trasmissione e ventilazione	(MJ)
Qse	Energia dovuta agli apporti solari su superfici opache	(MJ)
Qsi	Energia dovuta agli apporti solari su superfici trasparenti	(MJ)
Qi	Energia dovuta agli apporti interni	(MJ)
γ nu	Rapporto tra l'energia dovuta agli apporti gratuiti e l'energia uscente Fattore di utilizzazione degli apporti energetici gratuiti	
Qh	Fabbisogno energetico utile ideale richiesto da ciascuna zona	(MJ)
fil	Fattore di riduzione dell'energia dispersa per trasmissione e per ventilazione	
fig	Fattore di riduzione dell'apporto energetico dovuto alle sorgenti interne e solari	
kappa	Coefficiente per modalità di funzionamento	(B. 4. I)
Qhvs	Fabbisogno energetico utile in regime non continuo	(MJ)
ne	Rendimento di emissione dei corpi scaldanti	
nc Obr	Rendimento di regolazione	/N /I I\
Qhr Qhrc	Fabbisogno energetico utile reale in regime non continuo	(MJ)
	Fabbisogno energetico utile reale in regime continuo	(MJ)
Qp Ope	Energia termica fornita dal sistema di produzione in regime non continuo	(MJ)
Qpc ta	Energia termica fornita dal sistema di produzione in regime continuo Periodo di attivazione del generatore	(MJ) (s)
Qaux	Energia termica fornita dagli ausiliari al fluido termovettore	(S) (MJ)
Qu	Energia termica utile	(MJ)
CP	Fattore di carico utile	(IVIO)
fc	Fattore di carico al focolare	
ntu	Rendimento termico utile, ntu/COP	
Qc	Energia primaria richiesta per la conversione del generatore	(MJ)
Qe	Energia primaria richiesta per il funzionamento degli ausiliari	(MJ)
Q	Fabbisogno di energia primaria	(MJ)
np	Rendimento di produzione	()
Qee	Fabbisogno di energia elettrica per apparecchiature ad aria	(MJ)
		` '

CALCOLO FABBISOGNO ENERGETICO DI ZONA

Impianto termico : NEG 1 Punto informazione

Zona termica : 1 informazione

Sistema di regolazione : Solo ambiente con regolatore Tipologia di prodotto : Regolatore si/no a differenziale Terminale di erogazione : Bocchette in sistemi di aria calda

Rendimento di emissione: 0,92

Regime di funzionamento impianto : Intermittente

Ore attenuazione/spegnimento fra le ore 16.00 e le 08.00 : 10
Ore attenuazione/spegnimento fra le ore 08.00 e le 16.00 : 4

	Qt (MJ)	Qg (MJ)	Qv (MJ)	Qu (MJ)	Qa (MJ)	QI (MJ)	Qse (MJ)	Qsi (MJ)	Qi (MJ)	γ
Novembre	697	312	201	0	0	1211	82	220	933	1,02
Dicembre	1423	323	411	0	0	2157	67	175	964	0,55
Gennaio	1752	323	506	0	0	2581	77	203	964	0,47
Febbraio	1530	292	442	0	0	2263	104	284	871	0,53
Marzo	1285	323	371	0	0	1979	168	489	964	0,80
	6686	1572	1932	0	0	10190	498	1372	4696	
	nu	Qh (MJ)	fil	fig	k	Qhvs (MJ)	ne	nc	Qhr (MJ)	Qhrc (MJ)
Novembre	0,6847	339	0,6696	0,7747	1,0000	144	0,92	0,92	170	400
Dicembre	0,8651	1105	0,6813	0,8115	1,0000	624	0,92	0,92	737	1305
Gennaio	0,8953	1458	0,6867	0,8288	1,0000	853	0,92	0,92	1008	1723
Febbraio	0,8690	1155	0,6858	0,8257	1,0000	652	0,92	0,92	770	1365
Marzo	0,7644	700	0,6790	0,8043	1,0000	336	0,92	0,92	397	827
-		4757				2609			3083	5620

I simboli utilizzati sono congrui con la normativa vigente.

FABBISOGNO ENERGETICO PER IMPIANTO DI RISCALDAMENTO

Impianto termico : NEG 1 Punto informazione Regime di funzionamento : Intermittente

Presenza di ottimizzatore: No

Ore giornaliere di attivazione dell'impianto : 10

Rendimento di distribuzione : 0,97
Rendimento di regolazione (media pesata) : 0,92
Rendimento di emissione (media pesata) : 0,92

	REGIME NO	N CONTINUO	REGIME CONTINUO
	Qhvs	Qp	Qpc
Novembre	144	175	412
Dicembre	624	760	1345
Gennaio	853	1039	1776
Febbraio	652	794	1407
Marzo	336	410	853
	2609	3178	5794

SISTEMA DI GENERAZIONE

Impianto termico : NEG 1 Punto informazione

: Solo riscaldamento

Generatore : 1

Caratteristiche del generatore

Energia elettrica assorbita da bruciatore/ausiliari (W) : 0

Potenza nominale utile del sistema di produzione (kW) : 2,5

Sorgente esterna: Temperatura esterna variabile

Condizioni di riferimento

Potenza termica resa (W) : 2500
Potenza elettrica assorbita (W) : 800
Coefficiente di effetto utile a temperatura nominale (COP) : 3,1250

Rendimento di produzione del generatore

REGIME NON CONTINUO

	ta	Qp (MJ)	Qaux (MJ)	Qu (MJ)	СР	FC	ntu/COP	Qc (MJ)	Qe (MJ)	Q (MJ)	np
Novembre	576000	175	0	175	1,0000	1,0000	1,2500	140	0	140	1,2500
Dicembre	1116000	760	0	760	1,0000	1,0000	1,2500	608	0	608	1,2500
Gennaio	1116000	1039	0	1039	1,0000	1,0000	1,2500	831	0	831	1,2500
Febbraio	1008000	794	0	794	1,0000	1,0000	1,2500	635	0	635	1,2500
Marzo	1116000	410	0	410	1,0000	1,0000	1,2500	328	0	328	1,2500
		3178	0	3178				2542	0	2542	1,2500

REGIME CONTINUO

	ta	Qp (MJ)	Qaux (MJ)	Qu (MJ)	СР	FC	ntu/COP	Qc (MJ)	Qe (MJ)	Q (MJ)	np
Novembre	1382400	412	0	412	1,0000	1,0000	1,2500	330	0	330	1,2500
Dicembre	2678400	1345	0	1345	1,0000	1,0000	1,2500	1076	0	1076	1,2500
Gennaio	2678400	1776	0	1776	1,0000	1,0000	1,2500	1421	0	1421	1,2500
Febbraio	2419200	1407	0	1407	1,0000	1,0000	1,2500	1126	0	1126	1,2500
Marzo	2678400	853	0	853	1,0000	1,0000	1,2500	682	0	682	1,2500
		5794	0	5794				4635	0	4635	1,2500

I simboli utilizzati sono coerenti con la normativa vigente.

Impianto termico : NEG 1 Punto informazione

	 	Qhvs (MJ)	Qp (MJ)	Q (MJ)	np		Qcontinuo (MJ)
Novembre	1	144	175	140	1,2500		330
Dicembre	İ	624	760	608	1,2500	İ	1076
Gennaio	İ	853	1039	831	1,2500	i	1421
Febbraio	į	652	794	635	1,2500	i	1126
Marzo	İ	336	410	328	1,2500	İ	682
		2609		2542			4635

RENDIMENTO GLOBALE MEDIO STAGIONALE (UNI 10348 9.)

Fabbisogno energetico utile stagionale (MJ) : 2609 Fabbisogno di energia primaria stagionale (MJ) : 2542

Rendimento globale medio stagionale : 1,0263

FABBISOGNO TERMICO ANNUO (D.L. 192 DEL 19/08/2005 e D.L. 311 del 26/12/2006)

Fabbisogno convenzionale di energia primaria (MJ) : 4635 Indice di prestazione energetica (KWh/m³anno) : 4,29

FABBISOGNO DI COMBUSTIBILE

Impianto termico : NEG 1 Punto informazione

Impianto termico : NEG 1 Punto informazione

VALORI LIMITE IMPIANTO (D.L. 192 del 19/08/2005 e D.L. 311 del 26/12/2006)

Potenza utile nominale (kW) : 2,500 Rendimento globale medio stagionale minimo, ng (%) : 66,19

Gradi giorno della località : 1153 V = Volume lordo delle parti di edificio riscaldato (m³) : 300,00 S = Superficie disperdente che delimita il volume V (m²) : 180,80 Rapporto S/V (1/m) : 0,603

Indice di prestazione energetica limite (KWh/m³anno) : 12,14

: NEG 1 Punto informazione Impianto termico

RIEPILOGO VERIFICHE EDIFICIO/IMPIANTO

Valore dei rendimenti medi stagionali di progetto

· di produzione	Ü	•	•	(%)	:	125,00
 di distribuzione 				(%)	:	97,00
· di regolazione				(%)	:	92,00
· di emissione				(%)	:	92,00

Rendimento globale medio stagionale 102,63 Rendimento globale medio stagionale minimo (%) : 66,19

Verifica: positiva

Fabbisogno annuo di energia primaria (1KWh = 3,6 MJ) (MJ) : 4635 Volume lordo delle parti di edificio riscaldate (m^3) : 300,00 Indice di prestazione energetica, Epi (KWh/m³anno): 4,29 Indice di prestazione energetica limite (KWh/m³anno): 12,14

Verifica: positiva

Mese di maggiore insolazione Marzo Contributo energetico dovuto alla radiazione solare Qs (MJ) 656,55 Contributo enegetico dovuto alle sorgenti interne Qi (MJ) : 964,10 Fabbisogno energetico di energia primaria Q (MJ) : 682,45

Generatore 1

(Generatore a pompa di calore)

Valore minimo del rendimento dei generatori di calore:

- ad acqua calda con Pn compresa tra 4 kW e 400 kW alla potenza nominale - n(100)=(84 + 2 * Log(Pn)) 84,80 (%) al 30% di Pn - n(30)=(80 + 3 * Log(Pn))(%) : 81,19

- ad aria calda con Pn non maggiore di 400 kW - nc=(83+2·log(Pn)) (%): 83,80

CARATTERISTICHE DEI LOCALI RISCALDATI

Impianto termico NEG 2 Attività Commerciale 2 negozio per la nautica Zona Locale 000002 Negozio nautica

Edifici adibiti ad attività commerciali. Categoria dest. uso E.5

Temperatura interna di progetto 20,00 (°C): Ricambi d'aria naturali 0,30 (vol/h): Superficie in pianta locale m² : 60.00 Volume netto locale m³ : 210,00

Superfici opache

m² (W	(W/m^2K) (W/m^2K) (W)
0,167 0,3	0,3890 0,3890 167
0,163 0,3	0,3780 0,3780 340
	507
	-, -

Totali 62,84 0,000

Esp.	Codice	Descrizione	Area (m²)	dt (°C)	co esp.	Fs	Fc	Ff	g	A eq. m²	Ufen (W/m²K)	Ucd (W/m²K)	Pt (W)
NE	FIN	FINESTRA 1.5x1.5	20,16	20,0	1,20 1	,00	0,45	0,63	0,54	3,086	1,9260	1,9261	932
Totali			20,16										932
Pavi	menti d	isperdenti verso il te	rreno										
Esp.	Codice	Descrizione	Area (m²)	dt (°C)	C (MJ/°C)	P (m)	F	oc	z (m)	Hg W/F		Jcd /m²K	Pt (W)
Т	PAV	PAVIMENTO AL SUOLO	45,00	7,5		29,00)				0,	4030	477
Totali			45,00		0,000								477

RIEPILOGO DISPERSIONI LOCALI

Impianto termico : NEG 2 Attività Commerciale

La potenza termica dispersa per trasmissione comprende anche l'eventuale maggiorazione.

Locale	Volume (m³)	Temp. (°C)	ric. (1/h)	vol./h (m³/h)	Qtra (W)	Qven (W)	Qtot (W)	S.disp. (m²)	Qi (MJ/mese)	c.t. (MJ/°C)
000002 Negozio nautica	210,0	20,00	0,30	63,00	1916	330	2246	128,0	933,00	1,18
	210,0			63,0	1916	330	2246	128,0	933,00	1,18

DISPERSIONI DELL'EDIFICIO RIPARTITE PER STRUTTURA

Impianto termico : NEG 2 Attività Commerciale

Le dispersioni sono espresse in (W) e non tengono conto di eventuali maggiorazioni

Codice	Ucd W/m²K	Area (m²)	N	ΝE	Ε	SE	S	SO	0	ΝO	Т	OR	Altro	Totale
PARETE	0,3890	18	-	167	-	-	-	-	-	-	-	-	-	167
SOLAIO	0,3780	45	-	-	-	-	-	-	-	-	-	340	-	340
PAV	0,4030	45	-	-	-	-	-	-	-	-	477	-	-	477
FIN	1,9261	20	-	932	-	-	-	-	-	-	-	-	-	932
Totali		128		1099							477	340		1916

TOTALI ZONE/IMPIANTO											
Codice		Descrizione	Volume (m³)	Trasm. (W)	Magg. (W)	Marg. (W)	VA (W)	Ventil. (W)	Recup. (W)	Totale (W)	
NEG 2	2	negozio per la Attività Comm	157,5 157,5	1916 1916	0 0	0 0	0 0	330 330	0 0	2246 2246	
			157,5	1916	0	0	0	330	0	2246	

Impianto termico :NEG 2 Attività Commerciale

COEFFICIENTE DI DISPERSIONE VOLUMICO DI PROGETTO (UNI 10379)

Potenza termica dispersa per trasmissione (W) : 1916
Volume lordo delle parti di edificio riscaldato (m³) : 225,00
Temperatura interna di progetto (°C) : 20,00
Temperatura esterna minima di progetto (°C) : 0,00

Coefficiente di dispersione volumico di progetto (W/m³-K) : 0,426

SELEZIONE DEL METODO DI CALCOLO (UNI 10379)

Area equivalente soleggiata dell'edificio (m²)1,92 Irradianza media stagionale sul piano orizzontale (W/m²)104,00 Volume lordo delle parti di edificio riscaldato (m^3) 225,00 Apporti interni (W/m^3) 0,00 Indice volumico degli apporti gratuiti (W/m^3) 0,887 Coefficiente di dispersione volumico di progetto (W/m³·K) 0,426 Numero di volumi d'aria ricambiati (val. medio 24h) (n/h) 0,30 Temperatura interna di progetto (°C) 20,00 Temperatura media stagionale dell'aria esterna (°C) 10,61 Indice volumico delle dispersioni (W/m^3) 4,960 Indice degli apporti / indice delle dispersioni 0,179 Rapporto Superficie trasparente/utile (12,7008 / 45) 0,28

Metodo di calcolo selezionato (UNI 10379) : A

SIMBOLI, DEFINIZIONI E UNITA' DI MISURA

Qt	Energia scambiata per trasmissione con l'ambiente esterno	(MJ)
Qg	Energia scambiata per trasmissione con il terreno	(MJ)
Qv	Energia scambiata per ventilazione	(MJ)
Qu	Energia scambiata per trasmissione con ambienti adiacenti	(MJ)
Qa	Energia scambiata con zone a temperatura fissata	(MJ)
QI	Energia scambiata per trasmissione e ventilazione	(MJ)

Qse	Energia dovuta agli apporti solari su superfici opache	(MJ)
Qsi	Energia dovuta agli apporti solari su superfici trasparenti	(MJ)
Qi	Energia dovuta agli apporti interni	(MJ)
γ	Rapporto tra l'energia dovuta agli apporti gratuiti e l'energia uscente	
nu	Fattore di utilizzazione degli apporti energetici gratuiti	
Qh	Fabbisogno energetico utile ideale richiesto da ciascuna zona	(MJ)
fil	Fattore di riduzione dell'energia dispersa per trasmissione e per ventilazione	
fig	Fattore di riduzione dell'apporto energetico dovuto alle sorgenti interne e solari	
kappa	Coefficiente per modalità di funzionamento	
Qhvs	Fabbisogno energetico utile in regime non continuo	(MJ)
ne	Rendimento di emissione dei corpi scaldanti	
nc	Rendimento di regolazione	
Qhr	Fabbisogno energetico utile reale in regime non continuo	(MJ)
Qhrc	Fabbisogno energetico utile reale in regime continuo	(MJ)
Qp	Energia termica fornita dal sistema di produzione in regime non continuo	(MJ)
Qpc	Energia termica fornita dal sistema di produzione in regime continuo	(MJ)
ta	Periodo di attivazione del generatore	(s)
Qaux	Energia termica fornita dagli ausiliari al fluido termovettore	(MJ)
Qu	Energia termica utile	(MJ)
CP	Fattore di carico utile	
fc	Fattore di carico al focolare	
ntu	Rendimento termico utile, ntu/COP	
Qc	Energia primaria richiesta per la conversione del generatore	(MJ)
Qe	Energia primaria richiesta per il funzionamento degli ausiliari	(MJ)
Q	Fabbisogno di energia primaria	(MJ)
np	Rendimento di produzione	
Qee	Fabbisogno di energia elettrica per apparecchiature ad aria	(MJ)

CALCOLO FABBISOGNO ENERGETICO DI ZONA

Impianto termico : NEG 2 Attività Commerciale Zona termica : 2 negozio per la nautica

Sistema di regolazione : Solo ambiente con regolatore Tipologia di prodotto : Regolatore si/no a differenziale Terminale di erogazione : Bocchette in sistemi di aria calda

Rendimento di emissione: 0,92

Regime di funzionamento impianto : Intermittente

Ore attenuazione/spegnimento fra le ore 16.00 e le 08.00 : 10 Ore attenuazione/spegnimento fra le ore 08.00 e le 16.00 : 4

	Qt (MJ)	Qg (MJ)	Qv (MJ)	Qu (MJ)	Qa (MJ)	QI (MJ)	Qse (MJ)	Qsi (MJ)	Qi (MJ)	γ
Novembre Dicembre Gennaio Febbraio Marzo	928 1565 1850 1625 1446	308 319 319 288 319	233 393 464 408 363	0 0 0 0	0 0 0 0	1469 2277 2632 2321 2127	50 41 47 63 100	259 206 239 334 575	933 964 964 871 964	0,84 0,52 0,47 0,53 0,76
	7414	1552	1860	0	0	10826	301	1613	4696	
	nu	Qh (MJ)	fil	fig	k	Qhvs (MJ)	ne	nc	Qhr (MJ)	Qhrc (MJ)

Novembre Dicembre Gennaio Febbraio	0,7500 0,8736 0,8956 0,8695	524 1214 1507 1210	0,6696 0,6813 0,6867 0,6858	0,7747 0,8115 0,8288 0,8257	1,0000 1,0000 1,0000 1,0000	257 694 882 683	0,92 0,92 0,92 0,92	0,92 0,92 0,92 0,92	304 820 1042 807	619 1434 1781 1429	
Marzo	0,7811	826	0,6790	0,8043	1,0000	410	0,92	0,92	484	975	_
		5281				2926			3457	6239	

I simboli utilizzati sono congrui con la normativa vigente.

FABBISOGNO ENERGETICO PER IMPIANTO DI RISCALDAMENTO

Impianto termico : NEG 2 Attività Commerciale

Regime di funzionamento : Intermittente

Presenza di ottimizzatore: No

Ore giornaliere di attivazione dell'impianto : 10

Rendimento di distribuzione : 0,97
Rendimento di regolazione (media pesata) : 0,92
Rendimento di emissione (media pesata) : 0,92

	REGIME NOI Qhvs	N CONTINUO Qp	REGIME CONTINUO Qpc
Novembre	257	313	639
Dicembre	694	845	1479
Gennaio	882	1074	1836
Febbraio	683	832	1474
Marzo	410	499	1006
	2926	3564	6432

SISTEMA DI GENERAZIONE

Impianto termico : NEG 2 Attività Commerciale

Solo riscaldamento

Generatore : 1 split

Caratteristiche del generatore

Energia elettrica assorbita da bruciatore/ausiliari (W) : 0

Potenza nominale utile del sistema di produzione (kW) : 2,5

Sorgente esterna: Temperatura esterna variabile

Condizioni di riferimento

Potenza termica resa (W): 2500
Potenza elettrica assorbita (W): 800
Coefficiente di effetto utile a temperatura nominale (COP): 3,1250
Temperatura di riferimento della sorgente fredda (°C): 0,00

Rendimento di produzione del generatore

REGIME NON CONTINUO

	ta	Qp (MJ)	Qaux (MJ)	Qu (MJ)	СР	FC	ntu/COP	Qc (MJ)	Qe (MJ)	Q (MJ)	np
Novembre	576000	313	0	313	1,0000	1,0000	1,8187	172	0	172	1,8187
Dicembre	1116000	845	0	845	1,0000	1,0000	1,6920	500	0	500	1,6920
Gennaio	1116000	1074	0	1074	1.0000	1.0000	1.6292	659	0	659	1.6292
Febbraio	1008000	832	0	832	1.0000	1.0000	1,6405	507	0	507	1,6405
Marzo	1116000	499	0	499	1,0000	1,0000	1,7177	291	0	291	1,7177
		3564	0	3564				2120	0	2120	1 6741

REGIME CONTINUO

	ta	Qp (MJ)	Qaux (MJ)	Qu (MJ)	СР	FC	ntu/COP	Qc (MJ)	Qe (MJ)	Q (MJ)	np
Novembre	1382400	639	0	639	1,0000	1,0000	1,8187	351	0	351	1,8187
Dicembre	2678400	1479	0	1479	1,0000	1,0000	1,6920	874	0	874	1,6920
Gennaio	2678400	1836	0	1836	1,0000	1,0000	1,6292	1127	0	1127	1,6292
Febbraio	2419200	1474	0	1474	1,0000	1,0000	1,6405	898	0	898	1,6405
Marzo	2678400	1006	0	1006	1,0000	1,0000	1,7177	585	0	585	1,7177
		6432	0	6432				3836	0	3836	1,6770

I simboli utilizzati sono coerenti con la normativa vigente.

Impianto termico : NEG 2 Attività Commerciale

		Qhvs (MJ)	Qp (MJ)	Q (MJ)	np	 	Qcontinuo (MJ)
Novembre	1	257	313	172	1,8187		351
Dicembre	j	694	845	500	1,6920	j	874
Gennaio	j	882	1074	659	1,6292	j	1127
Febbraio	j	683	832	507	1,6405	i	898
Marzo	İ	410	499	291	1,7177	İ	585
	1	2926		2129		1	3836

RENDIMENTO GLOBALE MEDIO STAGIONALE (UNI 10348 9.)

Fabbisogno energetico utile stagionale (MJ) : 2926 Fabbisogno di energia primaria stagionale (MJ) : 2129

Rendimento globale medio stagionale : 1,3744

(MJ) : 3836 (KWh/m²anno) : 23,68

FABBISOGNO DI COMBUSTIBILE

Impianto termico : NEG 2 Attività Commerciale

Impianto termico : NEG 2 Attività Commerciale

VALORI LIMITE IMPIANTO (D.L. 192 del 19/08/2005 e D.L. 311 del 26/12/2006)

Potenza utile nominale (kW): 2,500 **Rendimento globale medio stagionale minimo, ng** (%): 66,19

Indice di prestazione energetica limite (KWh/m²anno) : 43,89

Impianto termico : NEG 2 Attività Commerciale

RIEPILOGO VERIFICHE EDIFICIO/IMPIANTO

Valore dei rendimenti medi stagionali di progetto

· di produzione	(%)	:	167,41
· di distribuzione	(%)	:	97,00
· di regolazione	(%)	:	92,00
· di emissione	(%)	:	92,00

Rendimento globale medio stagionale (%) : 137,44 Rendimento globale medio stagionale minimo (%) : 66,19

Verifica: positiva

Fabbisogno annuo di energia primaria (1KWh = 3,6 MJ)
Superficie utile dell'edificio
Indice di prestazione energetica, Epi
Indice di prestazione energetica limite $(KWh/m^2anno) : 3836$ $(KWh/m^2anno) : 23,68$ $(KWh/m^2anno) : 43,89$

Verifica: positiva

Mese di maggiore insolazione : Marzo Contributo energetico dovuto alla radiazione solare Qs (MJ) : 674,74 Contributo enegetico dovuto alle sorgenti interne Qi (MJ) : 964,10 Fabbisogno energetico di energia primaria Q (MJ) : 585,43

Generatore 1 (Generatore a pompa di calore)

Valore minimo del rendimento dei generatori di calore:

- ad acqua calda con Pn compresa tra 4 kW e 400 kW alla potenza nominale - n(100)=(84 + 2 * Log(Pn))

(%): 84,80 al 30% di Pn - n(30)=(80 + 3 * Log(Pn)) 81,19 (%) - ad aria calda con Pn non maggiore di 400 kW - nc=(83+2·log(Pn)) (%) 83,80

CARATTERISTICHE DEI LOCALI RISCALDATI

Impianto termico NEG 3 Negozio per la nautica Zona Negozio per la nautica 3 Locale 000003 Negozio nautica

Categoria dest. uso E.5 Edifici adibiti ad attività commerciali.

Temperatura interna di progetto 20,00 (°C): Ricambi d'aria naturali (vol/h): 0,30 60,00 Superficie in pianta locale m²: Volume netto locale m³ : 210,00

Superfici opache

Esp.	Codice	Descrizione	Area (m²)	dt (°C)	co esp. (C MJ/°C)	Fs	Fer	а	A eq. m²	Ufen (W/m²K)	Ucd (W/m²K)	Pt (W)
NE	PARETI		17,84	20,0	1,20			1,00		0,167	0,3890	0,3890	167
OR	SOLAIC	SOLAIO ESTERNO	45,00	20,0	1,00	1	1,00	0,80	0,30	0,163	0,3780	0,3780	340
Totali			62,84			0,000							507
Supe	rfici tra	sparenti											
Esp.	Codice	Descrizione	Area (m²)	dt (°C)	co esp.	Fs	F	c F	₹f (g A eq m²	. Ufen (W/m²K)	Ucd (W/m²K)	Pt (W)
NE	FIN	FINESTRA 1.5x1.5	20,16	20,0	1,20	1,00	0,4	4 5 0,	63 0,	54 3,080	6 1,9260	1,9261	932
Totali			20,16										932
Pavimenti disperdenti verso il terreno													
Esp.		Descrizione	Area (m²)	dt (°C)	C (MJ/°	P C) (m		Fpc	z (m))	0	Ucd //m²K	Pt (W)
T	PAV	PAVIMENTO AL SUOLO	45,00	7,5		29,0	00				0	,4030	477
Totali			45,00		0,00	0							477

RIEPILOGO DISPERSIONI LOCALI

Impianto termico NEG 3 Negozio per la nautica

La potenza termica dispersa per trasmissione comprende anche l'eventuale maggiorazione.

Locale	Volume (m³)	Temp. (°C)	ric. (1/h)	vol./h (m³/h)	Qtra (W)	Qven (W)	Qtot (W)	S.disp. (m²) (Qi (MJ/mese)	c.t. (MJ/°C)
000003 Negozio nautica	210,0	20,00	0,30	63,00	1916	330	2246	128,0	933,00	1,18
	210,0			63,0	1916	330	2246	128,0	933,00	1,18

DISPERSIONI DELL'EDIFICIO RIPARTITE PER STRUTTURA

Impianto termico : NEG 3 Negozio per la nautica

Le dispersioni sono espresse in (W) e non tengono conto di eventuali maggiorazioni

Codice	Ucd W/m²K	Area (m²)	N	ΝE	E	SE	S	SO	0	ΝO	Т	OR	Altro	Totale
PARETE	0,3890	18	-	167	-	-	-	-	-	-	-	-	-	167
SOLAIO	0,3780	45	-	-	-	-	-	-	-	-	-	340	-	340
PAV	0,4030	45	-	-	-	-	-	-	-	-	477	-	-	477
FIN	1,9261	20	-	932	-	-	-	-	-	-	-	-	-	932
Totali		128		1099							477	340		1916

TOTALI ZONE/IMPIANTO Codice Descrizione Volume Trasm. Magg. Marg. VA Ventil. Recup. Totale (W) (W) (m^3) (W) (W) (W) (W) (W) NEG 3 Negozio per la 157,5 1916 0 0 0 330 0 2246 Negozio per la 157,5 1916 330 2246 0 0

0

0

0

330

0

2246

1916

Impianto termico :NEG 3 Negozio per la nautica

COEFFICIENTE DI DISPERSIONE VOLUMICO DI PROGETTO (UNI 10379)

Potenza termica dispersa per trasmissione (W) : 1916
Volume lordo delle parti di edificio riscaldato (m³) : 225,00
Temperatura interna di progetto (°C) : 20,00
Temperatura esterna minima di progetto (°C) : 0,00

157,5

Coefficiente di dispersione volumico di progetto (W/m³-K) : 0,426

SELEZIONE DEL METODO DI CALCOLO (UNI 10379)

Area equivalente soleggiata dell'edificio (m²)	:	1,92
Irradianza media stagionale sul piano orizzontale (W/m²)	:	104,00
Volume lordo delle parti di edificio riscaldato (m³)	:	225,00
Apporti interni (W/m³)	:	0,00
Indice volumico degli apporti gratuiti (W/m³)	:	0,887
Coefficiente di dispersione volumico di progetto (W/m³·K)	:	0,426
Numero di volumi d'aria ricambiati (val. medio 24h) (n/h)	:	0,30
Temperatura interna di progetto (°C)	:	20,00
Temperatura media stagionale dell'aria esterna (°C)	:	10,61
Indice volumico delle dispersioni (W/m³)	:	4,960

Indice degli apporti / indice delle dispersioni : 0,179

Rapporto Superficie trasparente/utile (12,7008 / 45) : 0,28

Metodo di calcolo selezionato (UNI 10379) : A

SIMBOLI, DEFINIZIONI E UNITA' DI MISURA

Qt Qg	Energia scambiata per trasmissione con l'ambiente esterno Energia scambiata per trasmissione con il terreno	(MJ) (MJ)
Qv	Energia scambiata per ventilazione	(MJ)
Qu	Energia scambiata per trasmissione con ambienti adiacenti	(MJ)
Qa	Energia scambiata con zone a temperatura fissata	(MJ)
QI	Energia scambiata per trasmissione e ventilazione	(MJ)
Qse	Energia dovuta agli apporti solari su superfici opache	(MJ)
Qsi	Energia dovuta agli apporti solari su superfici trasparenti	(MJ)
Qi	Energia dovuta agli apporti interni	(MJ)
γ nu	Rapporto tra l'energia dovuta agli apporti gratuiti e l'energia uscente Fattore di utilizzazione degli apporti energetici gratuiti	
Qh	Fabbisogno energetico utile ideale richiesto da ciascuna zona	(MJ)
fil	Fattore di riduzione dell'energia dispersa per trasmissione e per ventilazione	(1013)
fig	Fattore di riduzione dell'apporto energetico dovuto alle sorgenti interne e solari	
kappa	Coefficiente per modalità di funzionamento	
Qhvs	Fabbisogno energetico utile in regime non continuo	(MJ)
ne	Rendimento di emissione dei corpi scaldanti	(1010)
nc	Rendimento di regolazione	
Qhr	Fabbisogno energetico utile reale in regime non continuo	(MJ)
Qhrc	Fabbisogno energetico utile reale in regime continuo	(MJ)
Qp	Energia termica fornita dal sistema di produzione in regime non continuo	(MJ)
Qpc	Energia termica fornita dal sistema di produzione in regime continuo	(MJ)
ta	Periodo di attivazione del generatore	(s)
Qaux	Energia termica fornita dagli ausiliari al fluido termovettore	(ÌMĴ)
Qu	Energia termica utile	(MJ)
CP	Fattore di carico utile	, ,
fc	Fattore di carico al focolare	
ntu	Rendimento termico utile, ntu/COP	
Qc	Energia primaria richiesta per la conversione del generatore	(MJ)
Qe	Energia primaria richiesta per il funzionamento degli ausiliari	(MJ)
Q	Fabbisogno di energia primaria	(MJ)
np	Rendimento di produzione	` '
Qee	Fabbisogno di energia elettrica per apparecchiature ad aria	(MJ)

CALCOLO FABBISOGNO ENERGETICO DI ZONA

10

Impianto termico : NEG 3 Negozio per la nautica Zona termica : 3 Negozio per la nautica

Sistema di regolazione : Solo ambiente con regolatore Tipologia di prodotto : Regolatore si/no a differenziale Terminale di erogazione : Bocchette in sistemi di aria calda

Rendimento di emissione: 0,92

Regime di funzionamento impianto : Intermittente

Ore attenuazione/spegnimento fra le ore 16.00 e le 08.00

Ore attenuazione/spegnimento fra le ore 08.00 e le 16.00

	Qt (MJ)	Qg (MJ)	Qv (MJ)	Qu (MJ)	Qa (MJ)	QI (MJ)	Qse (MJ)	Qsi (MJ)	Qi (MJ)	γ
Novembre Dicembre	928 1565	308 319	233 393	0	0	1469 2277	50 41	259 206	933 964	0,84 0,52
Gennaio Febbraio Marzo	1850 1625 1446	319 288 319	464 408 363	0 0 0	0 0 0	2632 2321 2127	47 63 100	239 334 575	964 871 964	0,47 0,53 0,76
	7414	1552	1860	0	0	10826	301	1613	4696	
	nu	Qh (MJ)	fil	fig	k	Qhvs (MJ)	ne	nc	Qhr (MJ)	Qhrc (MJ)
Novembre Dicembre Gennaio Febbraio Marzo	0,7500 0,8736 0,8956 0,8695 0,7811	524 1214 1507 1210 826	0,6696 0,6813 0,6867 0,6858 0,6790	0,7747 0,8115 0,8288 0,8257 0,8043	1,0000 1,0000 1,0000 1,0000 1,0000	257 694 882 683 410	0,92 0,92 0,92 0,92 0,92	0,92 0,92 0,92 0,92 0,92	304 820 1042 807 484	619 1434 1781 1429 975
		5281				2926			3457	6239

I simboli utilizzati sono congrui con la normativa vigente.

FABBISOGNO ENERGETICO PER IMPIANTO DI RISCALDAMENTO

Impianto termico : NEG 3 Negozio per la nautica

Regime di funzionamento : Intermittente

Presenza di ottimizzatore: No

Ore giornaliere di attivazione dell'impianto : 10

Rendimento di distribuzione : 0,97 Rendimento di regolazione (media pesata) : 0,92 Rendimento di emissione (media pesata) : 0,92

	REGIME NO	N CONTINUO	REGIME CONTINUO				
	Qhvs	Qp	Qpc				
Novembre	257	313	639				
Dicembre	694	845	1479				
Gennaio	882	1074	1836				
Febbraio	683	832	1474				
Marzo	410	499	1006				
	2926	3564	6432				

SISTEMA DI GENERAZIONE

Impianto termico : NEG 3 Negozio per la nautica

: Solo riscaldamento

Generatore : 1

Caratteristiche del generatore

Energia elettrica assorbita da bruciatore/ausiliari (W) : 0

Potenza nominale utile del sistema di produzione (kW) : 2,5

Sorgente esterna : Temperatura esterna variabile

Condizioni di riferimento

Rendimento di produzione del generatore

REGIME NON CONTINUO

	ta	Qp (MJ)	Qaux (MJ)	Qu (MJ)	СР	FC	ntu/COP	Qc (MJ)	Qe (MJ)	Q (MJ)	np
Novembre	576000	313	0	313	1,0000	1,0000	0,0000	0	0		
Dicembre	1116000	845	0	845	1,0000	1,0000	0.0000	0	0		
Gennaio	1116000	1074	0	1074	1,0000	1,0000	0,0000	0	0		
Febbraio	1008000	832	0	832	1,0000	1,0000	0.0000	0	0		
Marzo	1116000	499	0	499	1,0000	1,0000	0,0000	0	0		
-		3564	0	3564				0	0	0	0,0000

REGIME CONTINUO

	ta	Qp (MJ)	Qaux (MJ)	Qu (MJ)	СР	FC	ntu/COP	Qc (MJ)	Qe (MJ)	Q (MJ)	np
Novembre	1382400	639	0	639	1,0000	1,0000	0,0000	0	0	0	0
Dicembre	2678400	1479	0	1479	1,0000	1,0000	0,0000	0	0	0	0
Gennaio	2678400	1836	0	1836	1,0000	1,0000	0,0000	0	0	0	0
Febbraio	2419200	1474	0	1474	1,0000	1,0000	0,0000	0	0	0	0
Marzo	2678400	1006	0	1006	1,0000	1,0000	0,0000	0	0	0	0
		6432	0	6432				0	0	0	0,0000

I simboli utilizzati sono coerenti con la normativa vigente.

Impianto termico : NEG 3 Negozio per la nautica

		Qhvs (MJ)	Qp (MJ)	Q (MJ)	np		Qcontinuo (MJ)
Novembre	1	257	313	0	0,0000		0
Dicembre	İ	694	845	0	0,0000	i	0
Gennaio	İ	882	1074	0	0,0000	i	0
Febbraio	i	683	832	0	0,0000	i	0
Marzo	İ	410	499	0	0,0000	j	0
		2926		0			0

Fabbisogno energetico utile stagionale (MJ) : 2926 Fabbisogno di energia primaria stagionale (MJ) : 0

Rendimento globale medio stagionale : 0,0000

FABBISOGNO TERMICO ANNUO (D.L. 192 DEL 19/08/2005 e D.L. 311 del 26/12/2006)

Fabbisogno convenzionale di energia primaria (MJ) : 0 Indice di prestazione energetica (KWh/m²anno) : 0,00

FABBISOGNO DI COMBUSTIBILE

Impianto termico : NEG 3 Negozio per la nautica

Impianto termico : NEG 3 Negozio per la nautica

VALORI LIMITE IMPIANTO (D.L. 192 del 19/08/2005 e D.L. 311 del 26/12/2006)

Potenza utile nominale (kW): 2,500 Rendimento globale medio stagionale minimo, ng (%): 66,19

Indice di prestazione energetica limite (KWh/m²anno) : 43,89

Impianto termico : NEG 3 Negozio per la nautica

RIEPILOGO VERIFICHE EDIFICIO/IMPIANTO

Valore dei rendimenti medi stagionali di progetto

 - di produzione
 (%) : 0,00

 - di distribuzione
 (%) : 97,00

 - di regolazione
 (%) : 92,00

 - di emissione
 (%) : 92,00

Rendimento globale medio stagionale (%) : 0,00 Rendimento globale medio stagionale minimo (%) : 66,19

Verifica: negativa

Fabbisogno annuo di energia primaria (1KWh = 3,6 MJ)
Superficie utile dell'edificio (m^2) : 45,00
Indice di prestazione energetica, Epi (KWh/m^2anno) : 0,00
Indice di prestazione energetica limite (KWh/m^2anno) : 43,89

Verifica: positiva

Mese di maggiore insolazione : Marzo Contributo energetico dovuto alla radiazione solare Qs (MJ) : 674,74 Contributo enegetico dovuto alle sorgenti interne Qi (MJ) : 964,10 Fabbisogno energetico di energia primaria Q (MJ) : 0,00

Generatore 1

(Generatore a pompa di calore)

Valore minimo del rendimento dei generatori di calore:

- ad acqua calda con Pn compresa tra 4 kW e 400 kW alla potenza nominale - n(100)=(84 + 2 * Log(Pn))

alla potenza nominale - n(100)=(84 + 2 * Log(Pn)) (%) : 84,80 al 30% di Pn - n(30)=(80 + 3 * Log(Pn)) (%) : 81,19 - ad aria calda con Pn non maggiore di 400 kW - $nc=(83+2 \cdot log(Pn))$ (%) : 83,80

CARATTERISTICHE DEI LOCALI RISCALDATI

Impianto termico : NEG 4 Alimentari Zona : 4 Alimentari

Locale : 000004 Negozio alimentari

Categoria dest. uso : E.5 Edifici adibiti ad attività commerciali.

Superfici opache

Esp.	Codice	Descrizione	Area (m²)	dt (°C)	co esp. (C MJ/°C	Fs)	Fer	а	A eq. m²	Ufen (W/m²K)	Ucd (W/m²K)	Pt (W)
NE	PARETE	MURO ISOLATO IN	17,84	20,0	1,20		1,00	1,00	0,60	0,167	0,3890	0,3890	167
OR	SOLAIO	SOLAIO ESTERNO	45,00	20,0	1,00		1,00	0,80	0,30	0,163	0,3780	0,3780	340
SE	PARETE	MURO ISOLATO IN	16,60	20,0	1,10		1,00	1,00	0,60	0,155	0,3890	0,3890	142
Totali			79,44			0,872							649
Supe	rfici tra	sparenti											
Esp.	Codice	Descrizione	Area (m²)	dt (°C)	co esp.	Fs	F	c F	Ff (g Aeo m²	•		Pt (W)
NE	FIN	FINESTRA 1.5x1.5	20,16	20,0	1,20	1,00	0,	45 O,	63 0,	54 3,08	6 1,926	0 1,9261	932
SE	FIN	FINESTRA 1.5x1.5	0,50	20,0	1,10	1,00	0,	45 0,	63 0,	54 0,07	7 1,9260	0 1,9261	21
Totali			20,66										953
Pavir	nenti di	sperdenti verso il te	reno										
Esp.	Codice	Descrizione	Area (m²)	dt (°C)	C (MJ/°(ວ ກ)	Fpc	z (m)		Hg W/K	Ucd W/m²K	Pt (W)
Т	PAV	PAVIMENTO AL SUOLO	45,00	7,5		29	,00					0,4030	477
Totali			45,00		0,97	4							477

RIEPILOGO DISPERSIONI LOCALI

Impianto termico : NEG 4 Alimentari

La potenza termica dispersa per trasmissione comprende anche l'eventuale maggiorazione.

Locale Volume Temp. ric. vol./h Qtra Qven Qtot S.disp. Qi c.t.

	(m³)	(°C)	(1/h)	(m³/h)	(W)	(W)	(W)	(m²)	(MJ/mese)	(MJ/°C)
000004 Negozio alimentari	210,0	20,00	0,30	63,00	2079	440	2519	145,1	933,00	1,36
	210,0			63,0	2079	440	2519	145,1	933,00	1,36

DISPERSIONI DELL'EDIFICIO RIPARTITE PER STRUTTURA

Impianto termico : NEG 4 Alimentari

Le dispersioni sono espresse in (W) e non tengono conto di eventuali maggiorazioni

Codice	Ucd W/m²K	Area (m²)	N	ΝE	E	SE	S	SO	0	ΝO	Т	OR	Altro	Totale
PARETE	0,3890	34	-	167	-	142	-	-	-	-	-	-	-	309
SOLAIO	0,3780	45	-	-	-	-	-	-	-	-	-	340	-	340
PAV	0,4030	45	-	-	-	-	-	-	-	-	477	-	-	477
FIN	1,9261	21	-	932	-	21	-	-	-	-	-	-	-	953
Totali		145		1099		163					477	340		2079

TOTALI ZONE/IMPIANTO Codice Descrizione Volume Trasm. Magg. Marg. VA Ventil. Recup. Totale (m^3) (W) (W) (W) (W) (W) (W) NEG 4 4 Alimentari 210,0 2079 0 0 0 440 0 2519 Alimentari 210,0 2079 0 0 440 0 2519 210,0 2079 0 0 440 2519 0 0

Impianto termico :NEG 4 Alimentari

COEFFICIENTE DI DISPERSIONE VOLUMICO DI PROGETTO (UNI 10379)

Potenza termica dispersa per trasmissione (W) : 2079
Volume lordo delle parti di edificio riscaldato (m³) : 300,00
Temperatura interna di progetto (°C) : 20,00
Temperatura esterna minima di progetto (°C) : 0,00

Coefficiente di dispersione volumico di progetto (W/m³·K) : 0,347

SELEZIONE DEL METODO DI CALCOLO (UNI 10379)

Indice degli apporti / indice delle dispersioni : 0,168

Rapporto Superficie trasparente/utile (13,0158 / 60) : 0,22

Metodo di calcolo selezionato (UNI 10379) : A

SIMBOLI, DEFINIZIONI E UNITA' DI MISURA

Qt Qg Qv	Energia scambiata per trasmissione con l'ambiente esterno Energia scambiata per trasmissione con il terreno Energia scambiata per ventilazione	(MJ) (MJ) (MJ)
Qu	Energia scambiata per trasmissione con ambienti adiacenti	(MJ)
Qa	Energia scambiata con zone a temperatura fissata	(MJ)
QI	Energia scambiata per trasmissione e ventilazione	(MJ)
Qse	Energia dovuta agli apporti solari su superfici opache	(MJ)
Qsi	Energia dovuta agli apporti solari su superfici trasparenti	(MJ)
Qi	Energia dovuta agli apporti interni	(MJ)
γ	Rapporto tra l'energia dovuta agli apporti gratuiti e l'energia uscente	, ,
nu	Fattore di utilizzazione degli apporti energetici gratuiti	
Qh	Fabbisogno energetico utile ideale richiesto da ciascuna zona	(MJ)
fil	Fattore di riduzione dell'energia dispersa per trasmissione e per ventilazione	
fig	Fattore di riduzione dell'apporto energetico dovuto alle sorgenti interne e solari	
kappa	Coefficiente per modalità di funzionamento	
Qhvs	Fabbisogno energetico utile in regime non continuo	(MJ)
ne	Rendimento di emissione dei corpi scaldanti	
nc	Rendimento di regolazione	
Qhr	Fabbisogno energetico utile reale in regime non continuo	(MJ)
Qhrc	Fabbisogno energetico utile reale in regime continuo	(MJ)
Qp	Energia termica fornita dal sistema di produzione in regime non continuo	(MJ)
Qpc	Energia termica fornita dal sistema di produzione in regime continuo	(MJ)
ta	Periodo di attivazione del generatore	(s)
Qaux	Energia termica fornita dagli ausiliari al fluido termovettore	(MJ)
Qu	Energia termica utile	(MJ)
CP	Fattore di carico utile	
fc	Fattore di carico al focolare	
ntu	Rendimento termico utile, ntu/COP	
Qc	Energia primaria richiesta per la conversione del generatore	(MJ)
Qe	Energia primaria richiesta per il funzionamento degli ausiliari	(MJ)
Q	Fabbisogno di energia primaria	(MJ)
np	Rendimento di produzione	/B.4.13
Qee	Fabbisogno di energia elettrica per apparecchiature ad aria	(MJ)

CALCOLO FABBISOGNO ENERGETICO DI ZONA

Impianto termico : NEG 4 Alimentari Zona termica : 4 Alimentari

Sistema di regolazione : Solo ambiente con regolatore Tipologia di prodotto : Regolatore si/no a differenziale Terminale di erogazione : Bocchette in sistemi di aria calda Rendimento di emissione: 0,92

Regime di funzionamento impianto : Intermittente

Ore attenuazione/spegnimento fra le ore 16.00 e le 08.00 : 10
Ore attenuazione/spegnimento fra le ore 08.00 e le 16.00 : 4

	Qt (MJ)	Qg (MJ)	Qv (MJ)	Qu (MJ)	Qa (MJ)	QI (MJ)	Qse (MJ)	Qsi (MJ)	Qi (MJ)	γ
Novembre	1037	308	310	0	0	1656	92	280	933	0,78
Dicembre	1750	319	524	0	0	2593	80	225	964	0,47
Gennaio	2068	319	619	0	0	3006	90	260	964	0,42
Febbraio	1817	288	544	0	0	2649	108	357	871	0,48
Marzo	1617	319	484	0	0	2419	155	603	964	0,69
	8290	1552	2480	0	0	12322	525	1725	4696	
	nu	Qh (MJ)	fil	fig	k	Qhvs (MJ)	ne	nc	Qhr (MJ)	Qhrc (MJ)
Novembre	0,7747	624	0,6696	0,7747	1,0000	319	0,92	0,92	377	738
Dicembre	0,8928	1452	0,6813	0,8115	1,0000	851	0,92	0,92	1005	1715
Gennaio	0,9125	1799	0,6867	0,8288	1,0000	1077	0,92	0,92	1272	2125
Febbraio	0,8889	1449	0,6858	0,8257	1,0000	841	0,92	0,92	993	1712
Marzo	0,8072	999	0,6790	0,8043	1,0000	520	0,92	0,92	615	1181
		6323				3608			4262	7471

I simboli utilizzati sono congrui con la normativa vigente.

FABBISOGNO ENERGETICO PER IMPIANTO DI RISCALDAMENTO

Impianto termico : NEG 4 Alimentari Regime di funzionamento : Intermittente

Presenza di ottimizzatore: No

Ore giornaliere di attivazione dell'impianto : 10

Rendimento di distribuzione : 0,97
Rendimento di regolazione (media pesata) : 0,92
Rendimento di emissione (media pesata) : 0,92

	REGIME NOI Qhvs	N CONTINUO Qp	REGIME CONTINUO Qpc				
Novembre	319	389	760				
Dicembre	851	1036	1768				
Gennaio	1077	1311	2191				
Febbraio	841	1024	1765				
Marzo	520	634	1217				
	3608	4394	7702				

SISTEMA DI GENERAZIONE

Impianto termico : NEG 4 Alimentari : Solo riscaldamento

Generatore : 1

Caratteristiche del generatore

Energia elettrica assorbita da bruciatore/ausiliari (W) : 0

Potenza nominale utile del sistema di produzione (kW) : 2,5

Sorgente esterna: Temperatura esterna variabile

Condizioni di riferimento

Potenza termica resa (W): 2500
Potenza elettrica assorbita (W): 800
Coefficiente di effetto utile a temperatura nominale
Temperatura di riferimento della sorgente fredda (°C): 0,00

Rendimento di produzione del generatore

REGIME NON CONTINUO

	ta	Qp (MJ)	Qaux (MJ)	Qu (MJ)	СР	FC	ntu/COP	Qc (MJ)	Qe (MJ)	Q (MJ)	np
Novembre	576000	389	0	389	1,0000	1,0000	1,8187	214	0	214	1,8187
Dicembre	1116000	1036	0	1036	1,0000	1,0000	1,6920	612	0	612	1,6920
Gennaio	1116000	1311	0	1311	1,0000	1,0000	1,6292	805	0	805	1,6292
Febbraio	1008000	1024	0	1024	1,0000	1,0000	1,6405	624	0	624	1,6405
Marzo	1116000	634	0	634	1,0000	1,0000	1,7177	369	0	369	1,7177
		4394	0	4394				2624	0	2624	1.6744

REGIME CONTINUO

	ta	Qp (MJ)	Qaux (MJ)	Qu (MJ)	СР	FC	ntu/COP	Qc (MJ)	Qe (MJ)	Q (MJ)	np
Novembre	1382400	760	0	760	1,0000	1,0000	1,8187	418	0	418	1,8187
Dicembre	2678400	1768	0	1768	1,0000	1,0000	1,6920	1045	0	1045	1,6920
Gennaio	2678400	2191	0	2191	1,0000	1,0000	1,6292	1345	0	1345	1,6292
Febbraio	2419200	1765	0	1765	1,0000	1,0000	1,6405	1076	0	1076	1,6405
Marzo	2678400	1217	0	1217	1,0000	1,0000	1,7177	709	0	709	1,7177
-		7702	0	7702				4592	0	4592	1,6771

I simboli utilizzati sono coerenti con la normativa vigente.

Impianto termico : NEG 4 Alimentari

		Qhvs (MJ)	Qp (MJ)	Q (MJ)	np		Qcontinuo (MJ)
Novembre Dicembre Gennaio		319 851 1077	389 1036 1311	214 612 805	1,8187 1,6920 1,6292		418 1045 1345

Febbraio Marzo	841 520	1024 634	624 369	1,6405 1,7177		1076 709
	3608		2624		1	4592

RENDIMENTO GLOBALE MEDIO STAGIONALE (UNI 10348 9.)

Fabbisogno energetico utile stagionale (MJ) : 3608 Fabbisogno di energia primaria stagionale (MJ) : 2624

Rendimento globale medio stagionale : 1,3747

FABBISOGNO TERMICO ANNUO (D.L. 192 DEL 19/08/2005 e D.L. 311 del 26/12/2006)

Fabbisogno convenzionale di energia primaria (MJ) : 4592 Indice di prestazione energetica (KWh/m³anno) : 4,25

FABBISOGNO DI COMBUSTIBILE

(KWh/m³anno) : 10,18

VALORI LIMITE IMPIANTO (D.L. 192 del 19/08/2005 e D.L. 311 del 26/12/2006)

Potenza utile nominale	` ,		2,500
Rendimento globale medio stagionale minimo, ng	(%)	:	66,19
Gradi giorno della località		:	1153
V = Volume lordo delle parti di edificio riscaldato	(m^3)	:	300,00
S = Superficie disperdente che delimita il volume V	(m^2)	:	145,10
Rapporto S/V	(1/m)	:	0,484

RIEPILOGO VERIFICHE EDIFICIO/IMPIANTO

Indice di prestazione energetica limite

Valore dei rendimenti medi stagionali di progetto	(%) : (%) :	167,44 97,00 92,00 92,00
Rendimento globale medio stagionale Rendimento globale medio stagionale minimo Verifica: positiva	` ,	137,47 66,19

Tabbicama annua di anarria nrimaria (41/1/h) 2 C.M.I.	(N.A. I)		4500
Fabbisogno annuo di energia primaria (1KWh = 3,6 MJ)	(MJ)		4592
Volume lordo delle parti di edificio riscaldate	(m³)	:	300,00
Indice di prestazione energetica, Epi	(KWh/m³anno)	:	4,25
Indice di prestazione energetica limite	(KWh/m³anno)	:	10,18
Verifica: positiva			

Mese di maggiore insolazione : Marzo Contributo energetico dovuto alla radiazione solare Qs (MJ) : 757,80 Contributo enegetico dovuto alle sorgenti interne Qi (MJ) : 964,10

Fabbisogno energetico di energia primaria Q (MJ) : 708,68

Generatore 1

(Generatore a pompa di calore)

Valore minimo del rendimento dei generatori di calore:

- ad acqua calda con Pn compresa tra 4 kW e 400 kW alla potenza nominale - n(100)=(84 + 2 * Log(Pn))

alla potenza nominale - n(100)=(84 + 2 * Log(Pn)) (%) : 84,80 al 30% di Pn - n(30)=(80 + 3 * Log(Pn)) (%) : 81,19 - ad aria calda con Pn non maggiore di 400 kW - nc=(83+2·log(Pn)) (%) : 83,80

VERIFICA TRASMITTANZA TERMICA DELLE STRUTTURE (D.L. 311 del 26/12/2006)

Tutti i valori sono espressi in W/m²K - valori limite dall'1 gennaio 2008

Allegato C2 - Trasmittanza termica delle strutture verticali opache

Valore limite della trasmittanza termica U delle strutture verticali opache.		0,460	
PARETE - MURO ISOLATO IN MAT.(est)	VE	0,389	Sì

Allegato C3 - Trasmittanza termica delle strutture orizzontali opache. Coperture

Valore limite della trasmit. termica U delle strut. orizz. opache. Coperture		0,420	
SOLAIO - SOLAIO ESTERNO	SE	0,378	Sì

Allegato C3 - Trasmittanza termica delle strutture orizzontali opache. Pavimenti

Valore limite della trasmit. termica U delle strut. orizz. opache. Pavimenti		0,490	
PAV - PAVIMENTO AL SUOLO	PS	0.403	Sì

Allegato C4 - Trasmittanza termica delle chiusure trasparenti

Valore limite della trasm. termica U delle chiusure trasparenti comprensive c	di infissi.	3,000	Sì
FIN - FINESTRA 1.5x1.5	CF	1,926	
Valore limite della trasmittanza termica U dei vetri. FIN - FINESTRA 1.5x1.5 Verifica trasmittanza termica: positiva	CF	2,300 1,590	Sì

VERIFICA MASSA SUPERFICIALE DELLE STRUTTURE (D.L. 311 del 26/12/2006 Allegato I - c.9, lett. b)

Zona termica:	С
Mese di massima insolazione:	Luglio
Valore medio mensile dell'irradianza sul piano orizzontale (W/m²):	314,59

Tutti i valori sono espressi in kg/m²

Valore minimo di massa superficiale delle strutture esterne opache. 230

Indice di prestazione energetica dell'edificio, Epi kWh/m³anno 4,25

Locale : 000001 Punto informazione

Piano : 0

Impianto : NEG 1 Punto informazione

Zona : 1 informazione

Superficie in pianta (m^2) : 60 Superficie disperdente totale (m^2) : 120,8 Peso del loc. sul pavimento (kg/m²) 400 Volume netto (m^3) 210,00 Temperatura interna (°C) 26 Ora attivazione impianto: (h) : 9 Numero ore giornaliere di attivazione impianto:(n) : 10 Umidità relativa 50 (%): Infiltrazioni naturali (vol/h): 0,50 Numero persone mediamente presenti 2

Grado di attivita' (1 - 11)

Lavoro leggero al banco, officina, assemblaggio

Rientrate di calore nel locale W alle ore: 17

Espo	os.	Struttura	Trasmittanza W/m²K	Area (m²)	coeff. Colore irr.	Carico W
NE	FIN	FINESTRA 1.5x1.5	1,9261	0,50	dticx(0,76)M	27
	PARETE	MURO ISOLATO IN MAT.(est)	0,3890	22,30	M	37
NO	FIN	FINESTRA 1.5x1.5	1,9261	16,64	dticx(0,76)M	3881
	PARETE	MURO ISOLATO IN MAT.(est)	0,3890	21,36	M	45
OR	SOLAIO	SOLAIO ESTERNO	0,3780	60,00	С	255
Total	i			120,80		4246

Carichi interni	Sensibili W	Latenti W
Carico dovuto alle persone	144	296
Apparecchi elettrici	0	
Illuminazione	0	
Presenza motori elettrici	2	
Carichi interni sensibili	0	
Carichi interni latenti		0
Totali	146	296

Rientrate di calore alle varie ore del giorno

Ora	Q trasm.	Q irr.	Q infiltr	azione	Carichi	interni		Q totale		R=Qs/Qt
	W	W	Sens. W	Lat. W	Sens. W	Lat. W	Sens. W	Lat. W	W	
09	11	1244	0	172	144	296	1400	468	1868	0,7494
10	103	1116	49	172	144	296	1412	468	1880	0,7510
11	169	1003	91	172	144	296	1407	468	1875	0,7504
12	249	945	132	172	144	296	1469	468	1937	0.7584
13	328	891	173	172	144	296	1536	468	2004	0,7664
14	420	1141	214	172	144	296	1919	468	2387	0.8039
15	468	2047	230	172	144	296	2889	468	3357	0,8606
16	499	3056	214	172	144	296	3913	468	4381	0,8932
17	535	3710	198	172	0	0	4444	172	4616	0,9627
18	565	1986	181	172	0	0	2732	172	2904	0,9408

Ora		:	17
Rientrate di calore per trasmissione	W	:	535
Rientrate di calore per irraggiamento	W	:	3710
Rientrate di calore per ventilazione	W	:	370
Carichi interni	W	:	0
Rientrate di calore totali	W	:	4616
Rapporto rientrate/superficie in pianta		:	76,93
Rapporto rientrate/volume netto		:	21,98

Locale : 000002 Negozio nautica

Piano : 0

Impianto : NEG 2 Attività Commerciale negozio per la nautica Zona : 2 Superficie in pianta (m^2) : 60 Superficie disperdente totale (m^2) : 83 Peso del loc. sul pavimento 400 (kg/m²) Volume netto (m^3) 210,00 Temperatura interna (°C) 26 Ora attivazione impianto: 9 (h) Numero ore giornaliere di attivazione impianto:(n) 8 Umidità relativa (%) 50 Infiltrazioni naturali (vol/h) 0,50 Numero persone mediamente presenti 2

Grado di attivita' (1 - 11)

Lavoro leggero al banco, officina, assemblaggio

Rientrate di calore nel locale W alle ore: 16

Espo	S.	Struttura	Trasmittanza W/m²K	Area (m²)	coeff. Colore irr.	Carico W
NO	FIN	FINESTRA 1.5x1.5	1,9261	16,64	dticx(0,76) M	3240
	PARETE	MURO ISOLATO IN MAT.(est)	0,3890	21,36	M	23
OR	SOLAIO	SOLAIO ESTERNO	0,3780	45,00	С	171
Total	i			83,00		3435

Carichi interni	Sensibili W	Latenti W
Carico dovuto alle persone	144	296
Apparecchi elettrici	0	
Illuminazione	0	
Presenza motori elettrici	2	
Carichi interni sensibili	0	
Carichi interni latenti		0
Totali	146	296

Rientrate di calore alle varie ore del giorno

Ora	Q trasm.	Q irr.	Q infiltr	azione	Carichi	interni		Q totale		R=Qs/Qt
	W	W	Sens. W	Lat. W	Sens. W	Lat. W	Sens. W	Lat. W	W	
09	6	1162	0	172	144	296	1312	468	1780	0,7371
10	61	1061	49	172	144	296	1315	468	1783	0,7375
11	113	960	91	172	144	296	1309	468	1777	0,7366

12	176	910	132	172	144	296	1362	468	1830	0,7442
13	253	859	173	172	144	296	1429	468	1897	0,7533
14	340	1112	214	172	144	296	1810	468	2278	0,7946
15	381	2021	230	172	144	296	2777	468	3245	0,8558
16	403	3032	214	172	144	296	3793	468	4261	0.8902

Riepilogo delle condizioni di massimo carico

Ora		:	16
Rientrate di calore per trasmissione	W	:	403
Rientrate di calore per irraggiamento	W	:	3032
Rientrate di calore per ventilazione	W	:	386
Carichi interni	W	:	440
Rientrate di calore totali	W	:	4261
Rapporto rientrate/superficie in pianta		:	71,01
Rapporto rientrate/volume netto		:	20,29

Locale : 000003 Negozio nautica

Piano : 0 Impianto : NEG 3 Negozio per la nautica Zona Negozio per la nautica : 3 Superficie in pianta (m²) : 60 Superficie disperdente totale (m²) : 83 Peso del loc. sul pavimento 400 (kg/m^2) Volume netto 210,00 (m^3) (°C) Temperatura interna 26 Ora attivazione impianto: (h) 9 Numero ore giornaliere di attivazione impianto:(n) 8 Umidità relativa 50 (%)

Infiltrazioni naturali (vol/h) : 0,50 Numero persone mediamente presenti : 2

Grado di attivita' (1 - 11) Lavoro leggero al banco, officina, assemblaggio

Rientrate di calore nel locale W alle ore: 16

Espo	os.	Struttura	Trasmittanza W/m²K	Area (m²)	coeff. Colore irr.	Carico W	
NO	FIN	FINESTRA 1.5x1.5	1,9261	16,64	dticx(0,76) M	3240	
	PARETE	MURO ISOLATO IN MAT.(est)	0,3890	21,36	M	23	
OR	SOLAIO	SOLAIO ESTERNO	0,3780	45,00	С	171	
Tota	i			83,00		3435	_

Carichi interni	Sensibili W	Latenti W
Carico dovuto alle persone	144	296
Apparecchi elettrici	0	
Illuminazione	0	
Presenza motori elettrici	2	
Carichi interni sensibili	0	
Carichi interni latenti		0
Totali	146	296

Ora	Q trasm.	Q irr.	Q infiltr	azione	Carichi	interni	Q totale			R=Qs/Qt
	W	W	Sens. W	Lat. W	Sens. W	Lat. W	Sens. W	Lat. W	W	
09	6	1162	0	172	144	296	1312	468	1780	0,7371
10	61	1061	49	172	144	296	1315	468	1783	0,7375
11	113	960	91	172	144	296	1309	468	1777	0,7366
12	176	910	132	172	144	296	1362	468	1830	0,7442
13	253	859	173	172	144	296	1429	468	1897	0,7533
14	340	1112	214	172	144	296	1810	468	2278	0,7946
15	381	2021	230	172	144	296	2777	468	3245	0,8558
16	403	3032	214	172	144	296	3793	468	4261	0.8902

Riepilogo delle condizioni di massimo carico

Ora		:	16
Rientrate di calore per trasmissione	W	:	403
Rientrate di calore per irraggiamento	W	:	3032
Rientrate di calore per ventilazione	W	:	386
Carichi interni	W	:	440
Rientrate di calore totali	W	:	4261
Rapporto rientrate/superficie in pianta		:	71,01
Rapporto rientrate/volume netto		:	20,29

Locale : 000004 Negozio alimentari

Piano : 0

Impianto : NEG 4 Alimentari Zona : 4 Alimentari

Superficie in pianta (m^2) : 60 Superficie disperdente totale (m²) 120,8 Peso del loc. sul pavimento (kg/m²) 400 Volume netto (m^3) 210,00 Temperatura interna (°C) 26 Ora attivazione impianto: 9 (h) Numero ore giornaliere di attivazione impianto:(n) 8 (%) Umidità relativa 50 Infiltrazioni naturali (vol/h) 0,50

Numero persone mediamente presenti : 2

Grado di attivita' (1 - 11) Lavoro leggero al banco, officina, assemblaggio

Rientrate di calore nel locale W alle ore: 13

Espo	os.	Struttura	Trasmittanza W/m²K	Area (m²)	coeff. Colore irr.	Carico W
NE	FIN	FINESTRA 1.5x1.5	1,9261	0,50	dticx(0,76)M	37
	PARETE	MURO ISOLATO IN MAT.(est)	0,3890	22,30	M	43
se	FIN	FINESTRA 1.5x1.5	1,9261	16,64	dticx(0,76)M	2409
	PARETE	MURO ISOLATO IN MAT.(est)	0,3890	21,36	M	63
OR	SOLAIO	SOLAIO ESTERNO	0,3780	60,00	С	107
Tota	li			120,80		2660

Carichi interni	Sensibili W	Latenti W
Carico dovuto alle persone	144	296
Apparecchi elettrici	0	
Illuminazione	0	

Presenza motori elettrici	2	
Carichi interni sensibili	0	
Carichi interni latenti		0
Totali	146	296

Rientrate di calore alle varie ore del giorno

Ora	Q trasm.	Q irr.	Q infiltr	azione	Carichi	interni		Q totale		R=Qs/Qt
	W	W	Sens. W	Lat. W	Sens. W	Lat. W	Sens. W	Lat. W	W	
09	41	1651	0	172	144	296	1836	468	2304	0,7969
10	143	1960	49	172	144	296	2296	468	2764	0,8307
11	223	2200	91	172	144	296	2658	468	3126	0,8503
12	315	2332	132	172	144	296	2923	468	3391	0.8620
13	386	2273	173	172	144	296	2977	468	3445	0,8641
14	476	2018	214	172	144	296	2852	468	3320	0,8590
15	513	1735	230	172	144	296	2622	468	3090	0,8485
16	532	1229	214	172	144	296	2119	468	2587	0,8191

Riepilogo delle condizioni di massimo carico

	:	13
W	:	386
W	:	2273
W	:	345
W	:	440
W	:	3445
	:	57,41
	:	16,40
	W W W	W : W : W :

DATI RIEPILOGATIVI LOCALI

Locale	Descrizione	Ora (Q trasm.	Q irr.	Q infiltra	zione	Carichi i	nterni	C	Q totale		R=Qs/Qt
			W	W	Sens. W	Lat. W	Sens. W	Lat. W	Sens. W	Lat. W	W	
000001	Punto informazi	17	535	3710	198	172	0	0	4444	172	4616	0,9627
000002	Negozio nautic	16	403	3032	214	172	144	296	3793	468	4261	0,8902
000003	Negozio nautic	16	403	3032	214	172	144	296	3793	468	4261	0,8902
000004	Negozio alimen	13	386	2273	173	172	144	296	2977	468	3445	0,8641

Mese calcolo rientrate : 7 (Luglio)

Nota: I dati sono relativi all'ora di massimo carico di locale.

DATI RIEPILOGATIVI ZONE/IMPIANTO

Codice		Descrizione	Ora max carico	Q sensibile W	Q latente W	Q totale W	R=Qs/Qt
NEG 1	1	informazione	17	4444	172	4616	0,9627
		Punto informazione	17	4444	172	4616	0,9627
NEG 2	2	negozio per la nautica	16	3793	468	4261	0,8902
		Attività Commerciale	16	3793	468	4261	0,8902
NEG 3	3	Negozio per la nautica	16	3793	468	4261	0,8902
		Negozio per la nautio	: 16	3793	468	4261	0,8902
NEG 4	4	Alimentari	13	2977	468	3445	0,8642

Alimentari 13 2977 468 3445 0,8641

Mese calcolo rientrate : 7 (Luglio)

N.B. I dati sono relativi rispettivamente all'ora di massimo carico di zona o di impianto.

DATI RIEPILOGATIVI IMPIANTO

IMPIANTO: NEG 1 Punto informazione

Locale	Volume (m³)	Ora max carico	Q sens. W	Q latente W	Q totale W	R=Qs/Qt
000001 Punto informazione	210,0	17	4444	172	4616	0,9627
Totali	210,0	17	4444	172	4616	0,9627

Mese calcolo rientrate : 7 (Luglio)

Nota: I dati sono relativi rispettivamente all'ora di massimo carico di locale o di impianto.

ANDAMENTO ORARIO DELLE POTENZE ESTIVE DELL'IMPIANTO

Codice impianto: NEG 1 Punto informazione

Ora	Trasm.	Irragg.	Infiltra	azioni	Altri C	arichi	Totali			
	W	W	Qs W	QI W	Qs W	QI W	Qs W	QI W	Qtot W	R=Qs/Qt
1	125	358	0	0	0	0	483	0	483	1,0000
2	83	306	0	0	0	0	389	0	389	1,0000
3	48	256	0	0	0	0	303	0	303	1,0000
4	23	254	0	0	0	0	277	0	277	1,0000
5	-19	204	0	0	2	0	187	0	187	1,0000
6	-36	3831	0	0	2	0	3797	0	3797	1,0000
7	-50	1725	0	0	2	0	1677	0	1677	1,0000
8	-53	1416	0	0	0	0	1362	0	1362	1,0000
9	11	1244	0	172	144	296	1400	468	1868	0,7494
10	103	1116	49	172	144	296	1412	468	1880	0,7510
11	169	1003	91	172	144	296	1407	468	1875	0,7504
12	249	945	132	172	144	296	1469	468	1937	0,7584
13	328	891	173	172	144	296	1536	468	2004	0,7664
14	420	1141	214	172	144	296	1919	468	2387	0,8039
15	468	2047	230	172	144	296	2889	468	3357	0,8606
16	499	3056	214	172	144	296	3913	468	4381	0,8932
17	535	3710	198	172	0	0	4444	172	4616	0,9627
18	565	1986	181	172	0	0	2732	172	2904	0,9408
19	392	1072	0	0	0	0	1464	0	1464	1,0000
20	388	818	0	0	0	0	1206	0	1206	1,0000
21	350	614	0	0	0	0	964	0	964	1,0000
22	326	562	0	0	0	0	888	0	888	1,0000
23	244	511	0	0	0	0	756	0	756	1,0000
24	155	409	0	0	0	0	564	0	564	1,0000

Mese calcolo rientrate : 7 (Luglio)

DATI RIEPILOGATIVI IMPIANTO

IMPIANTO: NEG 2 Attività Commerciale

Locale	Volume (m³)	Ora max carico	Q sens. W	Q latente W	Q totale W	R=Qs/Qt
000002 Negozio nautica	210,0	16	3793	468	4261	0,8902
Totali	210,0	16	3793	468	4261	0,8902

Mese calcolo rientrate : 7 (Luglio)

Nota: I dati sono relativi rispettivamente all'ora di massimo carico di locale o di impianto.

ANDAMENTO ORARIO DELLE POTENZE ESTIVE DELL'IMPIANTO

Codice impianto: NEG 2 Attività Commerciale

Ora	Trasm.	Irragg.	Infiltra	azioni	Altri C	arichi	Totali			
	W	W	Qs W	QI W	Qs W	QI W	Qs W	QI W	Qtot W	R=Qs/Qt
1	79	354	0	0	0	0	432	0	432	1,0000
2	51	303	Ö	Ö	Ö	Ö	355	Ö	355	1,0000
3	25	253	0	0	0	0	278	0	278	1,0000
4	9	253	0	0	0	0	262	0	262	1,0000
5	-21	202	0	0	2	0	183	0	183	1,0000
6	-32	3740	0	0	2	0	3709	0	3709	1,0000
7	-41	1617	0	0	2	0	1578	0	1578	1,0000
8	-45	1314	0	0	0	0	1269	0	1269	1,0000
9	6	1162	0	172	144	296	1312	468	1780	0,7371
10	61	1061	49	172	144	296	1315	468	1783	0,7375
11	113	960	91	172	144	296	1309	468	1777	0,7366
12	176	910	132	172	144	296	1362	468	1830	0,7442
13	253	859	173	172	144	296	1429	468	1897	0,7533
14	340	1112	214	172	144	296	1810	468	2278	0,7946
15	381	2021	230	172	144	296	2777	468	3245	0,8558
16	403	3032	214	172	144	296	3793	468	4261	0,8902
17	236	3689	0	0	0	0	3925	0	3925	1,0000
18	272	1971	0	0	0	0	2243	0	2243	1,0000
19	283	1061	0	0	0	0	1345	0	1345	1,0000
20	283	809	0	0	0	0	1091	0	1091	1,0000
21	254	606	0	0	0	0	860	0	860	1,0000
22	236	556	0	0	0	0	791	0	791	1,0000
23	169	505	0	0	0	0	674	0	674	1,0000
24	93	404	0	0	0	0	498	0	498	1,0000

Mese calcolo rientrate : 7 (Luglio)

DATI RIEPILOGATIVI IMPIANTO

IMPIANTO: NEG 3 Negozio per la nautica

Locale	Volume (m³)	Ora max carico	Q sens. W	Q latente W	Q totale W	R=Qs/Qt	
000003 Negozio nautica	210,0	16	3793	468	4261	0,8902	_

Totali 210,0 16 3793 468 4261 0,8902

Mese calcolo rientrate : 7 (Luglio)

Nota: I dati sono relativi rispettivamente all'ora di massimo carico di locale o di impianto.

ANDAMENTO ORARIO DELLE POTENZE ESTIVE DELL'IMPIANTO

Codice impianto: NEG 3 Negozio per la nautica

Ora	Trasm.	Irragg.	Infiltra	azioni	Altri C	arichi		Totali		
	W	W	Qs W	QI W	Qs W	QI W	Qs W	QI W	Qtot W	R=Qs/Qt
1	79	354	0	0	0	0	432	0	432	1,0000
2	51	303	0	0	0	0	355	0	355	1,0000
3	25	253	0	0	0	0	278	0	278	1,0000
4	9	253	0	0	0	0	262	0	262	1,0000
5	-21	202	0	0	2	0	183	0	183	1,0000
6	-32	3740	0	0	2	0	3709	0	3709	1,0000
7	-41	1617	0	0	2	0	1578	0	1578	1,0000
8	-45	1314	0	0	0	0	1269	0	1269	1,0000
9	6	1162	0	172	144	296	1312	468	1780	0,7371
10	61	1061	49	172	144	296	1315	468	1783	0,7375
11	113	960	91	172	144	296	1309	468	1777	0,7366
12	176	910	132	172	144	296	1362	468	1830	0,7442
13	253	859	173	172	144	296	1429	468	1897	0,7533
14	340	1112	214	172	144	296	1810	468	2278	0,7946
15	381	2021	230	172	144	296	2777	468	3245	0,8558
16	403	3032	214	172	144	296	3793	468	4261	0,8902
17	236	3689	0	0	0	0	3925	0	3925	1,0000
18	272	1971	0	0	0	0	2243	0	2243	1,0000
19	283	1061	0	0	0	0	1345	0	1345	1,0000
20	283	809	0	0	0	0	1091	0	1091	1,0000
21	254	606	0	0	0	0	860	0	860	1,0000
22	236	556	0	0	0	0	791	0	791	1,0000
23	169	505	0	0	0	0	674	0	674	1,0000
24	93	404	0	0	0	0	498	0	498	1,0000

Mese calcolo rientrate : 7 (Luglio)

DATI RIEPILOGATIVI IMPIANTO

IMPIANTO: NEG 4 Alimentari

Locale	Volume (m³)	Ora max carico	Q sens. W	Q latente W	Q totale W	R=Qs/Qt
000004 Negozio alimentari	210,0	13	2977	468	3445	0,8641
Totali	210,0	13	2977	468	3445	0,8641

Mese calcolo rientrate : 7 (Luglio)

Nota: I dati sono relativi rispettivamente all'ora di massimo carico di locale o di impianto.

ANDAMENTO ORARIO DELLE POTENZE ESTIVE DELL'IMPIANTO

Codice impianto: NEG 4 Alimentari

Ora	Trasm.	Irragg.	Irragg. Infiltrazioni Altri Carichi Totali		Totali		ırichi Totali			
	W	W	Qs W	QI W	Qs W	QI W	Qs W	QI W	Qtot W	R=Qs/Qt
1	131	173	0	0	0	0	304	0	304	1,0000
2	89	143	0	0	0	0	232	0	232	1,0000
3	55	115	0	0	0	0	170	0	170	1,0000
4	32	114	0	0	0	0	146	0	146	1,0000
5	-10	114	0	0	2	0	105	0	105	1,0000
6	-27	791	0	0	2	0	766	0	766	1,0000
7	-37	780	0	0	2	0	745	0	745	1,0000
8	-43	1250	0	0	0	0	1208	0	1208	1,0000
9	41	1651	0	172	144	296	1836	468	2304	0,7969
10	143	1960	49	172	144	296	2296	468	2764	0,8307
11	223	2200	91	172	144	296	2658	468	3126	0,8503
12	315	2332	132	172	144	296	2923	468	3391	0,8620
13	386	2273	173	172	144	296	2977	468	3445	0,8641
14	476	2018	214	172	144	296	2852	468	3320	0,8590
15	513	1735	230	172	144	296	2622	468	3090	0,8485
16	532	1229	214	172	144	296	2119	468	2587	0,8191
17	341	778	0	0	0	0	1119	0	1119	1,0000
18	360	547	0	0	0	0	907	0	907	1,0000
19	355	431	0	0	0	0	786	0	786	1,0000
20	340	373	0	0	0	0	713	0	713	1,0000
21	315	288	0	0	0	0	602	0	602	1,0000
22	300	258	0	0	0	0	558	0	558	1,0000
23	237	230	0	0	0	0	467	0	467	1,0000
24	159	201	0	0	0	0	359	0	359	1,0000

Mese calcolo rientrate : 7 (Luglio)

OFFICINA

DATI GENERALI DI PROGETTO

Dati generali

Descrizione progetto : Riscaldamento e raffrescamento officina

Ubicazione edificio : San Foca Melendugno Committente : Porto di San Foca S.p.A.

Progettazione edile : Progettazione tecnica :

Installazione

Caratteristiche luogo di edificazione

Ubicazione edificio : LECCE
Altezza s.l.m. (m): 49,00
Gradi giorno : 1153
Zona Climatica : C

Dati geoclimatici

Località climatica di riferimento : LECCE
Temperatura esterna di progetto (°C): 0,00
Conduttività termica del terreno (W/mK): 2,00
Temperatura del terreno (°C): 12,50
Durata periodo di riscaldamento (giorni): 137
Velocità del vento (m/s): 4,00

Situazione ambientale : Edificio isolato

Correzione della temperatura esterna (°C): -2

Temperatura esterna di progetto adottata (°C): 0,00

LISTA STRUTTURE EDILIZIE

Codice	Descrizione		Peso (kg/m²)	Spessore m	Trasmittanza W/m²K	Colore
FIN PARETE PAV PORT SOLAIO	FINESTRA 1.5x1.5 MURO ISOLATO IN MAT.(est) PAVIMENTO AL SUOLO PORTA IN FERRO (est) SOLAIO ESTERNO	CF VE PS VE SE	0,00 408,00 631,00 34,00 616,00	0,000 0,420 0,480 0,074 0,394	1,9261 0,3890 0,4030 0,4240 0,3780	M M M M

CARATTERISTICHE TERMICHE DEL COMPONENTE FINESTRATO

Codice : FIN

Descrizione : FINESTRA 1.5x1.5

: FINESTRA ESTERNA CON VETROCAMERA

Tipo : CF Componente finestrato

Serramento	Ag	Af + Ap	Lg	Kg	Kf + Kp	KI	Kw
Singolo	1,56	0,90	7,60	1,5900	2,0000	0,0600	1,9260

LEGENDA

Ag Area del vetro Af Area del telaio Ap Area del pannello

Lunghezza della superficie vetrata

Kg Trasmittanza termica dell'elemento vetrato W/m²K
Kf Trasmittanza termica del telaio W/m²K
Kp Trasmittanza termica del pannello W/m²K
KI Trasmittanza lineica (nulla in caso di singolo vetro) W/m²K
Kw Trasmittanza termica totale del serramento W/m²K

VERIFICA IGROMETRICA UNI EN ISO 13788

Codice : FIN

Descrizione : FINESTRA 1.5x1.5

: FINESTRA ESTERNA CON VETROCAMERA

Tipo : CF Componente finestrato

CONDIZIONI AL CONTORNO

Temperatura esterna : Media mensile (UNI 10349) Umidità relativa esterna : Media mensile (UNI 10349)

Temperatura interna °C : UNI13788 NA.1.2 Classe di umidità : 1 - Magazzini

Media delle temp. est. minime annuali °C: 0

VERIFICA CONDENSAZIONE SUPERFICIALE UNI EN ISO 13788 5.4

Fattore di temperatura, fRsi : 0,750 Fattore di temperatura massimo, fRsi max : 0,254

La struttura non è soggetta a fenomeni di condensa superficiale. (fRsi max <= fRsi)

Verifica: positiva

CARATTERISTICHE TERMICHE E IGROMETRICHE DELLA STRUTTURA EDILIZIA

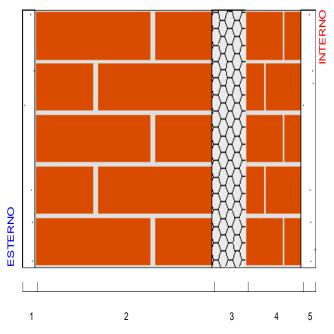
Codice : PARETE

Descrizione : MURO ISOLATO IN MAT.(est)

: MURO ESTERMO IN MATTONI CON ISOLAMENTO

Tipo : VE Verticale verso l'esterno

Caratteristiche degli strati (dall'esterno verso l'interno):


Codice	Descrizione	s m	λ W/mK	C W/m²K	ρ kg/m³	δa⋅10¹² kg/s⋅m⋅Pa	δυ·10 ¹² ikg/s·m·Pa	R a m²K/W
01 INT09 02 MUR11 03 ISO93	Ambiente esterno Resistenza superficiale esterna Intonaco di cemento Muratura in mattoni (esterno) Stiferite tipo P3	0,02000 0,25000 0,05000	1,400 0,470 0,031	70,000 1,880 0,620	2000 1000 30	5,00 24,00 2,34	12,00 24,00 2,34	0,040 0,014 0,532 1,613

04 MUR03 0,08000 Muratura in mattoni (interno) 0,360 4,500 1000 24,00 24,00 0,222 05 INT08 Intonaco calce e cemento 0.02000 0,900 45,000 1800 5,00 12,00 0,022 Resistenza superficiale interna 0,130

Totali struttura:

Ambiente interno

Massa totale / superficiale / frontale kg/m²: 408 / 332 / 116

VERIFICA IGROMETRICA UNI EN ISO 13788

Codice : PARETE

Descrizione : MURO ISOLATO IN MAT.(est)

: MURO ESTERMO IN MATTONI CON ISOLAMENTO

Tipo : VE Verticale verso l'esterno

CONDIZIONI AL CONTORNO

Temperatura esterna : Media mensile (UNI 10349) Umidità relativa esterna : Media mensile (UNI 10349)

Temperatura interna °C : UNI13788 NA.1.2 Classe di umidità : 1 - Magazzini

Umidità relativa massima accettabile %: 80

PROPRIETA' DEI MATERIALI

Materiale	Spessore m	R m²K/W	Rv(µ)	Sp.eq.(sd) m	
Resistenza superficiale estern		0,04			
Intonaco di cemento	0,02	0,014	38	0,76	
Muratura in mattoni (esterno)	0,25	0,532	8	2,00	
Stiferite tipo P3	0,05	1,613	80	4,00	
Muratura in mattoni (interno)	0,08	0,222	8	0,64	
Intonaco calce e cemento	0,02	0,022	38	0,76	
Resistenza superficiale intern		0,25			

VERIFICA CONDENSAZIONE SUPERFICIALE UNI EN ISO 13788 5.3

Mese critico : FEBBRAIO Fattore di temperatura, fRsi : 0,907 Fattore di temperatura massimo, fRsi max : 0,397

La struttura non è soggetta a fenomeni di condensa superficiale. (fRsi max <= fRsi)

Verifica: positiva

VERIFICA CONDENSAZIONE INTERSTIZIALE UNI EN ISO 13788 6.4

Non si verifica condensazione in nessuna interfaccia per nessun mese. La struttura non è soggetta a fenomeni di condensa interstiziale.

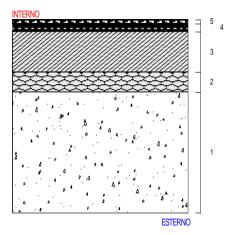
Verifica: positiva

CARATTERISTICHE TERMICHE E IGROMETRICHE DELLA STRUTTURA EDILIZIA

Codice : PAV

Descrizione : PAVIMENTO AL SUOLO

: PAVIMENTO AL SUOLO CON ISOLAMENTO


Tipo : PS Pavimento al suolo

Caratteristiche degli strati (dall'esterno verso l'interno):

Codice	Descrizione	s λ m W/ml		C W/m²K	-		δa⋅10¹² δu⋅10¹² kg/s⋅m⋅Pakg/s⋅m⋅Pa m		
	Ambiente esterno								
	Resistenza superficiale esterna							0,040	
01 MSR16	Ciotoli e pietre frantumate	0,30000	0,700	2,333	1500	37,50	37,50	0,429	
02 ISO93	Stiferite tipo P3	0,05000	0,031	0,620	30	2,34	2,34	1,613	
03 CLS025	St. chiusa arg. esp. (scant.)	0,10000	0,480	4,800	1200	1,90	2,90	0,208	
04 SOT01	Sottofondo sabbia-cemento	0,02000	1,400	70,000	2000	8,50	8,50	0,014	
05 PAV07	Piastrelle di gres	0,01000	0,980	98,000	1900	18,00	24,00	0,010	
	Resistenza superficiale interna Ambiente interno							0,170	

Totali struttura:

Massa totale / superficiale / frontale kg/m^2 : 631 / 630 / 179

VERIFICA IGROMETRICA UNI EN ISO 13788

Codice : PAV

Descrizione : PAVIMENTO AL SUOLO

: PAVIMENTO AL SUOLO CON ISOLAMENTO

Tipo : PS Pavimento al suolo

CONDIZIONI AL CONTORNO

Temperatura esterna : Media mensile (UNI 10349) Umidità relativa esterna : Media mensile (UNI 10349)

Temperatura interna °C : UNI13788 NA.1.2 Classe di umidità : 1 - Magazzini

Umidità relativa massima accettabile %: 80

PROPRIETA' DEI MATERIALI

Materiale	Spessore m	R m²K/W	Rv(µ)	Sp.eq.(sd) m	
Resistenza superficiale estern		0			-
Ciotoli e pietre frantumate	0,3	0,429	5	1,50	
Stiferite tipo P3	0,05	1,613	80	4,00	
St. chiusa arg. esp. (scant.)	0,1	0,208	99	9,90	
Sottofondo sabbia-cemento	0,02	0,014	22	0,44	
Piastrelle di gres	0,01	0,01	10	0,10	
Resistenza superficiale intern		0,25			

VERIFICA CONDENSAZIONE SUPERFICIALE UNI EN ISO 13788 5.3

Mese critico : GENNAIO Fattore di temperatura, fRsi : 0,903 Fattore di temperatura massimo, fRsi max : 1,359

La struttura è soggetta a fenomeni di condensa superficiale. (fRsi max > fRsi)

Verifica: positiva

VERIFICA CONDENSAZIONE INTERSTIZIALE UNI EN ISO 13788 6.4

Non si verifica condensazione in nessuna interfaccia per nessun mese. La struttura non è soggetta a fenomeni di condensa interstiziale.

Verifica: positiva

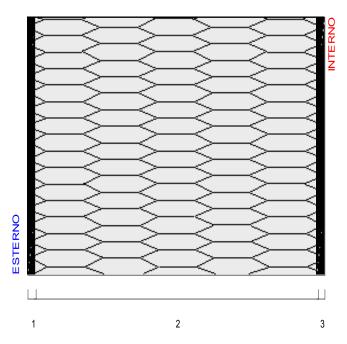
CARATTERISTICHE TERMICHE E IGROMETRICHE DELLA STRUTTURA EDILIZIA

Codice : PORT

Descrizione : PORTA IN FERRO (est)

: PORTA ESTERNA ISOLATA IN FERRO

Tipo : VE Verticale verso l'esterno


Caratteristiche degli strati (dall'esterno verso l'interno):

Codice	Descrizione	s m	λ W/mK	C W/m²K	ρ kg/m³	δa·10¹² δu·10¹² R kg/s·m·Pakg/s·m·Pa m²K/W
01 MET01	Ambiente esterno Resistenza superficiale esterna Acciaio	0,00200	52,000	26000,000	7800	0,040 0,0000

0,07000 02 ISO57 Poliuretani in lastre 0,032 0,457 40 1,50 1,50 2,187 03 MET01 Acciaio 0.00200 52,000 26000,000 7800 0.0000

> Resistenza superficiale interna 0,130 Ambiente interno

Totali struttura:

VERIFICA IGROMETRICA UNI EN ISO 13788

Codice : PORT

Descrizione : PORTA IN FERRO (est)

: PORTA ESTERNA ISOLATA IN FERRO

Tipo : VE Verticale verso l'esterno

CONDIZIONI AL CONTORNO

Temperatura esterna : Media mensile (UNI 10349) Umidità relativa esterna : Media mensile (UNI 10349)

Temperatura interna °C : UNI13788 NA.1.2 Classe di umidità : 1 - Magazzini

Umidità relativa massima accettabile %: 80

PROPRIETA' DEI MATERIALI

Materiale	Spessore m	R m²K/W	Rv(µ)	Sp.eq.(sd) m	
Resistenza superficiale estern		0,04			
Acciaio	0,002	0	9999999	20000,00	
Poliuretani in lastre	0,07	2,187	125	8,75	
Acciaio	0,002	0	9999999	20000,00	
Resistenza superficiale intern	-,	0.25		, , , ,	

VERIFICA CONDENSAZIONE SUPERFICIALE UNI EN ISO 13788 5.3

Mese critico : FEBBRAIO Fattore di temperatura, fRsi : 0,899 Fattore di temperatura massimo, fRsi max : 0,397

La struttura non è soggetta a fenomeni di condensa superficiale. (fRsi max <= fRsi)

Verifica: positiva

VERIFICA CONDENSAZIONE INTERSTIZIALE UNI EN ISO 13788 6.4

Non si verifica condensazione in nessuna interfaccia per nessun mese. La struttura non è soggetta a fenomeni di condensa interstiziale.

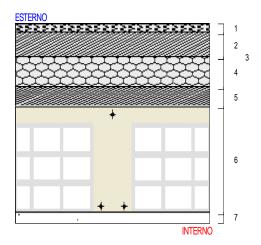
Verifica: positiva

CARATTERISTICHE TERMICHE E IGROMETRICHE DELLA STRUTTURA EDILIZIA

Codice : SOLAIO

Descrizione : SOLAIO ESTERNO

: SOLAIO ESTERNO CON ISOLAMENTO E BARRIERA AL VAPORE


Tipo : SE Solaio verso l'esterno

Caratteristiche degli strati (dall'esterno verso l'interno):

Codice	Descrizione	s m	λ W/mK	C W/m²K	- p		δa⋅10¹² δu⋅10¹² kg/s⋅m⋅Pakg/s⋅m⋅Pa		
	Ambiente esterno								
	Resistenza superficiale esterna							0,040	
01 PAV01	Piastrelle di porcellana	0,02000	1,000	50,000	2300	1,00	1,00	0,020	
02 CLS001	Strutt. chiusa (int. o prot.)	0,05000	1,160	23,200	2000	1,90	2,90	0,043	
03 BVA07	Carta e cartone ben bitumati	0,00400	0,230	57,500	1100	0,03	0,03	0,017	
04 ISO91	Stiferite tipo BB	0.06000	0.028	0.467	35	2,34	2,34	2,143	
05 CLS091	CLS in genere (int. o est.)	0,04000	0,830	20,750	1700	1,90	2,90	0,048	
06 SOL03	Soletta in laterizio	0,20000	0,940	4,700	1800	24,00	24,00	0,213	
07 INT08	Intonaco calce e cemento	0.02000	0.900	45.000	1800	5.00	12,00	0,022	
	Resistenza superficiale interna Ambiente interno	,	,	,		,	,	0,100	

Totali struttura:

Massa totale / superficiale / frontale kg/m²: 616 / 580 / 355

VERIFICA IGROMETRICA UNI EN ISO 13788

Codice : SOLAIO

Descrizione : SOLAIO ESTERNO

: SOLAIO ESTERNO CON ISOLAMENTO E BARRIERA AL VAPORE

Tipo : SE Solaio verso l'esterno

CONDIZIONI AL CONTORNO

Temperatura esterna : Media mensile (UNI 10349) Umidità relativa esterna : Media mensile (UNI 10349)

Temperatura interna °C : UNI13788 NA.1.2 Classe di umidità : 1 - Magazzini

Umidità relativa massima accettabile %: 80

PROPRIETA' DEI MATERIALI

Materiale	Spessore m	R m²K/W	Rv(µ)	Sp.eq.(sd) m	
Resistenza superficiale estern		0,04			
Piastrelle di porcellana	0,02	0,02	188	3,76	
Strutt. chiusa (int. o prot.)	0,05	0,043	99	4,95	
Carta e cartone ben bitumati	0,004	0,017	7500	30,00	
Stiferite tipo BB	0,06	2,143	80	4,80	
CLS in genere (int. o est.)	0,04	0,048	99	3,96	
Soletta in laterizio	0,2	0,213	8	1,60	
Intonaco calce e cemento	0,02	0,022	38	0,76	
Resistenza superficiale intern		0.25			

VERIFICA CONDENSAZIONE SUPERFICIALE UNI EN ISO 13788 5.3

Mese critico : FEBBRAIO Fattore di temperatura, fRsi : 0,911 Fattore di temperatura massimo, fRsi max : 0,397

La struttura non è soggetta a fenomeni di condensa superficiale. (fRsi max <= fRsi)

Verifica: positiva

VERIFICA CONDENSAZIONE INTERSTIZIALE UNI EN ISO 13788 6.4

Non si verifica condensazione in nessuna interfaccia per nessun mese. La struttura non è soggetta a fenomeni di condensa interstiziale.

Verifica: positiva

SUPERFICI DISPERDENTI/CALCOLO DISPERSIONI TERMICHE LOCALI

Locale : 000001 Officina Piano : 0

Impianto termico : OFFICI Split Zona termica : 1 officina

Categoria d'uso : E.8 Attività industriali ed artigianali

Temperatura interna di progetto (°C): 18,00
Ricambi d'aria naturali (vol/h): 0,30
Superficie in pianta locale (m²): 105,00
Volume netto locale (m³): 462,00

Dispersioni del locale

Esp. Struttura Trasmit. Area Dt coeff. dispers. H cod. Fs A eq.

			(W/m²K)	(m²)	(°C)	esp.	(W)	(W/K)	ostr.	(m²)
N N S S E E O O O R T	FIN PARETE FIN PARETE FIN PARETE FIN PARETE SOLAIO PAV	FINESTRA 1.5x1.5 MURO ISOLATO IN MAT.(est) FINESTRA 1.5x1.5 MURO ISOLATO IN MAT.(est) FINESTRA 1.5x1.5 MURO ISOLATO IN MAT.(est) FINESTRA 1.5x1.5 MURO ISOLATO IN MAT.(est) SOLAIO ESTERNO PAVIMENTO AL SUOLO	1,9261 0,3890 1,9261 0,3890 1,9261 0,3890 1,9261 0,3890 0,3780 0,4030	2,88 30,02 5,76 27,14 30,24 40,26 7,20 63,30 105,00 105,00	18,0 18,0 18,0 18,0 18,0 18,0	1,20 1,20 1,00 1,00 1,15 1,15 1,10 1,10 1,00	120 252 200 190 1206 324 275 488 714 723	7,81 11,68 15,63 10,56 82,04 15,66 19,53 24,62 39,69 114,14		0,441 0,280 0,882 0,253 4,629 0,376 1,102 0,591 0,381
Totale				416,80			4492			
Potenz Maggi Margir Potenz Potenz Potenz Potenz	za dispersa orazione di ne di sicure za dispersa za totale dis	per Vicini Assenti spersa per trasmissione per ventilazione tta			(V (V (V (V (V	1 ²): V): V): V): V): V): V): V): V):	4	5,80 492 0 0 0 492 870 0 362		
	buti dovuti a cità termica	a sorgenti interne energia			/mes MJ/°(1129 4,	9,00 041		

Sistema di regolazione:

Tipologia di prodotto:

Terminale di erogazione:

Solo ambiente con regolatore

Regolatore si/no a differenziale

Bocchette in sistemi di aria calda

Rendimento di emissione: 0,92

TOTALI ZONE/IMPIANTO

Codice	Descrizione	Volume (m³)	Trasm. (W)	Magg (W)	. Marg. (W)	VA (W)	Ventil. (W)	Recup. (W)	Totale (W)
OFFICI 1	officina Split	462,0 462,0	4492 4492	0 0	0 0	0 0	870 870	0 0	5362 5362
		462,0	4492	0	0	0	870	0	5362
		RIEPI	LOGO [DISPERS	SIONI				
Locale	Volume Imp	. Zona Ve			asm. Magg.			il. Recup.	Totale

Locale	m ³	ona vent.		(n/h)	(W)	(W)	(W)	(W)	(W)	(W)	(W)
000001 Officina	462,0 OFFICI	1	18,0	0,30	4492	0	0	0	870	0	5362
Totali	462,0				4492	0	0	0	870	0	5362

Caratteristiche luogo di edificazione

Ubicazione edificio : LECCE Altezza s.l.m. (m): 49,00 Gradi giorno : 1153 Zona Climatica : C

Dati geoclimatici

Località climatica di riferimento : LECCE
Temperatura esterna di progetto (°C): 0,00
Conduttività termica del terreno (W/mK): 2,00
Temperatura del terreno (°C): 12,50
Durata periodo di riscaldamento (giorni): 137
Velocità del vento (m/s): 4,00

Situazione ambientale : Edificio isolato

Correzione della temperatura esterna (°C): -2

Temperatura esterna di progetto adottata (°C): 0,00

PARAMETRI CLIMATICI DELLA LOCALITA'

Ubicazione edificio : LECCE
Altezza s.l.m. (m): 49
Zona climatica : C
Gradi giorno : 1153

Durata periodo di riscaldamento (gg): 137 (dal 15.11 al 31.3)

Latitudine : 40° 21" Longitudine : 18° 10"

Zona geografica : 3 - Italia centrale e meridionale

Zona di vento : 2
Velocità del vento : 4
Direzione prevalente vento : N

Categoria terreno : (non disponibile)

Conduttività termica terreno (W/mK): 2,0000 Temperatura terreno (°C): 12,50

Località climatica di riferimento : LECCE Temperatura minima di progetto dell'aria esterna secondo norma UNI 5364

e successivi aggiornamenti (°C): 0,00

Valori medi mensili:

Tmg = Temperatura giornaliera media mensile dell'aria esterna (°C)

H = Irradiazione solare giornaliera media mensile (MJ/m²)

PVap = Pressione parziale del vapore d'acqua nell'aria esterna (Pa)

Tmg (°C) PVap (Pa) H (MJ/m²)

			S	SO-SE	O-E	NO-NE	N	OR
Gennaio Febbraio	9,00 9,30	1003 1084	11,10 12,33	8,80 10,47	5,28 7,28	2,50 3,87	2,18 2,98	6,79 9,79
Marzo	11,40	979	11,94	11,55	9,53	6,01	4,11	13,59
Aprile	14,69	1009	11,23	12,99	12,64	9,12	5,76	18,88
Maggio	18,89	1204	10,19	13,57	15,22	12,19	8,24	23,59
Giugno	23,39	1507	9,62	13,65	16,53	13,94	10,03	26,09
Luglio	26,10	1735	10,33	14,74	17,45	14,15	9,49	27,19
Agosto	25,89	2073	12,22	15,46	16,01	11,60	6,76	24,00
Settembre	23,00	1808	13,88	14,46	12,55	7,84	4,53	17,90
Ottobre	18,50	1504	14,49	12,68	9,13	4,79	3,33	12,29
Novembre	14,30	1121	11,12	8,97	5,64	2,80	2,39	7,38
Dicembre	10,69	1097	10,31	8,06	4,64	2,15	1,95	5,90

Dati climatici medi stagionali:

Temperatura dell'aria esterna (°C): 10,61 Irradianza sul piano orizzontale (W/m²): 104,00

Dati climatici per il mese di massima insolazione (MARZO):

Temperatura dell'aria esterna (°C): 11,40 Irradianza sul piano orizzontale (W/m²): 157,00

LISTA STRUTTURE EDILIZIE DI PROGETTO

Codice	Descrizione	Tipo	Densità (kg/m³)	Spess. (m)	Fc	Ff	g	C kJ/m²⋅K	Ufen W/m²K	Ucd W/m²K
PARETE SOLAIO PORT PAV FIN	MURO ISOLATO IN MAT.(SOLAIO ESTERNO PORTA IN FERRO (est) PAVIMENTO AL SUOLO FINESTRA 1.5x1.5	VE SE VE PS CF	408,00 616,00 34,00 631,00	0,4200 0,3940 0,0740 0,4800	0,45	0,63	0,54	2,5841 2,6527 1,8046 2,5841	0,3890 0,3780 0,4240 1,9260	0,3890 0,3780 0,4240 0,4030 1,9261

CARATTERISTICHE DEI LOCALI RISCALDATI

Impianto termico : OFFICI Split Zona : 1 officina Locale : 000001 Officina

Categoria dest. uso : E.8 Attività industriali ed artigianali

PAVIMENTO AL SUOLO 105,00

Superfici opache

PAV

Supe	erfici opa	che											
Esp.	Codice	Descrizione	Area (m²)	dt (°C)	co esp. (C MJ/°C		er	а	A eq. m²	Ufen (W/m²K)	Ucd (W/m²K)	Pt (W)
E	PARETE	MURO ISOLATO IN	40,26	18,0	1,15		1,00 1	,00	0,60	0,376	0,3890	0,3890	324
N	PARETE	MURO ISOLATO IN	30,02	18,0	1,20		1,00 1	,00	0,60	0,280	0,3890	0,3890	252
0	PARETE	MURO ISOLATO IN	63,30	18,0	1,10			,00	0,60	0,591	0,3890	0,3890	488
OR	SOLAIO	SOLAIO ESTERNO	105,00	18,0	1,00		1,00 0	,80	0,30	0,381	0,3780	0,3780	714
S	PARETE	MURO ISOLATO IN	27,14	18,0	1,00		1,00 1	,00	0,60	0,253	0,3890	0,3890	190
Totali			265,72			2,905							1968
Supe	erfici tras	parenti											
Esp.	Codice	Descrizione	Area	dt	co	Fs	Fc	Ff	f g	A eq.	Ufen	Ucd	Pt
			(m²)	(°C)	esp.					m²	(W/m²K)	(W/m²K)	(W)
E	FIN	FINESTRA 1.5x1.5	30,24	18,0	1,15	1,00	0,45	0,6	3 0,54	4,629	1,9260	1,9261	1206
N	FIN	FINESTRA 1.5x1.5	2,88	18,0	1,20	1,00	0,45	0,6	3 0,54	1 0,441	,	1,9261	120
0	FIN	FINESTRA 1.5x1.5	7,20	18,0	1,10	1,00	0,45	,		1,102	,	1,9261	275
S	FIN	FINESTRA 1.5x1.5	5,76	18,0	1,00	1,00	0,45	0,6	3 0,54	1 0,882	1,9260	1,9261	200
Totali			46,08										1801
Pavi	menti dis	perdenti verso il te	erreno										
Esp.		escrizione	Area	dt	С	F	P F	рс	Z		Hg	Ucd	Pt
·			(m²)	(°C)	(MJ/°	C) (n	n)	-	(m)	V	V/K W	//m²K	(W)

47,00

0,4030

723

Totali	105.00	2.272	723

RIEPILOGO DISPERSIONI LOCALI

Impianto termico : OFFICI Split

La potenza termica dispersa per trasmissione comprende anche l'eventuale maggiorazione.

Locale	Volume (m³)	Temp. (°C)	ric. (1/h)	vol./h (m³/h)	Qtra (W)	Qven (W)	Qtot (W)	S.disp. Qi c.t. (m²) (MJ/mese) (MJ/°C)
000001 Officina	462,0	18,00	0,30	138,60	4492	870	5362	416,8 1129,00 4,04
	462,0			138,6	4492	870	5362	416,8 1129,00 4,04

DISPERSIONI DELL'EDIFICIO RIPARTITE PER STRUTTURA

Impianto termico : OFFICI Split

Le dispersioni sono espresse in (W) e non tengono conto di eventuali maggiorazioni

Codice	Ucd W/m²K	Area (m²)	N	ΝE	E	SE	S	SO	0	ΝO	Т	OR	Altro	Totale
PARETE	0,3890	161	252	-	324	-	190	-	488	-	-	-	-	1254
SOLAIO	0,3780	105	-	-	-	-	-	-	-	-	-	714	-	714
PAV	0,4030	105	-	-	-	-	-	-	-	-	723	-	-	723
FIN	1,9261	46	120	-	1206	-	200	-	275	-	-	-	-	1801
Totali		417	372		1530		390		763		723	714		4492

TOTALI ZONE/IMPIANTO											
Codice	Descrizione	Volume (m³)	Trasm. (W)	Magg. (W)	Marg. (W)	VA (W)	Ventil. (W)	Recup. (W)	Totale (W)		
OFFICI 1	officina Split	462,0 462,0	4492 4492	0 0	0 0	0 0	870 870	0 0	5362 5362		
		462,0	4492	0	0	0	870	0	5362		

Impianto termico :OFFICINA Split

COEFFICIENTE DI DISPERSIONE VOLUMICO DI PROGETTO (UNI 10379)

Potenza termica dispersa per trasmissione (W): 4492 Volume lordo delle parti di edificio riscaldato (m³): 660,00 Temperatura interna di progetto $(^{\circ}C)$: 18,00 Temperatura esterna minima di progetto $(^{\circ}C)$: 0,00

Coefficiente di dispersione volumico di progetto (W/m³·K) : 0,500

SELEZIONE DEL METODO DI CALCOLO (UNI 10379)

Area equivalente soleggiata dell'edificio (m²)7,71 Irradianza media stagionale sul piano orizzontale (W/m²)104,00 Volume lordo delle parti di edificio riscaldato (m^3) 660,00 Apporti interni (W/m³)0,00 Indice volumico degli apporti gratuiti (W/m^3) 1,193 (W/m³·K) Coefficiente di dispersione volumico di progetto 0,500 Numero di volumi d'aria ricambiati (val. medio 24h) (n/h)0,30 Temperatura interna di progetto 18,00 (°C) Temperatura media stagionale dell'aria esterna (°C) 10,61 Indice volumico delle dispersioni (W/m^3) 4,451 Indice degli apporti / indice delle dispersioni 0,268 Rapporto Superficie trasparente/utile (29,0304 / 105) 0,00 Metodo di calcolo selezionato (UNI 10379) Α

SIMBOLI, DEFINIZIONI E UNITA' DI MISURA

Energia scambiata per trasmissione con l'ambiente esterno	(MJ)
Energia scambiata per trasmissione con il terreno	(MJ)
Energia scambiata per ventilazione	(MJ)
Energia scambiata per trasmissione con ambienti adiacenti	(MJ)
Energia scambiata con zone a temperatura fissata	(MJ)
Energia scambiata per trasmissione e ventilazione	(MJ)
Energia dovuta agli apporti solari su superfici opache	(MJ)
Energia dovuta agli apporti solari su superfici trasparenti	(MJ)
Energia dovuta agli apporti interni	(MJ)
Rapporto tra l'energia dovuta agli apporti gratuiti e l'energia uscente	
Fattore di utilizzazione degli apporti energetici gratuiti	
Fabbisogno energetico utile ideale richiesto da ciascuna zona	(MJ)
Fattore di riduzione dell'energia dispersa per trasmissione e per ventilazione	
Fattore di riduzione dell'apporto energetico dovuto alle sorgenti interne e solari	
Coefficiente per modalità di funzionamento	
Fabbisogno energetico utile in regime non continuo	(MJ)
	(MJ)
	(MJ)
	(MJ)
	(MJ)
<u> </u>	(s)
	(MJ)
•	(MJ)
	(MJ)
Energia primaria richiesta per il funzionamento degli ausiliari	(MJ)
	Energia scambiata per trasmissione con il terreno Energia scambiata per ventilazione Energia scambiata per trasmissione con ambienti adiacenti Energia scambiata con zone a temperatura fissata Energia scambiata per trasmissione e ventilazione Energia dovuta agli apporti solari su superfici opache Energia dovuta agli apporti solari su superfici trasparenti Energia dovuta agli apporti interni Rapporto tra l'energia dovuta agli apporti gratuiti e l'energia uscente Fattore di utilizzazione degli apporti energetici gratuiti Fabbisogno energetico utile ideale richiesto da ciascuna zona Fattore di riduzione dell'energia dispersa per trasmissione e per ventilazione Fattore di riduzione dell'apporto energetico dovuto alle sorgenti interne e solari Coefficiente per modalità di funzionamento

Q Fabbisogno di energia primaria (MJ)

np Rendimento di produzione

Qee Fabbisogno di energia elettrica per apparecchiature ad aria (MJ)

CALCOLO FABBISOGNO ENERGETICO DI ZONA

Impianto termico : OFFICI Split Zona termica : 1 officina

Sistema di regolazione : Solo ambiente con regolatore Tipologia di prodotto : Regolatore si/no a differenziale Terminale di erogazione : Bocchette in sistemi di aria calda

Rendimento di emissione: 0,92

Regime di funzionamento impianto : Intermittente

Ore attenuazione/spegnimento fra le ore 16.00 e le 08.00 : 10 Ore attenuazione/spegnimento fra le ore 08.00 e le 16.00 : 4

	Qt (MJ)	Qg (MJ)	Qv (MJ)	Qu (MJ)	Qa (MJ)	QI (MJ)	Qse (MJ)	Qsi (MJ)	Qi (MJ)	γ
Novembre	1831	525	443	0	0	2800	352	1296	0	0
Dicembre	3739	543	905	Ő	Ő	5186	307	1133	0	Ö
Gennaio	4603	543	1114	Õ	Ö	6260	344	1271	Õ	ő
Febbraio	4019	490	972	Ö	Ö	5482	412	1510	Ö	Ö
Marzo	3376	543	817	0	0	4735	576	2076	0	0
	17568	2644	4250	0	0	24463	1991	7285	0	
	nu	Qh (MJ)	fil	fig	k	Qhvs (MJ)	ne	nc	Qhr (MJ)	Qhrc (MJ)
Novembre	0	0	0	0	0	0	0	0	0	0
Dicembre	0	0	0	0	0	0	0	0	0	0
Gennaio	Õ	Ő	Ő	Ő	Ő	0	Ő	Ö	Ö	Ö
Febbraio	ő	0	Ö	0	Ö	0	Ö	0	0	0
Marzo	0	0	0	0	0	Ö	0	0	0	0
		0				0			0	0

I simboli utilizzati sono congrui con la normativa vigente.

SISTEMA DI GENERAZIONE

Impianto termico : OFFICI Split : Solo riscaldamento Generatore : 1 inverter

Caratteristiche del generatore

Energia elettrica assorbita da bruciatore/ausiliari (W) : 0

Potenza nominale utile del sistema di produzione (kW) : 6

Sorgente esterna: Temperatura esterna variabile

Condizioni di riferimento Potenza termica resa

Potenza termica resa (W): 6000
Potenza elettrica assorbita (W): 2000
Coefficiente di effetto utile a temperatura nominale (COP): 3,0000
Temperatura di riferimento della sorgente fredda (°C): 10,00

VALORI LIMITE IMPIANTO (D.L. 192 del 19/08/2005 e D.L. 311 del 26/12/2006)

Potenza utile nominale (kW): 6,000 Rendimento globale medio stagionale minimo, ng (%): 0,00

Gradi giorno della località : 1153 V = Volume lordo delle parti di edificio riscaldato (m³) : 660,00 S = Superficie disperdente che delimita il volume V (m²) : 416,80 Rapporto S/V (1/m) : 0,632

Indice di prestazione energetica limite (KWh/m³anno) : 12,62

VERIFICA TRASMITTANZA TERMICA DELLE STRUTTURE (D.L. 311 del 26/12/2006)

Tutti i valori sono espressi in W/m²K - valori limite dall'1 gennaio 2008

Allegato C2 - Trasmittanza termica delle strutture verticali opache

Valore limite della trasmittanza termica U delle strutture verticali opache.		0,460
PORT - PORTA IN FERRO (est)	VE	0,424 Sì
PARETE - MURO ISOLATO IN MAT.(est)	VE	0,389 Sì

Allegato C3 - Trasmittanza termica delle strutture orizzontali opache. Coperture

Valore limite della trasmit. termica U delle strut. orizz. opache. Coperture		0,420	
SOLAIO - SOLAIO ESTERNO	SE	0.378 S	ì

Allegato C3 - Trasmittanza termica delle strutture orizzontali opache. Pavimenti

Valore limite della trasmit. termica U delle strut. orizz. opache. Pavimenti		0,490
PAV - PAVIMENTO AL SUOLO	PS	0,403 Sì

Allegato C4 - Trasmittanza termica delle chiusure trasparenti

Valore limite della trasm. termica U delle chiusure trasparenti comprensive	e di infissi.	3,000	
FIN - FINESTRA 1.5x1.5	CF	1,926	Sì
Valore limite della trasmittanza termica U dei vetri.		2,300	
FIN - FINESTRA 1.5x1.5	CF	1,590	Sì

Verifica trasmittanza termica: positiva

VERIFICA MASSA SUPERFICIALE DELLE STRUTTURE (D.L. 311 del 26/12/2006 Allegato I - c.9, lett. b)

Zona termica: C
Mese di massima insolazione: Luglio
Valore medio mensile dell'irradianza sul piano orizzontale (W/m²): 314,59

Tutti i valori sono espressi in kg/m²

Valore minimo di massa superficiale delle strutture esterne opache. 230

PARETE - MURO ISOLATO IN MAT.(est) VE 332 Sì SOLAIO - SOLAIO ESTERNO SE 580 Sì

Verifica Massa Superficiale: positiva

RIENTRATE DI CALORE NEI LOCALI

Locale : 000001 Officina

Piano : 0

Impianto : OFFICI Split Zona : 1 officina

Superficie in pianta 105 (m^2) : Superficie disperdente totale (m^2) 311,8 Peso del loc. sul pavimento 400 (kg/m^2) Volume netto (m^3) 462,00 Temperatura interna (°C) 26 Ora attivazione impianto: 9 (h) Numero ore giornaliere di attivazione impianto:(n) 10 Umidità relativa (%) 50

Infiltrazioni naturali (vol/h) : 0,50 Numero persone mediamente presenti : 2

Grado di attivita' (1 - 11)

Lavoro leggero al banco, officina, assemblaggio

Rientrate di calore nel locale W alle ore: 9

Espo	os.	Struttura	Trasmittanza W/m²K	Area (m²)	coeff. Colore irr.	Carico W
N	FIN	FINESTRA 1.5x1.5	1,9261	2,88	М	6
	PARETE	MURO ISOLATO IN MAT.(est)	0,3890	30,02	M	-30
S	FIN	FINESTRA 1.5x1.5	1,9261	11,52	M	48
	PARETE	MURO ISOLATO IN MAT.(est)	0,3890	21,38	M	-17
Е	FIN	FINESTRA 1.5x1.5	1,9261	30,24	dticx(0,76)M	8671
	PARETE	MURO ISOLATO IN MAT.(est)	0,3890	40,26	M	64
0	FIN	FINESTRA 1.5x1.5	1,9261	7,20	M	15
	PARETE	MURO ISOLATO IN MAT.(est)	0,3890	63,30	M	-14
OR	SOLAIO	SOLAIO ESTERNO	0,3780	105,00	С	43
Tota	li			311,80		8786

Locale : 000001 Officina

Carichi interni	Sensibili W	Latenti W
Carico dovuto alle persone	144	296
Apparecchi elettrici	0	
Illuminazione	0	
Presenza motori elettrici	2	
Carichi interni sensibili	0	
Carichi interni latenti		0
Totali	146	296

Rientrate di calore alle varie ore del giorno

Ora	Q trasm.	Q irr.	Q infiltr	azione	Carichi	interni		Q totale		R=Qs/Qt
	W	W	Sens. W	Lat. W	Sens. W	Lat. W	Sens. W	Lat. W	W	
09	115	8671	0	379	144	296	8930	675	9605	0,9297
10	370	7127	109	379	144	296	7750	675	8425	0,9199
11	608	4870	199	379	144	296	5822	675	6497	0,8961
12	830	3326	290	379	144	296	4590	675	5265	0,8718
13	1071	2851	380	379	144	296	4446	675	5121	0,8682
14	1362	2613	471	379	144	296	4590	675	5265	0,8718
15	1538	2257	507	379	144	296	4446	675	5121	0,8682
16	1614	2019	471	379	144	296	4248	675	4923	0,8629
17	1679	1663	435	379	0	0	3777	379	4156	0,9088
18	1652	1307	398	379	0	0	3357	379	3736	0,8985

Riepilogo delle condizioni di massimo carico

Ora		:	9
Rientrate di calore per trasmissione	W	:	115
Rientrate di calore per irraggiamento	W	:	8671
Rientrate di calore per ventilazione	W	:	379
Carichi interni	W	:	440
Rientrate di calore totali	W	:	9605
Rapporto rientrate/superficie in pianta		:	91,48
Rapporto rientrate/volume netto		:	20,79

DATI RIEPILOGATIVI LOCALI

Locale	Descrizione	Ora C	trasm.	Q irr.	Q infiltra	azione	Carichi i	nterni		totale		R=Qs/Qt
			W	W	Sens. W	Lat. W	Sens. W	Lat. W	Sens. W	Lat. W	W	
000001	Officina	09	115	8671	0	379	144	296	8930	675	9605	0,9297

Mese calcolo rientrate : 7 (Luglio)

Nota: I dati sono relativi all'ora di massimo carico di locale.

IMPIANTO: OFFICI Split

Locale	Volume (m³)	Ora max carico	Q sens. W	Q latente W	Q totale W	R=Qs/Qt
000001 Officina	462,0	9	8930	675	9605	0,9297
Totali	462,0	9	8930	675	9605	0,9297

Mese calcolo rientrate : 7 (Luglio)

Nota: I dati sono relativi rispettivamente all'ora di massimo carico di locale o di impianto.

ANDAMENTO ORARIO DELLE POTENZE ESTIVE DELL'IMPIANTO

Codice impianto: OFFICI Split

Ora	Trasm.	Irragg.	Infiltra	azioni	Altri Carichi		Totali			
	W	W	Qs W	QI W	Qs W	QI W	Qs W	QI W	Qtot W	R=Qs/Qt
1	209	356	0	0	0	0	566	0	566	1,0000
2	122	356	0	0	0	0	478	0	478	1,0000
3	42	238	0	0	0	0	280	0	280	1,0000
4	-5	238	0	0	0	0	233	0	233	1,0000
5	-99	119	0	0	2	0	22	0	22	1,0000
6	-113	6177	0	0	2	0	6066	0	6066	1,0000
7	-122	8196	0	0	2	0	8076	0	8076	1,0000
8	-142	9028	0	0	0	0	8885	0	8885	1,0000
9	115	8671	0	379	144	296	8930	675	9605	0,9297
10	370	7127	109	379	144	296	7750	675	8425	0,9199
11	608	4870	199	379	144	296	5822	675	6497	0,8961
12	830	3326	290	379	144	296	4590	675	5265	0,8718
13	1071	2851	380	379	144	296	4446	675	5121	0,8682
14	1362	2613	471	379	144	296	4590	675	5265	0,8718
15	1538	2257	507	379	144	296	4446	675	5121	0,8682
16	1614	2019	471	379	144	296	4248	675	4923	0,8629
17	1679	1663	435	379	0	0	3777	379	4156	0,9088
18	1652	1307	398	379	0	0	3357	379	3736	0,8985
19	1143	950	0	0	0	0	2093	0	2093	1,0000
20	1069	713	0	0	0	0	1782	0	1782	1,0000
21	914	713	0	0	0	0	1627	0	1627	1,0000
22	757	594	0	0	0	0	1351	0	1351	1,0000
23	514	475	0	0	0	0	989	0	989	1,0000
24	260	475	0	0	0	0	735	0	735	1,0000

Mese calcolo rientrate : 7 (Luglio)

1. CALCOLI DI DIMENSIONAMENTO DEGLI IMPIANTI ANTINCENDIO

RIFERIMENTI NORMATIVI

1.1 - Apparecchiature per estinzione incendi. Alimentazioni idriche per impianti automatici antincendio UNI 12845.

2 - Tubazioni in acciaio e sostegni. UNI 4148-1959

UNI 6363-68 serie B

UNI 7145-72

3 - Tubazioni di rame. UNI 6507-69 serie B pesante

4- Lance di erogazione e bocchelli Lancia A 45 UNAV 5042 con bocchello

10 mm.

a)

5 - Tubazioni flessibili UNAV 5401.1 - 1967

UNAV 5405 - 1967

6 - Raccordi per tubazioni flessibili. UNI 804 A e B

UNI 814

7-Mezzi di estinzione incendi-Liquidi schiumogeni

UNI EN 1568-1-2-3-4

b) APPRESTAMENTI MOBILI:

GLI ESTINTORI

Sui moli e/o pontili sono stati previsti estintori del tipo portatili a polvere da 6 kg di tipo nautico, omologati ai sensi del D.M.I. 07/01/2005 e approvati ai sensi della direttiva MED 96/98/CE, di classe >34A-233B-C in collocazione fissa segnalata, in numero totale di 18.

Sui moli e/o pontili sono stati previsti inoltre estintori del tipo carrellati a polvere da 30 kg di tipo nautico, omologati ai sensi del D.M.I. 06/03/1992-UNI 9424 e approvati ai sensi della direttiva MED 96/98/CE, di classe >A-B1-C in collocazione fissa segnalata, in numero totale di 9.

Sui moli e/o pontili sono stati previsti infine estintori del tipo carrellati a schiuma da 60 kg di tipo nautico, omologati ai sensi del D.M.I. 06/03/1992-UNI 9424 e approvati ai sensi della direttiva MED 96/98/CE, di classe >A-B4 in collocazione fissa segnalata, in numero totale di 9.

Saranno inoltre installati estintori a polvere da 6 kg di tipo nautico approvato, per estinzione di classe A-B-C-D-E nei fabbricati per gli uffici, per i servizi igienici, per i locali commerciali e di deposito per un totale di 6.

GLI SCHIUMOGENI

Gruppo mobile schiuma uni 45, costituito da telaio in profilati d'acciaio completo di cassetta portamanichette in lamiera, di ruote in gomma e dei seguenti componenti:

• Serbatoio in plastica da litri 100 con schiumogeno

- Miscelatore a percentuale fissa M45N 6% UNI 45
- Tubo di aspirazione completo di filtro
- Manichetta in nylon gommato internamente 10 m UNI 45 per il collegamento fra idrante e miscelatore
- Manichetta in nylon gommato internamente 20 m UNI 45 per il collegamento fra miscelatore e lancia
- Lancia schiuma a bassa espansione

c) APRESTAMENTI FISSI: GLI IDRANTI

Il complesso è servito da due impianti antincendio separati, il primo a servizio del molo foraneo ed il secondo dell'area dei pontili galleggianti. Ogni impianto preleva acqua dal mare con pompa sommersa, ed è tenuto perennemente in pressione con quadro elettrico e piping *UNI 12845*, ed è inoltre dotato di gruppo elettrogeno di emergenza.

Criteri Progettuali per il calcolo delle reti

Sono stati adottati i criteri di seguito esposti.

Gli idranti UNI 45 completi di lancia e bocchetta saranno posizionati sui moli e sui pontili, rispettivamente sui pontili installati alla radice e posizionati ad una distanza massima reciproca di 30 metri, e sui moli ad una distanza massima reciproca di 50 metri, in modo da garantire l'intervento in tutte le zone del porto. La rete principale sarà inglobata nel praticabile di banchina, in modo tale da non creare vincoli che compromettano la stabilità dell'impianto per azioni indotte dalle dilatazioni termiche o da colpi d'ariete. Le varie manichette saranno collegate con una tubazione in acciaio inox contro l'azione dell'acqua marina. Inoltre sono stati previsti 5 idranti ad azione schiumogena, carrellati, con una riserva di schiumogeno complessivamente di capacità 500 lt.

Ogni impianto è corredato da un attacco esterno UNI 70 per autopompa dei VV.F. L'attacco UNI 70 avrà la funzione di collegare l'impianto direttamente con le autopompe dei VV.F.

Infatti, questo è direttamente innestato alla rete consentendo l'alimentazione dell'intero impianto da autobotte esterna. La viabilità di servizio permette l'avvicinamento delle autobotti in ogni parte del porto.

L'attacco UNI 70 per autopompe dei VV.F. è ubicato presso l'ingresso del porto in apposita nicchia, che avrà funzione di ancorare e proteggere l'attacco che sarà dotato di tappo di protezione a chiusura rigida e catenella di ancoraggio.

Gli ancoraggi delle tubazioni alle strutture, verranno effettuati con sostegni metallici resistenti al fuoco ed in modo da sostenere senza deformazioni o cedimenti con carico minimo di 100 Kg. oltre al peso del tubo pieno d'acqua moltiplicato per cinque volte e avranno forma secondo la norma UNI 7145-72.

Riserva idrica antincendio

La riserva idrica antincendio è di capacità infinita attingendo dal mare ove le pompe sommerse sono immerse

Riserva schiumogena antincendio

La riserva schiumogena antincendio è di capacità complessiva di 500 l.

d) CALCOLI DELL'IMPIANTO A SERVIZIO DEL MOLO FORANEO

E' costituito da una rete che alimenta n. 11 bocchette posizionate sul molo, di cui n. 3 idranti ad azione schiumogena, ed una bocchetta UNI 70 posizionata in prossimità dell'ingresso.

Caratteristiche gruppo antincendio

Il gruppo di spinta, conforme alla norma UNI 12845, sarà costituito da :

- due elettropompe, installate sommerse, il cui funzionamento contemporaneo garantirà una portata di 360 l/min. e 42,2 **m H₂O** di prevalenza;

il collettore ed il quadro di comando hanno:

- base di appoggio in calcestruzzo;
- pressostati, manometri, manovuotometri;
- pompa sommersa diretta DN 100 e mandata DN 80
- due quadri elettrici IP 55 per le pompe principali;

Ogni pompa sarà munita di valvola a sfera in mandata e aspirazione, di valvola di ritegno sulla mandata. Sul collettore di mandata saranno posizionati un manometro ed un pressostato, che all'abbassamento della pressione decreteranno l'avviamento automatico delle elettropompe. Le pompe avviate potranno essere fermate solo tramite il selettore a chiave sullo sportello del quadro elettrico..

Riepilogo caratteristiche idrauliche dell'impianto:

- portata 360 l\min
- prevalenza 42,2 m m H₂O

- riserva idrica infinita

Calcoli per il dimensionamento della rete antincendio.

Si ipotizza il funzionamento contemporaneo di quattro idranti esterni UNI 45. Per la verifica si è considerata la condizione idraulicamente più sfavorevole dal punto di vista delle perdite di carico.

L'impianto dovrà garantire ad ogni lancia UNI 45 una portata di 120 l/min. ed una pressione di 20 m.c.a.

Le perdite di carico per attrito si dividono in:

perdite di carico distribuite, calcolate con la relazione di Hazen-Williams,
 che sono in funzione del diametro della tubazione, della velocità del peso
 specifico del liquido e della rugosità interna della tubazione

$$\mathbf{p} = 6.05 \text{ x } (Q1.85 \text{ x } 105 / \text{ C } 1.85 \text{ x } d4.87) \text{ (bar/m)}$$

dove:

p è la perdita di carico unitaria, in bar al metro di tubazione;

Q è la portata in litri al minuto;

C è una costante pari a 120 per tubi in polietilene;

d è il diametro interno della tubazione in millimetri.

- perdite di carico localizzate, che sono proporzionali all'energia cinetica dell'acqua, e secondo l'NFPA (13 - Standard for installation of sprinklers sistems) si determinano aumentando virtualmente la lunghezza delle tubazioni di una quantità equivalente per ogni accessorio (curva, gomito, valvole, ecc.) secondo valori tabellati.

Calcolo delle perdite di carico nella centrale antincendio

Il calcolo delle perdite di carico in centrale viene eseguito a portata costante nelle condizioni ipotizzate:

Q = 360 l/min.

diametro DN 100 J = 5,57 m/km

lunghezza effettiva 8 m

perdite concentrate lunghezza equivalente

- valvola a sfera DN 100 1 x 0.6 = 0.6 m
- gomito 90° DN 100 1 x 3.0 = 3.0 m
- T 90° DN $100 \ 1 \ x \ 6.0 = 6.0 \ m$
- valvola di ritegno DN 100 1 x 6,6 = 6,6m

```
tot. Leq. 10,2 m
```

Perdita di carico totale (8+10,2) x 0,0057 = 0,1 m H_2O

Calcolo delle perdite di carico alla rete:

Tratto idrante N. 10

Q = 120 l/min. = 2 l/sec

diametro DN 40 - 11/2" J = 63,16 m/km

lunghezza effettiva 45 m.

lunghezza equivalente Leq.

- gomito 90° DN 40° 1x1,2 = 1,2 m.
- saracinesca DN 40 1x0,3 = 0,3 m.

Totale lungh. equivalente

1,5 m.

Perdita di carico totale (10+1,5) x 0,06316 = 2.94 m H_2O

Tratto 10-9

Q = 240 1/min.

diametro DN 50 - 2" J = 76,81 m/km

lunghezza effettiva 50 m.

lunghezza equivalente Leq.

- gomito 90° DN 50° 2x1,8 = 3,6 m.
- T 90° DN 50 1x3,6 = 3,6 m.

Totale lungh. equivalente 7,2 m.

Perdita di carico totale (50+7,2) x 0.07681 = 4,39 m H₂O

<u>Tratto 9 –8</u>

Q = 360 1/min.

diametro DN 60 - 21/2" J= 66.92 m/km

lunghezza effettiva 54 m.

lunghezza equivalente Leq.

- gomito 90° DN 60 1x1,8 = 1,8 m.
- T 90° DN 60 2x3,6 = 3,6 m.

Totale lunghezza equivalente 5,4 m.

Perdita di carico totale $(54+5,4) \times 0,06692 = 4,04 \text{ m H}_2\text{O}$

Tratto 8 -7

Q = 360 l/min.

diametro DN 80 J = 16,49 m/km

lunghezza effettiva 50 m.

lunghezza equivalente Leq.

- gomito 90° DN 50 1x1,5 = 1,5 m.

DN 50

1x3,0 = 3,0 m.

Totale lunghezza equivalente

4,5 m.

Perdita di carico totale (50+4,5) x 0,01649 = 0,90 m H_2O

<u>Tratto 7 - 6</u>

- T 90

Q = 360 1/min.

diametro DN 80

J = 16,49 m/km

lunghezza effettiva 50 m.

lunghezza equivalente Leq.

- gomito 90° DN 50 1x1,5 = 1,5 m.
- T 90
- DN 50

1x3,0 = 3,0 m.

Totale lunghezza equivalente

4,5 m.

Perdita di carico totale (50+4,5) x 0,01649 = 0,90 m H_2O

Tratto 6 - 5

Q = 360 l/min.

diametro DN 80

J = 16,49 m/km

lunghezza effettiva 50 m.

lunghezza equivalente Leq.

- gomito 90° DN 50 1x1,5 = 1,5 m.
- T 90
- DN 50

1x3.0 = 3.0 m.

Totale lunghezza equivalente

4.5 m.

Perdita di carico totale (50+4,5) x 0,01649 = 0,90 m H_2O

Riepilogo calcolo perdite di carico della rete

Perdita di carico totale – prevalenza minima $2.94 + 4.39 + 4.04 + 0.90 + 0.90 + 0.90 + 0.90 + 0.00 = 25.07 \text{ m} \text{ H}_2\text{O}$

Calcolo di verifica della prevalenza delle pompe

e) CALCOLO DELL'IMPIANTO DEI PONTILI GALLEGGIANTI E' costituito da una rete che alimenta n. 42 bocchette posizionate sui pontili, di cui n. 7 idranti ad azione schiumogena, ed una bocchetta UNI 70 posizionata in prossimità dell'ingresso.

Caratteristiche gruppo antincendio

Il gruppo di spinta, conforme alla norma UNI 12845, sarà costituito da:

- due elettropompe sommerse, il cui funzionamento contemporaneo garantirà una portata di 360 l/min. e 42,2 m H₂O di prevalenza;
 - base di appoggio in calcestruzzo;
 - pressostati, manometri, manovuotometri;
 - collettori di aspirazione e mandata DN 80
 - due quadri elettrici IP 55 per le pompe principali;

Ogni pompa sarà munita di valvola a sfera in mandata e aspirazione, di valvola di ritegno sulla mandata. Sul collettore di mandata saranno posizionati un manometro ed un pressostato, che all'abbassamento della pressione decreteranno l'avviamento automatico delle elettropompe. Le pompe avviate potranno essere fermate solo tramite il selettore a chiave sullo sportello del quadro elettrico..

Riepilogo caratteristiche idrauliche dell'impianto:

portata 350l\min

prevalenza 42.2 m H₂O

riserva idrica infinita

Calcolo di verifica della rete antincendio.

Si ipotizza il funzionamento contemporaneo di tre idranti esterni UNI 45. Per la verifica si è considerata la condizione idraulicamente più sfavorevole dal punto di vista delle perdite di carico calcolo eseguito con l'intera portata il gruppo di spinta risulterà leggermente sovradimensionato, a vantaggio della sicurezza. L'impianto dovrà garantire ad ogni lancia UNI 45 una portata di 120 l/min. ed una pressione di 20 m H₂O.

Calcolo delle perdite di carico in centrale:

Il calcolo delle perdite di carico in centrale viene eseguito a portata costante nelle condizioni ipotizzate:

Q = 360 l/min.

diametro DN 100 J = 5,57 m/km

lunghezza effettiva 8 m

perdite concentrate lunghezza equivalente

- valvola a sfera DN 100 1 x 0.6 = 0.6 m
- gomito 90° DN 100 1 x 3.0 = 3.0 m
- T 90° DN $100 \ 1 \ x \ 6.0 = 6.0 \ m$
- valvola di ritegno DN 100 1 x 6,6 = 6,6m

tot. Leq. 10,2 m

Perdita di carico totale (8+10,2) x 0,0057 = 0,1 m H_2O

Calcolo delle perdite di carico alla rete:

Tratto idrante 2 - 1

Q = 120 l/min. = 2 l/sec

diametro DN 40 - 11/2" J = 63,16 m/km

lunghezza effettiva 44 m.

lunghezza equivalente Leq.

- gomito 90° DN 40° 1x1,2 = 1,2 m.
- saracinesca DN 40 1x0,3 = 0.3 m.

Totale lungh. equivalente

1,5 m.

Perdita di carico totale (44+1,5) x 0,06316 = 2.87 m H_2O

<u>Tratto 1 – (3-4)</u>

Q = 240 1/min.

diametro DN 50 - 2" J = 76.81 m/km

lunghezza effettiva 21 m.

lunghezza equivalente Leq.

- gomito 90° DN 50° 2x1,8 = 3,6 m.
- T 90° DN 50 1x3,6 = 3,6 m.

Totale lungh. equivalente 7,2 m.

Perdita di carico totale (21+7,2) x 0.07681 = 2,17 m H_2O

<u>Tratto (3-4) -5</u>

Q = 360 1/min.

diametro DN 60 - $2^{1/2}$ " J= 66.92 m/km

lunghezza effettiva 26 m.

lunghezza equivalente Leq.

- gomito 90° DN 60 1x1.8 = 1.8 m.
- T 90° DN 60 2x3.6 = 3.6 m.

Totale lunghezza equivalente 5,4 m.

Perdita di carico totale (26+5,4) x 0,06692 = 2,10 m H_2O

Tratto 5 - CEN

Q = 360 l/min.

diametro DN 80

J = 16.49 m/km

lunghezza effettiva 18 m.

lunghezza equivalente Leq.

- gomito 90° DN 50 1x1,5 = 1,5 m.
- T 90 DN 50

1x3,0 = 3,0 m.

Totale lunghezza equivalente

4.5 m.

Perdita di carico totale (18+4,5) x 0,01649 = 0,37 m H_2O

Riepilogo calcoli della perdita di carico totale - prevalenza richiesta

$$2,87 + 2,17 + 2,10 + 0,37 + 0,10 + 20 = 27,61 \text{ m H}_2\text{O}$$

Calcolo di verifica della prevalenza delle pompe

2. CALCOLI DI DIMENSIONAMENTO DELL'IMPIANTO IDRICO-SANITARIO

Premesse

Gli impianti idrico-sanitari da realizzare nell'ambito della struttura destinata alle attività commerciali e artigiane nonché per i servizi portuali riguardano:

- l'alimentazione e distribuzione dell'acqua potabile;
- i sistemi di scarico e raccolta delle acque.

Riferimenti normativi

Norme igienico sanitarie atte a preservare la potabilità dell'acqua:

- RD 3.2.1901 n. 45
- RD 23.6.1904 n. 369
- DPR 3.8.1968 n. 1095
- 2.2 Norme Tecniche di Progettazione.
- 2.2.1 Impianti di alimentazione e distribuzione di acqua calda e fredda: UNI 9182

- 2.2.2 Sistemi di scarico delle acque usate: UNI 9184
- 2.3 Tubazioni.
- 2.3.1 Tubi di acciaio:
- UNI 8863 UNI ISO 7/1 ISO 50
- UNI 5745
- UNI 6363
- 2.3.2 Raccordi in ghisa malleabile:
- UNI 5192 ISO 7/1
- 2.3.3 Tubi e raccordi in PVC:
- UNI 7441
- UNI 7442
- UNI 7443
- UNI 7343
- 2.3.4 Tubi e raccordi in PE A.D.
- UNI 8452
- UNI 7613
- 2.3.5 Tubi e raccordi in rame:
- UNI 6507
- UNI 8050

Impianto idrico-sanitario

L'alimentazione dei servizi igienici è solo per il piano terra dove sono stati previsti dei servizi igenici ad uso degli esercenti, degli utilizzatori del porto e dei disabili, in numero adeguato alle disposizioni di cui alla Legge Regionale 11\2\99 n11. Si è previsto il collegamento alla rete dell'E.A.A.P. con saracinesche di intercettazione, valvole di non ritorno con otturatore molleggiato, e contatori di sottrazione per le varie utenze autonome e per le colonnine dei moli.

Criteri di scelta dei diametri e determinazione della portata

Per la determinazione del calcolo delle portate dei vari tronchi si farà riferimento alle seguenti portate di singoli rubinetti di erogazione:

- lavabo0,1 l/s
- bidet.....0,1 1/s
- vaso con cassetta....0,1 1/s

- doccia......0.05 l/s

Questi valori di portata si riferiscono a pressioni a monte:

- rubinetti erogatori pari a 1 - 1,5 bar.

La portata delle diramazioni sarà determinata tenendo conto della contemporaneità di utilizzo con i relativi coefficienti tabulati o diagrammati disponibile in letteratura.

Calcolo della portata delle diramazioni per servizi ai diportisti

Si considerano aperti tutti gli apparecchi dei bagni, previsti divisi per sesso e per disabili. Tale valore così ottenuto sarà ridotto sulla scorta delle succitate curve di contemporaneità che forniscono la percentuale di apparecchi da ritenere contemporaneamente in funzione:

- numero di apparecchi

N.56 lavelli per stoviglie posti all'esterno del fabbricato

N.11 bagni donne compresi di w.c. e lavabo

N.13 lavabi esterni + 2 lavapiedi (bagni donne)

N.11 bagni uomini compresi di w.c. e lavabo

N.13 lavabi estreni + 2 lavapiedi (bagni donne)

N.2 bagni attrezzati per disabili

N.12 docce uomini + 11 lavapiedi

N.12 docce donne + 11 lavapiedi

N.2 w.c. completi per il personale compresi di deposito e spogliatoi.

- portata per ogni apparecchio

G = 0.1 l/s

- percentuale di contemporaneità

LavabiK1 = 0.4

portata totale Q1 = N1xqrxk1 + N2xqrxk2 = 1.76 l/s

La velocità dell'acqua nelle tubazioni sarà considerata compresa tra 0,6 e 1,6 m/s.

Rete di distribuzione

La rete di distribuzione sarà realizzata per garantire nel punto di prelievo più sfavorito la minima pressione per il corretto funzionamento delle apparecchiature (1,5 bar per rubinetterie e WC a cassetta).

I tratti di tubazione principali di alimentazione dei bagni saranno in ferro zincato, a vite e manicotto con giunzioni e pezzi speciali di raccordo in ghisa malleabile bordati, filettati e zincati a caldo. Le giunzioni saranno eseguite mediante filettature. Ogni singolo apparecchio sarà servito da rete separata, in partenza, da un collettore di distribuzione per l'acqua fredda ed uno per l'acqua calda. Tale coppia di collettori sarà alloggiata in una cassetta con telaio e portello metallico che consentirà la manovrabilità per il collegamento dei tubi. Sarà possibile intercettare ogni collettore, e quindi ogni bagno, per mezzo di un rubinetto a sfera posto a monte del collettore. Analogamente sarà possibile intercettare dal collettore ogni singolo rogatore.

Le tubazioni incassate nei muri saranno libere di eseguire le dilatazioni tecniche e pertanto non dovranno essere bloccate. Le montanti nei cavedi e l'anello che correrà nel vano tecnico saranno collegate alla struttura con sostegni in acciaio del tipo a collare e del tipo a mensola con staffe di sostegno, tali sostegni dovranno isolare termicamente le tubazioni in corrispondenza degli staffaggi.

Produzione di acqua calda sanitaria

Per le docce è stato previsto un sistema ad energia solare ed accumulo collegato, con resistenza elettrica di soccorso con scaldabagni a pompa di calore.

Per le altre utenze, dato l'uso discontinuo delle zone con erogazione di acqua calda e la limitata quantità di queste erogazioni, si è adottato produttore elettrico ad accumulo di acqua calda sanitaria da 80 litri dove l'acqua sarà riscaldata a mezzo di una resistenza elettrica della potenza di 1 KW, comandata dal termostato.

Il tipo da installare sarà garantito 10 anni. Sono stati altresì previsti 4 pannelli solari per preriscaldare l'acqua in inverno e garantire l'erogazione d'estate.

Il boiler verrà direttamente collegato al collettore caldo, laddove vi saranno più di due utenze, oppure direttamente collegato all'apparecchio.

Calcolo dei rivestimenti isolanti

I rivestimenti isolanti andranno impiegati per:

- impedire la condensazione del vapore acqueo dell'aria sulle tubazioni fredde
- ridurre le dispersioni di calore nelle tubazioni calde.

I rivestimenti isolanti sulle tubazioni fredde verranno eseguiti per i tratti di tubazione in rame incassati nelle murature e saranno costituiti da:

- guaina in elastomero a cellule chiuse con spessore di 6 mm.

Calcolo dell'impianto fognante

Criteri di progettazione.

Per il calcolo delle colonne, delle diramazioni e dei collettori di scarico si farà riferimento alle seguenti unità di scarico (u.s:) per i singoli apparecchi:

- Lavabo 2 u.s.

- Vaso 6 u.s.

- Bidet 2 u.s.

- Doccia 2 u.s.

- Lavapiedi 2 u.s.

- Lavello per stoviglie 6 u.s.

- Vasche per bucato 2 u.s.

Diramazioni a collettore

Nel caso di batterie di vasi, orinatoi o lavabi, diramazioni che serviranno più apparecchi saranno calcolate tenendo conto dei seguenti valori:

diam. 75 per orinatoi e due o più lavabi......1% di pendenza 12 u.s.

Calcolo del collettore di scarico

Il collettore di scarico alle fosse Imhoff sarà interrato ed avrà diametro 125, con le seguenti capacità di scarico:

- pendenza 1% 270 u.s.

- pendenza 2% 370 u.s.

Diramazioni di ventilazione scarichi (ventilazione secondaria)

Il diametro del tubo di ventilazione di ogni singolo apparecchio sarà almeno uguale a quello del tubo di scarico fino ad un massimo di 40 mm.

Impianto di scarico

L'impianto fognante sarà realizzato con tubazione in polietilene A.D. (tipo Geberit) per le diramazioni, le colonne e i collettori di scarico. Per ciò che concerne le diramazioni, ossia gli attacchi che collegheranno i singoli apparecchi alle colonne di scarico, si cercherà di evitare quanto più possibile i cambiamenti di direzione. Questo si otterrà realizzando, a seconda delle particolari disposizioni degli apparecchi, la più adeguata soluzione che potrà essere una derivazione multipla oppure una derivazione a 45°. La base di ogni colonna sarà innestata con doppia curva a 45° in un pozzetto in calcestruzzo delle dimensioni 40x40 che servirà da ispezione della base della colonna. Questi pozzetti collegheranno i tronchi del collettore generale , uno ogni 20 m. circa, fino al recapito finale.

Impianto termico

Premessa

L'impianto previsto dal progetto riguarda il riscaldamento del fabbricato per le attività portuali , commerciali ed artigianali e di ristorazione del porto turistico di stazionamento in San Foca nel comune di Melendugno.

Si prevede la realizzazione di impianti autonomi, uno per ogni attività, del tipo a split - sistem con pompa di calore a ciclo reversibile, ad espansione diretta ad alto rendimento del tipo ad inverter, a bassa silenziosità.

L' impianto è stato progettato in conformità alle vigenti normative tenendo sempre presente tutte le norme di sicurezza di competenza dei VV.F. e delle Leggi sui consumi energetici.

Decreto Legislativo 19 agosto 2005, n. 192, e Decreto Legislativo 29 dicembre 2006, n.311 Decreto Pres. Repubblica 02/04/2009 n. 59

Legge Regionale Puglia10 giugno 2008, n. 13

UNI - 7357

Descrizione particolareggiata delle apparecchiature da installare

- La tubazione di rame sarà del tipo serie pesante in rame ricotto con attacchi a cartella giuntata.

- Il rivestimento delle tubazioni in rame è previsto con guaina in elastomero a celle chiuse, rivestito

con film plastico compatto e liscio, di spessore 6 mm. per le tubazioni con diametro esterno

inferiore a 20 mm., di spessore di 9 mm. per le tubazioni con diametro esterno inferiore a 40 mm.,

e di spessore di 12 mm. per le tubazioni con diametro inferiore a 54 mm., densità 35 Kg/mc.,

conducibilità a 40° di 0.040 W/ m°C.

- La coibentazione della rete in rame affacciata all'esterno o su locali non riscaldati prevista è con

coppelle di poliuretano espanso dello spessore finito di 3 cm. con conducibilità a 40 °C di 0.029

W/m°C con superficie esterna rivestita con foglio di alluminio a chiusura autoadesiva.

- Il lamierino di alluminio ha spessore 0.2 mm.

Impianto elettrico

Premesse e riferimenti normativi

Premesse

Il progetto, oggetto di questa relazione, prevede la realizzazione dell'impianto elettrico dei

locali a servizio del Porto Turistico-Stazionamento sito nel Comune di San Foca (Le).

Riferimenti normativi

Il seguente impianto sarà realizzato conformemente a quanto previsto dalle seguenti Leggi,

Decreti, Circolari e Norme Tecniche:

- DPR 27/04/1955 N. 547

Norme per la prevenzione e gli infortuni sul lavoro

- L.01/03/1968N.186

Disposizioni concernenti la produzione di materiali, apparecchiature, impianti elettrici ed elettronici

- L. 18/10/1977 N. 791

Attuazione della Direttiva del Consiglio della Comunità Europea relativa alle garanzie di sicurezza che deve possedere il materiale elettrico destinato ad essere utilizzato entro alcuni limiti di tensione

- L. 05/03/1990 N. 46

Norme per la sicurezza degli impianti

- NORMA CEI 20-20

Cavi isolati in PVC con tensione nominale Uo/U non superiore a 450/700 V

- NORMA CEI 20-22

Cavi non propaganti l'incendio

- NORMA CEI 23-3

Interruttori automatici di sovracorrente

- NORMA CEI 23-5

Prese a spina

- NORMA CEI 23-8

Tubi protettivi in PVC e loro accessori

- NORMA CEI 23-9

Apparecchi di comando

- NORMA CEI 23-18

Interruttori differenziali

- NORMA CEI 23-25

Tubi per installazioni elettriche: prescrizioni

- NORMA CEI 34-21

Apparecchi di illuminazione

- NORMA CEI 64-2

Impianti elettrici nei luoghi con pericolo di esplosione

- NORMA CEI 64-8

Impianti elettrici utilizzatori a tensione nominale non superiore a 1000 V in corrente alternata e a 1500 V in corrente continua

- NORMA CEI 70-1

Grado di protezione degli involucri

- NORMA CEI 81-1

Impianti di protezione contro le scariche atmosferiche

- D.Lgs.626 del 19/09/1994

Miglioramento della sicurezza e della salute dei lavoratori sul luogo di lavoro.

Quadri elettrici e linee

Quadro di distribuzione generale

Sono stati previsti quadri di distribuzione in funzione delle utenze elettriche come evidenziato negli elaborati grafici allegati. Ad ogni locale l'energia elettrica verrà fornita direttamente in BT dall'ente erogatore. A valle dei gruppo di misura, che si prevede debbano essere installati all'esterno di ogni locale dell'edificio, si è prevista l'installazione del quadro di distribuzione generale per l'alimentazione delle linee di energia ed illuminazione.

Le montanti dei quadri generali saranno protette da un interruttore automatico del tipo magnetotermico o magnetotermico differenziale (bipolare o tetrapolare) di portata adeguata al carico e potere di cortocircuito non inferiore a 4.5 kA.

Linee di distribuzione principale

Dai quadri generali si dipartono le linee di distribuzione ed alimentazione principale a servizio dei diversi locali.

Sono previste linee bipolari e tetrapolari alloggiate in tubazioni sottotraccia e a pavimento in PVC serie pesante.

La sezione delle linee è stata calcolata tenendo conto della massima corrente sopportabile dal cavo e della massima caduta ammissibile secondo le norme e secondo l'utenza alimentata. In particolare per le linee di alimentazione di distribuzione principali si è contenuto la caduta di tensione entro l'1.5%. Mentre, la caduta di tensione in ogni circuito terminale non supererà il 2.5% della tensione nominale per contenere la caduta di tensione totale entro il 4%, come evidenziato in appendice A.

I cavi delle montanti saranno unipolari del tipo N07V-K, non propaganti la fiamma e l'incendio correranno in tubazioni da realizzare e in tubazioni a pavimento.

Il conduttore di protezione raggiungerà tutte gli utilizzatori le utenze speciali e lo stesso è previsto del tipo N07V-K

Tutte le linee dei quadri saranno provviste di interruttore differenziale "salvavita" con soglia di intervento 0.03 A per la protezione delle prese e delle alimentazioni luce.

I quadri dovranno essere realizzati conformemente alle norme CEI ed in particolare alle norme CEI 17-13/3.

Distribuzione luce ed E.I.

Le utenze di utilizzazione sono state suddivise in due parti:

- Utenze Luce;
- Utenze Energia.

Dai quadri partiranno gruppi di linee separate tipo N07V-K unipolari, isolate in PVC in alimentazione delle utenze su citate.

Le linee percorreranno i vari locali in tubazioni sottotraccia e a pavimento in PVC serie pesante per gli attraversamenti e, in genere, ovunque ci sia la possibilità di particolari sollecitazioni meccaniche.

Le scatole e le cassette di derivazione sono state previste in polistirolo antiurto autoestinguente con coperchi fissati esclusivamente con viti; le stesse sono provviste di morsettiere in modo da rendere agevole il collegamento dei conduttori fra loro.

Si dovranno adottare per le linee i seguenti colori distintivi:

- blu chiaro per il neutro;
- giallo verde per il conduttore di protezione;
- nero marrone e grigio per le fasi.

Impianto di illuminazione normale

Anche l'impianto di illuminazione, come quello elettrico in generale, dovrà rispondere ai requisiti imposti dalla struttura e dalle funzioni che in essa si andranno a svolgere, per quanto riguarda affidabilità, flessibilità, sicurezza ecc.

Il progetto è stato realizzato tra l'altro, seguendo le raccomandazioni CIE ed alle norme **UNI 10380.** In particolare nelle norme accanto alle indicazioni di carattere generale, sono indicate tutte le prescrizioni necessarie al buon funzionamento dell'impianto, nelle stesse vengono indicati i valori dell'illuminamento da ottenere con l'illuminazione artificiali. Nel caso in oggetto questi valori sono sempre ampiamente superati.

I criteri di base più salienti tenuti presenti nella realizzazione dell'impianto riguardano il contenimento dei consumi energetici e la rispondenza delle caratteristiche illuminotecniche degli apparecchi illuminanti alle esigenze specifiche, attraverso un'adatta scelta delle sorgenti luminose e degli apparecchi illuminanti.

Verranno installate plafoniere stagne IP44 con tubi fluorescenti nei servizi igienici e nei locali officina; plafoniere con schermi in plexiglas e tubi fluorescenti per i restanti locali.

La disposizione degli apparecchi illuminanti è studiata in maniera tale da realizzare la simmetria e quindi i necessari livello ed uniformità di illuminamento.

Le lampade adoperate sono rappresentate da tubi fluorescenti 1x58 W, aventi le seguenti caratteristiche: diametro 26 mm, flusso luminoso 5400 lm, Resa di Colore > 85 per una luce bianca extra.

Circa la disposizione degli apparecchi illuminanti, essi verranno posti in modo da ottenere interdistanze trasversali e longitudinali che, in rapporto all'altezza utile di montaggio, determinano una soddisfacente uniformità di illuminamento (Emin/Emax > 0.7).

I dati relativi al livello di illuminamento ed alla distribuzione dello stesso nelle varie zone del locale, tenendo conto del tipo delle superfici presenti (superfici opache con colori chiari) e quindi dei relativi coefficienti di riflessione, delle dimensioni del locale stesso, degli apparecchi illuminanti e sorgenti luminose impiegati e corrispondenti curve fotometriche, sono state ottenute con il metodo del coefficiente di utilizzazione.

I locali tipo presi in esame riguardano:

- ♦ Infermeria:
- ♦ Officina:
- ♦ Negozi e magazzini

in ogni ambiente si è mantenuto un livello di illuminamento uniforme, secondo la tabella I delle norme che per detti locali consiglia i seguenti valori:

TIPO LOCALE	ILLUMINAM.	TONAL.	RA	G
Infermeria	750 lux	W	1A	A
Negozi e magazzini	300 lux	I	1B	В
Uffici	300 lux	W,I,	1B	В

Gli apparecchi di illuminazione con lampade fluorescenti lineari, conterranno al loro interno i condensatori necessari al rifasamento.

Illuminazione di emergenza

E' stata prevista un'illuminazione di emergenza con sorgente indipendente da quella ordinaria e ad inserzione automatica in grado di garantire un livello di illuminamento non inferiore a 5 lux lungo i corridoi, passaggi e vie di esodo.

Tale livello di illuminamento si otterrà mediante lampade fluorescenti 1x8 W autoalimentate con batterie al Ni-Cd ed autonomia di circa 1h.

Impianto di terra

Si è previsto un impianto per la messa a terra (protezione contro le tensioni di contatto) di tutte le parti metalliche accessibili dall'impianto elettrico nel rispetto delle norme CEI e delle prescrizioni ENPI.

Il conduttore contraddistinto dalla colorazione giallo-verde prevista dalla tabella UNEL avrà sezione corrispondente a quanto specificato nelle vigenti norme CEI.

Il modo di collegamento a terra dell'impianto è del tipo TT, l'impianto di terra delle masse è separato dall'impianto di terra del neutro. L'impianto di terra di protezione sarà unico e la resistenza di terrà dovrà garantire:

Ra Idn < 50 V

dove:

Ra è la somma delle resistenze dei conduttori di protezione (PE) e del dispersore di terra, in ohm;

Idn è la più elevata tra le correnti differenziali nominali d'intervento degli interruttori differenziali installati, in ampere.

Si utilizzeranno i ferri di fondazione in cemento armato, collegandoli con una corda di rame nuda di sezione pari a 25 mm² posta lungo il perimetro della struttura.

Il conduttore di terra che collegherà l'anello di terra al collettore sarà realizzato sempre con conduttore del tipo N07V-K posato in tubo protettivo e di sezione pari a 16 mm².

Il collettore di terra sarà costituito da una barra di rame 30 mm x 3 mm posto in prossimità del quadro generale. A tale collettore saranno collegati i conduttori di protezione equipotenziali principali ed il conduttore di terra.

Tutte le tubazioni metalliche accessibili destinate ad adduzione di distribuzione e scarico delle acque nonché tutte le masse metalliche accessibili di notevole estensione esistenti nell'aria

dell'impianto elettrico saranno collegate all'impianto di terra. Il collegamento sarà effettuato al collettore di terra; i conduttori avranno una sezione non inferiore a 6 mm².

In fase di allestimento dei servizi igienici si effettueranno i collegamenti equipotenziali supplementari sulle tubazioni metalliche all'ingresso di ogni locale.

I conduttori equipotenziali saranno da collegare al conduttore di protezione nella cassetta di giunzione più vicina.

Criteri di progettazione degli impianti

Sezionamento e comando di emergenza

Il sezionamento dell'intero impianto avverrà dal quadro generale situato in apposito locale o dal quadro posto a valle dei contatori di misura

Protezione contro i contatti diretti

Tutte le parti attive saranno adeguatamente isolate e l'isolamento potrà essere rimosso solo mediante distruzione. Gli involucri assicureranno un grado di protezione minimo di IP 20; gli involucri potranno essere rimovibili soltanto con l'uso dell'attrezzo.

Gli interruttori automatici magnetotermici differenziali ad alta sensibilità (Id = 30 mA) svolgeranno anche una funzione di protezione addizionale nei riguardi dei contatti diretti.

Protezione contro i contatti indiretti

L'impianto utilizzatore ha un'alimentazione del tipo TT e la protezione contro i contatti indiretti verrà effettuata per mezzo di un impianto di terra locale al quale saranno collegate tutte le masse metalliche tramite conduttore di protezione (separato dal neutro).

La protezione si realizzerà con interruzione automatica del circuito tramite l'interruttore automatico differenziale coordinato con l'impianto di terra in modo tale da garantire una tensione verso terra non superiore a 50 V.

Protezione contro le sovracorrenti

Gli interruttori di sezionamento del tipo magnetotermico e magnetotermico differenziale, per la protezione da correnti di sovraccarico e di corto circuito, sono stati dimensionati in modo da realizzare le condizioni previste dalla Norma CEI 64-8:

Ib<In<Iz

dove:

Ib è la corrente di impiego della linea,

In è la corrente nominale dell'interruttore,

Iz è la portata del cavo valutata in base al tipo di posa.

I poteri d'interruzione di tali interruttori garantiscono la tenuta dell'apparecchio per correnti di corto circuito subito a valle del punto di consegna dell'energia.

Protezione contro gli effetti termici

L'impianto elettrico è stato progettato in modo da non creare pericoli dovuti al calore sviluppato dai suoi componenti ed in particolare pericoli di ustioni e di incendio.

Protezioni contro le ustioni

Le parti a portata di mano dei componenti elettrici e degli apparecchi utilizzatori saranno previsti in modo da non superare, in funzionamento ordinario, le temperature massime ammesse ai fini della protezione contro le ustioni nelle relative Norme CEI.

Protezione contro gli incendi

I componenti elettrici sono stati previsti in modo da non costituire pericolo di innesco o di propagazione degli incendi; a tal fine i criteri per la loro scelta e le prove di comportamento sono quelli delle relative Norme CEI.

I componenti elettrici verranno installati rispettando le istruzioni del costruttore.

Caratteristiche degli impianti dei materiali

Gli impianti dovranno essere realizzati a regola d'arte. Le caratteristiche degli stessi, nonché dei loro componenti, dovranno rispondere alle Norme di Legge ed in particolare conformi:

- alle prescrizioni di Autorità Locali, comprese quelle dei VV.F.;
- alle prescrizioni ed indicazione dell'Ente di distribuzione dell'energia elettrica;
- alle Norme CEI:
- alle Norme della prevenzione degli infortuni sul lavoro.

I componenti saranno conformi alle prescrizioni di sicurezza delle rispettive Norme, scelti e messi in opera secondo le caratteristiche dell'ambiente. Saranno, inoltre, adatti alla tensione nominale di alimentazione, scelti in funzione della corrente che li percorre nell'esercizio ordinario ed in grado di sopportare le correnti che possono prodursi in regime perturbato, tenendo conto del tempo d'intervento delle protezioni.

Tutti i componenti dell'impianto elettrico risponderanno a quanto previsto dalla Legge N. 791 del 18/10/77. In modo particolare l'art. 7 sancisce che l'apposizione sul materiale elettrico di un marchio di conformità, ovvero il rilascio di un attestato di conformità da parte degli organismi competenti per ciascuno degli Stati membri della Comunità Europea, importa la presunzione che il materiale stesso è conforme alle prescrizioni di sicurezza.

Tubi protettivi

I tubi protettivi che verranno impiegati saranno scelti in materiale termoplastico auto estinguente e come tali soggetti alle Norme CEI 23-25 e CEI 23-29. Dovranno essere dotati di simbolo di identificazione indicante il nome del costruttore e il marchio di fabbrica.

Il tracciato dei tubi protettivi dovrà avere un andamento rettilineo orizzontale o verticale, con una minima pendenza per consentire lo scarico di eventuale condensa; le curve dovranno essere realizzate con raccordi speciali o con piegature che non danneggino il tubo e non pregiudichino la sfilabilità dei cavi.

Il diametro interno dovrà essere almeno 1.4 volte il diametro del cerchio circoscritto al fascio dei cavi in esso contenuti onde permettere una adeguata sfilabilità, con un minimo di 16 mm.

Conduttori

I cavi dovranno essere messi in opera in modo che sia possibile il controllo del loro isolamento e la localizzazione

Cavi appartenenti a sistemi diversi dovranno essere installati in modo da risultare facilmente distinguibili. In particolare essi non saranno collocati negli stessi tubi, né faranno capo alle stesse cassette di derivazione, a meno che siano isolati per la tensione nominale del sistema a tensione più elevata.

Per l'identificazione dei conduttori, si dovranno utilizzare i seguenti colori:

- bicolore giallo verde per i conduttori di terra e di protezione;
- colore blu chiaro per il neutro;
- per i conduttori di fase come preferenziali i colori marrone, nero e grigio.

Le giunzioni dei conduttori dovranno essere effettuate mediante morsettiere contenute entro cassette; mantenendo inalterate la conducibilità, l'isolamento e la sicurezza dell'impianto.

I cavi saranno del tipo N07V-K infilati in apposite tubazioni in PVC e la loro sezione è stata determinata in funzione della potenza trasportata in modo da non superare la portata del cavo Iz e, in relazione alla lunghezza, per contenere la caduta di tensione entro il 4% della tensione nominale.

Le montanti saranno protette contro i cortocircuiti e sovraccarichi dagli interruttori automatici posti sul quadro generale e saranno inoltre contrassegnate per la loro individuazione. (Tutte le derivazioni finali dei punti luce dalle cassette se non diversamente indicato saranno 3x1.5 Φ 20 così come per le derivazioni finali dei punti presa che saranno 3x2.5 Φ 20).

Cassette di derivazione e scatole per frutti

Le cassette di derivazione (destinate a contenere dispositivi di giunzione e derivazione), e le scatole con telai porta apparecchi, placche e frutti (interruttori, prese a spina, etc.) saranno installate in modo che non sia possibile introdurvi corpi estranei; le dimensioni saranno tali da consentire agevolmente la dispersione di calore.

Il coperchio delle cassette dovrà essere del tipo apribile solo con attrezzo.

Tali cassette, con relativo coperchio e scatole portafrutto, avranno un grado di protezione pari a quello dell'impianto di cui fanno parte integrante. Quelle a vista saranno in resina e con grado di protezione minimo IP 44.

Apparecchi di comando e prese a spina

Gli apparecchi di comando avranno le seguenti caratteristiche:

- tensione nominale 250 V;

- frequenza nominale 50 Hz;
- corrente nominale degli interruttori e deviatori 16 A in conformità con le norme CEI 23.9;
- materiale in resina

Le prese a spine avranno le seguenti caratteristiche:

- tensione nominale 250 V;
- frequenza nominale 50 Hz;
- sezione massima dei conduttori 2,5 mm²
- numero dei poli 2P + T;
- alveoli schermati con grado di protezione contro i contatti indiretti;
- corrente nominale 10 A (interasse 19 mm);
- corrente nominale 16 A (interasse 26 mm);
- conformità alle norme CEI 23.16.

Per le prese ad installazione fissa l'asse geometrico di inserzione delle relative spine risulterà orizzontale. Tale asse, inoltre, dovrà essere distanziato dal piano di calpestio di almeno 175 mm.

Quadri di distribuzione generale e protezioni

Ogni circuito potrà essere sezionato dall'alimentazione; il sezionamento avverrà su tutti i conduttori attivi e, essendo il sistema di distribuzione del tipo TT, anche sul conduttore di neutro.

La posizione di aperto dei contatti dei dispositivi di sezionamento dovrà essere ben visibile. I dispositivi di sezionamento saranno tali da impedire la loro chiusura non intenzionale. Gli interruttori quadripolari (trifasi + neutro) garantiranno che l'apertura del neutro non avvenga mai prima di quella dei conduttori di fase; la chiusura del neutro avverrà contemporaneamente o prima della chiusura delle fasi. I dispositivi di protezione delle condutture dalle sovracorrenti saranno costituiti da interruttori automatici magnetotermici in grado di assicurare contemporaneamente la protezione contro sovraccarico e contro il corto circuito. Tali dispositivi saranno installati all'inizio della conduttura; è ammessa la loro installazione sino a tre metri di distanza dall'origine della conduttura, purché il tratto non protetto soddisfi contemporaneamente alle due condizioni seguenti:

- sia realizzato in modo da ridurre al minimo il pericolo di corto circuito;
- sia realizzato in modo che anche in caso di corto circuito sia ridotto al minimo il pericolo d'incendio o di danno alle persone.

Gli interruttori magnetotermici utilizzati (differenziali e non) avranno le seguenti caratteristiche:

- limitatori conformi alle norme CEI 23.3;

- sgancio a "sicurezza incondizionata" conforme alle Norme CEI 23.16;
- caratteristica termomagnetica a "C";"
- numero poli: bipolare, tripolare, quadripolare rispettivamente con uno, due e tre poli protetti;
- modulari;
- correnti nominali da 6 A a 32 A;
- correnti differenziali d'intervento da 30 mA a 0.3 A;
- tensioni nominali 220/380V, 50/60 Hz
- potere di interruzione 4.5 kA.

Impianto di terra

La messa a terra di protezione di tutte le parti dell'impianto devono essere effettuate collegando le parti interessate (masse e masse metalliche) ad un impianto di terra unico.

Il suddetto impianto di terra comprende:

- dispersori;
- conduttori di terra;
- collettore di terra;
- conduttori di protezione;
- conduttori equipotenziali

Dispersore

Il dispersore sarà costituito dai ferri stessi delle fondazioni in cemento armato collegati con una corda di rame nuda posta lungo il perimetro della struttura e di sezione pari a 25 mm².

Le giunzioni tra i vari elementi del dispersore naturale e tra il dispersore e i conduttori di terra dovranno essere sufficientemente robuste per sopportare eventuali sforzi meccanici; esse non dovranno danneggiare né i conduttori di terra né i dispersori; saranno eseguite con saldatura autogena o con forti e robusti morsetti o manicotti che assicurino un contatto equivalente a quello della saldatura.

Le giunzioni, inoltre, dovranno essere protette contro le corrosioni.

Conduttori di terra

Sono i conduttori non in intimo contatto con il terreno, destinati a collegare i dispersori fra loro e al collettore principale di terra. Saranno in corda di rame con sezione pari a 16 mm².

I conduttori di terra dovranno avere un percorso breve e non dovranno essere sottoposti a sforzi meccanici né soggetti al pericolo di corrosione o logoramento meccanico.

Collettore principale di terra

Nell'impianto ci dovrà essere un morsetto o una sbarra che costituisca il nodo collettore di terra al quale collegare sia i conduttori di terra che i conduttori di protezione.

Sul conduttore di terra, deve essere installato, in posizione facilmente accessibile un dispositivo di apertura, manovrabile solo con attrezzo, per permettere le verifiche.

Conduttori di protezione

Sono i conduttori che collegano all'impianto di terra le masse per la protezione contro i contatti indiretti. Su tale conduttore non devono essere installati dispositivi di interruzione.

La sezione del conduttore di protezione, se di materiale uguale al conduttore di fase, deve essere pari alla sezione di quest'ultimo fino a 16 mm². Per sezioni del conduttore di fase comprese fra 16 e 35 mm² la sezione del conduttore di protezione è pari a 16 mm². Per sezioni del conduttore di fase maggiori la sezione del conduttore di protezione è pari alla metà di quello di fase.

Conduttori equipotenziali

Sono i conduttori che collegano al dispersore le masse estranee e si distinguono in collegamenti principali EQP (quando sono connessi direttamente al collettore) e collegamenti secondari EQS (quando sono connessi ai morsetti di terra locali per costituire un collegamento di sicurezza in parallelo agli EQP.

CALCOLI TECNICI

A. CALCOLO DELLE CORRENTI DI C.C.

N. 2 trasformatori in resina da 400 KVA.

DATI TECNICI:

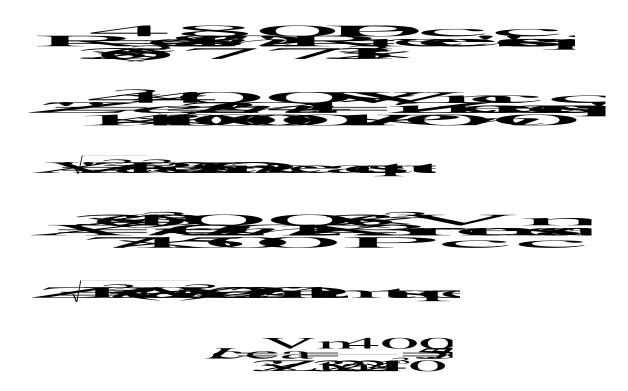
D-4 M 1- D-	400 IZX / A
- Potenza Nominale Pn	400 KVA

- Perdita a vuoto Pv 1200 W

- Perdita in c.c. Pcc 4800 W

- Tensione di c.c. Vcc 6 %

- Corrente di c.c. Icc 1,5 %


- corrente nominale

- sganciatore termico regolabile 350 ÷ 400 A

- sganciatore magnetico regolabile 1200 ÷ 2800 A

- corrente di c.c. nel punto A

- corrente di c.c. nel punto B

B. CONDENSATORI FISSI DI RIFASAMENTO

Perdite a vuoto del trasformatore Pv = 1200 W

Considerando un fattore di potenza a vuoto pari a 0,14 ed un fattore $\cos \phi = 0,9$, il gruppo di rifasamento del trasformatore dovrà avere potenza reattiva pari a:

$$Q = 1200x(tg \phi_1 - tg \phi_2) = 8.18 kVAR$$

Calcolo capacità:

$$C = Q/3 V = 8180/314x 380 = 68 \mu F$$

Calcolo resistenze di scarica dei condensatori

$$R = T/3C$$

T = 15 sec. (tempo di scarica dei condensatori)

$$R = 15 = 73.5 \text{ k}\Omega$$
$$3x68$$

C. VALUTAZIONE DEL RISCHIO PER LE SCARICHE

ATMOSFERICHE

C.1. GENERALITÀ

La seguente verifica per la scelta delle misure di protezione riguarda gli edifici 1, 2

dell'ampliamento del porto di San Foca.

Gli edifici, oggetto della verifica, hanno destinazione d'uso servizi portuali, attività commerciale,

officina rimessaggi. Sono stati, perciò, considerati come strutture ordinarie di caratteristiche tipiche

definite dall'art. G.2 della normativa 81.1.

Per la verifica degli impianti si è perciò applicata la procedura semplificata per la scelta delle

misure di protezione, verificando separatamente la protezione contro la fulminazione diretta della

struttura da quella contro la fulminazione indiretta.

C.2. TIPOLOGIA E CARATTERISTICHE DELLE STRUTTURE

Le strutture di tipo *A* o equivalenti comprendono:

Servizi ed attività commerciali;

Parametri tipici di queste strutture sono:

- struttura in muratura e/o cemento armato;

- impianti interni in cavo non schermato;

- nessuna protezione sulle linee elettriche entranti;

- corpi metallici esterni collegati a terra;

presenza di: estintori;

idranti;

vie di fuga.

- tipo di danno: morte di persone.

C.3. CALCOLO DEL CARICO D'INCENDIO SPECIFICO

Il carico d'incendio specifico è stato valutato secondo quanto prescritto dl punto 1.4 del D.M. 30/11/83.

Tenendo conto del materiale combustibile presente e secondo la classificazione in appendice F della CEI 81-1, le strutture rientrano nella classe indicate in tabella seguente.

EDIFICIO	C.S.I.	TIPO
1 e 2	< 45 kg/m²	Struttura con rischio di incendio

C.4. PROTEZIONE CONTRO LA FULMINAZIONE DIRETTA

Frequenza di fulminazione diretta

La frequenza media Nd di fulmini che colpiscono direttamente una struttura è stata valutata con la seguente formula:

$$Nd = Nt x Ad x 10^{-6} = Nt x C x A x 10^{-6}$$

Nt è la densità annuale di fulmini (fulmini/kmq anno) al suolo relativa alla zona ove è situata la struttura:

Ad è l'area di raccolta (m²) della struttura;

A è l'area di raccolta (m²)della struttura isolata;

C e il coefficiente ambientale.

Le aree di raccolta A delle strutture in questione sono state valutate con la formula:

$$A = L x W + 6 x H x (L + W) + 9 x \pi x H^{2}$$

con

EDIFICIO	TIPO	L	W	H	Α	Nd
1 e 2	Α	48	54	17	21163	0,026454

In cui si è tenuto conto della topografia della zona e degli oggetti circostanti, situati entro una distanza di 3H, con un coefficiente ambientale: C = 0.5 per gli edifici 1 e 2.

Livello di protezione LPS

La frequenza di fulminazione tollerabile Na per struttura ordinaria del tipo A, in funzione del rischio di incendio, sono di seguito indicate:

EDIFICIO	TIPO	C.S.I.	Na
1 e 2	А	< 45 kg/m²	5x10 ⁻⁴

Al fine di determinare la rispondenza del sistema di protezione contro i fulmini (LPS) si è confrontato il valore della frequenza di fulminazione diretta Nd con il valore della frequenza di fulminazione tollerabile Na riportato:

EDIFICIO	Na	Nd	Ec	LIVELLO EPS
				NECESSARIO
1 e 2	5x10 ⁻⁴	0.026454	0.811	III

Per determinare la posizione dei captatori si è applicato il metodo della sfera rotolante per gli edifici 1 e 2, mentre per l'edificio 3 si è applicato il metodo della maglia. Pertanto risulta:

Edificio	Livello di protezione	Raggio della sfera	Lato maglia M
1	III	45 m	
2	III		15 m

Con il metodo della sfera rotolante, gli edifici risultano autoprotetti.

APPENDICE A

VERIFICA DELLE CADUTE DI TENSIONI

ALIMENTAZIONE

DATI GENERALI DI IMPIANTO

Tensione Nominale [V]	Sistema di Neutro	Distribuzione	P. Contrattuale [kW]	Frequenza[Hz]
400	TNS	3 Fasi + Neutro	-	50

ALIMENTAZIONE PRINCIPALE:TRASFORMATORE

n° trafo	n° rami attivi	S _{cc} a monte [MVA]	S _n [kVA]	V _{cc} [%]	P _{cu} [kW]
1	1	500	100	6	2,3

STRUTTURA QUADRI

Q0 - Quadro Generale

----- **Q.1** - Quadro 1

----- **Q.2** - Quadro 2

----- **Q.3** - Quadro 3

----- **Q.4** - Quadro 4

LINEE

Utenza	Siglatura	Ph/N/PE Derivazione	P [kW]	Cos φ	Tensione [V]	Ι _b [A]
Quadro: [Q0] Quadro Genera	le					
2		3F+N+PE	6,2	0,90	400	9,9
3		3F+N+PE	11,5	0,90	400	18,4
4		3F+N+PE	5,3	0,90	400	8,5
5		3F+N+PE	1,4	0,90	400	2,2
Quadro: [Q.1] Quadro 1						
Tratto 1	U1.1.1	3F+N+PE	2,3	0,90	400	3,6
Tratto 2	U1.1.2	3F+N+PE	1,6	0,90	400	2,6
Tratto 3	U1.1.3	3F+N+PE	3	0,90	400	4,8
Quadro: [Q.2] Quadro 2						
Tratto 1-1	U2.1.1	3F+N+PE	2,2	0,90	400	3,5
Tratto 1-2	U2.1.2	3F+N+PE	0,7	0,90	400	1,2
Tratto 2	U2.1.3	3F+N+PE	2,3	0,90	400	3,6
Tratto 3-1	U2.1.4	3F+N+PE	1,8	0,90	400	2,9
Tratto 3-3	U2.1.5	3F+N+PE	1,4	0,90	400	2,2
Tratto 3-4	U2.1.6	3F+N+PE	1,4	0,90	400	2,2
Tratto 4	U2.1.7	3F+N+PE	3,2	0,90	400	5,1
Quadro: [Q.3] Quadro 3						
Tratto 1	U3.1.1	3F+N+PE	3,6	0,90	400	5,8
Tratto 2	U3.1.2	3F+N+PE	1,4	0,90	400	2,2
Tratto 3	U3.1.3	3F+N+PE	0,9	0,90	400	1,5
Quadro: [Q.4] Quadro 4						
2	U4.1.1	3F+N+PE	1,4	0,90	400	2,2

LISTA CAVI

LISTA CA		Ph/N/PE	SOZIONO	conduttor	i [mm²1	tipo	Lunghezza		
Utenza	Siglatura	Derivazione	fase	neutro	PE	conduttore	[m]	Posa	Isolante
Quadro: [Q0] Q	uadro Generale								
1	L1	3F+N+PE	1x 35	1x 35	1x 16	uni	1	11	EPR
2	L0.1.1	3F+N+PE	1x 1,5	1x 1,5	1x 1,5	uni	1	11	EPR
3	L0.1.2	3F+N+PE	1x 1,5	1x 1,5	1x 1,5	uni	1	11	EPR
4	L0.1.3	3F+N+PE	1x 1,5	1x 1,5	1x 1,5	uni	1	11	EPR
5	L0.1.4	3F+N+PE	1x 1,5	1x 1,5	1x 1,5	uni	1	11	EPR
Quadro: [Q.1] C	luadro 1								
Tratto 1	L1.1.1	3F+N+PE	1x 10	1x 10	1x 10	multi	380	41	EPR
Tratto 2	L1.1.2	3F+N+PE	1x 4	1x 4	1x 4	multi	220	41	EPR
Tratto 3	L1.1.3	3F+N+PE	1x 16	1x 16	1x 16	multi	480	41	EPR
Quadro: [Q.2] Q	luadro 2								
Tratto 1-1	L2.1.1	3F+N+PE	1x 6	1x 6	1x 6	multi	245	41	EPR
Tratto 1-2	L2.1.2	3F+N+PE	1x 1,5	1x 1,5	1x 1,5	multi	145	41	EPR
Tratto 2	L2.1.3	3F+N+PE	1x 6	1x 6	1x 6	multi	330	41	EPR
Tratto 3-1	L2.1.4	3F+N+PE	1x 6	1x 6	1x 6	multi	330	41	EPR
Tratto 3-3	L2.1.5	3F+N+PE	1x 2,5	1x 2,5	1x 2,5	multi	245	41	EPR
Tratto 3-4	L2.1.6	3F+N+PE	1x 2,5	1x 2,5	1x 2,5	multi	245	41	EPR
Tratto 4	L2.1.7	3F+N+PE	1x 16	1x 16	1x 16	uni	462	11	EPR
Quadro: [Q.3] Q	luadro 3								
Tratto 1	L3.1.1	3F+N+PE	1x 16	1x 16	1x 16	uni	580	11	EPR
Tratto 2	L3.1.2	3F+N+PE	1x 1,5	1x 1,5	1x 1,5	multi	140	41	EPR
Tratto 3	L3.1.3	3F+N+PE	1x 1,5	1x 1,5	1x 1,5	multi	200	41	EPR
Quadro: [Q.4] C	luadro 4	1				ı			
2	L4.1.1	3F+N+PE	1x 2,5	1x 2,5	1x 2,5	uni	200	11	EPR
	I	ı				1	l		

RIEPILOGO LUNGHEZZE CAVI

sezione conduttori [mm²]	Tipo	Isolante	Lunghezza [m]	
1,5	uni senza guaina	EPR	20	
1,5	multipolare	EPR	1455	
2,5	uni senza guaina	EPR	1000	
2,5	multipolare	EPR	1470	
4	multipolare	EPR	660	
6	multipolare	EPR	2715	
10	multipolare	EPR	1140	
16	uni senza guaina	EPR	5211	
16 multipolare		EPR	1440	
35	uni senza guaina	EPR	4	

REGOLAZIONI

Utenza	Interruttore	Poli	Curva Sganciatore	I _n [A]	I _r [A]	T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	I _i [kA]	Ig [A]	T _g [s]	Differenz.	Classe	l _∆ n [A]	T _∆ n [s]
Quadro: [Q0] Quadro	Generale							
1	NS160 E	4	TMD	40	36 x0,9	-	0,5	0,5
Q1	-	-	-	-				
2	C40 a	3+N	С	10	10	-	0,1	0,1
Q0.1.1	-	-	-	-				
3	C40 a	3+N	С	20	20	-	0,2	0,2
Q0.1.2	-	-	-	-				
4	C40 a	3+N	С	10	10	-	0,1	0,1
Q0.1.3	-	-	-	-				
5	C40 a	3+N	С	3	3	-	0,03	0,03
Q0.1.4	-	-	-	-				
Quadro: [Q.1] Quadr	o 1							
1	C40 a	3+N	С	10	10	-	0,1	0,1
Q1	-	-	-	-				
Tratto 1	C40 a	3+N	С	4	4	-	0,04	0,04
Q1.1.1	-	-	-	-				
Tratto 2	C40 a	3+N	С	3	3	-	0,03	0,03
Q1.1.2	-	-	-	-				
Tratto 3	C40 a	3+N	С	6	6	-	0,06	0,06
Q1.1.3	-	-	-	-				

Utenza	Interruttore	Poli	Curva Sganciatore	I _n [A]	I _r [A]	T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	l _i [kA]	Ig [A]	T _g [s]	Differenz.	Classe	I∆n [A]	T _∆ n [s]
Quadro: [Q.2] Qua	adro 2							
1	C40 a	3+N	С	20	20	-	0,2	0,2
Q1	-	-	-	-				
Tratto 1-1	C40 a	3+N	С	4	4	-	0,04	0,04
Q2.1.1	-	-	-	-				
Tratto 1-2	C40 a	3+N	С	2	2	-	0,02	0,02
Q2.1.2	-	-	-	-				
Tratto 2	C40 a	3+N	С	4	4	-	0,04	0,04
Q2.1.3	-	-	-	-				
Tratto 3-1	C40 a	3+N	С	3	3	-	0,03	0,03
Q2.1.4	-	-	-	-				
Tratto 3-3	C40 a	3+N	С	3	3	-	0,03	0,03
Q2.1.5	-	-	-	-				
Tratto 3-4	C40 a	3+N	С	3	3	-	0,03	0,03
Q2.1.6	-	-	-	-				
Tratto 4	C40 a	3+N	С	6	6	-	0,06	0,06
Q2.1.7	-	-	-	-				
Quadro: [Q.3] Qua	adro 3							
1	C40 a	3+N	С	10	10	-	0,1	0,1
Q1	-	-	-	-				
Tratto 1	C40 a	3+N	С	6	6	-	0,06	0,06
Q3.1.1	-	-	-	-				
Tratto 2	C40 a	3+N	С	3	3	-	0,03	0,03
Q3.1.2	-	-	-	-				

Utenza	Interruttore	Poli	Curva Sganciatore	I _n [A]	I _r [A]	T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	I¡[kA]	Ig [A]	T _g [s]	Differenz.	Classe	l∆n [A]	T _∆ n [s]
Tratto 3	C40 a	3+N	С	2	2	-	0,02	0,02
Q3.1.3	-	-	-	-				

Quadro: [Q.4] Quadro 4

1	C40 a	3+N	С	10	10	-	0,1	0,1
Q1	-	-	-	-				
2	C40 a	3+N	С	6	6	-	0,06	0,06
Q4.1.1	-	-	-	-				

QUADRO: [Q0] QUADRO GENERALE

LINEA: 1

CARATTERISTICHE GENERALI DELLA LINEA

P [kW]	I _b [A]/I _{nm} [A]	cos φ	K _{utilizzo}	K _{contemp.}	η
21,85	35	0,90		0,90	

CAVO

Siglatura	Derivazione	tipo conduttore	Isolante	Lungh. [m]	Posa 64-8	T _{emp.}	n° supp.	Resistività [°K m/W]	ravv. dist.	altri circuiti	K sicur.
L1	3F+N+PE	uni	EPR	1	11	30			ravv.		1,0

Seziono fase	e Condutto neutro	ori [mm²] PE	Prof. di Posa [m]	R _{cavo} [mΩ]	X _{cavo} [mΩ]	R_{tot} [m Ω]	X _{tot} [mΩ]	ΔV _{cavo} [%]	∆V _{tot} [%]	ΔV _{max prog} [%]
1x 35	1x 35	1x 16	-	0,5143	0,101	37,3623	89,084	0,01	0,01	2,0

I _b [A]	I _z [A]	I _{cc max inizio linea} [kA]	I _{cc max Fine linea} [kA]	I _{ccmin fine linea} [kA]	I _{cc Terra} [kA]
35	169	2,4	2,39	2,07	2,06

INTERRUTTORE

Utenza	Interruttore	Poli	Curva Sganciatore	I _n [A]	I _r [A]	T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	l _i [kA]	Ig [A]	T _g [s]	Differenz.	Classe	l∆n [A]	T _∆ n [s]
1	NS160 E	4	TMD	40	36	-	0,5	0,5
Q1	-	-	-	-				

Sovraccarico	Corto Circuito massimo	Corto Circuito minimo	Persone	
Verificata	-	-	-	

QUADRO: [Q0] QUADRO GENERALE

LINEA: 2

CARATTERISTICHE GENERALI DELLA LINEA

P [kW]	I _b [A]/I _{nm} [A]	cos φ	K _{utilizzo}	K _{contemp.}	η
6,16	9,9	0,90			

CAVO

Siglatura	Derivazione	tipo conduttore	Isolante	Lungh. [m]	Posa 64-8	T _{emp.}	n° supp.	Resistività [°K m/W]	ravv. dist.	altri circuiti	K sicur.
L0.1.1	3F+N+PE	uni	EPR	1	11	30			ravv.		1,0

Sezione fase		ne Conduttori [mm²] neutro PE		_	Prof. di Posa [m]	R _{cavo} [mΩ]	X _{cavo} [mΩ]	R_{tot} [m Ω]			∆V _{tot} [%]	ΔV _{max prog} [%]	
1x	1,5	1x	1,5	1x	1,5	-	12,0	0,168	49,3623	89,252	0,06	0,07	2,0

I _b [A]	I _z [A]	I _{cc max inizio linea} [kA]	I _{cc max Fine linea} [kA]	I _{ccmin fine linea} [kA]	I _{cc Terra} [kA]
9,9	24	2,39	2,26	1,69	1,69

INTERRUTTORE

Utenza	Interruttore	Poli	Curva Sganciatore	I _n [A]	I _r [A]	T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	l _i [kA]	Ig [A]	T _g [s]	Differenz.	Classe	l∆n [A]	T _∆ n [s]
2	C40 a	3+N	С	10	10	-	0,1	0,1
Q0.1.1	-	-	-	-				

Sovraccarico	Corto Circuito massimo	Corto Circuito minimo	Persone	
Verificata	Verificata	Verificata	Verificata	

QUADRO: [Q0] QUADRO GENERALE

LINEA: 3

CARATTERISTICHE GENERALI DELLA LINEA

P [kW]	I _b [A]/I _{nm} [A]	cos φ	K _{utilizzo}	K _{contemp.}	η
11,5	18,4	0,90			

CAVO

Siglatura	Derivazione	tipo conduttore	Isolante	Lungh. [m]	Posa 64-8	T _{emp.}	n° supp.	Resistività [°K m/W]	ravv. dist.	altri circuiti	K sicur.
L0.1.2	3F+N+PE	uni	EPR	1	11	30			ravv.		1,0

Sezione Conduttori [mm²] fase neutro PE			Prof. di Posa [m]	R _{cavo} [mΩ]	X _{cavo} [mΩ]	R_{tot} [m Ω]	X _{tot} [mΩ]	ΔV _{cavo} [%]	∆V _{tot} [%]	ΔV _{max prog} [%]
1x 1,5	1x 1,5	1x 1,5	-	12,0	0,168	49,3623	89,252	0,11	0,12	2,0

I _b [A]	I _z [A]	I _{cc max inizio linea} [kA]	I _{cc max Fine linea} [kA]	I _{ccmin fine linea} [kA]	I _{cc Terra} [kA]	
18,4	24	2,39	2,26	1,69	1,69	

INTERRUTTORE

Utenza	Interruttore	Poli	Curva Sganciatore	I _n [A]	I _r [A]	T _r [s]	I _m [kA]	I _{sd} [kA]	
Siglatura	T _{sd} [s]	l _i [kA]	Ig [A]	T _g [s]	Differenz.	Classe	l∆n [A]	T _∆ n [s]	
3	C40 a	3+N	С	20	20	-	0,2	0,2	
Q0.1.2	-	-	-	-					

Sovraccarico	Corto Circuito massimo	Corto Circuito minimo	Persone
Verificata	Verificata	Verificata	Verificata

QUADRO: [Q0] QUADRO GENERALE

LINEA: 4

CARATTERISTICHE GENERALI DELLA LINEA

P [kW]	I _b [A]/I _{nm} [A]	cos φ	K _{utilizzo}	K _{contemp.}	η
5,27	8,5	0,90			

CAVO

Siglatura	Derivazione	tipo conduttore	Isolante	Lungh. [m]	Posa 64-8	T _{emp.}	n° supp.	Resistività [°K m/W]	ravv. dist.	altri circuiti	K sicur.
L0.1.3	3F+N+PE	uni	EPR	1	11	30			ravv.		1,0

Sezione Conduttori [mm²] fase neutro PE				Prof. di Posa [m]	R _{cavo} [mΩ]	X _{cavo} [mΩ]	R_{tot} [m Ω]	X _{tot} [mΩ]	ΔV _{cavo} [%]	ΔV _{tot} [%]	ΔV _{max prog} [%]		
1x 1	,5	1x	1,5	1x	1,5	-	12,0	0,168	49,3623	89,252	0,05	0,06	2,0

I _b [A]	I _z [A]	I _{cc max inizio linea} [kA]	I _{cc max Fine linea} [kA]	I _{ccmin fine linea} [kA]	I _{cc Terra} [kA]
8,5	24	2,39	2,26	1,69	1,69

INTERRUTTORE

Utenza	Interruttore	Poli	Curva Sganciatore	I _n [A]	I _r [A]	T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	l _i [kA]	Ig [A]	T _g [s]	Differenz.	Classe	l∆n [A]	T _∆ n [s]
4	C40 a	3+N	С	10	10	-	0,1	0,1
Q0.1.3	-	-	-	-				

Sovraccarico	Corto Circuito massimo	Corto Circuito minimo	Persone		
Verificata	Verificata	Verificata	Verificata		

QUADRO: [Q0] QUADRO GENERALE

LINEA: 5

CARATTERISTICHE GENERALI DELLA LINEA

P	[kW]	I _b [A]/I _{nm} [A]	cos φ	K _{utilizzo}	K _{contemp.}	η
1	,35	2,2	0,90			

CAVO

Siglatura	Derivazione	ivazione tipo conduttore Isolante Lungh. Posa 64-8		T _{emp.}	n° supp.	Resistività [°K m/W]	ravv. dist.	altri circuiti	K sicur.		
L0.1.4	3F+N+PE	uni	EPR	1	11	30			ravv.		1,0

Sezione Conduttori [mm²] fase neutro PE				Prof. di Posa [m]	R _{cavo} [mΩ]	X _{cavo} [mΩ]	R_{tot} [m Ω]	X _{tot} [mΩ]	ΔV _{cavo} [%]	ΔV _{tot} [%]	ΔV _{max prog} [%]		
1x 1	1,5	1x	1,5	1x	1,5	-	12,0	0,168	49,3623	89,252	0,01	0,02	2,0

I _b [A]	I _z [A]	I _{cc max inizio linea} [kA]	I _{cc max Fine linea} [kA]	I _{ccmin fine linea} [kA]	I _{cc Terra} [kA]
2,2	24	2,39	2,26	1,69	1,69

INTERRUTTORE

Utenza	Interruttore	Poli	Curva Sganciatore	I _n [A]	I _r [A]	T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	l _i [kA]	Ig [A]	T _g [s]	Differenz.	Classe	l∆n [A]	T _∆ n [s]
5	C40 a	3+N	С	3	3	-	0,03	0,03
Q0.1.4	-	-	-	-				

Sovraccarico	Corto Circuito massimo	Corto Circuito minimo	Persone
Verificata	Verificata	Verificata	Verificata

QUADRO: [Q.1] QUADRO 1

LINEA: 1

CARATTERISTICHE GENERALI DELLA LINEA

P [kW]	I _b [A]/I _{nm} [A]	cos φ	K _{utilizzo}	K _{contemp.}	η
6,16	9,9	0,90		0,90	

INTERRUTTORE

Utenza	Interruttore	Poli	Curva Sganciatore	I _n [A]	I _r [A]	T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	l _i [kA]	I _g [A]	T _g [s]	Differenz.	Classe	l∆n [A]	T _∆ n [s]
1	C40 a	3+N	С	10	10	-	0,1	0,1
Q1	-	-	-	-				

QUADRO: [Q.1] QUADRO 1

LINEA: TRATTO 1

CARATTERISTICHE GENERALI DELLA LINEA

P [kW]	I _b [A]/I _{nm} [A]	cos φ	K _{utilizzo}	K _{contemp.}	η
2,25	3,6	0,90	0,90		

CAVO

Siglatura	Derivazione	tipo conduttore	Isolante	Lungh. [m]	Posa 64-8	T _{emp.}	n° supp.	Resistività [°K m/W]	ravv. dist.	altri circuiti	K sicur.
L1.1.1	3F+N+PE	multi	EPR	380	41	30			ravv.		1,0

Sezion fase	e Condutto neutro	ori [mm²] PE	Prof. di Posa [m]	R _{cavo} [mΩ]	X _{cavo} [mΩ]	R_{tot} [m Ω]	X _{tot} [mΩ]	ΔV _{cavo} [%]	ΔV _{tot} [%]	ΔV _{max prog} [%]
1x 10	1x 10	1x 10	-	684,0	32,718	732,3623	120,97	1,24	1,31	2,0

I _b [A]	I _z [A]	I _{cc max inizio linea} [kA]	I _{cc max Fine linea} [kA]	I _{ccmin fine linea} [kA]	I _{cc Terra} [kA]
3,6	60	2,26	0,31	0,1	0,1

INTERRUTTORE

Utenza	Interruttore	Poli	Curva Sganciatore	I _n [A]	I _r [A]	T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	l _i [kA]	Ig [A]	T _g [s]	Differenz.	Classe	l∆n [A]	T _∆ n [s]
Tratto 1	C40 a	3+N	С	4	4	-	0,04	0,04
Q1.1.1	-	-	-	-				

Sovraccarico	Corto Circuito massimo	Corto Circuito minimo	Persone
Verificata	Verificata	Verificata	Verificata

QUADRO: [Q.1] QUADRO 1

LINEA: TRATTO 2

CARATTERISTICHE GENERALI DELLA LINEA

P [kW]	I _b [A]/I _{nm} [A]	cos φ	K _{utilizzo}	K _{contemp.}	η
1,62	2,6	0,90	0,90		

CAVO

Siglatura	Derivazione	tipo conduttore	Isolante	Lungh. [m]	Posa 64-8	T _{emp.}	n° supp.	Resistività [°K m/W]	ravv. dist.	altri circuiti	K sicur.
L1.1.2	3F+N+PE	multi	EPR	220	41	30			ravv.		1,0

Sezior fase	e Condutto	ori [mm²] PE	Prof. di Posa [m]	R _{cavo} [mΩ]	X _{cavo} [mΩ]	R_{tot} [m Ω]	X _{tot} [mΩ]	ΔV _{cavo} [%]	∆V _{tot} [%]	ΔV _{max prog} [%]
1x 4	1x 4	1x 4	-	990,0	22,22	1038,362 3	110,472	1,28	1,35	2,0

I _b [A]	I _z [A]	I _{cc max inizio linea} [kA]	I _{cc max Fine linea} [kA]	Iccmin fine linea [kA]	I _{cc Terra} [kA]
2,6	35	2,26	0,22	0,07	0,07

INTERRUTTORE

Utenza	Interruttore	Poli	Curva Sganciatore	I _n [A]	I _r [A]	T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	l _i [kA]	I _g [A]	T _g [s]	Differenz.	Classe	l∆n [A]	T _∆ n [s]
Tratto 2	C40 a	3+N	С	3	3	-	0,03	0,03
Q1.1.2	-	-	-	-				

Sovraccarico	Corto Circuito massimo	Corto Circuito minimo	Persone
Verificata	Verificata	Verificata	Verificata

QUADRO: [Q.1] QUADRO 1

LINEA: TRATTO 3

CARATTERISTICHE GENERALI DELLA LINEA

P [kW]	I _b [A]/I _{nm} [A]	cos φ	K _{utilizzo}	K _{contemp.}	η
2,97	4,8	0,90	0,90		

CAVO

Siglatura	Derivazione	tipo conduttore	Isolante	Lungh. [m]	Posa 64-8	T _{emp.}	n° supp.	Resistività [°K m/W]	ravv. dist.	altri circuiti	K sicur.
L1.1.3	3F+N+PE	multi	EPR	480	41	30			ravv.		1,0

Sezi	one Condutt e neutro	ori [mm²] PE	Prof. di Posa [m]	R _{cavo} [mΩ]	X _{cavo} [mΩ]	R_{tot} [m Ω]	X _{tot} [mΩ]	ΔV _{cavo} [%]	ΔV _{tot} [%]	ΔV _{max prog} [%]
1x 10	6 1x 16	1x 16	-	540,0	39,216	588,3623	127,468	1,31	1,38	2,0

I _b [A]	I _z [A]	I _{cc max inizio linea} [kA]	I _{cc max Fine linea} [kA]	I _{ccmin fine linea} [kA]	I _{cc Terra} [kA]
4,8	80	2,26	0,38	0,13	0,13

INTERRUTTORE

Utenza	Interruttore	Poli	Curva Sganciatore	I _n [A]	I _r [A]	T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	l _i [kA]	Ig [A]	T _g [s]	Differenz.	Classe	l∆n [A]	T _∆ n [s]
Tratto 3	C40 a	3+N	С	6	6	-	0,06	0,06
Q1.1.3	-	-	-	-				

Sovraccarico	Corto Circuito massimo	Corto Circuito minimo	Persone
Verificata	Verificata	Verificata	Verificata

QUADRO: [Q.2] QUADRO 2

LINEA: 1

CARATTERISTICHE GENERALI DELLA LINEA

P [kW]	I _b [A]/I _{nm} [A]	cos φ	K _{utilizzo}	K _{contemp.}	η
11,5	18,4	0,90		0,90	

INTERRUTTORE

Utenza	Interruttore	Poli	Curva Sganciatore	I _n [A]	I _r [A]	T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	l _i [kA]	I _g [A]	T _g [s]	Differenz.	Classe	l∆n [A]	T _∆ n [s]
1	C40 a	3+N	С	20	20	-	0,2	0,2
Q1	-	-	-	-				

QUADRO: [Q.2] QUADRO 2

LINEA: TRATTO 1-1

CARATTERISTICHE GENERALI DELLA LINEA

P [kW]	I _b [A]/I _{nm} [A]	cos φ	K _{utilizzo}	K _{contemp} .	η
2,16	3,5	0,90	0,90		

CAVO

Siglatura	Derivazione	tipo conduttore	Isolante	Lungh. [m]	Posa 64-8	T _{emp.}	n° supp.	Resistività [°K m/W]	ravv. dist.	altri circuiti	K sicur.
L2.1.1	3F+N+PE	multi	EPR	245	41	30			ravv.		1,0

Sezione Conduttori [mm²] fase neutro PE		Prof. di Posa [m]	R _{cavo} [mΩ]	X _{cavo} [mΩ]	R_{tot} [m Ω]	X _{tot} [mΩ]	ΔV _{cavo} [%]	ΔV _{tot} [%]	ΔV _{max prog} [%]	
1x 6	1x 6	1x 6	-	735,0	23,3975	783,3623	111,6495	1,27	1,39	2,0

I _b [A]	I _z [A]	I _{cc max inizio linea} [kA]	I _{cc max Fine linea} [kA]	I _{ccmin fine linea} [kA]	I _{cc Terra} [kA]
3,5	44	2,26	0,29	0,09	0,09

INTERRUTTORE

Utenza	Interruttore	Poli	Curva Sganciatore	I _n [A]	I _r [A]	T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	l _i [kA]	Ig [A]	T _g [s]	Differenz.	Classe	l∆n [A]	T _∆ n [s]
Tratto 1-1	C40 a	3+N	С	4	4	-	0,04	0,04
Q2.1.1	-	-	-	-				

Sovraccarico	Sovraccarico Corto Circuito massimo		Persone
Verificata	Verificata	Verificata	Verificata

QUADRO: [Q.2] QUADRO 2

LINEA: TRATTO 1-2

CARATTERISTICHE GENERALI DELLA LINEA

P [kW]	I _b [A]/I _{nm} [A]	cos φ	K _{utilizzo}	K _{contemp} .	η
0,72	1,2	0,90	0,90		

CAVO

Siglatura	Derivazione	tipo conduttore	Isolante	Lungh. [m]	Posa 64-8	T _{emp.}	n° supp.	Resistività [°K m/W]	ravv. dist.	altri circuiti	K sicur.
L2.1.2	3F+N+PE	multi	EPR	145	41	30			ravv.		1,0

	Sezione Conduttori [mm²] fase neutro PE			Prof. di Posa [m]	R _{cavo} [mΩ]	X _{cavo} [mΩ]	R_{tot} [m Ω]	X _{tot} [mΩ]	ΔV _{cavo} [%]	ΔV _{tot} [%]	ΔV _{max prog} [%]		
1x	1,5	1x	1,5	1x	1,5		1740,0	17,11	1788,362 3	105,362	0,99	1,11	2,0

I _b [A]	I _z [A]	Icc max inizio linea [kA]	I _{cc max} Fine linea [kA]	Iccmin fine linea [kA]	I _{cc Terra} [kA]
1,2	19,5	2,26	0,13	0,04	0,04

INTERRUTTORE

Utenza	Interruttore	Poli	Curva Sganciatore	I _n [A]	I _r [A]	T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	l _i [kA]	I _g [A]	T _g [s]	Differenz.	Classe	l∆n [A]	T _∆ n [s]
Tratto 1-2	C40 a	3+N	С	2	2	-	0,02	0,02
Q2.1.2	-	-	-	-				

Sovraccarico	Corto Circuito massimo	Corto Circuito minimo	Persone
Verificata	Verificata	Verificata	Verificata

QUADRO: [Q.2] QUADRO 2

LINEA: TRATTO 2

CARATTERISTICHE GENERALI DELLA LINEA

P [kW]	I _b [A]/I _{nm} [A]	cos φ	K _{utilizzo}	K _{contemp.}	η
2,25	3,6	0,90	0,90		

CAVO

Siglatura	Derivazione	tipo conduttore	Isolante	Lungh. [m]	Posa 64-8	T _{emp.}	n° supp.	Resistività [°K m/W]	ravv. dist.	altri circuiti	K sicur.
L2.1.3	3F+N+PE	multi	EPR	330	41	30			ravv.		1,0

Sezion fase	e Condutto	ori [mm²] PE	Prof. di Posa [m]	R _{cavo} [mΩ]	X _{cavo} [mΩ]	R_{tot} [m Ω]	X_{tot} [m Ω]	ΔV _{cavo} [%]	∆V _{tot} [%]	ΔV _{max prog} [%]
1x 6	1x 6	1x 6	-	990,0	31,515	1038,362 3	119,767	1,78	1,9	2,0

I _b [A]	I _z [A]	I _{cc max inizio linea} [kA]	I _{cc max Fine linea} [kA]	I _{ccmin fine linea} [kA]	I _{cc Terra} [kA]
3,6	44	2,26	0,22	0,07	0,07

INTERRUTTORE

Utenza	Interruttore	Poli	Curva Sganciatore	I _n [A]	I _r [A]	T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	I _i [kA]	Ig [A]	T _g [s]	Differenz.	Classe	l∆n [A]	T _∆ n [s]
Tratto 2	C40 a	3+N	С	4	4	-	0,04	0,04
Q2.1.3	-	-	-	-				

Sovraccarico	massimo		Persone
Verificata	Verificata	Verificata	Verificata

QUADRO: [Q.2] QUADRO 2

LINEA: TRATTO 3-1

CARATTERISTICHE GENERALI DELLA LINEA

P [kW]	I _b [A]/I _{nm} [A]	cos φ	K _{utilizzo}	K _{contemp} .	η
1,8	2,9	0,90	0,90		

CAVO

Siglatura	Derivazione	tipo conduttore	Isolante	Lungh. [m]	Posa 64-8	T _{emp.}	n° supp.	Resistività [°K m/W]	ravv. dist.	altri circuiti	K sicur.
L2.1.4	3F+N+PE	multi	EPR	330	41	30			ravv.		1,0

Sezio fase	ne Condutt neutro	ori [mm²] PE	Prof. di Posa [m]	R _{cavo} [mΩ]	X _{cavo} [mΩ]	R_{tot} [m Ω]	X _{tot} [mΩ]	ΔV _{cavo} [%]	ΔV _{tot} [%]	ΔV _{max prog} [%]
1x 6	1x 6	1x 6	-	990,0	31,515	1038,362 3	119,767	1,42	1,54	2,0

I _b [A]	I _z [A]	Icc max inizio linea [kA]	I _{cc max Fine linea} [kA]	Iccmin fine linea [kA]	I _{cc Terra} [kA]
2,9	44	2,26	0,22	0,07	0,07

INTERRUTTORE

Utenza	Interruttore	Poli	Curva Sganciatore	I _n [A]	I _r [A]	T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	I _i [kA]	Ig [A]	T _g [s]	Differenz.	Classe	l∆n [A]	T _∆ n [s]
Tratto 3-1	C40 a	3+N	С	3	3	-	0,03	0,03
Q2.1.4	-	-	-	-				

Sovraccarico	Corto Circuito massimo	Corto Circuito minimo	Persone
Verificata	Verificata	Verificata	Verificata

QUADRO: [Q.2] QUADRO 2

LINEA: TRATTO 3-3

CARATTERISTICHE GENERALI DELLA LINEA

P [kW]	I _b [A]/I _{nm} [A]	cos φ	K _{utilizzo}	K _{contemp} .	η
1,35	2,2	0,90	0,90		

CAVO

Siglatura	Derivazione	tipo conduttore	Isolante	Lungh. [m]	Posa 64-8	T _{emp.} [°C]	n° supp.	Resistività [°K m/W]	ravv. dist.	altri circuiti	K sicur.
L2.1.5	3F+N+PE	multi	EPR	245	41	30			ravv.		1,0

Sezion fase	e Condutto	ori [mm²] PE	Prof. di Posa [m]	R _{cavo} [mΩ]	X _{cavo} [mΩ]	R_{tot} [m Ω]	X _{tot} [mΩ]	ΔV _{cavo} [%]	ΔV _{tot} [%]	ΔV _{max prog} [%]
1x 2,5	1x 2,5	1x 2,5	-	1764,0	26,705	1812,362 3	114,957	1,88	2,0	2,0

I _b [A]	I _z [A]	I _{cc max inizio linea} [kA]	Icc max Fine linea [kA]	Iccmin fine linea [kA]	I _{cc Terra} [kA]
2,2	26	2,26	0,13	0,04	0,04

INTERRUTTORE

Utenza	nza Interruttore Poli		Curva Sganciatore	I _n [A]	I _r [A]	T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	I _i [kA]	I _g [A]	T _g [s]	Differenz.	Classe	l∆n [A]	T _∆ n [s]
Tratto 3-3	C40 a	3+N	С	3	3	-	0,03	0,03
Q2.1.5	-	-	-	-				

Sovraccarico	Sovraccarico Corto Circuito massimo		Persone
Verificata	Verificata Verificata		Verificata

QUADRO: [Q.2] QUADRO 2 LINEA: TRATTO 3-4

CARATTERISTICHE GENERALI DELLA LINEA

P [kW]	I _b [A]/I _{nm} [A]	cos φ	K _{utilizzo}	K _{contemp} .	η
1,35	2,2	0,90	0,90		

CAVO

Siglatura	Derivazione	tipo conduttore	Isolante	Lungh. [m]	Posa 64-8	T _{emp.}	n° supp.	Resistività [°K m/W]	ravv. dist.	altri circuiti	K sicur.
L2.1.6	3F+N+PE	multi	EPR	245	41	30			ravv.		1,0

Sezion fase	e Condutto	ori [mm²] PE	Prof. di Posa [m]	R _{cavo} [mΩ]	X _{cavo} [mΩ]	R_{tot} [m Ω]	X _{tot} [mΩ]	ΔV _{cavo} [%]	ΔV _{tot} [%]	ΔV _{max prog} [%]
1x 2,5	1x 2,5	1x 2,5	-	1764,0	26,705	1812,362 3	114,957	1,88	2,0	2,0

I _b [A]	I _z [A]	I _{cc max inizio linea} [kA]	Icc max Fine linea [kA]	Iccmin fine linea [kA]	I _{cc Terra} [kA]
2,2	26	2,26	0,13	0,04	0,04

INTERRUTTORE

Utenza	za Interruttore Poli		Curva Sganciatore	I _n [A]	I _r [A]	T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	I _i [kA]	I _g [A]	T _g [s]	Differenz.	Classe	l∆n [A]	T _∆ n [s]
Tratto 3-4	C40 a	3+N	С	3	3	-	0,03	0,03
Q2.1.6	-	-	-	-				

Sovraccarico	Corto Circuito massimo	Corto Circuito minimo	Persone
Verificata	Verificata	Verificata	Verificata

QUADRO: [Q.2] QUADRO 2

LINEA: TRATTO 4

CARATTERISTICHE GENERALI DELLA LINEA

P [kW]	I _b [A]/I _{nm} [A]	cos φ	K _{utilizzo}	K _{contemp} .	η
3,15	5,1	0,90	0,90		

CAVO

Siglatura	Derivazione	tipo conduttore	Isolante	Lungh. [m]	Posa 64-8	T _{emp.}	n° supp.	Resistività [°K m/W]	ravv. dist.	altri circuiti	K sicur.
L2.1.7	3F+N+PE	uni	EPR	462	11	30			ravv.		1,0

Sezion fase			Prof. di Posa [m]	R _{cavo} [mΩ]	X _{cavo} [mΩ]	R_{tot} [m Ω]	X _{tot} [mΩ]	ΔV _{cavo} [%]	ΔV _{tot} [%]	ΔV _{max prog} [%]
1x 16	1x 16	1x 16	-	519,75	51,744	568,1123	139,996	1,33	1,45	2,0

I _b [A]	I _z [A]	I _{cc max inizio linea} [kA]	I _{cc max Fine linea} [kA]	I _{ccmin fine linea} [kA]	I _{cc Terra} [kA]
5,1	107	2,26	0,39	0,13	0,13

INTERRUTTORE

Utenza	Interruttore	Poli	Curva Sganciatore	I _n [A]	I _r [A]	T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	l _i [kA]	Ig [A]	T _g [s]	Differenz.	Classe	l∆n [A]	T _∆ n [s]
Tratto 4	C40 a	3+N	С	6	6	-	0,06	0,06
Q2.1.7	-	-	-	-				

Sovraccarico	Corto Circuito massimo	Corto Circuito minimo	Persone
Verificata Verificata		Verificata	Verificata

QUADRO: [Q.3] QUADRO 3

LINEA: 1

CARATTERISTICHE GENERALI DELLA LINEA

P [kW]	I _b [A]/I _{nm} [A]	cos φ	K _{utilizzo}	K _{contemp} .	η
5,27	8,5	0,90		0,90	

INTERRUTTORE

Utenza	Interruttore	Poli	Curva Sganciatore	I _n [A]	I _r [A]	T _r [s]	I _m [kA]	I _{sd} [kA]	
Siglatura	T _{sd} [s]	I _i [kA]	I _g [A]	T _g [s]	Differenz.	Classe	l∆n [A]	T _∆ n [s]	
1	C40 a	3+N	С	10	10	-	0,1	0,1	
Q1	-	-	-	-					

QUADRO: [Q.3] QUADRO 3

LINEA: TRATTO 1

CARATTERISTICHE GENERALI DELLA LINEA

P [kW]	I _b [A]/I _{nm} [A]	cos φ	K _{utilizzo}	K _{contemp.}	η
3,6	5,8	0,90	0,90		

CAVO

Siglatura	Derivazione	tipo conduttore	Isolante	Lungh. [m]	Posa 64-8	T _{emp.}	n° supp.	Resistività [°K m/W]	ravv. dist.	altri circuiti	K sicur.
L3.1.1	3F+N+PE	uni	EPR	580	11	30			ravv.		1,0

Sezione Conduttori [mm²] fase neutro PE 1x 16 1x 16 1x 16			Prof. di Posa [m]	R _{cavo} [mΩ]	X _{cavo} [mΩ]	R_{tot} [m Ω]	X _{tot} [mΩ]	ΔV _{cavo} [%]	∆V _{tot} [%]	ΔV _{max prog} [%]
1x 16	1x 16	1x 16	-	652,5	64,96	700,8623	153,212	1,91	1,97	2,0

I _b [A]	I _z [A]	I _{cc max inizio linea} [kA]	I _{cc max Fine linea} [kA]	I _{ccmin fine linea} [kA]	I _{cc Terra} [kA]
5,8	107	2,26	0,32	0,11	0,11

INTERRUTTORE

Utenza	Interruttore	Poli	Curva Sganciatore	I _n [A]	I _r [A]	T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	l _i [kA]	Ig [A]	T _g [s]	Differenz.	Classe	l∆n [A]	T _∆ n [s]
Tratto 1	C40 a	3+N	С	6	6	-	0,06	0,06
Q3.1.1	-	-	-	-				

Sovraccarico	Corto Circuito massimo Verificata	Corto Circuito minimo	Persone
Verificata	Verificata	Verificata	Verificata

QUADRO: [Q.3] QUADRO 3

LINEA: TRATTO 2

CARATTERISTICHE GENERALI DELLA LINEA

P [kW]	I _b [A]/I _{nm} [A]	cos φ	K _{utilizzo}	K _{contemp.}	η
1,35	2,2	0,90	0,90		

CAVO

Siglatura	Derivazione	tipo conduttore	Isolante	Lungh. [m]	Posa 64-8	T _{emp.} [°C]	n° supp.	Resistività [°K m/W]	ravv. dist.	altri circuiti	K sicur.
L3.1.2	3F+N+PE	multi	EPR	140	41	30			ravv.		1,0

Sezion fase	e Cond		_	m²] PE	Prof. di Posa [m]	R _{cavo} [mΩ]	X _{cavo} [mΩ]	R_{tot} [m Ω]	X _{tot} [mΩ]	ΔV _{cavo} [%]	ΔV _{tot} [%]	ΔV _{max prog} [%]
1x 1,5	1x	1,5	1x	1,5	-	1680,0	16,52	1728,362 3	104,772	1,79	1,85	2,0

I _b [A]	I _z [A]	I _{cc max inizio linea} [kA]	Icc max Fine linea [kA]	Iccmin fine linea [kA]	I _{cc Terra} [kA]
2,2	19,5	2,26	0,13	0,04	0,04

INTERRUTTORE

Utenza	Interruttore	Poli	Curva Sganciatore	I _n [A]	I _r [A]	T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	I _i [kA]	I _g [A]	T _g [s]	Differenz.	Classe	l∆n [A]	T _∆ n [s]
Tratto 2	C40 a	3+N	С	3	3	-	0,03	0,03
Q3.1.2	-	-	-	-				

Sovraccarico	Corto Circuito massimo	Corto Circuito minimo	Persone
Verificata	Verificata	Verificata	Verificata

QUADRO: [Q.3] QUADRO 3

LINEA: TRATTO 3

CARATTERISTICHE GENERALI DELLA LINEA

P [kW]	I _b [A]/I _{nm} [A]	cos φ	K _{utilizzo}	K _{contemp} .	η
0,9	1,5	0,90	0,90		

CAVO

Siglatura	Derivazione	tipo conduttore	Isolante	Lungh. [m]	Posa 64-8	T _{emp.}	n° supp.	Resistività [°K m/W]	ravv. dist.	altri circuiti	K sicur.
L3.1.3	3F+N+PE	multi	EPR	200	41	30			ravv.		1,0

Sezion fase	e Cond neutr		_	m²] PE	Prof. di Posa [m]	R _{cavo} [mΩ]	X _{cavo} [mΩ]	R_{tot} [m Ω]	X _{tot} [mΩ]	ΔV _{cavo} [%]	∆V _{tot} [%]	ΔV _{max prog} [%]
1x 1,5	1x	1,5	1x	1,5	-	2400,0	23,6	2448,362 3	111,852	1,71	1,77	2,0

I _b [A]	I _z [A]	Icc max inizio linea [kA]	I _{cc max Fine linea} [kA]	Iccmin fine linea [kA]	I _{cc Terra} [kA]
1,5	19,5	2,26	0,09	0,03	0,03

INTERRUTTORE

Utenza	Interruttore	Poli	Curva Sganciatore	I _n [A]	I _r [A]	T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	I _i [kA]	I _g [A]	T _g [s]	Differenz.	Classe	l∆n [A]	T _∆ n [s]
Tratto 3	C40 a	3+N	С	2	2	-	0,02	0,02
Q3.1.3	-	-	-	-				

Sovraccarico Corto Circuito massimo		Corto Circuito minimo	Persone	
Verificata	Verificata	Verificata	Verificata	

QUADRO: [Q.4] QUADRO 4

LINEA: 1

CARATTERISTICHE GENERALI DELLA LINEA

P [kW]	I _b [A]/I _{nm} [A]	cos φ	K _{utilizzo}	K _{contemp.}	η
1,35	2,2	0,90		1,00	

INTERRUTTORE

Utenza	Interruttore	Poli	Curva Sganciatore	I _n [A]	I _r [A]	T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	l _i [kA]	I _g [A]	T _g [s]	Differenz.	Classe	l∆n [A]	T _∆ n [s]
1	C40 a	3+N	С	10	10	-	0,1	0,1
Q1	-	-	-	-				

QUADRO: [Q.4] QUADRO 4

LINEA: 2

CARATTERISTICHE GENERALI DELLA LINEA

P [kW]	I _b [A]/I _{nm} [A]	cos φ	K _{utilizzo}	K _{contemp.}	η
1,35	2,2	0,90	0,90		

CAVO

Siglatura	Derivazione	tipo conduttore	Isolante	Lungh. [m]	Posa 64-8	T _{emp.} [°C]	n° supp.	Resistività [°K m/W]	ravv. dist.	altri circuiti	K sicur.
L4.1.1	3F+N+PE	uni	EPR	200	11	30			ravv.		1,0

Sezion fase	e Condutto	ori [mm²] PE	Prof. di Posa [m]	R _{cavo} [mΩ]	X _{cavo} [mΩ]	R_{tot} [m Ω]	X _{tot} [mΩ]	ΔV _{cavo} [%]	ΔV _{tot} [%]	ΔV _{max prog} [%]
1x 2,5	1x 2,5	1x 2,5	-	1440,0	31,2	1488,362 3	119,452	1,51	1,53	2,0

I _b [A]	I _z [A]	Icc max inizio linea [kA]	I _{cc max Fine linea} [kA]	Iccmin fine linea [kA]	I _{cc Terra} [kA]	
2,2	33	2,26	0,15	0,05	0,05	

INTERRUTTORE

Utenza	Interruttore	Poli	Curva Sganciatore	I _n [A]	I _r [A]	T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	I _i [kA]	Ig [A]	T _g [s]	Differenz.	Classe	l∆n [A]	T _∆ n [s]
2	C40 a	3+N	С	6	6	-	0,06	0,06
Q4.1.1	-	-	-	-				

Sovraccarico Corto Circuito massimo		Corto Circuito minimo	Persone	
Verificata	Verificata	Verificata	Verificata	

APPENDICE B

CALCOLI ILLUMINOTECNICI

Norma di riferimento UNI EN 12464-1 "Illuminazione sui luoghi di lavoro" e norma UNI 10380, Definizioni:

- Compito visivo: insieme degli elementi visivi (dimensioni della struttura, contrasto e durata) che riguardano il lavoro
 effettuato
- Zona del compito: parte del posto di lavoro nella quale viene svolto il compito visivo
- **Zona immediatamente circostante:** fascia di 0.5m intorno alla zona del compito
- Illuminamento medio (Em)

Il calcolo illuminotecnico è stato eseguito con il metodo di Harrison-Anderson, assumendo i seguenti coefficienti :

- efficienza luminosa delle lampade fluorescenti = 65 lm/W
- coefficiente di riflessione del soffitto (bianco) : rs = 0.7
- coefficiente di riflessione delle pareti (chiare) : rp = 0.5
- fattore di deprezzamento delle lampade : kd = 0.7

ed utilizzando la formula seguente :

Fu = (Em * Su) / (n * Kd * U); dove:

- Fu = flusso emesso dalle lampade;
- Em = illuminamento medio sulla superficie utile;
- Su = superficie utile:
- n = efficienza dell'armatura (n = 0,7)
- Kd = fattore di deprezzamento delle lampade;
- U = fattore di utilizzazione del locale.

I valori di illuminamento medio sono stati desunti dai manuali tenuto conto, per le zone più importanti, di alcuni fattori correttivi desunti dall'esperienza, come di seguito specificati ed utilizzati come segue:

- negozi Em = 200 lux
- corridoi locali tecnici, depositi Em = 100 lux
- officina Em = 150 lux
- parcheggi a raso e viabilità 30 50 lux