COMMITTENTE:

DIREZIONE LAVORI:

APPALTATORE:

MANDATARIA:

MANDANTE:

PROGETTAZIONE:

MANDATARIA:

MANDANTI:

PROGETTO ESECUTIVO

LINEA FERROVIARIA NAPOLI - BARI, TRATTA NAPOLI-CANCELLO, IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 RELAZIONE

VI - VIADOTTI

VI04 - VIADOTTO DAL Km. 13+202.33 al Km. 13+582.76

Pila tipo A.1 (da P1 a P11) - Relazione di calcolo

APPALTATORE	PROGETTAZIONE	
DIRETTORE TECNICO Ing. M. PANISI	DIRETTORE DELLA PROGETTAZIONE Ing. A. CHECCHI	

COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV SCALA:

I F 1 M 0 0 E	ZZCL	V I 0 4 A 5	0 0 1 A	-
---------------	------	-------------	---------	---

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	EMISSIONE ESECUTIVA	S. CHECCHI	14/06/18	PINTI	15/06/18	D'ANGELO	15/06/18	СОРРА
								30/06/18

APPALTATORE:

Mandataria:

Mandante:

SALINI IMPREGILO S.p.A. ASTALDI S.p.A.

PROGETTISTA:

Mandataria:

Mandante:

SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.

PROGETTO ESECUTIVO

Pila tipo A.1 (da P1 a P11) - Relazione di calcolo

LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
IF1M	0.0.F. <i>ZZ</i>	CL	VI.04.A5.001	Α	2 di 112

1		PRI	EME	ESSA4
2		DE	SCF	RIZIONE DELLA STRUTTURA5
3		NO	RM/	ATIVA DI RIFERIMENTO8
4		CA	RA1	TERISTICHE DEI MATERIALI9
	4. 1	1	CAL	.CESTRUZZO9
		4.1.	1	Strutture di elevazione9
		4.1.	2	Plinto di fondazione9
		4.1.	3	Pali di fondazione10
	4.2	2	Acc	CIAIO PER ARMATURE ORDINARIE11
	4.3	3	Сог	PRIFERRI MINIMI11
5		CA	RA1	TERIZZAZIONE GEOTECNICA12
	5. 1	1	STR	ATIGRAFIA E PARAMETRI GEOTECNICI12
	5.2	2	LIQU	JEFACIBILITÀ DEI TERRENI13
6		AN	ALI:	SI DEI CARICHI E CONDIZIONI DI CARICO14
	6.1	1	CAF	RICHI TRASMESSI DALL'IMPALCATO14
	6.2	2	Azı	ONE DEL VENTO SULLA PILA Q ₆ 14
	6.3	3	Azı	ONI SISMICHE Q715
	(6.3.	1	Spettri di risposta elastici23
	(6.3.	2	Spettri di risposta di progetto25
		6.3. mas	3 sse	Combinazione delle componenti dell'azione sismica e valutazione delle 30
	6.4	4	VAR	RIAZIONI TERMICHE ϵ_3 30
7		CO	MBI	NAZIONI DI CARICO31

APPALTATORE:

Mandataria: Mandante: SALINI IMPREGILO S.p.A. ASTALDI S.p.A.

PROGETTISTA:

Mandataria:

Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A.

PROGETTO ESECUTIVO

Pila tipo A.1 (da P1 a P11) - Relazione di calcolo

LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA 0.0.E.ZZ VI.04.A5.001 3 di 112 IF1M CL Α

8	CR	ITE	RI DI VERIFICA3	37
8	3.1	VEF	RIFICHE AGLI STATI LIMITE DI ESERCIZIO3	37
	8.1	.1	Verifica a fessurazione	37
	8.1	.2	Verifica delle tensioni in esercizio3	38
8	3.2	VEF	RIFICHE AGLI STATI LIMITE ULTIMI4	0
	8.2	.1	Sollecitazioni flettenti4	10
	8.2	.2	Sollecitazioni taglianti4	10
9	CR	ITE	RI DI MODELLAZIONE4	12
ç	9.1	MOI	DELLO STRUTTURALE DI ANALISI4	2
ç	9.2	MOI	DELLAZIONE FEM4	4
10	A٨	IALI	SI DEI RISULTATI: SOLLECITAZIONI E VERIFICHE DELLA PILA4	!5
1	0.1	so	LLECITAZIONI AGENTI4	18
1	0.2	VE	RIFICA DEL FUSTO5	55
			SI DEI RISULTATI: SOLLECITAZIONI E VERIFICHE DEL SISTEMA D DNE7	
1	11.1	so	LLECITAZIONI AGENTI7	' 4
1	1.2	VE	RIFICHE STRUTTURALI8	30
	11.	2.1	Plinto di fondazione	3 <i>0</i>
	11.	2.2	Pali	38
12	TA	BUL	ATI DI CALCOLO9)6
13	INL	DICE	E DELLE FIGURE11	12

ROCKSOIL S.p.A.

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante: SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	TRATTA NAPOLI-CANCELLO
PROGETTISTA: Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Pila tipo A.1 (da P1 a P11) - Relazione di calcolo	IF1M 0.0.E.ZZ CL VI.04.A5.001 A 4 di 112

1 PREMESSA

La presente relazione afferisce ai calcoli e alle verifiche strutturali della pile tipo A.1, previste lungo i viadotti VI01-04, nell'ambito della redazione dei documenti tecnici relativi alla progettazione esecutiva della linea ferroviaria Napoli-Bari, tratta Napoli-Cancello, in variante tra le pk 0+000 e 15+585.

In particolare, lungo il viadotto VI04 sono presenti 11 pile del tipo in esame: da P1 a P11.

Le strutture sono state progettate coerentemente con quanto previsto dalla normativa vigente, "Norme Tecniche per le Costruzioni"- DM 14.1.2008 e Circolare n .617 "Istruzioni per l'applicazione delle Nuove norme tecniche per le costruzioni".

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. ROCKSOIL S.p.A. SYSTRA-SOTECNI S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA DOCUMENTO REV. **PAGINA** Pila tipo A.1 (da P1 a P11) - Relazione di calcolo IF1M 0.0.E.ZZ CL VI.04.A5.001 5 di 112

2 DESCRIZIONE DELLA STRUTTURA

La tipologia di pila in esame prevede una sezione pseudorettangolare cava biconnessa, con larghezza pari a 3.30m in direzione longitudinale rispetto all'asse del viadotto e lunghezza di 10.40m in direzione trasversale rispetto all'asse del viadotto; i setti esterni presentano uno spessore di 0.40m; quello centrale prevede uno spessore pari a 0.50m (Geometria tipo A).

	Geometria fusto pila	Proprietà geometriche					
Sigla		Α	S	I_y	Iz	B_T	B_L
	Descrizione	Sezione fusto	Spessore pulvino	Inerzia dir. tras vers ale	Inerzia dir. Iongitudinale	Lunghezza pila	Larghezza pila
[-]	[-]	[m ²]	[m]	[mm ⁴]	[mm ⁴]	[m]	[m]
Α	Cava biconnessa 3,3x10,4	10.545	1.2	1.017E+14	1.707E+13	10.4	3.3

L'altezza delle pile oggetto di analisi è variabile da 4.5m a 6.0m lungo il viadotto VI04. Il sistema di fondazione previsto è del tipo indiretto, con plinti di spessore pari a 2m e dimensioni in pianta 12x16.5m, su n.12 pali di diametro ϕ 1500 (Pilnto tipo F1).

Tipologi	a sistema di fondazione	(Pali			
		B_L	B _T		n	ф
Sigla	Descrizione	Dimensione in pianta in direz.parallela all'asse del viadotto	Dimensione in pianta in direz. trasversale rispetto all'asse del viadotto	Spessore	Numero pali	diametro
[-]	[-]	[m]	[m]	[m]	[-]	[mm]
F1	12x16.5x2	12	16.5	2	12	1500

La tipologia di impalcati afferenti il gruppo di pile in esame è individuata nel prospetto di seguito:

Coppia impalcati afferenti						
Sigla		Impalcato lato fisso pila	Impalcato lato mobile pila			
[-]	Luce [m]	Tipo [-]	Luce [m]	Tipo [-]		
1	25	Cassoncini cls precompressi	25	Cassoncini cls precompressi		

Nelle Figure riportate di seguito si forniscono le immagini delle carpenterie della tipologia di pila in esame. Si rimanda agli elaborati grafici per l'ottenimento di dettagli ulteriori.

APPALTATORE:		LIN	EA FEF	ROVIA	RIA NAPOL	.I - B <i>A</i>	\RI
Mandataria:	Mandante:		TRATI	A NAPO	LI-CANCE	LLO	
SALINI IMPREGILO S.p.A. PROGETTISTA:	ASTALDI S.p.A.				00 E PK 15+58	•	
Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOT	ECNI S.p.A. ROCKSOIL S.p.A.			•	MBITO DEGL ERTITO IN LE		
PROGETTO ESECUTIVO		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Pila tipo A.1 (da P1 a P11) - Relazione	e di calcolo	IF1M	0.0.E.ZZ	CL	VI.04.A5.001	Α	6 di 112

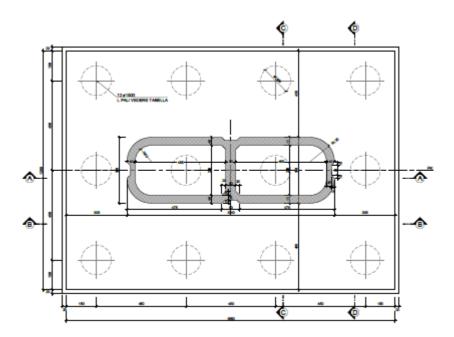


Figura 1: Vista in pianta

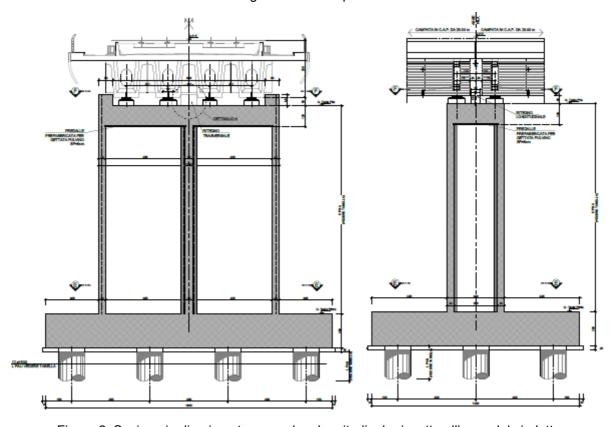


Figura 2: Sezione in direzione trasversale e longitudinale rispetto all'asse del viadotto

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA DOCUMENTO REV. **PAGINA** IF1M 0.0.E.ZZ VI.04.A5.001 7 di 112 Pila tipo A.1 (da P1 a P11) - Relazione di calcolo CL Α

Di seguito si fornisce l'elenco delle pile del tipo in esame relativamente al viadotto VI04. Per l'individuazione dei criteri adottati per la classificazione tipologica delle pile si faccia riferimento all'elaborato dedicato.

VI	N°pila	Sigla geometria pila	Sigla coppia impalcati afferenti	Altezza pila (m)	Sigla plinto relativo	Condizioni terreno	Diametro pali (mm)	Rapporto Momento/Taglio testa palo α (m)	PK pila	Tipologia armatura
04	1	Α	1	4.5	F1	Non liquefacibile	1500	3.2	13+227.33	Armatura tipo 2
04	2	Α	1	5.0	F1	Non liquefacibile	1500	3.2	13+252.33	Armatura tipo 2
04	3	Α	1	5.0	F1	Non liquefacibile	1500	3.2	13+277.33	Armatura tipo 2
04	4	Α	1	5.0	F1	Non liquefacibile	1500	3.2	13+302.33	Armatura tipo 2
04	5	Α	1	5.5	F1	Potenzialmente liquefacibile	1500	4	13+327.33	Armatura tipo 2
04	6	Α	1	5.5	F1	Potenzialmente liquefacibile	1500	4	13+352.33	Armatura tipo 2
04	7	Α	1	6.0	F1	Potenzialmente liquefacibile	1500	4	13+377.33	Armatura tipo 2
04	8	Α	1	6.0	F1	Potenzialmente liquefacibile	1500	4	13+402.33	Armatura tipo 2
04	9	Α	1	6.0	F1	Potenzialmente liquefacibile	1500	4	13+427.33	Armatura tipo 2
04	10	А	1	6.0	F1	Potenzialmente liquefacibile	1500	4	13+452.34	Armatura tipo 2
04	11	Α	1	6.0	F1	Potenzialmente liquefacibile	1500	4	13+477.34	Armatura tipo 2

Nei paragrafi successivi, le verifiche strutturali esibite sono quelle relative alla pila caratterizzata dall'altezza massima fra quelle della tipologia in esame che prevedono la medesima tipologia di armatura.

In favore di sicurezza, per le pile di cui si mostrano le verifiche strutturali, si adotta il valore massimo del coefficiente α , indicativo del rapporto momento taglio in testa al palo, tra quelli relativi alle pile del tipo in esame con la stessa tipologia di armatura. Le condizioni del terreno considerate sono quelle associate al valore di α adottato.

I dati identificativi delle pile di cui si mostrano le verifiche strutturali, evidenziati in grassetto nel prospetto riportato sopra, sono sintetizzati nel capitolo di analisi dei risultati.

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante: SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	TRATTA NAPOLI-CANCELLO
PROGETTISTA: Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Pila tipo A.1 (da P1 a P11) - Relazione di calcolo	IF1M 0.0.E.ZZ CL VI.04.A5.001 A 8 di 112

3 NORMATIVA DI RIFERIMENTO

L'analisi dell'opera e le verifiche degli elementi strutturali sono state condotte in accordo con le vigenti disposizioni legislative e in particolare con le seguenti norme e circolari:

- Decreto Ministeriale del 14 gennaio 2008: "Norme Tecniche per le Costruzioni".
- Circolare M.LL.PP. n. 617 del 2 febbraio 2009: Istruzioni per l'applicazione delle "Nuove norme tecniche per le costruzioni di cui al Decreto Ministeriale del 14/01/2008".

Si è tenuto inoltre conto dei seguenti documenti:

- UNI EN 1990 Aprile 2006: Eurocodice: Criteri generali di progettazione strutturale.
- UNI EN 1991-1-1 Agosto 2004: Eurocodice 1 Parte 1-1: Azioni in generale Pesi per unità di volume, pesi propri e sovraccarichi variabili.
- UNI EN 1991-1-4 Luglio 2005: Eurocodice 1. Azioni sulle strutture. Parte 1-4: Azioni in generale Azioni del vento.
- UNI EN 1992-1-1 Novembre 2005: Eurocodice 2 Progettazione delle strutture di calcestruzzo Parte 1-1: Regole generali e regole per gli edifici.
- UNI EN 1992-2 Gennaio 2006: Eurocodice 2. Progettazione delle strutture di calcestruzzo. Parte 2: Ponti di calcestruzzo Progettazione e dettagli costruttivi.
- UNI-EN 1997-1 Febbraio 2005: Eurocodice 7. Progettazione geotecnica. Parte 1: Regole generali.
- UNI-EN 1998-1 Marzo 2005: Eurocodice 8: Progettazione delle strutture per la resistenza sismica. Parte 1: Regole generali, azioni sismiche e regole per gli edifici.
- UNI-EN 1998-5 Gennaio 2005: Eurocodice 8: Progettazione delle strutture per la resistenza sismica. Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici.
- Legge 5-1-1971 n° 1086: "Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso, ed a struttura metallica".
- Legge. 2 febbraio 1974, n. 64.: "Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche".
- UNI EN 206-1-2016: Calcestruzzo. "Specificazione, prestazione, produzione e conformità".
- RFI DTC SI MA IFS 001 A Dicembre 2016: Manuale di progettazione delle opere civili.

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante: SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	TRATTA NAPOLI-CANCELLO
PROGETTISTA: Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Pila tipo A.1 (da P1 a P11) - Relazione di calcolo	IF1M 0.0.E.ZZ CL VI.04.A5.001 A 9 di 112

4 CARATTERISTICHE DEI MATERIALI

Di seguito si riportano le caratteristiche dei materiali impiegati, ricavate con riferimento alle indicazioni contenute D.M.14 gennaio 2008. Le classi di esposizione dei calcestruzzi sono coerenti con la UNI EN 206-1-2001.

4.1 CALCESTRUZZO

4.1.1 Strutture di elevazione

Per il getto in opera del fusto della pila si adotta un calcestruzzo con le caratteristiche riportate di seguito:

Classe d'esposizione: XC4

C32/40 $f_{ck} \ge 32$ MPa $R_{ck} \ge 40$ MPa Classe minima di consistenza: S4-S5

In accordo con le norme vigenti, risulta per il materiale in esame:

Resistenza caratteristica cubica a 28 giorni	R _{ck}	40	N/mm ²
Resistenza caratteristica cilindrica a 28 giorni	$f_{ck} = 0.83 R_{ck}$	33.20	N/mm²
Valore medio della resistenza cilindrica	$f_{cm} = f_{ck} + 8$	41.20	N/mm²
Resistenza di calcolo breve durata	$f_{cd (Breve durata)} = f_{ck} / 1.5$	22.13	N/mm²
Resistenza di calcolo lunga durata	$f_{cd (Lungo durata)} = 0.85 f_{cd}$	18.81	N/mm²
Resistenza media a trazione assiale	$f_{ctm} = 0.3 (f_{ck})^{2/3}$ [Rck<50/60]	3.10	N/mm²
Resistenza caratteristica a trazione	$f_{ctk \ 0.05} = 0.7 \ f_{ctm}$	2.17	N/mm²
Resistenza media a trazione per flessione	f_{cfm} = 1.2 f_{ctm}	3.72	N/mm ²
Resistenza di calcolo a trazione	$f_{ctd} = f_{ctk \ 0,05} / 1.5$	1.45	N/mm ²
Modulo di Young	$E = 22000 (f_{cm}/10)^{0.3}$	33643	N/mm ²

4.1.2 Plinto di fondazione

Per il getto in opera del plinto di fondazione della pila si adotta un calcestruzzo con le caratteristiche riportate di seguito:

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante: SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	TRATTA NAPOLI-CANCELLO
PROGETTISTA: Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO Pila tipo A.1 (da P1 a P11) - Relazione di calcolo	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA IF1M 0.0.E.ZZ CL VI.04.A5.001 A 10 di 112

Classe d'esposizione: XC2

C28/35 $f_{ck} \ge 28$ MPa $R_{ck} \ge 35$ MPa Classe minima di consistenza: S4-S5

In accordo con le norme vigenti, risulta per il materiale in esame:

Resistenza caratteristica cubica a 28 giorni Resistenza caratteristica cilindrica a 28	R_{ck}	35	N/mm ²
giorni	$f_{ck} = 0.83 R_{ck}$	29.05	N/mm ²
Valore medio della resistenza cilindrica	$f_{cm} = f_{ck} + 8$	37.05	N/mm ²
Resistenza di calcolo breve durata	$f_{cd (Breve durata)} = f_{ck} / 1.5$	19.37	N/mm ²
Resistenza di calcolo lunga durata	$f_{cd (Lungo durata)} = 0.85 f_{cd}$	16.46	N/mm ²
Resistenza media a trazione assiale	$f_{ctm} = 0.3 (f_{ck})^{2/3}$ [Rck<50/60]	2.83	N/mm ²
Resistenza caratteristica a trazione	$f_{\text{ctk }0.05} = 0.7 f_{\text{ctm}}$	1.98	N/mm ²
Resistenza media a trazione per flessione	f_{cfm} = 1.2 f_{ctm}	3.40	N/mm²
Resistenza di calcolo a trazione	$f_{ctd} = f_{ctk \ 0.05} / 1.5$	1.32	N/mm²
Modulo di Young	$E = 22000 (f_{cm}/10)^{0.3}$	32588	N/mm²

4.1.3 Pali di fondazione

Per il getto in opera dei pali di fondazione della pila si adotta un calcestruzzo con le caratteristiche riportate di seguito:

Classe d'esposizione: XC2

C25/30 f_{ck} ≥ 25 MPa R_{ck} ≥ 30 MPa Classe minima di consistenza: S4-S5

In accordo con le norme vigenti, risulta per il materiale in esame:

Resistenza caratteristica cubica a 28 giorni Resistenza caratteristica cilindrica a 28	R_{ck}	30	N/mm ²
giorni	$f_{ck} = 0.83 R_{ck}$	24.90	N/mm²
Valore medio della resistenza cilindrica	$f_{cm} = f_{ck} + 8$	32.90	N/mm ²
Resistenza di calcolo breve durata	$f_{cd (Breve durata)} = f_{ck} / 1.5$	16.60	N/mm ²

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	,
Mandataria: Mandante:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Pila tipo A.1 (da P1 a P11) - Relazione di calcolo	IF1M 0.0.E.ZZ CL VI.04.A5.001 A 11 di 112

Resistenza di calcolo lunga durata	$f_{cd (Lungo durata)} = 0.85 f_{cd}$	14.11	N/mm ²
Resistenza media a trazione assiale	$f_{ctm} = 0.3 (f_{ck})^{2/3}$ [Rck<50/60]	2.56	N/mm²
Resistenza caratteristica a trazione	$f_{ctk \ 0.05} = 0.7 \ f_{ctm}$	1.79	N/mm²
Resistenza media a trazione per flessione	$f_{cfm} = 1.2 f_{ctm}$	3.07	N/mm²
Resistenza di calcolo a trazione	$f_{ctd} = f_{ctk \ 0.05} / 1.5$	1.19	N/mm²
Modulo di Young	$E = 22000 (f_{cm}/10)^{0.3}$	31447	N/mm ²

4.2 ACCIAIO PER ARMATURE ORDINARIE

Classe acciaio per armature ordinarie B450C Tensione di snervamento caratteristica $f_{yk} \ge 450 \text{ MPa}$ Tensione caratteristica di rottura $f_t \ge 540 \text{ MPa}$ Modulo di elasticità $E_a = 210000 \text{ MPa}$

4.3 COPRIFERRI MINIMI

Si riportano di seguito i copriferri minimi per le strutture in calcestruzzo armato:

Strutture di elevazione	4.0 cm
Plinto di fondazione	4.0 cm
Pali di fondazione	6.0 cm

APPALTATORE: LINEA FERROVIARIA NAPOLI - BARI Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA DOCUMENTO REV. **PAGINA** 0.0.E.ZZ VI.04.A5.001 12 di 112 Pila tipo A.1 (da P1 a P11) - Relazione di calcolo IF1M CL Α

5 CARATTERIZZAZIONE GEOTECNICA

5.1 STRATIGRAFIA E PARAMETRI GEOTECNICI

Si esibiscono di seguito le caratteristiche geotecniche relative al terreno di fondazione di ogni tratta omogenea in cui ricadono le pile in esame. Le formazioni indicate nei prospetti di seguito fanno riferimento alle unità geotecniche descritte nel seguente elenco:

- Unità **DI** Piroclastiti rimaneggiati sabbioso limose;
- Unità Po Piroclastiti recenti sabbioso limose;
- Unità **Ts** Tufo sfatto;
- Unità TL Tufo litoide;
- Unità **Pb** Piroclastiti di base sabbioso limose.

Si riportano, inoltre, per ciascuna tratta omogenea del viadotto, in cui ricadono le pile del tipo in esame, i dati relativi alla profondità di falda e la quota testa palo rispetto al piano campagna considerata.

VI04 - P1-P4

strato	Formazione	spessore strato	zbase strato	γ	ф
Strato		(m)	(m da pc)	(kN/m³)	(°)
1	Di	4.0	4.0	16	30
2	Po	7.0	11.0	16	34
3	Ts	7.0	18.0	15	37
4	Pb	32.0	50.0	16	36

zw	Profondità della falda dal p.c.	2.50 m
zp	Quota testa palo	3.00 m

<u>VI04 – P5-P7</u>

strato	Formazione	spessore strato	zbase strato	γ	ф
Strato	Formazione	(m)	(m da pc)	(kN/m ³)	(°)
1	Di	2.5	2.5	16	30
2	DI	3.0	5.5	16	30
3	Po	4.5	10.0	16	33

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante: SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	TRATTA NAPOLI-CANCELLO
PROGETTISTA: Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO Pila tipo A.1 (da P1 a P11) - Relazione di calcolo	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA IF1M 0.0.E.ZZ CL VI.04.A5.001 A 13 di 112

4	-	Гѕ	4.0	14.0	15	35	
5	-	Гѕ	4.0	18.0	15	37	
6	F	Pb	32.0	50.0	16	37	
zw Profondità della falda dal p.c.						2.50 m	
zp Quota testa palo 3.00						3.00 m	

<u>VI04 – P8-P11</u>

otroto	Formazione	spessore strato zbase strato		γ	ф	
strato	Formazione	(m)	(m) (m da pc)		(°)	
1	Di	2.8	2.8	16	30	
2	DI	2.7	5.5	16	30	
3	Ро	4.5	10.0	16	35	
4	Ts	4.0	14.0	15	36	
5	Pb	36.0	50.0	16	35	
zw	zw Profondità della falda dal p.c. 2.50					
zp	p Quota testa palo 3.00 m					

5.2 LIQUEFACIBILITÀ DEI TERRENI

Sono stati rilevati livelli di terreno potenzialmente liquefacibile in corrispondenza delle fondazioni pile da P5 a P11.

Le pile del tipo in esame sono dunque tutte interessate dalla liquefazione, ad eccezione delle pile da P1 a P4.

Dall'eventuale liquefacibilità del suolo, dipende inoltre il valore del coefficiente α , in quanto funzione delle caratteristiche di rigidezza relative palo-terreno, oltre che del diametro del palo. Tale parametro, espresso in metri, è indicativo del rapporto momento/taglio in testa al palo.

La sintesi delle condizioni del terreno associate a ciascuna pila e dei rispettivi valori del parametro α assunti nei calcoli è riportata nei paragrafi descrittivi iniziali.

Per ulteriori dettagli, si rimanda alla Relazione Geotecnica di riferimento.

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	COTAL D.E. 133/2014, CONVENTITO IN LEGGE 104/2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Pila tipo A.1 (da P1 a P11) - Relazione di calcolo	IF1M 0.0.E.ZZ CL VI.04.A5.001 A 14 di 112

6 ANALISI DEI CARICHI E CONDIZIONI DI CARICO

L'analisi dei carichi che interessano la pila è stata effettuata considerando le azioni provenienti dagli impalcati afferenti e quelle direttamente applicate sulla pila.

I carichi trasmessi dagli impalcati sono relativi alle condizioni di carico elementari, opportunamente combinate secondo le vigenti normative, analizzate nel dettaglio nelle rispettive relazioni di calcolo degli impalcati tipo che afferiscono alla pila in esame.

Si riportano di seguito la sintesi delle azioni provenienti dagli impalcati e l'analisi dei carichi elementari che interessano direttamente la pila.

6.1 CARICHI TRASMESSI DALL'IMPALCATO

Per la sintesi degli scarichi espletati dagli appoggi d'impalcato sulla pila, relativamente ai due lati, fisso e mobile, per ciascuna delle condizioni di carico elementari analizzate, si faccia riferimento al capitolo relativo alle sollecitazioni e alle verifiche della pila, presentato nell'analisi dei risultati.

In particolare, per quanto riguarda i carichi da traffico ferroviario trasmessi dall'impalcato, si sono considerati coefficienti dinamici unitari, conformemente con quanto prescritto nel par.2.5.1.4.2.5.2 del "Manuale di progettazione delle opere civili", poiché le pile in esame presentano un valore di snellezza λ <30.

6.2 AZIONE DEL VENTO SULLA PILA Q₆

Si riporta di seguito il calcolo dell'azione del vento sul fusto della pila in direzione trasversale e longitudinale rispetto all'asse del viadotto. La sezione della pila è assimilata, per questo calcolo, a un rettangolo di dimensioni $B_L \times B_T$.

Si assume cautelativamente una pressione di progetto pari a 2,5kN/m².

Risulta pertanto sui due lati del fusto della pila:

 $q_{T,vento}$ = 2,5kN/m² x B_L - Carico unitario in direzione trasversale all'asse del viadotto $q_{L,vento}$ = 2,5kN/m² x B_T - Carico unitario in direzione parallela all'asse del viadotto

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	
PROGETTISTA:	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014. CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	COTAL D.L. 133/2014, CONVENTITO IN LEGGE 104/ 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Pila tipo A.1 (da P1 a P11) - Relazione di calcolo	IF1M 0.0.E.ZZ CL VI.04.A5.001 A 15 di 112

6.3 AZIONI SISMICHE Q₇

Nel presente paragrafo si riportano la descrizione e la valutazione dell'azione sismica secondo le specifiche del DM 14.1.2008.

L'azione sismica è descritta mediante spettri di risposta elastici e di progetto. In particolare nel DM 14.1.2008, vengono presentati gli spettri di risposta in termini di accelerazioni orizzontali e verticali.

L'espressione analitica dello spettro di risposta elastico in termini di accelerazione orizzontale è la seguente:

$$0 \le T \le T_B \longrightarrow S_{\epsilon}(T) = a_{g} \cdot S \cdot \eta \cdot F_0 \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_0} \left(1 - \frac{T}{T_B} \right) \right]$$

$$T_B \leq T \leq T_C \longrightarrow S_{\mathfrak{g}}(T) = a_{\mathfrak{g}} \cdot S \cdot \eta \cdot F_0$$

$$T_C \le T \le T_D \longrightarrow S_{e}(T) = a_{g.} \cdot S \cdot \eta \cdot F_0 \cdot \left(\frac{T_C}{T}\right)$$

$$T_D \leq T_D \longrightarrow S_{e}(T) = a_{g.} \cdot S \cdot \eta \cdot F_0 \cdot \left(\frac{T_C \cdot T_D}{T}\right)$$

In cui:

$$S = S_S \cdot S_T$$

 S_s : coefficiente di amplificazione stratigrafico;

 S_T : coefficiente di amplificazione topografica;

η: fattore che tiene conto di un coefficiente di smorzamento viscoso equivalente ξ, espresso in punti percentuali diverso da 5 (η=1 per ξ=5):

$$\eta = \sqrt{\frac{10}{5 + \xi}} \ge 0.55$$

 F_0 : valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;

 a_{g} : accelerazione massima al suolo;

T: periodo di vibrazione dell'oscillatore semplice;

APPALTATORE:		LIN	EA FEF	ROVIAF	RIA NAPOL	_I - B/	ARI
Mandataria:	Mandante:		TRATI	A NAPO	LI-CANCE	LLO	
SALINI IMPREGILO S.p.A.	ASTALDI S.p.A.			_	_		HEELE
PROGETTISTA:					00 E PK 15+58 MBITO DEGL	,	
Mandataria: Mandante:				•	ERTITO IN LE		
SYSTRA S.A. SYSTRA-SOTEC	NI S.p.A. ROCKSOIL S.p.A.	COLAL	7.L. 133/2	UI4, CONVI		GGL 10	4/2014
PROGETTO ESECUTIVO		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Pila tipo A.1 (da P1 a P11) - Relazione di	calcolo	IF1M	0.0.E.ZZ	CL	VI.04.A5.001	Α	16 di 112

T_B, T_C, T_D: periodi che separano i diversi rami dello spettro, e che sono pari a:

$$T_C = C_C \cdot T *_C$$

$$T_B = \frac{T_C}{3}$$

$$T_D = 4.0 + \frac{a_g}{g} + 1.6$$

In cui:

 $C_{\mathcal{C}}$: coefficiente che tiene conto della categoria del terreno;

 $T^*_{\ \mathcal{C}}$: periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

L'espressione analitica dello spettro di risposta elastico in termini di accelerazione verticale è la seguente:

$$0 \le T \le T_B \longrightarrow S_{e}(T) = a_{g} \cdot S \cdot \eta \cdot F_{v} \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_{v}} \left(1 - \frac{T}{T_B} \right) \right]$$

$$T_B \le T \le T_C \longrightarrow S_{\cdot}(T) = a_{g \cdot} \cdot S \cdot \eta \cdot F_{v \cdot}$$

$$T_C \leq T \leq T_D \longrightarrow S_{e}(T) = a_{g} \cdot S \cdot \eta \cdot F_{v} \cdot \left(\frac{T_C}{T}\right)$$

$$T_D \leq T_D \longrightarrow S_{e}(T) = a_{g.} \cdot S \cdot \eta \cdot F_{v.} \cdot \left(\frac{T_C \cdot T_D}{T}\right)$$

nelle quali:

 $S = S_S x S_T$: con S_S pari sempre a 1 per lo spettro verticale;

η: fattore che tiene conto di un coefficiente di smorzamento viscoso equivalente ξ, espresso in punti percentuali diverso da 5 (η=1 per ξ=5):

$$\eta = \sqrt{\frac{10}{5 + \xi}} \ge 0.55$$

APPALTATORE:		LIN	EA FEF	ROVIA	RIA NAPOL	_I - B <i>l</i>	\RI
Mandataria:	Mandante:		TRATI	A NAPO	LI-CANCE	LLO	
SALINI IMPREGILO S.p.A.	ASTALDI S.p.A.	IN VARIA	NTE TRA	LE PK 0+0	00 E PK 15+58	85. INCI	USE LE
PROGETTISTA:					MBITO DEGL	•	
Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTI	ECNI S.p.A. ROCKSOIL S.p.A.	CUI AL D).L. 133/2	014, CONV	ERTITO IN LE	GGE 16	4 / 2014
PROGETTO ESECUTIVO		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Pila tipo A.1 (da P1 a P11) - Relazione	di calcolo	IF1M	0.0.E.ZZ	CL	VI.04.A5.001	Α	17 di 112

T: periodo di vibrazione dell'oscillatore semplice;

T_B, T_C, T_D: periodi che separano i diversi rami dello spettro, e che sono pari a:

$$T_C = 0.05$$
 $T_B = 0.15$ $T_D = 1.0$

F_V: fattore che quantifica l'amplificazione spettrale massima mediante la relazione:

$$F_V = 1.35 \cdot F_0 \cdot \left(\frac{a_g}{g}\right)^{0.5}$$

Di seguito si riporta il calcolo dei parametri per la valutazione degli spettri in accelerazione orizzontale e verticale, effettuata mediante l'utilizzo del software "Spettri NTC ver. 1.0.3" reperibile presso il sito del Consiglio Superiore dei Lavori Pubblici.

Vita Nominale

La vita nominale di un'opera strutturale (V_N) , è intesa come il numero di anni nel quale la struttura, purchè soggetta alla manutenzione ordinaria, deve potere essere usata per lo scopo al quale è destinata. La vita nominale delle infrastrutture ferroviarie può, di norma, assumersi come indicato nella seguente tabella.

TIPI DI COSTRUZIONE	Vita Nominale (VN)
Opere nuove su infrastrutture ferroviarie progettate con le norme vigenti prima del DM14/1/2008 a velocità convenzionale V<250 Km/h	50
Altre opere nuove a velocità V<250 Km/h	75
Altre opere nuove a velocità V>250 Km/h	100
Opere di grandi dimensioni: ponti e viadotti con campate di luce maggiore di 150 m	≥100

Per l'opera in oggetto si considera una vita nominale VN = 75 anni.

Classi D'uso

Il Decreto Ministeriale del 14 gennaio 2008 prevede quattro categorie di classi d'uso riportate nel seguito:

APPALTATORE:		LIN	EA FEF	ROVIA	RIA NAPOL	_I - B/	\RI
Mandataria:	Mandante:		TRATT	A NAPO	LI-CANCE	LLO	
SALINI IMPREGILO S.p.A. PROGETTISTA:	ASTALDI S.p.A.				00 E PK 15+58	,	
Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOT	ECNI S.p.A. ROCKSOIL S.p.A.			•	MBITO DEGL ERTITO IN LEG		
5151KA 5.A. 5151KA-501	ECNI S.p.A. ROCKSOIL S.p.A.						
PROGETTO ESECUTIVO		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Pila tipo A.1 (da P1 a P11) - Relazione	e di calcolo	IF1M	0.0.E.ZZ	CL	VI.04.A5.001	Α	18 di 112

Classe I: Costruzioni con presenza solo occasionale di persone, edifici agricoli.

Classe II: Costruzioni il cui uso preveda normali affollamenti, senza contenuti pericolosi per l'ambiente e senza funzioni pubbliche e sociali essenziali. Industrie con attività non pericolose per l'ambiente. Ponti, opere infrastrutturali, reti viarie non ricadenti in Classe III o in Classe IV, reti ferroviarie la cui interruzione non provochi situazioni di emergenza. Dighe il cui collasso non provochi conseguenze rilevanti.

Classe III: Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in Classe IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze di un loro eventuale collasso.

Classe IV: Costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità. Industrie particolarmente pericolose per l'ambiente. Reti viarie di tipo A o B, di cui al D.M. 5 novembre 2001, n. 6792, "Norme funzionali e geometriche per la costruzione di strade", e di tipo quando appartenenti ad itinerari di collegamento tra capoluoghi di provincia non altresì serviti da strade di tipo A o B. Ponti o reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico. Dighe connesse al funzionamento di acquedotti e a impianti di produzione di energia elettrica.

Per l'opera in oggetto si considera una Classe d'uso III.

Periodo di Riferimento dell'Azione Sismica

Le azioni sismiche su ciascuna costruzione vengono valutate in relazione ad un periodo di riferimento V_R che si ricava per ciascun tipo di costruzione, moltiplicando la vita nominale V_R per il coefficiente d'uso C_R :

$$V_R = V_N \cdot C_U$$

Il valore del coefficiente d'uso Cu è definito, al variare della classe d'uso, come mostrato nella tabella seguente:

CLASSE D'USO	I	II	III	IV
COEFFICIENTE C _U	0.7	1	1.5	2

Pertanto per l'opera in oggetto il periodo di riferimento è pari a 75x1,5= 112,5 anni.

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante: SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	TRATTA NAPOLI-CANCELLO
PROGETTISTA: Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO Pila tipo A.1 (da P1 a P11) - Relazione di calcolo	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA IF1M 0.0.E.ZZ CL VI.04.A5.001 A 19 di 112

Stati limite e relative probabilità di superamento

Nei confronti delle azioni sismiche gli stati limite, sia di esercizio che ultimi, sono individuati riferendosi alle prestazioni della costruzione nel suo complesso, includendo gli elementi strutturali, quelli non strutturali e gli impianti.

La probabilità di superamento nel periodo di riferimento P_{VR} , cui riferirsi per individuare l'azione sismica agente in ciascuno degli stati limite considerati, sono riportati nella tabella successiva.

Stati Limite		$P_{\text{VR}}\text{:}$ Probabilità di superamento nel periodo di riferimento V_{R}
Stati limite di esercizio SLO		81%
		63%
Stati limite ultimi SLV SLC		10%
		5%

Accelerazione (aq), fattore (F0) e periodo (T*c)

Ai fini del D.M. 14-01-2008 le forme spettrali, per ciascuna delle probabilità di superamento nel periodo di riferimento P_{VR} , sono definite a partire dai valori dei seguenti parametri su sito di riferimento rigido orizzontale:

a_q: accelerazione orizzontale massima sul sito;

F_o: valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;

T*c: periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

I parametri prima elencati dipendono dalle coordinate geografiche, espresse in termini di latitudine e longitudine, del sito interessato dall'opera, dal periodo di riferimento (V_R) , e quindi dalla vita nominale (VN) e dalla classe d'uso (C_u) e dallo stato limite considerato. Si riporta nel seguito la valutazione di detti parametri per i vari stati limite.

Latitudine: 40.934039° Longitudine: 14.355459°

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante: SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	TRATTA NAPOLI-CANCELLO
PROGETTISTA: Mandataria: SYSTRA S.A. Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO Pila tipo A.1 (da P1 a P11) - Relazione di calcolo	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA IF1M 0.0.E.ZZ CL VI.04.A5.001 A 20 di 112

SLATO	T _R	ag	F _o	T _C *
LIMITE	[anni]	[g]	[-]	[s]
SLO	68	0.072	2.345	0.324
SLD	113	0.092	2.351	0.335
SLV	1068	0.218	2.470	0.357
SLC	2193	0.269	2.560	0.359

Tabella 1: Valutazione dei parametri a_g, F₀ e T^{*}_C per i periodi di ritorno associati a ciascuno stato limite

I parametri ai quali si è fatto riferimento nella definizione dell'azione sismica di progetto, indicati nella tabella precedente, corrispondono, cautelativamente, a quei parametri che danno luogo al sisma di massima entità, fra tutti quelli individuati lungo le progressive dell'opera in progetto.

Sono stati presi in esame, secondo quanto previsto dal DM 14.1.2008 "Nuove Norme Tecniche per le Costruzioni", cap. 7.1, i seguenti Stati Limite sismici:

- SLV: Stato Limite di Salvaguardia della Vita (Stato Limite Ultimo)
- SLD: Stato Limite di Danno (Stato Limite di Esercizio)
- SLC: Stato Limite di Collasso (Stato Limite Ultimo)
- SLO: Stato Limite di Operatività (Stato Limite di Esercizio)

Le azioni sismiche relative allo stato limite di operatività (SLO) e allo stato limite di danno (SLD) non sono state considerate perché poco significative in relazione alle combinazioni di natura statica. Per quanto riguarda lo stato limite di collasso (SLC), questo è stato considerato per le combinazioni sismiche di verifica dei ritegni sismici; si faccia pertanto riferimento alle considerazioni presentate nelle rispettive relazioni di calcolo di impalcato.

Si riportano al termine dell'analisi, i parametri ed i punti dello spettro di risposta elastici e di progetto per il restante stato limite (SLV).

Classificazione dei terreni

Per la definizione dell'azione sismica di progetto, la valutazione dell'influenza delle condizioni litologiche e morfologiche locali sulle caratteristiche del moto del suolo in superficie, deve essere basata su studi specifici di risposta sismica locale esistenti nell'area di intervento. In mancanza di tali studi la normativa prevede la classificazione, riportata

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante: SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	TRATTA NAPOLI-CANCELLO
PROGETTISTA: Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO Pila tipo A.1 (da P1 a P11) - Relazione di calcolo	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA IF1M 0.0.E.ZZ CL VI.04.A5.001 A 21 di 112

nella tabella seguente, basata sulla stima dei valori della velocità media delle onde sismiche di taglio V_{s30} , ovvero sul numero medio di colpi NSPT ottenuti in una prova penetrometrica dinamica (per terreni prevalentemente granulari), ovvero sulla coesione non drenata media cu (per terreni prevalentemente coesivi).

Categoria di suolo di fondazione	Descrizione
Cat. A	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di Vs,30 superiori a 800 m/s eventualmente comprendenti in superficie uno strato di alterazione, con spessore massimo di 3 m.
Cat. B	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori Vs,30 compresi tra 360 m/s e 800 m/s (ovvero Nspt,30>50 nei terreni a grana grossa e cu,30 > 250 kPa nei terreni a grana fina)
Cat. C	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con spessori superiori a 30 m, caratterizzanti da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di Vs,30 compresi tra 180 m/s e 360 m/s (ovvero 15< Nspt,30<50 nei terreni a grana grossa e 70 <cu,30<250 a="" fina)<="" grana="" kpa="" nei="" td="" terreni=""></cu,30<250>
Cat. D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori Vs,30 inferiori a 180 m/s (ovvero Nspt,30<15 nei terreni a grana grossa e cu,30<70 kPa nei terreni a grana fina)
Cat. E	Terreni dei sottosuoli di tipo C o D per spessore non superiore a 20 m, posti sul substrato di riferimento (con Vs>800 m/s)
Cat. S1	Depositi di terreni caratterizzati da valori di Vs,30 inferiori a 100m/s (ovvero 10 <cu,30<20 3="" 8="" a="" almeno="" altamente="" argille="" bassa="" che="" consistenza,="" di="" fina="" grana="" includono="" kpa),="" m="" o="" oppure="" organiche.<="" strato="" td="" terreni="" torba="" uno=""></cu,30<20>
Cat. S2	Depositi di terreni suscettibili di liquefazione, di argille sensitive o qualsiasi altra categoria di sottosuolo non classificabile nei tipi precedenti.

Si considera una **categoria C** di suolo di fondazione.

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante: SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	TRATTA NAPOLI-CANCELLO
PROGETTISTA: Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO Pila tipo A.1 (da P1 a P11) - Relazione di calcolo	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA IF1M 0.0.E.ZZ CL VI.04.A5.001 A 22 di 112

Amplificazione stratigrafica

I due coefficienti prima definiti, Ss e Cc, dipendono dalla categoria del sottosuolo come mostrato nel prospetto seguente.

Per i terreni di categoria A, entrambi i coefficienti sono pari a 1, mentre per le altre categorie i due coefficienti sono pari a:

Categoria sottosuolo	Ss	Cc
A	1,00	1,00
В	$1,00 \le 1,40-0,40 \cdot F_o \cdot \frac{a_g}{g} \le 1,20$	$1,10\cdot(T_C^*)^{-0,20}$
С	$1,00 \le 1,70 - 0,60 \cdot F_o \cdot \frac{a_g}{g} \le 1,50$	1,05·(T _C) ^{-0,33}
D	$0.90 \le 2.40 - 1.50 \cdot F_o \cdot \frac{a_g}{g} \le 1.80 \cdot$	$1,25\cdot(T_{C}^{*})^{-0,50}$
E	$1,00 \le 2,00 - 1,10 \cdot F_o \cdot \frac{a_g}{g} \le 1,60$	$1,15 \cdot (T_C^*)^{-0,40}$

Nel caso in esame (categoria di sottosuolo C) allo SLV risulta:

 $S_S = 1.38$

 $C_{C} = 1.48$

Amplificazione topografica

Per poter tenere conto delle condizioni topografiche e in assenza di specifiche analisi di risposta sismica, si utilizzano i valori del coefficiente topografico S_T riportati nella seguente tabella.

Categoria topografica	Ubicazione dell'opera o dell'intervento	S _T
T1	-	1
T2	In corrispondenza della sommità del pendio	1.2
Т3	In corrispondenza della cresta del rilievo con inclinazione media 15°≤i≤30°	1.2
T4	In corrispondenza della cresta del rilievo con inclinazione media i>30°	1.4

Nel caso in esame $S_T = 1$

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante: SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	TRATTA NAPOLI-CANCELLO
PROGETTISTA: Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO Pila tipo A.1 (da P1 a P11) - Relazione di calcolo	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA IF1M 0.0.E.ZZ CL VI.04.A5.001 A 23 di 112

6.3.1 Spettri di risposta elastici

In accordo con le prescrizioni normative, lo spettro di risposta elastico è stato considerato solo ai fini della valutazione delle azioni in fondazione e delle azioni sugli apparecchi di appoggio.

Stato limite di salvaguardia della vita

Di seguito si forniscono lo spettro di risposta elasitco per lo stato limite di salvaguardia della vita e la tabella dei parametri rispettivi.

Spettri di risposta (componenti orizz. e vert.) per lo stato limite: SLV

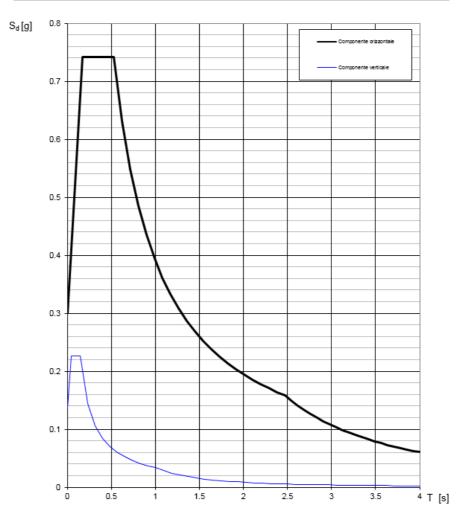


Figura 3: Spettri di risposta elastici_SLV (Componente orizzontale e verticale)

APPALTATORE: LINEA FERROVIARIA NAPOLI - BARI Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA **DOCUMENTO** REV. **PAGINA** Pila tipo A.1 (da P1 a P11) - Relazione di calcolo IF1M 0.0.E.ZZ CL VI.04.A5.001 24 di 112 Α

Parametri indipendenti

i didilicai ilidipolidella		
STATO LIMITE	SLV	
ag	0.218 g	
F _o	2.470	
Tc	0.357 s	
S _S	1.377	
Cc	1.476	
S _T	1.000	
a	1.000	

Parametri dipendenti

S	1.377
η	1.000
T _B	0.175 s
T _C	0.526 s
T _D	2.473 s

Espressioni dei parametri dipendenti

 $S = S_s \cdot S_T$ (NTC-08 Eq. 3.2.5)

 $\eta = \sqrt{10/(5+\xi)} \ge 0.55$; $\eta = 1/q$ (NTC-08 Eq. 3.2.6; §. 3.2.3.5)

 $T_B = T_C / 3$ (NTC-07 Eq. 3.2.8)

 $T_{c} = C_{c} \cdot T_{c}^{*} \qquad \qquad (\text{NTC-07 Eq. } 3.2.7)$

 $T_D = 4,0 \cdot a_g / g + 1,6$ (NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08Eq. 3.2.4)

$$\begin{split} 0 \leq T < T_B & \quad S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B \leq T < T_C & \quad S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \\ T_C \leq T < T_D & \quad S_o(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ T_D \leq T & \quad S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

Lo spettro di progetto $S_4(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_a(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta

unu (dello spettro		
	T [s]	Se [g]	
	0.000	0.300	
T _₽ ◀	0.175	0.742	
T₀ ∢ ⊢	0.526	0.742	
	0.619	0.631	
	0.712	0.549	
	0.804	0.485	
	0.897	0.435	
	0.990	0.394	
	1.082	0.361	
	1.175	0.332	
	1.268	0.308	
	1.360	0.287	
	1.453	0.269	
	1.546	0.253	
	1.638	0.238	
	1.731	0.225	
	1.824	0.214	
	1.916	0.204	
	2.009	0.194	
	2.102	0.186	
	2.195	0.178	
	2.287	0.171	
_	2.380	0.164	
T₀◀─	2.473	0.158	
	2.545	0.149	
	2.618	0.141	
	2.691	0.133	
	2.764	0.126	
	2.836	0.120	
	2.909	0.114	
	2.982	0.109	
	3.054	0.103	
	3.127	0.099	
	3.200	0.094	
	3.273	0.090	
	3.345	0.086	
	3.418	0.083	
	3.491	0.079	
	3.564	0.076	
	3.636	0.073	
	3.709	0.070	
	3.782	0.067	
	3.855	0.065	
	3.927	0.063	
	4.000	0.060	

APPALTATORE:		LIN	EA FEF	ROVIA	RIA NAPOL	_I - B <i>A</i>	\RI
Mandataria:	Mandante:		TRATT	A NAPO	LI-CANCE	LLO	
SALINI IMPREGILO S.p.A.	ASTALDI S.p.A.			_			UCELE
PROGETTISTA:					00 E PK 15+58 MBITO DEGL	,	
Mandataria: Mandante:				•	ERTITO IN LE		
SYSTRA S.A. SYSTRA-SOTE	CNI S.p.A. ROCKSOIL S.p.A.	COLAL	7.L. 133/2	J14, CONV		GGL 10	4/2014
PROGETTO ESECUTIVO		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Pila tipo A.1 (da P1 a P11) - Relazione	di calcolo	IF1M	0.0.E.ZZ	CL	VI.04.A5.001	Α	25 di 112

6.3.2 Spettri di risposta di progetto

In accordo con il par. 3.2.3.5 del DM 14.1.2008 le capacità dissipative delle strutture possono essere prese in considerazione attraverso una riduzione delle forze elastiche. Tale riduzione tiene conto in modo semplificato della capacità dissipativa anelastica della struttura, della sua sovraresistenza, dell'incremento del suo periodo proprio a seguito delle plasticizzazioni. Lo spettro di progetto S_d (T) che ne risulta, sia per le componenti orizzontali, che per la componente verticale, deriva dunque dallo spettro elastico con le ordinate ridotte e lo si ottiene sostituendo, nelle espressioni che lo definiscono, il termine η con il termine 1/q, dove q è il cosiddetto fattore di struttura.

Il fattore di struttura è definito in accordo con il par. 7.3.1 del DM 14.1.2008:

$$q = q_0 \cdot K_R$$

dove:

 q_0 è il valore massimo del fattore di struttura che dipende dal livello di duttilità attesa, dalla tipologia strutturale e dal rapporto α ω α 1 tra il valore dell'azione sismica per il quale si verifica la formazione di un numero di cerniere plastiche tali da rendere la struttura labile e quello per il quale il primo elemento strutturale raggiunge la plasticizzazione a flessione;

K_R è un fattore riduttivo che dipende dalle caratteristiche di regolarità in altezza della costruzione, con valore pari ad 1 per costruzioni regolari in altezza e pari a 0,8 per costruzioni non regolari in altezza.

Nel caso di pile da ponte in c.a. in **classe di duttilità "B" (CD "B")**, in accordo con il par. 7.9.2.1 (Tabella 7.9.I) DM 14.1.2008 (Tabella 7.9.I), il valore di q_0 è pari ad 1.5 mentre il valore di q_0 è pari ad 1, per cui, in definitiva, per le componenti orizzontali dell'azione sismica si adotta:

$$q = 1.5$$

Per la componente verticale, il fattore di struttura per i ponti è unitario (q = 1), quindi si utilizza lo spettro elastico.

L'utilizzo di uno spettro di risposta di progetto (q> 1) implica il rispetto di quelli che sono i requisiti normativi della gerarchia delle resistenze, descritti nello specifico nei paragrafi relativi al calcolo e alla verifica dei singoli elementi strutturali.

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante: SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	TRATTA NAPOLI-CANCELLO
PROGETTISTA: Mandataria: SYSTRA S.A. Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO Pila tipo A.1 (da P1 a P11) - Relazione di calcolo	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA IF1M 0.0.E.ZZ CL VI.04.A5.001 A 26 di 112

Stato limite di salvaguardia della vita

Secondo quanto riportato nel DM 14/01/2008 "Nuove Norme Tecniche per le Costruzioni", cap. 3.2.3.5, lo spettro di progetto delle componenti orizzontali per lo SLV è stato determinato secondo le seguenti relazioni:

$$0 \le T < T_B \qquad S_e(T) = a_g \cdot S \cdot \frac{1}{q} \cdot F_O \cdot \left[\frac{T}{T_B} + \frac{1}{\frac{1}{q}} \cdot F_O \cdot \left(1 - \frac{T}{T_B} \right) \right]$$

$$T_B \le T < T_C \qquad S_e(T) = a_g \cdot S \cdot \frac{1}{q} \cdot F_O$$

$$T_C \le T < T_D \qquad S_e(T) = a_g \cdot S \cdot \frac{15}{q} \cdot F_O \cdot \left(\frac{T_C}{T} \right)$$

$$T_D \le T \qquad S_e(T) = a_g \cdot S \cdot \frac{1}{q} \cdot F_O \cdot \left(\frac{T_C T_D}{T^2} \right)$$

In cui:

$$S = S_S \cdot S_T$$

 S_s : coefficiente di amplificazione stratigrafico;

 S_T : coefficiente di amplificazione topografica;

 F_0 : valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;

 T_C : periodo corrispondente all'inizio del tratto a velocità costante dello spettro ed è ottenuto mediante la sequente relazione:

$$T_{\scriptscriptstyle C} = C_{\scriptscriptstyle C} \cdot T_{\scriptscriptstyle C}^*$$

In cui:

 ${\it C_{\it C}}$: coefficiente che tiene conto della categoria del terreno;

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	
PROGETTISTA:	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	COLAL D.L. 133/2014, CONVENTITO IN LEGGE 1047 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Pila tipo A.1 (da P1 a P11) - Relazione di calcolo	IF1M 0.0.E.ZZ CL VI.04.A5.001 A 27 di 112

 $T^*_{\mathcal{C}}$: periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

 T_B : periodo corrispondente all'inizio del tratto dello spettro ad accelerazione costante ed è ottenuto mediante la seguente relazione:

$$T_B = \frac{T_C}{3}$$

 T_D : periodo corrispondente all'inizio del tratto dello spettro a spostamento costante ed è ottenuto mediante la seguente relazione:

$$T_D = 4.0 \cdot \frac{a_g}{g} + 1.6$$

q: fattore di struttura.

Sulla base delle coordinate geografiche del sito su cui sorge l'opera in esame, sono stati determinati gli spettri di risposta di progetto ed i parametri per lo *SLV*, riportati di seguito:

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante: SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	TRATTA NAPOLI-CANCELLO
PROGETTISTA: Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO Pila tipo A.1 (da P1 a P11) - Relazione di calcolo	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA IF1M 0.0.E.ZZ CL VI.04.A5.001 A 28 di 112

Spettri di risposta (componenti orizz. e vert.) per lo stato limite: SLV

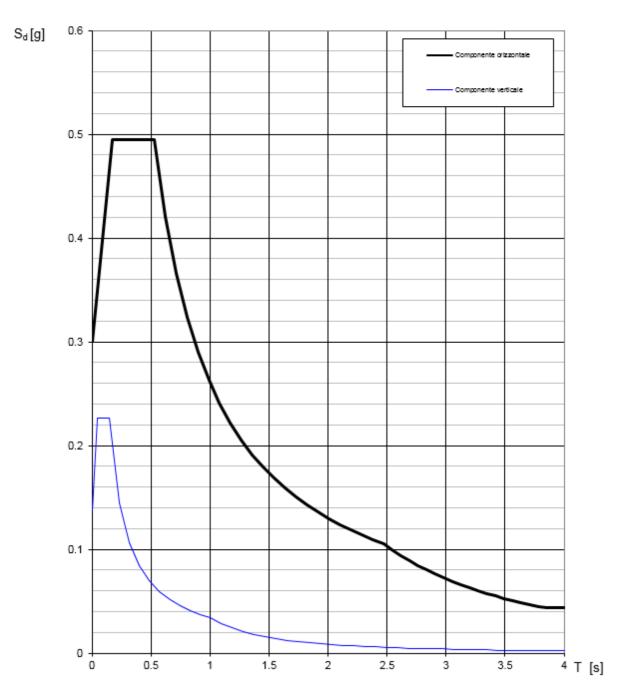


Figura 4: Spettri di risposta di progetto (q=1,5)_SLV (Componente orizzontale e verticale)

APPALTATORE: LINEA FERROVIARIA NAPOLI - BARI Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA **DOCUMENTO** REV. **PAGINA** Pila tipo A.1 (da P1 a P11) - Relazione di calcolo IF1M 0.0.E.ZZ VI.04.A5.001 29 di 112 CL Α

Parametri indipendenti

STATO LIMITE	SLV
ag	0.218 g
F _o	2.470
T _C	0.357 s
Ss	1.377
Cc	1.476
S _T	1.000
q	1.500

Parametri dipendenti

S	1.377
η	0.667
T _B	0.175 s
T _C	0.526 s
T _D	2.473 s

Espressioni dei parametri dipendenti

 $\mathbf{S} = \mathbf{S_S} \cdot \mathbf{S_T} \tag{NTC-08 Eq. 3.2.5}$

 $\eta = \sqrt{10/(5+\xi)} \ge 0,55; \ \eta = 1/q$ (NTC-08 Eq. 3.2.6; §. 3.2.3.5)

 $T_B = T_C / 3$ (NTC-07 Eq. 3.2.8)

 $T_{\rm C} = C_{\rm C} \cdot T_{\rm C}^* \tag{NTC-07 Eq. 3.2.7} \label{eq:TC}$

 $T_D = 4,0 \cdot a_g / g + 1,6$ (NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08Eq. 3.2.4)

$$\begin{split} 0 \leq T < T_B & \quad S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B \leq T < T_C & \quad S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \\ T_C \leq T < T_D & \quad S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ T_D \leq T & \quad S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

Lo spettro di progetto $S_4(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_a(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta

	T[s]	Se [g]
т -	0.000	0.300
T _B ◀	0.175	0.495
Tc◀	0.526	0.495
	0.619	0.421
	0.712	0.366
	0.804	0.324
	0.897	0.290
	0.990	0.263
	1.082	0.240
	1.175	0.221
	1.268	0.205
	1.360	0.191
	1.453	0.179
	1.546	0.168
	1.638	0.159
	1.731	0.150
	1.824	0.143
	1.916	0.136
	2.009	0.130
	2.102	0.124
	2.195	0.119
	2.287	0.114
	2.380	0.109
T₀◀	2.473	0.105
	2.545	0.099
	2.618	0.094
	2.691	0.089
	2.764	0.084
	2.836	0.080
	2.909	0.076
	2.982	0.072
	3.054	0.069
	3.127	0.066
	3.200	0.063
	3.273	0.060
	3.345	0.057
	3.418	0.055
	3.491	0.053
	3.564	0.051
	3.636	0.049
	3.709	0.047
	3.782	0.045
	3.855	0.044
	3.927	0.044
	4.000	0.044

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	
PROGETTISTA:	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	COI AL D.L. 133/2014, CONVENTITO IN LEGGE 104 / 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Pila tipo A.1 (da P1 a P11) - Relazione di calcolo	IF1M 0.0.E.ZZ CL VI.04.A5.001 A 30 di 112

6.3.3 Combinazione delle componenti dell'azione sismica e valutazione delle masse

Il sisma viene convenzionalmente considerato come agente separatamente in due direzioni tra loro ortogonali prefissate (direzione longitudinale rispetto all'asse del viadotto e trasversale); per tenere conto che nella realtà il moto del terreno durante l'evento sismico ha direzione casuale e in accordo con le prescrizioni normative, per ottenere l'effetto complessivo del sisma, a partire dagli effetti delle direzioni calcolati separatamente, si è provveduto a sommare i massimi ottenuti in una direzione con il 30% dei massimi ottenuti per l'azione applicata nell'altra direzione.

Per quanto riguarda la valutazione delle masse sismiche, nel caso di ponti, in accordo con il par. 3.2.4 del D.M. 14/01/2008, oltre alla massa efficace dell'impalcato e della pila, è stata considerata un'aliquota pari al 20% del carico dovuto al transito dei treni: questo è stato ottenuto tenendo conto dello scenario più gravoso tra quello che vede la presenza sui due binari di due treni di carico LM71 e quello caratterizzato da un treno LM71 e da un treno tipo SW/2.

In direzione longitudinale rispetto all'asse del viadotto, la lunghezza di impalcato di competenza della pila, per il calcolo delle masse sismiche, è quella relativa all'impalcato "lato fisso"; in direzione trasversale, è pari alla somma della metà della luce dell'impalcato "lato fisso" e della metà di quella dell'impalcato "lato mobile".

La valutazione delle masse sismiche è esplicitata nell'analisi dei risultati, per ciascuna delle due direzioni di verifica.

6.4 VARIAZIONI TERMICHE ε_3

Per l'analisi termica delle pile cave, eseguita in accordo con quanto previsto nel par. 5.2.2.5.2 del DM 14.1.2008, si rimanda all'apposita relazione di calcolo.

APPALTATORE:		LIN	EA FEF	ROVIA	RIA NAPOL	_I - B <i>A</i>	\RI
Mandataria:	Mandante:		TRATT	A NAPO	LI-CANCE	LLO	
SALINI IMPREGILO S.p.A.	ASTALDI S.p.A.			_			UCELE
PROGETTISTA:					00 E PK 15+58 MBITO DEGL	,	
Mandataria: Mandante:				•	ERTITO IN LE		
SYSTRA S.A. SYSTRA-SOTEC	NI S.p.A. ROCKSOIL S.p.A.	COLAL	7.L. 133/2	J14, CONV		GGL 10	4/2014
PROGETTO ESECUTIVO		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Pila tipo A.1 (da P1 a P11) - Relazione d	i calcolo	IF1M	0.0.E.ZZ	CL	VI.04.A5.001	Α	31 di 112

7 COMBINAZIONI DI CARICO

Le combinazioni delle azioni sono state definite in accordo con quanto riportato al par. 2.5.3 del DM 14.1.2008:

- Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$
 (2.5.1)

Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio
 (SLE) irreversibili, da utilizzarsi nelle verifiche alle tensioni ammissibili di cui al § 2.7:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$
 (2.5.2)

 Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.3)

 Combinazione quasi permanente (SLE), generalmente impiegata per gli effetti a lungo termine:

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.4)

 Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E (v. § 3.2):

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.5)

 Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali di progetto A_d (v. § 3.6):

$$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.6)

I valori dei coefficienti parziali di sicurezza γ_{Gi} e γ_{Qj} e quelli dei coefficienti di combinazione Ψ_{ij} sono stati desunti dal par. 5.2.3.3.1 del DM 14.1.2008, relativo al capitolo sui 'Ponti ferroviari'. Di seguito si riportano le Tabelle di riferimento.

Per quanto riguarda il coefficiente di combinazione Ψ_{2j} relativo ai carichi dovuti al transito dei treni, come anticipato in precedenza, questo si assume pari a 0,2 nelle combinazioni sismiche, conformemente a quanto prescritto nel par. 3.2.4 del DM 14.1.2008.

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA **DOCUMENTO** REV. **PAGINA** IF1M 0.0.E.ZZ VI.04.A5.001 32 di 112 Pila tipo A.1 (da P1 a P11) - Relazione di calcolo CL Α

		Coefficiente	EQU ⁽¹⁾	Al STR	A2 GEO	Combinazione eccezionale	Combinazione Sismica
Carichi permanenti	favorevoli sfavorevoli	γG1	0,90 1,10	1,00 1,35	1,00 1,00	1,00 1,00	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30	1,00 1,00	1,00 1,00
Ballast ⁽³⁾	favorevoli sfavorevoli	γв	0,90 1,50	1,00 1,50	1,00 1,30	1,00 1,00	1,00 1,00
Carichi variabili da traffico ⁽⁴⁾	favorevoli sfavorevoli	γο	0,00 1,45	0,00 1,45	0,00 1,25	0,00 0,20 ⁽⁵⁾	0,00 0,20 ⁽⁵⁾
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30	0,00 1,00	0,00 0,00
Precompressione	favorevole sfavorevole	γр	0,90 1,00 ⁽⁶⁾	1,00 1,00 ⁽⁷⁾	1,00 1,00	1,00 1,00	1,00 1,00

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.

(7) 1,20 per effetti locali

Figura 5: Valori dei coefficienti parziali di sicurezza - Tabella 5.2.V del D.M. 14 gennaio 2008

Azioni		Ψo	Ψı	V 2
Azioni singole	Carico sul rilevato a tergo delle spalle	0,80	0,50	0,0
da traffico	Azioni aerodinamiche generate dal transito dei convogli	0,80	0,50	0,0
	gr1	0,80(2)	0,80(1)	0,0
Gruppi di	gr ₂	0,80(2)	0,80 ⁽¹⁾	-
carico	gr3	0,80(2)	0,80(1)	0,0
	gr ₄	1,00	1,00(1)	0,0
Azioni del vento	F _{Wk}	0,60	0,50	0,0
Azioni da	in fase di esecuzione	0,80	0,0	0,0
neve	SLU e SLE	0,0	0,0	0,0
Azioni termiche	T _k	0,60	0,60	0,50

^{(1) 0,80} se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

Figura 6: Valori dei coefficienti di combinazione- Tabella 5.2.VI del D.M. 14 gennaio 2008

⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

⁽³⁾ Quando si prevedano variazioni significative del carico dovuto al ballast, se ne dovrà tener conto esplicitamente nelle verifiche.

⁽⁴⁾ Le componenti delle azioni da traffico sono introdotte in combinazione considerando uno dei gruppi di carico gr della Tab. 5.2.IV.

⁽⁵⁾ Aliquota di carico da traffico da considerare.

^{(6) 1,30} per instabilità in strutture con precompressione esterna

Quando come azione di base venga assunta quella del vento, i coefficienti ψ₀ relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

APPALTATORE: LINEA FERROVIARIA NAPOLI - BARI Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA **DOCUMENTO** REV. **PAGINA** IF1M 0.0.E.ZZ VI.04.A5.001 33 di 112 Pila tipo A.1 (da P1 a P11) - Relazione di calcolo CL Α

	Azioni	Ψo	Ψ1	Ψ2
	Treno di carico LM 71	0,80(3)	(1)	0,0
Azioni	Treno di carico SW /0	0,80(3)	0,80	0,0
singole	Treno di carico SW/2	0,0(3)	0,80	0,0
da	Treno scarico	1,00(3)	-	-
traffico	Centrifuga	(2 (3)	(2)	(2)
	Azione laterale (serpeggio)	1,00(3)	0,80	0,0

^{(1) 0,80} se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

Figura 7: Ulteriori valori dei coefficienti di combinazione - Tabella 5.2.VII del D.M. 14 gennaio 2008

Conformemente con quanto prescritto al par.5.2.3.1.3 del D.M. 14 gennaio 2008, gli effetti dei carichi verticali dovuti alla presenza dei convogli vanno sempre combinati con le altre azioni derivanti dal traffico ferroviario, adottando i coefficienti indicati nella Tabella 5.2.IV del D.M. 14 gennaio 2008, riportata di seguito.

TIPO DI CARICO	Azioni v	erticali	A					
Gruppo di carico	Carico verticale (1)	Treno scarico	Frenatura e avviamento	Centrifuga	Serpeggio	Commenti		
Gruppo 1 (2)	1,00	-	0,5 (0,0)	1,0 (0,0)	1,0 (0,0)	massima azione verticale e laterale		
Gruppo.2 (2)	-	1,00	0,00	1,0 (0,0)	1,0(0,0)	stabilità laterale		
Gruppo 3 (2)	1,0 (0,5)	-	1,00	0,5 (0,0)	0,5 (0,0)	massima azione longitudinale		
Gruppo 4 0,8 (0,6; 0,4) - 0,8 (0,6; 0,4) 0,8 (0,6; 0,4) fessurazione								
Azione dominante (1) Includendo tutti i fattori ad essi relativi (Φ,α, ecc) (2) La simultaneità di due o tre valori caratteristici interi (assunzione di diversi coefficienti pari ad 1), sebbene improbabile, è stata considerata come semplificazione per i gruppi di carico 1, 2, 3 senza che ciò abbia significative conseguenze								

Figura 8: Valutazione dei carichi da traffico – Tabella 5.2.IV del D.M. 14 gennaio 2008

progettuali

Sulla base dei criteri esposti sopra, si riportano nel prospetto di seguito i coefficienti dedotti per ciascuna delle combinazioni di carico adottate nell'analisi strutturale, per i diversi stati limite.

⁽³⁾ Quando come azione di base venga assunta quella del vento, i coefficienti y₀ relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO PROGETTO LOTTO CODIFICA DOCUMENTO REV. **PAGINA** Pila tipo A.1 (da P1 a P11) - Relazione di calcolo IF1M 0.0.E.ZZ CL VI.04.A5.001 Α 34 di 112

Combinazione	Gruppo	Traffico	G1	G2	Q3,a B1- SW2	Q3,a B1- LM71	Q3,a B2- LM71	Q3,f B1- SW2	Q3,f B1- LM71	Q3,f B2- LM71	Q4 B1- SW2	Q4 B1- LM71	Q4 B2- LM71	Q5 B1- SW2	Q5 B1- LM71	Q5 B2- LM71	Q6	LM71_B1	LM71_B2	SW2_B1	A_Gk	A_Qk
SLU-Gr.1(N)	Gr.1	(N)	1.35	1.5	0	0.725	0	0	0	0.725	0	1.45	1.45	0	1.45	1.45	0.9	1.45	1.45	0	-1.35	-1.45
SLU-Gr.3(N)	Gr.3	(N)	1.35	1.5	0	1.45	0	0	0	1.45	0	0.725	0.725	0	0.725	0.725	0.9	1.45	1.45	0	-1.35	-1.45
SLU-Gr.1(P)	Gr.1	(P)	1.35	1.5	0	0	0.725	0.725	0	0	1.45	0	1.45	1.45	0	1.45	0.9	0	1.45	1.45	-1.35	-1.45
SLU-Gr.3(P)	Gr.3	(P)	1.35	1.5	0	0	1.45	1.45	0	0	0.725	0	0.725	0.725	0	0.725	0.9	0	1.45	1.45	-1.35	-1.45
SLU-Gr.1-1SW/2	Gr.1	1SW/2	1.35	1.5	0	0	0	0.725	0	0	1.45	0	0	1.45	0	0	0.9	0	0	1.45	-1.35	-0.725
SLU-Gr.3-1SW/2	Gr.3	1SW/2	1.35	1.5	0	0	0	1.45	0	0	0.725	0	0	0.725	0	0	0.9	0	0	1.45	-1.35	-0.725
SLU-Gr.1-MaxML(P)	Gr.1	MaxML	1.35	1.5	0	0	0.725	0.725	0	0	1.45	0	1.45	1.45	0	1.45	0.9	0	1.45	1.45	-1.35	-0.725
SLU-Gr.3-MaxML(P)	Gr.3	MaxML	1.35	1.5	0	0	1.45	1.45	0	0	0.725	0	0.725	0.725	0	0.725	0.9	0	1.45	1.45	-1.35	-0.725
SLU-Gr.1(N)-Gk=1.00	Gr.1	(N)	1	1	0	0.725	0	0	0	0.725	0	1.45	1.45	0	1.45	1.45	0.9	1.45	1.45	0	-1	-1.45
SLU-Gr.3(N)-Gk=1.00	Gr.3	(N)	1	1	0	1.45	0	0	0	1.45	0	0.725	0.725	0	0.725	0.725	0.9	1.45	1.45	0	-1	-1.45
SLU-Gr.1(P)-Gk=1.00	Gr.1	(P)	1	1	0	0	0.725	0.725	0	0	1.45	0	1.45	1.45	0	1.45	0.9	0	1.45	1.45	-1	-1.45
SLU-Gr.3(P)-Gk=1.00	Gr.3	(P)	1	1	0	0	1.45	1.45	0	0	0.725	0	0.725	0.725	0	0.725	0.9	0	1.45	1.45	-1	-1.45
SLU-Gr.1-1SW/2-Gk=1.00	Gr.1	1SW/2	1	1	0	0	0	0.725	0	0	1.45	0	0	1.45	0	0	0.9	0	0	1.45	-1	-0.725
SLU-Gr.3-1SW/2-Gk=1.00	Gr.3	1SW/2	1	1	0	0	0	1.45	0	0	0.725	0	0	0.725	0	0	0.9	0	0	1.45	-1	-0.725
SLU-Gr.1-MaxML(P)-Gk=1.00	Gr.1	MaxML	1	1	0	0	0.725	0.725	0	0	1.45	0	1.45	1.45	0	1.45	0.9	0	1.45	1.45	-1	-1.45
SLU-Gr.3-MaxML(P)-Gk=1.00	Gr.3	MaxML	1	1	0	0	1.45	1.45	0	0	0.725	0	0.725	0.725	0	0.725	0.9	0	1.45	1.45	-1	-1.45
SLV-EL+0.3ET	\	\	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-1	0
SLV-0.3EL+ET	١	\	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-1	0
SLE-C-Gr.1(N)	Gr.1	(N)	1	1	0	0.5	0	0	0	0.5	0	1	1	0	1	1	0.6	1	1	0	-1	-1
SLE-C-Gr.3(N)	Gr.3	(N)	1	1	0	1	0	0	0	1	0	0.5	0.5	0	0.5	0.5	0.6	1	1	0	-1	-1
SLE-C-Gr.1(P)	Gr.1	(P)	1	1	0	0	0.5	0.5	0	0	1	0	1	1	0	1	0.6	0	1	1	-1	-1
SLE-C-Gr.3(P)	Gr.3	(P)	1	1	0	0	1	1	0	0	0.5	0	0.5	0.5	0	0.5	0.6	0	1	1	-1	-1
SLE-C-Gr.1-1SW/2	Gr.1	1SW/2	1	1	0	0	0	0.5	0	0	1	0	0	1	0	0	0.6	0	0	1	-1	-0.5
SLE-C-Gr.3-1SW/2	Gr.3	1SW/2	1	1	0	0	0	1	0	0	0.5	0	0	0.5	0	0	0.6	0	0	1	-1	-0.5
SLE-C-Gr.1-MaxML(P)	Gr.1	MaxML	1	1	0	0	0.5	0.5	0	0	1	0	1	1	0	1	0.6	0	1	1	-1	-1
SLE-C-Gr.3-MaxML(P)	Gr.3	MaxML	1	1	0	0	1	1	0	0	0.5	0	0.5	0.5	0	0.5	0.6	0	1	1	-1	-1
SLE-F-Gr.1(N)	Gr.1	(N)	1	1	0	0.4	0	0	0	0.4	0	8.0	8.0	0	8.0	8.0	0	8.0	8.0	0	-1	-0.8
SLE-F-Gr.3(N)	Gr.3	(N)	1	1	0	8.0	0	0	0	8.0	0	0.4	0.4	0	0.4	0.4	0	8.0	8.0	0	-1	-0.8
SLE-F-Gr.1(P)	Gr.1	(P)	1	1	0	0	0.4	0.4	0	0	8.0	0	8.0	8.0	0	8.0	0	0	8.0	8.0	-1	-0.8
SLE-F-Gr.3(P)	Gr.3	(P)	1	1	0	0	8.0	8.0	0	0	0.4	0	0.4	0.4	0	0.4	0	0	8.0	8.0	-1	-0.8
SLE-F-Gr.1-1SW/2	Gr.1	1SW/2	1	1	0	0	0	0.4	0	0	8.0	0	0	0.8	0	0	0	0	0	8.0	-1	-0.4
SLE-F-Gr.3-1SW/2	Gr.3	1SW/2	1	1	0	0	0	8.0	0	0	0.4	0	0	0.4	0	0	0	0	0	8.0	-1	-0.4
SLE-F-Gr.1-MaxML(P)	Gr.1	MaxML	1	1	0	0	0.4	0.4	0	0	8.0	0	8.0	0.8	0	8.0	0	0	8.0	0.8	-1	-0.8
SLE-F-Gr.3-MaxML(P)	Gr.3	MaxML	1	1	0	0	0.8	8.0	0	0	0.4	0	0.4	0.4	0	0.4	0	0	0.8	8.0	-1	-0.8
SLE-QP	\	١	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Tabella 2: Combinazioni di carico

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI								
Mandataria: Mandante: SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	TRATTA NAPOLI-CANCELLO								
PROGETTISTA: Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014								
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA								
Pila tipo A.1 (da P1 a P11) - Relazione di calcolo	IF1M 0.0.E.ZZ CL VI.04.A5.001 A 35 di 112								

I casi di carico che figurano nelle combinazioni sopra riportate, fanno riferimento alle seguenti azioni.

CASI DI CARICO							
Sigla	Tipologia	Descrizione					
-	-	-					
G1	Carichi permanenti strutturali	Peso proprio travi+soletta					
G2 (G2,1+G2,2+G2,3+G2,4)	Carichi permanenti non strutturali	Ballast e armamento-velette-paraballast- canalette e impianti-barriere antirumore					
Q3,a B1-SW2	Avviamento treno	Azione di avviamento per treno SW/2 su binario 1					
Q3,a B1-LM71	Avviamento treno	Azione di avviamento per treno LM71 su binario 1					
Q3,a B2-LM71	Avviamento treno	Azione di avviamento per treno LM71 su binario 2					
Q3,f B1-SW2	Frenatura treno	Azione di frenatura per treno SW/2 su binario 1					
Q3,f B1-LM71	Frenatura treno	Azione di frenatura per treno LM71 su binario 1					
Q3,f B2-LM71	Frenatura treno	Azione di frenatura per treno LM71 su binario 2					
Q4 B1-SW2	Azione centrifuga	Azione centrifuga per treno SW/2 su binario 1					
Q4 B1-LM71	Azione centrifuga	Azione centrifuga per treno LM71 su binario 1					
Q4 B2-LM71	Azione centrifuga	Azione centrifuga per treno LM71 su binario 2					
Q5 B1-SW2	Serpeggio	Azione di serpeggio per treno SW/2 su binario 1					
Q5 B1-LM71	Serpeggio	Azione di serpeggio per treno LM71 su binario 1					
Q5 B2-LM71	Serpeggio	Azione di serpeggio per treno LM71 su binario 2					
Q6	Vento	Azione del vento					
LM71_B1	Traffico ferroviario	Carico verticale per treno LM71 su binario 1					
LM71_B2	Traffico ferroviario	Carico verticale per treno LM71 su binario 2					
SW2_B1	Traffico ferroviario	Carico verticale per treno SW/2 su binario 1					
A_Gk	Resistenze parassite	Resistenze parassite dei vincoli (aliquota dovuta ai carichi permanenti)					
A_Qk	Resistenze parassite	Resistenze parassite dei vincoli (aliquota dovuta ai carichi variabili					

Tabella 3 - Casi di carico

Per quanto riguarda le condizioni di traffico indicate nel prospetto dei coefficienti di combinazioni adottati, queste fanno riferimento rispettivamente a:

• **(N)**: Condizioni di traffico normale (modello di carico LM71 su binario 1 e 2) su entrambe le campate afferenti;

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI								
Mandataria: Mandante: SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	TRATTA NAPOLI-CANCELLO								
PROGETTISTA: Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014								
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA								
Pila tipo A.1 (da P1 a P11) - Relazione di calcolo	IF1M 0.0.E.ZZ CL VI.04.A5.001 A 36 di 112								

- **(P)**: Condizioni di traffico pesante (modello di carico SW/2 su binario 1 e LM71 su binario 2) su entrambe le campate afferenti;
- **1SW/2**: Condizioni di traffico pesante con un solo binario carico (SW/2 su binario 1) su entrambe le campate afferenti;
- Max ML: Condizioni di traffico pesante (SW/2 su binario 1, LM71 su binario 2) solo sulla campata lato appoggi fissi.

Per quanto riguarda i gruppi di carico analizzati, come visibile nel prospetto dei coefficienti di combinazioni adottati, le azioni agenti sull'impalcato sono state combinate secondo i gruppi 1 e 3 (Gr.1-3), che danno luogo a sollecitazioni maggiori per le strutture in elevazione e in fondazione.

Inoltre, in accordo con la Tabella 5.2.V del DM 14.1.2008, le combinazioni allo SLU sono state duplicate considerando sia il possibile effetto sfavorevole che quello favorevole dei carichi permamenti strutturali e non. Nel secondo caso si sono quindi assunti valori unitari per i coefficienti γ_{Gk} .

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante: SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	TRATTA NAPOLI-CANCELLO
PROGETTISTA: Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Pila tipo A.1 (da P1 a P11) - Relazione di calcolo	IF1M 0.0.E.ZZ CL VI.04.A5.001 A 37 di 112

8 CRITERI DI VERIFICA

Le verifiche di sicurezza sono state effettuate sulla base dei criteri definiti nelle vigenti norme tecniche - "Norme tecniche per le costruzioni"- DM 14.1.2008 -, tenendo inoltre conto delle integrazioni riportate nel "Manuale di progettazione delle opere civili" - RFI DTC SI MA IFS 001 A .

In particolare vengono effettuate le verifiche agli stati limite di servizio ed allo stato limite ultimo. Le combinazioni di carico considerate ai fini delle verifiche sono quelle indicate nei precedenti paragrafi.

Si espongono di seguito i criteri di verifica adottati per le verifiche degli elementi strutturali.

8.1 VERIFICHE AGLI STATI LIMITE DI ESERCIZIO

8.1.1 Verifica a fessurazione

Le verifiche a fessurazione sono eseguite adottando i criteri definiti nel paragrafo 4.1.2.2.4.5 del DM 14.1.2008, tenendo inoltre conto delle ulteriori prescrizioni riportate nel "Manuale di progettazione delle opere civili".

Con riferimento alle classi di esposizione delle varie parti della struttura (si veda il paragrafo relativo alle caratteristiche dei materiali impiegati), alle corrispondenti condizioni ambientali ed alla sensibilità delle armature alla corrosione (armature sensibili per gli acciai da precompresso; poco sensibili per gli acciai ordinari), si individua lo stato limite di fessurazione per assicurare la funzionalità e la durata delle strutture, in accordo con il DM 14.1.2008:

Gruppi di Condizioni		Combinazione	Armatura				
esigenze ambientali	di azioni	Sensibile	Poco sensibile				
	amorentan	di azioni	Stato limite	Wd	Stato limite	$\mathbf{w_d}$	
	Ordinarie	frequente	ap. fessure	$\leq w_2$	ap. fessure	$\leq w_3$	
a Ordinarie	Ordinarie	quasi permanente	ap. fessure	$\leq w_1$	ap. fessure	$\leq w_2$	
ь	Aggregation	frequente	ap. fessure	$\leq w_1$	ap. fessure	$\leq w_2$	
ь	Aggressive	quasi permanente	decompressione	-	ap. fessure	$\leq w_1$	
	Malta aggressiva	frequente	formazione fessure	-	ap. fessure	$\leq w_1$	
С	Molto aggressive	quasi permanente	decompressione	-	ap. fessure	$\leq w_1$	

Tabella 4: Criteri di scelta dello stato limite di fessurazione - Tabella 4.1.IV del DM 14.1.2008

Nella Tabella sopra riportata, w₁=0.2mm, w₂=0.3mm; w₃=0.4mm.

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante: SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	TRATTA NAPOLI-CANCELLO
PROGETTISTA: Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Pila tipo A.1 (da P1 a P11) - Relazione di calcolo	IF1M 0.0.E.ZZ CL VI.04.A5.001 A 38 di 112

Più restrittivi risultano i limiti di apertura delle fessure riportati nel "Manuale di progettazione delle opere civili". L'apertura convenzionale delle fessure, calcolata con la combinazione caratteristica (rara) per gli SLE, deve risultare:

- a) δ_f ≤ w₁ per strutture in condizioni ambientali aggressive e molto aggressive, così come identificate nel par. 4.1.2.2.4.3 del DM 14.1.2008, per tutte le strutture a permanente contatto con il terreno e per le zone non ispezionabili di tutte le strutture;
- δ_f ≤ w₂ per strutture in condizioni ambientali ordinarie secondo il citato paragrafo del DM 14.1.2008.

Si assume pertanto per tutti gli elementi strutturali analizzati nel presente documento:

• Stato limite di fessurazione: w_d ≤ w₁ = 0.2 mm - combinazione di carico rara

In accordo con la vigente normativa, il valore di calcolo di apertura delle fessure w_d è dato da:

$$w_d = 1.7 w_m$$

dove w_m rappresenta l'ampiezza media delle fessure calcolata come prodotto della deformazione media delle barre d'armatura ϵ_{sm} per la distanza media tra le fessure Δ_{sm} :

$$W_m = \varepsilon_{sm} \Delta_{sm}$$

Per il calcolo di ε_{sm} e Δ_{sm} vanno utilizzati i criteri consolidati riportati nella letteratura tecnica.

8.1.2 Verifica delle tensioni in esercizio

Valutate le azioni interne nelle varie parti della struttura, dovute alle combinazioni caratteristica e quasi permanente delle azioni, si calcolano le massime tensioni sia nel calcestruzzo sia nelle armature; si verifica che tali tensioni siano inferiori ai massimi valori consentiti, di seguito riportati.

Le prescrizioni riportate di seguito fanno riferimento al par. 2.5.1.8.3.2.1 del "Manuale di progettazione delle opere civili".

La massima tensione di compressione del calcestruzzo σ_c , deve rispettare la limitazione seguente:

APPALTATORE:			LIN	EA FEF	ROVIA	RIA NAPOL	_I - B <i>A</i>	\RI
Mandataria:	Mandante:			TRATT	A NAPO	LI-CANCE	LLO	
SALINI IMPREGILO S.p.	.A. ASTALDI S.	p.A.	ΙΝ ΜΑΡΙΔ	NTF TRA	I F PK 0±0	00 E PK 15+58	S INCI	USFIF
PROGETTISTA:						MBITO DEGL	•	
	andante:				•	ERTITO IN LE		
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.						
PROGETTO ESECUTIVO	0		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Pila tipo A.1 (da P1 a P1	 11) - Relazione di calcolo 		IF1M	0.0.E.ZZ	CL	VI.04.A5.001	Α	39 di 112

 σ_c < 0,55 f_{ck} per combinazione caratteristica (rara)

 σ_{c} < 0,40 f_{ck} per combinazione quasi permanente.

Per l'acciaio ordinario, la tensione massima σ_s per effetto delle azioni dovute alla combinazione caratteristica deve rispettare la limitazione seguente:

$$\sigma_{\rm s}$$
 < 0,75 $f_{\rm yk}$

dove f_{yk} per armatura ordinaria è la tensione caratteristica di snervamento dell'acciaio.

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante: SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	TRATTA NAPOLI-CANCELLO
PROGETTISTA: Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO Pila tipo A.1 (da P1 a P11) - Relazione di calcolo	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA IF1M 0.0.E.ZZ CL VI.04.A5.001 A 40 di 112

8.2 VERIFICHE AGLI STATI LIMITE ULTIMI

8.2.1 Sollecitazioni flettenti

La verifica di resistenza (SLU) è stata condotta attraverso il calcolo dei domini di interazione N-M, ovvero il luogo dei punti rappresentativi di sollecitazioni che portano in crisi la sezione di verifica secondo i criteri di resistenza da normativa.

Nel calcolo dei domini sono state mantenute le consuete ipotesi, tra cui:

- conservazione delle sezioni piane;
- legame costitutivo del calcestruzzo parabolo-rettangolo non reagente a trazione, con plateaux ad una deformazione pari a 0.002 e a rottura pari a 0.0035 ($\sigma_{max} = 0.85 \times 0.83 \times R_{ck}/1.5$);
- legame costitutivo dell'armatura d'acciaio elastico–perfattamente plastico con deformazione limite di rottura a 0.01 ($\sigma_{max} = f_{yk} / 1.15$)

8.2.2 Sollecitazioni taglianti

La resistenza a taglio V_{Rd} di elementi sprovvisti di specifica armatura è stata calcolata sulla base della resistenza a trazione del calcestruzzo.

Con riferimento all'elemento fessurato da momento flettente, la resistenza al taglio si valuta con:

$$V_{Rd} = \left\{ 0.18 \cdot k \cdot (100 \cdot \rho_1 \cdot f_{ck})^{1/3} \, / \, \gamma_c + 0.15 \cdot \sigma_{cp} \right\} \cdot b_w \cdot d \geq \, \left(v_{min} \, + \, 0.15 \cdot \, \sigma_{cp} \right) \, \cdot b_w d + 0.00 \cdot \left(v_{min} + \, 0.00 \cdot \, \sigma_{cp} \right) \, \cdot b_w d + 0.00 \cdot \, \sigma_{cp} + 0.00 \cdot \, \sigma_{cp$$

con:

$$k = 1 + (200/d)^{1/2} \le 2$$

$$v_{min} = 0.035k^{3/2} f_{ck}^{-1/2}$$

e dove:

d è l'altezza utile della sezione (in mm);

ρ₁ = A_{sl} /(b_w ×d) è il rapporto geometrico di armatura longitudinale (≤ 0,02);

 $\sigma_{cp} = N_{Ed}/A_c$ è la tensione media di compressione nella sezione ($\leq 0,2 f_{cd}$);

b_w è la larghezza minima della sezione (in mm).

La resistenza a taglio V_{Rd} di elementi strutturali dotati di specifica armatura a taglio deve essere valutata sulla base di una adeguata schematizzazione a traliccio. Gli elementi resistenti dell'ideale traliccio sono: le armature trasversali, le armature longitudinali, il

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante: SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	TRATTA NAPOLI-CANCELLO
PROGETTISTA: Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO Pila tipo A.1 (da P1 a P11) - Relazione di calcolo	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA IF1M 0.0.E.ZZ CL VI.04.A5.001 A 41 di 112

corrente compresso di calcestruzzo e i puntoni d'anima inclinati. L'inclinazione θ dei puntoni di calcestruzzo rispetto all'asse della trave deve rispettare i limiti seguenti:

$$1 \le ctg \theta \le 2.5$$

La verifica di resistenza (SLU) si pone con:

$$V_{Rd} \ge V_{Ed}$$

dove V_{Ed} è il valore di calcolo dello sforzo di taglio agente.

Con riferimento all'armatura trasversale, la resistenza di calcolo a "taglio trazione" è stata calcolata con:

$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot \sin\alpha$$

Con riferimento al calcestruzzo d'anima, la resistenza di calcolo a "taglio compressione" è stata calcolata con:

$$V_{Rcd} = 0.9 \cdot d \cdot b_w \cdot \alpha_c \cdot f'_{cd} \cdot (ctg\alpha + ctg\theta) / (1 + ctg^2\theta)$$

La resistenza al taglio della trave è la minore delle due sopra definite:

$$V_{Rd} = min (V_{Rsd}, V_{Rcd})$$

In cui:

d è l'altezza utile della sezione;

b_w è la larghezza minima della sezione;

 σ_{cp} è la tensione media di compressione della sezione;

A_{sw} è l'area dell'armatura trasversale;

S è interasse tra due armature trasversali consecutive;

θ è l'angolo di inclinazione dell'armatura trasversale rispetto all'asse della

trave;

 f'_{cd} è la resistenza a compressione ridotta del calcestruzzo d'anima (f'_{cd} =0.5 f_{cd});

 α è un coefficiente maggiorativo, pari ad 1 per membrature non compresse.

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante: SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	TRATTA NAPOLI-CANCELLO
PROGETTISTA: Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Pila tipo A.1 (da P1 a P11) - Relazione di calcolo	IF1M 0.0.E.ZZ CL VI.04.A5.001 A 42 di 112

9 CRITERI DI MODELLAZIONE

9.1 MODELLO STRUTTURALE DI ANALISI

Conformemente con quanto prescritto nel par.7.9.4.1 del DM 14.1.2008, risulta applicabile, nel caso in esame di ponte a travate semplicemente appoggiate, per entrambe le direzioni di verifica della pila (longitudinale e trasversale rispetto all'asse del viadotto), un'analisi statica lineare, sviluppata riconducendo la pila allo schema di oscillatore semplice con incastro alla base, a quota estradosso plinto di fondazione.

L'analisi prevede l'applicazione sulla pila di forze statiche equivalenti alle forze di inerzia indotte dall'azione sismica. L'entita di queste forze si ottiene desumendo l'accelerazione corrispondente al periodo della pila nella direzione considerata dallo spettro elastico/di progetto. Il periodo fondamentale T_1 , in corrispondenza del quale valutare la risposta spettrale in accelerazione $S_d(T_1)$ è dato in entrambi i casi dall'espressione:

$$T_1 = 2 \pi \sqrt{M/K}$$

in cui la massa M, da considerare concentrata in testa alla pila, in corrispondenza dell'impalcato, vale la massa di impalcato afferente alla pila, più la massa della metà superiore della pila (massa efficace) e K consiste nella rigidezza laterale della pila nella direzione considerata.

La massa efficace della pila non risulta superiore ad 1/5 della massa di impalcato da essa portata, requisito necessario per l'applicabilità dell'analisi statica lineare.

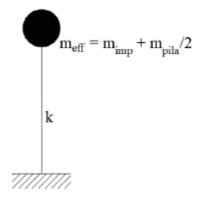


Figura 10: Modello della pila ad oscillatore semplice

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 ROCKSOIL S.p.A. SYSTRA S.A. SYSTRA-SOTECNI S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA DOCUMENTO REV. **PAGINA** Pila tipo A.1 (da P1 a P11) - Relazione di calcolo IF1M 0.0.E.ZZ VI.04.A5.001 43 di 112 CL Α

Per tener conto dell'influenza della fessurazione sulla rigidezza, in accordo con il par.7.2.6 del DM 14.1.2008, si è considerato un abbattimento del modulo elastico pari al 50%, rispetto al valore iniziale E_{cm} con conseguente abbattimento delle rigidezze flessionali della pila nelle due direzioni e corrispondente aumento dei periodi di vibrazione. Questa condizione rappresenta lo scenario più gravoso per la struttura in esame: in condizioni iniziali non fessurate, le pile sono caratterizzate da rigidezze molto alte, dunque periodi di vibrazione molto bassi (spesso $T_1 < T_B$ o al più $T_B < T_1 << T_C$) ai quali corrispondono ordinate spettrali prossime o uguali a quelle di massima amplificazione (plateau dello spettro di risposta). In definitiva, in questo ramo dello spettro, un aumento del periodo di vibrazione, legato ad un abbattimento della rigidezza, comporta un aumento dell'accelerazione sismica considerata.

Inoltre, secondo quanto anticipato nel paragrafo relativo alle azioni sismiche, la valutazione degli effetti dell'azione sismica viene effettuata considerando uno spettro di progetto, ottenuto riducendo lo spettro elastico mediante un fattore di stuttura pari ad 1.5, in modo da tener conto in maniera semplificata della capacità dissipativa anelastica della struttura.

Per questioni legate al criterio di gerarchia delle resistenze, gli spettri elastici (q=1) verranno utilizzati solo nel caso della verifica degli apparecchi di appoggio e per la valutazione delle azioni in fondazione; si rimanda ai relativi paragrafi per approfondimenti in merito all'applicazione del criterio di gerarchia delle resistenze per i diversi elementi strutturali.

Si ribadisce inoltre che per la valutazione delle masse sismiche del viadotto, oltre alla massa efficace dell'impalcato e della pila, è stata considerata anche un'aliquota pari al 20% del carico dovuto al transito dei mezzi.

Nel paragrafo relativo all'analisi dei risultati si riportano tutte le valutazioni effettuate per l'analisi sismica della pila in esame, sia in ipotesi di sezione fessurata che non fessurata, con riferimento allo spettro elastico (q=1) e allo spettro di progetto (q=1.5).

Oltre alle sollecitazioni destate in condizioni sismiche, desunte seguendo i criteri sopra elencati, le sollecitazioni di verifica della pila indotte in condizioni statiche, sono state determinate a partire dai valori delle azioni trasmesse dagli impalcati afferenti, alla quota degli apparecchi di appoggio. Queste sono state trasportate in corrispondenza della testa della pila per le singole condizioni di carico e quindi alla base della pila, facendo riferimento a uno schema a mensola.

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante: SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	TRATTA NAPOLI-CANCELLO
PROGETTISTA: Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO Pila tipo A.1 (da P1 a P11) - Relazione di calcolo	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA IF1M 0.0.E.ZZ CL VI.04.A5.001 A 44 di 112

9.2 MODELLAZIONE FEM

I risultati desunti dall'analisi strutturale semplificata descritta nel paragrafo precedente, sono stati verificati con quelli ottenuti da un modello FEM tridimensionale eseguito mediante il software di calcolo agli elementi finiti Midas-Gen.

Il fusto della pila è stato schematizzato mediante un elemento frame monodimensionale (beam), cui si è assegnata la sezione corrispondente, distinguendo tra quella cava corrente e quella piena in corrispondenza della zona pulvino; il plinto di fondazione è stato modellato mediante elementi bidimensionali a piastra (shell), cui si è assegnato lo spessore corrispondente; la palificata di sostegno è stata simulata con elementi monodimensionali a trave (beam): l'interazione tra il terreno e i pali di fondazione è stata modellata tramite l'applicazione di molle non lineari orizzontali e molle lineari verticali.

I carichi assegnati nei vari punti della struttura sono stati desunti dall'analisi dei carichi descritta in precedenza.

Il calcolo delle sollecitazioni è stato condotto attraverso il modello tridimensionale agli elementi finiti descritto, schematizzato nelle Figure seguenti.

Gli assi di riferimento adottati sono:

- x = asse trasversale rispetto all'asse del viadotto
- y = asse longitudinale rispetto all'asse del viadotto
- z = asse verticale

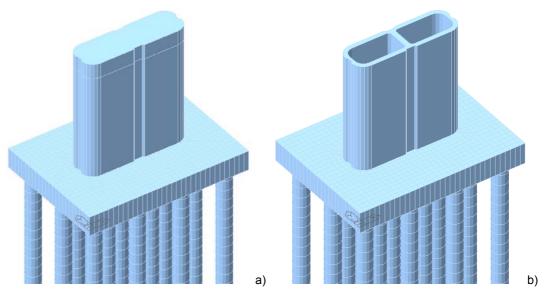


Figura 11: Modellazione tridimensionale agli Elementi Finiti – a) Vista 3D b) Spaccato

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante: SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	TRATTA NAPOLI-CANCELLO
PROGETTISTA: Mandataria: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Pila tipo A.1 (da P1 a P11) - Relazione di calcolo	IF1M 0.0.E.ZZ CL VI.04.A5.001 A 45 di 112

10 ANALISI DEI RISULTATI: SOLLECITAZIONI E VERIFICHE DELLA PILA

Nei paragrafi successivi si esibiscono le sollecitazioni e le verifiche strutturali relative al fusto della pila caratterizzata dall'altezza massima fra quelle del tipo in esame che prevedono la medesima tipologia di armatura.

Per le sollecitazioni relative a ciascuna delle pile, si faccia riferimento ai tabulati di calcolo.

I dati identificativi della pila di cui si mostrano le verifiche strutturali, sono sintetizzati nel prospetto di seguito.

	VI. 04	-	WBS viadotto
	P 7	-	Numero pila
Sigla geometria	Α		Codice pila per tipologia geometria
Sigla impalcati afferenti	1	-	Codice pila per tipologia impalcati afferenti
H_p	6.00	m	Altezza pila

Si riportano di seguito la sintesi delle proprietà geometriche e meccaniche delle pile di calcolo, nonchè le valutazioni effettuate per l'analisi sismica, sia in ipotesi di sezione fessurata che non fessurata, con riferimento allo spettro elastico (q=1) e allo spettro di progetto (q=1.5): come anticipato nei criteri di modellazione, l'analisi è stata sviluppata riconducendo la pila allo schema di oscillatore semplice con incastro alla base.

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA IF1M 0.0.E.ZZ 46 di 112 Pila tipo A.1 (da P1 a P11) - Relazione di calcolo CL VI.04.A5.001 Α

	VI. 04	-	WBS viadotto
	P 7	-	Numero pila
Sigla pila	A	٠ -	Tipologia pila per geometria
H _p	6.0) m	Altezza pila
γ	25	kN/m³	Peso per unità di volume
f _{ck}	32	2 MPa	Resistenza caratteristica cilindrica a 28 giorni
S	1.2	2 m	Altezza sezione piena estremità superiore pila
s*	0.69	5 m	Altezza protuberanze pila
A	10.5	m²	Sezione trasversale fusto pila
A_{sup}	32.67	7 m ²	Sezione trasversale estremità superiore pila
A _{sup} *	3.88	3 m ²	Sezione protuberanze testa pila (2 totali)
l _y	1.02E+14	I mm⁴	Inerzia mensola direzione trasversale
l _z	1.71E+1	3 mm ⁴	Inerzia mensola longitudinale
E	33346	6 MPa	Modulo di elasticità
K _T	47100892	2 N/mm	Rigidezza flessionale direzione trasversale
K_L	790572	N/mm	Rigidezza flessionale direzione longitudinale
K _{T,fess}	23550446	N/mm	Rigidezza flessionale in condizioni fessurate direzione trasversale
$K_{L,fess}$	3952862	2 N/mm	Rigidezza flessionale in condizioni fessurate direzione longitudinale
P _{pila_tot}	2309) kN	Peso proprio pila
P _{sup.pila}	1676	6 kN	Peso proprio della metà superiore della pila (Peso metà fusto+Peso pulvino)
P _{inf.pila}	633	3 kN	Peso proprio della metà inferiore della pila (Peso metà fusto)
m _{pila_tot}	235	kN/m/s ²	Massa pila
m _{sup. pila}	17	l kN/m/s ²	Massa della metà superiore della pila
m _{inf. pila}	69	kN/m/s ²	Massa della metà inferiore della pila
	ilità analisi statica line	eare	Analisi statica lineare applicabile

CALCOLO MASSA EFFICAC	E PILA/IMPALC	ATO
Sigla impalcati afferenti	1 -	
Direzione longitudinale		
P _{impalcato}	6348 kN	Peso dell'impalcato (travi+soletta)
P _{permanenti portati}	5315 kN	Carichi permanenti portati totali
P _{traffico ferroviario}	7079 kN	Carico ferroviario
0.2xP _{traffico ferroviario}	1416 kN	20% del carico dovuto al transito dei mezzi
m _{impalcato}	1334 kN/m/s ²	Massa impalcato (PP+PERM.+0.2ACC) - direzione longitudinale
m _{efficace tot} - longitudinale	1515 kN/m/s ²	Massa efficace pila sup.+impalcato - direzione longitudinale
Direzione trasversale		
P _{impalcato}	6348 kN	Peso dell'impalcato (travi+soletta)
P _{permanenti portati}	5314 kN	Carichi permanenti portati totali
P _{traffico ferroviario}	7079 kN	Carico ferroviario
0.2xP _{traffico ferroviario}	1416 kN	20% del carico dovuto al transito dei mezzi
m _{impalcato}	1334 kN/m/s ²	Massa impalcato (PP+PERM.+0.2ACC) - direzione trasversale
m _{efficace tot} - trasversale	1515 kN/m/s ²	Massa efficace pila sup.+impalcato - direzione trasversale

PARAMETRI SPETTRA	LI	
a_{g}	0.218 g	PGA
Ss	1.377	Coefficiente stratigrafico
$a_g(T=0)$	0.300 g	Accelerazione spettrale al suolo (a_g^*S)

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA IF1M 0.0.E.ZZ 47 di 112 Pila tipo A.1 (da P1 a P11) - Relazione di calcolo CL VI.04.A5.001 Α

CALCOLO PERIODO DI V	CALCOLO PERIODO DI VIBRAZIONE PILA IN DIREZIONE LONGITUDINALE								
Ipotesi sezione non fessura	ata (E = Em)								
TL	0.087 s	Periodo di vibrazione							
Spettro di progetto (q = 1	.5)								
ag(T)	0.394 g	Accelerazione spettrale in direzione longitudinale (q=1.5)							
FL	5855 kN	Taglio longitudinale base pila							
ML	35133 kNm	Flessione nel piano parallelo all'asse longitudinale dell'impalcato							
Spettro elastico (q = 1)									
ag(T)	0.514 g	Accelerazione spettrale in direzione longitudinale (q=1)							
FL	7633 kN	Taglio longitudinale							
ML	45799 kNm	Flessione nel piano parallelo all'asse longitudinale dell'impalcato							
Ipotesi sezione fessurata (Ef = 0.5E								
TL,fess	0.123 s								
Spettro di progetto (q = 1	.5)								
ag(T)	0.436 g	Accelerazione spettrale in direzione longitudinale (q=1.5)							
FL	6471 kN	Taglio longitudinale base pila							
ML	38829 kNm	Flessione nel piano parallelo all'asse longitudinale dell'impalcato							
Spettro elastico (q = 1)									
ag(T)	0.608 g	Accelerazione spettrale in direzione longitudinale (q=1)							
Fi,sup	8972 kN	Forza di inerzia parte superiore							
Fi,inf	3160 kN	Forza di inerzia parte inferiore							
FL	12133 kN	Taglio longitudinale intradosso plinto							
ML	74938 kNm	Flessione nel piano parallelo all'asse longitudinale dell'impalcato							

CALCOLO PERIODO DI VIBRAZIONE PILA IN DIREZIONE TRASVERSALE							
Ipotesi sezione non fessura	ata (E = Em)						
Tt	0.036 s						
Spettro di progetto (q = 1	.5)						
ag(T)	0.339 g	Accelerazione spettrale in direzione trasversale (q=1.5)					
FT	5034 kN	Taglio trasversale					
MT	30203 kNm	Flessione nel piano ortogonale all'asse longitudinale dell'impalcato					
Spettro elastico (q = 1)							
ag(T)	0.388 g	Accelerazione spettrale in direzione longitudinale (q=1)					
FT	5766 kN	Taglio trasversale					
MT	34595 kNm	Flessione nel piano ortogonale all'asse longitudinale dell'impalcato					
Ipotesi sezione fessurata (L	$\Xi f = 0.5E$						
TT,fess	0.050						
Spettro di progetto (q = 1	.5)						
ag(T)	0.355 g	Accelerazione spettrale in direzione trasversale (q=1.5)					
FT	5280 kN	Taglio trasversale					
MT	31681 kNm	Flessione nel piano ortogonale all'asse longitudinale dell'impalcato					
Spettro elastico (q = 1)							
ag(T)	0.426 g	Accelerazione spettrale in direzione trasversale (q=1)					
Fi,sup	6283 kN	Forza di inerzia parte superiore					
Fi,inf	3160 kN	Forza di inerzia parte inferiore					
FT	9443 kN	Taglio trasversale					
MT	53424 kNm	Flessione nel piano ortogonale all'asse longitudinale dell'impalcato					

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA DOCUMENTO REV. **PAGINA** Pila tipo A.1 (da P1 a P11) - Relazione di calcolo 0.0.E.ZZ Α 48 di 112 IF1M CL VI.04.A5.001

10.1 SOLLECITAZIONI AGENTI

Si riporta di seguito la sintesi degli scarichi espletati dagli appoggi d'impalcato sulla pila, relativamente ai due lati, fisso e mobile, per ciascuna delle condizioni di carico elementari analizzate. Le grandezze che figurano nella Tabella di seguito fanno riferimento alle seguenti azioni trasmesse dagli appoggi:

N: Reazione verticale (positiva, se diretta verso l'alto)

Ht: Reazione orizzontale, in direzione trasversale rispetto all'asse del viadotto

HI: Reazione orizzontale, in direzione parallela all'asse del viadotto

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante: SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	TRATTA NAPOLI-CANCELLO
PROGETTISTA: Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO Pila tipo A.1 (da P1 a P11) - Relazione di calcolo	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA IF1M 0.0.E.ZZ CL VI.04.A5.001 A 49 di 112

CASI	DI CARICO	Д	PPOGGIO 1		APPOGGIO 2			/	APPOGGIO :	3	APPOGGIO 4		
Sigla	Tipologia	N	Ht	HI	N	Ht	HI	N	Ht	HI	N	Ht	HI
-	-	kN	kN	kN	kN	kN	kN	kN	kN	kN	kN	kN	kN
G1	Carichi permanenti strutturali	794.5	0.0	0.0	792.4	0.0	0.0	792.4	0.0	0.0	794.5	0.0	0.0
G2 (G2,1+G2,2+G2,3+G2,4)	Carichi permanenti non strutturali	688.2	0.0	0.0	640.1	0.0	0.0	640.3	0.0	0.0	688.8	0.0	0.0
Q3,a B1-SW2	Avviamento treno	-36.1	0.0	0.0	-37.2	43.1	403.1	-31.8	43.1	421.9	-26.6	0.0	0.0
Q3,a B1-LM71	Avviamento treno	-39.7	0.0	0.0	-41.0	47.4	443.5	-35.0	47.4	464.0	-29.3	0.0	0.0
Q3,a B2-LM71	Awiamento treno	29.3	0.0	0.0	35.0	47.4	-464.0	41.0	47.4	-443.5	39.7	0.0	0.0
Q3,f B1-SW2	Frenatura treno	38.2	0.0	0.0	39.5	-45.7	-427.6	33.7	-45.7	-447.4	28.2	0.0	0.0
Q3,f B1-LM71	Frenatura treno	24.0	0.0	0.0	24.8	-28.8	-268.8	21.2	-28.7	-281.2	17.7	0.0	0.0
Q3,f B2-LM71	Frenatura treno	-17.7	0.0	0.0	-21.2	-28.7	281.2	-24.8	-28.8	268.8	-24.0	0.0	0.0
Q4 B1-SW2	Azione centrifuga	-121.7	0.0	0.0	-47.0	93.1	6.8	40.5	92.6	-6.8	128.2	0.0	0.0
Q4 B1-LM71	Azione centrifuga	-135.0	0.0	0.0	-51.3	102.8	7.8	45.4	102.4	-7.8	140.9	0.0	0.0
Q4 B2-LM71	Azione centrifuga	-141.0	0.0	0.0	-45.4	102.4	7.8	51.3	102.9	-7.8	135.1	0.0	0.0
Q5 B1-SW2	Serpeggio	-19.4	0.0	0.0	-7.1	25.1	2.3	7.1	25.1	-2.3	19.4	0.0	0.0
Q5 B1-LM71	Serpeggio	-21.3	0.0	0.0	-7.8	27.6	2.5	7.8	27.6	-2.5	21.3	0.0	0.0
Q5 B2-LM71	Serpeggio	-21.3	0.0	0.0	-7.8	27.6	2.5	7.8	27.6	-2.5	21.3	0.0	0.0
Q6	Vento	-210.4	0.0	0.0	-75.3	201.8	15.0	73.4	201.7	-15.0	212.2	0.0	0.0
LM71_B1	Traffico ferroviario	-11.6	0.0	0.0	292.6	0.0	0.0	574.5	0.0	0.0	810.9	0.0	0.0
LM71_B2	Traffico ferroviario	815.6	0.0	0.0	568.6	0.0	0.0	290.5	0.0	0.0	-11.5	0.0	0.0
SW2_B1	Traffico ferroviario	-9.2	0.0	0.0	322.3	0.0	0.0	639.9	0.0	0.0	923.0	0.0	0.0
A_Gk	Resistenze parassite	0.0	0.0	8.9	0.0	0.0	8.6	0.0	0.0	8.6	0.0	0.0	8.9
A_Qk	Resistenze parassite	0.0	0.0	29.5	0.0	0.0	32.1	0.0	0.0	33.6	0.0	0.0	33.4

Tabella 5: Scarichi espletati dagli appoggi per le singole condizioni di carico – **Lato fisso**

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO PROGETTO LOTTO CODIFICA DOCUMENTO REV. **PAGINA** Pila tipo A.1 (da P1 a P11) - Relazione di calcolo IF1M 0.0.E.ZZ CL VI.04.A5.001 Α 50 di 112

CASI	DI CARICO	Δ.	PPOGGIO 5		APPOGGIO 6			/	APPOGGIO 7	7	APPOGGIO 8		
Sigla	Tipologia	N	Ht	HI	N	Ht	HI	N	Ht	HI	N	Ht	HI
-	-	kN	kN	kN	kN	kN	kN	kN	kN	kN	kN	kN	kN
G1	Carichi permanenti strutturali	794.5	0.0	0.0	792.4	0.0	0.0	792.4	0.0	0.0	794.5	0.0	0.0
G2 (G2,1+G2,2+G2,3+G2,4)	Carichi permanenti non strutturali	688.3	0.0	0.0	640.0	0.0	0.0	640.0	0.0	0.0	688.3	0.0	0.0
Q3,a B1-SW2	Awiamento treno	40.8	0.0	0.0	32.5	-86.2	0.0	27.1	0.0	0.0	31.3	0.0	0.0
Q3,a B1-LM71	Awiamento treno	44.8	0.0	0.0	35.8	-94.8	0.0	29.8	0.0	0.0	34.5	0.0	0.0
Q3,a B2-LM71	Awiamento treno	-27.6	0.0	0.0	-36.7	-94.8	0.0	-42.6	0.0	0.0	-38.0	0.0	0.0
Q3,f B1-SW2	Frenatura treno	-43.2	0.0	0.0	-34.5	91.4	0.0	-28.7	0.0	0.0	-33.2	0.0	0.0
Q3,f B1-LM71	Frenatura treno	-27.2	0.0	0.0	-21.7	57.5	0.0	-18.1	0.0	0.0	-20.9	0.0	0.0
Q3,f B2-LM71	Frenatura treno	16.7	0.0	0.0	22.2	57.5	0.0	25.8	0.0	0.0	23.0	0.0	0.0
Q4 B1-SW2	Azione centrifuga	-127.7	0.0	0.0	-40.2	184.3	0.0	46.9	0.0	0.0	121.0	0.0	0.0
Q4 B1-LM71	Azione centrifuga	-141.7	0.0	0.0	-43.8	203.5	0.0	52.5	0.0	0.0	133.0	0.0	0.0
Q4 B2-LM71	Azione centrifuga	-147.8	0.0	0.0	-37.8	203.6	0.0	58.5	0.0	0.0	127.1	0.0	0.0
Q5 B1-SW2	Serpeggio	-21.0	0.0	0.0	-5.3	49.8	0.0	8.9	0.0	0.0	17.4	0.0	0.0
Q5 B1-LM71	Serpeggio	-23.1	0.0	0.0	-5.8	54.7	0.0	9.7	0.0	0.0	19.2	0.0	0.0
Q5 B2-LM71	Serpeggio	-23.1	0.0	0.0	-5.8	54.7	0.0	9.8	0.0	0.0	19.2	0.0	0.0
Q6	Vento	-223.7	0.0	0.0	-60.4	400.3	0.0	87.5	0.0	0.0	196.7	0.0	0.0
LM71_B1	Traffico ferroviario	-11.4	0.0	0.0	292.6	0.0	0.0	574.5	0.0	0.0	810.8	0.0	0.0
LM71_B2	Traffico ferroviario	815.6	0.0	0.0	568.7	0.0	0.0	290.5	0.0	0.0	-11.4	0.0	0.0
SW2_B1	Traffico ferroviario	-9.0	0.0	0.0	322.3	0.0	0.0	639.9	0.0	0.0	923.0	0.0	0.0
A_Gk	Resistenze parassite	0.0	0.0	8.9	0.0	0.0	8.6	0.0	0.0	8.6	0.0	0.0	8.9
A_Qk	Resistenze parassite	0.0	0.0	29.5	0.0	0.0	32.1	0.0	0.0	33.6	0.0	0.0	33.4

Tabella 6: Scarichi espletati dagli appoggi per le singole condizioni di carico – Lato mobile

APPALTATORE:		LIN	EA FEF	ROVIA	RIA NAPOL	_I - B/	\RI
Mandataria:	Mandante:		TRATT	A NAPO	LI-CANCE	LLO	
SALINI IMPREGILO S.p.A.	ASTALDI S.p.A.			_			UCELE
PROGETTISTA:					00 E PK 15+58 MBITO DEGL	,	
Mandataria: Mandante:				•	ERTITO IN LE		
SYSTRA S.A. SYSTRA-SOTE	CNI S.p.A. ROCKSOIL S.p.A.	OOI AL L	7.L. 133/2	014, 0014		30L 10	7/2017
PROGETTO ESECUTIVO		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Pila tipo A.1 (da P1 a P11) - Relazione	di calcolo	IF1M	0.0.E.ZZ	CL	VI.04.A5.001	Α	51 di 112

Si riporta di seguito la sintesi delle sollecitazioni indotte nella sezione a quota testa pila, desunte dagli scarichi espletati dagli appoggi. I momenti flettenti nei due piani di verifica sono ricavati tenendo in considerazione le eccentricità, rispetto all'asse pila, dei singoli appoggi su ciascun lato, in direzione longitudinale e in direzione trasversale.

I tagli agenti in condizioni sismiche, riportati nella seguente Tabella sono ricavati, come anticipato in precedenza, dallo schema di oscillatore semplice, considerando lo spettro di risposta di progetto.

Le grandezze che figurano nelle Tabelle riportate di seguito fanno riferimento al seguente gruppo di sollecitazioni:

N: Sforzo normale (negativo, se di compressione)

Ht: Taglio in direzione trasversale rispetto all'asse del viadotto

HI: Taglio in direzione parallela all'asse del viadotto

Mt: Momento flettente che produce flessione nel piano ortogonale all'asse del viadotto

MI: Momento flettente che produce flessione nel piano parallelo all'asse del viadotto

APPALTATORE:

Mandataria:

SALINI IMPREGILO S.p.A.

PROGETTISTA:

Mandataria:

Mandataria:

Mandataria:

SYSTRA S.A.

SYSTRA-SOTECNI S.p.A.

ROCKSOIL S.p.A.

PROGETTO ESECUTIVO

Pila tipo A.1 (da P1 a P11) - Relazione di calcolo

LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

 PROGETTO
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 PAGINA

 IF1M
 0.0.E.ZZ
 CL
 VI.04.A5.001
 A
 52 di 112

Combinazioni di carico		SOLLE	CITAZIONI TEST	ΓA PILA	
Combinazioni di canco	N	Ht	Н	Mt	MI
-	kN	kN	kN	kNm	kNm
SLU-Gr.1(N)	-26197	2228	1057	10479	371
SLU-Gr.3(N)	-26197	1476	2113	6756	742
SLU-Gr.1(P)	-26805	2157	1292	11405	454
SLU-Gr.3(P)	-26805	1440	2585	7856	908
SLU-Gr.1-1SW/2	-21981	1405	634	17323	224
SLU-Gr.3-1SW/2	-21981	1064	1269	15636	446
SLU-Gr.1-MaxML(P)	-21466	1446	1292	7247	5873
SLU-Gr.3-MaxML(P)	-21260	1088	2585	5469	6100
SLU-Gr.1(N)-Gk=1.00	-21318	2228	1057	10478	371
SLU-Gr.3(N)-Gk=1.00	-21318	1476	2113	6755	742
SLU-Gr.1(P)-Gk=1.00	-21927	2157	1292	11404	454
SLU-Gr.3(P)-Gk=1.00	-21927	1440	2585	7855	908
SLU-Gr.1-1SW/2-Gk=1.00	-17103	1405	634	17321	223
SLU-Gr.3-1SW/2-Gk=1.00	-17103	1064	1269	15635	446
SLU-Gr.1-MaxML(P)-Gk=1.00	-16587	1446	1292	7246	5873
SLU-Gr.3-MaxML(P)-Gk=1.00	-16381	1088	2585	5468	6100
SLV-EL+0.3ET	-11662	1584	6471	0	0
SLV-0.3EL+ET	-11662	5280	1941	0	0
SLE-C-Gr.1(N)	-18321	1520	729	7157	256
SLE-C-Gr.3(N)	-18321	1001	1458	4589	511
SLE-C-Gr.1(P)	-18741	1471	891	7795	313
SLE-C-Gr.3(P)	-18741	977	1783	5348	626
SLE-C-Gr.1-1SW/2	-15414	952	438	11876	154
SLE-C-Gr.3-1SW/2	-15414	717	875	10713	308
SLE-C-Gr.1-MaxML (P)	-15059	980	891	4927	4051
SLE-C-Gr.3-MaxML (P)	-14916	734	1783	3701	4207
SLE-F-Gr.1(N)	-16989	830	583	4091	204
SLE-F-Gr.3(N)	-16989	415	1166	2037	409
SLE-F-Gr.1(P)	-17325	791	713	4602	251
SLE-F-Gr.3(P)	-17325	396	1426	2644	501
SLE-F-Gr.1-1SW/2	-14664	376	350	7867	124
SLE-F-Gr.3-1SW/2	-14664	188	700	6937	246
SLE-F-Gr.1-MaxML (P)	-14379	398	713	2308	3241
SLE-F-Gr.3-MaxML (P)	-14265	201	1426	1327	3366
SLE-QP	-11662	0	0	2	1

Tabella 7: Sollecitazioni nella sezione a quota testa pila

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante: SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	TRATTA NAPOLI-CANCELLO
PROGETTISTA: Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Pila tipo A.1 (da P1 a P11) - Relazione di calcolo	IF1M 0.0.E.ZZ CL VI.04.A5.001 A 53 di 112

Il calcolo delle massime sollecitazioni agenti a quota spiccato plinto è stato effettuato trasportando le azioni relative alla sezione di testa pila e considerando i carichi aggiuntivi relativi al peso proprio della pila e all'azione del vento sulla pila.

Di seguito se ne riporta una sintesi.

Le grandezze che figurano nelle Tabelle riportate di seguito fanno riferimento al medesimo gruppo di sollecitazioni individuato in precedenza per la sezione a quota testa pila.

APPALTATORE:

Mandataria:

SALINI IMPREGILO S.p.A.

PROGETTISTA:

Mandataria:

Mandataria:

Mandataria:

Mandataria:

SYSTRA-SOTECNI S.p.A.

SYSTRA S.A.

LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

PROGETTO ESECUTIVO
PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Pila tipo A.1 (da P1 a P11) - Relazione di calcolo
IF1M 0.0.E.ZZ CL VI.04.A5.001 A 54 di 112

ROCKSOIL S.p.A.

Combination di conice		SOLLE	CITAZIONI BAS	E PILA	
Combinazioni di carico	N	Ht	HI	Mt	MI
-	kN	kN	kN	kNm	kNm
SLU-Gr.1(N)	-29314	2272	1197	23979	7132
SLU-Gr.3(N)	-29314	1520	2254	15743	13843
SLU-Gr.1(P)	-29922	2202	1433	24482	8629
SLU-Gr.3(P)	-29922	1485	2725	16632	16837
SLU-Gr.1-1SW/2	-25098	1449	775	25886	4451
SLU-Gr.3-1SW/2	-25098	1109	1409	22155	8480
SLU-Gr.1-MaxML(P)	-24583	1490	1433	16054	14049
SLU-Gr.3-MaxML(P)	-24377	1133	2725	12132	22029
SLU-Gr.1(N)-Gk=1.00	-23627	2272	1197	23978	7132
SLU-Gr.3(N)-Gk=1.00	-23627	1520	2254	15741	13843
SLU-Gr.1(P)-Gk=1.00	-24235	2202	1433	24481	8629
SLU-Gr.3(P)-Gk=1.00	-24235	1485	2725	16630	16837
SLU-Gr.1-1SW/2-Gk=1.00	-19411	1449	775	25885	4451
SLU-Gr.3-1SW/2-Gk=1.00	-19411	1109	1409	22154	8479
SLU-Gr.1-MaxML(P)-Gk=1.00	-18896	1490	1433	16053	14048
SLU-Gr.3-MaxML(P)-Gk=1.00	-18690	1133	2725	12131	22029
SLV-EL+0.3ET	-13970	1584	6471	13958	40363
SLV-0.3EL+ET	-13970	5280	1941	46527	12109
SLE-C-Gr.1(N)	-20630	1549	822	16364	4909
SLE-C-Gr.3(N)	-20630	1031	1551	10684	9537
SLE-C-Gr.1(P)	-21050	1501	985	16711	5942
SLE-C-Gr.3(P)	-21050	1006	1876	11297	11602
SLE-C-Gr.1-1SW/2	-17723	982	531	17679	3060
SLE-C-Gr.3-1SW/2	-17723	747	969	15106	5838
SLE-C-Gr.1-MaxML (P)	-17367	1010	985	10899	9679
SLE-C-Gr.3-MaxML (P)	-17225	764	1876	8194	15183
SLE-F-Gr.1(N)	-19298	830	583	9071	3702
SLE-F-Gr.3(N)	-19298	415	1166	4527	7405
SLE-F-Gr.1(P)	-19634	791	713	9348	4529
SLE-F-Gr.3(P)	-19634	396	1426	5017	9057
SLE-F-Gr.1-1SW/2	-16972	376	350	10123	2224
SLE-F-Gr.3-1SW/2	-16972	188	700	8065	4446
SLE-F-Gr.1-MaxML (P)	-16688	398	713	4699	7519
SLE-F-Gr.3-MaxML (P)	-16574	201	1426	2535	11922
SLE-QP	-13970	0	0	2	1

Tabella 8: Sollecitazioni nella sezione di spiccato

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. ROCKSOIL S.p.A. SYSTRA-SOTECNI S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA DOCUMENTO REV. **PAGINA** Pila tipo A.1 (da P1 a P11) - Relazione di calcolo IF1M 0.0.E.ZZ CL VI.04.A5.001 55 di 112 Α

10.2 VERIFICA DEL FUSTO

Le verifiche strutturali allo stato limite ultimo e allo stato limite di esercizio sono state svolte, seguendo i criteri esposti in precedenza, con il codice di calcolo RC-SEC, per ciascuna delle combinazioni di carico considerate.

La sezione di verifica è quella relativa allo spiccato della pila (quota estradosso plinto).

L'armatura longitudinale del fusto della pila prevede ferri distribuiti lungo il perimetro, sia lungo il lato interno che quello esterno.

Una sintesi delle caratteristiche dell'armatura longitudinale e a taglio (staffe) previste è esibita nei prospetti di seguito. Il valore del copriferro c che figura è valutato in asse barra; l'area di armatura minima da garantire, rispetto alla sezione di calcestruzzo, segue le prescrizioni riportate nel par.2.5.2.2.6 del "Manuale di progettazione delle opere civili".

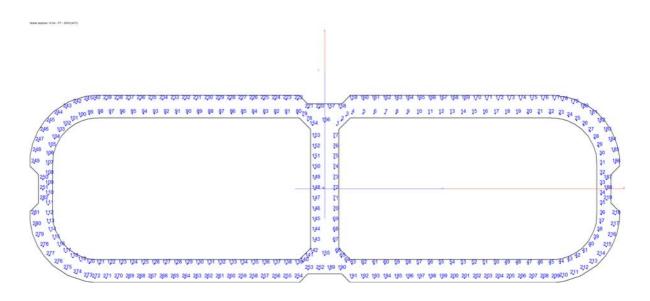
ARMATURA I	LONGITUDIN	ALE FUSTO						
n°strati	c (cm)	φ(mm)	s _{ext} (cm)	s _{int} (cm)	n°tot	A _s (cm ²)	A _s /A _{cls} (%)	A _{min} /A _{cls} (%)
1	7.2	20	20	20	282	885.5	0.84	0.6

ARMATURA 7	ARMATURA TRASVERSALE FUSTO (STAFFE)										
	Direzione I	ongitudinale			Direzione	trasversale					
nb	φ(mm)	s (cm)	$A_{v,st}/s$ (cm ² /m)) nb ϕ (mm) s (cm) $A_{v,st}/s$ (cm ² /							
6	14	20	46.18	4	14	20	30.79				

Le grandezze che figurano nelle verifiche riportate di seguito fanno riferimento al seguente gruppo di sollecitazioni:

N: Sforzo normale (positivo, se di compressione)

Vx: Taglio in direzione trasversale rispetto all'asse del viadotto


Vy: Taglio in direzione parallela all'asse del viadotto

My: Momento flettente che produce flessione nel piano ortogonale all'asse del viadotto

Mx: Momento flettente che produce flessione nel piano parallelo all'asse del viadotto

Di seguito le verifiche strutturali relative alla sezione di spiccato della pila.

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A. PROGETTISTA:	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO Pila tipo A.1 (da P1 a P11) - Relazione di calcolo	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA IF1M 0.0.E.ZZ CL VI.04.A5.001 A 56 di 112

CARATTERISTICHE DOMINI CONGLOMERATO

DOMINIO N° 1

Forma del Dominio:		Poligonale
Classe Conglomerato:		C32/40
N°vertice:	X [cm]	Y [cm]
1	406.1	165.0
2 3	436.2	159.4
	465.8	145.4
4	479.6	135.3
5	495.0	118.9
6	506.4	101.1
7	515.4	79.4
8	519.7	57.9
9	520.1	40.0
10	505.1	25.0
11	505.1	-25.0
12	520.1	-40.0
13	519.7	-57.9
14	515.4	-79.5
15	506.4	-101.1
16	495.0	-118.9
17	479.6	-135.3
18	451.2	-153.7
19	422.0	-163.0
20	406.1	-165.0
21	44.9	-165.0
22	29.9	-150.0
23	-30.1	-150.0
24	-45.1	-165.0
25	-406.3	-165.0
26	-422.2	-163.0

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante: SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	TRATTA NAPOLI-CANCELLO
PROGETTISTA: Mandataria: SYSTRA S.A. Mandante: SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO Pila tipo A.1 (da P1 a P11) - Relazione di calcolo	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA IF1M 0.0.E.ZZ CL VI.04.A5.001 A 57 di 112

27	-453.5	-152.4
28	-479.7	-135.3
29	-495.2	-118.9
30	-506.6	-101.1
31	-515.6	-79.5
32	-519.9	-57.9
33	-520.3	-40.0
34	-505.3	-25.0
35	-505.3	25.0
36	-520.3	40.0
37	-519.9	57.9
38	-515.6	79.4
39	-506.6	101.1
40	-495.2	118.9
41	-479.7	135.3
42	-451.4	153.6
43	-422.2	163.0
44	-406.3	165.0
45	-45.1	165.0
46	-30.1	150.0
47	29.9	150.0
48	44.9	165.0
49	400.1	165.0

Poligonale vuoto

DOMINIO N° 2 Forma del Dominio:

Classe Conglomerato:		C32/40
N°vertice:	X [cm]	Y [cm]
1	-480.3	40.0
2	-478.9	61.1
3	-474.5	75.4
4	-464.9	92.9
5	-452.8	105.7
6	-441.0	114.0
7	-429.5	119.7
8	-419.2	122.8
9	-409.7	124.6
10	-400.3	125.0
11	-45.1	125.0
12	-25.1	105.0
13	-25.1	-105.0
14	-45.1	-125.0
15	-400.3	-125.0
16	-409.7	-124.6
17	-419.2	-122.8
18	-429.5	-119.7
19	-441.0	-114.0
20	-452.8	-105.8
21	-464.9	-92.9
22	-474.5	-75.4
23	-478.9	-61.2
24	-480.3	-40.0

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A. PROGETTISTA:	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO Pila tipo A.1 (da P1 a P11) - Relazione di calcolo	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA IF1M 0.0.E.ZZ CL VI.04.A5.001 A 58 di 112

DOMINIO N° 3 Forma del Dominio: Classe Conglomerato:		Poligonale vuoto C32/40
N°vertice:	X [cm]	Y [cm]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	478.7 474.3 464.7 452.6 440.8 429.3 419.0 409.5 400.1 44.9 24.9 44.9 400.1 409.5 419.0 429.3 440.8 452.6 464.7 474.3 478.7	-61.2 -75.4 -92.9 -105.8 -114.0 -119.7 -122.8 -124.6 -125.0 -105.0 105.0 125.0 125.0 125.0 124.6 122.8 119.7 114.0 105.7 92.9 75.4 61.1
23 24	480.1 480.1	40.0 -40.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	21.2	112.2	20
2	29.5	120.4	20
3	37.7	128.7	20
4	48.0	132.7	20
5	67.4	132.7	20
6	86.9	132.7	20
7	106.3	132.7	20
8	125.7	132.7	20
9	145.1	132.7	20
10	164.5	132.7	20
11	184.0	132.7	20
12	203.4	132.7	20
13	222.8	132.7	20
14	242.2	132.7	20
15	261.6	132.7	20
16	281.1	132.7	20
17	300.5	132.7	20
18	319.9	132.7	20
19	339.3	132.7	20
20	358.7	132.7	20

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante: SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	TRATTA NAPOLI-CANCELLO
PROGETTISTA: Mandataria: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO Pila tipo A.1 (da P1 a P11) - Relazione di calcolo	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA IF1M 0.0.E.ZZ CL VI.04.A5.001 A 59 di 112

21	378.2	132.7	20
22			
	397.6	132.7	20
23	415.3	131.3	20
24	430.2	127.4	20
25	444.2	120.8	20
26	456.9	112.0	20
27	467.8	101.1	20
28	476.6	88.4	20
29	483.2	74.4	20
30	487.1	59.5	20
31	487.8	42.5	20
32	487.8	25.0	20
33	487.8	7.5	20
34	487.8	-10.0	20
35	487.8	-27.5	20
36	487.8	-45.0	20
37	486.5	-60.2	20
38	483.2	-74.4	20
39	476.6	-88.4	20
40	467.8	-101.1	20
41	456.9	-112.0	20
42	444.2	-120.8	20
43	430.2	-127.4	20
44	415.3	-131.4	20
45	397.6	-132.7	20
46	378.2	-132.7	20
47	358.7	-132.7	20
48	339.3	-132.7	20
49	319.9	-132.7	20
50	300.5	-132.7	20
51	281.1	-132.7	20
52	261.6	-132.7	20
53	242.2	-132.7	20
54	222.8	-132.7	20
55	203.4	-132.7	20
56	184.0	-132.7	20
57	164.5	-132.7	20
58	145.1	-132.7	20
59	125.7	-132.7	20
60	106.3	-132.7	20
61	86.9	-132.7	20
62	67.4	-132.7	20
63	48.0	-132.7	20
64	37.7	-128.7	20
65			
66	29.5	-120.4 -112.2	20
	21.2		20
67	17.2	-93.0	20
68	17.2	-74.6	20
69	17.2	-56.3	20
70	17.2	-37.9	20
71	17.2	-19.6	20
72	17.2	-1.3	20
73	17.2	17.1	20
74	17.2	35.4	20
75	17.2	53.8	20

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante: SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	TRATTA NAPOLI-CANCELLO
PROGETTISTA: Mandataria: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO Pila tipo A.1 (da P1 a P11) - Relazione di calcolo	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA IF1M 0.0.E.ZZ CL VI.04.A5.001 A 60 di 112

76	17.2	72.1	20
77	17.2	90.5	20
78	-29.7	120.4	20
79	-37.9	128.7	20
80	-48.2	132.7	20
81	-67.6	132.7	20
82	-87.0	132.7	20
83	-106.5	132.7	20
84	-125.9	132.7	20
85	-145.3	132.7	20
86	-164.7	132.7	20
87	-184.2	132.7	20
88	-203.6	132.7	20
89	-223.0	132.7	20
90	-242.4	132.7	20
91	-261.8	132.7	20
92	-281.3	132.7	20
93	-300.7	132.7	20
94	-320.1	132.7	20
95	-339.5	132.7	20
96	-358.9	132.7	20
97	-378.4	132.7	20
98	-397.8	132.7	20
99	-415.5	131.3	20
100	-430.4	127.4	20
101	-444.4	120.8	20
102	-457.1	112.0	20
103	-468.0	101.1	20
104	-476.8	88.4	20
105	-483.3	74.4	20
106	-487.3	59.5	20
107	-488.0	42.5	20
108	-488.0	25.0	20
109	-488.0	7.5	20
110	-488.0	-10.0	20
111	-488.0	-27.5	20
112	-488.0	-45.0	20
113	-486.7	-60.2	20
114	-483.3	-74.4	20
115	-476.8	-88.4	20
116	-468.0	-101.1	20
117	-457.1	-112.0	20
118	-444.4	-120.8	20
119	-430.4	-127.4	20
120	-415.5	-131.4	20
121	-397.8	-132.7	20
122	-378.4	-132.7	20
123	-358.9	-132.7	20
124	-339.5 220.1	-132.7	20
125	-320.1	-132.7	20
126	-300.7	-132.7	20
127	-281.3	-132.7	20
128	-261.8 242.4	-132.7	20
129 130	-242.4 -223.0	-132.7 -132.7	20 20
130	-223.0	-132./	20

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE RIZ 0.000 E RIZ 45.505 INCLUEE LE
PROGETTISTA:	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
Mandataria: Mandante:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Pila tipo A.1 (da P1 a P11) - Relazione di calcolo	IF1M 0.0.E.ZZ CL VI.04.A5.001 A 61 di 112

131	-203.6	-132.7	20
	-184.2		
132		-132.7	20
133	-164.7	-132.7	20
134	-145.3	-132.7	20
135	-125.9	-132.7	20
136	-106.5	-132.7	20
137	-87.0	-132.7	20
138	-67.6	-132.7	20
139	-48.2	-132.7	20
140	-37.9	-128.7	20
141			
	-29.7	-120.4	20
142	-21.4	-112.2	20
143	-17.4	-93.0	20
144	-17.4	-74.6	20
145	-17.4	-56.3	20
146	-17.4	-37.9	20
147	-17.4	-19.6	20
148	-17.4	-1.3	20
149	-17.4	17.1	20
150	-17.4	35.4	20
151	-17.4	53.8	20
152	-17.4	72.1	20
153	-17.4	90.5	20
154	-21.4	112.2	20
155	-0.3	-117.1	20
156	-0.2	117.9	20
157	8.8	142.3	20
158	28.1	142.3	20
159	48.0	157.3	20
160	67.9	157.3	20
161	87.7	157.3	20
162	107.6	157.3	20
163	127.4	157.3	20
164	147.3	157.3	20
165	167.1	157.3	20
166	187.0	157.3	20
167	206.8	157.3	20
168	226.7	157.3	20
169	246.5	157.3	20
170	266.4	157.3	20
171	286.2	157.3	20
172	306.1	157.3	20
173	325.9	157.3	20
174	345.8	157.3	20
175	365.7	157.3	20
176	385.5	157.3	20
177	405.4	157.3	20
178	419.5	155.6	20
179	438.3	150.6	20
180	455.9	142.4	20
181	471.8	131.3	20
182	485.6	117.5	20
183	496.7	101.6	20
184	504.9	84.0	20
185	509.9	65.2	20
. 50	307.7	00.2	20

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA 0.0.E.ZZ VI.04.A5.001 62 di 112 Pila tipo A.1 (da P1 a P11) - Relazione di calcolo IF1M CL Α

186	512.5	45.0	20
187	497.4	16.7	20
188	497.4	-1.3	20
189	8.8	-142.3	20
190	28.1	-142.3	20
191	48.0	-157.3	20
192	67.9	-157.3	20
193	87.7	-157.3	20
194	107.6	-157.3	20
195	127.4	-157.3	20
196	147.3	-157.3	20
197	167.1	-157.3	20
198	187.0	-157.3	20
199	206.8	-157.3	20
200	226.7	-157.3	20
201	246.5	-157.3	20
202	266.4	-157.3	20
203	286.2	-157.3	20
204	306.1	-157.3	20
205	325.9	-157.3	20
206	345.8	-157.3	20
207	365.7	-157.3	20
208	385.5	-157.3	20
209	405.4	-157.3	20
210	419.5	-155.6	20
211	438.3	-150.6	20
212	455.9	-142.4	20
213	471.8	-131.3	20
214	485.6	-117.5	20
215	496.7	-101.6	20
216	504.9	-84.0	20
217	509.9	-65.2	20
218	512.5	-45.0	20
219	497.4	-19.2	20
220	-10.4	142.3	20
221	-29.6	142.3	20
222	-48.2	157.3	20
223	-68.1	157.3	20
224	-87.9	157.3	20
225	-107.8	157.3	20
226	-127.6	157.3	20
227	-147.5	157.3	20
228	-167.3	157.3	20
229	-187.2	157.3	20
230	-207.0	157.3	20
231 232	-226.9 246.7	157.3	20
232	-246.7 -266.6	157.3 157.3	20 20
233 234	-200.0 -286.4	157.3	20
235	-306.3	157.3	20
236	-326.1	157.3	20
237	-346.0	157.3	20
238	-365.8	157.3	20
239	-385.7	157.3	20
240	-405.6	157.3	20
	.50.0	.07.0	20

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante: SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	TRATTA NAPOLI-CANCELLO
PROGETTISTA: Mandataria: SYSTRA S.A. Mandante: SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO Pila tipo A.1 (da P1 a P11) - Relazione di calcolo	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA IF1M 0.0.E.ZZ CL VI.04.A5.001 A 63 di 112

241	-419.7	155.6	20
242	-438.5	150.6	20
243	-456.1	142.4	20
244	-472.0	131.3	20
245	-485.7	117.5	20
246	-496.9	101.6	20
247	-505.1	84.0	20
248	-510.1	65.2	20
249	-512.6	45.0	20
250	-497.6	16.7	20
251	-497.6	-1.3	20
252	-10.4	-142.3	20
253	-29.6	-142.3	20
254	-48.2	-157.3	20
255	-68.1	-157.3	20
256	-87.9	-157.3	20
257	-107.8	-157.3	20
258	-107.6	-157.3	20
259	-127.0 -147.5	-157.3 -157.3	20
260	-147.3	-157.3 -157.3	20
261	-107.3	-157.3	20
262	-107.2	-157.3 -157.3	20
		-157.3 -157.3	
263	-226.9		20
264	-246.7	-157.3	20
265	-266.6	-157.3	20
266	-286.4	-157.3	20
267	-306.3	-157.3	20
268	-326.1	-157.3	20
269	-346.0	-157.3	20
270	-365.8	-157.3	20
271	-385.7	-157.3	20
272	-405.6	-157.3	20
273	-419.7	-155.6	20
274	-438.1	-149.5	20
275	-455.7	-141.8	20
276	-472.0	-131.3	20
277	-485.8	-117.6	20
278	-496.9	-101.6	20
279	-505.1	-84.0	20
280	-510.1	-65.2	20
281	-512.6	-45.0	20
282	-497.6	-19.2	20

ST.LIM.ULTIMI - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baric. (+ se di compressione)					
Momento flettente [daNm] intorno all'asse x princ. d'inerzia					
up. della sez.					
'inerzia					
estro della sez.					
d'inerzia y					
d'inerzia x					
Vx					

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. CODIFICA DOCUMENTO PROGETTO ESECUTIVO **PROGETTO** LOTTO REV. **PAGINA** Pila tipo A.1 (da P1 a P11) - Relazione di calcolo IF1M 0.0.E.ZZ CL VI.04.A5.001 64 di 112 Α

1	29313.89	7131.84	23978.96	0.00	0.00
2	29313.75	13842.96	15742.70	0.00	0.00
3	29922.15	8629.36	24481.71	0.00	0.00
4	29922.15	16837.18	16631.59	0.00	0.00
5	25098.08	4450.97	25885.83	0.00	0.00
6	25098.08	8479.88	22154.89	0.00	0.00
7	24582.93	14048.56	16054.41	0.00	0.00
8	24376.60	22029.41	12132.21	0.00	0.00
9	23627.17	7132.28	23977.75	0.00	0.00
10	23627.02	13843.40	15741.50	0.00	0.00
11	24235.42	8628.92	24480.51	0.00	0.00
12	24235.42	16836.74	16630.39	0.00	0.00
13	19411.36	4450.53	25884.63	0.00	0.00
14	19411.36	8479.44	22153.68	0.00	0.00
15	18896.20	14048.12	16053.21	0.00	0.00
16	18689.87	22028.97	12131.01	0.00	0.00
17	13970.36	40362.86	13958.04	0.00	0.00
18	13970.36	12108.86	46526.81	0.00	0.00

COMB. RARE/FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom. Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	20630.23	4908.85 (0.00)	16363.83 (0.00)
2	20630.13	9537.21 (0.00)	10683.65 (0.00)
3	21049.71	5941.58 (0.00)	16710.56 (0.00)
4	21049.71	11602.14 (0.00)	11296.68 (0.00)
5	17722.77	3059.92 (0.00)	17678.91 (0.00)
6	17722.77	5838.48 (0.00)	15105.85 (0.00)
7	17367.49	9678.96 (0.00)	10898.63 (0.00)
8	17225.19	15182.99 (322146.53)	8193.66 (173849.82)
9	19298.25	3702.16 (0.00)	9070.99 (0.00)
10	19298.17	7404.85 (0.00)	4526.85 (0.00)
11	19633.84	4528.90 (0.00)	9348.38 (0.00)
12	19633.84	9057.35 (0.00)	5017.28 (0.00)
13	16972.29	2223.58 (0.00)	10123.06 (0.00)
14	16972.29	4446.43 (0.00)	8064.61 (0.00)
15	16688.07	7518.81 (0.00)	4698.83 (0.00)
16	16574.23	11922.03 (0.00)	2534.86 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom. Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. CODIFICA PROGETTO ESECUTIVO **PROGETTO** LOTTO **DOCUMENTO** REV. **PAGINA** Pila tipo A.1 (da P1 a P11) - Relazione di calcolo IF1M 0.0.E.ZZ CL VI.04.A5.001 65 di 112 Α

N°Comb. N Mx My

1 13970.36 0.88 (0.00) 2.41 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.2 cm Interferro netto minimo barre longitudinali: 9.1 cm

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

Ver S = combinazione verificata / N = combin. non verificata

N Sn Sforzo normale allo snervamento [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Sn Momento di snervamento [kNm] riferito all'asse x princ. d'inerzia My Sn Momento di snervamento [kNm] riferito all'asse y princ. d'inerzia

N Ult Sforzo normale ultimo [kN] nel baricentro B sezione cls. (positivo se di compress.)

Mx Ult Momento flettente ultimo [kNm] riferito all'asse x princ. d'inerzia My Ult Momento flettente ultimo [kNm] riferito all'asse y princ. d'inerzia

Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N Ult,Mx Ult,My Ult) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature [cm²] in zona tesa (solo travi). Tra parentesi l'area minima di normativa

N°Comb	Ver	N Sn	Mx Sn	My Sn	N Ult	Mx Ult	My Ult	Mis.Sic.	As Tesa
1	S	29313.89	47724.63	157609.08	29314.18	63172.53	210150.92	8.771	
2	S	29313.75	73901.37	55241.40	29313.46	91019.70	103135.48	6.560	
3	S	29922.15	52671.06	149380.62	29922.35	69316.43	199436.02	8.133	
4	S	29922.15	75833.18	47227.87	29922.14	92624.99	90952.04	5.484	
5	S	25098.08	28870.13	170663.39	25098.11	39780.04	232837.77	8.992	
6	S	25098.08	51178.91	132873.90	25097.94	69521.51	184110.44	8.295	
7	S	24582.93	68651.79	48848.42	24582.84	85032.26	96315.94	6.021	
8	S	24376.60	72022.01	21685.99	24376.52	86645.97	47976.42	3.938	
9	S	23627.17	43431.05	144420.59	23627.08	60224.24	199196.23	8.318	
10	S	23627.02	67611.53	47319.37	23627.09	83827.01	94397.07	6.021	
11	S	24235.42	48877.81	135030.06	24235.13	66971.69	187307.11	7.663	
12	S	24235.42	69346.69	40584.19	24235.13	85239.02	83411.29	5.039	
13	S	19411.36	25765.47	154336.39	19411.15	37278.61	218983.50	8.457	
14	S	19411.36	46748.80	118647.48	19411.28	65797.25	172478.83	7.782	
15	S	18896.20	61984.11	42745.41	18896.20	77528.24	88652.12	5.520	
16	S	18689.87	64864.55	18851.05	18689.86	78775.21	43438.06	3.577	
17	S	13970.36	59605.72	10431.26	13970.08	72428.93	25048.09	1.794	
18	S	13970.36	32003.41	125808.58	13970.08	48235.49	186795.45	4.013	

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
ec 3/7	Deform. unit. del conglomerato nella fibra a 3/7 dell'altezza efficace
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. CODIFICA PROGETTO ESECUTIVO LOTTO DOCUMENTO REV. PAGINA **PROGETTO** Pila tipo A.1 (da P1 a P11) - Relazione di calcolo IF1M 0.0.E.ZZ CL VI.04.A5.001 66 di 112 Α

s max s max	Ascissa in c	m della barra c	orrisp. a es ma	ax (sistema rif.)	(,Ý,O sez.)				
nb ec max	ec 3/7	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
0.00350	-0.00105	465.8	145.4	0.00339	455.9	142.4	-0.00700	-455.7	-141.8
0.00292	-0.00273	406.1	165.0	0.00267	405.4	157.3	-0.01000	-405.6	-157.3
0.00350	-0.00102	436.2	159.4	0.00338	438.3	150.6	-0.00692	-455.7	-141.8
0.00275	-0.00282	406.1	165.0	0.00250	405.4	157.3	-0.01000	-405.6	-157.3
0.00350	-0.00162	479.6	135.3	0.00339	485.6	117.5	-0.00833	-485.8	-117.6
0.00350	-0.00140	436.2	159.4	0.00336	438.3	150.6	-0.00777	-438.1	-149.5
0.00264	-0.00288	406.1	165.0	0.00240	405.4	157.3	-0.01000	-405.6	-157.3
0.00205	-0.00323	406.1	165.0	0.00178	405.4	157.3	-0.01000	-405.6	-157.3
0.00350	-0.00149	465.8	145.4	0.00338	455.9	142.4	-0.00801	-455.7	-141.8
0.00259	-0.00291	406.1	165.0	0.00234	405.4	157.3	-0.01000	-405.6	-157.3
0.00350	-0.00145	436.2	159.4	0.00337	438.3	150.6	-0.00789	-438.1	-149.5
0.00246	-0.00299	406.1	165.0	0.00220	405.4	157.3	-0.01000	-405.6	-157.3
0.00350	-0.00221	479.6	135.3	0.00338	485.6	117.5	-0.00970	-485.8	-117.6
0.00350	-0.00195	436.2	159.4	0.00334	438.3	150.6	-0.00904	-438.1	-149.5
0.00237	-0.00304	406.1	165.0	0.00213	405.4	157.3	-0.01000	-405.6	-157.3
0.00186	-0.00333	406.1	165.0	0.00160	405.4	157.3	-0.01000	-405.6	-157.3
0.00158	-0.00349	406.1	165.0	0.00132	405.4	157.3	-0.01000	-405.6	-157.3
0.00340	-0.00240	465.8	145.4	0.00326	455.9	142.4	-0.01000	-472.0	-131.3
	max max nb ec max 0.00350 0.00292 0.00350 0.00275 0.00350 0.00264 0.00205 0.00350 0.00259 0.00350 0.00246 0.00350 0.00246 0.00350 0.00237 0.00186 0.00158	max Ascissa in condinata in co	max max Ascissa in cm della barra dell	max max Ascissa in cm della barra corrisp. a es max ordinata in cm della barra corrisp. a es max nb ec max ec 3/7 Xc max Yc max 0.00350 -0.00105 465.8 145.4 0.00292 -0.00273 406.1 165.0 0.00350 -0.00102 436.2 159.4 0.00275 -0.00282 406.1 165.0 0.00350 -0.00162 479.6 135.3 0.00350 -0.00140 436.2 159.4 0.00264 -0.00288 406.1 165.0 0.00205 -0.00323 406.1 165.0 0.00350 -0.00149 465.8 145.4 0.00259 -0.00291 406.1 165.0 0.00350 -0.00145 436.2 159.4 0.00246 -0.00299 406.1 165.0 0.00350 -0.00145 436.2 159.4 0.00246 -0.00299 406.1 165.0 0.00350 -0.00145 436.2 159.4	max Ascissa in cm della barra corrisp. a es max (sistema rif. 2 max) nb ec max ec 3/7 Xc max Yc max es min 0.00350 -0.00105 465.8 145.4 0.00339 0.00292 -0.00273 406.1 165.0 0.00267 0.00350 -0.00102 436.2 159.4 0.00338 0.00275 -0.00282 406.1 165.0 0.00250 0.00350 -0.00162 479.6 135.3 0.00339 0.00350 -0.00140 436.2 159.4 0.00336 0.00264 -0.00288 406.1 165.0 0.00240 0.00205 -0.00323 406.1 165.0 0.00240 0.00350 -0.00149 465.8 145.4 0.00338 0.00259 -0.00291 406.1 165.0 0.00234 0.00350 -0.00145 436.2 159.4 0.00337 0.00246 -0.00299 406.1 165.0 0.00220 0.00350 -0.00145 436.2	max Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.) max Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.) nb ec max ec 3/7 Xc max Yc max es min Xs min 0.00350 -0.00105 465.8 145.4 0.00339 455.9 0.00292 -0.00273 406.1 165.0 0.00267 405.4 0.00350 -0.00102 436.2 159.4 0.00338 438.3 0.00275 -0.00282 406.1 165.0 0.00250 405.4 0.00350 -0.00162 479.6 135.3 0.00336 438.3 0.00264 -0.00288 406.1 165.0 0.00240 405.4 0.00205 -0.00323 406.1 165.0 0.00178 405.4 0.00350 -0.00249 406.1 165.0 0.00178 405.4 0.00350 -0.00291 406.1 165.0 0.00234 405.4 0.00350 -0.00291 406.1 165.0 0.00234 405.	max Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.) max Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.) nb ec max ec 3/7 Xc max Yc max es min Xs min Ys min 0.00350 -0.00105 465.8 145.4 0.00339 455.9 142.4 0.00292 -0.00273 406.1 165.0 0.00267 405.4 157.3 0.00350 -0.00102 436.2 159.4 0.00338 438.3 150.6 0.00275 -0.00282 406.1 165.0 0.00250 405.4 157.3 0.00350 -0.00162 479.6 135.3 0.00339 485.6 117.5 0.00350 -0.00140 436.2 159.4 0.00336 438.3 150.6 0.00264 -0.00288 406.1 165.0 0.00240 405.4 157.3 0.00205 -0.00323 406.1 165.0 0.00178 405.4 157.3 0.00350 -0.00291 406.1 165.0 <td>max Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.) max Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.) nb ec max ec 3/7 Xc max Yc max es min Xs min Ys min es max 0.00350 -0.00105 465.8 145.4 0.00339 455.9 142.4 -0.00700 0.00292 -0.00273 406.1 165.0 0.00267 405.4 157.3 -0.01000 0.00350 -0.00102 436.2 159.4 0.00338 438.3 150.6 -0.00692 0.00275 -0.00282 406.1 165.0 0.00250 405.4 157.3 -0.01000 0.00350 -0.00162 479.6 135.3 0.00339 485.6 117.5 -0.00833 0.00350 -0.00140 436.2 159.4 0.00336 438.3 150.6 -0.00777 0.00264 -0.00288 406.1 165.0 0.00240 405.4 157.3 -0.01000 0.00350 -0.00149 465.8</td> <td>max max Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.) max Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.) nb ec max ec 3/7 Xc max Yc max es min Xs min Ys min es max Xs max 0.00350 -0.00105 465.8 145.4 0.00339 455.9 142.4 -0.00700 -455.7 0.00292 -0.00273 406.1 165.0 0.00267 405.4 157.3 -0.01000 -405.6 0.00350 -0.00102 436.2 159.4 0.00338 438.3 150.6 -0.00692 -455.7 0.00275 -0.00282 406.1 165.0 0.00250 405.4 157.3 -0.01000 -405.6 0.00350 -0.00162 479.6 135.3 0.00339 485.6 117.5 -0.00833 -485.8 0.00350 -0.00140 436.2 159.4 0.00336 438.3 150.6 -0.00777 -438.1 0.00264 -0.00288 406.1 165.0 0.00240</td>	max Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.) max Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.) nb ec max ec 3/7 Xc max Yc max es min Xs min Ys min es max 0.00350 -0.00105 465.8 145.4 0.00339 455.9 142.4 -0.00700 0.00292 -0.00273 406.1 165.0 0.00267 405.4 157.3 -0.01000 0.00350 -0.00102 436.2 159.4 0.00338 438.3 150.6 -0.00692 0.00275 -0.00282 406.1 165.0 0.00250 405.4 157.3 -0.01000 0.00350 -0.00162 479.6 135.3 0.00339 485.6 117.5 -0.00833 0.00350 -0.00140 436.2 159.4 0.00336 438.3 150.6 -0.00777 0.00264 -0.00288 406.1 165.0 0.00240 405.4 157.3 -0.01000 0.00350 -0.00149 465.8	max max Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.) max Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.) nb ec max ec 3/7 Xc max Yc max es min Xs min Ys min es max Xs max 0.00350 -0.00105 465.8 145.4 0.00339 455.9 142.4 -0.00700 -455.7 0.00292 -0.00273 406.1 165.0 0.00267 405.4 157.3 -0.01000 -405.6 0.00350 -0.00102 436.2 159.4 0.00338 438.3 150.6 -0.00692 -455.7 0.00275 -0.00282 406.1 165.0 0.00250 405.4 157.3 -0.01000 -405.6 0.00350 -0.00162 479.6 135.3 0.00339 485.6 117.5 -0.00833 -485.8 0.00350 -0.00140 436.2 159.4 0.00336 438.3 150.6 -0.00777 -438.1 0.00264 -0.00288 406.1 165.0 0.00240

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità a rottura in presenza di sola fless.(travi)
C.Rid.	Coeff. di riduz. momenti per sola flessione in travi continue

Deform. unit. massima nell'acciaio (positiva se di compress.)

es max

N°Comb	a	b	С	x/d	C.Rid.
1	0.000007231	0.000013359	-0.001810870		
2	0.000003168	0.000032100	-0.003666092		
3	0.000006700	0.000014737	-0.001772150		
4	0.000002697	0.000032771	-0.003751380		
5	0.000009736	0.000009614	-0.002469675		
6	0.000006846	0.000017117	-0.002214967		
7	0.000002846	0.000032066	-0.003801848		
8	0.000001268	0.000034189	-0.004107832		
9	0.000007928	0.000014646	-0.002322454		
10	0.000002768	0.000032083	-0.003830726		
11	0.000007163	0.000016610	-0.002272494		
12	0.000002368	0.000032689	-0.003897711		
13	0.000010948	0.000010393	-0.003156047		
14	0.000007408	0.000019632	-0.002861399		
15	0.000002560	0.000031945	-0.003937070		
16	0.000001134	0.000033958	-0.004198655		
17	0.000000647	0.000034310	-0.004340798		
18	0.000009920	0.000014824	-0.003372107		

COMBINAZIONI RARE/FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. CODIFICA DOCUMENTO PROGETTO ESECUTIVO **PROGETTO** LOTTO REV. **PAGINA** Pila tipo A.1 (da P1 a P11) - Relazione di calcolo IF1M 0.0.E.ZZ CL VI.04.A5.001 67 di 112 Α

Ver S = comb. verificata/ N = comb. non verificata

Sc max Massima tensione (positiva se di compressione) nel conglomerato [Mpa] Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)

Sf min Minima tensione (negativa se di trazione) nell'acciaio [Mpa]

Xs min, Ys min
Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)
Ac eff.
As eff.
As eff.
Area barre [cm²] in zona tesa considerata aderente alle barre
Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure
D barre
Distanza tre le barre tese [cm] ai fini del calcolo dell'apertura fessure

Beta12 Prodotto dei coeff. di aderenza delle barre Beta1*Beta2

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.	D barre	Beta12
1	S	2.66	440.8	114.0	10.9	-455.7	-141.8				
2	S	2.74	409.5	124.6	8.6	-419.7	-155.6				
3	S	2.77	429.3	119.7	10.1	-455.7	-141.8				
4	S	2.93	409.5	124.6	6.3	-419.7	-155.6				
5	S	2.36	452.6	105.7	8.4	-472.0	-131.3				
6	S	2.42	429.3	119.7	6.9	-438.1	-149.5				
7	S	2.48	409.5	124.6	4.2	-419.7	-155.6				
8	S	2.73	409.5	124.6	-1.3	-405.6	-157.3	359	6.3	14.3	1.00
9	S	2.20	429.3	119.7	14.9	-438.1	-149.5				
10	S	2.27	409.5	124.6	12.9	-405.6	-157.3				
11	S	2.29	429.3	119.7	14.2	-438.1	-149.5				
12	S	2.42	409.5	124.6	11.0	-405.6	-157.3				
13	S	1.95	452.6	105.7	12.9	-472.0	-131.3				
14	S	2.01	429.3	119.7	11.6	-419.7	-155.6				
15	S	2.06	409.5	124.6	9.3	-405.6	-157.3				
16	S	2.26	400.1	125.0	4.9	-405.6	-157.3				

COMBINAZIONI RARE/FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§B.6.6 DM96]

	La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm										
Ver.	Esito della verifica										
S1	Massima tensione [Mpa] di trazione nel calcestruzzo valutata in sezione non fessurata										
S2	Minima tensione [Mpa] di trazione nel calcestruzzo valutata in sezione fessurata										
k2	= 0.4 per barre ad aderenza migliorata										
k3	= 0.125 per flessione e presso-flessione; = $(e1 + e2)/(2*e1)$ per trazione eccentrica										
Ø	Diametro [mm] medio delle barre tese comprese nell'area efficace Ac eff										
Cf	Copriferro [mm] netto calcolato con riferimento alla barra più tesa										
Psi	= 1-Beta12*(Ssr/Ss) ² = 1-Beta12*(fctm/S2) ² = 1-Beta12*(Mfess/M) ² [B.6.6 DM96]										
e sm	Deformazione unitaria media tra le fessure [4.3.1.7.1.3 DM96]. Il valore limite = 0.4*Ss/Es è tra parentesi										
srm	Distanza media tra le fessure [mm]										
wk	Valore caratteristico [mm] dell'apertura fessure = 1.7 * e sm * srm . Valore limite tra parentesi										
MX fess.	Componente momento di prima fessurazione intorno all'asse X [kNm]										
MY fess.	Componente momento di prima fessurazione intorno all'asse Y [kNm]										
omh Ver	S1 S2 k3 Ø Cf Psi asm srm wk Mv										

Comb.	Ver	S1	S2	k3	Ø	Cf	Psi	e sm	srm	wk	Mx fess	My fess
1	S	0.7	0								0.00	0.00
2	S	0.5	0								0.00	0.00
3	S	0.6	0								0.00	0.00
4	S	0.4	0								0.00	0.00
5	S	0.5	0								0.00	0.00
6	S	0.4	0								0.00	0.00
7	S	0.2	0								0.00	0.00
8	S	-0.1	0	0.125	20	67-4	149.187	0.00000 (0.00000)	220	0.001 (0.20)	322146.53	173849.82
9	S	1.0	0								0.00	0.00
10	S	0.8	0								0.00	0.00

APPALTATORE: Mandataria:			Mandante:				LIN				A NAPOI		RI		
SALINI IMPREGILO	O S.p.A.		ASTALDI S	.p.A.			TRATTA NAPOLI-CANCELLO IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE								
PROGETTISTA:											BITO DEGL	-			
Mandataria:	Mand					CI					TITO IN LE				
SYSTRA S.A.	SY	STRA-SOTEC	NI S.p.A.	ROCKS	OIL S.p.A.								.,		
PROGETTO ESEC	UTIVO					PROC	GETTO	LOTTO	CODII	FICA [OOCUMENTO	REV.	PAGINA		
Pila tipo A.1 (da P	1 a P11)	- Relazione di	i calcolo			IF	1M	0.0.E.ZZ	CI	-	VI.04.A5.001	Α	68 di 112		
11	S	0.9	0									0.00	0.00		
12	S	0.7	0									0.00	0.00		
13	S	0.9	0									0.00			
14	S	8.0	0									0.00			
15	S	0.6	0									0.00			
16	S	0.3	0									0.00	0.00		
COMBIN	JA7ION	I QUASI PERI	MANFNTII	N ESERC	:1710 - M	ASSIMF T	FNSIO	NI NORMA	LLED AP	FRTURA	FESSURE				
OOMBII	. IZIOI	T QUALITY EN	VII (14 E VII 1	LOLINO	71210 IVI	NOOHNE 1	LITOIO	W WORW	LI LD 711	Littoita	T ESSORE				
N°Comb	Ver	Sc max	Kc max Yc	max	Sf min X	s min Ys	min	Ac eff.	As eff.	D barre	e Beta12				
1	C	1 10	400 F 1	24.7	177	4107 1	<i>/</i>								
1	S	1.18	409.5 1	24.6	17.7 -	419.7 -1!	55.6								
COMBIN	IAZION	I QUASI PERI	MANENTI I	N ESERC	IZIO - AP	ERTURA I	FESSUI	RE [§B.6.6	DM96]						
					. ~	0.5									
Comb.	Ver	S1	S2	k:	3 Ø	Cf	Psi		e sm	srm	wk	Mx fess	My fess		
1	S	1.2	0									0.00	0.00		
VERIFIC bw h c d	CA A TA = = = =	GLIO IN DIRE 80 1040 5.5 h-c	ZIONE X cm cm cm	1034.5	cm										
MATERI		004.00	145												
fywd	=	391.30	MPa												
Rck	=	40	MPa												
gc	=	1.5	a												
fck	=	0.83xRcl		33.2	MPa										
fcd	=	0.85xfck/	/gc	=	18.81	MPa									
ARMATI	IDE A T	TACLIO													
øst	=	14													
braccia	=	4													
øst2	=	0													
braccia	=	0													
passo	=	20	cm												
(Asw / s)		30.788	cm2 / m	(0.00											
а	=	90	0	(90° sta	iffe vertica	lı)									
ARMATI	JRE LO	NGITUDINALI													
øl	=	20													
Numero	=	4													
Asl	=	12.566	cm2												
TAGLIO	AGFNT	ΓE	VEd =	5280	(KN)										
SFORZO			Ned =	13970	(KN)										
,, <u>, , , , , , , , , , , , , , , , , ,</u>					/										

ELEMENTI SENZA ARMATURA A TAGLIO

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA **DOCUMENTO** REV. **PAGINA** Pila tipo A.1 (da P1 a P11) - Relazione di calcolo IF1M 0.0.E.ZZ VI.04.A5.001 69 di 112 CL Α

k 1.14 0.245 vmin 0.0002 1.6791 scp (Mpa) VRd 2984.77 (KN) NO 4113.405468 (KN) VRd 4113.41 (KN) 1.0893 Ned/Ac= 1.6791 ac (Mpa) ELEMENTI CON ARMATURA A TAGLIO IPOTESI 1 q = 21,8° Cot q = 2.5Armatura trasversale VRsd = 28041.65 (KN) VRcd = 26316.56 (KN)VRd = 26316.56 (KN) min(VRsd, VRcd) IPOTESI 2 Cot q = 1 $q = 45^{\circ}$ Armatura trasversale VRsd = 11216.66 (KN) VRcd = 38159.02 (KN)VRd = 11216.66 (KN) min(VRsd, VRcd) **IPOTESI 3** Cot q in cui VRsd=VRcd :Rottura bilanciata (calcolato) cot(q) = 2.41cot(q) = 2.41(limitato) 22.54 $\dot{V}Rsd = 27022.58 (KN)$ VRcd = 27022.58 (KN) VRd = 27022.58 (KN) MASSIMO TAGLIO RESISTENTE VRd = 27023 (KN) VERIFICA A TAGLIO IN DIREZIONE Y 130 cm 330 cm h 5.5 C. cm h-c 324.5 cm MATERIALI 391.30 fywd MPa Rck 40 MPa 1.5 gc fck 0.83xRck =33.2 MPa fcd 0.85xfck/gc 18.81 MPa

ARMATURE A TAGLIO

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA **DOCUMENTO** REV. **PAGINA** Pila tipo A.1 (da P1 a P11) - Relazione di calcolo IF1M 0.0.E.ZZ VI.04.A5.001 70 di 112 CL Α

14 øst braccia 6 øst2 0 0 braccia 20 passo cm (Asw/s) =46.2 cm2/m 90 (90° staffe verticali)

ARMATURE LONGITUDINALI

 $\emptyset I = 20$ Numero = 7

Asl = 21.991 cm2

TAGLIO AGENTE VEd = 6471 (KN) SFORZO NORMALE Ned = 13970 (KN)

ELEMENTI SENZA ARMATURA A TAGLIO

k = 1.25 vmin = 0.281 rl = 0.0005 scp = 3.2565 (Mpa)

VRd = 2819.30 (KN) NO 3247.087791 (KN)

VRd = 3247.09 (KN)

ac = 1.1731 Ned/Ac= 3.2565 (Mpa)

ELEMENTI CON ARMATURA A TAGLIO

IPOTESI 1 Cot q = 2.5 $q = 21.8^{\circ}$

Armatura trasversale

VRsd = 13194.08 (KN)

VRcd = 14446.79 (KN)

VRd = 13194.08 (KN) min(VRsd, VRcd)

IPOTESI 2 Cot q = 1 $q = 45^{\circ}$

Armatura trasversale

VRsd = 5277.63 (KN)

VRcd = 20947.85 (KN)

VRd = 5277.63 (KN) min(VRsd, VRcd)

q= 20.79

 $\dot{V}Rsd = 13901.68 (KN)$

VRcd = 13901.68 (KN)

VRd = 13901.68 (KN)

MASSIMO TAGLIO RESISTENTE

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA Pila tipo A.1 (da P1 a P11) - Relazione di calcolo 0.0.E.ZZ VI.04.A5.001 71 di 112 IF1M CL Α

VRd = 13195 (KN)

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante: SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	TRATTA NAPOLI-CANCELLO
PROGETTISTA: Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Pila tipo A.1 (da P1 a P11) - Relazione di calcolo	IF1M 0.0.E.ZZ CL VI.04.A5.001 A 72 di 112

11 ANALISI DEI RISULTATI: SOLLECITAZIONI E VERIFICHE DEL SISTEMA DI FONDAZIONE

Nei paragrafi successivi si forniscono le sollecitazioni e le verifiche strutturali relative al sistema di fondazione. In particolare, le verifiche strutturali esibite riguardano il plinto di fondazione e la palificata relativi alla pila di altezza massima, fra quelle in esame aventi medesima tipologia di armatura.

I dati identificativi del sistema di fondazione sono sintetizzati nei prospetti di seguito:

PROPRIETA' MECO	PROPRIETA' MECCANICHE E GEOMETRICHE PLINTO DI FONDAZIONE							
Sigla plinto	F1	-	Tipologia plinto per geometria					
γ	25	kN/m³	Peso per unità di volume					
f _{ck}	28	MPa	Resistenza cilindrica caratteristica del calcestruzzo					
B _T	16.5	m	Dimensione plinto in pianta in direz. trasversale rispetto all'asse del viadotto					
B_L	12.0	m	Dimensione plinto in pianta in direz. longitudinale rispetto all'asse del viadotto					
s	2.0	m	Spessore del plinto					
P _{plinto}	9900	kN	Peso del plinto					
m _{plinto}	1009	kN/m/s ²	Massa del plinto					
S _{terr}	1.2	m	Spessore medio ricoprimento					

PROPRIETA' MECCANICHE E GEOMETRICHE PALI DI FONDAZIONE						
γ	25	kN/m ³	Peso per unità di volume			
f _{ck}	25	MPa	Resistenza cilindrica caratteristica del calcestruzzo			
n_L	4	-	Numero file in direzione longitudinale			
n _T	3	-	Numero file in direzione trasversale			
n	12	-	Numero pali			
ф	1500	mm	Diametro pali			

Le coodinate dei pali, rispetto al baricentro del plinto di fondazione, sono riportate di seguito; il sistema di riferimento adottato fa riferimento alle seguenti direzioni:

- x: Direzione trasversale rispetto all'asse del viadotto
- y: Direzione parallela all'asse del viadotto

L'origine del sistema di riferimento coincide con il baricentro del plinto di fondazione.

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI				
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO				
PROGETTISTA: Mandataria: Mandataria: Mandante:	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014				
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	,				
PROGETTO ESECUTIVO Pila tipo A.1 (da P1 a P11) - Relazione di calcolo	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA IF1M 0.0.E.ZZ CL VI.04.A5.001 A 73 di 112				

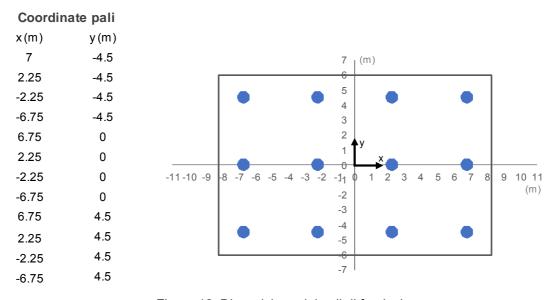


Figura 12: Disposizione dei pali di fondazione

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. ROCKSOIL S.p.A. SYSTRA-SOTECNI S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA DOCUMENTO REV. **PAGINA** Pila tipo A.1 (da P1 a P11) - Relazione di calcolo IF1M 0.0.E.ZZ CL VI.04.A5.001 74 di 112 Α

11.1 SOLLECITAZIONI AGENTI

Per le combinazioni di carico statiche, le sollecitazioni ad intradosso plinto sono state ottenute a partire da quelle indotte a base pila, tenendo conto del peso del plinto di fondazione, del carico permanente dovuto al peso del ricoprimento sul plinto, valutato considerandone uno spessore medio, e dell'eccentricità tra la sezione di spiccato e quella di intradosso del plinto (spessore della fondazione).

In condizione sismica, invece, secondo quanto prescritto nel par.7.2.5 del DM 14.1.2008, per le strutture progettate in CD "B" il dimensionamento delle strutture di fondazione e la verifica di sicurezza del complesso fondazione-terreno devono essere eseguiti assumendo come azioni in fondazione le resistenze degli elementi strutturali soprastanti.

Più precisamente, la forza assiale negli elementi strutturali verticali derivante dalla combinazione delle azioni deve essere associata al concomitante valore resistente del momento flettentee del taglio; si richiede tuttavia che tali azioni risultino non maggiori di quelle trasferite dagli elementi soprastanti, amplificate con un γ_{Rd} pari a 1,1 in CD "B", e comunque non maggiori di quelle derivanti da una analisi elastica della struttura in elevazione eseguita con un fattore di struttura q pari a 1.

Ciò significa che le azioni di taglio e momento di verifica della fondazione devono essere pari ai valori minimi risultanti da questi tre casi sopraelencati, per i quali si riporta un riepilogo nei prospetti di seguito.

SOLLECITAZIONI SISMICHE BASE PILA PER q=1							
Combinazioni di carico	N	Ht	HI	Mt	MI		
SLV-EL+0.3ET	-13970	1730	7633	10378	45799		
SLV-0.3EL+ET	-13970	5766	2290	34595	13740		

SOLLECITAZIONI SISMICHE CON COEFF. DI SOVRARESISTENZA γ Rd = 1.1								
Combinazioni di carico N Ht HI Mt MI								
SLV-EL+0.3ET	-13970	1742	7119	15354	44399			
SLV-0.3EL+ET	-13970	5808	2136	51179	13320			

SOLLECITAZIONI RESISTENTI S _{Rd}							
Combinazioni di carico	N	Ht	HI	Mt	MI		
SLV-EL+0.3ET	-13970	27023	13195	219934	73570		
SLV-0.3EL+ET	-13970	27023	13195	219934	73570		

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante: SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	TRATTA NAPOLI-CANCELLO
PROGETTISTA: Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO Pila tipo A.1 (da P1 a P11) - Relazione di calcolo	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA IF1M 0.0.E.ZZ CL VI.04.A5.001 A 75 di 112

Nel caso in esame, dunque, considerando il minimo dei valori individuati nei prospetti sopra riportati, risulta:

SOLLECITAZIONI SISMICHE BASE PILA DI PROGETTO PER CALCOLO PLINTO								
Combinazioni di carico N Ht HI Mt MI								
SLV-EL+0.3ET	-13970	1730	7119	10378	44399			
SLV-0.3EL+ET	-13970	5766	2136	34595	13320			

Alle sollecitazioni sismiche base pila, di progetto per il calcolo del plinto, va sommata la forza di inerzia relativa alla parte inferiore della pila (semialtezza inferiore del fusto e plinto), calcolata con riferimento allo spettro di risposta elastico.

Di seguito sono sintetizzate le sollecitazioni ad intradosso plinto ricavate per ciascuna delle combinazioni di carico considerate.

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA 76 di 112 Pila tipo A.1 (da P1 a P11) - Relazione di calcolo IF1M 0.0.E.ZZ CL VI.04.A5.001 Α

Combinazioni di carico		SOLLECITA	AZIONI INTRADOS	SO PLINTO	
Combinazioni di carico	N	Ht	HI	Mt	MI
-	kN	kN	kN	kNm	kNm
SLU-Gr.1(N)	-48752	2272	1197	28523	9526
SLU-Gr.3(N)	-48752	1520	2254	18783	18351
SLU-Gr.1(P)	-49361	2202	1433	28885	11495
SLU-Gr.3(P)	-49361	1485	2725	19601	22287
SLU-Gr.1-1SW/2	-44537	1449	775	28785	6001
SLU-Gr.3-1SW/2	-44537	1109	1409	24372	11298
SLU-Gr.1-MaxML(P)	-44021	1490	1433	19035	16914
SLU-Gr.3-MaxML(P)	-43815	1133	2725	14398	27479
SLU-Gr.1(N)-Gk=1.00	-38026	2272	1197	28522	9526
SLU-Gr.3(N)-Gk=1.00	-38026	1520	2254	18782	18351
SLU-Gr.1(P)-Gk=1.00	-38634	2202	1433	28884	11494
SLU-Gr.3(P)-Gk=1.00	-38634	1485	2725	19600	22287
SLU-Gr.1-1SW/2-Gk=1.00	-33810	1449	775	28784	6000
SLU-Gr.3-1SW/2-Gk=1.00	-33810	1109	1409	24371	11298
SLU-Gr.1-MaxML(P)-Gk=1.00	-33295	1490	1433	19034	16914
SLU-Gr.3-MaxML(P)-Gk=1.00	-33089	1133	2725	14397	27479
SLV-EL+0.3ET	-28369	2678	10279	14786	61797
SLV-0.3EL+ET	-28369	8926	3084	49287	18539
SLE-C-Gr.1(N)	-35029	1549	822	19463	6554
SLE-C-Gr.3(N)	-35029	1031	1551	12745	12639
SLE-C-Gr.1(P)	-35449	1501	985	19712	7911
SLE-C-Gr.3(P)	-35449	1006	1876	13309	15354
SLE-C-Gr.1-1SW/2	-32122	982	531	19643	4122
SLE-C-Gr.3-1SW/2	-32122	747	969	16600	7776
SLE-C-Gr.1-MaxML (P)	-31766	1010	985	12919	11649
SLE-C-Gr.3-MaxML (P)	-31624	764	1876	9721	18935
SLE-F-Gr.1(N)	-33697	830	583	10731	4868
SLE-F-Gr.3(N)	-33697	415	1166	5357	9737
SLE-F-Gr.1(P)	-34033	791	713	10930	5955
SLE-F-Gr.3(P)	-34033	396	1426	5808	11909
SLE-F-Gr.1-1SW/2	-31371	376	350	10875	2924
SLE-F-Gr.3-1SW/2	-31371	188	700	8441	5846
SLE-F-Gr.1-MaxML (P)	-31087	398	713	5496	8945
SLE-F-Gr.3-MaxML (P)	-30973	201	1426	2937	14774
SLE-QP	-28369	0	0	2	1

Tabella 9: Sollecitazioni a quota intradosso plinto

APPALTATORE:		LIN	EA FEF	ROVIA	RIA NAPOL	_I - B/	ARI
Mandataria:	Mandante:		TRATT	A NAPO	LI-CANCE	LLO	
SALINI IMPREGILO S.p.A.	ASTALDI S.p.A.			_			UCELE
PROGETTISTA:					00 E PK 15+58 MBITO DEGL	,	
Mandataria: Mandante:				•	ERTITO IN LE		
SYSTRA S.A. SYSTRA-SOTE	ECNI S.p.A. ROCKSOIL S.p.A.	COLAL	7.L. 133/2	014, 00111		30L 10	7/2017
PROGETTO ESECUTIVO		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Pila tipo A.1 (da P1 a P11) - Relazione	di calcolo	IF1M	0.0.E.ZZ	CL	VI.04.A5.001	Α	77 di 112

Per ricavare le sollecitazioni agenti nei pali di fondazione è stata considerato un modello di plinto rigido, in cui l'azione assiale nei pali viene valutata assumendo una rotazione rigida del plinto (palo impedito di ruotare in testa), tenendo poi conto, in maniera approssimata mediante la definizione di un apposito coefficiente, degli effetti flessionali sui pali dovuti ai carichi trasmessi dalla pila, come mostrato nelle immagini riportate di seguito.

Lo sforzo normale nei pali è quindi calcolato come segue:

$$N_i = \frac{N_{Ed}}{n} \pm \frac{(M_{Ed})d_i}{\sum_i d_i^2}$$

Le azioni di taglio sono suddivise equamente tra i pali, mentre il momento agente a quota testa pali è direttamente proporzionale al taglio mediante un coefficiente α (espresso in metri):

$$M_i(V_{Ed}) = \alpha \frac{V_{Ed}}{n}$$

Il coefficiente α dipende dalle caratteristiche di rigidezza relative palo-terreno e dunque dall'eventuale liquefacibilità del suolo. Generalmente, la sua applicazione fornisce un valore del momento sollecitante conservativo. Fissato il diametro del palo sono definiti i seguenti valori:

D _{palo} (m)	CONDIZIONI DEL TERRENO	α(m)
1.5	Potenzialmente liquefacibile	4.0

Si rimanda alla relazione geotecnica per maggiori dettagli relativi al calcolo di tale parametro.

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante: SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	TRATTA NAPOLI-CANCELLO
PROGETTISTA: Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO Pila tipo A.1 (da P1 a P11) - Relazione di calcolo	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA IF1M 0.0.E.ZZ CL VI.04.A5.001 A 78 di 112

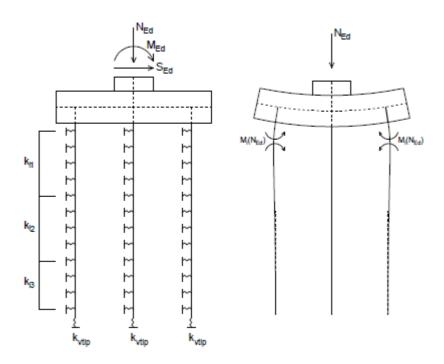


Figura 13: Modello del plinto su pali (a sinistra) ed effetto flessionale su pali dovuto al carico assiale agente sul plinto (a destra)

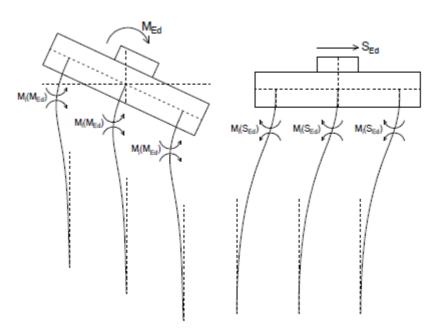


Figura 14: Effetto flessionale sui pali dovuti al momento flettente (a sinistra) e al taglio (a destra) agenti sul plinto

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante: SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	TRATTA NAPOLI-CANCELLO
PROGETTISTA: Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Pila tipo A.1 (da P1 a P11) - Relazione di calcolo	IF1M 0.0.E.ZZ CL VI.04.A5.001 A 79 di 112

Di seguito si mostrano le sollecitazioni relative al palo più sollecitato.

Combinazioni di carico		SOLLECIT	AZIONI MASSIM	E NEI PALI D	I FONDAZIO	NE	
Combinazioni di carico	N _{Ed} /n	(Mt*di/?di^2)	(MI*di/?di^2)	N_{min}	N _{max}	$V_{ris,max}$	M _{max}
-	kN	kN	kN	kN	kN	kN	kNm
SLU-Gr.1(N)	-4063	-634	-265	-4961	-3164	214	856
SLU-Gr.3(N)	-4063	-417	-510	-4990	-3136	227	906
SLU-Gr.1(P)	-4113	-642	-319	-5075	-3152	219	876
SLU-Gr.3(P)	-4113	-436	-619	-5168	-3059	259	1034
SLU-Gr.1-1SW/2	-3711	-640	-167	-4518	-2905	137	548
SLU-Gr.3-1SW/2	-3711	-542	-314	-4567	-2856	149	598
SLU-Gr.1-MaxML(P)	-3668	-423	-470	-4561	-2776	172	689
SLU-Gr.3-MaxML(P)	-3651	-320	-763	-4735	-2568	246	984
SLU-Gr.1(N)-Gk=1.00	-3169	-634	-265	-4067	-2270	214	856
SLU-Gr.3(N)-Gk=1.00	-3169	-417	-510	-4096	-2242	227	906
SLU-Gr.1(P)-Gk=1.00	-3220	-642	-319	-4181	-2258	219	876
SLU-Gr.3(P)-Gk=1.00	-3220	-436	-619	-4274	-2165	259	1034
SLU-Gr.1-1SW/2-Gk=1.00	-2818	-640	-167	-3624	-2011	137	548
SLU-Gr.3-1SW/2-Gk=1.00	-2818	-542	-314	-3673	-1962	149	598
SLU-Gr.1-MaxML(P)-Gk=1.00	-2775	-423	-470	-3667	-1882	172	689
SLU-Gr.3-MaxML(P)-Gk=1.00	-2757	-320	-763	-3841	-1674	246	984
SLV-EL+0.3ET	-2364	-329	-1717	-4409	-319	885	3541
SLV-0.3EL+ET	-2364	-1095	-515	-3974	-754	787	3148
SLE-C-Gr.1(N)	-2919	-433	-182	-3534	-2305	146	585
SLE-C-Gr.3(N)	-2919	-283	-351	-3553	-2285	155	621
SLE-C-Gr.1(P)	-2954	-438	-220	-3612	-2296	150	598
SLE-C-Gr.3(P)	-2954	-296	-427	-3676	-2232	177	710
SLE-C-Gr.1-1SW/2	-2677	-437	-115	-3228	-2126	93	372
SLE-C-Gr.3-1SW/2	-2677	-369	-216	-3262	-2092	102	408
SLE-C-Gr.1-MaxML (P)	-2647	-287	-324	-3258	-2037	118	470
SLE-C-Gr.3-MaxML (P)	-2635	-216	-526	-3377	-1893	169	675
SLE-F-Gr.1(N)	-2808	-238	-135	-3182	-2434	85	338
SLE-F-Gr.3(N)	-2808	-119	-270	-3198	-2419	103	413
SLE-F-Gr.1(P)	-2836	-243	-165	-3244	-2428	89	355
SLE-F-Gr.3(P)	-2836	-129	-331	-3296	-2376	123	493
SLE-F-Gr.1-1SW/2	-2614	-242	-81	-2937	-2291	43	171
SLE-F-Gr.3-1SW/2	-2614	-188	-162	-2964	-2264	60	242
SLE-F-Gr.1-MaxML (P)	-2591	-122	-248	-2961	-2220	68	272
SLE-F-Gr.3-MaxML (P)	-2581	-65	-410	-3057	-2105	120	480
SLE-QP	-2364	0	0	-2364	-2364	0	0
Comb. dimensionante str	utturali	Comb. dimension	onante portanza	N _{min}	N _{max}	V _{ris,max}	M _{max}
SLV-EL+0.3ET		SLU-G	6r.3(P)	-5168	-319	885	3541
SLE-C-Gr.3(P)		SLE-C-	Gr.3(P)	-3676	-1893	177	710

Figura 15: Sollecitazioni massime nei pali di fondazione

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	TRATTA NAPOLI-CANCELLO
PROGETTISTA: Mandataria: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Pila tipo A.1 (da P1 a P11) - Relazione di calcolo	IF1M 0.0.E.ZZ CL VI.04.A5.001 A 80 di 112

11.2 VERIFICHE STRUTTURALI

11.2.1 Plinto di fondazione

Per le verifiche strutturali il plinto di fondazione è stato schematizzato con una mensola incastrata in corrispondenza della sezione di attacco con il fusto della pila e con l'estremità libera posta in corrispondenza della fila di pali più esterna, nella direzione di verifica considerata. Le azioni che intervengono sono rappresentate dalla pressione esercitata dal peso proprio del plinto (contributo favorevole) e dalle forze esplicate sulla mensola per la reazione vincolare dei pali. Non viene considerata l'eventualità che all'interno del plinto possa instaurarsi uno schema tirante-puntone in quanto la geometria del plinto non è tale da creare un meccanismo di mensola tozza. Si fa l'ipotesi che le reazioni del suolo siano esplicate esclusivamente dalla palificata e che siano trasmesse sul plinto come forze concentrate. Per la valutazione delle sollecitazioni sulla mensola viene presa in considerazione la combinazione di carico che dà luogo alle massime reazioni dei pali, sia in compressione che in trazione.

Per la verifica in direzione longitudinale rispetto all'asse del viadotto, si considera una mensola di larghezza pari alla dimensione del plinto nella direzione trasversale e di altezza pari allo spessore della fondazione. L'azione applicata sull'estremo libero è posta pari alla somma delle reazioni dei pali della fila più esterna.

In direzione trasversale, la mensola è caratterizzata da una luce inferiore, pertanto cautelativamente si dispongono le stesse armature verificate in direzione longitudinale.

Si esibiscono quindi le sollecitazioni e le verifiche a flessione e taglio della mensola in direzione longitudinale, relativamente alla sezione di incastro, corrispondente all'attacco plinto-fusto.

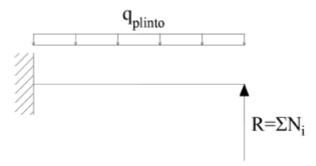


Figura 16: Schema a mensola del plinto su pali

I dati utili per la verifica del plinto in direzione longitudinale rispetto all'asse del viadotto sono sintetizzati nel prospetto di seguito.

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante: SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	TRATTA NAPOLI-CANCELLO
PROGETTISTA: Mandataria: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO Pila tipo A.1 (da P1 a P11) - Relazione di calcolo	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA IF1M 0.0.E.ZZ CL VI.04.A5.001 A 81 di 112

DATI PER VERIFICA	PLINTO (IN DIREZ.LON	IGITUDINALE)
L	2.9 m	Lunghezza mensola di calcolo
В	16.5 m	Base sezione di calcolo
s	2.0 m	Altezza sezione di calcolo
R=?Ni_ _{SLU}	-20091 kN	Somma delle reazioni dei pali sulla fila più esterna (SLU)
R=?Ni_ _{SLE}	-14311 kN	Somma delle reazioni dei pali sulla fila più esterna (SLE)
q	825 kN/m	Peso proprio del plinto di competenza della striscia di calcolo
M _{i_SLU}	58265 kNm	Momento dowto all'azione della palificata sul plinto
M_{s_SLU}	-3469 kNm	Momento dovuto al peso proprio del plinto
M _{ris_SLU}	54796 kNm	Momento risultante nella sezione di attacco plinto-fusto pila
V_{ris_SLU}	17699 kN	Taglio risultante nella sezione di attacco plinto-fusto pila
M _{ris_SLU} /m	3321 kNm/m	Momento risultante nella sezione di attacco plinto-fusto pila (striscia di 1m)
V _{ris_SLU} /m	1073 kN/m	Taglio risultante nella sezione di attacco plinto-fusto pila (striscia di 1m)
M _{i_SLE}	41502 kNm	Momento dowto all'azione della palificata sul plinto
M _{s_SLE}	-3469 kNm	Momento dowto al peso proprio del plinto
M _{ris_SLE}	38033 kNm	Momento risultante nella sezione di attacco plinto-fusto pila
M _{ris_SLE} /m	2305 kNm/m	Momento risultante nella sezione di attacco plinto-fusto pila (striscia di 1m)

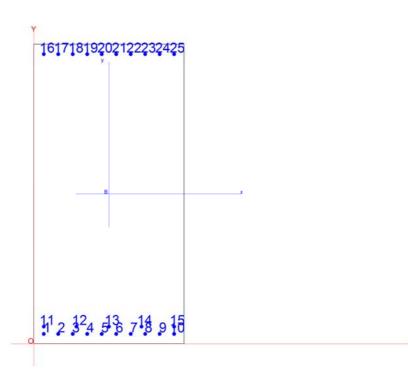
I dati sopra riportati prendono in considerazione le massime reazioni di compressione dei pali. Il prospetto di seguito tiene conto dell'eventuale sollecitazione di trazione sui pali.

R=?Ni_SLU	-1714 kN	Somma delle reazioni dei pali sulla fila più esterna (SLU)
R=?Ni_ _{SLE}	-7861 kN	Somma delle reazioni dei pali sulla fila più esterna (SLE)
q	1221 kN/m	Peso proprio del plinto di competenza della striscia di calcolo
M_{i_SLU}	- kNm	Momento dovuto all'azione della palificata sul plinto
M_{s_SLU}	-5134 kNm	Momento dovuto al peso proprio del plinto
M _{ris_SLU}	- kNm	Momento risultante nella sezione di attacco plinto-fusto pila
V_{ris_SLU}	1827 kN	Taglio risultante nella sezione di attacco plinto-fusto pila
M _{ris_SLU} /m	- kNm/m	Momento risultante nella sezione di attacco plinto-fusto pila (striscia di 1m)
V _{ris_SLU} /m	111 kN/m Taglio risultante nella sezione di attacco plinto-fusto pila (striscia di 1m)	
M_{i_SLE}	- kNm	Momento dovuto all'azione della palificata sul plinto
M _{s_SLE}	- kNm	Momento dovuto al peso proprio del plinto
M_{ris_SLE}	- kNm	Momento risultante nella sezione di attacco plinto-fusto pila
M _{ris_SLE} /m	- kNm/m	Momento risultante nella sezione di attacco plinto-fusto pila (striscia di 1m)

Entrambi i gruppi di sollecitazioni dedotti saranno sottoposti a verifica.

Una sintesi delle caratteristiche dell'armatura longitudinale e a taglio previste è esibita nei prospetti di seguito. Il numero totale dei ferri fa riferimento ad una sezione di larghezza pari a 1m, posta in corrispondenza dell'attacco con il fusto della pila.

APPALTATORE: LINEA FERROVIARIA NAPOLI - BARI Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA DOCUMENTO REV. **PAGINA** Pila tipo A.1 (da P1 a P11) - Relazione di calcolo IF1M 0.0.E.ZZ VI.04.A5.001 82 di 112 CL Α


Il valore della distanza "Dist." che figura di seguito è valutata tra l'estremo inferiore della sezione e l'asse barra; l'area di armatura minima da garantire, rispetto alla sezione di calcestruzzo bxd, con d pari all'altezza utile della sezione, segue le prescrizioni riportate nel par.4.1.6.1.1 del DM 14.1.2008.

ARMATURA L	ARMATURA LONGITUDINALE PLINTO									
Direzione longitudinale										
Lato	n°strati	Dist.(cm)	n°	φ(mm)	A _s (cm ²)	A _s /bxd (%)	A _{min} /bxd (%)			
A _s tesa	1	6.6	10	24	45.22					
A _s tesa	2	11.4	5	24	22.61	0.3	0.2			
A _s tesa	3	-	-	-	-					
A _s ' compressa	1	193.4	10	24	45.22	-	-			

ARMATURA TRASVERSALE PLINTO						
Direzione longitudinale						
nb	φ(mm)	s (cm)	$A_{v,st}/s$ (cm ² /m)			
2	14	10	30.79			

Di seguito le verifiche strutturali relative al plinto di fondazione, eseguite secondo i criteri sopra esplicitati, per una striscia di larghezza pari ad 1m.

Nome sezione: VI.04 - P7 - FOND

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA 0.0.E.ZZ 83 di 112 Pila tipo A.1 (da P1 a P11) - Relazione di calcolo IF1M CL VI.04.A5.001 Α

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo		Poligonale C28/35
N°vertice:	X [cm]	Y [cm]
1	100.0	200.0
2	100.0	0.0
3	0.0	0.0
4	0.0	200.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	6.6	6.6	24
2	16.2	6.6	24
3	25.9	6.6	24
4	35.5	6.6	24
5	45.2	6.6	24
6	54.8	6.6	24
7	64.5	6.6	24
8	74.1	6.6	24
9	83.8	6.6	24
10	93.4	6.6	24
11	6.6	11.4	24
12	28.3	11.4	24
13	50.0	11.4	24
14	71.7	11.4	24
15	93.4	11.4	24
16	6.6	193.4	24
17	16.2	193.4	24
18	25.9	193.4	24
19	35.5	193.4	24
20	45.2	193.4	24
21	54.8	193.4	24
22	64.5	193.4	24
23	74.1	193.4	24
24	83.8	193.4	24
25	93.4	193.4	24

ST.LIM.ULTIMI - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Storzo normale [kN] applicato nel Baric. (+ se di compressione)					
Mx		Momento flettente	[daNm] intorno all'	asse x princ. d'inerzi	ia	
		con verso positivo	se tale da comprin	nere il lembo sup. de	ella sez.	
My		Momento flettente	[daNm] intorno all'	asse y princ. d'inerzi	ia	
		con verso positivo	se tale da comprin	nere il lembo destro	della sez.	
Vy		Componente del	Taglio [kN] parallela	all'asse princ.d'iner	zia y	
Vx				all'asse princ.d'iner		
NoO I	N.	Mx	Mv			
N°Comb.	N	Vy	Vx			

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO **CODIFICA DOCUMENTO** REV. **PAGINA** Pila tipo A.1 (da P1 a P11) - Relazione di calcolo IF1M 0.0.E.ZZ CL VI.04.A5.001 84 di 112 Α

1 0.00 3320.98 0.00 0.00 0.00

COMB. RARE/FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom. Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

 $N^{\circ}Comb.$ N Mx My

1 0.00 2305.01 (2270.59) 0.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 5.4 cm Interferro netto minimo barre longitudinali: 2.4 cm

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

Ver S = combinazione verificata / N = combin. non verificata

N Sn Sforzo normale allo snervamento [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Sn Momento di snervamento [kNm] riferito all'asse x princ. d'inerzia My Sn Momento di snervamento [kNm] riferito all'asse y princ. d'inerzia

N Ult Sforzo normale ultimo [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Ult Momento flettente ultimo [kNm] riferito all'asse x princ. d'inerzia My Ult Momento flettente ultimo [kNm] riferito all'asse y princ. d'inerzia

Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N Ult, Mx Ult, My Ult) e (N, Mx, My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature [cm²] in zona tesa (solo travi). Tra parentesi l'area minima di normativa

N°Comb Ver N Sn N Ult My Ult Mis.Sic. Mx Sn My Sn Mx Ult As Tesa S 0.00 4658.85 0.00 0.00 4979.59 1 0.00 1.499 67.9(31.1)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
ec 3/7	Deform. unit. del conglomerato nella fibra a 3/7 dell'altezza efficace
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Con	nb ec max	ec 3/7	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00133	-0.00369	100.0	200.0	0.00094	6.6	193.4	-0.01000	6.6	6.6

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO **CODIFICA DOCUMENTO** REV. **PAGINA** Pila tipo A.1 (da P1 a P11) - Relazione di calcolo IF1M 0.0.E.ZZ CL VI.04.A5.001 85 di 112 Α

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.

x/d Rapp. di duttilità a rottura in presenza di sola fless.(travi) C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb a b c x/d C.Rid.
1 0.00000000 0.000058561 -0.010386500 0.117 0.700

COMBINAZIONI RARE/FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

Ver S = comb. verificata/ N = comb. non verificata

Sc max Massima tensione (positiva se di compressione) nel conglomerato [Mpa] Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)

Sf min Minima tensione (negativa se di trazione) nell'acciaio [Mpa]

Xs min, Ys min
Ac eff.
As eff.
As eff.
As eff.
As eff.
As eff.
D barre
As eff.
D barre
As eff.
Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)
Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure
Distanza tre le barre tese [cm] ai fini del calcolo dell'apertura fessure

Beta12 Prodotto dei coeff. di aderenza delle barre Beta1*Beta2

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. D barre Beta12 1 S 4.31 100.0 200.0 -193.5 6.6 6.6 2350 67.9 4.8 1.00

COMBINAZIONI RARE/FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§B.6.6 DM96]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

S1 Massima tensione [Mpa] di trazione nel calcestruzzo valutata in sezione non fessurata S2 Minima tensione [Mpa] di trazione nel calcestruzzo valutata in sezione fessurata

k2 = 0.4 per barre ad aderenza migliorata

k3 = 0.125 per flessione e presso-flessione; =(e1 + e2)/(2*e1) per trazione eccentrica

Ø Diametro [mm] medio delle barre tese comprese nell'area efficace Ac eff
Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

Psi = $1-\text{Beta}12^*(\text{Ssr/Ss})^2 = 1-\text{Beta}12^*(\text{fctm/S2})^2 = 1-\text{Beta}12^*(\text{Mfess/M})^2$ [B.6.6 DM96]

e sm Deformazione unitaria media tra le fessure [4.3.1.7.1.3 DM96]. Il valore limite = 0.4*Ss/Es è tra parentesi

srm Distanza media tra le fessure [mm]

wk Valore caratteristico [mm] dell'apertura fessure = 1.7 * e sm * srm . Valore limite tra parentesi

MX fess. Componente momento di prima fessurazione intorno all'asse X [kNm] MY fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

S1 S2 Ø Comb. Ver k3 Cf Psi e sm srm wk Mx fess My fess S -2.8 0 0.125 24 54 0.030 0.00039 (0.00039) 159 0.105 (0.20) 2270.59 0.00

VERIFICA A TAGLIO IN DIREZIONE Y

bw = 100 cm h = 200 cm c = 4.7 cm

d = h-c = 195.3 cm

MATERIALI

fywd = 391.30 MPa

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA **DOCUMENTO** REV. **PAGINA** Pila tipo A.1 (da P1 a P11) - Relazione di calcolo IF1M 0.0.E.ZZ CL VI.04.A5.001 86 di 112 Α

Rck 35 MPa 1.5 qc 0.83xRck =29.05 MPa fck fcd 0.85xfck/gc 16.46 MPa ARMATURE A TAGLIO 14 øst braccia 2 øst2 0 braccia 0 passo 10 cm (Asw/s) =30.788 cm2/m 90 (90° staffe verticali) ARMATURE LONGITUDINALI 24 Numero = 15 67.858 Asl cm2 TAGLIO AGENTE VEd = 1073 (KN) SFORZO NORMALE Ned = (KN)

ELEMENTI SENZA ARMATURA A TAGLIO

1.32 vmin 0.286 0.0035 rl 0.0000 SCD

(Mpa)

558.7394123 VRd 668.56 (KN) >= OK (KN) VRd 668.56 (KN)

1.0000 Ned/Ac= 0.0000 (Mpa)

ELEMENTI CON ARMATURA A TAGLIO

IPOTESI 1 Cot q = 2.5 $q = 21.8^{\circ}$

Armatura trasversale

VRsd = 5293.90 (KN)

VRcd = 4988.74 (KN)

VRd = 4988.74 (KN) min(VRsd, VRcd)

IPOTESI 2 Cot q = 1 $q = 45^{\circ}$

Armatura trasversale

VRsd = 2117.56 (KN)

VRcd = 7233.67 (KN)

VRd = 2117.56 (KN) min(VRsd, VRcd)

IPOTESI 3 Cot q in cui VRsd=VRcd :Rottura bilanciata cot(q) = 2.41(calcolato) cot(q) = 2.41(limitato)

22.49 q=

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA 0.0.E.ZZ 87 di 112 Pila tipo A.1 (da P1 a P11) - Relazione di calcolo IF1M CL VI.04.A5.001 Α

VRsd = 5113.84 (KN)

VRcd = 5113.84 (KN)

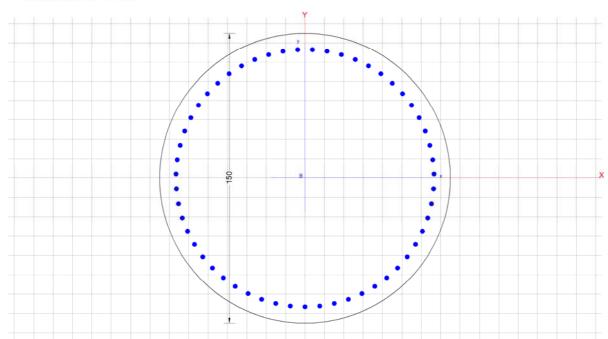
VRd = 5113.84 (KN)

MASSIMO TAGLIO RESISTENTE

VRd = 5114 (KN)

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA DOCUMENTO REV. **PAGINA** Pila tipo A.1 (da P1 a P11) - Relazione di calcolo IF1M 0.0.E.ZZ VI.04.A5.001 88 di 112 CL Α

11.2.2 Pali


Si riportano di seguito, per ciascuna delle combinazioni di carico analizzate, le verifiche strutturali dei pali di fondazione relativi alla pila di altezza massima fra quelle del tipo in esame aventi la medesima tipologia di armatura.

Una sintesi delle caratteristiche dell'armatura longitudinale e a taglio (spirale) disposta è esibita nei prospetti di seguito. Il valore del copriferro c che figura è valutato in asse barra; l'area di armatura minima da garantire, rispetto alla sezione di calcestruzzo, segue le prescrizioni riportate nel par.2.5.2.2.6 del "Manuale di progettazione delle opere civili".

ARMATURA LONGITUDINALE PALI							
D (m)	n°strati	c (cm)	n°	φ(mm)	A _s (cm ²)	A_s/A_{cls} (%)	A _{min} /A _{cls} (%)
1.5	1	8.4	55	24	248.69	1.4	1.0

ARMATURA TRASVERSALE PALI (SPIRALE)									
nb	φ(mm)	s (cm)	$A_{v,st}/s$ (cm ² /m)						
2	12	10	22.61						

Nome sezione: VI.04 - P7 - PALO

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. CODIFICA DOCUMENTO PROGETTO ESECUTIVO **PROGETTO** LOTTO REV. **PAGINA** Pila tipo A.1 (da P1 a P11) - Relazione di calcolo IF1M 0.0.E.ZZ CL VI.04.A5.001 89 di 112 Α

CARATTERISTICHE GEOMETRICHE ED ARMATURE SEZIONE

150.0 Diametro sezione: cm

Barre circonferenza: 55Ø24 (248.8 cm²) Coprif.(dal baric. barre): 8.4 cm

ST.LIM.ULTIMI - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel baricentro (posit. se di compress.) Mx Momento flettente [kNm] intorno all'asse x baric. della sezione con verso positivo se tale da comprimere il lembo sup. della sezione VY Taglio [kN] in direzione parallela all'asse Y del riferim. generale MT

Momento torcente [kN m]

N°Comb.	N	Mx	Vy	MT	
1	3164.24	856.08	214.02	0.00	
2	3135.56	906.16	226.54	0.00	
3	3152.20	875.61	218.90	0.00	
4	3058.72	1034.44	258.61	0.00	
5	2905.04	547.85	136.96	0.00	
6	2855.94	597.68	149.42	0.00	
7	2775.63	689.07	172.27	0.00	
8	2567.99	983.70	245.92	0.00	
9	2270.39	856.08	214.02	0.00	
10	2241.71	906.16	226.54	0.00	
11	2258.37	875.61	218.90	0.00	
12	2164.89	1034.44	258.61	0.00	
13	2011.22	547.85	136.96	0.00	
14	1962.12	597.68	149.42	0.00	
15	1881.80	689.07	172.27	0.00	
16	1674.17	983.70	245.92	0.00	
17	318.95	3540.69	885.17	0.00	
18	753.87	3147.94	786.99	0.00	
19	4961.17	856.08	214.02	0.00	
20	4989.82	906.16	226.54	0.00	
21	5074.58	875.61	218.90	0.00	
22	5168.06	1034.44	258.61	0.00	
23	4517.73	547.85	136.96	0.00	
24	4566.83	597.68	149.42	0.00	
25	4561.29	689.07	172.27	0.00	
26	4734.53	983.70	245.92	0.00	
27	4067.29	856.08	214.02	0.00	
28	4095.95	906.16	226.54	0.00	
29	4180.68	875.61	218.90	0.00	
30	4274.16	1034.44	258.61	0.00	
31	3623.83	547.85	136.96	0.00	
32	3672.93	597.68	149.42	0.00	
33	3667.38	689.07	172.27	0.00	
34	3840.63	983.70	245.92	0.00	
35	4409.26	3540.69	885.17	0.00	
36	3974.34	3147.94	786.99	0.00	

COMB. RARE/FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. CODIFICA DOCUMENTO PROGETTO ESECUTIVO **PROGETTO** LOTTO REV. **PAGINA** Pila tipo A.1 (da P1 a P11) - Relazione di calcolo IF1M 0.0.E.ZZ CL VI.04.A5.001 90 di 112 Α

N Sforzo normale [kN] applicato nel baricentro (positivo se di compress.)

Mx Coppia [kNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb.	N	Mx
1	2304.55	584.70 (6059.37)
2	2284.77	620.77 (4702.56)
3	2296.25	598.36 (5435.19)
4	2231.78	709.66 (3221.51)
5	2125.80	372.13 (0.00)
6	2091.93	407.73 (0.00)
7	2036.54	470.25 (10641.08)
8	1893.35	675.18 (2683.97)
9	2434.41	338.08 (0.00)
10	2418.58	412.55 (0.00)
11	2427.75	354.98 (0.00)
12	2376.17	493.28 (191512.88)
13	2291.39	171.23 (0.00)
14	2264.30	241.60 (0.00)
15	2219.99	272.27 (0.00)
16	2105.43	480.05 (11916.35)
17	2364.03	0.00 (0.00)
18	3533.64	584.70 (0.00)
19	3553.40	620.77 (0.00)
20	3611.86	598.36 (0.00)
21	3676.33	709.66 (0.00)
22	3227.82	372.13 (0.00)
23	3261.68	407.73 (0.00)
24	3257.86	470.25 (0.00)
25	3377.34	675.18 (0.00)
26	3181.79	338.08 (0.00)
27	3197.60	412.55 (0.00)
28	3244.38	354.98 (0.00)
29	3295.95	493.28 (0.00)
30	2937.15	171.23 (0.00)
31	2964.24	241.60 (0.00)
32	2961.18	272.27 (0.00)
33	3056.76	480.05 (0.00)
34	2364.18	0.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 7.2 cm Interferro netto minimo barre longitudinali: 5.2 cm Copriferro netto minimo staffe: 6.0 cm

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale baricentrico assegnato [kN] (positivo se di compressione)
Mx Momento flettente assegnato [kNm] riferito all'asse x baricentrico
N Ult Sforzo normale ultimo [kN] nella sezione (positivo se di compress.)

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. CODIFICA DOCUMENTO PROGETTO ESECUTIVO **PROGETTO** LOTTO REV. **PAGINA** Pila tipo A.1 (da P1 a P11) - Relazione di calcolo IF1M 0.0.E.ZZ CL VI.04.A5.001 91 di 112 Α

Mx Ult Momento flettente ultimo [kNm] riferito all'asse x baricentrico
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N Ult,Mx Ult) e (N,Mx)

Verifica positiva se tale rapporto risulta >=1.000

Yneutro Ordinata [cm] dell'asse neutro a rottura nel sistema di rif. X,Y,O sez.

Mx sn. Momento flettente allo snervamento [kNm] x/d Rapp. di duttilità a rottura solo se N = 0 (travi)

C.Rid. Coeff. di riduz. momenti in travi continue [formula (4.1.1)NTC]

$N^{\circ}Comb$	Ver	N	Mx	N Ult	Mx Ult	Mis.Sic.	Yn	M sn	x/d	C.Rid.	As Tesa
1	S	3164.24	856.08	3163.97	6467.39	7.555	24.4	4989.71			
2	S	3135.56	906.16	3135.53	6459.31	7.128	24.5	4979.42			
3	S	3152.20	875.61	3152.08	6464.01	7.382	24.4	4985.42			
4	S	3058.72	1034.44	3058.55	6437.39	6.223	24.8	4952.14			
5	S	2905.04	547.85	2904.91	6393.32	11.670	25.4	4897.10			
6	S	2855.94	597.68	2855.95	6379.21	10.673	25.6	4879.42			
7	S	2775.63	689.07	2775.90	6356.05	9.224	25.9	4850.42			
8	S	2567.99	983.70	2567.75	6295.44	6.400	26.7	4775.04			
9	S	2270.39	856.08	2270.60	6206.83	7.250	27.8	4665.62			
10	S	2241.71	906.16	2241.80	6198.13	6.840	28.0	4655.14			
11	S	2258.37	875.61	2258.36	6203.13	7.084	27.9	4661.20			
12	S	2164.89	1034.44	2164.71	6173.95	5.968	28.3	4626.55			
13	S	2011.22	547.85	2011.41	6123.52	11.177	28.9	4569.17			
14	S	1962.12	597.68	1962.01	6107.18	10.218	29.1	4550.88			
15	S	1881.80	689.07	1881.78	6080.58	8.824	29.4	4520.59			
16	S	1674.17	983.70	1674.05	6011.26	6.111	30.2	4442.09			
17	S	318.95	3540.69	318.72	5528.57	1.561	35.6	3911.11			
18	S	753.87	3147.94	753.61	5691.87	1.808	33.8	4084.83			
19	S	4961.17	856.08	4961.28	6910.21	8.072	17.4	5600.10			
20	S	4989.82	906.16	4989.98	6916.21	7.632	17.3	5609.33			
21	S	5074.58	875.61	5074.83	6933.86	7.919	16.9	5636.72			
22	S	5168.06	1034.44	5167.91	6953.12	6.722	16.6	5666.88			
23	S	4517.73	547.85	4517.87	6812.13	12.434	19.1	5454.59			
24	S	4566.83	597.68	4566.91	6823.87	11.417	18.9	5470.80			
25	S	4561.29	689.07	4561.56	6822.59	9.901	18.9	5469.03			
26	S	4734.53	983.70	4734.38	6862.41	6.976	18.2	5526.05			
27	S	4067.29	856.08	4067.31	6702.59	7.829	20.8	5303.35			
28	S	4095.95	906.16	4095.93	6709.64	7.404	20.7	5312.94			
29	S	4180.68	875.61	4180.61	6730.43	7.687	20.4	5341.61			
30	S	4274.16	1034.44	4274.27	6753.29	6.528	20.0	5373.11			
31	S	3623.83	547.85	3623.57	6591.76	12.032	22.5	5151.03			
32	S	3672.93	597.68	3672.90	6604.22	11.050	22.4	5168.06			
33	S	3667.38	689.07	3667.27	6602.79	9.582	22.4	5166.17			
34	S	3840.63	983.70	3840.69	6646.33	6.756	21.7	5225.88			
35	S	4409.26	3540.69	4408.97	6785.95	1.917	19.5	5418.39			
36	S	3974.34	3147.94	3974.38	6679.61	2.122	21.2	5271.70			

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
ec 3/7	Deform. unit. del conglomerato nella fibra a 3/7 dell'altezza efficace
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. CODIFICA DOCUMENTO PROGETTO ESECUTIVO **PROGETTO** LOTTO REV. **PAGINA** Pila tipo A.1 (da P1 a P11) - Relazione di calcolo IF1M 0.0.E.ZZ CL VI.04.A5.001 92 di 112 Α

es max Deform. unit. massima nell'acciaio (positiva se di compressione)
Ys max Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	ec 3/7	Yc max	es min	Ys min	es max	Ys max
1	0.00350	-0.00094	75.0	0.00292	66.6	-0.00629	-66.6
2	0.00350	-0.00095	75.0	0.00292	66.6	-0.00631	-66.6
3	0.00350	-0.00095	75.0	0.00292	66.6	-0.00629	-66.6
4	0.00350	-0.00098	75.0	0.00291	66.6	-0.00637	-66.6
5	0.00350	-0.00104	75.0	0.00291	66.6	-0.00649	-66.6
6	0.00350	-0.00105	75.0	0.00291	66.6	-0.00653	-66.6
7	0.00350	-0.00108	75.0	0.00290	66.6	-0.00659	-66.6
8	0.00350	-0.00116	75.0	0.00289	66.6	-0.00676	-66.6
9	0.00350	-0.00127	75.0	0.00288	66.6	-0.00701	-66.6
10	0.00350	-0.00128	75.0	0.00288	66.6	-0.00703	-66.6
11	0.00350	-0.00128	75.0	0.00288	66.6	-0.00702	-66.6
12	0.00350	-0.00131	75.0	0.00287	66.6	-0.00710	-66.6
13	0.00350	-0.00138	75.0	0.00286	66.6	-0.00724	-66.6
14	0.00350	-0.00140	75.0	0.00286	66.6	-0.00729	-66.6
15	0.00350	-0.00143	75.0	0.00286	66.6	-0.00737	-66.6
16	0.00350	-0.00152	75.0	0.00284	66.6	-0.00757	-66.6
17	0.00350	-0.00221	75.0	0.00275	66.6	-0.00907	-66.6
18	0.00350	-0.00197	75.0	0.00279	66.6	-0.00854	-66.6
19	0.00350	-0.00040	75.0	0.00299	66.6	-0.00510	-66.6
20	0.00350	-0.00040	75.0	0.00299	66.6	-0.00508	-66.6
21	0.00350	-0.00038	75.0	0.00299	66.6	-0.00504	-66.6
22	0.00350	-0.00035	75.0	0.00300	66.6	-0.00498	-66.6
23	0.00350	-0.00052	75.0	0.00297	66.6	-0.00536	-66.6
24	0.00350	-0.00051	75.0	0.00298	66.6	-0.00533	-66.6
25	0.00350	-0.00051	75.0	0.00298	66.6	-0.00533	-66.6
26	0.00350	-0.00046	75.0	0.00298	66.6	-0.00523	-66.6
27	0.00350	-0.00065	75.0	0.00296	66.6	-0.00565	-66.6
28	0.00350	-0.00065	75.0	0.00296	66.6	-0.00563	-66.6
29	0.00350	-0.00062	75.0	0.00296	66.6	-0.00558	-66.6
30	0.00350	-0.00059	75.0	0.00297	66.6	-0.00552	-66.6
31	0.00350	-0.00079	75.0	0.00294	66.6	-0.00595	-66.6
32	0.00350	-0.00077	75.0	0.00294	66.6	-0.00591	-66.6
33	0.00350	-0.00078	75.0	0.00294	66.6	-0.00592	-66.6
34	0.00350	-0.00072	75.0	0.00295	66.6	-0.00580	-66.6
35	0.00350	-0.00055	75.0	0.00297	66.6	-0.00543	-66.6
36	0.00350	-0.00068	75.0	0.00295	66.6	-0.00571	-66.6

ARMATURE A TAGLIO E/O TORSIONE DI INVILUPPO PER TUTTE LE COMBINAZIONI ASSEGNATE

Diametro staffe: 12 mm

Passo staffe: 10.0 cm [Passo massimo di normativa = 25.0 cm]

N.Bracci staffe: 2

Area staffe/m: 22.6 cm²/m [Area Staffe Minima NTC = 2.3 cm²/m]

METODO AGLI STATI LIMITE ULTIMI - VERIFICHE A TAGLIO

Ver S = comb.verificata a taglio-tors./ N = comb. non verificata Vsdu Taglio agente [kN] uguale al taglio Vy di comb. (sollecit. retta)

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. CODIFICA PROGETTO ESECUTIVO DOCUMENTO REV. **PROGETTO** LOTTO **PAGINA** Pila tipo A.1 (da P1 a P11) - Relazione di calcolo IF1M 0.0.E.ZZ CL VI.04.A5.001 93 di 112 Α

Vrd Vcd Vwd bw Teta Acw Ast		Taglio c Taglio ti Larghez Angolo Coeffici	ompressione r razione resiste zza minima [cm [gradi sessade ente maggioral	in assenza di s esistente [kN] i nte [kN] assorb n] sezione misu ic.] di inclinazio tivo della resist tamente neces	ato conglome pito dalle staffe grata parallela gne dei punton enza a taglio	rato [form e [formula m. all'asse ii di conglo per compi	ula (4.1.1) (4.1.18)N e neutro omerato ressione	TC]	
N°Comb	Ver	Vsdu	Vrd	Vcd	Vwd	bw	Teta	Acw	ASt
1	S	214.02	1109.06	4028.49	2395.28	135.3	21.80	1.126	2.0
2	S	226.54	1105.10	4024.39	2395.28	135.3	21.80	1.125	2.1
3	S	218.90	1107.40	4026.77	2395.28	135.3	21.80	1.126	2.1
4	S	258.61	1094.48	4013.40	2395.28	135.3	21.80	1.122	2.4
5	S	136.96	1073.25	3991.44	2395.28	135.3	21.80	1.116	1.3
6	S	149.42	1066.47	3984.42	2395.28	135.3	21.80	1.114	1.4
7	S	172.27	1050.32	3950.57	2404.41	134.0	21.80	1.111	1.6
8	S	245.92	1021.79	3921.06	2404.41	134.0	21.80	1.103	2.3
9	S	214.02	980.91	3878.77	2404.41	134.0	21.80	1.091	2.0
10	S S	226.54	976.97	3874.69	2404.41	134.0	21.80	1.090	2.1
11	S	218.90	979.26	3877.06	2404.41	134.0	21.80	1.090	2.1
12	S	258.61	961.38	3839.59	2413.91	132.7	21.80	1.087	2.4
13	S	136.96	940.40	3817.89	2413.91	132.7	21.80	1.080	1.3
14	Š	149.42	933.70	3810.95	2413.91	132.7	21.80	1.078	1.4
15	S S	172.27	922.73	3799.61	2413.91	132.7	21.80	1.075	1.6
16	S	245.92	894.39	3770.29	2413.91	132.7	21.80	1.067	2.3
17	S	885.17	717.62	3500.16	2443.68	128.2	21.80	1.013	8.2
18	S S S	786.99	760.20	3588.66	2433.62	129.7	21.80	1.030	7.3
19	S	214.02	1346.16	4324.55	2378.87	137.5	21.80	1.198	2.0
20	S	226.54	1350.16	4328.68	2378.87	137.5	21.80	1.199	2.2
21	S	218.90	1352.21	4340.91	2378.87	137.5	21.80	1.203	2.1
22	S	258.61	1352.21	4354.39	2378.87	137.5	21.80	1.207	2.5
23	S	136.96	1284.34	4260.59	2378.87	137.5	21.80	1.181	1.3
24	S	149.42	1291.18	4267.67	2378.87	137.5	21.80	1.183	1.4
25	S	172.27	1290.41	4266.87	2378.87	137.5	21.80	1.182	1.6
26	S	245.92	1314.56	4291.86	2378.87	137.5	21.80	1.189	2.3
27	S	214.02	1239.18	4178.19	2386.69	136.5	21.80	1.163	2.0
28	S	226.54	1243.16	4182.31	2386.69	136.5	21.80	1.164	2.1
29	S	218.90	1254.93	4194.48	2386.69	136.5	21.80	1.167	2.1
30	S	258.61	1267.91	4207.91	2386.69	136.5	21.80	1.171	2.5
31	S S	136.96	1177.61	4114.50	2386.69	136.5	21.80	1.145	1.3
32	S	149.42	1184.43	4121.55	2386.69	136.5	21.80	1.147	1.4
33	S	172.27	1183.66	4120.76	2386.69	136.5	21.80	1.147	1.6
34	S	245.92	1207.71	4145.64	2386.69	136.5	21.80	1.153	2.3
35	S	885.17	1264.53	4227.31	2386.69	136.5	21.80	1.176	8.4
36	S	786.99	1226.28	4164.84	2386.69	136.5	21.80	1.159	7.5

COMBINAZIONI RARE/FREQUENTI IN ESERCIZIO - VERIFICA MASSIME TENSIONI NORMALI

Ver	S = combinazione verificata / N = combin. non verificata
Sc max	Massima tensione di compress.(+) nel conglom. in fase fessurata ([Mpa]
Yc max	Ordinata in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O)
Sc min	Minima tensione di compress.(+) nel conglom. in fase fessurata ([Mpa]
Yc min	Ordinata in cm della fibra corrisp. a Sc min (sistema rif. X,Y,O)
Sf min	Minima tensione di trazione (-) nell'acciaio [Mpa]
Ys min	Ordinata in cm della barra corrisp. a Sf min (sistema rif. X,Y,O)

Dw Eff. Spessore di conglomerato [cm] in zona tesa considerata aderente alle barre

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA 94 di 112 Pila tipo A.1 (da P1 a P11) - Relazione di calcolo IF1M 0.0.E.ZZ CL VI.04.A5.001 Α

	Ac eff. As eff.	Area di congl. [cm²] in zona tesa aderente alle barre (verifica fess.) Area Barre tese di acciaio [cm²] ricadente nell'area efficace(verifica fess.)									
N°Co	omb Ver	Sc max	Yc max	Sc min	Yc min	Sf min	Ys min	Dw Eff.	Ac Eff.	As Eff.	D barre
1	S	2.41	-75.0	0.00	75.0	-1.8	66.5	0.0	0	0.0	
2	S	2.49	-75.0	0.00	75.0	-3.3	66.5	25.2	575	13.6	
3	S	2.44	-75.0	0.00	75.0	-2.3	66.5	25.2	192	4.5	
4	S	2.72	-75.0	0.00	75.0	-7.7	66.5	25.2	1725	40.7	
5	S	1.84	-75.0	0.15	75.0	3.7	66.5	0.0	0	0.0	
6	S	1.90	-75.0	0.05	75.0	2.4	66.5	0.0	0	0.0	
7	S	2.02	-75.0	0.00	75.0	0.0	66.5	0.0	0	0.0	
8	S	2.53	-75.0	0.00	75.0	-10.3	66.5	25.2	2108	49.8	
9	S	1.90	-75.0	0.37	75.0	6.9	66.5	0.0	0	0.0	
10	S	2.06	-75.0	0.20	75.0	4.5	66.5	0.0	0	0.0	
11	S	1.94	-75.0	0.33	75.0	6.3	66.5	0.0	0	0.0	
12	S	2.23	-75.0	0.00	75.0	1.8	66.5	0.0	0	0.0	
13	S	1.46	-75.0	0.68	75.0	10.9	66.5	0.0	0	0.0	
14	S	1.60	-75.0	0.51	75.0	8.6	66.5	0.0	0	0.0	
15	S	1.65	-75.0	0.42	75.0	7.3	66.5	0.0	0	0.0	
16	S	2.07	-75.0	0.00	75.0	0.2	66.5	0.0	0	0.0	
17	S	1.10	-75.0	1.10	5.0	16.6	49.1	0.0	0	0.0	
18	S	2.97	-75.0	0.33	75.0	7.1	66.5	0.0	0	0.0	
19	S	3.07	-75.0	0.25	75.0	6.2	66.5	0.0	0	0.0	
20	S	3.04	-75.0	0.33	75.0	7.3	66.5	0.0	0	0.0	
21	S	3.32	-75.0	0.11	75.0	4.4	66.5	0.0	0	0.0	
22	S S S	2.35	-75.0	0.67	75.0	11.4	66.5	0.0	0	0.0	
23	S	2.45	-75.0	0.60	75.0	10.6	66.5	0.0	0	0.0	
24	S	2.59	-75.0	0.46	75.0	8.7	66.5	0.0	0	0.0	
25	S	3.11	-75.0	0.05	75.0	3.3	66.5	0.0	0	0.0	
26	S	2.25	-75.0	0.72	75.0	12.1	66.5	0.0	0	0.0	
27	S	2.43	-75.0	0.56	75.0	10.0	66.5	0.0	0	0.0	
28	S	2.32	-75.0	0.71	75.0	12.0	66.5	0.0	0	0.0	
29	S S S	2.66	-75.0	0.42	75.0	8.2	66.5	0.0	0	0.0	
30	S	1.76	-75.0	0.98	75.0	15.4	66.5	0.0	0	0.0	
31	S	1.93	-75.0	0.84	75.0	13.5	66.5	0.0	0	0.0	
32	S	2.00	-75.0	0.77	75.0	12.5	66.5	0.0	0	0.0	
33	S	2.51	-75.0	0.34	75.0	6.9	66.5	0.0	0	0.0	
0.4	_	4 4 0	75.0	4 4 0	75.0	4//	07 (

COMBINAZIONI RARE/FREQUENTI IN ESERCIZIO - VERIFICA APERTURA FESSURE

S = combinazione verificata / N = combin. non verificata

1.10

75.0

-75.0

34

Ver

S

1.10

ScImax	Massima tensione nel conglomerato nello STATO I non fessurato [Mpa]									
Sclmin	Minuma	tensione nel co	nglomerato ne	llo STATO	I non fessu	rato [Mpa				
K3	=0,125 p	=0,125 per flessione; = 0,25 (ScImin + ScImax)/(2 ScImin) per trazione eccentrica								
Beta12	Prodotto	Prodotto dei Coeff. di aderenza Beta1*Beta2								
Psi	= 1-Beta12*(Ssr/Ss) ² = 1-Beta12*(fctm/ScImin) ² = 1-Beta12*(Mfess/M) ² [B.6.6 DM96]									
e sm	Deforma	nzione unitaria r	nedia tra le fes	sure . Tra p	arentesi il	valore mir	imo = 0.4 Ss/Es			
srm	Distanza media in mm tra le fessure									
wk	Apertura	delle fessure i	n mm = 1.7*Ep	s*Srm. Tra	parentesi è	indicato i	I valore limite.			
M fess.		o di prima fessu								
N°Comb Ver	ScImax	Sclmin	Sc Eff	K3	Beta12	Psi	e sm	srm	wk	M Fess.
1 S	2.40	-0.25				0.400		0		6059.37
2 S	2.47	-0.34		0.125	1.00	0.400	0.000007 (0.000007)	210	0.002 (0.20)	4702.56

16.6

0.0

0

0.0

37.6

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA Pila tipo A.1 (da P1 a P11) - Relazione di calcolo 0.0.E.ZZ VI.04.A5.001 95 di 112 IF1M CL Α

3	S	2.43	-0.28	 0.125	1.00	0.400	0.000005 (0.000005)	210	0.002 (0.20)	5435.19
4	S	2.65	-0.56	 0.125	1.00	0.400	0.000015 (0.000015)	210	0.005 (0.20)	3221.51
5	S	1.84	0.15	 		0.000		0		
6	S	1.90	0.05	 		0.000		0		
7	S	2.02	-0.11	 		0.400		0		10641.08
8	S	2.41	-0.64	 0.125	1.00	0.400	0.000021 (0.000021)	210	0.007 (0.20)	2683.97
9	S	1.90	0.37	 		0.000		0		
10	S	2.06	0.20	 		0.000		0		
11	S	1.94	0.33	 		0.000		0		
12	S	2.23	-0.01	 		0.400		0		191512.88
13	S	1.46	0.68	 		0.000		0		
14	S	1.60	0.51	 		0.000		0		
15	S	1.65	0.42	 		0.000		0		
16	S	2.07	-0.10	 		0.400		0		11916.35
17	S	1.10	1.10	 		0.000		0		
18	S	2.97	0.33	 		0.000		0		
19	S	3.07	0.25	 		0.000		0		
20	S	3.04	0.33	 		0.000		0		
21	S	3.32	0.11	 		0.000		0		
22	S	2.35	0.67	 		0.000		0		
23	S	2.45	0.60	 		0.000		0		
24	S	2.59	0.46	 		0.000		0		
25	S	3.11	0.05	 		0.000		0		
26	S	2.25	0.72	 		0.000		0		
27	S	2.43	0.56	 		0.000		0		
28	S	2.32	0.71	 		0.000		0		
29	S	2.66	0.42	 		0.000		0		
30	S	1.76	0.98	 		0.000		0		
31	S	1.93	0.84	 		0.000		0		
32	S	2.00	0.77	 		0.000		0		
33	S	2.51	0.34	 		0.000		0		
34	S	1.10	1.10	 		0.000		0		

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A. PROGETTISTA:	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Pila tipo A.1 (da P1 a P11) - Relazione di calcolo	IF1M 0.0.E.ZZ CL VI.04.A5.001 A 96 di 112

12 TABULATI DI CALCOLO

Si riportano di seguito in forma tabellare, per ciascuna pila di quelle del tipo in esame, i valori delle sollecitazioni dedotte, relative al fusto e al sistema di fondazione, per ciascuna delle combinazioni considerate.

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PAGINA PROGETTO ESECUTIVO LOTTO CODIFICA DOCUMENTO REV. **PROGETTO** Pila tipo A.1 (da P1 a P11) - Relazione di calcolo IF1M 0.0.E.ZZ CL VI.04.A5.001 97 di 112 Α

Combinazioni di carico		SOLLE	CITAZIONI TEST	ΓA PILA	
Combinazioni di canco	N	Ht	HI	Mt	MI
-	kN	kN	kN	kNm	kNm
SLU-Gr.1(N)	-26197	2228	1057	10479	371
SLU-Gr.3(N)	-26197	1476	2113	6756	742
SLU-Gr.1(P)	-26805	2157	1292	11405	454
SLU-Gr.3(P)	-26805	1440	2585	7856	908
SLU-Gr.1-1SW/2	-21981	1405	634	17323	224
SLU-Gr.3-1SW/2	-21981	1064	1269	15636	446
SLU-Gr.1-MaxML(P)	-21466	1446	1292	7247	5873
SLU-Gr.3-MaxML(P)	-21260	1088	2585	5469	6100
SLU-Gr.1(N)-Gk=1.00	-21318	2228	1057	10478	371
SLU-Gr.3(N)-Gk=1.00	-21318	1476	2113	6755	742
SLU-Gr.1(P)-Gk=1.00	-21927	2157	1292	11404	454
SLU-Gr.3(P)-Gk=1.00	-21927	1440	2585	7855	908
SLU-Gr.1-1SW/2-Gk=1.00	-17103	1405	634	17321	223
SLU-Gr.3-1SW/2-Gk=1.00	-17103	1064	1269	15635	446
SLU-Gr.1-MaxML(P)-Gk=1.00	-16587	1446	1292	7246	5873
SLU-Gr.3-MaxML(P)-Gk=1.00	-16381	1088	2585	5468	6100
SLV-EL+0.3ET	-11662	1466	5656	0	0
SLV-0.3EL+ET	-11662	4886	1697	0	0
SLE-C-Gr.1(N)	-18321	1520	729	7157	256
SLE-C-Gr.3(N)	-18321	1001	1458	4589	511
SLE-C-Gr.1(P)	-18741	1471	891	7795	313
SLE-C-Gr.3(P)	-18741	977	1783	5348	626
SLE-C-Gr.1-1SW/2	-15414	952	438	11876	154
SLE-C-Gr.3-1SW/2	-15414	717	875	10713	308
SLE-C-Gr.1-MaxML (P)	-15059	980	891	4927	4051
SLE-C-Gr.3-MaxML (P)	-14916	734	1783	3701	4207
SLE-F-Gr.1(N)	-16989	830	583	4091	204
SLE-F-Gr.3(N)	-16989	415	1166	2037	409
SLE-F-Gr.1(P)	-17325	791	713	4602	251
SLE-F-Gr.3(P)	-17325	396	1426	2644	501
SLE-F-Gr.1-1SW/2	-14664	376	350	7867	124
SLE-F-Gr.3-1SW/2	-14664	188	700	6937	246
SLE-F-Gr.1-MaxML (P)	-14379	398	713	2308	3241
SLE-F-Gr.3-MaxML (P)	-14265	201	1426	1327	3366
SLE-QP	-11662	0	0	2	1

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA 0.0.E.ZZ 98 di 112 Pila tipo A.1 (da P1 a P11) - Relazione di calcolo IF1M CL VI.04.A5.001 Α

Combinazioni di carico		SOLLE	ECITAZIONI BAS	E PILA	
Combinazioni di canco	N	Ht	HI	Mt	MI
-	kN	kN	kN	kNm	kNm
SLU-Gr.1(N)	-28780	2261	1162	20579	5363
SLU-Gr.3(N)	-28780	1509	2219	13471	10489
SLU-Gr.1(P)	-29388	2191	1398	21187	6507
SLU-Gr.3(P)	-29388	1474	2690	14413	12776
SLU-Gr.1-1SW/2	-24564	1438	740	23720	3315
SLU-Gr.3-1SW/2	-24564	1098	1374	20500	6392
SLU-Gr.1-MaxML(P)	-24049	1479	1398	13827	11926
SLU-Gr.3-MaxML(P)	-23843	1122	2690	10441	17968
SLU-Gr.1(N)-Gk=1.00	-23232	2261	1162	20578	5363
SLU-Gr.3(N)-Gk=1.00	-23232	1509	2219	13470	10489
SLU-Gr.1(P)-Gk=1.00	-23840	2191	1398	21186	6506
SLU-Gr.3(P)-Gk=1.00	-23840	1474	2690	14411	12776
SLU-Gr.1-1SW/2-Gk=1.00	-19016	1438	740	23719	3315
SLU-Gr.3-1SW/2-Gk=1.00	-19016	1098	1374	20499	6392
SLU-Gr.1-MaxML(P)-Gk=1.00	-18501	1479	1398	13826	11925
SLU-Gr.3-MaxML(P)-Gk=1.00	-18294	1122	2690	10440	17968
SLV-EL+0.3ET	-13575	1466	5656	11049	26986
SLV-0.3EL+ET	-13575	4886	1697	36832	8096
SLE-C-Gr.1(N)	-20235	1542	799	14045	3693
SLE-C-Gr.3(N)	-20235	1023	1528	9143	7228
SLE-C-Gr.1(P)	-20654	1493	961	14465	4482
SLE-C-Gr.3(P)	-20654	999	1853	9793	8806
SLE-C-Gr.1-1SW/2	-17327	975	508	16212	2281
SLE-C-Gr.3-1SW/2	-17327	740	945	13991	4403
SLE-C-Gr.1-MaxML (P)	-16972	1003	961	9389	8219
SLE-C-Gr.3-MaxML (P)	-16830	756	1853	7054	12386
SLE-F-Gr.1(N)	-18903	830	583	7826	2828
SLE-F-Gr.3(N)	-18903	415	1166	3904	5656
SLE-F-Gr.1(P)	-19238	791	713	8162	3459
SLE-F-Gr.3(P)	-19238	396	1426	4424	6918
SLE-F-Gr.1-1SW/2	-16577	376	350	9559	1699
SLE-F-Gr.3-1SW/2	-16577	188	700	7783	3396
SLE-F-Gr.1-MaxML (P)	-16293	398	713	4101	6449
SLE-F-Gr.3-MaxML (P)	-16179	201	1426	2233	9783
SLE-QP	-13575	0	0	2	1

APPALTATORE:

Mandataria: Mandante:
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.

PROGETTISTA:

Mandataria: Mandante:

SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.

PROGETTO ESECUTIVO

Pila tipo A.1 (da P1 a P11) - Relazione di calcolo

LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

PROGETTO IF1M (

LOTTO 0.0.E.ZZ CODIFICA CL DOCUMENTO VI.04.A5.001

REV. I

PAGINA **99 di 112**

VIADOTTO 04 - PILA A1 - H=4.5m

SOLLECITAZIONI SISMICHE	BASE PILA PER q=1				
Combinazioni di carico	N	Ht	Н	Mt	MI
SLV-EL+0.3ET	-13575	1569	6426	7058	28918
SLV-0.3EL+ET	-13575	5229	1928	23528	8675

SOLLECITAZIONI SISMICHE CON COEFF. DI SOVRARESISTENZA γ Rd = 1.1									
Combinazioni di carico	N	Ht	HI	Mt	MI				
SLV-EL+0.3ET	-13575	1612	6222	12154	29684				
SLV-0.3EL+ET	-13575	5374	1866	40515	8905				

SOLLECITAZIONI RESISTENTI	S _{Rd}				
Combinazioni di carico	N	Ht	HI	Mt	MI
SLV-EL+0.3ET	-13575	26986	13195	219934	73570
SLV-0.3EL+ET	-13575	26986	13195	219934	73570

SOLLECITAZIONI SISMICHE BASE PILA DI PROGETTO PER CALCOLO PLINTO									
Combinazioni di carico	N	Ht	HI	Mt	МІ				
SLV-EL+0.3ET	-13575	1569	6222	7058	28918				
SLV-0.3EL+ET	-13575	5229	1866	23528	8675				

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA 0.0.E.ZZ VI.04.A5.001 100 di 112 Pila tipo A.1 (da P1 a P11) - Relazione di calcolo IF1M CL Α

Combinazioni di carico		SOLLECITA	AZIONI INTRADOS	SSO PLINTO	
Combinazioni di canco	N	Ht	Н	Mt	MI
-	kN	kN	kN	kNm	kNm
SLU-Gr.1(N)	-48219	2261	1162	25101	7687
SLU-Gr.3(N)	-48218	1509	2219	16489	14926
SLU-Gr.1(P)	-48827	2191	1398	25569	9302
SLU-Gr.3(P)	-48827	1474	2690	17360	18156
SLU-Gr.1-1SW/2	-44003	1438	740	26597	4794
SLU-Gr.3-1SW/2	-44003	1098	1374	22695	9141
SLU-Gr.1-MaxML(P)	-43488	1479	1398	16786	14721
SLU-Gr.3-MaxML(P)	-43281	1122	2690	12685	23348
SLU-Gr.1(N)-Gk=1.00	-37631	2261	1162	25100	7687
SLU-Gr.3(N)-Gk=1.00	-37631	1509	2219	16488	14926
SLU-Gr.1(P)-Gk=1.00	-38239	2191	1398	25567	9301
SLU-Gr.3(P)-Gk=1.00	-38239	1474	2690	17359	18155
SLU-Gr.1-1SW/2-Gk=1.00	-33415	1438	740	26595	4794
SLU-Gr.3-1SW/2-Gk=1.00	-33415	1098	1374	22694	9140
SLU-Gr.1-MaxML(P)-Gk=1.00	-32900	1479	1398	16784	14721
SLU-Gr.3-MaxML(P)-Gk=1.00	-32693	1122	2690	12683	23348
SLV-EL+0.3ET	-27974	2499	9323	11126	44462
SLV-0.3EL+ET	-27974	8330	2797	37086	13339
SLE-C-Gr.1(N)	-34634	1542	799	17129	5291
SLE-C-Gr.3(N)	-34634	1023	1528	11190	10284
SLE-C-Gr.1(P)	-35053	1493	961	17452	6405
SLE-C-Gr.3(P)	-35053	999	1853	11791	12511
SLE-C-Gr.1-1SW/2	-31726	975	508	18161	3296
SLE-C-Gr.3-1SW/2	-31726	740	945	15470	6294
SLE-C-Gr.1-MaxML (P)	-31371	1003	961	11394	10142
SLE-C-Gr.3-MaxML (P)	-31229	756	1853	8566	16092
SLE-F-Gr.1(N)	-33302	830	583	9486	3994
SLE-F-Gr.3(N)	-33302	415	1166	4734	7988
SLE-F-Gr.1(P)	-33637	791	713	9744	4885
SLE-F-Gr.3(P)	-33637	396	1426	5215	9770
SLE-F-Gr.1-1SW/2	-30976	376	350	10311	2399
SLE-F-Gr.3-1SW/2	-30976	188	700	8159	4796
SLE-F-Gr.1-MaxML (P)	-30692	398	713	4898	7875
SLE-F-Gr.3-MaxML (P)	-30578	201	1426	2635	12635
SLE-QP	-27974	0	0	2	1

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA 0.0.E.ZZ Pila tipo A.1 (da P1 a P11) - Relazione di calcolo IF1M CL VI.04.A5.001 101 di 112 Α

Combinazioni di carico		SOLLECIT	AZIONI MASSIM	E NEI PALI D	I FONDAZIO	NE	
Combinazioni di canco	N _{Ed} /n	(Mt*di/?di^2)	(MI*di/?di^2)	N _{min}	N _{max}	V _{ris,max}	M _{max}
-	kN	kN	kN	kN	kN	kN	kNm
SLU-Gr.1(N)	-4018	-558	-214	-4790	-3247	212	678
SLU-Gr.3(N)	-4018	-366	-415	-4799	-3237	224	716
SLU-Gr.1(P)	-4069	-568	-258	-4895	-3242	217	693
SLU-Gr.3(P)	-4069	-386	-504	-4959	-3179	256	818
SLU-Gr.1-1SW/2	-3667	-591	-133	-4391	-2943	135	431
SLU-Gr.3-1SW/2	-3667	-504	-254	-4425	-2909	147	469
SLU-Gr.1-MaxML(P)	-3624	-373	-409	-4406	-2842	170	543
SLU-Gr.3-MaxML(P)	-3607	-282	-649	-4537	-2676	243	777
SLU-Gr.1(N)-Gk=1.00	-3136	-558	-214	-3907	-2365	212	678
SLU-Gr.3(N)-Gk=1.00	-3136	-366	-415	-3917	-2355	224	716
SLU-Gr.1(P)-Gk=1.00	-3187	-568	-258	-4013	-2360	217	693
SLU-Gr.3(P)-Gk=1.00	-3187	-386	-504	-4077	-2297	256	818
SLU-Gr.1-1SW/2-Gk=1.00	-2785	-591	-133	-3509	-2060	135	431
SLU-Gr.3-1SW/2-Gk=1.00	-2785	-504	-254	-3543	-2026	147	469
SLU-Gr.1-MaxML(P)-Gk=1.00	-2742	-373	-409	-3524	-1960	170	543
SLU-Gr.3-MaxML(P)-Gk=1.00	-2724	-282	-649	-3655	-1794	243	777
SLV-EL+0.3ET	-2331	-247	-1235	-3813	-849	804	2574
SLV-0.3EL+ET	-2331	-824	-371	-3526	-1136	732	2343
SLE-C-Gr.1(N)	-2886	-381	-147	-3414	-2359	145	463
SLE-C-Gr.3(N)	-2886	-249	-286	-3420	-2352	153	490
SLE-C-Gr.1(P)	-2921	-388	-178	-3487	-2355	148	474
SLE-C-Gr.3(P)	-2921	-262	-348	-3531	-2312	175	561
SLE-C-Gr.1-1SW/2	-2644	-404	-92	-3139	-2149	92	293
SLE-C-Gr.3-1SW/2	-2644	-344	-175	-3162	-2125	100	320
SLE-C-Gr.1-MaxML (P)	-2614	-253	-282	-3149	-2079	116	370
SLE-C-Gr.3-MaxML (P)	-2602	-190	-447	-3240	-1965	167	534
SLE-F-Gr.1(N)	-2775	-211	-111	-3097	-2453	85	270
SLE-F-Gr.3(N)	-2775	-105	-222	-3102	-2448	103	330
SLE-F-Gr.1(P)	-2803	-217	-136	-3155	-2451	89	284
SLE-F-Gr.3(P)	-2803	-116	-271	-3190	-2416	123	395
SLE-F-Gr.1-1SW/2	-2581	-229	-67	-2877	-2286	43	137
SLE-F-Gr.3-1SW/2	-2581	-181	-133	-2896	-2267	60	193
SLE-F-Gr.1-MaxML (P)	-2558	-109	-219	-2885	-2230	68	218
SLE-F-Gr.3-MaxML (P)	-2548	-59	-351	-2958	-2139	120	384
SLE-QP	-2331	0	0	-2331	-2331	0	0
Comb. dimensionante str	utturali	Comb. dimension		N _{min}	N_{max}	$V_{ris,max}$	\mathbf{M}_{max}
SLV-EL+0.3ET		SLU-G	` ,	-4959	-849	804	2574
SLE-C-Gr.3(P)		SLE-C-	Gr.3(P)	-3531	-1965	175	561

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA 0.0.E.ZZ 102 di 112 Pila tipo A.1 (da P1 a P11) - Relazione di calcolo IF1M CL VI.04.A5.001 Α

Combinazioni di carico		SOLLE	CITAZIONI TEST	ΓA PILA	
Combinazioni di canco	N	Ht	Н	Mt	МІ
-	kN	kN	kN	kNm	kNm
SLU-Gr.1(N)	-26197	2228	1057	10479	371
SLU-Gr.3(N)	-26197	1476	2113	6756	742
SLU-Gr.1(P)	-26805	2157	1292	11405	454
SLU-Gr.3(P)	-26805	1440	2585	7856	908
SLU-Gr.1-1SW/2	-21981	1405	634	17323	224
SLU-Gr.3-1SW/2	-21981	1064	1269	15636	446
SLU-Gr.1-MaxML(P)	-21466	1446	1292	7247	5873
SLU-Gr.3-MaxML(P)	-21260	1088	2585	5469	6100
SLU-Gr.1(N)-Gk=1.00	-21318	2228	1057	10478	371
SLU-Gr.3(N)-Gk=1.00	-21318	1476	2113	6755	742
SLU-Gr.1(P)-Gk=1.00	-21927	2157	1292	11404	454
SLU-Gr.3(P)-Gk=1.00	-21927	1440	2585	7855	908
SLU-Gr.1-1SW/2-Gk=1.00	-17103	1405	634	17321	223
SLU-Gr.3-1SW/2-Gk=1.00	-17103	1064	1269	15635	446
SLU-Gr.1-MaxML(P)-Gk=1.00	-16587	1446	1292	7246	5873
SLU-Gr.3-MaxML(P)-Gk=1.00	-16381	1088	2585	5468	6100
SLV-EL+0.3ET	-11662	1509	5926	0	0
SLV-0.3EL+ET	-11662	5030	1778	0	0
SLE-C-Gr.1(N)	-18321	1520	729	7157	256
SLE-C-Gr.3(N)	-18321	1001	1458	4589	511
SLE-C-Gr.1(P)	-18741	1471	891	7795	313
SLE-C-Gr.3(P)	-18741	977	1783	5348	626
SLE-C-Gr.1-1SW/2	-15414	952	438	11876	154
SLE-C-Gr.3-1SW/2	-15414	717	875	10713	308
SLE-C-Gr.1-MaxML (P)	-15059	980	891	4927	4051
SLE-C-Gr.3-MaxML (P)	-14916	734	1783	3701	4207
SLE-F-Gr.1(N)	-16989	830	583	4091	204
SLE-F-Gr.3(N)	-16989	415	1166	2037	409
SLE-F-Gr.1(P)	-17325	791	713	4602	251
SLE-F-Gr.3(P)	-17325	396	1426	2644	501
SLE-F-Gr.1-1SW/2	-14664	376	350	7867	124
SLE-F-Gr.3-1SW/2	-14664	188	700	6937	246
SLE-F-Gr.1-MaxML (P)	-14379	398	713	2308	3241
SLE-F-Gr.3-MaxML (P)	-14265	201	1426	1327	3366
SLE-QP	-11662	0	0	2	1

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA 0.0.E.ZZ Pila tipo A.1 (da P1 a P11) - Relazione di calcolo IF1M CL VI.04.A5.001 103 di 112 Α

Combinazioni di carico		SOLLE	ECITAZIONI BAS	E PILA	
Combinazioni di canco	N	Ht	Н	Mt	МІ
-	kN	kN	kN	kNm	kNm
SLU-Gr.1(N)	-28958	2265	1174	21710	5946
SLU-Gr.3(N)	-28958	1513	2230	14226	11601
SLU-Gr.1(P)	-29566	2194	1409	22284	7208
SLU-Gr.3(P)	-29566	1477	2702	15150	14124
SLU-Gr.1-1SW/2	-24742	1442	751	24440	3688
SLU-Gr.3-1SW/2	-24742	1101	1386	21050	7082
SLU-Gr.1-MaxML(P)	-24227	1483	1409	14568	12628
SLU-Gr.3-MaxML(P)	-24021	1125	2702	11003	19316
SLU-Gr.1(N)-Gk=1.00	-23364	2265	1174	21709	5947
SLU-Gr.3(N)-Gk=1.00	-23363	1513	2230	14225	11601
SLU-Gr.1(P)-Gk=1.00	-23972	2194	1409	22282	7208
SLU-Gr.3(P)-Gk=1.00	-23972	1477	2702	15149	14123
SLU-Gr.1-1SW/2-Gk=1.00	-19148	1442	751	24439	3687
SLU-Gr.3-1SW/2-Gk=1.00	-19148	1101	1386	21049	7082
SLU-Gr.1-MaxML(P)-Gk=1.00	-18633	1483	1409	14567	12627
SLU-Gr.3-MaxML(P)-Gk=1.00	-18426	1125	2702	11002	19316
SLV-EL+0.3ET	-13707	1509	5926	11998	31162
SLV-0.3EL+ET	-13707	5030	1778	39995	9349
SLE-C-Gr.1(N)	-20367	1544	807	14817	4094
SLE-C-Gr.3(N)	-20367	1026	1536	9655	7994
SLE-C-Gr.1(P)	-20786	1496	969	15212	4965
SLE-C-Gr.3(P)	-20786	1001	1861	10293	9734
SLE-C-Gr.1-1SW/2	-17459	977	516	16699	2537
SLE-C-Gr.3-1SW/2	-17459	742	953	14361	4878
SLE-C-Gr.1-MaxML (P)	-17104	1005	969	9891	8702
SLE-C-Gr.3-MaxML (P)	-16962	759	1861	7433	13315
SLE-F-Gr.1(N)	-19035	830	583	8241	3119
SLE-F-Gr.3(N)	-19035	415	1166	4112	6239
SLE-F-Gr.1(P)	-19370	791	713	8557	3816
SLE-F-Gr.3(P)	-19370	396	1426	4622	7631
SLE-F-Gr.1-1SW/2	-16709	376	350	9747	1874
SLE-F-Gr.3-1SW/2	-16709	188	700	7877	3746
SLE-F-Gr.1-MaxML (P)	-16424	398	713	4300	6806
SLE-F-Gr.3-MaxML (P)	-16311	201	1426	2334	10496
SLE-QP	-13707	0	0	2	1

APPALTATORE:

Mandataria: Mandante:
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.

PROGETTISTA:

Mandataria: Mandante:

SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.

PROGETTO ESECUTIVO

Pila tipo A.1 (da P1 a P11) - Relazione di calcolo

LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

PROGETTO IF1M

LOTTO 0.0.E.ZZ CODIFICA CL DOCUMENTO VI.04.A5.001

REV.

Α

PAGINA **104 di 112**

VIADOTTO 04 - PILA A1 - H=5m

SOLLECITAZIONI SISMICHE E	BASE PILA PER q=1				
Combinazioni di carico	N	Ht	Н	Mt	MI
SLV-EL+0.3ET	-13707	1603	6825	8017	34126
SLV-0.3EL+ET	-13707	5345	2048	26723	10238

SOLLECITAZIONI SISMICHE CON COEFF. DI SOVRARESISTENZA γRd = 1.1									
Combinazioni di carico	N	Ht	HI	Mt	MI				
SLV-EL+0.3ET	-13707	1660	6518	13198	34278				
SLV-0.3EL+ET	-13707	5533	1955	43994	10283				

SOLLECITAZIONI RESISTENTI S	S _{Rd}				
Combinazioni di carico	N	Ht	HI	Mt	MI
SLV-EL+0.3ET	-13707	26998	13195	219934	73570
SLV-0.3EL+ET	-13707	26998	13195	219934	73570

SOLLECITAZIONI SISMICHE BASE PILA DI PROGETTO PER CALCOLO PLINTO							
Combinazioni di carico N Ht HI Mt MI							
SLV-EL+0.3ET	-13707	1603	6518	8017	34126		
SLV-0.3EL+ET	-13707	5345	1955	26723	10238		

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA 0.0.E.ZZ 105 di 112 Pila tipo A.1 (da P1 a P11) - Relazione di calcolo IF1M CL VI.04.A5.001 Α

Combinazioni di carico		SOLLECITA	ZIONI INTRADOS	SSO PLINTO	
Combinazioni di Canco	N	Ht	Н	Mt	MI
-	kN	kN	kN	kNm	kNm
SLU-Gr.1(N)	-48397	2265	1174	26240	8294
SLU-Gr.3(N)	-48396	1513	2230	17252	16062
SLU-Gr.1(P)	-49005	2194	1409	26672	10027
SLU-Gr.3(P)	-49005	1477	2702	18105	19527
SLU-Gr.1-1SW/2	-44181	1442	751	27324	5191
SLU-Gr.3-1SW/2	-44181	1101	1386	23252	9854
SLU-Gr.1-MaxML(P)	-43666	1483	1409	17533	15446
SLU-Gr.3-MaxML(P)	-43459	1125	2702	13254	24719
SLU-Gr.1(N)-Gk=1.00	-37762	2265	1174	26239	8294
SLU-Gr.3(N)-Gk=1.00	-37762	1513	2230	17250	16062
SLU-Gr.1(P)-Gk=1.00	-38371	2194	1409	26671	10027
SLU-Gr.3(P)-Gk=1.00	-38371	1477	2702	18104	19527
SLU-Gr.1-1SW/2-Gk=1.00	-33547	1442	751	27323	5190
SLU-Gr.3-1SW/2-Gk=1.00	-33547	1101	1386	23251	9853
SLU-Gr.1-MaxML(P)-Gk=1.00	-33031	1483	1409	17532	15446
SLU-Gr.3-MaxML(P)-Gk=1.00	-32825	1125	2702	13253	24719
SLV-EL+0.3ET	-28106	2540	9639	12160	50283
SLV-0.3EL+ET	-28106	8465	2892	40533	15085
SLE-C-Gr.1(N)	-34766	1544	807	17906	5708
SLE-C-Gr.3(N)	-34765	1026	1536	11707	11065
SLE-C-Gr.1(P)	-35185	1496	969	18204	6903
SLE-C-Gr.3(P)	-35185	1001	1861	12296	13455
SLE-C-Gr.1-1SW/2	-31858	977	516	18653	3568
SLE-C-Gr.3-1SW/2	-31858	742	953	15845	6784
SLE-C-Gr.1-MaxML (P)	-31503	1005	969	11901	10640
SLE-C-Gr.3-MaxML (P)	-31360	759	1861	8950	17036
SLE-F-Gr.1(N)	-33434	830	583	9901	4285
SLE-F-Gr.3(N)	-33433	415	1166	4942	8571
SLE-F-Gr.1(P)	-33769	791	713	10139	5242
SLE-F-Gr.3(P)	-33769	396	1426	5413	10483
SLE-F-Gr.1-1SW/2	-31108	376	350	10499	2574
SLE-F-Gr.3-1SW/2	-31108	188	700	8253	5146
SLE-F-Gr.1-MaxML (P)	-30823	398	713	5097	8232
SLE-F-Gr.3-MaxML (P)	-30710	201	1426	2736	13348
SLE-QP	-28106	0	0	2	1

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA 0.0.E.ZZ 106 di 112 Pila tipo A.1 (da P1 a P11) - Relazione di calcolo IF1M CL VI.04.A5.001 Α

Combinazioni di carico		SOLLECIT	AZIONI MASSIMI	E NEI PALI D	I FONDAZIO	NE	
Gombinazioni di canco	N _{Ed} /n	(Mt*di/?di^2)	(MI*di/?di^2)	N_{min}	N_{max}	$V_{ris,max}$	\mathbf{M}_{max}
-	kN	kN	kN	kN	kN	kN	kNm
SLU-Gr.1(N)	-4033	-583	-230	-4847	-3220	213	680
SLU-Gr.3(N)	-4033	-383	-446	-4863	-3204	225	719
SLU-Gr.1(P)	-4084	-593	-279	-4955	-3212	217	695
SLU-Gr.3(P)	-4084	-402	-542	-5028	-3139	257	821
SLU-Gr.1-1SW/2	-3682	-607	-144	-4433	-2930	136	434
SLU-Gr.3-1SW/2	-3682	-517	-274	-4472	-2891	148	472
SLU-Gr.1-MaxML(P)	-3639	-390	-429	-4457	-2820	170	546
SLU-Gr.3-MaxML(P)	-3622	-295	-687	-4603	-2640	244	780
SLU-Gr.1(N)-Gk=1.00	-3147	-583	-230	-3960	-2333	213	680
SLU-Gr.3(N)-Gk=1.00	-3147	-383	-446	-3976	-2317	225	719
SLU-Gr.1(P)-Gk=1.00	-3198	-593	-279	-4069	-2326	217	695
SLU-Gr.3(P)-Gk=1.00	-3198	-402	-542	-4142	-2253	257	821
SLU-Gr.1-1SW/2-Gk=1.00	-2796	-607	-144	-3547	-2044	136	434
SLU-Gr.3-1SW/2-Gk=1.00	-2796	-517	-274	-3586	-2005	148	472
SLU-Gr.1-MaxML(P)-Gk=1.00	-2753	-390	-429	-3571	-1934	170	546
SLU-Gr.3-MaxML(P)-Gk=1.00	-2735	-295	-687	-3717	-1754	244	780
SLV-EL+0.3ET	-2342	-270	-1397	-4009	-675	831	2658
SLV-0.3EL+ET	-2342	-901	-419	-3662	-1022	745	2385
SLE-C-Gr.1(N)	-2897	-398	-159	-3454	-2341	145	465
SLE-C-Gr.3(N)	-2897	-260	-307	-3465	-2330	154	492
SLE-C-Gr.1(P)	-2932	-405	-192	-3528	-2336	149	475
SLE-C-Gr.3(P)	-2932	-273	-374	-3579	-2285	176	563
SLE-C-Gr.1-1SW/2	-2655	-415	-99	-3168	-2141	92	295
SLE-C-Gr.3-1SW/2	-2655	-352	-188	-3195	-2114	101	322
SLE-C-Gr.1-MaxML (P)	-2625	-264	-296	-3185	-2065	116	372
SLE-C-Gr.3-MaxML (P)	-2613	-199	-473	-3285	-1941	167	536
SLE-F-Gr.1(N)	-2786	-220	-119	-3125	-2447	85	270
SLE-F-Gr.3(N)	-2786	-110	-238	-3134	-2438	103	330
SLE-F-Gr.1(P)	-2814	-225	-146	-3185	-2443	89	284
SLE-F-Gr.3(P)	-2814	-120	-291	-3226	-2403	123	395
SLE-F-Gr.1-1SW/2	-2592	-233	-71	-2897	-2287	43	137
SLE-F-Gr.3-1SW/2	-2592	-183	-143	-2919	-2266	60	193
SLE-F-Gr.1-MaxML (P)	-2569	-113	-229	-2911	-2227	68	218
SLE-F-Gr.3-MaxML (P)	-2559	-61	-371	-2991	-2128	120	384
SLE-QP	-2342	0	0	-2342	-2342	0	0
Comb. dimensionante st		Comb. dimension	onante portanza	N _{min}	N _{max}	V _{ris,max}	M _{max}
SLV-EL+0.3ET		SLU-G	ir.3(P)	-5028	-675	831	2658
SLE-C-Gr.3(P)		SLE-C-	Gr.3(P)	-3579	-1941	176	563

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA 0.0.E.ZZ Pila tipo A.1 (da P1 a P11) - Relazione di calcolo IF1M CL VI.04.A5.001 107 di 112 Α

Combinazioni di carico		SOLLE	CITAZIONI TEST	ΓA PILA	
Combinazioni di canco	N	Ht	HI	Mt	МІ
-	kN	kN	kN	kNm	kNm
SLU-Gr.1(N)	-26197	2228	1057	10479	371
SLU-Gr.3(N)	-26197	1476	2113	6756	742
SLU-Gr.1(P)	-26805	2157	1292	11405	454
SLU-Gr.3(P)	-26805	1440	2585	7856	908
SLU-Gr.1-1SW/2	-21981	1405	634	17323	224
SLU-Gr.3-1SW/2	-21981	1064	1269	15636	446
SLU-Gr.1-MaxML(P)	-21466	1446	1292	7247	5873
SLU-Gr.3-MaxML(P)	-21260	1088	2585	5469	6100
SLU-Gr.1(N)-Gk=1.00	-21318	2228	1057	10478	371
SLU-Gr.3(N)-Gk=1.00	-21318	1476	2113	6755	742
SLU-Gr.1(P)-Gk=1.00	-21927	2157	1292	11404	454
SLU-Gr.3(P)-Gk=1.00	-21927	1440	2585	7855	908
SLU-Gr.1-1SW/2-Gk=1.00	-17103	1405	634	17321	223
SLU-Gr.3-1SW/2-Gk=1.00	-17103	1064	1269	15635	446
SLU-Gr.1-MaxML(P)-Gk=1.00	-16587	1446	1292	7246	5873
SLU-Gr.3-MaxML(P)-Gk=1.00	-16381	1088	2585	5468	6100
SLV-EL+0.3ET	-11662	1540	6197	0	0
SLV-0.3EL+ET	-11662	5134	1859	0	0
SLE-C-Gr.1(N)	-18321	1520	729	7157	256
SLE-C-Gr.3(N)	-18321	1001	1458	4589	511
SLE-C-Gr.1(P)	-18741	1471	891	7795	313
SLE-C-Gr.3(P)	-18741	977	1783	5348	626
SLE-C-Gr.1-1SW/2	-15414	952	438	11876	154
SLE-C-Gr.3-1SW/2	-15414	717	875	10713	308
SLE-C-Gr.1-MaxML (P)	-15059	980	891	4927	4051
SLE-C-Gr.3-MaxML (P)	-14916	734	1783	3701	4207
SLE-F-Gr.1(N)	-16989	830	583	4091	204
SLE-F-Gr.3(N)	-16989	415	1166	2037	409
SLE-F-Gr.1(P)	-17325	791	713	4602	251
SLE-F-Gr.3(P)	-17325	396	1426	2644	501
SLE-F-Gr.1-1SW/2	-14664	376	350	7867	124
SLE-F-Gr.3-1SW/2	-14664	188	700	6937	246
SLE-F-Gr.1-MaxML (P)	-14379	398	713	2308	3241
SLE-F-Gr.3-MaxML (P)	-14265	201	1426	1327	3366
SLE-QP	-11662	0	0	2	1

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA 0.0.E.ZZ Pila tipo A.1 (da P1 a P11) - Relazione di calcolo IF1M CL VI.04.A5.001 108 di 112 Α

Combinazioni di carico		SOLLE	ECITAZIONI BAS	E PILA	
Combinazioni di canco	N	Ht	Н	Mt	МІ
-	kN	kN	kN	kNm	kNm
SLU-Gr.1(N)	-29136	2268	1185	22844	6536
SLU-Gr.3(N)	-29136	1516	2242	14984	12719
SLU-Gr.1(P)	-29744	2198	1421	23382	7916
SLU-Gr.3(P)	-29744	1481	2713	15890	15478
SLU-Gr.1-1SW/2	-24920	1446	763	25162	4067
SLU-Gr.3-1SW/2	-24920	1105	1397	21601	7778
SLU-Gr.1-MaxML(P)	-24405	1487	1421	15310	13335
SLU-Gr.3-MaxML(P)	-24199	1129	2713	11567	20670
SLU-Gr.1(N)-Gk=1.00	-23495	2268	1185	22843	6537
SLU-Gr.3(N)-Gk=1.00	-23495	1516	2242	14982	12719
SLU-Gr.1(P)-Gk=1.00	-24104	2198	1421	23381	7915
SLU-Gr.3(P)-Gk=1.00	-24104	1481	2713	15889	15477
SLU-Gr.1-1SW/2-Gk=1.00	-19280	1446	763	25161	4066
SLU-Gr.3-1SW/2-Gk=1.00	-19280	1105	1397	21600	7778
SLU-Gr.1-MaxML(P)-Gk=1.00	-18764	1487	1421	15309	13335
SLU-Gr.3-MaxML(P)-Gk=1.00	-18558	1129	2713	11566	20669
SLV-EL+0.3ET	-13839	1540	6197	12925	35620
SLV-0.3EL+ET	-13839	5134	1859	43083	10686
SLE-C-Gr.1(N)	-20498	1547	815	15590	4500
SLE-C-Gr.3(N)	-20498	1028	1543	10169	8764
SLE-C-Gr.1(P)	-20918	1498	977	15961	5451
SLE-C-Gr.3(P)	-20918	1004	1868	10794	10666
SLE-C-Gr.1-1SW/2	-17591	980	523	17189	2796
SLE-C-Gr.3-1SW/2	-17591	745	961	14733	5356
SLE-C-Gr.1-MaxML (P)	-17236	1008	977	10394	9188
SLE-C-Gr.3-MaxML (P)	-17093	761	1868	7812	14247
SLE-F-Gr.1(N)	-19166	830	583	8656	3411
SLE-F-Gr.3(N)	-19166	415	1166	4319	6822
SLE-F-Gr.1(P)	-19502	791	713	8953	4172
SLE-F-Gr.3(P)	-19502	396	1426	4820	8344
SLE-F-Gr.1-1SW/2	-16840	376	350	9935	2049
SLE-F-Gr.3-1SW/2	-16840	188	700	7971	4096
SLE-F-Gr.1-MaxML (P)	-16556	398	713	4500	7162
SLE-F-Gr.3-MaxML (P)	-16442	201	1426	2434	11209
SLE-QP	-13839	0	0	2	1

APPALTATORE:

Mandataria: Mandante:
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.

PROGETTISTA:

Mandataria: Mandante:

SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.

PROGETTO ESECUTIVO

Pila tipo A.1 (da P1 a P11) - Relazione di calcolo

LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

 PROGETTO
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 PAGINA

 IF1M
 0.0.E.ZZ
 CL
 VI.04.A5.001
 A
 109 di 112

VIADOTTO 04 - PILA A1 - H=5.5m

SOLLECITAZIONI SISMICHE BASE PILA PER q=1							
Combinazioni di carico	N	Ht	Н	Mt	MI		
SLV-EL+0.3ET	-13839	1666	7228	9165	39752		
SLV-0.3EL+ET	-13839	5554	2168	30549	11926		

SOLLECITAZIONI SISMICHE CON COEFF. DI SOVRARESISTENZA YRd = 1.1						
Combinazioni di carico	N	Ht	Н	Mt	MI	
SLV-EL+0.3ET	-13839	1694	6817	14217	39182	
SLV-0.3EL+ET	-13839	5648	2045	47392	11755	

SOLLECITAZIONI RESISTENTI S _{Rd}							
Combinazioni di carico	N	Ht	HI	Mt	MI		
SLV-EL+0.3ET	-13839	27010	13195	219934	73570		
SLV-0.3EL+ET	-13839	27010	13195	219934	73570		

SOLLECITAZIONI SISMICHE BASE PILA DI PROGETTO PER CALCOLO PLINTO							
Combinazioni di carico N Ht HI Mt MI							
SLV-EL+0.3ET	-13839	1666	6817	9165	39182		
SLV-0.3EL+ET	-13839	5554	2045	30549	11755		

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA 0.0.E.ZZ VI.04.A5.001 110 di 112 Pila tipo A.1 (da P1 a P11) - Relazione di calcolo IF1M CL Α

Combinazioni di carico		SOLLECITA	AZIONI INTRADOS	SSO PLINTO	
Combinazioni di canco	N	Ht	Н	Mt	MI
-	kN	kN	kN	kNm	kNm
SLU-Gr.1(N)	-48574	2268	1185	27381	8907
SLU-Gr.3(N)	-48574	1516	2242	18016	17203
SLU-Gr.1(P)	-49183	2198	1421	27778	10758
SLU-Gr.3(P)	-49183	1481	2713	18852	20904
SLU-Gr.1-1SW/2	-44359	1446	763	28054	5593
SLU-Gr.3-1SW/2	-44359	1105	1397	23811	10573
SLU-Gr.1-MaxML(P)	-43844	1487	1421	18283	16177
SLU-Gr.3-MaxML(P)	-43637	1129	2713	13825	26096
SLU-Gr.1(N)-Gk=1.00	-37894	2268	1185	27380	8907
SLU-Gr.3(N)-Gk=1.00	-37894	1516	2242	18015	17204
SLU-Gr.1(P)-Gk=1.00	-38503	2198	1421	27777	10758
SLU-Gr.3(P)-Gk=1.00	-38503	1481	2713	18851	20904
SLU-Gr.1-1SW/2-Gk=1.00	-33678	1446	763	28052	5592
SLU-Gr.3-1SW/2-Gk=1.00	-33678	1105	1397	23810	10573
SLU-Gr.1-MaxML(P)-Gk=1.00	-33163	1487	1421	18282	16177
SLU-Gr.3-MaxML(P)-Gk=1.00	-32957	1129	2713	13824	26096
SLV-EL+0.3ET	-28237	2608	9958	13439	55957
SLV-0.3EL+ET	-28237	8695	2987	44798	16787
SLE-C-Gr.1(N)	-34897	1547	815	18684	6129
SLE-C-Gr.3(N)	-34897	1028	1543	12225	11850
SLE-C-Gr.1(P)	-35317	1498	977	18957	7405
SLE-C-Gr.3(P)	-35317	1004	1868	12802	14403
SLE-C-Gr.1-1SW/2	-31990	980	523	19148	3843
SLE-C-Gr.3-1SW/2	-31990	745	961	16222	7278
SLE-C-Gr.1-MaxML (P)	-31635	1008	977	12409	11143
SLE-C-Gr.3-MaxML (P)	-31492	761	1868	9335	17983
SLE-F-Gr.1(N)	-33565	830	583	10316	4577
SLE-F-Gr.3(N)	-33565	415	1166	5149	9154
SLE-F-Gr.1(P)	-33901	791	713	10535	5598
SLE-F-Gr.3(P)	-33901	396	1426	5611	11196
SLE-F-Gr.1-1SW/2	-31239	376	350	10687	2749
SLE-F-Gr.3-1SW/2	-31239	188	700	8347	5496
SLE-F-Gr.1-MaxML (P)	-30955	398	713	5297	8588
SLE-F-Gr.3-MaxML (P)	-30841	201	1426	2837	14061
SLE-QP	-28237	0	0	2	1

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA 0.0.E.ZZ Pila tipo A.1 (da P1 a P11) - Relazione di calcolo IF1M CL VI.04.A5.001 111 di 112 Α

Combinazioni di carico		SOLLECIT	AZIONI MASSIM	E NEI PALI D	I FONDAZIO	NE	
Combinazioni di canco	N _{Ed} /n	(Mt*di/?di^2)	(MI*di/?di^2)	N _{min}	N_{max}	V _{ris,max}	M _{max}
-	kN	kN	kN	kN	kN	kN	kNm
SLU-Gr.1(N)	-4048	-608	-247	-4904	-3192	213	853
SLU-Gr.3(N)	-4048	-400	-478	-4926	-3170	226	902
SLU-Gr.1(P)	-4099	-617	-299	-5015	-3182	218	872
SLU-Gr.3(P)	-4099	-419	-581	-5098	-3099	258	1030
SLU-Gr.1-1SW/2	-3697	-623	-155	-4475	-2918	136	545
SLU-Gr.3-1SW/2	-3697	-529	-294	-4519	-2874	148	594
SLU-Gr.1-MaxML(P)	-3654	-406	-449	-4509	-2798	171	685
SLU-Gr.3-MaxML(P)	-3636	-307	-725	-4669	-2604	245	980
SLU-Gr.1(N)-Gk=1.00	-3158	-608	-247	-4014	-2302	213	853
SLU-Gr.3(N)-Gk=1.00	-3158	-400	-478	-4036	-2280	226	902
SLU-Gr.1(P)-Gk=1.00	-3209	-617	-299	-4125	-2292	218	872
SLU-Gr.3(P)-Gk=1.00	-3209	-419	-581	-4208	-2209	258	1030
SLU-Gr.1-1SW/2-Gk=1.00	-2807	-623	-155	-3585	-2028	136	545
SLU-Gr.3-1SW/2-Gk=1.00	-2807	-529	-294	-3629	-1984	148	594
SLU-Gr.1-MaxML(P)-Gk=1.00	-2764	-406	-449	-3619	-1908	171	685
SLU-Gr.3-MaxML(P)-Gk=1.00	-2746	-307	-725	-3778	-1714	245	980
SLV-EL+0.3ET	-2353	-299	-1554	-4206	-500	858	3431
SLV-0.3EL+ET	-2353	-996	-466	-3815	-891	766	3065
SLE-C-Gr.1(N)	-2908	-415	-170	-3494	-2323	146	583
SLE-C-Gr.3(N)	-2908	-272	-329	-3509	-2307	155	618
SLE-C-Gr.1(P)	-2943	-421	-206	-3570	-2316	149	596
SLE-C-Gr.3(P)	-2943	-284	-400	-3628	-2259	177	707
SLE-C-Gr.1-1SW/2	-2666	-426	-107	-3198	-2134	93	370
SLE-C-Gr.3-1SW/2	-2666	-360	-202	-3228	-2103	101	405
SLE-C-Gr.1-MaxML (P)	-2636	-276	-310	-3221	-2051	117	468
SLE-C-Gr.3-MaxML (P)	-2624	-207	-500	-3331	-1917	168	672
SLE-F-Gr.1(N)	-2797	-229	-127	-3153	-2441	85	338
SLE-F-Gr.3(N)	-2797	-114	-254	-3166	-2428	103	413
SLE-F-Gr.1(P)	-2825	-234	-156	-3215	-2435	89	355
SLE-F-Gr.3(P)	-2825	-125	-311	-3261	-2389	123	493
SLE-F-Gr.1-1SW/2	-2603	-237	-76	-2917	-2289	43	171
SLE-F-Gr.3-1SW/2	-2603	-185	-153	-2941	-2265	60	242
SLE-F-Gr.1-MaxML (P)	-2580	-118	-239	-2936	-2223	68	272
SLE-F-Gr.3-MaxML (P)	-2570	-63	-391	-3024	-2116	120	480
SLE-QP	-2353	0	0	-2353	-2353	0	0
Comb. dimensionante stru	utturali	Comb. dimension	onante portanza	N_{min}	N _{max}	$V_{\rm ris,max}$	M _{max}
SLV-EL+0.3ET		SLU-G	ir.3(P)	-5098	-500	858	3431
SLE-C-Gr.3(P)		SLE-C-	Gr.3(P)	-3628	-1917	177	707

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA 0.0.E.ZZ Pila tipo A.1 (da P1 a P11) - Relazione di calcolo IF1M CL VI.04.A5.001 112 di 112 Α

13 INDICE DELLE FIGURE

Figura 1: Vista in pianta6
Figura 2: Sezione in direzione trasversale e longitudinale rispetto all'asse del viadotto6
Figura 3: Spettri di risposta elastici_SLV (Componente orizzontale e verticale)23
Figura 4: Spettri di risposta di progetto (q=1,5)_SLV (Componente orizzontale e verticale)28
Figura 5: Valori dei coefficienti parziali di sicurezza – Tabella 5.2.V del D.M. 14 gennaio 2008 32
Figura 6: Valori dei coefficienti di combinazione- Tabella 5.2.VI del D.M. 14 gennaio 200832
Figura 7: Ulteriori valori dei coefficienti di combinazione – Tabella 5.2.VII del D.M. 14 gennaio
2008
Figura 8: Valutazione dei carichi da traffico – Tabella 5.2.IV del D.M. 14 gennaio 200833
Figura 9: Modellazione tridimensionale
Figura 10: Modello della pila ad oscillatore semplice42
Figura 11: Modellazione tridimensionale agli Elementi Finiti – a) Vista 3D b) Spaccato44
Figura 12: Disposizione dei pali di fondazione73
Figura 13: Modello del plinto su pali (a sinistra) ed effetto flessionale su pali dovuto al carico
assiale agente sul plinto (a destra)78
Figura 14: Effetto flessionale sui pali dovuti al momento flettente (a sinistra) e al taglio (a destra)
agenti sul plinto
Figura 15: Sollecitazioni massime nei pali di fondazione
Figura 16: Schema a mensola del plinto su pali