COMMITTENTE:

DIREZIONE LAVORI:

APPALTATORE:

MANDATARIA:

MANDANTE:

PROGETTAZIONE:

MANDATARIA

MANDANTI:

PROGETTO ESECUTIVO

LINEA FERROVIARIA NAPOLI - BARI, TRATTA NAPOLI-CANCELLO, IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

RELAZIONE

SL - SOTTOVIA SL08 - SOTTOPASSO PEDONALE KM 8+551,89 RELAZIONE DI CALCOLO

APPALTATORE	PROGETTAZIONE	
DIRETTORE TECNICO Ing. M. PANISI	DIRETTORE DELLA PROGETTAZIONE Ing. A. CHECCHI	

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC.	OPERA/DISCIPLINA	PROGR.	REV	SCALA:

							_		_	_												
	F 1	N A	\cap	\sim 1		7		\sim 1		- 1	\sim		\wedge	0	\cap	\wedge	$\mathbf{\cap}$	\sim	1	\Box		
1111	_	IVII	10 1	U I				CH		١,	5		U	O	U	U	U	w		וח	-	
1 - 1			_	_	_	 _		_ -	.		_	_	_	•	•	•	•	_		_		

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	EMISSIONE	DI PLACIDO	24/04/18	MARTUSCELLI	26/04/18	D'ANGELO	26/04/18	MARTUSCELLI
	LIVIIOGIONE		2 1/0 1/10		20,0 1, 10		20,0 1, 10	
В	EMISSIONE PER RdV	DI PLACIDO	10/09/18	MARTUSCELLI	11/09/18	D'ANGELO	11/09/18	
"	LIVISSIONE FER IN							
								12/09/18

File: IF1M .0.0.E.ZZ.CL.SL.08.0.0.001-B.DOC	n. Elab.:

APPALTATORE:

Mandataria:

Mandante:

SALINI IMPREGILO S.p.A.

ASTALDI S.p.A.

PROGETTISTA:

Mandataria:

Mandante:

SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.

PROGETTO ESECUTIVO

Relazione di calcolo

LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

PROGETTO LOTTO CODIFICA DOCUMENTO REV. **PAGINA** IF1M 0.0.E.ZZ CL SL.08.00.001 В 2 di 211

1	PR	REMESSA	7
2	DE	ESCRIZIONE DELL'OPERA	8
3	NO	ORMATIVA DI RIFERIMENTO	10
4	MA	ATERIALI	11
4	l.1	CALCESTRUZZO C32/40 (SOTTOPASSO E MURI ANDATORI)	11
4	l.2	CALCESTRUZZO C25/30 (PALI DI FONDAZIONE)	12
4	1.3	ACCIAIO B450C	12
5	INC	IQUADRAMENTO GEOTECNICO	13
5	5.1	STRATIGRAFIA E PARAMETRI GEOTECNICI DI PROGETTO	13
5	5.2	INTERAZIONE TERRENO-STRUTTURA	15
6	CA	ARATTERIZZAZIONE SISMICA	17
7	VE	ERIFICHE STRUTTURALI – CRITERI GENERALI	19
7	7.1	VERIFICHE SLE	20
	7.1.	1.1 Verifiche alle tensioni	20
	7.1.	1.2 Verifiche a fessurazione	21
7	7.2	VERIFICHE ALLO SLU	22
	7.2.	2.1 Pressoflessione	22
	7.2.	2.2 Taglio	22
8	AN	NALISI E VERIFICA DELLA STRUTTURA SCATOLARE	25
8	3.1	ANALISI DEI CARICHI	25
	8.1.	1.1 Peso propri strutturali e non strutturali	25

APPALTATORE:

Mandataria:

Mandante:

SALINI IMPREGILO S.p.A.

ASTALDI S.p.A.

PROGETTISTA:

Mandataria:

Mandante:

SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.

LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

PROGETTO ESECUTIVO

9

REV. В

PAGINA 3 di 211

CODIFICA PROGETTO LOTTO DOCUMENTO Relazione di calcolo IF1M 0.0.E.ZZ CL SL.08.00.001

0.1.2	Spinta dei terreno27
8.1.3	Spinta in presenza di falda28
8.1.4	Carichi ferroviari29
8.1.5	Carichi stradali32
8.1.6	Spinta sui piedritti prodotta dal sovraccarico34
8.1.7	Frenatura e avviamento34
8.1.8	Ritiro35
8.1.9	Azioni termiche35
8.1.10	Azioni sismiche35
8.2 CC	OMBINAZIONI DI CARICO38
8.3 M	DDELLAZIONE ADOTTATA49
8.4 AN	IALISI DELLE SOLLECITAZIONI50
8.5 VE	RIFICHE62
8.5.1	Verifiche agli Stati Limite Ultimi62
8.5.2	Verifiche agli Stati Limite D'esercizio77
8.6 VE	RIFICHE GEOTECNICHE93
8.6.1	Verifica a carico limite del terreno di fondazione93
8.7 IN	CIDENZE ARMATURE STRUTTURA SCATOLARE96
MURI	ANDATORI IN DESTRA SU FONDAZIONE DIRETTA97
9.1 SC	HEMATIZZAZIONE DELLE STRUTTURE97
9.1.1	Geometria di calcolo97
9.2 AN	IALISI DEI CARICHI98

APPALTATORE: Mandataria:

Mandante:

SALINI IMPREGILO S.p.A. ASTALDI S.p.A.

PROGETTISTA:

Mandataria: Mandante:

SYSTRA S.A. SYSTRA-SOTECNI S.p.A.

ROCKSOIL S.p.A.

LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

PF Re

ROGETTO ESECUTIVO	PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
elazione di calcolo	IF1M	0.0.E.ZZ	CL	SL.08.00.001	В	4 di 211

9.2.1	Combinazioni di carichi SLU105
9.2.2	Combinazioni di carichi SLE106
9.3 CF	RITERI DI CALCOLO GEOTECNICO E STRUTTURALE106
9.3.1	Criterio di verifica a capacita portante della fondazione (GEO)109
9.3.2	Criterio di verifica a scorrimento sul piano di posa (GEO)110
9.3.3	Criterio di verifica a ribaltamento (EQU)111
9.3.4	Criterio di verifica a stabilità globale (GEO)111
9.3.5	Criteri di verifica a presso(tenso)flessione (STR)113
9.3.6	Criteri di verifica a taglio (STR)114
9.4 VE	RIFICHE AGLI STATI LIMITE ULTIMI114
9.4.1	Verifica GEO a capacità portante della fondazione124
9.4.2	Verifica GEO a scorrimento sul piano di posa della fondazione127
9.4.3	Verifica EQU a ribaltamento128
9.4.4	Verifica GEO a stabilità globale129
9.4.5	Verifiche STR130
9.5 VE	RIFICHE AGLI STATI LIMITE DI ESERCIZIO134
9.5.1	Verifiche a fessurazione135
9.5.2	Verifiche alle tensioni137
	CIDENZE ARMATURE MURI ANDATORI IN DESTRA SU FONDAZIONE
10 MURI	ANDATORI IN SINISTRA SU PALI140
10.1 SC	CHEMATIZZAZIONE DELLE STRUTTURE140

APPALTATORE:

Mandataria:

Mandante:

SALINI IMPREGILO S.p.A.

ASTALDI S.p.A.

PROGETTISTA:

Mandataria:

SYSTRA S.A. SYSTRA-SOTECNI S.p.A.

Mandante:

ROCKSOIL S.p.A.

LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

PROGETTO ESECUTIVO
Relazione di calcolo

 PROGETTO
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 PAGINA

 IF1M
 0.0.E.ZZ
 CL
 SL.08.00.001
 B
 5 di 211

10.1.1	Geometria di calcolo muro140
10.1.2	Geometria di calcolo pali141
10.2 AN	IALISI DEI CARICHI142
10.2.1	Combinazioni di carichi SLU152
10.2.2	Combinazioni di carichi SLE153
10.3 CF	RITERI DI CALCOLO GEOTECNICO E STRUTTURALE153
10.3.1	Carico limite del singolo palo per azioni verticali (GEO)155
10.3.2	Carico limite del singolo palo per azioni orizzontali (GEO)156
10.3.3	Criteri di verifica a presso(tenso)flessione (STR)157
10.3.4	Criteri di verifica a taglio (STR)157
10.4 VE	RIFICHE AGLI STATI LIMITE ULTIMI158
10.4.1	Verifiche del muro (STR)166
10.4.2	Verifica a carico limite del singolo palo per azioni verticali (GEO)169
10.4.3	Verifiche a carico limite del singolo palo per azioni orizzontali (GEO)171
10.4.4	Verifica stabilità globale (GEO)177
10.4.5	Verifiche strutturali dei pali (STR)178
10.5 VE	RIFICHE AGLI STATI LIMITE DI ESERCIZIO186
10.5.1	Verifiche a fessurazione muro187
10.5.2	Verifiche alle tensioni muro189
10.5.3	Verifiche a fessurazione pali191
10.5.4	Verifiche alle tensioni pali194
10.6 IN	CIDENZE ARMATURE MURI ANDATORI IN SINISTRA SU PALI195

APPALTATORE:			I IN	FΔ FFF	ROVIA	RIA NAPOI	I - R/	\RI
Mandataria:	Mandante:						_, _,	-
SALINI IMPREGILO	S.p.A. ASTALDI S.p.A	λ.	TRATTA NAPOLI-CANCELLO					
PROGETTISTA:			IN VARIA	NTE TRA	LE PK 0+0	00 E PK 15+5	85, INCI	LUSE LE
Mandataria:	Mandante:		OPERE A	CCESSOF	RIE, NELL'A	AMBITO DEGL	I INTER	VENTI DI
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL [D.L. 133/2	014, CONV	ERTITO IN LE	GGE 16	4 / 2014
PROGETTO ESECU	ΓΙVO	PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA	
Relazione di calcolo			IF1M	0.0.E. <i>ZZ</i>	CL	SL.08.00.001	В	6 di 211

11 TABULATI DI CALCOLO DELLA STRUTTURA SCATOLARE......196

APPALTATORE: LINEA FERROVIARIA NAPOLI - BARI Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA **DOCUMENTO** REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ CL SL.08.00.001 7 di 211

1 PREMESSA

Il presente documento fa parte degli elaborati tecnici a corredo della "Progettazione esecutiva della Linea Ferroviaria Napoli-Bari, tratta Napoli-Cancello, in variante tra le PK. 0+000 e PK 15+585".

In particolare, l'opera oggetto del presente documento è un sottopasso scatolare 6.50 x 5.45 m denominato "SL08" nei pressi della PK 8+550.

I tombini scatolari che attraversano il rilevato di progetto dalla PK 8+850 alla PK 9+200 in affiancamento ai Regi Lagni hanno la funzione di mitigare l'interruzione del rapporto diretto, storicamente consolidato, tra l'alveo ed il circostante territorio di campagna, così come prescritto dalla nota Prot. n. 30803 del 11.12.2015 del MIBACT. In corrispondenza di questi attraversamenti non è prevista alcuna viabilità di ricucitura, così come indicato nell'Allegato 2 all'Ordinanza 21 di approvazione del Progetto Definitivo, facente parte della Convenzione per la Progettazione Esecutiva ed esecuzione dei lavori di realizzazione della linea ferroviaria Napoli-Bari – Variante Linea Cancello – Napoli.

Quanto riportato di seguito consentirà di verificare che il dimensionamento delle strutture è stato effettuato nel rispetto dei requisiti di resistenza e deformabilità richiesti all'opera.

APPALTATORE:			I IN	FA FF	ROVIA	RIA NAPOL	I - B/	\RI
Mandataria:	Mandante:					_		
SALINI IMPREGILO	S.p.A. ASTALDI S.p.A	٨.	TRATTA NAPOLI-CANCELLO					
PROGETTISTA:			IN VARIA	NTE TRA	LE PK 0+0	00 E PK 15+58	85, INCI	USE LE
Mandataria:	Mandante:		OPERE A	CCESSOF	RIE, NELL'A	MBITO DEGL	IINTER	VENTI DI
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL E	D.L. 133/2	014, CONV	ERTITO IN LE	GGE 16	4 / 2014
PROGETTO ESECU	PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA		
Relazione di calcolo)		IF1M	0.0.E.ZZ	CL	SL.08.00.001	В	8 di 211

2 DESCRIZIONE DELL'OPERA

L'opera è costituita da una struttura scatolare di tipo classico, di dimensioni interne 6.50 x 5.45 m. Lo spessore dei piedritti e della soletta di copertura è pari a 70 cm, mentre la soletta di fondazione è spessa 80 cm. La lunghezza dello scatolare è pari a 14.90 m. La struttura attraversa in maniera ortogonale l'infrastruttura ferroviaria composta da rilevato tra muri. Trattasi di muri andatori su fondazione diretta in destra e muri andatori su pali in sinistra.

Si riportano una vista planimetrica, una sezione longitudinale ed una trasversale della struttura.

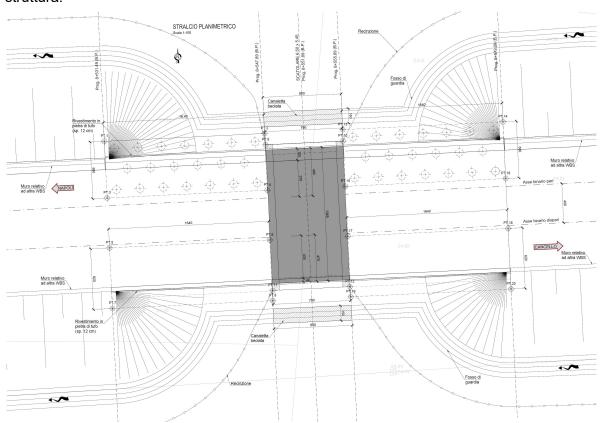


Figura 1-Sottopasso - Vista Planimetrica

APPALTATORE:			LIN	EA FEF	RROVIA	RIA NAPOL	I - B/	ARI
Mandataria:	<u>Mandante:</u>							
SALINI IMPREGILO S	S.p.A. ASTALDI S.p.A	۸.	TRATTA NAPOLI-CANCELLO					
PROGETTISTA:			IN VARIA	NTE TRA	LE PK 0+0	00 E PK 15+5	85, INCI	LUSE LE
Mandataria:	Mandante:		OPERE AC	CESSOF	RIE, NELL'A	MBITO DEGL	IINTER	VENTI DI
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL E).L. 133/2	014, CONV	ERTITO IN LE	GGE 16	4 / 2014
PROGETTO ESECUT	IVO		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo			IF1M	0.0.E.ZZ	CL	SL.08.00.001	В	9 di 211

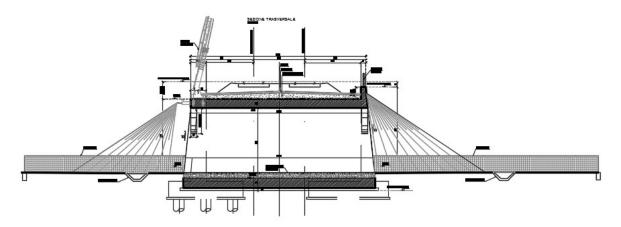


Figura 2-Sottopasso -Sezione Longitudinale

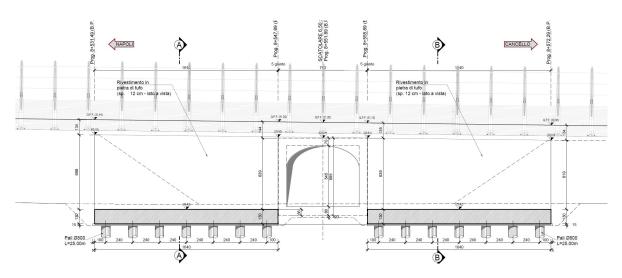


Figura 3 - Prospetto

Per ulteriori dettagli geometrici si rimanda agli elaborati progettuali specifici.

APPALTATORE:			I IN	FA FFF	ROVIA	RIA NAPOL	I - BA	ARI
Mandataria:	Mandante:							
SALINI IMPREGILO	S.p.A. ASTALDI S.p.A	٨.	TRATTA NAPOLI-CANCELLO					
PROGETTISTA:			IN VARIA	NTE TRA	LE PK 0+0	00 E PK 15+5	85, INC	LUSE LE
Mandataria:	Mandante:		OPERE A	CCESSOF	RIE, NELL'A	MBITO DEGL	I INTER	RVENTI DI
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL D).L. 133/2	014, CONV	ERTITO IN LE	GGE 16	4 / 2014
PROGETTO ESECU	TIVO		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo)		IF1M	0.0.E.ZZ	CL	SL.08.00.001	В	10 di 211

3 NORMATIVA DI RIFERIMENTO

- Legge 5-1-1971 n° 1086: Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso, ed a struttura metallica";
- Legge. 2 febbraio 1974, n. 64: Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche;
- Norme Tecniche per le Costruzioni 2008 (D.M. 14 Gennaio 2008);
- Circolare applicativa delle NTC2008 n.617 del 02/02/2009: Istruzioni per l'applicazione delle Nuove Norme Tecniche per le Costruzioni di cui al D.M. 14 gennaio 2008;
- UNI EN 1992-1-1 "Progettazione delle strutture di calcestruzzo;
- Regolamento (UE) N.1299/2014 della Commissione del 18 Novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione europea;
- RFI DTC SI MA IFS 001 A Manuale di progettazione delle opere civili;
- RFI DTC INC CS SP IFS 001 A Specifica per la progettazione geotecnica delle opere civili ferroviarie

APPALTATORE:			I IN	FA FFF	ROVIA	RIA NAPOI	I - R	ΔRI
Mandataria:	Mandante:							
SALINI IMPREGILO	S.p.A. ASTALDI S.p.A	٨.	TRATTA NAPOLI-CANCELLO					
PROGETTISTA:			IN VARIA	NTE TRA	LE PK 0+0	00 E PK 15+5	85, INC	LUSE LE
Mandataria:	Mandante:		OPERE A	CCESSOF	RIE, NELL'A	MBITO DEGL	IINTER	RVENTI DI
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL E	D.L. 133/2	014, CONV	ERTITO IN LE	GGE 16	64 / 2014
PROGETTO ESECU	ITIVO		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo	0		IF1M	0.0.E.ZZ	CL	SL.08.00.001	В	11 di 211

4 MATERIALI

Il calcestruzzo adottato corrisponde alla Classe C34/40, mentre l'acciaio in barre ad aderenza migliorata corrisponde alla classe B450C. Di seguito vengono elencate le specifiche.

4.1 CALCESTRUZZO C32/40 (sottopasso e muri andatori)

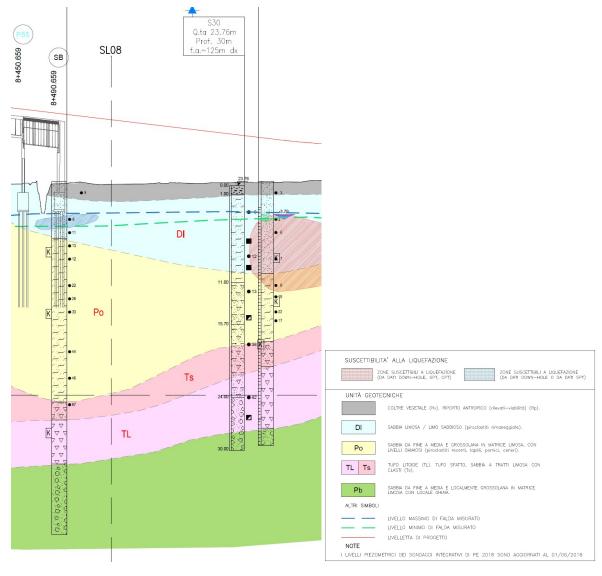
Modulo di elasticità longitudinale	Ec	=	33643	[MPa]
Coefficiente di dilatazione termica	α	=	10x10-6	[C-1]
Coefficiente di Poisson	ν	=	0.20	[-]
Coefficiente parziale di sicurezza	γο	=	1.50	[-]
Coefficiente riduttivo per le resistenze di lunga durata	$lpha_{\sf cc}$	=	0.85	[-]
Resistenza caratteristica cubica a compressione	R_{ck}	=	40.0	[MPa]
Resistenza caratteristica cilindrica a compressione	$f_{\sf ck}$	=	33.2	[MPa]
Resistenza media cilindrica a compressione	$f_{\sf cm}$	=	41.2	[MPa]
Resistenza media a trazione semplice	f_{ctm}	=	3.10	[MPa]
Resistenza caratteristica a trazione semplice	f_{ctk}	=	2.17	[MPa]
Resistenza media a trazione per flessione	f_{cfm}	=	3.72	[MPa]
Resistenza caratteristica a trazione per flessione	f_{cfk}	=	2.60	[MPa]
Resistenza caratteristica tangenziale per aderenza	f_{bk}	=	4.88	[MPa]
Resistenza di calcolo a compressione	$f_{\sf cd}$	=	18.8	[MPa]
Resistenza di calcolo a trazione semplice	f_{ctd}	=	1.45	[MPa]
Resistenza di calcolo a trazione per flessione	$f_{\sf cfd}$	=	1.74	[MPa]
Resistenza di calcolo tangenziale per aderenza	f_{bd}	=	3.25	[MPa]

APPALTATORE:			LIN	FΔ FFF	ROVIA	RIA NAPOL	1 - R/	\RI
Mandataria:	Mandante:							-
SALINI IMPREGILO S	S.p.A. ASTALDI S.p.A	λ.	TRATTA NAPOLI-CANCELLO					
PROGETTISTA:			IN VARIA	NTE TRA	LE PK 0+0	00 E PK 15+5	85, INCI	LUSE LE
Mandataria:	Mandante:		OPERE AC	CESSOF	RIE, NELL' <i>A</i>	MBITO DEGL	INTER	VENTI DI
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL D).L. 133/2	014, CONV	ERTITO IN LE	GGE 16	4 / 2014
PROGETTO ESECUT	IVO		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo			IF1M	0.0.E.ZZ	CL	SL.08.00.001	В	12 di 211

4.2 CALCESTRUZZO C25/30 (pali di fondazione)

Modulo di elasticità longitudinale	Ec	=	31447	[MPa]
Coefficiente di dilatazione termica	α	=	10x10 ⁻⁶	[C ⁻¹]
Coefficiente di Poisson	V	=	0.20	[-]
Coefficiente parziale di sicurezza	γ c	=	1.60	[-]
Coefficiente riduttivo per le resistenze di lunga durata	α_{cc}	=	0.85	[-]
Resistenza caratteristica cubica a compressione	R_{ck}	=	30.0	[MPa]
Resistenza caratteristica cilindrica a compressione	$f_{\text{ck}} \\$	=	24.9	[MPa]
Resistenza media cilindrica a compressione	$f_{\text{cm}} \\$	=	32.9	[MPa]
Resistenza media a trazione semplice	f_{ctm}	=	2.56	[MPa]
Resistenza caratteristica a trazione semplice	f_{ctk}	=	1.79	[MPa]
Resistenza media a trazione per flessione	f_{cfm}	=	3.07	[MPa]
Resistenza caratteristica a trazione per flessione	f_{cfk}	=	2.15	[MPa]
Resistenza caratteristica tangenziale per aderenza	$f_{\text{bk}} \\$	=	4.03	[MPa]
Resistenza di calcolo a compressione	$f_{\text{cd}} \\$	=	13.2	[MPa]
Resistenza di calcolo a trazione semplice	f_{ctd}	=	1.12	[MPa]
Resistenza di calcolo a trazione per flessione	f_{cfd}	=	1.34	[MPa]
Resistenza di calcolo tangenziale per aderenza	\mathbf{f}_{bd}	=	2.52	[MPa]

4.3 ACCIAIO B450C


Modulo di elasticità longitudinale	E_s	=	210000	[MPa]
Coefficiente parziale di sicurezza	γs	=	1.15	[-]
Tensione caratteristica di snervamento	\boldsymbol{f}_{yk}	=	450	[MPa]
Tensione caratteristica di rottura	$f_{tk} \\$	=	540	[MPa]
Allungamento	$A_{gt k}$	≥	7.50%	[-]
Resistenza di calcolo	$f_{\text{yd}} \\$	=	391.3	[MPa]

APPALTATORE:			LIN	FA FFF	RROVIA	RIA NAPOL	I - B/	\RI
Mandataria:	Mandante:							
SALINI IMPREGILO S	S.p.A. ASTALDI S.p.A	٨.	TRATTA NAPOLI-CANCELLO					
PROGETTISTA:			IN VARIA	NTE TRA	LE PK 0+0	00 E PK 15+58	85, INCI	USE LE
Mandataria:	Mandante:		OPERE AC	CESSOF	RIE, NELL'A	MBITO DEGL	IINTER	VENTI DI
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL D).L. 133/2	014, CONV	ERTITO IN LE	GGE 16	4 / 2014
PROGETTO ESECUT	IVO		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo			IF1M	0.0.E.ZZ	CL	SL.08.00.001	В	13 di 211

5 INQUADRAMENTO GEOTECNICO

5.1 STRATIGRAFIA E PARAMETRI GEOTECNICI DI PROGETTO

Le caratteristiche geotecniche del volume di terreno che interagisce con l'opera sono state desunte dalla relazione geotecnica e sono riportate di seguito.

Stralcio profilo geotecnico

APPALTATORE: Mandataria:

Mandante:

SALINI IMPREGILO S.p.A. ASTALDI S.p.A.

PROGETTISTA:

PROGETTO ESECUTIVO

Relazione di calcolo

Mandataria:

Mandante:

SYSTRA S.A. SYSTRA-SOTECNI S.p.A.

ROCKSOIL S.p.A.

TRATTA NAPOLI-CANCELLO IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE

LINEA FERROVIARIA NAPOLI - BARI

OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

PROGETTO IF1M

LOTTO 0.0.E.ZZ CODIFICA

DOCUMENTO SL.08.00.001

REV.

PAGINA 14 di 211

Unità Rv – coltre vegetale

 $\gamma = 17 \div 19 \text{ kN/m}^3$

peso di volume naturale,

 $\sigma' = 30^{\circ}$

angolo di resistenza al taglio,

c' = 0 kPa

coesione drenata,

 $E_{0p} = 10 \div 30 \text{ MPa}$

modulo di deformazione.

Unità Ra – riporto antropico dei rilevati ferroviari in progetto

 $\gamma = 19 \div 20 \text{ kN/m}^3$

peso di volume naturale,

 $\varphi' = 35 \div 38^{\circ}$

angolo di resistenza al taglio,

c' = 0 kPa

coesione drenata.

 $E_0 = 300 \div 400 \text{ MPa}$

modulo di deformazione elastico a piccole deformazioni.

Unità DI – piroclastiti rimaneggiate sabbioso-limose

 $\gamma = 16 \text{ kN/m}^3$

peso di volume naturale,

 $\phi' = 30 \div 33^{\circ}$

angolo di resistenza al taglio,

 $c' = 0 \div 5 \text{ kPa}$

coesione drenata,

 $E_0 = 50 \div 300 \text{ MPa}$

modulo di deformazione elastico a piccole deformazioni.

Unità Po - Piroclastiti recenti sabbioso limose

 $\gamma = 16 \text{ kN/m}^3$

peso di volume naturale,

 $\sigma' = 33 \div 35$ °

angolo di resistenza al taglio,

 $c' = 0 \div 10 \text{ kPa}$

coesione drenata.

 $E_0 = 150 \div 600 \text{ MPa}$

modulo di deformazione elastico iniziale.

Unità Ts - Tufo sfatto

 $\gamma = 15 \div 16 \text{ kN/m}^3$

peso di volume naturale,

 $\varphi' = 35 \div 37^{\circ}$

angolo di resistenza al taglio,

 $c' = 0 \div 5 \text{ kPa}$

coesione drenata,

 $E'_0 = 300 \div 1800 \text{ MPa}$

modulo di deformazione elastico iniziale.

Unità TL - Tufo litoide

 $\gamma = 15 \text{ kN/m}^3$

peso di volume naturale,

 $\sigma' = 35 \div 41^{\circ}$

angolo di resistenza al taglio,

 $c' = 20 \div 50 \text{ kPa}$

coesione drenata.

APPALTATORE:			LIN	EA FE	RROVIA	RIA NAPOI	I - B/	ARI
Mandataria:	Mandante:							
SALINI IMPREGILO	S.p.A. ASTALDI S.p.A	١.	TRATTA NAPOLI-CANCELLO					
PROGETTISTA:			IN VARIA	NTE TRA	LE PK 0+0	00 E PK 15+5	85, INC	LUSE LE
Mandataria:	Mandante:		OPERE A	CCESSOF	RIE, NELL'A	AMBITO DEGL	I INTER	RVENTI DI
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL [D.L. 133/2	014, CONV	ERTITO IN LE	GGE 16	64 / 2014
PROGETTO ESECU	ΓΙVO		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo			IF1M	0.0.E.ZZ	CL	SL.08.00.001	В	15 di 211

 $E'_0 = 680 \div 4550$ MPa modulo di deformazione elastico iniziale.

Unità Pb - Piroclastiti di base sabbioso limose

 γ = 16 kN/m³ peso di volume naturale,

 $\varphi' = 35 \div 37$ ° angolo di resistenza al taglio,

c' = 0÷5 kPa coesione drenata,

 $E'_0 = 300 \div 2050 \text{ MPa}$ modulo di deformazione elastico iniziale.

La falda è stata rilevata a 20.68 m.s.l.m, mentre il piano delle fondazioni dell'opera in esame è posto ad una profondità di 22.86 m.s.l.m.

5.2 INTERAZIONE TERRENO-STRUTTURA

Di seguito sono trattati gli aspetti di natura geotecnica riguardanti l'interazione terrenostruttura relativamente all'opera in esame.

Per la determinazione della costante di sottofondo si può fare riferimento alle seguenti formulazioni assimilando il comportamento del terreno a quello di un mezzo elastico omogeneo:

• $s = B \cdot c_t \cdot (q - \sigma_{v0}) \cdot (1 - v^2) / E$

dove:

- s = cedimento elastico totale;
- B = lato minore della fondazione;
- ct = coefficiente adimensionale di forma ottenuto dalla interpolazione dei valori dei coefficienti proposti dal Bowles, 1960 (L = lato maggiore della fondazione):

- ct = 0.853 + 0.534 ln(L / B) rettangolare con L / B≤10

ct = 2 + 0.0089 (L / B) rettangolare con L / B>10

- q = pressione media agente sul terreno;
- σ_{v0} = tensione litostatica verticale alla quota di posa della fondazione;
- v = coefficiente di Poisson del terreno;
- E = modulo elastico medio del terreno sottostante.

Il valore della costante di sottofondo kw è valutato attraverso il rapporto tra il carico applicato ed il corrispondente cedimento pertanto, si ottiene:

• $k_w = E / [(1-v^2) \cdot B \cdot ct]$

APPALTATORE:			I IN	FA FFF	ROVIA	RIA NAPOL	I - B/	ARI
Mandataria:	Mandante:							
SALINI IMPREGILO	S.p.A. ASTALDI S.p.A	. .	TRATTA NAPOLI-CANCELLO					
PROGETTISTA:			IN VARIA	NTE TRA	LE PK 0+0	00 E PK 15+58	85, INC	LUSE LE
Mandataria:	Mandante:		OPERE A	CESSOF	RIE, NELL'A	MBITO DEGL	I INTER	EVENTI DI
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL E).L. 133/2	014, CONV	ERTITO IN LE	GGE 16	4 / 2014
PROGETTO ESECU	TIVO		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo	•		IF1M	0.0.E.ZZ	CL	SL.08.00.001	В	16 di 211

Per l'opera in esame, si è considerato un modulo elastico del terreno che tenga conto della presenza di due diversi strati ricadenti all'interno del "bulbo delle pressioni" ovvero quella porzione del sottosuolo interessata dalla perturbazione indotta dai carichi applicati e considerata estesa per una profondità pari a circa 2 volte la larghezza caratteristica della fondazione. Gli strati interessati dall'opera in oggetto risultano essere Po e Ts. Per il valore di tale modulo elastico si pone un valore ottenuto mediando il valore del modulo in maniera ponderata rispetto agli strati interessati:

•
$$E_{eq} = (h_1 \cdot E_1 + h_2 \cdot E_2) / (h_1 + h_2) = (5.5 \cdot 175 + 10.5 \cdot 375) / (5.5 + 10.5) \approx 306.2$$
 MPa

dal quale risulta, secondo le formulazioni sopra riportate, un valore della costante di sottofondo pari a:

• $k_w = 306200/[(1-0.04) \cdot 7.90 \cdot 1.19] \text{ kN/m}^3 \approx 34000 \text{ kN/m}^3$.

APPALTATORE: LINEA FERROVIARIA NAPOLI - BARI Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA **DOCUMENTO** REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ CL SL.08.00.001 17 di 211

6 CARATTERIZZAZIONE SISMICA

Il valore dell'accelerazione orizzontale massima in condizioni sismiche è stato definito in accordo alla normativa NTC2008.

Ai fini del calcolo dell'azione sismica secondo il DM 14/01/2008, risultando per l'opera in progetto una vita nominale VN ≥75 anni ed una classe d'uso Cu = III, si ottiene un periodo di riferimento VR = VN*CU = 75·1.5 = 112.5 anni. A seguito di tale assunzione si ha allo stato limite ultimo SLV in funzione della Latitudine e Longitudine del sito in esame un valore dell'accelerazione pari ad ag= 0.220 g.

Figura 4- Parametri sismici

Parametri di pericolosità Sismica										
Stato Limite $T_r[anni]$ $a_g/g[-]$ $F_o[-]$ $T_c^*[s]$										
Operatività	67.74	0.07	2.34	0.32						
Danno	113.15	0.09	2.35	0.33						
Salvaguardia Vita	1067.76	0.22	2.47	0.36						
Prevenzione Collasso	2193.27	0.27	2.56	0.36						

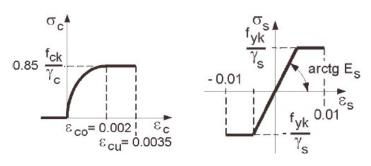
Tabella 1- Parametri sismici

APPALTATORE:			IIN	FA FFF	ROVIA	RIA NAPOL	I - B/	ARI
Mandataria:	Mandante:							
SALINI IMPREGILO S	S.p.A. ASTALDI S.p.A	١.	TRATTA NAPOLI-CANCELLO					
PROGETTISTA:			IN VARIA	NTE TRA	LE PK 0+0	00 E PK 15+58	85, INCI	USE LE
Mandataria:	Mandante:		OPERE AC	CCESSOF	RIE, NELL'A	MBITO DEGL	IINTER	VENTI DI
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL D).L. 133/2	014, CONV	ERTITO IN LE	GGE 16	4 / 2014
PROGETTO ESECUT	IVO		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo			IF1M	0.0.E.ZZ	CL	SL.08.00.001	В	18 di 211

Ai fini dell'analisi della risposta sismica locale, inoltre occorre definire la Categoria del Suolo di Fondazione, secondo quanto specificato al par. "3.2.2 CATEGORIE DI SOTTOSUOLO E CONDIZIONI TOPOGRAFICHE" del DM 14.01.08.

La categoria di suolo di fondazione viene definita, in base al riferimento normativo citato, sulla base della conoscenza di $V_{\rm s30}$, ricavato dalle indagini sismiche eseguite nelle campagne geognostiche.

In particolare, nel caso in esame, ove il terreno di fondazione è costituito dall'alternanza delle due Unità Po e TS, è possibile considerare ai fini progettuali una categoria di suolo di tipo C: "Depositi di sabbie o ghiaie mediamente addensate o argille mediamente consistenti, con spessori variabili da diverse decine di metri fino a centinaia di metri, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di $V_{\rm s30}$ compresi fra 180 m/s e 360 m/s (ovvero resistenza penetro metrica NSPT < 50 o coesione non drenata 70 < cu < 250 kPa).


APPALTATORE:			I IN	FA FFF	ROVIA	RIA NAPOL	1 - R/	ΔRI
Mandataria:	<u>Mandante:</u>							
SALINI IMPREGILO	S.p.A. ASTALDI S.p.A	۸.	TRATTA NAPOLI-CANCELLO					
PROGETTISTA:			IN VARIA	NTE TRA	LE PK 0+0	00 E PK 15+5	85, INC	LUSE LE
Mandataria:	Mandante:		OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI					
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL E).L. 133/2	014, CONV	ERTITO IN LE	GGE 16	4 / 2014
PROGETTO ESECU	PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA		
Relazione di calcolo	IF1M	0.0.E.ZZ	CL	SL.08.00.001	В	19 di 211		

7 VERIFICHE STRUTTURALI – CRITERI GENERALI

La corretta progettazione di un elemento strutturale deve essere sviluppata considerando tutti gli aspetti dai quali potrebbe dipendere il raggiungimento della crisi (SLU) o che non garantiscano il soddisfacimento di particolari requisiti funzionali (SLE). Appare quindi importante disporre di adeguate regole progettuali che, riferendosi a tutte le eventualità che potrebbero prodursi durante la vita di progetto, conducano ad un'attenta analisi di tutte le parti dell'elemento strutturale, ciascuna delle quali dovrà essere progettata con lo stesso grado di accuratezza.

Il calcolo delle caratteristiche della sollecitazione interna e le verifiche di resistenza negli elementi strutturali sono eseguiti con i metodi della Scienza e della Tecnica delle Costruzioni, basati sulle seguenti ipotesi:

- 1. planarità delle sezioni (ipotesi di Bernoulli);
- 2. resistenza a trazione del calcestruzzo trascurabile (solo per c.a.);
- 3. il conglomerato cementizio soggetto a compressione si comporta, nel campo delle tensioni di esercizio, come un materiale elastico, isotropo ed omogeneo (validità della Legge di Hooke);
- 4. perfetta aderenza acciaio-calcestruzzo;
- 5. rottura del calcestruzzo determinata dal raggiungimento della sua capacità deformativa ultima a compressione;
- 6. rottura dell'armatura tesa determinata dal raggiungimento della sua capacità deformativa ultima;
- 7. utilizzo di modelli rappresentativi del legame costitutivo (σ - ϵ) dei materiali

Legame costitutivo cls

Legame costitutivo acciaio

APPALTATORE:			LIN	EA FE	RROVIA	RIA NAPOL	I - B	ARI
Mandataria:	Mandante:							
SALINI IMPREGILO	S.p.A. ASTALDI S.p.A	١.	TRATTA NAPOLI-CANCELLO					
PROGETTISTA:			IN VARIA	NTE TRA	LE PK 0+0	00 E PK 15+5	85, INC	LUSE LE
Mandataria:	Mandante:		OPERE A	CCESSOF	RIE, NELL'A	MBITO DEGL	IINTER	RVENTI DI
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL E).L. 133/2	014, CONV	ERTITO IN LE	GGE 16	4 / 2014
PROGETTO ESECU	PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA		
Relazione di calcolo	IF1M	0.0.E.ZZ	CL	SL.08.00.001	В	20 di 211		

- 8. nella valutazione delle piccole deformazioni, si fa riferimento alla totale sezione di conglomerato, adottando il modulo elastico Ec del conglomerato compresso;
- 9. l'acciaio, sia teso che compresso, nel campo delle tensioni di esercizio, è in campo elastico, ossia si ammette anche per esso la validità della Legge di Hooke.

Il metodo di verifica adottato è quello agli Stati Limite Ultimo (SLU) ed agli Stati Limite di Esercizio (SLE), secondo quanto previsto dal D.M. del 14 gennaio 2008.

7.1 VERIFICHE SLE

La verifica nei confronti degli Stati limite di esercizio, consiste nel controllare, con riferimento alle sollecitazioni di calcolo corrispondenti alle Combinazioni di Esercizio il tasso di Lavoro nei Materiali e l'ampiezza delle fessure attesa, secondo quanto di seguito specificato.

7.1.1 Verifiche alle tensioni

La verifica delle tensioni in esercizio consiste nel controllare il rispetto dei limiti tensionali previsti per il calcestruzzo e per l'acciaio per ciascuna delle combinazioni di carico caratteristiche "Rara" e "Quasi Permanente"; i valori tensionali nei materiali sono valutati secondo le note teorie di analisi delle sezioni in c.a. in campo elastico e con calcestruzzo "non reagente" adottando come limiti di riferimento, trattandosi nel caso in specie di opere Ferroviarie, quelli indicati nel Manuale di RFI, ovvero:

Tensioni di compressione del calcestruzzo

Devono essere rispettati i seguenti limiti per le tensioni di compressione nel calcestruzzo:

- Per combinazione di carico caratteristica (rara): 0.55 fck;
- Per combinazioni di carico quasi permanente: 0.40 fck;
- Per spessori minori di 5 cm, le tensioni normali limite di esercizio sono ridotte del 30%.

Tensioni di trazione nell'acciaio

Per le armature ordinarie, la massima tensione di trazione sotto la combinazione di carico caratteristica (rara) non deve superare $0.75 \, f_{yk}$.

Per il caso in esame risulta in particolare:

APPALTATORE: LINEA FERROVIARIA NAPOLI - BARI Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA **DOCUMENTO** REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ CL SL.08.00.001 21 di 211

CALCESTRUZZO

 $\sigma_{\text{cmax QP}} = (0.40 \text{ f}_{\text{cK}}) = 13.28 \text{ MPa}$ (Combinazione di Carico Quasi Permanente)

 $\sigma_{\text{cmax R}} = (0.55 \text{ f}_{\text{ck}}) = 18.26 \text{ MPa}$ (Combinazione di Carico Caratteristica - Rara)

ACCIAIO

 $\sigma_{s max} = (0.75 f_{yk}) = 338 MPa$ Combinazione di Carico Caratteristica(Rara)

7.1.2 Verifiche a fessurazione

La verifica di fessurazione consiste nel controllare l'ampiezza dell'apertura delle fessure sotto combinazione di carico rara. Essendo la struttura a contatto col terreno si considerano condizioni ambientali aggressive; le armature di acciaio ordinario sono ritenute poco sensibili [NTC – Tabella 4.1.IV]

In relazione all'aggressività ambientale e alla sensibilità dell'acciaio, l'apertura limite delle fessure è riportato nel prospetto seguente:

Gruppi di	Condizioni	Combinazione di		Ar	matura		
esigenza	ambientali	azione	Sensibile		Poco sensibile		
Colgenza	ambientali	azione	Stato limite	wd	Stato limite	wd	
		frequente	ap. fessure	≤w ₂	ap. fessure	≤ W 3	
а	Ordinarie	quasi permanente	ap. fessure	≤w ₁	ap. fessure	≤w ₂	
		frequente	ap. fessure	≤w ₁	ap. fessure	≤w ₂	
b	Aggressive	quasi permanente	decompressione	-	ap. fessure	≤w ₁	
С	Molto	frequente	formazione fessure	-	ap. fessure	≤w ₁	
	Aggressive	quasi permanente	decompressione	-	ap. fessure	≤W1	

Tabella 2- Criteri di scelta dello stato limite di fessurazione e Condizioni Ambientali - Tabella 4.1.IV

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Tabella 3-Descrizione delle condizioni ambientali Tabella 4.1.III

APPALTATORE:			I IN	FA FFF	ROVIA	RIA NAPOL	I - B/	ΔRI
Mandataria:	Mandante:							
SALINI IMPREGILO	S.p.A. ASTALDI S.p.A	λ.	TRATTA NAPOLI-CANCELLO					
PROGETTISTA:	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE							
Mandataria:	Mandante:		OPERE A	CCESSOF	RIE, NELL'A	MBITO DEGL	I INTER	RVENTI DI
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL E).L. 133/2	014, CONV	ERTITO IN LE	GGE 16	64 / 2014
PROGETTO ESECU	PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA		
Relazione di calcolo		IF1M	0.0.E.ZZ	CL	SL.08.00.001	В	22 di 211	

Risultando:

 $w_1 = 0.2 \text{ mm}$

 $w_2 = 0.3 \text{ mm}$

 $w_3 = 0.4 \text{ mm}$

Alle prescrizioni normative presenti in NTC si sostituiscono in tal caso quelle fornite dalle specifiche RFI (Requisiti concernenti la fessurazione per strutture in c.a., c.a.p. e miste acciaio-calcestruzzo) secondo cui la verifica nei confronti dello stato limite di apertura delle fessure va effettuata utilizzando le sollecitazioni derivanti dalla combinazione caratteristica (rara).

Per strutture in condizioni ambientali aggressive o molto aggressive, così come identificate nel par. 4.1.2.2.4.3 del DM 14.1.2008, per tutte le strutture a permanente contatto con il terreno e per le zone non ispezionabili di tutte le strutture, l'apertura convenzionale delle fessure dovrà risultare:

Combinazione Caratteristica (Rara) δ_f ≤ w₁ = 0.2 mm

7.2 VERIFICHE ALLO SLU

7.2.1 Pressoflessione

Allo Stato Limite Ultimo le verifiche per tensioni normali vengono condotte confrontando per ogni sezione le resistenze ultime e le sollecitazioni massime agenti, valutando di conseguenza il corrispondente fattore di sicurezza secondo la nota relazione:

 $M_{rd}(N_{Ed}) \ge M_{Ed}$

dove:

M_{rd} = è il valore di calcolo del momento resistente corrispondente a N_{Ed};

N_{Ed} = è il valore di calcolo della componente assiale (sforzo normale) dell'azione;

M_{Ed} = è il valore di calcolo della componente flettente dell'azione.

Il momento resistente M_{rd} è valutato adottando per i materiali i modelli tensionali $\sigma - \epsilon$.

7.2.2 Taglio

La resistenza a taglio V_{Rd} della membratura priva di armatura specifica risulta pari a:

APPALTATORE:			LIN			RIA NAPOL	I D	\DI	
Mandataria:	Mandante:		LIN	EAFEI	KKOVIAI	NAPUL	_I - D <i>F</i>	AIXI	
SALINI IMPREGILO	S.p.A. ASTALDI S.p.A	λ.	TRATTA NAPOLI-CANCELLO						
PROGETTISTA:			IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE						
Mandataria:	Mandante:		OPERE A	CCESSOF	RIE, NELL'A	MBITO DEGL	I INTER	VENTI DI	
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL [D.L. 133/2	014, CONV	ERTITO IN LE	GGE 16	4 / 2014	
PROGETTO ESECUTIVO PROGETTO LOTTO CODIFICA DOCUMENTO REV.				PAGINA					
Relazione di calcol	0		IE1M 0.0 F 77 CI SI 08 00 001 B 23 di 211					23 di 211	

$$V_{Rd} = \left\{ 0.18 \cdot k \cdot \frac{\left(100 \cdot \rho_1 \cdot f_{ck}\right)^{1/3}}{\gamma_c + 0.15 \cdot \sigma_{cp}} \right\} \cdot b_w \cdot d \ge v_{min} + 0.15 \cdot \sigma_{cp} \cdot b_w d$$

dove:

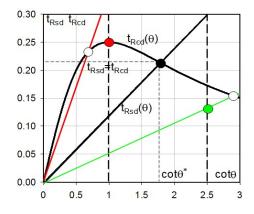
$$v_{\text{min}} = 0.035 \cdot k^{3/2} \cdot f_{ck}^{-1/2};$$

 $k = 1 + (200/d)^{1/2} \le 2;$
 $\rho_1 = A_{\text{sw}}/(b_{\text{w}}^*d)$

d = altezza utile per piedritti soletta superiore ed inferiore;

b_w= 1000 mm larghezza utile della sezione ai fini del taglio.

In presenza di armatura, invece, la resistenza a taglio V_{Rd} è il minimo tra la resistenza a taglio trazione V_{Rsd} è la resistenza a taglio compressione V_{Rcd}


$$\begin{split} &V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot \left(ctg\alpha + ctg\theta \right) \cdot \sin\alpha \\ &V_{Rcd} = 0.9 \cdot d \cdot b_{w} \cdot \alpha_{c} \cdot f_{cd}^{'} \cdot \frac{\left(ctg\alpha + ctg\theta \right)}{\left(1 + ctg^{2}\theta \right)} \end{split}$$

essendo:

$1 \le ctg \theta \le 2.5$

Per quanto riguarda in particolare le verifiche a taglio per elementi armati a taglio, si è fatto riferimento al metodo del traliccio ad inclinazione variabile, in accordo a quanto prescritto al punto 4.1.2.1.3 delle NTC08, considerando ai fini delle verifiche, un angolo θ di inclinazione delle bielle compresse del traliccio resistente tale da rispettare la condizione.

$$1 \le \cot \theta \le 2.5$$
 $45^{\circ} \ge \theta \ge 21.8^{\circ}$

APPALTATORE:			I IN	FA FF	RROVIA	RIA NAPOL	I - B/	ARI
Mandataria:	Mandante:							
SALINI IMPREGILO	S.p.A. ASTALDI S.p.A	٨.	TRATTA NAPOLI-CANCELLO					
PROGETTISTA:			IN VARIA	NTE TRA	LE PK 0+0	00 E PK 15+58	85, INC	LUSE LE
Mandataria:	Mandante:		OPERE A	CCESSOF	RIE, NELL'A	MBITO DEGL	I INTER	RVENTI DI
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL E).L. 133/2	014, CONV	ERTITO IN LE	GGE 16	4 / 2014
PROGETTO ESECU	PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA		
Relazione di calcolo	IF1M	0.0.E.ZZ	CL	SL.08.00.001	В	24 di 211		

L'angolo effettivo di inclinazione delle bielle (θ) assunto nelle verifiche è stato in particolare valutato, nell'ambito di un problema di verifica, tenendo conto di quanto di seguito indicato :

$$\cot \theta^* = \sqrt{\frac{v \cdot \alpha_c}{\omega_{sw}} - 1}$$

 $(\theta^*$ angolo di inclinazione delle bielle cui corrisponde la crisi contemporanea di bielle compresse ed armature)

dove:

$$v = f'_{cd} / f_{cd} = 0.5$$

f 'cd = resistenza a compressione ridotta del calcestruzzo d'anima

f cd = resistenza a compressione di calcolo del calcestruzzo d'anima

a_c coefficiente maggiorativo pari a 1 per membrature non compresse

1 + σ_p/f_{cd} per 0 $\leq \sigma_{cp} \leq$ 0.25 f_{cd}

 $1.25 \text{ per } 0.25 \text{ f}_{cd} \le \sigma_{cp} \le 0.5 \text{ f}_{cd}$

 $2.5(1 - \sigma_{cp}/f_{cd})$ per $0.5 f_{cd} < \sigma_{cp} < f_{cd}$

 ω_{sw} : percentuale meccanica di armatura trasversale.

$$\omega_{sw} = \frac{A_{SW} f_{yd}}{b \, s \, f_{cd}}$$

APPALTATORE:			I IN	FΔ FFF	ROVIA	RIA NAPOI	I - B	∆RI
Mandataria:	Mandante:				1101171		_, _,	-XI XI
SALINI IMPREGILO	S.p.A. ASTALDI S.p.A	٨.	TRATTA NAPOLI-CANCELLO					
PROGETTISTA:			IN VARIA	NTE TRA	LE PK 0+0	00 E PK 15+5	85, INC	LUSE LE
Mandataria:	Mandante:		OPERE A	CCESSOF	RIE, NELL'A	AMBITO DEGL	I INTER	EVENTI DI
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL [D.L. 133/2	014, CONV	ERTITO IN LE	GGE 16	4 / 2014
PROGETTO ESECU	ROGETTO ESECUTIVO PROGETTO LOTTO CODIFICA DOCUMENTO REV. PA					PAGINA		
Relazione di calcolo			IF1M 0.0.E.ZZ CL SL.08.00.001 B 25 di 211					25 di 211

8 ANALISI E VERIFICA DELLA STRUTTURA SCATOLARE

8.1 ANALISI DEI CARICHI

Si riportano di seguito i carichi utilizzati per il calcolo delle sollecitazioni e le verifiche delle sezioni della struttura in esame.

I pesi dei materiali da costruzione e del terreno sono indicati nella tabella seguente:

Materiali	γ [KN/m³]
calcestruzzo armato	25
ballast + armamento	20
terreno a ridosso dei piedritti	20

Tabella 4 - Caratteristiche materiali e terreno

8.1.1 Peso propri strutturali e non strutturali

Il peso proprio delle solette e dei piedritti viene calcolato automaticamente dal programma di calcolo utilizzato considerando per il calcestruzzo $\gamma = 25 \text{ kN/m}^3$. L'analisi dei carichi viene condotta per un metro di struttura in direzione longitudinale (secondo la direzione dei binari).

• Pesi permanenti portati soletta superiore (ballast, sub-ballast) come indicato nelle NTC al §5.2.2.1.1:

 $G_2 = 0.80 \cdot 20.00 \text{ kN/m} = 16.00 \text{ kN/m}$

 Pesi permanenti portati soletta superiore dovuti allo strato di circa 50 cm di terreno di ricoprimento:

 $G_2 = 0.50 \cdot 20.00 \text{ kN/m} = 10.00 \text{ kN/m}$

• Spinta sui piedritti dovuta alla presenza dello strato superiore costituito da ballast e subballast in combinazione STR:

 $G_2 = \gamma \cdot h \cdot k_0 = 0.80 \cdot 20.00 \text{ kN/m} \cdot 0.455 = 7.29 \text{ kN/m}$ (STR)

APPALTATORE:	·		LIN	FΔ FFF	ROVIA	RIA NAPOL	I - B/	∆RI
Mandataria:	Mandante:							
SALINI IMPREGILO S	S.p.A. ASTALDI S.p.A	١.	TRATTA NAPOLI-CANCELLO					
PROGETTISTA:			IN VARIA	NTE TRA	LE PK 0+0	00 E PK 15+58	85, INCI	LUSE LE
Mandataria:	Mandante:		OPERE AC	CCESSOF	RIE, NELL' <i>A</i>	MBITO DEGL	IINTER	RVENTI DI
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL D).L. 133/2	014, CONV	ERTITO IN LE	GGE 16	4 / 2014
PROGETTO ESECUT	IVO		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo			IF1M 0.0.E.ZZ CL SL.08.00.001 B 26 di 211					26 di 211

• Spinta sui piedritti dovuta alla presenza dello strato superiore costituito da ballast e subballast in combinazione GEO

$$G_2 = \gamma \cdot h \cdot k_0 = 0.80 \cdot 20.00 \text{ kN/m} \cdot 0.539 = 8.62 \text{ kN/m}$$
 (GEO)

• Peso permanenti portati soletta inferiore dovuti al ricoprimento con misto granulare di circa 20 cm:

 $G_2 = 20 \cdot 0.20 \text{ kN/m} = 4.00 \text{ kN/m}$

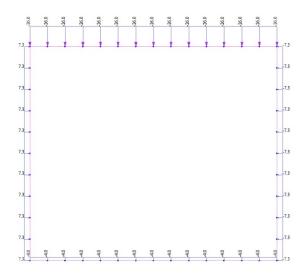
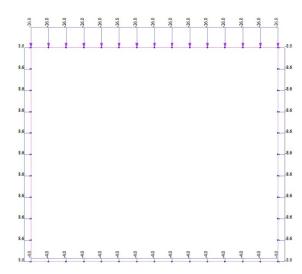



Figura 5 - Carichi permanenti non strutturali secondo combinazione STR

APPALTATORE:			I IN	FA FFF	ROVIA	RIA NAPOL	L-R	<u></u>
Mandataria:	<u>Mandante:</u>							
SALINI IMPREGILO	S.p.A. ASTALDI S.p.A	۸.	TRATTA NAPOLI-CANCELLO					
PROGETTISTA:			IN VARIA	NTE TRA	LE PK 0+0	00 E PK 15+5	85, INC	LUSE LE
Mandataria:	Mandante:		OPERE A	CESSOF	RIE, NELL'A	MBITO DEGL	I INTER	₹VENTI DI
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL E).L. 133/2	014, CONV	ERTITO IN LE	GGE 16	64 / 2014
PROGETTO ESECU	PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA		
Relazione di calcolo	IF1M	0.0.E.ZZ	CL	SL.08.00.001	В	27 di 211		

Figura 6- Carichi permanenti non strutturali secondo combinazione GEO

8.1.2 Spinta del terreno

La struttura è stata analizzata nella condizione di spinta a riposo. Il coefficiente di spinta è stato calcolato utilizzando la formula k_0 = 1-sin(ϕ '), per cui, per ϕ '=33° (valore cautelativo considerato per la zona di transizione a ridosso della struttura) si ottiene il valore k_0 = 0.455 in combinazione STR e k_0 = 0.539 in combinazione GEO.

La pressione del terreno è stata calcolata come:

$$\sigma'_n = \sigma'_v \cdot k_o = \gamma' \cdot z \cdot k_o$$

I valori delle spinte vengono di seguito esplicitati:

• Spinta al livello del piano mediano della soletta superiore:

$$\sigma'_{1,h} = \sigma'_{1,v} \cdot k_o = \gamma' \cdot z \cdot k_o = 20 \frac{kN}{m^3} \cdot \left(\frac{0.70}{2} + 0.50\right) m \cdot 0.455 = 7.74 \text{ kPa}$$
 (STR)

$$\sigma'_{1_o h} = \sigma'_{1_o v} \cdot k_o = \gamma' \cdot z \cdot k_o = 20 \frac{kN}{m^2} \cdot \left(\frac{0.70}{2} + 0.50\right) m \cdot 0.539 = 9.16 \text{ kPa}$$
 (GEO)

• Spinta al livello dell'intradosso della soletta inferiore:

$$\sigma'_{2,h} = \sigma'_{2,\nu} \cdot k_o = 20 \frac{kN}{m^3} \cdot (0.70 + 0.50 + 6.05 + 0.80) m \cdot 0.455 = 67.85 \text{ kPa}$$
 (STR)

$$\sigma'_{2,h} = \sigma'_{2,v} \cdot k_o = 20 \frac{kN}{m^3} \cdot (0.70 + 0.50 + 6.05 + 0.80) m \cdot 0.539 = 80.31 \text{ kPa}$$
 (GEO)

Nella Figura seguente si riporta il diagramma di spinta del terreno agente sui piedritti in kPa.

APPALTATORE:			LIN	FΔ FFF	ROVIA	RIA NAPOL	1 - R/	\RI
Mandataria:	Mandante:				VI CO VIAI		_1 - DA	
SALINI IMPREGILO S	S.p.A. ASTALDI S.p.A	۸.	TRATTA NAPOLI-CANCELLO IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE L					
PROGETTISTA:			IN VARIA	NTE TRA	LE PK 0+0	00 E PK 15+58	85, INCI	LUSE LE
Mandataria:	Mandante:		OPERE AC	CESSOF	RIE, NELL'A	MBITO DEGL	IINTER	VENTI DI
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL D).L. 133/2	014, CONV	ERTITO IN LE	GGE 16	4 / 2014
PROGETTO ESECUTIVO			PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo IF1M 0.0.E.ZZ CL SL.08.00.001 B 28 di 2					28 di 211			

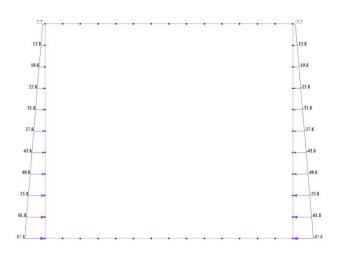


Figura 7 - Spinte del terreno secondo combinazione STR

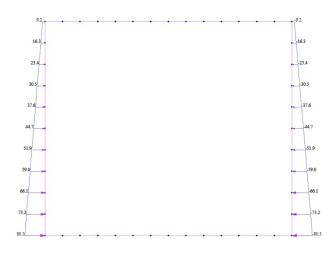


Figura 8 - Spinte del terreno secondo combinazione GEO

8.1.3 Spinta in presenza di falda

Nel caso in cui a monte della parete sia presente la falda il diagramma delle pressioni sulla parete risulta modificato a causa della sottospinta che l'acqua esercita sul terreno. Il peso di volume del terreno al di sopra della linea di falda non subisce variazioni. Viceversa al di sotto del livello di falda va considerato il peso di volume di galleggiamento

$$\gamma_a$$
= γ_{sat} $-\gamma_w$

APPALTATORE:			LIN	FΔ FFF	ROVIA	ΡΙΔ ΝΔΡΟΙ	I - B/	ARI
Mandataria:	Mandante:		LINEA FERROVIARIA NAPOLI - BARI					
SALINI IMPREGILO S	S.p.A. ASTALDI S.p.A	١.	TRATTA NAPOLI-CANCELLO					
PROGETTISTA:			IN VARIA	NTE TRA	LE PK 0+0	00 E PK 15+5	85, INC	LUSE LE
Mandataria:	Mandante:		OPERE AC	CESSOF	RIE, NELL' <i>A</i>	MBITO DEGL	INTER	VENTI DI
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL D).L. 133/2	014, CONV	ERTITO IN LE	GGE 16	4 / 2014
PROGETTO ESECUT	ROGETTO ESECUTIVO PROGETTO LOTTO CODIFICA DOCUMENTO REV. I					PAGINA		
Relazione di calcolo			IF1M	0.0.E.ZZ	CL	SL.08.00.001	В	29 di 211

dove γ_{sat} è il peso di volume saturo del terreno (dipendente dall'indice dei pori) e γ_w è il peso di volume dell'acqua. Quindi il diagramma delle pressioni al di sotto della linea di falda ha una pendenza minore. Al diagramma così ottenuto va sommato il diagramma triangolare legato alla pressione idrostatica esercitata dall'acqua.

$$u = \gamma_w \cdot z$$

Nel caso in esame, trovandosi la falda ad una quota sul l.m. inferiore a quella prevista per il piano di posa delle fondazioni, come riportato in precedenza, l'azione dovuta alla spinta dell'acqua non è stata presa in considerazione.

8.1.4 Carichi ferroviari

Il treno di carico più gravoso per il tipo di modellazione eseguita è senza dubbio l'LM71, di seguito descritto:

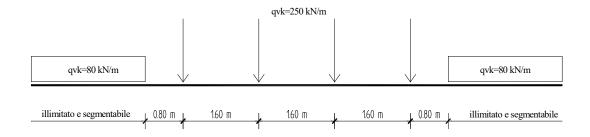


Figura 9 - Treno LM71

Il sovraccarico ferroviario (LM71) è stato distribuito attraverso il ricoprimento costituito dal ballast con una pendenza 1 a 4 e a 45° all'interno della soletta di copertura.

La diffusione del carico in senso trasversale all'asse binario risulta, dunque, pari a:

$$L_d = L_{traversa} + [(H_b + H_{ricopr})/4 + S_s/2] \cdot 2 = 2.40 + (0.90/4 + 0.70/2) \cdot 2 \text{ m} = 3.70 \text{ m}$$

In senso longitudinale, invece, si è assunto che il carico si distribuisce sull'intero ingombro dei suoi assi, pari a 6.40 m.

Per il calcolo del coefficiente dinamico Φ si fa riferimento al § 2.5.1.4.2 delle istruzioni per la progettazione e l'esecuzione dei ponti ferroviari.

In particolare per il calcolo della lunghezza caratteristica L_{Φ} ci si è avvalsi dell'utilizzo delle formulazioni riportate in Tab. 2.5.1.4.2.5.3-1 per quanto concerne i portali a luce singola.

Risulta:

APPALTATORE:			I IN	FΔ FFF	ROVIA	ΡΙΔ ΝΔΡΟΙ	I - B/	ARI
Mandataria:	Mandante:		LINEA FERROVIARIA NAPOLI - BARI				11 (1	
SALINI IMPREGILO	S.p.A. ASTALDI S.p.A	٨.	TRATTA NAPOLI-CANCELLO					
PROGETTISTA:			IN VARIA	NTE TRA	LE PK 0+0	00 E PK 15+58	85, INCI	LUSE LE
Mandataria:	Mandante:		OPERE A	CESSOF	RIE, NELL'A	MBITO DEGL	IINTER	VENTI DI
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL E).L. 133/2	014, CONV	ERTITO IN LE	GGE 16	4 / 2014
PROGETTO ESECUTIVO			PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo			IF1M	0.0.E.ZZ	CL	SL.08.00.001	В	30 di 211

$$L_{\Phi}$$
=1.3· [(1/3) · (7.20+6.20+6.20)]=8.49 m

Per il calcolo di Φ , coefficiente di incremento dinamico, si è considerato un normale standard manutentivo:

$$\Phi_3 = [2.16/(L_{\Phi}^{0.5}-0.2)] + 0.73 = [2.16/(8.49^{0.5}-0.2)] + 0.73 = 1.53$$

Nei casi di ponti ad arco o scatolari, con o senza solettone di fondo, aventi copertura "h" maggiore di 1.00 m, il coefficiente dinamico può essere ridotto nella seguente maniera:

$$\Phi_{3,rid} = \Phi_3 - (h-1.00)/10 \ge 1.00 = 1.53 - (1.15-1.00)/10 = 1.51$$

Dove h, in metri, è l'altezza della copertura, incluso il ballast, dall'estradosso della struttura alla faccia superiore delle traverse.

Il coefficiente di adattamento α è posto pari ad 1.1 in accordo con la Tab. 2.5.1.4.1-1 del Manuale di progettazione RFI. Pertanto il carico ripartito dovuto al treno LM 71 risulta:

- Carico ripartito prodotto dalle forze concentrate = $(4.250/6.40) \cdot \alpha \cdot \Phi_{3,rid}/L_d = 70.18$ kN/m
- Carico ripartito prodotto dal carico distribuito (80 kN/m) = 80 $\cdot \alpha \cdot \Phi_{3,rid}/L_d$ = 35.93 KN/m

Le distribuzioni del sovraccarico ferroviario considerate al di sopra della copertura, sono quelle in grado di massimizzare le sollecitazioni flettenti e taglianti. Sono inoltre state considerate condizioni di carico "asimmetriche" con spinta orizzontale da sovraccarico ferroviario solo da un lato.

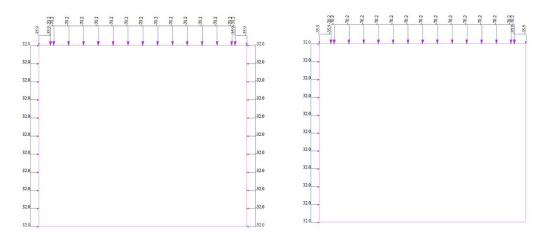


Figura 10- Condizione che massimizza il momento sul traverso STR

APPALTATORE:			LIN	EA FE	RROVIA	RIA NAPOL	_I - B <i>i</i>	 4RI
Mandataria:	Mandante:				_			
SALINI IMPREGILO	S.p.A. ASTALDI S.p.A	۸.	TRATTA NAPOLI-CANCELLO					
PROGETTISTA:			IN VARIA	NTE TRA	LE PK 0+0	00 E PK 15+58	85, INC	LUSE LE
Mandataria:	Mandante:		OPERE A	CCESSOF	RIE, NELL'A	MBITO DEGL	IINTER	EVENTI DI
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL [D.L. 133/2	014, CONV	ERTITO IN LE	GGE 16	64 / 2014
PROGETTO ESECUTIVO PROGETTO LOTTO CODIFICA DOCUMENTO REV.					PAGINA			
Relazione di calcolo IF1M 0.0.E.ZZ CL SL.08.00.001 B					31 di 211			

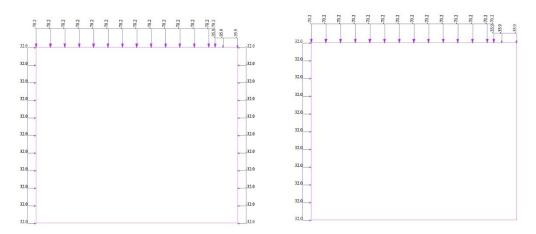


Figura 11 - Condizione che massimizza il taglio in prossimità del piedritto STR

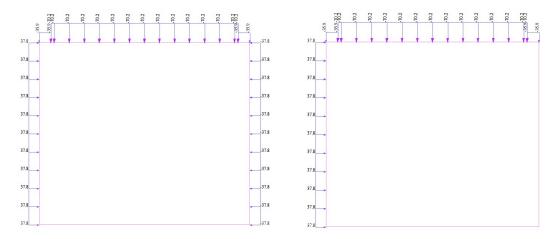


Figura 12 - Condizione che massimizza il momento sul traverso GEO

APPALTATORE:			LIN	FΔ FFF	ROVIA	ΡΙΔ ΝΔΡΟΙ	I - B/	∆RI
Mandataria:	Mandante:		LINEA FERROVIARIA NAPOLI - BARI					
SALINI IMPREGILO S	S.p.A. ASTALDI S.p.A	٨.	TRATTA NAPOLI-CANCELLO					
PROGETTISTA:			IN VARIA	NTE TRA	LE PK 0+0	00 E PK 15+58	85, INCI	LUSE LE
Mandataria:	Mandante:		OPERE AC	CCESSOF	RIE, NELL'A	MBITO DEGL	IINTER	RVENTI DI
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL D).L. 133/2	014, CONV	ERTITO IN LE	GGE 16	4 / 2014
PROGETTO ESECUTIVO PROGETTO LOTTO CODIFICA DOCUMENTO REV. I					PAGINA			
Relazione di calcolo			IF1M	0.0.E.ZZ	CL	SL.08.00.001	В	32 di 211

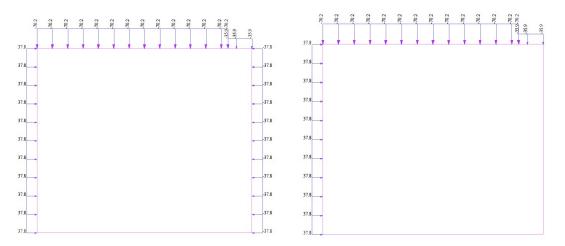
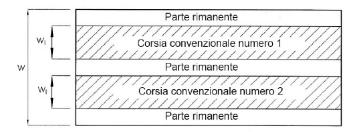


Figura 13 - Condizione che massimizza il taglio in prossimità del piedritto GEO

8.1.5 Carichi stradali

Le dimensioni dello scatolare in esame sono tali da renderlo percorribile da veicoli. Pertanto nel seguito verranno considerati carichi mobili stradali.

L'entità dei carichi mobili presenti all'interno dello scatolare e gravanti sulla soletta di fondazione, è stata determinata considerando solo lo schema di carico 1 indicato dal DM 14/01/2008. Si individuano su 6.5 metri circa di strada carrabile 2 corsie convenzionali di 3 m di larghezza ciascuna. I carichi da traffico sono composti da:


- carichi concentrati:

due assi da 300 kN disposti ad interasse di 1.20 m per la corsia 1; due assi da 200 kN disposti ad interasse di 1.20 m per la corsia 2.

- carico distribuito:

9 kN/m² sulla larghezza dell'intera corsia 1;

2.5 kN/m² per le restanti corsie.

APPALTATORE:			LIN	EA FEF	ROVIA	RIA NAPOL	I - B/	ARI
Mandataria:	Mandante:				_			
SALINI IMPREGILO S	S.p.A. ASTALDI S.p.A	۸.	TRATTA NAPOLI-CANCELLO					
PROGETTISTA:			IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE					
Mandataria:	Mandante:		OPERE AC	CCESSOF	RIE, NELL'A	MBITO DEGL	IINTER	VENTI DI
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL D).L. 133/2	014, CONV	ERTITO IN LE	GGE 16	4 / 2014
PROGETTO ESECUT	PROGETTO ESECUTIVO PROGETTO LOTTO CODIFICA DOCUMENTO REV.					PAGINA		
Relazione di calcolo			IF1M	0.0.E.ZZ	CL	SL.08.00.001	В	33 di 211

Figura 14- Numerazione delle corsie

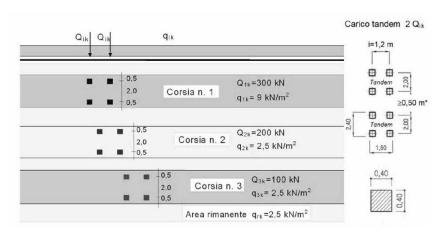


Figura 15- Schemi di Carico 1- Dimensioni in [m]

Si considera una diffusione del carico concentrato dovuto agli assi tandem su una superficie di dimensioni pari a 2.00 m in direzione longitudinale e 2.80 m in direzione trasversale. Tali carichi vengono applicati al piano medio della soletta.

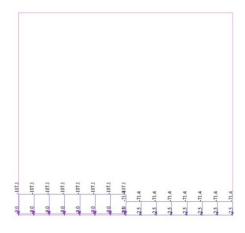


Figura 16- Carichi stradali

APPALTATORE:			I IN	FΔ FFF	ROVIA	ΡΙΔ ΝΔΡΟΙ	L-R	ARI
Mandataria:	<u>Mandante:</u>		LINEA FERROVIARIA NAPOLI - BARI					***
SALINI IMPREGILO	S.p.A. ASTALDI S.p.A	۸.	TRATTA NAPOLI-CANCELLO					
PROGETTISTA:			IN VARIA	NTE TRA	LE PK 0+0	00 E PK 15+5	85, INC	LUSE LE
Mandataria:	Mandante:		OPERE A	CCESSOF	RIE, NELL'A	MBITO DEGL	I INTER	₹VENTI DI
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL [D.L. 133/2	014, CONV	ERTITO IN LE	GGE 16	4 / 2014
PROGETTO ESECUTIVO PROGETTO LOTTO CODIFICA DOCUMENTO REV.					PAGINA			
Relazione di calcolo)		IF1M	0.0.E.ZZ	CL	SL.08.00.001	В	34 di 211

8.1.6 Spinta sui piedritti prodotta dal sovraccarico

Si è considerata la sola spinta prodotta dal carico ripartito equivalente alle forze concentrate, che vale

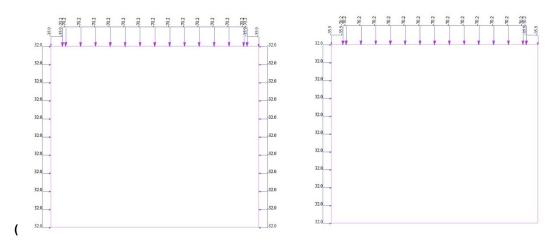


Figura 10 e Figura 12) per le verifiche strutturali:

$$[(250\cdot4)\cdot\alpha\cdot\Phi_{3,\,\text{rid}}\,/L_d/L_{d,\text{long}})]\cdot\text{K}_0=31.96\,\,\text{kN/m} \tag{STR}$$

e per le verifiche geotecniche (Figura 11 e Figura 13):

$$[(250.4) \cdot \alpha \cdot \Phi_{3, \text{ rid}} / L_d / L_{d, \text{long}})] \cdot K_0 = 37.83 \text{ kN/m}$$
 (GEO)

8.1.7 Frenatura e avviamento

Per il tipo di modellazione eseguita, verrà considerata agente solo la più gravosa tra le azioni di frenatura ed avviamento.

Per la condizione di carico in esame, in coerenza con il tipo di carico accidentale impiegato nelle altre condizioni esaminate, si è presa in considerazione la forza di avviamento del modello LM71 che è di 33 kN/m. Distribuendo tale forza sulla larghezza di diffusione del carico si ha:

Avviamento $A_v = 33 \text{ kN/m}$

Carico distribuito su L_d:

 q_{Av} = A_v / L_d = 33 / 3.70 kN/m = 8.92 kN/m² sulla fascia di 1m

Tale azione è stata applicata, come carico orizzontale uniformemente distribuito, alla soletta di copertura.

APPALTATORE:			I IN	FA FFF	ROVIA	ΡΙΔ ΝΔΡΟΙ	I - B/	ΔRI
Mandataria:	Mandante:		LINEA FERROVIARIA NAPOLI - BARI					
SALINI IMPREGILO	S.p.A. ASTALDI S.p.A	۸.	TRATTA NAPOLI-CANCELLO					
PROGETTISTA:			IN VARIA	NTE TRA	LE PK 0+0	00 E PK 15+5	85, INC	LUSE LE
Mandataria:	Mandante:		OPERE A	CCESSOF	RIE, NELL'A	MBITO DEGL	I INTER	RVENTI DI
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL E).L. 133/2	014, CONV	ERTITO IN LE	GGE 16	64 / 2014
PROGETTO ESECU	PROGETTO ESECUTIVO PROGETTO LOTTO CODIFICA DOCUMENTO REV.					PAGINA		
Relazione di calcolo	0		IF1M	0.0.E.ZZ	CL	SL.08.00.001	В	35 di 211

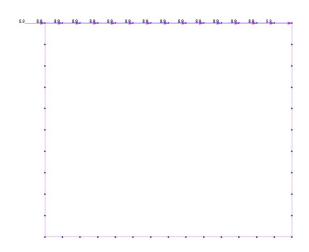


Figura 17 - Carichi avviamento

8.1.8 Ritiro

I fenomeni di ritiro da considerare soletta di copertura sono stati applicati nel modello come una variazione termica uniforme equivalente pari a: ΔT_{ritiro} = -10.0 °C.

8.1.9 Azioni termiche

Come previsto al §5.2.2.5.2 delle NTC, in assenza di studi approfonditi, si è applicata una variazione termica uniforme pari a $\Delta t=\pm15^{\circ}$ C.

In aggiunta alla variazione termica uniforme, andrà considerato un $\Delta t=\pm 5^{\circ}C$ fra estradosso ed intradosso di impalcato.

8.1.10 Azioni sismiche

8.1.10.1 Forze di inerzia

Per il calcolo dell'azione sismica si è utilizzato il metodo dell'analisi pseudostatica in cui l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico k.

Le forze sismiche sono pertanto le seguenti:

APPALTATORE:			I IN	FA FFF	ROVIA	ΡΙΔ ΝΔΡΩΙ	1 - B/	ARI
Mandataria:	Mandante:		LINEA FERROVIARIA NAPOLI - BARI					-XI XI
SALINI IMPREGILO	S.p.A. ASTALDI S.p.A	٨.	TRATTA NAPOLI-CANCELLO					
PROGETTISTA:			IN VARIA	NTE TRA	LE PK 0+0	00 E PK 15+5	85, INC	LUSE LE
Mandataria:	Mandante:		OPERE A	CCESSOF	RIE, NELL'A	MBITO DEGL	I INTER	VENTI DI
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL E).L. 133/2	014, CONV	ERTITO IN LE	GGE 16	4 / 2014
PROGETTO ESECU	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PA					PAGINA		
Relazione di calcolo			IF1M	0.0.E.ZZ	CL	SL.08.00.001	В	36 di 211

Forza sismica orizzontale $F_h = k_h \cdot W$ Forza sismica verticale $F_v = k_v \cdot W$

I valori dei coefficienti sismici orizzontale k_h e verticale k_ν possono essere valutati mediante le espressioni:

$$k_h = a_{max}/g$$

$$k_v = \pm 0.5 \cdot k_h$$

In assenza di analisi specifiche della risposta sismica locale, l'accelerazione massima può essere valutata con la relazione:

$$a_{max} = S \cdot a = Ss \cdot St \cdot ag$$

dove:

S_s = 1.37 Coefficiente di amplificazione stratigrafica

 $S_T = 1.00$ Coefficiente di amplificazione topografica

ne deriva che:

 a_{max} =1.37·1·0.220g = 0.302 g

 $k_h = a_{max}/g = 0.302$

 $k_v = \pm 0.5 \cdot k_h = 0.151$

Gli effetti dell'azione sismica sono stati valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:

$$G1 + G2 + \psi_{2j} Q_{kj}$$

Nel caso dei ponti, nell' espressione precedente si assumerà per i carichi dovuti al transito dei convogli ψ_{2j} =0.2, così come specificato al § 2.5.1.8.3 del Manuale RFI DTC SI PS MA IFS 001 A.

Si riporta nella seguente figura la schematizzazione dei carichi sismici sulla struttura.

APPALTATORE:			I IN	FA FFF	ROVIA	RIA NAPOL	1 - R/	ΔRI
Mandataria:	Mandante:						_, _,	-XI XI
SALINI IMPREGILO	S.p.A. ASTALDI S.p.A	L.		TRAT1	A NAPO	LI-CANCE	LLO	
PROGETTISTA:			IN VARIA	NTE TRA	LE PK 0+0	00 E PK 15+5	85, INC	LUSE LE
Mandataria:	Mandante:		OPERE A	CCESSOR	RIE, NELL' <i>A</i>	MBITO DEGL	I INTER	RVENTI DI
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL E).L. 133/2	014, CONV	ERTITO IN LE	GGE 16	4 / 2014
PROGETTO ESECU	TIVO		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo)		IF1M	0.0.E.ZZ	CL	SL.08.00.001	В	37 di 211

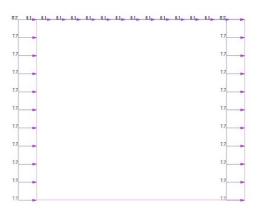


Figura 18 - Carichi sismici

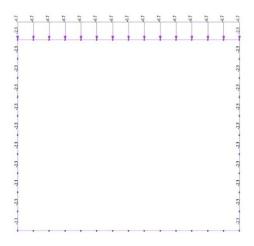


Figura 19- Carichi sismici

8.1.10.2 Spinta sismica terreno

Le spinte delle terre sono state determinate con la teoria di Wood, secondo la quale la risultante dell'incremento di spinta per effetto del sisma su una parete di altezza H viene determinata con la seguente espressione:

$$\Delta SE = (a_{max}/g) \cdot \gamma \cdot H^2$$

Tale risultante, applicata ad un'altezza pari ad H/2, vale:

$$\Delta SE = 0.302 \cdot 20 \cdot 6.95^2 = 291.99 \text{ kN/m}$$

Nella seguente figura si riporta la schematizzazione adottata per la modellazione della forza sismica:

APPALTATORE:			LIN	FΔ FFF	ROVIA	RIA NAPOL	I - B/	ARI
Mandataria:	Mandante:					_		
SALINI IMPREGILO S	S.p.A. ASTALDI S.p.A	A.		TRATT	A NAPO	LI-CANCE	LLO	
PROGETTISTA:			IN VARIA	NTE TRA	LE PK 0+0	00 E PK 15+58	35, INCI	LUSE LE
Mandataria:	Mandante:		OPERE AC	CESSOF	RIE, NELL' <i>A</i>	MBITO DEGL	IINTER	VENTI DI
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL D).L. 133/2	014, CONV	ERTITO IN LE	GGE 16	4 / 2014
PROGETTO ESECUT	TIVO		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo			IF1M	0.0.E.ZZ	CL	SL.08.00.001	В	38 di 211

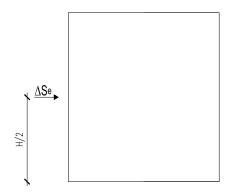


Figura 20- Spinta sismica del terreno secondo la teoria di Wood

nel modello di calcolo si è applicato il valore della forza sismica per unità di superficie agente su un piedritto, pari a: $\Delta sE = \Delta SE/h_{piedritto} = 47.09 \text{ kN/m}^2$.

8.2 COMBINAZIONI DI CARICO

Ai fini delle verifiche degli stati limite si è fatto riferimento alle seguenti combinazioni delle azioni.

Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_P \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$

Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$

Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili, utilizzata nella verifica a Fessurazione:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Combinazione quasi permanente, generalmente impiegata per gli stati limite di esercizio (SLE) a lungo termine:

APPALTATORE: LINEA FERROVIARIA NAPOLI - BARI Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA **DOCUMENTO** REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ SL.08.00.001 В 39 di 211

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$

dove:

$$E = \pm 1.00 \times E_{Y} \pm 0.3 \times E_{Z}$$

avendo indicato con E_Y e E_Z rispettivamente le componenti orizzontale e verticale dell'azione sismica.

I coefficienti di amplificazione dei carichi γ e i coefficienti di combinazione ψ sono riportati nelle tabelle seguenti.

In particolare nel calcolo della struttura scatolare si è fatto riferimento alla combinazione A1 STR (Approccio 1 – Combinazione 1) per le verifiche strutturali ed A2 GEO (Approccio 1 – Combinazione 2) per le verifiche geotecniche.

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO	Combinazione eccezionale	Combinazione Sismica
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00	1,00 1,00	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30	1,00 1,00	1,00 1,00
Ballast ⁽³⁾	favorevoli sfavorevoli	γв	0,90 1,50	1,00 1,50	1,00 1,30	1,00 1,00	1,00 1,00
Carichi variabili da traffico ⁽⁴⁾	favorevoli sfavorevoli	γο	0,00 1,45	0,00 1,45	0,00 1,25	0,00 0,20 ⁽⁵⁾	0,00 0,20 ⁽⁵⁾
Carichi variabili	favorevoli sfavorevoli	γ _{Qi}	0,00 1,50	0,00 1,50	0,00 1,30	0,00 1,00	0,00 0,00
Precompressione	favorevole sfavorevole	$\gamma_{ m P}$	0,90 1,00 ⁽⁶⁾	1,00 1,00 ⁽⁷⁾	1,00 1,00	1,00 1,00	1,00 1,00

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.

⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

⁽³⁾ Quando si prevedano variazioni significative del carico dovuto al ballast, se ne dovrà tener conto esplicitamente nelle verifiche.

⁽⁴⁾ Le componenti delle azioni da traffico sono introdotte in combinazione considerando uno dei gruppi di carico gr della Tab. 5.2.IV.

⁽⁵⁾ Aliquota di carico da traffico da considerare.

^{(6) 1,30} per instabilità in strutture con precompressione esterna

^{(7) 1,20} per effetti locali

APPALTATORE: LINEA FERROVIARIA NAPOLI - BARI Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA DOCUMENTO REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ SL.08.00.001 В 40 di 211

Tabella 5- NTC Tabella 5.2.V delle NTC – Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU, eccezionali e sismica- Ponti ferroviari

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30
Carichi variabili da traffico	favorevoli sfavorevoli	γο	0,00 1,35	0,00 1,35	0,00 1,15
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30
Distorsioni e presollecitazioni di progetto	favorevoli sfavorevoli	γ ε1	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00
Ritiro e viscosità, Variazioni termiche, Cedimenti vincolari	favorevoli sfavorevoli	$\gamma_{\epsilon 2}, \gamma_{\epsilon 3}, \gamma_{\epsilon 4}$	0,00 1,20	0,00 1,20	0,00 1,00

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.

Tabella 6- NTC Tabella 5.1.V – Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU-Ponti stradali

Azioni		Ψο	Ψ_1	Ψ2
Azioni singole	Carico sul rilevato a tergo delle spalle	0,80	0,50	0,0
da traffico	Azioni aerodinamiche generate dal transito dei convogli	0,80	0,50	0,0
	gr ₁	0,80 ⁽²⁾	0,80 ⁽¹⁾	0,0
Gruppi di	gr ₂	0,80 ⁽²⁾	0,80 ⁽¹⁾	-
carico	gr ₃	0,80 ⁽²⁾	0,80 ⁽¹⁾	0,0
	gr ₄	1,00	1,00(1)	0,0
Azioni del vento	F _{Wk}	0,60	0,50	0,0
Azioni da	in fase di esecuzione	0,80	0,0	0,0
neve	SLU e SLE	0,0	0,0	0,0
Azioni termiche	T_k	0,60	0,60	0,50

Tabella 7- Tabella 5.2.VI delle NTC- Coefficienti di combinazione y delle azioni- Ponti ferroviari

⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

 $[\]hbox{(3) 1,30 per instabilit\`a in strutture con precompressione esterna (4) 1,20 per effetti locali}\\$

APPALTATORE: LINEA FERROVIARIA NAPOLI - BARI Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA

Relazione di calcolo

Azioni	Gruppo di azioni (Tabella 5.1.IV)	Coefficiente Ψ ₀ di combinazione	Coefficiente Ψ ₁ (valori frequenti)	Coefficiente ψ ₂ (valori quasi permanenti)
	Schema 1 (Carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (Carichi distribuiti	0,40	0,40	0,0
	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
Azioni da traffico	Schema 2	0,0	0,75	0,0
(Tabella 5.1.IV)	2	0,0	0,0	0,0
	3	0,0	0,0	0,0
	4 (folla)		0,75	0,0
	5	0,0	0,0	0,0
	Vento a ponte scarico			
	SLU e SLE	0,6	0,2	0,0
Vento q_5	Esecuzione	0,8		0,0
	Vento a ponte carico	0,6		
M	SLU e SLE	0,0	0,0	0,0
Neve q ₅	esecuzione	0,8	0,6	0,5
Temperatura	T _k	0,6	0,6	0,5

IF1M

0.0.E.ZZ

DOCUMENTO

SL.08.00.001

REV.

В

PAGINA

41 di 211

Tabella 8- NTC Tabella 5.1.VI delle NTC - Coefficienti di combinazione y delle azioni - Ponti stradali e pedonali

Al fine della valutazione delle azioni caratteristiche da usare nelle combinazioni in riferimento al traffico ferroviario gli effetti dei carichi verticali dovuti alla presenza dei convogli vanno sempre combinati con le altre azioni derivanti dal traffico ferroviario, adottando i coefficienti indicati in Tabella 5.2.IV - Valutazione dei carichi da traffico delle NTC. In particolare, avendo considerato, tra i carichi riportati nella detta tabella, unicamente il carico verticale e quello proveniente dalla Frenatura/Avviamento saranno considerarti solo il Gruppo1 ed il Gruppo 3.

Nella valutazione degli effetti di interazione, alle azioni consequenti all'applicazione dei carichi da traffico ferroviario si adotteranno gli stessi coefficienti parziali dei carichi che li generano.

TIPO DI CARICO	Azioni v	erticali	A	zioni orizzont:	ali		
Gruppo di carico	Carico verticale (1)	Treno scarico	Frenatura e avviamento	Centrifuga	Serpeggio	Commenti	
Gruppo 1	1,00	-	0,5 (0,0)	1,0 (0,0)	1,0 (0,0)	massima azione verticale e laterale	
Gruppo.2 (2)	-	1,00	0,00	1,0 (0,0)	1,0(0,0)	stabilità laterale	
Gruppo 3 (2)	1,0 (0,5)	-	1,00	0,5 (0,0)	0,5 (0,0)	massima azione longitudinale	
Gruppo 4	0,8 (0,6; 0,4)	-	0,8 (0,6; 0,4)	0,8 (0,6; 0,4)	0,8 (0,6; 0,4)	fessurazione	

Tabella 9- NTC Tabella 5.2.IV delle NTC - Valutazione dei carichi da traffico

considerata come semplificazione per i gruppi di carico 1, 2, 3 senza che ciò abbia significative conseguenze

APPALTATORE: LINEA FERROVIARIA NAPOLI - BARI Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO PROGETTO LOTTO CODIFICA DOCUMENTO REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ CL SL.08.00.001 В 42 di 211

Azioni		Ψο	Ψ1	Ψ2
Azioni singole	8 1		0,50	0,0
da traffico			0,50	0,0
	gr_1	0,80 ⁽²⁾	0,80 ⁽¹⁾	0,0
Gruppi di	gr ₂	0,80 ⁽²⁾	0,80 ⁽¹⁾	-
carico	gr3	0,80 ⁽²⁾	0,80 ⁽¹⁾	0,0
	gr ₄	1,00	1,00 ⁽¹⁾	0,0
Azioni del vento	F_{Wk}	0,60	0,50	0,0
Azioni da	in fase di esecuzione	0,80	0,0	0,0
neve	SLU e SLE	0,0	0,0	0,0
Azioni termiche	$T_{\mathbf{k}}$	0,60	0,60	0,50

Tabella 10- NTC Tabella 5.2.VI delle NTC - Coefficienti di combinazione y delle azioni

Nella combinazione sismica le azioni indotte dal traffico ferroviario sono combinate con un coefficiente Ψ_2 = 0.2 coerentemente con l'aliquota di massa afferente ai carichi da traffico.

Le azioni descritte nel paragrafo precedente ed utilizzate nelle combinazioni di carico vengono di seguito riassunte:

APPALTATORE: LINEA FERROVIARIA NAPOLI - BARI Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA DOCUMENTO REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ SL.08.00.001 В 43 di 211

Abbreviazione	Tipo di carico
G1	Carichi permanenti elementi strutturali
G1,st	Carichi permanenti dovuti alla spinta delle terre
G2	Carichi permanenti non strutturali
Ritiro	Ritiro
Q, LM71 (1)	Carico ferroviario centrato (condizione simmetrica)
Q, LM71 (2)	Carico ferroviario laterale (condizione simmetrica)
Q, LM71 (3)	Carico ferroviario centrato (condizione asimmetrica)
Q, LM71 (4)	Carico ferroviario laterale (condizione asimmetrica)
Q,R	Carico stradale
Q, av	Avviamento
ΔΤ	Variazione termica
EH,pp	Forza di inerzia orizzontale dovuta al sisma
EH,st	Spinta sismica statica orizzontale
EH,D	Incremento di spinta dovuto al sisma
Ev,pp	Forza di inerzia verticale dovuta al sisma

Tabella 11- Legenda carichi

Si riportano di seguito le combinazioni di carico ritenute più significative con i coefficienti di combinazione $\gamma \cdot \psi$. Essendo la struttura simmetrica, si adottano tipologie di combinazione asimmetriche in modo da massimizzare le sollecitazioni. Il dimensionamento delle armature e le verifiche strutturali verranno poi eseguite tenendo conto della simmetria e verificando le condizioni peggiori per ogni lato della struttura.

Nel seguito si riportano le combinazioni di calcolo utilizzate per le verifiche a seguire.

LIST	OF LOAD COMBINATI	ONS					
NUM	NAME ACT LOADCAS	IVE E(FACTOR) +	TYPE	LOADCASE (FACTOR)	+	LOADCASE (FACTOR)
1 +		ive 1(1.350) + 0(1.200)	Add	G1,st(1.350)	+	G2(1.500)
2 + +	RITIF	ive 11(1.350) + 00(1.200) + r(1.160) +	Add	G1,st(Q,LM71(1)(T(G2(1.500) Q,R(1.010)
3 + +	RITIF	ive :1(1.350) + :0(1.200) + :r(1.160) +	Add	G1,st(Q,LM71(2)(T(G2(1.500) Q,R(1.010)
4 + +	RITIF	ive 11(1.350) + 0(1.200) + r(1.160) +	Add	G1,st(Q,LM71(1)(T(G2(1.500) Q,R(1.010)

APPALTATORE: LINEA FERROVIARIA NAPOLI - BARI Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO PROGETTO LOTTO CODIFICA DOCUMENTO REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ CL SL.08.00.001 В 44 di 211

5	SLU-STR-T(4) Active	Add	01 : :	1 252:		~~ :	1 500:
+	G1(1.350) + RITIRO(1.200) +		G1,st(Q,LM71(2)(1.500)
+	Q, fr(1.160) +		T(×/-:/	/
6	SLU-STR-R(1) Active	Add					
	G1(1.350) +		G1,st(1.500)
++	RITIRO(1.200) + Q,fr(1.160) +		Q,LM71(1)(T(+	Q,R(1.350)
7	SLU-STR-R(2) Active G1(1.350) +	Add	C1 s+/	1 350)	_	C2 /	1.500)
+	RITIRO(1.200) +		G1,st(Q,LM71(2)(1.350)
+	Q,fr(1.160) +		Т (0.720)			
8	SLU-STR-R(3) Active	Add					
	G1(1.350) +		G1,st(1.350)	+	G2 (1.500)
+	RITIRO(1.200) + Q,fr(1.160) +		Q,LM71(1)(T(+	Q,R(1.350)
	Q,11(1.100) +						
9	SLU-STR-R(4) Active	Add	01 (1 250)		00.4	1 500)
+	G1(1.350) + RITIRO(1.200) +		G1,st(Q,LM71(2)(1.500) 1.350)
+	Q,fr(1.160) +		T (2,	_,,,
10	SLU-STR-LM71(1) Active	 Add					
10	G1(1.350) +	Add	G1,st(1.350)	+	G2 (1.500)
+	RITIRO(1.200) +		Q,LM71(1)(+	Q,R(1.010)
+	Q,fr(1.450) +		Т(0.720)			
11	SLU-STR-LM71(2) Active	Add					
	G1(1.350) + RITIRO(1.200) +		G1,st(,	1.500)
+	Q,fr(1.450) +		Q,LM71(2)(T(Т	Q, K (1.010)
	CIT OFF INTI (2)	2.1.1					
12	SLU-STR-LM71(3) Active G1(1.350) +	Add	G1,st(1.350)	+	G2 (1.500)
+	RITIRO(1.200) +		Q,LM71(1)(0.725)			1.010)
+	Q,fr(1.450) +		Т(0.720)			
13	SLU-STR-LM71(4) Active	Add					
	G1(1.350) +		G1,st(1.500)
+	RITIRO(1.200) + Q,fr(1.450) +		Q,LM71(2)(T(0.725)	+	Q, R (1.010)
14	SLU-STR-LM71(5) Active G1(1.350) +	Add	G1,st(1 350)	+	G2 (1.500)
+	RITIRO(1.200) +		Q,LM71(3)(1.010)
+	Q,fr(1.450) +		Т (0.720)			
15	SLU-STR-LM71(6) Active	Add					
	G1(1.350) +			1.350)			1.500)
+	RITIRO(1.200) + Q,fr(1.450) +		Q,LM71(4)(T(+	Q,R(1.010)
			·				
16	SLU-STR-LM71(7) Active	Add	C1 a+ /	1 3501	_	C2 /	1 5001
+	G1(1.350) + RITIRO(1.200) +		Q,LM71(3)(1.350)			1.500) 1.010)
+	Q,fr(1.450) +		T (- /
17	SLU-STR-LM71(8) Active	Add					
	G1 (1.350) +	1100	G1,st(1.350)	+	G2 (1.500)
+	RITIRO(1.200) +		Q,LM71(4)(Q,R(1.010)
+	Q,fr(1.450) +		Т (U./2U)			
18	EH-STR(1) Active	Add					
+	G1(1.000) + Q,LM71(1)(0.200) +		•	1.000)		RITIRO(Q,fr(
+	T(0.500) +		EH,pp(1.000)		EH,st(
+	EHD(1.000) +		Ev,pp(0.300)			

APPALTATORE: LINEA FERROVIARIA NAPOLI - BARI Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO PROGETTO LOTTO CODIFICA DOCUMENTO REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ CL SL.08.00.001 В 45 di 211

19	EH-STR(2) Active	Add	
	G1(1.000) +	G2(1.000) +	RITIRO(1.000)
++	Q,LM71(2)(0.200) + T(0.500) +	Q,R(0.200) + EH,pp(1.000) +	Q,fr(0.200) EH,st(1.000)
+	EHD(1.000) +	Ev,pp(0.300)	En, SC (1.000)
20	EH-STR(3) Active		
20	G1(1.000) +	G2 (1.000) +	RITIRO(1.000)
+	Q,LM71(1)(0.200) +	Q,R(0.200) +	Q,fr(0.200)
+	T(0.500) + EHD(1.000) +	EH,pp(1.000) + Ev,pp(-0.300)	EH,st(1.000)
21	EH-STR(4) Active G1(1.000) +	Add G2(1.000) +	RITIRO(1.000)
+	Q,LM71(2)(0.200) +	Q,R(0.200) +	Q,fr(0.200)
+	T(0.500) +	EH,pp(1.000) +	EH,st(1.000)
+	EHD(1.000) +	Ev,pp(-0.300)	
22	EV-STR(1) Active	Add	
+	G1(1.000) + Q,LM71(1)(0.200) +	G2(1.000) + Q,R(0.200) +	RITIRO(1.000) Q,fr(0.200)
+	T(0.500) +	EH,pp(0.300) +	EH,st(1.000)
+	EHD(0.300) +	Ev,pp(1.000)	
23	EV-STR(2) Active	Add	
+	G1 (1.000) +	G2 (1.000) +	RITIRO(1.000)
+	Q,LM71(2)(0.200) + T(0.500) +	Q,R(0.200) + EH,pp(0.300) +	Q,fr(0.200) EH,st(1.000)
+	EHD(0.300) +	Ev,pp(1.000)	
24	EV-STR(3) Active	Add	
	G1(1.000) +	G2(1.000) +	RITIRO(1.000)
++	Q,LM71(1)(0.200) + T(0.500) +	Q,R(0.200) + EH,pp(0.300) +	Q,fr(0.200) EH,st(1.000)
+	EHD(0.300) +	Ev,pp(-1.000)	HII, 30 (1.000)
25	EV-STR(4) Active	Add	
20	G1(1.000) +	G2 (1.000) +	RITIRO(1.000)
+	Q,LM71(2)(0.200) +	Q,R(0.200) +	Q,fr(0.200)
+	T(0.500) + EHD(0.300) +	EH,pp(0.300) + Ev,pp(-1.000)	EH,st(1.000)
	OLU CDO #(1) 7-1	7.1.1	
26	SLU-GEO-T(1) Active G1(1.000) +	Add	Q,R(0.860)
+	Q,fr(1.000) +	T(1.000) +	G1,st-GEO(1.000)
+	G2-GEO(1.300) +	Q,LM71-GEO(1)(1.000)	
27	SLU-GEO-T(2) Active	Add	
+	G1(1.000) + Q,fr(1.000) +	RITIRO(1.000) + T(1.000) +	Q,R(0.860) G1,st-GEO(1.000)
+	G2-GEO(1.300) +	Q,LM71-GEO(2)(1.000)	G1,30 GEO(1.000)
 28	SLU-GEO-T(3) Active	Add	
20	G1(1.000) +	RITIRO(1.000) +	Q,R(0.860)
+	Q,fr(1.000) +	T(1.000) +	G1,st-GEO(1.000)
+	G2-GEO(1.300) +	Q,LM71-GEO(1)(0.500)	
29	SLU-GEO-T(4) Active	Add	
+	G1(1.000) + Q,fr(1.000) +	RITIRO(1.000) + T(1.000) +	Q,R(0.860) G1,st-GEO(1.000)
+	G2-GEO(1.300) +	Q,LM71-GEO(2)(0.500)	, (,
30	SLU-GEO-R(1) Active	Add	
0.0	G1(1.000) +	RITIRO(1.000) +	Q,R(1.150)
+	Q,fr(1.000) +	T(0.600) +	G1,st-GEO(1.000)
+	G2-GEO(1.300) +	Q,LM71-GEO(1)(1.000)	
31	SLU-GEO-R(2) Active	Add	0.0/ 1.150
+	G1(1.000) + Q,fr(1.000) +	RITIRO(1.000) + T(0.600) +	Q,R(1.150) G1,st-GEO(1.000)
+		Q,LM71-GEO(2)(1.000)	1,10 000,

APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. PROGETTISTA: Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.

LINEA FERROVIARIA NAPOLI - BARI

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

PROGETTO ESECUTIVO	PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo	IF1M	0.0.E.ZZ	CL	SL.08.00.001	В	46 di 211

32	SLU-GEO-R(3) Active G1(1.000) +	Add RITIRO(:	1 000) +	Q,R(1.	150)
+	Q,fr(1.000) +	T((0.600) +		
+	G2-GEO(1.300) +	Q,LM71-GEO(1)(0.500)		
33	SLU-GEO-R(4) Active	Add	1 000) 1	0 P / 1	1 = 0 \
+	G1(1.000) + Q,fr(1.000) +	RITIRO(1	0.600) +		
+	G2-GEO(1.300) +	Q,LM71-GEO(2)(0.500)		
34	SLU-GEO-LM71(1) Active	Add			
+	G1(1.000) + Q,fr(1.250) +	RITIRO(1.000) + 0.600) +		860)
+	G2-GEO(1.300) +	Q,LM71-GEO(1)(G1,SC-GEO(1.	000)
35	SLU-GEO-LM71(2) Active	 Add			
	G1(1.000) +	RITIRO(
++	Q,fr(1.250) + G2-GEO(1.300) +	T((Q,LM71-GEO(2)()	0.600) + 1 250)	G1,st-GEO(1.	000)
36	SLU-GEO-LM71(3) Active G1(1.000) +	Add RITIRO(1	1.000) +	Q,R(0.	860)
+	Q,fr(1.250) +	Т (0.600) +		
+	G2-GEO(1.300) +	Q,LM71-GEO(1)(0.625) 		
37	SLU-GEO-LM71(4) Active	Add			
+	G1(1.000) + Q,fr(1.250) +	RITIRO(1	1.000) + 0.600) +		
+	G2-GEO(1.300) +	Q,LM71-GEO(2)(, (,
38	SLU-GEO-LM71(5) Active	Add			
	G1(1.000) +	RITIRO(
++	Q,fr(1.250) + G2-GEO(1.300) +	T(0 O,LM71-GEO(3)(3	0.600) + 1.250)	G1,st-GEO(1.	000)
39	SLU-GEO-LM71(6) Active G1(1.000) +	Add RITIRO(1	1.000) +	Q,R(0.	860)
+	Q,fr(1.250) +		0.600) +	G1,st-GEO(1.	000)
+	G2-GEO(1.300) +	Q,LM71-GEO(3)(U.625) 		
40	SLU-GEO-LM71(7) Active	Add	1 0000	0.7/.0	0.60
+	G1(1.000) + Q,fr(1.250) +	RITIRO(1	0.600) +		
+	G2-GEO(1.300) +	Q,LM71-GEO(4)(1.250)		
41	SLU-GEO-LM71(8) Active	Add			
+	G1(1.000) +	RITIRO(860)
+	Q,fr(1.250) + G2-GEO(1.300) +	T((Q,LM71-GEO(4)((G1,SC-GEO(1.	000)
42	EH-GEO(1) Active	Add			
42	G1(1.000) +	RITIRO(200)
+	Q,fr(0.200) +	· ·	0.500) +	7 2 2 1	
+	EHD(1.000) + EH,st-GEO(1.000) +	Ev,pp((Q,LM71-GEO(1)((G2-GEO(1.	000)
	FU-CFO(2) Activo	ndd			
43	EH-GEO(2) Active G1(1.000) +	Add RITIRO(1	1.000) +	Q,R(0.	200)
+	Q,fr(0.200) + EHD(1.000) +	T((Ev,pp((0.500) +		
+	EHD(1.000) + EH,st-GEO(1.000) +	Q,LM71-GEO(2)(G2-GEO(1.	000)
44	EH-GEO(3) Active	 Add			
	EH-GEO(3) Active G1(1.000) +	RITIRO(1.000) +	Q,R(0.	200)
+	Q,fr(0.200) + EHD(1.000) +	T((Ev,pp(-(0.500) +		
+		Q,LM71-GEO(1)(G2-GEO(1.	000)
 45	EH-GEO(4) Active	 Add			
	G1(1.000) +	RITIRO(200)
+	Q,fr(0.200) + EHD(1.000) +	T((Ev,pp(-(0.500) +		
	Ens (1.000)	1, bb (,	,	02 000(1.	/

APPALTATORE: LINEA FERROVIARIA NAPOLI - BARI Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO PROGETTO LOTTO CODIFICA DOCUMENTO REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ CL SL.08.00.001 В 47 di 211

+	EH,st-GEO(1.000) +	Q,LM71-GEO(2)(0.200)	
46	EV-GEO(1) Active	Add	
+	G1(1.000) + Q,fr(0.200) +	RITIRO(1.000) + Q,R(0 T(0.500) + EH,pp(0	
+	EHD(0.300) +	Ev.pp(1.000) + G2-GEO(1	
+	EH, st-GEO(1.000) +	Q,LM71-GEO(1)(0.200)	
47	EV-GEO(2) Active	Add	
	G1(1.000) +	RITIRO(1.000) + Q,R(0	
+	Q,fr(0.200) + EHD(0.300) +	T(0.500) + EH,pp(0) Ev,pp(1.000) + G2-GEO(1)	
+	EH, st-GEO(1.000) +	Q, LM71-GEO(2) (0.200)	.000,
48	EV-GEO(3) Active	Add	
10	G1 (1.000) +	RITIRO(1.000) + Q,R(0	.200)
+	Q,fr(0.200) +	T(0.500) + EH,pp(0	
++	EHD(0.300) + EH,st-GEO(1.000) +	Ev,pp(-1.000) + G2-GEO(1 Q,LM71-GEO(1)(0.200)	.000)
49	EV-GEO(4) Active G1(1.000) +	Add RITIRO(1.000) + Q,R(0	200)
+	Q,fr(0.200) +	T(0.500) + EH,pp(0)	300)
+	EHD(0.300) +	Ev,pp(-1.000) + G2-GEO(1	.000)
+	EH,st-GEO(1.000) +	Q,LM71-GEO(2)(0.200)	
50	SLE-QP Active	Add	
+	G1(1.000) + RITIRO(1.000) +	G1,st(1.000) + G2(1 T(0.500)	.000)
51	SLE-FR-T Active G1(1.000) +	Add G1,st(1.000) + G2(1	000)
+	RITIRO(1.000) +	G1, st(1.000) + G2(1 T(0.600)	.000)
	OTT TO D	2.1.1	
52	SLE-FR-R Active G1(1.000) +	Add G1,st(1.000) + G2(1	.000)
+	RITIRO(1.000) +	Q,R(0.750) + T(0	
53	SLE-FR-LM71(1) Active	Add	
	G1(1.000) +	G1,st(1.000) + G2(1	
+	RITIRO(1.000) + T(0.500)	Q,LM71(1)(0.800) + Q,fr(0	0.800)
54	SLE-FR-LM71(2) Active G1(1.000) +	Add G1,st(1.000) + G2(1	000)
+	RITIRO(1.000) +	Q,LM71(2)(0.800) + Q,fr(0	
+	T(0.500)		
55	SLE-R-T(1) Active	Add	
	G1(1.000) +	G1,st(1.000) + G2(1	
+	RITIRO(1.000) +	Q,LM71(1)(0.640) + Q,R(0).750)
	Q,fr(0.640) +	T(1.000)	
56	SLE-R-T(2) Active	Add (21 + 1 / 1 000)	0001
+	G1(1.000) + RITIRO(1.000) +	G1,st(1.000) + G2(1 Q,LM71(2)(0.640) + Q,R(0	
+	Q,fr(0.640) +	T(1.000)	,
 57	SLE-R-R(1) Active	Add	
0,	G1 (1.000) +	G1,st(1.000) + G2(1	.000)
+	RITIRO(1.000) +	Q,LM71(1)(0.640) + Q,R(1	.000)
+	Q,fr(0.640) +	T(0.600)	
58	SLE-R-R(2) Active	Add (1,000) (2,41	0001
+	G1(1.000) + RITIRO(1.000) +	G1,st(1.000) + G2(1 Q,LM71(2)(0.640) + Q,R(1	
+	Q,fr(0.640) +	T(0.600)	
 59	SLE-R-LM71(1) Active	Add	
	G1(1.000) +	G1,st(1.000) + G2(1	.000)
++	RITIRO(1.000) + Q,fr(0.800) +	Q,LM71(1)(0.800) + Q,R(0 T(0.600)	750)
	2,11(0.000)	2 (0.000,	

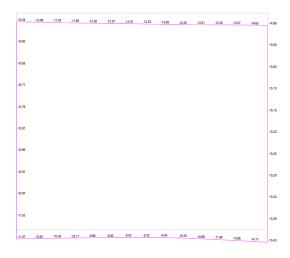
APPALTATORE: LINEA FERROVIARIA NAPOLI - BARI Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO PROGETTO LOTTO CODIFICA DOCUMENTO REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ CL SL.08.00.001 В 48 di 211

60	SLE-R-LM71(2) Active		Add			
	G1(1.000)	+	G1,st(1.000)	+	G2(1.000)
+	RITIRO(1.000)	+	Q,LM71(2)(0.800)	+	Q,R(0.750)
+	Q,fr(0.800)	+	Т (0.600)		
61	SLE-R-LM71(3) Active		Add			
0.1	G1(1.000)	+		1.000)	+	G2(1.000)
+	RITIRO(1.000)		Q,LM71(3)(Q,R(0.750)
+	Q,fr(0.800)			0.600)		2, , ,
62	SLE-R-LM71(4) Active		Add			
02	G1(1.000)	+	G1,st(1.000)	+	G2(1.000)
+	RITIRO(1.000)		Q,LM71(4)(Q,R(0.750)
+	Q,fr(0.800)			0.600)		2,11(03.00)
63	INV SLUstr Active		Envelope			
0.5	SLU-STR-T(1) (1.000)	+	SLU-STR-T(2)(1 0000	+	SLU-STR-T(3)(1.000)
+	SLU-STR-T(4)(1.000)		SLU-STR-R(1)(SLU-STR-R(2) (1.000)
+	SLU-STR-R(3) (1.000)		SLU-STR-R(4)(SLU-STR-LM71(1)(1.000)
+	SLU-STR-LM71(2)(1.000)		SLU-STR-LM71(3)(SLU-STR-LM71(4)(1.000)
+	SLU-STR-LM71(5)(1.000)		SLU-STR-LM71(6)(SLU-STR-LM71(7)(1.000)
+	SLU-STR-LM71(8)(1.000)		(1)	,		() ()
64	INV SLUgeo Active		Envelope			
0 1	SLU-GEO-T(1)(1.000)	+	SLU-GEO-T(2)(1 000)	+	SLU-GEO-T(3)(1.000)
+	SLU-GEO-T(4)(1.000)		SLU-GEO-R(1)(,		SLU-GEO-R(2)(1.000)
+	SLU-GEO-R(3)(1.000)		SLU-GEO-R(4)(SLU-GEO-LM71(1)(1.000)
+	SLU-GEO-LM71(2)(1.000)		SLU-GEO-LM71(3)(SLU-GEO-LM71(4)(1.000)
+	SLU-GEO-LM71(5)(1.000)		SLU-GEO-LM71(6)(1.000)	+	SLU-GEO-LM71(7)(1.000)
+	SLU-GEO-LM71(8)(1.000)					
65	INV-SLV-str Active		Envelope			
	EH-STR(1)(1.000)	+	EH-STR(2)(1.000)	+	EH-STR(3)(1.000)
+	EH-STR(4)(1.000)		EV-STR(1)(EV-STR(2)(1.000)
+	EV-STR(3)(1.000)		EV-STR(4)(
66	INV-SLV-geo Active		Envelope			
0.0	EH-GEO(1)(1.000)	+	EH-GEO(2)(1.000)	+	EH-GEO(3)(1.000)
+	EH-GEO(4)(1.000)		EV-GEO(1)(,		EV-GEO(2)(1.000)
+	EV-GEO(3)(1.000)		EV-GEO(4)(
67	INV-SLE-FR Active		Envelope			
· ·	SLE-FR-T (1.000)	+	SLE-FR-R(1 0000	+	SLE-FR-LM71(1)(1.000)
+	SLE-FR-LM71(2)(1.000)		יאו און בעט	1.000)		255 11 5171(1) (1:000)
 68	INV-SLE-R Active		Envelope			
00	SLE-R-T(1) (1.000)	_	SLE-R-T(2)(1 0000	_	SLE-R-R(1)(1.000)
+	SLE-R-T(1) (1.000) SLE-R-R(2) (1.000)		SLE-R-T(2)(SLE-R-LM71(1)(SLE-R-R(1) (1.000) SLE-R-LM71(2) (1.000)
+	SLE-R-LM71(3)(1.000)		SLE-R-LM71(1)(SLE-R-LM71(4)(Т	SHE-K-HM/1(2)(1.000)
Τ.	SLE-K-LM/1(3)(1.000)	т	SLE-K-LM/1(4)(1.000)		

APPALTATORE:			I IN	FA FFF	ROVIA	RIA NAPOL	I - B/	ΔRI
Mandataria:	<u>Mandante:</u>							
SALINI IMPREGILO	S.p.A. ASTALDI S.p.A	۸.	TRATTA NAPOLI-CANCELLO					
PROGETTISTA:			IN VARIA	NTE TRA	LE PK 0+0	00 E PK 15+5	85, INC	LUSE LE
Mandataria:	Mandante:		OPERE A	CCESSOF	RIE, NELL' <i>A</i>	MBITO DEGL	I INTER	RVENTI DI
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL E).L. 133/2	014, CONV	ERTITO IN LE	GGE 16	64 / 2014
PROGETTO ESECU	TIVO		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo			IF1M	0.0.E.ZZ	CL	SL.08.00.001	В	49 di 211

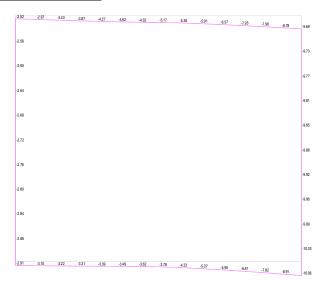
8.3 MODELLAZIONE ADOTTATA

L'analisi della struttura si effettua attraverso una modellazione spaziale agli elementi finiti. Il programma di calcolo impiegato per le analisi strutturali è il Midas Gen 2011 ver.2.1, prodotto dalla Midas Information Technology Co. Ltd (licenza n. UG03-0748 rilasciata dalla Harpaceas alla Interprogetti srl).


Lo scatolare in esame è stato modellato con un modello bidimensionale, stante l'angolo di incidenza con il rilevato ferroviario pari a 90° e la posizione dei binari che non consente ai carichi diffusi attraverso la copertura di generare concentrazioni di sollecitazione sui bordi della struttura.

Al fine della modellazione dei piedritti e dei traversi sono stati quindi utilizzati elementi beam. Per elementi beam si definisce compiutamente la sezione geometrica reale, nel caso in esame data dallo spessore dell'elemento in esame ed una profondità pari a 1.00m ovvero la fascia presa in considerazione, in modo da calcolare in via automatizzata le caratteristiche inerziali della sezione stessa. Successivamente ad ogni membratura si assegna il materiale di riferimento.

L'interazione con il terreno di fondazione è stata modellata con molle alla Winkler collegate alla controsoletta di rigidezza calcolata come precedentemente specificato.


Nelle figure seguenti si mostra che le molle adottate sono sempre compresse sia in inviluppo SLU che in inviluppo SLV.

Deformazioni Dz in mm per INV SLU

APPALTATORE:			I IN	FΔ FFF	ROVIA	RIA NAPOL	1 - R/	ΔRI
Mandataria:	<u>Mandante:</u>				1101171		_, _,	~! ~!
SALINI IMPREGILO	S.p.A. ASTALDI S.p.A	٨.	TRATTA NAPOLI-CANCELLO					
PROGETTISTA:			IN VARIA	NTE TRA	LE PK 0+0	00 E PK 15+5	85, INC	LUSE LE
Mandataria:	Mandante:		OPERE A	CCESSOF	RIE, NELL'A	MBITO DEGL	IINTER	RVENTI DI
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL E	D.L. 133/2	014, CONV	ERTITO IN LE	GGE 16	64 / 2014
PROGETTO ESECU	JTIVO		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo	0		IF1M	0.0.E.ZZ	CL	SL.08.00.001	В	50 di 211

Deformazioni Dz in mm per INV SLV

I modelli di calcolo approntati prevedono diverse condizioni di carico dedotte sulla base dell'analisi dei carichi riportate in precedenza. Tali condizioni sono state poi combinate al fine di ottenere le combinazioni necessarie alle verifiche, secondo cui si modella e verifica la struttura nei confronti del collasso e del comportamento in esercizio della stessa.

La gestione e la verifica delle analisi svolte avvengono mediante il controllo dei file di input e output che il software restituisce sia in forma grafica che in forma tabulare. I tabulati di output contengono le caratteristiche della sollecitazione, gli stati tensionali e deformativi durante le singole fasi costruttive e per le combinazioni di carico nonché le verifiche agli stati limite di tutte le sezioni.

La validazione delle modellazioni svolte e dei relativi risultati è stata eseguita comparando tali risultati con quelli derivanti da analisi semplificate effettuate con altri software e/o con schemi elementari di calcolo.

8.4 ANALISI DELLE SOLLECITAZIONI

Si riportano, di seguito, i diagrammi di inviluppo delle caratteristiche delle sollecitazioni di Flessione, Taglio e Sforzo Normale:

APPALTATORE:			LIN	FΔFF	ROVIA	RIA NAPOL	I - R	ΔRI
Mandataria:	Mandante:				VICO VIAI		_1 - 07	~! \ !
SALINI IMPREGILO S	S.p.A. ASTALDI S.p.A	λ.		TRATI	A NAPO	LI-CANCE	LLO	
PROGETTISTA:			IN VARIA	NTE TRA	LE PK 0+0	00 E PK 15+5	85, INC	LUSE LE
Mandataria:	Mandante:		OPERE AC	CCESSOF	RIE, NELL' <i>A</i>	MBITO DEGL	INTER	RVENTI DI
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL D	D.L. 133/2	014, CONV	ERTITO IN LE	GGE 16	64 / 2014
PROGETTO ESECUT	TIVO		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo			IF1M	0.0.E.ZZ	CL	SL.08.00.001	В	51 di 211

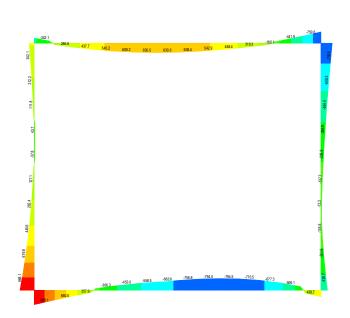


Figura 21- Inviluppo Momenti SLU STR

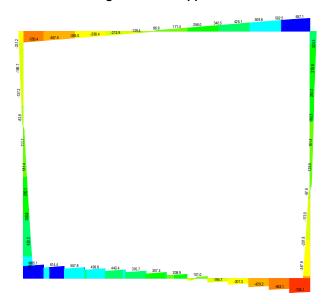
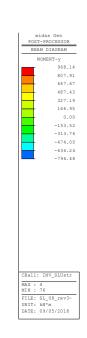




Figura 22-Inviluppo Tagli SLU STR

APPALTATORE:			LIN	FA FFF	ROVIA	RIA NAPOL	I - B/	∆RI
Mandataria:	Mandante:						_, _,	-
SALINI IMPREGILO S	i.p.A. ASTALDI S.p.A	٨.	TRATTA NAPOLI-CANCELLO					
PROGETTISTA:			IN VARIA	NTE TRA	LE PK 0+0	00 E PK 15+58	85, INCI	LUSE LE
Mandataria:	Mandante:		OPERE AC	CCESSOF	RIE, NELL' <i>A</i>	MBITO DEGL	IINTER	VENTI DI
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL D	D.L. 133/2	014, CONV	ERTITO IN LE	GGE 16	4 / 2014
PROGETTO ESECUT	IVO		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo			IF1M	0.0.E.ZZ	CL	SL.08.00.001	В	52 di 211

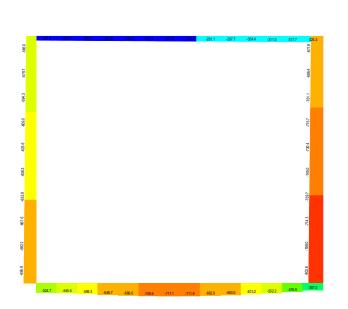


Figura 23- Inviluppo Sforzo normale SLU STR

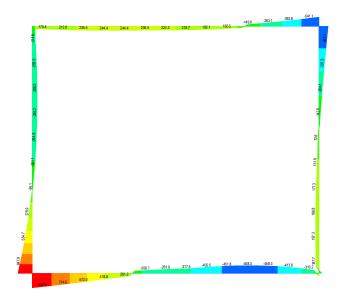
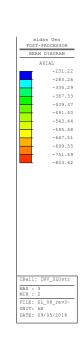
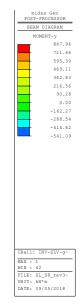




Figura 24- Inviluppo Momenti SLU GEO

APPALTATORE:			LIN	FΔ FFF	ROVIA	RIA NAPOL	1 - R/	\RI
Mandataria:	Mandante:				1110 1171		_, _,	
SALINI IMPREGILO S	S.p.A. ASTALDI S.p.A	λ.	TRATTA NAPOLI-CANCELLO					
PROGETTISTA:			IN VARIA	NTE TRA	LE PK 0+0	00 E PK 15+58	85, INCI	LUSE LE
Mandataria:	Mandante:		OPERE A	CCESSOF	RIE, NELL'A	MBITO DEGL	IINTER	VENTI DI
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL E).L. 133/2	014, CONV	ERTITO IN LE	GGE 16	4 / 2014
PROGETTO ESECUT	IVO		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo			IF1M	0.0.E.ZZ	CL	SL.08.00.001	В	53 di 211

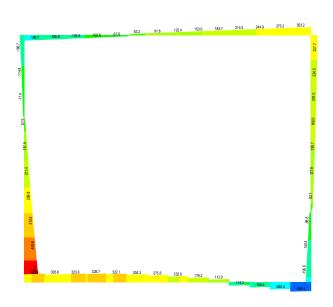


Figura 25- Inviluppo Tagli SLU GEO

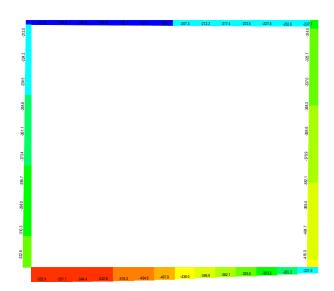
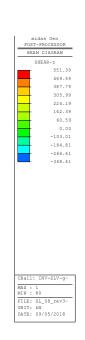



Figura 26- Inviluppo Sforzo normale SLU GEO

APPALTATORE:			LIN	FΔ FFF	ROVIA	RIA NAPOL	I - R	ΔRI
Mandataria:	Mandante:				II VIAI		_1 - 07	~! \ !
SALINI IMPREGILO S	S.p.A. ASTALDI S.p.A	λ.		TRATI	A NAPO	LI-CANCE	LLO	
PROGETTISTA:			IN VARIA	NTE TRA	LE PK 0+0	00 E PK 15+5	85, INC	LUSE LE
Mandataria:	Mandante:		OPERE AC	CCESSOF	RIE, NELL' <i>A</i>	MBITO DEGL	IINTER	RVENTI DI
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL D	D.L. 133/2	014, CONV	ERTITO IN LE	GGE 16	64 / 2014
PROGETTO ESECUT	TIVO		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo			IF1M	0.0.E.ZZ	CL	SL.08.00.001	В	54 di 211

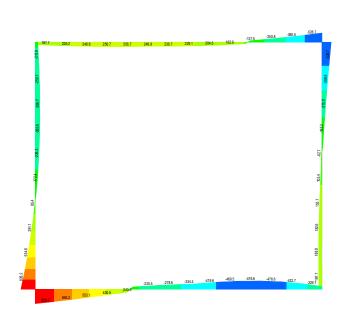


Figura 27- Inviluppo Momenti SLV STR

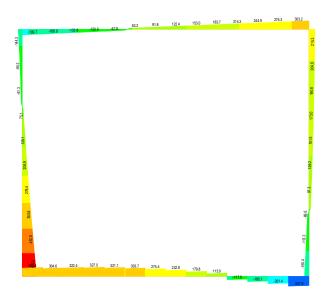
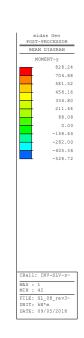
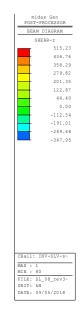
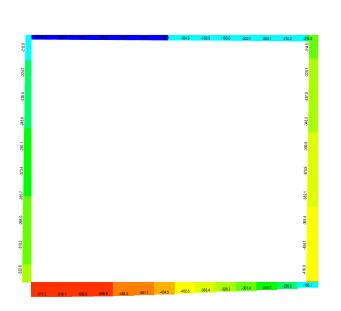
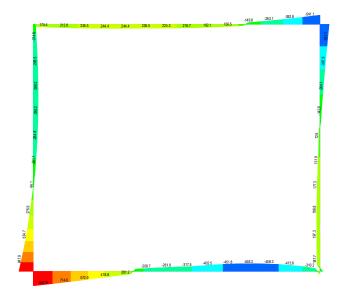





Figura 28- Inviluppo Tagli SLV STR

APPALTATORE:	·		LIN	FΔ FFF	ROVIA	RIA NAPOL	I - B/	∆RI
Mandataria:	Mandante:						_, _,	11 (1
SALINI IMPREGILO S	S.p.A. ASTALDI S.p.A	λ.	TRATTA NAPOLI-CANCELLO					
PROGETTISTA:			IN VARIA	NTE TRA	LE PK 0+0	00 E PK 15+5	85, INC	LUSE LE
Mandataria:	Mandante:		OPERE AC	CESSOF	RIE, NELL' <i>A</i>	MBITO DEGL	INTER	VENTI DI
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL D).L. 133/2	014, CONV	ERTITO IN LE	GGE 16	4 / 2014
PROGETTO ESECUT	IVO		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo			IF1M	0.0.E.ZZ	CL	SL.08.00.001	В	55 di 211

CBall: INV-SLV-sNAX : 3


CBall: INV-SLV-sNAX : 3

NIN : 4

FILE: 5L 08 rev3UNIT: NN

DATE: 09/05/2018

Figura 29- Inviluppo Sforzo normale SLV STR

BEAM DIAGRAM

MOMENT-y

847.94

721.66

99.39

469.11

342.83

216.56

90.28

0.00

-162.27

-28.54

-414.82

-541.09

Figura 30- Inviluppo Momenti SLV GEO

APPALTATORE:			LIN	FA FFF	ROVIA	RIA NAPOL	1 - R/	\RI
Mandataria:	Mandante:				1110 1171		_, _,	
SALINI IMPREGILO S	S.p.A. ASTALDI S.p.A	۸.	TRATTA NAPOLI-CANCELLO					
PROGETTISTA:			IN VARIA	NTE TRA	LE PK 0+0	00 E PK 15+58	85, INCI	LUSE LE
Mandataria:	Mandante:		OPERE A	CCESSOF	RIE, NELL' <i>A</i>	MBITO DEGL	IINTER	VENTI DI
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL D).L. 133/2	014, CONV	ERTITO IN LE	GGE 16	4 / 2014
PROGETTO ESECUT	TIVO		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo			IF1M	0.0.E.ZZ	CL	SL.08.00.001	В	56 di 211

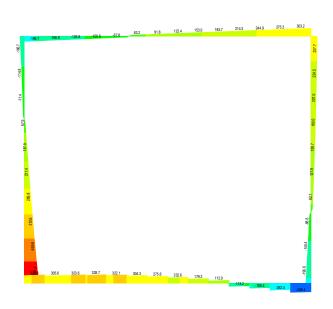
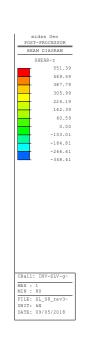
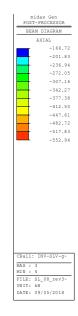




Figura 31- Inviluppo Tagli SLV GEO

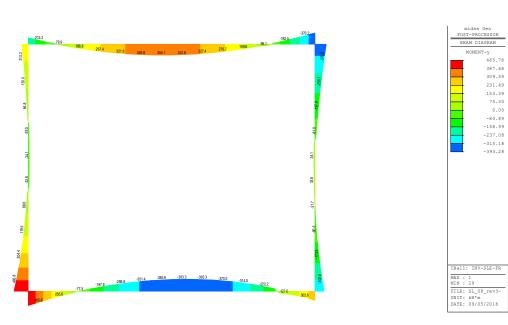


Figura 32- Inviluppo Sforzo normale SLV GEO

APPALTATORE:	·		LIN	FA FFF	ROVIA	RIA NAPOL	I - B/	∆RI
Mandataria:	Mandante:						_, _,	-
SALINI IMPREGILO S	S.p.A. ASTALDI S.p.A	٨.	TRATTA NAPOLI-CANCELLO					
PROGETTISTA:			IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE					
Mandataria:	Mandante:		OPERE AC	CCESSOF	RIE, NELL' <i>A</i>	MBITO DEGL	IINTER	VENTI DI
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL D	D.L. 133/2	014, CONV	ERTITO IN LE	GGE 16	4 / 2014
PROGETTO ESECUT	IVO		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo			IF1M	0.0.E.ZZ	CL	SL.08.00.001	В	57 di 211

SHEAR-2

419.35
341.69
264.03
186.36
108.70
0.00
-46.63
-124.29
-201.95
-279.62
-357.28
-434.94

Figura 33- Inviluppo Momento flettente - Comb. SLE frequenti

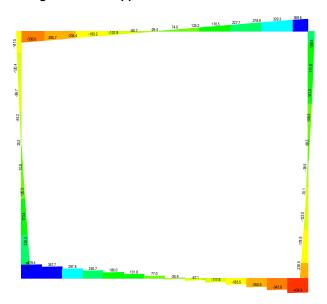
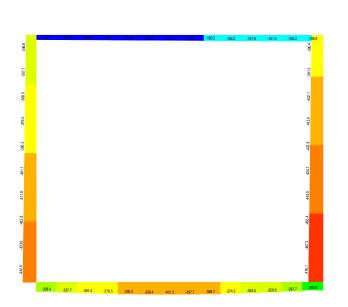
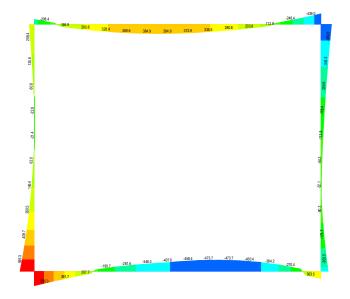



Figura 34- Inviluppo Tagli - Comb. SLE frequenti

APPALTATORE:	·		LIN	FA FFF	ROVIA	RIA NAPOL	I - B/	∆RI
Mandataria:	Mandante:						_, _,	11 (1
SALINI IMPREGILO S	S.p.A. ASTALDI S.p.A	٨.	TRATTA NAPOLI-CANCELLO					
PROGETTISTA:			IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE					
Mandataria:	Mandante:		OPERE AC	CCESSOF	RIE, NELL' <i>A</i>	MBITO DEGL	INTER	VENTI DI
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL D	D.L. 133/2	014, CONV	ERTITO IN LE	GGE 16	4 / 2014
PROGETTO ESECUT	IVO		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo			IF1M	0.0.E.ZZ	CL	SL.08.00.001	В	58 di 211


POST-PROCESSOR

BEAN DIAGRAM

AXIAL

-147.45
-177.51
-207.56
-237.62
-267.67
-297.73
-327.78
-357.84
-187.99
-417.95
-448.00
-478.06

Figura 35- Inviluppo Sforzi normali - Comb. SLE frequenti

midas Gen
POST-PROCESSOR
BEAM DIAGRAM

MOMENT-Y

595.28
498.10
400.91
303.73
206.54
109.36
-85.01
-182.19
-279.38
-376.56
-473.75

CBall: INV-SLE-R
MAX : 1
MIN : 76
FILE: SL_08_rev3UNIT: KMT=
DATE: 09/05/2018

Figura 36- Inviluppo Momento flettente - Comb. SLE rare

APPALTATORE:			LIN	FΔ FFF	ROVIA	RIA NAPOL	I - B/	ARI
Mandataria:	Mandante:							
SALINI IMPREGILO S	S.p.A. ASTALDI S.p.A	٨.	TRATTA NAPOLI-CANCELLO					
PROGETTISTA:			IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE					
Mandataria:	Mandante:		OPERE AC	CCESSOF	RIE, NELL' <i>A</i>	MBITO DEGL	I INTER	VENTI DI
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL D).L. 133/2	014, CONV	ERTITO IN LE	GGE 16	4 / 2014
PROGETTO ESECUT	IVO		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo			IF1M	0.0.E.ZZ	CL	SL.08.00.001	В	59 di 211

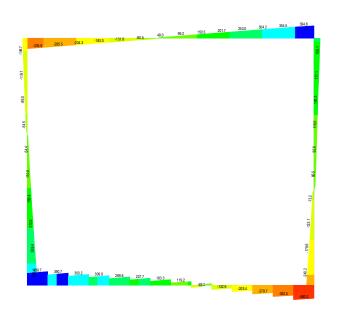


Figura 37- Inviluppo Tagli - Comb. SLE rare

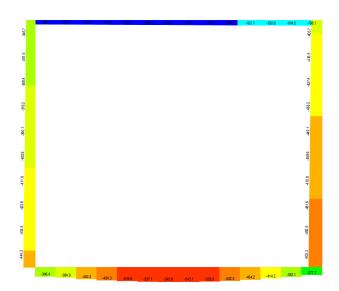
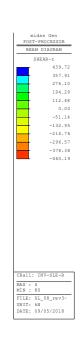



Figura 38- Inviluppo Sforzi normali - Comb. SLE rare

APPALTATORE:	·		LIN	FA FFF	ROVIA	RIA NAPOL	I - B/	∆RI
Mandataria:	Mandante:						_, _,	11 (1
SALINI IMPREGILO S	S.p.A. ASTALDI S.p.A	٨.	TRATTA NAPOLI-CANCELLO					
PROGETTISTA:			IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE					
Mandataria:	Mandante:		OPERE AC	CCESSOF	RIE, NELL' <i>A</i>	MBITO DEGL	INTER	VENTI DI
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL D	D.L. 133/2	014, CONV	ERTITO IN LE	GGE 16	4 / 2014
PROGETTO ESECUT	IVO		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo			IF1M	0.0.E.ZZ	CL	SL.08.00.001	В	60 di 211

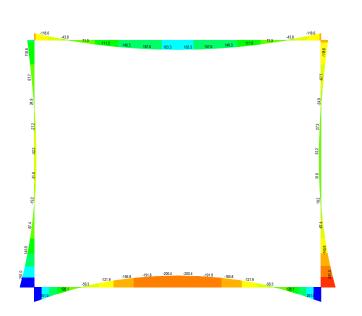


Figura 39- Inviluppo Momento flettente - Comb. SLE QP

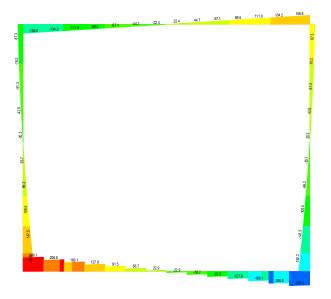
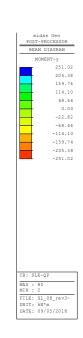
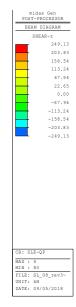
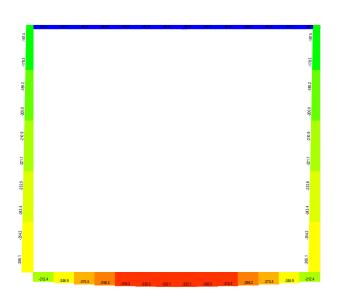





Figura 40- Inviluppo Tagli - Comb. SLE QP

APPALTATORE:			LIN	FA FFF	ROVIA	RIA NAPOL	1 - B/	ΔRI
Mandataria:	Mandante:					_		
SALINI IMPREGILO S	S.p.A. ASTALDI S.p.A	۸.	TRATTA NAPOLI-CANCELLO					
PROGETTISTA:			IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE					
Mandataria:	Mandante:		OPERE AC	CCESSOF	RIE, NELL'A	MBITO DEGL	IINTER	RVENTI DI
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL D).L. 133/2	014, CONV	ERTITO IN LE	GGE 16	64 / 2014
PROGETTO ESECUT	IVO		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo			IF1M	0.0.E.ZZ	CL	SL.08.00.001	В	61 di 211

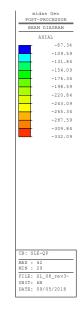


Figura 41- Inviluppo Sforzi normali - Comb. SLE QP

APPALTATORE:			LIN	EA FEF	RROVIA	RIA NAPOL	I - B/	ARI
Mandataria:	Mandante:							
SALINI IMPREGILO	S.p.A. ASTALDI S.p.A	٨.	TRATTA NAPOLI-CANCELLO					
PROGETTISTA: IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE				LUSE LE				
Mandataria:	Mandante:		OPERE AC	CESSOF	RIE, NELL'A	MBITO DEGL	IINTER	₹VENTI DI
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL D).L. 133/2	014, CONV	ERTITO IN LE	GGE 16	i4 / 2014
PROGETTO ESECUTIVO PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA								
Relazione di calcolo	•		IF1M	0.0.E.ZZ	CL	SL.08.00.001	В	62 di 211

8.5 VERIFICHE

Si riportano di seguito, i risultati delle verifiche più gravose agli SLU e SLE dei principali elementi strutturali, condotte nelle sezioni maggiormente sollecitate con i criteri di verifica precedentemente riportati.

8.5.1 Verifiche agli Stati Limite Ultimi

8.5.1.1 Verifica a flessione e pressoflessione

Si riportano le verifiche più gravose sui piedritti e sui traversi.

Elemento	Z	N	M	V
	m	KN	KNm	KN
	0.00	-	-759.60	657.10
Traversa superiore	3.95	-	630.50	171.40
	7.90	-	-759.60	657.10
	0.00	-	968.10	724.10
Soletta di fondazione	3.95	-	-794.50	307.40
	7.90	-	968.10	724.10
	0.00	651.40	968.10	510.30
Piedritti	4.74	730.40	-226.90	256.10
	6.95	671.80	759.60	324.30

Tabella 12 - Riepilogo sollecitazioni SLU/SLV

APPALTATORE:			I IN	FA FFF	RROVIA	RIA NAPOL	I - B4	\RI
Mandataria:	Mandante:							
SALINI IMPREGILO S	S.p.A. ASTALDI S.p.A	A .	TRATTA NAPOLI-CANCELLO					
PROGETTISTA:		IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE						
Mandataria:	Mandante:		OPERE AC	CESSOF	RIE, NELL'A	MBITO DEGL	IINTER	VENTI DI
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL D).L. 133/2	014, CONV	ERTITO IN LE	GGE 16	4 / 2014
PROGETTO ESECUT	TIVO		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo			IF1M	0.0.E.ZZ	CL	SL.08.00.001	В	63 di 211

Traverso superiore

Ai fini della verifica a flessione sul traverso superiore si prevede, in prossimità delle sezioni di estremità, l'utilizzo a m di 10φ26 superiormente e di 5φ26 inferiormente. Nel seguito il dettaglio della verifica.

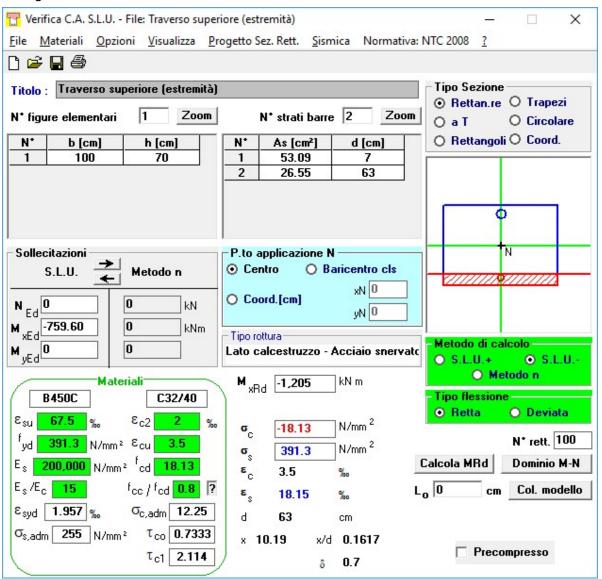


Figura 42-Verifica a flessione sezione di estremità (traverso superiore)

APPALTATORE:			LIN	FA FF	ROVIA	RIA NAPOL	1 - B/	\RI
Mandataria:	Mandante:							
SALINI IMPREGILO	S.p.A. ASTALDI S.p.A	۸.	TRATTA NAPOLI-CANCELLO					
PROGETTISTA:			IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE					
Mandataria:	Mandante:		OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI					
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL D).L. 133/2	014, CONV	ERTITO IN LE	GGE 16	4 / 2014
PROGETTO ESECUT	ΓΙVO		PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA					
Relazione di calcolo			IF1M	0.0.E.ZZ	CL	SL.08.00.001	В	64 di 211

Ai fini della verifica a flessione sul traverso superiore si prevede, in prossimità delle sezioni di mezzeria, l'utilizzo a m di 10φ26 inferiormente e di 5φ26 superiormente. Nel seguito il dettaglio della verifica.

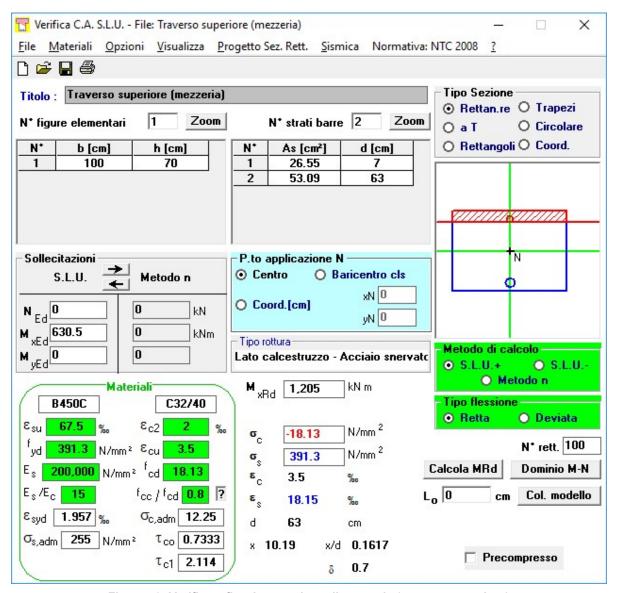


Figura 43- Verifica a flessione sezione di mezzeria (traverso superiore)

APPALTATORE:			LIN	FΔ FFF	ROVIA	RIA NAPOL	I - B/	\RI
Mandataria:	Mandante:				_	_		
SALINI IMPREGILO S	S.p.A. ASTALDI S.p.A	۸.	TRATTA NAPOLI-CANCELLO					
PROGETTISTA:			IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE					
Mandataria:	Mandante:		OPERE AC	CESSOF	RIE, NELL'A	MBITO DEGL	IINTER	VENTI DI
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL D).L. 133/2	014, CONV	ERTITO IN LE	GGE 16	4 / 2014
PROGETTO ESECUT	IVO		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo			IF1M	0.0.E.ZZ	CL	SL.08.00.001	В	65 di 211

Soletta di fondazione

Ai fini della verifica a flessione sulla soletta di fondazione si prevede, in prossimità delle sezioni di estremità, l'utilizzo a m di 10φ26 superiormente e di 10φ26 inferiormente. Nel seguito il dettaglio della verifica.

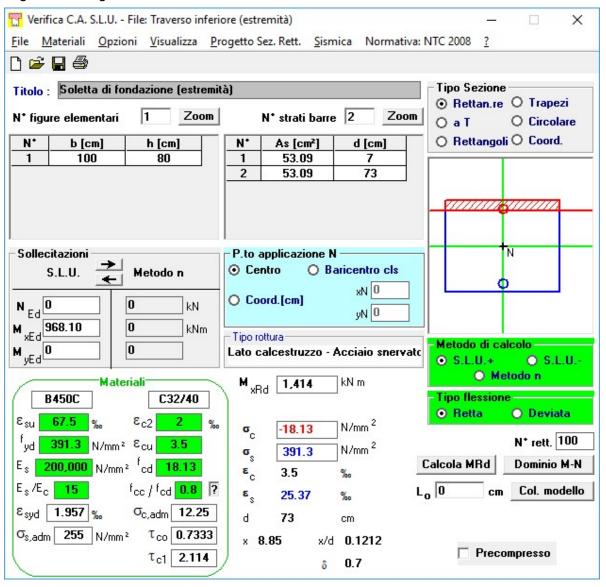


Figura 44-Verifica a flessione sezione di estremità (soletta di fondazione)

APPALTATORE:			LIN	FA FFF	ROVIA	RIA NAPOL	I - B/	\RI
Mandataria:	Mandante:							A1 X1
SALINI IMPREGILO	S.p.A. ASTALDI S.p.A	٨.	TRATTA NAPOLI-CANCELLO					
PROGETTISTA:		IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE						
Mandataria:	Mandante:		OPERE AC	CESSOF	RIE, NELL'A	MBITO DEGL	IINTER	VENTI DI
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL D).L. 133/2	014, CONV	ERTITO IN LE	GGE 16	4 / 2014
PROGETTO ESECUT	ΓΙVO		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo			IF1M	0.0.E.ZZ	CL	SL.08.00.001	В	66 di 211

Ai fini della verifica a flessione sulla soletta di fondazione si prevede, in prossimità delle sezioni di mezzeria, l'utilizzo a m di $5\phi26$ inferiormente e di $10\phi26$ superiormente. Nel seguito il dettaglio della verifica.

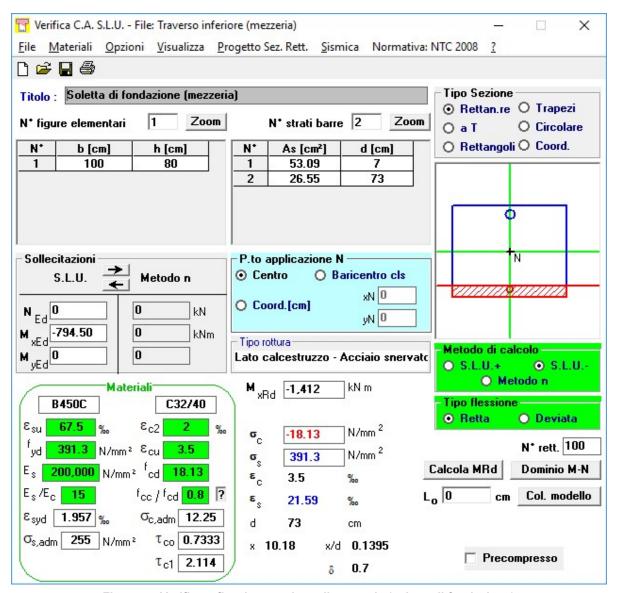


Figura 45-Verifica a flessione sezione di mezzeria (soletta di fondazione)

Piedritti

APPALTATORE:			LIN	FA FF	ROVIA	RIA NAPOL	1 - B/	\RI
Mandataria:	Mandante:							
SALINI IMPREGILO	S.p.A. ASTALDI S.p.A	۸.	TRATTA NAPOLI-CANCELLO					
PROGETTISTA:			IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE					
Mandataria:	Mandante:		OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI					
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL D).L. 133/2	014, CONV	ERTITO IN LE	GGE 16	4 / 2014
PROGETTO ESECUT	ΓΙVO		PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA					
Relazione di calcolo			IF1M	0.0.E.ZZ	CL	SL.08.00.001	В	67 di 211

Ai fini della verifica a presso flessione si prevede l'utilizzo a m di $5\phi20$ lato interno e di $10\phi26$ lato terreno. Nel seguito il dettaglio della verifica.

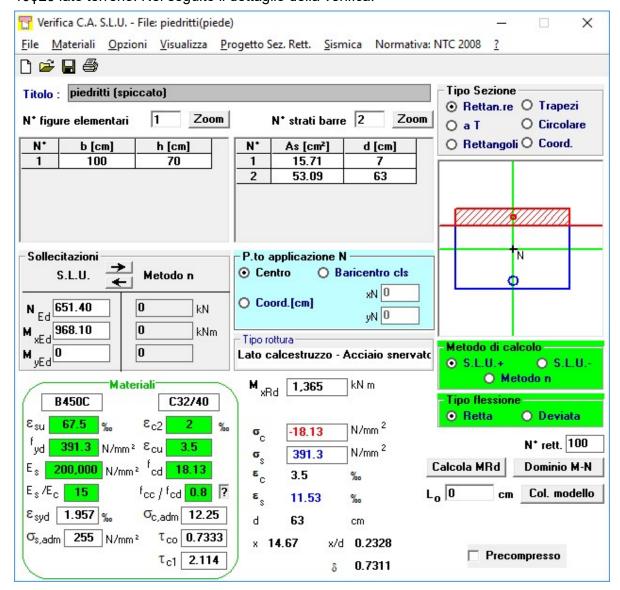


Figura 46-Verifica a presso flessione sezione di spiccato (piedritti)

APPALTATORE:			LIN	EA FEF	ROVIA	RIA NAPOL	I - B	ARI
Mandataria:	Mandante:							
SALINI IMPREGILO S	L.	TRATTA NAPOLI-CANCELLO						
PROGETTISTA:			IN VARIA	NTE TRA	LE PK 0+0	00 E PK 15+58	35, INCI	LUSE LE
Mandataria:	Mandante:		OPERE AC	CCESSOF	RIE, NELL'A	MBITO DEGL	IINTER	VENTI DI
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL D).L. 133/2	014, CONV	ERTITO IN LE	GGE 16	4 / 2014
PROGETTO ESECUTIVO			PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo			IF1M	0.0.E.ZZ	CL	SL.08.00.001	В	68 di 211

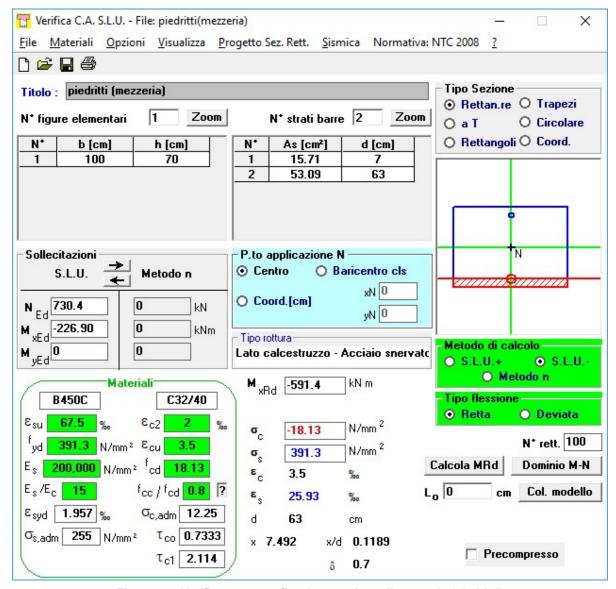


Figura 47 - Verifica a presso flessione sezione di mezzeria (piedritti)

APPALTATORE:			LIN	FΔ FFF	ROVIA	RIA NAPOL	I - B4	ARI
Mandataria:	Mandante:			_, 、		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	
SALINI IMPREGILO S	TRATTA NAPOLI-CANCELLO							
PROGETTISTA:			IN VARIA	NTE TRA	LE PK 0+0	00 E PK 15+58	35, INC	LUSE LE
Mandataria:	Mandante:		OPERE AC	CESSOF	RIE, NELL'A	MBITO DEGL	IINTER	VENTI DI
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014					
PROGETTO ESECUTIVO			PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo			IF1M	0.0.E.ZZ	CL	SL.08.00.001	В	69 di 211

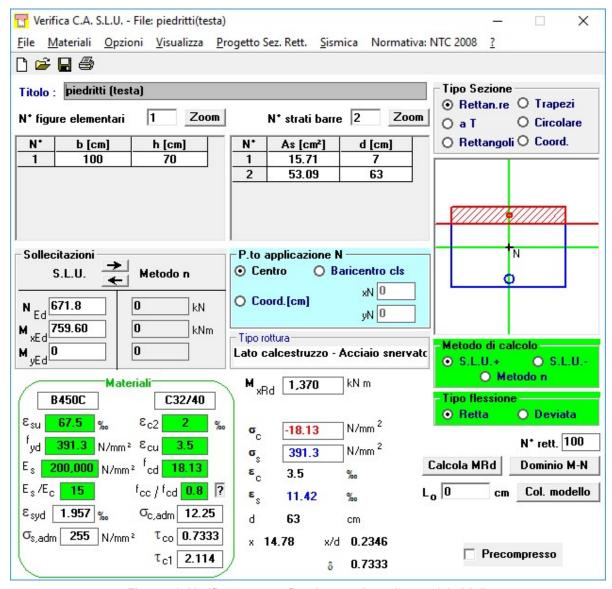


Figura 48- Verifica a presso flessione sezione di testa (piedritti)

APPALTATORE:			LIN	FA FFF	RROVIA	RIA NAPOL	I - B4	\RI	
Mandataria:	Mandante:								
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.			TRATTA NAPOLI-CANCELLO						
PROGETTISTA:				IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE					
Mandataria:	Mandante:		OPERE AC	CESSOF	RIE, NELL'A	MBITO DEGL	IINTER	VENTI DI	
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014						
PROGETTO ESECUTIVO			PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA	
Relazione di calcolo			IF1M	0.0.E.ZZ	CL	SL.08.00.001	В	70 di 211	

8.5.1.2 Verifica a taglio

Si riportano le verifiche più gravose sui piedritti e sui traversi.

Traverso superiore

Ai fini della verifica a taglio sul traverso superiore si prevede l'utilizzo di staffe ϕ 16/40x40 nei pressi delle sezioni di estremità e di staffe ϕ 14/40x40 nei pressi della mezzeria. Nel seguito il dettaglio della verifica.

Figura 49- Verifica a taglio sezione di estremità (traverso superiore)

APPALTATORE: LINEA FERROVIARIA NAPOLI - BARI Mandataria: Mandante: TRATTA NAPOLI-CANCELLO ASTALDI S.p.A. SALINI IMPREGILO S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA DOCUMENTO REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ CL SL.08.00.001 71 di 211

Verifiche a taglio - D.M. 14-01-2008 Materiali Geometria sezione **Armatura longitudinale** Sollecitazioni di calcolo 1000 n° barre 10 b [mm] $N_{Ed}[kN]$ Calcestruzzo 700 26 171.4 h [mm] diametro $V_{Ed}[kN]$ 40 70 Area [mm²] 5306.6 Rck [Mpa] c [mm] 33.2 630 fck [Mpa] d [mm] fcd [Mpa] 18.8 **VERIFICA** Armatura trasversale k 1.56 Staffe Φ 14 Sezione non armata a tagli Acciaio 0.39 n° bracci 2.5 **V**min 450 0.0084 384.65 fyk [Mpa] A_{sw} [mm²] $V_{Rd}[kN]$ 358.76 ρ_{l} fyd [Mpa] 391.3 0.0000 s [mm] 400 Verificato σ_{cp} 0.5 Sezione armata a taglio ٧ 0 $(\sigma_{cp})^*$ 1 Crisi armatura a taglio a_c 0.020 $\omega_{\!sw}$ 4.899 $V_{Rsd}[kN]$ 533.39 cotgθ 2.500 1839.17 cotgθ* $V_{Rcd}[kN]$ $V_{Rd}[kN]$ 533.39 Verificato

Figura 50- Verifica a taglio sezione di mezzeria (traverso superiore)

APPALTATORE:			LIN	FA FF	RROVIA	RIA NAPOL	I - B4	\RI
Mandataria:	Mandante:							
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.			TRATTA NAPOLI-CANCELLO					
PROGETTISTA:	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE							
Mandataria:	Mandante:		OPERE AC	CESSOF	RIE, NELL'A	MBITO DEGL	IINTER	VENTI DI
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014					
PROGETTO ESECUTIVO			PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo			IF1M	0.0.E.ZZ	CL	SL.08.00.001	В	72 di 211

Soletta di fondazione

Ai fini della verifica a taglio sulla soletta di fondazione si prevede l'utilizzo di staffe φ16/40x40 nei pressi delle sezioni di estremità e di staffe φ14/40x40 nei pressi della mezzeria. Nel seguito il dettaglio della verifica.

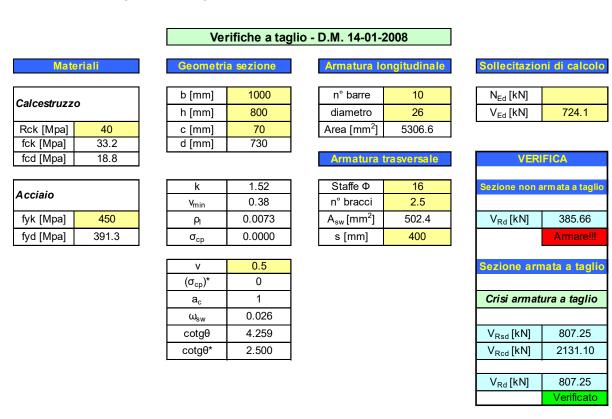


Figura 51 - Verifica a taglio sezione di estremità (soletta di fondazione)

APPALTATORE: LINEA FERROVIARIA NAPOLI - BARI Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA DOCUMENTO REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ CL SL.08.00.001 73 di 211

Figura 52- Verifica a taglio sezione di mezzeria (soletta di fondazione)

APPALTATORE:			I IN	FA FFF	RROVIA	RIA NAPOL	I - B4	\RI
Mandataria:	Mandante:							
SALINI IMPREGILO S	S.p.A. ASTALDI S.p.A	A .	TRATTA NAPOLI-CANCELLO					
PROGETTISTA:		IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE I					LUSE LE	
Mandataria:	Mandante:		OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI					VENTI DI
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014					
PROGETTO ESECUT	TIVO		PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA					
Relazione di calcolo			IF1M	0.0.E.ZZ	CL	SL.08.00.001	В	74 di 211

<u>Piedritti</u>

Ai fini della verifica a taglio sui piedritti si prevede l'utilizzo di staffe ϕ 14/40x40. Nel seguito il dettaglio della verifica.

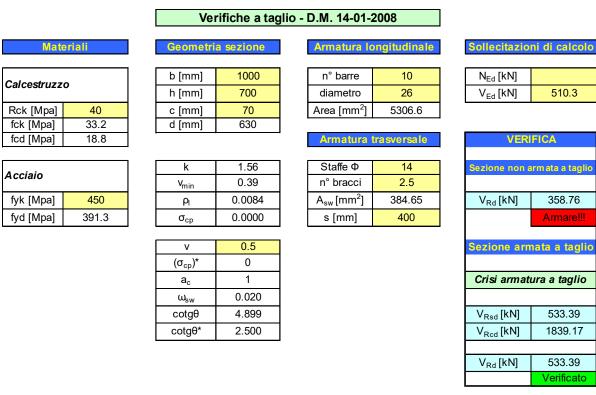


Figura 53 - Verifica a taglio sezione di spiccato (piedritti)

APPALTATORE: LINEA FERROVIARIA NAPOLI - BARI Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA DOCUMENTO REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ CL SL.08.00.001 75 di 211

Verifiche a taglio - D.M. 14-01-2008 Materiali Geometria sezione **Armatura longitudinale** Sollecitazioni di calcolo 1000 n° barre 5 b [mm] $N_{Ed}[kN]$ Calcestruzzo 700 20 256.1 h [mm] diametro $V_{Ed}[kN]$ 40 70 Rck [Mpa] c [mm] Area [mm²] 1570 fck [Mpa] 33.2 630 d [mm] fcd [Mpa] 18.8 VERIFICA Armatura trasversale k 1.56 Staffe Φ 14 Sezione non armata a tagli Acciaio 0.39 n° bracci 2.5 **V**min 450 0.0025 384.65 248.37 fyk [Mpa] A_{sw} [mm²] $V_{Rd}[kN]$ ρ_{l} fyd [Mpa] 391.3 0.0000 s [mm] 400 σ_{cp} Armare!!! 0.5 Sezione armata a taglio ٧ 0 $(\sigma_{cp})^*$ 1 Crisi armatura a taglio a_c 0.020 $\omega_{\!sw}$ 4.899 $V_{Rsd}[kN]$ 533.39 cotgθ 2.500 1839.17 cotgθ* $V_{Rcd}[kN]$ $V_{Rd}\left[kN\right]$ 533.39 Verificato

Figura 54 - Verifica a taglio sezione di mezzeria (piedritti)

APPALTATORE: LINEA FERROVIARIA NAPOLI - BARI Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA DOCUMENTO REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ CL SL.08.00.001 76 di 211

Verifiche a taglio - D.M. 14-01-2008 Materiali Geometria sezione **Armatura longitudinale** Sollecitazioni di calcolo 1000 n° barre 10 b [mm] $N_{Ed}[kN]$ Calcestruzzo 700 26 324.3 h [mm] diametro $V_{Ed}[kN]$ 40 70 5306.6 Rck [Mpa] c [mm] Area [mm²] fck [Mpa] 33.2 630 d [mm] fcd [Mpa] 18.8 VERIFICA Armatura trasversale k 1.56 Staffe Φ 14 Sezione non armata a tagli Acciaio 0.39 n° bracci 2.5 **V**min 450 0.0084 384.65 fyk [Mpa] A_{sw} [mm²] $V_{Rd}[kN]$ 358.76 ρ_{l} fyd [Mpa] 391.3 0.0000 s [mm] 400 Verificato σ_{cp} 0.5 Sezione armata a taglio ٧ 0 $(\sigma_{cp})^*$ 1 Crisi armatura a taglio a_c 0.020 $\omega_{\!sw}$ 4.899 $V_{Rsd}[kN]$ 533.39 cotgθ 2.500 1839.17 cotgθ* $V_{Rcd}[kN]$ $V_{Rd}\left[kN\right]$ 533.39 Verificato

Figura 55- Verifica a taglio sezione di testa (piedritti)

APPALTATORE:			LIN	FA FF	ROVIA	ΡΙΔ ΝΔΡΩΙ	1 - R/	ARI	
Mandataria:	Mandante:		LINEA FERROVIARIA NAPOLI - BARI					-XI XI	
SALINI IMPREGILO	S.p.A. ASTALDI S.p.A	٨.	TRATTA NAPOLI-CANCELLO						
PROGETTISTA:			IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE L					LUSE LE	
Mandataria:	Mandante:		OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI						
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014						
PROGETTO ESECU	TIVO		PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA						
Relazione di calcolo IF1M							77 di 211		

8.5.2 Verifiche agli Stati Limite D'esercizio

8.5.2.1 Verifica alle tensioni

Nel seguito si riportata la verifica alle tensioni per la combinazione di carico quasi permanente e rara, eseguita nelle sezioni più significative, ovvero le estremità degli elementi e nella mezzeria degli stessi.

Elemento	Combinazione	Z	N	Mx	σ_{c}	σ _{c, lim}	Verifica
		m	KN	KNm	Мра	Мра	
	Quasi	0.00	-	-118.60	1.51	13.28	ok
	permanente	3.95	-	163.30	2.08	13.28	ok
Traversa	permanente	7.90	-	-118.60	1.51	13.28	ok
superiore		0.00	-	-439.00	5.60	18.26	ok
	Rara	3.95	-	384.90	4.91	18.26	ok
		7.90	-	-439.00	5.60	18.26	ok
	Quasi	0.00	-	251.00	2.23	13.28	ok
	Quasi permanente	3.95	-	-200.40	2.01	13.28	ok
Soletta di		7.90	-	251.00	2.23	13.28	ok
fondazione		0.00	-	596.30	5.31	18.26	ok
	Rara	3.95	-	-473.70	4.75	18.26	ok
		7.90	-	596.30	5.31	18.26	ok
	Quasi	0.00	265.10	251.00	3.70	13.28	ok
	permanente	3.48	210.90	-32.20	0.51	13.28	ok
Piedritti	permanente	6.95	167.40	118.60	1.79	13.28	ok
FIEUTILLI		0.00	419.30	595.30	8.57	18.26	ok
	Rara	3.48	392.20	-22.80	0.62	18.26	ok
		6.95	405.60	439.00	6.42	18.26	ok

Tabella 13- Verifica alle tensioni (calcestruzzo)

APPALTATORE:			I IN	FΔ FFI	ROVIA	RIA NAPOL	I - R	ΔRI
Mandataria:	Mandante:							~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
SALINI IMPREGILO	S.p.A. ASTALDI S.p.A	۸.	TRATTA NAPOLI-CANCELLO					
PROGETTISTA:			IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE L					LUSE LE
Mandataria:	Mandante:		OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI					
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014					
PROGETTO ESECU	TIVO		PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA					
Relazione di calcolo			IF1M	0.0.E.ZZ	CL	SL.08.00.001	В	78 di 211

Elemento	Combinazione	Z	N	Mx	σs	σ _{s, lim}	Verifica
		m	KN	KNm	Мра	Мра	
Traversa		0.00	-	-439.00	148.90	337.5	ok
	Rara	3.95	-	384.90	130.50	337.5	ok
superiore		7.90	-	-439.00	148.90	337.5	ok
Soletta di		0.00	-	596.30	171.40	337.5	ok
fondazione	Rara	3.95	-	-473.70	137.40	337.5	ok
ionuazione		7.90	-	596.30	171.40	337.5	ok
		0.00	419.30	595.30	168.90	337.5	ok
Piedritti	Rara	3.48	392.20	-22.80	-	337.5	ok
		6.95	405.60	439.00	117.10	337.5	ok

Tabella 14- Verifica alle tensioni (acciaio)

8.5.2.2 Verifica di apertura delle fessure

Nel seguito si riportata la verifica di apertura delle fessure per la combinazione di carico rara, eseguita nelle sezioni più significative, ovvero le estremità degli elementi e nella mezzeria degli stessi.

APPALTATORE:			LIN	FΔ FFF	ROVIA	RIA NAPOL	1 - B/	ΔRI
Mandataria:	Mandante:							
SALINI IMPREGILO S	S.p.A. ASTALDI S.p.A	٨.	TRATTA NAPOLI-CANCELLO					
PROGETTISTA:			IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE I					LUSE LE
Mandataria:	Mandante:		OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI					
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014					
PROGETTO ESECUTIVO PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA							PAGINA	
Relazione di calcolo IF1M 0.0.E.ZZ CL SL.08.00.001 B 79 di 211							79 di 211	

Traverso superiore

Tipo di cor	mbinazione SL	E						
Comb.	Rara (IF)					Verific	ca spe	e ciale <mark>Italferr (sotto bin.)</mark>
Materiali								
Cls	C32/40		f_{ctk} = f_{ctm} /1,2	2.58	MPa		f_{ck}	33.2 MPa
Acciaio	B450C		f_{yk}	450	MPa			
Sollecitazi	oni e caratteri	stiche c	lella sezione					
M _{Ed}	439	kNm	Sollecitazione fle	tente				
N _{ed}	0	kN	Sforzo normale (negati	<mark>vo</mark> se di	compres	sione)	
c	70	mm	Distanza dell'ass	e delle	armatui	re tese da	ıl bord	o
Н	700	mm	Altezza totale de	la sezi	one			
В	1000	mm	Base della sezion	e				
d	630	mm	Altezza utile della	sezio	ne			
As	5309.29	mm ²	Armatura tesa					
A's	2654.65	mm^2	Armatura compre	essa				
n	15		Omogeneizzazioi	пе ассі	aio/cls c	ompr.		
у	350	mm	Posizione del bar	icentro)			
Calcolo de	l momento di	fessura	zione (sezione i	non fe	essurat	a)		
A*	819459.0607	mm^2	Area omogeneizz	ata				
I*	3.7949E+10	mm ⁴	Inerzia omogene	zzata				
M _{fess}	280.00	kNm	Momento di prim	a fess	urazione	e <med< th=""><th></th><th></th></med<>		
SEZIONE F	ESSURATA! DE	TERMIN	NA L'ASSE NEUTI	RO E P	ASSA A	L CALCO	OLO D	ELLE AMPIEZZE
Calcolo de	lle tensioni ne	el caso o	di flessione sem	plice	(sezion	e fessu	rata)	
X _c	227	mm	Posizione dell'ass	se neur	ro			
I ci	1.7815E+10	mm ⁴	Inerzia omogene	zzata				
f	119	mm						
h _o	443	mm						
$\sigma_{\it tmax}$	148.88	MPa	Tensione nell'acc	iaio		Verific	a tens	ionale OK
$\sigma_{\it cmax}$	5.60	MPa	Tensione nel calc	estruzz	ro	Verific	a tens	ionale OK
My	1327	kNm	Momento allo sn	ervam	ento			

Figura 56- Verifica a fessurazione sezione di estremità (traverso superiore)

APPALTATORE:			LIN	FΔ FFF	ROVIA	RIA NAPOL	I - R	\RI	
Mandataria:	Mandante:							-XI XI	
SALINI IMPREGILO S	S.p.A. ASTALDI S.p.A	. .	TRATTA NAPOLI-CANCELLO						
PROGETTISTA:			IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUS					LUSE LE	
Mandataria:	Mandante:		OPERE AC	CCESSOF	RIE, NELL'A	MBITO DEGL	IINTER	VENTI DI	
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014						
PROGETTO ESECUT	IVO		PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA						
Relazione di calcolo			IF1M 0.0.E.ZZ CL SL.08.00.001 B 80 di 211						

Tipo di combinaz	ione SLE					
Comb.	Rara (IF)					
Materiali						
Cls	C32/40	$f_{\it ctm}$	3.10	MPa	Ec	33643 MPa
Acciaio	B450C	f_{yk}	450	MPa	Es	210000 MPa
					α_e	6.24
Ipotesi di calcolo	1					
Cond. ambientali	i	Aggres	ssive			
Tipo di armature		Poco se	nsibili			
Tipi di carichi		Lunga d	lurata			
	aratteristiche della					
M _{Ed}	439 kNm	Sollecitazio	one flette	ente		
N _{ed}	0 kN	Sforzo nor	male (<u>n</u> .	<mark>egativo</mark> se di compr	essione)	
В	1000 mm		d	630 mm		
h	700 mm	I I	$h_{c,eff}$	157.6 mm		
x	227 mm		A _{c, eff}	157591.2 mm ²		
ricopr.	57 mm					
Caratteristiche d	ell'armatura tesa					
Spaziatura	100 mm		A_s	5306.6 mm ²		
n. ferri	10	1	$ ho_{eff}$	0.034		
φ	26 mm	•	σ_{s}	148.88 MPa		
Calcolo della def	ormazione unitaria	media del	le barr	е		
k _t	0.4 coefficier	nte dipendei	nte dalla	durata dei carichi		
€ _{sm}	0.0004968 deforma	zione unitar	ia media	a delle barre		
Calcolo della dist	anza massima tra le	e fessure				
5(c+ φ /2)	350 mm	> della spa	ıziatura _.	fra i ferri		
k 1	0.8					
k ₂	0.5 (<= 1 per	trazione ec	centrica;	0,5 nel caso di fless	ione)	
k 3	3.4					
k 4	0.425					
△ _{smax}	325.06 mm	(Eq. C.4.1.	17)	distanza massima	fra le fes	sure
Valore di calcolo	dell'apertura delle	fessure e	verifica	1		
$\mathbf{w}_d = \boldsymbol{\varepsilon}_{sm} \Delta_{smax}$	0.161 mm	(Eq. C.4.1.	15)			
w _{amm}	0.200 mm	> wd: LA	VERIFIC	CA E' SODDISFATT	Ά	

Figura 57- Verifica a fessurazione sezione di estremità (traverso superiore)

APPALTATORE:			LIN	FA FFF	RROVIA	RIA NAPOL	I - B4	\RI
Mandataria:	Mandante:							
SALINI IMPREGILO S	S.p.A. ASTALDI S.p.A	۸.	TRATTA NAPOLI-CANCELLO					
PROGETTISTA:			IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE				USE LE	
Mandataria:	Mandante:		OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI					VENTI DI
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014					
PROGETTO ESECUT	TIVO		PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA					
Relazione di calcolo			IF1M	0.0.E.ZZ	CL	SL.08.00.001	В	81 di 211

Tipo di cor	mbinazione SL	E						
Comb.	Rara (IF)					Verifica s	peci	iale: Italferr (sotto bin.)
Materiali								
Cls	C32/40		f_{ctk} = f_{ctm} /1,2	2.58	MPa	f_{ck}	3	33.2 MPa
Acciaio	B450C		f_{yk}	450	MPa			
Sollecitazi	oni e caratteri	stiche c	lella sezione					
M _{Ed}	384.9	kNm	Sollecitazione fle	ttente				
N _{ed}	0	kN	Sforzo normale (<u>negati</u>	<mark>vo</mark> se d	i compression	e)	
с	70	mm	Distanza dell'ass	e delle	armatu	ire tese dal bo	rdo	
Н	700	mm	Altezza totale de	lla sezi	one			
В	1000	mm	Base della sezion	е				
d	630	mm	Altezza utile della	a sezio	ne			
As	5309.29	mm^2	Armatura tesa					
A's	2654.65	mm^2	Armatura compr	essa				
n	15		Omogeneizzazio	ne acci	aio/cls (compr.		
у	350	mm	Posizione del bar	ricentro)			
Calcolo de	l momento di	fessura	zione (sezione	non fe	essurat	ta)		
A*	819459.0607	mm ²	Area omogeneizz	ata				
I*	3.7949E+10	mm ⁴	Inerzia omogene	izzata				
M fess	280.00	kNm	Momento di prin	na fess	urazion	e <med< th=""><th></th><th></th></med<>		
SEZIONE F	ESSURATA! DE	TERMIN	NA L'ASSE NEUTI	RO E P	ASSA A	AL CALCOLO	DEL	LLE AMPIEZZE
Calcolo de	lle tensioni ne	el caso o	di flessione sem	plice	(sezio	ne fessurata	1)	
X c	227	mm	Posizione dell'ass	se neut	ro			
I ci	1.7815E+10	mm ⁴	Inerzia omogene	izzata				
f	119	mm						
h _o	443	mm						
$\sigma_{\it tmax}$	130.53	MPa	Tensione nell'acc	riaio		Verifica te	nsio	nale OK
$\sigma_{\it cmax}$	4.91	MPa	Tensione nel calc	estruzz	ro	Verifica te	nsio	nale OK
My	1327	kNm	Momento allo sn	ervam	ento			

Figura 58- Verifica a fessurazione sezione di mezzeria (traverso superiore)

APPALTATORE:			LIN	FΔ FFF	ROVIA	RIA NAPOL	I - R	ARI	
Mandataria:	Mandante:							71 XI	
SALINI IMPREGILO S	.p.A. ASTALDI S.p.A	. .	TRATTA NAPOLI-CANCELLO						
PROGETTISTA:			IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUS					LUSE LE	
Mandataria:	Mandante:		OPERE AC	CESSOF	RIE, NELL'A	MBITO DEGL	IINTER	VENTI DI	
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014						
PROGETTO ESECUT	IVO		PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA						
Relazione di calcolo			IF1M 0.0.E.ZZ CL SL.08.00.001 B 82 di 211						

Tipo di combinaz	ione SLE					
Comb.	Rara (IF)					
Materiali						
Cls	C32/40	$f_{\it ctm}$	3.10	MPa	Ec	33643 MPa
Acciaio	B450C	f_{yk}	450	MPa	Es	210000 MPa
					α_e	6.24
Ipotesi di calcolo	1					
Cond. ambiental	i	Aggres	ssive			
Tipo di armature		Poco se	nsibili			
Tipi di carichi		Lunga d	lurata			
	aratteristiche della	sezione				
M _{Ed}	384.9 kNm	Sollecitazio	one flette	ente		
N _{ed}	0 kN	Sforzo nor	male (<u>n</u> .	<mark>egativo</mark> se di compr	ressione)	
В	1000 mm		d	630 mm		
h	700 mm	1	h _{c,eff}	157.6 mm		
x	227 mm		A _{c, eff}	157591.2 mm ²		
ricopr.	57 mm					
Caratteristiche d	ell'armatura tesa					
Spaziatura	100 mm	,	A_s	5306.6 mm ²		
n. ferri	10	1	$ ho_{eff}$	0.034		
φ	26 mm	•	σ_{s}	130.53 MPa		
Calcolo della def	ormazione unitaria	media del	le barr	е		
k _t	0.4 coefficie	nte dipendei	nte dalla	durata dei carichi		
€ _{sm}	0.0004094 deforma	zione unitar	ia media	a delle barre		
Calcolo della dist	tanza massima tra le	e fessure				
5(c+ φ /2)	350 mm	> della spa	ıziatura _.	fra i ferri		
k ₁	0.8					
k ₂	0.5 (<= 1 per	r trazione ec	centrica;	0,5 nel caso di fless	ione)	
k 3	3.4					
k 4	0.425					
△ _{smax}	325.06 mm	(Eq. C.4.1.	17)	distanza massima	fra le fes	sure
Valore di calcolo	dell'apertura delle	fessure e	verifica	1		
$\mathbf{w}_d = \boldsymbol{\varepsilon}_{sm} \Delta_{smax}$	0.133 mm	(Eq. C.4.1.	15)			
w _{amm}	0.200 mm	> wd: LA	VERIFIC	CA E' SODDISFATT	Ā	

Figura 59- Verifica a fessurazione sezione di mezzeria (traverso superiore)

APPALTATORE:			LIN	FA FFF	ROVIA	RIA NAPOL	1 - B/	ΔRI
Mandataria:	Mandante:					_		
SALINI IMPREGILO S	S.p.A. ASTALDI S.p.A	۸.		TRATI	A NAPO	LI-CANCE	LLO	
PROGETTISTA:			IN VARIA	NTE TRA	LE PK 0+0	00 E PK 15+58	35, INCI	LUSE LE
Mandataria:	Mandante:		OPERE AC	CCESSOF	RIE, NELL'A	MBITO DEGL	IINTER	RVENTI DI
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL D).L. 133/2	014, CONV	ERTITO IN LE	GGE 16	64 / 2014
PROGETTO ESECUT	IVO		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo			IF1M	0.0.E.ZZ	CL	SL.08.00.001	В	83 di 211

Soletta di fondazione

Tipo di cor	nbinazione SL	E						
Comb.	Rara (IF)					Verifica	spe	eciale. Italferr (sotto bin.)
Materiali								
Cls	C32/40		f_{ctk} = f_{ctm} /1,2	2.58	MPa	f	ck	33.2 MPa
Acciaio	B450C		f_{yk}	450	MPa			
Sollecitazi	oni e caratteri	stiche d	lella sezione					
M _{Ed}	596.3	kNm	Sollecitazione fle	ttente				
N _{ed}	0	kN	Sforzo normale (<u>negati</u>	<mark>vo</mark> se di	compressio	ne)	
с	70	mm	Distanza dell'ass	e delle	armatur	re tese dal b	ord	o
Н	800	mm	Altezza totale de	lla sezi	one			
В	1000	mm	Base della sezion	е				
d	730	mm	Altezza utile della	a sezio	ne			
As	5309.29	mm ²	Armatura tesa					
A's	5309.29	mm^2	Armatura compr	essa				
n	15		Omogeneizzazio	ne acci	aio/cls c	ompr.		
у	400	mm	Posizione del bai	ricentro	1			
Calcolo de	l momento di	fessura	zione (sezione	non fe	ssurata	a)		
A*	959278.7475	mm^2	Area omogeneiza	zata				
I*	6.0012E+10	mm ⁴	Inerzia omogene	izzata				
M _{fess}	387.45	kNm	Momento di prin	na fess	urazione	<med< th=""><th></th><th></th></med<>		
SEZIONE F	ESSURATA! DE	TERMIN	IA L'ASSE NEUT	RO E P	ASSA A	L CALCOL	0 D	ELLE AMPIEZZE
Calcolo de	lle tensioni ne	el caso c	li flessione sem	plice	(sezion	e fessurat	ta)	
x _c	232	mm	Posizione dell'as	se neut	ro			
I _{ci}	2.6003E+10	mm ⁴	Inerzia omogene	izzata				
f	159	mm						
h _o	400	mm						
$\sigma_{\it tmax}$	171.43	MPa	Tensione nell'acc	iaio		Verifica t	ens	ionale OK
$\sigma_{\it cmax}$	5.31	MPa	Tensione nel calc	estruzz	0	Verifica t	ens	ionale OK
M_y	1565	kNm	Momento allo sr	ervam	ento			

Figura 60- Verifica a fessurazione sezione di estremità (soletta di fondazione)

APPALTATORE:			LIN	FΔ FFF	ROVIA	RIA NAPOL	I - R	\RI
Mandataria:	Mandante:				VIAI		_1	-XI XI
SALINI IMPREGILO S	s.p.A. ASTALDI S.p.A	. .			_	LI-CANCE	_	
PROGETTISTA:			IN VARIA	NTE TRA	LE PK 0+0	00 E PK 15+58	35, INCI	LUSE LE
Mandataria:	Mandante:		OPERE AC	CESSOF	RIE, NELL'A	MBITO DEGL	IINTER	VENTI DI
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL D).L. 133/2	014, CONV	ERTITO IN LE	GGE 16	4 / 2014
PROGETTO ESECUT	IVO		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo			IF1M	0.0.E.ZZ	CL	SL.08.00.001	В	84 di 211

Tipo di combinaz	ione SLE					
Comb.	Rara (IF)					
Materiali						
Cls	C32/40	$f_{\it ctm}$	3.10	MPa	Ec	33643 MPa
Acciaio	B450C	f_{yk}	450	MPa	Es	210000 MPa
					α_{e}	6.24
Ipotesi di calcolo	1					
Cond. ambiental	i	Aggres	sive			
Tipo di armature		Poco se	nsibili			
Tipi di carichi		Lunga d	urata			
Sollecitazioni e c	aratteristiche della	sezione				
M _{Ed}	596.3 kNm	Sollecitazio	ne flett	ente		
N _{ed}	0 kN	Sforzo non	male (<u>n</u>	<u>egativo</u> se di con	npressione)	
В	1000 mm	•	d	730 mi	m	
h	800 mm	ı	h _{c,eff}	175.0 mi	m	
x	232 mm	,	4 _{c, eff}	175000.0 mi	m^2	
ricopr.	57 mm					
Caratteristiche d	ell'armatura tesa					
Spaziatura	100 mm	,	٩s	5306.6 mi	m^2	
n. ferri	10	ı	O _{eff}	0.030		
ϕ	26 mm	($\sigma_{\rm s}$	171.43 MI	Pa	
Calcolo della def	ormazione unitaria	media del	le barr	9		
k _t	0.4 coefficie	nte dipendei	nte dalla	durata dei carici	hi	
€ sm	0.0005849 deforma	ızione unitar	ia medio	a delle barre		
Calcolo della dist	tanza massima tra le	e fessure				
5(c+ φ /2)	350 mm	> della spa	ziatura	fra i ferri		
k ₁	0.8					
k ₂	0.5 (<= 1 pe	r trazione ecc	centrica;	0,5 nel caso di fl	essione)	
k ₃	3.4					
<i>k</i> ₄	0.425					
△ _{smax}	339.56 mm	(Eq. C.4.1.	17)	distanza massir	na fra le fe	ssure
Valore di calcolo	dell'apertura delle	fessure e	verifica	1		
$\mathbf{w}_d = \boldsymbol{\varepsilon}_{sm} \boldsymbol{\Delta}_{smax}$	0.199 mm	(Eq. C.4.1.	15)			
w _{amm}	0.200 mm	> wd: LA	VERIFIC	CA E' SODDISFA	TTA	

Figura 61- Verifica a fessurazione sezione di estremità (soletta di fondazione)

APPALTATORE:			LIN	FA FFF	RROVIA	RIA NAPOL	I - B4	\RI
Mandataria:	Mandante:							
SALINI IMPREGILO S	S.p.A. ASTALDI S.p.A	Α.		TRATI	A NAPO	LI-CANCE	LLO	
PROGETTISTA:			IN VARIA	NTE TRA	LE PK 0+0	00 E PK 15+58	85, INCI	USE LE
Mandataria:	Mandante:		OPERE AC	CESSOF	RIE, NELL'A	MBITO DEGL	IINTER	VENTI DI
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL D).L. 133/2	014, CONV	ERTITO IN LE	GGE 16	4 / 2014
PROGETTO ESECUT	TIVO		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo			IF1M	0.0.E.ZZ	CL	SL.08.00.001	В	85 di 211

Tipo di cor	mbinazione SL	E						
Comb.	Rara (IF)					Verifica s	peci	i ale. Italferr (sotto bin.)
Materiali								
Cls	C32/40		f_{ctk} = f_{ctm} /1,2	2.58	MPa	f_{ck}	. 3	3.2 MPa
Acciaio	B450C		f_{yk}	450	MPa			
Sollecitazi	oni e caratteri	stiche d	lella sezione					
M _{Ed}	473.7	kNm	Sollecitazione fle	ttente				
N _{ed}	0	kN	Sforzo normale (<u>negati</u>	<mark>vo</mark> se di	compression	e)	
с	70	mm	Distanza dell'ass	e delle	armatui	re tese dal bo	rdo	
Н	800	mm	Altezza totale de	lla sezi	one			
В	1000	mm	Base della sezion	e				
d		mm	Altezza utile della	a sezio	ne			
As	5309.29	mm ²	Armatura tesa					
A's	2654.65	mm^2	Armatura compr	essa				
n	15		Omogeneizzazio	ne acci	aio/cls c	ompr.		
у	400	mm	Posizione del bai	ricentro)			
Calcolo de	l momento di	fessura	zione (sezione	non fe	essurat	a)		
A*	919459.0607	mm ²	Area omogeneiz	zata				
I*	5.5676E+10	mm ⁴	Inerzia omogene	izzata				
M fess	359.45	kNm	Momento di prin	na fess	urazione	e <med< th=""><th></th><th></th></med<>		
SEZIONE F	ESSURATA! DE	TERMIN	IA L'ASSE NEUT	RO E P	ASSA A	AL CALCOLO	DEL	LE AMPIEZZE
Calcolo de	lle tensioni ne	el caso c	li flessione sem	plice	(sezion	e fessurata	1)	
X _c	249	mm	Posizione dell'as.	se neut	ro			
I _{ci}	2.4847E+10	mm ⁴	Inerzia omogene	izzata				
f	119	mm						
h _o	510	mm						
$\sigma_{\it tmax}$	137.41	MPa	Tensione nell'acc	riaio		Verifica te	nsio	nale OK
$\sigma_{\it cmax}$	4.76	MPa	Tensione nel calc	estruzz	ro	Verifica te	nsio	nale OK
M _y	1551	kNm	Momento allo sr	ervam	ento			

Figura 62- Verifica a fessurazione sezione di mezzeria (soletta di fondazione)

APPALTATORE:			LIN	FΔ FFF	POVIA	RIA NAPOL	I - B	<u></u>
Mandataria:	Mandante:		LIIV		CITO VIAI		_1 - D/	7171
SALINI IMPREGILO	S.p.A. ASTALDI S.p.A	٨.		TRATT	A NAPC	LI-CANCE	LLO	
PROGETTISTA:			IN VARIA	NTE TRA	LE PK 0+0	00 E PK 15+5	85, INC	LUSE LE
Mandataria:	Mandante:		OPERE A	CCESSOF	RIE, NELL'A	MBITO DEGL	I INTER	RVENTI DI
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL D	D.L. 133/2	014, CONV	ERTITO IN LE	GGE 16	64 / 2014
PROGETTO ESECU	TIVO		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo	1		IF1M	0.0.E.ZZ	CL	SL.08.00.001	В	86 di 211

Tipo di combinaz	ione SLE					
Comb.	Rara (IF)					
Materiali						
Cls	C32/40	$f_{\it ctm}$	3.10	MPa	Ec	33643 MPa
Acciaio	B450C	f_{yk}	450	MPa	Es	210000 MPa
					α_{e}	6.24
Ipotesi di calcolo)					
Cond. ambiental	i	Aggres	sive			
Tipo di armature		Poco se	nsibili			
Tipi di carichi		Lunga d	lurata			
Sollecitazioni e c	aratteristiche della	sezione				
M _{Ed}	473.7 kNm	Sollecitazio	one flette	ente		
N _{ed}	0 kN	Sforzo nor	male (<u>n</u> .	<mark>egativo</mark> se di compr	essione)	
В	1000 mm	(d	730 mm		
h	800 mm	ı	h _{c,eff}	175.0 mm		
x	249 mm		A _{c, eff}	175000.0 mm ²		
ricopr.	57 mm					
Caratteristiche d	ell'armatura tesa					
Spaziatura	100 mm	,	A_s	5306.6 mm ²		
n. ferri	10	1	$ ho_{eff}$	0.030		
ϕ	26 mm		σ_{s}	137.41 MPa		
Calcolo della def	ormazione unitaria	media del	le barr	e		
k _t	0.4 coefficie	nte dipende	nte dalla	durata dei carichi		
€ _{sm}	0.0004228 deforma	zione unitar	ia medio	a delle barre		
Calcolo della dist	tanza massima tra le	e fessure				
5(c+ φ /2)	350 mm	> della spa	ziatura	fra i ferri		
k ₁	0.8					
k ₂	0.5 (<= 1 pe	r trazione ec	centrica;	0,5 nel caso di fless	ione)	
kз	3.4					
<i>k</i> ₄	0.425					
△ _{smax}	339.56 mm	(Eq. C.4.1.	17)	distanza massima	fra le fes	ssure
Valore di calcolo	dell'apertura delle	fessure e	verifica	1		
$\mathbf{w}_d = \boldsymbol{\varepsilon}_{sm} \Delta_{smax}$	0.144 mm	(Eq. C.4.1.				
W _{amm}	0.200 mm	>wd: LA	VERIFIC	CA E' SODDISFATT	Ά	

Figura 63- Verifica a fessurazione sezione di mezzeria (soletta di fondazione)

APPALTATORE: LINEA FERROVIARIA NAPOLI - BARI Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO PROGETTO LOTTO CODIFICA DOCUMENTO REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ CL SL.08.00.001 В 87 di 211

Piedritti

Tipo di cor	mbinazione SL	E		
Comb.	Rara (IF)		V	erifica speciale Italferr (sotto bin.)
Materiali				
Cls	C32/40		$f_{ctk} = f_{ctm} / 1,2$ 2.58 MPa	f _{ck} 33.2 MPa
Acciaio	B450C		<i>f</i> _{yk} 450 MPa	
Sollecitazi	oni e caratteri	stiche d	ella sezione	
M _{Ed}	595.3	kNm	Sollecitazione flettente	
N _{ed}	-419.3	kN	Sforzo normale (<u>negativo</u> se di con	npressione)
с	70	mm	Distanza dell'asse delle armature te	se dal bordo
Н	700	mm	Altezza totale della sezione	
В	1000	mm	Base della sezione	
d	630	mm	Altezza utile della sezione	
As	5309.29	mm ²	Armatura tesa	
A's	1570.80	mm^2	Armatura compressa	
n	15		Omogeneizzazione acciaio/cls comp	or.
у	350	mm	Posizione del baricentro	
Calcolo de	l momento di	fessura	zione (sezione non fessurata)	
A*	803201.3187	mm ²	Area omogeneizzata	
<i>I*</i>	3.6674E+10	mm⁴	Inerzia omogeneizzata	
M _{fess}	325.30	kNm	Momento di prima fessurazione <	MEd
			A L'ASSE NEUTRO E PASSA AL C	
Calcolo de	lle tensioni ne	el caso c	i presso(tenso)-flessione (sezio	one fessurata)
e= M/N	1419.75	mm	Grande eccentricità -> Calcola posiz	ione asse neutro
а	1069.75	mm	Distanza dal baricentro del centro d	li pressione
x _c		mm	Posizione dell'asse neutro	CALCOLA
In	1.7882E+10	mm ⁴	Inerzia omogeneizzata	
Sn	1.3325E+07	mm ³	Momento statico	
$\sigma_{\it tmax}$	168.87	MPa	Tensione nell'acciaio Ve	erifica tensionale OK
$\sigma_{\it cmax}$	-8.57	MPa	Tensione nel calcestruzzo Ve	erifica tensionale OK
My	1499	kNm	Momento allo snervamento	

Figura 64- Verifica a fessurazione sezione di spiccato (piedritti)

APPALTATORE:			I IN	FΔ FFF	ROVIA	RIA NAPOL	I - R	\RI
Mandataria:	Mandante:		~		VIAI		_1	-XI XI
SALINI IMPREGILO S	.p.A. ASTALDI S.p.A	\.			_	LI-CANCE	_	
PROGETTISTA:			IN VARIA	NTE TRA	LE PK 0+0	00 E PK 15+58	35, INCI	LUSE LE
Mandataria:	Mandante:		OPERE AC	CESSOF	RIE, NELL'A	MBITO DEGL	IINTER	VENTI DI
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL D).L. 133/2	014, CONV	ERTITO IN LE	GGE 16	4 / 2014
PROGETTO ESECUT	IVO		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo			IF1M	0.0.E.ZZ	CL	SL.08.00.001	В	88 di 211

Materiali Cls (ara (IF) C32/40 B450C	f _{ctm} f _{yk}	3.10 450	MPa MPa	Ec Es α _e	33643 MPa 210000 MPa
Cls (Acciaio	•	f _{yk}			Es	210000 MPa
Acciaio Ipotesi di calcolo	•	f _{yk}			Es	210000 MPa
Ipotesi di calcolo	B450C		450	MPa		
		Aggres			α_{e}	6 24
		Aggres				6.24
Cond. ambientali		Aggres				
		00	ssive			
Tipo di armature		Poco se	nsibili			
Tipi di carichi		Lunga d	lurata			
Sollecitazioni e cara	tteristiche della s	sezione				
M _{Ed}	595.3 kNm	Sollecitazio	one flette	ente		
N _{ed}	-419.3 kN	Sforzo non	male (<u>ne</u>	<mark>egativo</mark> se di compi	ressione)	
В	1000 mm	•	d	630 mm		
h	700 mm	ı	h _{c,eff}	142.6 mm		
x	272 mm	,	A _{c, eff}	142591.5 mm ²	2	
ricopr.	57 mm					
Caratteristiche dell'	armatura tesa					
Spaziatura	100 mm	,	A_s	5306.6 mm ²	2	
n. ferri	10	ı	$ ho_{eff}$	0.037		
φ	26 mm	(σ_{s}	168.87 MPa		
Calcolo della deforn	nazione unitaria r	nedia del	le barre	•		
k _t	0.4 coefficien	te dipendei	nte dalla	durata dei carichi		
ε_{sm} 0.	.0006087 deformaz	ione unitar	ia media	delle barre		
Calcolo della distana	za massima tra le	fessure				
5(c+ φ /2)	350 mm	> della spa	ıziatura j	fra i ferri		
k ₁	0.8					
k ₂	0.5 (<= 1 per	trazione ecc	centrica;	0,5 nel caso di fless	sione)	
k 3	3.4					
k ₄	0.425					
△ _{smax}	312.57 mm	(Eq. C.4.1.	17)	distanza massima	fra le fes	sure
Valore di calcolo de	Il'apertura delle 1	fessure e	verifica			
$\mathbf{w}_d = \boldsymbol{\varepsilon}_{sm} \Delta_{smax}$	0.190 mm	(Eq. C.4.1.	15)			
w _{amm}	0.200 mm	> wd: LA	VERIFIC	A E' SODDISFATT	ΓΑ	

Figura 65- Verifica a fessurazione sezione di spiccato (piedritti)

APPALTATORE:			LIN	FΔ FFF	ROVIA	RIA NAPOL	1 - R/	\RI
Mandataria:	Mandante:				VI CO VIAI		_1 - DA	- 11 XI
SALINI IMPREGILO S	S.p.A. ASTALDI S.p.A	λ.		TRATI	A NAPO	LI-CANCE	LLO	
PROGETTISTA:			IN VARIA	NTE TRA	LE PK 0+0	00 E PK 15+58	85, INCI	LUSE LE
Mandataria:	Mandante:		OPERE AC	CESSOF	RIE, NELL'A	MBITO DEGL	IINTER	VENTI DI
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL D).L. 133/2	014, CONV	ERTITO IN LE	GGE 16	4 / 2014
PROGETTO ESECUT	TIVO		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo			IF1M	0.0.E.ZZ	CL	SL.08.00.001	В	89 di 211

Tipo di coi	mbinazione SL	E	
Comb.	Rara (IF)		Verifica speciale. Italferr (sotto bin.)
Materiali			
Cls	C32/40		$f_{ctk} = f_{ctm}/1,2$ 2.58 MPa f_{ck} 33.2 MPa
Acciaio	B450C		<i>f_{yk}</i> 450 MPa
Sollecitazi	oni e caratteri	stiche (della sezione
M _{Ed}	22.8	kNm	Sollecitazione flettente
N _{ed}	-392.2	kN	Sforzo normale (<u>negativo</u> se di compressione)
с	70	mm	Distanza dell'asse delle armature tese dal bordo
Н	700	mm	Altezza totale della sezione
В	1000	mm	Base della sezione
d	630	mm	Altezza utile della sezione
As	1570.80	mm ²	Armatura tesa
A's	2654.65	mm ²	Armatura compressa
n	15		Omogeneizzazione acciaio/cls compr.
у	350	mm	Posizione del baricentro
Calcolo de	l momento di	fessura	azione (sezione non fessurata)
A*	763381.6318	mm^2	Area omogeneizzata
I*	3.3552E+10	mm ⁴	Inerzia omogeneizzata
M fess	296.82	kNm	Momento di prima fessurazione >MEd
SEZIONE N	ION FESSURAT	Ά	

Figura 66- Verifica a fessurazione sezione di mezzeria (piedritti)

APPALTATORE:			LIN	FΔ FFF	ROVIA	RIA NAPOL	I - R	\RI
Mandataria:	Mandante:				VIAI		_1 - 67	-XI XI
SALINI IMPREGILO S.	p.A. ASTALDI S.p.A				_	LI-CANCE	_	
PROGETTISTA:			IN VARIA	NTE TRA	LE PK 0+0	00 E PK 15+58	35, INC	LUSE LE
Mandataria:	Mandante:		OPERE AC	CESSOF	RIE, NELL'A	MBITO DEGL	IINTER	VENTI DI
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL D).L. 133/2	014, CONV	ERTITO IN LE	GGE 16	4 / 2014
PROGETTO ESECUTIV	/ O		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo			IF1M	0.0.E.ZZ	CL	SL.08.00.001	В	90 di 211

Tipo di coi	mbinazione SL	E						
Comb.	Rara (IF)					Verifica s _l	oeciale	Italferr (sotto bin.)
Materiali								
Cls	C32/40		$f_{ctk} = f_{ctm} / 1,2$ 2.	.58	MPa	f_{ck}	33.2	MPa
Acciaio	B450C		f_{yk} 4	50	MPa			
Sollecitazi	oni e caratteri	stiche d	lella sezione					
M _{Ed}	439	kNm	Sollecitazione flette	nte				
N _{ed}	-405.6	kN	Sforzo normale (<u>ne</u>	gati	<mark>vo</mark> se di	compression	e)	
с	70	mm	Distanza dell'asse d	lelle	armatur	e tese dal bo	rdo	
Н	700	mm	Altezza totale della	sezio	one			
В	1000	mm	Base della sezione					
d	630	mm	Altezza utile della se	ezior	ne			
As	5309.29	mm ²	Armatura tesa					
A's	1570.80	mm ²	Armatura compress	а				
n	15		Omogeneizzazione	accio	aio/cls c	ompr.		
у	350	mm	Posizione del barice	ntro				
Calcolo de	l momento di	fessura	zione (sezione no	n fe	ssurata	a)		
A*	803201.3187	mm ²	Area omogeneizzat	а				
I*	3.6674E+10	mm⁴	Inerzia omogeneizzo	ata				
M fess	323.51	kNm	Momento di prima	fessı	ırazione	<med< th=""><th></th><th></th></med<>		
			IA L'ASSE NEUTRO					A <i>MPIEZZE</i>
Calcolo de	lle tensioni ne	el caso c	li presso(tenso)-fl	essi	ione (s	ezione fess	urata)	
e= M/N	1082.35	mm	Grande eccentricità	-> C	alcola p	osizione asse	neutro	
а	732.35	mm	Distanza dal baricei	ntro	del cent	ro di pression	е	
X _c	284	mm	Posizione dell'asse	neut	ro	CALCOLA		
In	1.8262E+10	mm ⁴	Inerzia omogeneizza	ata				
Sn	1.7962E+07	mm ³	Momento statico					
$\sigma_{\it tmax}$	117.07	MPa	Tensione nell'acciai	0		Verifica ter	sionale	e OK
$\sigma_{\it cmax}$	-6.42	MPa	Tensione nel calcest	ruzz	0	Verifica ter	sionale	OK
My	1585	kNm	Momento allo sner	vame	ento			

Figura 67- Verifica a fessurazione sezione di testa (piedritti)

APPALTATORE:			LIN	FΔ FFF	POVIA	RIA NAPOL	I - R/	\RI
Mandataria:	Mandante:		LIIV		NIC VIAI		_i - D/	-11 XI
SALINI IMPREGILO S.	p.A. ASTALDI S.p.A				_	LI-CANCE		
PROGETTISTA:			IN VARIA	NTE TRA	LE PK 0+0	00 E PK 15+58	35, INCI	LUSE LE
Mandataria:	Mandante:		OPERE AC	CESSOF	RIE, NELL'A	MBITO DEGL	IINTER	VENTI DI
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL D	.L. 133/2	014, CONV	ERTITO IN LE	GGE 16	4 / 2014
PROGETTO ESECUTI	VO		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo			IF1M	0.0.E.ZZ	CL	SL.08.00.001	В	91 di 211

Tipo di combinaz	ione SLE					
Comb.	Rara (IF)					
Materiali						
Cls	C32/40	$f_{\it ctm}$	3.10	MPa	Ес	33643 MPa
Acciaio	B450C	f_{yk}	450	MPa	Es	210000 MPa
					α_{e}	6.24
Ipotesi di calcolo	1					
Cond. ambiental	i	Aggres	ssive			
Tipo di armature		Poco se	nsibili			
Tipi di carichi		Lunga d	lurata			
	aratteristiche della					
M _{Ed}	439 kNm	Sollecitazio	one flette	ente		
N _{ed}	-405.6 kN	Sforzo nor	male (<u>n</u> .	<mark>egativo</mark> se di comp	ressione)	
В	1000 mm		d	630 mm		
h	700 mm	I	h _{c,eff}	138.5 mm		
x	284 mm		A _{c, eff}	138540.5 mm ²	2	
ricopr.	57 mm					
Caratteristiche d	ell'armatura tesa					
Spaziatura	100 mm	,	A_s	5306.6 mm ²	2	
n. ferri	10	1	$ ho_{eff}$	0.038		
φ	<mark>26</mark> mm	(σ_{s}	117.07 MPa		
Calcolo della def	ormazione unitaria	media del	le barr	е		
k _t	0.4 coefficie	nte dipendei	nte dalla	durata dei carichi		
€ _{sm}	0.0003665 deforma	zione unitar	ia media	a delle barre		
Calcolo della dist	tanza massima tra le	e fessure				
5(c+ φ /2)	350 mm	> della spa	ıziatura _.	fra i ferri		
k ₁	0.8					
k ₂	0.5 (<= 1 per	r trazione ec	centrica;	0,5 nel caso di fless	sione)	
k 3	3.4					
k4	0.425					
△ _{smax}	309.19 mm	(Eq. C.4.1.	17)	distanza massima	fra le fes	sure
Valore di calcolo	dell'apertura delle	fessure e	verifica	1		
$\mathbf{w}_d = \boldsymbol{\varepsilon}_{sm} \Delta_{smax}$	0.113 mm	(Eq. C.4.1.	15)			
W amm	0.200 mm	>wd: LA	VERIFIC	CA E' SODDISFATI	Ά	

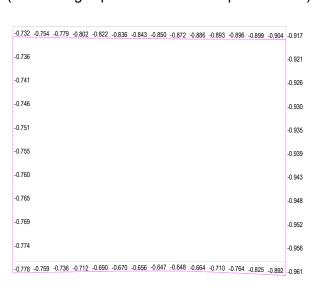
Figura 68- Verifica a fessurazione sezione di testa (piedritti)

APPALTATORE:			LIN	FA FFF	ROVIA	RIA NAPOL	I-R	ΔRI
Mandataria:	Mandante:						_, _,	~! ~!
SALINI IMPREGILO S	S.p.A. ASTALDI S.p.A	۸.		TRATT	A NAPO	LI-CANCE	LLO	
PROGETTISTA:			IN VARIA	NTE TRA	LE PK 0+0	00 E PK 15+58	85, INCI	LUSE LE
Mandataria:	Mandante:		OPERE AC	CCESSOF	RIE, NELL'A	MBITO DEGL	IINTER	RVENTI DI
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL D).L. 133/2	014, CONV	ERTITO IN LE	GGE 16	64 / 2014
PROGETTO ESECUT	TIVO		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo			IF1M	0.0.E.ZZ	CL	SL.08.00.001	В	92 di 211

8.5.2.3 Verifica di deformabilità

Il confort dei passeggeri è controllato limitando i valori della freccia massima verticale, in funzione della luce e del numero di campate consecutive.

Nel seguito l'inflessione si calcolerà in asse binario, considerando il treno di carico LM 71 con il relativo incremento dinamico.


In base a quanto indicato in tabella 1.8.3.2.2-2 del Manuale di Progettazione i valori limite del rapporto luce/freccia (L/d) nel nostro caso è 1000, ulteriormente moltiplicato per un coefficiente 0.7 in quanto trattasi di impalcato a singola campata.

$$f_{LIM} = L/(1000 \cdot 0.7) = 790/(1000 \cdot 0.7) = 1.13 \text{ cm}$$

La freccia massima ammessa risulta essere quindi 1.13 cm.

La freccia massima risulta pari a (0.87-0.73) = 0.14 cm < 1.13 cm.

Si mostra, nella seguente figura, la deformata sotto la combinazione più gravosa allo stato limite di esercizio (i valori degli spostamenti sono espressi in cm).

midas Gen POST-PROCESSOR
DEFORMED SHAPE
Z-DIRECTION
X-DIR= 0.000E+000
NODE= 1
Y-DIR= 0.000E+000
NODE= 1
Z-DIR= -9.606E-001
NODE= 2
COMB.= 1.143E+000
NODE= 3
SCALE FACTOR=
3.748E+001
CBall: INV-SLE-R
MAX : 29
MAX : 29 MIN : 2
FILE: SL 08 rev3~
UNIT: cm
DATE: 09/05/2018

Figura 69 - Deformata con valore degli spostamenti - SLE rara

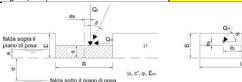
APPALTATORE:			I IN	FA FFF	ROVIA	RIA NAPOL	I - B/	ARI
Mandataria:	Mandante:		\					
SALINI IMPREGILO	S.p.A. ASTALDI S.p.A	٨.		TRATI	A NAPC	LI-CANCE	LLO	
PROGETTISTA:			IN VARIA	NTE TRA	LE PK 0+0	00 E PK 15+58	85, INC	LUSE LE
Mandataria:	Mandante:		OPERE A	CESSOF	RIE, NELL'A	MBITO DEGL	I INTER	RVENTI DI
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL E).L. 133/2	014, CONV	ERTITO IN LE	GGE 16	4 / 2014
PROGETTO ESECU	TIVO		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo	•		IF1M	0.0.E.ZZ	CL	SL.08.00.001	В	93 di 211

8.6 VERIFICHE GEOTECNICHE

Il terreno di fondazione deve essere in grado di sopportare il carico che gli viene trasmesso dalle strutture sovrastanti senza che si verifichi rottura e senza che i cedimenti della struttura siano eccessivi.

8.6.1 Verifica a carico limite del terreno di fondazione

La verifica a carico limite è eseguita attraverso l'utilizzo di una formula trinomia. Come è noto in letteratura esistono diverse formule che si differenziano tra loro per l'introduzione di fattori correttivi per tener conto della profondità della fondazione, dell'eccentricità ed inclinazione del carico, ecc.


Si riportano qui di seguito i risultati ottenuti:

APPALTATORE: LINEA FERROVIARIA NAPOLI - BARI Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA DOCUMENTO REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ CL SL.08.00.001 В 94 di 211

CARICO LIMITE DI FONDAZIONI DIRETTE (SLU)

GEOMETRIA E PARAMETRI GEOTECNICI

		0_0	IIIIAEI	, <u>-</u> .	0_0			
Geometr	ia della fo	ndazione			Geometr	ia del sito		
В	L	s	e _B	eL	D	ω	3	Muro di
m	m	m	m	m	m	۰	۰	sostegno?
7.90	14.90	0.00	0.00	0.00	1.15	0	0	no
					а	d		
Posizione	della fald	la			m	m		
Sotto il p	iano di po	osa (d <b a<="" e="" td=""><td>a=0)</td><td></td><td>0.00</td><td>1.36</td><td></td><td></td>	a=0)		0.00	1.36		
Caratteri	stiche fisio	che dei teri	reni		Caratteri	stiche me	ccaniche	terreni
γ1	γ _{1sat}	γw	γ2	γ _{2sat}	c'	Cu	φ'	E _{ed}
kN/m³	kN/m³	kN/m³	kN/m³	kN/m³	kPa	kPa	۰	MPa
20	20	10	16	16	0.00	0.00	32	360
Forma de	lla fondaz	ione			Condizion	ni		
Rettango	lo(B' <l')< td=""><td></td><td></td><td></td><td>Drenate</td><td></td><td></td><td></td></l')<>				Drenate			
		7.10						

DEFINIZIONE DELL'APPROCCIO DI VERIFICA E DEI CARICHI (NTC 2008)

Combina	zione		Compone	enti e dire	zione dei	carichi		
			Qv	Q _H	δ	θ	_θ =angolo ris	petto a L
Appr.1-A	2+M2+R2		kN	kN	۰	۰	Se Q _H //B θ	=90°
			30276	980	1.9	90	Se $Q_H//L \theta =$	= 0°
Caratter	istiche d	i calcolo c	lei terrei	ni				
γ1	γ1sat	γw	γ2	γ2sat	c'	Cu	φ'	
kN/m³	kN/m³	kN/m³	kN/m³	kN/m³	kPa	kPa	۰	
20	20	10	16	16	0.00	0.00	26.6	

VERIFICA DEL TIPO DI ROTTURA

G	σ	l _r	I _{crit}		
МРа	МРа			Tipo di rottura:	Generale
95.39	0.06	3164.36	70.80	-	

CALCOLO DEL CARICO LIMITE SECONDO TERZAGHI

 $Q_{lim} = N_q \Psi_q \zeta_q \xi_q \alpha_q \beta_q [\gamma_1(\text{D-a}) + (\gamma_{sat} - \gamma_w)_a] + N_c \Psi_c \zeta_c \xi_c \alpha_c \beta_c C' + N_\gamma \Psi_\gamma \zeta_\gamma \xi_\gamma \alpha_\gamma \beta_\gamma \gamma'_2 (B'/2) + \gamma_w a' \beta_c (B'/2) + \gamma_w a'$

								B.	L.	
								m	m	
								7.90	14.90	
		Coefficienti	Coefficienti di	Coefficienti	Coefficienti	Coefficienti	Coefficienti		Termini del	ĺ
		di carico	punzonamento	di forma	di	piano di	piano di		trinomio e	
		limite			inclinazione	posa	campagna	l	spinta	
					carichi				idraulica	
		N	Ψ	ζ	ىد	α	β			_
	q	11.85	1.00	1.27	0.95	1.00	1.00	I° term.	326.6	kPa
Ī	С	22.25	1.00	1.28	0.94	1.00	1.00	II° term.	0.0	kPa
Ī	γ	12.54	1.00	0.79	0.92	1.00	1.00	III° term.	276.1	kPa
Spinta idraulica										kPa

Verifica della capacità portante

Coeff. parz. di sicurezza γ_R 1.80 Resistenza $R_d = Q_{lim}(B'L')/\gamma_R$ 39418 kN in cond. Drenate Sollecitazione $E_d = PP + Q_V$ 30276 kN < Rd: VERIFICA OK

Verifica allo scorrimento

Coeff. parz. di sicurezza γ_R 1.00 Resistenza $R_d = Q_V \, tg(\phi')/\gamma_R$ 15134.8 kN

 $Sollecitazione \ E_d = Q_H \qquad \qquad 980.0 \qquad kN \qquad < Rd: VERIFICA \ OK$

APPALTATORE: LINEA FERROVIARIA NAPOLI - BARI Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. CODIFICA PROGETTO ESECUTIVO **PROGETTO** LOTTO DOCUMENTO REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ SL.08.00.001 В 95 di 211

CARICO LIMITE DI FONDAZIONI DIRETTE (SLV)

GEOMETRIA E PARAMETRI GEOTECNICI

GEOMETIMA ET AMAMETIM GEOTEGIAGI								
Geometria della fondazione				Geometria del sito				
L	s	e _B	eL	D	ω	3	Muro di	
m	m	m	m	m	۰	۰	sostegno?	
14.90	0.00	0.00	0.00	1.15	0.00	0.00	no	
		а	d					
della fald	a			m	m			
ano di po	osa (d <b a<="" e="" td=""><td>a=0)</td><td></td><td>0.00</td><td>2.30</td><td></td><td></td>	a=0)		0.00	2.30			
stiche fisio	he dei teri	reni		Caratteristiche meccaniche terreni				
γ _{1sat}	γw	γ2	γ _{2sat}	c'	Cu	φ'	E _{ed}	
kN/m³	kN/m^3	kN/m³	kN/m³	kPa	kPa	•	МРа	
20	10	16	16	0	0	32	360	
lla fondaz	ione	Condizion	ni	k _{hi}	k hk	e _{vi}	e _{γk}	
Rettangolo(B' <l')< td=""><td></td><td>0.146</td><td>0.302</td><td>0.948</td><td>0.659</td></l')<>				0.146	0.302	0.948	0.659	
	L m 14.90 della fald ano di po stiche fisio \(\gamma_{1\text{sat}} \) \(kN/m^3 \) 20 lla fondazi	L s m m 14.90 0.00 della falda ano di posa (d <b 10="" 20="" a="" dei="" e="" fisiche="" fondazione<="" kn="" lla="" m³="" stiche="" td="" terr="" yw="" yısat=""><td>L s m m m 14.90 0.00 0.00 della falda ano di posa (d<b a="0)" dei="" e="" fisiche="" td="" terreni<="" titiche=""><td>L s e_B e_L m m m m 14.90 0.00 0.00 0.00 della falda ano di posa (d<b a="0)</td" e=""> stiche fisiche dei terreni γ_{1sat} γ_w γ_z γ_{2sat} kN/m^3 kN/m^3 kN/m^3 kN/m^3 20 10 16 16 Illa fondazione Condizioni Condizioni</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td></td>	L s m m m 14.90 0.00 0.00 della falda ano di posa (d <b a="0)" dei="" e="" fisiche="" td="" terreni<="" titiche=""><td>L s e_B e_L m m m m 14.90 0.00 0.00 0.00 della falda ano di posa (d<b a="0)</td" e=""> stiche fisiche dei terreni γ_{1sat} γ_w γ_z γ_{2sat} kN/m^3 kN/m^3 kN/m^3 kN/m^3 20 10 16 16 Illa fondazione Condizioni Condizioni</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td>	L s e_B e_L m m m m 14.90 0.00 0.00 0.00 della falda ano di posa (d <b a="0)</td" e=""> stiche fisiche dei terreni γ_{1sat} γ_w γ_z γ_{2sat} kN/m^3 kN/m^3 kN/m^3 kN/m^3 20 10 16 16 Illa fondazione Condizioni Condizioni	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

DEFINIZIONE DELL'APPROCCIO DI VERIFICA E DEI CARICHI (NTC 2008)

<u> </u>										
Combinazione			Compone	enti e dire	zione dei	carichi				
		Q_V	Q _H	δ	θ	θ=angolo ris	petto a L			
Appr.1-A2+M2+R2			kN	kN	۰	۰	Se Q _H //B θ	= 90°		
			15084	2200	8.3	90	Se Q _H //L θ = 0°			
Caratteristiche di calcolo			dei terrei	ni						
γ1	γ _{1sat}	γw	γ2	γ _{2sat}	c'	Cu	φ'			
kN/m³	kN/m³	kN/m³	kN/m³	kN/m³	kPa	kPa	۰			
20	20	10	16	16	0.00	0.00	26.6			

VERIFICA DEL TIPO DI ROTTURA

G	σ	l _r	Icrit		
МРа	МРа			Tipo di rottura:	Generale
95.39	0.07	2737.60	70.80		

CALCOLO DEL CARICO LIMITE SECONDO TERZAGHI

 $Q_{lim} = N_q \Psi_q \zeta_q \xi_q \alpha_q \beta_q [\gamma_1(\text{D-a}) + (\gamma_{\text{sat}} - \gamma_{\text{w}}) \text{a}] + N_c \Psi_c \zeta_c \xi_c \alpha_c \beta_c \text{C}' + N_\gamma \Psi_\gamma \zeta_\gamma \xi_\gamma \alpha_\gamma \beta_\gamma \gamma_2 (\text{B}'/2) + \gamma_{\text{w}} \text{a} \gamma_{\text{w}} + \gamma_{\text{w}} \gamma_{\text{w}} \gamma_{\text$

								m	m	
								7.90	14.90	
		Coefficienti di carico limite	Coefficienti di punzonamento	Coefficienti di forma	Coefficienti di inclinazione carichi	Coefficienti piano di posa	Coefficienti piano di campagna		Termini del trinomio e spinta idraulica	
		N*	Ψ	ζ	ξ * *	α	β			
	q	11.85	1.00	1.27	0.73	1.00	1.00	I° term.	251.8	kPa
	С	22.25	1.00	1.28	0.67	1.00	1.00	II° term.	0.0	kPa
	γ	8.26	1.00	0.79	0.62	1.00	1.00	III° term.	142.8	kPa
Spinta idraulica								0.0	kPa	

Verifica della capacità portante

Coeff. parz. di sicurezza γ_R 1.80 Resistenza $R_d = Q_{lim}(B'L')/\gamma_R$ 25810 kN in cond. Drenate Sollecitazione $E_d = PP+Q_V$ 15084 kN < Rd: VERIFICA OK

kN

< Rd: VERIFICA OK

Verifica allo scorrimento

 $\begin{array}{ll} \text{Coeff. parz. di sicurezza } \gamma_R & 1.00 \\ \text{Resistenza } R_d = Q_V \, tg(\phi')/\gamma_R & 7540.6 \\ \text{Sollecitazione } E_d = Q_H & 2200.0 \\ \end{array}$

* Valori corretti con $e_{\gamma i} \ e_{\gamma k}; \ \text{-**}$ Valori corretti con $e_{\gamma i}$

APPALTATORE: LINEA FERROVIARIA NAPOLI - BARI Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA DOCUMENTO REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ CL SL.08.00.001 96 di 211

8.7 INCIDENZE ARMATURE STRUTTURA SCATOLARE

Il calcolo delle incidenze viene eseguito tenendo conto dell'intero elemento strutturale, con incrementi che tengono conto degli eventuali infittimenti e delle chiusure.

COPERTURA SCATOLARE									
	82,4								
	ф	L	n.	Р					
	(mm)	(m)	-	(kg)					
				0,0					
trasv sup	26	9,02	75	2818,1					
trasv inf	26	9,02	75	2818,1					
long. Inf	20	16	39,0	1538,1					
long. sup	20	16	39	1538,1					
sovrapp. long sup	20	1,2	39	115,4					
sovrapp. long inf	20	1,2	39	115,4					
legature	14	0,9	736	800,0					
infitt sup	26	5,2	75	1624,6					
infitt inf	26	3,6	75	1124,7					
				0,0					
				0,0					
INCREMENTO %	5%								
PESO TOTALE ARMAT	URA			13117					
INCIDENZA (kg/mc)				160					

		94,2		
	ф	L	n.	Р
	(mm)	(m)	-	(kg)
				0,0
trasv sup	26	9,22	150	5761,1
trasv inf	26	9,22	75	2880,6
long. Inf	20	16,2	39,0	1557,3
long. sup	20	16,2	39	1557,3
sovrapp. long sup	20	1,2	39	115,4
sovrapp. long inf	20	1,2	39	115,4
legature	14	0,8	736	711,2
infitt sup	0	0	0	0,0
infitt inf	0	0	0	0,0
				0,0
				0,0
INCREMENTO %	per infittir	nenti e chiu	isure	5%
PESO TOTALE ARMATUR	RA		, and the second	13333
INCIDENZA (kg/mc)				145

SOLETTA DI FONDAZIONE SCATOLARE

PIEDRITTO SCATOLARE							
	67,3						
	ф	L	n.	Р			
	(mm)	(m)	-	(kg)			
vert. int.	20	6,45	75	1192,4			
vert. est.	26	6,45	150	4030,3			
long. inf.	20	16,2	32	1277,8			
long. sup.	20	16,2	32,0	1277,8			
sovrapp. long sup	20	1,2	32	94,7			
sovrapp. long inf	20	1,2	32	94,7			
legature	14	0,9	601	653,3			
				0,0			
				0,0			
				0,0			
				0,0			
				0,0			
INCREMENTO %	7 %						
PESO TOTALE ARMAT	URA			9224			
INCIDENZA (kg/mc)				140			

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA **DOCUMENTO** REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ SL.08.00.001 Α 97 di 211

9 MURI ANDATORI IN DESTRA SU FONDAZIONE DIRETTA

Nel seguito del presente paragrafo si riportano i criteri generali di Analisi ed i risultati del dimensionamento del muro di sostegno da realizzare in prossimità della struttura scatolare, al fine di contenere localmente il corpo del rilevato ferroviario.

Trattasi del muro andatore in destra su fondazione diretta.

9.1 SCHEMATIZZAZIONE DELLE STRUTTURE

L'analisi delle opere è stata eseguita con modelli semplificati avvalendosi di fogli di calcolo, considerando le azioni derivanti dai pesi propri di muro e terreno di riempimento e dai sovraccarichi accidentali.

In condizioni sismiche, l'analisi è stata eseguita mediante metodo pseudo-statico, ipotizzando il cuneo di terreno a tergo del paramento dell'opera in equilibrio limite attivo, così come specificato al paragrafo 7.11.6.2.1 delle NTC 2008.

9.1.1 Geometria di calcolo

Verranno presentate nel seguito le verifiche relative al concio di muro lungo 16.40 m, caratterizzato da una maggiore altezza dei paramenti. Ai fini delle verifiche geotecniche e strutturali è considerata a vantaggio di sicurezza l'altezza massima del concio, pari a 7.60 m.

Si adotta, in definitiva, la seguente geometria di calcolo.

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL SL.08.00.001 A 98 di 211

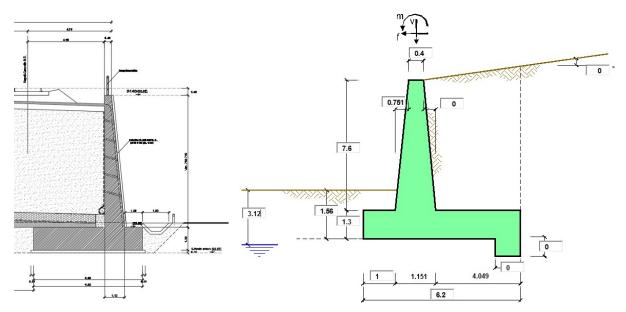


Figura 70- Geometria di calcolo del muro

9.2 ANALISI DEI CARICHI

Si riporta nel seguito la valutazione dell'entità dei carichi fissi e variabili che intervengono ai fini delle analisi e verifiche delle opere di sostegno oggetto del presente documento.

Peso permanente strutturale

Per pesi permanenti strutturali si intendono le azioni associate ai pesi propri del muro e del terreno di riempimento.

Ai fini del calcolo del peso del muro si considera un peso per unità di volume γ_m = 25 kN/m³. Il terreno di riempimento ha peso per unità di volume γ_{rint} = 20 kN/ m³.

Con riferimento alla figura mostrata sotto:

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante: SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	TRATTA NAPOLI-CANCELLO
PROGETTISTA: Mandataria: SYSTRA S.A. Mandante: SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL SL.08.00.001 A 99 di 211

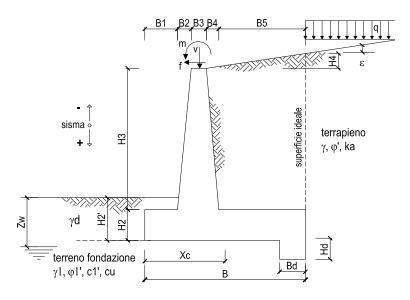


Figura 71-Geometria muro

Geometria del Muro

Elevazione	H3	=	7.60	(m)
Aggetto Valle	B2	=	0.75	(m)
Spessore del Muro in Testa	В3	=	0.40	(m)
Aggetto monte	B4	=	0.00	(m)

Geometria della Fondazione

B =	6.20	(m)
H2 =	1.30	(m)
B1 =	1.00	(m)
B5 =	4.05	(m)
Hd =	0.00	(m)
Bd =	0.00	(m)
Xc =	3.10	(m)
	H2 = B1 = B5 = Hd = Bd =	H2 = 1.30 B1 = 1.00 B5 = 4.05 Hd = 0.00 Bd = 0.00

Peso Specifico del Calcestruzzo γο	cls =	25.00	(kN/m³)
------------------------------------	-------	-------	---------

si calcola:

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A. PROGETTISTA:	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL SL.08.00.001 A 100 di 211

FORZE VERTICALI

- Peso del Mur	o (Pm)		SLE		
Pm1 =	(B2*H3*γcls)/2	(kN/m)	71.35		
Pm2 =	(B3*H3*γcls)	(kN/m)	76.00		
Pm3 =	(B4*H3*γcls)/2	(kN/m)	0.00		
Pm4 =	(B*H2*γcls)	(kN/m)	201.50		
Pm5 =	(Bd*Hd*γcIs)	(kN/m)	0.00		
Pm =	Pm1 + Pm2 + Pm3 + Pm4 + Pm5	(kN/m)	348.85		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$					
- Sovraccarico accidentale sulla scarpa di monte del muro					
Sovr acc. Stat	q * (B4+B5)	(kN/m)	80.98		
Sovr acc. Sism	ı qs * (B4+B5)	(kN/m)	16.196		

Le spinte del terreno a monte sono state valutate coerentemente con la caratterizzazione mostrata al paragrafo 9.3.

Il coefficiente di spinta attiva è stato valutato utilizzando la teoria del cuneo di rottura di Coulomb, che tiene conto, oltre alle ipotesi base della teoria di Rankine, anche della presenza dell'attrito fra terra e muro δ e della superficie interna del paramento del muro comunque inclinata di un angolo ψ . Lo sviluppo analitico della teoria di Coulomb è stato definito da Muller-Breslau, i quali valutano il coefficiente di spinta attiva in condizione statica come:

$$k_{a} = \frac{sen^{2}(\psi + \varphi)}{sen^{2}(\psi) \cdot sen(\psi - \delta) \cdot \left[1 + \sqrt{\frac{sen(\varphi + \delta) \cdot sen(\varphi - \beta)}{sen(\psi - \delta) \cdot sen(\psi + \beta)}}\right]^{2}}$$

dove:

- φ è l'angolo di resistenza a taglio del terreno;
- å è l'angolo di attrito terra-muro, assunto pari a 2/3 φ;
- € è l'inclinazione rispetto all'orizzontale della superficie del terreno;

Peso permanente non strutturale

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante: SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	TRATTA NAPOLI-CANCELLO
PROGETTISTA: Mandataria: SYSTRA S.A. Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO Relazione di calcolo	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA IF1M 0.0.E.ZZ CL SL.08.00.001 A 101 di 211

Per pesi permanenti non strutturali si intendono le azioni associate alla presenza del ballast, del rivestimento del parapetto esterno del muro.

Il peso permanente dato dalla presenta del ballast è stato considerato un carico permanente qp= 16.00 $\frac{kN}{m^2}$

L'azione che deriva dal rivestimento del parapetto è modellata all'interno del foglio di calcolo mediante l'utilizzo di una forza concentrata in testa al muro pari al peso totale che da essa deriva più un momento di trasporto atto a tenere in conto il reale punto di applicazione di questa forza.

Considerando un rivestimento di 12 cm in pietra di tufo, risulta:

$$vp = 17.00 \cdot 0.12 \cdot 7.54 \frac{kN}{m} = 15.38 \frac{kN}{m}$$

 $mp = 15.38 \cdot 0.65 \frac{kN}{m} = 10.00 \frac{kN}{m} \frac{m}{m}$

Sovraccarichi accidentali- Carichi ferroviari

Trattandosi di opere di sostegno poste a margine della sede Ferroviaria, per la valutazione dell'entità dei carichi variabili da considerare nel calcolo, si fa riferimento al modello di carico LM71 definito dalle S.T.I. è definito nella norma EN 1991-2:2003/AC:2010 di cui allo schema seguente:

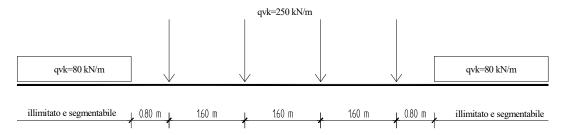


Figura 72 - Treno LM71

A tali carichi si deve applicare il coefficiente α =1 ai sensi del par. 3.5.2.3.6 del Manuale RFI sull'incremento dinamico delle azioni sui muri di sostegno e delle S.T.I. per tipi di traffico analogo a quello della linea in oggetto.

In senso longitudinale, si è assunto che il carico si distribuisca sull'intero ingombro dei suoi assi, pari a 6.40 m.

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	COTAL D.L. 133/2014, CONVENTITO IN LEGGE 104/2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL SL.08.00.001 A 102 di 211

$$q = 250 \times 4 / 6.40 = 156.25 \text{ kN/m}$$

In senso trasversale, questo carico è stato distribuito attraverso il ricoprimento costituito dal ballast con una pendenza 1 a 4 ($Q = 156.25/3 = 52.08 \text{ kN/m}^2$) e nel corpo del rilevato secondo l'angolo d'attrito del terreno (Figura 73).

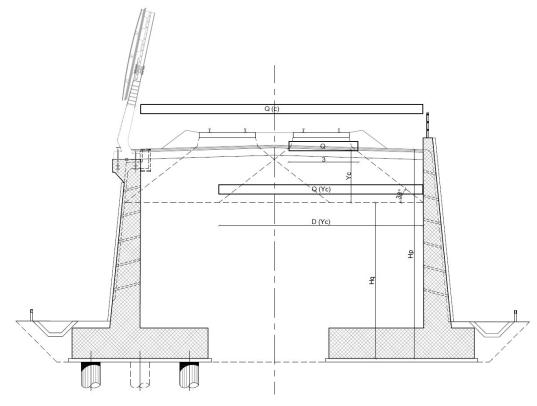


Figura 73-Schema di diffusione del carico accidentale

Detto Qc il valore convenzionale del sovraccarico accidentale da considerare sul piano limite del terrapieno a monte dell'opera di sostegno, risulta:

$$Qc = \frac{Q(yc) \cdot Hq}{Hp} = 13.38 \frac{KN}{m^2}$$

dove:

$$Q'(yc) = \frac{52.08 \cdot 3}{D(yc)} \frac{KN}{m^2} = 17.92 \frac{KN}{m^2}$$

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante: SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	TRATTA NAPOLI-CANCELLO
PROGETTISTA: Mandataria: SYSTRA S.A. Mandante: SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO Relazione di calcolo	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA IF1M 0.0.E.ZZ CL SL.08.00.001 A 103 di 211

Rimandando per le simbologie utilizzate a quanto rappresentato nei grafici precedenti si riporta nel seguito una tabella riassuntiva di quanto detto.

D(yc)	Hq	Нр	Q (yc)	Q'c
m	m	m	KN/m ²	KN/m ²
8.75	6.65	8.90	17.85	13.34

Il valore Q'c così calcolato viene cautelativamente amplificato per 1.5 per tenere conto della parziale sovrapposizione con un analogo carico accidentale sul binario più lontano. Pertanto, a vantaggio di sicurezza, sul muro in questione si considera un sovraccarico accidentale:

$$Q_c = 20 \text{ kN/m}^2$$

Azione sismica

L'analisi sismica dei muri è stata eseguita con il metodo pseudo-statico. I coefficienti sismici orizzontale kh e verticale kv sono valutati con le relazioni:

$$k_h = \beta_m \frac{a_{max}}{g}$$

$$k_v = \pm 0.5 \cdot k_h$$

dove:

βm è un coefficiente dipendente dal valore dell'accelerazione orizzontale a_g e dalla tipologia di sottosuolo. Nel caso in esame, essendo il sottosuolo di categoria C e $a_g(g)$ compresa tra 0.2 e 0.4, si assume $β_m$ =0.31;

kh è il coefficiente sismico in direzione orizzontale;

kv è il coefficiente sismico in direzione verticale;

L'accelerazione massima viene valutata come:

$$\frac{a_{\text{max}}}{g} = S_S \cdot S_T \cdot \frac{a_g}{g}$$

dove:

Ss = 1.37 tiene conto dell'amplificazione stratigrafica;

St = 1.00 tiene conto dell'amplificazione topografica;

 $\frac{a_g}{a_s} = 0.22$ è l'accelerazione orizzontale massima attesa al sito per lo SLV.

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	TRATTA NAPOLI-CANCELLO
PROGETTISTA: Mandataria: SYSTRA S.A. Mandante: SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL SL.08.00.001 A 104 di 211

La valutazione della spinta in condizioni dinamiche viene effettuata con il metodo di Mononobe e Okabe:

per
$$\beta \leq \varphi - \theta$$

$$k_{\alpha,s} = \frac{sen^2(\psi + \varphi - \theta)}{cos(\theta) \cdot sen^2(\psi - \theta - \delta) \cdot \left[1 + \sqrt{\frac{sen(\varphi + \delta) \cdot sen(\varphi - \beta - \theta)}{sen(\psi - \theta - \delta) \cdot sen(\psi + \beta)}}\right]^2}$$

per
$$\beta > \varphi - \theta$$

$$k_{\alpha,s} = \frac{sen^2(\psi + \varphi - \theta)}{cos(\theta) \cdot sen^2(\psi) \cdot sen(\psi - \theta - \delta)}$$

dove:

$$\theta$$
 è l'angolo tale che $tan\theta = \frac{k_B}{1 \pm k_F}$;

La tabella seguente riporta i suddetti parametri, distinguendo le combinazioni di verifica in base all'approccio perseguito:

Accelerazione sismica	a _g /g	0.22	(-)
Coefficiente Amplificazione Stratigrafico	Ss	1.37	(-)
Coefficiente Amplificazione Topografico	S _T	1	(-)
Coefficiente di riduzione dell'accelerazione massima	β s	0.31	(-)
Coefficiente sismico orizzontale	kh	0.093	(-)
Coefficiente sismico verticale	kv	0.047	(-)
Muro libero di traslare o ruotare	⊚ si) no	

			SLE	STR	EQU/GEO
	Coeff. di Spinta Attiva Statico	ka	0.217	0.217	0.275
ti d	Coeff. Di Spinta Attiva Sismica sisma +	kas+	0.268	0.268	0.333
ien	Coeff. Di Spinta Attiva Sismica sisma -	kas-	0.274	0.274	0.339
ffic	Coeff. Di Spinta Passiva	kp	3.392	3.392	2.711
Coefficienti di Spinta	Coeff. Di Spinta Passiva Sismica sisma +	kps+	3.224	3.224	2.559
J	Coeff. Di Spinta Passiva Sismica sisma -	kps-	3.207	3.207	2.544

Sono state altresì considerate le forze di inerzia dovute al peso del muro e del terreno gravante sulla zattera di monte, valutate come:

$$F_i = k_h \cdot W_i$$

APPALTATORE: Mandataria: SALINI IMPREGILO S.p.A. Mandante: ASTALDI S.p.A.	LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO		
PROGETTISTA: Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014		
PROGETTO ESECUTIVO Relazione di calcolo	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA IF1M 0.0.E.ZZ CL SL.08.00.001 A 105 di 211		

Per quanto riguarda l'incremento sismico di spinta dovuto ai terrapieni, esso è stato applicato alla stessa altezza dell'aliquota statica, così come prescritto dalla norma per muri liberi di traslare e ruotare intorno al piede.

9.2.1 Combinazioni di carichi SLU

Tutte le condizioni di carico elementari di carico possono essere raggruppate nei seguenti gruppi di condizioni:

G1: azioni dovute al peso proprio e ai carichi permanenti strutturali;

G2: azioni dovute ai carichi permanenti non strutturali;

P: azioni dovute ai carichi di precompressione;

Qik: azioni dovute ai sovraccarichi accidentali;

E: azioni dovute ai carichi simici orizzontali e verticali.

Secondo quanto previsto dalle NTC 2008, si considerano tutte le combinazioni non sismiche del tipo:

$$F_d = \gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_p \cdot P_k + \gamma_q \left[Q_{1k} + \sum_{i} (\Psi_{0i} \cdot Q_{ik}) \right]$$

essendo:

	Coef.	Condizione		
Carichi	γ F (γ E)	EQU	STR	GEO
	/	EQU	(A1)	(A2)
Permanenti	∕∕ G ,1	0.9÷1.1	1.0÷1.3	1.0÷1.0
Perm.non strutturali	∕⁄ G ,2	0.0÷1.5	0,0÷1.5	0.0÷1.3
Variabili	∕∕Q,i	0.0÷1.5	0.0÷1.5	0.0÷1.3

Tabella 15-Coefficienti parziali per le azioni favorevoli-sfavorevoli

 $\gamma_p = 1.00$ (precompressione)

 Ψ_{0i} = 0÷1.00 (coefficiente di combinazione allo SLU per tutte le condizioni di carico elementari variabili per tipologia e categoria Qik)

Le combinazioni sismiche considerate sono:

$$F_d = G_1 + G_2 + P_k + E + \left[\sum_{i} (\Psi_{2i} \cdot Q_{ik}) \right]$$

essendo:

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante: SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	TRATTA NAPOLI-CANCELLO
PROGETTISTA: Mandataria: SYSTRA S.A. Mandante: SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL SL.08.00.001 A 106 di 211

 Ψ_{2i} = 0 nel caso di sovraccarichi stradali.

9.2.2 Combinazioni di carichi SLE

Secondo quanto previsto dal D.M. 14.01.2008, si considerano le combinazioni:

$$F_d = G_1 + G_2 + P_k + \left| \sum\nolimits_i \left(\Psi_{2i} \cdot Q_{ik} \right) \right|$$

Essendo, nel caso di carichi stradali, Ψ_{2i} pari a 0 per la combinazione quasi permanente, pari a 0.75 per la combinazione frequente e pari a 1 per la combinazione rara.

9.3 CRITERI DI CALCOLO GEOTECNICO E STRUTTURALE

In generale, per ogni stato limite deve essere verificata la condizione:

$$E_d \le R_d$$

dove E_d rappresenta l'insieme amplificato delle azioni agenti, ed R_d l'insieme delle resistenze, queste ultime corrette in funzione della tipologia del metodo di approccio al calcolo eseguito, della geometria del sistema e delle proprietà meccaniche dei materiali e dei terreni in uso.

A seconda dell'approccio perseguito, sarà necessario applicare dei coefficienti di sicurezza o amplificativi, a secondo si tratti del calcolo delle caratteristiche di resistenza o delle azioni agenti.

In particolare, in funzione del tipo di verifica da eseguire, avremo, per le azioni derivanti da carichi gravitazionali, i seguenti coefficienti parziali:

Carichi	Coefficiente parziale γε (ο γε)	EQU	(A1) STR	(A2) GEO
Permanenti	γ _{G1}	0.9÷1.1	1.0÷1.3	1.0
Perm. non strutturali	γG2	0.0÷1.5	0.0÷1.5	0.0÷1.3
Variabili	γ Q,i	0.0÷1.5	0.0÷1.5	0.0÷1.3

Tabella 16- Coefficienti parziali per le azioni favorevoli-sfavorevoli

Ai fini delle resistenze, in funzione del tipo di verifica da eseguire, il valore di progetto può ricavarsi in base alle indicazioni sotto riportate.

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandante: Mandataria: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. CODIFICA DOCUMENTO REV. PROGETTO ESECUTIVO **PROGETTO** LOTTO **PAGINA** IF1M 0.0.E.ZZ SL.08.00.001 107 di 211 Relazione di calcolo Α

Parametro	Parametro di riferimento	Coefficiente parziale	M1	M2
Tangente dell'angolo di resistenza f'	tan γ ' κ	γr	1.00	1.25
Coesione efficace	с'к	γς,	1.00	1.25
Resistenza non drenata	C _{uk}	γcu	1.00	1.40
Peso dell'unità di volume	γ	γg	1.00	1.00

Tabella 17-Coefficienti parziali per i parametri geotecnici del terreno

Partendo da questi coefficienti, è possibile definire le caratteristiche meccaniche dei terreni in funzione del tipo di approccio. In particolare avremo:

Terreno di fondazione

Metodo M1

Peso per unità di volume totale $\gamma = 16 \text{ kN/m}^3$

Coesione c' = 0 kPa

Angolo di attrito di calcolo $\phi' = 32^{\circ}$

Metodo M2

Peso per unità di volume $\gamma = 16 \text{ kN/m}^3$

Coesione c' = 0 kPa

Angolo di attrito interno $\phi' = 26.56^{\circ}$

Terreno di riporto

Metodo M1

Peso per unità di volume totale $\gamma = 20 \text{ kN/m}^3$

Coesione c' = 0 kPa

Angolo di attrito di calcolo $\phi' = 38^{\circ}$

Angolo di attrito terra-muro $\delta = 25.33^{\circ}$

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA **DOCUMENTO** RFV **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ SL.08.00.001 Α 108 di 211

Metodo M2

Peso per unità di volume totale $\gamma = 20 \text{ kN/m}^3$

Coesione c' = 0 kPa

Angolo di attrito di calcolo $\phi' = 32.01^{\circ}$

Angolo di attrito terra-muro $\delta = 21.34^{\circ}$

Le verifiche SLU e GEO vengono effettuate con l'Approccio 1, che prevede due combinazioni di coefficienti:

Combinazione 1 (A1+M1+R1)

Combinazione 2 (A2+M2+R2)

La prima viene utilizzata per le verifiche agli stati limite per il dimensionamento strutturale, la seconda per le verifiche agli stati limite per il dimensionamento geotecnico, come specificato al punto C6.5.3.1.1 delle Istruzioni. I coefficienti parziali di sicurezza R3 sono pari a:

Varifica	Coefficiente parziale	Coefficiente parziale
Verifica	(R1)	(R2)
Capacità portante della fondazione	γ_{R} = 1.0	γ_{R} = 1.0
Scorrimento	$\gamma_{ m R}$ = 1.0	γ_{R} = 1.0

Tabella 18-Coefficienti R

Lo stato limite di ribaltamento non prevede la mobilitazione della resistenza del terreno di fondazione e deve essere trattato come uno stato limite di equilibrio come corpo rigido (EQU), adoperando coefficienti parziali del gruppo M2 per il calcolo delle spinte ed il fattore parziale di sicurezza R2=1.0.

Nelle verifiche finalizzate al dimensionamento strutturale, il coefficiente γ_R non deve essere portato in conto.

Per quanto riguarda le verifiche in condizioni sismiche, esse verranno effettuate considerando, per i diversi stati limite, i coefficienti amplificativi delle azioni (A) di valore unitario, come indicato al punto C7.11.6.2 delle Istruzioni per l'applicazione delle NTC 2008.

Ricapitolando, le verifiche riportate nel seguito della presente saranno effettuate nei confronti dei seguenti stati limite e con gli approcci metodologici di fianco riportati.

APPALTATORE:			LIN	EA FE	ROVIA	RIA NAPOL	_I - B/	ARI
Mandataria:	Mandante:			TRAT1	A NAPO	LI-CANCE	LLO	
SALINI IMPREGILO	S.p.A. ASTALDI S	.p.A.	INIVADIA	NTE TD A	I E BK 0.0	00 E DV 45+5	DE INC	LUCELE
PROGETTISTA:						00 E PK 15+58	,	
Mandataria:	Mandante:				•	MBITO DEGL ERTITO IN LE		
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	COLAL	J.L. 133/2	014, CONV	EKIIIO IN LE	GGE 10	04 / 2014
PROGETTO ESECUT	TIVO		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo			IF1M	0.0.E.ZZ	CL	SL.08.00.001	Α	109 di 211

SLU di tipo geotecnico (GEO) – Approccio 1	
Collasso per carico limite dell'insieme fondazione – terreno	A2+M2+R2
Scorrimento sul piano di posa	A2+M2+R2
SLU di tipo strutturale (STR) - Approccio 1	
Raggiungimento della resistenza negli elementi strutturali	A1+M1+R1
SLU di equilibrio di corpo rigido (EQU)	
Ribaltamento	EQU+M2+R2

9.3.1 Criterio di verifica a capacita portante della fondazione (GEO)

La verifica a carico limite della fondazione dei muri è stata eseguita facendo riferimento alla nota formula trinomia di Terzaghi.

$$q_{\text{lim}} = \psi_q \cdot \zeta_q \cdot \xi_q \cdot \alpha_q \cdot \beta_q \cdot N_q \cdot \gamma_1 \cdot D + \psi_c \cdot \zeta_c \cdot \xi_c \cdot \alpha_c \cdot \beta_c \cdot N_c \cdot c + \psi_\gamma \cdot \zeta_\gamma \cdot \xi_\gamma \cdot \alpha_\gamma \cdot \beta_\gamma \cdot N_\gamma \cdot \gamma_2 \cdot \frac{B}{2} \cdot \frac{B$$

in cui:

- γ 1 è il peso dell'unità di volume del terreno presente al di sopra del piano di posa della fondazione;
- γ 2 è il peso dell'unità di volume del terreno presente al di sotto del piano di posa della fondazione;
- D è la profondità del piano di posa della fondazione;
- B è la larghezza della fondazione;
- Nq, Nc, N_γ sono coefficienti tabellati in funzione dell'angolo di attrito del terreno presente al di sotto del piano di posa;
- ψ_q , ψ_c , $\psi\gamma$ sono i coefficienti correttivi legati al tipo di rottura (generale o per punzonamento);
- ζq , ζc , ζ_{γ} sono i coefficienti correttivi di forma; essi dipendono dalla lunghezza L e dalla larghezza B della fondazione;
- ξq , ξc , ξ_{γ} sono i coefficienti correttivi di inclinazione del carico; essi dipendono dalla lunghezza L e dalla larghezza B della fondazione, dall'entità dei carichi verticale ed orizzontale agenti, dalla coesione e dall'angolo di attrito del terreno presente al di sotto del piano di posa;

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	, , , , , , , , , , , , , , , , , , , ,
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL SL.08.00.001 A 110 di 211

- α_q , α_c , α_γ sono i coefficienti correttivi che tengono conto dell'inclinazione del piano di posa;
- β_q , β_c , β_γ sono i coefficienti correttivi che tengono conto dell'inclinazione del piano campagna.

In particolare, per la determinazione del carico verticale di esercizio, si pone:

$$q_{es} = \frac{N}{L' \cdot B'}$$

dove:

- N è la risultante delle azioni verticali agenti sulla fondazione nella condizione di carico considerata, comprensivi del peso della platea;
- L' è la lunghezza ridotta della fondazione;
- B' è la larghezza della fondazione.

Per tener conto dell'eccentricità del carico viene considerata, ai fini del calcolo, una fondazione di dimensioni ridotte pari a:

$$L' = L - 2e_L$$

$$B' = B - 2e_R$$

con e_L ed e_B eccentricità del carico nelle due direzioni.

9.3.2 Criterio di verifica a scorrimento sul piano di posa (GEO)

La verifica allo scorrimento del muro consiste nell'assicurare la stabilità dell'opera nei confronti di un meccanismo di collasso tale per cui l'intera opera di sostegno va a scorrere sul piano di contatto con il terreno di fondazione. Pertanto essa risulta soddisfatta se la componente delle forze agenti nella direzione parallela al piano di scorrimento risulta inferiore alla forza di attrito che si genera al contatto tra opera e terreno di fondazione. Tale forza risulta proporzionale al peso del muro ed è espressa dalla relazione (per terreni

caratterizzati da
$$\varphi'' \neq 0$$
 e $c' = 0$)

$$R = N \cdot tan\varphi'_{d}$$

dove:

- R è la forza resistente allo scorrimento;
- N è la risultante delle azioni verticali agenti sul piano di fondazione;

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante: SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	TRATTA NAPOLI-CANCELLO
PROGETTISTA: Mandataria: SYSTRA S.A. Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL SL.08.00.001 A 111 di 211

- f'd è l'angolo di resistenza a taglio del terreno di fondazione relativamente all'approccio di progetto.

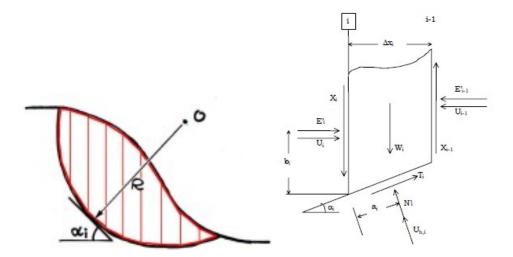
9.3.3 Criterio di verifica a ribaltamento (EQU)

Il meccanismo di collasso per ribaltamento per i muri di sostegno prevede la rotazione intorno all'estremità di valle del muro, che diventa il centro di rotazione dell'opera. La verifica risulta soddisfatta se:

$$\frac{M_S}{M_T} \ge R_2 = 1.00$$

dove:

Ms è il momento stabilizzante rispetto al centro di rotazione dovuto al peso del muro;


Mr è il momento ribaltante rispetto al centro di rotazione dovuto alla spinta del terrapieno e di eventuali sovraccarichi.

Nelle verifiche condotte per azioni sismiche, la spinta del terrapieno è stata valutata secondo il metodo pseudo-statico, come illustrato nel seguito; è stata altresì tenuto in conto il contributo instabilizzante svolto dalla forza di inerzia dovuta al peso del paramento.

9.3.4 Criterio di verifica a stabilità globale (GEO)

Si fa riferimento al metodo dell'equilibrio limite, che permette di valutare il valore del fattore di sicurezza analizzando le azioni agenti sui conci in cui il pendio viene suddiviso. Il fattore di sicurezza deriva dallo studio delle condizioni di equilibrio di ciascun concio come sintetizzato nella figura a destra.

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante: SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	TRATTA NAPOLI-CANCELLO
PROGETTISTA: Mandataria: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO Relazione di calcolo	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA IF1M 0.0.E.ZZ CL SL.08.00.001 A 112 di 211

Le analisi presentate fanno riferimento al metodo di Bishop. Le ipotesi alla base del metodo sono:

- Stato di deformazione piano, ovvero superficie cilindrica e trascurabilità degli effetti tridimensionali;
- Arco della superficie di scorrimento alla base del concio approssimabile con la relativa corda;
- Comportamento del terreno rigido-perfettamente plastico e criterio di rottura di Mohr-Coulomb.

In base a tali ipotesi, il coefficiente di sicurezza viene valutato come il rapporto fra momento stabilizzante e momento ribaltante rispetto al centro della circonferenza.

Per la schematizzazione dell'azione sismica, la normativa prevede il ricorso al metodo di calcolo pseudostatico. Secondo tale metodo l'azione sismica è rappresentata da un'azione statica equivalente, costante nello spazio e nel tempo, proporzionale al peso W del volume di terreno potenzialmente instabile.

Nelle verifiche allo stato limite ultimo, le componenti orizzontale e verticale di tale azione possono esprimersi come

$$F_h = k_h W$$

$$F_v = k_v W$$

con kh e kv rispettivamente pari ai coefficienti sismici orizzontale e verticale:

$$k_h = \beta s S_S S_T a_g/g$$

$$k_v = \pm 0.5 k_h$$

dove:

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	,
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL SL.08.00.001 A 113 di 211

- ag è l'accelerazione orizzontale massima attesa su sito di riferimento rigido;
- g è l'accelerazione di gravità;
- S_S e S_T sono coefficienti legati alla topografia e alla categoria di suolo già descritti;
- β s è il coefficiente di riduzione dell'accelerazione massima attesa in sito, ricavabile dalla Tabella 7.11.I delle NTC 2008 e nel seguito riportata in funzione della categoria di suolo e del valore di ag.

	Categoria di sottosuolo		
	A B, C, D, E		
	β_s	β_s	
$0.2 < a_{\rm g}(g) \le 0.4$	0,30	0,28	
$0.1 < a_{\rm g}(g) \le 0.2$	0,27	0,24	
$a_{g}(g) \leq 0,1$	0,20	0,20	

Nel caso in esame, pertanto, si ha:

 $\beta_s = 0.28$

 $k_h = 0.0844$

 $k_v = 0.0422$

 $S_S = 1.37$

 $S_T = 1.00$

9.3.5 Criteri di verifica a presso(tenso)flessione (STR)

La verifica a flessione, condotta per la platea di fondazione, consiste nell'assicurare che in ogni sezione il momento resistente risulti superiore o uguale al momento flettente di calcolo.

Con riferimento alle sezioni presso-inflesse del paramento e semplicemente inflesse della zattera, le verifiche di resistenza (SLU) si eseguono controllando che:

$$M_{Rd} = M_{Rd} (N_{Ed}) \ge M_{Ed}$$

dove:

 $^{M}{}_{\textit{Rd}}\,$ è il valore di calcolo del momento resistente corrispondente a $N_{\text{Ed}};$

 $^{M_{\it Ed}}\,$ è il valore di calcolo della componente flettente dell'azione.

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	, , , , , , , , , , , , , , , , , , , ,
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL SL.08.00.001 A 114 di 211

Le verifiche di tutti gli elementi sono state effettuate in base a semplici schemi noti della Scienza delle Costruzioni.

9.3.6 Criteri di verifica a taglio (STR)

Per elementi sprovvisti di armature trasversali resistenti a taglio, la resistenza a taglio $^{V_{Rd}}$ viene valutata sulla base della resistenza a trazione del calcestruzzo.

La verifica di resistenza si pone con:

$$V_{Rd} = \left\{ \frac{0.18 \cdot k \cdot \left(100 \cdot \rho_l \cdot f_{ck}\right)^{\frac{1}{3}}}{\gamma_c} + 0.15 \cdot \sigma_{cp} \right\} \cdot b_w \cdot d \ge \left(v_{\min} + 0.15 \cdot \sigma_{cp}\right) \cdot b_w \cdot d$$

con:

$$k = 1 + \left(\frac{200}{d}\right)^{\frac{1}{2}} \le 2$$

$$v_{\min} = 0.035 \cdot k^{\frac{3}{2}} \cdot f_{ck}^{\frac{1}{2}}$$

dove:

d è l'altezza utile della sezione;

$$\rho_l = \frac{A_{sl}}{\left(b_w \cdot d\right)}$$
 è il rapporto geometrico di armatura longitudinale di trazione;

$$\sigma_{cp} = \frac{N_{Ed}}{A_c}$$
 è la tensione media di compressione della sezione;
$$h$$

 $b_{\scriptscriptstyle W}$ è la larghezza minima della sezione (in mm).

f_{ck} è la resistenza a compressione cilindrica del calcestruzzo;

$$\gamma c = 1.5$$
.

9.4 VERIFICHE AGLI STATI LIMITE ULTIMI

Le sollecitazioni di calcolo per le verifiche SLU e SLV sono state ottenute calcolando le risultanti di tutte le azioni normali, taglianti e flettenti rispetto al piano di fondazione. Si riportano di seguito i valori caratteristici.

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. SYSTRA S.A. PROGETTO ESECUTIVO PROGETTO LOTTO CODIFICA DOCUMENTO REV. **PAGINA** Relazione di calcolo 0.0.E.ZZ SL.08.00.001 Α 115 di 211

MOMENTI DELLE FORZE VERT. RISPETTO AL PIEDE DI VALLE DEL MURO

- Muro (Mm)			SLE
Mm1 =	Pm1*(B1+2/3 B2)	(kNm/m)	107.07
Mm2 =	Pm2*(B1+B2+0,5*B3)	(kNm/m)	148.28
Mm3 =	Pm3*(B1+B2+B3+1/3 B4)	(kNm/m)	0.00
Mm4 =	Pm4*(B/2)	(kNm/m)	624.65
Mm5 =	Pm5*(B - Bd/2)	(kNm/m)	0.00
Mm =	Mm1 + Mm2 + Mm3 + Mm4 + Mm5	(kNm/m)	879.99
- Terrapieno e	sovr. perm. sulla scarpa di monte del muro		
Mt1 =	Pt1*(B1+B2+B3+B4+0,5*B5)	(kNm/m)	2569.80
Mt2 =	Pt2*(B1+B2+B3+2/3*(B4+B5))	(kNm/m)	0.00
Mt3 =	Pt3*(B1+B2+B3+2/3*B4)	(kNm/m)	0.00
Msovr =	Sovr*(B1+B2+B3+1/2*(B4+B5))	(kNm/m)	270.51
Mt =	Mt1 + Mt2 + Mt3 + Msovr	(kNm/m)	2840.31
- Sovraccarico	accidentale sulla scarpa di monte del muro		
	(B1+B2+B3+1/2(B4+B5))	(kNm/m)	338.13199
	n *(B1+B2+B3+1/2*(B4+B5))	(kNm/m)	67.626398

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA: Mandataria: Mandante:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL SL.08.00.001 A 116 di 211

	TERRENO E DEL SOVRACCARICO condizione statica		SLE		
St =	0,5*γ'*(H2+H3+H4+Hd)²*ka	(kN/m)	171.72		
Sq perm =	q*(H2+H3+H4+Hd)*ka	(kN/m)	30.87		
Sq acc =	q*(H2+H3+H4+Hd)*ka	(kN/m)	38.59		
- Componente	orizzontale condizione statica				
Sth =	St*cosδ	(kN/m)	155.21		
Sqh perm =	Sq perm*cosδ	(kN/m)	27.90		
Sqh acc =	Sq acc* $\cos\delta$	(kN/m)	34.88		
- Componente	verticale condizione statica				
Stv =	St*senδ	(kN/m)	73.47		
Sqv perm=	Sq perm*sen∂	(kN/m)	13.21		
Sqv acc =	Sq acc*sen δ	(kN/m)	16.51		
- Spinta passiv	- Spinta passiva sul dente				
Sp=½*g1'*Hd2	*\½* _{γ1} '*Hd ² *kp+(2*c ₁ '*kp ^{0.5} + _γ 1'*kp*H2')*Hd	(kN/m)	0.00		

MOMENTI DELLA SPINTA DEL TERRENO E DEL SOVRACCARICO			SLE
MSt1 =	Sth*((H2+H3+H4+Hd)/3-Hd)	(kNm/m)	460.45
MSt2 =	Stv*B	(kNm/m)	455.51
MSq1 perm=	Sqh perm*((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	124.17
MSq1 acc =	Sqh acc*((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	155.21
MSq2 perm=	Sqv perm*B	(kNm/m)	81.89
MSq2 acc =	Sqv acc*B	(kNm/m)	102.36
$MSp = \gamma 1'^*$	Hd ³ *kp/3+(2*c1'*kp ^{0.5} +γ1'*kp*H2')*Hd ² /2	(kNm/m)	0.00
MOMENTI DO	OVUTI ALLE FORZE ESTERNE		
Mfext1 =	mp + m	(kNm/m)	10.00
Mfext2 =	(fp + f)*(H3 + H2)	(kNm/m)	0.00
Mfext3 =	(vp+v)*(B1 +B2 + B3/2)	(kNm/m)	30.01

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA DOCUMENTO REV. PAGINA Relazione di calcolo 0.0.E.ZZ SL.08.00.001 Α 117 di 211

	. MURO E DEL TERRAPIENO ontale e verticale del muro (Ps)		
Ps h =	Pm*kh	(kN/m)	32.59
Ps v=	Pm*kv	(kN/m)	16.30
PS V-	PIII KV	(KIN/III)	10.30
	ontale e verticale del terrapieno a tergo del muro (Pts	•	
Ptsh =	Pt*kh	(kN/m)	65.37
Ptsv =	Pt*kv	(kN/m)	32.69
- Incremento d	orizzontale di momento dovuto all'inerzia del muro (M	Ps h)	
MPs1 h=	kh*Pm1*(H2+H3/3)	(kNm/m)	25.55
MPs2 h=	kh*Pm2*(H2 + H3/2)	(kNm/m)	36.22
MPs3 h=	kh*Pm3*(H2+H3/3)	(kNm/m)	0.00
MPs4 h=	kh*Pm4*(H2/2)	(kNm/m)	12.24
MPs5 h=	-kh*Pm5 [*] (Hd/2)	(kNm/m)	0.00
MPs h=	MPs1+MPs2+MPs3+MPs4+MPs5	(kNm/m)	74.01
- Incremento v MPs1 v= MPs2 v= MPs3 v= MPs4 v= MPs5 v= MPs v=	rerticale di momento dovuto all'inerzia del muro (MPs kv*Pm1*(B1+2/3*B2) kv*Pm2*(B1+B2+B3/2) kv*Pm3*(B1+B2+B3+B4/3) kv*Pm4*(B/2) kv*Pm5*(B-Bd/2) MPs1+MPs2+MPs3+MPs4+MPs5	v) (kNm/m) (kNm/m) (kNm/m) (kNm/m) (kNm/m) (kNm/m)	5.00 6.93 0.00 29.18 0.00 41.11
- Incremento d	orizzontale di momento dovuto all'inerzia del terrapier	no (MPts h)	
MPts1 h=	kh*Pt1*(H2 + H3/2)	(kNm/m)	293.27
MPts2 h=	kh*Pt2*(H2 + H3 + H4/3)	(kNm/m)	0.00
MPts3 h=	kh*Pt3*(H2+H3*2/3)	(kNm/m)	0.00
MPts h=	MPts1 + MPts2 + MPts3	(kNm/m)	293.27
- Incremento v	erticale di momento dovuto all'inerzia del terrapieno ((MPts v)	
MPts1 v=	kv*Pt1*((H2 + H3/2) - (B - B5/2)*0.5)	(kNm/m)	120.05
MPts2 v=	kv*Pt2*((H2 + H3 + H4/3) - (B - B5/3)*0.5)	(kNm/m)	0.00
MPts3 v=	kv*Pt3*((H2+H3*2/3)-(B1+B2+B3+2/3*B4)*0.5)	(kNm/m)	0.00
MPts v=	MPts1 + MPts2 + MPts3	(kNm/m)	120.05
•		(,)	.20.00

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA DOCUMENTO REV. PAGINA Relazione di calcolo 0.0.E.ZZ CL SL.08.00.001 Α 118 di 211

Spinte e momenti SLU A1

	TERRENO E DEL SOVRACCARICO condizione statica		SLE	STR/GEO	EQU
St =	0,5* _γ '*(H2+H3+H4+Hd)²*ka	(kN/m)	171.72	223.23	239.57
Sq perm =	q*(H2+H3+H4+Hd)*ka	(kN/m)	30.87	40.13	43.07
Sq acc =	q*(H2+H3+H4+Hd)*ka	(kN/m)	38.59	57.88	73.41
- Componente	orizzontale condizione statica				
Sth =	St*cos _δ	(kN/m)	155.21	201.77	223.15
Sqh perm =	Sq perm* $\cos\delta$	(kN/m)	27.90	36.27	40.12
Sqh acc =	Sq acc*cosδ	(kN/m)	34.88	52.32	68.38
- Componente	- Componente verticale condizione statica				
Stv =	St^*sen_δ	(kN/m)	73.47	95.51	87.16
Sqv perm=	Sq perm*sen δ	(kN/m)	13.21	17.17	15.67
Sqvacc =	Sq acc*sen δ	(kN/m)	16.51	24.76	26.71
- Spinta passiva sul dente					
Sp=½*g1'*Hd2	*\ $\frac{1}{2}$ * $_{\gamma_1}$ '*Hd 2 *kp+(2*c $_1$ '*kp $^{0.5}$ + $_{\gamma}$ 1'*kp*H2')*Hd	(kN/m)	0.00	0.00	0.00

MOMENTI DE	LLA SPINTA DEL TERRENO E DEL SOVRACCA	ARICO	SLE	STR/GEO	EQU
MSt1 =	Sth*((H2+H3+H4+Hd)/3-Hd)	(kNm/m)	460.45	598.59	662.01
MSt2 =	Stv*B	(kNm/m)	455.51	592.16	540.41
MSq1 perm=	Sqh perm*((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	124.17	161.42	178.52
MSq1 acc =	Sqh acc*((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	155.21	232.81	304.30
MSq2 perm=	Sqv perm*B	(kNm/m)	81.89	106.46	97.15
MSq2 acc =	Sqv acc*B	(kNm/m)	102.36	153.54	165.60
MSp = γ1'*I	Hd ^{3*} kp/3+(2*c1'*kp ^{0.5} + _γ 1'*kp*H2')*Hd ² /2	(kNm/m)	0.00	0.00	0.00
MOMENTI DO	VUTI ALLE FORZE ESTERNE				
Mfext1 =	mp + m	(kNm/m)	10.00	13.00	11.00
Mfext2 =	(fp + f)*(H3 + H2)	(kNm/m)	0.00	0.00	0.00
Mfext3 =	$(vp+v)^*(B1 +B2 + B3/2)$	(kNm/m)	30.01	30.01	27.01

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	,
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL SL.08.00.001 A 119 di 211

Spinte e momenti SLV A1+

SPINTE DEL TERRENO E DEL SOVRACCARICO - Spinta condizione sismica +		SLE	STR/GEO	EQU
Sst1 stat = $0.5^*\gamma'^*(H2+H3+H4+Hd)^{2*}ka$	(kN/m)	171.72	171.72	217.79
Sst1 sism = $0.5^* \gamma'^* (1+kv)^* (H2+H3+H4+Hd)^2 *kas^+ - Sst1 stat$	(kN/m)	50.44	50.44	58.17
Ssq1 perm= qp*(H2+H3+H4+Hd)*kas ⁺	(kN/m)	38.16	38.16	47.40
Ssq1 acc = qs*(H2+H3+H4+Hd)*kas*	(kN/m)	9.54	9.54	11.85
- Componente orizzontale condizione sismica +				
Sst1h stat = Sst1 stat* $\cos\delta$	(kN/m)	155.21	155.21	202.86
Sst1h sism = Sst1 sism* $\cos \delta$	(kN/m)	45.59	45.59	54.18
Ssq1h perm= Ssq1 perm*cosδ	(kN/m)	34.49	34.49	44.15
Ssq1h acc= Ssq1 acc*cosδ	(kN/m)	8.62	8.62	11.04
- Componente verticale condizione sismica +				
Sst1v stat = Sst1 stat*sen δ	(kN/m)	73.47	73.47	79.24
Sst1v sism = Sst1 sism*senδ	(kN/m)	21.58	21.58	21.16
Ssq1v perm= Ssq1 perm*sen _δ	(kN/m)	16.32	16.32	17.24
Ssq1v acc= Ssq1 acc*sen∂	(kN/m)	4.08	4.08	4.31
- Spinta passiva sul dente				
$Sp=\frac{1}{2}*\gamma_1'(1+kv) Hd^2*kps^++(2*c_1'*kps^{+0.5}+\gamma_1' (1+kv) kps^{+*}H2')*Hd$	(kN/m)	0.00	0.00	0.00

MOMENTI DE - Condizione s	ELLA SPINTA DEL TERRENO E DEL SOVRACCARI ismica +	co	SLE	STR/GEO	EQU
MSst1 stat = MSst1 sism= MSst2 stat = MSst2 sism = MSsq1 = MSsq2 = MSp =	Sst1h stat * ((H2+H3+H4+hd)/3-hd) Sst1h sism* ((H2+H3+H4+Hd)/3-Hd) Sst1v stat* B Sst1v sism* B Ssq1h * ((H2+H3+H4+Hd)/2-Hd) Ssq1v * B γ_1 '*Hd ^{3*} kps ⁺ /3+(2*c1'*kps ^{+0.5} + γ 1'*kps ^{+*} H2')*Hd ² /2	(kNm/m) (kNm/m) (kNm/m) (kNm/m) (kNm/m) (kNm/m) (kNm/m)	460.45 135.25 455.51 133.80 191.84 126.52 0.00	460.45 135.25 455.51 133.80 191.84 126.52 0.00	601.83 160.74 491.28 131.21 245.57 133.64 0.00
MOMENTI DO Mfext1 = Mfext2 = Mfext3 =	mp+ms (fp+fs)*(H3 + H2) (vp+vs)*(B1 +B2 + B3/2)	(kNm/m) (kNm/m) (kNm/m)		10.00 0.00 30.01	

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL SL.08.00.001 A 120 di 211

Spinte e momenti SLV A1-

SPINTE DEL TERRENO E DEL SOVRACCARICO		SLE	STR/GEO	EQU
- Spinta condizione sismica -				
Sst1 stat = $0.5^*\gamma'^*(H2+H3+H4+Hd)^2*ka$	(kN/m)	171.72	171.72	217.79
Sst1 sism = $0.5^*\gamma'^*(1-kv)^*(H2+H3+H4+Hd)^2*kas^Sst1$ stat	(kN/m)	34.83	34.83	38.33
Ssq1 perm= qp*(H2+H3+H4+Hd)*kas ⁻	(kN/m)	38.95	38.95	48.30
Ssq1 acc = qs*(H2+H3+H4+Hd)*kas	(kN/m)	9.74	9.74	12.08
- Componente orizzontale condizione sismica -				
Sst1h stat = Sst1 stat* $\cos \delta$	(kN/m)	155.21	155.21	202.86
Sst1h sism = Sst1 sism* $\cos \delta$	(kN/m)	31.49	31.49	35.70
Ssq1h perm= Ssq1 perm*cosδ	(kN/m)	35.21	35.21	44.99
Ssq1h acc= Ssq1 acc*cos _δ	(kN/m)	8.80	8.80	11.25
- Componente verticale condizione sismica -				
Sst1v stat = Sst1 stat*sen _δ	(kN/m)	73.47	73.47	79.24
Sst1v sism = Sst1 sism*sen δ	(kN/m)	14.90	14.90	13.94
Ssq1v perm= Ssq1 perm*senδ	(kN/m)	16.67	16.67	17.57
Ssq1v acc= Ssq1 acc*sen _∂	(kN/m)	4.17	4.17	4.39
- Spinta passiva sul dente				
$Sp=\frac{1}{2}*\gamma_1'(1-kv) Hd^2*kps^-+(2*c_1'*kps^{-0.5}+\gamma 1' (1-kv) kps^-*H2')*Hd$	(kN/m)	0.00	0.00	0.00

MOMENTI DE - Condizione si	LLA SPINTA DEL TERRENO E DEL SOVRACCARI smica -	СО	SLE	STR/GEO	EQU
MSst1 stat =	Sst1h stat * ((H2+H3+H4+hd)/3-hd)	(kNm/m)	460.45	460.45	601.83
MSst1 sism=	Sst1h sism* ((H2+H3+H4+Hd)/3-Hd)	(kNm/m)	93.41	93.41	105.91
MSst2 stat =	Sst1v stat* B	(kNm/m)	455.51	455.51	491.28
MSst2 sism =	Sst1v sism* B	(kNm/m)	92.40	92.40	86.46
MSsq1 =	Ssq1h * ((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	195.84	195.84	250.26
MSsq2 =	Ssq1v*B	(kNm/m)	129.16	129.16	136.19
MSp =	γ_1 '*Hd ³ *kps ⁺ /3+(2*c1'*kps ^{+0.5} + γ 1'*kps ^{+*} H2')*Hd ² /2	(kNm/m)	0.00	0.00	0.00
MOMENTI DO	VUTI ALLE FORZE ESTERNE				
Mfext1 =	mp+ms	(kNm/m)		10.00	
Mfext2 =	(fp+fs)*(H3 + H2)	(kNm/m)		0.00	
Mfext3 =	(vp+vs)*(B1 +B2 + B3/2)	(kNm/m)		30.01	

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA DOCUMENTO REV. PAGINA Relazione di calcolo 0.0.E.ZZ CL SL.08.00.001 Α 121 di 211

Spinte e momenti SLU A2

	TERRENO E DEL SOVRACCARICO		SLE	STR/GEO	EQU
 Spinta totale 	condizione statica			3111000	-40
St =	0,5* _γ '*(H2+H3+H4+Hd)²*ka	(kN/m)	171.72	217.79	239.57
Sq perm =	q*(H2+H3+H4+Hd)*ka	(kN/m)	30.87	39.15	43.07
Sq acc =	q*(H2+H3+H4+Hd)*ka	(kN/m)	38.59	63.62	73.41
- Componente	orizzontale condizione statica				
Sth =	St*cosδ	(kN/m)	155.21	202.86	223.15
Sqh perm =	Sq perm*cos _δ	(kN/m)	27.90	36.47	40.12
Sqh acc =	Sq acc*cos∂	(kN/m)	34.88	59.26	68.38
- Componente	- Componente verticale condizione statica				
Stv =	St*senδ	(kN/m)	73.47	79.24	87.16
Sqv perm=	Sq perm*sen δ	(kN/m)	13.21	14.25	15.67
Sqv acc =	Sq acc*sen _δ	(kN/m)	16.51	23.15	26.71
- Spinta passiva sul dente					
Sp=½*g1'*Hd2	(kN/m)	0.00	0.00	0.00	

MOMENTI DE	LLA SPINTA DEL TERRENO E DEL SOVRACO	CARICO	SLE	STR/GEO	EQU
MSt1 =	Sth*((H2+H3+H4+Hd)/3-Hd)	(kNm/m)	460.45	601.83	662.01
MSt2 =	Stv*B	(kNm/m)	455.51	491.28	540.41
MSq1 perm=	Sqh perm*((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	124.17	162.29	178.52
MSq1 acc =	Sqh acc*((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	155.21	263.72	304.30
MSq2 perm=	Sqv perm*B	(kNm/m)	81.89	88.32	97.15
MSq2 acc =	Sqv acc*B	(kNm/m)	102.36	143.52	165.60
$MSp = \gamma 1'*I$	-ld ³ *kp/3+(2*c1'*kp ^{0.5} + _γ 1'*kp*H2')*Hd ² /2	(kNm/m)	0.00	0.00	0.00
MOMENTI DO	OVUTI ALLE FORZE ESTERNE				
Mfext1 =	mp + m	(kNm/m)	10.00	10.00	11.00
Mfext2 =	(fp + f)*(H3 + H2)	(kNm/m)	0.00	0.00	0.00
Mfext3 =	(vp+v)*(B1 +B2 + B3/2)	(kNm/m)	30.01	30.01	27.01

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	, and the second
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL SL.08.00.001 A 122 di 211

Spinte e momenti SLV A2+

SPINTE DEL	TERRENO E DEL SOVRACCARICO		SLE	STR/GEO	EQU	
- Spinta condiz	ione sismica +		SLL	STRIGEO	LQU	
Sst1 stat =	0,5* _γ '*(H2+H3+H4+Hd)²*ka	(kN/m)	171.72	217.79	217.79	
Sst1 sism =	0,5*γ'*(1+kv)*(H2+H3+H4+Hd)²*kas ⁺ -Sst1 stat	(kN/m)	50.44	58.17	58.17	
Ssq1 perm=	qp*(H2+H3+H4+Hd)*kas ⁺	(kN/m)	38.16	47.40	47.40	
Ssq1 acc =	qs*(H2+H3+H4+Hd)*kas ⁺	(kN/m)	9.54	11.85	11.85	
- Componente	orizzontale condizione sismica +					
Sst1h stat =	Sst1 stat*cosδ	(kN/m)	155.21	202.86	202.86	
Sst1h sism =	Sst1 sism*cosδ	(kN/m)	45.59	54.18	54.18	
Ssq1h perm=	Ssq1 perm*cosδ	(kN/m)	34.49	44.15	44.15	
Ssq1h acc=	Ssq1 acc*cos _δ	(kN/m)	8.62	11.04	11.04	
- Componente verticale condizione sismica +						
Sst1v stat =	Sst1 stat*senδ	(kN/m)	73.47	79.24	79.24	
Sst1v sism =	Sst1 sism*senδ	(kN/m)	21.58	21.16	21.16	
Ssq1v perm=	Ssq1 perm*senδ	(kN/m)	16.32	17.24	17.24	
Ssq1v acc=	Ssq1 acc*sen δ	(kN/m)	4.08	4.31	4.31	
- Spinta passiva sul dente						
Sp=½*γ ₁ '(1+kv)	$Hd^{2*}kps^{+}+(2*c_{1}'*kps^{+0.5}+\gamma 1' (1+kv) kps^{+*}H2')*Hd$	(kN/m)	0.00	0.00	0.00	

MOMENTI DELLA SPINTA DEL TERRENO E DEL SOVRACCARICO - Condizione sismica +				STR/GEO	EQU
		L		1	
MSst1 stat =	Sst1h stat * ((H2+H3+H4+hd)/3-hd)	(kNm/m)	460.45	601.83	601.83
MSst1 sism=	Sst1h sism* ((H2+H3+H4+Hd)/3-Hd)	(kNm/m)	135.25	160.74	160.74
MSst2 stat =	Sst1v stat* B	(kNm/m)	455.51	491.28	491.28
MSst2 sism =	Sst1vsism* B	(kNm/m)	133.80	131.21	131.21
MSsq1 =	Ssq1h * ((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	191.84	245.57	245.57
MSsq2 =	Ssq1v*B	(kNm/m)	126.52	133.64	133.64
MSp =	₇₁ ''*Hd ³ *kps ⁺ /3+(2*c1'*kps ^{+0.5} + ₇ 1'*kps ^{+*} H2')*Hd ² /2	(kNm/m)	0.00	0.00	0.00
MOMENTI DO	NUT ALL E ESSE ESTESNE				
	OVUTI ALLE FORZE ESTERNE	(11)		40.00	
Mfext1 =	mp+ms	(kNm/m)		10.00	
Mfext2 =	(fp+fs)*(H3 + H2)	(kNm/m)		0.00	
Mfext3 =	(vp+vs)*(B1 +B2 + B3/2)	(kNm/m)		30.01	

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL SL.08.00.001 A 123 di 211

Spinte e momenti SLV A2-

SPINTE DEL TERRENO E DEL SOVRACCARICO		SLE	STR/GEO	EQU		
- Spinta condizione sismica -		SLE	STRIGEO	EQU		
Sst1 stat = $0.5*_{\gamma}$ '*(H2+H3+H4+Hd) ² *ka	(kN/m)	171.72	217.79	217.79		
Sst1 sism = $0.5^*\gamma'^*(1-kv)^*(H2+H3+H4+Hd)^2*kas^Sst1$ stat	(kN/m)	34.83	38.33	38.33		
Ssq1 perm= qp*(H2+H3+H4+Hd)*kas ⁻	(kN/m)	38.95	48.30	48.30		
$Ssq1 acc = qs*(H2+H3+H4+Hd)*kas^{-}$	(kN/m)	9.74	12.08	12.08		
- Componente orizzontale condizione sismica -						
Sst1h stat = Sst1 stat* $\cos\delta$	(kN/m)	155.21	202.86	202.86		
Sst1h sism = Sst1 sism* $\cos \delta$	(kN/m)	31.49	35.70	35.70		
Ssq1h perm= Ssq1 perm*cosδ	(kN/m)	35.21	44.99	44.99		
Ssq1h acc= Ssq1 acc*cosδ	(kN/m)	8.80	11.25	11.25		
- Componente verticale condizione sismica -						
Sst1v stat = Sst1 stat*sen δ	(kN/m)	73.47	79.24	79.24		
Sst1v sism = Sst1 sism*sen δ	(kN/m)	14.90	13.94	13.94		
Ssq1v perm= Ssq1 perm*senδ	(kN/m)	16.67	17.57	17.57		
Ssq1v acc= Ssq1 acc*senδ	(kN/m)	4.17	4.39	4.39		
- Spinta passiva sul dente						
$Sp=\frac{1}{2}*\gamma_1'(1-kv) Hd^2*kps^-+(2*c_1'*kps^{-0.5}+\gamma_1''(1-kv) kps^-*H2')*Hd$	(kN/m)	0.00	0.00	0.00		

MOMENTI DE - Condizione si	LLA SPINTA DEL TERRENO E DEL SOVRACCARI smica -	СО	SLE	STR/GEO	EQU
MSst1 stat =	Sst1h stat * ((H2+H3+H4+hd)/3-hd)	(kNm/m)	460.45	601.83	601.83
MSst1 sism=	Sst1h sism* ((H2+H3+H4+Hd)/3-Hd)	(kNm/m)	93.41	105.91	105.91
MSst2 stat =	Sst1v stat* B	(kNm/m)	455.51	491.28	491.28
MSst2 sism =	Sst1v sism* B	(kNm/m)	92.40	86.46	86.46
MSsq1 =	Ssq1h * ((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	195.84	250.26	250.26
MSsq2 =	Ssq1v*B	(kNm/m)	129.16	136.19	136.19
MSp =	γ_1 '*Hd ³ *kps ⁺ /3+(2*c1'*kps ^{+0.5} + γ_1 '*kps ^{+*} H2')*Hd ² /2	(kNm/m)	0.00	0.00	0.00
MOMENTI DO	VUTI ALLE FORZE ESTERNE				
Mfext1 =	mp+ms	(kNm/m)		10.00	
Mfext2 =	(fp+fs)*(H3 + H2)	(kNm/m)		0.00	
Mfext3 =	(vp+vs)*(B1 +B2 + B3/2)	(kNm/m)		30.01	

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL SL.08.00.001 A 124 di 211

9.4.1 Verifica GEO a capacità portante della fondazione

La verifica si effettua tanto in condizioni statiche quanto in condizioni dinamiche nella combinazione A2+M2+R2.

verifica SLU

Risultante forze verticali (N) N = Pm + Pt + v	+ Stv + Sqv (+ Sovr acc)		Nmin 1161.09	Nmax 1266.36	(kN/m)		
Risultante forze orizzontali (T T = Sth + Sqh +			298.60	298.60	(kN/m)		
Risultante dei momenti rispet MM = Σ M	to al piede di valle (MM)		3435.59	3875.16	(kNm/m)		
Momento rispetto al baricentr M = Xc*N - MM	o della fondazione (M)		163.79	50.57	(kNm/m)		
Formula Generale per il Ca	alcolo del Carico Limite Unitrario	(Brinch-Hanse	n, 1970)				
Fondazione Nastriforme							
qlim = c'Nc*ic + q ₀ *Nq*iq +	0,5*γ1*Β*Νγ*ίγ						
φ1′ angolo di attr	eno di fondaz. ito terreno di fondaz. volume terreno fondaz.		0.00 26.56 8.52		(kPa) (°) (kN/m³)		
$q_0 = \gamma d^*H2'$ sovraccarico	stabilizzante		24.96		(kN/m ²)		
e = M / N eccentricità B*= B - 2e larghezza ec	uivalente		0.14 5.92	0.04 6.12	(m) (m)		
l valori di Nc, Nq e Ng sono s	tati valutati con le espressioni sugge	rite da Vesic (19	975)				
$\begin{aligned} Nq &= tg^2(45 + {_{\phi'}}/2)^*e^{(\pi^*tg_{(\phi')})} \\ Nc &= (Nq - 1)/tg_{(\phi')} \\ N_{\gamma} &= 2^*(Nq + 1)^*tg_{(\phi')} \end{aligned}$	(1 in cond. nd) $ (2+_{\pi} \text{ in cond. nd}) $ (0 in cond. nd)		12.59 23.18 13.58		(-) (-) (-)		
l valori di ic, iq e i $_{\gamma}$ sono stati valutati con le espressioni suggerite da Vesic (1975)							
$iq = (1 - T/(N + B*c'cotg_{\phi}'))^m$ ic = iq - (1 - iq)/(Nq - 1) $i\gamma = (1 - T/(N + B*c'cotg_{\phi}'))^{m+1}$	(1 in cond. nd)		0.55 0.51 0.41	0.58 0.51 0.41	(-) (-) (-)		
(fondazione nastriforme m = 2)							
qlim (carico limite	unitario)		313.68	323.80	(kN/m ²)		
ES corios limits	E = alim*P*/N	Nmin	1.60	>	4		
FS carico limite	F = qlim*B*/ N	Nmax	1.56	>	1		

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI	
Mandate: Mandante:	TRATTA NAPOLI-CANCELLO	
PROGETTISTA: ASTALDI S.p.A. PROGETTISTA:	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENT	
Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014	
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA IF1M 0.0.E.ZZ CL SL.08.00.001 A 125 di 21:	
Relazione di calcolo	IF1M 0.0.E.ZZ CL SL.08.00.001 A	

verifica SLV +

Risultante forz	e verticali (N) Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv +	- (Sovr acc)	Nmin 1214.49	Nmax 1230.69	(kN/m)	
Risultante forz	e orizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh - Sp		408.38		(kN/m)	
Risultante dei	momenti rispetto al piede di valle (MM) Σ M		3282.19	3349.82	(kNm/m)	
Momento rispe M =	etto al baricentro della fondazione (M) Xc*N - MM		482.73	465.31	(kNm/m)	
Formula Gen	erale per il Calcolo del Carico Limite Unitrario ((Brinch-Hansen,	1970)			
Fondazione Na	astriforme					
qlim = c'Nc*io	: + q ₀ *Nq*iq + 0,5*γ1*B*Nγ*iγ					
c1' φ1' γ1	coesione terreno di fondaz. angolo di attrito terreno di fondaz. peso unità di volume terreno fondaz.		0.00 26.56 8.52		(kN/mq) (°) (kN/m³)	
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante		24.96		(kN/m^2)	
e = M / N B*= B - 2e	eccentricità larghezza equivalente		0.40 5.41	0.38 5.44	(m) (m)	
l valori di Nc, N	lq e Ng sono stati valutati con le espressioni suggeri	ite da Vesic (197	5)			
$Nq = tg^{2}(45 + c)$ $Nc = (Nq - 1)/t$ $N_{\gamma} = 2^{*}(Nq + 1)$	$g(\varphi')$ (2+ π in cond. nd)		12.59 23.18 13.58		(-) (-) (-)	
l valori di ic, iq e i $_{ m Y}$ sono stati valutati con le espressioni suggerite da Vesic (1975)						
iq = (1 - T/(N + ic = iq - (1 - iq)) $i_{\gamma} = (1 - T/(N + iq))$,		0.44 0.39 0.29	0.45 0.40 0.29	(-) (-) (-)	
(fondazione nastriforme m = 2)						
qlim	(carico limite unitario)		229.84	232.35	(kN/m²)	
FS carico li	imite F = qlim*B*/ N	Nmin Nmax	1.02 1.03	> >	1	

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA: Mandataria: Mandante:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL SL.08.00.001 A 126 di 211

verifica SLV -

FS carico limite

Risultante forzo	e verticali (N) Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv	Nmin 1111.53	Nmax 1127.73	(kN/m)		
Risultante forzo	e orizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh - Sp	390.95		(kN/m)		
Risultante dei i	momenti rispetto al piede di valle (MM) Σ M	2967.80	3035.43	(kNm/m)		
Momento rispe M =	tto al baricentro della fondazione (M) Xc*N - MM	477.95	460.53	(kNm/m)		
Formula Gen	erale per il Calcolo del Carico Limite Unitrario (Brin	ch-Hansen, 1970)				
Fondazione Na	striforme					
qlim = c'Nc*ic	+ q ₀ *Nq*iq + 0,5*γ1*Β*Νγ*iγ					
c1' φ1' γ1	coesione terreno di fondaz. angolo di attrito terreno di fondaz. peso unità di volume terreno fondaz.	0.00 26.56 8.52		(kN/mq) (°) (kN/m³)		
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante	24.96		(kN/m ²)		
e = M / N B*= B - 2e	eccentricità larghezza equivalente	0.43 5.34	0.41 5.38	(m) (m)		
l valori di Nc, N	lq e Ng sono stati valutati con le espressioni suggerite da	vesic (1975)				
$Nq = tg^{2}(45 + c)$ $Nc = (Nq - 1)/t$ $N_{\gamma} = 2*(Nq + 1)$	$g(\rho')$ (2+ π in cond. nd)	12.59 23.18 13.58		(-) (-) (-)		
I valori di ic, iq e i $_{\gamma}$ sono stati valutati con le espressioni suggerite da Vesic (1975)						
iq = (1 - T/(N + ic = iq - (1 - iq)) $i_{\gamma} = (1 - T/(N + iq))$	/(Nq - 1)	0.42 0.37 0.27	0.43 0.38 0.27	(-) (-) (-)		
(fondazione nastriforme m = 2)						
qlim	(carico limite unitario)	216.20	218.94	(kN/m ²)		
FS carico li	mite F = alim*B*/ N	min 1.04	>	1		

F = qlim*B*/N

1.05

Nmax

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante: SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	TRATTA NAPOLI-CANCELLO
PROGETTISTA: Mandataria: SYSTRA S.A. Mandante: SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL SL.08.00.001 A 127 di 211

9.4.2 Verifica GEO a scorrimento sul piano di posa della fondazione

La verifica si effettua tanto in condizioni statiche quanto in condizioni dinamiche nella combinazione A2+M2+R2. Nella risultante delle forze verticale N non si tiene conto, a vantaggio di sicurezza, del sovraccarico accidentale sulla zattera di monte.

verifica SLU

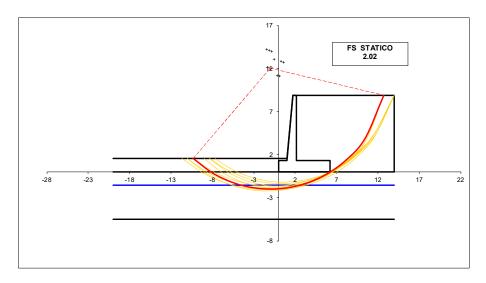
Risul N	Itante forz =	e verticali (N) Pm + Pt + v + Stv + Sqv perm + Sqv acc	1161.09	(kN/m)	
				(,	
Risul T	Itante forz =	e orizzontali (T) Sth + Sqh + f	298.60	(kN/m)	
Coef	ficiente di	attrito alla base (f)			
f	=	tg _{\phi} 1'	0.50	(-)	
Fs	scorr.	(N*f + Sp) / T	1.94	>	1
veri	fica SL\	<u>/+</u>			
Risul N	Itante forz =	e verticali (N) Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv	1214.49	(kN/m)	
Risul T	Itante forz =	e orizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh	408.38	(kN/m)	
Coef	ficiente di	attrito alla base (f)			
Coeff f	ficiente di =	attrito alla base (f) $tg_{\phi 1}$ '	0.50	(-)	
			0.50 1.49	(-) >	1
f Fs	=	$tg_{\phi 1}$ ' (N*f + Sp) / T			1
f Fs <u>verii</u>	= = fica SL\	$tg_{\phi 1}$ ' (N*f + Sp) / T			1
f Fs <u>verii</u> Risul	= = fica SL\ Itante forz =	tg _{φ1} ' (N*f + Sp) / T /- e verticali (N)	1.49	>	1
f Fs vering Risuld N Risuld T	= fica SL\ Itante forz = Itante forz =	tg _{\phi} 1' (N*f + Sp) / T /- e verticali (N) Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv e orizzontali (T)	1.49 1111.53	> (kN/m)	1

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA: Mandataria: Mandante:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL SL.08.00.001 A 128 di 211

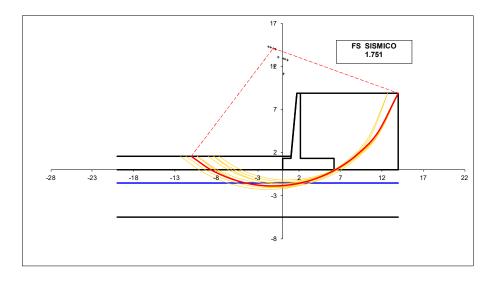
9.4.3 Verifica EQU a ribaltamento

La verifica si effettua tanto in condizioni statiche quanto in condizioni dinamiche nella combinazione EQU+M2+R2. Anche qui, a vantaggio di sicurezza, non si tiene conto del contributo stabilizzante del sovraccarico accidentale sulla zattera di monte.

verifica SLU


Fr	=	Ms / Mr	4.79	>	1
Mom Mr	ento ribalt =	ante (Mr) MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts	782.51	(kNm/m)	
Mom Ms	ento stabi =	lizzante (Ms) Mm + Mt + Mfext3	3750.31	(kNm/m)	
verit	fica SLV	<u>/-</u>			
Fr	=	Ms / Mr	8.01	>	1
Mom Mr	ento ribalt =	ante (Mr) MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts	468.12	(kNm/m)	
Mom Ms	ento stabi =	lizzante (Ms) Mm + Mt + Mfext3	3750.31	(kNm/m)	
<u>verit</u>	fica SLV	<u>/+</u>			
Fs	ribaltan	nento Ms / Mr	9.72	>	1
Mom Mr	ento ribalt =	ante (Mr) MSt + MSq + Mfext1+ Mfext2 + MSp	352.67	(kNm/m)	
Mom Ms	ento stabi =	lizzante (Ms) Mm + Mt + Mfext3	3429.38	(kNm/m)	

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A. PROGETTISTA: Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO Relazione di calcolo	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA IF1M 0.0.E.ZZ CL SL.08.00.001 A 129 di 211


9.4.4 Verifica GEO a stabilità globale

Le verifiche effettuate vengono di seguito presentate in forma sintetica. Nelle figure, in alto, è indicato il coefficiente di sicurezza minimo FS che fa riferimento alla superficie di scorrimento critica evidenziata in rosso; il valore FS minimo deve essere confrontato con il coefficiente di sicurezza previsto dalla normativa per la combinazione considerata: R₂=1.10.

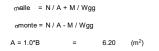
Verifica in condizioni statiche

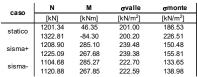
Verifica in condizioni sismiche

Tutte le verifiche sono soddisfatte.

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 ROCKSOIL S.p.A. SYSTRA S.A. SYSTRA-SOTECNI S.p.A. PROGETTO ESECUTIVO CODIFICA DOCUMENTO REV. **PROGETTO** LOTTO **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ SL.08.00.001 130 di 211 CL Α

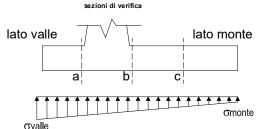
9.4.5 Verifiche STR


Le verifiche vengono condotte, tanto in condizione statica che in condizione dinamica, nella combinazione A1+M1+R1.

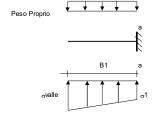

Verifica allo Stato Limite Ultimo

CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

Reazione del terreno


 $Wgg = 1.0*B^2/6$

6.41


 (m^3)

Mensola Lato Valle

$$\begin{split} & \text{Peso Proprio.} & \text{PP = } & 32.50 & \text{(kN/m)} \\ & \text{Ma = } & \sigma 1^* B 1^2 / 2 + (\sigma \text{valle - } \sigma 1)^* B 1^2 / 3 - PP^* B 1^2 / 2^* (1 \pm k v) \\ & \text{Va = } & \sigma 1^* B 1 + (\sigma \text{valle - } \sigma 1)^* B 1 / 2 - PP^* B 1^* (1 \pm k v) \end{split}$$

caso	σvalle	σ1	Ma	Va
Caso	[kN/m ²]	[kN/m ²]	[kNm]	[kN]
statico	201.00	198.66	83.86	167.33
Statico	200.20	204.44	84.56	169.82
sisma+	239.48	225.13	100.34	198.29
SiSina	239.38	225.90	101.19	198.62
sisma-	222.70	208.34	93.47	181.50
sisma-	222.59	209.11	92.80	181.83

B5 - B5/2

Stv+Stq

Peso del Terrapieno

Mensola Lato Monte

PP	=	32.50	(kN/m ²)	peso proprio soletta fonda
PD	=	0.00	(kN/m)	peso proprio dente

			7	*	
		Nmin	N max stat	N max sism	
pm	=	172.80	202.80	176.80	(kN/m ²)
pvb	=	172.80	202.80	176.80	(kN/m ²)
DVC	=	172.80	202.80	176.80	(kN/m ²)

$$\label{eq:monte-posterior} \begin{split} Mb &= (\sigma_{monte} - (pvb + PP)^*(1\pm kv))^*B5^2/2 + (\sigma^2 b - \sigma_{monte})^*B5^2/6 - (pm - pvb))^*(1\pm kv)^*B5^2/3 + \\ &- (Stv + Sqv)^*B5 - PD^*(1\pm kv)^*(B5 - Bd/2) - PD^*kh^*(Hd + H2/2) + Msp + Sp^*H2/2 \end{split}$$

$$\label{eq:monte} \begin{split} &\text{Mc} = &(\sigma_{monte} \cdot (pvc+PP)^*(1\pm kv))^*(B5/2)^2/2 + (\sigma_2 c \cdot \sigma_{monte})^*(B5/2)^2/6 + (pm-pvc)^*(1\pm kv)^*(B5/2)^2/3 + (-Stv+Sqv)^*(B5/2)+Pv^*(1\pm kv)^*(B5/2-Bd/2)+Pv^*k)^*(Hd+H2/2)+Msp+Sp^*H2/2 + (-2c^2 - 2c^2 - 2c^2$$

 $Vb = (\sigma_{monte} - (pvb + PP)^*(1 \pm kv))^*B5 + (\sigma_2 b - \sigma_{monte})^*B5/2 - (pm - pvb))^*(1 \pm kv)^*B5/2 - (Stv + Sqv) - PD^*(1 \pm kv)$

 $Vc = (\sigma_{monte} - (pvc + PP)^*(1 \pm kv))^*(B5/2) + (\sigma^2 c - \sigma_{monte})^*(B5/2)/2 - (pm-pvc)^*(1 \pm kv)^*(B5/2)/2 - (Stv + Sqv) - PD^*(1 \pm kv)/2 + (g^2 c - \sigma_{monte})^*(B5/2)/2 - (g^2 c - g^2 c - g^2$

caso	σmonte	σ2b	Mb	Vb	σ2c	Mc	Vc
Caso	[kN/m ²]	[kN/m ²]	[kNm]	[kN]	[kN/m ²]	[kNm]	[kN]
statico	186.53	195.98	-684.55	-194.31	191.25	-313.49	-170.66
Statico	226.51	209.33	-675.49	-207.81	217.92	-302.13	-163.93
sisma+	150.48	208.61	-836.63	-258.57	179.54	-345.88	-216.43
Sisilia	155.81	210.39	-836.95	-261.13	183.10	-344.75	-215.91
oiomo	133.65	191.81	-791.99	-242.75	162.73	-328.40	-205.41
sisma-	138.98	193.58	-789.25	-243.79	166.28	-326.51	-204.14

Mandataria: Mandante:

SALINI IMPREGILO S.p.A. ASTALDI S.p.A.

PROGETTISTA:

Mandataria: Mandante:

ROCKSOIL S.p.A. SYSTRA S.A. SYSTRA-SOTECNI S.p.A.

PROGETTO ESECUTIVO Relazione di calcolo

LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

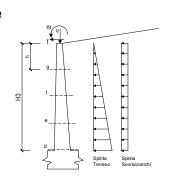
PROGETTO LOTTO CODIFICA DOCUMENTO REV. **PAGINA** 0.0.E.ZZ CL SL.08.00.001 Α 131 di 211

CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo

Mt stat = $\frac{1}{2}$ Ka_{orizz.}* γ *(1±kv)*h²*h/3

Mt sism = $\frac{1}{2} * \gamma * (Kas_{orizz} * (1\pm kv)-Ka_{orizz})*h^2*h/2 o *h/3$


Mq = $\frac{1}{2}$ Ka_{orizz}*q*h² M_{ext} = m+f*h $M_{inerzia} = \sum Pm_i^*b_i^*kh$

N_{ext} = v N _{pp+inerzia}= $\Sigma Pm_i^*(1\pm kv)$

Vt stat = $\frac{1}{2}$ Ka_{orizz.}* γ *(1±kv)*h² Vt sism = $\frac{1}{2} * \gamma * (Kas_{orizz} * (1\pm kv)-Ka_{orizz})*h^2$

 $Vq = Ka_{orizz}*q*h$ $V_{ext} = f$

condizione statica

sezione	h	Mt	Mq	M _{ext}	M _{tot}	N _{ext}	N _{pp}	N _{tot}
SCEIONG	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	7.60	372.73	287.47	13.00	673.20	15.38	147.35	162.73
e-e	5.70	157.25	161.70	13.00	331.95	15.38	97.13	112.51
f-f	3.80	46.59	71.87	13.00	131.46	15.38	55.84	71.22
g-g	1.90	5.82	17.97	13.00	36.79	15.38	23.46	38.84

sezione	h	Vt	Vq	V _{ext}	V_{tot}
Sezione	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	7.60	147.13	75.65	0.00	222.78
e-e	5.70	82.76	56.74	0.00	139.50
f-f	3.80	36.78	37.83	0.00	74.61
g-g	1.90	9.20	18.91	0.00	28.11

	Condizione sismica										
sezione	h	Mt _{stat}	Mt sism	Mq	M _{ext}	M _{inerzia}	M _{tot}	N _{ext}	N _{pp+inerzia}	N _{tot}	
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]	
d-d	7.60	286.72	93.18	139.89	10.00	43.87	573.65	15.38	154.23	169.61	
e-e	5.70	120.96	39.31	78.69	10.00	22.30	271.26	15.38	101.67	117.05	
f-f	3.80	35.84	11.65	34.97	10.00	8.86	101.31	15.38	58.44	73.83	
a-a	1.90	4.48	1.46	8.74	10.00	1.95	26.63	15.38	24.55	39.94	

sezione	sezione h		Vt sism	Vq	V _{ext}	V _{inerzia}	V_{tot}
	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	7.60	113.18	36.78	36.81	0.00	13.77	200.54
e-e	5.70	63.66	20.69	27.61	0.00	9.08	121.04
f-f	3.80	28.29	9.20	18.41	0.00	5.22	61.11
n-n	1 90	7.07	2.30	9.20	0.00	2 10	20.77

	condizione sismica -									
sezione	h	Mt stat	Mt sism	Mq	M _{ext}	M _{inerzia}	M _{tot}	N _{ext}	N _{pp+inerzia}	N _{tot}
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	7.60	286.72	64.35	142.81	10.00	43.87	547.75	15.38	140.46	155.84
e-e	5.70	120.96	27.15	80.33	10.00	22.30	260.74	15.38	92.59	107.98
f-f	3.80	35.84	8.04	35.70	10.00	8.86	98.44	15.38	53.23	68.61
g-g	1.90	4.48	1.01	8.93	10.00	1.95	26.36	15.38	22.36	37.74

sezione	h	Vt stat	Vt sism	Vq	V _{ext}	V _{inerzia}	V _{tot}
	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	7.60	113.18	25.40	37.58	0.00	13.77	189.93
e-e	5.70	63.66	14.29	28.19	0.00	9.08	115.21
f-f	3.80	28.29	6.35	18.79	0.00	5.22	58.65
a-a	1.90	7.07	1.59	9.40	0.00	2.19	20.25

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 ROCKSOIL S.p.A. SYSTRA S.A. SYSTRA-SOTECNI S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA DOCUMENTO REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ SL.08.00.001 Α 132 di 211

In definitiva risulta:

- Armatura longitudinale

Posizione 1: 1 registro 5 Ø20

Posizione 4: 1 registro 10 Ø20

Posizione 5: 1 registro 5 Ø20

Posizione 7: 1 registro 10 Ø20

- Armatura trasversale

Non necessaria

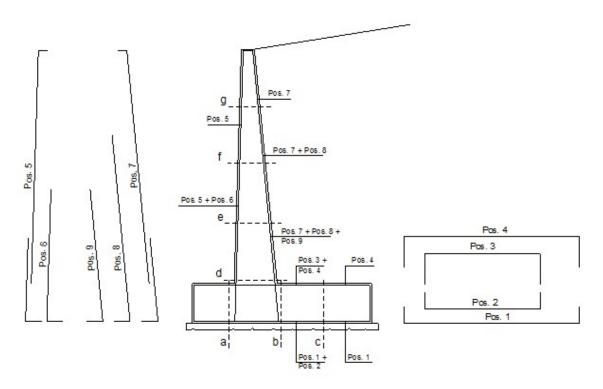


Figura 74-Schema armature

Mandataria: Mandante:

SALINI IMPREGILO S.p.A. ASTALDI S.p.A.

PROGETTISTA:

Mandataria: Mandante:

SYSTRA S.A. ROCKSOIL S.p.A.

PROGETTO ESECUTIVO Relazione di calcolo

SYSTRA-SOTECNI S.p.A.

LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA 0.0.E.ZZ SL.08.00.001 Α 133 di 211

Sez.	M	N	h	Af	A'f	Mu
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(kNm)
a - a	101.19	0.00	1.30	15.71	31.42	747.77
b - b	-836.95	0.00	1.30	31.42	15.71	1462.75
C - C	-345.88	0.00	1.30	31.42	15.71	1462.75
d - d	673.20	162.73	1.15	31.42	15.71	1361.63
e -e	331.95	112.51	0.96	31.42	15.71	1095.00
f - f	131.46	71.22	0.78	31.42	15.71	840.58
g - g	36.79	38.84	0.59	31.42	15.71	595.86

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

Sez.	V _{Ed}	h	V_{rd}	ø staffe	i orizz.	i vert.	θ	V_{Rsd}	
(-)	(kN)	(m)	(kN)	(mm)	(cm)	(cm)	(°)	(kN)	-
a - a	198.62	1.30	404.80		20	20	21.8	0.00	Armatura a taglio non necessaria
b - b	261.13	1.30	417.21		20	20	21.8	0.00	Armatura a taglio non necessaria
C - C	216.43	1.30	417.21		20	20	21.8	0.00	Armatura a taglio non necessaria
d - d	222.78	1.15	413.05		20	20	21.8	0.00	Armatura a taglio non necessaria
e -e	139.50	0.96	369.53		20	20	21.8	0.00	Armatura a taglio non necessaria
f - f	74.61	0.78	324.25		20	20	21.8	0.00	Armatura a taglio non necessaria
g - g	28.11	0.59	275.91		20	20	21.8	0.00	Armatura a taglio non necessaria

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA DOCUMENTO RFV **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ SL.08.00.001 Α 134 di 211

9.5 VERIFICHE AGLI STATI LIMITE DI ESERCIZIO

Alle prescrizioni normative presenti in NTC si sostituiscono quelle fornite dalle specifiche RFI (Requisiti concernenti la fessurazione per strutture in c.a., c.a.p. e miste acciaio-calcestruzzo) secondo cui la verifica nei confronti dello stato limite di apertura delle fessure va effettuata utilizzando le sollecitazioni derivanti dalla combinazione caratteristica (rara).

In particolare, per strutture in condizioni ambientali aggressive o molto aggressive, così come identificate nel par. 4.1.2.2.4.3 del DM 14.1.2008, per tutte le strutture a permanente contatto con il terreno e per le zone non ispezionabili di tutte le strutture, l'apertura convenzionale delle fessure dovrà risultare:

Combinazione Caratteristica (Rara) δ_f ≤ w₁ = 0.2 mm

Le verifiche tensionali di cui ai par. 4.1.2.2.5.1 e 4.1.2.2.5.2 delle NTC 2008 sono state eseguite per la combinazione rara e la combinazione quasi permanente, controllando che le tensioni nel calcestruzzo e nell'acciaio siano inferiori ai seguenti valori limite:

Le verifiche di tensione si ritengono soddisfatte se sono verificate le seguenti condizioni:

Calcestruzzo

- Combinazione di carico caratteristica (RARA): 0.55 fck
- Combinazione di carico quasi permanente: 0.40 fck

Acciaio

Combinazione di carico caratteristica (RARA): 0.75 fyk

Mandataria: Mandante:

SALINI IMPREGILO S.p.A. ASTALDI S.p.A.

PROGETTISTA:

Mandataria:

ROCKSOIL S.p.A. SYSTRA S.A. SYSTRA-SOTECNI S.p.A.

PROGETTO ESECUTIVO

Relazione di calcolo

LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

PROGETTO LOTTO CODIFICA DOCUMENTO REV. **PAGINA** IF1M 0.0.E.ZZ SL.08.00.001 Α 135 di 211

9.5.1 Verifiche a fessurazione

CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

Reazione del terreno

σvalle = N / A + M / Wgg

omonte = N / A - M / Wgg

$$A = 1.0*B$$
 = 6.20 (m^2)
 $Wgg = 1.0*B^2/6$ = 6.41 (m^3)

	N	M	_o valle	σmonte
caso	FL-NIT	FL-N I 1	FL-N1/21	FL-N1/ 21

lato valle		\	lat	o monte
		\ 		
	a¦	b¦	C	
ovalle			<u> </u>	↑ ↑ ↑ ↑ Omonte

sezioni di verifica

	N	М	_o valle	_o monte
caso	[kN]	[kNm]	[kN/m ²]	[kN/m ²]
Rara	1147.64	-82.54	172.22	197.99
ndia	1228.62	-169.64	171.69	224.64

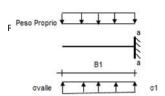
Mensola Lato Valle

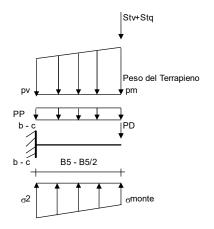
Peso Proprio. PP = 32.50 (kN/m)

Ma = $\sigma 1*B1^2/2$	+ (σvalle - σ1)*B1²/3	- PP*B1 ² /2*(1±kv)
------------------------	-----------------------	--------------------------------

caso	σvalle	σ1	Ма
caso	[kN/m ²]	[kN/m ²]	[kNm]
Rara	172.22	176.38	70.55
Rara	171.69	180.23	71.02

Mensola Lato Monte


PP	=	32.50	(kN/m^2)	peso proprio soletta fondazione
PD	=	0.00	(kN/m)	peso proprio dente
			**	₹


Nmin N max Freq N max QP 168.00 (kN/m^2) pm 168.00 188.00 pvb 168.00 188.00 168.00 (kN/m^2) pvc 168.00 188.00 168.00 (kN/m^2)

 $Mb = (\sigma_{monte} - (pvb + PP))^*B5^2/2 + (\sigma^2b - \sigma_{monte})^*B5^2/6 - (pm-pvb))^*B5^2/3 + (\sigma^2b - \sigma_{monte})^*B5^2/6 - (pm-pvb))^*B5^2/6 - (pm-pvb)^*B5^2/6 - (pm-pvb$ -(Stv+Sqv)*B5-PD*(B5-Bd/2)+Msp+Sp*H2/2

 $\label{eq:mc} \text{Mc} = (\sigma_{monte} - (\text{pvc} + \text{PP}))^* (\text{B5/2})^2 / 2 + (\sigma_2 \text{c} - \sigma_{monte})^* (\text{B5/2})^2 / 6 - (\text{pm-pvc})^* (\text{B5/2})^2 / 3 + (\sigma_2 \text{c} - \sigma_{monte})^* (\text{B5/2})^2 / 6 - (\sigma_2 \text{c} - \sigma_{monte})^2 / 6 - (\sigma_2 \text{c} - \sigma_{$ $\hbox{-(Stv+Sqv)*(B5/2)-PD*(B5/2-Bd/2)+Msp+Sp*H2/2}\\$

caso	σmonte	σ2b	Mb	₀ 2c	Mc
Caso	[kN/m ²]	[kN/m ²]	[kNm]	[kN/m²]	[kNm]
Rara	197.99	181.16	-484.38	189.57	-219.80
Naia	224.64	190.06	-478.33	207.35	-212.22

Mandataria: Mandante:

SALINI IMPREGILO S.p.A. ASTALDI S.p.A.

PROGETTISTA:

Mandataria:

SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. SYSTRA S.A.

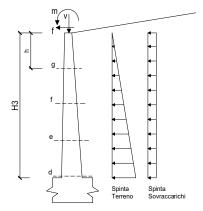
PROGETTO ESECUTIVO

 N_{ext}

Relazione di calcolo

LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014


PROGETTO LOTTO CODIFICA DOCUMENTO REV. **PAGINA** IF1M 0.0.E.ZZ SL.08.00.001 Α 136 di 211

CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo

Mt = $\frac{1}{2}$ Ka_{orizz.}* γ *h²*h/3 Mq = $\frac{1}{2}$ Ka_{orizz}*q*h² M_{ext} = m+f*h

= v

condizione Rara

sezione	h	Mt	Mq	M _{ext}	M _{tot}	N _{ext}	N _{pp}	N _{tot}
30210110	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	7.60	286.72	203.72	10.00	500.44	15.38	147.35	162.73
e-e	5.70	120.96	114.59	10.00	245.55	15.38	97.13	112.51
f-f	3.80	35.84	50.93	10.00	96.77	15.38	55.84	71.22
g-g	1.90	4.48	12.73	10.00	27.21	15.38	23.46	38.84

Sez.	М	N	h	Af	A'f	$\sigma^{\rm C}$	σ^{f}	wk	\mathbf{w}_{amm}
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)	(mm)	(mm)
a - a	71.02	0.00	1.30	15.71	31.42	0.48	38.83	0.065	0.200
b - b	-484.38	0.00	1.30	31.42	15.71	2.68	135.40	0.152	0.200
C - C	-219.80	0.00	1.30	31.42	15.71	1.22	61.44	0.069	0.200
d - d	500.44	162.73	1.15	31.42	15.71	3.51	136.70	0.154	0.200
e -e	245.55	112.51	0.96	31.42	15.71	2.35	79.68	0.090	0.200
f - f	96.77	71.22	0.78	31.42	15.71	1.36	38.15	0.043	0.200
g - g	27.21	38.84	0.59	31.42	15.71	0.64	13.30	0.013	0.200

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

Mandataria: Mandante:

SALINI IMPREGILO S.p.A. ASTALDI S.p.A.

PROGETTISTA:

Mandataria: Mandante

SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.

PROGETTO ESECUTIVO Relazione di calcolo

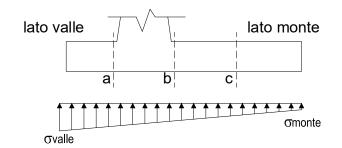
LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA IF1M 0.0.E.ZZ CL SL.08.00.001 A 137 di 211

9.5.2 Verifiche alle tensioni

CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

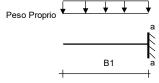

Reazione del terreno

 $_{\sigma}$ valle = N / A + M / Wgg $_{\sigma}$ monte = N / A - M / Wgg

 $A = 1.0^*B$ = 6.20 (m²)

 $Wgg = 1.0*B^2/6 = 6.41 (m^3)$

0200	N	М	σvalle	σmonte
caso	[kN]	[kNm]	[kN/m ²]	[kN/m²]
atation	1147.64	-82.54	172.22	197.99
statico	1228.62	-169.64	171.69	224.64

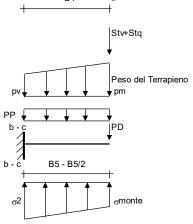


Mensola Lato Valle

Peso Proprio. PP = 32.50 (kN/m

Ma = $\sigma^{1*B1^2/2}$ + ($\sigma^{1*B1^2/3}$ - PP*B1²/2*(1±kv)

caso	σvalle	σ1	Ma
Caso	[kN/m ²]	[kN/m ²]	[kNm]
statico	172.22	176.38	70.55
statico	171.69	180.23	71.02


Mensola Lato Monte

Nmin N max stat N max sism 168.00 188.00 172.00 (kN/m^2) pm 168 00 188 00 172 00 (kN/m²)pvb pvc 168.00 188.00 172.00 (kN/m^2)

$$\label{eq:monte} \begin{split} Mb = & (\sigma_{monte} - (pvb + PP)^*(1\pm kv))^*B5^2/2 + (\sigma^2b - \sigma_{monte})^*B5^2/6 - (pm-pvb))^*(1\pm kv)^*B5^2/3 + (Stv + Sqv)^*B5 - PD^*(1\pm kv)^*(B5 - Bd/2) - PD^*kh^*(Hd + H2/2) + Msp + Sp^*H2/2 \end{split}$$

 $\begin{aligned} \text{Mc} = & (\sigma_{\text{monte}} - (\text{pvc+PP})^* (1 \pm \text{kv}))^* (B5/2)^2 / 2 + (\sigma_2 c_{\text{romonte}})^* (B5/2)^2 / 6 - (\text{pm-pvc})^* (1 \pm \text{kv})^* (B5/2)^2 / 3 + (Stv+Sqv)^* (B5/2) - PD^* (1 \pm \text{kv})^* (B5/2 - Bd/2) - PD^* \text{kh}^* (Hd+H2/2) + Msp+Sp^* H2/2) \end{aligned}$

caso	σmonte	σ2b	Mb	σ2c	Мс
caso	[kN/m ²]	[kN/m ²]	[kNm]	[kN/m²]	[kNm]
statico	197.99	181.16	-484.38	189.57	-219.80
Statico	224.64	190.06	-478.33	207.35	-212.22
oiomo I	150.48	208.61	-795.44	179.54	-335.58
sisma+	155.81	210.39	-795.77	183.10	-334.45
-1	133.65	191.81	-754.48	162.73	-319.03
sisma-	138.98	193.58	-751.74	166.28	-317.13

Mandataria: Mandante:
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.

PROGETTISTA:

Mandataria: Mandante:

SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.

PROGETTO ESECUTIVO
Relazione di calcolo

LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

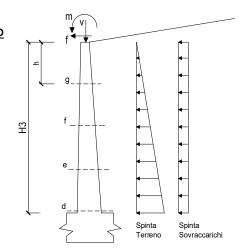
IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA

IF1M 0.0.E.ZZ CL SL.08.00.001 A 138 di 211

CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo


Mt stat = $\frac{1}{2} \text{Ka}_{\text{orizz.}}^* \gamma^* (1 \pm k v)^* h^{2*} h/3$

Mq = $\frac{1}{2}$ Ka_{orizz}*q*h²

 $M_{ext} = m+f^*h$

 $N_{ext} = v$

 $N_{pp+inerzia} = \sum Pm_i^*(1\pm kv)$

condizione statica

sezione	h	Mt	Mq	M _{ext}	M _{tot}	N _{ext}	N_{pp}	N _{tot}
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	7.60	286.72	203.72	10.00	500.44	15.38	147.35	162.73
e-e	5.70	120.96	114.59	10.00	245.55	15.38	97.13	112.51
f-f	3.80	35.84	50.93	10.00	96.77	15.38	55.84	71.22
g-g	1.90	4.48	12.73	10.00	27.21	15.38	23.46	38.84

Condizione Statica

Sez.	М	N	h	Af	A'f	σ^{C}	σf
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)
a - a	71.02	0.00	1.30	15.71	31.42	0.48	38.83
b - b	-484.38	0.00	1.30	31.42	15.71	2.68	135.40
C - C	-219.80	0.00	1.30	31.42	15.71	1.22	61.44
d - d	500.44	162.73	1.15	31.42	15.71	3.51	136.70
e -e	245.55	112.51	0.96	31.42	15.71	2.35	79.68
f - f	96.77	71.22	0.78	31.42	15.71	1.36	38.15
g - g	27.21	38.84	0.59	31.42	15.71	0.64	13.30

La verifica tensionale nella combinazione di carico Quasi Permanente per il calcestruzzo risulta automaticamente soddisfatta, in quanto la tensione in combinazione di carico Rara risulta inferiore al limite inerente alla combinazione di carico Quasi Permanente (0.40f_{ck}=12.80 MPa). La verifica risulta, pertanto, certamente soddisfatta secondo entrambe le combinazioni.

La verifica tensionale nella combinazione di carico Rara per l'acciaio risulta soddisfatta in quanto la tensione è inferiore al limite di 337.5 MPa.

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 ROCKSOIL S.p.A. SYSTRA S.A. SYSTRA-SOTECNI S.p.A. PROGETTO ESECUTIVO PROGETTO LOTTO CODIFICA DOCUMENTO REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ CL SL.08.00.001 Α 139 di 211

9.6 INCIDENZE ARMATURE MURI ANDATORI IN DESTRA SU FONDAZIONE DIRETTA

Il calcolo delle incidenze viene eseguito tenendo conto dell'intero elemento strutturale, con incrementi che tengono conto degli eventuali infittimenti.

PARAMENTO MURO DIRETTO					
	96,6				
	ф	L	n.	Р	
	(mm)	(m)	-	(kg)	
vert. int.	20	7,47	164	3019,7	
vert. est.	20	7,545	82	1525,0	
long. int.	16	16,32	82	2111,1	
long. est.	16	16,32	82	2111,1	
long. inf.	0	16,32	82	0,0	
long. sup.	16	16,32	3	77,2	
richiamo	0	0	0	0,0	
legature	8	1,05	1152	477,0	
				0,0	
				0,0	
				0,0	
				0,0	
INCREMENTO %	0%				
PESO TOTALE AF	RMATURA	•	·	9321	
INCIDENZA (kg/	mc)	-		100	

FONDAZIONE MURO DIRETTO					
	132,2				
	ф	٦	n.	P	
	(mm)	(m)	-	(kg)	
long. Inf.	20	6,12	82	1237,0	
long sup.	20	6,12	164	2474,0	
trasv. inf.	20	16,32	32	1287,3	
trasv. sup.	20	16,32	26	1045,9	
chiusura	20	4,8	82	970,2	
parete	20	16,32	6	241,4	
cavallotti	14	3,17	159	608,8	
attesa	20	2,77	246	1679,6	
				0,0	
				0,0	
				0,0	
				0,0	
INCREMENTO %	20%				
PESO TOTALE ARMA	11453				
INCIDENZA (kg/mc)	•	•		90	

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA **DOCUMENTO** REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ SL.08.00.001 Α 140 di 211

10 MURI ANDATORI IN SINISTRA SU PALI

Nel seguito del presente paragrafo si riportano i criteri generali di Analisi ed i risultati del dimensionamento del muro di sostegno da realizzare in prossimità delle sezioni di imbocco del Sottovia, al fine di contenere localmente il corpo del rilevato ferroviario.

Trattasi del muro andatore in sinistra con fondazione su pali.

10.1 SCHEMATIZZAZIONE DELLE STRUTTURE

L'analisi delle opere è stata eseguita con modelli semplificati avvalendosi di fogli di calcolo, considerando le azioni derivanti dai pesi propri di muro e terreno di riempimento e dai sovraccarichi accidentali.

In condizioni sismiche, l'analisi è stata eseguita mediante metodo pseudo-statico, ipotizzando il cuneo di terreno a tergo del paramento dell'opera in equilibrio limite attivo, così come specificato al paragrafo 7.11.6.2.1 delle NTC 2008.

10.1.1 Geometria di calcolo muro

Trattasi di muro su fondazione indiretta. La lunghezza è di 16.40 m, l'altezza del paramento è variabile. Ai fini delle verifiche geotecniche e strutturali verrà considerata a vantaggio di sicurezza l'altezza massima del concio, pari a 6.68 m.

Si adotta, in definitiva, la seguente geometria di calcolo.

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante: SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	TRATTA NAPOLI-CANCELLO
PROGETTISTA: Mandataria: SYSTRA S.A. Mandante: SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL SL.08.00.001 A 141 di 211

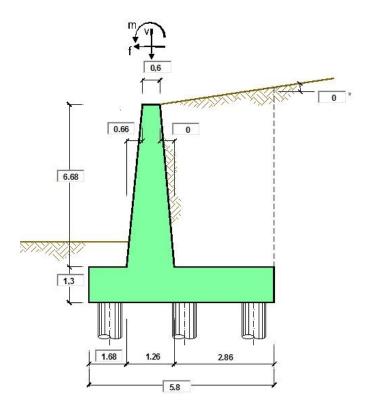


Figura 75- Geometria di calcolo del muro

10.1.2 Geometria di calcolo pali

Trattasi di pali trivellati di diametro 0.80 m e lunghezza 25.00 m, disposti così come nelle figure a seguire.

Si adotta, in definitiva, la seguente geometria di calcolo.

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 ROCKSOIL S.p.A. SYSTRA S.A. SYSTRA-SOTECNI S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA DOCUMENTO REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ CL SL.08.00.001 Α 142 di 211

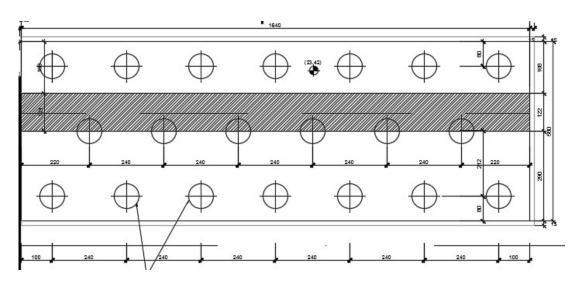


Figura 76-Geometria calcolo pali

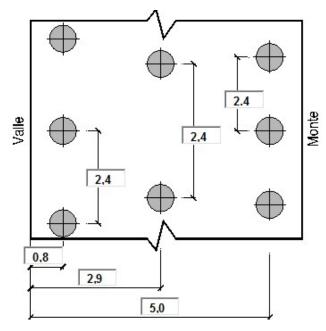


Figura 77- Geometria calcolo pali

10.2 ANALISI DEI CARICHI

Si riporta nel seguito la valutazione dell'entità dei carichi fissi e variabili che intervengono ai fini delle analisi e verifiche delle opere di sostegno oggetto del presente documento.

Peso permanente strutturale

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A. PROGETTISTA: Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO Relazione di calcolo	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA IF1M 0.0.E.ZZ CL SL.08.00.001 A 143 di 211

Per pesi permanenti strutturali si intendono le azioni associate ai pesi propri del muro e del terreno di riempimento.

Ai fini del calcolo del peso del muro si considera un peso per unità di volume γ_m = 25 kN/m³. Il terreno di riempimento ha peso per unità di volume γ_{rint} = 20 kN/ m³.

Con riferimento alla figura mostrata sotto:

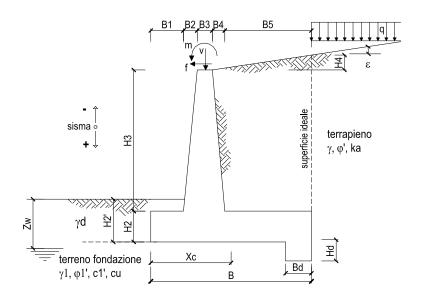


Figura 78-Geometria muro

Geometria del Muro

Elevazione	H3 =	6.68	(m)
Aggetto Valle	B2 =	0.66	(m)
Spessore del Muro in Testa	B3 =	0.60	(m)
Aggetto monte	B4 =	0.00	(m)

Geometria della Fondazione

Larghezza Fondazione	B =	5.80	(m)
Spessore Fondazione	H2 =	1.30	(m)
Suola Lato Valle	B1 =	1.68	(m)
Suola Lato Monte	B5 =	2.86	(m)
			•

Peso Specifico del Calcestruzzo	γcls =	25.00	(kN/m³)

si calcola:

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. CODIFICA PROGETTO ESECUTIVO **PROGETTO** LOTTO **DOCUMENTO** REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ SL.08.00.001 Α 144 di 211

FORZE VERTICALI

- Peso d	lel Muro (Pm)		SLE
Pm1 =	(B2*H3*γcls)/2	(kN/m)	55.11
Pm2 =	(B3*H3* _γ cls)	(kN/m)	100.20
Pm3 =	(B4*H3* _γ cls)/2	(kN/m)	0.00
Pm4 =	(B*H2*γcls)	(kN/m)	188.50
Pm =	Pm1 + Pm2 + Pm3 + Pm4	(kN/m)	343.81
- Peso d	lel terreno e sovr. perm. sulla scarpa di monte del muro (Pt)		
Pt1 =	(B5*H3* _γ ')	(kN/m)	382.10
Pt2 =	$(0,5*(B4+B5)*H4*_{\gamma}')$	(kN/m)	0.00
Pt3 =	(B4*H3*γ')/2	(kN/m)	0.00
Sovr =	qp * (B4+B5)	(kN/m)	45.76
Pt =	Pt1 + Pt2 + Pt3 + Sovr	(kN/m)	427.86
	carico accidentale sulla scarpa di monte del muro		
	c. Stat q * (B4+B5)	(kN/m)	62.92
Sovr acc	c. Sism qs * (B4+B5)	(kN/m)	12.584

Il coefficiente di spinta attiva è stato valutato utilizzando la teoria del cuneo di rottura di Coulomb, che tiene conto, oltre alle ipotesi base della teoria di Rankine, anche della presenza dell'attrito fra terra e muro δ e della superficie interna del paramento del muro comunque inclinata di un angolo ψ . Lo sviluppo analitico della teoria di Coulomb è stato definito da Muller-Breslau, i quali valutano il coefficiente di spinta attiva in condizione statica come:

$$k_{a} = \frac{sen^{2}(\psi + \varphi)}{sen^{2}(\psi) \cdot sen(\psi - \delta) \cdot \left[1 + \sqrt{\frac{sen(\varphi + \delta) \cdot sen(\varphi - \beta)}{sen(\psi - \delta) \cdot sen(\psi + \beta)}}\right]^{2}}$$

dove:

è l'angolo di resistenza a taglio del terreno;

δ è l'angolo di attrito terra-muro, assunto pari a 2/3 φ;

€ è l'inclinazione rispetto all'orizzontale della superficie del terreno;

Per il terrapieno a tergo del muro si fa riferimento ai seguenti parametri generalmente associati ai rilevati ferroviari:

 γ =20 kN/m³ peso di volume naturale, ϕ' = 38° angolo di resistenza al taglio,

APPALTATORE:			LIN	EA FEF	RROVIA	RIA NAPOL	_I - B/	ARI
Mandataria:	Mandante:	_		TRATI	A NAPO	LI-CANCE	LLO	
SALINI IMPREGILO	S.p.A. ASTALDI S	.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE				IIIQEIE	
PROGETTISTA:						MBITO DEGL	,	
Mandataria:	Mandante:				•	ERTITO IN LE		
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	COLAL	7.L. 133/2	014, CONV	EKIIIO IN LE	GGE 10)4 / 20 14
PROGETTO ESECU	ITIVO		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo	0		IF1M	0.0.E.ZZ	CL	SL.08.00.001	Α	145 di 211

c' = 0 kPa coesione drenata.

Peso permanente non strutturale

Per pesi permanenti non strutturali si intendono le azioni associate alla presenza del ballast, del rivestimento del parapetto esterno del muro, del terreno di riporto già menzionato nonché alla barriera antirumore.

Il peso permanente dato dalla presenta del ballast è stato considerato un carico permanente qp= 16.00 $\frac{kN}{m^2}$

L'azione che deriva dal rivestimento del parapetto è modellata all'interno del foglio di calcolo mediante l'utilizzo di una forza concentrata in testa al muro pari al peso totale che da essa derivata più un momento di trasporto atto a tenere in conto in reale punto di applicazione di questa forza.

Considerando un rivestimento di 12 cm in pietra di tufo, risulta:

$$vp = 17.00 \cdot 0.12 \cdot 5.60 \frac{kN}{m} = 11.42 \frac{kN}{m}$$

 $mp = 17.00 \cdot 0.12 \cdot 5.60 \cdot 0.74 \frac{kN m}{m} = 8.45 \frac{kN m}{m}$

L'azione che deriva dalla barriera antirumore è modellata all'interno del foglio di calcolo mediante l'utilizzo di una forza concentrata in testa al muro pari al peso totale che da essa derivata. Il momento di trasporto atto a tenere in conto in reale punto di applicazione di questa forza non è stato considerato, risultando tale scelta a vantaggio di sicurezza.

$$vp = 4.00 \cdot 6.00 \frac{kN}{m} = 24.00 \frac{kN}{m}$$

Sovraccarichi accidentali- Carichi ferroviari

Trattandosi di opere di sostegno poste a margine della sede Ferroviaria, per la valutazione dell'entità dei carichi variabili da considerare nel calcolo, si fa riferimento al modello di carico LM71 definito dalle S.T.I. è definito nella norma EN 1991-2:2003/AC:2010 di cui allo schema seguente:

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante: SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	TRATTA NAPOLI-CANCELLO
PROGETTISTA: Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO Relazione di calcolo	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA IF1M 0.0.E.ZZ CL SL.08.00.001 A 146 di 211

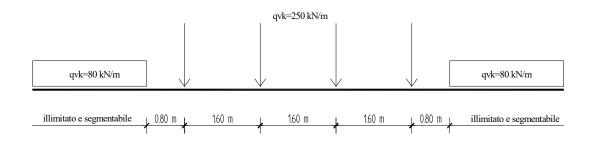


Figura 79 - Treno LM71

A tali carichi si deve applicare il coefficiente α =1 ai sensi del par. 3.5.2.3.6 del Manuale RFI sull'incremento dinamico delle azioni sui muri di sostegno e delle S.T.I. per tipi di traffico analogo a quello della linea in oggetto.

In senso longitudinale, si è assunto che il carico si distribuisca sull'intero ingombro dei suoi assi, pari a 6.40 m.

$$q = 250 \times 4 / 6.40 = 156.25 \text{ kN/m}$$

In senso trasversale, questo carico è stato distribuito attraverso il ricoprimento costituito dal ballast con una pendenza 1 a 4 (Q = 156.25/3 = 52.08 kN/m²) e nel corpo del rilevato secondo l'angolo d'attrito del terreno (Figura 73).

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante: SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	TRATTA NAPOLI-CANCELLO
PROGETTISTA: Mandataria: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL SL.08.00.001 A 147 di 211

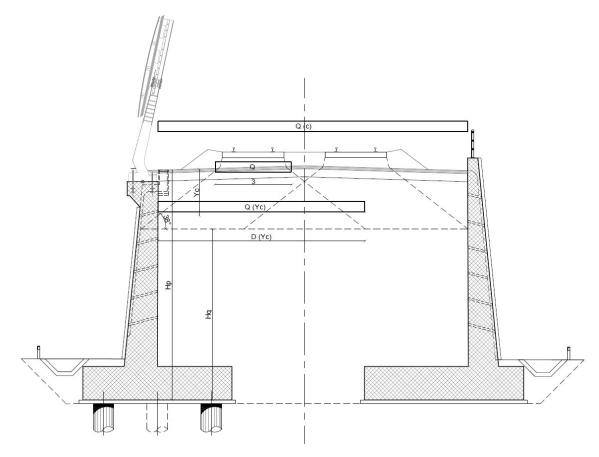


Figura 80 -Schema di diffusione del carico accidentale

Detto Qc il valore convenzionale del sovraccarico accidentale da considerare sul piano limite del terrapieno a monte dell'opera di sostegno, risulta:

$$Qc = \frac{Q(yc) \cdot Hq}{Hp} = 14.43 \frac{KN}{m^2}$$

dove:

$$Q'(yc) = \frac{52.08 \cdot 3}{D(yc)} \frac{KN}{m^2} = 19.38 \frac{KN}{m^2}$$

Rimandando per le simbologie utilizzate a quanto rappresentato nei grafici precedenti si riporta nel seguito una tabella riassuntiva di quanto detto.

APPALTATORE:			LIN	EA FE	RROVIA	RIA NAPOI	_I - B	ARI
Mandataria:	Mandante:			TRAT1	TA NAPO	LI-CANCE	LLO	
SALINI IMPREGILO S.p.A.	ASTALDI S	6.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE				LUCELE	
PROGETTISTA:						AMBITO DEGL	,	
Mandataria: Mandante:			_		,	ERTITO IN LE		
SYSTRA S.A. SYSTRA	-SOTECNI S.p.A.	ROCKSOIL S.p.A.	3317121	7.2. 100/2	o, oo			, , ,
PROGETTO ESECUTIVO			PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGII				PAGINA	
Relazione di calcolo			IF1M	0.0.E.ZZ	CL	SL.08.00.001	Α	148 di 211

D(yc)	Hq	Нр	Q (yc)	Q'c
m	m	m	KN/m ²	KN/m ²
8.06	6.65	8.93	19.38	14.43

Il valore Q'c così calcolato viene cautelativamente amplificato per 1.5 per tenere conto della parziale sovrapposizione con un analogo carico accidentale sul binario più lontano. Pertanto, a vantaggio di sicurezza, sul muro in questione si considera un sovraccarico accidentale:

$$Q_c = 22 \text{ kN/m}^2$$

Vento

Il calcolo dell'azione del vento e stato condotto secondo quanto riportato al par. 3.3 del DM 2008. L'azione del vento viene convenzionalmente considerata come un'azione statica agente in direzione orizzontale. La pressione normale alle superfici è stata valutata mediante l'espressione:

$$p = q_b \cdot c_e \cdot c_p \cdot c_d$$

dove:

q_b è la pressione cinematica di riferimento;

ce è il coefficiente di esposizione;

cp è il coefficiente di forma;

c_d è il coefficiente dinamico.

Dato un periodo di ritorno T_r=75 anni e l'area in cui sorge l'opera ne conseguono i parametri nel seguito riportati:

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante: SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	TRATTA NAPOLI-CANCELLO
PROGETTISTA: Mandataria: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL SL.08.00.001 A 149 di 211

Zona	3		(Fig. 3.3.1 DM. 2008)
Altitudine del sito as	23	m	
Classe di rugosità	D		(Tab. 3.3.III DM. 2008)
Categoria di esposizione	2) II		(Fig. 3.3.2 DM. 2008)
Altitudine limite a₀	500	m	(Tab. 3.3.I DM. 2008)
Velocità riferimento caratteristica v _{b,o}	27	m/s	(per TR= 50 anni)
Periodo di ritorno	75	anni	
Coefficiente a _R di amplificazione	1.02		(eq. C.3.3.2 Istruzioni)
Velocità riferimento v_b (TR) = $a_R v_{b,o}$	27.63	m/s	
Coefficiente ka	0.02		(Tab. 3.3.I DM. 2008)
Coefficiente k _r	0.19		(Tab. 3.3.II DM. 2008)
Altezza z₀	0.05	m	(Tab. 3.3.II DM. 2008)
Altezza z _{min}	4	m	(Tab. 3.3.II DM. 2008)
Velocità di riferimento di calcolo v _b	27.63	m/s	(funzione di as)
Pressione cinetica di riferimento q _b	477.25	N/m2	(eq. 3.3.4 DM. 2008)
Coefficiente di forma c _p	1.4		
Coefficiente dinamico c _d	1		
Coefficiente d'attrito c _f	1		
Coefficiente di topografia c _t	1		

Tabella 19-Parametri per il calcolo dell'azione del vento

Si ricorda che:

Per il calcolo del coefficiente di esposizione si è considerata z=6m pari all'altezza della barriera;

Per il calcolo di cp si è fatto riferimento a travi ad anima piena e reticolari (caso φ=1).

Ne consegue $p = 1.361 \text{ KN/m}^2$.

In definitiva, le azioni risultanti alla base della barriera/testa muro, schematizzate mediante un'azione orizzontale e da un momento concentrati, sono le seguenti:

$$f = 1.36 k \frac{kN}{m^2} \cdot 6 m = 8.17 kN/m$$

 $m = 8.17 kN/m \cdot 3 m = 24.50 kNm/m$

Effetti aerodinamici associati al passaggio dei treni

APPALTATORE:		LIN	EA FEF	RROVIA	RIA NAPOL	_I - B	ARI
	<u>ndante:</u> STALDI S.p.A.		TRATI	A NAPO	LI-CANCE	LLO	
PROGETTISTA: Mandataria: SYSTRA S.A. Mandante: SYSTRA-SOTECNI	OPERE AC	CCESSOF	RIE, NELL'A	00 E PK 15+50 AMBITO DEGL ERTITO IN LE	I INTEF	RVENTI DI	
PROGETTO ESECUTIVO		PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGIN				PAGINA	
Relazione di calcolo		IF1M	0.0.E.ZZ	CL	SL.08.00.001	Α	150 di 211

Gli effetti aerodinamici associati al passaggio dei treni sono analoghi a quelli del vento (carichi equivalenti statici sulle barriere anti-rumore).

L'intensità della pressione da considerare viene determinata secondo quanto indicato nel punto 1.4.6. delle Istruzioni, che riportano la figura 5.2.8 del DM 14 gennaio 2008.

Nel caso in esame la distanza delle barriere dai binari è pari a 4.65 m, da cui:

$$q1k = \pm 0.19 \text{ kN/m}^2$$

Poiché la barriera ha un'altezza dal piano del ferro di circa 4.93 m e la distanza del piano del ferro dalla sommità della testa del muro su cui è ancorata la barriera è pari a 0.97 m, le sollecitazioni relative agli effetti aerodinamici risultano:

$$f = 0.19 \frac{kN}{m^2}$$
 (4.93 m + 0.97 m) = 1.12 kN/m

Il momento valutato rispetto alla testa del muro vale:

$$m = 1.12 \ kN/m \cdot 2.95 \ m = 3.30 \ kNm/m$$

Azione sismica

L'analisi sismica dei muri è stata eseguita con il metodo pseudo-statico. I coefficienti sismici orizzontale kh e verticale kv sono valutati con le relazioni riportate al paragrafo 3.10.3.1 del manuale RFI DTC SI CS MA IFS 001 A:

$$k_h = 2 \beta_m \frac{a_{max}}{g}$$

$$k_v = \pm 0.5 \cdot k_h$$

dove:

βm è un coefficiente dipendente dal valore dell'accelerazione orizzontale ag e dalla tipologia di sottosuolo. Nel caso in esame, essendo il sottosuolo di categoria C e ag(g) compresa tra 0.2 e 0.4, si assume β_m=0.31;

kh è il coefficiente sismico in direzione orizzontale;

kv è il coefficiente sismico in direzione verticale.

L'accelerazione massima viene valutata come:

APPALTATORE:			LIN	EA FEF	RROVIA	RIA NAPOL	_I - B/	ARI
Mandataria:	Mandante:			TRATI	A NAPO	LI-CANCE	LLO	
SALINI IMPREGILO S.p.A.	ASTALDI S	.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE				IIIQEIE	
PROGETTISTA:						MBITO DEGL	,	
Mandataria: Mandar	nte:				•	ERTITO IN LE		
SYSTRA S.A. SYS	TRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	OUIALL	7.L. 133/2	014, 0014		OOL I	,4 / 20 14
PROGETTO ESECUTIVO			PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA					PAGINA
Relazione di calcolo			IF1M	0.0.E.ZZ	CL	SL.08.00.001	Α	151 di 211

$$\frac{a_{\max}}{g} = S_S \cdot S_T \cdot \frac{a_g}{g}$$

dove:

Ss = 1.37 tiene conto dell'amplificazione stratigrafica;

St = 1.00 tiene conto dell'amplificazione topografica;

 $\frac{a_g}{g} = 0.22$ è l'accelerazione orizzontale massima attesa al sito per lo SLV.

La valutazione della spinta in condizioni dinamiche viene effettuata con il metodo di Mononobe e Okabe:

per
$$\beta \leq \varphi - \theta$$

$$k_{a,s} = \frac{sen^2(\psi + \varphi - \theta)}{cos(\theta) \cdot sen^2(\psi - \theta - \delta) \cdot \left[1 + \sqrt{\frac{sen(\varphi + \delta) \cdot sen(\varphi - \beta - \theta)}{sen(\psi - \theta - \delta) \cdot sen(\psi + \beta)}}\right]^2}$$

per
$$\beta > \varphi - \theta$$

$$k_{\alpha,s} = \frac{sen^2(\psi + \varphi - \theta)}{cos(\theta) \cdot sen^2(\psi) \cdot sen(\psi - \theta - \delta)}$$

dove:

$$\theta$$
 è l'angolo tale che $tan\theta = \frac{k_h}{1 \pm k_V}$;

La tabella seguente riporta i suddetti parametri, distinguendo le combinazioni di verifica in base all'approccio perseguito:

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante: SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	TRATTA NAPOLI-CANCELLO
PROGETTISTA: Mandataria: SYSTRA S.A. Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO Relazione di calcolo	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA IF1M 0.0.E.ZZ CL SL.08.00.001 A 152 di 211

	Accelerazione sismica	a _g /g	0.22	(-)
	Coefficiente Amplificazione Stratigrafico	S_S	1.37	(-)
Sismici	Coefficiente Amplificazione Topografico	S_{T}	1	(-)
Sisr	Coefficiente di riduzione dell'accelerazione massima	βs	0.62	(-)
Dati (Coefficiente sismico orizzontale	kh	0.186868	(-)
	Coefficiente sismico verticale	kv	0.0934	(-)
	Muro libero di traslare o ruotare	⊜si	⊚ r	10

			SL	.E	STR/0	GEO
cien i ta	Coeff. di Spinta Attiva Statico	ka	0.217		0.217	
1 0 + ×	Coeff. Di Spinta Attiva Sismica sisma +	kas+	0.325		0.325	
S	Coeff. Di Spinta Attiva Sismica sisma -	kas-	0.353		0.353	

Sono state altresì considerate le forze di inerzia dovute al peso del muro e del terreno gravante sulla zattera di monte, valutate come:

$$F_i = k_h \cdot W_i$$

Per quanto riguarda l'incremento sismico di spinta dovuto ai terrapieni, esso è stato applicato a metà altezza del muro, così come prescritto dalla norma per muri impediti di traslare e ruotare intorno al piede.

10.2.1 Combinazioni di carichi SLU

Tutte le condizioni di carico elementari di carico possono essere raggruppate nei seguenti gruppi di condizioni:

G1: azioni dovute al peso proprio e ai carichi permanenti strutturali;

G2: azioni dovute ai carichi permanenti non strutturali;

P: azioni dovute ai carichi di precompressione;

Qik: azioni dovute ai sovraccarichi accidentali;

E: azioni dovute ai carichi simici orizzontali e verticali.

Secondo quanto previsto dalle NTC 2008, si considerano tutte le combinazioni non sismiche del tipo:

$$F_d = \gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_p \cdot P_k + \gamma_q \left[Q_{1k} + \sum \left(\Psi_{0i} \cdot Q_{ik} \right) \right]$$

essendo:

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. CODIFICA PROGETTO ESECUTIVO **PROGETTO** LOTTO **DOCUMENTO** REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ SL.08.00.001 Α 153 di 211

	Coef.	Condizione				
Carichi	γ F (γ E)	EQU	STR	GEO		
			(A1)	(A2)		
Permanenti	∕⁄G,1	0,9÷1,1	1,0÷1,3	1,0÷1,0		
Perm.non strutturali	∕⁄G,2	0,0÷1,5	0,0÷1,5	0,0÷1,3		
Variabili	∕∕Q,i	0,0÷1,5	0,0÷1,5	0,0÷1,3		

Tabella 20-Coefficienti parziali per le azioni favorevoli-sfavorevoli

 γ_p = 1.00 (precompressione)

 Ψ_{0i} = 0÷1.00 (coefficiente di combinazione allo SLU per tutte le condizioni di carico elementari variabili per tipologia e categoria Qik)

Le combinazioni sismiche considerate sono:

$$F_d = G_1 + G_2 + P_k + E + \left[\sum_{i} (\Psi_{2i} \cdot Q_{ik}) \right]$$

essendo:

 Ψ_{2i} = 0 nel caso di sovraccarichi stradali.

10.2.2 Combinazioni di carichi SLE

Secondo quanto previsto dal D.M. 14.01.2008, si considerano le combinazioni:

$$F_d = G_1 + G_2 + P_k + \left[\sum_{i} (\Psi_{2i} \cdot Q_{ik}) \right]$$

Essendo, nel caso di carichi stradali, Ψ_{2i} pari a 0 per la combinazione quasi permanente, pari a 0.75 per la combinazione frequente e pari a 1 per la combinazione rara.

10.3 CRITERI DI CALCOLO GEOTECNICO E STRUTTURALE

In generale, per ogni stato limite deve essere verificata la condizione:

$$E_d \le R_d$$

dove E_d rappresenta l'insieme amplificato delle azioni agenti, ed R_d l'insieme delle resistenze, queste ultime corrette in funzione della tipologia del metodo di approccio al calcolo eseguito, della geometria del sistema e delle proprietà meccaniche dei materiali e dei terreni in uso.

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA **DOCUMENTO** REV. **PAGINA** Relazione di calcolo 0.0.E.ZZ SL.08.00.001 Α 154 di 211

A seconda dell'approccio perseguito, sarà necessario applicare dei coefficienti di sicurezza o amplificativi, a secondo si tratti del calcolo delle caratteristiche di resistenza o delle azioni agenti.

In particolare, in funzione del tipo di verifica da eseguire, avremo, per le azioni derivanti da carichi gravitazionali, i seguenti coefficienti parziali:

Carichi	Coefficiente parziale γ _F (ο γ _E)	EQU	(A1) STR	(A2) GEO
Permanenti	γ _{G1}	0.9÷1.1	1.0÷1.3	1.0
Perm. non strutturali	γ G2	0.0÷1.5	0.0÷1.5	0.0÷1.3
Variabili	$\gamma_{ extsf{Q,i}}$	0.0÷1.5	0.0÷1.5	0.0÷1.3

Tabella 21- Coefficienti parziali per le azioni favorevoli-sfavorevoli

Ai fini delle resistenze, in funzione del tipo di verifica da eseguire, il valore di progetto può ricavarsi in base alle indicazioni sotto riportate.

Parametro	Parametro di riferimento	Coefficiente parziale Ум	M1	M2
Tangente dell'angolo di resistenza f'	tan γ 'ĸ	γr	1.00	1.25
Coesione efficace	C'K	γc'	1.00	1.25
Resistenza non drenata	Cuk	γcu	1.00	1.40
Peso dell'unità di volume	γ	γ_{g}	1.00	1.00

Tabella 22-Coefficienti parziali per i parametri geotecnici del terreno

Per la stratigrafia attraversata dai pali si fa riferimento all'inquadramento geotecnico riportato al Cap. 5 della presente relazione, nonché a quanto riassunto nelle curve di carico limite riportate nel seguito e allegate alla Relazione Geotecnica.

Le verifiche SLU e GEO vengono effettuate con l'Approccio 1, che prevede due combinazioni di coefficienti:

Combinazione 1 (A1+M1+R1)

Combinazione 2 (A2+M1+R2)

e con l'Approccio 2, che prevede la seguente combinazione di coefficienti:

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA **DOCUMENTO** REV. **PAGINA** Relazione di calcolo 0.0.E.ZZ SL.08.00.001 Α 155 di 211

Combinazione (A1+M1+R3)

La prima Combinazione dell'Approccio 1 viene utilizzata per le verifiche agli stati limite per il dimensionamento strutturale, la seconda Combinazione dell'Approccio 2 per le verifiche agli stati limite per il dimensionamento geotecnico, come specificato ai punti C6.4.3.1 e C6.5.3.1.1 delle Istruzioni ad eccezione della verifica a carico limite verticale dei pali dove si utilizza l'unica combinazione prevista dall'Approccio 2. I coefficienti parziali di sicurezza sono pari a:

Resistenza del palo	Simbolo	Pali trivellati		
inesisteriza dei paio	γR	(R1)	(R2)	(R3)
Resistenza alla punta	γР	1.00	1.70	1.35
Resistenza laterale (in compressione)	γL	1.00	1.45	1.15
Resistenza laterale (in trazione)	γιτ	1.00	1.60	1.25

Tabella 23-Coefficienti R

Per quanto riguarda le verifiche in condizioni sismiche, esse verranno effettuate considerando, per i diversi stati limite, i coefficienti amplificativi delle azioni (A) di valore unitario, come indicato al punto C7.11.6.2 delle Istruzioni per l'applicazione delle NTC 2008.

Ricapitolando, le verifiche riportate nel seguito della presente saranno effettuate nei confronti dei seguenti stati limite e con gli approcci metodologici di fianco riportati.

SLU di tipo geotecnico (GEO)

Carico limite del singolo palo di fondazione per azioni verticali	A1+M1+R3
Carico limite del singolo palo di fondazione per azioni orizzontali	A2+M1+R2

SLU di tipo strutturale (STR)

Raggiungimento della resistenza negli elementi strutturali	A1+M1+R1
--	----------

10.3.1 Carico limite del singolo palo per azioni verticali (GEO)

Per tali criteri si rimanda all'apposito capitolo della Relazione Geotecnica IF1M.0.0.E.ZZ.RB.VI.01.0.0.001.

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA **DOCUMENTO** RFV **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ SL.08.00.001 Α 156 di 211

10.3.2 Carico limite del singolo palo per azioni orizzontali (GEO)

I valori di progetto della resistenza si ottengono dal valore caratteristico, determinato utilizzando la teoria di Broms. Si assume, in pratica, che il comportamento dell'interfaccia palo-terreno sia rigido-perfettamente plastico, e cioè che la resistenza del terreno si mobiliti interamente per un qualsiasi valore non nullo dello spostamento e rimanga poi costante al crescere dello spostamento stesso. Si assume, inoltre, che la forma della sezione trasversale sia ininfluente, e che il valore della reazione del terreno p sia determinato solo dalla dimensione d della sezione del palo misurata normalmente alla direzione dello spostamento.

Per terreni incoerenti, si assume che la resistenza del terreno vari linearmente con la profondità z secondo la legge:

$$p = 3 \cdot k_p \cdot \gamma \cdot z \cdot d$$

dove:

 $kp = (1+sen\varphi)/(1-sen\varphi)$ è il coefficiente di spinta passiva che compete allo strato attraversato;

d è il diametro del palo;

γ è il peso per unità di volume dello strato attraversato.

Ai fini della determinazione del valore di progetto della resistenza del singolo palo di fondazione, è necessario considerare, in funzione della tipologia di approccio progettuale prescelto, il coefficiente parziale di sicurezza definito dalla normativa, secondo la Tabella 23.

Dall'equilibrio alla traslazione si ottiene il valore della forza orizzontale limite T_{lim} sopportabile dal palo. Il valore di progetto si ottiene riducendo quest'ultimo sia attraverso il coefficiente γ_T della colonna R della precedente tabella, sia mediante il corrispondente "coefficiente di correlazione" scelto in funzione del numero di verticali indagate.

$$T_{\text{lim},d} = \min \left(\frac{T_{\text{lim},media}}{\gamma_T \cdot \xi_3}; \frac{T_{\text{lim},\text{min}}}{\gamma_T \cdot \xi_4} \right)$$

In funzione del numero di verticali indagate, si è assunto ξ_3 =1.55 e ξ_4 = 1.42.

Nel caso in esame si è ipotizzato che il palo si comporti come palo lungo e che quindi il valore limite della forza orizzontale sopportabile dal palo possa essere calcolato come:

APPALTATORE:			LIN	EA FE	RROVIA	RIA NAPOL	_I - B	ARI
Mandataria:	<u>Mandante:</u>			TRAT1	A NAPO	LI-CANCE	LLO	
SALINI IMPREGILO S.p.A.	ASTALDI S	5.p.A.	INIVADIA	NTE TDA	I E DK UTU	00 E PK 15+58	SE INC	IIIQEIE
PROGETTISTA:						MBITO DEGL	,	
Mandataria: Mandante					•	ERTITO IN LE		
SYSTRA S.A. SYSTE	RA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	OUIALL	7.L. 133/Z	014, 0014		OOL II	74 / 2014
PROGETTO ESECUTIVO			PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo			IF1M	0.0.E.ZZ	CL	SL.08.00.001	Α	157 di 211

$$T_{\text{lim}} = k_p \cdot \gamma \cdot d^3 \cdot \sqrt[3]{\left(3.676 \cdot \frac{M_y}{k_p \cdot \gamma \cdot d^4}\right)^2}$$

dove My è il momento di plasticizzazione del palo.

10.3.3 Criteri di verifica a presso(tenso)flessione (STR)

La verifica a flessione, condotta per la platea di fondazione, consiste nell'assicurare che in ogni sezione il momento resistente risulti superiore o uguale al momento flettente di calcolo.

Con riferimento alle sezioni presso-inflesse del paramento e semplicemente inflesse della zattera, le verifiche di resistenza (SLU) si eseguono controllando che:

$$M_{Rd} = M_{Rd} (N_{Ed}) \ge M_{Ed}$$

dove:

 M_{Rd} è il valore di calcolo del momento resistente corrispondente a N_{Ed} ;

 M_{Ed} è il valore di calcolo della componente flettente dell'azione.

Le verifiche di tutti gli elementi sono state effettuate in base a semplici schemi noti della Scienza delle Costruzioni.

10.3.4 Criteri di verifica a taglio (STR)

Per elementi sprovvisti di armature trasversali resistenti a taglio, la resistenza a taglio $^{V_{Rd}}$ viene valutata sulla base della resistenza a trazione del calcestruzzo.

La verifica di resistenza si pone con:

$$V_{Rd} = \left\{ \frac{0.18 \cdot k \cdot \left(100 \cdot \rho_l \cdot f_{c_k}\right)^{\frac{1}{3}}}{\gamma_c} + 0.15 \cdot \sigma_{cp} \right\} \cdot b_w \cdot d \ge \left(v_{\min} + 0.15 \cdot \sigma_{cp}\right) \cdot b_w \cdot d$$

con:

$$k = 1 + \left(\frac{200}{d}\right)^{\frac{1}{2}} \le 2$$

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA: Mandataria: Mandante:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL SL.08.00.001 A 158 di 211

$$v_{\min} = 0.035 \cdot k^{\frac{3}{2}} \cdot f_{ck}^{\frac{1}{2}}$$

dove:

d è l'altezza utile della sezione;

$$\rho_l = \frac{A_{sl}}{\left(b_w \cdot d\right)}$$
 è il rapporto geometrico di armatura longitudinale di trazione;
$$N_{Ed}$$

$$\sigma_{cp} = \frac{N_{Ed}}{A_c}$$
 è la tensione media di compressione della sezione;

 $b_{\scriptscriptstyle W}$ è la larghezza minima della sezione (in mm).

fck è la resistenza a compressione cilindrica del calcestruzzo;

 $\gamma c = 1.5$.

- Muro (Mm)

10.4 VERIFICHE AGLI STATI LIMITE ULTIMI

Le sollecitazioni di calcolo per le verifiche SLU e SLV sono state ottenute calcolando le risultanti di tutte le azioni normali, taglianti e flettenti rispetto al piano di fondazione. Si riportano di seguito i valori caratteristici.

MOMENTI DELLE FORZE VERT. RISPETTO AL PIEDE DI VALLE DEL MURO

- ivialo (iviiii)			
Mm1 = ` ´	Pm1*(B1+2/3 B2)	(kN/m)	116.83
Mm2 =	Pm2*(B1+B2+0,5*B3)	(kN/m)	264.53
Mm3 =	Pm3*(B1+B2+B3+1/3 B4)	(kN/m)	0.00
Mm4 =	Pm4*(B/2)	(kN/m)	546.65
Mm =	Mm1 + Mm2 + Mm3 + Mm4	(kN/m)	928.01
- Terrapieno e	sovr. perm. sulla scarpa di monte del muro		
Mt1 =	Pt1*(B1+B2+B3+B4+0,5*B5)	(kN/m)	1669.76
Mt2 =	Pt2*(B1+B2+B3+2/3*(B4+B5))	(kN/m)	0.00
Mt3 =	Pt3*(B1+B2+B3+2/3*B4)	(kN/m)	0.00
Msovr =	Sovr*(B1+B2+B3+1/2*(B4+B5))	(kN/m)	199.97
Mt =	Mt1 + Mt2 + Mt3 + Msovr	(kN/m)	1869.73
- Sovraccarico	o accidentale sulla scarpa di monte del muro		
Sovr acc. Sta	t *(B1+B2+B3+1/2*(B4+B5))	(kNm/m)	274.96
Sovr acc. Sis	m *(B1+B2+B3+1/2*(B4+B5))	(kNm/m)	54.99

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA DOCUMENTO REV. PAGINA Relazione di calcolo 0.0.E.ZZ SL.08.00.001 Α 159 di 211

INERZIA DEL - Inerzia del mi	MURO E DEL TERRAPIENO uro (Ps)		
Ps h=	Pm*kh	(kN/m)	64.25
Ps v=	Pm*kv	(kN/m)	32.12
	entale e verticale del terrapieno a tergo del muro (Pts)		
Ptsh =	Pt*kh	(kN/m)	82.52
Ptsv =	Pt*kv	(kN/m)	41.26
- Incremento o	rizzontale di momento dovuto all'inerzia del muro (MPs	h)	
MPs1 h=	kh*Pm1*(H2+H3/3)	(kN/m)	36.32
MPs2 h=	kh*Pm2*(H2 + H3/2)	(kN/m)	86.88
MPs3 h=	kh*Pm3*(H2+H3/3)	(kN/m)	0.00
MPs4 h=	kh*Pm4*(H2/2)	(kN/m)	22.90
MPs h=	MPs1+MPs2+MPs3+MPs4	(kN/m)	146.09
- Incremento ve	erticale di momento dowto all'inerzia del muro (MPs v)		
MPs1 v=	kv*Pm1*(B1+2/3*B2)	(kN/m)	10.92
MPs2 v=	kv*Pm2*(B1+B2+B3/2)	(kN/m)	24.72
MPs3 v=	kv*Pm3*(B1+B2+B3+B4/3)	(kN/m)	0.00
MPs4 v=	kv*Pm4*(B/2)	(kN/m)	51.08
MPs v=	MPs1+MPs2+MPs3+MPs4	(kN/m)	86.71
		, ,	
- Incremento o	rizzontale di momento dovuto all'inerzia del terrapieno (l	MPts h)	
MPts1 h=	kh*Pt1*(H2 + H3/2)	(kNm/m)	331.30
MPts2 h=	kh*Pt2*(H2 + H3 + H4/3)	(kNm/m)	0.00
MPts3 h=	kh*Pt3*(H2+H3*2/3)	(kNm/m)	0.00
MPts h=	MPts1 + MPts2 + MPts3	(kNm/m)	331.30
		,	
- Incremento ve	erticale di momento dovuto all'inerzia del terrapieno (MF	ts v)	
MPts1 v=	kv*Pt1*((H2 + H3/2) - (B - B5/2)*0.5)	(kNm/m)	156.01
MPts2 v=	kv*Pt2*((H2 + H3 + H4/3) - (B - B5/3)*0.5)	(kNm/m)	0.00
MPts3 v=	kv*Pt3*((H2+H3*2/3)-(B1+B2+B3+2/3*B4)*0.5)	(kNm/m)	0.00
MPts v=	MPts1 + MPts2 + MPts3	(kNm/m)	156.01

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL SL.08.00.001 A 160 di 211

Spinte e momenti SLU A1

_	TERRENO E DEL SOVRACCARICO condizione statica		SLE	STR/GEO
St =	0,5* ₇ '*(H2+H3+H4) ² *ka	(kN/m)	138.05	179.47
Sq perm =	q*(H2+H3+H4)*ka	(kN/m)	27.68	35.98
Sq acc =	q*(H2+H3+H4)*ka	(kN/m)	38.06	57.09
- Componente	orizzontale condizione statica			
Sth =	St*cos _δ	(kN/m)	124.78	162.21
Sqh perm =	Sq perm*cosδ	(kN/m)	25.02	32.52
Sqh acc =	Sq acc*cosδ	(kN/m)	34.40	51.60
- Componente	verticale condizione statica			
Stv =	St*sen δ	(kN/m)	59.07	76.79
Sqv perm=	Sq perm*senδ	(kN/m)	11.84	15.40
Sqvacc =	Sq acc*senδ	(kN/m)	16.29	24.43

MOMENTI DE	LLA SPINTA	DEL TERRENO E DEL SOVRACO	CARICO	SLE	STR/GEO
MSt1 =	Sth*((H2+H3	3+H4)/3)	(kN/m)	331.91	431.48
MSt2 =	Stv*B		(kN/m)	342.61	445.39
MSq1 perm=		H2+H3+H4)/2)	(kN/m)	99.82	129.77
MSq2 perm=	Sqv perm*B		(kN/m)	68.69	89.30
MSq1 acc =		2+H3+H4)/2)	(kN/m)	137.25	205.88
MSq2 acc =	Sqv acc*B		(kN/m)	94.45	141.68
MOMENTI DO Mfext perm= Mfext acc =	mp + fp*(H3	FORZE ESTERNE + H2) + vp*(B1 +B2 + B3/2) H2) + v*(B1 +B2 + B3/2)	(kNm/m) (kNm/m)	112.60 101.92	115.14 152.87
AZIONI COM		SULLA FONDAZIONE			
•	= Pm + Pt + v	p + Stv + Sqv perm + Sqv acc	(kN/m)	878.00 16.20	913.01
N acc min =	= Pm + Pt + v = v + Sqv acc		(kN/m)	16.29	24.43
N acc min =	= Pm + Pt + v = v + Sqv acc = v + Sqv acc e orizzontali (+ q acc Г)	,		
N acc min = N acc max = Risultante forze	= Pm + Pt + v = v + Sqv acc = v + Sqv acc e orizzontali (Sth + Sqh p	+ q acc Г)	(kN/m) (kN/m)	16.29 79.21	24.43 118.81
N acc min = N acc max = Risultante forze T perm = T acc = Risultante dei r MM perm	= Pm + Pt + v = v + Sqv acc = v + Sqv acc e orizzontali (' Sth + Sqh p Sqh acc+ f momenti rispe	+ q acc Γ) erm + fp tto al piede di valle (MM) ΣΜ	(kN/m) (kN/m) (kN/m) (kN/m)	16.29 79.21 149.79 43.69 2664.72	24.43 118.81 194.73 65.53
N acc min = N acc max = Risultante forze T perm = T acc = Risultante dei r	= Pm + Pt + v = v + Sqv acc = v + Sqv acc = orizzontali (' Sth + Sqh p Sqh acc+ f momenti rispe = n) =	+ q acc I) erm + fp tto al piede di valle (MM)	(kN/m) (kN/m) (kN/m) (kN/m)	16.29 79.21 149.79 43.69	24.43 118.81 194.73 65.53

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A. PROGETTISTA: Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO Relazione di calcolo	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA IF1M 0.0.E.ZZ CL SL.08.00.001 A 161 di 211

Spinte e momenti SLV A1+

Spinte e moment	ISLV A1+			
-	NO E DEL SOVRACCARICO	Γ	SLE	STR/GEO
- Spinta condizione sis Sst1 stat = 0,5* _v '*	smica + (H2+H3+H4)²*ka	(kN/m)	138.05	138.05
	(1+kv)*(H2+H3+H4)²*kas⁺-Sst1 stat	(kN/m)	88.18	88.18
•	2+H3+H4)*kas ⁺	(kN/m)	41.48	41.48
	2+H3+H4)*kas ⁺	(kN/m)	11.41	11.41
90 (11	zvilovitty kao	(11.17)		
- Componente orizzon	tale condizione sismica +			
	stat*cosδ	(kN/m)	124.78	124.78
Sst1h sism = Sst1 s	•	(kN/m)	79.70	79.70
	perm*cos _δ	(kN/m)	37.49	37.49
Ssq1h acc= Ssq1	acc*cosδ	(kN/m)	10.31	10.31
- Componente verticale	e condizione sismica +			
•	stat*sen8	(kN/m)	59.07	59.07
Sst1v sism = Sst1 s	~	(kN/m)	37.73	37.73
	perm*senδ	(kN/m)	17.75	17.75
	acc*sen8	(kN/m)	4.88	4.88
		(*** *****)		
MOMENTI DELLA OL	DINTA DEL TERRENO E DEL COVRACCA	пос Г		
- Condizione sismica	PINTA DEL TERRENO E DEL SOVRACCA +	RICO	SLE	STR/GEO
MSst1 stat = Sst1h	stat * ((H2+H3+H4)/3)	(kN/m)	331.91	331.91
	sism* ((H2+H3+H4)/2)	(kN/m)	318.01	318.01
	stat* B	(kN/m)	342.61	342.61
MSst2 sism = Sst1v	sism* B	(kN/m)	218.84	218.84
MSsq1 = Ssq1h	1 * ((H2+H3+H4/2)	(kN/m)	190.75	190.75
MSsq2 = Ssq1v		(kN/m)	131.26	131.26
MOMENTI DOVUTI A	ALLE FORZE ESTERNE			
Mfext1 = mp+m		(kNm/m)		21.91
· ·)*(H3 + H2)	(kNm/m)		35.79
	s)*(B1 +B2 + B3/2)	(kNm/m)		93.52
AZIONI COMPLES	SIVE SULLA FONDAZIONE			
AZIONI COMPLES	SIVE SOCIATIONDAZIONE			
Risultante forze vertica	· ·			
	Pt + vp + vs + Sst1v + Ssq1v + Ps v + Pts	(kN/m)	1002.15	1002.15
Nmax = Pm+F	Pt+vp+vs+Sst1v+Ssq1v+Ps v+Ptsv+q acc	(kN/m)	1002.15	1014.73
Risultante forze orizzo	ontali (T)			
	+ Ssq1h + fp + fs +Ps h + Ptsh	(kN/m)	403.53	403.53
Risultante dei moment	ti rispetto al piede di valle (MM)			
	, , ,	(kNm/m)	2450.04	2450.94
MM (Nmin) =	Σ M	,	2450.94	
MM (Nmax) =	Σ M	(kNm/m)	2505.93	2505.93

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL SL.08.00.001 A 162 di 211

Spinte e momenti SLV A1-

Spinte e mo	omenti SLV A1-			
SPINTE DEL :	TERRENO E DEL SOVRACCARICO ione sismica -		SLE	STR/GEO
•	0,5*γ'*(H2+H3+H4)²*ka	(kN/m)	138.05	138.05
Sst1 sism =	0,5*γ'*(1-kv)*(H2+H3+H4)²*kas ⁻ -Sst1 stat	(kN/m)	65.83	65.83
Ssq1 perm=	qp*(H2+H3+H4)*kas ⁻	(kN/m)	45.09	45.09
Ssq1 acc =	qs*(H2+H3+H4)*kas-	(kN/m)	12.40	12.40
•	orizzontale condizione sismica -			
Sst1h stat =	Sst1 stat*cosδ	(kN/m)	124.78	124.78
	Sst1 sism*cosδ	(kN/m)	59.50	59.50
Ssq1h perm=		(kN/m)	40.76	40.76
Ssq1h acc=	Ssq1 acc*cosδ	(kN/m)	10.31	11.21
•	verticale condizione sismica -			
Sst1v stat =	Sst1 stat*sen _δ	(kN/m)	59.07	59.07
	Sst1 sism*sen∂	(kN/m)	28.17	28.17
Ssq1v perm=		(kN/m)	19.29	19.29
Ssq1v acc=	Ssq1 acc*senδ	(kN/m)	5.31	5.31
MOMENTI DE	LLA SPINTA DEL TERRENO E DEL SOVRACCAR	исо Г		
- Condizione si			SLE	STR/GEO
	Sst1h stat * ((H2+H3+H4)/3)	(kN/m)	331.91	331.91
MSst1 sism=	Sst1h sism* ((H2+H3+H4)/2)	(kN/m)	237.41	237.41
MSst2 stat =	Sst1v stat* B	(kN/m)	342.61	342.61
MSst2 sism =	Sst1v sism* B	(kN/m)	163.38	163.38
MSsq1 =	Ssq1h * ((H2+H3+H4)/2)	(kN/m)	203.76	207.34
MSsq2 =	Ssq1v* B	(kN/m)	142.68	142.68
MOMENTI DO	WITH ALLE CODE ESTERNE			
Mfext1 =	VUTI ALLE FORZE ESTERNE mp+ms	(kNm/m)		21.91
Mfext2 =	(fp+fs)*(H3 + H2)	(kNm/m)		35.79
Mfext3 =	(vp+vs)*(B1 +B2 + B3/2)	(kNm/m)		93.52
AZIONI COM	PLESSIVE SULLA FONDAZIONE			
Risultante forze	e verticali (N)			
Nmin =	Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Pts	(kN/m)	847.79	847.79
Nmax =	Pm+Pt+vp+vs+Sst1v+Ssq1v+Ps v+Ptsv+q acc	(kN/m)	860.37	860.37
Risultante forze	e orizzontali (T) Set1h + Seg1h + fp + fe +Pe h + Pteh	(kN/m)	386 60	387.49
	Sst1h + Ssq1h + fp + fs +Ps h + Ptsh	(kN/m)	386.60	301.4 9
	momenti rispetto al piede di valle (MM)			
MM (Nmin)	$=$ $\sum M$	(kNm/m)	2474.48	2470.90
MM (Nmax)	= ΣM	(kNm/m)	2529.47	2525.89

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
PROGETTISTA: ASTALDI S.p.A. PROGETTISTA:	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL SL.08.00.001 A 163 di 211

Spinte e momenti SLU A2

MM acc (Nmax) =

 $\Sigma \mathsf{M}$

	TERRENO E DEL SOVRACCARICO condizione statica		SLE	STR/GEO
St =	0,5* ₇ '*(H2+H3+H4)²*ka	(kN/m)	138.05	175.09
Sq perm =	q*(H2+H3+H4)*ka	(kN/m)	27.68	35.11
Sq acc =	q*(H2+H3+H4)*ka	(kN/m)	38.06	62.75
- Componente	orizzontale condizione statica			
Sth =	St*cos _δ	(kN/m)	124.78	163.09
Sqh perm =	Sq perm*cosδ	(kN/m)	25.02	32.70
Sqh acc =	Sq acc*cosδ	(kN/m)	34.40	58.45
- Componente	verticale condizione statica			
Stv =	St*sen δ	(kN/m)	59.07	63.71
Sqv perm=	Sq perm*sen δ	(kN/m)	11.84	12.77
Sqv acc =	Sq acc*senδ	(kN/m)	16.29	22.83

			_		
MOMENTI DE	LLA SPINTA	DEL TERRENO E DEL SOVRAC	CARICO	SLE	STR/GEO
MSt1 =	Sth*((H2+H3	+H4)/3)	(kN/m)	331.91	433.82
MSt2 =	Stv*B		(kN/m)	342.61	369.51
MSq1 perm=	Sqh perm*((l	H2+H3+H4)/2)	(kN/m)	99.82	130.47
MSq2 perm=	Sqv perm*B		(kN/m)	68.69	74.09
MSq1 acc =	Sqh acc*((H	2+H3+H4)/2)	(kN/m)	137.25	233.22
MSq2 acc =	Sqv acc*B		(kN/m)	94.45	132.43
MOMENTI DO	OVUTI ALLE F	ORZE ESTERNE			
Mfext perm=	mp + fp*(H3	+ H2) + vp*(B1 +B2 + B3/2)	(kNm/m)	112.60	112.60
Mfext acc =	m + f*(H3 +	H2) + v*(B1 +B2 + B3/2)	(kNm/m)	101.92	132.49
AZIONI COM		SULLA FONDAZIONE			
N perm =	= Pm + Pt + vi	o + Stv + Sqv perm + Sqv acc	(kN/m)	878.00	883.57
N acc min			(kN/m)	16.29	22.83
N acc max	=v+Sqvacc	+ q acc	(kN/m)	79.21	104.63
Risultante forze	e orizzontali (٦)			
T perm =	Sth + Sqh pe	erm + fp	(kN/m)	149.79	195.79
T acc =	Sqh acc+ f		(kN/m)	43.69	70.52
Risultante dei ı	momenti rispe	tto al piede di valle (MM)			
MM perm	=	ΣM	(kNm/m)	2664.72	2564.46
MM acc (Nmir	n) =	ΣM	(kNm/m)	-144.72	-233.27

(kNm/m) 130.24

124.17

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	301 AL B.E. 100/2014, 3011 EKTHO IN ELGGE 104 / 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL SL.08.00.001 A 164 di 211

Spinte e momenti SLV A2+

Spinte e mon	nenti SLV A2+			
_	RRENO E DEL SOVRACCARICO	[SLE	STR/GEO
- Spinta condizio Sst1 stat = 0	ie sismica + ,5* _γ '*(H2+H3+H4)²*ka	(kN/m)	138.05	175.09
	,5*γ'*(1+kv)*(H2+H3+H4)²*kas ⁺ -Sst1 st		88.18	101.88
	p*(H2+H3+H4)*kas ⁺	(kN/m)	41.48	50.79
	s*(H2+H3+H4)*kas ⁺	(kN/m)	11.41	13.97
Ssq1 acc = q	5 (112+113+114) KdS	(KIVIII)	11.41	13.97
•	zzontale condizione sismica +	# * * * * * * * * * * * * * * * * * * *		
	Sst1 stat*cosδ	(kN/m)	124.78	163.09
Sst1h sism = S	_	(kN/m)	79.70	94.89
	sq1 perm*cosδ	(kN/m)	37.49	47.31
Ssq1h acc= S	sq1 acc*cos _δ	(kN/m)	10.31	13.01
- Componente ver	ticale condizione sismica +			
Sst1v stat = S	st1 stat*senδ	(kN/m)	59.07	63.71
Sst1v sism = S	sst1 sism*senგ	(kN/m)	37.73	37.07
Ssq1v perm= S	sq1 perm*senδ	(kN/m)	17.75	18.48
Ssq1v acc= S	sq1 acc*sen _δ	(kN/m)	4.88	5.08
MOMENTI DELL - Condizione sisn	A SPINTA DEL TERRENO E DEL SO	VRACCARICO	SLE	STR/GEO
	sst1h stat * ((H2+H3+H4)/3)	(kN/m)	331.91	433.82
	sst1h sism* ((H2+H3+H4)/2)	(kN/m)	318.01	378.62
	sst1v stat* B	(kN/m)	342.61	369.51
MSst2 sism = S		(kN/m)	218.84	215.00
	sq1h * ((H2+H3+H4/2)	(kN/m)	190.75	240.65
	sq1v * B	(kN/m)	131.26	136.66
mooq2 c	oqii b	(11.17)	101.20	100.00
MOMENTI DOVI	JTI ALLE FORZE ESTERNE			
	np+ms	(kNm/m)		21.91
	p+fs)*(H3 + H2)	(kNm/m)		35.79
,	/p+vs)*(B1 +B2 + B3/2)	(kNm/m)		93.52
,	,, (= · · · · · · · · · · · · · · · · · ·	(,		
AZIONI COMP	LESSIVE SULLA FONDAZIONE			
Risultante forze v	erticali (N)			
	Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps	s v + Pts ¹ (kN/m)	1000.87	1005.77
	Pm+Pt+vp+vs+Sst1v+Ssq1v+Ps v+Pts		1000.87	1018.36
Tilliax	man taripa to a doctria dografia i da var to	(1117111)	1000.01	1010.00
Risultante forze o	rizzontali (T)	(1.11/)	400.07	400.00
T = S	sst1h + Ssq1h + fp + fs +Ps h + Ptsh	(kN/m)	400.97	466.98
Risultante dei mo	menti rispetto al piede di valle (MM)			
MM (Nmin) =	ΣM	(kNm/m)	2450.94	2266.97
MM (Nmax) =	ΣM	(kNm/m)	2505.93	2321.96
. ,		,		

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL SL.08.00.001 A 165 di 211

Spinte e momenti SLV A2-

Spirite e momenti SEV AZ-			
SPINTE DEL TERRENO E DEL SOVRACCARICO - Spinta condizione sismica -	Γ	SLE	STR/GEO
Sst1 stat = $0.5 \frac{\text{y}}{\text{y}} (\text{H2+H3+H4})^2 \text{ka}$	(kN/m)	138.05	175.09
Sst1 sism = $0.5 \frac{1}{7} (1-kv) (H2+H3+H4)^2 kas^ Sst1 stat$	(kN/m)	65.83	73.32
Ssq1 perm= qp*(H2+H3+H4)*kas ⁻	(kN/m)	45.09	54.94
Ssq1 acc = qs*(H2+H3+H4)*kas-	(kN/m)	12.40	15.11
Components originalities and initial actions			
- Componente orizzontale condizione sismica - Sst1h stat = Sst1 stat*cosδ	(kN/m)	124.78	163.09
Sst1h sism = Sst1 sism*cos8	(kN/m) (kN/m)	59.50	68.29
· ·	(kN/m)	40.76	51.17
Ssq1h perm= Ssq1 perm*cosδ Ssq1h acc= Ssq1 acc*cosδ	(kN/m)	10.31	14.07
354111 acc - 3541 acc coso	(KIWIII)	10.51	14.07
- Componente verticale condizione sismica -			
Sst1v stat = Sst1 stat*sen δ	(kN/m)	59.07	63.71
Sst1v sism = Sst1 sism*sen δ	(kN/m)	28.17	26.68
Ssq1v perm= Ssq1 perm*senδ	(kN/m)	19.29	19.99
Ssq1v acc= Ssq1 acc*senδ	(kN/m)	5.31	5.50
MOMENTI DELLA SPINTA DEL TERRENO E DEL SOVRACCARI - Condizione sismica -	ico	SLE	STR/GEO
MSst1 stat = Sst1h stat * ((H2+H3+H4)/3)	(kN/m)	331.91	433.82
MSst1 sism= Sst1h sism* ((H2+H3+H4)/2)	(kN/m)	237.41	272.50
MSst2 stat = Sst1v stat* B	(kN/m)	342.61	369.51
MSst2 sism = Sst1v sism* B	(kN/m)	163.38	154.74
MSsq1 = Ssq1h * ((H2+H3+H4)/2)	(kN/m)	203.76	260.34
MSsq2 = Ssq1v * B	(kN/m)	142.68	147.83
MOMENTI DOVUTI ALLE FORZE ESTERNE			
Mfext1 = mp+ms	(kNm/m)		21.91
Mfext2 = (fp+fs)*(H3 + H2)	(kNm/m)		35.79
Mfext3 = $(vp+vs)^*(B1+B2+B3/2)$	(kNm/m)		93.52
AZIONI COMPLESSIVE SULLA FONDAZIONE			
Risultante forze verticali (N)			
Nmin = $Pm+Pt+vp+vs+Sst1v+Ssq1v+Psv+Ptsv$	(kN/m)	849.07	853.11
Nmax = Pm+Pt+vp+vs+Sst1v+Ssq1v+Ps v+Ptsv+q acc	(kN/m)	861.66	865.69
Risultante forze orizzontali (T)			
T = Sst1h + Ssq1h + fp + fs +Ps h + Ptsh	(kN/m)	384.03	445.31
Risultante dei momenti rispetto al piede di valle (MM)			
MM (Nmin) = Σ M	(kNm/m)	2474.48	2304.32
$MM (Nmax) = \sum M$	(kNm/m)	2529.47	2359.31
	,/		

APPALTATORE:

Mandataria:

SALINI IMPREGILO S.p.A.

Mandante:

ASTALDI S.p.A.

PROGETTISTA:

Mandataria:

SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.

Mandante:

PROGETTO ESECUTIVO Relazione di calcolo

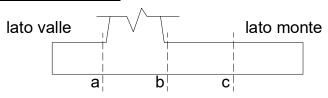
LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

PROGETTO LOTTO

IF1M 0.0.E.ZZ

CODIFICA


DOCUMENTO SL.08.00.001 REV.

PAGINA **166 di 211**

10.4.1 Verifiche del muro (STR)

Le verifiche vengono condotte, tanto in condizione statica che in condizione dinamica, nella combinazione A1+M1+R1.

CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

Mensola Lato Valle

 $Ma = \sum \, N_i{}^*(B1 \, - d_i) \, / \, i_i \, - \, PP^*(1\pm kv){}^*B1^2/2$

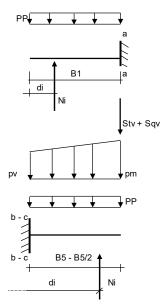
Ta = $\sum N_i / i_i$ - PP*(1±kv)

 Σ estesa a tutti i pali presenti sulla mensola

Mensola Lato Monte

 $Mb = \sum N_i^*(B5-(B-d_i))/i_i - [PP^*B5^2/2 + pvb^*B5^2/2 + (pm - pvb)^*B5^2/3]^*(1\pm kv) - (Stv+Sqv) * B5$

 $Mc = \sum N_i^*(B5/2 - (B-d_i))/i_i - [PP^*(B5/2)^2/2 + pvc^*(B5/2)^2/2 + (pm - pvc)^*(B5/2)^2/3]^*(1 \pm kv) - (Stv+Sqv) * B5/2 + (pm - pvc)^*(B5/2)^2/3 + (pm - pvc)^2/3 + (pm - p$


 $Vb = \sum N_i/i_i - [PP*B5 + pvb*B5 + (pm - pvb)*B5/]*(1±kv) - (Stv+Sqv)$

 $\label{eq:vc} Vc = \sum \, N_i/i_i \, - \, [PP^*(B5/2) \, + \, pvc^*(B5/2) \, + \, (pm \, - \, pvc)^*(B5/2)/2]^*(1\pm kv) \, - \, (Stv+Sqv)$

 Σ estesa a tutti i pali presenti sulla mensola

Peso Proprio	PP	=	32.50	(kN/m^2)
	pm	=	154.40	
	p√b	=	154.40	(kN/m^2)
	pvc	=	154.40	(kN/m^2)

caso	Ma	Va	Mb	Vb	Мс	Vc
Caso	[kNm/m]	[kN/m]	[kNm/m]	[kN/m]	[kNm/m]	[kN/m]
statico	275.13	310.16	-561.90	-390.95	-193.93	-123.69
sisma+	339.21	382.75	-712.55	-478.26	-186.03	-186.03
sisma-	204.53	230.17	-424.64	-310.90	-68.61	-68.61

APPALTATORE:

Mandataria: Mandante:

SALINI IMPREGILO S.p.A. ASTALDI S.p.A.

PROGETTISTA:

Mandataria: Mandante:

SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.

PROGETTO ESECUTIVO

Relazione di calcolo

LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA IF1M 0.0.E.ZZ CL SL.08.00.001 A 167 di 211

CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo

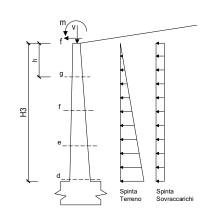
Mt $_{stat}$ = $\frac{1}{2}$ Ka $_{orizz}$ * γ *(1±kv)*h 2 *h/3

Mt _{sism} = $\frac{1}{2} * \gamma * (Kas_{orizz.}*(1\pm kv)-Ka_{orizz.})*h^{2*}h/2$ o *h/3

 $M_{\text{inerzia}} = \sum Pm_i^*b_i^*kh$ (solo con sisma)

 $N_{ext} = v$

N _{pp+inerzia}= $\Sigma Pm_i^*(1\pm kv)$


Vt _{stat} = $\frac{1}{2}$ Ka_{orizz}* γ *(1±kv)*h²

Vt _{sism} = $\frac{1}{2} * \gamma * (Kas_{orizz.} * (1\pm kv)-Ka_{orizz.})*h^2$

 $Vq = Ka_{orizz}*q*h$

V_{ext} = f

 $V_{inerzia} = \sum Pm_i^*kh$

condizione statica

sezione	h	Mt	Mq	M _{ext}	M _{tot}	N _{ext}	N_{pp}	N _{tot}
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	6.68	253.09	235.20	145.75	634.04	35.42	155.31	190.73
e-e	5.01	106.77	132.30	122.49	361.56	35.42	106.15	141.57
f-f	3.34	31.64	58.80	99.23	189.66	35.42	63.88	99.30
g-g	1.67	3.95	14.70	75.96	94.62	35.42	28.49	63.92

sezione	h	Vt	Vq	V _{ext}	V _{tot}
	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	6.68	113.66	70.42	13.93	198.01
e-e	5.01	63.94	52.81	13.93	130.68
f-f	3.34	28.42	35.21	13.93	77.56
g-g	1.67	7.10	17.60	13.93	38.64

condizione sismica +

sezione	h	Mt stat	Mt sism	Mq	M _{ext}	M _{inerzia}	M _{tot}	N _{ext}	N _{pp+inerzia}	N _{tot}
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	6.68	194.69	206.38	133.66	51.87	85.47	672.07	37.67	169.82	207.49
e-e	5.01	82.13	87.07	75.18	44.38	44.85	333.61	37.67	116.07	153.73
f-f	3.34	24.34	25.80	33.42	36.89	18.50	138.94	37.67	69.85	107.51
g-g	1.67	3.04	3.22	8.35	29.40	4.27	48.29	37.67	31.16	68.82

sezione	h	Vt stat	Vt sism	Vq	$V_{\rm ext}$	$V_{inerzia}$	V_{tot}
	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	6.68	87.43	61.79	40.02	4.48	29.02	222.75
e-e	5.01	49.18	34.76	30.01	4.48	19.84	138.27
f-f	3.34	21.86	15.45	20.01	4.48	11.94	73.74
g-g	1.67	5.46	3.86	10.00	4.48	5.32	29.14

condizione sismica -

sezione	h	Mt stat	Mt sism	Mq	M _{ext}	M _{inerzia}	M _{tot}	N _{ext}	N _{pp+inerzia}	N _{tot}
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	6.68	194.69	154.08	145.29	51.87	85.47	631.38	37.67	140.80	178.47
e-e	5.01	82.13	65.00	81.72	44.38	44.85	318.09	37.67	96.23	133.90
f-f	3.34	24.34	19.26	36.32	36.89	18.50	135.31	37.67	57.91	95.58
g-g	1.67	3.04	2.41	9.08	29.40	4.27	48.19	37.67	25.83	63.50

sezione	h	Vt stat	Vt sism	Vq	V _{ext}	V _{inerzia}	V_{tot}
30210110	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	6.68	87.43	46.13	43.50	4.48	29.02	210.57
e-e	5.01	49.18	25.95	32.62	4.48	19.84	132.07
f-f	3.34	21.86	11.53	21.75	4.48	11.94	71.56
g-g	1.67	5.46	2.88	10.87	4.48	5.32	29.03

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 ROCKSOIL S.p.A. SYSTRA S.A. SYSTRA-SOTECNI S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA DOCUMENTO REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ SL.08.00.001 Α 168 di 211

In definitiva risulta:

- Armatura longitudinale

Posizione 1: 1 registro 5 Ø20

Posizione 4: 1 registro 10 Ø20

Posizione 5: 1 registro 5 Ø20

Posizione 7: 1 registro 10 Ø20

- Armatura trasversale

Ferri verticali Ø16/60x60

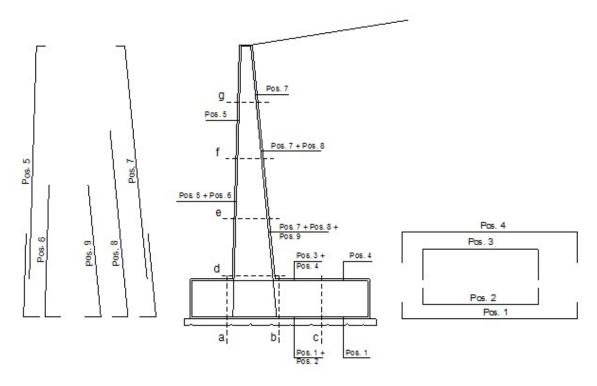


Figura 81-Schema armature

APPALTATORE: Mandataria: Mandante: SALINI IMPREGILO S.p.A.

ASTALDI S.p.A.

PROGETTISTA:

Mandataria: Mandante:

SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.

PROGETTO ESECUTIVO Relazione di calcolo

LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

CODIFICA DOCUMENTO **PROGETTO** LOTTO REV. **PAGINA** 0.0.E.ZZ SL.08.00.001 Α 169 di 211

Sez.	М	N	h	Af	A'f	Mu	Mu/M
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(kNm)	(-)
a - a	339.21	0.00	1.30	15.71	31.42	747.77	2.20
b - b	-712.55	0.00	1.30	31.42	15.71	1462.75	2.05
C - C	-193.93	0.00	1.30	31.42	15.71	1462.75	7.54
d - d	672.07	207.49	1.26	31.42	15.71	1529.41	2.28
e -e	361.56	141.57	1.10	31.42	15.71	1278.19	3.54
f - f	189.66	99.30	0.93	31.42	15.71	1047.06	5.52
q-q	94.62	63.92	0.77	31.42	15.71	825.02	8.72

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

Sez.	V _{Ed}	h	V_{rd}	ø staffe	i orizz.	i vert.	θ	\mathbf{V}_{Rsd}	
(-)	(kN)	(m)	(kN)	(mm)	(cm)	(cm)	(°)	(kN)	- -
a - a	382.75	1.30	404.80	16	60	60	21.8	604.82	Armatura a taglio non necessaria
b - b	478.26	1.30	417.21	16	60	60	21.8	604.82	Sezione verificata
c - c	186.03	1.30	417.21	16	60	60	21.8	604.82	Armatura a taglio non necessaria
d - d	222.75	1.26	439.46	0	20	20	21.8	0.00	Armatura a taglio non necessaria
e -e	138.27	1.10	399.47	0	20	20	21.8	0.00	Armatura a taglio non necessaria
f - f	77.56	0.93	360.94	0	20	20	21.8	0.00	Armatura a taglio non necessaria
g - g	38.64	0.77	320.93	0	20	20	21.8	0.00	Armatura a taglio non necessaria

10.4.2 Verifica a carico limite del singolo palo per azioni verticali (GEO)

A seguire sono riportate le sollecitazioni massime in testa ai pali nella combinazione A1+M1+R3 dell'Approccio 2.

Sollecitazioni sui pali SLU

	caso	N pali all.1	N pali all.2	N pali all.3	T pali
		[kN]	[kN]	[kN]	[kN] [kN]
statico	Nmin	875.43	749.95	624.47	208.21
Statico	Nmax	871.65	825.45	779.25	200.21
sisma+	Nmin	1061.89	801.72	541.55	322.83
Sisiliat	Nmax	1061.38	811.79	562.19	322.03
sisma-	Nmin	671.20	678.23	685.27	309.99
SiSilia-	Nmax	670.69	688.30	705.90	309.99

Il massimo sforzo di compressione in condizioni statiche è pari a: 875.43 kN.

Il massimo sforzo di compressione in condizioni sismiche è pari a: 1061.89 kN.

La curva di carico limite riportata nel seguito mostra che per un palo di lunghezza 25 m (e quindi attestato per almeno 3D nelle formazioni tufacee sottostanti la pozzolana), la resistenza Qd è pari a 2833 kN, con un coefficiente di sicurezza FS=2.66.

APPALTATORE:

Mandataria:

SALINI IMPREGILO S.p.A.

PROGETTISTA:

Mandante:

ASTALDI S.p.A.

 Mandataria:
 Mandante:

 SYSTRA S.A.
 SYSTRA-SOTECNI S.p.A.
 ROCKSOIL S.p.A.

PROGETTO ESECUTIVO
Relazione di calcolo

LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

 PROGETTO
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 PAGINA

 IF1M
 0.0.E.ZZ
 CL
 \$L.08.00.001
 A
 170 di 211

	colo									
)	Diametro palo				0.80 m	-				
р	Area base palo				0.50 mg	_				
	Superficie latera	ale del palo			2.51 m	-				
1	Profondità della				4.00 m					
	Quota testa pale				2.00 m	_				
L		ezza per la portata lat			1.78	-				
B Downwarter		ezza per la portata di	base (x3·gb)		2.09	-				
Parametri	geotecnici									
strato	Formazione	spessore strato	zbase strato	γ	ø	φ(Nq)	Nq*	q _{blim}	τ _{lim}	Note
The Republication	100000000000000000000000000000000000000	(m)	(m da pc)	(kN/m³)	(°)	(-)	(-)	(kPa)	(kPa)	1000000
1	DI	7.5	7.5	16	30	27	14	595	150	
2	Po	5.0	12.5	16	30	27	14	1105	150	
3	Po	5.5	18.0	16	33	30	19	2380	150	
4	Po	5.5	23.5	16	35	32	22	3570	150	
5	Ts	2.5	26.0	15	35	32	22	4250	150	
6	TL	5.0	31.0	15	litoide	litoide	27	8000	200	
7	Pb	4.0	35.0	16	35	32	22	3400	150	
8	Pb	15.0	50.0	16	35	32	22	4300	150	
Calcolo ca	rico limito									
		β	σ'v	τί	QII	qbl	Qbl	Wp	Qu	Qd
z da p.c.	Lp [m]									
[m]	[m]	[-]	[kPa]	[kPa]	[kN]	[kPa]	[kN]	[kN]	[kN]	[kN]
0.0	-	-	8	6	0	0	0	0	0	0
1.0	-	-	16	13	0	0	0	0	0	0
1.5	-		24	19	0	0	0	0	0	0
2.0	0.0	0.80	32	26	0	0	0	0	0	0
2.5	0.5	0.80	40	32	36	560	281	2	315	152
3.0	1.0	0.80	48	38	80	595	299	5	375	182
3.5	1.5	0.80	56	45	133	595	299	7	425	209
4.0	2.0	0.80	64	51	193	595	299	9	483	239
4.5	2.5	0.80	67	54	259	595	299	11	547	273
5.0	3.0	0.80	70	56	328	595	299	14	613	309
5.5	3.5	0.77	73	56	398	595	299	16	681	346
6.0	4.0	0.74	76	56	469	595	299	18	750	382
6.5	4.5	0.71	79	56	539	595	299	20	818	419
7.0	5.0	0.68	82	56	610	595	299	23	886	456
7.5	5.5	0.65	85	55	679	595	299	25	954	492
8.0	6.0	0.62	88	55	748	1105	555	27	1277	650
8.5	6.5	0.59	91	54	817	1105	555	29	1343	685
9.0	7.0	0.56	94	53	883	1105	555	32	1407	720
9.5	7.5	0.53	97	51	949	1105	555	34	1470	754
10.0	8.0	0.50	100	50	1012	1105	555	36	1532	786
10.5	8.5	0.48	103	49	1075	1105	555	38	1592	818
11.0	9.0	0.46	106	49	1137	1105	555	41	1651	850
11.5	9.5	0.44	109	48	1197	1105	555	43	1710	881
12.0	10.0	0.42	112	47	1257	1105	555	45	1767	912
12.5	10.5	0.40	115	46	1316	1105	555	48	1823	942
13.0	11.0	0.38	118	45	1373	2242	1127	50	2450	1244
13.5	11.5	0.36	121	44	1428	2299	1156	52	2532	1286
14.0	12.0	0.34	124	42	1482	2356	1184	54	2612	1327
14.5	12.5	0.32	127	41	1534	2380	1196	57	2674	1359
15.0	13.0	0.30	130	39	1584	2380	1196	59	2722	1384
15.5	13.5	0.30	133	40	1634	2380	1196	61	2769	1409
16.0	14.0	0.30	136	41	1684	2380	1196	63	2817	1434
16.5	14.5	0.30	139	42	1736	2380	1196	66	2867	1460
17.0	15.0	0.30	142	43	1789	2380	1196	68	2918	1487
17.5	15.5	0.30	145	44	1843	2380	1196	70	2969	1515
18.0	16.0	0.30	148	44	1898	2380	1196	72	3022	1543
18.5	16.5	0.30	151	45	1955	3322	1670	75	3550	1798
19.0	17.0	0.30	154	46	2012	3388	1703	77	3638	1843
19.5	17.5	0.30	157	47	2071	3454	1736	79	3728	1889
20.0	18.0	0.30	160	48	2131	3520	1769	81	3819	1935
20.5	18.5	0.30	163	49	2191	3570	1794	84	3902	1978
21.0	19.0	0.30	166	49	2253	3570	1794	86	3961	2010
21.5	19.5	0.30	169	50	2315	3570	1794	88	4022	2042
22.0	20.0	0.29	172	51	2378	3570	1794	90	4082	2074
22.5	20.5	0.29	175	51	2442	3570	1794	93	4144	2107
23.0	21.0	0.29	178	52	2507	3570	1794	95	4207	2141
23.5	21.5	0.29	181	52	2573	3570	1794	97	4270	2174
24.0	22.0	0.29	184	53	2639	4037	2029	111	4557	2306
24.5	22.5	0.29	186	53	2705	4092	2057	113	4649	2354
25.0	23.0	0.29	189	54	2773	4147	2085	116	4742	2401
25.5	23.5	0.28	191	54	2840	4202	2112	118	4834	2449
26.0	24.0	0.28	194	55	2909	4250	2136	121	4924	2496
26.5	24.5	0.28	196	55	2978	5292	2660	123	5514	2782
27.0	25.0	0.28	199	55	3047	5360	2694	126	5615	2833
27.5	25.5	0.28	201	56	3117	5427	2728	128	5716	2886
28.0	26.0	0.28	204	56	3187	5495	2762	131	5818	2938
28.5	26.5	0.27	206	57	3258	5562	2796	133	5920	2991
29.0	27.0	0.27	209	57	3329	5630	2830	136	6023	3044
29.5	27.5	0.27	211	57	3401	5697	2864	138	6126	3097
30.0	28.0	0.27	214	58	3473	5765	2898	141	6230	3150
30.5	28.5	0.27	216	58	3546	5832	2931	143	6334	3204
31.0	29.0	0.27	219	59	3620	5900	2965	146	6439	3258
31.5	29.5	0.27	222	60	3694	3400	1709	133	5270	2716
32.0	30.0	0.27	225	61	3770	3400	1709	136	5343	2755
32.5 33.0	30.5 31.0	0.27	228 231	62	3847 3924	3400 3400	1709 1709	138 140	5418 5493	2795 2836
33.5	31.5	0.27	231	63	4003	3400	1709	140	5493	2836
34.0	32.0	0.27	234	64	4003	3400	1709	143	5647	2919
34.0	32.5	0.27	240	65	4164	3400	1709	145	5726	2919

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI					
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO					
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE					
PROGETTISTA: Mandataria: Mandante:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI					
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014					
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA					
Relazione di calcolo	IF1M 0.0.E.ZZ CL SL.08.00.001 A 171 di 211					

10.4.3 Verifiche a carico limite del singolo palo per azioni orizzontali (GEO)

Le verifiche vengono condotte, tanto in condizione statica che in condizioni sismiche, nella combinazione A2+M1+R2.

A seguire sono riportate le sollecitazioni massime in testa ai pali nella Combinazione 2 dell'Approccio 1.

c	aso	N pali all.1	N pali all.2	N pali all.3	T pali
•	400	[kN]	[kN]	[kN]	[kN] [kN]
statico	Nmin	895.06	725.12	555.18	213.05
Statico	Nmax	891.79	790.56	689.33	213.03
sisma+	Nmin	1175.92	804.62	433.32	373.58
SiSilia	Nmax	1175.41	814.68	453.96	373.30
sisma-	Nmin	779.46	682.49	585.52	356.25
SiSilia-	Nmax	778.95	692.55	606.16	330.23

Il massimo sforzo di taglio è pari a: 373.58 kN.

Al fine della valutazione del momento di plasticizzazione del palo si considera lo stesso soggetto ad uno sforzo normale medio.

Verifica SLU

APPALTATORE:

Mandataria: Mandante:

SALINI IMPREGILO S.p.A. ASTALDI S.p.A.

PROGETTISTA:

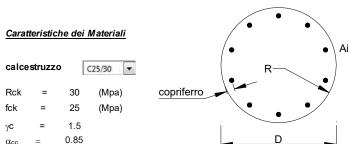
Mandataria:

SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. SYSTRA S.A.

PROGETTO ESECUTIVO Relazione di calcolo

LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014


PROGETTO LOTTO CODIFICA DOCUMENTO REV. **PAGINA** IF1M 0.0.E.ZZ CL SL.08.00.001 Α 172 di 211

Calcolo del momento di plasticizzazione di una sezione circolare

Diametro 800 (mm)

Raggio 400 (mm)

Sforzo Normale 740.99 (kN)

 $fcd = \alpha_{cc} fck / \gamma c =$ 14.17 (Mpa)

Acciaio

tipo di acciaio B450C ▼

450 (Mpa)

1.15

391.3 (Mpa)

210000 (Mpa) Fs

0.186% 10.000% ϵ_{uk}

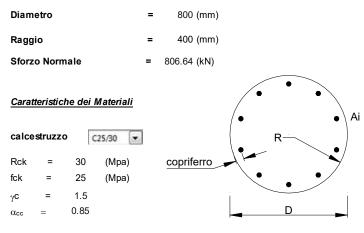
Armature

numero			diametro (mm	1)	area (mm²)	copriferro (mm)
30	•	ф	20	•	9425	60
0	•	ф	8	•	0	30
0	•	ф	8	•	0	30

Calcolo

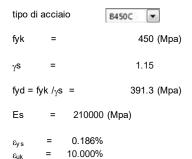
Momento di Plasticizzazione

= 1142.4 (kN m) Inserisci


APPALTATORE:		LIN	EA FE	RROVIA	RIA NAPOL	_I - B/	ARI
Mandataria: Mandante: SALINI IMPREGILO S.p.A. ASTALDI S	i.p.A.				LI-CANCE		
PROGETTISTA:					00 E PK 15+58 MBITO DEGL	•	
Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL E).L. 133/2	014, CONV	ERTITO IN LE	GGE 16	34 / 2014
PROGETTO ESECUTIVO		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo		IF1M	0.0.E.ZZ	CL	SL.08.00.001	Α	173 di 211

Lunghezza del palo	L =	25.00	(m)			
Diametro del palo	d =	0.80	(m)			
Momento di plasticizzazione della sezione	My =	1142.35	(kN m)			
Angolo di attrito del terreno	$\varphi'_{\text{med}} =$	34.00	(°)	φ'_{min} =	33.00	(°)
Angolo di attrito di calcolo del terreno	$\varphi'_{\text{med,d}} =$	34.00	(°)	$\varphi'_{min,d} =$	33.00	(°)
Coeff. di spinta passiva (kp = (1+sin ϕ ')/(1-sin ϕ '))	kp _{med} =	3.54	(-)	kp _{min} =	3.39	(-)
Peso di unità di volume (con falda γ = γ ')	γ =	16.00	(kN/m^3)			
Carico Assiale Permanente (G):	G =	213.05	(kN)			
Carico Assiale variabile (Q):	Q =		(kN)			
Palo corto:						
		114 -	40705 44	(I-NI)		
H1 _{med} = 42445.58 (kN)		H1 _{min} =	40705.44	(kN)		
Palo intermedio:						
H2 _{med} = 14194.22 (kN)		H2 _{min} =	13614.17	(kN)		
Palo lungo:						
H3 _{med} = 927.69 (kN)		H3 _{min} =	914.84	(kN)		
. ,				, ,		
H _{med} = 927.69 (kN) palo lungo		H _{min} =	914.84	(kN)	palo lungo	
, , ,				, ,	, ,	
$H_k = Min(H_{med}/\xi_3; R_{min}/\xi_4) = 598.5$	51	(kN)				
$H_{d} = H_{k}/\gamma_{T} = 374.$	07	(kN)				
$F_d = G \cdot \gamma_G + Q \cdot \gamma_Q = 213.$	05	(kN)				
FS = Hd / Fd = 1.70	6					

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 ROCKSOIL S.p.A. SYSTRA S.A. SYSTRA-SOTECNI S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA DOCUMENTO REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ CL SL.08.00.001 Α 174 di 211


Verifica SLV+

Calcolo del momento di plasticizzazione di una sezione circolare

Acciaio

Armature

numero			diametro (mm)	area (mm²)	copriferro (mm)
30	10.8	ф	20	9425	60
0	4	ф	8	0	30
0	1	ф	8	0	30

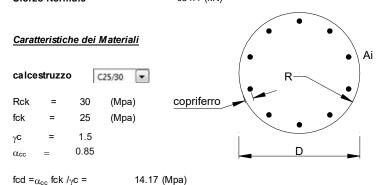
Calcolo

Momento di Plasticizzazione

My = 1151.2 (kN m)

Inserisci

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	301 AL B.E. 100/2014, 3011 EKTHO IN ELGGE 104 / 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL SL.08.00.001 A 175 di 211


Lunghezza del palo	L =	25.00	(m)			
Diametro del palo	d =	0.80	(m)			
Momento di plasticizzazione della sezione	My =	1151.20	(kN m)			
Angolo di attrito del terreno	$\varphi'_{\text{med}} =$	34.00	(°)	φ' _{min} =	33.00	(°)
Angolo di attrito di calcolo del terreno	$\phi'_{\text{med,d}} =$	34.00	(°)	$\varphi'_{min,d} =$	33.00	(°)
Coeff. di spinta passiva (kp = (1+sin $_{\phi}$ ')/(1-sin $_{\phi}$ '))	kp _{med} =	3.54	(-)	kp _{min} =	3.39	(-)
Peso di unità di volume (con falda γ = γ ')	γ =	16.00	(kN/m³)			
Carico Assiale Permanente (G):	G =	373.58	(kN)			
Carico Assiale variabile (Q):	Q =		(kN)			
Palo corto:						
H1 _{med} = 42445.58 (kN)		H1 _{min} =	40705.44	(kN)		
Palo intermedio:						
H2 _{med} = 14194.58 (kN)		H2 _{min} =	13614.53	(kN)		
Palo lungo:						
H3 _{med} = 932.48 (kN)		H3 _{min} =	919.56	(kN)		
H _{med} = 932.48 (kN) palo lungo		H _{min} =	919.56	(kN)	palo lungo	
$H_k = Min(H_{med}/\xi_3; R_{min}/\xi_4) = 601.$.60	(kN)				
$H_d = H_k/\gamma_T = 462.$.77	(kN)				
$F_d = G \cdot \gamma_G + Q \cdot \gamma_Q = 373.$.58	(kN)				
FS = Hd / Fd = 1.2	24					

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. SYSTRA S.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA DOCUMENTO REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ CL SL.08.00.001 Α 176 di 211

Verifica SLV-

Calcolo del momento di plasticizzazione di una sezione circolare

Acciaio

10.000%

Armature

Ev s

Euk

numero			diametro (mn	n)	area (mm²)	copriferro (mm)
30	4 ()	ф	20	4 (4	9425	60
0	9	ф	8	÷	0	30
0	•	ф	8	•	0	30

Calcolo

Momento di Plasticizzazione

1134.5 (kN m) Inserisci

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	COTAL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL SL.08.00.001 A 177 di 211

Lunghezza del palo	L =	25.00	(m)			
Diametro del palo	d =	0.80	(m)			
Momento di plasticizzazione della sezione	My =	1136.17	(kN m)			
Angolo di attrito del terreno	φ'_{med} =	34.00	(°)	$\varphi'_{min} =$	33.00	(°)
Angolo di attrito di calcolo del terreno	$\varphi'_{\text{med,d}} =$	34.00	(°)	$\phi'_{min,d} =$	33.00	(°)
Coeff. di spinta passiva (kp = (1+ $\sin \phi'$)/(1- $\sin \phi'$))	kp _{med} =	3.54	(-)	kp _{min} =	3.39	(-)
Peso di unità di volume (con falda $\gamma = \gamma'$)	γ =	16.00	(kN/m³)			
Carico Assiale Permanente (G):	G =	356.25	(kN)			
Carico Assiale variabile (Q):	Q =		(kN)			
Palo corto:						
H1 _{med} = 42445.58 (kN)		H1 _{min} =	40705.44	(kN)		
Palo intermedio:						
H2 _{med} = 14193.97 (kN)		H2 _{min} =	13613.93	(kN)		
Palo lungo:						
H3 _{med} = 924.34 (kN)		H3 _{min} =	911.53	(kN)		
H _{med} = 924.34 (kN) palo lungo		H _{min} =	911.53	(kN)	palo lungo	
$H_k = Min(H_{med}/\xi_3; R_{min}/\xi_4) = 596.$.35	(kN)				
$H_{d} = H_{k}I_{\gamma T} = 458.$.73	(kN)				
$F_d = G \cdot \gamma_G + Q \cdot \gamma_Q = 356.$.25	(kN)				
FS = Hd / Fd = 1.2	29					

10.4.4 Verifica stabilità globale (GEO)

Le verifiche di stabilità globali non sono state eseguite in quanto sicuramente soddisfatte. Infatti, la potenziale superficie di scorrimento al di sotto dei pali di fondazione si andrebbe a

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA **DOCUMENTO** REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ SL.08.00.001 Α 178 di 211

trovare ad una profondità notevole, andando ad interessare terreni con tensione tangenziale limite particolarmente elevata.

10.4.5 Verifiche strutturali dei pali (STR)

Nel seguito sono riportate le massime sollecitazioni in testa ai pali nelle combinazioni STR.

caso		N pali all.1	N pali all.2 N pali all.3		T pali	
		[kN]	[kN]	[kN]	[kN] [kN]	
statico	Nmin	875.43	749.95	624.47	208.21	
Statico	Nmax	871.65	825.45	779.25	200.21	
sisma+	Nmin	1061.89	801.72	541.55	322.83	
SiSilia	Nmax	1061.38	811.79	562.19	322.03	
sisma-	Nmin	671.20	678.23	685.27	309.99	
SiSIIId-	Nmax	670.69	688.30	705.90	309.99	

Il massimo sforzo di compressione è pari a: 1061.89 kN.

Il massimo sforzo di taglio è pari a: 322.83 kN.

Per il calcolo delle sollecitazioni lungo il fusto del palo si procederà secondo il metodo di Matlock e Reese, in cui il palo è supposto come un elemento elastico immerso in un letto di molle a cui verrà assegnata una rigidezza adeguata. Questa rigidezza è stata definita nei capitoli di caratterizzazione con il nome di modulo di reazione orizzontale del terreno. La soluzione verrà fornita in formula adimensionale Mad(z) per ogni palo di progetto (dipendente dal diametro, dalla lunghezza e dalla stratigrafia di calcolo) in funzione di un momento in testa definito a partire dall'azione orizzontale che è ipotesi di calcolo di progetto secondo le seguenti formule.

Detta H₀ la forzante in testa al singolo palo, il Momento in testa M₀ sarà pari a

 $M_0 = \alpha \cdot H_0$

e quindi il momento lungo il palo sarà pari a

 $M(z)=M_0 \cdot M_{ad}(z)$.

Si riportano nel seguito le curve per il calcolo del momento adimensionale allegate alla Relazione Geotecnica

APPALTATORE:

Mandataria: Mandante:

SALINI IMPREGILO S.p.A. ASTALDI S.p.A.

PROGETTISTA:

Mandataria: Mandante

SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.

PROGETTO ESECUTIVO

Relazione di calcolo

LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

PROGETTO IF1M

LOTTO 0.0.E.ZZ CODIFICA CL DOCUMENTO SL.08.00.001 REV.

PAGINA **179 di 211**

SL08: CALCOLO DEL MOMENTO ADIMENSIONALE DI UN PALO DI FONDAZIONE (METODO DI MATLOCK & REESE) - D=0.8 m

a. Dati di calcolo

D	Diametro palo	0.80 m	
Jp	Momento di inerzia del palo	0.02 m ⁴	
L	Lunghezza del palo	25.00 m	
E _{PALO}	Modulo elastico del calcestruzzo	31000.00 m	

b. Parametri geotecnici

Strato	Unità	Profondità strato		Modulo di reazione orizzontale	Coefficiente di reazione	Gradiente del modulo	Note
		z1 (m)	z2 (m)	iniziale (kN/m²) khxD	orizzontale	(kN/m³) nh	Note
1	DI	0.0	-5.5	10000	reazione var. con z	5000.0	
2	Po	-5.5	-24.0	55000	reazione var. con z	8000.0	
3	Ts	-24.0	25.0	220000	reazione cost. con z	0.0	

c. Calcolo adimensionale

Rapporto
momento/taglio in testa
palo
ROTAZIONE IMPEDITA

\$\alpha\$ [m]

1.9

z	Mad
[m]	[kNm]
0.00	1.00
-0.98	0.53
-1.96	0.16
-2.95	-0.08
-3.93	-0.21
-4.91	-0.25
-5.90	-0.24
-6.91	-0.18
-7.91	-0.12
-8.92	-0.07
-9.92	-0.03
-10.93	0.00
-11.93	0.01
-12.94	0.01
-13.95	0.01
-14.95	0.01
-15.96	0.00
-16.96	0.00
-17.97	0.00
-18.97	0.00
-19.98	0.00
-20.98	0.00
-21.99	0.00
-22.99	0.00
-24.00	0.00
-25.00	0.00
0.00	0.00
0.00	0.00
0.00	0.00
0.00	0.00
0.00	0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

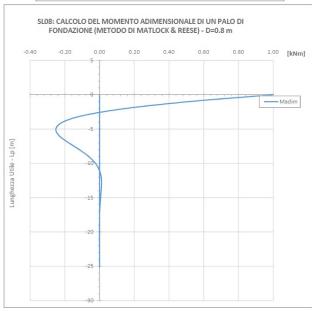
0.00

0.00

0.00

0.00

0.00


0.00

0.00

0.00

0.00

APPALTATORE:			LINEA FERROVIARIA NAPOLI - BARI					
Mandataria:	Mandante:		TRATTA NAPOLI-CANCELLO					
SALINI IMPREGILO S.p.A.	ASTALDI S.p.A.		IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE L				IISE I E	
PROGETTISTA:						MBITO DEGL	,	
Mandataria: Mandante:					•	ERTITO IN LEG		
SYSTRA S.A. SYSTRA-SOT	ECNI S.p.A. ROCKSOIL	S.p.A.	OO! AL D	,.L. 100/L) 1-1, OOIII 1		JOE 10	472014
PROGETTO ESECUTIVO			PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo			IF1M	0.0.E.ZZ	CL	SL.08.00.001	Α	180 di 211

Sollecitazioni SLU

Mmax = 395.60 kNm

Vmax = 208.21 kN

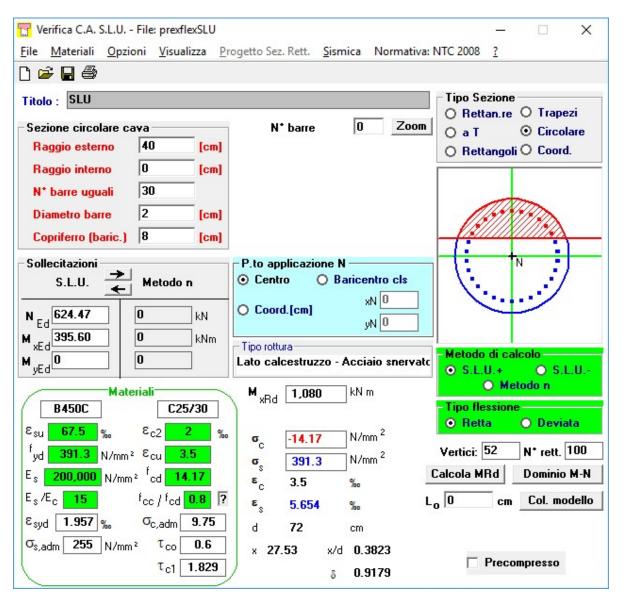
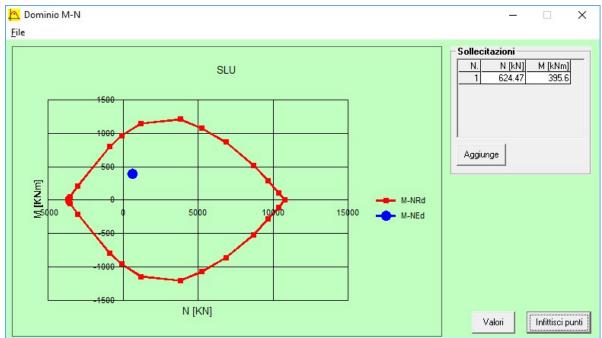



Figura 82- Verifica a pressoflessione (SLU)

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA DOCUMENTO REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ SL.08.00.001 181 di 211 CL Α

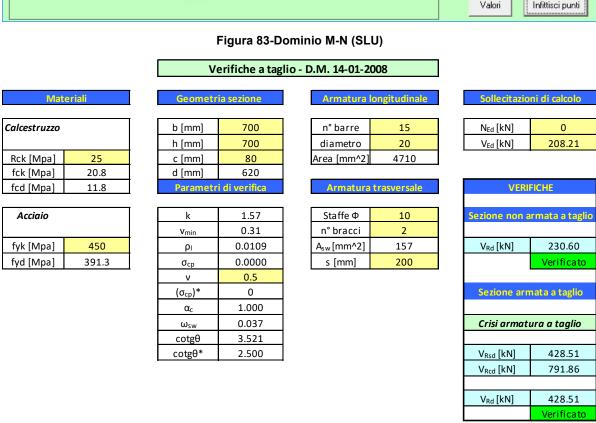


Figura 84-Verifica a Taglio (SLU)

APPALTATORE:				LIN	EA FEF	ROVIAR	RIA NAPOL	.I - B/	ARI
Mandataria:		andante:			TRATT	A NAPO	LI-CANCE	LLO	
SALINI IMPREGILO	S.p.A. AS	STALDI S.p.	Α.	IN VADIA	NTE TDA	I E DK 0+0	00 E PK 15+58	E INCI	HELLE
PROGETTISTA:							MBITO DEGLI	,	
Mandataria:	Mandante:					•	ERTITO IN LEG		
SYSTRA S.A.	SYSTRA-SOTECN	NI S.p.A. I	ROCKSOIL S.p.A.	OO! AL D		J1-1, GOITT		JOL 10	472014
PROGETTO ESECU	TIVO			PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo				IF1M	0.0.E.ZZ	CL	SL.08.00.001	Α	182 di 211

Sollecitazioni SLV+

Mmax = 613.37 kNm

Vmax = 322.83 kN

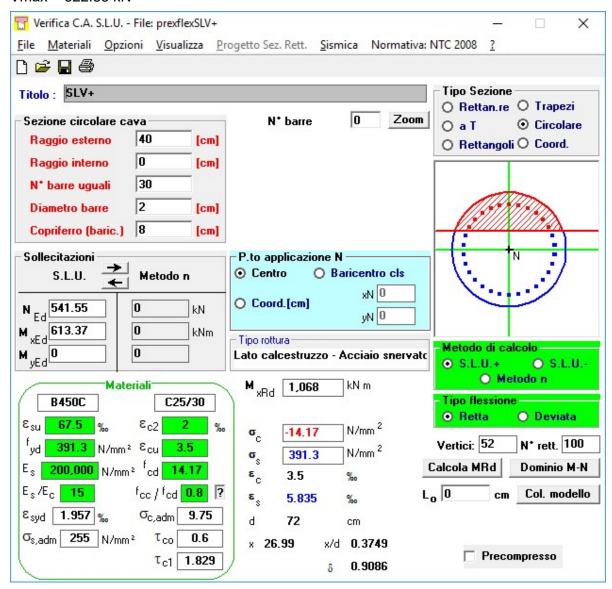


Figura 85-Verifica a pressoflessione (SLV+)

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA DOCUMENTO REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ SL.08.00.001 183 di 211 CL Α

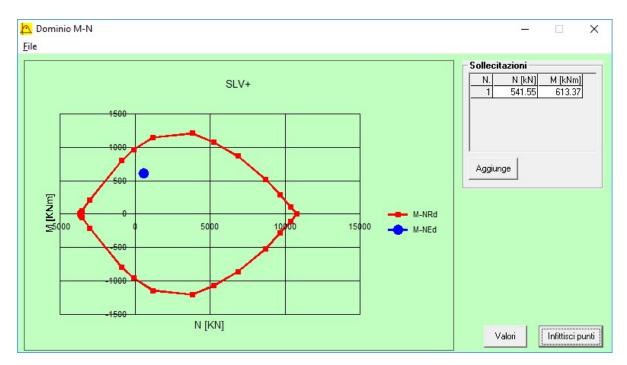


Figura 86- Dominio M-N (SLV+)

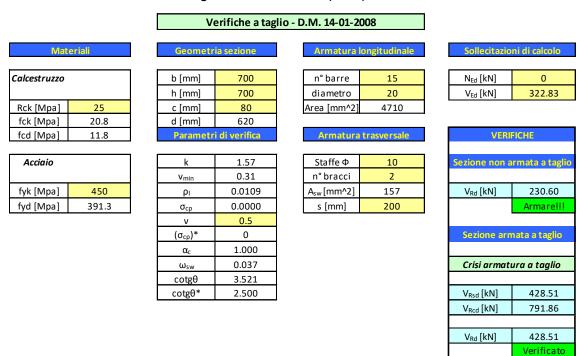


Figura 87-Verifica a Taglio (SLV+)

APPALTATORE:			LIN	EA FEF	ROVIAF	RIA NAPOL	.I - B <i>i</i>	ARI
Mandataria:		ndante:		TRATT	A NAPO	LI-CANCE	LLO	
SALINI IMPREGILO	S.p.A. AS	STALDI S.p.A.	INI VADIA	NTE TDA	I E BK 0+0	00 E PK 15+58	E INC	HELLE
PROGETTISTA:						MBITO DEGL	,	
Mandataria:	Mandante:				•	ERTITO IN LEC		
SYSTRA S.A.	SYSTRA-SOTECNI	I S.p.A. ROCKSOIL S.p.A.	OUIALD	.L. 155/2	014, OOI4VL		30L 10	77 2017
PROGETTO ESECU	TIVO		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo			IF1M	0.0.E.ZZ	CL	SL.08.00.001	Α	184 di 211

Sollecitazioni SLV-

Mmax = 588.98 kNm

Vmax = 309.99 kN

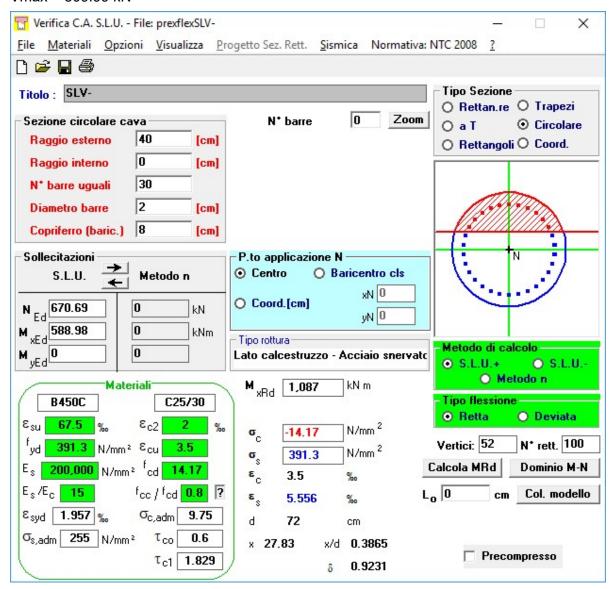
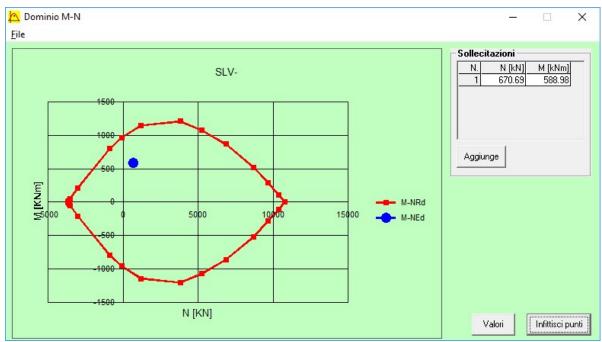



Figura 88-Verifica a pressoflessione (SLV-)

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA DOCUMENTO REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ SL.08.00.001 185 di 211 CL Α

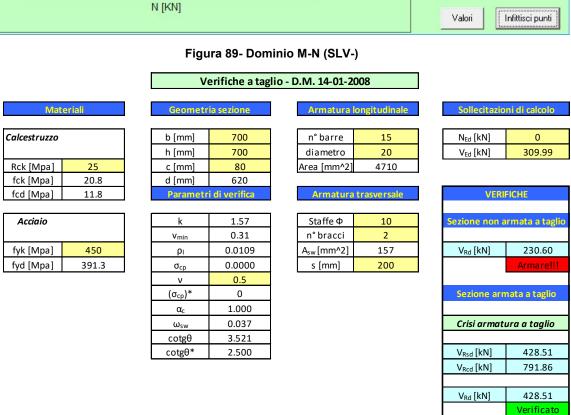


Figura 90- Verifica a taglio (SLV-)

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA **DOCUMENTO** REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ SL.08.00.001 Α 186 di 211

10.5 VERIFICHE AGLI STATI LIMITE DI ESERCIZIO

Alle prescrizioni normative presenti in NTC si sostituiscono quelle fornite dalle specifiche RFI (Requisiti concernenti la fessurazione per strutture in c.a., c.a.p. e miste acciaio-calcestruzzo) secondo cui la verifica nei confronti dello stato limite di apertura delle fessure va effettuata utilizzando le sollecitazioni derivanti dalla combinazione caratteristica (rara).

In particolare, per strutture in condizioni ambientali aggressive o molto aggressive, così come identificate nel par. 4.1.2.2.4.3 del DM 14.1.2008, per tutte le strutture a permanente contatto con il terreno e per le zone non ispezionabili di tutte le strutture, l'apertura convenzionale delle fessure dovrà risultare:

• Combinazione Caratteristica (Rara) $\delta_f \leq w_1 = 0.2 \text{ mm}$

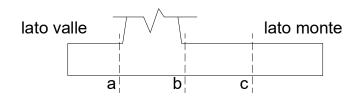
Le verifiche tensionali di cui ai par. 4.1.2.2.5.1 e 4.1.2.2.5.2 delle NTC 2008 sono state eseguite per la combinazione rara e la combinazione quasi permanente, controllando che le tensioni nel calcestruzzo e nell'acciaio siano inferiori ai seguenti valori limite:

Le verifiche di tensione si ritengono soddisfatte se sono verificate le seguenti condizioni:

Calcestruzzo

- Combinazione di carico caratteristica (RARA): 0.55 fck
- Combinazione di carico quasi permanente: 0.40 fck

Acciaio


- Combinazione di carico caratteristica (RARA): 0.75 f_{yk}

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 ROCKSOIL S.p.A. SYSTRA S.A. SYSTRA-SOTECNI S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA DOCUMENTO REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ SL.08.00.001 Α 187 di 211

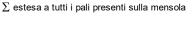
10.5.1 Verifiche a fessurazione muro

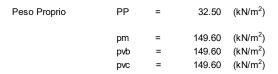
Nel seguito si riporta la verifica a fessurazione eseguita sul muro di sostegno in oggetto.

CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

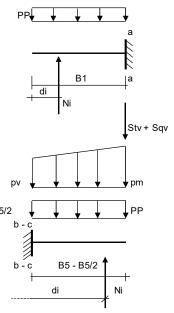
Mensola Lato Valle

$$Ma = \sum N_i^*(B1 - d_i) / i_i - PP^*(1\pm kv)^*B1^2/2$$


 Σ estesa a tutti i pali presenti sulla mensola


Mensola Lato Monte

 $Mb = \sum N_i^*(B5-(B-d_i))/i_i - [PP^*B5^2/2 + pvb^*B5^2/2 + (pm - pvb)^*B5^2/3]^*(1\pm kv) - (Stv+Sqv) * B5$


 $Mc = \sum N_i^* (B5/2 - (B-d_i)) / i_i - [PP^* (B5/2)^2 / 2 + pvc^* (B5/2)^2 / 2 + (pm - pvc)^* (B5/2)^2 / 3]^* (1 \pm kv) - (Stv + Sqv)^* B5/2 + (pm - pvc)^* (B5/2)^2 / 3]^* (1 \pm kv) - (Stv + Sqv)^* B5/2 + (pm - pvc)^* (B5/2)^2 / 3]^* (1 \pm kv) - (Stv + Sqv)^* B5/2 + (pm - pvc)^* (B5/2)^2 / 3]^* (1 \pm kv) - (Stv + Sqv)^* B5/2 + (pm - pvc)^* (B5/2)^2 / 3]^* (1 \pm kv) - (Stv + Sqv)^* B5/2 + (pm - pvc)^* (B5/2)^2 / 3]^* (1 \pm kv) - (Stv + Sqv)^* B5/2 + (pm - pvc)^* (B5/2)^2 / 3]^* (1 \pm kv) - (Stv + Sqv)^* B5/2 + (pm - pvc)^* (B5/2)^2 / 3]^* (1 \pm kv) - (Stv + Sqv)^* B5/2 + (pm - pvc)^* (B5/2)^2 / 3]^* (1 \pm kv) - (Stv + Sqv)^* B5/2 + (pm - pvc)^* (B5/2)^2 / 3]^* (1 \pm kv) - (Stv + Sqv)^* B5/2 + (pm - pvc)^* (B5/2)^2 / 3]^* (1 \pm kv) - (Stv + Sqv)^* B5/2 + (pm - pvc)^* (B5/2)^2 / 3]^* (1 \pm kv) - (Stv + Sqv)^* B5/2 + (pm - pvc)^* (B5/2)^2 / 3]^* (1 \pm kv) - (Stv + Sqv)^* B5/2 + (pm - pvc)^* (B5/2)^2 / 3]^* (1 \pm kv)^* B5/2 + (pm - pvc)^* (B5/2)^2 / 3]^* (1 \pm kv)^* B5/2 + (pm - pvc)^* (B5/2)^2 / 3]^* (1 \pm kv)^* B5/2 + (pm - pvc)^* (B5/2)^2 / 3]^* (1 \pm kv)^* B5/2 + (pm - pvc)^* (B5/2)^2 / 3]^* (1 \pm kv)^* B5/2 + (pm - pvc)^* (B5/2)^2 / 3]^* (1 \pm kv)^* B5/2 + (pm - pvc)^* (B5/2)^2 / 3]^* (1 \pm kv)^* B5/2 + (pm - pvc)^* (B5/2)^2 / 3]^* (1 \pm kv)^* B5/2 + (pm - pvc)^* (B5/2)^2 / 3]^* (1 \pm kv)^* B5/2 + (pm - pvc)^* (B5/2)^2 / 3]^* (1 \pm kv)^* B5/2 + (pm - pvc)^* (B5/2)^2 / 3]^* (1 \pm kv)^* B5/2 + (pm - pvc)^* (B5/2)^2 / 3]^* (1 \pm kv)^* B5/2 + (pm - pvc)^* (B5/2)^2 / 3]^* (1 \pm kv)^* B5/2 + (pm - pvc)^* (B5/2)^2 / 3]^* (1 \pm kv)^* B5/2 + (pm - pvc)^* (B5/2)^2 + (pm - pvc$

Wic - Z N, (B0/2-(B-0))//, - [1 1 (B0/2) /2 1 (B0/2) /2 1 (BIII - PNO) (B0/2) /3] (11KV) - (01V1 04V)

caso	Ма	Mb	Mc		
Caso	[kNm/m]	[kNm/m]	[kNm/m]		
rara	237.38	-416.08	-134.10		

APPALTATORE:

Mandataria: Mandante:

SALINI IMPREGILO S.p.A. ASTALDI S.p.A.

PROGETTISTA:

Mandataria: Mandante

SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.

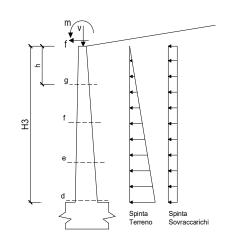
PROGETTO ESECUTIVO

Relazione di calcolo

LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

 PROGETTO
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 PAGINA


 IF1M
 0.0.E.ZZ
 CL
 \$L.08.00.001
 A
 188 di 211

CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo

 $\begin{array}{ll} Mt & = \frac{1}{2} \; Ka_{orizz} * \; \gamma^*h^{2*}h/3 \\ Mq & = \frac{1}{2} \; Ka_{orizz} * q^*h^2 \\ M_{ext} & = m + f^*h \end{array}$

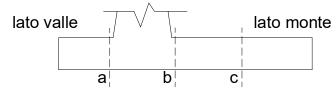
 $N_{ext} = v$

condizione rara

sezione	h	Mt	Mq	M _{ext}	M _{tot}	N _{ext}	N _{pp}	N _{tot}
30210110	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	6.68	194.69	166.12	98.30	459.11	35.42	155.31	190.73
e-e	5.01	82.13	93.44	82.79	258.36	35.42	106.15	141.57
f-f	3.34	24.34	41.53	67.28	133.14	35.42	63.88	99.30
g-g	1.67	3.04	10.38	51.77	65.19	35.42	28.49	63.92

condizione rara

Sez.	М	N	h	Af	A'f	$\sigma^{\scriptscriptstyle C}$	σ^{f}	wk	\mathbf{w}_{amm}
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)	(mm)	(mm)
a - a	224.04	0.00	1.30	15.71	31.42	1.48	121.18	0.170	0.200
b - b	-416.08	0.00	1.30	31.42	15.71	2.30	116.31	0.131	0.200
C - C	-134.10	0.00	1.30	31.42	15.71	0.74	37.48	0.042	0.200
d - d	459.11	190.73	1.26	31.42	15.71	2.79	105.81	0.119	0.200
e -e	258.36	141.57	1.10	31.42	15.71	2.00	67.31	0.076	0.200
f - f	133.14	99.30	0.93	31.42	15.71	1.37	40.05	0.045	0.200
g - g	65.19	63.92	0.77	31.42	15.71	0.95	24.05	0.027	0.200


(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 ROCKSOIL S.p.A. SYSTRA S.A. SYSTRA-SOTECNI S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA DOCUMENTO REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ SL.08.00.001 Α 189 di 211

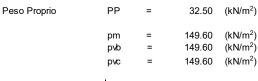
10.5.2 Verifiche alle tensioni muro

Nel seguito si riporta la verifica alle tensioni eseguita sul muro di sostegno in oggetto.

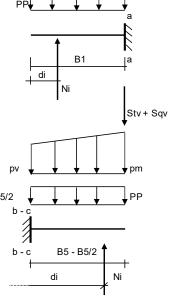
CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

Mensola Lato Valle

 Σ estesa a tutti i pali presenti sulla mensola


 $Ma = \sum N_i^*(B1 - d_i) / i_i - PP^*(1\pm kv)^*B1^2/2$

Mensola Lato Monte


 $Mb = \sum N_i^*(B5 - (B - d_i))/i_i - [PP^*B5^2/2 + pvb^*B5^2/2 + (pm - pvb)^*B5^2/3]^*(1\pm kv) - (Stv + Sqv) * B5$

 $Mc = \sum N_i^*(B5/2 - (B-d_i))/i_i - [PP^*(B5/2)^2/2 + pvc^*(B5/2)^2/2 + (pm - pvc)^*(B5/2)^2/3]^*(1\pm kv) - (Stv + Sqv) * B5/2 + (pm - pvc)^*(B5/2)^2/3]^*(1\pm kv) - (Stv + Sqv) * B5/2 + (pm - pvc)^*(B5/2)^2/3]^*(1\pm kv) - (Stv + Sqv) * B5/2 + (pm - pvc)^*(B5/2)^2/3]^*(1\pm kv) - (Stv + Sqv) * B5/2 + (pm - pvc)^*(B5/2)^2/3]^*(1\pm kv) - (Stv + Sqv) * B5/2 + (pm - pvc)^*(B5/2)^2/3]^*(1\pm kv) - (Stv + Sqv) * B5/2 + (pm - pvc)^*(B5/2)^2/3]^*(1\pm kv) - (Stv + Sqv) * B5/2 + (pm - pvc)^*(B5/2)^2/3]^*(1\pm kv) - (Stv + Sqv) * B5/2 + (pm - pvc)^*(B5/2)^2/3]^*(1\pm kv) - (Stv + Sqv) * B5/2 + (pm - pvc)^*(B5/2)^2/3]^*(1\pm kv) - (Stv + Sqv) * B5/2 + (pm - pvc)^*(B5/2)^2/3]^*(1\pm kv) - (Stv + Sqv) * B5/2 + (pm - pvc)^*(B5/2)^2/3]^*(1\pm kv) - (Stv + Sqv) * B5/2 + (pm - pvc)^*(B5/2)^2/3]^*(1\pm kv) - (Stv + Sqv) * B5/2 + (pm - pvc)^*(B5/2)^2/3]^*(1\pm kv) - (Stv + Sqv) * B5/2 + (pm - pvc)^*(B5/2)^2/3]^*(1\pm kv) - (Stv + Sqv) * B5/2 + (pm - pvc)^*(B5/2)^2/3]^*(1\pm kv) - (Stv + Sqv) * B5/2 + (pm - pvc)^*(B5/2)^2/3 + (pm - pvc)^2/3 + ($

 Σ estesa a tutti i pali presenti sulla mensola

caso	Ma	Mb	Mc
Caso	[kNm/m]	[kNm/m]	[kNm/m]
statico rara	237.38	-416.08	-134.10

APPALTATORE:

Mandataria: Mandante:
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.

PROGETTISTA:

Mandataria: Mandante:

SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.

PROGETTO ESECUTIVO Relazione di calcolo

LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA

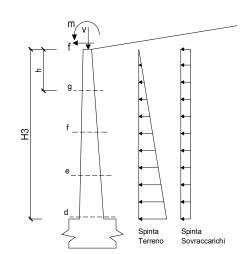
IF1M 0.0.E.ZZ CL SL.08.00.001 A 190 di 211

CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo

Mt stat = $\frac{1}{2} \text{Ka}_{\text{orizz.}}^{*} \gamma^{*} (1 \pm k v)^{*} h^{2*} h/3$

Mt sism = $\frac{1}{2}$ * γ *(Kas_{orizz}.*(1±kv)-Ka_{orizz}.)*h²*h/2 o *h/3


Mq = $\frac{1}{2}$ Ka_{orizz}*q*h²

 $M_{ext} = m+f^*h$

 $M_{inerzia} = \sum Pm_i^*b_i^*kh$ (solo con sisma)

 $N_{ext} = v$

N _{pp+inerzia}= $\sum Pm_i^*(1\pm kv)$

condizione statica

sezione	h	Mt	Mq	M _{ext}	M _{tot}	N _{ext}	N _{pp}	N _{tot}
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	6.68	194.69	166.12	98.30	459.11	35.42	155.31	190.73
е-е	5.01	82.13	93.44	82.79	258.36	35.42	106.15	141.57
f-f	3.34	24.34	41.53	67.28	133.14	35.42	63.88	99.30
g-g	1.67	3.04	10.38	51.77	65.19	35.42	28.49	63.92

Condizione Statica Rara

Sez.	М	N	h	Af	A'f	$\sigma^{_{\mathrm{C}}}$	σf
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)
a - a	237.38	0.00	1.30	15.71	31.42	1.61	129.79
b - b	-416.08	0.00	1.30	31.42	15.71	2.30	116.31
C - C	-134.10	0.00	1.30	31.42	15.71	0.74	37.48
d - d	459.11	190.73	1.26	31.42	15.71	2.79	105.81
e -e	258.36	141.57	1.10	31.42	15.71	2.00	67.31
f - f	133.14	99.30	0.93	31.42	15.71	1.37	40.05
g - g	65.19	63.92	0.77	31.42	15.71	0.95	24.05

La verifica tensionale nella combinazione di carico Quasi Permanente per il calcestruzzo risulta automaticamente soddisfatta, in quanto la tensione in combinazione di carico Rara risulta inferiore al limite inerente alla combinazione di carico Quasi Permanente (0.40f_{ck}=12.80 MPa). La verifica risulta, pertanto, certamente soddisfatta secondo entrambe le combinazioni.

La verifica tensionale nella combinazione di carico Rara per l'acciaio risulta soddisfatta in quanto la tensione è inferiore al limite di 337.5 MPa.

APPALTATORE:			LIN	EA FEF	ROVIA	RIA NAPOL	.I - B <i>i</i>	ARI
Mandataria:	Mandant	_		TRATT	A NAPO	LI-CANCE	LLO	
SALINI IMPREGILO	S.p.A. ASTAI	LDI S.p.A.	IN VADIA	NTE TDA	LEBKOLO	00 E DV 45+50	E INC	LUCELE
PROGETTISTA:						00 E PK 15+58 MBITO DEGL	,	
Mandataria:	Mandante:				•	ERTITO IN LEG		
SYSTRA S.A.	SYSTRA-SOTECNI S.p	.A. ROCKSOIL S.p.A.	COLAL	.L. 133/2	J14, CONV	EKIIIO IN LEV	JGE 10	14 / 20 14
PROGETTO ESECUT	TIVO		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo			IF1M	0.0.E.ZZ	CL	SL.08.00.001	Α	191 di 211

10.5.3 Verifiche a fessurazione pali

Sollecitazioni sui pali SLE/ caratteristiche N pali all.1 N pali all.2 N pali all.3 T pali caso [kN] [kN] [kN] [kN] [kN] [kN] [kN] Permanenti Accidentali Permanenti Accidentali Permanenti Accidentali Permanenti Accidentali 122.71 13.03 -96.65 34.95 statico freq. 634.69 122.71 702.40 13.03 770.12 -96.65 119.84 34.95 Nmin quasi perm 122.71 13.03 -96.65 34.95

Nel seguito si riporta la verifica a fessurazione eseguita sui pali di fondazione per M = 1.9 * 1.0 * (119.84+34.95) = 294.10 kNm

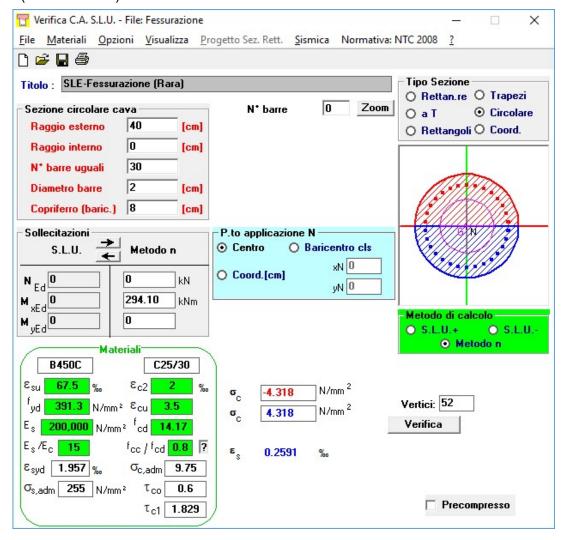


Figura 91-Verifica a fessurazione

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 ROCKSOIL S.p.A. SYSTRA S.A. SYSTRA-SOTECNI S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA DOCUMENTO REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ CL SL.08.00.001 Α 192 di 211

La tensione σ_c risulta superiore al limite rispetto al quale si fa corrispondere la formazione delle fessure, ovvero $f_{ctm}/1.2$ (2.13 MPa). Pertanto la sezione risulta fessurata e si procede ad ulteriori controlli sull'apertura delle fessure.

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA DOCUMENTO REV. PAGINA Relazione di calcolo 0.0.E.ZZ CL SL.08.00.001 Α 193 di 211

Materiali Cls Acciaio Ipotesi di calcolo Cond. ambientali Tipo di armature Tipi di carichi Sollecitazioni e car M _{Ed} N _{ed} D c x ricopr. Caratteristiche del	294.1 0			nsibili	MPa MPa	peciale? Es α	c s 2	31447 M 10000 M 6.68	lPa
Cls Acciaio Ipotesi di calcolo Cond. ambientali Tipo di armature Tipi di carichi Sollecitazioni e car M _{Ed} N _{ed} D c x ricopr. Caratteristiche del	ratteristich 294.1 0		Aggres Poco se	450 ssive		E	s 2	210000 M	
Ipotesi di calcolo Cond. ambientali Tipo di armature Tipi di carichi Sollecitazioni e car M _{Ed} N _{ed} D c x ricopr. Caratteristiche del	ratteristich 294.1 0		Aggres Poco se	450 ssive		E	s 2	210000 M	
Ipotesi di calcolo Cond. ambientali Tipo di armature Tipi di carichi Sollecitazioni e car M _{Ed} N _{ed} D c x ricopr. Caratteristiche del	ratteristich 294.1 0		Aggres Poco se	ssive nsibili	MPa				Pa
Cond. ambientali Tipo di armature Tipi di carichi Sollecitazioni e car M Ed N ed D c x ricopr. Caratteristiche del	294.1 0		Poco se Lunga c	nsibili		α	е	6.68	
Cond. ambientali Tipo di armature Tipi di carichi Sollecitazioni e car M Ed N ed D c x ricopr. Caratteristiche del	294.1 0		Poco se Lunga c	nsibili					
Tipo di armature Tipi di carichi Sollecitazioni e car M _{Ed} N _{ed} D c x ricopr. Caratteristiche del	294.1 0		Poco se Lunga c	nsibili					
Tipi di carichi Sollecitazioni e car M _{Ed} N _{ed} D c x ricopr. Caratteristiche del sp _{\phi}	294.1 0		Lunga o						
Sollecitazioni e car M _{Ed} N _{ed} D c x ricopr. Caratteristiche del	294.1 0			durata					
M _{Ed} N _{ed} D c x ricopr. Caratteristiche del	294.1 0		sezione	Lunga durata					
N _{ed} D c x ricopr. Caratteristiche del sp _{Φ}	0	kNm							
D c x ricopr. Caratteristiche del sp _{\phi}			Sollecitazio	one flette	ente				
c x ricopr. Caratteristiche del sp _ф	800	kN	Sforzo nor	male (<u>n</u>	<mark>egativo</mark> se d	i compressio	one)		
x ricopr. Caratteristiche del sp _ф	000	mm		d	73	0 mm			
ricopr. Caratteristiche del sp _ф	70	mm			_	2			
Caratteristiche del	276	mm		A c,eff	1005	<mark>3</mark> mm²			
spφ	60	mm							
· · ·	ll'armatura	9							
	67	mm		A_{ϕ}	31	4 mm²			
n. ferri	30			$ ho_{ ext{eff}}$	0.03	1			
φ	20	mm	1	σ_{s}	160.	<mark>2</mark> MPa			
Calcolo della defoi	rmazione ι	unitaria	media del	le barre	e				
k _t	0.4	coefficie	nte dipende	nte dalla	durata dei d	carichi			
€ _{sm}	0.0005743	deforma	ızione unitar	ria medio	a delle barre				
Calcolo della dista	nza massir	na tra le	e fessure						
5(c+ φ /2)	350	mm	> della spo	nziatura j	fra i ferri				
k ₁	0.8								
k ₂	0.5	(<= 1 pe	r trazione ec	centrica;	0,5 nel caso	di flessione	·)		
k ₃	3.4								
k ₄	0.425								
△ _{smax}	312.86	mm	(Eq. C.4.1.	17)	distanza m	nassima fra l	le fessui	re	
Valore di calcolo d	lell'apertu	ra delle	fessure e	verifica	1				
$\mathbf{w}_d = \boldsymbol{\varepsilon}_{sm} \Delta_{smax}$	0.180		(Eq. C.4.1.						
W _{amm}	0.200	mm	> wd: LA	VERIFIC	CA E' SODD	ISFATTA			

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
PROGETTISTA: Mandataria: SYSTRA S.A. Mandante: SYSTRA S.A. Mandante: SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO Relazione di calcolo	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA IF1M 0.0.E.ZZ CL SL.08.00.001 A 194 di 211

10.5.4 Verifiche alle tensioni pali

Nel seguito si riporta la verifica alle tensioni eseguita sui pali di fondazione.

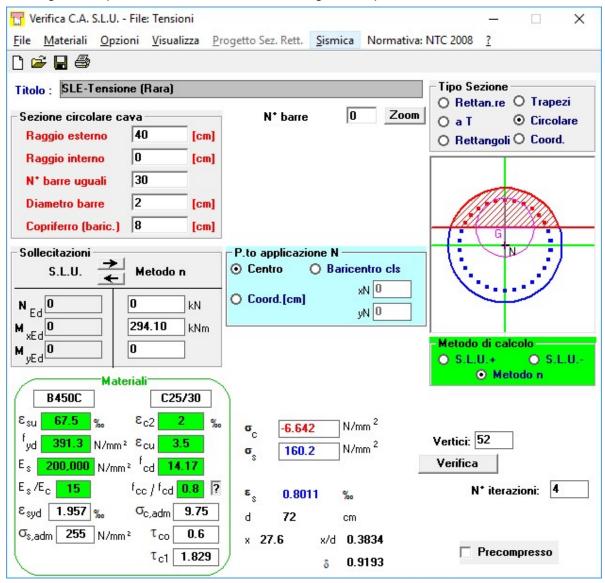


Figura 92-Verifica alle tensioni

La verifica tensionale nella combinazione di carico Quasi Permanente per il calcestruzzo risulta automaticamente soddisfatta, in quanto la tensione in combinazione di carico Rara risulta inferiore al limite inerente alla combinazione di carico Quasi Permanente (0.40f_{ck}=9.96 MPa). La verifica risulta, pertanto, certamente soddisfatta secondo entrambe le combinazioni.

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO LOTTO CODIFICA DOCUMENTO REV. **PROGETTO PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ SL.08.00.001 195 di 211 Α

La verifica tensionale nella combinazione di carico Rara per l'acciaio risulta soddisfatta in quanto la tensione è inferiore al limite di 337.5 MPa.

10.6 INCIDENZE ARMATURE MURI ANDATORI IN SINISTRA SU PALI

Il calcolo delle incidenze viene eseguito tenendo conto dell'intero elemento strutturale, con incrementi che tengono conto degli eventuali infittimenti.

	PARAMEN	TO MURO	PALI					
		VOLUM	E CLS (mc)	126,9				
	ф	L	n.	Р				
	(mm)	(m)	-	(kg)				
vert. int.	20	9,93	164	4014,1				
vert. est.	20	10	82	2021,2				
long. int.	16	16,32	82	2111,1				
long. est.	16	16,32	82	2111,1				
long. inf.	0	16,32	82	0,0				
long. sup.	20	16,32	4	160,9				
legature	12	1,05	982	915,0				
chiusura	20	3,53	82	713,5				
				0,0				
				0,0				
				0,0				
				0,0				
INCREMENTO %	INCREMENTO %							
PESO TOTALE AF	RMATURA			12047				
INCIDENZA (kg/	mc)			95				

	FONL	DAZIONE MU		
		VOL	JME CLS (mc)	123,7
	ф	L	n.	Р
	(mm)	(m)	-	(kg)
long. Inf.	20	5,72	82	1156,1
long sup.	20	5,72	164	2312,3
trasv. inf.	20	16,32	32	1287,3
trasv. sup.	20	16,32	26	1045,9
chiusura	20	4,8	82	970,2
parete	20	16,32	6	241,4
cavallotti	16	3,37	283,00	1504,5
attesa	20	2,44	245	1473,5
				0,0
				0,0
				0,0
				0,0
NCREMENTO	%			20%
ESO TOTALE A	ARMATURA			11989
NCIDENZA (ka	n/mc)			100

		PALO		
		VOLUM	E CLS (mc)	12,6
	ф	L	n.	Р
	(mm)	(m)	-	(kg)
filante 1	20	26,2	30	1937,4
sovrapp.	20	1,2	30	88,7
spirale	10	2,13	125	164,1
				0,0
				0,0
				0,0
				0,0
				0,0
				0,0
				0,0
				0,0
				0,0
INCREMENTO %	3%			
PESO TOTALE AF	2256			
INCIDENZA (kg/	mc)			180

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO PROGETTO LOTTO CODIFICA DOCUMENTO REV. **PAGINA** Relazione di calcolo 0.0.E.ZZ SL.08.00.001 Α 196 di 211 CL

TABULATI DI CALCOLO DELLA STRUTTURA SCATOLARE 11

*** PROJECT INFORMATION

Project Name :

: 2018/9/7 Date

*** CONTROL DATA

Panel Zone Effect : Do not Calculate Unit System : KN, M

Definition of Frame

- X Direction of Frame : Unbraced I Sway - Y Direction of Frame : Unbraced I Sway - Design Type : 3-D

NO X Y Z TEMPERATURE

- Design Type

Design Code

ign Code
- Steel : Eurocode3:05
- Concrete : Eurocode2:04
- SRC : SSRC79

*** LOAD CASE DATA

*** NODE DATA

NO	NAME	TYP	E SELF X	WEIGHT Y	FACTOR Z	DESCRIP	TION		
2	G1		D 0.000				ementi stru		
3	G1,st		D 0.000		0.000		delle terre		
10	G2		D 0.000				strutturale	e (Ballast+	-armame~
20	RITIRO		D 0.000			Ritiro			
13	Q,LM71(1)		D 0.000				vraccarico		
16	Q,LM71(2)		D 0.000				vraccarico		
12	Q,LM71(3)		D 0.000			-	vraccarico		
14	Q,LM71(4)		D 0.000				vraccarico		o Comb~
21	Q,R		D 0.000				vracarico s	stradale	
8	Q,fr		D 0.000			Frenatu			
17	Т		D 0.000		0.000	tempera			
5	EH,pp		D 0.000				i inerzia E		
18	EH,st		D 0.000				terreni in		
19	EHD		D 0.000				nto di spin		
1	Ev,pp		D 0.000				i inerzia E		ente d~
4	G1,st-GEO		D 0.000				delle terre		
6	G2-GEO		D 0.000				strutturale		
7	EH, st-GEO		D 0.000				terreni in		
9	Q,LM71-GEO(1)		D 0.000				vraccarico		
11	Q,LM71-GEO(2)		D 0.000				vraccarico		
15	Q,LM71-GEO(3)		D 0.000			-	vraccarico		
22	Q,LM71-GEO(4)		D 0.000	0.000	0.000	peso so	vraccarico	ferroviari	.o Comb~
*** MATERIAL P	ROPERTY DATA								
NO	NAME	TYPE		OULUS OF ASTICITY		HEAR	THERMAL COEFF.	POISSON RATIO	WEIGHT DENSITY
1	C32/40	CONC	3 3	3640+007	7 1 4020	+007	1e-005	0.2	25
2	NULL	CONC		1e+014			0	0.2	0
2	NOBE	CONC		10,011	1.1070	013	Ŭ	0.2	· ·
NO	NAME	TYPE	Sī	S FEEL	TRENGTH CONCRE		GN MATERIAL N REBAR	SUB REBAR	
1	C32/40	CONC				0	4e+005	4e+005	
2	NULL	CONC		_		0	4e+005	4e+005	
_	1,022	231.0				-		-3.000	

APPALTATORE:

Mandataria: Mandante:

SALINI IMPREGILO S.p.A. ASTALDI S.p.A.

PROGETTISTA:

Mandataria: Mandante:

SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.

PROGETTO ESECUTIVO
Relazione di calcolo

LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

 PROGETTO
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 PAGINA

 IF1M
 0.0.E.ZZ
 CL
 SL.08.00.001
 A
 197 di 211

1	0	0	0.6	0
2	7.2	0	0.6	0
3	7.2	0	6.8	0
4	0	0	6.8	0
29	3.6	0	0.6	0
30	0.5143	0	6.8	0
31	1.029	0	6.8	0
32	1.543	0	6.8	0
33	2.057	0	6.8	0
34	2.571	0	6.8	0
35	3.086	0	6.8	0
36	3.6	0	6.8	0
37	4.114	0	6.8	0
38	4.629	0	6.8	0
39	5.143	0	6.8	0
40	5.657	0	6.8	0
41	6.171	0	6.8	0
42	6.686	0	6.8	0
69	0.5143	0	0.6	0
70	1.029	0	0.6	0
71	1.543	0	0.6	0
72	2.057	0	0.6	0
73	2.571	0	0.6	0
74	3.086	0	0.6	0
75	4.114	0	0.6	0
76	4.629	0	0.6	0
77	5.143	0	0.6	0
78	5.657	0	0.6	0
79	6.171	0	0.6	0
80	6.686	0	0.6	0
81	0	0	1.22	0
82	0	0	1.84	0
83	0	0	2.46	0
84	0	0	3.08	0
85	0	0	3.7	0
86	0	0	4.32	0
87	0	0	4.94	0
88	0	0	5.56	0
89	0	0	6.18	0
90	7.2	0	1.22	0
91	7.2	0	1.84	0
92	7.2	0	2.46	0
93	7.2	0	3.08	0
94	7.2	0	3.7	0
95	7.2	0	4.32	0
96	7.2	0	4.94	0
97	7.2	0	5.56	0
98	7.2	0	6.18	0
20	1.2	U	0.10	U

** POINT SPRING SUPPORT

NODE	TRANSL	ATIONAL DIREC	CTION	ROTATIO	NAL DIRECTI	ON
	SDx	SDy	SDz	SRx	SRy	SRz
1	87428.5714	97428 5714 S	 8742.8571	0.0000	0.0000	0.0000
	87428.5714		8742.8571	0.0000	0.0000	0.0000
29	174857.1429	174857.1429	17485.7143	0.0000	0.0000	0.0000
69	174857.1429	174857.1429	17485.7143	0.0000	0.0000	0.0000
70	174857.1429	174857.1429	17485.7143	0.0000	0.0000	0.0000
71	174857.1429	174857.1429	17485.7143	0.0000	0.0000	0.0000
72	174857.1429	174857.1429	17485.7143	0.0000	0.0000	0.0000
		174857.1429		0.0000	0.0000	0.0000
74	174857.1429	174857.1429	17485.7143	0.0000	0.0000	0.0000
75	174857.1429	174857.1429	17485.7143	0.0000	0.0000	0.0000
76	174857.1429	174857.1429	17485.7143	0.0000	0.0000	0.0000
		174857.1429		0.0000	0.0000	0.0000
		174857.1429		0.0000	0.0000	0.0000
		174857.1429		0.0000	0.0000	0.0000
80	174857.1429	174857.1429	17485.7143	0.0000	0.0000	0.0000

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA DOCUMENTO REV. PAGINA Relazione di calcolo 0.0.E.ZZ SL.08.00.001 Α 198 di 211

	NO	NAME	SHAPE	Н	В	tw	tf1	r1		
	1	rig	SB	1	1	0	0	0		
	3	rig 0.70x1 0.80x1	SB SB	0.7	1 1	0	0	0		
		NAME	A Asy	7 Asz	STIFFNES	S SCALE F	ACTOR W	Boundary	Group	
		rig 0.70x1 0.80x1								
		NAME	[SRC:EQIV	7.]	Ix	ENT OF IN	Ιy	Iz	SHAPE k-Y	FACTOR k-Z
	1 2 3	rig 0.70x1 0.80x1	C	1).7).8	0.1406 0.06492 0.08759	0.08 0.02 0.04	333 858 267	0.08333 0.05833 0.06667	0.8333 0.8333 0.8333	0.8333 0.8333 0.8333
		NAME	I or CON	IC. J	or STEEL	I or CO	NC. J	or STEEL		
	2 3	rig 0.70x1 0.80x1	0.081	.67)67	0.08167	0.1	167 333	0.1167 0.1333		
*** BI	EAM MEM	MBER DATA								
	NO	I	J]	[J	MATERIA	L	SECTION	LENGTH
	1	1	81 90 30 69 75 31 32 33 34 35 36 37 38			 -		 O	0.70x1 0.70x1	
	2	2	90	-	-	- -	C32/4	0	0.70x1	0.62
	4	1	69	-		_	C32/4 C32/4 C32/4 C32/4 C32/4 C32/4)	0.70x1 0.80x1	0.5143
	29	29	75	-		-	C32/4	0	0 00 - 1	0 5143
	30 31	30 31	31	-	-	_	C32/4))	0.70x1 0.70x1	0.5143
	32	32	33	-		_	C32/4)	0.70x1	0.5143
	33	33	34	-	-	-	C32/4 C32/4 C32/4	0	0.70x1	0.5143
	34 35	34	35	-			C32/4)		0.5143 0.5143
	36	36	37	-		_	C32/4)	0.70 - 21	0 5143
	37	37	38	-	-	-	C32/4 C32/4		0.70x1	0.5143
	38	37 38 39 40	39 40	-	-	-	C32/4			0.5143
	39 40	40	40		-	- -	C32/4		0.70x1 0.70x1	0.5143
	41	41	42	-	-	_	C32/4		0.70x1	0.5143
	42	42	3	-		-	C32/4		0.70x1	0.5143
	69	69	70	-		-	C32/4		0.80x1	0.5143
	70 71	70 71	71 72	-			C32/4		0.80x1 0.80x1	0.5143 0.5143
	72	72	73	-		_	C32/4		0.80x1	0.5143
	73	73	74	-	-	-	C32/4	C	0.80x1	0.5143
	74	74	29		-	-	C32/4		0.80x1	0.5143
	75 76	75 76	76 77	-		_ _	C32/4		0.80x1 0.80x1	0.5143 0.5143
	77	77	78	-		_	C32/4		0.80x1	0.5143
	78	78	79	-		-	C32/4	0	0.80x1	0.5143
	79	79	80	-		-	C32/4		0.80x1	0.5143
	80 81	80 81	2 82		-	_ _	C32/4		0.80x1 0.70x1	0.5143 0.62
	81	81	82	-		_	C32/4		0.70x1 0.70x1	0.62
	83	83	84		-	_	C32/4		0.70x1	0.62
	84	84	85	-		-	C32/4		0.70x1	0.62
	85	85	86	-	-	-	C32/4	Ú	0.70x1	0.62

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 ROCKSOIL S.p.A. SYSTRA S.A. SYSTRA-SOTECNI S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA DOCUMENTO REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ SL.08.00.001 Α 199 di 211

86	86	87	-	-	C32/40	0.70x1	0.62
87	87	88	-	-	C32/40	0.70x1	0.62
88	88	89	-	-	C32/40	0.70x1	0.62
89	89	4	-	-	C32/40	0.70x1	0.62
90	90	91	-	-	C32/40	0.70x1	0.62
91	91	92	-	-	C32/40	0.70x1	0.62
92	92	93	-	-	C32/40	0.70x1	0.62
93	93	94	-	-	C32/40	0.70x1	0.62
94	94	95	-	-	C32/40	0.70x1	0.62
95	95	96	-	-	C32/40	0.70x1	0.62
96	96	97	-	-	C32/40	0.70x1	0.62
97	97	98	-	-	C32/40	0.70x1	0.62
98	98	3	-	-	C32/40	0.70x1	0.62

*** TOTAL WEIGHT / VOLUME / SURFACE AREA SUMMARY

SECTION NO	SECION NAME	SURFACE AREA	VOLUMN	WEIGHT	FRAME NUMBER	TRUSS NUMBER
1	rig	0	0	0	0	0
2	0.70x1	66.64	13.72	343	34	0
3	0.80x1	25.92	5.76	144	14	0

*** LOAD DATA

; Self Weight, Nodal Load, Specified Displacement, Beam Load, Floor Load, Finishing Material Load, System Temperature, Nodal Temperature, Element Temperature, Beam Section Temperature, Wind Load, Static Seismic Load, Time History Analysis Data

[LOAD CASE : G1]

** SELF WEIGHT DATA

; X=0, Y=0, Z=-1

[LOAD CASE : G1,st]

** BEAM LOAD DATA

MEMBER		TYPE	DIR.	PROJ.	D1	P1	D2	P2	D3	Р3	D4	P4
1	Uniform	Load	GX	NO	0	67.8	1	61.8	0	0	0	0
2	Uniform		GX	NO	0	-67.8	1	-61.8	0	0	0	0
81	Uniform	Load	GX	NO	0	61.8	1	55.8	0	0	0	0
82	Uniform	Load	GX	NO	0	55.8	1	49.8	0	0	0	0
83	Uniform	Load	GX	NO	0	49.8	1	43.8	0	0	0	0
84	Uniform	Load	GX	NO	0	43.8	1	37.8	0	0	0	0
85	Uniform	Load	GX	NO	0	37.8	1	31.8	0	0	0	0
86	Uniform	Load	GX	NO	0	31.8	1	25.8	0	0	0	0
87	Uniform	Load	GX	NO	0	25.8	1	19.8	0	0	0	0
88	Uniform	Load	GX	NO	0	19.8	1	13.8	0	0	0	0
89	Uniform	Load	GX	NO	0	13.8	1	7.74	0	0	0	0
90	Uniform	Load	GX	NO	0	-61.8	1	-55.8	0	0	0	0
91	Uniform	Load	GX	NO	0	-55.8	1	-49.8	0	0	0	0
92	Uniform	Load	GX	NO	0	-49.8	1	-43.8	0	0	0	0
93	Uniform	Load	GX	NO	0	-43.8	1	-37.8	0	0	0	0
94	Uniform	Load	GX	NO	0	-37.8	1	-31.8	0	0	0	0
95	Uniform	Load	GX	NO	0	-31.8	1	-25.8	0	0	0	0
96	Uniform	Load	GX	NO	0	-25.8	1	-19.8	0	0	0	0
97	Uniform	Load	GX	NO	0	-19.8	1	-13.8	0	0	0	0
98	Uniform	Load	GX	NO	0	-13.8	1	-7.74	0	0	0	0

[LOAD CASE : G2]

** BEAM LOAD DATA

MEMBER	TYPE	DIR.	PROJ.	D1	P1	D2	P2	D3	Р3	D4	P4
1	Uniform Load	GX	NO	0	7.29	1	7.29	0	0	0	0

APPALTATORE:

Mandataria:

SALINI IMPREGILO S.p.A.

PROGETTISTA:

Mandataria:

Mandataria:

Mandataria:

Mandataria:

SYSTRA-SOTECNI S.p.A.

SYSTRA S.A.

LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

PROGETTO ESECUTIVO	PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo	IF1M	0.0.E.ZZ	CL	SL.08.00.001	Α	200 di 211

ROCKSOIL S.p.A.

2	Uniform Load	GX	NO	0	-7.29	1	-7.29	0	0	0	0
3	Uniform Load	GZ	NO	0	-26	1	-26	0	0	0	0
4	Uniform Load	GZ	NO	0	-4	1	-4	0	0	0	0
29	Uniform Load	GZ	NO	0	-4	1	-4	0	0	0	0
30	Uniform Load	GZ	NO	0	-26	1	-26	0	0	0	0
31	Uniform Load	GZ	NO	0	-26	1	-26	0	0	0	0
32	Uniform Load	GZ	NO	0	-26	1	-26	0	0	0	0
33	Uniform Load	GZ	NO	0	-26	1	-26	0	0	0	0
34	Uniform Load	GZ	NO	0	-26	1	-26	0	0	0	0
35	Uniform Load	GZ	NO	0	-26	1	-26	0	0	0	0
36	Uniform Load	GZ	NO	0	-26	1	-26	0	0	0	0
37	Uniform Load	GZ	NO	0	-26	1	-26	0	0	0	0
38	Uniform Load	GZ	NO	0	-26	1	-26	0	0	0	0
39	Uniform Load	GZ	NO	0	-26	1	-26	0	0	0	0
40	Uniform Load	GZ	NO	0	-26	1	-26	0	0	0	0
41	Uniform Load	GZ	NO	0	-26	1	-26	0	0	0	0
42	Uniform Load	GZ	NO	0	-26	1	-26	0	0	0	0
69	Uniform Load	GZ	NO	0	-4	1	-4	0	0	0	0
70	Uniform Load	GZ	NO	0	-4	1	-4	0	0	0	0
71	Uniform Load	GZ	NO	0	-4	1	-4	0	0	0	0
72	Uniform Load	GZ	NO	0	-4	1	-4	0	0	0	0
73	Uniform Load	GZ	NO	0	-4	1	-4	0	0	0	0
74	Uniform Load	GZ	NO	0	-4	1	-4	0	0	0	0
75	Uniform Load	GZ	NO	0	-4	1	-4	0	0	0	0
76	Uniform Load	GZ	NO	0	-4	1	-4	0	0	0	0
77	Uniform Load	GZ	NO	0	-4	1	-4	0	0	0	0
78	Uniform Load	GZ	NO	0	-4	1	-4	0	0	0	0
79	Uniform Load	GZ	NO	0	-4	1	-4	0	0	0	0
80	Uniform Load	GZ	NO	0	-4	1	-4	0	0	0	0
81	Uniform Load	GX	NO	0	7.29	1	7.29	0	0	0	0
82	Uniform Load	GX	NO	0	7.29	1	7.29	0	0	0	0
83	Uniform Load	GX	NO	0	7.29	1	7.29	0	0	0	0
84	Uniform Load	GX	NO	0	7.29	1	7.29	0	0	0	0
85	Uniform Load	GX	NO	0	7.29	1	7.29	0	0	0	0
86	Uniform Load	GX	NO	0	7.29	1	7.29	0	0	0	0
87	Uniform Load	GX	NO	0	7.29	1	7.29	0	0	0	0
88	Uniform Load	GX	NO	0	7.29	1	7.29	0	0	0	0
89	Uniform Load	GX	NO	0	7.29	1	7.29	0	0	0	0
90	Uniform Load	GX	NO	0	-7.29	1	-7.29	0	0	0	0
91	Uniform Load	GX	NO	0	-7.29	1	-7.29	0	0	0	0
92	Uniform Load	GX	NO	0	-7.29	1	-7.29	0	0	0	0
93	Uniform Load	GX	NO	0	-7.29	1	-7.29	0	0	0	0
94	Uniform Load	GX	NO	0	-7.29	1	-7.29	0	0	0	0
95	Uniform Load	GX	NO	0	-7.29	1	-7.29	0	0	0	0
96	Uniform Load	GX	NO	0	-7.29	1	-7.29	0	0	0	0
97	Uniform Load	GX	NO	0	-7.29	1	-7.29	0	0	0	0
98	Uniform Load	GX	NO	0	-7.29	1	-7.29	0	0	0	0

[LOAD CASE : RITIRO]

** MEMBER TEMPERATURE LOAD DATA

MEMBER	TEMPERATURE
3	-10
31	-10
30	-10
42	-10
41	-10
40	-10
39	-10
38	-10
37	-10
36	-10
35	-10
34	-10
33	-10
32	-10

[LOAD CASE : Q,LM71(1)]

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA DOCUMENTO REV. PAGINA Relazione di calcolo 0.0.E.ZZ CL SL.08.00.001 Α 201 di 211

** BEAM LOAD DATA

MEMBER		TYPE DI	R. I	PROJ.	D1	P1	D2	P2	D3	Р3	D4	P4
1	Uniform :	 Load	SX	NO	0	32	1	32	0	0	0	0
2	Uniform :	Load	ΞX	NO	0	-32	1	-32	0	0	0	0
3	Uniform :	Load	ΞZ	NO	0	-35.9	0.78	-35.9	0	0	0	0
3	Uniform :	Load	ΞZ	NO	0.78	-70.2	1	-70.2	0	0	0	0
30	Uniform :	Load	ΞZ	NO	0	-70.2	1	-70.2	0	0	0	0
31	Uniform :	Load	ΞZ	NO	0	-70.2	1	-70.2	0	0	0	0
32	Uniform :		ΞZ	NO	0	-70.2	1	-70.2	0	0	0	0
33	Uniform :	Load	ΞZ	NO	0	-70.2	1	-70.2	0	0	0	0
34	Uniform :	Load	ΞZ	NO	0	-70.2	1	-70.2	0	0	0	0
35	Uniform :	Load	ΞZ	NO	0	-70.2	1	-70.2	0	0	0	0
36	Uniform :	Load	ΞZ	NO	0	-70.2	1	-70.2	0	0	0	0
37	Uniform :		ΞZ	NO	0	-70.2	1	-70.2	0	0	0	0
38	Uniform :		ΞZ	NO	0	-70.2	1	-70.2	0	0	0	0
39	Uniform :		ΞZ	NO	0	-70.2	1	-70.2	0	0	0	0
40	Uniform :		ΞZ	NO	0	-70.2	1	-70.2	0	0	0	0
41	Uniform :	Load	ΞZ	NO	0	-70.2	1	-70.2	0	0	0	0
42	Uniform :	Load	ΞZ	NO	0	-70.2	0.22	-70.2	0	0	0	0
42	Uniform :	Load	ΞZ	NO	0.22	-35.9	1	-35.9	0	0	0	0
81	Uniform :	Load	ΞX	NO	0	32	1	32	0	0	0	0
82	Uniform :	Load	ΞX	NO	0	32	1	32	0	0	0	0
83	Uniform :	Load	ΞX	NO	0	32	1	32	0	0	0	0
84	Uniform :	Load	ΞX	NO	0	32	1	32	0	0	0	0
85	Uniform :	Load	ΞX	NO	0	32	1	32	0	0	0	0
86	Uniform :	Load	ΞX	NO	0	32	1	32	0	0	0	0
87	Uniform :	Load	ΞX	NO	0	32	1	32	0	0	0	0
88	Uniform :	Load	ΞX	NO	0	32	1	32	0	0	0	0
89	Uniform :	Load	ΞX	NO	0	32	1	32	0	0	0	0
90	Uniform :	Load	ΞX	NO	0	-32	1	-32	0	0	0	0
91	Uniform :	Load	ΞX	NO	0	-32	1	-32	0	0	0	0
92	Uniform :	Load	ΞX	NO	0	-32	1	-32	0	0	0	0
93	Uniform :	Load	ΞX	NO	0	-32	1	-32	0	0	0	0
94	Uniform :		ΞX	NO	0	-32	1	-32	0	0	0	0
95	Uniform :		ΞX	NO	0	-32	1	-32	0	0	0	0
96	Uniform :		ΞX	NO	0	-32	1	-32	0	0	0	0
97	Uniform :		ΞX	NO	0	-32	1	-32	0	0	0	0
98	Uniform :	Load	ΞX	NO	0	-32	1	-32	0	0	0	0

[LOAD CASE : Q,LM71(2)]

** BEAM LOAD DATA

MEMBER		TYPE	DIR.	PROJ.	D1	P1	D2	P2	D3	P3	D4	P4
1	Uniform	Load	GX	NO	0	32	1	32	0	0	0	0
2	Uniform	Load	GX	NO	0	-32	1	-32	0	0	0	0
3	Uniform	Load	GZ	NO	0	-70.2	1	-70.2	0	0	0	0
30	Uniform	Load	GZ	NO	0	-70.2	1	-70.2	0	0	0	0
31	Uniform	Load	GZ	NO	0	-70.2	1	-70.2	0	0	0	0
32	Uniform	Load	GZ	NO	0	-70.2	1	-70.2	0	0	0	0
33	Uniform	Load	GZ	NO	0	-70.2	1	-70.2	0	0	0	0
34	Uniform	Load	GZ	NO	0	-70.2	1	-70.2	0	0	0	0
35	Uniform	Load	GZ	NO	0	-70.2	1	-70.2	0	0	0	0
36	Uniform	Load	GZ	NO	0	-70.2	1	-70.2	0	0	0	0
37	Uniform	Load	GZ	NO	0	-70.2	1	-70.2	0	0	0	0
38	Uniform	Load	GZ	NO	0	-70.2	1	-70.2	0	0	0	0
39	Uniform	Load	GZ	NO	0	-70.2	1	-70.2	0	0	0	0
40	Uniform	Load	GZ	NO	0	-70.2	1	-70.2	0	0	0	0
41	Uniform	Load	GZ	NO	0.44	-35.9	1	-35.9	0	0	0	0
41	Uniform	Load	GZ	NO	0	-70.2	0.44	-70.2	0	0	0	0
42	Uniform	Load	GZ	NO	0	-35.9	1	-35.9	0	0	0	0
81	Uniform	Load	GX	NO	0	32	1	32	0	0	0	0
82	Uniform	Load	GX	NO	0	32	1	32	0	0	0	0
83	Uniform	Load	GX	NO	0	32	1	32	0	0	0	0
84	Uniform	Load	GX	NO	0	32	1	32	0	0	0	0
85	Uniform	Load	GX	NO	0	32	1	32	0	0	0	0
86	Uniform	Load	GX	NO	0	32	1	32	0	0	0	0
87	Uniform	Load	GX	NO	0	32	1	32	0	0	0	0
88	Uniform	Load	GX	NO	0	32	1	32	0	0	0	0

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. SYSTRA S.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA DOCUMENTO RFV **PAGINA** Relazione di calcolo 0.0.E.ZZ SL.08.00.001 202 di 211 89 Uniform Load 32 NO 0 90 Uniform Load GX NO 0 -32 -32 0 0 0 91 Uniform Load GX NO -32 -32 0 0 0 -32 -32 92 Uniform Load GX NO Ω Ω Ω Ω Ω NO -32 -32 93 Uniform Load GX 0 0 0 0 Uniform Load GX NO -32 -32 Uniform Load -32 Uniform Load NO -32 -32 0 96 0 97 Uniform Load GX NO Ω -32 -32 Ω Ω Ω Ω Uniform Load GX NO 0 -32 -320 0 [LOAD CASE : Q,LM71(3)] ** BEAM LOAD DATA DIR. PROJ. D1 P1 D2 P2 D3 P3 D4 P4 MEMBER TYPE Uniform Load 0 32 3 Uniform Load NO 0 -35.9 0.78 -35.9 0 0 0 GΖ 1 3 Uniform Load GΖ NO 0.78 -70.2 -70.2 Ω Ω Ω Ω -70.2 -70.2 30 Uniform Load GZNO Ω 0 0 0 0 -70.2 Uniform Load -70.2 31 GΖ NO 0 0 Uniform Load GΖ -70.2 -70.2 33 Uniform Load GΖ NO -70.2 -70.2 Ω Ω 0 34 Uniform Load GΖ NO 0 -70.2 -70.20 0 0 3.5 Uniform Load GΖ NO 0 -70.2 -70.2 0 0 0 -70.2 -70.2 36 Uniform Load GΖ NO 0 0 0 0 Uniform Load -70.2 -70.2 GΖ NO 0 Uniform Load -70.2 -70.2 0 -70.2 39 Uniform Load GΖ NO 0 -70.2 0 0 0 40 Uniform Load GΖ NO Ω -70 2 1 -70 2 Ω Ω Ω -70 2 -70 2 41 Uniform Load GZ. NO Ω Ω Ω Ω Ω -70.2 0.22 -70.2 42 Uniform Load GΖ NO 0 0 0 0 Uniform Load GΖ NO -35.9 -35.9 Uniform Load GX 82 Uniform Load GX NO Ω 32 32 Ω Ω Ω 8.3 Uniform Load GX NO 0 32 1 32 0 0 0 84 Uniform Load GX NO 0 32 32 0 0 0 32 32 85 Uniform Load GX NO 0 0 0 0 GX Uniform Load Uniform Load 32 32 0 0 NO 32 32 32 32 Uniform Load GX NO 0 0 0 0 Uniform Load NO Ω Ω Ω [LOAD CASE : Q,LM71(4)] ** BEAM LOAD DATA DIR. PROJ. P1 TYPE D1 D2 P2 D3 P3 D4 Р4 MEMBER Uniform Load 3 Uniform Load NO -70.2 -70.2 Ω Ω 0 GΖ 3.0 Uniform Load GZNΟ Λ -70.2 -70.2 Λ Λ Λ Λ -70.2 -70.2 31 Uniform Load GΖ NO 0 0 0 0 NO -70.2 -70.2 32 Uniform Load GΖ 0 0 0 Uniform Load -70.2 -70.2 34 Uniform Load GΖ NO -70.2 -70.2 0 0 0 35 Uniform Load GΖ NO 0 -70.2 -70.2 0 0 0 36 Uniform Load GΖ NO Ω -70.2 1 -70.2 Ω Ω Ω -70.2-70.237 Uniform Load GZNO 0 0 0 0 38 Uniform Load GΖ NO -70.2 -70.2 0 0 Uniform Load GΖ -70.2 -70.2 -70.2 -70.2 Uniform Load 41 Uniform Load GΖ NO 0 44 -35.9 1 -35.9 Ω Ω Ω 41 Uniform Load GΖ NO 0 -70.2 0.44 -70.20 0 0 -35.9 -35.9 42 Uniform Load GΖ NO 0 0 0 32 Uniform Load 81 GX NO 32 0 0

32

32

32

1

32

Uniform Load

Uniform Load

Uniform Load

Uniform Load

GX

GX

GX

NO

NO

NO

0

Ω

Ω

83

84

32

32

32

32

0

Ω

Ω

0

Ω

Ω

Ω

Ω

Ω

Ω

APPALTATORE:

Mandataria:

SALINI IMPREGILO S.p.A.

PROGETTISTA:

Mandataria:

Mandataria:

Mandataria:

SYSTRA S.A.

SYSTRA-SOTECNI S.p.A.

ROCKSOIL S.p.A.

LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

DOCUMENTO

SL.08.00.001

REV.

Α

PAGINA

203 di 211

CODIFICA

CL

86	Uniform Load	GX	NO	0	32	1	32	0	0	0	0
87	Uniform Load	GX	NO	0	32	1	32	0	0	0	0
88	Uniform Load	GX	NO	0	32	1	32	0	0	0	0
89	Uniform Load	GX	NO	0	32	1	32	0	0	0	0

PROGETTO

IF1M

LOTTO

0.0.E.ZZ

[LOAD CASE : Q,R]

** BEAM LOAD DATA

PROGETTO ESECUTIVO

Relazione di calcolo

MEMBER	TYPE	DIR.	PROJ.	D1	P1	D2	P2	D3	Р3	D4	P4
4	Uniform Load	GZ	NO	0	-107	1	-107	0	0	0	0
4	Uniform Load	GZ	NO	0	-9	1	-9	0	0	0	0
29	Uniform Load	GZ	NO	0	-71.4	1	-71.4	0	0	0	0
29	Uniform Load	GZ	NO	0	-2.5	1	-2.5	0	0	0	0
69	Uniform Load	GZ	NO	0	-9	1	-9	0	0	0	0
69	Uniform Load	GZ	NO	0	-107	1	-107	0	0	0	0
70	Uniform Load	GZ	NO	0	-107	1	-107	0	0	0	0
70	Uniform Load	GZ	NO	0	-9	1	-9	0	0	0	0
71	Uniform Load	GZ	NO	0	-107	1	-107	0	0	0	0
71	Uniform Load	GZ	NO	0	-9	1	-9	0	0	0	0
72	Uniform Load	GZ	NO	0	-9	1	-9	0	0	0	0
72	Uniform Load	GZ	NO	0	-107	1	-107	0	0	0	0
73	Uniform Load	GZ	NO	0	-107	1	-107	0	0	0	0
73	Uniform Load	GZ	NO	0	-9	1	-9	0	0	0	0
74	Uniform Load	GZ	NO	0	-107	1	-107	0	0	0	0
74	Uniform Load	GZ	NO	0	-9	1	-9	0	0	0	0
75	Uniform Load	GZ	NO	0	-71.4	1	-71.4	0	0	0	0
75	Uniform Load	GZ	NO	0	-2.5	1	-2.5	0	0	0	0
76	Uniform Load	GZ	NO	0	-71.4	1	-71.4	0	0	0	0
76	Uniform Load	GZ	NO	0	-2.5	1	-2.5	0	0	0	0
77	Uniform Load	GZ	NO	0	-71.4	1	-71.4	0	0	0	0
77	Uniform Load	GZ	NO	0	-2.5	1	-2.5	0	0	0	0
78	Uniform Load	GZ	NO	0	-71.4	1	-71.4	0	0	0	0
78	Uniform Load	GZ	NO	0	-2.5	1	-2.5	0	0	0	0
79	Uniform Load	GZ	NO	0	-2.5	1	-2.5	0	0	0	0
79	Uniform Load	GZ	NO	0	-71.4	1	-71.4	0	0	0	0
80	Uniform Load	GZ	NO	0	-71.4	1	-71.4	0	0	0	0
80	Uniform Load	GZ	NO	0	-2.5	1	-2.5	0	0	0	0

[LOAD CASE : Q,fr]

** BEAM LOAD DATA

MEMBER		TYPE	DIR.	PROJ.	D1	P1	D2	P2	D3	Р3	D4	P4
3	Uniform	Load	GX	NO	0	8.92	1	8.92	0	0	0	0
30	Uniform	Load	GX	NO	0	8.92	1	8.92	0	0	0	0
31	Uniform	Load	GX	NO	0	8.92	1	8.92	0	0	0	0
32	Uniform	Load	GX	NO	0	8.92	1	8.92	0	0	0	0
33	Uniform	Load	GX	NO	0	8.92	1	8.92	0	0	0	0
34	Uniform	Load	GX	NO	0	8.92	1	8.92	0	0	0	0
35	Uniform	Load	GX	NO	0	8.92	1	8.92	0	0	0	0
36	Uniform	Load	GX	NO	0	8.92	1	8.92	0	0	0	0
37	Uniform	Load	GX	NO	0	8.92	1	8.92	0	0	0	0
38	Uniform	Load	GX	NO	0	8.92	1	8.92	0	0	0	0
39	Uniform	Load	GX	NO	0	8.92	1	8.92	0	0	0	0
40	Uniform	Load	GX	NO	0	8.92	1	8.92	0	0	0	0
41	Uniform	Load	GX	NO	0	8.92	1	8.92	0	0	0	0
42	Uniform	Load	GX	NO	0	8.92	1	8.92	0	0	0	0

[LOAD CASE : T]

** MEMBER TEMPERATURE LOAD DATA

MEMBER	TEMPERATURE
4	15
3	15
2	15

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA DOCUMENTO REV. PAGINA Relazione di calcolo 0.0.E.ZZ SL.08.00.001 Α 204 di 211

1	15
31	15
30	15
29 42	15
42	15
41	15
40	15
39	15
38	15
38 37 36	15 15
36	15
35	15
35 34	15 15
33	15
32	15
79	15
33 32 79 78	15
77	15
77 76	15
75	15
75 74	15
73 72	15
72	15
71 70	15 15
70	15
69	15
95	15
95 94	15
93	15
93 92	15
91	15
90	15
89	15
88	15
87	15
86	15
85	15
84	15 15
83	15
82	15
81	15
80	15
98	
97	15 15
96	15

[LOAD CASE : EH,pp]

** BEAM LOAD DATA

MEMBER	TY	PE DIR.	PROJ.	D1	P1	D2	P2	D3	Р3	D4	P4
1	Uniform Lo	ad GX	NO	0	7.73	1	7.73	0	0	0	0
2	Uniform Lo	ad GX	NO	0	7.73	1	7.73	0	0	0	0
3	Uniform Lo	ad GX	NO	0	8.07	1	8.07	0	0	0	0
30	Uniform Lo	ad GX	NO	0	8.07	1	8.07	0	0	0	0
31	Uniform Lo	ad GX	NO	0	8.07	1	8.07	0	0	0	0
32	Uniform Lo	ad GX	NO	0	8.07	1	8.07	0	0	0	0
33	Uniform Lo	ad GX	NO	0	8.07	1	8.07	0	0	0	0
34	Uniform Lo	ad GX	NO	0	8.07	1	8.07	0	0	0	0
35	Uniform Lo	ad GX	NO	0	8.07	1	8.07	0	0	0	0
36	Uniform Lo	ad GX	NO	0	8.07	1	8.07	0	0	0	0
37	Uniform Lo	ad GX	NO	0	8.07	1	8.07	0	0	0	0
38	Uniform Lo	ad GX	NO	0	8.07	1	8.07	0	0	0	0
39	Uniform Lo	ad GX	NO	0	8.07	1	8.07	0	0	0	0
40	Uniform Lo	ad GX	NO	0	8.07	1	8.07	0	0	0	0
41	Uniform Lo	ad GX	NO	0	8.07	1	8.07	0	0	0	0
42	Uniform Lo	ad GX	NO	0	8.07	1	8.07	0	0	0	0
81	Uniform Lo	ad GX	NO	0	7.73	1	7.73	0	0	0	0
82	Uniform Lo	ad GX	NO	0	7.73	1	7.73	0	0	0	0
83	Uniform Lo	ad GX	NO	0	7.73	1	7.73	0	0	0	0
84	Uniform Lo	ad GX	NO	0	7.73	1	7.73	0	0	0	0

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. SYSTRA S.A. PROGETTO ESECUTIVO PROGETTO LOTTO CODIFICA DOCUMENTO RFV **PAGINA** Relazione di calcolo 0.0.E.ZZ SL.08.00.001 205 di 211 85 Uniform Load 7.73 7.73 NO 0 86 Uniform Load GX NO 0 7.73 7.73 0 0 0 7.73 7.73 87 Uniform Load GX NO 0 7.73 0 0 0 7.73 8.8 Uniform Load GX NO Ω Ω Ω Ω Ω 7.73 NO 7.73 89 Uniform Load GX 0 0 0 0 7.73 7.73 90 Uniform Load GX NO Uniform Load 7.73 7.73 Uniform Load NO 7.73 7.73 0 92 0 93 Uniform Load GX NO Ω 7.73 7.73 Ω Ω Ω Ω 94 Uniform Load GX NO Ω 7.73 7.73 0 0 0 95 Uniform Load GX 7.73 7.73 NO 0 0 Uniform Load GX NO 7.73 7.73 Uniform Load NO 7.73 7.73 0 0 GX 98 Uniform Load GX NO 0 7.73 7.73 0 Ω 0 0 [LOAD CASE : EH, st] ** BEAM LOAD DATA P1 D2 P2 MEMBER TYPE DIR. PROJ. D1 D3 P3 D4 Р4 ---- ----- ---- -Uniform Load 67.8 61.8 Uniform Load GX 81 Uniform Load GX NO 61.8 55.8 Ω Ω Ω 82 Uniform Load GX NO 0 55.8 49.8 0 0 0 0 8.3 Uniform Load GX NO Ω 49.8 1 43.8 0 0 0 Uniform Load 37.8 84 GX NO 0 43.8 0 0 0 85 Uniform Load NO 37.8 31.8 GX 0 Uniform Load 31.8 25.8 0 NO 87 Uniform Load GX NO 0 25.8 19.8 0 0 0 8.8 Uniform Load GX NO Ω 19.8 1 13.8 Ω Ω Ω 89 Uniform Load GX NO Ω 13.8 1 7 74 Ω Ω Ω Ω 90 Uniform Load GX NO 0 -61.8 -55.8 0 0 0 Uniform Load GX NO -55.8 -49.8 Uniform Load NO -49.8 -43.8 93 Uniform Load GX NO -43.8 -37.8 Ω Ω Ω 94 Uniform Load GX NO 0 -37.8 1 -31.8 0 0 0 9.5 Uniform Load GX NO 0 -31.8 1 -25.80 0 0 -19.8 96 Uniform Load GX NO -25.8 0 0 Uniform Load GX NO -19.8 -13.8 Uniform Load -13.8 0 -7.74 [LOAD CASE : EHD] ** BEAM LOAD DATA MEMBER TYPE DIR. PROJ. D1 P1 D2 P2 D3 P3 D4 Р4 ----- ---- ----- --------- ----- ----- -----GX NO 47.1 47.1 0 Ω Uniform Load 0 0 0 Uniform Load 47.1 47.1 GX NO 0 0 Uniform Load GX 47.1 47.1 83 Uniform Load GX NO 47.1 47.1 Ω Ω 0 84 Uniform Load GX NO Λ 47.1 47.1 Λ Λ Λ Λ 47.1 85 Uniform Load GX NO 0 47.1 1 0 0 0 GX NO 47.1 47.1 86 Uniform Load 0 0 0 0 47.1 47.1 Uniform Load 0 Uniform Load GX NO 0 47.1 47.1 0 0 88 89 Uniform Load GX NO 0 47.1 47.1 0 0 [LOAD CASE : Ev,pp] ** BEAM LOAD DATA P1 P2 MEMBER TYPE DIR. PROJ. D1 D2 D.3 Р3 Р4 Uniform Load -2.32 -2.32 GΖ NO -2.32 -2.32 0 0 0 0 Uniform Load Uniform Load GΖ NO 0 -6.69 -6.69 0 0 0 0 0 0 0 1 0 3.0 Uniform Load GZ. NO -6.69 -6.69 Ω Ω Ω NO 1 0 31 Uniform Load GΖ -6.69 -6.69 Ω Ω

APPALTATORE:

Mandataria:

SALINI IMPREGILO S.p.A.

PROGETTISTA:

Mandataria:

Mandataria:

Mandataria:

SYSTRA S.A.

Mandante:

SYSTRA-SOTECNI S.p.A.

ROCKSOIL S.p.A.

PROGETTO ESECUTIVO

Relazione di calcolo

LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

DOCUMENTO

SL.08.00.001

REV.

Α

PAGINA

206 di 211

CODIFICA

CL

32	Uniform Load	GZ	NO	0	-6.69	1	-6.69	0	0	0	0
33	Uniform Load	GZ	NO	0	-6.69	1	-6.69	0	0	0	0
34	Uniform Load	GZ	NO	0	-6.69	1	-6.69	0	0	0	0
35	Uniform Load	GZ	NO	0	-6.69	1	-6.69	0	0	0	0
36	Uniform Load	GZ	NO	0	-6.69	1	-6.69	0	0	0	0
37	Uniform Load	GZ	NO	0	-6.69	1	-6.69	0	0	0	0
38	Uniform Load	GZ	NO	0	-6.69	1	-6.69	0	0	0	0
39	Uniform Load	GZ	NO	0	-6.69	1	-6.69	0	0	0	0
40	Uniform Load	GZ	NO	0	-6.69	1	-6.69	0	0	0	0
41	Uniform Load	GZ	NO	0	-6.69	1	-6.69	0	0	0	0
42	Uniform Load	GZ	NO	0	-6.69	1	-6.69	0	0	0	0
81	Uniform Load	GZ	NO	0	-2.32	1	-2.32	0	0	0	0
82	Uniform Load	GZ	NO	0	-2.32	1	-2.32	0	0	0	0
83	Uniform Load	GZ	NO	0	-2.32	1	-2.32	0	0	0	0
84	Uniform Load	GZ	NO	0	-2.32	1	-2.32	0	0	0	0
85	Uniform Load	GZ	NO	0	-2.32	1	-2.32	0	0	0	0
86	Uniform Load	GZ	NO	0	-2.32	1	-2.32	0	0	0	0
87	Uniform Load	GZ	NO	0	-2.32	1	-2.32	0	0	0	0
88	Uniform Load	GZ	NO	0	-2.32	1	-2.32	0	0	0	0
89	Uniform Load	GZ	NO	0	-2.32	1	-2.32	0	0	0	0
90	Uniform Load	GZ	NO	0	-2.32	1	-2.32	0	0	0	0
91	Uniform Load	GZ	NO	0	-2.32	1	-2.32	0	0	0	0
92	Uniform Load	GZ	NO	0	-2.32	1	-2.32	0	0	0	0
93	Uniform Load	GZ	NO	0	-2.32	1	-2.32	0	0	0	0
94	Uniform Load	GZ	NO	0	-2.32	1	-2.32	0	0	0	0
95	Uniform Load	GZ	NO	0	-2.32	1	-2.32	0	0	0	0
96	Uniform Load	GZ	NO	0	-2.32	1	-2.32	0	0	0	0
97	Uniform Load	GZ	NO	0	-2.32	1	-2.32	0	0	0	0
98	Uniform Load	GZ	NO	0	-2.32	1	-2.32	0	0	0	0

PROGETTO

IF1M

LOTTO

0.0.E.ZZ

[LOAD CASE : G1,st-GEO]

** BEAM LOAD DATA

MEMBER	TYPE	DIR.	PROJ.	D1	P1	D2	P2	D3	Р3	D4	P4
1	Uniform Load	GX	NO	0	80.3	1	73.2	0	0	0	0
2	Uniform Load	GX	NO	0	-80.3	1	-73.2	0	0	0	0
81	Uniform Load	GX	NO	0	73.2	1	66.1	0	0	0	0
82	Uniform Load	GX	NO	0	66.1	1	59	0	0	0	0
83	Uniform Load	GX	NO	0	59	1	51.9	0	0	0	0
84	Uniform Load	GX	NO	0	51.9	1	44.7	0	0	0	0
85	Uniform Load	GX	NO	0	44.7	1	37.6	0	0	0	0
86	Uniform Load	GX	NO	0	37.6	1	30.5	0	0	0	0
87	Uniform Load	GX	NO	0	30.5	1	23.4	0	0	0	0
88	Uniform Load	GX	NO	0	23.4	1	16.3	0	0	0	0
89	Uniform Load	GX	NO	0	16.3	1	9.16	0	0	0	0
90	Uniform Load	GX	NO	0	-73.2	1	-66.1	0	0	0	0
91	Uniform Load	GX	NO	0	-66.1	1	-59	0	0	0	0
92	Uniform Load	GX	NO	0	-59	1	-51.9	0	0	0	0
93	Uniform Load	GX	NO	0	-51.9	1	-44.7	0	0	0	0
94	Uniform Load	GX	NO	0	-44.7	1	-37.6	0	0	0	0
95	Uniform Load	GX	NO	0	-37.6	1	-30.5	0	0	0	0
96	Uniform Load	GX	NO	0	-30.5	1	-23.4	0	0	0	0
97	Uniform Load	GX	NO	0	-23.4	1	-16.3	0	0	0	0
98	Uniform Load	GX	NO	0	-16.3	1	-9.16	0	0	0	0

[LOAD CASE : G2-GEO]

** BEAM LOAD DATA

MEMBER		TYPE	DIR.	PROJ.	D1	P1	D2	P2	D3	P3	D4	P4
1	Uniform	Load	GX	NO	0	8.62	1	8.62	0	0	0	0
2	Uniform	Load	GX	NO	0	-8.62	1	-8.62	0	0	0	0
3	Uniform	Load	GZ	NO	0	-26	1	-26	0	0	0	0
4	Uniform	Load	GZ	NO	0	-4	1	-4	0	0	0	0
29	Uniform	Load	GZ	NO	0	-4	1	-4	0	0	0	0
30	Uniform	Load	GZ	NO	0	-26	1	-26	0	0	0	0
31	Uniform	Load	GZ	NO	0	-26	1	-26	0	0	0	0
32	Uniform	Load	GZ	NO	0	-26	1	-26	0	0	0	0

APPALTATORE:

Mandataria: Mandante:

SALINI IMPREGILO S.p.A. ASTALDI S.p.A.

PROGETTISTA:

Mandataria: Mandante:

PROGETTO ESECUTIVO

Relazione di calcolo

SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.

LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

CODIFICA

CL

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

DOCUMENTO

SL.08.00.001

REV.

Α

PAGINA

207 di 211

33	Uniform Load	GZ	NO	0	-26	1	-26	0	0	0	0
34	Uniform Load	GΖ	NO	0	-26	1	-26	0	0	0	0
35	Uniform Load	GΖ	NO	0	-26	1	-26	0	0	0	0
36	Uniform Load	GZ	NO	0	-26	1	-26	0	0	0	0
37	Uniform Load	GZ	NO	0	-26	1	-26	0	0	0	0
38	Uniform Load	GZ	NO	0	-26	1	-26	0	0	0	0
39	Uniform Load	GZ	NO	0	-26	1	-26	0	0	0	0
40	Uniform Load	GZ	NO	0	-26	1	-26	0	0	0	0
41	Uniform Load	GZ	NO	0	-26	1	-26	0	0	0	0
42	Uniform Load	GZ	NO	0	-26	1	-26	0	0	0	0
69	Uniform Load	GZ	NO	0	-4	1	-4	0	0	0	0
70	Uniform Load	GZ	NO	0	-4	1	-4	0	0	0	0
71	Uniform Load	GZ	NO	0	-4	1	-4	0	0	0	0
72	Uniform Load	GZ	NO	0	-4	1	-4	0	0	0	0
73	Uniform Load	GZ	NO	0	-4	1	-4	0	0	0	0
74	Uniform Load	GZ	NO	0	-4	1	-4	0	0	0	0
75	Uniform Load	GZ	NO	0	-4	1	-4	0	0	0	0
76	Uniform Load	GZ	NO	0	-4	1	-4	0	0	0	0
77	Uniform Load	GZ	NO	0	-4	1	-4	0	0	0	0
78	Uniform Load	GZ	NO	0	-4	1	-4	0	0	0	0
79	Uniform Load	GZ	NO	0	-4	1	-4	0	0	0	0
80	Uniform Load	GZ	NO	0	-4	1	-4	0	0	0	0
81	Uniform Load	GX	NO	0	8.62	1	8.62	0	0	0	0
82	Uniform Load	GX	NO	0	8.62	1	8.62	0	0	0	0
83	Uniform Load	GX	NO	0	8.62	1	8.62	0	0	0	0
84	Uniform Load	GX	NO	0	8.62	1	8.62	0	0	0	0
85	Uniform Load	GX	NO	0	8.62	1	8.62	0	0	0	0
86	Uniform Load	GX	NO	0	8.62	1	8.62	0	0	0	0
87	Uniform Load	GX	NO	0	8.62	1	8.62	0	0	0	0
88	Uniform Load	GX	NO	0	8.62	1	8.62	0	0	0	0
89	Uniform Load	GX	NO	0	8.62	1	8.62	0	0	0	0
90	Uniform Load	GX	NO	0	-8.62	1	-8.62	0	0	0	0
91	Uniform Load	GX	NO	0	-8.62	1	-8.62	0	0	0	0
92	Uniform Load	GX	NO	0	-8.62	1	-8.62	0	0	0	0
93	Uniform Load	GX	NO	0	-8.62	1	-8.62	0	0	0	0
94	Uniform Load	GX	NO	0	-8.62	1	-8.62	0	0	0	0
95	Uniform Load	GX	NO	0	-8.62	1	-8.62	0	0	0	0
96	Uniform Load	GX	NO	0	-8.62	1	-8.62	0	0	0	0
97	Uniform Load	GX	NO	0	-8.62	1	-8.62	0	0	0	0
98	Uniform Load	GX	NO	0	-8.62	1	-8.62	0	0	0	0

PROGETTO

LOTTO

0.0.E.ZZ

[LOAD CASE : EH, st-GEO]

^{**} BEAM LOAD DATA

MEMBER		TYPE	DIR.	PROJ.	D1	P1	D2	P2	D3	Р3	D4	P4
1	Uniform	Load	GX	NO	0	80.3	1	73.2	0	0	0	0
2	Uniform	Load	GX	NO	0	-80.3	1	-73.2	0	0	0	0
81	Uniform	Load	GX	NO	0	73.2	1	66.1	0	0	0	0
82	Uniform	Load	GX	NO	0	66.1	1	59	0	0	0	0
83	Uniform	Load	GX	NO	0	59	1	51.9	0	0	0	0
84	Uniform	Load	GX	NO	0	51.9	1	44.7	0	0	0	0
85	Uniform	Load	GX	NO	0	44.7	1	37.6	0	0	0	0
86	Uniform	Load	GX	NO	0	37.6	1	30.5	0	0	0	0
87	Uniform	Load	GX	NO	0	30.5	1	23.4	0	0	0	0
88	Uniform	Load	GX	NO	0	23.4	1	16.3	0	0	0	0
89	Uniform	Load	GX	NO	0	16.3	1	9.16	0	0	0	0
90	Uniform	Load	GX	NO	0	-73.2	1	-66.1	0	0	0	0
91	Uniform	Load	GX	NO	0	-66.1	1	-59	0	0	0	0
92	Uniform	Load	GX	NO	0	-59	1	-51.9	0	0	0	0
93	Uniform	Load	GX	NO	0	-51.9	1	-44.7	0	0	0	0
94	Uniform	Load	GX	NO	0	-44.7	1	-37.6	0	0	0	0
95	Uniform	Load	GX	NO	0	-37.6	1	-30.5	0	0	0	0
96	Uniform	Load	GX	NO	0	-30.5	1	-23.4	0	0	0	0
97	Uniform	Load	GX	NO	0	-23.4	1	-16.3	0	0	0	0
98	Uniform	Load	GX	NO	0	-16.3	1	-9.16	0	0	0	0

[LOAD CASE : Q,LM71-GEO(1)]

^{**} BEAM LOAD DATA

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA DOCUMENTO REV. PAGINA Relazione di calcolo 0.0.E.ZZ CL SL.08.00.001 Α 208 di 211

MEMBER	TYPE	DIR.	PROJ.	D1	P1	D2	P2	D3	Р3	D4	P4
1	Uniform Load	GX	NO	0	37.8	1	37.8	0	0	0	0
2	Uniform Load	GX	NO	0	-37.8	1	-37.8	0	0	0	0
3	Uniform Load	GZ	NO	0.78	-70.2	1	-70.2	0	0	0	0
3	Uniform Load	GZ	NO	0	-35.9	0.78	-35.9	0	0	0	0
30	Uniform Load	GZ	NO	0	-70.2	1	-70.2	0	0	0	0
31	Uniform Load	GZ	NO	0	-70.2	1	-70.2	0	0	0	0
32	Uniform Load	GZ	NO	0	-70.2	1	-70.2	0	0	0	0
33	Uniform Load	GZ	NO	0	-70.2	1	-70.2	0	0	0	0
34	Uniform Load	GZ	NO	0	-70.2	1	-70.2	0	0	0	0
35	Uniform Load	GZ	NO	0	-70.2	1	-70.2	0	0	0	0
36	Uniform Load	GZ	NO	0	-70.2	1	-70.2	0	0	0	0
37	Uniform Load	GZ	NO	0	-70.2	1	-70.2	0	0	0	0
38	Uniform Load	GZ	NO	0	-70.2	1	-70.2	0	0	0	0
39	Uniform Load	GZ	NO	0	-70.2	1	-70.2	0	0	0	0
40	Uniform Load	GZ	NO	0	-70.2	1	-70.2	0	0	0	0
41	Uniform Load	GZ	NO	0	-70.2	1	-70.2	0	0	0	0
42	Uniform Load	GZ	NO	0.22	-35.9	1	-35.9	0	0	0	0
42	Uniform Load	GZ	NO	0	-70.2	0.22	-70.2	0	0	0	0
81	Uniform Load	GX	NO	0	37.8	1	37.8	0	0	0	0
82	Uniform Load	GX	NO	0	37.8	1	37.8	0	0	0	0
83	Uniform Load	GX	NO	0	37.8	1	37.8	0	0	0	0
84	Uniform Load	GX	NO	0	37.8	1	37.8	0	0	0	0
85	Uniform Load	GX	NO	0	37.8	1	37.8	0	0	0	0
86	Uniform Load	GX	NO	0	37.8	1	37.8	0	0	0	0
87	Uniform Load	GX	NO	0	37.8	1	37.8	0	0	0	0
88	Uniform Load	GX	NO	0	37.8	1	37.8	0	0	0	0
89	Uniform Load	GX	NO	0	37.8	1	37.8	0	0	0	0
90	Uniform Load	GX	NO	0	-37.8	1	-37.8	0	0	0	0
91	Uniform Load	GX	NO	0	-37.8	1	-37.8	0	0	0	0
92	Uniform Load	GX	NO	0	-37.8	1	-37.8	0	0	0	0
93	Uniform Load	GX	NO	0	-37.8	1	-37.8	0	0	0	0
94	Uniform Load	GX	NO	0	-37.8	1	-37.8	0	0	0	0
95	Uniform Load	GX	NO	0	-37.8	1	-37.8	0	0	0	0
96	Uniform Load	GX	NO	0	-37.8	1	-37.8	0	0	0	0
97	Uniform Load	GX	NO	0	-37.8	1	-37.8	0	0	0	0
98	Uniform Load	GX	NO	0	-37.8	1	-37.8	0	0	0	0

[LOAD CASE : Q,LM71-GEO(2)]

** BEAM LOAD DATA

MEMBER	TYPE	DIR.	PROJ.	D1	P1	D2	P2	D3	Р3	D4	P4
1	Uniform Load	GX	NO	0	37.8	1	37.8	0	0	0	0
2	Uniform Load	GX	NO	0	-37.8	1	-37.8	0	0	0	0
3	Uniform Load	GZ	NO	0	-70.2	1	-70.2	0	0	0	0
30	Uniform Load	GZ	NO	0	-70.2	1	-70.2	0	0	0	0
31	Uniform Load	GZ	NO	0	-70.2	1	-70.2	0	0	0	0
32	Uniform Load	GZ	NO	0	-70.2	1	-70.2	0	0	0	0
33	Uniform Load	GZ	NO	0	-70.2	1	-70.2	0	0	0	0
34	Uniform Load	GZ	NO	0	-70.2	1	-70.2	0	0	0	0
35	Uniform Load	GZ	NO	0	-70.2	1	-70.2	0	0	0	0
36	Uniform Load	GZ	NO	0	-70.2	1	-70.2	0	0	0	0
37	Uniform Load	GZ	NO	0	-70.2	1	-70.2	0	0	0	0
38	Uniform Load	GZ	NO	0	-70.2	1	-70.2	0	0	0	0
39	Uniform Load	GZ	NO	0	-70.2	1	-70.2	0	0	0	0
40	Uniform Load	GZ	NO	0	-70.2	1	-70.2	0	0	0	0
41	Uniform Load	GZ	NO	0	-70.2	0.44	-70.2	0	0	0	0
41	Uniform Load	GZ	NO	0.44	-35.9	1	-35.9	0	0	0	0
42	Uniform Load	GZ	NO	0	-35.9	1	-35.9	0	0	0	0
81	Uniform Load	GX	NO	0	37.8	1	37.8	0	0	0	0
82	Uniform Load	GX	NO	0	37.8	1	37.8	0	0	0	0
83	Uniform Load	GX	NO	0	37.8	1	37.8	0	0	0	0
84	Uniform Load	GX	NO	0	37.8	1	37.8	0	0	0	0
85	Uniform Load	GX	NO	0	37.8	1	37.8	0	0	0	0
86	Uniform Load	GX	NO	0	37.8	1	37.8	0	0	0	0
87	Uniform Load	GX	NO	0	37.8	1	37.8	0	0	0	0
88	Uniform Load	GX	NO	0	37.8	1	37.8	0	0	0	0
89	Uniform Load	GX	NO	0	37.8	1	37.8	0	0	0	0

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. SYSTRA S.A. PROGETTO ESECUTIVO PROGETTO LOTTO CODIFICA DOCUMENTO RFV **PAGINA** Relazione di calcolo 0.0.E.ZZ SL.08.00.001 209 di 211 90 Uniform Load -37.8 -37.8 NO 1 0 91 Uniform Load GX NO 0 -37.8 1 -37.8 0 0 0 0 -37.8 -37.8 92 Uniform Load GX NO -37.8 0 0 0 93 Uniform Load GX NO Ω -37 8 Ω Ω Ω Ω NO -37.8 -37.8 94 Uniform Load GX 0 0 1 0 0 Uniform Load GX NO -37.8 -37.8 Uniform Load -37.8 -37.8 97 Uniform Load NO -37.8 -37.8 0 0 0 98 Uniform Load GX NO 0 -37.8 1 -37.8 0 0 0 [LOAD CASE : Q,LM71-GEO(3)] ** BEAM LOAD DATA P2 РЗ TYPE DIR. PROJ. D1 P1 D2 D3 D4 Р4 MEMBER Uniform Load 37.8 3 Uniform Load GΖ NO 0 -35.9 0.78 -35.9 0 0 0 0 Uniform Load NO 0.78 -70.2 -70.2 0 0 GΖ 30 Uniform Load GZ. NO Ω -70.2 -70.2 Ω Ω Ω Ω -70.2 -70.231 Uniform Load GZNO 0 0 0 0 -70.2 Uniform Load -70.2 32 GΖ NO 0 0 Uniform Load GΖ -70.2 -70.2 34 Uniform Load GΖ NO -70.2 -70.2 Ω Ω 0 3.5 Uniform Load GΖ NO 0 -70.2 -70.20 0 0 36 Uniform Load GΖ NO 0 -70.2 -70.20 0 0 -70.2 -70.2 37 Uniform Load GΖ NO 0 0 0 0 Uniform Load -70.2 -70.2 38 GΖ NO 0 Uniform Load -70.2 -70.2 NO 0 Uniform Load GΖ NO 0 -70.2 -70.2 0 0 0 40 41 Uniform Load GΖ NO Ω -70 2 1 -70 2 Ω Ω Ω 42 Uniform Load GZ. NO 0 22 -35.9 -35 9 Ω Ω Ω Ω -70.2 0.22 42 Uniform Load GΖ NO 0 -70.2 0 0 0 Uniform Load GX NO 37.8 37.8 Uniform Load GX NO 37.8 37.8 83 Uniform Load GX NO 37.8 37.8 Ω Ω Ω 84 Uniform Load GX NO 0 37.8 37.8 0 0 0 8.5 Uniform Load GX NO 0 37.8 37.8 0 0 0 37.8 37.8 Uniform Load GX NO 86 0 0 GX Uniform Load NO 37.8 37.8 Uniform Load NO 37.8 37.8 0 0 GX 0 89 Uniform Load GX NO 0 37.8 37.8 0 0 [LOAD CASE : Q,LM71-GEO(4)] ** BEAM LOAD DATA MEMBER TYPE DIR. PROJ. D1 P1 D2 P2 D.3 Р3 D4 Р4 Uniform Load 37.8 37.8 Uniform Load GΖ NO -70.2 -70.2 30 Uniform Load GΖ NO -70.2 -70.2 Ω Ω 0 31 Uniform Load GZNO Λ -70.2 -70.2Λ Λ Λ Λ -70.2 -70.2 32 Uniform Load GΖ NO 0 0 0 0 -70.2 -70.2 33 Uniform Load GΖ NO 0 0 0 0 Uniform Load -70.2 -70.2 Uniform Load GΖ NO -70.2 -70.2 0 0 35 0 -70.2 Uniform Load GΖ NO 0 -70.2 0 0 0 37 Uniform Load GΖ NO Ω -70.2 1 -70.2 Ω Ω Ω -70.2-70.238 Uniform Load GZNO Ω 1 0 0 0 39 Uniform Load GΖ NO -70.2 -70.2 0 0 Uniform Load GΖ NO -70.2 -70.2 0.44 -70.2 Uniform Load GΖ NO -70.2 41 Uniform Load GΖ NO 0 44 -35.9 -35.9 Λ Ω Ω 42 Uniform Load GΖ NO 0 -35.9 -35.90 0 0 37.8 37.8 81 Uniform Load GX NO 0 0 0 0 Uniform Load 37.8 37.8 82 GX NO 0 0 37.8 37.8 Uniform Load NO

Uniform Load

Uniform Load

Uniform Load

85

GX

GX

GX

NO

NO

NO

0

Ω

37.8

37 8

37.8

1

1

37.8

37.8

37.8

0

Ω

Ω

0

Ω

Ω

Ω

Ω

Ω

Ω

APPALTATORE:

Mandataria:

SALINI IMPREGILO S.p.A.

PROGETTISTA:

Mandataria:

Mandataria:

Mandataria:

Mandataria:

SYSTRA-SOTECNI S.p.A.

SYSTRA S.A.

LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

PROGETTO ESECUTIVO	PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo	IF1M	0.0.E.ZZ	CL	SL.08.00.001	Α	210 di 211

ROCKSOIL S.p.A.

87	Uniform Load	GX	NO	0	37.8	1	37.8	0	0	0	0
88	Uniform Load	GX	NO	0	37.8	1	37.8	0	0	0	0
8.9	Uniform Load	CY	NO	Ω	37 8	1	37 8	0	Λ	Λ	0

***	LOAD COM	MBINATION DA	ATA		
	CENTEDAT				
	GENERAL NO		TYPE	ACTIVE	DESCRIPTION
		SLU-STR			Slu con solo carichi pemanenti
	2	SLU-STR-T~			Slu Strutturale-T(1)
		SLU-STR-T~	Add	ACTIVE	Slu Strutturale-T(2)
	4	SLU-STR-T~	Add	ACTIVE	Slu Strutturale-T(3)
	5	SLU-STR-T~			Slu Strutturale-T(4)
	6	SLU-STR-R~	Add	ACTIVE	Slu Strutturale-R(1)
	7	SLU-STR-R~	Add	ACTIVE	Slu Strutturale-R(2)
	8	SLU-STR-R~			Slu Strutturale-R(3)
	9	SLU-STR-R~			Slu Strutturale-R(4)
	10	SLU-STR-L~	Add	ACTIVE	Slu Strutturale-LM71(1)
		SLU-STR-L~			Slu Strutturale-LM71(2)
		SLU-STR-L~			Slu Strutturale-LM71(3)
		SLU-STR-L~	Add	ACTIVE	Slu Strutturale-LM71(4) Slu Strutturale-LM71(5)
		SLU-STR-L~			
		SLU-STR-L~			Slu Strutturale-LM71(6)
		SLU-STR-L~	Add	ACTIVE	Slu Strutturale-LM71(7) Slu Strutturale-LM71(8)
		SLU-STR-L~ EH-STR(1)			Sismica Strutturale Eh+0.3Ev
		EH-STR(2)			
		EH-STR(3)	Add	ACTIVE	Sismica Strutturale Eh+0.3Ev Sismica Strutturale Eh-0.3Ev
		EH-STR(4)			Sismica Strutturale Eh-0.3Ev
		EV-STR(1)			Sismica Strutturale EV+0.3EH
		EV-STR(2)	Add	ACTIVE	Sismica Strutturale EV+0.3EH
		EV-STR(3)			Sismica Strutturale EV-0.3EH
		EV-STR(4)	Add	ACTIVE	Siemica Strutturale EV-0 3FH
	26	SLU-GEO-T~	Add	ACTIVE	Slu Geo-T(2)
	27	SLU-GEO-T~	Add	ACTIVE	Slu Geo-T(2)
	28	SLU-GEO-T~			Slu Geo-T(3)
	29	SLU-GEO-T~	Add	ACTIVE	Slu Geo-T(4)
		SLU-GEO-R~		ACTIVE	Slu Geo-R(1)
	31	SLU-GEO-R~			Slu Geo-R(2)
		SLU-GEO-R~			Slu Geo-R(3)
		SLU-GEO-R~			Slu Geo-R(4)
		SLU-GEO-L~			Slu Geo-LM71(1)
		SLU-GEO-L~			Slu Geo-LM71(2)
		SLU-GEO-L~			Slu Geo-LM71(3) Slu Geo-LM71(4)
		SLU-GEO-L~			Slu Geo-LM71(4) Slu Geo-LM71(5)
		SLU-GEO-L~			Slu Geo-LM71(6)
		SLU-GEO-L~			Slu Geo-LM71(7)
		SLU-GEO-L~			Slu Geo-LM71(8)
		EH-GEO(1)			Sismica Strutturale Eh+0.3Ev
	43	EH-GEO(2)	Add	ACTIVE	Sismica Strutturale Eh+0.3Ev
	44	EH-GEO(3)	Add	ACTIVE	Sismica Strutturale Eh-0.3Ev Sismica Strutturale Eh-0.3Ev
		EH-GEO(4)			
		EV-GEO(1)			Sismica Strutturale EV+0.3EH
		EV-GEO(2)	Add	ACTIVE	Sismica Strutturale EV+0.3EH Sismica Strutturale -EV+0.3EH
		EV-GEO(3)			
		EV-GEO(4)			Sismica Strutturale -EV+0.3EH
	50	SLE-QP	Add	ACTIVE	Quasi permanente Combinazione frequente - T
	51	SLE-FR-T			
		SLE-FR-R			Combinazione frequente - R
		SLE-FR-LM~ SLE-FR-LM~	Add Add		Combinazione frequente -LM71(1) Combinazione frequente -LM71(2)
		SLE-R-T(1)	Add		Combinazione rara- T(1)
		SLE-R-T(2)	Add	ACTIVE	
		SLE-R-R(1)	Add	ACTIVE	
		SLE-R-R(2)	Add	ACTIVE	
		SLE-R-LM7~	Add	ACTIVE	
	60	SLE-R-LM7~	Add	ACTIVE	Combinazione rara- LM71(2)
		$SLE-R-LM7\sim$	Add	ACTIVE	
		SLE-R-LM7~	Add	ACTIVE	
	63	INV_SLUstr	Envelope	ACTIVE	Inviluppo SLU strutturale

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 ROCKSOIL S.p.A. SYSTRA S.A. SYSTRA-SOTECNI S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA DOCUMENTO REV. **PAGINA** Relazione di calcolo 0.0.E.ZZ SL.08.00.001 Α 211 di 211

64 INV_SLUgeo Envelope ACTIVE Inviluppo SLU geotecnic
65 INV-SLV-s~ Envelope ACTIVE Inviluppo SLV strutturale
66 INV-SLV-g~ Envelope ACTIVE Inviluppo SLV geotecnico
67 INV-SLE-FR Envelope ACTIVE Inviluppo SLE frequente
68 INV-SLE-R Envelope ACTIVE Inviluppo SLE rara