COMMITTENTE:

DIREZIONE LAVORI:

APPALTATORE:

MANDATARIA:

MANDANTE:

PROGETTAZIONE:

MANDATARIA:

MANDANTI:

PROGETTO ESECUTIVO

LINEA FERROVIARIA NAPOLI - BARI, TRATTA NAPOLI-CANCELLO, IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 RELAZIONE

IN01 – OPERA DI SCAVALCO NUOVO COLLETTORE BADAGNANO - KM 6+026.70 RELAZIONE DI CALCOLO

APPALTATORE	PROGETTAZIONE	
DIRETTORE TECNICO Ing. M. PANISI	DIRETTORE DELLA PROGETTAZIONE Ing. A. CHECCHI	
gg/mm/aa	gg/mm/aa	

COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV SCALA:

 I F I M
 0 0
 E
 Z Z
 C L
 I N 0 I 0 0
 0 0 I
 C

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	EMISSIONE SECUTIVA	N. Cognome	14/06/18	N. Cognome	15/06/18	N. Cognome	14/06/18	N. Cognome
	EMISSIONE SECUTIVA	DI PLACIDO	14/06/16	MARTUSCELLI	15/06/16	D'ANGELO	14/06/18	MARTUSCELLI
В	EMISSIONE PER RDV		10/09/18		11/09/18		11/09/18	
	EIVIIOOIOIVE I EITTIBV	DI PLACIDO	10/03/10	MARTUSCELLI	11/03/10	D'ANGELO		MARTUSCELLI
С	EMISSIONE PER RDV		02/10/18		03/10/18		03/10/18	
	LIVIIOGIONE I ETTTOV	DI PLACIDO	02/10/10	MARTUSCELLI	03/10/18	D'ANGELO	03/10/18	
								04/10/2018

File: IF1M .0.0.E.ZZ.CL.IN.01.0.0.001-C.DOC n. Elab.:

Mandataria:

Mandante:

SALINI IMPREGILO S.p.A. ASTALDI S.p.A.

PROGETTISTA:

Mandataria:

SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.

PROGETTO ESECUTIVO

Relazione di calcolo

LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

PROGETTO LOTTO CODIFICA DOCUMENTO REV. **PAGINA** 0.0.E.ZZ IN.01.00.001 2 di 189

7	PR	EMI	ESSA	6
2	DE	SCF	RIZIONE DELL'OPERA	7
3	NO	RM	ATIVA DI RIFERIMENTO	9
4	MA	TE	RIALI1	0
4	4.1	CA	LCESTRUZZO C32/40 (SCAVALCO E MURI ANDATORI)1	0
4	4.2	СА	LCESTRUZZO C25/30 (PALI DI FONDAZIONE)1	1
4	4.3	AC	CIAIO B450C1	1
5	INC	QUA	DRAMENTO GEOTECNICO1	2
į	5.1	STI	RATIGRAFIA E PARAMETRI GEOTECNICI DI PROGETTO1	2
6	CA	RA	TTERIZZAZIONE SISMICA1	5
7	VE	RIFI	ICHE STRUTTURALI – CRITERI GENERALI1	7
7	7.1	VE	RIFICHE SLE1	8
	7.1.	.1	Verifiche alle tensioni1	8
	7.1.	2	Verifiche a fessurazione1	9
7	7.2	VE	RIFICHE ALLO SLU2	1
	7.2.	.1	Pressoflessione2	?1
	7.2.	2	Taglio2	?1
8	AN	ALI	SI E VERIFICA DELLA STRUTTURA2	4
8	3.1	AN	ALISI DEI CARICHI2	4
	8.1.	.1	Pesi propri strutturali e non strutturali (condizione PERM)2	4
	8.1.	2	Spinta del terreno (condizione SPTDX)2	?6

Mandataria:

Mandante:

 ${\bf SALINI\ IMPREGILO\ S.p.A.}$

ASTALDI S.p.A.

ASTALDI S.p.A.

PROGETTISTA:

Mandataria:

Mandante

SYSTRA S.A. SYSTRA-SOTECNI S.p.A.

ROCKSOIL S.p.A.

PROGETTO ESECUTIVO Relazione di calcolo

LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

ETTO ESECUTIVO

ROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
IF1M	0.0.E.ZZ	CL	IN.01.00.001	С	3 di 189

8.1	.3	Spinta in presenza di falda29
8.1	.4	Carichi ferroviari (condizioni ACC-M e ACC-T)29
8.1	.5	Spinta sui piedritti prodotta dal sovraccarico (condizione SPACCDX)34
8.1	.6	Frenatura e avviamento34
8.1	.7	Azioni termiche35
8.1	.8	Azioni sismiche35
8.2	СО	MBINAZIONI DI CARICO41
8.3	МО	DELLAZIONE ADOTTATA49
8.4	AN	ALISI DELLE SOLLECITAZIONI50
8.4	.1	Soletta superiore52
8.4	.2	Pledritti principali (Sp=110 cm)58
8.4	.3	Piedritti laterali (Sp=60 cm)65
8.4	.4	Fondazioni72
9 VE	RIF	ICHE77
9.1	Sol	LETTA SUPERIORE77
9.1	.1	SS_110_Sezione Appoggio_dir_princ77
9.1	.2	SS_110_Sezione Mezzeria_dir_princ82
9.1	.3	SS_110_Sezione_dir_secondaria85
9.2	PIE	DRITTI PRINCIPALI SP 11089
9.2	2.1	PP_110_Sezione 191
9.2	2.2	PP_110_Sezione 295
9.2	2.3	PP_110_Sezione 399

Mandataria:

Mandante:

SALINI IMPREGILO S.p.A. ASTALDI S.p.A.

PROGETTISTA:

Mandataria:

Relazione di calcolo

SYSTRA S.A. SYSTRA-SOTECNI S.p.A.

ROCKSOIL S.p.A.

LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

PROGETTO ESECUTIVO

PROGETTO LOTTO CODIFICA DOCUMENTO REV. **PAGINA** 0.0.E.ZZ IN.01.00.001 4 di 189

9.2.4	PP_110_Sezione 4	102
9.3 Ple	EDRITTI SECONDARI SP 60	106
9.3.1	PP_60_Sez 1	108
9.3.2	PP_60_Sez 2	112
9.3.3	PP_60_Sez 3	115
9.3.4	PP_60_Sez 4	118
9.3.5	PP_60_Sez 5	121
9.4 Fo	NDAZIONI	125
9.4.1	FF_Sez 1_Dir principale	125
9.4.2	FF_Sez 2_ Dir Secondaria (su pali tra muri PP 60)	128
9.4.3	Verifica punzonamento	132
9.5 PA	LI	133
9.5 PA <i>9.5.1</i>	LI Verifiche strutturali	
		142
9.5.1 9.5.2	Verifiche strutturali	142
9.5.1 9.5.2 10 MURI	Verifiche strutturali Verifiche geotecniche	142 146 150
9.5.1 9.5.2 10 MURI A	Verifiche strutturali Verifiche geotecniche ANDATORI IN DESTRA SU FONDAZIONE DIRETTA	142 146 150
9.5.1 9.5.2 10 MURI A 10.1 SC 10.1.1	Verifiche strutturali Verifiche geotecniche ANDATORI IN DESTRA SU FONDAZIONE DIRETTA	142 146 150 150
9.5.1 9.5.2 10 MURI A 10.1 SC 10.1.1 10.2 AN	Verifiche strutturali Verifiche geotecniche ANDATORI IN DESTRA SU FONDAZIONE DIRETTA CHEMATIZZAZIONE DELLE STRUTTURE Geometria di calcolo	142146150150150
9.5.1 9.5.2 10 MURI A 10.1 SC 10.1.1 10.2 AN 10.2.1	Verifiche strutturali Verifiche geotecniche ANDATORI IN DESTRA SU FONDAZIONE DIRETTA CHEMATIZZAZIONE DELLE STRUTTURE Geometria di calcolo	142150150150151
9.5.1 9.5.2 10 MURI A 10.1 SC 10.1.1 10.2 AN 10.2.1	Verifiche strutturali Verifiche geotecniche ANDATORI IN DESTRA SU FONDAZIONE DIRETTA EHEMATIZZAZIONE DELLE STRUTTURE Geometria di calcolo IALISI DEI CARICHI Peso permanente strutturale Peso permanente non strutturale	142146150150151152

Mandataria: SALINI IMPREGILO S.p.A. Mandante:

ASTALDI S.p.A.

PROGETTISTA:

Mandataria:

Relazione di calcolo

SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE

OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

LINEA FERROVIARIA NAPOLI - BARI

TRATTA NAPOLI-CANCELLO

PROGETTO ESECUTIVO

PROGETTO IF1M

LOTTO 0.0.E.ZZ

CODIFICA DOCUMENTO IN.01.00.001

REV.

PAGINA 5 di 189

10.3 Co	DMBINAZIONI DI CARICHI157
10.4 CF	RITERI DI CALCOLO GEOTECNICO E STRUTTURALE159
10.4.1	Criterio di verifica a capacita portante della fondazione (GEO)161
10.4.2	Criterio di verifica a scorrimento sul piano di posa (GEO)162
10.4.3	Criterio di verifica a ribaltamento (EQU)163
10.4.4	Criterio di verifica a stabilità globale (GEO)163
10.4.5	Criteri di verifica a presso(tenso)flessione (STR)165
10.4.6	Criteri di verifica a taglio (STR)166
10.5 VE	RIFICHE AGLI STATI LIMITE ULTIMI167
10.5.1	Verifica GEO a capacità portante della fondazione167
10.5.2	Verifica GEO a scorrimento sul piano di posa della fondazione171
10.5.3	Verifica EQU a ribaltamento172
10.5.4	Verifica GEO a stabilità globale173
10.5.5	Verifiche STR174
10.6 VE	RIFICHE AGLI STATI LIMITE DI ESERCIZIO178
10.6.1	Verifiche a fessurazione180
10.6.2	Verifiche alle tensioni183
11 INCID	ENZE186
12 DICHI	ARAZIONE SECONDO NTC 2008 PUNTO 10.2188

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	,
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 6 di 189

1 PREMESSA

Il presente documento fa parte degli elaborati tecnici a corredo della "Progettazione esecutiva della Linea Ferroviaria Napoli-Bari, tratta Napoli-Cancello, in variante tra le PK. 0+000 e PK 15+585".

In particolare, di seguito si fa riferimento all'opera di scavalco del nuovo collettore Badagnano, denominata "IN01" e nei pressi della PK 6+029.44 (progressiva di PE; si evidenzia che per tracciabilità i caritgli contengono la pk di PD).

Quanto riportato di seguito consentirà di verificare che il dimensionamento delle strutture è stato effettuato nel rispetto dei requisiti di resistenza e deformabilità richiesti all'opera.

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A. PROGETTISTA:	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 7 di 189

2 DESCRIZIONE DELL'OPERA

L'opera è costituita da uno scavalco "a farfalla", di dimensioni interne 9.00 x 5.50 m. Lo spessore della soletta di copertura è 90cm e quello della fondazione 120cm. I piedritti hanno invece uno spessore di 110 cm. La lunghezza dello scatolare è pari a 33.39 m. La struttura attraversa con un angolo di circa 45° l'infrastruttura ferroviaria composta da muri andatori di spessori pari a 60 cm. E' prevista una fondazione su pali trivellati Φ800.

Si riportano una vista planimetrica, una sezione longitudinale ed una trasversale della struttura.

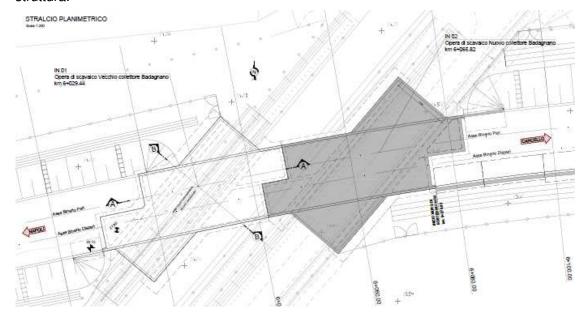


Figura 1-Scavalco - Vista Planimetrica

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	, , , , , , , , , , , , , , , , , , , ,
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 8 di 189

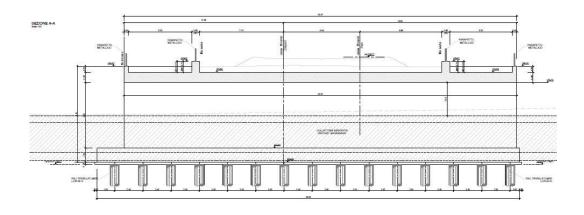


Figura 2-Scavalco – Sezione Longitudinale

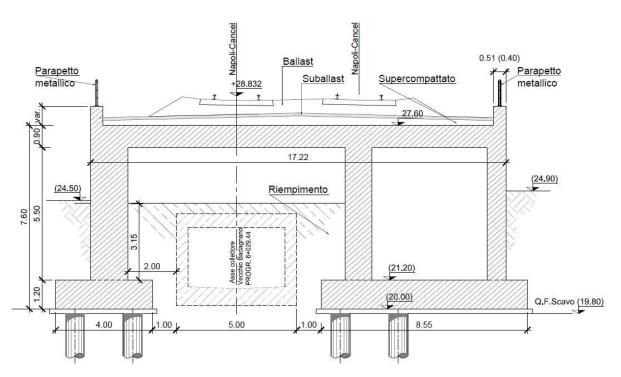


Figura 3-Scavalco – Sezione Trasversale

Per ulteriori dettagli geometrici si rimanda agli elaborati progettuali specifici.

APPALTATORE:			LIN	EA FEI	RROVIA	ria napoi	LI - B <i>i</i>	4RI
Mandataria:	Mandante:			TRAT1	A NAPO	LI-CANCE	LLO	
PROGETTISTA:		i.p.A.				000 E PK 15+5 AMBITO DEGL		
Mandataria: SYSTRA S.A.	Mandante: SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL [D.L. 133/2	014, CONV	ERTITO IN LE	GGE 16	4 / 2014
PROGETTO ESEC	UTIVO		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calco	lo		IF1M	0.0.E.ZZ	CL	IN.01.00.001	С	9 di 189

3 NORMATIVA DI RIFERIMENTO

- Legge 5-1-1971 n° 1086: Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso, ed a struttura metallica";
- Legge. 2 febbraio 1974, n. 64: Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche;
- Norme Tecniche per le Costruzioni 2008 (D.M. 14 Gennaio 2008);
- Circolare applicativa delle NTC2008 n.617 del 02/02/2009: Istruzioni per l'applicazione delle Nuove Norme Tecniche per le Costruzioni di cui al D.M. 14 gennaio 2008:
- Regolamento (UE) N.1299/2014 della Commissione del 18 Novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione europea;
- RFI- Manuale di progettazione delle opere civili. Codifica: RFI DTC SI MA IFS 001 A.

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	, , , , , , , , , , , , , , , , , , , ,
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 10 di 189

4 MATERIALI

Il calcestruzzo adottato corrisponde alla Classe C32/40, mentre l'acciaio in barre ad aderenza migliorata corrisponde alla classe B450C. Di seguito vengono elencate le specifiche.

4.1 CALCESTRUZZO C32/40 (SCAVALCO E MURI ANDATORI)

Modulo di elasticità longitudinale	$E_{C} = 33643$	[MPa]
Coefficiente di dilatazione termica	$\alpha = 10x10-6$	[C-1]
Coefficiente di Poisson	v = 0.20	[-]
Coefficiente parziale di sicurezza	$\gamma_c = 1.50$	[-]
Coefficiente riduttivo per le resistenze di lunga durata	$\alpha_{cc} = 0.85$	[-]
Resistenza caratteristica cubica a compressione	$R_{ck} = 40.0$	[MPa]
Resistenza caratteristica cilindrica a compressione	$f_{ck} = 33.2$	[MPa]
Resistenza media cilindrica a compressione	$f_{cm} = 41.2$	[MPa]
Resistenza media a trazione semplice	$f_{ctm} = 3.10$	[MPa]
Resistenza caratteristica a trazione semplice	$f_{ctk} = 2.17$	[MPa]
Resistenza media a trazione per flessione	$f_{\text{cfm}}\ =\ 3.72$	[MPa]
Resistenza caratteristica a trazione per flessione	$f_{cfk} = 2.60$	[MPa]
Resistenza caratteristica tangenziale per aderenza	$f_{bk} = 4.88$	[MPa]
Resistenza di calcolo a compressione	$f_{cd} = 18.8$	[MPa]
Resistenza di calcolo a trazione semplice	$f_{ctd} = 1.45$	[MPa]
Resistenza di calcolo a trazione per flessione	$f_{cfd} \ = \ 1.74$	[MPa]
Resistenza di calcolo tangenziale per aderenza	$f_{bd} = 3.25$	[MPa]

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	, , , , , , , , , , , , , , , , , , , ,
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 11 di 189

4.2 CALCESTRUZZO C25/30 (PALI DI FONDAZIONE)

Modulo di elasticità longitudinale	E_C	=	31447	[MPa]
Coefficiente di dilatazione termica	α	=	10x10 ⁻⁶	$[C^{-1}]$
Coefficiente di Poisson	V	=	0.20	[-]
Coefficiente parziale di sicurezza	Ϋ́c	=	1.60	[-]
Coefficiente riduttivo per le resistenze di lunga durata	α_{cc}	=	0.85	[-]
Resistenza caratteristica cubica a compressione	R_{ck}	=	30.0	[MPa]
Resistenza caratteristica cilindrica a compressione	f_{ck}	=	24.9	[MPa]
Resistenza media cilindrica a compressione	$f_{\text{cm}} \\$	=	32.9	[MPa]
Resistenza media a trazione semplice	\mathbf{f}_{ctm}	=	2.56	[MPa]
Resistenza caratteristica a trazione semplice	\mathbf{f}_{ctk}	=	1.79	[MPa]
Resistenza media a trazione per flessione	\mathbf{f}_{cfm}	=	3.07	[MPa]
Resistenza caratteristica a trazione per flessione	\mathbf{f}_{cfk}	=	2.15	[MPa]
Resistenza caratteristica tangenziale per aderenza	f_{bk}	=	4.03	[MPa]
Resistenza di calcolo a compressione	\mathbf{f}_{cd}	=	13.2	[MPa]
Resistenza di calcolo a trazione semplice	\mathbf{f}_{ctd}	=	1.12	[MPa]
Resistenza di calcolo a trazione per flessione	$f_{\text{cfd}} \\$	=	1.34	[MPa]
Resistenza di calcolo tangenziale per aderenza	$f_{\text{bd}} \\$	=	2.52	[MPa]

4.3 ACCIAIO B450C

Modulo di elasticità longitudinale	E_s	=	210000	[MPa]
Coefficiente parziale di sicurezza	Ϋ́s	=	1.15	[-]
Tensione caratteristica di snervamento	f_{yk}	=	450	[MPa]
Tensione caratteristica di rottura	$f_{tk} \\$	=	540	[MPa]
Allungamento	A_{gtk}	≥	7.50%	[-]
Resistenza di calcolo	f_{yd}	=	391.3	[MPa]

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	,
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 12 di 189

5 INQUADRAMENTO GEOTECNICO

5.1 STRATIGRAFIA E PARAMETRI GEOTECNICI DI PROGETTO

Le caratteristiche geotecniche del volume di terreno che interagisce con l'opera sono state desunte dalla relazione geotecnica e sono riportate di seguito.

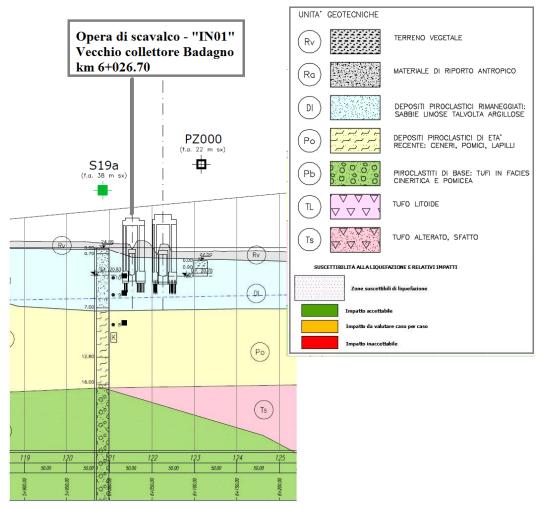


Figura 4-Stralcio profilo geotecnico

La falda non influenza il regime delle spinte presenti sulla struttura.

APPALTATORE:

Mandataria: Mandante:

SALINI IMPREGILO S.p.A. ASTALDI S.p.A.

PROGETTISTA:

Mandataria: Mandante:

LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.
PROGETTO ESECUTIVO

Relazione di calcolo

PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA

IF1M 0.0.E.ZZ CL IN.01.00.001 C 13 di 189

Al terreno situato a tergo dell'opera ed al terreno di ricoprimento in fondazione sono state attribuite le seguenti caratteristiche geotecniche:

 $\gamma = 20 \text{ kN/m}^3$ peso di volume naturale

 $\varphi' = 38^{\circ}$ angolo di resistenza al taglio

Il calcolo della portanza dei pali è stato effettuato coerentemente alla stratiigrafia di progetto.

Unità Rv - coltre vegetale

 $\gamma = 17 \div 19 \text{ kN/m}^3$ peso di volume naturale, $\phi' = 30^\circ$ angolo di resistenza al taglio,

c' = 0 kPa coesione drenata,

E' = 10÷40 MPa modulo di deformazione.

Unità Ra – riporto antropico dei rilevati ferroviari in progetto

 $\gamma = 19 \div 20 \text{ kN/m}^3$ peso di volume naturale,

 $\phi' = 35^{\circ}$ angolo di resistenza al taglio,

c' = 0 kPa coesione drenata,

E₀ = 300÷400 MPa modulo di deformazione elastico a piccole deformazioni.

Unità Po - Piroclastiti recenti sabbioso limose

 $\gamma = 16 \text{ kN/m}^3$ peso di volume naturale,

 $\varphi' = 33 \div 35^{\circ}$ angolo di resistenza al taglio,

c' = 0÷10 kPa coesione drenata,

 $k = 7E-09 \div 1.5 E-04 \text{ m/s}$ coefficiente di permeabilità, $Vs = 200 \div 400 \text{ m/s}$ velocità delle onde di taglio,

 $E_0 = 170 \div 680 \text{ MPa}$ modulo di deformazione elastico iniziale.

Unità Ts - Tufo sfatto

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. CODIFICA DOCUMENTO PROGETTO ESECUTIVO **PROGETTO** LOTTO REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ IN.01.00.001 14 di 189

 $\gamma = 15 \div 16 \text{ kN/m}^3$ peso di volume naturale,

 $\varphi' = 35 \div 37$ ° angolo di resistenza al taglio,

c' = 0÷5 kPa coesione drenata,

 $Vs = 580 \div 660 \text{ m/s}$ velocità delle onde di taglio,

 $E'_0 = 1400 \div 1800$ MPa modulo di deformazione elastico iniziale.

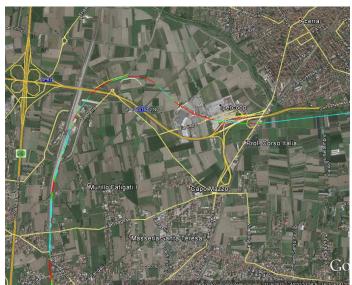
Unità Pb - Piroclastiti di base sabbioso limose

 $\gamma = 16 \text{ kN/m}^3$ peso di volume naturale,

 $\varphi' = 35 \div 37$ ° angolo di resistenza al taglio,

 $c' = 0 \div 5 \text{ kPa}$ coesione drenata,

Vs = 380 ÷ 550 m/s velocità delle onde di taglio,


Go = $235 \div 490$ MPa modulo di deformazione a taglio iniziale, E'₀ = $600 \div 1280$ MPa modulo di deformazione elastico iniziale.

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	,
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 15 di 189

6 CARATTERIZZAZIONE SISMICA

Il valore dell'accelerazione orizzontale massima in condizioni sismiche è stato definito in accordo alla normativa NTC2008.

Ai fini del calcolo dell'azione sismica secondo il DM 14/01/2008, risultando per l'opera in progetto una vita nominale $V_N \ge 75$ anni ed una classe d'uso Cu = III, che danno luogo ad un periodo di riferimento $V_R = V_N^*C_U = 75^*1.5 = 112.5$ anni. A seguito di tale assunzione si ha allo stato limite ultimo SLV in funzione della Latitudine e Longitudine del sito in esame un valore dell'accelerazione pari ad $a_g = 0.216$ g ovvero $a_g = 2.117$ m/s².

Parametri indipendenti

STATO LIMITE	SLV
a _g	0.216 g
F _o	2.466
T _c *	0.363 s
Ss	1.380
C _c	1.467
S _T	1.000

Figura 5 - Parametri sismici

Ai fini dell'Analisi delle risposta sismica Locale, inoltre occorre definire la Categoria del Suolo di Fondazione , secondo quanto specificato al prg. "3.2.2 CATEGORIE DI SOTTOSUOLO E CONDIZIONI TOPOGRAFICHE" del DM 14.01.08

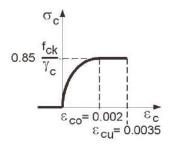
La categoria di suolo di fondazione viene definita, in base al riferimento normativo citato, sulla base della conoscenza di Vs30, ricavato dalle indagini sismiche eseguite nelle campagne geognostiche.

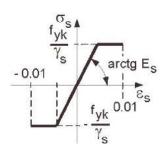
In particolare, nel caso in esame, ove il terreno di fondazione è costituito da un'alteranze delle due **Unità Po e TS**, è possibile considerare ai fini progettuali una categoria di suolo di **tipo C**: "Depositi di sabbie o ghiaie mediamente addensate o argille mediamente

APPALTATORE:			LIN	EA FE	RROVIA	RIA NAPOI	LI - B	ARI
Mandataria: SALINI IMPREGILO S.p.A.	Mandante: ASTALDI S.	- A		TRAT1	TA NAPO	LI-CANCE	LLO	
PROGETTISTA: Mandataria: Mandante:	SOTECNI S.p.A.	ROCKSOIL S.p.A.	OPERE A	CCESSOF	RIE, NELL'A	00 E PK 15+56 MBITO DEGL ERTITO IN LE	.I INTEF	RVENTI DI
PROGETTO ESECUTIVO Relazione di calcolo	·	·	PROGETTO IF1M	LOTTO 0.0.E.ZZ	CODIFICA CL	DOCUMENTO IN.01.00.001	REV.	PAGINA 16 di 189

consistenti, con spessori variabili da diverse decine di metri fino a centinaia di metri, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di Vs30 compresi fra 180 m/s e 360 m/s (ovvero resistenza penetro metrica NSPT < 50 o coesione non drenata 70 < cu < 250 kPa).

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO PROGETTO LOTTO CODIFICA DOCUMENTO REV. **PAGINA** Relazione di calcolo 0.0.E.ZZ IN.01.00.001 17 di 189


7 VERIFICHE STRUTTURALI – CRITERI GENERALI


La corretta progettazione di un elemento strutturale deve essere sviluppata considerando tutti gli aspetti dai quali potrebbe dipendere il raggiungimento della crisi (SLU) o che non garantiscano il soddisfacimento di particolari requisiti funzionali (SLE). Appare quindi importante disporre di adeguate regole progettuali che, riferendosi a tutte le eventualità che potrebbero prodursi durante la vita di progetto, conducano ad un'attenta analisi di tutte le parti dell'elemento strutturale, ciascuna delle quali dovrà essere progettata con lo stesso grado di accuratezza.

Il calcolo delle caratteristiche della sollecitazione interna e le verifiche di resistenza negli elementi strutturali sono eseguiti con i metodi della Scienza e della Tecnica delle Costruzioni, basati sulle seguenti ipotesi:

- 1. planarità delle sezioni (ipotesi di Bernoulli);
- 2. resistenza a trazione del calcestruzzo trascurabile (solo per c.a.);
- 3. il conglomerato cementizio soggetto a compressione si comporta, nel campo delle tensioni di esercizio, come un materiale elastico, isotropo ed omogeneo (validità della Legge di Hooke);
- 4. perfetta aderenza acciaio-calcestruzzo;
- 5. rottura del calcestruzzo determinata dal raggiungimento della sua capacità deformativa ultima a compressione;
- 6. rottura dell'armatura tesa determinata dal raggiungimento della sua capacità deformativa ultima;
- 7. utilizzo di modelli rappresentativi del legame costitutivo (σ - ϵ) dei materiali

APPALTATORE:	L	INEA FE	RROVIAI	RIA NAPOI	LI - B	ARI
Mandataria: Mandante:		TRAT	TA NAPO	LI-CANCE	LLO	
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VA	DIANTE TRA	I E DK U+U	00 E PK 15+5	85 INC	IIISELE
PROGETTISTA:				AMBITO DEGL	,	
Mandataria: Mandante:	CUI A		,	ERTITO IN LE		
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCK	OIL S.p.A.					
PROGETTO ESECUTIVO	PROGET	TO LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo	IF1M	0.0.E.ZZ	CL	IN.01.00.001	С	18 di 189

Legame costitutivo cls

Legame costitutivo acciaio

- 8. nella valutazione delle piccole deformazioni, si fa riferimento alla totale sezione di conglomerato, adottando il modulo elastico Ec del conglomerato compresso;
- 9. l'acciaio, sia teso che compresso, nel campo delle tensioni di esercizio, è in campo elastico, ossia si ammette anche per esso la validità della Legge di Hooke.

Il metodo di verifica adottato è quello agli Stati Limite Ultimo (SLU) ed agli Stati Limite di Esercizio (SLE), secondo quanto previsto dal D.M. del 14 gennaio 2008.

7.1 VERIFICHE SLE

La verifica nei confronti degli Stati limite di esercizio, consiste nel controllare, con riferimento alle sollecitazioni di calcolo corrispondenti alle Combinazioni di Esercizio il tasso di Lavoro nei Materiali e l'ampiezza delle fessure attesa, secondo quanto di seguito specificato.

7.1.1 Verifiche alle tensioni

La verifica delle tensioni in esercizio consiste nel controllare il rispetto dei limiti tensionali previsti per il calcestruzzo e per l'acciaio per ciascuna delle combinazioni di carico caratteristiche "Rara" e "Quasi Permanente"; i valori tensionali nei materiali sono valutati secondo le note teorie di analisi delle sezioni in c.a. in campo elastico e con calcestruzzo "non reagente" adottando come limiti di riferimento, trattandosi nel caso in specie di opere Ferroviarie, quelli indicati nel Manuale di RFI, ovvero:

APPALTATORE:			LIN	EA FE	RROVIA	RIA NAPOI	_I - B <i>A</i>	ARI
Mandataria:	Mandante:			TRAT1	A NAPO	LI-CANCE	LLO	
SALINI IMPREGILO S.p.A. PROGETTISTA:	ASTALDI S	.p.A.	IN VARIA	NTE TRA	LE PK 0+0	00 E PK 15+5	85, INCI	LUSE LE
Mandataria: Mandante:					,	MBITO DEGL		
SYSTRA S.A. SYSTRA-SO	OTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL L	J.L. 133/2	014, CONV	ERTITO IN LE	GGE 16	4 / 2014
PROGETTO ESECUTIVO			PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo			IF1M	0.0.E.ZZ	CL	IN.01.00.001	С	19 di 189

Tensioni di compressione del calcestruzzo

Devono essere rispettati i seguenti limiti per le tensioni di compressione nel calcestruzzo:

- Per combinazione di carico caratteristica (rara): 0.55 f_{ck};
- Per combinazioni di carico quasi permanente: 0.40 fck;
- Per spessori minori di 5 cm, le tensioni normali limite di esercizio sono ridotte del 30%.

Tensioni di trazione nell'acciaio

Per le armature ordinarie, la massima tensione di trazione sotto la combinazione di carico caratteristica (rara) non deve superare 0.75 f_{vk}.

Per il caso in esame risulta in particolare:

CALCESTRUZZO

$\sigma_{cmax QP} = (0.40 f_{cK}) = 13.28 MPa$	(Combinazione di Carico Quasi Permanente)
$\sigma_{\text{cmax R}} = (0.55 f_{\text{ck}}) = 18.26 \text{MPa}$	(Combinazione di Carico Caratteristica - Rara)

ACCIAIO

 $\sigma_{s max} = (0.75 f_{yk}) = 338 MPa$ Combinazione di Carico Caratteristica (Rara)

7.1.2 Verifiche a fessurazione

La verifica di fessurazione consiste nel controllare l'ampiezza dell'apertura delle fessure sotto combinazione di carico rara. Essendo la struttura a contatto col terreno si considerano condizioni ambientali aggressive; le armature di acciaio ordinario sono ritenute poco sensibili [NTC – Tabella 4.1.IV]

In relazione all'aggressività ambientale e alla sensibilità dell'acciaio, l'apertura limite delle fessure è riportato nel prospetto seguente:

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA **DOCUMENTO** REV. **PAGINA** 20 di 189

IF1M

0.0.E.ZZ

IN.01.00.001

С

Gruppi di	Condizioni	Combinazione di	Armatura						
esigenza	ambientali	azione	Sensibile		Poco sens	sibile			
esigeriza	ambientan	azione	Stato limite	wd	Stato limite	wd			
		frequente	ap. fessure	≤w ₂	ap. fessure	≤w ₃			
а	Ordinarie	quasi permanente	ap. fessure	≤w ₁	ap. fessure	≤w ₂			
		frequente	ap. fessure	≤w ₁	ap. fessure	≤w ₂			
b	Aggressive	quasi permanente	decompressione	-	ap. fessure	≤w ₁			
С	Molto	frequente	formazione fessure	-	ap. fessure	≤w ₁			
ŭ	Aggressive	quasi permanente	decompressione	-	ap. fessure	≤w ₁			

Tabella 1- Criteri di scelta dello stato limite di fessurazione e Condizioni Ambientali - Tabella 4.1.IV

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Tabella 2-Descrizione delle condizioni ambientali Tabella 4.1.III

Risultando:

Relazione di calcolo

 $w_1 = 0.2 \text{ mm}$

 $w_2 = 0.3 \text{ mm}$

 $w_3 = 0.4 \text{ mm}$

Alle prescrizioni normative presenti in NTC si sostituiscono in tal caso quelle fornite dalle specifiche RFI (Requisiti concernenti la fessurazione per strutture in c.a., c.a.p. e miste acciaio-calcestruzzo) secondo cui la verifica nei confronti dello stato limite di apertura delle fessure va effettuata utilizzando le sollecitazioni derivanti dalla combinazione caratteristica (rara).

Per strutture in condizioni ambientali aggressive o molto aggressive, così come identificate nel par. 4.1.2.2.4.3 del DM 14.1.2008, per tutte le strutture a permanente contatto con il terreno e per le zone non ispezionabili di tutte le strutture, l'apertura convenzionale delle fessure dovrà risultare:

• Combinazione Caratteristica (Rara) $\delta_f \leq w_1 = 0.2 \text{ mm}$

APPALTATORE:			LIN	EA FE	RROVIA	RIA NAPOI	_I - B <i>i</i>	4RI
Mandataria:	Mandante:			TRATI	A NAPO	LI-CANCE	LLO	
SALINI IMPREGILO	S.p.A. ASTALDIS	i.p.A.	IN VARIA	NTE TRA	LE PK 0+0	00 E PK 15+5	85, INC	LUSE LE
PROGETTISTA:	Maritan		OPERE A	CCESSOF	RIE, NELL' <i>A</i>	MBITO DEGL	I INTEF	₹VENTI DI
Mandataria: SYSTRA S.A.	Mandante: SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL E	D.L. 133/2	014, CONV	ERTITO IN LE	GGE 16	i4 / 2014
PROGETTO ESECU	JTIVO		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcol	o		IF1M	0.0.E.ZZ	CL	IN.01.00.001	С	21 di 189

7.2 VERIFICHE ALLO SLU

7.2.1 Pressoflessione

Allo Stato Limite Ultimo le verifiche per tensioni normali vengono condotte confrontando per ogni sezione le resistenze ultime e le sollecitazioni massime agenti, valutando di conseguenza il corrispondente fattore di sicurezza secondo la nota relazione:

$$M_{rd} (N_{Ed}) \ge M_{Ed}$$

dove:

M_{rd} = è il valore di calcolo del momento resistente corrispondente a N_{Ed};

N_{Ed} = è il valore di calcolo della componente assiale (sforzo normale) dell'azione;

M_{Ed} = è il valore di calcolo della componente flettente dell'azione.

Il momento resistente M_{rd} è valutato adottando per i materiali i modelli tensionali $\sigma - \epsilon$.

7.2.2 Taglio

La resistenza a taglio V_{Rd} della membratura priva di armatura specifica risulta pari a:

$$V_{Rd} = \left\{ 0.18 \cdot k \cdot \frac{\left(100 \cdot \rho_1 \cdot f_{ck}\right)^{1/3}}{\gamma_c + 0.15 \cdot \sigma_{cp}} \right\} \cdot b_w \cdot d \ge v_{min} + 0.15 \cdot \sigma_{cp} \cdot b_w d$$

dove:

$$v_{\min} = 0.035 \cdot k^{3/2} \cdot f_{ck}^{1/2}$$

$$k = 1 + (200/d)^{1/2} \le 2$$
;

$$\rho_1 = A_{sw}/(b_w^*d)$$

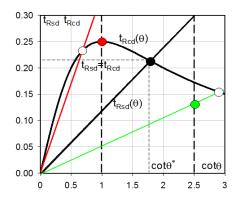
d = altezza utile per piedritti soletta superiore ed inferiore;

b_w= 1000 mm larghezza utile della sezione ai fini del taglio.

In presenza di armatura, invece, la resistenza a taglio V_{Rd} è il minimo tra la resistenza a taglio trazione V_{Rsd} è la resistenza a taglio compressione V_{Rcd}

$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot \sin \alpha$$

APPALTATORE:			LIN	EA FE	RROVIA	RIA NAPOI	LI - B	4RI
Mandataria:	Mandante:			TRAT1	A NAPO	LI-CANCE	LLO	
SALINI IMPREGILO	S.p.A. ASTALDIS	.p.A.	INI WADIA		_	000 E PK 15+5	_	IIIGE I E
PROGETTISTA:						AMBITO DEGL	,	
Mandataria:	Mandante:				,	ERTITO IN LE		
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	OOIALL	J.L. 100/2	014, 00111		aal i	74 / 2014
PROGETTO ESECU	JTIVO	_	PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcol	lo		IF1M	0.0.E.ZZ	CL	IN.01.00.001	С	22 di 189


$$V_{Rcd} = 0.9 \cdot d \cdot b_{w} \cdot \alpha_{c} \cdot f_{cd} \cdot \frac{\left(ctg \alpha + ctg \theta\right)}{\left(1 + ctg^{2} \theta\right)}$$

essendo:

1≤ ctg θ≤ 2.5

Per quanto riguarda in particolare le verifiche a taglio per elementi armati a taglio, si è fatto riferimento al metodo del traliccio ad inclinazione variabile, in accordo a quanto prescritto al punto 4.1.2.1.3 delle NTC08, considerando ai fini delle verifiche, un angolo θ di inclinazione delle bielle compresse del traliccio resistente tale da rispettare la condizione.

$$1 \le \cot \theta \le 2.5$$
 $45^{\circ} \ge \theta \ge 21.8^{\circ}$

L'angolo effettivo di inclinazione delle bielle (θ) assunto nelle verifiche è stato in particolare valutato, nell'ambito di un problema di verifica, tenendo conto di quanto di seguito indicato :

$$\cot \theta^* = \sqrt{\frac{v \cdot \alpha_c}{\omega_{sw}} - 1}$$

 $(\theta^*$ angolo di inclinazione delle bielle cui corrisponde la crisi contemporanea di bielle compresse ed armature)

dove:

$$v = f'_{cd} / f_{cd} = 0.5$$

f 'cd = resistenza a compressione ridotta del calcestruzzo d'anima

f cd = resistenza a compressione di calcolo del calcestruzzo d'anima

a_c coefficiente maggiorativo pari a 1 per membrature non compresse

 $1 + \sigma_p/f_{cd} \text{ per } 0 \le \sigma_{cp} \le 0.25 f_{cd}$

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 23 di 189

$$\begin{split} 1.25 \; \text{per } 0.25 \; f_{\text{cd}} \leq & \sigma_{\text{cp}} \leq 0.5 \; f_{\text{cd}} \\ 2.5 & (1 - \sigma_{\text{cp}}/f_{\text{cd}}) \; \text{per } 0.5 \; f_{\text{cd}} < \sigma_{\text{cp}} < f_{\text{cd}} \end{split}$$

 $\omega_{\mbox{\tiny Sw}}\!\!:$ percentuale meccanica di armatura trasversale.

$$\omega_{sw} = \frac{A_{SW} f_{yd}}{b \ s f_{cd}}$$

APPALTATORE:			LIN	EA FE	RROVIA	RIA NAPOI	LI - BA	ARI
Mandataria:	Mandante:			TRAT1	A NAPO	LI-CANCE	LLO	
SALINI IMPREGILO S.p.A.	ASTALDI S	i.p.A.	IN VARIA	NTE TRA	LE PK 0+0	00 E PK 15+5	85, INC	LUSE LE
PROGETTISTA:			OPERE AC	CCESSOR	RIE. NELL'A	AMBITO DEGL	INTER	RVENTI DI
Mandataria: Mandante: SYSTRA S.A. SYSTRA-S	OTECNI S.p.A.	ROCKSOIL S.p.A.			,	ERTITO IN LE		
STSTRAS.A. STSTRA-S	OTECNI S.P.A.	HUCKSUIL S.P.A.						
PROGETTO ESECUTIVO			PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo			IF1M	0.0.E.ZZ	CL	IN.01.00.001	С	24 di 189

8 ANALISI E VERIFICA DELLA STRUTTURA

8.1 ANALISI DEI CARICHI

Si riportano di seguito i carichi utilizzati per il calcolo delle sollecitazioni e le verifiche delle sezioni della struttura in esame.

I pesi dei materiali da costruzione e del terreno sono indicati nella tabella seguente:

Materiali	γ [KN/m³]
calcestruzzo armato	25
ballast + armamento	20
terreno a ridosso dei piedritti	20
terreno di fondazione	16

Tabella 3 - Caratteristiche materiali e terreno

8.1.1 Pesi propri strutturali e non strutturali (condizione PERM)

Il peso proprio delle solette e dei piedritti viene calcolato automaticamente dal programma di calcolo utilizzato considerando per il calcestruzzo $y = 25 \text{ kN/m}^3$.

• Pesi permanenti portati soletta superiore (ballast, sub-ballast) come indicato nelle NTC al §5.2.2.1.1:

 $G_2 = 0.80 \cdot 20.00 \text{ kN/m} = 16.00 \text{ kN/m}^2$

• Pesi permanenti portati soletta superiore dovuti allo strato di 47 cm di terreno di ricoprimento:

 $G_2 = 0.43 \cdot 20.00 \text{ kN/m} = 8.60 \text{ kN/m}^2$

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014. CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A	i.
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 25 di 189

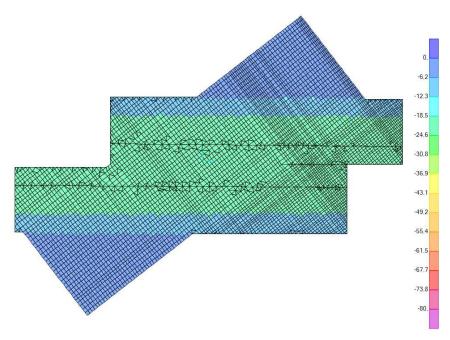


Figura 6 – Carichi permanenti sulla soletta superiore

• Peso permanenti portati soletta inferiore dovuti al ricoprimento con misto granulare di circa 280 cm:

 $G_2 = 20 \cdot 4 \text{ kN/m}^2 = 80.00 \text{ kN/m}^2$

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 26 di 189

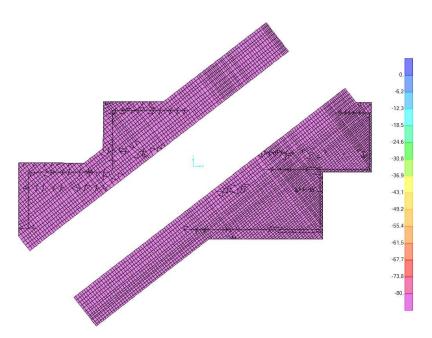


Figura 7 - Carichi permanenti sulla soletta inferiore

8.1.2 Spinta del terreno (condizione SPTDX)

La struttura è stata analizzata nella condizione di spinta a riposo. Il coefficiente di spinta è stato calcolato utilizzando la formula $k_0 = 1$ -sin(ϕ '), per cui, per ϕ '=38° si ottiene il valore k_0 = 0.384 in combinazione STR e k_0 = 0.452 in combinazione GEO.

La pressione del terreno è stata calcolata come:

$$\sigma'_{h} = \sigma'_{v} \cdot k_{o} = \gamma' \cdot z \cdot k_{o}$$

I valori delle spinte vengono di seguito esplicitati:

			SIK	GLO	
КО		1 - sen (38°) =	0,384	0,452	
Spinta alla quota di estradosso sol. sup.	p1	0,384 · 25,40 =	9,76	11,4782	kN/m²
Spinta in asse sol. sup.	p2	0,384 · (25,40 + 20·1,20/2) =	14,37	16,901	kN/m²
Spinta in asse sol. inf.	р3	0,384 · [25,40 + 20·(1,20/2+5,50+1,20/2)] =	65,88	77,455	kN/m²
Spinta alla quota di intradosso sol. inf.	p4	0,384 · [25,40 + 20·(1,20/2+5,50+1,20)] =	70,49	82,8777	kN/m²

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	, , , , , , , , , , , , , , , , , , , ,
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 27 di 189

Si è deciso di suddividere nel modello di calcolo le pareti controterra in nove fasce orizzontali, su ognuna delle quali è stato applicato un carico pari a quello agente al proprio punto inferiore. La seguente tabella rappresenta la distribuzione del carico sulle varie fasce:

z-	SPTSX (STR)	SPTSX (GEO)		
m	kN/m2	kN/m2		
0,000				
0,443	17,08	20,08		
0,585	17,00	20,00		
0,728				
0,970				
1,213	23,43	27,55		
1,456				
1,698				
1,941	29,78	35,01		
2,183				
2,426				
2,669	36,13	42,48		
2,911				
3,154				
3,396	42,48	49,94		
3,639				
3,881				
4,124	48,83	57,41		
4,367				
4,609				
4,852	55,17	64,87		
5,094				
5,337				
5,58	61,52	72,34		
5,822				
6,065				
6,307	67,87	79,80		
6,55				

APPALTATORE:			LIN	EA FE	RROVIA	RIA NAPOI	LI - B	ARI
Mandataria:	Mandante:			TRATI	A NAPO	LI-CANCE	LLO	
SALINI IMPREGILO S	.p.A. ASTALDIS.	.p.A.	IN VARIA	NTF TRA	I F PK 0+0	00 E PK 15+5	85. INC	LUSELE
PROGETTISTA:						MBITO DEGL	,	
<u> </u>	Mandante:				,	ERTITO IN LE		
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.			- ,			
PROGETTO ESECUTI	VO		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo			IF1M	0.0.E.ZZ	CL	IN.01.00.001	С	28 di 189

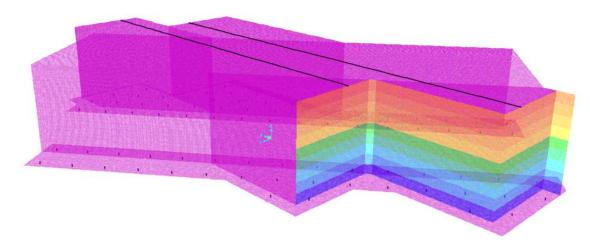


Figura 8 – Spinta del terreno sulle pareti controterra – Condizione SPTSX

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	, and the second
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 29 di 189

8.1.3 Spinta in presenza di falda

Nel caso in cui a monte della parete sia presente la falda il diagramma delle pressioni sulla parete risulta modificato a causa della sottospinta che l'acqua esercita sul terreno. Il peso di volume del terreno al di sopra della linea di falda non subisce variazioni. Viceversa al di sotto del livello di falda va considerato il peso di volume di galleggiamento

$$\gamma_a = \gamma_{sat} - \gamma_w$$

dove γ_{sat} è il peso di volume saturo del terreno (dipendente dall'indice dei pori) e γ_w è il peso di volume dell'acqua. Quindi il diagramma delle pressioni al di sotto della linea di falda ha una pendenza minore. Al diagramma così ottenuto va sommato il diagramma triangolare legato alla pressione idrostatica esercitata dall'acqua.

$$U = \gamma_w \cdot Z$$

Nel caso in esame, trovandosi la falda ad una quota sul l.m. inferiore a quella prevista per il piano di posa delle fondazioni, come riportato in precedenza, l'azione dovuta alla spinta dell'acqua non è stata presa in considerazione.

8.1.4 Carichi ferroviari (condizioni ACC-M e ACC-T)

I treni di carico considerati nella modellazione eseguita sono l'LM71, l'SW0 e l'SW2:

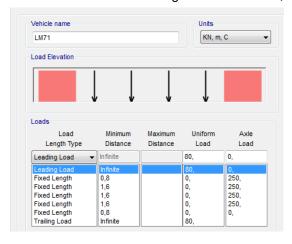


Figura 9 - Treno LM71

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 30 di 189

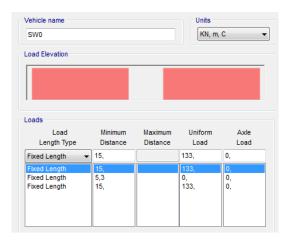


Figura 10 - Treno SW0

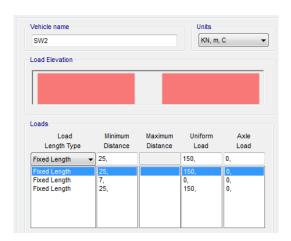


Figura 11 - Treno SW2

Sono state modellati due percorsi di carico denominati BP (Binario Pari) e BD (Binario Dispari). Se ne riporta di seguito la rappresentazione grafica:

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 31 di 189

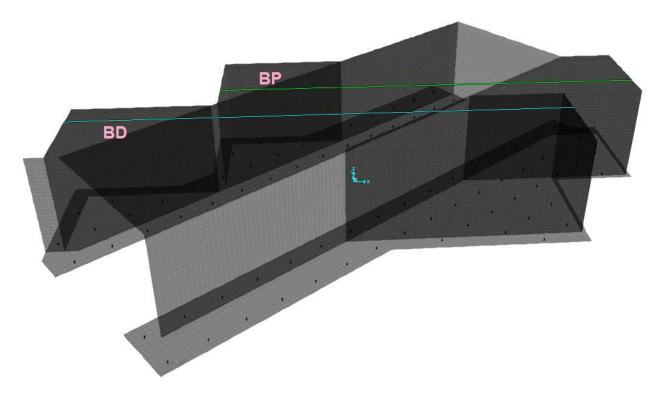


Figura 12 – Percorsi di carico BP e BD

I sovraccarichi ferroviari sono stato distribuiti attraverso il ricoprimento costituito dal ballast con una pendenza 1 a 4 e a 45° all'interno della soletta di copertura.

La diffusione del carico in senso trasversale all'asse binario risulta, dunque, pari a:

Impronta di carico y Ld1 $2,30 + 2 \times (0,40/4+0,47 \times TAN(38^{\circ})+1,20/2) = 4,43$ m Impronta di carico x Ld2 0.8+1.6+1.6+0.8= 6,40 m

Per il calcolo del coefficiente dinamico Φ si fa riferimento al § 2.5.1.4.2 delle istruzioni per la progettazione e l'esecuzione dei ponti ferroviari.

In particolare per il calcolo della lunghezza caratteristica L_{Φ} ci si è avvalsi dell'utilizzo delle formulazioni riportate in Tab. 2.5.1.4.2.5.3-1 per quanto concerne i portali a luce singola.

Risulta:

L caratteristica per coeff. din. $L_{\Phi} = 1.3 \cdot 1/3 \cdot (6,10 + 12,20 + 6,10) = 10,57$ m

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA DOCUMENTO REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ IN.01.00.001 32 di 189

Per il calcolo di Φ , coefficiente di incremento dinamico, si è considerato un normale standard manutentivo:

$$\Phi_3 = 0.9 \cdot (2.16 / (radq(10,57) - 0.2) + 0.73) = 1,29$$

Nei casi di ponti ad arco o scatolari, con o senza solettone di fondo, aventi copertura "h" maggiore di 1.00 m, il coefficiente dinamico può essere ridotto nella seguente maniera:

$$\Phi_{3,rid} = \Phi_3 - (h-1.00)/10 \ge 1.00 = 1.29 - (1.17-1.00)/10 = 1.28$$

Dove h, in metri, è l'altezza della copertura, incluso il ballast, dall'estradosso della struttura alla faccia superiore delle traverse.

Il coefficiente di adattamento α è posto pari ad **1.10** in accordo con la Tab. 2.5.1.4.1-1 del Manuale di progettazione RFI.

Per questo modello di carico è prevista un'eccentricità del carico rispetto all'asse del binario, dipendente dallo scartamento s. Tale eccentricità risulta pari a:

$$\pm s/18 = 0.08 \text{ m}$$

con scartamento 1.435 m.

L'amplificazione del carico dovuto a tale scartamento sarà dunque pari a:

$$b=1 + (1.435/0.18) = 1.08$$

Le distribuzioni del sovraccarico ferroviario considerate al di sopra della copertura, sono quelle in grado di massimizzare le sollecitazioni flettenti e taglianti.

Si è pertanto tenuto conto della seguente amplificazione dei carichi veicolari:

LM71: $\Phi_{3,rid}$ · α · b = 1.525

SW0: $\Phi_{3,rid}$ · α · b = 1.525

SW2: $\Phi_{3,rid}$ · b = 1.386

Si considerano due condizioni di carico:

ACC-M: traffico normale

ACC-T: traffico pesante

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A. PROGETTISTA:	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO Relazione di calcolo	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA IF1M 0.0.E.ZZ CL IN.01.00.001 C 33 di 189

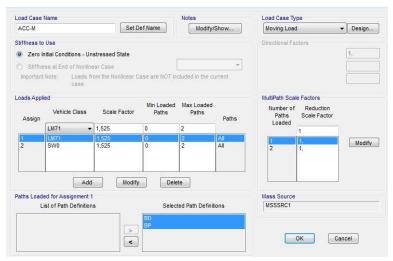


Figura 13 - Condizione ACC-M

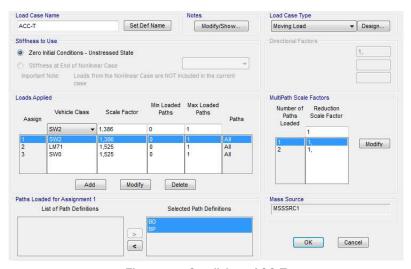


Figura 14 - Condizione ACC-T

APPALTATORE:			LIN	EA FE	RROVIA	RIA NAPOI	LI - B	4RI
Mandataria:	Mandante:	_		TRATI	A NAPO	LI-CANCE	LLO	
SALINI IMPREGILO S.p.	A. ASTALDIS	.p.A.	IN VARIA	NTF TRA	I F PK 0+0	00 E PK 15+5	85. INC	LUSELE
PROGETTISTA:						MBITO DEGL	,	
	ndante: SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.			,	ERTITO IN LE		
PROGETTO ESECUTIVO)		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo			IF1M	0.0.E.ZZ	CL	IN.01.00.001	С	34 di 189

8.1.5 Spinta sui piedritti prodotta dal sovraccarico (condizione SPACCDX)

Si è considerata la sola spinta prodotta dal carico ripartito equivalente alle forze concentrate, che vale:

Spinta dovuta al q1 $p = 0.384 \cdot 1.1 \cdot 1000 / (4.07 \cdot 6.40) =$ **STR** GEO **kN/m² kN/m²**

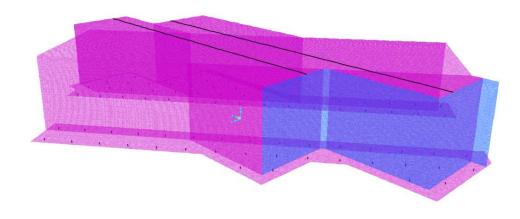


Figura 15 - Condizione SPACCDX

8.1.6 Frenatura e avviamento

Essendo la struttura a doppio binario, come espresso al punto 5.2.2.4.3 delle NTC, si devono considerare due treni in transito in versi opposti, uno in fase di avviamento e l'altro in fase di frenatura.

Per la condizione di carico in esame, in coerenza con il tipo di carico accidentale impiegato nelle altre condizioni esaminate, sono state prese in considerazione la forza di avviamento del modello di carico LM71 pari a 33 kN/m e la forza di frenztura del modello di carico SW0 pari a 20 kN/m.

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	001 AE 5.E. 100/2014, 00117 ETTTT 111 EE GGE 104 / 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 35 di 189

Tali azioni sono state applicate come carichi lineari distribuiti lungo i percorsi di carico BP e BD:

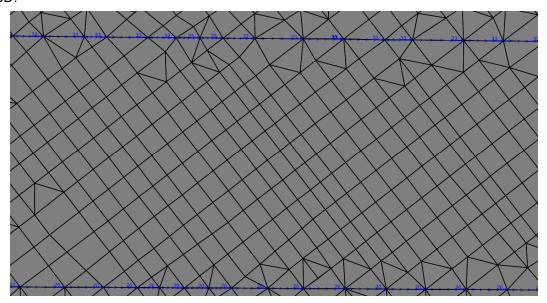


Figura 16 - Condizione AVV-FRE

8.1.7 Azioni termiche

Come previsto al §5.2.2.5.2 delle NTC, in assenza di studi approfonditi, si è applicata una variazione termica uniforme pari a $\Delta t=\pm 15$ °C.

In aggiunta alla variazione termica uniforme, andrà considerato un $\Delta t=\pm 5$ °C fra estradosso ed intradosso di impalcato.

8.1.8 Azioni sismiche

8.1.8.1 Forze di inerzia

Per il calcolo dell'azione sismica si è utilizzato il metodo dell'analisi pseudostatica in cui l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico k.

Le forze sismiche sono pertanto le seguenti:

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	001 AL D.L. 100/2014, 0011 ELITH 10 IN LEGAL 104 / 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 36 di 189

Forza sismica orizzontale $F_h = k_h \cdot W$ Forza sismica verticale $F_v = k_v \cdot W$

I valori dei coefficienti sismici orizzontale k_h e verticale k_v possono essere valutati mediante le espressioni:

$$k_h = a_{max}/g$$

$$k_v=\pm~0.5\cdot k_h$$

In assenza di analisi specifiche della risposta sismica locale, l'accelerazione massima può essere valutata con la relazione:

$$a_{max} = S \cdot a = Ss \cdot St \cdot ag$$

dove:

S_s = 1.347 Coefficiente di amplificazione stratigrafica

 $S_T = 1.00$ Coefficiente di amplificazione topografica

ne deriva che:

 $a_{max}=1.347\cdot 1\cdot 0.220g=0.294g$

 $k_h = a_{max}/g = 0.294$

 $k_v = \pm 0.5 \cdot k_h = 0.147$

Gli effetti dell'azione sismica sono stati valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:

$$G1 + G2 + \psi_{2i} Q_{ki}$$

Nel caso dei ponti, nell' espressione precedente si assumerà per i carichi dovuti al transito dei convogli ψ_{2j} =0.2, così come specificato al § 2.5.1.8.3 del Manuale RFI DTC SI PS MA IFS 001 A.

Dalla seguente figura si evince che la condizione di carico Ex alla quale corrispondono i carichi sismici in direzione X (ag/g = 0.294) è stata applicata a tutti gli elementi strutturali. Lo stesso vale per Ey (ag/g = 0.94) e per Ez (0.147).

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A. PROGETTISTA:	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO Relazione di calcolo	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA IF1M 0.0.E.ZZ CL IN.01.00.001 C 37 di 189

Figura 17 – Condizione di carico Ex (aliquota relativa ai carichi permanenti strutturali)

Di seguito si riporta la rappresentazione grafica dei carichi sismici dovuti al carico permanente non strutturale (ballast e reinterro).

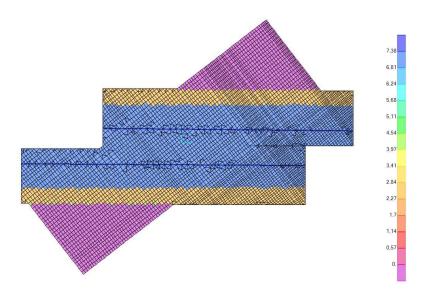


Figura 18- Condizione di carico Ex (aliquota relativa ai carichi permanenti non strutturali)

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI		
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO		
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE		
PROGETTISTA:	OPERE ACCESSORIE. NELL'AMBITO DEGLI INTERVENTI DI		
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014		
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.			
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA		
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 38 di 189		

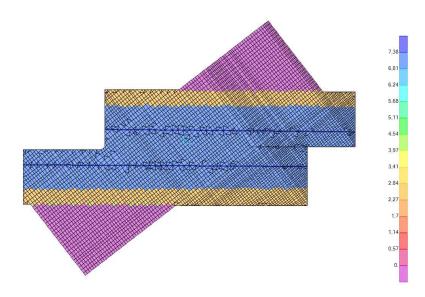


Figura 19- Condizione di carico Ey (aliquota relativa ai carichi permanenti non strutturali)

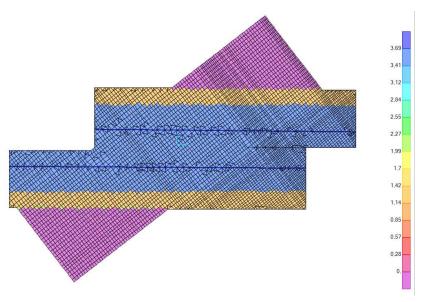


Figura 20- Condizione di carico Ez (aliquota relativa ai carichi permanenti non strutturali)

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 39 di 189

8.1.8.2 Spinta sismica terreno (SPSDX)

Le spinte delle terre sono state determinate con la teoria di Wood, secondo la quale la risultante dell'incremento di spinta per effetto del sisma su una parete di altezza H viene determinata con la seguente espressione:

$$\Delta SE = (a_{max}/g) \cdot \gamma \cdot H^2$$

Tale risultante, applicata ad un'altezza pari ad H/2, vale:

Risultante della spinta sismica $\Delta S_E = (amax/g) \cdot \gamma \cdot (Hint+Ss+Sf+Hb+Hr)^2 = 0,294 \cdot 20 \cdot 8,83^2 \quad 457,9 \quad kN/m$

Nella seguente figura si riporta la schematizzazione adottata per la modellazione della forza sismica:

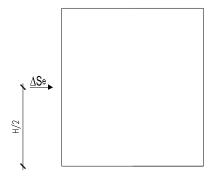


Figura 21- Spinta sismica del terreno secondo la teoria di Wood

nel modello di calcolo si è applicato il valore della forza sismica per unità di superficie agente su un piedritto, pari a:

Pressione risultante $\Delta p_E = \Delta SE / H = 457,9 / 6,55$ 69,91 kN/m²

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A. PROGETTISTA:	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 40 di 189

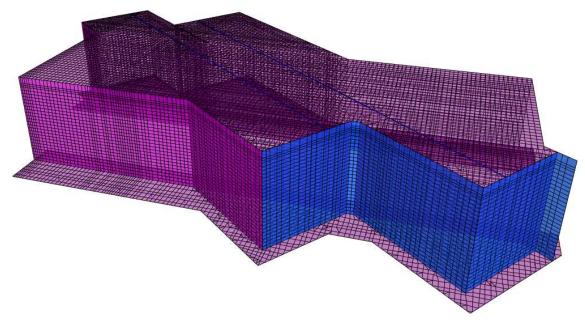


Figura 22- Condizione di carico SPSDX

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	001 AE 5.E. 100/2014, 00117 E111110 III EE GGE 1047 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 41 di 189

8.2 COMBINAZIONI DI CARICO

Ai fini delle verifiche degli stati limite si è fatto riferimento alle seguenti combinazioni delle azioni.

Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$

Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$

Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili, utilizzata nella verifica a Fessurazione:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Combinazione quasi permanente, generalmente impiegata per gli stati limite di esercizio (SLE) a lungo termine:

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$

dove:

$$E = \pm 1.00 \times E_{Y} \pm 0.3 \times E_{Z}$$

avendo indicato con E_Y e E_Z rispettivamente le componenti orizzontale e verticale dell'azione sismica.

I coefficienti di amplificazione dei carichi γ e i coefficienti di combinazione ψ sono riportati nelle tabelle seguenti.

In particolare nel calcolo della struttura in oggetto si è fatto riferimento alla combinazione A1 STR (Approccio 1 – Combinazione 1) per le verifiche strutturali ed A2 GEO (Approccio 1 – Combinazione 2) per le verifiche geotecniche.

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	, and the second
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 42 di 189

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO	Combinazione eccezionale	Combinazione Sismica
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00	1,00 1,00	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30	1,00 1,00	1,00 1,00
Ballast ⁽³⁾	favorevoli sfavorevoli	γв	0,90 1,50	1,00 1,50	1,00 1,30	1,00 1,00	1,00 1,00
Carichi variabili da traffico ⁽⁴⁾	favorevoli sfavorevoli	γο	0,00 1,45	0,00 1,45	0,00 1,25	0,00 0,20 ⁽⁵⁾	0,00 0,20 ⁽⁵⁾
Carichi variabili	favorevoli sfavorevoli	γ _{Qi}	0,00 1,50	0,00 1,50	0,00 1,30	0,00 1,00	0,00 0,00
Precompressione	favorevole sfavorevole	γр	0,90 1,00 ⁽⁶⁾	1,00 1,00 ⁽⁷⁾	1,00 1,00	1,00 1,00	1,00 1,00

- (1) Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.
- (2) Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.
- (3) Quando si prevedano variazioni significative del carico dovuto al ballast, se ne dovrà tener conto esplicitamente nelle verifiche.
- (4) Le componenti delle azioni da traffico sono introdotte in combinazione considerando uno dei gruppi di carico gr della Tab. 5.2.IV.
- (5) Aliquota di carico da traffico da considerare.
- (6) 1,30 per instabilità in strutture con precompressione esterna
- (7) 1,20 per effetti locali

Tabella 4- NTC Tabella 5.2.V delle NTC – Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU, eccezionali e sismica- Ponti ferroviari

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30
Carichi variabili da traffico	favorevoli sfavorevoli	γο	0,00 1,35	0,00 1,35	0,00 1,15
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30
Distorsioni e presollecitazioni di progetto	favorevoli sfavorevoli	γ ε1	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00
Ritiro e viscosità, Variazioni termiche, Cedimenti vincolari	favorevoli sfavorevoli	γε2, γε3, γε4	0,00 1,20	0,00 1,20	0,00 1,00

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.

Tabella 5- NTC Tabella 5.1.V – Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU-Ponti stradali

⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

^{(3) 1,30} per instabilità in strutture con precompressione esterna (4) 1,20 per effetti locali

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA DOCUMENTO REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ IN.01.00.001 43 di 189

Azioni		Ψο	Ψ1	Ψ2
Azioni singole	Carico sul rilevato a tergo delle spalle	0,80	0,50	0,0
da traffico	Azioni aerodinamiche generate dal transito dei convogli	0,80	0,50	0,0
	gr ₁	0,80 ⁽²⁾	0,80 ⁽¹⁾	0,0
Gruppi di	gr ₂	0,80 ⁽²⁾	0,80 ⁽¹⁾	-
carico	gr ₃	0,80 ⁽²⁾	0,80 ⁽¹⁾	0,0
	gr ₄	1,00	1,00(1)	0,0
Azioni del vento	F _{Wk}	0,60	0,50	0,0
Azioni da	in fase di esecuzione	0,80	0,0	0,0
neve	SLU e SLE	0,0	0,0	0,0
Azioni termiche	T_k	0,60	0,60	0,50

Tabella 6- Tabella 5.2.VI delle NTC- Coefficienti di combinazione y delle azioni- Ponti ferroviari

Azioni	Gruppo di azioni (Tabella 5.1.IV)	Coefficiente Ψ ₀ di combinazione	Coefficiente ψ ₁ (valori frequenti)	Coefficiente \(\psi_2\) (valori quasi permanenti)
	Schema 1 (Carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (Carichi distribuiti	0,40	0,40	0,0
	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
Azioni da traffico	Schema 2	0,0	0,75	0,0
(Tabella 5.1.IV)	2	0,0	0,0	0,0
	3	0,0	0,0	0,0
	4 (folla)		0,75	0,0
	5	0,0	0,0	0,0
Vento q_5	Vento a ponte scarico SLU e SLE Esecuzione	0,6 0,8	0,2	0,0 0,0
	Vento a ponte carico	0,6		
Neve q5	SLU e SLE	0,0	0,0	0,0
	esecuzione	0,8	0,6	0,5
Temperatura	T _k	0,6	0,6	0,5

Tabella 7- NTC Tabella 5.1.VI delle NTC - Coefficienti di combinazione y delle azioni - Ponti stradali e pedonali

Al fine della valutazione delle azioni caratteristiche da usare nelle combinazioni in riferimento al traffico ferroviario gli effetti dei carichi verticali dovuti alla presenza dei convogli vanno sempre combinati con le altre azioni derivanti dal traffico ferroviario, adottando i coefficienti indicati in Tabella 5.2.IV - Valutazione dei carichi da traffico delle NTC. In particolare, avendo considerato, tra i carichi riportati nella detta tabella, unicamente il carico verticale e quello proveniente dalla Frenatura/Avviamento saranno considerarti solo il Gruppo 1 ed il Gruppo 3.

Nella valutazione degli effetti di interazione, alle azioni conseguenti all'applicazione dei carichi da traffico ferroviario si adotteranno gli stessi coefficienti parziali dei carichi che li generano.

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. CODIFICA DOCUMENTO REV. PROGETTO ESECUTIVO **PROGETTO** LOTTO **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ IN.01.00.001 С 44 di 189

TIPO DI CARICO	Azioni v	Azioni verticali		Azioni orizzontali		
Gruppo di carico	Carico verticale (1)	Treno scarico	Frenatura e avviamento	Centrifuga	Serpeggio	Commenti
Gruppo 1 (2)	1,00	,	0,5 (0,0)	1,0 (0,0)	1,0 (0,0)	massima azione verticale e laterale
Gruppo.2 (2)	-	1,00	0,00	1,0 (0,0)	1,0(0,0)	stabilità laterale
Gruppo 3 (2)	1,0 (0,5)	-	1,00	0,5 (0,0)	0,5 (0,0)	massima azione longitudinale
Gruppo 4	0,8 (0,6; 0,4)	-	0,8 (0,6; 0,4)	0,8 (0,6; 0,4)	0,8 (0,6; 0,4)	fessurazione
(1) Includendo tutti i fatte (2) La simultaneità di due considerata come se	o tre valori carat	teristici interi (a				

Tabella 8- NTC Tabella 5.2.IV delle NTC - Valutazione dei carichi da traffico

Azioni		Ψο	Ψ1	Ψ2
Azioni singole	Carico sul rilevato a tergo delle spalle	0,80	0,50	0,0
da traffico	Azioni aerodinamiche generate dal transito dei convogli	0,80	0,50	0,0
	gr_1	0,80 ⁽²⁾	0,80 ⁽¹⁾	0,0
Gruppi di	gr ₂	0,80 ⁽²⁾	0,80 ⁽¹⁾	-
carico	gr ₃	0,80 ⁽²⁾	0,80 ⁽¹⁾	0,0
	gr ₄	1,00	1,00 ⁽¹⁾	0,0
Azioni del vento	F_{Wk}	0,60	0,50	0,0
Azioni da	in fase di esecuzione	0,80	0,0	0,0
neve	SLU e SLE	0,0	0,0	0,0
Azioni termiche	$ T_k $	0,60	0,60	0,50

Tabella 9- NTC Tabella 5.2.VI delle NTC - Coefficienti di combinazione y delle azioni

Nella combinazione sismica le azioni indotte dal traffico ferroviario sono combinate con un coefficiente Ψ_2 = 0.2 coerentemente con l'aliquota di massa afferente ai carichi da traffico.

Le azioni descritte nel paragrafo precedente ed utilizzate nelle combinazioni di carico vengono di seguito riassunte:

APPALTATORE:			LIN	EA FE	RROVIA	RIA NAPOI	LI - B	ARI	
Mandataria: SALINI IMPREGILO S.p.A.	Mandante: ASTALDIS	TRATTA NAPOLI-CANCELLO							
PROGETTISTA:	ASTALDIS	.р.н.				000 E PK 15+58 AMBITO DEGL	,		
Mandataria: Mandani SYSTRA S.A. SYST	e: FRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.			,	ERTITO IN LE			
PROGETTO ESECUTIVO			PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA	
Relazione di calcolo			IF1M	0.0.E.ZZ	CL	IN.01.00.001	С	45 di 189	

Si riportano di seguito le combinazioni di carico ritenute più significative con i coefficienti di combinazione $\gamma \cdot \psi$. Essendo la struttura simmetrica, si adottano tipologie di combinazione asimmetriche in modo da massimizzare le sollecitazioni. Il dimensionamento delle armature e le verifiche strutturali verranno poi eseguite tenendo conto della simmetria e verificando le condizioni peggiori per ogni lato della struttura.

Nel seguito si riportano le combinazioni di calcolo utilizzate per le verifiche a seguire.

APPALTATORE:

Mandataria: Mandante:
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.

PROGETTISTA:

Mandataria: Mandante:

SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.

PROGETTO ESECUTIVO Relazione di calcolo

LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

PROGETTO

LOTTO **0.0.E.ZZ**

CODIFICA

DOCUMENTO IN.01.00.001

REV. PAGINA C 46 di 189

		G r.			N	STRU	PER M	ACC-	ACC -T	AV V	SPTS X	SPT DX	SPACC SX	SPACC DX	TER M	RITIR O	SISM	SISM AV	SPS DX
	S	1	11 M		0 1	01S1- 11M	1,35	1,45	0	0	1,00	1,00	0	0	0,9	0	0	0	0
	S	1 -	11 T		0	02S1- 11T	1,35	0	1,45	0	1,00	1,00	0	0	0,9	0	0	0	0
	S	1	12 M		0 3	03S1- 12M	1,35	1,45	0	0	1,35	1,35	1,45	1,45	0,9	0	0	0	0
	S	1 -	12 T		0 4	04S1- 12T	1,35	0	1,45	0	1,35	1,35	1,45	1,45	0,9	0	0	0	0
- E	S	1 -	13 M		0 5	05S1- 13M	1,35	1,45	0	0	1,00	1,35	0	1,45	0,9	0	0	0	0
bili gr.1	S	1 -	13 T		0 6	06S1- 13T	1,35	0	1,45	0	1,00	1,35	0	1,45	0,9	0	0	0	0
carichi mobili	S	1 -	14		0 7	07S1- 14-	1,35	0	0	0	1,35	1,35	1,45	1,45	0,9	0	0	0	0
caric	S	1 -	15 -		8 0	08S1- 15-	1,35	0	0	0	1,00	1,35	0	1,45	0,9	0	0	0	0
II	S	1 -	21 M		9	09S1- 21M	1,35	1,45	0	0	1,00	1,00	0	0	-0,9	1,35	0	0	0
SLU (Principale	S	1	21 T		0	10S1- 21T	1,35	0	1,45	0	1,00	1,00	0	0	-0,9	1,35	0	0	0
U (Pr	S	1 -	22 M		1 1	11S1- 22M	1,35	1,45	0	0	1,35	1,35	1,45	1,45	-0,9	1,35	0	0	0
S	S	1 -	22 T		1 2	12S1- 22T	1,35	0	1,45	0	1,35	1,35	1,45	1,45	-0,9	1,35	0	0	0
	S	1 -	23 M		1 3	13S1- 23M	1,35	1,45	0	0	1,00	1,35	0	1,45	-0,9	1,35	0	0	0
	S	1 -	23 T		1 4	14S1- 23T	1,35	0	1,45	0	1,00	1,35	0	1,45	-0,9	1,35	0	0	0
	S	1 -	24		1 5	15S1- 24-	1,35	0	0	0	1,35	1,35	1,45	1,45	-0,9	1,35	0	0	0
	S	1 -	25 -		1 6	16S1- 25-	1,35	0	0	0	1,00	1,35	0	1,45	-0,9	1,35	0	0	0
	S	1 T	11 M		1 7	17S1T1 1M	1,35	1,16	0	1,1 6	1,00	1,00	0	0	1,5	0	0	0	0
	S	1 T	11 T		1 8	18S1T1 1T	1,35	0	1,16	1,1 6	1,00	1,00	0	0	1,5	0	0	0	0
	S	1 T	12 M		1 9	19S1T1 2M	1,35	1,16	0	1,1 6	1,35	1,35	1,16	1,16	1,5	0	0	0	0
	S	1 T	12 T		0 0	20S1T1 2T	1,35	0	1,16	1,1 6	1,35	1,35	1,16	1,16	1,5	0	0	0	0
	S	1 T	13 M		2	21S1T1 3M	1,35	1,16	0	1,1 6	1,00	1,35	0	1,16	1,5	0	0	0	0
=	S	1 T	13 T		2	22S1T1 3T	1,35	0	1,16	1,1 6	1,00	1,35	0	1,16	1,5	0	0	0	0
= Term	S	1 T	14		2	23S1T1 4-	1,35	0	0	0	1,35	1,35	1,16	1,16	1,5	0	0	0	0
ale =	S	1 T	15 -		2 4	24S1T1 5-	1,35	0	0	0	1,00	1,35	0	1,16	1,5	0	0	0	0
SLU (Principale	S	1 T	21 M		2	25S1T2 1M	1,35	1,16	0	1,1 6	1,00	1,00	0	0	-1,5	1,35	0	0	0
J) UJ	S	1 T	21 T		2 6	26S1T2 1T	1,35	0	1,16	1,1 6	1,00	1,00	0	0	-1,5	1,35	0	0	0
S	S	1 T	22 M		2 7	27S1T2 2M	1,35	1,16	0	1,1 6	1,35	1,35	1,16	1,16	-1,5	1,35	0	0	0
	S	1 T	22 T		2	28S1T2 2T	1,35	0	1,16	1,1 6	1,35	1,35	1,16	1,16	-1,5	1,35	0	0	0
	S	1 T	23 M		2 9	29S1T2 3M	1,35	1,16	0	1,1 6	1,00	1,35	0	1,16	-1,5	1,35	0	0	0
	S	1 T	23 T	Ī	3	30S1T2 3T	1,35	0	1,16	1,1 6	1,00	1,35	0	1,16	-1,5	1,35	0	0	0
	S	1 T	24	Ī	3	31S1T2 4-	1,35	0	0	0	1,35	1,35	1,16	1,16	-1,5	1,35	0	0	0
	S	1 T	25 -		3	32S1T2 5-	1,35	0	0	0	1,00	1,35	0	1,16	-1,5	1,35	0	0	0

APPALTATORE:

Mandataria: Mandante:
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.

PROGETTISTA:

Mandataria: Mandante

SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.

PROGETTO ESECUTIVO Relazione di calcolo

LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

 PROGETTO
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 PAGINA

 IF1M
 0.0.E.ZZ
 CL
 IN.01.00.001
 C
 47 di 189

	s	3	11 M	3	33S3- 11M	1,35	1,45	0	1,4 5	1,00	1,00	0	0	0,9	0	0	0	0
.3)	S	3	11 T	3	34S3- 11T	1,35	0	1,45	1,4 5	1,00	1,00	0	0	0,9	0	0	0	0
gr.3)	S	3	12 M	3	35S3- 12M	1,35	1,45	0	1,4 5	1,35	1,35	1,45	1,45	0,9	0	0	0	0
mobili	S	3	12 T	3	36S3- 12T	1,35	0	1,45	1,4 5	1,35	1,35	1,45	1,45	0,9	0	0	0	0
	S	3	13 M	3	37S3- 13M	1,35	1,45	0	1,4 5	1,00	1,35	0	1,45	0,9	0	0	0	0
carichi	S	3	13 T	3	38S3- 13T	1,35	0	1,45	1,4	1,00	1,35	0	1,45	0,9	0	0	0	0
00	S	3	21 M	3	39S3- 21M	1,35	1,45	0	1,4 5	1,00	1,00	0	0	-0,9	1,35	0	0	0
ale	S	3	21 T	4 0	40S3- 21T	1,35	0	1,45	1,4	1,00	1,00	0	0	-0,9	1,35	0	0	0
(Principale	S	3	22 M	4	41S3- 22M	1,35	1,45	0	1,4 5	1,35	1,35	1,16	1,16	-0,9	1,35	0	0	0
(Pri	S	3	22 T	4 2	42S3- 22T	1,35	0	1,45	1,4 5	1,35	1,35	1,16	1,16	-0,9	1,35	0	0	0
SLU	S	3	23 M	4	43S3- 23M	1,35	1,45	0	1,4 5	1,00	1,35	0	1,16	-0,9	1,35	0	0	0
	S	3	23 T	4	44S3- 23T	1,35	0	1,45	1,4 5	1,00	1,35	0	1,16	-0,9	1,35	0	0	0
	S	S S	1-	4 5	45SSS1 	1	0,2	0	0	0,6	1	0	0,2	0,5	0	1	0,3	1
	S	S S	2-	4 6	46SSS2 	1	0,2	0	0	0,6	1	0	0,2	0,5	0	1	-0,3	1
a)	S	S S	3-	4 7	47SSS3	1	0,2	0	0	0,6	1	0	0,2	0,5	0	0,3	1	0,3
SLU (Sismica)	S	SS	4-	4 8	48SSS4 	1	0,2	0	0	0,6	1	0	0,2	0,5	0	0,3	-1	0,3
S) N-	S	S 53	5-	4 9	49SSS5 	1	0,2	0	0	0,6	1	0	0,2	-0,5	1	1	0,3	1
S	S	SS	6-	5 0	50SSS6 	1	0,2	0	0	0,6	1	0	0,2	-0,5	1	1	-0,3	1
	S	S	7-	5 1	51SSS7 	1	0,2	0	0	0,6	1	0	0,2	-0,5	1	0,3	1	0,3
	S	S	8-	5 2	52SSS8 	1	0,2	0	0	0,6	1	0	0,2	-0,5	1	0,3	-1	0,3
	R	3	11 M	5 3	53R3- 11M	1	0,8	0	0,8	0,6	0,6	0	0	0,6	0	0	0	0
	R	3	11 T	5 4	54R3- 11T	1	0	0,8	0,8	0,6	0,6	0	0	0,6	0	0	0	0
gr.4)	R	3	12 M	5 5	55R3- 12M	1	0,8	0	0,8	1	1	0,8	0,8	0,6	0	0	0	0
carichi mobili	R	3	12 T	5 6	56R3- 12T	1	0	0,8	0,8	1	1	0,8	0,8	0,6	0	0	0	0
richi	R	3	13 M	5 7	57R3- 13M	1	0,8	0	0,8	0,6	1	0	0,8	0,6	0	0	0	0
II	R	3	13 T	5 8	58R3- 13T	1	0	0,8	0,8	0,6	1	0	0,8	0,6	0	0	0	0
cipale	R	3	21 M	5 9	59R3- 21M	1	0,8	0	0,8	0,6	0,6	0	0	-0,6	1	0	0	0
ara (Principale	R	3	21 T 22	6 0 6	60R3- 21T 61R3-	1	0	0,8	0,8	0,6	0,6	0	0	-0,6	1	0	0	0
	R	3 -	М	1	22M	1	0,8	0	0,8	1	1	0,8	0,8	-0,6	1	0	0	0
SLE	R	3 -	22 T 23	6 2 6	62R3- 22T 63R3-	1	0	0,8	0,8	1	1	0,8	0,8	-0,6	1	0	0	0
	R	-	23 M 23	6	23M 64R3-	1	0,8	0	0,8	0,6	1	0	0,8	-0,6	1	0	0	0
	R	3 -	23 T	6	23T 65R1T1	1	0	0,8	0,8	0,6	1	0	0,8	-0,6	1	0	0	0
ale =	R	T 1	M 11	5	1M 66R1T1	1	0,8	0	0,8	0,6	0,6	0	0	1	0	0	0	0
(Principale	R	T 1	11 T	6	1T 67R1T1	1	0	0,8	0,8	0,6	0,6	0	0	1	0	0	0	0
9	R	T	M	7	2M	1	0,8	0	0,8	1	1	0,8	0,8	1	0	0	0	0

APPALTATORE:

Mandataria: Mandante:
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.

PROGETTISTA:

Mandataria: Mandant

SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.

PROGETTO ESECUTIVO
Relazione di calcolo

LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

 PROGETTO
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 PAGINA

 IF1M
 0.0.E.ZZ
 CL
 IN.01.00.001
 C
 48 di 189

R	1 T	12 T	6 8	68R1T1 2T	1	0	0,8	0,8	1	1	0,8	0,8	1	0	0	0	0
R	1 T	13 M	6 9	69R1T1 3M	1	0,8	0	0,8	0,6	1	0	0,8	1	0	0	0	0
R	1 T	13 T	7 0	70R1T1 3T	1	0	0,8	0,8	0,6	1	0	0,8	1	0	0	0	0
R	1 T	21 M	7 1	71R1T2 1M	1	0,8	0	0,8	0,6	0,6	0	0	-1	1	0	0	0
R	1 T	21 T	7 2	72R1T2 1T	1	0	0,8	0,8	0,6	0,6	0	0	-1	1	0	0	0
R	1 T	22 M	7 3	73R1T2 2M	1	0,8	0	0,8	1	1	0,8	0,8	-1	1	0	0	0
R	1 T	22 T	7 4	74R1T2 2T	1	0	0,8	0,8	1	1	0,8	0,8	-1	1	0	0	0
R	1 T	23 M	7 5	75R1T2 3M	1	0,8	0	0,8	0,6	1	0	0,8	-1	1	0	0	0
R	1 T	23 T	7 6	76R1T2 3T	1	0	0,8	0,8	0,6	1	0	0,8	-1	1	0	0	0

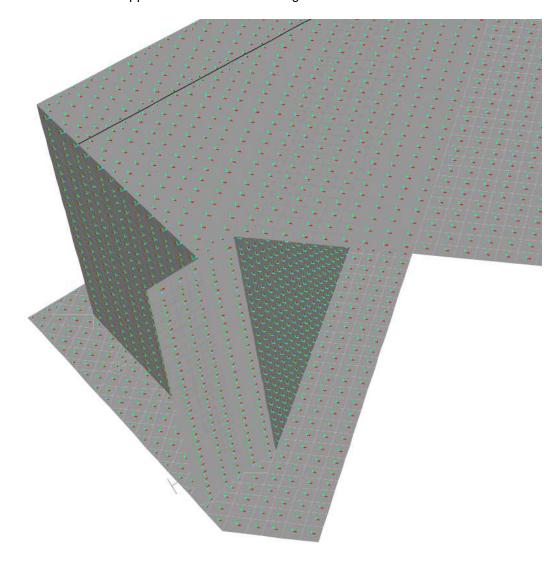
APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	, , , , , , , , , , , , , , , , , , ,
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 49 di 189

8.3 MODELLAZIONE ADOTTATA

L'analisi della struttura si effettua attraverso una modellazione spaziale agli elementi finiti. Il programma di calcolo impiegato per le analisi strutturali è il SAP2000 ver.20.1.0, prodotto dalla Computers and Structures INC.

Lo scatolare in esame è stato modellato con un modello tridimensionale. Al fine della modellazione dei piedritti e dei traversi sono stati quindi utilizzati elementi shell, a ognuno dei quali sono stati assegnati gli spessori e i materiali di riferimento.

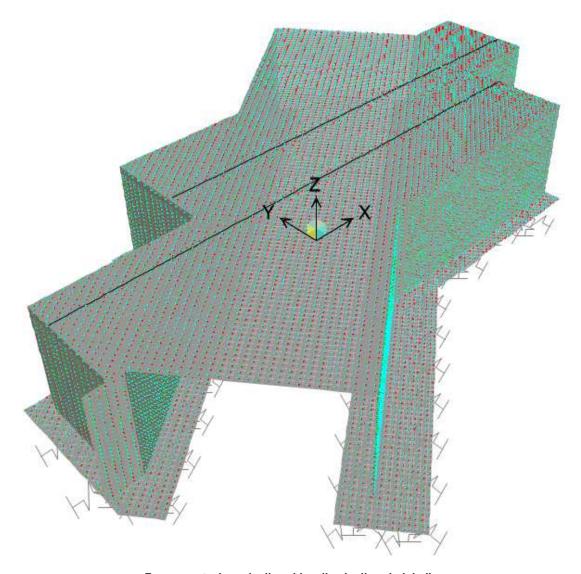
I modelli di calcolo approntati prevedono diverse condizioni di carico dedotte sulla base dell'analisi dei carichi riportata in precedenza. Tali condizioni sono state poi combinate al fine di ottenere le combinazioni necessarie alle verifiche, secondo cui si modella e verifica la struttura nei confronti del collasso e del comportamento in esercizio della stessa.


La gestione e la verifica delle analisi svolte avvengono mediante il controllo dei file di input e output che il software restituisce sia in forma grafica che in forma tabulare. Per output si intendono le caratteristiche della sollecitazione e gli stati tensionali e deformativi per le combinazioni di carico.

La validazione delle modellazioni svolte e dei relativi risultati è stata eseguita comparando tali risultati con quelli derivanti da analisi semplificate effettuate con altri software e/o con schemi elementari di calcolo.

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	, and the second
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 50 di 189

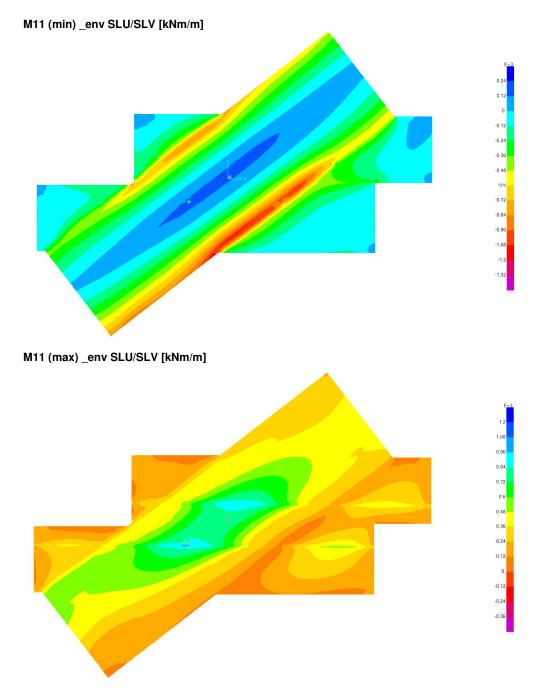
8.4 ANALISI DELLE SOLLECITAZIONI


Le sollecitazioni sono rappresentate in funzione degli assi locali:

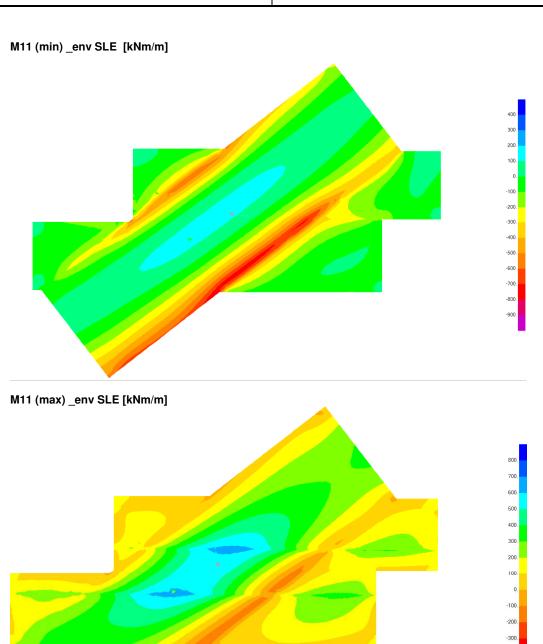
Assi locali:

- Asse 2

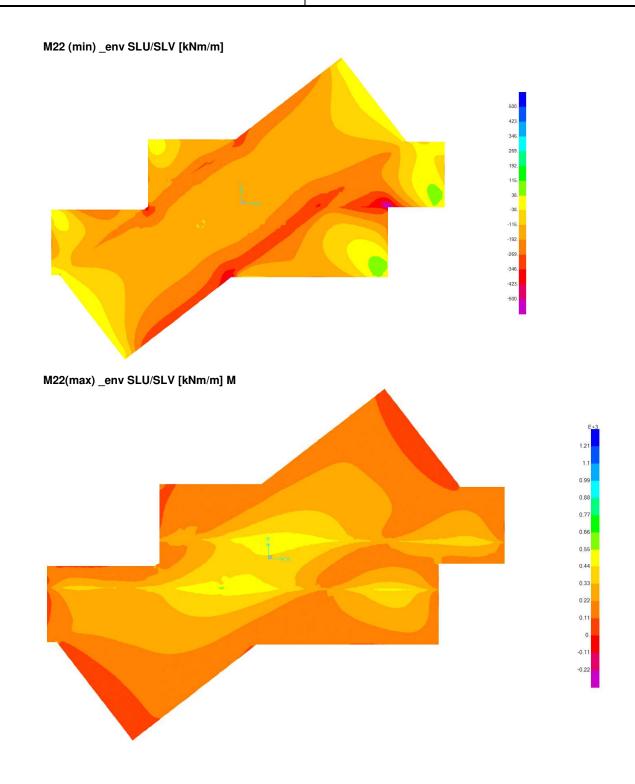
APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014. CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	,
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 51 di 189

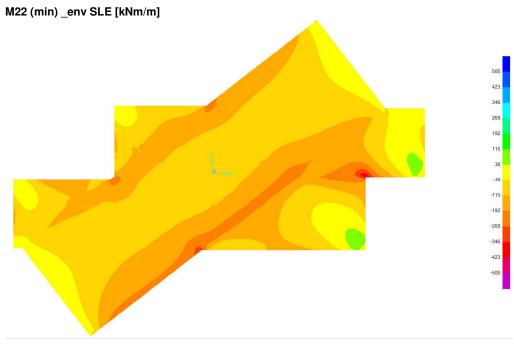


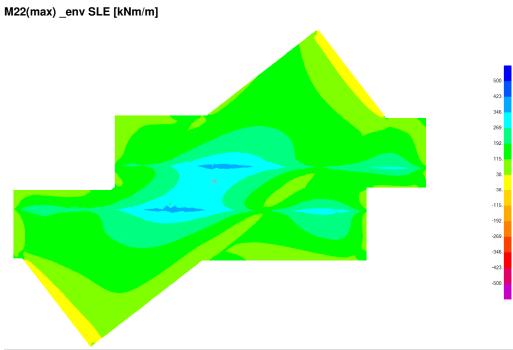
Rappresentazione degli assi locali e degli assi globali


Si riportano, di seguito, i diagrammi di inviluppo delle caratteristiche delle sollecitazioni di Flessione, Taglio e Sforzo Normale.

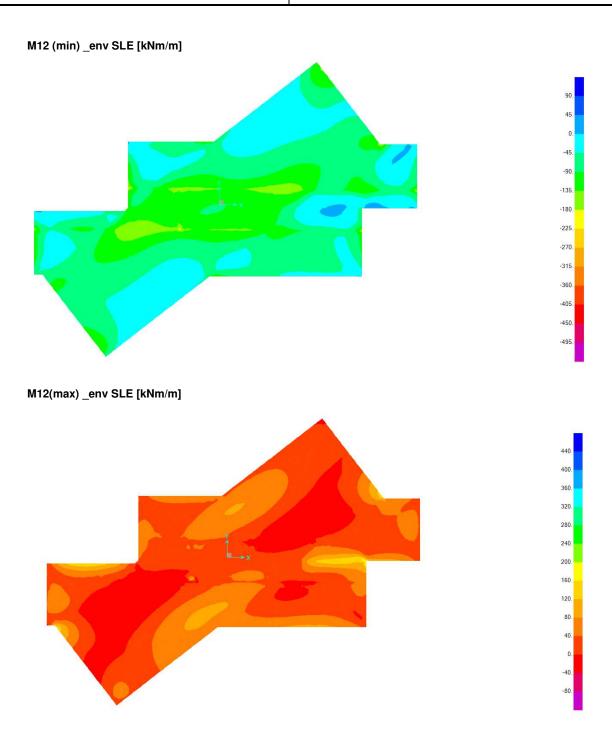
APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 52 di 189


8.4.1 Soletta superiore

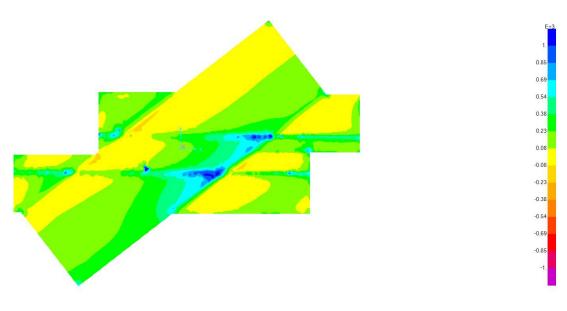

APPALTATORE:			LIN	EA FE	RROVIA	RIA NAPOI	LI - B	4RI
Mandataria:	Mandante:			TRAT1	A NAPO	LI-CANCE	LLO	
SALINI IMPREGILO S	S.p.A. ASTALDIS	.p.A.	INI WADIA		_	00 E PK 15+5	_	IIIGE I E
PROGETTISTA:						AMBITO DEGL	,	
Mandataria:	Mandante:				,	ERTITO IN LE		
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	OOIALL	J.L. 100/2	014, 00111		aal i	74 / 2014
PROGETTO ESECUT	TIVO		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo			IF1M	0.0.E.ZZ	CL	IN.01.00.001	С	53 di 189



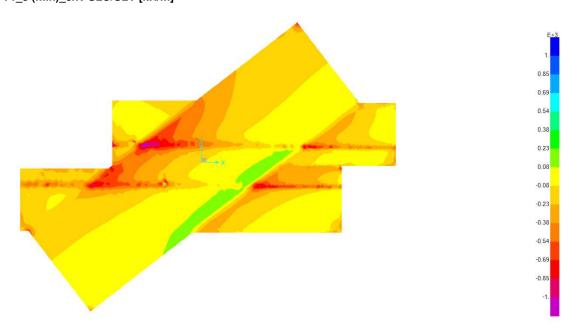
APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 54 di 189



APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A. PROGETTISTA:	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 55 di 189

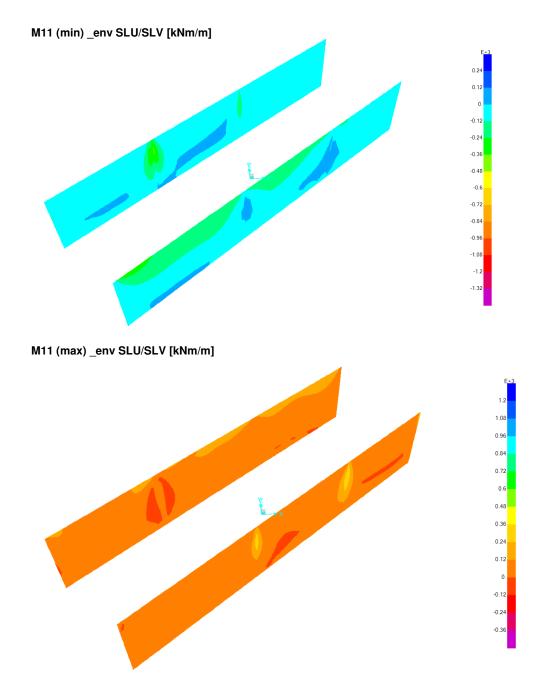


APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 56 di 189

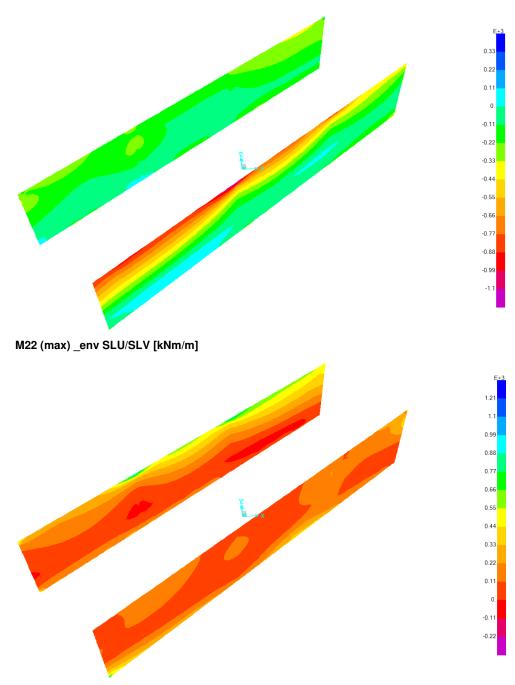


APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014. CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.).A.
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 57 di 189

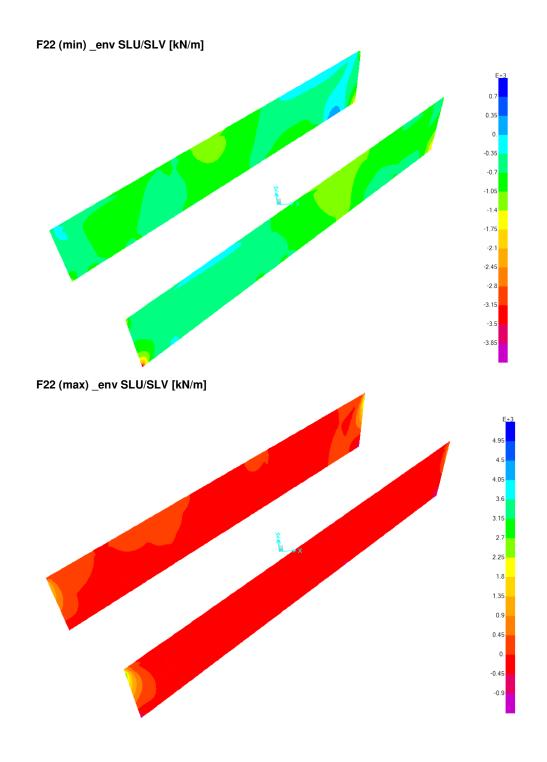
V1_3 (max)_env SLU/SLV [kN/m]



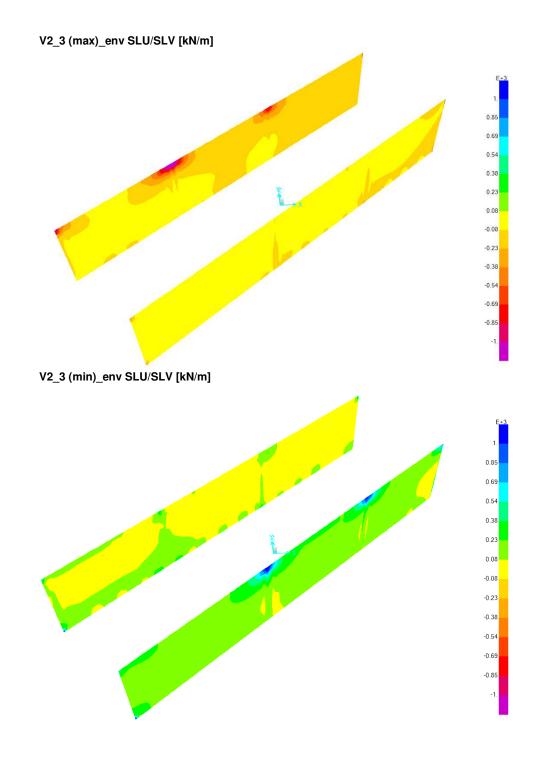
V1_3 (min)_env SLU/SLV [kN/m]

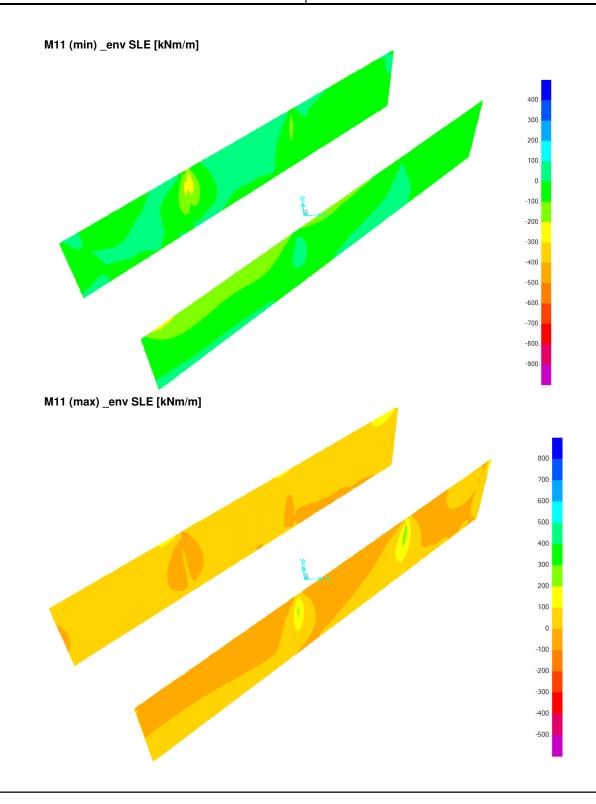

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	, , , , , , , , , , , , , , , , , , , ,
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 58 di 189

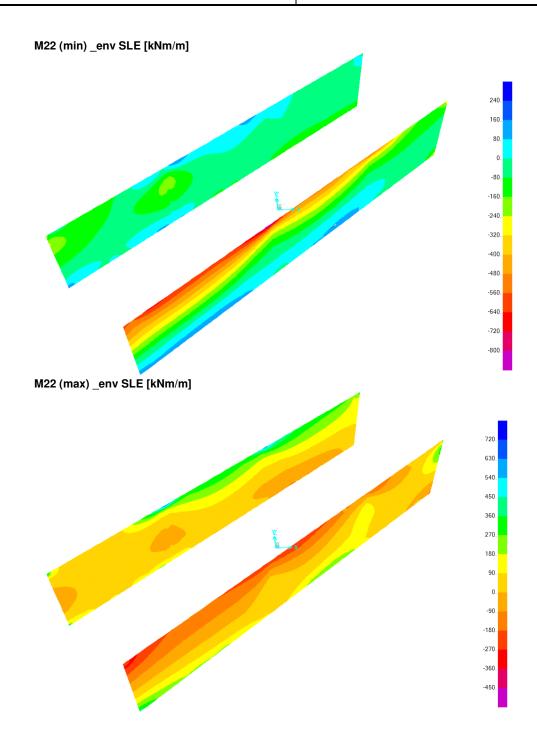
8.4.2 Pledritti principali (Sp=110 cm)

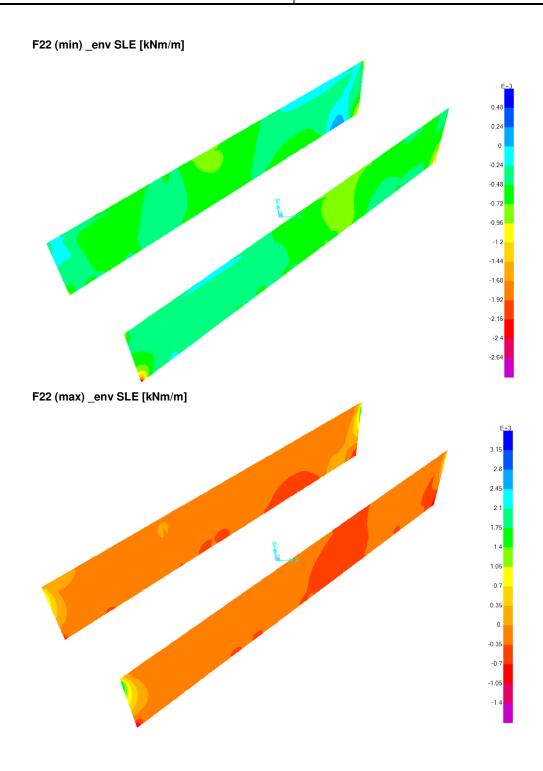


APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 59 di 189

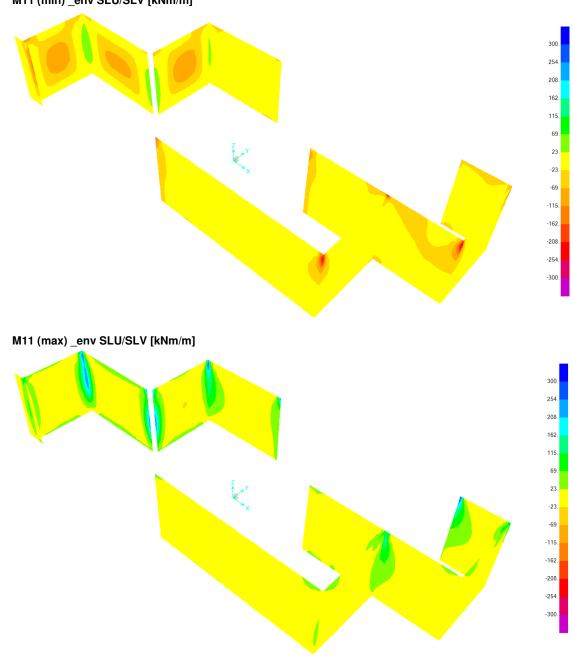



APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 60 di 189

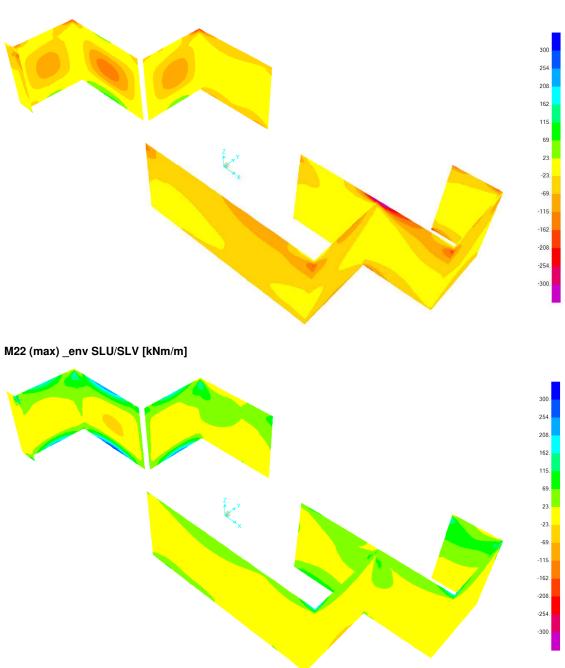

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 61 di 189

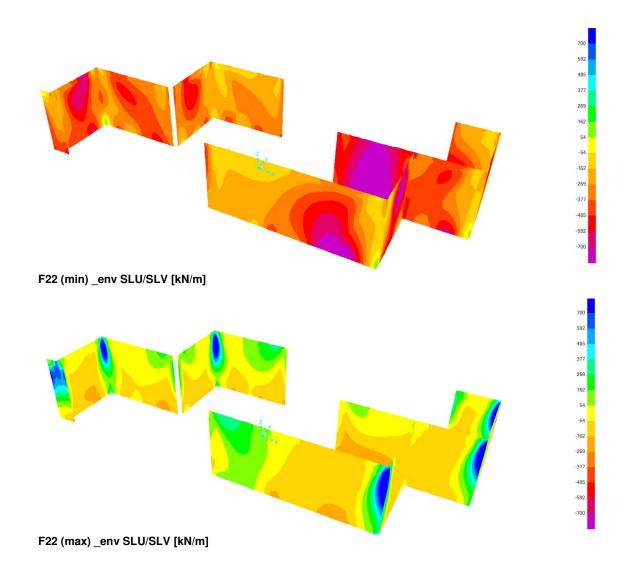

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 62 di 189

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
PROGETTISTA: ASTALDI S.p.A. PROGETTISTA:	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 63 di 189

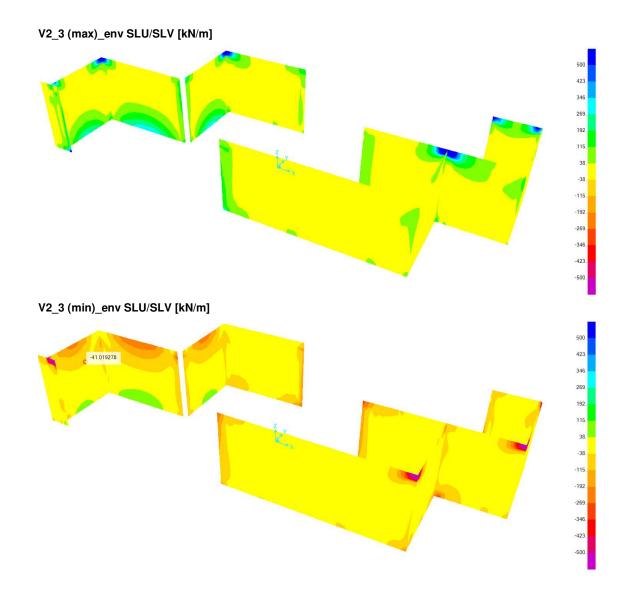

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 64 di 189

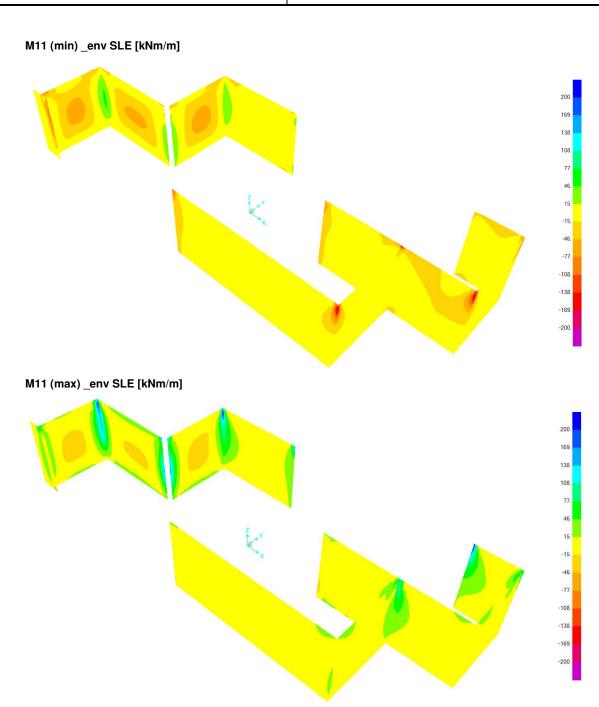
APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	001712 5121 1007201 I, 00111 21111 0 III 22002 1017 2011
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 65 di 189

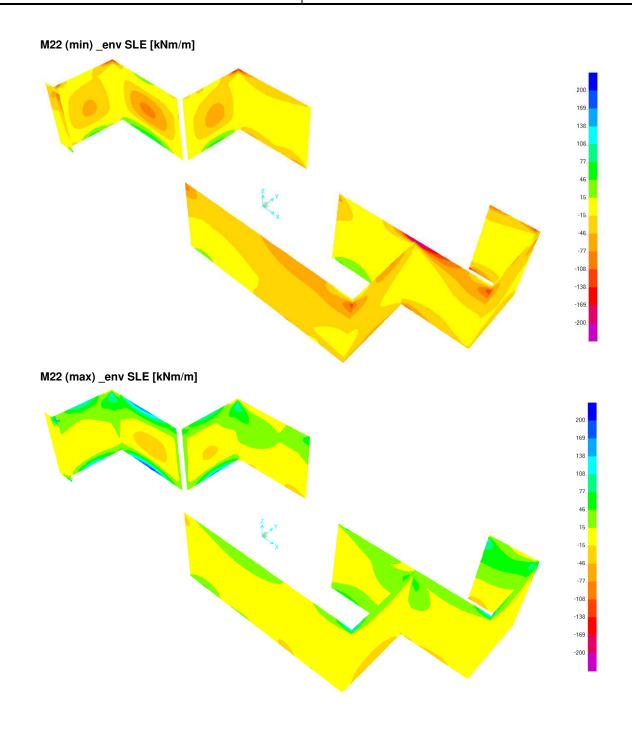

8.4.3 Piedritti laterali (Sp=60 cm)



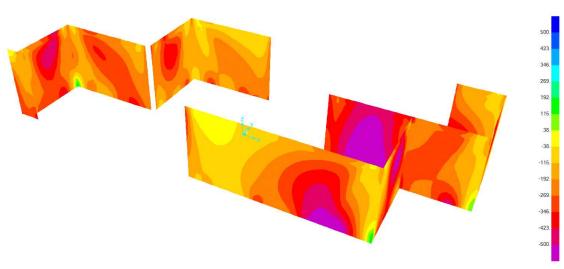
APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 66 di 189


M22 (min) _env SLU/SLV [kNm/m]

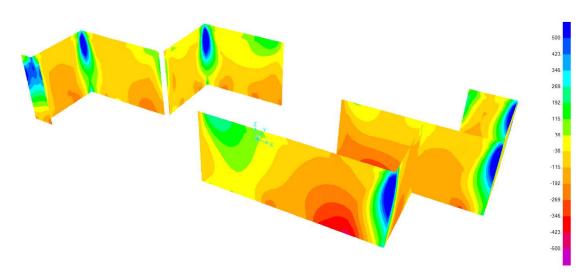

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 67 di 189


APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014. CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.	.A
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 68 di 189

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 69 di 189

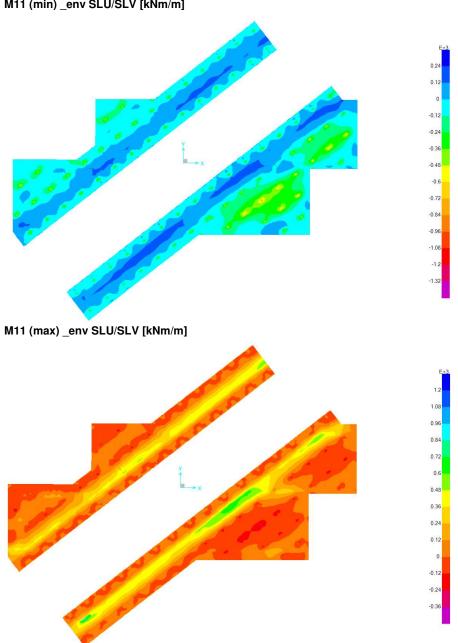


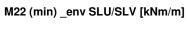
APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 70 di 189

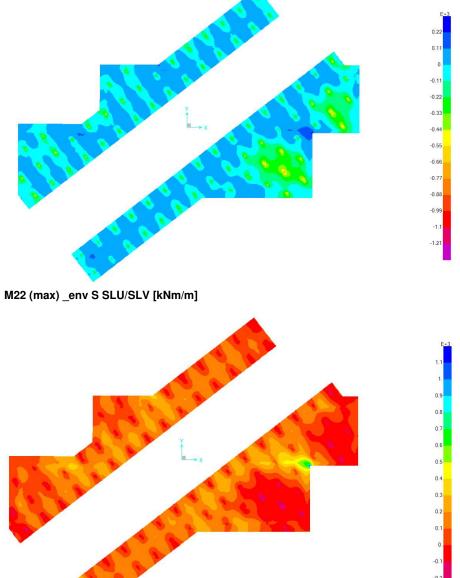


LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA DOCUMENTO REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ IN.01.00.001 С 71 di 189

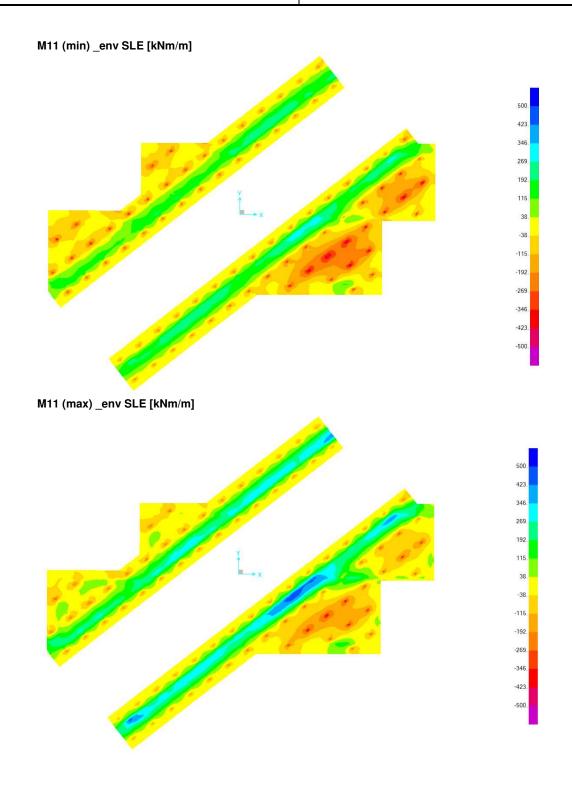
F22 (min) _env SLE [kNm/m]


F22 (max) _env SLE [kNm/m]

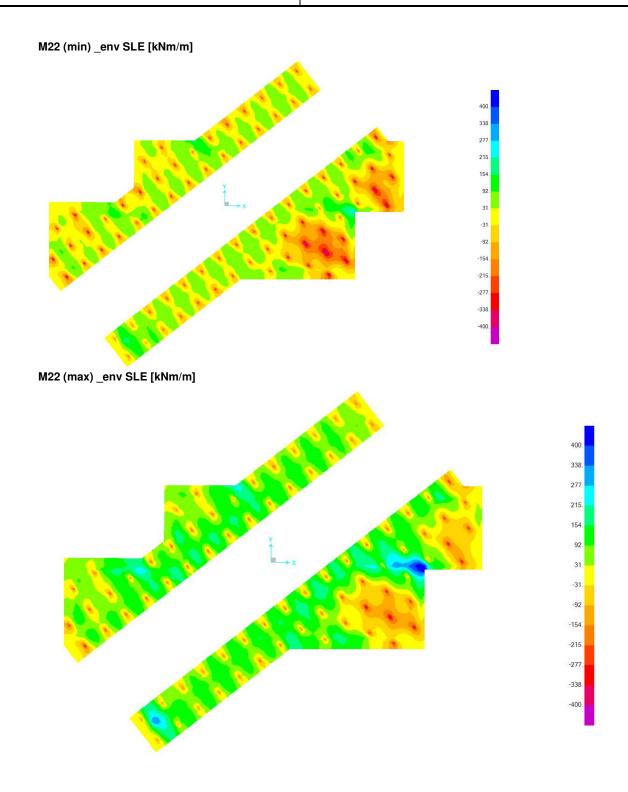

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	001 AE 5.E. 100/2014, 00117 E111110 III EE GGE 1047 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 72 di 189


8.4.4 Fondazioni

M11 (min) _env SLU/SLV [kNm/m]



APPALTATORE:			LIN	EA FEF	RROVIA	RIA NAPOI	LI - B	4RI
Mandataria:	Mandante:			TRAT1	A NAPO	LI-CANCE	LLO	
SALINI IMPREGILO S.p.	A. ASTALDIS	.p.A.	IN VARIA	NTE TRA	LE PK 0+0	00 E PK 15+5	85, INC	LUSE LE
PROGETTISTA: Mandataria: Man	idante:				,	MBITO DEGL		
	YSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL E	D.L. 133/2	014, CONV	ERTITO IN LE	GGE 16	64 / 2014
PROGETTO ESECUTIVO)		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo			IF1M	0.0.E.ZZ	CL	IN.01.00.001	С	73 di 189



APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 74 di 189

APPALTATORE:			LIN	EA FE	RROVIA	RIA NAPOI	LI - B	ARI
Mandataria:	Mandante:			TRAT1	A NAPO	LI-CANCE	LLO	
SALINI IMPREGILO S	S.p.A. ASTALDIS	.p.A.	INI WADIA		_	00 E PK 15+5		IIICE I E
PROGETTISTA:						AMBITO DEGL	,	
Mandataria:	Mandante:				,	ERTITO IN LE		
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	OOIALL	J.L. 100/2	014, 00111		aal it	77 2017
PROGETTO ESECUT	ΓΙVO		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo			IF1M	0.0.E.ZZ	CL	IN.01.00.001	С	75 di 189

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO PROGETTO LOTTO CODIFICA DOCUMENTO REV. **PAGINA** Relazione di calcolo 0.0.E.ZZ IN.01.00.001 76 di 189

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A. PROGETTISTA:	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO Relazione di calcolo	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA IF1M 0.0.E.ZZ CL IN.01.00.001 C 77 di 189

9 **VERIFICHE**

9.1 **SOLETTA SUPERIORE**

Si riportano di seguito i valori di verifica.

Soletta Superiore	Mezzeria M11	Appoggio	Dir Seco	ondaria		
	max	M11 min	M22 max	M22 min	V13 max	V13 min
SLU / SLV	873	-1095	537	-330	1024	1058
SLE	568	-773	332	-226		

9.1.1 SS_110_Sezione Appoggio_dir_princ

DATI GENERALI SEZIONE GENERICA IN C.A. NOME SEZIONE: SS_IN_01_090_Sez_App

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze agli Stati Limite Ultimi Sezione generica di Trave N.T.C. Tipologia sezione: Normativa di riferimento:

Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali:

Moderat. aggressive Retta (asse neutro sempre parallelo all'asse X) Tipo di sollecitazione:

Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C32/40	
	Resis. compr. di progetto fcd:	188.00	daN/cm²
	Resis. compr. ridotta fcd':	94.00	daN/cm²
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	336428	daN/cm ²
	Resis. media a trazione fctm:	31.00	daN/cm ²
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Rare:	182.60	daN/cm²
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	4500.0	daN/cm²
	Resist. caratt. rottura ftk:	4500.0	daN/cm²
	Resist. snerv. di progetto fyd:	3913.0	daN/cm²
	Resist. ultima di progetto ftd:	3913.0	daN/cm²
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm²
	Diagramma tensione-deformaz.:	Bilineare finito	

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. SYSTRA S.A. PROGETTO ESECUTIVO CODIFICA DOCUMENTO REV. **PAGINA PROGETTO** LOTTO Relazione di calcolo IF1M 0.0.E.ZZ IN.01.00.001 С 78 di 189

> Coeff. Aderenza istantaneo ß1*ß2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50

Sf limite S.L.E. Comb. Rare: 3375.0 daN/cm²

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Dom Classe Conglom		Poligonale C32/40
N°vertice:	X [cm]	Y [cm]
1 2 3	-50.0 -50.0 50.0	-45.0 45.0 45.0
4	50.0	-45.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-43.6	-38.6	20
2	-43.6	38.6	20
3	43.6	38.6	20
4	43.6	-38.6	20
5	-43.6	33.6	24
6	43.6	33.6	24

DATI GENERAZIONI LINEARI DI BARRE

Numero assegnato alla singola generazione lineare di barre Numero della barra iniziale cui si riferisce la generazione N°Gen. N°Barra Ini. N°Barra Fin. Numero della barra finale cui si riferisce la generazione

Numero di barre generate equidistanti cui si riferisce la generazione N°Barre

Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	8	20
2	2	3	8	20
3	5	6	3	24

ARMATURE A TAGLIO

Diametro staffe: 12 mm Passo staffe: 20.0 cm

Indicazione Barre Longitudinali di risvolto per ogni staffa:

N°Staffa	Barra	Barra	Barra	Barra
1	1	2	3	4
2	8	16	21	13

Coordinate Barre generate di risvolto delle staffe:

N°Barra	X[cm]	Y[cm]
8	-24.2	-38.6
16	-24.2	38.6
21	24.2	38.6
13	24.2	-38.6

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO **CODIFICA DOCUMENTO** REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ CL IN.01.00.001 С 79 di 189

Mx Momento flettente [daNm] intorno all'asse X di riferimento delle coordinate

con verso positivo se tale da comprimere il lembo sup. della sez.

Vy Componente del Taglio [daN] parallela all'asse Y di riferimento delle coordinate

N°Comb. N Mx Vy 1 0 -109500 105800

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale in daN applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [daNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. N Mx My
1 0 -77300 0

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 5.2 cm Interferro netto minimo barre longitudinali: 2.8 cm Copriferro netto minimo staffe: 4.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [daN] nel baricentro sezione cls. (positivo se di compressione)
Mx Componente momento flettente assegnato [daNm] intorno all'asse X di riferimento delle coordinate

Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

 N°Comb
 Ver
 N
 Mx
 N Res
 Mx Res
 Mis.Sic.
 As Tesa

 1
 S
 0
 -109500
 0
 -162374
 1.48
 54.0(15.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec maxDeform. unit. massima del conglomerato a compressione x/d Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45

Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) Xc max Yc max Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) Deform. unit. minima nell'acciaio (negativa se di trazione) es min Xs min Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.) Ys min Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.) Deform. unit. massima nell'acciaio (positiva se di compress.) es max Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.) Xs max Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.) Ys max

N°Comb ec max x/d Xc max Yc max Xs min Ys min Ys max es min es max Xs max 0.00350 1 0.112 -50.0 -45.0 0.00110 -43.6-38.6-0.0278243.6 386

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, cCoeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.

x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb a b c x/d C.Rid.
1 0.00000000 -0.000374640 -0.013358812 0.112 0.700

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO **CODIFICA DOCUMENTO** REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ CL IN.01.00.001 С 80 di 189

VERIFICHE A TAGLIO

A.Eff

Diam. Staffe: 12 mm

Passo staffe: 20.0 cm [Passo massimo di normativa = 33.0 cm]

S = comb. verificata a taglio / N = comb. non verificata Ver Ved Taglio di progetto [daN] = Vy ortogonale all'asse neutro Vcd Taglio resistente ultimo [daN] lato conglomerato compresso

Vwd Taglio resistente [daN] assorbito dalle staffe

Altezza utile media pesata [cm] valutata lungo strisce ortog. all'asse neutro. Dmed Vengono prese nella media le strisce con almeno un estremo compresso. I pesi della media sono costituiti dalle stesse lunghezze delle strisce. Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro hw E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed. Ctg Cotangente dell'angolo di inclinazione dei puntoni di conglomerato Coefficiente maggiorativo della resistenza a taglio per compressione Acw Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m] Ast

Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m] Tra parentesi è indicata la quota dell'area relativa alle sole legature. L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proietta-

ta sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio. Ver Ved Vwd Dmed hw Ctg Acw Ast

N°Comb A Fff S 105800 243881 166487 836 100.0 2 500 1.000 1 14.4 22.6(0.0)

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

S = comb. verificata/ N = comb. non verificata

Sc max Massima tensione (positiva se di compressione) nel conglomerato [daN/cm²] Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Sf min Minima tensione (negativa se di trazione) nell'acciaio [daN/cm² Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Xs min, Ys min Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Ac eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure As eff.

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. 1 S 62.7 -50.0 -45.0 -2026 33 9 38.6 2100 54.0

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Esito della verifica

Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e1 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e2

k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

kt = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2] k2

= 3.400 Coeff. in eq.(7.11) come da annessi nazionali k3 k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali

Ø Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] e sm - e cm

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

Massima distanza tra le fessure [mm] sr max

Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi wk

Mx fess Componente momento di prima fessurazione intorno all'asse X [daNm] My fess. Componente momento di prima fessurazione intorno all'asse Y [daNm]

Comb Ver e2 k2 Ø Cf e1 My fess e sm - e cm sr max wk Mx fess 1 S -0.00113 0 0.500 21.5 54 0.00061 (0.00061) 0.198 (0.20) -55441 0 326

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO PROGETTO LOTTO CODIFICA DOCUMENTO REV. **PAGINA** Relazione di calcolo 0.0.E.ZZ IN.01.00.001 81 di 189

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 82 di 189

9.1.2 SS_110_Sezione Mezzeria_dir_princ

DATI GENERALI SEZIONE GENERICA IN C.A. NOME SEZIONE: SS_IN_01_090_Sez_Mezz

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze agli Stati Limite Ultimi Tipologia sezione: Sezione generica di Trave

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Moderat. aggressive

Tipo di sollecitazione: Retta (asse neutro sempre parallelo all'asse X)

Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C32/40	
	Resis. compr. di progetto fcd:	188.00	daN/cm ²
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	336428	daN/cm ²
	Resis. media a trazione fctm:	31.00	daN/cm ²
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Rare:	182.60	daN/cm ²
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	4500.0	daN/cm²
	Resist. caratt. rottura ftk:	4500.0	daN/cm ²
	Resist. snerv. di progetto fyd:	3913.0	daN/cm ²
	Resist. ultima di progetto ftd:	3913.0	daN/cm ²
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm ²
	Diagramma tensione-deformaz.:	Bilineare finito	
	Coeff. Aderenza istantaneo ß1*ß2:	1.00	
	Coeff. Aderenza differito ß1*ß2:	0.50	
	Sf limite S.L.E. Comb. Rare:	3375.0	daN/cm²

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Dom Classe Conglom	Poligonale C32/40	
N°vertice:	X [cm]	Y [cm]
1	-50.0	-45.0
2	-50.0	45.0
3	50.0	45.0
4	50.0	-45.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm
1	-43.6	-38.6	24
2	-43.6	38.6	20
3	43.6	38.6	20
4	43.6	-38.6	24

DATI GENERAZIONI LINEARI DI BARRE

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO **CODIFICA DOCUMENTO** REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ CL IN.01.00.001 С 83 di 189

 N°Gen.
 Numero assegnato alla singola generazione lineare di barre

 N°Barra Ini.
 Numero della barra iniziale cui si riferisce la generazione

 N°Barra Fin.
 Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	3	24
2	2	3	8	20
3	1	4	5	20

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale in daN applicato nel Baric. (+ se di compressione)
Mx Momento flettente [daNm] intorno all'asse X di riferimento delle coordinate
con verso positivo se tale da comprimere il lembo sup. della sez.

Vy Componente del Taglio [daN] parallela all'asse Y di riferimento delle coordinate

N°Comb. N Mx Vy 1 0 87300 0

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale in daN applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [daNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

 N° Comb.
 N
 Mx
 My

 1
 0
 56800
 0

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 5.2 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [daN] nel baricentro sezione cls. (positivo se di compressione)
Mx Componente momento flettente assegnato [daNm] intorno all'asse X di riferimento delle coordinate

Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

 N°Comb
 Ver
 N
 Mx
 N Res
 Mx Res
 Mis.Sic.
 As Tesa

 1
 S
 0
 87300
 0
 119535
 1.37
 38.3(15.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max

Zero Deform. unit. massima del conglomerato a compressione

Add Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45

Xc max

Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA-SOTECNI S.p.A. SYSTRA S.A. ROCKSOIL S.p.A. CODIFICA DOCUMENTO PROGETTO ESECUTIVO **PROGETTO** LOTTO REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ IN.01.00.001 С 84 di 189

					(, , ,				
es min		Deform. unit.	minima nell'ac	ciaio (negativa	a se di trazione))				
Xs min		Ascissa in ci	m della barra c	orrisp. a es mi	n (sistema rif. X	(,Y,O sez.)				
Ys min		Ordinata in cm della barra corrisp, a es min (sistema rif. X,Y,O sez.)								
es max		Deform. unit.	massima nell'a	acciaio (positiv	a se di compre	ss.)				
Xs max	(Ascissa in ci	m della barra c	orrisp. a es ma	ax (sistema rif.)	X,Ý,O sez.)				
Ys max	(Ordinata in c	m della barra c	orrisp. a es ma	ax (sistema rif.)	X,Y,O sez.)				
				·	`	,				
N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.091	-50.0	45.0	0.00055	-43.6	38.6	-0.03506	-43.6	-38.6

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

Yc max

1

S

49.7

Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. a b c Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 x/d

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb C.Rid. x/d 0.00000000 0.000461200 1 -0.017253983 0.091 0.700

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)

Ver S = comb. verificata/ N = comb. non verificata Massima tensione (positiva se di compressione) nel conglomerato [daN/cm²] Sc max Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Sf min Minima tensione (negativa se di trazione) nell'acciaio [daN/cm²] Xs min, Ys min Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Ac eff. As eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure N°Comb Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. Ver Sc max

-1945

29.1

-38.6

1600

38.3

-50.0 COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

45.0

Ver. e1 e2 k1 kt k2 k3 k4 Ø Cf e sm - e sr max wk Mx fess My fess		Esito della ve Massima def Minima defor = 0.8 per ba = 0.4 per cc = 0.5 per fles = 3.400 Coef = 0.425 Coef Diametro [mr Copriferro [mr Copriferro a tra parentes Massima disi Apertura fess Componente	erifica formazione u formazione u formazione u formazione u formazione u formazione formb. quasi p formb. quasi p formb. quasi p formb. quasi p formb. quasi formazi f	nitaria di trataria di di trataria di trat	razione r rzione ne rata [eq./ / = 0.6 p 1) per tra annessi annessi rre tese riferimen e di accia Smax / E m] sr max*(surazion	nel calcestruz (7.11)EC2] (7.11)EC2] er comb.frec azione eccer i nazionali i nazionali comprese no nto alla barra aio e calcest es [(7.9)EC (e_sm - e_cr e intorno all'	aso in cui la trazione minima del dizzo (trazione -) valutata in sezione zo (trazione -) valutata in sezione quenti [cfr. eq.(7.9)EC2] ntrica [eq.(7.13)EC2] ell'area efficace Ac eff [eq.(7.11)Ea più tesa ruzzo [(7.8)EC2 e (C4.1.7)NTC] 22 e (C4.1.8)NTC] m) [(7.8)EC2 e (C4.1.7)NTC]. Valdasse X [daNm] 'asse Y [daNm]	e fessura fessurata EC2]	ta	etm	
,	Ver	e1	e2	k2	Ø	Cf	e sm - e cm	sr max	wk	Mx fess	My fess
1	S	-0.00108	0	0.500	22.2	54	0.00058 (0.00058)	341	0.199 (0.20)	53046	0

APPALTATORE:			LIN	EA FEF	RROVIA	RIA NAPOI	LI - B	ARI
Mandataria:	<u>Mandante</u> :			TRATI	A NAPO	LI-CANCE	LLO	
SALINI IMPREGILO	S.p.A. ASTALI	OI S.p.A.	IN VARIA	NTF TRA	I E DK U+U	00 E PK 15+5	85 INC	IIISELE
PROGETTISTA:						MBITO DEGL	,	
Mandataria:	Mandante:				,	ERTITO IN LE		
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A	. ROCKSOIL S.p.A.	00.7.2		.,			,
PROGETTO ESECU	JTIVO		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcole	0		IF1M	0.0.E.ZZ	CL	IN.01.00.001	С	85 di 189

9.1.3 SS_110_Sezione_dir_secondaria

DATI GENERALI SEZIONE GENERICA IN C.A. NOME SEZIONE: SS_IN_01_090_M22

Descrizione Sezione:

Resistenze agli Stati Limite Ultimi Metodo di calcolo resistenza: Tipologia sezione: Sezione generica di Trave

Normativa di riferimento: N.T.C.

A Sforzo Norm. costante Percorso sollecitazione: Condizioni Ambientali:

Moderat. aggressive Retta (asse neutro sempre parallelo all'asse X) Assi x,y principali d'inerzia Tipo di sollecitazione:

Riferimento Sforzi assegnati: Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe: Resis. compr. di progetto fcd: Def.unit. max resistenza ec2: Def.unit. ultima ecu:	C32/40 188.00 0.0020 0.0035	daN/cm²
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	336428	daN/cm ²
	Resis. media a trazione fctm:	31.00	daN/cm ²
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Rare:	182.60	daN/cm²
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	4500.0	daN/cm ²
	Resist. caratt. rottura ftk:	4500.0	daN/cm ²
	Resist. snerv. di progetto fyd:	3913.0	daN/cm ²
	Resist. ultima di progetto ftd:	3913.0	daN/cm ²
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm ²
	Diagramma tensione-deformaz.:	Bilineare finito	
	Coeff. Aderenza istantaneo ß1*ß2:	1.00	
	Coeff. Aderenza differito ß1*ß2:	0.50	
	Sf limite S.L.E. Comb. Rare:	3375.0	daN/cm ²

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Don Classe Conglon		Poligonale C32/40
N°vertice:	X [cm]	Y [cm]
1 2 3	-50.0 -50.0 50.0	-45.0 45.0 45.0
4	50.0	-45.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-41.8	-36.8	20
2	-41.8	36.8	20
3	41.8	36.8	20
4	41.8	-36.8	20

DATI GENERAZIONI LINEARI DI BARRE

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO **CODIFICA DOCUMENTO** REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ IN.01.00.001 С 86 di 189

N°Gen. Numero assegnato alla singola generazione lineare di barre N°Barra Ini. Numero della barra iniziale cui si riferisce la generazione N°Barra Fin. Numero della barra finale cui si riferisce la generazione

Numero di barre generate equidistanti cui si riferisce la generazione N°Barre

Diametro in mm delle barre della generazione Ø

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	8	20
2	2	3	8	20

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N		Sforzo normale in daN ap	plicato nel Baric. (+ se di compressione)	
Mx		Momento flettente [daNm] intorno all'asse X di riferimento delle coordinate con verso positivo se tale da comprimere il lembo sup. della sez.		
Vy		Componente del Taglio [d	aN] parallela all'asse Y di riferimento delle coordinate	
N°Comb.	N	Mx	Vy	
1	0	-33000	0	
2	0	53700	0	

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale in daN applicato nel Baricentro (+ se di compressione)

Momento flettente [daNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb.	N	Mx	Му
1	0	-22600	0
2	0	33200	0

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 7.2 cm Interferro netto minimo barre longitudinali: 7.3 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

Ν Sforzo normale assegnato [daN] nel baricentro sezione cls. (positivo se di compressione)

Componente momento flettente assegnato [daNm] intorno all'asse X di riferimento delle coordinate Mx

Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb	Ver	N	Mx	N Res	Mx Res	Mis.Sic.	As Tesa
1	S	0	-33000	0	-96438		31.4(14.7)
2	S	0	53700	0	96438		31.4(14.7)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO **CODIFICA DOCUMENTO** REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ CL IN.01.00.001 С 87 di 189

x/d Xc max Yc max es min Xs min Ys min es max Xs max	Deform. unit. massima del conglomerato a compressione Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45 Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) Deform. unit. minima nell'acciaio (negativa se di trazione) Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.) Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.) Deform. unit. massima nell'acciaio (positiva se di compress.) Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.100	-50.0	-45.0	-0.00002	-41.8	-36.8	-0.03160	41.8	36.8
2	0.00350	0.100	-50.0	45.0	-0.00002	41.8	36.8	-0.03160	-418	-36.8

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45
O D:-I	O = # di didi

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	a	b	С	x/d	C.Rid.
1	0.000000000	-0.000429140	-0.015811312	0.100	0.700
2	0.000000000	0.000429140	-0.015811312	0.100	0.700

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Massima tensione (positiva se di compressione) nel conglomerato [daN/cm²] Sc max Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Sf min Minima tensione (negativa se di trazione) nell'acciaio [daN/cm²] Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Xs min, Ys min Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Ac eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure As eff.

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	22.5	-50.0	-45.0	-966	32.5	36.8	2049	31.4
2	S	33.1	-50.0	45.0	-1419	-4.6	-36.8	2049	31.4

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezio	ne vie	ene assun	ta sempre	fessurat	a ancl	he nel	caso	in cui l	a t	razione	minima	del	calcest	ruzzo s	ia inferi	ore a	fctm	

Ver.	Esito della verifica
V O1 .	Lotto dona formoa

Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e1 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e2

k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

= 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] k2 = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2]

k3 = 3.400 Coeff. in eq.(7.11) come da annessi nazionali k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali

Ø Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq. (7.11)EC2] Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] e sm - e cm

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

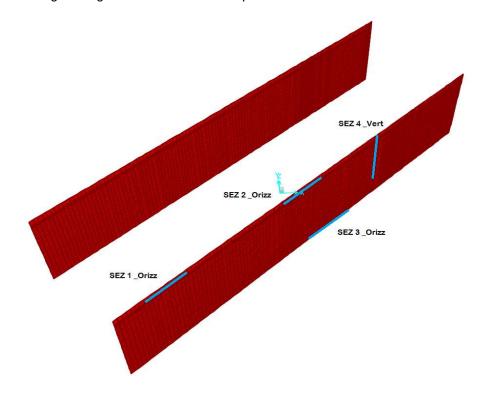
Massima distanza tra le fessure [mm] sr max

Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi wk

Mx fess. Componente momento di prima fessurazione intorno all'asse X [daNm] My fess. Componente momento di prima fessurazione intorno all'asse Y [daNm]

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO PROGETTO LOTTO CODIFICA DOCUMENTO REV. **PAGINA** Relazione di calcolo 0.0.E.ZZ IN.01.00.001 88 di 189

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm	sr max	wk	Mx fess	My fess
1	S	-0.00055	0	0.500	20.0	72	0.00029 (0.00029)	466	0.135 (0.20)	-50643	0
2	S	-0.00081	0	0.500	20.0	72	0.00043 (0.00043)	466	0.199 (0.20)	50643	0


APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI						
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO						
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE						
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI						
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014						
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.							
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA						
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 89 di 189						

9.2 PIEDRITTI PRINCIPALI SP 110

Si riportano di seguito i valori di verifica.

Piedritti sp 110								
SEZ_1	M11 max	M11 min	M22 max	M22 min	F22min	F22max	V23 max	V23 min
SLU / SLV	-	-	-925	-889	-337	-56	288	-
SLE	-	-	325	-622	-163	-129	-	-
SEZ_2	M11 max	M11 min	M22 max	M22 min	F22min	F22max	V23 max	V23 min
SLU / SLV	-	-	-871	-1094	-727	128	190	-
SLE	-	-	-263	-683	-564	-245	-	-
SEZ_3	M11 max	M11 min	M22 max	M22 min	F22min	F22max	V23 max	V23 min
SLU / SLV	-	-	401	-195	-1057	-376	762	-
SLE	-	-	261	139	-811	-431	-	-
SEZ_4	M11 max	M11 min	M22 max	M22 min	F22min	F22max	V23 max	V23 min
SLU / SLV	343	-374	-	-	-	-	978	927
SLE	-277	-273	-	-	-	-	-	-

Nella figura seguente sono indicate le posizioni delle sezioni di verifica.

APPALTATORE: Mandataria: Mandante: SALINI IMPREGILO S.p.A. PROGETTISTA:

ASTALDI S.p.A.

Mandataria:

SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.

PROGETTO ESECUTIVO Relazione di calcolo

LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

PROGETTO LOTTO CODIFICA DOCUMENTO REV. **PAGINA** 0.0.E.ZZ IN.01.00.001 С 90 di 189

Calcestruzzo

Calcost	· GEE	
Tipo	C32/40	
R _{ck}	40	N/mm²
f _{ck} Y _c	33.2	N/mm²
Yc	1.5	
α_{cc}	0.85	
α_{cc} f_{cd}	18.8	N/mm²

Acciaio

Acciaio		
f _{tk}	540	N/mm²
f _{yk} Y _s	450	N/mm²
Ys	1.15	
f_{yd}	391	N/mm²

		Piedritto 110				
Soll	ecitazioni	Sez 1	Sez 2	Sez 3	Sez 4	
V_{Ed}	kN	288	190	762	978	
N_{Ed}	₹ kN	0	0	0	0	

Armatura a taglio

Diametro	mm	12	12	12	12
Numero barre		2.5	2.5	2.5	2.5
A_{sw}	cm ²	2.83	2.83	2.83	2.83
Passo s	cm	40	40	20	20
Angolo α	0	90	90	90	90

Armatura longitudinale

Aimata	ra iorigicadinale				
n_1		10	10	10	5
\emptyset_1	mm	20	20	20	16
n ₂					5
\emptyset_2	mm				12
Asl	cm ²	31.42	31.42	31.42	15.71

Sezione

b _w	cm	100	100	100	100
Н	cm	110	110	110	110
С	₹ cm	7	7	7	7
d	cm	103	103	103	103
k	N/mm²	1.44	1.44	1.44	1.44
V _{min}	N/mm²	0.35	0.35	0.35	0.35
ρ		0.0031	0.0031	0.0031	0.0015
σср	N/mm²	0.00	0.00	0.00	0.00
α_{c}		1.00	1.00	1.00	1.00

Resistenza senza armatura a taglio

Resistenza senza armatura a tagno						
V_{Rd}	kN	385	385	385	359	

Resistenza con armatura a taglio

Inclinazion	ep °	21.8	21.8	21.8	21.8
V_{RSd}	kN	641	641	1282	1282
V_{RCd}	kN	3007	3007	3007	3007
V_{Rd}	kN	641	641	1282	1282
-	FS	2.2	3.4	1.7	1.3

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA-SOTECNI S.p.A. SYSTRA S.A. ROCKSOIL S.p.A. CODIFICA DOCUMENTO PROGETTO ESECUTIVO **PROGETTO** LOTTO REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ CL IN.01.00.001 С 91 di 189

9.2.1 PP_110_Sezione 1

DATI GENERALI SEZIONE GENERICA IN C.A. NOME SEZIONE: PP_IN_01_110_Sez_1

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze agli Stati Limite Ultimi

Tipologia sezione: Sezione generica di Trave di fondazione in combinazione sismica

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Moderat. aggressive

Tipo di sollecitazione: Retta (asse neutro sempre parallelo all'asse X)

Riferimento Sforzi assegnati: Assi x,y principali d'inerzia

Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

C32/40

Resis. compr. di progetto fcd: 188.00 daN/cm²
Def.unit. max resistenza ec2: 0.0020
Def.unit. ultima ecu: 0.0035
Diagramma tensione-deformaz.: Parabola-Rettangolo

Modulo Elastico Normale Ec:336428daN/cm²Resis. media a trazione fctm:31.00daN/cm²Coeff. Omogen. S.L.E.:15.00

Sc limite S.L.E. comb. Rare: 182.60 daN/cm²

ACCIAIO - Tipo: B450C

Resist. caratt. snervam. fyk: 4500.0 daN/cm² Resist, caratt, rottura ftk: 4500.0 daN/cm² Resist. snerv. di progetto fyd: 3913.0 daN/cm² Resist. ultima di progetto ftd: 3913.0 daN/cm² Deform. ultima di progetto Epu: 0.068 Modulo Elastico Ef 2000000 daN/cm²

Diagramma tensione-deformaz.:

Coeff. Aderenza istantaneo ß1*ß2:

Coeff. Aderenza differito ß1*ß2:

0.50

Diagramma tensione-deformaz.:

Bilineare finito

1.00

0.50

Sf limite S.L.E. Comb. Rare: 3375.0 daN/cm²

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Dominio: Classe Conglomerato:		
X [cm]	Y [cm]	
-50.0	-55.0	
-50.0	55.0	
50.0	55.0	
50.0	-55.0	
	omerato: X [cm] -50.0 -50.0 50.0	

DATI BARRE ISOLATE

 N° Barra X [cm] Y [cm] $Diam\emptyset$ [mm]

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	301 AL 3.L. 133/2314, 3011 E111113 IN LEGGE 134 / 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 92 di 189

1	-43.8	-48.8	20
2	-43.8	48.8	20
3	43.8	48.8	20
4	43.8	-48.8	20

DATI GENERAZIONI LINEARI DI BARRE

N°Gen. Numero assegnato alla singola generazione lineare di barre N°Barra Ini. Numero della barra iniziale cui si riferisce la generazione N°Barra Fin. Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	8	20
2	2	3	8	20

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx		Momento flettente [daNn	pplicato nel Baric. (+ se di compressione) n] intorno all'asse X di riferimento delle coordinate				
Vy			con verso positivo se tale da comprimere il lembo sup. della sez. Componente del Taglio [daN] parallela all'asse Y di riferimento delle coordinate				
N°Comb.	N	Mx	Vy				
1	33700	-92500	0				

			•
1	33700	-92500	0
2	5600	-92500	0
3	33700	-88900	0
4	5600	-88900	0

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale in daN applicato nel Baricentro (+ se di compressione) Mx

Momento flettente [daNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb.	N	Mx	Му
1	16300	32500	0
2	12900	32500	0
3	16300	-62200	0
4	12900	-62200	0

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

5.2 cm 7.7 cm Copriferro netto minimo barre longitudinali: Interferro netto minimo barre longitudinali:

APPALTATORE:

Mandataria:

SALINI IMPREGILO S.p.A.

PROGETTISTA:

LINEA FI
TRAT

LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.
PROGETTO ESECUTIVO

Mandataria:

PROGETTO ESECUTIVO

PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA

Relazione di calcolo

IF1M 0.0.E.ZZ CL IN.01.00.001 C 93 di 189

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [daN] nel baricentro sezione cls. (positivo se di compressione)
Mx Componente momento flettente assegnato [daNm] intorno all'asse X di riferimento delle coordinate

Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex § 7.2.6 NTC

N°Comb	Ver	N	Mx	N Res	Mx Res	Mis.Sic. As Tesa
1	S	33700	-92500	33683	-139929	1.51 31.4(22.0)
2	S	5600	-92500	5594	-126206	1.36 31.4(22.0)
3	S	33700	-88900	33683	-139929	1.57 31.4(22.0)
4	S	5600	-88900	5594	-126206	1.42 31.4(22.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.073	-50.0	-55.0	0.00065	-43.8	-48.8	-0.04424	43.8	48.8
2	0.00350	0.067	-50.0	-55.0	0.00037	-43.8	-48.8	-0.04896	43.8	48.8
3	0.00350	0.073	-50.0	-55.0	0.00065	-43.8	-48.8	-0.04424	43.8	48.8
4	0.00350	0.067	-50.0	-55.0	0.00037	-43.8	-48.8	-0.04896	43.8	48.8

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

0.000000000

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45
C.Rid.	Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	а	b	С	x/d	C.Rid.
1	0.000000000	-0.000459897	-0.021794344	0.073	0.700
2	0.00000000	-0.000505356	-0.024294590	0.067	0.700
3	0.000000000	-0.000459897	-0.021794344	0.073	0.700

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

-0.024294590

0.067

0.700

Ver S = comb. verificata/ N = comb. non verificata

-0.000505356

Sc max

Massima tensione (positiva se di compressione) nel conglomerato [daN/cm²]

Xc max, Yc max

Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)

Sf min

Minima tensione (negativa se di trazione) nell'acciaio [daN/cm²]

Xs min, Ys min

Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)

Ac eff.

Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	001 AE 5.E. 100/2014, 00117 E111110 III EE GGE 1047 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 94 di 189

As eff.		Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure											
N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.				
1 2	S S	22.8 22.7	-50.0 -50.0	55.0 55.0	-843 -890	34.1 34.1	-48.8 -48.8	1550 1550	31.4 31.4				
3	S	42.9	-50.0	-55.0	-1823	34.1	48.8	1550	31.4				
4	S	42.6	-50.0	-55.0	-1871	34.1	48.8	1550	31.4				
COMBINA	COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2] La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm												
Ver.			ione viene a ella verifica	ssunta sen	npre tessura	ta anche i	nel caso in o	cui la trazione	e minima del o	calcestruz	zo sia interiore a to	ctm	
e1				ione unitar	ia di trazione	e nel calce	estruzzo (tra	azione -) valu	tata in sezion	e fessurat	а		
e2									ta in sezione		u.		
k1			oer barre ad					,					
kt		= 0.4	per comb. q	uasi perma	nenti / = 0.6	per comb	.frequenti	[cfr. eq.(7.9)E	C21				
k2		= 0.5 p	er flessione	; =(e1 + e2	/(2*e1) per	trazione e	ccentrica [e	eq.(7.13)EC2]				
k3		= 3.400	Coeff. in e	q.(7.11) coi	ne da anne	ssi nazion	ali	,	-				
k4		= 0.425	= 0.425 Coeff. in eq.(7.11) come da annessi nazionali										
Ø		Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]											
Cf		Copriferro [mm] netto calcolato con riferimento alla barra più tesa											
e sm -	e sm - e cm Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]												
			rentesi: valo			/Es [(7.9	9)EC2 e (C4	4.1.8)NTC]					
sr max	K		na distanza										
wk									1.7)NTC]. Val	ore limite t	ra parentesi		
Mx fes			nente mom										
My fes	SS.	Compo	nente mom	ento di prim	na fessurazi	one intorn	o all'asse Y	[daNm]					
Comb.	Ver	e1	1	e2	k2 Ø	C1	f	е	sm - e cm	sr max	wk	Mx fess	My fess
1	S	-0.00046	3	0 0.	500 20.0	52		0.00025	(0.00025)	345	0.087 (0.20)	83689	0
	Š	-0.00048			500 20.0				(0.00027)	345	0.092 (0.20)	81756	0
2 3	Š	-0.00098			500 20.0				(0.00055)	345	0.188 (0.20)	-79391	Ö
4	S	-0.00101			500 20.0				6 (0.00056)	345	0.193 (0.20)	-78472	0
7	J	-0.00101	'	0 0.	20.0	, J <u>z</u>		0.00000	(0.0000)	J - -J	0.100 (0.20)	10412	U

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	,
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 95 di 189

9.2.2 PP_110_Sezione 2

DATI GENERALI SEZIONE GENERICA IN C.A. NOME SEZIONE: PP_IN_01_110_Sez_2

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze agli Stati Limite Ultimi

Tipologia sezione: Sezione generica di Trave di fondazione in combinazione sismica

Normativa di riferimento: N.T.C.

A Sforzo Norm. costante Percorso sollecitazione: Condizioni Ambientali:

Moderat. aggressive Retta (asse neutro sempre parallelo all'asse X) Tipo di sollecitazione:

Riferimento Sforzi assegnati: Assi x,y principali d'inerzia

Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe: Resis. compr. di progetto fcd: Def.unit. max resistenza ec2: Def.unit. ultima ecu:	C32/40 188.00 0.0020 0.0035	daN/cm²
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	336428	daN/cm²
	Resis. media a trazione fctm:	31.00	daN/cm²
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Rare:	182.60	daN/cm ²
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	4500.0	daN/cm ²
	Resist. caratt. rottura ftk:	4500.0	daN/cm ²
	Resist. snerv. di progetto fyd:	3913.0	daN/cm ²
	Resist. ultima di progetto ftd:	3913.0	daN/cm ²
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm ²
	Diagramma tensione-deformaz.:	Bilineare finito	
	Coeff. Aderenza istantaneo ß1*ß2:	1.00	
	Coeff. Aderenza differito ß1*ß2:	0.50	
	Sf limite S.L.E. Comb. Rare:	3375.0	daN/cm ²

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Dom Classe Conglom	Poligonale C32/40	
N°vertice:	X [cm]	Y [cm]
1	-50.0	-55.0
2	-50.0	55.0
3	50.0	55.0
4	50.0	-55.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-43.8	-48.8	20
2	-43.8	48.8	20
3	43.8	48.8	20
4	43.8	-48.8	20

DATI GENERAZIONI LINEARI DI BARRE

APPALTATORE: Mandataria: Mandante: SALINI IMPREGILO S.p.A. ASTALDI S.p.A. PROGETTISTA: Mandataria: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.

LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

PROGETTO LOTTO **CODIFICA DOCUMENTO** REV. **PAGINA** IF1M 0.0.E.ZZ IN.01.00.001 С 96 di 189

N°Gen. Numero assegnato alla singola generazione lineare di barre N°Barra Ini. Numero della barra iniziale cui si riferisce la generazione N°Barra Fin. Numero della barra finale cui si riferisce la generazione

Numero di barre generate equidistanti cui si riferisce la generazione N°Barre

Diametro in mm delle barre della generazione Ø

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	8	20
2	2	3	8	20

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx		Sforzo normale in daN applicato nel Baric. (+ se di compressione) Momento flettente [daNm] intorno all'asse X di riferimento delle coordinate con verso positivo se tale da comprimere il lembo sup. della sez.			
Vy		Componente del Taglio [daN] parallela all'asse Y di riferimento delle coordina			
N°Comb.	N	Mx	Vy		
1	72700	-87100	0		
2	-12800	-87100	0		
3	72700	-109400	0		
4	-12800	-109400	0		

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale in daN applicato nel Baricentro (+ se di compressione) Mx

Momento flettente [daNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb.	N	Mx	Му
1	56400	-26300	0
2	24500	-26300	0
3	56400	-68300	0
4	24500	-68300	0

RISULTATI DEL CALCOLO

PROGETTO ESECUTIVO

Relazione di calcolo

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 5.2 cm Interferro netto minimo barre longitudinali: 7.7 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

Sforzo normale assegnato [daN] nel baricentro sezione cls. (positivo se di compressione) Ν Componente momento flettente assegnato [daNm] intorno all'asse X di riferimento delle coordinate Mx

Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex § 7.2.6 NTC

N°Comb	Ver	N	Mx	N Res	Mx Res	Mis.Sic.	As Tesa
1	S	72700	-87100	72678	-158864		31.4(22.0)
2	S	-12800	-87100	-12805	-117190		31.4(22.0)

APPALTATORE:

Mandataria:

SALINI IMPREGILO S.p.A.

PROGETTISTA:

Mandante:

ASTALDI S.p.A.

PROGETTISTA:

Mandataria: Mandante

SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.

PROGETTO ESECUTIVO Relazione di calcolo LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

 PROGETTO
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 PAGINA

 IF1M
 0.0.E.ZZ
 CL
 IN.01.00.001
 C
 97 di 189

3	S	72700	-109400	72678	-158864	1.45	31.4(22.0)
4	S	-12800	-109400	-12805	-117190	1.07	31.4(22.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max x/d	Deform. unit. massima del conglomerato a compressione Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp, a es max (sistema rif, X.Y.O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.084	-50.0	-55.0	0.00101	-43.8	-48.8	-0.03825	43.8	48.8
2	0.00350	0.063	-50.0	-55.0	0.00017	-43.8	-48.8	-0.05222	43.8	48.8
3	0.00350	0.084	-50.0	-55.0	0.00101	-43.8	-48.8	-0.03825	43.8	48.8
4	0.00350	0.063	-50.0	-55.0	0.00017	-43.8	-48.8	-0.05222	43.8	48.8

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	а	b	С	x/d	C.Rid.
1	0.000000000	-0.000402178	-0.018619777	0.084	0.700
2	0.000000000	-0.000536803	-0.026024182	0.063	0.700
3	0.000000000	-0.000402178	-0.018619777	0.084	0.700
4	0.000000000	-0.000536803	-0.026024182	0.063	0.700

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max

Massima tensione (positiva se di compressione) nel conglomerato [daN/cm²]

Xc max, Yc max

Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)

Sf min

Minima tensione (negativa se di trazione) nell'acciaio [daN/cm²]

Xs min, Ys min

Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)

Ac eff.

Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre

Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	18.5	-50.0	-55.0	-206	34.1	48.8	1550	31.4
2	S	18.8	-50.0	-55.0	-532	34.1	48.8	1550	31.4
3	S	48.7	-50.0	-55.0	-1474	34.1	48.8	1550	31.4
4	S	47.5	-50.0	-55.0	-1908	34.1	48.8	1550	31.4

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

e1 Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata

k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

kt = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2]

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA DOCUMENTO REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ IN.01.00.001 С 98 di 189

k2		= 0.5 per fles	sione: =(e1	+ e2)/(2*e ²	1) per traz	ione eccentric	a [eq.(7.13)EC2]				
k3		= 3.400 Coef					- 1-1(-) - 1				
k4		= 0.425 Coef		,							
Ø				,			area efficace Ac eff [eg.(7.11)]	EC21			
Ċf						o alla barra pi		1			
	ı - e cm						zo [(7.8)EC2 e (C4.1.7)NTC]				
							(C4.1.8)NTC]				
sr m	ax	Massima dist				[(,202.0	(00)0]				
wk	un.					sm - e cm)[(7.8)EC2 e (C4.1.7)NTC]. Val	ore limite t	ra narentesi		
Mx f	222					intorno all'ass		010 1111110 1	a paromoor		
My f						intorno all'ass					
•											
Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm	sr max	wk	Mx fess	My f
1	S	-0.00012	0	0.500	20.0	52	0.00006 (0.00006)	345	0.021 (0.20)	-133135	
2	S	-0.00029	0	0.500	20.0	52	0.00016 (0.00016)	345	0.055 (0.20)	-92701	
3	Š	-0.00080	0	0.500	20.0	52	0.00044 (0.00044)	345	0.152 (0.20)	-90308	
	-	0.00000		0.500			0.00011 (0.00011)	0.15	0.102 (0.20)	04070	

20.0

52

0.500

0.00044 (0.00044) 0.00057 (0.00057)

345

0.197 (0.20)

-0.00080 -0.00103

S

fess 0

0

0

0

-81072

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	, and the second
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 99 di 189

9.2.3 PP_110_Sezione 3

DATI GENERALI SEZIONE GENERICA IN C.A. NOME SEZIONE: PP_IN_01_110_Sez_3

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze agli Stati Limite Ultimi

Tipologia sezione: Sezione generica di Trave di fondazione in combinazione sismica

Normativa di riferimento: N.T.0

Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Moderat. aggressive

Tipo di sollecitazione: Retta (asse neutro sempre parallelo all'asse X)

Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C32/40	
	Resis. compr. di progetto fcd:	188.00	daN/cm ²
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	336428	daN/cm ²
	Resis. media a trazione fctm:	31.00	daN/cm ²
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Rare:	182.60	daN/cm²
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	4500.0	daN/cm ²
	Resist. caratt. rottura ftk:	4500.0	daN/cm ²
	Resist. snerv. di progetto fyd:	3913.0	daN/cm ²
	Resist. ultima di progetto ftd:	3913.0	daN/cm ²
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm ²
	Diagramma tensione-deformaz.:	Bilineare finito	
	Coeff. Aderenza istantaneo ß1*ß2:	1.00	
	Coeff. Aderenza differito ß1*ß2:	0.50	
	Sf limite S.L.F. Comb. Rare:	3375 0	daN/cm ²

CARATTERISTICHE DOMINIO CONGLOMERATO

	ma del Domi sse Conglome		Poligonale C32/40
N°v	rertice:	X [cm]	Y [cm]
	1 2 3	-50.0 -50.0 50.0	-55.0 55.0 55.0
	4	50.0	-55.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-43.8	-48.8	20
2	-43.8	48.8	20
3	43.8	48.8	20
4	43.8	-48.8	20

DATI GENERAZIONI LINEARI DI BARRE

APPALTATORE: Mandataria: Mandante: SALINI IMPREGILO S.p.A. ASTALDI S.p.A. PROGETTISTA: Mandataria: SYSTRA-SOTECNI S.p.A. SYSTRA S.A. ROCKSOIL S.p.A.

LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

PROGETTO LOTTO **CODIFICA DOCUMENTO** REV. **PAGINA** IF1M 0.0.E.ZZ IN.01.00.001 С 100 di 189

N°Gen. Numero assegnato alla singola generazione lineare di barre N°Barra Ini. Numero della barra iniziale cui si riferisce la generazione N°Barra Fin. Numero della barra finale cui si riferisce la generazione

Numero di barre generate equidistanti cui si riferisce la generazione N°Barre

Diametro in mm delle barre della generazione Ø

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	8	20
2	2	3	8	20

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx		Sforzo normale in daN applicato nel Baric. (+ se di compressione) Momento flettente [daNm] intorno all'asse X di riferimento delle coordinate con verso positivo se tale da comprimere il lembo sup. della sez.			
Vy Componente del Taglio [daN] parallela all'asse Y di riferimento					
N°Comb.	N	Mx	Vy		
1	105700	40100	0		
2	37600	40100	0		
3	105700	-19500	0		
4	37600	-19500	0		

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale in daN applicato nel Baricentro (+ se di compressione)

Momento flettente [daNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb.	N	Mx	Му
1	81100	26100	0
2	43100	26100	0
3	81100	13900	0
4	43100	13900	0

RISULTATI DEL CALCOLO

PROGETTO ESECUTIVO

Relazione di calcolo

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 5.2 cm Interferro netto minimo barre longitudinali: 7.7 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

Sforzo normale assegnato [daN] nel baricentro sezione cls. (positivo se di compressione) Ν Componente momento flettente assegnato [daNm] intorno all'asse X di riferimento delle coordinate Mx

Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex § 7.2.6 NTC

N°Comb	Ver	N	Mx	N Res	Mx Res	Mis.Sic.	As Tesa
1	S	105700	40100	105679	174733		31.4(22.0)
2	S	37600	40100	37591	141836		31.4(22.0)

APPALTATORE: Mandataria: Mandante: SALINI IMPREGILO S.p.A. ASTALDI S.p.A. PROGETTISTA:

Mandataria:

LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

REV.

С

PAGINA

101 di 189

SYSTRA-SOTECNI S.p.A. SYSTRA S.A. ROCKSOIL S.p.A.

CODIFICA DOCUMENTO PROGETTO ESECUTIVO **PROGETTO** LOTTO Relazione di calcolo IF1M 0.0.E.ZZ CL IN.01.00.001

3	S	105700	-19500	105679	-174733	8.96	31.4(22.0)
4	S	37600	-19500	37591	-141836	7.27	31.4(22.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.094	-50.0	55.0	0.00128	-43.8	48.8	-0.03373	-43.8	-48.8
2	0.00350	0.074	-50.0	55.0	0.00069	-43.8	48.8	-0.04358	-43.8	-48.8
3	0.00350	0.094	-50.0	-55.0	0.00128	-43.8	-48.8	-0.03373	43.8	48.8
4	0.00350	0.074	-50.0	-55.0	0.00069	-43.8	-48.8	-0.04358	43.8	48.8

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45
C Rid	Coeff, di riduz, momenti per sola flessione in travi continue

C.Rid.

N°Comb	а	b	С	x/d	C.Rid.
1	0.000000000	0.000358629	-0.016224620	0.094	0.700
2	0.000000000	0.000453608	-0.021448426	0.074	0.700
3	0.000000000	-0.000358629	-0.016224620	0.094	0.700
4	0.000000000	-0.000453608	-0.021448426	0.074	0.700

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Massima tensione (positiva se di compressione) nel conglomerato [daN/cm²] Sc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Xc max, Yc max Sf min Minima tensione (negativa se di trazione) nell'acciaio [daN/cm²] Xs min, Ys min Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Ac eff. Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre As eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	18.5	-50.0	55.0	-76	34.1	-48.8	950	31.4
2	S	18.6	-50.0	55.0	-314	34.1	-48.8	1550	31.4
3	S	12.5	-50.0	55.0	26	34.1	-48.8		
4	S	9.9	-50.0	55.0	-41	34.1	-48.8	950	31.4

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e1 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e2

= 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2] k1

= 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2]

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI					
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO					
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE					
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI					
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014					
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	,					
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA					
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 102 di 189					

k2 k3 k4 Ø		= 3.400 Coeff = 0.425 Coeff	f. in eq.(7.11 f. in eq.(7.11) come da) come da	ca [eq.(7.13)EC2] 'area efficace Ac eff [eq.(7.11)[EC2]					
Cf		Copriferro [m	m] netto cal	colato con	riferimen	to alla barra p	più tesa				
e sm	- e cm	Tra parentesi	: valore min	imo = 0.6 S	Smax / Es		zzo [(7.8)EC2 e (C4.1.7)NTC] e (C4.1.8)NTC]				
sr max wk Mx fess. My fess.		Massima dista Apertura fess Componente Componente	sure in mm c momento di	alcolata = i prima fess	sr max*(e surazione	intorno all'as		ore limite to	ra parentesi		
Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm	sr max	wk	Mx fess	My fess
1	S	-0.00005	0	0.500	20.0	52	0.00002 (0.00002)	280	0.006 (0.20)	203644	0
2	S	-0.00017	0	0.500	20.0	52	0.00009 (0.00009)	345	0.032 (0.20)	113081	0
3	S	-0.00080	0						0.000 (0.20)	-90308	0
4	S	-0.00003	0	0.500	20.0	52	0.00001 (0.00001)	280	0.003 (0.20)	202912	0

9.2.4 PP_110_Sezione 4

DATI GENERALI SEZIONE GENERICA IN C.A. NOME SEZIONE: PP_IN_01_110_Sez_4

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze agli Stati Limite Ultimi

Tipologia sezione: Sezione generica di Trave di fondazione in combinazione sismica

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Moderat. aggressive

Tipo di sollecitazione: Retta (asse neutro sempre parallelo all'asse X)

Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

aN/cm²
aN/cm²
aN/cm²
aN/cm²
aN/cm²
aN/cm²
aN/cm²
aN/cm²
aN/cm²
al al al

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. SYSTRA S.A. PROGETTO ESECUTIVO LOTTO CODIFICA DOCUMENTO REV. **PAGINA PROGETTO** Relazione di calcolo IF1M 0.0.E.ZZ IN.01.00.001 С 103 di 189

> Diagramma tensione-deformaz.: Bilineare finito Coeff. Aderenza istantaneo ß1*ß2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50

Sf limite S.L.E. Comb. Rare: 3375.0 daN/cm²

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del D Classe Congl	Poligonale C32/40	
N°vertice:	X [cm]	Y [cm]
1	-50.0	-55.0
2	-50.0	55.0
3	50.0	55.0
4	50.0	-55.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-43.2	-48.2	16
2	-43.2	48.2	16
3	43.2	48.2	16
4	43.2	-48.2	16

DATI GENERAZIONI LINEARI DI BARRE

N°Gen. Numero assegnato alla singola generazione lineare di barre N°Barra Ini. Numero della barra iniziale cui si riferisce la generazione N°Barra Fin. Numero della barra finale cui si riferisce la generazione

Numero di barre generate equidistanti cui si riferisce la generazione N°Barre

Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	3	12
2	2	3	8	16

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx Vy		Sforzo normale in daN applicato nel Baric. (+ se di compressione) Momento flettente [daNm] intorno all'asse X di riferimento delle coordinate con verso positivo se tale da comprimere il lembo sup. della sez. Componente del Taglio [daN] parallela all'asse Y di riferimento delle coordinate				
N°Comb.	N	Mx	Vy			
1	0	-34300	0			
2	0	-37400	0			

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA-SOTECNI S.p.A. SYSTRA S.A. ROCKSOIL S.p.A. CODIFICA DOCUMENTO PROGETTO ESECUTIVO **PROGETTO** LOTTO REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ CL IN.01.00.001 С 104 di 189

N Sforzo normale in daN applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [daNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

 N°Comb.
 N
 Mx
 My

 1
 0
 -27700
 0

 2
 0
 -27300
 0

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.0 cm Interferro netto minimo barre longitudinali: 8.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [daN] nel baricentro sezione cls. (positivo se di compressione)
Mx Componente momento flettente assegnato [daNm] intorno all'asse X di riferimento delle coordinate

Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex § 7.2.6 NTC

N°Comb	Ver	N	Mx	N Res	Mx Res	Mis.Sic.	As Tesa
1	S	0	-34300	0	-79702	2.32	27.5(22.0)
2	S	0	-37400	0	-79702	2.13	27.5(22.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.056	-50.0	-55.0	-0.00062	-43.2	-48.2	-0.05899	43.2	48.2
2	0.00350	0.056	-50.0	-55.0	-0.00062	-43.2	-48.2	-0.05899	43.2	48.2

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45
0.00	

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	а	b	С	x/d	C.Rid.
1	0.000000000	-0.000605483	-0.029801571	0.056	0.700
2	0.000000000	-0.000605483	-0.029801571	0.056	0.700

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	, and the second
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 105 di 189

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

S = comb. verificata/ N = comb. non verificata Sc max Massima tensione (positiva se di compressione) nel conglomerato [daN/cm²] Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Minima tensione (negativa se di trazione) nell'acciaio [daN/cm²] Sf min Xs min, Ys min Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure Ac eff. As eff. N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff.

33.6 1698 20.1 S 25.1 -50.0 -55.0 -1434 48.2 2 S -55.0 -1413 48.2 20.1 24.7 -50.0 33.6 1698

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

0

0.500 16.0

0.500 16.0

S

S

2

-0.00078

-0.00077

nb. Ver	e1	e2	k2	Ø	Cf	e sm - e cm sr max	wk	Mx fess	My fess
My fess.	Componente	momento di p	rima fessı	urazione	intorno all'as	se Y [daNm]			
Mx fess.	Componente	momento di p	rima fessi	urazione	intorno all'as	se X [daNm]			
wk	Apertura fess	sure in mm ca	colata = s	r max*(e_	_sm - e_cm)	[(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parente	esi		
sr max		tanza tra le fes			-	, , -			
						e (C4.1.8)NTC]			
e sm - e cm						zzo [(7.8)EC2 e (C4.1.7)NTC]			
Cf		nm] netto calco							
Ø		,				area efficace Ac eff [eq.(7.11)EC2]			
k4		ff. in eq.(7.11)							
k3		ff. in eq.(7.11)				1-1(-) - 1			
k2						ca [eq.(7.13)EC2]			
kt						enti [cfr. eq.(7.9)EC2]			
k1	= 0.8 per ba	rre ad aderen	za migliora	ta [eq.(7	.11)EC2]	,			
e2	Minima defo	rmazione unita	ria di trazi	one nel c	calcestruzzo	(trazione -) valutata in sezione fessurata			
e1	Massima def	formazione un	taria di tra	zione ne	l calcestruzz	o (trazione -) valutata in sezione fessurata			
Ver.	Esito della ve	erifica	•						
	La sezione v	iene assunta s	sempre tes	surata a	nche nel cas	o in cui la trazione minima del calcestruzzo sia infe	riore a fr	ctm	

60

60

0.00043 (0.00043)

0.00042 (0.00042)

434

434

0.187 (0.20)

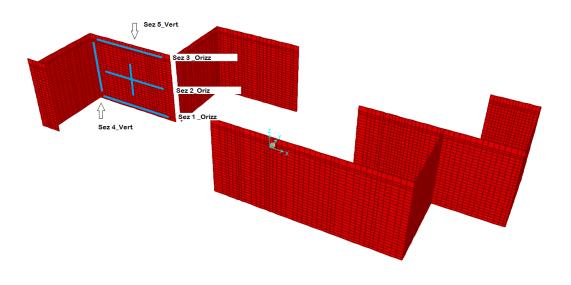
0.184 (0.20)

-68888

-68888

0

0


APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	,
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 106 di 189

9.3 PIEDRITTI SECONDARI SP 60

Si riportano di seguito i valori di verifica.

Piedritti sp 60								
SEZ_1	M11 max	M11 min	M22 max	M22 min	F22min	F22max	V23 max	V23 min
SLU / SLV	-	-	304	84	-380	-33	323	93
SLE	-	-	189	90	-325	-75		
SEZ_2	M11 max	M11 min	M22 max	M22 min	F22min	F22max	V23 max	V23 min
SLU / SLV	-	-	-29	-141	-454	-38	-	-
SLE	-	-	-31	-84	-304	-84	-	-
SEZ_3	M11 max	M11 min	M22 max	M22 min	F22min	F22max	V23 max	V23 min
SLU / SLV	-	-	246	27	-332	173	-38	-248
SLE	-	-	164	25	-225	-27		
SEZ_4	M11 max	M11 min	M22 max	M22 min	F22min	F22max	V23 max	V23 min
SLU / SLV	239	54	-	-	-	922	-	-
SLE	143	56	-	-	-	-	-	-
					Taglio	Vert		
SEZ_5	M11 max	M11 min	M22 max	M22 min	F22min	F22max	V23 max	V23 min
SLU / SLV	-22	-83	-	-	-	-	-	-
SLE	-19	-49	-	-	-	-	-	-

Nella figura seguente sono indicate le posizioni delle sezioni di verifica.

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. SYSTRA S.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA DOCUMENTO REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ IN.01.00.001 С 107 di 189

Calcestruzzo

Tipo	C32/40	
Tipo R _{ck}	40	N/mm²
f _{ck} Y _c	33.2	N/mm²
Yc	1.5	
α_{cc}	0.85	
$lpha_{cc}$ f_{cd}	18.8	N/mm²

Acciaio

71001010		
f _{tk}	540	N/mm²
f _{yk} Y _s	450	N/mm²
Ys	1.15	
f_{yd}	391	N/mm²

Sollecitazioni Piedritto 60 V_{Ed} kN N_{Ed} kN 323 N 0

Armatura a taglio

Diametro	mm	12
Numero barre	5	
A_{sw}	cm ²	5.65
Passo s	cm	40
Angolo a	0	90

Armatura longitudinale

n ₁		10
\emptyset_1	mm	16
n ₂		
\emptyset_2	mm	
Asl	cm ²	20.11

Sezione

b _w	cm	100
Н	cm	60
c .	cm	8
c d k	cm	52
k	N/mm ²	1.62
V_{min}	N/mm ²	0.42
ρ		0.0039
σср	N/mm ²	0.00
σ _{cp} α _c		1.00

Resistenza senza armatura a taglio V_{Rd} kN 237

Resistenza con armatura a taglio

Inclinazione p	0	21.8
V_{RSd}	kN	647
V_{RCd}	kN	1518
V_{Rd}	kN	647
	-c	2 0

APPALTATORE:			LIN	EA FEF	ROVIA	RIA NAPOI	LI - B	4RI
Mandataria:	Mandante:		TRATTA NAPOLI-CANCELLO					
SALINI IMPREGILO S.p.A.	. ASTALDIS.	p.A.	IN VADIA	NTE TDA	I E DK 0.0	00 E PK 15+5	95 INC	IIIQEIE
PROGETTISTA:						MBITO DEGL	,	
Mandataria: Mand	lante:				,	ERTITO IN LE		
SYSTRA S.A. SY	/STRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.						,
PROGETTO ESECUTIVO			PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo			IF1M	0.0.E.ZZ	CL	IN.01.00.001	С	108 di 189

9.3.1 PP_60_Sez 1

DATI GENERALI SEZIONE GENERICA IN C.A. NOME SEZIONE: PP_IN_01_60_Sez_1

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze agli Stati Limite Ultimi

Tipologia sezione: Sezione generica di Trave di fondazione in combinazione sismica

Normativa di riferimento: N.T.

Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Moderat. aggressive

Tipo di sollecitazione: Retta (asse neutro sempre parallelo all'asse X)

Riferimento Sforzi assegnati: Assi x,y principali d'inerzia

Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe: Resis. compr. di progetto fcd: Def.unit. max resistenza ec2: Def.unit. ultima ecu:	C32/40 188.00 0.0020 0.0035	daN/cm²
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	336428	daN/cm²
	Resis. media a trazione fctm:	31.00	daN/cm²
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Rare:	182.60	daN/cm²
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	4500.0	daN/cm ²
	Resist. caratt. rottura ftk:	4500.0	daN/cm ²
	Resist. snerv. di progetto fyd:	3913.0	daN/cm ²
	Resist. ultima di progetto ftd:	3913.0	daN/cm ²
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm ²
	Diagramma tensione-deformaz.:	Bilineare finito	
	Coeff. Aderenza istantaneo ß1*ß2:	1.00	
	Coeff. Aderenza differito ß1*ß2:	0.50	
	Sf limite S.L.E. Comb. Rare:	3375.0	daN/cm ²

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Don Classe Conglom	Poligonale C32/40	
N°vertice:	X [cm]	Y [cm]
1	-50.0	-30.0
2	-50.0	30.0
3	50.0	30.0
4	50.0	-30.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-44.0	-24.0	16
2	-44.0	24.0	16
3	44.0	24.0	16
4	44.0	-24.0	16

DATI GENERAZIONI LINEARI DI BARRE

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO **CODIFICA DOCUMENTO** REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ IN.01.00.001 С 109 di 189

N°Gen. Numero assegnato alla singola generazione lineare di barre N°Barra Ini. Numero della barra iniziale cui si riferisce la generazione N°Barra Fin. Numero della barra finale cui si riferisce la generazione

Numero di barre generate equidistanti cui si riferisce la generazione N°Barre

Diametro in mm delle barre della generazione Ø

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	8	16
2	2	3	8	16

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx Vv		Sforzo normale in daN applicato nel Baric. (+ se di compressione) Momento flettente [daNm] intorno all'asse X di riferimento delle coordinate con verso positivo se tale da comprimere il lembo sup. della sez. Componente del Taglio [daN] parallela all'asse Y di riferimento delle coordinate			
v y		Componente del Taglio [d	ary paralicia all'asse i di memberito delle coordinate		
N°Comb.	N	Mx	Vy		
1	38000	30400	0		
2	3300	30400	0		
3	38000	8400	0		
4	3300	8400	0		

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale in daN applicato nel Baricentro (+ se di compressione) Mx

Momento flettente [daNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb.	N	Mx	Му
1	32500	18900	0
2	7500	18900	0
3	32500	9000	0
4	7500	9000	0

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 5.2 cm Interferro netto minimo barre longitudinali: 8.2 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

Sforzo normale assegnato [daN] nel baricentro sezione cls. (positivo se di compressione) Ν Componente momento flettente assegnato [daNm] intorno all'asse X di riferimento delle coordinate Mx

Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex § 7.2.6 NTC

N°Comb	Ver	N	Mx	N Res	Mx Res	Mis.Sic.	As Tesa
1	S	38000	30400	37995	50158	1.65	20.1(12.0)
2	S	3300	30400	3314	41718	1.37	20.1(12.0)

APPALTATORE:

Mandataria:

SALINI IMPREGILO S.p.A.

PROGETTISTA:

Mandante:

ASTALDI S.p.A.

Mandataria:

LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.

PROGETTO ESECUTIVO PROGET

Relazione di calcolo IF1M

PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA IF1M 0.0.E.ZZ CL IN.01.00.001 C 110 di 189

3	S	38000	8400	37995	50158	5.97	20.1(12.0)
4	S	3300	8400	3314	41718	4.97	20.1(12.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max x/d Xc max	Deform. unit. massima del conglomerato a compressione Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45 Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
	1
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp, a es max (sistema rif, X.Y.O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.124	-50.0	30.0	0.00037	-44.0	24.0	-0.02470	-44.0	-24.0
2	0.00350	0.107	-50.0	30.0	-0.00014	-44.0	24.0	-0.02926	-44.0	-24.0
3	0.00350	0.124	-50.0	30.0	0.00037	-44.0	24.0	-0.02470	-44.0	-24.0
4	0.00350	0.107	-50.0	30.0	-0 00014	-44 0	24 0	-0.02926	-44 0	-24.0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	a	b	С	x/d	C.Rid.
1	0.000000000	0.000522152	-0.012164551	0.124	0.700
2	0.000000000	0.000606664	-0.014699907	0.107	0.700
3	0.000000000	0.000522152	-0.012164551	0.124	0.700
4	0.000000000	0.000606664	-0.014699907	0.107	0.700

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max

Massima tensione (positiva se di compressione) nel conglomerato [daN/cm²]

Xc max, Yc max

Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)

Sf min

Minima tensione (negativa se di trazione) nell'acciaio [daN/cm²]

Xs min, Ys min

Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)

Ac eff.

Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre

As eff.

Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	46.4	-50.0	30.0	-1183	34.2	-24.0	1350	20.1
2	S	45.2	-50.0	30.0	-1738	34.2	-24.0	1500	20.1
3	S	21.6	-50.0	30.0	-259	34.2	-24.0	1000	20.1
4	S	21.8	-50.0	30.0	-737	34.2	-24.0	1450	20.1

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

e1 Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata

k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

kt = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2]

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA DOCUMENTO REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ IN.01.00.001 С 111 di 189

k2 k3 k4 Ø Cf e sm sr ma wk Mx fe My fe	ess.	= 3.400 Coeff = 0.425 Coeff Diametro [mr Copriferro [mr Differenza tra Tra parentesi Massima dista	f. in eq.(7.11 f. in eq.(7.11 n] equivalen m] netto calc le deforma: valore mini anza tra le fi ure in mm c momento di) come da) come da te delle bar colato con zioni medie mo = 0.6 S essure [mn alcolata = : prima fess	annessi annessi rre tese o riferimen e di accia Smax / Es n] sr max*(e surazione	nazionali nazionali comprese nell to alla barra p io e calcestru s [(7.9)EC2 e_sm - e_cm) e intorno all'as	zzo [(7.8)EC2 e (C4.1.7)NTC] e (C4.1.8)NTC] [(7.8)EC2 e (C4.1.7)NTC]. Val sse X [daNm]	•	ra parentesi		
Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm	sr max	wk	Mx fess	My fess
1 2 3 4	\$ \$ \$ \$	-0.00070 -0.00100 -0.00016 -0.00043	0 0 0	0.500 0.500 0.500 0.500	16.0 16.0 16.0 16.0	52 52 52 52	0.00035 (0.00035) 0.00052 (0.00052) 0.00008 (0.00008) 0.00022 (0.00022)	359 380 312 373	0.128 (0.20) 0.198 (0.20) 0.024 (0.20) 0.082 (0.20)	27274 23188 36465 24394	0 0 0 0

APPALTATORE:		LIN	EA FEF	RROVIA	RIA NAPOL	_I - B <i>i</i>	ARI
	<u>landante:</u> ASTALDI S.p.A.		TRATI	A NAPO	LI-CANCE	LLO	
SALINI IMPREGILO S.p.A.	IN VARIA	NTF TRA	I F PK 0±0	00 E PK 15+58	85 INC	LUSELE	
PROGETTISTA:					MBITO DEGL	,	
Mandataria: Mandante:				,	ERTITO IN LE		
SYSTRA S.A. SYSTRA-SOTEC	NI S.p.A. ROCKSOIL S.p.A.			- ,			
PROGETTO ESECUTIVO		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo		IF1M	0.0.E.ZZ	CL	IN.01.00.001	С	112 di 189

9.3.2 PP_60_Sez 2

DATI GENERALI SEZIONE GENERICA IN C.A. NOME SEZIONE: PP_IN_01_60_Sez_2

Descrizione Sezione:

Resistenze agli Stati Limite Ultimi Metodo di calcolo resistenza:

Tipologia sezione: Sezione generica di Trave di fondazione in combinazione sismica

Normativa di riferimento:

A Sforzo Norm. costante Percorso sollecitazione: Condizioni Ambientali:

Moderat. aggressive Retta (asse neutro sempre parallelo all'asse X) Assi x,y principali d'inerzia Tipo di sollecitazione:

Riferimento Sforzi assegnati:

Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe: Resis. compr. di progetto fcd: Def.unit. max resistenza ec2: Def.unit. ultima ecu:	C32/40 188.00 0.0020 0.0035	daN/cm²
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	336428	daN/cm²
	Resis. media a trazione fctm:	31.00	daN/cm²
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Rare:	182.60	daN/cm ²
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	4500.0	daN/cm ²
	Resist. caratt. rottura ftk:	4500.0	daN/cm ²
	Resist. snerv. di progetto fyd:	3913.0	daN/cm ²
	Resist. ultima di progetto ftd:	3913.0	daN/cm ²
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm ²
	Diagramma tensione-deformaz.:	Bilineare finito	
	Coeff. Aderenza istantaneo ß1*ß2:	1.00	
	Coeff. Aderenza differito ß1*ß2:	0.50	
	Sf limite S.L.E. Comb. Rare:	3375.0	daN/cm ²

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Dom Classe Conglom	Poligonale C32/40	
N°vertice:	X [cm]	Y [cm]
1	-50.0	-30.0
2	-50.0	30.0
3	50.0	30.0
4	50.0	-30.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-44.0	-24.0	16
2	-44.0	24.0	16
3	44.0	24.0	16
4	44.0	-24.0	16

DATI GENERAZIONI LINEARI DI BARRE

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA-SOTECNI S.p.A. SYSTRA S.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO **CODIFICA DOCUMENTO** REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ IN.01.00.001 С 113 di 189

 N°Gen.
 Numero assegnato alla singola generazione lineare di barre

 N°Barra Ini.
 Numero della barra iniziale cui si riferisce la generazione

 N°Barra Fin.
 Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	8	16
2	2	3	8	16

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx			plicato nel Baric. (+ se di compressione) ⊢intorno all'asse X di riferimento delle coordinate
Vy		da comprimere il lembo sup. della sez. aN] parallela all'asse Y di riferimento delle coordinate	
N°Comb.	N	Mx	Vy
1	45400	-2900	0
2	3800	-2900	0
3	45400	-14100	0
4	3800	-14100	0

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale in daN applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [daNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb.	N	Mx	Му
1	30400	-3100	0
2	8400	-3100	0
3	30400	-8400	0
4	8400	-8400	0

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 5.2 cm Interferro netto minimo barre longitudinali: 8.2 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [daN] nel baricentro sezione cls. (positivo se di compressione)
Mx Componente momento flettente assegnato [daNm] intorno all'asse X di riferimento delle coordinate

Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex § 7.2.6 NTC

N°Comb	Ver	N	Mx	N Res	Mx Res	Mis.Sic.	As Tesa
1	S	45400	-2900	45405	-51946		20.1(12.0)
2	S	3800	-2900	3819	-41841		20.1(12.0)

APPALTATORE:

Mandataria:

SALINI IMPREGILO S.p.A.

PROGETTISTA:

Mandante:

ASTALDI S.p.A.

Mandataria:

LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.

PROGETTO ESECUTIVO PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA

Relazione di calcolo IF1M 0.0.E.ZZ CL IN.01.00.001 C 114 di 189

3	S	45400	-14100	45405	-51946	3.68	20.1(12.0)
4	S	3800	-14100	3819	-41841	2.97	20.1(12.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max x/d	Deform. unit. massima del conglomerato a compressione Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp, a es max (sistema rif, X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.128	-50.0	-30.0	0.00047	-44.0	-24.0	-0.02381	44.0	24.0
2	0.00350	0.107	-50.0	-30.0	-0.00013	-44.0	-24.0	-0.02919	44.0	24.0
3	0.00350	0.128	-50.0	-30.0	0.00047	-44.0	-24.0	-0.02381	44.0	24.0
4	0.00350	0.107	-50.0	-30.0	-0.00013	-44.0	-24.0	-0.02919	44.0	24.0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45
C.Rid.	Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	а	b	С	x/d	C.Rid.
1	0.000000000	-0.000505817	-0.011674505	0.128	0.700
2	0.000000000	-0.000605437	-0.014663096	0.107	0.700
3	0.000000000	-0.000505817	-0.011674505	0.128	0.700
4	0.00000000	0.000005427	0.044663006	0.407	0.700

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max

Massima tensione (positiva se di compressione) nel conglomerato [daN/cm²]

Xc max, Yc max

Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)

Sf min

Minima tensione (negativa se di trazione) nell'acciaio [daN/cm²]

Xs min, Ys min

Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)

Ac eff.

Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre

As eff.

Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	8.9	-50.0	-30.0	17	34.2	24.0		
2	S	7.6	-50.0	-30.0	-134	34.2	24.0	1150	20.1
3	S	20.2	-50.0	-30.0	-241	34.2	24.0	1000	20.1
4	S	20.5	-50.0	-30.0	-657	34.2	24.0	1450	20.1

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

e1 Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata

k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

kt = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2]

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	, , , , , , , , , , , , , , , , , , , ,
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 115 di 189

k2 k3 k4		= 3.400 Coeff	= 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2] = 3.400 Coeff. in eq.(7.11) come da annessi nazionali = 0.425 Coeff. in eq.(7.11) come da annessi nazionali								
Ø							ll'area efficace Ac eff [eq.(7.11)]	EC2]			
Cf		Copriferro [m									
e sm	n - e cm						uzzo [(7.8)EC2 e (C4.1.7)NTC]				
						s [(7.9)EC2	e (C4.1.8)NTC]				
sr ma	ax	Massima dist	anza tra le f	essure [mr	n]						
wk		Apertura fess	ure in mm c	alcolata =	sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Val	ore limite t	ra parentesi		
Mx fe	ess.	Componente	momento di	prima fess	surazione	e intorno all'a	sse X [daNm]				
My fe	ess.	Componente	momento di	prima fess	surazione	e intorno all'a	sse Y [daNm]				
Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm	sr max	wk	Mx fess	My fess
1	S	-0.00070	0						0.000 (0.20)	27274	0
2	S	-0.00008	0	0.500	16.0	52	0.00004 (0.00004)	332	0.013 (0.20)	-31419	0
3	S	-0.00015	0	0.500	16.0	52	0.00007 (0.00007)	312	0.023 (0.20)	-36516	0
4	S	-0.00038	0	0.500	16.0	52	0.00020 (0.00020)	373	0.073 (0.20)	-24888	0

9.3.3 PP_60_Sez 3

DATI GENERALI SEZIONE GENERICA IN C.A. NOME SEZIONE: PP_IN_01_60_Sez_3

Descrizione Sezione:

Metodo di calcolo resistenza:

Resistenze agli Stati Limite Ultimi Sezione generica di Trave di fondazione in combinazione sismica Tipologia sezione:

Normativa di riferimento:

A Sforzo Norm. costante Moderat. aggressive Percorso sollecitazione: Condizioni Ambientali:

Tipo di sollecitazione: Retta (asse neutro sempre parallelo all'asse X)

Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe: Resis. compr. di progetto fcd: Def.unit. max resistenza ec2: Def.unit. ultima ecu:	C32/40 188.00 0.0020 0.0035	daN/cm²
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	336428	daN/cm²
	Resis. media a trazione fctm:	31.00	daN/cm ²
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Rare:	182.60	daN/cm²
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	4500.0	daN/cm²
	Resist. caratt. rottura ftk:	4500.0	daN/cm²
	Resist. snerv. di progetto fyd:	3913.0	daN/cm²
	Resist. ultima di progetto ftd:	3913.0	daN/cm ²
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm²
	Diagramma tensione-deformaz.:	Bilineare finito	
	Coeff. Aderenza istantaneo ß1*ß2:	1.00	
	Coeff. Aderenza differito ß1*ß2:	0.50	
	Sf limite S.L.E. Comb. Rare:	3375.0	daN/cm²

CARATTERISTICHE DOMINIO CONGLOMERATO

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 ROCKSOIL S.p.A. SYSTRA S.A. SYSTRA-SOTECNI S.p.A. PROGETTO ESECUTIVO PROGETTO LOTTO CODIFICA DOCUMENTO REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ CL IN.01.00.001 С 116 di 189

Forma del Don Classe Conglom	Poligonale C32/40	
N°vertice:	X [cm]	Y [cm]
1	-50.0	-30.0
2	-50.0	30.0
3	50.0	30.0
4	50.0	-30 0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-44.0	-24.0	16
2	-44.0	24.0	16
3	44.0	24.0	16
4	44.0	-24.0	16

DATI GENERAZIONI LINEARI DI BARRE

 N°Gen.
 Numero assegnato alla singola generazione lineare di barre

 N°Barra Ini.
 Numero della barra iniziale cui si riferisce la generazione

 N°Barra Fin.
 Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	8	16
2	2	3	8	16

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx Vy		Sforzo normale in daN applicato nel Baric. (+ se di compressione) Momento flettente [daNm] intorno all'asse X di riferimento delle coordinate con verso positivo se tale da comprimere il lembo sup. della sez. Componente del Taglio [daN] parallela all'asse Y di riferimento delle coordinate			
N°Comb.	N	Mx	Vy		
1	33200	24600	0		
2	-17300	24600	0		
3	33200	2700	0		

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

2700

N	Sforzo normale in dan applicato nel Baricentro (+ se di compressione)
Mar	Managata flattanta [daNina] interna alliana V di riferimanta (tra narantasi Mara Fanara

Mx Momento flettente [daNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

0

N°Comb.	N	Mx	Му
1	22500	16400	0
2	2700	16400	0
3	22500	2500	0
4	2700	2500	0

APPALTATORE:

LINEA FERROVIARIA NAPOLI - BARI
TRATTA NAPOLI-CANCELLO

SALINI IMPREGILO S.p.A. ASTALDI S.p.A.

PROGETTISTA:

Mandataria: Mandante

SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.

PROOFITO FORGUITIVO

PROGETTO ESECUTIVO PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo IF1M 0.0.E.ZZ CL IN.01.00.001 C 117 di 189

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE

OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI

CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 5.2 cm Interferro netto minimo barre longitudinali: 8.2 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [daN] nel baricentro sezione cls. (positivo se di compressione)
Mx Componente momento flettente assegnato [daNm] intorno all'asse X di riferimento delle coordinate

Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex § 7.2.6 NTC

N°Comb	Ver	N	Mx	N Res	Mx Res	Mis.Sic.	As Tesa
1	S	33200	24600	33209	48998	1.99	20.1(12.0)
2	S	-17300	24600	-17298	36668	1.49	20.1(12.0)
3	S	33200	2700	33209	48998	18.15	20.1(12.0)
4	S	-17300	2700	-17298	36668	13.58	20.1(12.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.121	-50.0	30.0	0.00030	-44.0	24.0	-0.02532	-44.0	-24.0
2	0.00350	0.098	-50.0	30.0	-0.00047	-44.0	24.0	-0.03224	-44.0	-24.0
3	0.00350	0.121	-50.0	30.0	0.00030	-44.0	24.0	-0.02532	-44.0	-24.0
4	0.00350	0.098	-50.0	30.0	-0.00047	-44.0	24.0	-0.03224	-44.0	-24.0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45
O D:-I	O - # di dd d. fl is to di sontino

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	a	b	С	x/d	C.Rid.
1	0.000000000	0.000533655	-0.012509654	0.121	0.700
2	0.000000000	0.000661880	-0.016356401	0.098	0.700
3	0.000000000	0.000533655	-0.012509654	0.121	0.700
4	0.000000000	0.000661880	-0.016356401	0.098	0.700

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max Massima tensione (positiva se di compressione) nel conglomerato [daN/cm²]

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA-SOTECNI S.p.A. SYSTRA S.A. ROCKSOIL S.p.A. CODIFICA DOCUMENTO PROGETTO ESECUTIVO **PROGETTO** LOTTO REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ IN.01.00.001 С 118 di 189

Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)

Xs mi Ac eff As eff	n, Ys mi f.	n	Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure						
N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	40.2	-50.0	30.0	-1147	34.2	-24.0	1400	20.1
2	S	38.8	-50.0	30.0	-1598	34.2	-24.0	1500	20.1
3	S	6.9	-50.0	30.0	9	34.2	-24.0	0	0.0
4	S	6.1	-50.0	30.0	-191	34.2	-24 0	1400	20.1

CO

COMBINA	AZIONI RA	ARE IN ESERCIZ	IO - APERT	URA FES	SURE [§	7.3.4 EC2]					
sr ma wk		Esito della ve Massima defr Minima defor = 0.8 per ba = 0.4 per cc = 0.5 per fles = 3.400 Coef = 0.425 Coef Diametro [mr Copriferro [mr Differenza tra Tra parentes Massima dist Apertura fess	erifica ormazione u mazione uni rre ad adere omb. quasi p sione; = (e1 ff. in eq.(7.11 n] equivalen im] netto cal it valore min tanza tra le f sure in mm c	nitaria di tra taria di tra nza miglior ermanenti + e2)/(2*e') come da) come da te delle ba colato con zioni medie imo = 0.6 s essure [mr alcolata =	razione nel rata [eq.(; / = 0.6 pe l) per traz annessi annessi rre tese conferimen e di accia 6max / Es n] sr max*(e	el calcestruzzo calcestruzzo (2.7.11)EC2] er comb.frequi cione eccentri nazionali nazionali nazionali bomprese nel to alla barra io e calcestrus [(7.9)EC2] e_sm - e_cm	uzzo [(7.8)EC2 e (C4.1.7)NTC] e (C4.1.8)NTC]) [(7.8)EC2 e (C4.1.7)NTC]. Va	ne fessurata fessurata EC2]	1	tm	
Mx fe My fe							sse X [daNm] sse Y [daNm]				
Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm	sr max	wk	Mx fess	My fess
1 2	S S	-0.00067 -0.00092	0 0	0.500 0.500	16.0 16.0	52 52	0.00034 (0.00034) 0.00048 (0.00048)		0.126 (0.20) 0.182 (0.20)	26067 22593	0 0

0

0

9.3.4 PP_60_Sez 4

S

S

3

Xc max, Yc max

DATI GENERALI SEZIONE GENERICA IN C.A. NOME SEZIONE: PP_IN_01_60_Sez_4

0.00000

-0.00011

Descrizione Sezione:

Resistenze agli Stati Limite Ultimi Metodo di calcolo resistenza:

0

0.500

0.500

16.0

16.0

52

52

0.00048 (0.00048)

0.00006 (0.00006)

0

366

0.001 (0.20)

0.021 (0.20)

910773

25133

Tipologia sezione: Sezione generica di Trave di fondazione in combinazione sismica

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Moderat. aggressive

Tipo di sollecitazione: Retta (asse neutro sempre parallelo all'asse X)

Riferimento Sforzi assegnati: Assi x, v principali d'inerzia Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO LOTTO CODIFICA DOCUMENTO REV. **PAGINA PROGETTO** Relazione di calcolo IF1M 0.0.E.ZZ IN.01.00.001 С 119 di 189

CALCESTRUZZO -	Classe: Resis. compr. di progetto fcd: Def.unit. max resistenza ec2: Def.unit. ultima ecu: Diagramma tensione-deformaz.:	C32/40 188.00 0.0020 0.0035 Parabola-Rettangolo	daN/cm²
	Modulo Elastico Normale Ec:	336428	daN/cm²
	Resis. media a trazione fctm:	31.00	daN/cm ²
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Rare:	182.60	daN/cm²
ACCIAIO -	Tipo: Resist. caratt. snervam. fyk: Resist. caratt. rottura ftk: Resist. snerv. di progetto fyd: Resist. ultima di progetto ftd: Deform. ultima di progetto Epu:	B450C 4500.0 4500.0 3913.0 0.068	daN/cm² daN/cm² daN/cm² daN/cm²
	Modulo Elastico Ef Diagramma tensione-deformaz.: Coeff. Aderenza istantaneo ß1*ß2: Coeff. Aderenza differito ß1*ß2:	2000000 Bilineare finito 1.00 0.50	daN/cm²
	Sf limite S.L.E. Comb. Rare:	3375.0	daN/cm²

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Dom Classe Conglom		Poligonale C32/40
N°vertice:	X [cm]	Y [cm]
1 2 3 4	-50.0 -50.0 50.0 50.0	-30.0 30.0 30.0 -30.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-42.6	-22.6	16
2	-42.6	22.6	12
3	42.6	22.6	12
4	42.6	-22.6	16

DATI GENERAZIONI LINEARI DI BARRE

 N°Gen.
 Numero assegnato alla singola generazione lineare di barre

 N°Barra Ini.
 Numero della barra iniziale cui si riferisce la generazione

 N°Barra Fin.
 Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	8	16
2	2	3	3	12

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale in daN applicato nel Baric. (+ se di compressione)
Mx Momento flettente [daNm] intorno all'asse X di riferimento delle coordinate

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA-SOTECNI S.p.A. SYSTRA S.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO **CODIFICA DOCUMENTO** REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ IN.01.00.001 С 120 di 189

con verso positivo se tale da comprimere il lembo sup. della sez.

Componente del Taglio [daN] parallela all'asse Y di riferimento delle coordinate

 N°Comb.
 N
 Mx
 Vy

 1
 0
 23900
 0

 2
 0
 5400
 0

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale in daN applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [daNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

 N°Comb.
 N
 Mx
 My

 1
 0
 14300
 0

 2
 0
 5600
 0

RISULTATI DEL CALCOLO

Vy

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.6 cm Interferro netto minimo barre longitudinali: 7.9 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [daN] nel baricentro sezione cls. (positivo se di compressione)
Mx Componente momento flettente assegnato [daNm] intorno all'asse X di riferimento delle coordinate

Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex § 7.2.6 NTC

N°Comb	Ver	N	Mx	N Res	Mx Res	Mis.Sic.	As Tesa
1	S	0	23900	0	39978	1.67	25.8(12.0)
2	S	0	5400	0	39978	7.40	25.8(12.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.111	-50.0	30.0	-0.00092	-42.6	22.6	-0.02795	-42.6	-22.6
2	0.00350	0.111	-50.0	30.0	-0.00092	-42.6	22.6	-0.02795	-42.6	-22.6

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO **CODIFICA DOCUMENTO** REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ CL IN.01.00.001 С 121 di 189

x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

 N°Comb
 a
 b
 c
 x/d
 C.Rid.

 1
 0.000000000
 0.000597815
 -0.014434446
 0.111
 0.700

 2
 0.00000000
 0.000597815
 -0.014434446
 0.111
 0.700

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max

Massima tensione (positiva se di compressione) nel conglomerato [daN/cm²]

Xc max, Yc max

Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)

Minima tensione (negativa se di trazione) nell'acciaio [daN/cm²]

Xs min, Ys min

Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)

Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre

As eff.

Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb Xc max Yc max Ver Sc max Sf min Xs min Ys min Ac eff As eff S 38.7 -50.0 30.0 -1495 33.1 -22.6 1500 20.1 2 15 1 -50.0 30.0 -586 33 1 -22 6 1500 20 1

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

e1 Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata

k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

kt = 0.4 per comb. quasi permanenti /= 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] k2 = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2]

k3 = 3.400 Coeff. in eq.(7.11) come da annessi nazionali k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali

Ø Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

e sm - e cm Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

sr max Massima distanza tra le fessure [mm]

wk Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi

Mx fess. Componente momento di prima fessurazione intorno all'asse X [daNm] My fess. Componente momento di prima fessurazione intorno all'asse Y [daNm]

Comb. Ver e1 e2 k2 Mx fess My fess e sm - e cm sr max wk S -0.00089 0 0.500 16.0 66 0.00045 (0.00045) 427 0.192 (0.20) 21141 0 2 S -0.00035 0.500 0.00018 (0.00018) 427 0.075 (0.20) 21141 0 16.0 66

9.3.5 PP_60_Sez 5

DATI GENERALI SEZIONE GENERICA IN C.A. NOME SEZIONE: PP_IN_01_60_Sez_5

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze agli Stati Limite Ultimi

Tipologia sezione: Sezione generica di Trave di fondazione in combinazione sismica

Normativa di riferimento: N.T.C.

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 ROCKSOIL S.p.A. SYSTRA S.A. SYSTRA-SOTECNI S.p.A. PROGETTO ESECUTIVO LOTTO CODIFICA DOCUMENTO REV. **PAGINA PROGETTO** Relazione di calcolo IF1M 0.0.E.ZZ CL IN.01.00.001 С 122 di 189

Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Moderat. aggressive

Tipo di sollecitazione: Retta (asse neutro sempre parallelo all'asse X)

Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C32/40	
	Resis. compr. di progetto fcd:	188.00	daN/cm ²
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	336428	daN/cm ²
	Resis. media a trazione fctm:	31.00	daN/cm ²
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Rare:	182.60	daN/cm²
4001410		D4500	
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	4500.0	daN/cm²
	Resist. caratt. rottura ftk:	4500.0	daN/cm²
	Resist. snerv. di progetto fyd:	3913.0	daN/cm ²
	Resist. ultima di progetto ftd:	3913.0	daN/cm ²
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm ²
	Diagramma tensione-deformaz.:	Bilineare finito	
	Coeff. Aderenza istantaneo ß1*ß2:	1.00	
	Coeff. Aderenza differito ß1*ß2:	0.50	
	Sf limite S.L.E. Comb. Rare:	3375.0	daN/cm ²

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Dom Classe Conglom		Poligonale C32/40
N°vertice:	X [cm]	Y [cm]
1 2 3 4	-50.0 -50.0 50.0 50.0	-30.0 30.0 30.0 -30.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-42.6	-22.6	12
2	-42.6	22.6	16
3	42.6	22.6	16
4	42.6	-22.6	12

DATI GENERAZIONI LINEARI DI BARRE

 N°Gen.
 Numero assegnato alla singola generazione lineare di barre

 N°Barra Ini.
 Numero della barra iniziale cui si riferisce la generazione

 N°Barra Fin.
 Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	3	12

APPALTATORE:			LIN	EA FE	ROVIA	RIA NAPOI	LI - B	ARI
Mandataria: SALINI IMPREGILO S.	Mandante: p.A. ASTALDIS	.p.A.			_	LI-CANCE	_	
PROGETTISTA: Mandataria: SYSTRA S.A.	Mandante: SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	OPERE A	CCESSOF	RIE, NELL'A	00 E PK 15+56 MBITO DEGL ERTITO IN LE	.I INTEF	RVENTI DI
PROGETTO ESECUTI Relazione di calcolo	vo		PROGETTO IF1M	LOTTO 0.0.E.ZZ	CODIFICA CL	DOCUMENTO IN.01.00.001	REV.	PAGINA 123 di 189

2 2 3 3 16

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx Vy		Sforzo normale in daN applicato nel Baric. (+ se di compressione) Momento flettente [daNm] intorno all'asse X di riferimento delle coordinate con verso positivo se tale da comprimere il lembo sup. della sez. Componente del Taglio [daN] parallela all'asse Y di riferimento delle coordinate		
N°Comb.	N	Mx	Vy	
1	0	-2200	0	
2	0	-8300	0	

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx	Sforzo normale in daN applicato nel Baricentro (+ se di compressione) Momento flettente [daNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione con verso positivo se tale da comprimere il lembo superiore della sezione				
N°Comb	con verso positivo se tale da	comprimere il lembo superiori	e della sezione		

N°Comb.	N	Mx	Му
1	0	-1900	0
2	0	-4900	0

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.6 cm Interferro netto minimo barre longitudinali: 19.7 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

 Ver
 S = combinazione verificata / N = combin. non verificata

 N
 Sforzo normale assegnato [daN] nel baricentro sezione cls. (positivo se di compressione)

 Mx
 Componente momento flettente assegnato [daNm] intorno all'asse X di riferimento delle coordinate

Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex § 7.2.6 NTC

N°Comb	Ver	N	Mx	N Res	Mx Res	Mis.Sic.	As Tesa
1	S	0	-2200	0	-21287	9.68	15.7(12.0)
2	S		-8300	0	-21287	2.56	15.7(12.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max x/d Xc max Yc max es min Xs min Ys min es max	Deform. unit. massima del conglomerato a compressione Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45 Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) Deform. unit. minima nell'acciaio (negativa se di trazione) Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.) Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.) Deform. unit. massima nell'acciaio (positiva se di compress.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max Ys max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.) Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb ec max x/d Xc max Yc max es min Xs min Ys min es max Xs max Ys max

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO **CODIFICA DOCUMENTO** REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ CL IN.01.00.001 С 124 di 189

1	0.00350	0.077	-50.0	-30.0	-0.00293	-42.6	-22.6	-0.04222	42.6	22.6
2	0.00350	0.077	-50.0	-30.0	-0.00293	-42.6	-22.6	-0.04222	42.6	22.6

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45
O D: 1	

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	а	b	С	x/d	C.Rid.
1	0.000000000	-0.000869290	-0.022578694	0.077	0.700
2	0.000000000	-0.000869290	-0.022578694	0.077	0.700

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata
Sc max Massima tensione (positiva se di compressione) nel conglomerato [daN/cm²]

Vo may Vo may (cistome rif V V O)

Xc max, Yc max
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Sf min
Minima tensione (negativa se di trazione) nell'acciaio [daN/cm²]
Xs min, Ys min
Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)
Ac eff.
Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
As eff.
Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	6.8	-50.0	-30.0	-387	21.3	22.6	1549	10.1
2	S	17.5	-50.0	-30.0	-999	21.3	22.6	1549	10.1

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

e1 Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata

k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

kt = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] k2 = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2]

k3 = 3.400 Coeff. in eq.(7.11) come da annessi nazionali k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali

Ø Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]
Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

e sm - e cm Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

sr max Massima distanza tra le fessure [mm]

wk Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi

Mx fess. Componente momento di prima fessurazione intorno all'asse X [daNm]
My fess. Componente momento di prima fessurazione intorno all'asse Y [daNm]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm	sr max	wk	Mx fess	My fess
1	S	-0.00023	0	0.500	16.0	66	0.00012 (0.00012)	644	0.075 (0.20)	-19999	0
2	S	-0.00059	0	0.500	16.0	66	0.00030 (0.00030)	644	0.193 (0.20)	-19999	0

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	·
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 125 di 189

9.4 FONDAZIONI

Si riportano di seguito i valori di verifica.

Fondazione	Dir Principale		Dir Secondaria	
	M11 max	M11 min	M22 max	M22 min
SLU / SLV	646	-428	-187	-387
SLE	456	-328	-154	-263

9.4.1 FF_Sez 1_Dir principale

DATI GENERALI SEZIONE GENERICA IN C.A. NOME SEZIONE: FF_IN_01__Sez_1

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze agli Stati Limite Ultimi

Tipologia sezione: Sezione generica di Trave di fondazione in combinazione sismica

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Moderat. aggressive

Tipo di sollecitazione: Retta (asse neutro sempre parallelo all'asse X)

Riferimento Sforzi assegnati:

Riferimento alla sismicità:

Assi x,y principali d'inerzia
Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C32/40	
	Resis. compr. di progetto fcd:	188.00	daN/cm ²
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	336428	daN/cm ²
	Resis. media a trazione fctm:	31.00	daN/cm ²
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Rare:	182.60	daN/cm²
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	4500.0	daN/cm ²
	Resist. caratt. rottura ftk:	4500.0	daN/cm ²
	Resist. snerv. di progetto fyd:	3913.0	daN/cm ²
	Resist. ultima di progetto ftd:	3913.0	daN/cm ²
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm ²
	Diagramma tensione-deformaz.:	Bilineare finito	
	Coeff. Aderenza istantaneo ß1*ß2:	1.00	
	Coeff. Aderenza differito ß1*ß2:	0.50	
	Sf limite S.L.E. Comb. Rare:	3375.0	daN/cm ²

CARATTERISTICHE DOMINIO CONGLOMERATO

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 ROCKSOIL S.p.A. SYSTRA S.A. SYSTRA-SOTECNI S.p.A. PROGETTO ESECUTIVO LOTTO CODIFICA DOCUMENTO REV. **PAGINA PROGETTO** Relazione di calcolo IF1M 0.0.E.ZZ IN.01.00.001 С 126 di 189

Forma del Dom Classe Conglom	Poligonale C32/40	
N°vertice:	X [cm]	Y [cm]
1	-50.0	-60.0
2	-50.0	60.0
3	50.0	60.0
4	50.0	-60.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-43.8	-53.8	20
2	-43.8	53.8	20
3	43.8	53.8	20
4	43.8	-53.8	20

DATI GENERAZIONI LINEARI DI BARRE

 N°Gen.
 Numero assegnato alla singola generazione lineare di barre

 N°Barra Ini.
 Numero della barra iniziale cui si riferisce la generazione

 N°Barra Fin.
 Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	8	20
2	2	3	8	20

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx Vy		Sforzo normale in daN applicato nel Baric. (+ se di compressione) Momento flettente [daNm] intorno all'asse X di riferimento delle coordinate con verso positivo se tale da comprimere il lembo sup. della sez. Componente del Taglio [daN] parallela all'asse Y di riferimento delle coordinate		
N°Comb.	N	Mx	Vy	
1	0	64600	0	
2	0	-42800	0	

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale in daN applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [daNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb.	N	Mx	Му
1	0	45600	0
2	0	-32800	0

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

APPALTATORE:

Mandataria:
SALINI IMPREGILO S.p.A.

LINEA FERROVIARIA NAPOLI - BARI
TRATTA NAPOLI-CANCELLO

PROGETTISTA:

Mandataria: Mandante

SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.

PROGETTO ESECUTIVO

PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA

Relazione di calcolo

IF1M 0.0.E.ZZ CL IN.01.00.001 C 127 di 189

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE

OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI

CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

Copriferro netto minimo barre longitudinali: 5.2 cm Interferro netto minimo barre longitudinali: 7.7 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [daN] nel baricentro sezione cls. (positivo se di compressione)
Mx Componente momento flettente assegnato [daNm] intorno all'asse X di riferimento delle coordinate

Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex § 7.2.6 NTC

N°Comb	Ver	N	Mx	N Res	Mx Res	Mis.Sic.	As Tesa
1	S	0	64600	0	135761	2.10	31.4(24.0)
2	S	0	-42800	0	-135761	3.17	31.4(24.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.060	-50.0	60.0	0.00031	-43.8	53.8	-0.05505	-43.8	-53.8
2	0.00350	0.060	-50.0	-60.0	0.00031	-43.8	-53.8	-0.05505	43.8	53.8

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45
O D: 1	

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	a	b	С	x/d	C.Rid.
1	0.000000000	0.000514494	-0.027369650	0.060	0.700
2	0.000000000	-0 000514494	-0.027369650	0.060	0.700

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max

Massima tensione (positiva se di compressione) nel conglomerato [daN/cm²]

Xc max, Yc max

Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)

Sf min

Minima tensione (negativa se di trazione) nell'acciaio [daN/cm²]

Xs min, Ys min

Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)

Ac eff.

Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre

As eff.

Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
								1550 1550	

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO **CODIFICA DOCUMENTO** REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ CL IN.01.00.001 С 128 di 189

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm Ver. Esito della verifica Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e1 e2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2] kt = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] k2 = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2] = 3.400 Coeff. in eq.(7.11) come da annessi nazionali k3 k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2] Ø Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] e sm - e cm Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC] Massima distanza tra le fessure [mm] sr max Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi wk Mx fess Componente momento di prima fessurazione intorno all'asse X [daNm] Componente momento di prima fessurazione intorno all'asse Y [daNm] My fess. Comb Ver e2 k2 Ø Cf e sm - e cm sr max Mx fess My fess -0.00073 0.500 20.0 0.00041 (0.00041) 345 0.142 (0.20) 88494 0.00030 (0.00030) 2 S -0.00053 0 0.500 20.0 52 345 0.102 (0.20) -88494 0

9.4.2 FF_Sez 2_ Dir Secondaria (su pali tra muri PP 60)

DATI GENERALI SEZIONE GENERICA IN C.A. NOME SEZIONE: FF_IN_01__Sez_2

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze agli Stati Limite Ultimi

Tipologia sezione: Sezione generica di Trave di fondazione in combinazione sismica

Normativa di riferimento: N.T.C

Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Moderat. aggressive

Tipo di sollecitazione: Retta (asse neutro sempre parallelo all'asse X)

Riferimento Sforzi assegnati: Assi x,y principali d'inerzia
Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C32/40	
	Resis. compr. di progetto fcd:	188.00	daN/cm ²
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	336428	daN/cm ²
	Resis. media a trazione fctm:	31.00	daN/cm ²
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Rare:	182.60	daN/cm²
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	4500.0	daN/cm ²
	Resist. caratt. rottura ftk:	4500.0	daN/cm ²
	Resist. snerv. di progetto fyd:	3913.0	daN/cm ²
	Resist. ultima di progetto ftd:	3913.0	daN/cm²

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. SYSTRA S.A. PROGETTO ESECUTIVO CODIFICA DOCUMENTO REV. **PAGINA PROGETTO** LOTTO Relazione di calcolo IF1M 0.0.E.ZZ CL IN.01.00.001 С 129 di 189

> Deform. ultima di progetto Epu: 0.068 Modulo Elastico Ef 2000000 daN/cm² Diagramma tensione-deformaz.: Bilineare finito Coeff. Aderenza istantaneo ß1*ß2: 1.00 Coeff. Aderenza differito \$1*\$2: 0.50 Sf limite S.L.E. Comb. Rare: 3375.0 daN/cm²

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Don Classe Conglom		Poligonale C32/40
N°vertice:	X [cm]	Y [cm]
1	-50.0	-60.0
2	-50.0	60.0
3	50.0	60.0
4	50.0	-60.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-41.8	-51.8	20
2	-41.8	51.8	20
3	41.8	51.8	20
4	41.8	-51.8	20

DATI GENERAZIONI LINEARI DI BARRE

N°Gen. Numero assegnato alla singola generazione lineare di barre N°Barra Ini. Numero della barra iniziale cui si riferisce la generazione N°Barra Fin. Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Diametro in mm delle barre della generazione Ø

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	3	20
2	2	3	8	20

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx Vy		Sforzo normale in daN applicato nel Baric. (+ se di compression Momento flettente [daNm] intorno all'asse X di riferimento delle o con verso positivo se tale da comprimere il lembo sup. della sez Componente del Taglio [daN] parallela all'asse Y di riferimento d				
N°Comb.	N	Mx	Vy			
1 2	0 0	-18700 -38700	0 0			

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale in daN applicato nel Baricentro (+ se di compressione) Mx

Momento flettente [daNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

APPALTATORE:

Mandataria:
SALINI IMPREGILO S.p.A.

PROGETTISTA:

Mandataria:
SYSTRA S.A.

Mandante:
SYSTRA S.A.

MANDANTE TRA LE PK 0+0000 E PK 15+585, INCLUSE LE

OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI

CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

N°Comb.	N	Mx	Му
1	0	-15400	0
2	0	-26300	0

RISULTATI DEL CALCOLO

PROGETTO ESECUTIVO

Relazione di calcolo

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 7.2 cm Interferro netto minimo barre longitudinali: 7.3 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [daN] nel baricentro sezione cls. (positivo se di compressione)
Mx Componente momento flettente assegnato [daNm] intorno all'asse X di riferimento delle coordinate

Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex § 7.2.6 NTC

N°Comb	Ver	N	Mx	N Res	Mx Res	Mis.Sic.	As Tesa
1 2	S S	0	-18700 -38700	0	-133314 -133314	7.13 3.44	31.4(24.0) 31.4(24.0)

PROGETTO

IF1M

LOTTO

0.0.E.ZZ

CODIFICA

DOCUMENTO

IN.01.00.001

REV.

С

PAGINA

130 di 189

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

IN COILID	ec max	λ/u	AC IIIAA	I C IIIax	69 111111	V9 111111	1311111	69 IIIax	V9 IIIax	13 IIIax
1	0.00350	0.073	-50.0	-60.0	-0.00003	-41.8	-51.8	-0.04460	41.8	51.8
2	0.00350	0.073	-50.0	-60.0	-0.00003	-41.8	-51.8	-0.04460	41.8	51.8

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45
O D: 1	

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	а	b	С	x/d	C.Rid.
1	0.00000000	-0.000430262	-0.022315725	0.073	0.700
2	0.00000000	-0.000430262	-0.022315725	0.073	0.700

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max

Massima tensione (positiva se di compressione) nel conglomerato [daN/cm²]

Xc max, Yc max

Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)

Sf min

Minima tensione (negativa se di trazione) nell'acciaio [daN/cm²]

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA Relazione di calcolo 0.0.E.ZZ IN.01.00.001 131 di 189

Xs min, Ys min Ac eff. As eff.			Area di c	alcestruzzo	[cm²] in zon	a tesa co	nsiderata a	istema rif. X,` derente alle b l'apertura de	arre
N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1 2	S S	10.0 17.0	-50.0 -50.0	-60.0 -60.0	-476 -813	32.5 32.5	51.8 51.8	2049 2049	31.4 31.4

CC

2	S	17.0	-50.0 -60	0.0	-813	32.5	51.8	2049	31.4				
COMBINA	AZIONI RA	ARE IN ESERCIZ	ZIO - APER	TURA FES	SURE [§ 7.3.4 EC	2]						
Ver. e1 e2 k1 kt k2 k3 k4 Ø Cf e sm sr ma wk Mx fe	ess.	Esito della v Massima de Minima defc = 0.8 per bc = 0.4 per cc = 0.5 per fle = 3.400 Coc = 0.425 Coc Diametro [m Copriferro [r Differenza tı Tra parenta Massima dia Apertura fes Component	verifica ver	unitaria di tra itaria di tra enza miglio permanenti + e2)/(2** 1) come da 1)	razione i zione ne rata [eq. / = 0.6 p 1) per tra a anness a ranness a re tese riferime e di acci Smax / E m] sr max*i surrazion	nel calceste (7.11)EC2 er comb.fi azione ecci i nazionali i nazionali comprese nto alla ba aio e calces [(7.9)I (e_sm - e_ne intorno al	truzzo (trazi izzo (trazi izentrica [e e nell'area e nell'area e nell'area e nell'area e nell'area e nell'area e nell'area e nell'area e nell'area e nell'area irra più tes estruzzo [(EC2 e (C4 cm) [(7.8 all'asse X	(7.8)EC2 e (C4.1.7 I.1.8)NTC])EC2 e (C4.1.7)NT [daNm]	sezione ezione .(7.11))NTC]	ne fessurata fessurata EC2]	1	etm	
Comb.	Ver	e1	e2	k2	Ø	Cf		e sm	- e cm	sr max	wk	Mx fess	My fess
1 2	S S	-0.00026 -0.00045	0	0.500 0.500	20.0 20.0	72 72		0.00014 (0.0 0.00024 (0.0	,		0.067 (0.20) 0.114 (0.20)	-85508 -85508	0

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI								
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO								
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE								
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI								
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014								
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	001 AE 5.E. 100/2014, 00117 ETT 11110 IN EE GGE 104 / 2014								
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA								
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 132 di 189								

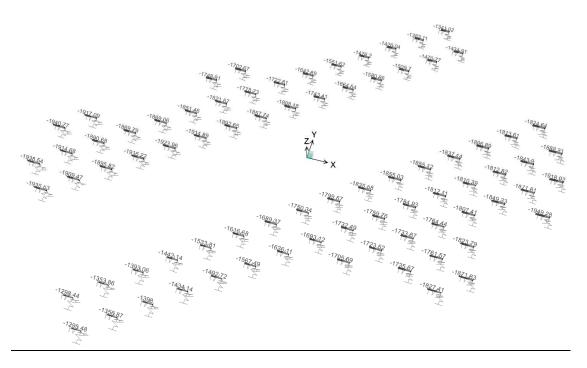
9.4.3 Verifica punzonamento

Come illustrato nel paragrafo relativo alla verifica dei pali di fondazione, ilmassimo sforzo normale agente sui pali stessi è pari a circa 2100 kN.

Si riporta pertanto la verifica a punzonamento.

```
*** VERIFICA A PUNZONAMENTO ***
unità di misura:
  lunghezze : [cm] - forze : [daN]
momenti : [daNcm] - tensioni : [daN/cm2]
  pesi specifici: [daN/cm3] - angoli : [gradi]
              : [cm2]
  armature
| DATI DEI MATERIALI:
| Rck | gammac | nu | fyk | gammaf | fy,lim | fy,eff | | 300.0 | 1.500 | 0.5402 | 4500.0 | 1.150 | 3913.0 | 3913.0 |
| DATI SOLETTA:
| H | deff | base | altezza | rox | roy | ro | | 120.000 | 114.000 | 80.000 | 80.000 | 0.0030 | 0.0030 |
| CARICHI DI PROGETTO:
0.0 |-210000.0 | 0.0 | 0.0 |
VERIFICA SENZA ARMATURE A TAGLIO:
| DATI PRIMO PERIMETRO:
| K | u0 | uc | Aq | W1x | W1y | betax | betay | beta | | 1.4190 | 251.327 | 1683.894 | 0.0 | 0.0 | 0.0 | 0.0000 | 0.0000 | 1.0000 |
| SOLLECITAZIONE:
Nd*beta (=Veff) | Veff-Aq*qd (=Veff') |
-210000.0 | -210000.0
| RESISTENZA:
TAUrdc | Vrdc | Vrdc>Veff' | TAUrmax | Vrmax | Vrmax>Veff |
2.952 | 566677.0 | SI | 44.840 | 1284723.0 | SI |
```

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI									
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO									
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE									
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI									
Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014									
PROGETTO ESECUTIVO Relazione di calcolo	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA IF1M 0.0.E.ZZ CL IN.01.00.001 C 133 di 189									


9.5 PALI

Si riportano di seguito le verifiche strutturali e geotecniche relative ai pali diFondazione.

I pali hanno diametro pari a 800m e lunghezza di 25.00m; l'armatura è costituita da 26f22 con spirale f12/20.

La quota di testa palo di progetto è pari +20.00m slm (quota p.c. +23.70).

Di seguito si riportano i valori delle sollecitazioni desunte dal modello di calcolo.

Sforzo Normale _ENV_SLU/SISMA - kN

Mandataria: Mandante:

SALINI IMPREGILO S.p.A. ASTALDI S.p.A.

PROGETTISTA:

Mandataria: Mandante

SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.

PROGETTO ESECUTIVO
Relazione di calcolo

LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

 PROGETTO
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 PAGINA

 IF1M
 0.0.E.ZZ
 CL
 IN.01.00.001
 C
 134 di 189

	: Joint Reactions	C	C4 =	Ed	F-2	F-2	8.64	8.00	8.60		5
Joint	OutputCase	CaseType	StepType	F1	F2	F3	M1	M2	M3	Ved	Ne
Γext	Text	Text	Text	KN	KN	KN	KN-m	KN-m	KN-m	KN	K
13	ENV_SLE	Combination	Max	-65	175	1356	0	0	0	186	13
13	ENV_SLE	Combination	Min	-176	59	1044	0	0	0	185	10
14	ENV_SLE	Combination	Max	-50	173	1351	0	0	0	180	13
14	ENV_SLE	Combination	Min	-154	58	1013	0	0	0	165	10
15	ENV_SLE	Combination	Max	-42	160	1338	0	0	0	166	13
15	ENV_SLE	Combination	Min	-145	48	1043	0	0	0	152	10
16	ENV_SLE	Combination	Max	-52	150	1327	0	0	0	159	13
16	ENV_SLE	Combination	Min	-157	39	1111	0	0	0	162	11
17	ENV_SLE	Combination	Max	-59	162	1341	0	0	0	173	13
17	ENV_SLE	Combination	Min	-167	50	1081	0	0	0	174	10
18	ENV_SLE	Combination	Max	-74	166	1364	0	0	0	182	13
18	ENV_SLE	Combination	Min	-189	53	1094	0	0	0	196	10
19	ENV_SLE	Combination	Max	-68	153	1348	0	0	0	168	13
19	ENV_SLE	Combination	Min	-179	43	1132	0	0	0	184	11
20	ENV_SLE	Combination	Max	-62	140	1345	0	0	0	153	13
20	ENV_SLE	Combination	Min	-170	32	1153	0	0	0	173	11
21	ENV_SLE	Combination	Max	-56	126	1364	0	0	0	138	13
21	ENV_SLE	Combination	Min	-161	18	1146	0	0	0	162	11
22	ENV_SLE	Combination	Max	-46	137	1315	0	0	0	145	13
22	ENV_SLE	Combination	Min	-147	27	1135	0	0	0	150	11
23	ENV_SLE	Combination	Max	-39	121	1320	0	0	0	127	13
23	ENV_SLE	Combination	Min	-136	12	1117	0	0	0	136	11
24	ENV_SLE	Combination	Max	-50	110	1373	0	0	0	121	13
24	ENV_SLE	Combination	Min	-151	4	1139	0	0	0	151	11
25	ENV_SLE	Combination	Max	-34	104	1311	0	0	0	109	13
25	ENV_SLE	Combination	Min	-123	-3	1097	0	0	0	123	10
26	ENV_SLE	Combination	Max	-44	94	1371	0	0	0	103	13
26	ENV_SLE	Combination	Min	-139	-10	1127	0	0	0	139	11
20 27	ENV_SLE	Combination	Max	-21	99	1232	0	0	0	101	12
27	ENV_SLE	Combination	Min	-97	-8	1040	0	0	0	97	10
32			Max	-29	88		0	0	0	93	
32 32	ENV_SLE	Combination	Min	-112	-15	1294	0	0	0		12
	ENV_SLE	Combination				1080				113	10
33	ENV_SLE	Combination	Max	-14	84	1203	0	0	0	85	12
33	ENV_SLE	Combination	Min	-85	-18	1020	0	0	0	87	10
34	ENV_SLE	Combination	Max	-24	73	1268	0	0	0	77	12
34	ENV_SLE	Combination	Min	-100	-27	1061	0	0	0	103	10
35	ENV_SLE	Combination	Max	-34	62	1334	0	0	0	71	13
35	ENV_SLE	Combination	Min	-115	-36	1093	0	0	0	121	10
36	ENV_SLE	Combination	Max	-39	78	1358	0	0	0	87	13
36	ENV_SLE	Combination	Min	-127	-23	1111	0	0	0	129	11
37	ENV_SLE	Combination	Max	-18	57	1232	0	0	0	60	12
37	ENV_SLE	Combination	Min	-88	-41	1040	0	0	0	97	10
38	ENV_SLE	Combination	Max	-29	46	1300	0	0	0	54	13
38	ENV_SLE	Combination	Min	-104	-49	1076	0	0	0	115	10
39	ENV_SLE	Combination	Max	-12	40	1178	0	0	0	41	11
39	ENV_SLE	Combination	Min	-74	-55	1008	0	0	0	92	10
40	ENV_SLE	Combination	Max	-23	28	1255	0	0	0	36	12
40	ENV_SLE	Combination	Min	-91	-63	1056	0	0	0	111	10
41	ENV_SLE	Combination	Max	-6	22	1116	0	0	0	22	11
41	ENV_SLE	Combination		-59	-68	972	0	0	0	90	9
42	ENV_SLE	Combination	Max	-17	9	1200	0	0	0	20	12
42	ENV_SLE	Combination	Min	-77	-76	1034	0	0	0	108	10
43	ENV_SLE	Combination		-1	4	1065	0	0	0	4	10

Mandataria: Mandante:

ENV_SLE

ENV_SLE

ENV_SLE

ENV_SLE

ENV SLE

ENV_SLE

ENV_SLE

ENV_SLE

ENV SLE

ENV_SLE

ENV SLE

ENV_SLE

ENV SLE

ENV SLE

ENV_SLE

SALINI IMPREGILO S.p.A. ASTALDI S.p.A.

PROGETTISTA:

Mandataria: Mandante

SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.

PROGETTO ESECUTIVO
Relazione di calcolo

LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

DOCUMENTO

IN.01.00.001

REV.

PAGINA

135 di 189

CODIFICA

LOTTO

0.0.E.ZZ

3	43	ENV_SLE	Combination	Min	-45	-81	927	0	0	0	92	927	
3	44	ENV_SLE	Combination	Max	-11	-8	1140	0	0	0	14	1140	
3	44	ENV_SLE	Combination	Min	-63	-89	1009	0	0	0	109	1009	
3	45	ENV_SLE	Combination	Max	5	-13	1032	0	0	0	14	1032	
3	45	ENV_SLE	Combination	Min	-31	-93	862	0	0	0	98	862	
3	46	ENV_SLE	Combination	Max	-5	-25	1091	0	0	0	25	1091	
3	46	ENV SLE	Combination	Min	-49	-101	965	0	0	0	112	965	
3	47	ENV_SLE	Combination	Max	12	-30	1002	0	0	0	32	1002	
3	47	ENV SLE	Combination	Min	-18	-104	786	0	0	0	106	786	
4	13	ENV_SLE	Combination	Max	1	-41	1064	0	0	0	41	1064	
4	13	ENV SLE	Combination	Min	-35	-112	888	0	0	0	118	888	
4	15	ENV SLE	Combination	Max	8	-57	1039	0	0	0	57	1039	
4	15	ENV_SLE	Combination	Min	-23	-122	810	0	0	0	124	810	
4	25	ENV SLE	Combination	Max	21	-45	974	0	0	0	50	974	
	25	ENV SLE	Combination	Min	-8	-115	705	0	0	0	115	705	
4	29	ENV_SLE	Combination	Max	-40	131	971	0	0	0	137	971	
4	29	ENV SLE	Combination	Min	-96	60	756	0	0	0	113	756	
4	78	ENV SLE	Combination	Max	-44	130	980	0	0	0	137	980	
4	78	ENV_SLE	Combination	Min	-97	59	779	0	0	0	114	779	
4	86	ENV SLE	Combination	Max	-39	129	999	0	0	0	135	999	
4	86	ENV SLE	Combination	Min	-96	58	835	0	0	0	112	835	
5	05	ENV_SLE	Combination	Max	-36	127	1033	0	0	0	132	1033	
5	05	ENV SLE	Combination	Min	-97	55	901	0	0	0	112	901	
5	44	ENV SLE	Combination	Max	-40	125	1033	0	0	0	131	1033	
5	44	ENV SLE	Combination	Min	-100	53	923	0	0	0	113	923	
5	46	ENV SLE	Combination	Max	-42	128	1008	0	0	0	135	1008	
5	46	ENV_SLE	Combination	Min	-98	56	855	0	0	0	113	855	
5	50	ENV_SLE	Combination	Max	-33	123	1099	0	0	0	128	1099	
5	50	ENV_SLE	Combination	Min	-97	52	929	0	0	0	110	929	
5	59	ENV SLE	Combination	Max	-38	120	1077	0	0	0	126	1077	
5	59	ENV_SLE	Combination	Min	-101	50	963	0	0	0	113	963	
5	65	ENV_SLE	Combination	Max	-30	118	1158	0	0	0	122	1158	
5	65	ENV_SLE	Combination	Min	-96	48	955	0	0	0	107	955	
5	76	ENV_SLE	Combination	Max	-35	113	1130	0	0	0	119	1130	
5	76	ENV_SLE	Combination	Min	-102	45	986	0	0	0	112	986	
7	07	ENV_SLE	Combination	Max	-27	111	1210	0	0	0	114	1210	
7	07	ENV_SLE	Combination	Min	-93	43	978	0	0	0	102	978	
7	67	ENV_SLE	Combination	Max	-23	100	1253	0	0	0	102	1253	
7	67	ENV_SLE	Combination	Min	-86	37	999	0	0	0	94	999	
7	68	ENV_SLE	Combination	Max	-32	104	1178	0	0	0	109	1178	
7	68	ENV_SLE	Combination	Min	-103	40	1011	0	0	0	110	1011	
7	79	ENV_SLE	Combination	Max	-19	86	1287	0	0	0	88	1287	
7	79	ENV_SLE	Combination	Min	-79	31	1017	0	0	0	85	1017	
8	27	ENV_SLE	Combination	Max	-29	90	1217	0	0	0	95	1217	
_								_	_	_			

-99

-32

-25

-92

-22

-85

-16

-73

-28

-100

-30

-107

-24

-92

-108

Combination Min

Combination Max

Combination Min

33 1030

PROGETTO

APPALTATORE:

Mandataria: Mandante:

SALINI IMPREGILO S.p.A. ASTALDI S.p.A.

ENV SLE

ENV SLE

ENV_SLE

Combination

Combination Max

Combination Min

Min

LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

DOCUMENTO

IN.01.00.001

REV.

С

Ned

KN

Ved

ΚN

Min

Max

PAGINA

136 di 189

CODIFICA

CL

PROGETTISTA:

Mandataria: Mandante

SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.

PROGETTO ESECUTIVO Relazione di calcolo

ENV_SLE -18 Combination Max ENV_SLE Combination -78 Min ENV SLE Combination Max -12 O ENV_SLE Combination -67 Min ENV SLE Combination Max -8 ENV_SLE Combination Min -61 **ENV SLE** Combination Max -4 **ENV SLE** Combination Min -55 **ENV SLE** Combination Max ENV_SLE Combination Min -48 **ENV SLE** Combination Max ENV_SLE Combination Min -41 -10 O O O ENV_SLE Combination Max ENV_SLE Combination Min -33 -20 **ENV SLE** Combination Max n O **ENV SLE** Combination Min -43 -25 ENV_SLE Combination Max -1 ENV_SLE Combination Min -51 -16 Λ n ENV_SLE Combination Max -6 ENV SLE -7 -59 O n Combination Min n ENV_SLE Combination Max -10 ENV_SLE -65 Combination Min **ENV SLE** Combination Max -14 **ENV SLE** -72 O O n Combination Min ENV_SLE Combination Max -15 ENV_SLE -77 Combination Min ENV_SLE Combination Max -11 **ENV SLE** -71 -8 Combination Min ENV_SLE Combination Max -7 O O n **ENV SLE** Combination Min -64 -18 **ENV SLE** Combination Max -3 **ENV SLE** Combination Min -55 -27 ENV_SLE Combination Max -19 O O n **ENV SLE** Combination Min -84 ENV SLE Combination Max -25 **ENV SLE** Combination Min -97 ENV_SLE -20 n Combination Max Min ENV_SLE Combination -88 **ENV SLE** -26 Combination Max n **ENV SLE** Combination Min -103 -1 ENV_SLE -31 O O n Combination Max ENV_SLE Combination Min -112 ENV SLE -42 Combination Max ENV_SLE -95 Combination Min **ENV SLE** -45 O O O Combination Max

-96

-11

-73

-24

PROGETTO

IF1M

LOTTO

0.0.E.ZZ

Mandataria: Mandante:

SALINI IMPREGILO S.p.A. ASTALDI S.p.A.

PROGETTISTA:

Mandataria: Mandante

SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.

PROGETTO ESECUTIVO
Relazione di calcolo

LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

 PROGETTO
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 PAGINA

 IF1M
 0.0.E.ZZ
 CL
 IN.01.00.001
 C
 137 di 189

	: Joint Reactions			=c	=-					(F1 ² +F2 ²) ^{0.5}	
oint	OutputCase	CaseType	StepType	F1	F2	F3	M1	M2	M3	Ved	Ne
ext	Text	Text	Text	KN	KN	KN	KN-m	KN-m	KN-m	KN	K
13	ENV_SLU/SISMA	Combination	Max	125	335	1939	0	0	0	358	19
13	ENV_SLU/SISMA	Combination	Min	-413	-65	894	0	0	0	419	89
14	ENV_SLU/SISMA	Combination	Max	141	334	1941	0	0	0	363	19
14	ENV_SLU/SISMA	Combination	Min	-381	-67	821	0	0	0	387	8
15	ENV_SLU/SISMA	Combination	Max	150	323	1917	0	0	0	356	19
15	ENV_SLU/SISMA	Combination	Min	-366	-78	862	0	0	0	374	8
16	ENV_SLU/SISMA	Combination	Max	139	315	1891	0	0	0	344	18
16	ENV_SLU/SISMA	Combination	Min	-385	-87	980	0	0	0	395	9
L7	ENV_SLU/SISMA	Combination	Max	132	325	1915	0	0	0 0	351	19
17	ENV_SLU/SISMA	Combination	Min	-400	-76	941	0	0	0	407	9
18 18	ENV_SLU/SISMA ENV_SLU/SISMA	Combination Combination	Max Min	114 -432	328 -73	1936 950	0	0	0	347 439	19 9
19	ENV_SLU/SISMA	Combination	Max	122	-73 317	1909	0	0	0	340	19
9	ENV SLU/SISMA	Combination	Min	-419	-84	992	0	0	0	427	9
20	ENV SLU/SISMA	Combination	Max	129	307	1896	0	0	0	332	18
0	ENV SLU/SISMA	Combination	Min	-405	-96	1024	0	0	0	416	10
1	ENV SLU/SISMA	Combination	Max	135	295	1916	0	0	0	325	19
21	ENV SLU/SISMA	Combination	Min	-390	-109	1021	0	0	0	405	10
22	ENV SLU/SISMA	Combination	Max	146	304	1870	0	0	0	337	18
22	ENV_SLU/SISMA	Combination	Min	-371	-99	1012	0	0	0	384	10
23	ENV_SLU/SISMA	Combination	Max	153	291	1869	0	0	0	329	18
23	ENV SLU/SISMA	Combination	Min	-354	-114	1000	0	0	0	372	10
4	ENV_SLU/SISMA	Combination	Max	142	283	1924	0	0	0	316	19
4	ENV SLU/SISMA	Combination	Min	-376	-123	1018	0	0	0	395	10
:5	ENV_SLU/SISMA	Combination	Max	158	278	1851	0	0	0	320	18
25	ENV SLU/SISMA	Combination	Min	-335	-130	971	0	0	0	360	9
26	ENV_SLU/SISMA	Combination	Max	148	268	1915	0	0	0	306	19
26	ENV_SLU/SISMA	Combination	Min	-358	-139	1012	0	0	0	384	10
27	ENV_SLU/SISMA	Combination	Max	171	274	1749	0	0	0	323	17
27	ENV_SLU/SISMA	Combination	Min	-296	-134	760	0	0	0	325	7
32	ENV_SLU/SISMA	Combination	Max	163	264	1822	0	0	0	310	18
32	ENV_SLU/SISMA	Combination	Min	-318	-143	938	0	0	0	349	9
33	ENV_SLU/SISMA	Combination	Max	178	260	1703	0	0	0	315	17
33	ENV_SLU/SISMA	Combination	Min	-278	-147	725	0	0	0	314	7
34	ENV_SLU/SISMA	Combination	Max	169	250	1779	0	0	0	301	17
34	ENV_SLU/SISMA	Combination	Min	-300	-157	903	0	0	0	339	9
35	ENV_SLU/SISMA	Combination	Max	159	239	1858	0	0	0	287	18
35	ENV_SLU/SISMA	Combination	Min	-323	-166	989	0	0	0	364	9
36	ENV_SLU/SISMA	Combination	Max	154	254	1893	0	0	0	297	18
36	ENV_SLU/SISMA	Combination	Min	-341	-153	1002	0	0	0	374	10
37	ENV_SLU/SISMA	Combination	Max	174	235	1723	0	0	0	293	17
37	ENV_SLU/SISMA	Combination	Min	-282	-171	867	0	0	0	330	8
38	ENV_SLU/SISMA	Combination	Max	165	224	1808	0	0	0	278	18
88	ENV_SLU/SISMA		Min	-306	-181	972	0	0	0	355	9
39	ENV_SLU/SISMA		Max	180	218	1643	0	0	0	283	16
39	ENV_SLU/SISMA		Min	-262	-186	819	0	0	0	321	8
10	ENV_SLU/SISMA		Max	171	207	1743	0	0	0	268	17
10	ENV_SLU/SISMA		Min	-288	-196	947	0	0	0	348	9
11	ENV_SLU/SISMA		Max	186	201	1552	0	0	0	273	15
11	ENV_SLU/SISMA		Min	-242	-201	766	0	0	0	315	7
12	ENV_SLU/SISMA	Combination	Max	177	189	1665	0	0	0	259	16
12	ENV_SLU/SISMA	Combination	Min	-269	-211	920	0	0	0	342	9
3	ENV_SLU/SISMA	Combination	Max	191	184	1476	0	0	0	265	1

Mandataria: Mandante:

SALINI IMPREGILO S.p.A. ASTALDI S.p.A.

PROGETTISTA:

Mandataria: Mandante

SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.

PROGETTO ESECUTIVO Relazione di calcolo

LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

 PROGETTO
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 PAGINA

 IF1M
 0.0.E.ZZ
 CL
 IN.01.00.001
 C
 138 di 189

343	ENV_SLU/SISMA	Combination	Min	-222	-216	716	0	0	0	310	716
344	ENV_SLU/SISMA	Combination	Max	183	172	1581	0	0	0	251	1581
344	ENV SLU/SISMA	Combination	Min	-249	-226	891	0	0	0	336	891
345	ENV SLU/SISMA	Combination	Max	196	167	1426	0	0	0	258	1426
345	ENV SLU/SISMA	Combination	Min	-203	-230	671	0	0	0	307	671
	- '.										
346	ENV_SLU/SISMA	Combination	Max	188	156	1510	0	0	0	244	1510
346	ENV_SLU/SISMA	Combination	Min	-229	-240	848	0	0	0	332	848
347	ENV_SLU/SISMA	Combination	Max	201	151	1382	0	0	0	251	1382
347	ENV_SLU/SISMA	Combination	Min	-184	-245	624	0	0	0	306	624
413	ENV_SLU/SISMA	Combination	Max	194	139	1471	0	0	0	239	1471
413	ENV SLU/SISMA	Combination	Min	-209	-254	772	0	0	0	329	772
415	ENV_SLU/SISMA	Combination	Max	198	129	1435	0	0	0	237	1435
415	ENV SLU/SISMA	Combination	Min	-191	-267	695	0	0	0	328	695
425	ENV_SLU/SISMA	Combination	Max	206	136	1341	0	0	0	247	1341
425	ENV SLU/SISMA	Combination	Min	-165	-258	578	0	0	0	306	578
	- '.										
429	ENV_SLU/SISMA	Combination	Max	151	263	1354	0	0	0	304	1354
429	ENV_SLU/SISMA	Combination	Min	-310	-106	601	0	0	0	327	601
478	ENV_SLU/SISMA		Max	142	267	1357	0	0	0	302	1357
478	ENV_SLU/SISMA	Combination	Min	-306	-109	644	0	0	0	325	644
486	ENV_SLU/SISMA	Combination	Max	158	266	1393	0	0	0	310	1393
486	ENV_SLU/SISMA	Combination	Min	-313	-111	686	0	0	0	332	686
505	ENV_SLU/SISMA	Combination	Max	165	269	1442	0	0	0	316	1442
505	ENV SLU/SISMA	Combination	Min	-316	-116	760	0	0	0	337	760
544	ENV_SLU/SISMA	Combination	Max	154	271	1434	0	0	0	311	1434
544	ENV SLU/SISMA	Combination	Min	-315	-119	754	0	0	0	337	754
	- '.	Combination	Max				0	0	0		
546	ENV_SLU/SISMA			148	269	1398				307	1398
546	ENV_SLU/SISMA	Combination	Min	-311	-114	709	0	0	0	331	709
550	ENV_SLU/SISMA	Combination	Max	172	271	1534	0	0	0	320	1534
550	ENV_SLU/SISMA	Combination	Min	-318	-121	797	0	0	0	340	797
559	ENV_SLU/SISMA	Combination	Max	161	271	1493	0	0	0	315	1493
559	ENV_SLU/SISMA	Combination	Min	-319	-124	799	0	0	0	343	799
565	ENV_SLU/SISMA	Combination	Max	178	270	1617	0	0	0	324	1617
565	ENV SLU/SISMA	Combination	Min	-318	-127	832	0	0	0	342	832
576	ENV SLU/SISMA	Combination	Max	168	268	1567	0	0	0	317	1567
576	ENV SLU/SISMA	Combination	Min	-322	-130	844	0	0	0	347	844
707	ENV SLU/SISMA	Combination	Max	182	267	1689	0	0	0	324	1689
707	ENV SLU/SISMA	Combination	Min	-313	-133	867	0	0	0	340	867
767	ENV_SLU/SISMA	Combination	Max	186	260	1750	0	0	0	319	1750
767	ENV_SLU/SISMA	Combination	Min	-304	-140	902	0	0	0	334	902
768	ENV_SLU/SISMA	Combination	Max	174	263	1636	0	0	0	316	1636
768	ENV_SLU/SISMA	Combination	Min	-323	-137	884	0	0	0	351	884
779	ENV_SLU/SISMA	Combination	Max	188	250	1800	0	0	0	313	1800
779	ENV_SLU/SISMA	Combination	Min	-293	-147	919	0	0	0	327	919
827	ENV SLU/SISMA	Combination	Max	178	253	1693	0	0	0	310	1693
827	ENV_SLU/SISMA	Combination	Min	-317	-145	906	0	0	0	349	906
934	ENV SLU/SISMA		Max	175	240	1706	0	0	0	297	1706
934	ENV SLU/SISMA	Combination	Min	-327	-153	855	0	0	0	362	855
936	ENV SLU/SISMA		Max	181	243	1732	0	0	0	303	1732
936	ENV_SLU/SISMA		Min	-307	-152	922	0	0	0	343	922
941	ENV_SLU/SISMA			184	232	1760	0	0	0	296	1760
941	ENV_SLU/SISMA		Min	-296	-159	936	0	0	0	336	936
945	ENV_SLU/SISMA		Max	190	239	1836	0	0	0	306	1836
945	ENV_SLU/SISMA	Combination	Min	-281	-154	915	0	0	0	321	915
952	ENV_SLU/SISMA	Combination	Max	178	229	1724	0	0	0	290	1724
952	ENV_SLU/SISMA	Combination	Min	-316	-161	863	0	0	0	355	863
955	ENV_SLU/SISMA		Max	176	217	1736	0	0	0	279	1736
955	ENV_SLU/SISMA		Min	-325	-169	762	0	0	0	367	762
969	ENV SLU/SISMA		Max	181	220	1734	0	0	0	285	1734
969	ENV_SLU/SISMA		Min	-304	-167	870	0	0	0	347	870
202	LINV_JEO/JIJIVIA	Combination	IVIIII	-304	-107	370	U	U	U	547	670

Mandataria: Mandante:
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.

PROGETTISTA:

Mandataria: Mandante

SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.

PROGETTO ESECUTIVO Relazione di calcolo

LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
IF1M	0.0.E.ZZ	CL	IN.01.00.001	С	139 di 189

Min

Max

511

1949

237

439

972	ENV SLU/SISMA	Combination	Max	187	223	1785	0	0	0	291	1785
972	ENV_SLU/SISMA	Combination	Min	-285	-166	953	0	0	0	330	953
1004	ENV SLU/SISMA	Combination	Max	193	229	1855	0	0	0	300	1855
1004	ENV SLU/SISMA	Combination	Min	-270	-161	910	0	0	0	315	910
1014	ENV_SLU/SISMA	Combination	Max	195	220	1855	0	0	0	294	1855
1014	ENV_SLU/SISMA	Combination	Min	-259	-169	904	0	0	0	309	904
1027	ENV_SLU/SISMA	Combination	Max	198	210	1837	0	0	0	288	1837
1027	ENV_SLU/SISMA	Combination	Min	-248	-176	897	0	0	0	304	897
1067	ENV_SLU/SISMA	Combination	Max	201	200	1807	0	0	0	283	1807
1067	ENV_SLU/SISMA	Combination	Min	-238	-183	887	0	0	0	300	887
1293	ENV_SLU/SISMA	Combination	Max	204	191	1814	0	0	0	280	1814
1293	ENV_SLU/SISMA	Combination	Min	-226	-191	875	0	0	0	296	875
1296	ENV_SLU/SISMA	Combination	Max	208	185	1825	0	0	0	279	1825
1296	ENV_SLU/SISMA	Combination	Min	-214	-199	860	0	0	0	292	860
1298	ENV_SLU/SISMA	Combination	Max	204	183	1888	0	0	0	274	1888
1298	ENV_SLU/SISMA	Combination	Min	-229	-204	854	0	0	0	306	854
1299	ENV_SLU/SISMA	Combination	Max	200	188	1844	0	0	0	274	1844
1299	ENV_SLU/SISMA	Combination	Min	-241	-195	900	0	0	0	310	900
1302	ENV_SLU/SISMA	Combination	Max	196	194	1813	0	0	0	276	1813
1302	ENV_SLU/SISMA	Combination	Min	-253	-188	946	0	0	0	315	946
1303	ENV_SLU/SISMA	Combination	Max	193	204	1810	0	0	0	281	1810
1303	ENV_SLU/SISMA	Combination	Min	-264	-181	972	0	0	0	320	972
1304	ENV_SLU/SISMA	Combination	Max	191	214	1812	0	0	0	286	1812
1304	ENV_SLU/SISMA	Combination	Min	-275	-173	969	0	0	0	325	969
1306	ENV_SLU/SISMA	Combination	Max	189	203	1807	0	0	0	277	1807
1306	ENV_SLU/SISMA	Combination	Min	-281	-181	907	0	0	0	335	907
1307	ENV_SLU/SISMA	Combination	Max	191	193	1849	0	0	0	271	1849
1307	ENV_SLU/SISMA	Combination	Min	-272	-190	889	0	0	0	332	889
1308	ENV_SLU/SISMA	Combination	Max	194	187	1872	0	0	0	269	1872
1308	ENV_SLU/SISMA	Combination	Min	-260	-197	846	0	0	0	326	846
1309	ENV_SLU/SISMA	Combination	Max	198	182	1919	0	0	0	269	1919
1309	ENV_SLU/SISMA	Combination	Min	-247	-205	808	0	0	0	321	808
1310	ENV_SLU/SISMA	Combination	Max	185	212	1764	0	0	0	281	1764
1310	ENV_SLU/SISMA	Combination	Min	-292	-174	886	0	0	0	340	886
1314	ENV_SLU/SISMA	Combination	Max	179	208	1762	0	0	0	275	1762
1314	ENV_SLU/SISMA	Combination	Min	-312	-176	764	0	0	0	358	764
1315	ENV_SLU/SISMA	Combination	Max	183	201	1824	0	0	0	272	1824
1315	ENV_SLU/SISMA	Combination	Min	-299	-182	766	0	0	0	350	766
1316	ENV_SLU/SISMA	Combination	Max	177	199	1872	0	0	0	266	1872
1316	ENV_SLU/SISMA	Combination	Min	-319	-184	623	0	0	0	368	623
1317	ENV_SLU/SISMA	Combination	Max	174	207	1827	0	0	0	270	1827
1317	ENV_SLU/SISMA	Combination	Min	-333	-177	628	0	0	0	377	628
1318	ENV_SLU/SISMA	Combination	Max	145	260	1298	0	0	0	298	1298
1318	ENV_SLU/SISMA	Combination	Min	-305	-101	511	0	0	0	322	511
1319	ENV_SLU/SISMA	Combination	Max	136	264	1295	0	0	0	297	1295
1319	ENV_SLU/SISMA	Combination	Min	-301	-104	564	0	0	0	319	564
1320	ENV_SLU/SISMA	Combination	Max	190	183	1949	0	0	0	264	1949
1320	ENV_SLU/SISMA	Combination	Min	-274	-203	713	0	0	0	341	713
										Ved	Ned
										 KN	KN

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO PROGETTO LOTTO CODIFICA DOCUMENTO REV. **PAGINA** Relazione di calcolo 0.0.E.ZZ IN.01.00.001 С 140 di 189

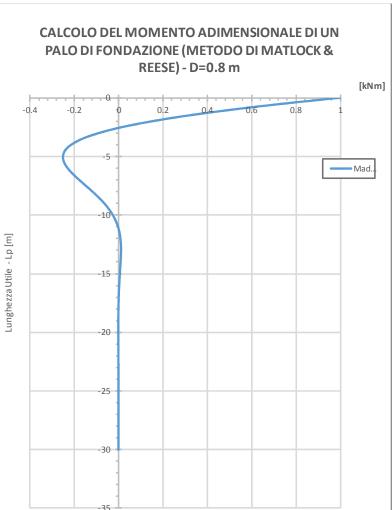
CALCOLO DEL MOMENTO ADIMENSIONALE DI UN PALO DI FONDAZIONE (METODO DI MATLOCK & REESE) - D=0.8 m

a. Dati di calcolo

D	Diametro palo	0.80 m
Jp	Momento di inerzia del palo	0.02 m ⁴
L	Lunghezza del palo	30.00 m
E _{PALO}	Modulo elastico del calcestruzzo	31000.00 m

b. Parametri geotecnici

Strato	Unità	Profondità strato	Modulo di reazione orizzontale iniziale (kN/m2) khxD	Coefficiente di reazione orizzontale	Gradiente del modulo (kN/m3) nh	Note
1	DI	0.0	10000	reazione var. con z	5000.0	
2	Po	-5.0	35000	reazione var. con z	8000.0	
3	Pb	-14.0	107000	reazione var. con z	10000.0	
4						
5						
6						


c. Calcolo carico limite

c. Calcolo Carico Illilite
Rapporto momento/taglio in testa palo
ROTAZIONE IMPEDITA
lpha[m]
1.88

		Vmax	Nmax	Nmin	
Ved	kN	439	264	322	SLU / SLV
N correlato	kN	950	1949	511	SLU / SLV
M_{max}	kNm	825	496	605	SLU / SLV
V	kN	196	121	141	SLE
N correlato	kN	1094	1373	670	SLE
M_{max}	kNm	368	227	265	SLE

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA DOCUMENTO REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ IN.01.00.001 С 141 di 189

z	Mad
[m]	[kNm]
0.00	1.00
-1.00	0.52
-2.00	0.15
-3.00	-0.09
-4.00	-0.21
-5.00	-0.25
-6.00	-0.23
-7.00	-0.18
-8.00	-0.12
-9.00	-0.06
-10.00	-0.03
-11.00	0.00
-12.00	0.01
-13.00	0.01
-14.00	0.01
-15.00	0.01
-16.00	0.00
-17.00	0.00
-18.00	0.00
-19.00	0.00
-20.00	0.00
-21.00	0.00
-22.00	0.00
-23.00	0.00
-24.00	0.00
-25.00	0.00

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO **CODIFICA DOCUMENTO** REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ CL IN.01.00.001 С 142 di 189

9.5.1 Verifiche strutturali

DATI GENERALI SEZIONE GENERICA IN C.A. NOME SEZIONE: Palo_IN_01

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze agli Stati Limite Ultimi Tipologia sezione: Sezione generica di Pilastro

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Moderat. aggressive

Tipo di sollecitazione: Retta (asse neutro sempre parallelo all'asse X)

Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Riferimento alla sismicità: Zona non sismica

Triletimento dila sismicità.

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO - Classe: C25/30

Resis. compr. di progetto fcd:

Resis. compr. ridotta fcd':

Def. unit. max resistenza ec2:

Def unit ultima equi

0.0020

Def.unit. ultima ecu: 0.0035
Diagramma tensione-deformaz.: Parabola-Rettangolo

 Modulo Elastico Normale Ec:
 314750 daN/cm²

 Resis. media a trazione fctm:
 25.60 daN/cm²

 Coeff. Omogen. S.L.E.:
 15.00

 Sc limite S.L.E. comb. Rare:
 137.50 daN/cm²

ACCIAIO - Tipo: B450C

Resist. caratt. snervam. fyk:

Resist. caratt. rottura ftk:

Resist. snerv. di progetto fyd:

Resist. ultima di progetto ftd:

3913.0 daN/cm²

Resist. ultima di progetto ftd:

3913.0 daN/cm²

Deform. ultima di progetto Epu:

0.068

Modulo Elastico Ef

0.068

daN/cm²

Modulo Elastico Ef 2000000
Diagramma tensione-deformaz.: Bilineare finito
Coeff. Aderenza istantaneo ß1*ß2: 1.00

Coeff. Aderenza differito ß1*ß2 : 0.50
Sf limite S.L.E. Comb. Rare: 3375.0 daN/cm²

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Dominio: Circolare Classe Conglomerato: C25/30

Raggio circ.: 40.0 cm X centro circ.: 0.0 cm Y centro circ.: 0.0 cm

DATI GENERAZIONI CIRCOLARI DI BARRE

N°Gen. Numero assegnato alla singola generazione circolare di barre

Xcentro Ascissa [cm] del centro della circonf. lungo cui sono disposte le barre generate
Ycentro Ordinata [cm] del centro della circonf. lungo cui sono disposte le barre generate
Raggio Raggio [cm] della circonferenza lungo cui sono disposte le barre generate
N°Barre Numero di barre generate equidist. disposte lungo la circonferenza

Ø Diametro [mm] della singola barra generata

N°Gen. Xcentro Ycentro Raggio N°Barre Ø

APPALTATORE:

Mandataria:

SALINI IMPREGILO S.p.A.

Mandante:

ASTALDI S.p.A.

LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

PROGETTISTA:

Mandataria: Mandante

SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.

PROGETTO ESECUTIVO
Relazione di calcolo

PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA

IF1M 0.0.E.ZZ CL IN.01.00.001 C 143 di 189

1 0.0 0.0 33.0 26 22

ARMATURE A TAGLIO

Vy

Diametro staffe: 8 mm
Passo staffe: 11.5 cm

Staffe: Una sola staffa chiusa perimetrale

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale in daN applicato nel Baric. (+ se di compressione)
Mx Momento flettente [daNm] intorno all'asse X di riferimento delle coordinate
con verso positivo se tale da comprimere il lembo sup. della sez.

Componente del Taglio [daN] parallela all'asse Y di riferimento delle coordinate

 N°Comb.
 N
 Mx
 Vy

 1
 95000
 82500
 43900

 2
 194900
 49600
 26400

 3
 51100
 60500
 32200

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale in daN applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [daNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

 N°Comb.
 N
 Mx
 My

 1
 109400
 36800
 0

 2
 137300
 22700
 0

 3
 67000
 26500
 0

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 5.9 cm Interferro netto minimo barre longitudinali: 5.8 cm Copriferro netto minimo staffe: 5.1 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [daN] nel baricentro sezione cls. (positivo se di compressione)
Mx Componente momento flettente assegnato [daNm] intorno all'asse X di riferimento delle coordinate

Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb	Ver	N	Mx	N Res	Mx Res	Mis.Sic.	As Totale
1	S	95000	82500	95014	118326	1.43	98.8(15.1)
2	S	194900	49600	194896	127379	2.57	98.8(15.1)
3	S	51100	60500	51107	112594	1.86	98.8(15.1)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max Deform. unit. massima del conglomerato a compressione Deform. unit. massima del conglomerato a compressione

Xc max Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)

APPALTATORE:

Mandataria: Mandante:

SALINI IMPREGILO S.p.A. ASTALDI S.p.A.

TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

LINEA FERROVIARIA NAPOLI - BARI

PROGETTISTA:

Mandataria: Mandante

SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.

PROGETTO ESECUTIVO Relazione di calcolo

 PROGETTO
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 PAGINA

 IF1M
 0.0.E.ZZ
 CL
 IN.01.00.001
 C
 144 di 189

Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.0	40.0	0.00267	0.0	33.0	-0.00516	0.0	-33.0
2	0.00350	0.0	40.0	0.00281	0.0	33.0	-0.00371	0.0	-33.0
3	0.00350	0.0	40.0	0.00259	0.0	33.0	-0.00602	0.0	-33.0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

C.Rid.	x/d	С	b	а	N°Comb
		-0.001245641	0.000118641	0.000000000	1
		-0.000449392	0.000098735	0.000000000	2
		-0.001717891	0.000130447	0.000000000	3

VERIFICHE A TAGLIO

Diam. Staffe: 8 mm

Passo staffe: 11.5 cm [Passo massimo di normativa = 25.0 cm]

Ver S = comb. verificata a taglio / N = comb. non verificata
Ved Taglio di progetto [daN] = Vy ortogonale all'asse neutro
Vcd Taglio resistente ultimo [daN] lato conglomerato compresso

Vwd Taglio resistente [daN] assorbito dalle staffe

d | z Altezza utile media pesata sezione ortogonale all'asse neutro | Braccio coppia interna [cm]

Vengono prese nella media le strisce con almeno un estremo compresso.

I pesi della media sono costituiti dalle stesse lunghezze delle strisce.

bw Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro
E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed.

Ctg Cotangente dell'angolo di inclinazione dei puntoni di conglomerato
Acw Coefficiente maggiorativo della resistenza a taglio per compressione
Ast Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m]
A.Eff Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m]

Tra parentesi è indicata la quota dell'area relativa alle sole legature. L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proiettata sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio.

N°Comb	Ver	Ved	Vcd	Vwd	d z	bw	Ctg	Acw	Ast	A.Eff
1	S	43900	104723	44395	61.2 51.9	72.9	2.500	1.133	8.6	8.7(0.0)
2	S	26400	110125	42406	60.9 49.6	72.8	2.500	1.250	5.4	8.7(0.0)
3	S	32200	100386	45505	61.6 53.2	72.1	2.500	1.072	6.2	8.7(0.0)

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max

Massima tensione (positiva se di compressione) nel conglomerato [daN/cm²]

Xc max, Yc max

Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)

Sf min

Minima tensione (negativa se di trazione) nell'acciaio [daN/cm²]

Xs min, Ys min

Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	001 AE 5.E. 100/2014, 0011 E11111 0 111 EE GGE 104 / E014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 145 di 189

Ac eff As eff			Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure								
N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.		
1	S	81.7	0.0	-60.0	-813	0.0	-33.0	473	19.0		
2	S	54.6	0.0	-60.0	-115	0.0	-33.0	261	11.4		
3	S	58.6	0.0	-30.0	-683	0.0	-33.0	531	19.0		

C

3	S	58.6	0.0 -	30.0	-683	0.0	-33.0	531	19.0				
COMBINA	AZIONI RA	RE IN ESERCI	ZIO - APE	RTURA FES	SURE [§	7.3.4 EC	2]						
		La sezione	viene assu	nta sempre f	essurata	anche ne	l caso in d	cui la trazione r	minima del	calcestruzz	zo sia inferiore a fc	tm	
Ver.		Esito della	verifica										
e1		Massima de	eformazione	unitaria di t	razione r	nel calcest	ruzzo (tra	zione -) valuta	ta in sezion	e fessurat	a		
e2		Minima defe	ormazione i	unitaria di tra	zione ne	l calcestru	ızzo (trazi	ione -) valutata	in sezione	fessurata			
k1		= 0.8 per b	arre ad ade	renza miglio	rata [eq.	(7.11)EC2	1						
kt		= 0.4 per o	comb. quas	i permanenti	/ = 0.6 p	er comb.fi	equenti [cfr. eq.(7.9)EC	[2]				
k2		= 0.5 per fle	essione; =(e	1 + e2)/(2*e	1) per tra	azione ecc	entrica [e	eq.(7.13)EC2]	-				
k3		= 3.400 Co	eff. in eq.(7	.11) come da	anness	i nazionali	-	, .					
k4		= 0.425 Co	eff. in eq.(7	.11) come da	anness	i nazionali							
Ø		Diametro In	nm1 equival	ente delle ba	rre tese	comprese	nell'area	efficace Ac eff	[ea.(7.11)]	EC21			
Cf				alcolato con					1-1(/	•			
e sm	ı - e cm							(7.8)EC2 e (C4	.1.7)NTC1				
				ninimo = 0.6					, -1				
sr ma	ax			e fessure [m		L(***)-	(- (-	,					
wk					-	e sm - e	cm) [(7.8)EC2 e (C4.1.7	NTC1 Val	ore limite t	ra narentesi		
Mx fe	ess			di prima fes). v o j. v o i	010 1111110 1	a paromoor		
My fe				di prima fes									
IVIY I		Component	ic moment	ai piiina ico	Juluzion	ic intomo t	an 0000 1	[dartin]					
Comb.	Ver	e1	e2	k2	Ø	Cf		е	sm - e cm	sr max	wk	Mx fess	My fess
1	S	-0.00050	0	0.500	22.0	59		0.00024	(0.00024)	294	0.072 (0.20)	26589	0
2	S	-0.00010	0	0.500	22.0	59		0.00003	(0.00003)	286	0.010 (0.20)	52214	0
2 3	S	-0.00042	0	0.500	22.0	59		0.00020	(0.00020)	305	0.063 (0.20)	24828	0
									, -/		, -,		

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	,
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 146 di 189

9.5.2 Verifiche geotecniche

Carico Limite Verticale

Si riporta quanto desunto dalle tabelle di portanza.

. Dati di calc										
	Diametro palo				0.80 m					
p	Area base palo	1			0.50 mq					
	Superficie late	rale del palo			2.51 m					
W	Profondità dell	la falda dal p.c.			4.00 m					
p	Quota testa pa	lo			2.00 m					
SL	Fattore di sicur	ezza per la portata	laterale (x3-gs)		1.84	1.15	1.6			
SB	Fattore di sicur	ezza per la portata	di base (x3·gb)		2.16	1.35	1.6			
. Parametri	geotecnici									
strato	Formazione	spessore strato	zbase strato	γ	ф	φ(Nq)	Nq*	q _{blim}	τ_{lim}	Note
311 010	Tomazione	(m)	(m da pc)	(kN/m³)	(°)	(-)	(-)	(kPa)	(kPa)	Note
1	Di	7.0	7.0	16	30	27	13	859	150	
2	Po	9.0	16.0	16	33	30	17	1105	150	
3	Pb	34.0	50.0	16	37	34	26	3230	150	
	1									
. Calcolo car				. 1						
z da p.c.	Lp	β	σ'ν	τί	QII	qbl	Qbl	Wp	Qu	Qd
[m]	[m]	[-]	[kPa]	[kPa]	[kN]	[kPa]	[kN]	[kN]	[kN]	[kN]
20.0	40.0	0.20	100	40	2424	2220	4624	04	2672	1804
20.0	18.0	0.30	160	48	2131	3230	1624	81	3673	
20.5	18.5	0.30	163	49	2191	3230	1624	84	3731	1834
21.0	19.0	0.30	166	49	2253	3230	1624	86	3791	1864
21.5	19.5	0.30	169	50	2315	3230	1624	88	3851	1895
22.0	20.0	0.29	172	51	2378	3230	1624	90	3912	1927
22.5	20.5	0.29	175	51 52	2442	3230	1624	93	3973	1958
23.0	21.0	0.29	178 181	52	2507 2573	3230 3230	1624	95 97	4036 4099	1991 2023
24.0	21.5	0.29	181	52	2639	3230	1624 1624	100	4163	2023
24.0	22.0	0.29	184	53	2639	3230	1624	100	4163	2056
25.0	23.0	0.29	190	54	2706	3230	1624	102	4228	2124
25.0	23.0	0.29	190	55	27/3	3230	1624	104	4293	2124
26.0	23.5	0.28	193	55	2911	3230	1624	109	4359	2158
26.0	24.0	0.28	196	56	2911	3230	1624	109	4426	2193
26.5	25.0	0.28	202	56			1624	111	4494	2228
		<u> </u>		55	3051	3230				
27.5 28.0	25.5	0.28	205	57	3122	3230	1624 1624	115	4631 4700	2299
28.0	26.0 26.5	0.28	208	58	3194 3267	3230 3230	1624	118 120	4700	2335 2371
		_								
29.0	27.0	0.27	214	58	3340	3230	1624	122	4841	2408
29.5	27.5	0.27	217	59	3414	3230	1624	124	4913	2445
30.0	28.0	0.27	220	59	3488	3230	1624	127	4985	2483

APPALTATORE:		LIN	EA FEF	RROVIA	RIA NAPOI	_I - B <i>i</i>	ARI
	<u>andante:</u> STALDI S.p.A.	TRATTA NAPOLI-CANCELLO					
PROGETTISTA:	OTALDI S.P.A.				00 E PK 15+58 MBITO DEGL	,	
Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECN	II S.p.A. ROCKSOIL S.p.A.	CUI AL E).L. 133/2	014, CONV	ERTITO IN LE	GGE 16	64 / 2014
PROGETTO ESECUTIVO		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo	lelazione di calcolo IF1M 0.0.E.ZZ CL IN.01.00.001 C 147 di				147 di 189		

Carico Limite orizzontale

I valori di progetto R_{orizz,d} della resistenza si ottengono dal valore caratteristico R_{orizz,k}, determinato utilizzando la teoria di Broms. Si assume, in pratica, che il comportamento dell'interfaccia palo-terreno sia rigido-perfettamente plastico, e cioè che la resistenza del terreno si mobiliti interamente per un qualsiasi valore non nullo dello spostamento e rimanga poi costante al crescere dello spostamento stesso. Si assume, inoltre, che la forma della sezione trasversale sia ininfluente, e che il valore della reazione del terreno p sia determinato solo dalla dimensione d della sezione del palo misurata normalmente alla direzione dello spostamento. Per terreni incoerenti, si assume che la resistenza del terreno vari linearmente con la profondità z secondo la legge:

$$p = 3 \cdot k_p \cdot \gamma z \cdot d$$

- $k_p = (1+sen\varphi)/(1-sen\varphi)$ è il coefficiente di spinta passiva che compete allo strato attraversato;
- d è il diametro del palo;
- γ il peso per unità di volume dello strato attraversato.

Ai fini della determinazione del valore di progetto R_{orizz,d} della resistenza del singolo palo di fondazione, è necessario considerare, in funzione della tipologia di approccio progettuale prescelto, il coefficiente parziale di sicurezza definito dalla normativa, secondo la tabella riportata di seguito:

Building	Simbolo	Pali trivellati
Resistenza	γ	(R3)
Resistenza ai carichi trasversali	γт	1.3

Tabella - Coefficienti parziali da applicare alle resistenze caratteristiche

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 148 di 189

Dall'equilibrio alla traslazione si ottiene il valore della forza orizzontale limite T_{lim} sopportabile dal palo. Il valore di progetto si ottiene riducendo quest'ultimo sia attraverso il coefficiente γ_T della colonna R_3 della precedente tabella, sia mediante il corrispondente "coefficiente di correlazione" scelto in funzione del numero di verticali indagate.

$$T_{\text{lim, }d} = \min \left(\frac{T_{\text{lim, }media}}{\gamma_{T} \cdot \xi_{3}}; \frac{T_{\text{lim, }\min}}{\gamma_{T} \cdot \xi_{4}} \right)$$

Lunghezza palo	L=25 m
Diametro palo	D=0.80 m
Momento di plasticizzazione della sezione (minimo)	My=1180 kN*m
Angolo di attrito del terreno	$\phi'_{med}=32^{\circ}$
Coeff. Di spinta passiva $(k_p=(1+\sin \phi')/(1-\sin \phi')$	$k_p = 3.255$
Peso unità di volume (con falda γ=γ')	γ =6.00 kN/m ³
Carico orizzontale	$F_D=460 \text{ kN}$
$\xi_3 = 1.6$	
$\gamma_T=1.3$	
Capacità portante orizzontale di progetto	$H_D=564 \text{ kN}$
$H_D > F_D$	

La verifica è soddisfatta.

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO PROGETTO LOTTO CODIFICA DOCUMENTO REV. **PAGINA** Relazione di calcolo 0.0.E.ZZ IN.01.00.001 149 di 189

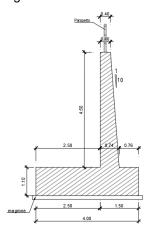
APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI			
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO			
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE			
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI			
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014			
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	001 AE D.E. 100/2014, 0011 ET TO IN EE GAE 104 / 2014			
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA			
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 150 di 189			

10 MURI ANDATORI IN DESTRA SU FONDAZIONE DIRETTA

Nel seguito del presente paragrafo si riportano i criteri generali di Analisi ed i risultati del dimensionamento del muro di sostegno da realizzare in prossimità della struttura scatolare, al fine di contenere localmente il corpo del rilevato ferroviario.

Trattasi del muro andatore in destra su fondazione diretta.

10.1 SCHEMATIZZAZIONE DELLE STRUTTURE


L'analisi delle opere è stata eseguita con modelli semplificati avvalendosi di fogli di calcolo, considerando le azioni derivanti dai pesi propri di muro e terreno di riempimento e dai sovraccarichi accidentali.

In condizioni sismiche, l'analisi è stata eseguita mediante metodo pseudo-statico, ipotizzando il cuneo di terreno a tergo del paramento dell'opera in equilibrio limite attivo, così come specificato al paragrafo 7.11.6.2.1 delle NTC 2008.

10.1.1 Geometria di calcolo

Verranno presentate nel seguito le verifiche relative al concio di muro lungo 6.00 m. Ai fini delle verifiche geotecniche e strutturali è considerata a vantaggio un'altezza del concio, pari a 4.50 m.

Si adotta, in definitiva, la seguente geometria di calcolo.

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	,
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 151 di 189

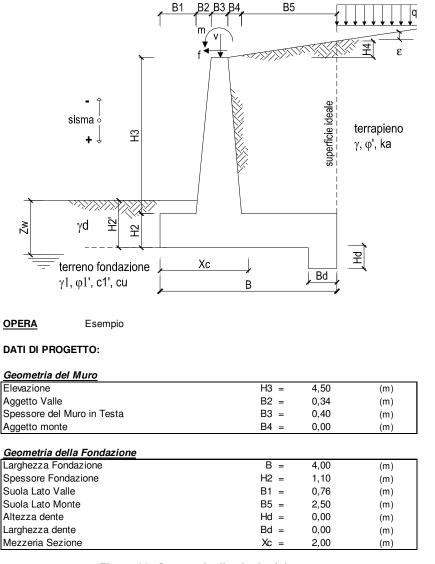


Figura 23- Geometria di calcolo del muro

10.2 ANALISI DEI CARICHI

Si riporta nel seguito la valutazione dell'entità dei carichi fissi e variabili che intervengono ai fini delle analisi e verifiche delle opere di sostegno oggetto del presente documento.

APPALTATORE:			LIN	EA FE	RROVIA	RIA NAPOI	_I - B <i>i</i>	4RI
Mandataria:	Mandante:	\ ^		TRAT1	A NAPO	LI-CANCE	LLO	
SALINI IMPREGILO S.p.A.	ASTALDI S	5.p.A.	IN VARIA	NTE TRA	LE PK 0+0	00 E PK 15+5	85, INC	LUSE LE
PROGETTISTA: Mandataria: Mandante:					,	MBITO DEGL		
	-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL D	D.L. 133/2	014, CONV	ERTITO IN LE	GGE 16	64 / 2014
PROGETTO ESECUTIVO			PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo			IF1M	0.0.E.ZZ	CL	IN.01.00.001	С	152 di 189

10.2.1 Peso permanente strutturale

Per pesi permanenti strutturali si intendono le azioni associate ai pesi propri del muro e del terreno di riempimento.

Ai fini del calcolo del peso del muro si considera un peso per unità di volume $\gamma_m = 25 \text{ kN/m}^3$. Il terreno di riempimento ha peso per unità di volume $\gamma_{\text{rint}} = 20 \text{ kN/m}^3$.

FORZE VERTICALI

- Peso del Mur	o (Pm)		SLE	STR/GEO	EQU
Pm1 =	(B2*H3* _γ cls)/2	(kN/m)	19,13	19,13	17,21
Pm2 =	(B3*H3* _γ cls)	(kN/m)	45,00	45,00	40,50
Pm3 =	(B4*H3*γcls)/2	(kN/m)	0,00	0,00	0,00
Pm4 =	(B*H2*γcls)	(kN/m)	110,00	110,00	99,00
Pm5 =	(Bd*Hd [*] γcls)	(kN/m)	0,00	0,00	0,00
Pm =	Pm1 + Pm2 + Pm3 + Pm4 + Pm5	(kN/m)	174,13	174,13	156,71
- Peso del terre Pt1 = Pt2 = Pt3 = Sovr = Pt =	eno e sovr. perm. sulla scarpa di monte del muro (Pt) (B5*H3*γ) (0,5*(B4+B5)*H4*γ) (B4*H3*γ)/2 qp * (B4+B5) Pt1 + Pt2 + Pt3 + Sovr	(kN/m) (kN/m) (kN/m) (kN/m) (kN/m)	225,00 0,00 0,00 0,00 0,00 225,00	225,00 0,00 0,00 0,00 0,00 225,00	202,50 0,00 0,00 0,00 0,00 202,50
- Sovraccarico accidentale sulla scarpa di monte del muro Sovr acc. Stat q * (B4+B5) (kN/m) 143,2 214,8 Sovr acc. Sism qs * (B4+B5) (kN/m) 28,64					

Le spinte del terreno a monte sono state valutate coerentemente con la caratterizzazione mostrata al paragrafo 9.3.

Il coefficiente di spinta attiva è stato valutato utilizzando la teoria del cuneo di rottura di Coulomb, che tiene conto, oltre alle ipotesi base della teoria di Rankine, anche della presenza dell'attrito fra terra e muro δ e della superficie interna del paramento del muro comunque inclinata di un angolo ψ . Lo sviluppo analitico della teoria di Coulomb è stato definito da Muller-Breslau, i quali valutano il coefficiente di spinta attiva in condizione statica come:

$$k_{\alpha} = \frac{sen^{2}(\psi + \varphi)}{sen^{2}(\psi) \cdot sen(\psi - \delta) \cdot \left[1 + \sqrt{\frac{sen(\varphi + \delta) \cdot sen(\varphi - \beta)}{sen(\psi - \delta) \cdot sen(\psi + \beta)}}\right]^{2}}$$

dove:

φ è l'angolo di resistenza a taglio del terreno;

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	001 AE 5.2. 100/2014, 0011 EE 11111 O III EE 1111
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 153 di 189

- δ è l'angolo di attrito terra-muro, assunto pari a 2/3 φ;
- \(\varepsilon \) è l'inclinazione rispetto all'orizzontale della superficie del terreno;
- β è l'inclinazione rispetto alla verticale della parete interna del muro.

10.2.2 Peso permanente non strutturale

Per pesi permanenti non strutturali si intendono le azioni associate alla presenza del ballast, del rivestimento del parapetto esterno del muro.

Il peso permanente dato dalla presenta del ballast (spessore 80 cm con γ_{rint} = 18 kN/ m³) è stato considerato come un carico permanente pari a :

$$qp = 14.40 \frac{kN}{m^2}$$

10.2.3 Sovraccarichi accidentali- Carichi ferroviari

I carichi verticali sono definiti per mezzo di modelli di carico, in particolare sono forniti due treni di carico distinti: il primo rappresentativo del traffico normale LM71, il secondo rappresentativo del traffico pesante SW2.

Coefficiente di adattamento α

I valori dei suddetti carichi relativi alla configurazione LM71 e SW2 dovranno essere moltiplicati per un coefficiente di adattamento, variabile in ragione della tipologia dell'Infrastruttura (ferrovia ordinaria, ferrovia leggera metropolitane), viene di seguito riportata la Tab. 1 con la variabilità del coefficiente in base al tipo di linea o categoria di linea:

Tipi di linea o categorie di linea STI	Valore minimo del fattore alfa (α)
IV	1.1
V	1.0
VI	1.1
VII-P	0.83
VII-F, VII-M	0.91

Tab. 1 – Valore minimo di α secondo la categoria di linea (STI)

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	,
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 154 di 189

Per completezza di informazioni viene di seguito riportata la Tab. 2 attinente alla categorie di linea STI per il sottosistema Infrastruttura del sistema ferroviario convenzionale:

		Tipo di traffico				
	Categorie di linea STI	Traffico passeggeri (P)	Traffico merci (F)	Traffico misto (M		
nea	Nuova linea TEN fondamentale (IV)	IV-P	IV-F	IV-M		
Tipo di linea	Linea TEN fondamentale ristrutturata (V)	V-P	V-F	V-M		
Н	Altra nuova linea TEN (VI)	VI-P	VI-F	VI-M		
	Altra linea TEN ristrutturata (VII)	VII-P	VII-F	VII-M		

Tab. 2 – Tipo di traffico / categoria di linea (STI)

Treno di carico LM71

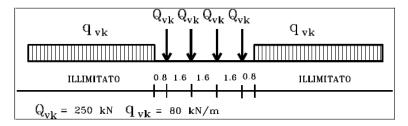


Fig. 1 – Treno di carico teorico LM71

E' stato applicato un carico distribuito equivalente dei 4 assi 250 kN ad interasse 1,60 m:

 $q_{equivalente} = 4.250/6,40 = 156,25 \text{ KN/m}.$

Larghezza di diffusione in direzione trasversale è pari a 3,00 m

$$Q_{vk} = 4.250 / (6,40.3,00) = 52,08 \text{ KPa}$$

$$q = q_{equivalente} \boldsymbol{\cdot} \alpha \boldsymbol{\cdot} \phi = 52.80 \boldsymbol{\cdot} 1, 10 = \textbf{57,28} \ \textbf{KPa}$$

$$q_{vk} = 80 / 3,00 = 26,66 \text{ KPa}$$

$$q = q_{equivalente} \cdot \alpha \cdot \phi = 26,66 \cdot 1,10 = 29,33 \text{ KPa}$$

Treno di carico SW2

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 155 di 189

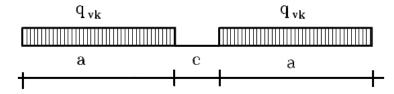


Fig. 2 – Treno di carico teorico SW/2

$$q = q_{equivalente} \cdot \alpha \cdot \phi = 50,00 \text{ KPa} \cdot 1,10 \cdot 1,00 = 55,00 \text{ KPa}$$

Ai fini del dimensionamento dell'opera di sostegno provvisoria si considera il treno LM71 in quanto presenta un valore maggiore del carico verticale rispetto al treno SW/2.

10.2.4 Azione sismica

L'analisi sismica dei muri è stata eseguita con il metodo pseudo-statico. I coefficienti sismici orizzontale kh e verticale kv sono valutati con le relazioni:

$$k_h = \beta_m \frac{a_{max}}{g}$$

$$k_v = \pm 0.5 \cdot k_h$$

dove:

 β m è un coefficiente dipendente dal valore dell'accelerazione orizzontale a_g e dalla tipologia di sottosuolo. Nel caso in esame, essendo il sottosuolo di categoria C e $a_g(g)$ compresa tra 0.2 e 0.4, si assume β_m =0.31;

- kh è il coefficiente sismico in direzione orizzontale;
- kv è il coefficiente sismico in direzione verticale;

L'accelerazione massima viene valutata come:

$$\frac{\mathbf{a}_{\max}}{\mathbf{g}} = \mathbf{S}_{\mathbf{S}} \cdot \mathbf{S}_{\mathbf{T}} \cdot \frac{\mathbf{a}_{\mathbf{g}}}{\mathbf{g}}$$

dove:

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE. NELL'AMBITO DEGLI INTERVENTI DI
Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 156 di 189

- Ss = 1.37 tiene conto dell'amplificazione stratigrafica;
- St = 1.00 tiene conto dell'amplificazione topografica;
- $\frac{a_g}{g} = 0.22$ è l'accelerazione orizzontale massima attesa al sito per lo SLV.

La valutazione della spinta in condizioni dinamiche viene effettuata con il metodo di Mononobe e Okabe:

per
$$\beta \leq \varphi - \theta$$

$$k_{\alpha,s} = \frac{sen^2(\psi + \varphi - \theta)}{cos(\theta) \cdot sen^2(\psi - \theta - \delta) \cdot \left[1 + \sqrt{\frac{sen(\varphi + \delta) \cdot sen(\varphi - \beta - \theta)}{sen(\psi - \theta - \delta) \cdot sen(\psi + \beta)}}\right]^2}$$

per
$$\beta > \varphi - \theta$$

$$k_{\alpha,s} = \frac{sen^2(\psi + \varphi - \theta)}{cos(\theta) \cdot sen^2(\psi) \cdot sen(\psi - \theta - \delta)}$$

dove:

• θ è l'angolo tale che $tan\theta = \frac{k_h}{1 \pm k_v}$;

La tabella seguente riporta i suddetti parametri, distinguendo le combinazioni di verifica in base all'approccio perseguito:

Accelerazione sismica	a _g /g	0,22	(-)
Coefficiente Amplificazione Stratigrafico	S_S	1,37	(-)
Coefficiente Amplificazione Topografico	S_T	1	(-)
Coefficiente di riduzione dell'accelerazione massima	eta_s	0,31	(-)
Coefficiente sismico orizzontale	kh	0,093434	(-)
Coefficiente sismico verticale	kv	0,0467	(-)
Muro libero di traslare o ruotare	С) si (● no

			SL	.E	STR/C	GEO	EC	งัก
	Coeff. di Spinta Attiva Statico	ka	0,217		0,217		0,275	
. <u>=</u> _	Coeff. Di Spinta Attiva Sismica sisma +	kas+	0,268		0,268		0,333	
ien	Coeff. Di Spinta Attiva Sismica sisma -	kas-	0,274		0,274		0,339	
efficien Spinta	Coeff. Di Spinta Passiva	kp	3,000		3,000		2,444	
Š	Coeff. Di Spinta Passiva Sismica sisma +	kps+	2,841		2,841		2,299	
	Coeff. Di Spinta Passiva Sismica sisma -	kps-	2,825		2,825		2,285	

APPALTATORE:		LIN	EA FE	RROVIA	RIA NAPOI	LI - B	4RI
Mandataria:	Mandante:		TRATI	A NAPO	LI-CANCE	LLO	
SALINI IMPREGILO S.p.A. PROGETTISTA:	ASTALDI S.p.A.				00 E PK 15+5	,	
Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTI	ECNI S.p.A. ROCKSOIL S.p.A.			,	AMBITO DEGL ERTITO IN LE		
PROGETTO ESECUTIVO		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo		IF1M	0.0.E.ZZ	CL	IN.01.00.001	С	157 di 189

Sono state altresì considerate le forze di inerzia dovute al peso del muro e del terreno gravante sulla zattera di monte, valutate come:

$$F_i = k_h \cdot W_i$$

Per quanto riguarda l'incremento sismico di spinta dovuto ai terrapieni, esso è stato applicato alla stessa altezza dell'aliquota statica, così come prescritto dalla norma per muri liberi di traslare e ruotare intorno al piede.

10.3 COMBINAZIONI DI CARICHI

Tutte le condizioni di carico elementari di carico possono essere raggruppate nei seguenti gruppi di condizioni:

- G1: azioni dovute al peso proprio e ai carichi permanenti strutturali;
- G2: azioni dovute ai carichi permanenti non strutturali;
- P: azioni dovute ai carichi di precompressione;
- Qik: azioni dovute ai sovraccarichi accidentali;
- E: azioni dovute ai carichi simici orizzontali e verticali.

Secondo quanto previsto dalle NTC 2008, si considerano tutte le combinazioni non sismiche del tipo:

$$F_d = \gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_p \cdot P_k + \gamma_q \left[Q_{1k} + \sum_i (\Psi_{0i} \cdot Q_{ik}) \right]$$

essendo:

	Coef.		ne	
Carichi	γ ε (γ ε)	EQU	STR	GEO
	/F (/E/	LQU	(A1)	(A2)
Permanenti	∕G,1	0.9÷1.1	1.0÷1.3	1.0÷1.0
Perm.non strutturali	γ G,2	0.0÷1.5	0,0÷1.5	0.0÷1.3
Variabili	Ŷ Q ,i	0.0÷1.5	0.0÷1.5	0.0÷1.3

Tabella 10-Coefficienti parziali per le azioni favorevoli-sfavorevoli

 $\gamma_p = 1.00$ (precompressione)

 $\Psi_{0i} = 0 \div 1.00$ (coefficiente di combinazione allo SLU per tutte le condizioni di carico elementari variabili per tipologia e categoria Qik)

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	,
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 158 di 189

Le combinazioni sismiche considerate sono:

$$F_d = G_1 + G_2 + P_k + E + \left[\sum_{i} (\Psi_{2i} \cdot Q_{ik}) \right]$$

essendo:

 Ψ_{2i} = 0 nel caso di sovraccarichi stradali.

Secondo quanto previsto dal D.M. 14.01.2008, si considerano le combinazioni:

$$F_d = G_1 + G_2 + P_k + \left| \sum_i \left(\Psi_{2i} \cdot Q_{ik} \right) \right|$$

Essendo, nel caso di carichi stradali, Ψ_{2i} pari a 0 per la combinazione quasi permanente, pari a 0.75 per la combinazione frequente e pari a 1 per la combinazione rara.

• Condizione A1

		valori caratteristici	vaiori di j	progetto		
Carichi	<u>Agenti</u>			SLE - sisma	STR/GEO	EQU
-	Sovraccarico permanente	(kN/m^2)	qp	14,40	18,72	15,84
hi ent	Sovraccarico su zattera di monte					
Carichi ermanen	Forza Orizzontale in Testa permanente	(kN/m)	fp	0,00	0,00	0,00
Carichi permanenti	Forza Verticale in Testa permanente	(kN/m)	vp	0,00	0,00	0,00
<u> </u>	Momento in Testa permanente (kNm/m) m			0,00	0,00	0,00
	Sovraccarico Accidentale in condizioni statiche (kN/m²) q		q	57,28	85,92	85,92
Sondizioni Statiche	Forza Orizzontale in Testa accidentale in condizioni statichi	(kN/m)	f	0,00	0,00	0,00
Statiche	Forza Verticale in Testa accidentale in condizioni statiche		V	0,00	0,00	0,00
St	Momento in Testa accidentale in condizioni statiche (kNm/m)		m	0,00	0,00	0,00
	Coefficienti di combinazione condizione frequente Ψ1 0,75		0,75	condizione quasi perm	anente Ψ2	0,20
е <u>э</u>	Sovraccarico Accidentale in condizioni sismiche	cidentale in condizioni sismiche (kN/m²) q		11,46		
ondizioni ismiche	Forza Orizzontale in Testa accidentale in condizioni sismici		fs	0,00		
Condizioni Sismiche	Forza Verticale in Testa accidentale in condizioni sismiche (kN/m)		VS	0,00		
გ ა	Momento in Testa accidentale in condizioni sismiche	(kNm/m)	ms	0,00		

Condizione A2

		valori caratteristici	valori di _l	orogetto		
Carich	i Agenti		SLE - sisma	STR/GEO	EQU	
	Sovraccarico permanente	(kN/m ²)	qp	14,40	14,40	15,84
ent Fi	Sovraccarico su zattera di monte si no					
Carichi ermaner	Forza Orizzontale in Testa permanente	(kN/m)	fp	0,00	0,00	0,00
Carichi permanenti	Forza Verticale in Testa permanente	(kN/m)	γp	0,00	0,00	0,00
<u> </u>	Momento in Testa permanente (kNm/m)			0,00	0,00	0,00
	Sovraccarico Accidentale in condizioni statiche	atiche (kN/m²) q		57,28	74,46	85,92
Sondizioni Statiche	Forza Orizzontale in Testa accidentale in condizioni statichi	(kN/m)	f	0,00	0,00	0,00
ondizion Statiche	Forza Verticale in Testa accidentale in condizioni statiche	(kN/m)	V	0,00	0,00	0,00
S S	Momento in Testa accidentale in condizioni statiche	(kNm/m)	m	0,00	0,00	0,00
	Coefficienti di combinazione condizione frequer	nte Ψ1	0,75	condizione quasi perm	anente Ψ2	0,20
.⊑ o	Sovraccarico Accidentale in condizioni sismiche	(kN/m ²) q		11,46		
izio	Forza Orizzontale in Testa accidentale in condizioni sismicl		fs	0,00		
Condizioni Sismiche	Forza Verticale in Testa accidentale in condizioni sismiche	e (kN/m) v		0,00		
0 0	Momento in Testa accidentale in condizioni sismiche	(kNm/m)	ms	0,00		

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	,
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 159 di 189

10.4 CRITERI DI CALCOLO GEOTECNICO E STRUTTURALE

In generale, per ogni stato limite deve essere verificata la condizione:

$$E_d \le R_d$$

dove E_d rappresenta l'insieme amplificato delle azioni agenti, ed R_d l'insieme delle resistenze, queste ultime corrette in funzione della tipologia del metodo di approccio al calcolo eseguito, della geometria del sistema e delle proprietà meccaniche dei materiali e dei terreni in uso.

A seconda dell'approccio perseguito, sarà necessario applicare dei coefficienti di sicurezza o amplificativi, a secondo si tratti del calcolo delle caratteristiche di resistenza o delle azioni agenti.

In particolare, in funzione del tipo di verifica da eseguire, avremo, per le azioni derivanti da carichi gravitazionali, i seguenti coefficienti parziali:

Carichi	Coefficiente parziale γε (ο γε)	EQU	(A1) STR	(A2) GEO
Permanenti	γ _{G1}	0.9÷1.1	1.0÷1.3	1.0
Perm. non strutturali	γ _{G2}	0.0÷1.5	0.0÷1.5	0.0÷1.3
Variabili	γQ,i	0.0÷1.5	0.0÷1.5	0.0÷1.3

Tabella 11- Coefficienti parziali per le azioni favorevoli-sfavorevoli

Ai fini delle resistenze, in funzione del tipo di verifica da eseguire, il valore di progetto può ricavarsi in base alle indicazioni sotto riportate.

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	, , , , , , , , , , , , , , , , , , , ,
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 160 di 189

Parametro	Parametro di riferimento	Coefficiente parziale	M1	M2
Tangente dell'angolo di resistenza f'	$ an \gamma'_{K}$	$\gamma_{\rm f}$	1.00	1.25
Coesione efficace	C'ĸ	γ _{c'}	1.00	1.25
Resistenza non drenata	C _{uk}	γ_{cu}	1.00	1.40
Peso dell'unità di volume	γ	γg	1.00	1.00

Tabella 12-Coefficienti parziali per i parametri geotecnici del terreno

Le verifiche SLU e GEO vengono effettuate con <u>l'Approccio 1</u>, che prevede due combinazioni di coefficienti:

- Combinazione 1 (A1+M1+R1)
- Combinazione 2 (A2+M2+R2)

La prima viene utilizzata per le verifiche agli stati limite per il dimensionamento strutturale, la seconda per le verifiche agli stati limite per il dimensionamento geotecnico, come specificato al punto C6.5.3.1.1 delle Istruzioni. I coefficienti parziali di sicurezza R3 sono pari a:

Verifica	Coefficiente parziale	Coefficiente parziale
verilica	(R1)	(R2)
Capacità portante della fondazione	$\gamma_{\rm R}$ = 1.0	γ_{R} = 1.0
Scorrimento	$\gamma_{\rm R}$ = 1.0	γ_{R} = 1.0

Tabella 13-Coefficienti R

Lo stato limite di ribaltamento non prevede la mobilitazione della resistenza del terreno di fondazione e deve essere trattato come uno stato limite di equilibrio come corpo rigido (EQU), adoperando coefficienti parziali del gruppo M2 per il calcolo delle spinte ed il fattore parziale di sicurezza R2=1.0.

Nelle verifiche finalizzate al dimensionamento strutturale, il coefficiente γ_R non deve essere portato in conto.

Per quanto riguarda le verifiche in condizioni sismiche, esse verranno effettuate considerando, per i diversi stati limite, i coefficienti amplificativi delle azioni (A) di valore unitario, come indicato al punto C7.11.6.2 delle Istruzioni per l'applicazione delle NTC 2008.

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 161 di 189

Ricapitolando, le verifiche riportate nel seguito della presente saranno effettuate nei confronti dei seguenti stati limite e con gli approcci metodologici di fianco riportati.

SLU di tipo geotecnico (GEO) – Approccio 1

Collasso per carico limite dell'insieme fondazione – terreno

A2+M2+R2

Scorrimento sul piano di posa

A2+M2+R2

SLU di tipo strutturale (STR) - Approccio 1

Raggiungimento della resistenza negli elementi strutturali

A1+M1+R1

SLU di equilibrio di corpo rigido (EQU)

Ribaltamento

EQU+M2+R2

10.4.1 Criterio di verifica a capacita portante della fondazione (GEO)

La verifica a carico limite della fondazione dei muri è stata eseguita facendo riferimento alla nota formula trinomia di Terzaghi.

$$q_{\lim} = \psi_q \cdot \zeta_q \cdot \xi_q \cdot \alpha_q \cdot \beta_q \cdot N_q \cdot \gamma_1 \cdot D + \psi_c \cdot \zeta_c \cdot \xi_c \cdot \alpha_c \cdot \beta_c \cdot N_c \cdot c + \psi_\gamma \cdot \zeta_\gamma \cdot \xi_\gamma \cdot \alpha_\gamma \cdot \beta_\gamma \cdot N_\gamma \cdot \gamma_2 \cdot \frac{B}{2}$$

in cui:

- γ 1 è il peso dell'unità di volume del terreno presente al di sopra del piano di posa della fondazione;
- γ 2 è il peso dell'unità di volume del terreno presente al di sotto del piano di posa della fondazione;
- D è la profondità del piano di posa della fondazione;
- B è la larghezza della fondazione;
- Nq, Nc, N_{γ} sono coefficienti tabellati in funzione dell'angolo di attrito del terreno presente al di sotto del piano di posa;
- ψ_q , ψ_c , $\psi\gamma$ sono i coefficienti correttivi legati al tipo di rottura (generale o per punzonamento);
- ζq , ζc , ζ_{γ} sono i coefficienti correttivi di forma; essi dipendono dalla lunghezza L e dalla larghezza B della fondazione;

APPALTATORE:			LIN	EA FE	RROVIA	RIA NAPOI	LI - B	ARI
Mandataria:	Mandante:			TRAT1	A NAPO	LI-CANCE	LLO	
SALINI IMPREGILO	S.p.A. ASTALDIS	i.p.A.	IN VADIA	NTE TD A	I E DK 0.0	000 E PK 15+5	0E INIC	
PROGETTISTA:						AMBITO DEGL	,	
Mandataria:	Mandante:				,	ERTITO IN LE		
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	OOIALL	J.L. 100/2	014, 00111	EIIIII O III EE	aal II	74 / 2014
PROGETTO ESECU	JTIVO		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcol	0		IF1M	0.0.E.ZZ	CL	IN.01.00.001	С	162 di 189

- ξq , ξc , ξ_{γ} sono i coefficienti correttivi di inclinazione del carico; essi dipendono dalla lunghezza L e dalla larghezza B della fondazione, dall'entità dei carichi verticale ed orizzontale agenti, dalla coesione e dall'angolo di attrito del terreno presente al di sotto del piano di posa;
- α_q , α_c , α_γ sono i coefficienti correttivi che tengono conto dell'inclinazione del piano di posa;
- β_q , β_c , β_γ sono i coefficienti correttivi che tengono conto dell'inclinazione del piano campagna.

In particolare, per la determinazione del carico verticale di esercizio, si pone:

$$q_{es} = \frac{N}{L' \cdot B'}$$

dove:

- N è la risultante delle azioni verticali agenti sulla fondazione nella condizione di carico considerata, comprensivi del peso della platea;
- L' è la lunghezza ridotta della fondazione;
- B' è la larghezza della fondazione.

Per tener conto dell'eccentricità del carico viene considerata, ai fini del calcolo, una fondazione di dimensioni ridotte pari a:

$$L' = L - 2e_L$$

$$B' = B - 2e_p$$

con e_L ed e_B eccentricità del carico nelle due direzioni.

10.4.2 Criterio di verifica a scorrimento sul piano di posa (GEO)

La verifica allo scorrimento del muro consiste nell'assicurare la stabilità dell'opera nei confronti di un meccanismo di collasso tale per cui l'intera opera di sostegno va a scorrere sul piano di contatto con il terreno di fondazione. Pertanto essa risulta soddisfatta se la componente delle forze agenti nella direzione parallela al piano di scorrimento risulta inferiore alla forza di attrito che si genera al contatto tra opera e terreno di fondazione. Tale forza risulta proporzionale al peso del muro ed è espressa dalla relazione (per terreni

caratterizzati da $\varphi' \neq 0$ e c' = 0)

APPALTATORE:		LIN	EA FE	RROVIA	RIA NAPOI	LI - B	ARI
Mandataria:	Mandante:		TRAT1	A NAPO	LI-CANCE	LLO	
SALINI IMPREGILO S.p.A. PROGETTISTA:	ASTALDI S.p.A.				00 E PK 15+5	,	
Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOT	ECNI S.p.A. ROCKSOIL S.p.A.			,	AMBITO DEGL ERTITO IN LE		
PROGETTO ESECUTIVO		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo		IF1M	0.0.E.ZZ	CL	IN.01.00.001	С	163 di 189

$$R = N \cdot tan\varphi'_d$$

dove:

- R è la forza resistente allo scorrimento;
- N è la risultante delle azioni verticali agenti sul piano di fondazione;
- f'd è l'angolo di resistenza a taglio del terreno di fondazione relativamente all'approccio di progetto.

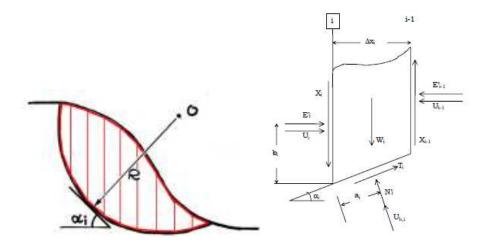
10.4.3 Criterio di verifica a ribaltamento (EQU)

Il meccanismo di collasso per ribaltamento per i muri di sostegno prevede la rotazione intorno all'estremità di valle del muro, che diventa il centro di rotazione dell'opera. La verifica risulta soddisfatta se:

$$\frac{M_s}{M_r} \ge R_2 = 1.00$$

dove:

Ms è il momento stabilizzante rispetto al centro di rotazione dovuto al peso del muro;


Mr è il momento ribaltante rispetto al centro di rotazione dovuto alla spinta del terrapieno e di eventuali sovraccarichi.

Nelle verifiche condotte per azioni sismiche, la spinta del terrapieno è stata valutata secondo il metodo pseudo-statico, come illustrato nel seguito; è stata altresì tenuto in conto il contributo instabilizzante svolto dalla forza di inerzia dovuta al peso del paramento.

10.4.4 Criterio di verifica a stabilità globale (GEO)

Si fa riferimento al metodo dell'equilibrio limite, che permette di valutare il valore del fattore di sicurezza analizzando le azioni agenti sui conci in cui il pendio viene suddiviso. Il fattore di sicurezza deriva dallo studio delle condizioni di equilibrio di ciascun concio come sintetizzato nella figura a destra.

APPALTATORE:			LIN	EA FE	RROVIA	ria napoi	_I - B <i>i</i>	ARI
Mandataria:	Mandante:			TRAT1	A NAPO	LI-CANCE	LLO	
PROGETTISTA: Mandataria:	O S.p.A. ASTALDI S Mandante:	.р.А.	OPERE A	CCESSO	RIE, NELL'A	00 E PK 15+5	I INTEF	RVENTI DI
SYSTRA S.A.	SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL L	J.L. 133/2	014, CONV	ERTITO IN LE	GGE I	04 / 2014
PROGETTO ESECU	JTIVO		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcol	0		IF1M	0.0.E.ZZ	CL	IN.01.00.001	С	164 di 189

Le analisi presentate fanno riferimento al metodo di Bishop. Le ipotesi alla base del metodo sono:

- Stato di deformazione piano, ovvero superficie cilindrica e trascurabilità degli effetti tridimensionali:
- Arco della superficie di scorrimento alla base del concio approssimabile con la relativa corda;
- Comportamento del terreno rigido-perfettamente plastico e criterio di rottura di Mohr-Coulomb.

In base a tali ipotesi, il coefficiente di sicurezza viene valutato come il rapporto fra momento stabilizzante e momento ribaltante rispetto al centro della circonferenza.

Per la schematizzazione dell'azione sismica, la normativa prevede il ricorso al metodo di calcolo pseudostatico. Secondo tale metodo l'azione sismica è rappresentata da un'azione statica equivalente, costante nello spazio e nel tempo, proporzionale al peso W del volume di terreno potenzialmente instabile.

Nelle verifiche allo stato limite ultimo, le componenti orizzontale e verticale di tale azione possono esprimersi come

$$F_h = k_h W$$

$$F_v = k_v W$$

con kh e kv rispettivamente pari ai coefficienti sismici orizzontale e verticale:

$$k_h = \beta s S_S S_T a_0/g$$

$$k_v = \pm 0.5 \ k_h$$

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A. PROGETTISTA:	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO Relazione di calcolo	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA IF1M 0.0.E.ZZ CL IN.01.00.001 C 165 di 189

dove:

- a_g è l'accelerazione orizzontale massima attesa su sito di riferimento rigido;
- g è l'accelerazione di gravità;
- S_S e S_T sono coefficienti legati alla topografia e alla categoria di suolo già descritti;
- $_{\mbox{\scriptsize -}}$ βs è il coefficiente di riduzione dell'accelerazione massima attesa in sito, ricavabile dalla Tabella 7.11.1 delle NTC 2008 e nel seguito riportata in funzione della categoria di suolo e del valore di ag.

	Categoria di sottosuolo		
	A	B, C, D, E	
	eta_{s}	β_{s}	
$0.2 < a_{\rm g}(g) \le 0.4$	0,30	0,28	
$0.1 \le a_{\rm g}(g) \le 0.2$	0,27	0,24	
$a_{g}(g) \leq 0,1$	0,20	0,20	

Nel caso in esame, pertanto, si ha:

 $\beta_s = 0.28$

 $k_h = 0.0844$

 $k_v = 0.0422$

 $S_S = 1.37$

 $S_T = 1.00$

10.4.5 Criteri di verifica a presso(tenso)flessione (STR)

La verifica a flessione, condotta per la platea di fondazione, consiste nell'assicurare che in ogni sezione il momento resistente risulti superiore o uguale al momento flettente di calcolo.

Con riferimento alle sezioni presso-inflesse del paramento e semplicemente inflesse della zattera, le verifiche di resistenza (SLU) si eseguono controllando che:

$$M_{Rd} = M_{Rd} (N_{Ed}) \ge M_{Ed}$$

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	001 AL D.L. 100/2014, 0011 ELITH 10 IN LEGAL 104 / 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 166 di 189

dove:

 M_{Rd} è il valore di calcolo del momento resistente corrispondente a N_{Ed} ;

 $M_{\it Ed}$ è il valore di calcolo della componente flettente dell'azione.

Le verifiche di tutti gli elementi sono state effettuate in base a semplici schemi noti della Scienza delle Costruzioni.

10.4.6 Criteri di verifica a taglio (STR)

Per elementi sprovvisti di armature trasversali resistenti a taglio, la resistenza a taglio V_{Rd} viene valutata sulla base della resistenza a trazione del calcestruzzo.

La verifica di resistenza si pone con:

$$V_{Rd} = \left\{ \frac{0.18 \cdot k \cdot \left(100 \cdot \rho_l \cdot f_{ck}\right)^{\frac{1}{3}}}{\gamma_c} + 0.15 \cdot \sigma_{cp} \right\} \cdot b_w \cdot d \ge \left(\nu_{\min} + 0.15 \cdot \sigma_{cp}\right) \cdot b_w \cdot d$$

con:

$$k = 1 + \left(\frac{200}{d}\right)^{\frac{1}{2}} \le 2$$

$$v_{\min} = 0.035 \cdot k^{\frac{3}{2}} \cdot f_{ck}^{\frac{1}{2}}$$

dove:

d è l'altezza utile della sezione;

$$\rho_l = \frac{A_{sl}}{(b_w \cdot d)}$$
 è il rapporto geometrico di armatura longitudinale di trazione;

$$\sigma_{cp} = \frac{N_{Ed}}{A_c}$$
 è la tensione media di compressione della sezione;

 $b_{\scriptscriptstyle W}$ è la larghezza minima della sezione (in mm).

 $f_{ck} \,\grave{e}$ la resistenza a compressione cilindrica del calcestruzzo;

$$\gamma c = 1.5$$
.

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	001 AE 5.2. 100/2014, 0011 EE 11111 O III EE 1111
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 167 di 189

10.5 VERIFICHE AGLI STATI LIMITE ULTIMI

Le sollecitazioni di calcolo per le verifiche SLU e SLV sono state ottenute calcolando le risultanti di tutte le azioni normali, taglianti e flettenti rispetto al piano di fondazione.

Coefficienti di sicurezza

	Scorrimento	Ribaltamento	Carico limite
Statico	1,20	3,97	1,20
Sismico	1,27	3,88	1,52

10.5.1 Verifica GEO a capacità portante della fondazione

La verifica si effettua tanto in condizioni statiche quanto in condizioni dinamiche nella combinazione A2+M2+R2.

Condizione statica

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO Relazione di calcolo	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA IF1M 0.0.E.ZZ CL IN.01.00.001 C 168 di 189

VERIFICA CARICO LIMITE DELLA FONDAZIONE (STR/GEO)

Risultante forz	e verticali (N) Pm + Pt + v + Stv + Sqv (+ Sovr acc)		Nmin 480,29	Nmax 666,45	(kN/m)
Risultante forze	e orizzontali (T) Sth + Sqh + f - Sp		207,76	207,76	(kN/m)
Risultante dei	momenti rispetto al piede di valle (MM) ΣM		733,99	1245,93	(kNm/m)
Momento rispe M =	etto al baricentro della fondazione (M) Xc*N - MM		226,58	86,96	(kNm/m)
Formula Gen	erale per il Calcolo del Carico Limite Unitrario ((Brinch-Hanse)	n, 1970)		
Fondazione Na	astriforme				
qlim = c'Nc*ic	+ q ₀ *Nq*iq + 0,5*γ1*Β*Νγ*iγ				
c1' φ1' γ1	coesione terreno di fondaz. angolo di attrito terreno di fondaz. peso unità di volume terreno fondaz.		0,00 27,45 18,25		(kPa) (°) (kN/m³)
$q_0 = \gamma d^*H2'$	sowaccarico stabilizzante		24,70		(kN/m^2)
e = M / N B*= B - 2e	eccentricità larghezza equivalente		0,47 3,06	0,13 3,74	(m) (m)
I valori di Nc, Nq e Ng sono stati valutati con le espressioni suggerite da Vesic (1975)					
$Nq = tg^{2}(45 + c)$ $Nc = (Nq - 1)/t$ $N\gamma = 2^{*}(Nq + 1)$	$g(\phi')$ (2+ π in cond. nd)		13,86 24,76 15,45		(-) (-) (-)
I valori di ic, iq e i γ sono stati valutati con le espressioni suggerite da Vesic (1975)					
iq = (1 - T/(N + ic = iq - (1 - iq)) $i\gamma = (1 - T/(N + ic = iq - iq))$	/(Nq - 1)		0,32 0,27 0,18	0,47 0,27 0,18	(-) (-) (-)
(fondazione nastriforme m = 2)					
qlim	(carico limite unitario)		188,96	240,92	(kN/m^2)
FS carico li	mito E alima*D*/N	Nmin	1,20	>	
ro carico II	mite F = qlim*B*/ N	Nmov	1 25		1

1,35 >

Nmax

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	·
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 169 di 189

Condizione sismica +

VERIFICA A CARICO LIMITE DELLA FONDAZIONE

N = Pm+Pt+vp+vs+Sst1v+Ssq1v+Psv+Ptsv+(Sovracc)	FS carico l	mite F = qlim*B*/ N	Nmin Nmax	1,56 1,62	>	1
$\begin{array}{llllllllllllllllllllllllllllllllllll$	qlim	(carico limite unitario)		232,04	245,71	(kN/m^2)
$N = Pm+Pt+vp+vs+Sst1v+Ssq1v+Psv+Ptsv+(Sovracc) 475,06 503,70 (kN/m). Pisultante forze orizzontali (T) T = Sst1h + Ssq1h + fp + fs + Ps h + Ptsh - Sp 183,95 (kN/m). Pisultante dei momenti rispetto al piede di valle (MM) MM = \SigmaM 757,59 836,35 (kN/m/m). Momento rispetto al baricentro della fondazione (M) M = Xc^*N - MM 192,53 171,05 (kN/m/m). Promula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970). Promula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970). Promazione Nastriforme Qlim = c^*Nc^*ic + q_0^*Nq^*iq + 0,5^*\gamma1^*B^*N\gamma^*i\gamma c1^* coesione terreno di fondaz. 0,00 (kN/mq) 27,45 (9) coesione terreno di fondaz. 27,45 (9) coesione terreno di fondaz. 27,45 (9) coesione terreno di di volume terreno fondaz. 18,25 (kN/m³) qo = \gammad"H2' sovraccarico stabilizzante 24,70 (kN/m²) 3,32 (m) I valori di Nc, Nq e Ng sono stati valutati con le espressioni suggerite da Vesic (1975). Nq = t t t t t t t t t t$	(fondazione na	striforme m = 2)				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	ic = iq - (1 - iq)	/(Nq - 1)		0,33	0,36	(-)
N = Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv + (Sovr acc) 475,06 503,70 (kN/m). Risultante forze orizzontali (T) T = Sst1h + Ssq1h + fp + fs +Ps h + Ptsh - Sp 183,95 (kN/m). Risultante dei momenti rispetto al piede di valle (MM) MM = Σ M 757,59 836,35 (kNm/m). Momento rispetto al baricentro della fondazione (M) M = χ c*N - MM 192,53 171,05 (kNm/m). The substitution of th	I valori di ic, iq	e i γ sono stati valutati con le espressioni suggerit	e da Vesic (1975)			
$N = Pm + Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv + (Sovracc) 475,06 503,70 (kN/m)$ $Risultante forze orizzontali (T)$ $T = Sst1h + Ssq1h + fp + fs + Ps h + Ptsh - Sp 183,95 (kN/m)$ $Risultante dei momenti rispetto al piede di valle (MM)$ $MM = \Sigma M 757,59 836,35 (kNm/m)$ $Momento rispetto al baricentro della fondazione (M)$ $M = Xc^*N - MM 192,53 171,05 (kNm/m)$ $Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)$ $Fondazione Nastriforme$ $qlim = c^*Nc^*ic + q_0^*Nq^*iq + 0,5^*\gamma^1*B^*N\gamma^*i\gamma$ $c1^* coesione terreno di fondaz. 0,00 (kN/mq)$ $q_1' angolo di attrito terreno di fondaz. 27,45 (°)$ $r_1 peso unità di volume terreno fondaz. 18,25 (kN/m^3)$ $q_0 = \gamma d^*H2' sovraccarico stabilizzante 24,70 (kN/m^2)$ $e = M / N eccentricità 0,41 0,34 (m)$ $B^* = B - 2e larghezza equivalente 3,19 3,32 (m)$	Nc = (Nq - 1)/t	$g(\phi')$ (2+ π in cond. nd)		24,76		(-)
N = Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv + (Sovr acc) 475,06 503,70 (kN/m) Risultante forze orizzontali (T) T = Sst1h + Ssq1h + fp + fs + Ps h + Ptsh - Sp 183,95 (kN/m) Risultante dei momenti rispetto al piede di valle (MM) MM = Σ M 757,59 836,35 (kNm/m) Momento rispetto al baricentro della fondazione (M) M = Xc*N - MM 192,53 171,05 (kNm/m) Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970) Fondazione Nastriforme qlim = c'Nc*ic + q_0 *Nq*iq + 0 ,5*γ1*B*Nγ*iγ c1' coesione terreno di fondaz. 0,00 (kN/mq) φ1' angolo di attrito terreno di fondaz. 27,45 (°) γ1 peso unità di volume terreno fondaz. 18,25 (kN/m³) q0 = γd*H2' sovraccarico stabilizzante 24,70 (kN/m²)	I valori di Nc, N	lq e Ng sono stati valutati con le espressioni sugg	erite da Vesic (1975	5)		
$N = Pm + Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv + (Sovr acc) $ 475,06 503,70 (kN/m) $Risultante forze orizzontali (T)$ $T = Sst1h + Ssq1h + fp + fs + Ps h + Ptsh - Sp $ 183,95 (kN/m) $Risultante dei momenti rispetto al piede di valle (MM)$ $MM = \Sigma M $ 757,59 836,35 (kNm/m) $Momento rispetto al baricentro della fondazione (M)$ $M = Xc*N - MM $ 192,53 171,05 (kNm/m) $Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)$ $Fondazione Nastriforme$ $qlim = c'Nc*ic + q₀*Nq*iq + 0,5*γ1*B*Nγ*iγ$ $c1' coesione terreno di fondaz. 0,00 (kN/mq) (γ1' angolo di attrito terreno di fondaz. 27,45 (°) (γ) q1' angolo di attrito terreno di fondaz. 18,25 (kN/m³)$				=	,	` '
N = Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv + (Sovr acc) 475,06 503,70 (kN/m) Risultante forze orizzontali (T) T = Sst1h + Ssq1h + fp + fs + Ps h + Ptsh - Sp 183,95 (kN/m) Risultante dei momenti rispetto al piede di valle (MM) MM = Σ M 757,59 836,35 (kNm/m) Momento rispetto al baricentro della fondazione (M) M = Xc^*N - MM 192,53 171,05 (kNm/m) Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970) Fondazione Nastriforme qlim = c^*Nc^*ic + $q_0^*Nq^*iq$ + $0.5^*\gamma1^*B^*N\gamma^*i\gamma$ c1' coesione terreno di fondaz. 0,00 (kN/mq) q_1' angolo di attrito terreno di fondaz. (°)	$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante		24,70		(kN/m^2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	φ1′	angolo di attrito terreno di fondaz.		27,45		(kN/mq) (°) (kN/m³)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	qlim = c'Nc*io	\Rightarrow + q ₀ *Nq*iq + 0,5* γ 1*B*N γ *i γ				
N = Pm + Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv + (Sovr acc) $A75,06$	Fondazione Na	astriforme				
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Formula Gen	erale per il Calcolo del Carico Limite Unitrari	o (Brinch-Hansen,	1970)		
N = Pm + Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv + (Sovr acc) $ 475,06$	•	` ,		192,53	171,05	(kNm/m)
N = Pm + Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv + (Sowr acc) 475,06 503,70 (kN/m) Risultante forze orizzontali (T)				757,59	836,35	(kNm/m)
, ,		` '		183,95		(kN/m)
Risultante forze verticali (N) Nmin Nmax		* *	v + (Sovr acc)			(kN/m)

1,62

Nmax

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	·
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 170 di 189

Condizione sismica –

VERIFICA A	VERIFICA A CARICO LIMITE DELLA FONDAZIONE				
Risultante forz N =	e verticali (N) Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv	Nmin 435,24	Nmax 463,88	(kN/m)	
Risultante forz T =	e orizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh - Sp	177,49		(kN/m)	
Risultante dei MM =	momenti rispetto al piede di valle (MM) ΣM	679,99	758,75	(kNm/m)	
Momento rispe M =	etto al baricentro della fondazione (M) Xc*N - MM	190,50	169,02	(kNm/m)	
Formula Gen	erale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1	970)			
Fondazione Na	astriforme				
qlim = c'Nc*id	$c + q_0*Nq*iq + 0,5*\gamma1*B*N\gamma*i\gamma$				
c1' φ1' γι	coesione terreno di fondaz. angolo di attrito terreno di fondaz. peso unità di volume terreno fondaz.	0,00 27,45 18,25		(kN/mq) (°) (kN/m³)	
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante	24,70		(kN/m^2)	
e = M / N B*= B - 2e	eccentricità larghezza equivalente	0,44 3,12	0,36 3,27	(m) (m)	

B*= B - 2e	larghezza equivalente

I valori di Nc, Nq e Ng sono stati valutati con le espressioni suggerite da Vesic	(1975)	
$\begin{array}{ll} Nq = tg^2(45+\phi'/2)^*e^{(\pi^*tg(\phi'))} & (1 \text{ in cond. nd}) \\ Nc = (Nq-1)/tg(\phi') & (2+\pi \text{ in cond. nd}) \\ N\gamma = 2^*(Nq+1)^*tg(\phi') & (0 \text{ in cond. nd}) \end{array}$	13,86 24,76 15,45	(-) (-) (-)
I valori di ic, iq e i γ sono stati valutati con le espressioni suggerite da Vesic (19	75)	
$\begin{split} &iq = (1 - T/(N + B^*c'cotg_{\phi'}))^m \\ ⁣ = iq - (1 - iq)/(Nq - 1) \\ &i\gamma = (1 - T/(N + B^*c'cotg_{\phi'}))^{m+1} \end{split}$	0,35 0,38 0,30 0,33 0,21 0,21	(-) (-) (-)
(fondazione nastriforme m = 2)		
qlim (carico limite unitario)	211,58 226,30	(kN/m ²)

FS carico limite	F = qlim*B*/N	Nmin	1,52	>	1
1 3 carico illilite	1 = qiiii 5 / N	Nmax	1,60	>	

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA: Mandataria: Mandante:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 171 di 189

10.5.2 Verifica GEO a scorrimento sul piano di posa della fondazione

La verifica si effettua tanto in condizioni statiche quanto in condizioni dinamiche nella combinazione A2+M2+R2.

Condizione statica

VERIFICA ALLO SCORRIMENTO (STR/GEO)

<u>veri</u>	/ERIFICA ALLO SCORRIMENTO (STR/GEO)							
Risult N	ante forze	e verticali (N) Pm + Pt + v + Stv + Sqv perm + Sqv acc	480,29	(kN/m)				
Risult T	tante forze	e orizzontali (T) Sth + Sqh + f	207,76	(kN/m)				
Coeffi f	ciente di =	attrito alla base (f) tgφ1'	0,52	(-)				
Fs	scorr.	(N*f + Sp) / T	1,20	>	1			
<u>Con</u>	<u>dizione</u>	sismica+						
VERI	VERIFICA ALLO SCORRIMENTO							
Risult N	(kN/m)							
Risult T	ante forze	e orizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh	183,95	(kN/m)				
Coeffi f	ciente di =	attrito alla base (f) tgφ1'	0,52	(-)				
Fs	=	(N*f + Sp) / T	1,34	>	1			

Condizione sismica-

VERIFICA ALLO SCORRIMENTO

Risultante for	ze verticali (N) Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv	435,24	(kN/m)	
Risultante forz	ze orizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh	177,49	(kN/m)	
Coefficiente d f =	i attrito alla base (f) $$tg_{\phi 1}$'$	0,52	(-)	
Fs =	(N*f + Sp) / T	1,27	>	1

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	, and the second
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 172 di 189

10.5.3 Verifica EQU a ribaltamento

La verifica si effettua tanto in condizioni statiche quanto in condizioni dinamiche nella combinazione EQU+M2+R2.

Condizione statica

Momento ribaltante (Mr)

Ms / Mr

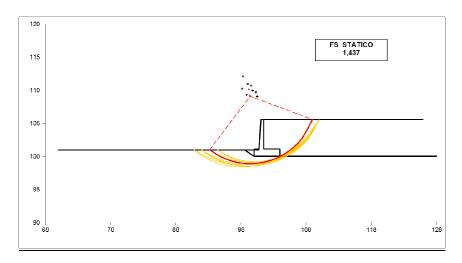
Fr

MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts

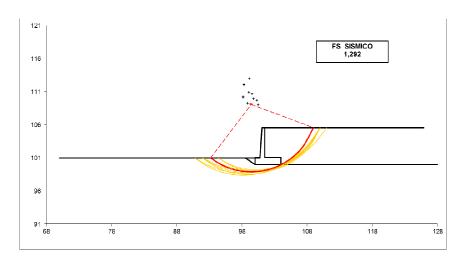
VERIFICA AL RIBALTAMENTO (EQU)

	iento stabi =	lizzante (Ms) Mm + Mt + Mfext3	824,51	(kNm/m)			
Mom Mr	ento ribalt =	ante (Mr) MSt + MSq + Mfext1+ Mfext2 + MSp	207,46	(kNm/m)			
Fs	ribaltan	nento Ms / Mr	3,97	>	1		
Con	<u>idizione</u>	sismica+					
<u>VER</u>	RIFICA AL	RIBALTAMENTO					
	iento stabi =	lizzante (Ms) Mm + Mt + Mfext3	916,12	(kNm/m)			
Mom Mr	ento ribalt =	ante (Mr) MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts	158,53	(kNm/m)			
Fr	=	Ms / Mr	5,78	>	1		
Condizione sismica-							
<u>VER</u>	VERIFICA AL RIBALTAMENTO						
Mom Ms	iento stabi =	lizzante (Ms) Mm + Mt + Mfext3	916,12	(kNm/m)			

236,13 (kNm/m)


3,88

APPALTATORE:			LIN	EA FE	RROVIA	RIA NAPOI	_I - B <i>i</i>	4RI
Mandataria:	Mandante:			TRAT1	A NAPO	LI-CANCE	LLO	
SALINI IMPREGILO S.p.A. PROGETTISTA:	ASTALDI S	5.p.A.	IN VARIA	NTE TRA	LE PK 0+0	00 E PK 15+5	85, INC	LUSE LE
Mandataria: Mandante:					,	MBITO DEGL		
I———	-SOTECNI S.p.A.	ROCKSOIL S.p.A.	CUI AL E).L. 133/2	014, CONV	ERTITO IN LE	GGE 16	64 / 2014
PROGETTO ESECUTIVO			PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA
Relazione di calcolo			IF1M	0.0.E.ZZ	CL	IN.01.00.001	С	173 di 189


10.5.4 Verifica GEO a stabilità globale

Le verifiche effettuate vengono di seguito presentate in forma sintetica. Nelle figure, in alto, è indicato il coefficiente di sicurezza minimo FS che fa riferimento alla superficie di scorrimento critica evidenziata in rosso; il valore FS minimo deve essere confrontato con il coefficiente di sicurezza previsto dalla normativa per la combinazione considerata: R2=1.10.

Condizione statica

Condizione sismica

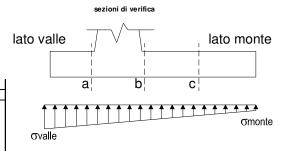
APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 174 di 189

Tutte le verifiche sono soddisfatte.

10.5.5 Verifiche STR

Le verifiche vengono condotte, tanto in condizione statica che in condizione dinamica, nella combinazione A1+M1+R1.

CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

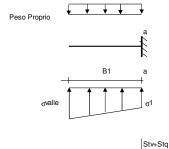


ovalle = N / A + M / Wggomonte = N / A - M / Wgg

 $A = 1.0^{+}B$ = 4,00 (m²)

Wgg = $1.0^{+}B^{2}/6$ = 2,67 (m³)

caso	N	М	σvalle	♂monte
Caso	[kN]	[kNm]	[kN/m ²]	[kN/m ²]
statico	491,30	168,39	185,97	59,68
Statico	706,10	7,29	179,26	173,79
sisma+	472,01	126,39	165,40	70,61
SiSilia+	500,65	104,91	164,50	85,82
sisma-	432,42	128,41	156,26	59,95
sisilia-	461,06	106,93	155,36	75,17



Mensola Lato Valle

Peso Proprio. PP = 27,50 (kN/m)

 $\begin{aligned} Ma &= \ _{G}1^{*}B1^{2}/2 + (_{G}valle - _{G}1)^{*}B1^{2}/3 - PP^{*}B1^{2}/2^{*}(1\pm kv) \\ Va &= \ _{G}1^{*}B1 + (_{G}valle - _{G}1)^{*}B1/2 - PP^{*}B1^{*}(1\pm kv) \end{aligned}$

caso	σvalle	σ1	Ma	Va
Caso	[kN/m ²]	[kN/m ²]	[kNm]	[kN]
statico	185,97	161,97	43,46	111,32
Statico	179,26	178,22	43,73	114,94
sisma+	165,40	147,39	37,72	99,14
sisilia+	164,50	149,55	38,13	99,26
sisma-	156,26	137,96	35,79	92,12
	155,36	140,13	35,46	92,24

B5 - B5/2

Peso del Terrapieno

Mensola Lato Monte

PP	=	27,50	(kN/m^2)	peso proprio soletta fondazio
PD	=	0.00	(kN/m)	peso proprio dente

		Nmin	N max stat	N max sism	
pm	=	90,00	175,92	101,46	(kN/m ²)
pvb	=	90,00	175,92	101,46	(kN/m ²)
pvc	=	90,00	175,92	101,46	(kN/m ²)

$$\begin{split} Mb &= (\sigma_{monte} - (pvb + PP)^*(1\pm kv))^*B5^2/2 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb))^*(1\pm kv)^*B5^2/3 + \\ &- (Stv + Sqv)^*B5 - PD^*(1\pm kv)^*(B5 - Bd/2) - PD^*kh^*(Hd + H2/2) + Msp + Sp^*H2/2 \end{split}$$

$$\label{eq:monter} \begin{split} Mc = & (g_{monter} \cdot (pvc + PP)^*(1\pm kv))^*(B5/2)^2/2 + (g2c \cdot g_{monte})^*(B5/2)^2/6 - (pm \cdot pvc)^*(1\pm kv)^*(B5/2)^2/3 + (Stv + Sqv)^*(B5/2) \cdot PD^*(1\pm kv)^*(B5/2 \cdot Bd/2) \cdot PD^*kh^*(Hd + H2/2) + Msp + Sp^*H2/2 \end{split}$$

 $Vb = (\sigma_{monte} - (pvb + PP)^{\star}(1 \pm kv))^{\star}B5 + (\sigma^{2}b - \sigma_{monte})^{\star}B5/2 - (pm - pvb))^{\star}(1 \pm kv)^{\star}B5/2 - (Stv + Sqv) - PD^{\star}(1 \pm kv)$

 $Vc = (\sigma_{monte} - (pvc + PP)^*(1\pm kv))^*(B5/2) + (\sigma^2 c - \sigma_{monte})^*(B5/2)/2 - (pm-pvc)^*(1\pm kv)^*(B5/2)/2 - (Stv + Sqv) - PD^*(1\pm kv) + (\sigma^2 c - \sigma_{monte})^*(B5/2)/2 - (pm-pvc)^*(1\pm kv)^*(B5/2)/2 - (Stv + Sqv) - PD^*(1\pm kv) + (\sigma^2 c - \sigma_{monte})^*(B5/2)/2 - (pm-pvc)^*(B5/2)/2 - (pm-pvc)^*(B5/2)/2$

APPALTATORE:

Mandataria: Mandante: SALINI IMPREGILO S.p.A. ASTALDI S.p.A.

PROGETTISTA:

Mandataria:

SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. SYSTRA S.A.

PROGETTO ESECUTIVO Relazione di calcolo

LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

PROGETTO LOTTO CODIFICA DOCUMENTO REV. **PAGINA** 0.0.E.ZZ IN.01.00.001 С 175 di 189

	omonte	σ2b	Mb	Vb	σ 2c	Mc	Vc
caso	[kN/m ²]	[kN/m ²]	[kNm]	[kN]	[kN/m ²]	[kNm]	[kN]
statico	59,68	138,61	-328,90	-138,06	99,14	-150,11	-139,78
	173,79	177,21	-319,46	-161,97	175,50	-137,92	-128,14
alama.	70,61	129,85	-237,57	-111,14	100,23	-101,01	-101,20
sisma+	85,82	135,00	-237,99	-115,67	110,41	-99,80	-100,32
-1	59,95	120,14	-229,83	-106,85	90,05	-97,76	-98,20
sisma-	75,17	125,29	-226,90	-108,70	100,23	-95,71	-95,98

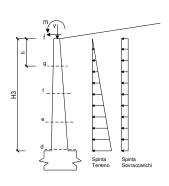
CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo

Mt stat = $\frac{1}{2}$ Ka_{orizz.}* $\gamma^*(1\pm kv)^*h^{2*}h/3$

 $Mt \ sism = \frac{1}{2} \star \gamma \star (Kas_{orizz.} \star (1\pm kv) - Ka_{orizz.}) \star h^{2\star} h/2 \quad o \star h/3$

Mq = $\frac{1}{2}$ Ka_{orizz}*q*h² $M_{ext} = m+f^*h$ $M_{inerzia} = \sum Pm_i^*b_i^*kh$


 $N_{ext} = v$

N $_{pp+inerzia}=\Sigma Pm_{i}^{\star}(1\pm kv)$

Vt stat = $\frac{1}{2}$ Ka_{orizz.}* $\gamma^*(1\pm kv)^*h^2$

 $Vt \; sism = \; \frac{1}{2} \; ^{\star} \; \gamma \; ^{\star} (Kas_{orizz.} ^{\star} (1 \pm kv) - Ka_{orizz.})^{\star} h^2$

 $\begin{array}{lll} Vq & = Ka_{orizz}^{} {}^{\star}q^{\star}h \\ V_{ext} & = f \\ V_{inerzia} & = \Sigma Pm_i^{}{}^{\star}kh \end{array}$

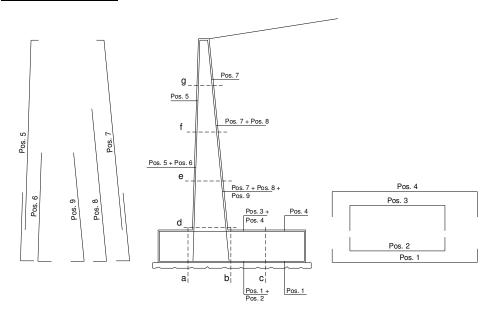
condizione statica

sezione h		Mt	Mq	M _{ext}	M _{tot}	N _{ext}	N _{pp}	N _{tot}
552.5	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	4,50	77,37	207,60	0,00	284,97	0,00	64,13	64,13
е-е	3,38	32,64	116,77	0,00	149,41	0,00	44,51	44,51
f-f	2,25	9,67	51,90	0,00	61,57	0,00	27,28	27,28
g-g	1,13	1,21	12,97	0,00	14,18	0,00	12,45	12,45

sezione	h	Vt	Vq	V _{ext}	V _{tot}
30210110	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	4,50	51,58	92,26	0,00	143,85
e-e	3,38	29,01	69,20	0,00	98,21
f-f	2,25	12,90	46,13	0,00	59,03
g-g	1.13	3.22	23.07	0.00	26.29

condizione sismica +

sezione	h	Mt stat	Mt sism	Mq	M _{ext}	M _{inerzia}	M _{tot}	N _{ext}	N _{pp+inerzia}	N _{tot}
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	4,50	59,52	29,01	63,40	0,00	12,14	164,07	0,00	67,12	67,12
e-e	3,38	25,11	12,24	35,66	0,00	6,45	79,47	0,00	46,59	46,59
f-f	2,25	7,44	3,63	15,85	0,00	2,70	29,62	0,00	28,56	28,56
g-g	1,13	0,93	0,45	3,96	0,00	0,63	5,98	0,00	13,03	13,03


sezione	h	Vt stat	Vt sism	Vq	V_{ext}	V _{inerzia}	V_{tot}
	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	4,50	39,68	12,90	28,18	0,00	5,99	86,74
e-e	3,38	22,32	7,25	21,13	0,00	4,16	54,87
f-f	2,25	9,92	3,22	14,09	0,00	2,55	29,78
g-g	1,13	2,48	0,81	7,04	0,00	1,16	11,49

sezione	h	Mt stat	Mt sism	Mq	M _{ext}	M _{inerzia}	M _{tot}	N _{ext}	N _{pp+inerzia}	N _{tot}
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	4,50	59,52	20,04	64,73	0,00	12,14	156,42	0,00	61,13	61,13
e-e	3,38	25,11	8,45	36,41	0,00	6,45	76,42	0,00	42,43	42,43
f-f	2,25	7,44	2,50	16,18	0,00	2,70	28,83	0,00	26,01	26,01
g-g	1,13	0,93	0,31	4,05	0,00	0,63	5,92	0,00	11,86	11,86

sezione	h	Vt stat	Vt _{sism}	Vq	V _{ext}	V _{inerzia}	V _{tot}
	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	4,50	39,68	8,91	28,77	0,00	5,99	83,34
e-e	3,38	22,32	5,01	21,58	0,00	4,16	53,06
f-f	2,25	9,92	2,23	14,38	0,00	2,55	29,08
g-g	1,13	2,48	0,56	7,19	0,00	1,16	11,39

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO ASTALDI S.p.A. SALINI IMPREGILO S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. SYSTRA S.A. PROGETTO ESECUTIVO PROGETTO LOTTO CODIFICA DOCUMENTO REV. **PAGINA** Relazione di calcolo IF1M 0.0.E.ZZ CL IN.01.00.001 С 176 di 189

SCHEMA DELLE ARMATURE

ARMATURE

Figura 24-Schema armature

In definitiva risulta:

- Armatura longitudinale

Posizione 1: 1 registro 5 Ø20

Posizione 4: 1 registro 5 Ø20

Posizione 5: 1 registro 5 Ø20

Posizione 7: 1 registro 5 Ø20

- Armatura trasversale

Non necessaria

APPALTATORE:

Mandataria:

SALINI IMPREGILO S.p.A.

PROGETTISTA:

Mandante:

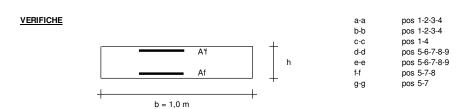
ASTALDI S.p.A.

SYSTRA-SOTECNI S.p.A.

Mandataria:

SYSTRA S.A.

PROGETTO ESECUTIVO


Relazione di calcolo

LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

 PROGETTO
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 PAGINA

 IF1M
 0.0.E.ZZ
 CL
 IN.01.00.001
 C
 177 di 189

ROCKSOIL S.p.A.

Sez.	М	N	h	Af	A'f	Mu
(-)	(kNm)	(kN)	(m)	(cm²)	(cm ²)	(kNm)
a - a	43,73	0,00	1,10	15,71	31,42	632,86
b - b	-328,90	0,00	1,10	31,42	15,71	1247,44
C - C	-150,11	0,00	1,10	15,71	15,71	632,85
d - d	284,97	64,13	0,74	15,71	15,71	432,27
е -е	149,41	44,51	0,66	15,71	15,71	371,81
f - f	61,57	27,28	0,57	15,71	15,71	313,57
g - g	14,18	12,45	0,49	15,71	15,71	257,27

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

Sez.	V_{Ed}	h	V_{rd}	ø staffe	i orizz.	i vert.	θ	V_{Rsd}	
(-)	(kN)	(m)	(kN)	(mm)	(cm)	(cm)	(°)	(kN)	-
a - a	114,94	1,10	357,90	10	20	20	21,8	1815,17	Armatura a taglio non necessaria
b - b	161,97	1,10	384,32	10	20	20	21,8	1815,17	Armatura a taglio non necessaria
C - C	139,78	1,10	357,90	10	20	20	21,8	1815,17	Armatura a taglio non necessaria
d - d	143,85	0,74	269,64	10	20	20	21,8	1192,82	Armatura a taglio non necessaria
e -e	98,21	0,66	242,92	10	20	20	21,8	1045,88	Armatura a taglio non necessaria
f - f	59,03	0,57	219,09	10	20	20	21,8	898,94	Armatura a taglio non necessaria
g - g	26,29	0,49	199,71	10	20	20	21,8	752,00	Armatura a taglio non necessaria

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 178 di 189

10.6 VERIFICHE AGLI STATI LIMITE DI ESERCIZIO

Alle prescrizioni normative presenti in NTC si sostituiscono quelle fornite dalle specifiche RFI (Requisiti concernenti la fessurazione per strutture in c.a., c.a.p. e miste acciaio-calcestruzzo) secondo cui la verifica nei confronti dello stato limite di apertura delle fessure va effettuata utilizzando le sollecitazioni derivanti dalla combinazione caratteristica (rara).

In particolare, per strutture in condizioni ambientali aggressive o molto aggressive, così come identificate nel par. 4.1.2.2.4.3 del DM 14.1.2008, per tutte le strutture a permanente contatto con il terreno e per le zone non ispezionabili di tutte le strutture, l'apertura convenzionale delle fessure dovrà risultare:

• Combinazione Caratteristica (Rara) $\delta_f \leq w_1 = 0.2 \text{ mm}$

Le verifiche tensionali di cui ai par. 4.1.2.2.5.1 e 4.1.2.2.5.2 delle NTC 2008 sono state eseguite per la combinazione rara e la combinazione quasi permanente, controllando che le tensioni nel calcestruzzo e nell'acciaio siano inferiori ai seguenti valori limite:

Le verifiche di tensione si ritengono soddisfatte se sono verificate le seguenti condizioni:

Calcestruzzo

- Combinazione di carico caratteristica (RARA): 0.55 fck
- Combinazione di carico quasi permanente: 0.40 fck

Acciaio

- Combinazione di carico caratteristica (RARA): 0.75 fyk

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO PROGETTO LOTTO CODIFICA DOCUMENTO REV. **PAGINA** Relazione di calcolo 0.0.E.ZZ IN.01.00.001 179 di 189

APPALTATORE:

Mandataria: Mandante:

SALINI IMPREGILO S.p.A. ASTALDI S.p.A.

PROGETTISTA:

Mandataria: Mandante

SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.

PROGETTO ESECUTIVO Relazione di calcolo

LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

PROGETTO I

LOTTO (

CODIFICA D

DOCUMENTO IN.01.00.001

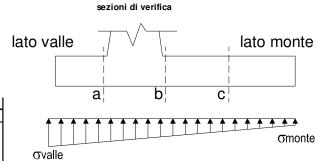
REV. I

PAGINA **180 di 189**

10.6.1 Verifiche a fessurazione

CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

Reazione del terreno

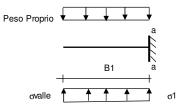

 σ valle = N / A + M / Wgg

omonte = N / A - M / Wgg

 $A = 1.0^*B$ = 4,00 (m²)

 $Wgg = 1.0*B^2/6 = 2,67 (m^3)$

	N	M	σvalle	σmonte
caso	[kN]	[kNm]	[kN/m ²]	[kN/m ²]
Freq.	458,01	55,29	135,24	93,77
	565,41	-25,26	131,88	150,83
Q.P.	441,65	-8,77	107,12	113,70
	470,29	-30,25	106,23	128,92



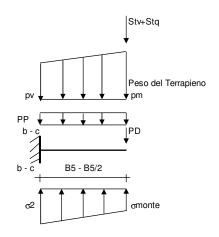
Mensola Lato Valle

Peso Proprio. $PP = 27,50 \quad (kN/m)$

 $Ma = \sigma 1*B1^2/2 + (\sigma valle - \sigma 1)*B1^2/3 - PP*B1^2/2*(1\pm kv)$

caso	σvalle	σ1	Ма
caso	[kN/m ²]	[kN/m ²]	[kNm]
Freq.	135,24	127,36	30,36
	131,88	135,48	30,49
0.0	107,12	108,37	23,12
Q.P.	106,23	110,54	23,15

Mensola Lato Monte


 $\begin{array}{llll} \text{PP} & = & 27,50 & (k\text{N/m}^2) & \text{peso proprio soletta fondazione} \\ \text{PD} & = & 0,00 & (k\text{N/m}) & \text{peso proprio dente} \end{array}$

		Nmin N	max Freq	N max QP	
pm	=	90,00	132,96	101,46	(kN/m^2)
pvb	=	90,00	132,96	101,46	(kN/m^2)
pvc	=	90,00	132,96	101,46	(kN/m^2)

 $\begin{aligned} Mb &= (\sigma_{monte} - (pvb + PP))^*B5^2 / 2 + (\sigma_2 b - \sigma_{monte})^*B5^2 / 6 + (pm - pvb))^*B5^2 / 3 + \\ &- (Stv + Sqv)^*B5 - PD^* (B5 - Bd/2) + Msp + Sp^*H2 / 2 \end{aligned}$

 $\begin{aligned} \text{Mc} = & (\sigma_{monte} - (pvc + PP))^* (B5/2)^2 / 2 + (\sigma^2 c - \sigma_{monte})^* (B5/2)^2 / 6 - (pm - pvc)^* (B5/2)^2 / 3 + \\ & - (Stv + Sqv)^* (B5/2) - PD^* (B5/2 - Bd/2) + Msp + Sp^* H2/2 \end{aligned}$

caso	omonte	σ2b	Mb	σ 2c	Мс
caso	[kN/m ²]	[kN/m ²]	[kNm]	[kN/m²]	[kNm]
Freq.	93,77	119,69	-194,38	106,73	-88,77
rieq.	150,83	138,98	-189,66	144,90	-82,68
Q.P.	113,70	109,59	-122,46	111,64	-56,65
Q.P.	128,92	114,74	-121,20	121,83	-55,03

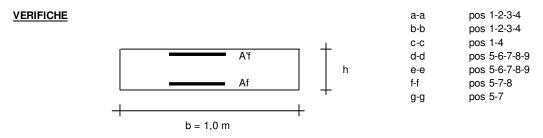
APPALTATORE:

Mandataria: Mandante:
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.

PROGETTISTA:

Mandataria: Mandante

SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.


PROGETTO ESECUTIVO Relazione di calcolo

LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

 PROGETTO
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 PAGINA

 IF1M
 0.0.E.ZZ
 CL
 IN.01.00.0001
 C
 181 di 189

condizione Frequente

Sez.	М	N	h	Af	A'f	σο	σ^{f}	wk	w amm
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm^2)	(mm)	(mm)
a - a	30,49	0,00	1,10	15,71	15,71	0,28	19,61	0,023	0,200
b - b	-194,38	0,00	1,10	15,71	15,71	1,79	124,99	0,145	0,200
C - C	-88,77	0,00	1,10	15,71	15,71	0,82	57,08	0,066	0,200
d - d	173,31	64,13	0,74	15,71	15,71	3,13	153,00	0,178	0,200
е -е	89,12	44,51	0,66	15,71	15,71	1,99	88,22	0,102	0,200
f - f	35,89	27,28	0,57	15,71	15,71	1,02	39,75	0,046	0,200
g - g	8,04	12,45	0,49	15,71	15,71	0,31	9,27	0,010	0,200

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

condizione Quasi Permanente

Sez.	М	N	h	Af	A'f	$\sigma^{_{\mathrm{C}}}$	σ^{f}	wk	\mathbf{w}_{amm}
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm^2)	(N/mm ²)	(mm)	(mm)
a - a	23,15	0,00	1,10	15,71	15,71	0,21	14,89	0,017	0,300
b - b	-122,46	0,00	1,10	15,71	15,71	1,13	78,74	0,091	0,300
C - C	-56,65	0,00	1,10	15,71	15,71	0,52	36,43	0,042	0,300
d - d	110,81	64,13	0,74	15,71	15,71	2,02	91,08	0,106	0,300
e -e	53,96	44,51	0,66	15,71	15,71	1,21	48,33	0,056	0,300
f - f	20,26	27,28	0,57	15,71	15,71	0,58	19,06	0,022	0,300
g - g	4,14	12,45	0,49	15,71	15,71	0,16	3,17	0,003	0,300

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA Relazione di calcolo 0.0.E.ZZ IN.01.00.001 182 di 189

APPALTATORE:

Mandataria: Mandante:

SALINI IMPREGILO S.p.A. ASTALDI S.p.A.

PROGETTISTA:

Mandataria: Mandante

SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.

PROGETTO ESECUTIVO Relazione di calcolo

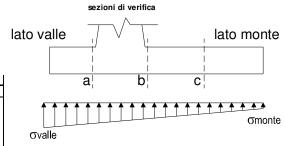
LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA IF1M 0.0.E.ZZ CL IN.01.00.001 C 183 di 189

10.6.2 Verifiche alle tensioni

CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

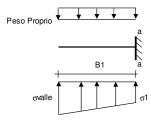

Reazione del terreno

 σ valle = N / A + M / Wgg σ monte = N / A - M / Wgg

 $A = 1.0^*B$ = 4,00 (m²)

 $Wgg = 1.0^*B^2/6 = 2,67$ (m³)

N	M	σvalle	σmonte
[kN]	[kNm]	[kN/m ²]	[kN/m ²]
465,45	114,16	159,17	73,55
608,65	6,76	154,70	149,63
472,01	126,39	165,40	70,61
500,65	104,91	164,50	85,82
432,42	128,41	156,26	59,95
461,06	106,93	155,36	75,17
	[kN] 465,45 608,65 472,01 500,65 432,42	[kN] [kNm] 465,45 114,16 608,65 6,76 472,01 126,39 500,65 104,91 432,42 128,41	[kN] [kNm] [kN/m²] 465,45 114,16 159,17 608,65 6,76 154,70 472,01 126,39 165,40 500,65 104,91 164,50 432,42 128,41 156,26



Mensola Lato Valle

Peso Proprio. PP = 27,50 (kN/m)

 $Ma = \sigma^{1*}B^{12/2} + (\sigma^{1}Valle - \sigma^{1})^*B^{12/3} - PP^*B^{12/2}(1\pm kv)$

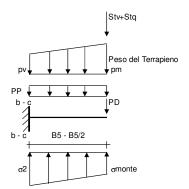
caso	σvalle	σ1	Ma
Caso	[kN/m ²]	[kN/m ²]	[kNm]
statico	159,17	142,91	36,46
Statico	154,70	153,74	36,64
sisma+	165,40	147,39	37,72
515111a+	164,50	149,55	37,76
-:	156,26	137,96	35,79
sisma-	155,36	140,13	35,83

Mensola Lato Monte

 $PP = 27,50 (kN/m^2)$ pD = 0,00 (kN/m)

peso proprio soletta fondazione peso proprio dente

 pm
 =
 90,00
 147,28
 101,46
 (kN/m²)


 pvb
 =
 90,00
 147,28
 101,46
 (kN/m²)

 pvc
 =
 90,00
 147,28
 101,46
 (kN/m²)

Mb=(G_{monte}-(pvb+PP)*(1±kv))*B5²/2+(g2b-G_{monte})*B5²/6-(pm-pvb))*(1±kv)*B5²/3+ -(Stv+Sqv)*B5-PD*(1±kv)*(B5-Bd/2)-PD*kh*(Hd+H2/2)+Msp+Sp*H2/2

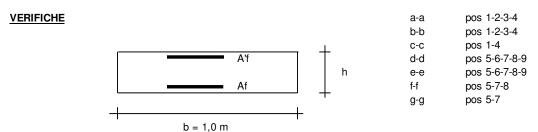
$$\begin{split} Mc = & (\sigma_{monte} \cdot (pvc + PP)^*(1\pm kv))^*(B5/2)^2/2 + (\sigma 2c \cdot \sigma_{monte})^*(B5/2)^2/6 - (pm \cdot pvc)^*(1\pm kv)^*(B5/2)^2/3 + \\ & \cdot (Stv + Sqv)^*(B5/2) - PD^*(1\pm kv)^*(B5/2 - Bd/2) - PD^*kh^*(Hd + H2/2) + Msp + Sp^*H2/2 \end{split}$$

2222	σmonte	σ2b	Mb	σ2c	Мс
caso	[kN/m ²]	[kN/m ²]	[kNm]	[kN/m ²]	[kNm]
statico	73,55	127,07	-247,41	100,31	-110,27
	149,63	152,80	-241,12	151,21	-102,14
oiomo.	70,61	129,85	-237,57	100,23	-101,01
sisma+	85,82	135,00	-237,99	110,41	-99,80
-1	59,95	120,14	-229,83	90,05	-97,76
sisma-	75 17	125 29	-226 90	100.23	-95 71

APPALTATORE:

Mandataria:
SALINI IMPREGILO S.p.A.

PROGETTISTA:
Mandataria:
Mandataria:
Mandataria:
Mandataria:
Mandataria:
SYSTRA S.A.


Mandante:
SYSTRA-SOTECNI S.p.A.

ROCKSOIL S.p.A.

LINEA FERROVIARIA NAPOLI - BARI
TRATTA NAPOLI-CANCELLO
IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

PROGETTO ESECUTIVO

Relazione di calcolo

PROGETTO

LOTTO

0.0.E.ZZ

CODIFICA

DOCUMENTO

IN.01.00.001

REV.

С

PAGINA

184 di 189

Condizior	ne Statica						
Sez.	М	N	h	Af	A'f	$\sigma^{_{\mathbb{C}}}$	σ^{f}
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm^2)	(N/mm^2)
a - a	36,64	0,00	1,10	15,71	15,71	0,34	23,56
b - b	-247,41	0,00	1,10	15,71	15,71	2,27	159,09
C - C	-110,27	0,00	1,10	15,71	15,71	1,01	70,91
d - d	201,72	64,13	0,74	15,71	15,71	3,63	181,17
e -e	105,10	44,51	0,66	15,71	15,71	2,34	106,39
f - f	42,99	27,28	0,57	15,71	15,71	1,22	49,20
g - g	9,82	12,45	0,49	15,71	15,71	0,37	12,10

Condizion	ne Sismica						
Sez.	М	N	h	Af	A'f	$\sigma^{_{\mathbb{C}}}$	σf
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)
a - a	37,76	0,00	1,10	15,71	15,71	0,35	24,28
b - b	-237,99	0,00	1,10	15,71	15,71	2,19	153,03
C - C	-101,01	0,00	1,10	15,71	15,71	0,93	64,95
d - d	164,07	61,13	0,74	15,71	15,71	2,96	144,71
e -e	79,47	42,43	0,66	15,71	15,71	1,77	77,87
f - f	29,62	26,01	0,57	15,71	15,71	0,85	31,79
g - g	5,98	11,86	0,49	15,71	15,71	0,23	6,17

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

La verifica tensionale nella combinazione di carico Quasi Permanente per il calcestruzzo risulta automaticamente soddisfatta, in quanto la tensione in combinazione di carico Rara risulta inferiore al limite inerente alla combinazione di carico Quasi Permanente $(0.40f_{ck}=12.80\ MPa)$. La verifica risulta, pertanto, certamente soddisfatta secondo entrambe le combinazioni.

La verifica tensionale nella combinazione di carico Rara per l'acciaio risulta soddisfatta in quanto la tensione è inferiore al limite di 337.5 MPa.

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGETTO ESECUTIVO PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA Relazione di calcolo 0.0.E.ZZ IN.01.00.001 185 di 189

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE. NELL'AMBITO DEGLI INTERVENTI DI
Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 186 di 189

11 INCIDENZE

Si riportano di seguito le incidenze d'armatura per le parti d'opera della struttura.

IN	01

soletta sup Piedritti 110 Piedritti 60 fondazione Palo	122 78 109 116 221	kg/mc kg/mc kg/mc kg/mc kg/mc	(*) si adotta 100 kg/mc
Muri fond	60	kg/mc	(*) si adotta 100 kg/mc
Muri elev	85	kg/mc	(*) si adotta 115 kg/mc

^(*) per uniformità di valori sifa riferimento all'indicidenza dell'opera RI02

Le incidenze sono state calcolate come riportato nelle tabelle seguenti.

soletta sup

Spilli

Solella Sup								-
Pos.	N. barre	Diam.	Peso	Lunghezza		Incidenza	Peso barre	
n.		(mm)	(Kg/m)	(cm)		sovrapp.	(kg)	
								 '
1	10	20	2.47	100		1.10	27	_
2	10	20	2.47	100		1.10 27		_
3	5	24	3.55	100		1.10 20		_
ripar	5	20	2.47	100		1.10	14	_
ripar	5	20	2.47	100		1.10	14	
Spilli	11	12	0.89	90		1.00	9	<u> </u>
								 '
	Peso complessivo						110	kg/m
	Volume			1 x 0.9		0.9	mc/m	
	incidenza						122	kg/mc/m
Piedritti 110								_
Pos.	N. barre	Diam.	Peso	Lunghezza Ir		Incidenza	Peso barre	
n.		(mm)	(Kg/m)	(cm)		sovrapp.	(kg)	
								 '
1	10	20	2.47	100		1.15	28	
2	10	20	2.47	100		1.15	28	
ripar	5	16	1.58	100		1.15	9	_
ripar	5	16	1.58	100		1.15	9	_

	Peso complessivo					86	kg/m
	Volume		1	Х	1.1	1.1	mc/m
	incidenza					78	kg/mc/m
Piedritti 60							

0.89

110

1.00

11

12

Fledrilli 60							
Pos.	N. barre	Diam.	Peso	Lunghezza		Incidenza	Peso barre
n.		(mm)	(Kg/m)	(cm)	_	sovrapp.	(kg)
1	10	16	1.58	100		1.15	18

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A. PROGE PAGINA Relazio 87 di 189

ET	TO ESECUTIVO				PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV. P
	di calcolo				IF1M	0.0.E.ZZ	CL	IN.01.00.001	C 18
	2	10	16	1.58	100		1.15	18	<u> </u>
Į	ripar	10.0	16	1.58	100		1.15	18	_
	ripar	5.0	12	0.89	100		1.15	5	_
ļ	Spilli	11	12	0.89	60		1.00	6	_
L									
L		Peso complessivo						65	kg/m
		Volume				1 x	0.6	0.6	mc/m
	fandariana	incidenza						109	kg/mc/m
ı	fondazione	N horre	Diam	Peso	Lunghozz	•	Incidonzo	Peso barre	_
	Pos. n.	N. barre	Diam. (mm)	(Kg/m)	Lunghezz (cm)	a	Incidenza sovrapp.	(kg)	-
l	11.		(111111)	(Kg/III)	(CIII)		Soviapp.	(kg)	
ŀ	1	10	20	2.47	100		1.15	28	_
ŀ	2	10	20	2.47	100		1.15	28	_
ŀ	ripar	10	20	2.47	100		1.15	28	_
ŀ	ripar	10	20	2.47	100		1.15	28	_
ŀ	Spilli/ cav	11	16	1.58	120		1.20	25	_
-	Opinii/ Cav	- 11	10	1.50	120		1.20	23	=
		Peso complessivo						139	kg/m
L		Volume				1 x	1.2	1.2	mc/m
		incidenza				1 ^	1.2	116	kg/mc/m
	Palo								119/1110/111
Ī	Pos.	N. barre	Diam.	Peso	Lunghezz	а	Incidenza	Peso barre	
	n.	-	(mm)	(Kg/m)			sovrapp.	(kg)	_
			,		, ,			()/	_
	1	22	26	4.17	100		1.10	101	_
	staffe	5	12	0.89	214		1.00	9	_
Ī									_
		Peso complessivo						110	kg/m
		Volume						0.5	mc/m
		incidenza						221	kg/mc/m
	Muri fond								_
	Pos.	N. barre	Diam.	Peso	Lunghezz	a	Incidenza	Peso barre	
I	n.		(mm)	(Kg/m)	(cm)		sovrapp.	(kg)	
ŀ			00	0.47	100		4.45	4.4	_
-	1	5	20	2.47	100		1.15	14	_
ŀ	2	5	20	2.47	100		1.15	14	_
-	ripar	5	16	1.58	100		1.15	9	_
-	ripar Spilli	5 11	16 12	1.58 0.89	100 110		1.15	9 11	_
ŀ	Эріііі	11	12	0.09	110		1.00	11	_
ŀ		Peso complessivo						57	kg/m
L		Volume				1 x	1.1	1.1	mc/m
		incidenza				1 ^	1.15	60	kg/mc/m
	Muri elev	moldenza					1.10	00	Kg/IIIC/III
Ī	Pos.	N. barre	Diam.	Peso	Lunghezz	а	Incidenza	Peso barre	
	n.	111.54.10	(mm)	(Kg/m)		<u> </u>	sovrapp.	(kg)	
- F			, ,	. 3	(-)			(3/	_
					400		1.15		_
ŀ	1	5	20	2.47	100		1.15	14	
		5 5							_
	1 2	5	20	2.47	100		1.15	14	_ _
	1 2 ripar	5 5		2.47 0.89			1.15 1.15		_ _ _
	1 2 ripar ripar	5	20 12	2.47 0.89 0.89	100 100 100		1.15	14 5	 _ _ _
•	1 2 ripar	5 5 5	20 12 12	2.47 0.89	100 100		1.15 1.15 1.15	14 5 5	
	1 2 ripar ripar	5 5 5	20 12 12	2.47 0.89 0.89	100 100 100		1.15 1.15 1.15	14 5 5	
•	1 2 ripar ripar	5 5 5 11	20 12 12	2.47 0.89 0.89	100 100 100 60	1 x	1.15 1.15 1.15 1.00	14 5 5 6 6	 kg/m mc/m
•	1 2 ripar ripar	5 5 5 11	20 12 12	2.47 0.89 0.89	100 100 100 60	1 x	1.15 1.15 1.15 1.00	14 5 5 6 6	

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante:	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	, , , , , , , , , , , , , , , , , , , ,
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 188 di 189

12 DICHIARAZIONE SECONDO NTC 2008 PUNTO 10.2

La presente nota tecnica è redatta secondo le indicazioni relative al punto 10.2 del DM 14/01/2008 in merito alle "Analisi e verifiche svolte mediante l'ausilio di codici di calcolo.

Tipo di analisi svolta

L'analisi strutturale e le verifiche sono condotte con l'ausilio di più codici di calcolo automatico. La verifica della sicurezza degli elementi strutturali è stata valutata con i metodi della scienza delle costruzioni.

Per quanto riguarda i criteri di modellazione e le caratteristiche dei programmi utilizzati si rimanda ai relativi paragrafi.

Origine e caratteristiche dei codici di calcolo

Di seguito si indicano l'origine e le caratteristiche dei codici di calcolo utilizzati riportando titolo, produttore e distributore, versione.

	Software	Versione	Produttore - Distributore
Calcolo struttura	Sap 2000	14.2.4 plus	CSI Italia srl
Calcolo Muri	Fogli di calcolo excel	excel 2007	Microsoft- Office
Verifica sezioni in CA	RC-SEC	1.0.0.14	Geostru software

Affidabilità dei codici di calcolo

Un attento esame preliminare della documentazione a corredo dei software ha consentito di valutarne l'affidabilità. La documentazione fornita dai produttori dei software contiene un'esauriente descrizione delle basi teoriche, degli algoritmi impiegati e l'individuazione dei campi d'impiego. L'affidabilità e la robustezza dei codici

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI
Mandataria: Mandante:	TRATTA NAPOLI-CANCELLO
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE
PROGETTISTA:	OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI
Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014
PROGETTO ESECUTIVO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA
Relazione di calcolo	IF1M 0.0.E.ZZ CL IN.01.00.001 C 189 di 189

di calcolo sono garantite attraverso un numero significativo di casi prova in cui i risultati dell'analisi numerica sono stati confrontati con soluzioni teoriche.

I fogli di calcolo implementati in EXCEL sono stati sottoposti a procedure di valutazioni mediante test di affidabilità che ne hanno validato il corretto funzionamento.

Modalità di presentazione dei risultati

La relazione di calcolo strutturale presenta i dati di calcolo tale da garantirne la leggibilità, la corretta interpretazione e la riproducibilità. La relazione di calcolo illustra in modo esaustivo i dati in ingresso ed i risultati delle analisi in forma tabellare.

Informazioni generali sull'elaborazione

I software prevedono una serie di controlli automatici che consentono l'individuazione di errori di modellazione, di non rispetto di limitazioni geometriche e di armatura e di presenza di elementi non verificati. Il codice di calcolo consente di visualizzare e controllare, sia in forma grafica che tabellare, i dati del modello strutturale, in modo da avere una visione consapevole del comportamento corretto del modello strutturale.

Giudizio motivato di accettabilità dei risultati

I risultati delle elaborazioni sono stati sottoposti a controlli dal sottoscritto utente del software. Tale valutazione ha compreso il confronto con i risultati di semplici calcoli, eseguiti con metodi tradizionali. Inoltre sulla base di considerazioni riguardanti gli stati tensionali e deformativi determinati, si è valutata la validità delle scelte operate in sede di schematizzazione e di modellazione della struttura e delle azioni.