COMMITTENTE:

DIREZIONE LAVORI:

APPALTATORE:

MANDATARIA:

MANDANTE:

PROGETTAZIONE:

MANDATARIA:

MANDANTI:

PROGETTO ESECUTIVO

LINEA FERROVIARIA NAPOLI - BARI, TRATTA NAPOLI-CANCELLO, IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

RELAZIONE

IMPIANTI MECCANICI IM03 - STAZIONE DI ACERRA FISSO ESTINZIONE INCENDIO IDRANTI/NASPI RELAZIONE TECNICA E DI CALCOLO

APPALTATORE	PROGETTAZIONE	
DIRETTORE TECNICO Ing. M. PANISI	DIRETTORE DELLA PROGETTAZIONE Ing. A. CHECCHI	

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC.	OPERA/DISCIPLINA	PROGR.	REV	SCALA:	
I F 1 M	0 0	E	ZZ	RO	A I 0 3 0 4	0 0 1	Α	-	

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	EMISSIONE	BUIANO	14/06/18	ALAGGIO	15/06/18	CARLUCCI	15/06/18	BUIANO
								30/06/18

File: IF1M.0.0.E.ZZ.RO.AI.03.0.4.001-A.DOC n.	n. Elab.:
---	-----------

Mandataria: Mandante:
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.

PROGETTISTA:

Mandataria: Mandante:

SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO

LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

 PROGETTO
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 PAGINA

 IF1M
 0.0.E.ZZ
 RO
 Al.03.0.4.001
 A
 2 di 15

1) GE	NERALITÀ	3
	PREMESSA	
1.2)	OGGETTO DELL'INTERVENTO	.3
1.3)	CRITERI GENERALI DI PROGETTAZIONE	.3
2) DE	SCRIZIONE DEGLI IMPIANTI	5
2.1)	ESTENSIONE DELL'IMPIANTO	.5
2.2)	CARATTERISTICHE DELL'IMPIANTO	.5
3) PR	ROGETTAZIONE E CALCOLO DELL'IMPIANTO	6
3.1)	CALCOLO IDRAULICO DELLE TUBAZIONI	.7
3.2)	PERDITE DI CARICO DISTRIBUITE	.7
3.3)	PERDITE DI CARICO LOCALIZZATE	.8
3.4)	CALCOLO DELLE PERDITE LUNGO LA TUBAZIONE FLESSIBILE	.8
3.5)	PROCEDURA E DATI UTILIZZATI NEL CALCOLO	.9

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI			
Mandataria: Mandante: SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	TRATTA NAPOLI-CANCELLO			
PROGETTISTA: Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014			
PROGETTO ESECUTIVO RELAZIONE TECNICA E DI CALCOLO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA IF1M 0.0.E.ZZ RO AI.03.0.4.001 A 3 di 15			

1) GENERALITÀ

1.1) Premessa

Il presente documento ha per oggetto la descrizione degli impianti safety a servizio delle banchine della stazione Acerra della variante alla tratta Cancello-Napoli.

Parte integrante di questo documento, è la planimetria con la rappresentazione della rete principale di distribuzione e la disposizione delle apparecchiature.

L'elaborato è rappresentativo del solo impianto idrico antincendio; per gli altri impianti e per gli aspetti architettonici e strutturali si rimanda ai relativi specifici elaborati.

1.2) Oggetto dell'intervento

Le opere oggetto del seguente intervento comprendono la realizzazione degli impianti safety costituiti sostanzialmente da:

Rete idrica antincendio a servizo della stazioneAcerra.

1.3) Criteri generali di progettazione

Le soluzioni proposte, nel rispetto della normativa e legislazione vigente, sono caratterizzate dall'affidabilità e dalla economicità di gestione.

Nelle scelte progettuali sono stati considerati i seguenti fattori:

- semplicità di funzionamento per ottenere una notevole affidabilità del sistema e dei suoi componenti;
- massima standardizzazione dei componenti per avere la garanzia di una futura facile reperibilità sia in caso di modifiche che di sostituzione in fase manutentiva o per invecchiamento:
- frazionabilità di ogni sezione del sistema per ottenere una gestione flessibile, economica e di facile controllo;

APPALTATORE:		LIN	EA FEI	RROVIA	RIA NAPOL	_I - B <i>A</i>	\RI
Mandataria:	Mandante:		TRAT1	A NAPO	LI-CANCE	LLO	
SALINI IMPREGILO S.p.A. PROGETTISTA:	ASTALDI S.p.A.	IN VARIA	NTE TRA	LE PK 0+0	00 E PK 15+58	85, INCI	LUSE LE
Mandataria: Mandante:				•	MBITO DEGL		
SYSTRA S.A. SYSTRA-SOTE	ECNI S.p.A. ROCKSOIL S.p.A.	CUI AL E	D.L. 133/2	014, CONV	ERTITO IN LE	GGE 16	4 / 2014
PROGETTO ESECUTIVO	PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA	
RELAZIONE TECNICA E DI CALCOLO	1	IF1M	0.0.E.ZZ	RO	AI.03.0.4.001	Α	4 di 15

- adattabilità degli impianti alle strutture del complesso, soprattutto nell'ottica di garantire una facile accessibilità durante le operazioni di manutenzione e controllo;
- sicurezza degli impianti nei confronti degli utenti e delle condizioni di utilizzo.

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 SYSTRA S.A. ROCKSOIL S.p.A. SYSTRA-SOTECNI S.p.A. PROGETTO ESECUTIVO **PROGETTO** LOTTO CODIFICA DOCUMENTO REV. **PAGINA RELAZIONE TECNICA E DI CALCOLO** IF1M 0.0.E.ZZ RO AI.03.0.4.001 5 di 15 Α

2) DESCRIZIONE DEGLI IMPIANTI

2.1) Estensione dell'impianto

Verrà installata una rete idrica antincendio a servizio delle banchine pari e dispari della stazione Acerra.

2.2) Caratteristiche dell'impianto

La rete idrica antincendio sarà composta da tubazioni di alimentazione di idranti UNI 45 a servizio delle banchine, sia pari che dispari. Non sarà presente un gruppo di pompaggio, in quanto l'alimentazione idrica sarà garantita tramite l'attacco autopompa VVF, installato a livello accessi, nelle vicinanze della strada di accesso alla fermata.

In ciascuna banchina saranno installati sei idranti a muro UNI 45, dotati di lancia e di manichetta da 20 m, posizionati in modo tale che ogni parte dell'area protetta possa essere raggiungibile con il getto d'acqua di almeno un idrante. Gli idranti saranno comunque installati ad una distanza non superiore a 50 m e collocati in posizioni tali da essere facilmente accessibili e visibili. Le tubazioni e gli idranti UNI 45 saranno dimensionati commisuratamentealla portata immessa dalla autopompa dei VVF.

Per il caso in esame è stato valutato un livello di pericolosità pari a 2; pertanto saranno previsti simultaneamente operativii 3 idranti del piano banchine ubicati nella posizione idraulicamente più sfavorita (in accordo con quanto stabilito nella norma UNI 10779). Per ciascun idrante sarà prevista una portata non inferiore a 120 l/min con una pressione residua non inferiore a 0,2 MPa (2 bar), ed una durata di intervento di 60 minuti.

La rete idrica principalesarà realizzata con tubazioni di acciaio DN80 conformi alla norma UNI EN 10225. Nei punti alti della rete ed in corrispondenza dell'attacco alle singole cassette idranti saranno installate idonee valvole per lo sfiato dell'aria (a norma DIN 14463-3, PN 16), per consentirne la fuoriuscita durante il riempimento. Nei punti bassi della rete, invece, saranno installate apposite valvole di scarico per consentire il completo svuotamento dell'impianto.

LINEA FERROVIARIA NAPOLI - BARI APPALTATORE: Mandataria: Mandante: TRATTA NAPOLI-CANCELLO SALINI IMPREGILO S.p.A. ASTALDI S.p.A. IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE PROGETTISTA: OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI Mandataria: Mandante: CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014 ROCKSOIL S.p.A. SYSTRA S.A. SYSTRA-SOTECNI S.p.A. LOTTO CODIFICA DOCUMENTO REV. PROGETTO ESECUTIVO **PROGETTO PAGINA RELAZIONE TECNICA E DI CALCOLO** IF1M 0.0.E.ZZ RO AI.03.0.4.001 6 di 15 Α

Le tubazioni della rete saranno realizzate in acciaio per il tratto in vista (con staffaggio a parete e/o a soffitto) compresotra l'attacco autopompa VV.F. (posizionato al piano accessi) ed il giunto di transizione con i tratti interrati delle diramazioni in banchina.Le diramazioni al piano banchina saranno realizzate in PEad ed in corispondenza della risalita alle singole cassette sarà realizzata la fuoriuscita in vista, mediante giunto di transizione, per il collegamento alla tubazione di acciaio afferente a ciascun idrante. Le tubazioni saranno dotate di sostegni, staffe e di tutti gli accessori necessari a contrastare le spinte dinamiche e statiche che si generano durante l'attivazione dell'impianto.

3) PROGETTAZIONE E CALCOLO DELL'IMPIANTO

La progettazione di un impianto antincendio richiede l'applicazione di norme tecniche specifiche checonsentono di determinare le caratteristiche dell'impianto.

In particolare, tali norme forniscono gli strumenti per identificare le prestazioni richieste all'impianto intermini di pressione di scarica minima ai terminali, portata in uscita da ciascun terminale, numero deiterminali da attivare.

La normativa prende in considerazione diversi fattori:

- il tipo di attività che viene svolta all'interno dell'area da proteggere;
- le caratteristiche dei fabbricati;
- le condizioni ambientali.

Si è provveduto, pertanto, dapprima alla identificazione delle aree da proteggere, seguendo le suddetteindicazioni e, successivamente, al disegno e calcolo delle caratteristiche idriche delle tubazioni, calcolandoneportata e prevalenza per ciascun terminale attivo ai fini del calcolo.

Una volta ultimata la procedura, è stato completato il progetto indicando le caratteristiche della sorgente dialimentazione.

APPALTATORE:		LIN	EA FEF	ROVIA	RIA NAPOL	_I - BA	\RI
Mandataria: Mandante: SALINI IMPREGILO S.p.A. ASTALDI S.	o.A.	TRATTA NAPOLI-CANCELLO					
PROGETTISTA: Mandataria: SYSTRA S.A. Mandante: SYSTRA-SOTECNI S.p.A.	ROCKSOIL S.p.A.	OPERE AC	CESSOF	RIE, NELL'A	00 E PK 15+58 AMBITO DEGL ERTITO IN LEG	I INTER	VENTI DI
PROGETTO ESECUTIVO	PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA	
RELAZIONE TECNICA E DI CALCOLO		IF1M	0.0.E.ZZ	RO	AI.03.0.4.001	Α	7 di 15

3.1) Calcolo idraulico delle tubazioni

Il calcolo idraulico della rete di tubazioni consente di dimensionare ogni tratto di tubazione in base alleperdite di carico distribuite e localizzate in quei tratti.

Il calcolo è stato eseguito sulla base dei dati geometrici (lunghezze dei tratti della rete, dislivelli geodetici, diametri nominali delle tubazioni), arrivando alla determinazione di tutte le caratteristiche idrauliche deitratti (quali portata, perdite distribuite e perdite concentrate) e in definitiva della prevalenza e della portata totali, in corrispondenza dell'attacco alla rete idrica di alimentazione (Appendice C della NormaUNI EN 10779).

È stata inoltre effettuata la verifica della velocità massima raggiunta dall'acqua in tutti i tratti della rete; inparticolare, si è verificato che essa non superi il valore di 10,00 m/s.

3.2) Perdite di carico distribuite

Le perdite di tipo distribuito sono state valutate secondo la formula di Hazen-Williams:

$$p = \frac{6,05 \cdot Q^{1,85} \cdot 10^9}{C^{1,85} \cdot D^{4,87}} ;$$

in cui è:

p= perdita di carico unitaria (in millimetri di colonna d'acqua per metro lineare di tubazione);

Q= portata transitante nel tratto di tubazione(in litri al minuto);

D= diametro medio interno della tubazione (in millimetri);

C= costante dipendente dal tipo e dalla condizione della tubazione e pari a:

100 per i tubi in ghisa;

120 per i tubi in acciaio;

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI				
Mandataria: Mandante: SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	TRATTA NAPOLI-CANCELLO				
PROGETTISTA: Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014				
PROGETTO ESECUTIVO RELAZIONE TECNICA E DI CALCOLO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA IF1M 0.0.E.ZZ RO Al.03.0.4.001 A 8 di 15				

100 per i tubi in acciaio inossidabile, rame o ghisa rivestita;

120 per i tubi in plastica, fibra di vetro o materiali analoghi.

3.3) Perdite di carico localizzate

Le perdite di carico localizzate dovute a raccordi, curve, pezzi a T e raccordi a croce, attraverso i quali ladirezione di flusso subisce una variazione di 45° o maggiore, e alle valvole di intercettazione e di nonritorno, sono state trasformate in "lunghezza di tubazione equivalente" (come mostrato nel prospetto riportato nelle pagine a seguire, estratto dall'appendice C della Norma UNI EN 10779) edaggiunte alla lunghezza reale della tubazione di uguale diametro e natura.

3.4) Calcolo delle perdite lungo la tubazione flessibile

I terminali di tipo naspo o idrante presentano una perdita di carico al bocchello della manichetta dovutaall'attrito dell'acqua con le pareti della tubazione. Tali perdite sono computate secondo la formula attribuita aMarchetti, di seguito riportata:

$$J = \beta \cdot \frac{Q^2}{D^5} \; ;$$

in cui è:

J= perdita di carico distribuita (in metri di colonna d'acqua per metro lineare di tubazione);

Q= portata transitante nella manichetta (in metri cubi al secondo);

D= diametro della tubazione (in metri);

 β = coefficiente dipendente dalla rugosità della manichetta e pari a:

0,0017 nel caso di tubazioni con rivestimento gommato liscio;

APPALTATORE:		LIN	EA FE	RROVIA	RIA NAPOL	_I - BA	\RI
Mandataria: SALINI IMPREGILO S.p.A.	Mandante: ASTALDI S.p.A.	TRATTA NAPOLI-CANCELLO					
PROGETTISTA: Mandataria: SYSTRA S.A. Mandante: SYSTRA-SOTE	CNI S.p.A. ROCKSOIL S.p.A.	OPERE A	CESSOF	RIE, NELL'A	00 E PK 15+58 MBITO DEGL ERTITO IN LE	I INTER	VENTI DI
PROGETTO ESECUTIVO	PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	PAGINA	
RELAZIONE TECNICA E DI CALCOLO		IF1M	0.0.E.ZZ	RO	AI.03.0.4.001	Α	9 di 15

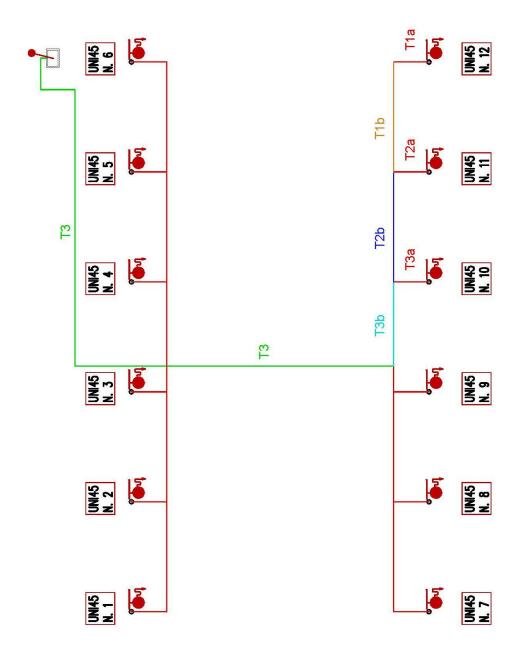
0,0021 nelcaso di tubazioni con rivestimento gommato non liscio.

3.5) Procedura e dati utilizzati nel calcolo

Nella procedura di calcolo è stata considerata la condizione più sfavorevole, riferita al funzionamento simultaneo di 3 idranti (N.10, N.11 e N.12), per una durata del servizio pari a 60 minuti.

Per tale condizione sono stati sommati i contributi relativi alle perdite di carico distribuite e localizzate, come di seguito specificato:

- perdita di carico distribuita lungo la tubazione flessibile;
- perdite di carico distribuite lungo i tratti del circuito sfavorito considerato;
- perdite di carico localizzate dovute alla presenza di pezzi speciali (curve a 90°, incroci, pezzi a T, saracinesche, valvole di non ritorno ecc.);
- dislivello geodetico.


Dai risultati di calcolo sono stati ottenuti i parametri caratteristici dell'impianto, di seguito riportati:

Prevalenza pari a: H = 34,38 m c.a. (3,37 bar)

Portata dell'impianto:
 Q = 360 l/min (21,6 mc/h)

Nelle pagine seguenti sono riportate le tabelle per la quantificazione delle perdite di carico (distribuite e localizzate), loschema dei circuiti ed i risultati di calcolo, per la configurazione sfavorita considerata.

APPALTATORE:	LINEA FERROVIARIA NAPOLI - BARI			
Mandataria: Mandante: SALINI IMPREGILO S.p.A. ASTALDI S.p.A.	TRATTA NAPOLI-CANCELLO			
PROGETTISTA: Mandataria: Mandante: SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.	IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014			
PROGETTO ESECUTIVO RELAZIONE TECNICA E DI CALCOLO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. PAGINA IF1M 0.0.E.ZZ RO AI.03.0.4.001 A 10 di 15			

Mandataria: Mandante:
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.

PROGETTISTA:

Mandataria: Mandante:

SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO

LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

 PROGETTO
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 PAGINA

 IF1M
 0.0.E.ZZ
 RO
 Al.03.0.4.001
 A
 11 di 15

	PERDITE DI CARICO DISTRIBUITE UNITARIE [mm H₂O/ml]													
C = coeff. Hazen Williams = 120	DN	DN	DN	DN	DN	DN	DN	DN	DN	DN	DN	DN		
acciaio	25	32	40	50	65	80	100	125	150	200	250	300		Q sul tratto
diametri interni delle tubazioni [mm]	27,9	36,6	42,5	53,9	69,7	81,7	106,3	129,7	158,3	206,5	260,4	309,7	portata sul tratto	
	42,447	11,319	5,466	1,718	0,491	0,227	0,063	0,024	0,009	0,002	0,001	0,000	30	l/min
	56,455	15,054	7,270	2,285	0,654	0,301	0,084	0,032	0,012	0,003	0,001	0,000	35	l/min
	153,023	40,803	19,706	6,195	1,771	0,817	0,227	0,086	0,033	0,009	0,003	0,001	60	l/min
	203,521	54,269	26,209	8,239	2,356	1,087	0,302	0,114	0,043	0,012	0,004	0,002	70	I/min
	323,986	86,390	41,722	13,115	3,750	1,730	0,480	0,182	0,069	0,019	0,006	0,003	90	l/min
	551,649	147,097	71,040	22,332	6,386	2,946	0,818	0,310	0,118	0,032	0,010	0,004	120	I/min
p = perdita di carico unitaria [mm/ml]	833,578	222,273	107,346	33,744	9,649	4,452	1,235	0,469	0,178	0,049	0,016	0,007	150	l/min
	1.167,970	311,438	150,408	47,281	13,520	6,237	1,731	0,657	0,249	0,068	0,022	0,009	180	l/min
	1.553,400	414,212	200,042	62,884	17,982	8,296	2,302	0,874	0,331	0,091	0,029	0,013	210	l/min
	1.988,696	530,283	256,098	80,505	23,021	10,620	2,947	1,119	0,424	0,116	0,038	0,016	240	l/min
	2.472,866	659,387	318,448	100,105	28,625	13,206	3,665	1,391	0,527	0,144	0,047	0,020	270	l/min
	3.005,052	801,293	386,982	121,649	34,786	16,048	4,454	1,690	0,640	0,176	0,057	0,024	300	l/min
	4.210,534	1.122,734	542,220	170,448	48,740	22,486	6,240	2,368	0,897	0,246	0,079	0,034	360	l/min

_												
		PERDITE DI CARICO LOCALIZZATE - LUNGHEZZA DI TUBAZIONE EQUIVALENTE [ml]										
C = coeff. Hazen Williams = 120	DN	DN	DN	DN	DN	DN	DN	DN	DN	DN	DN	DN
acciaio	25	32	40	50	65	80	100	125	150	200	250	300
curva a 45°	0,30	0,30	0,60	0,60	0,90	0,90	1,20	1,50	2,10	2,70	3,30	3,90
curva a 90°	0,60	0,90	1,20	1,50	1,80	2,10	3,00	3,60	4,20	5,40	6,60	8,10
curva a 90° a largo raggio	0,60	0,60	0,60	0,90	1,20	1,50	1,80	2,40	2,70	3,90	4,80	5,40
pezzo a T o raccordo a croce	1,50	1,80	2,40	3,00	3,60	4,50	6,00	7,50	9,00	10,50	15,00	18,00
saracinesca				0,30	0,30	0,30	0,60	0,60	0,90	1,20	1,50	1,80
valvola di non ritorno	1,50	2,10	2,70	3,30	4,20	4,80	6,60	8,30	10,40	13,50	16,50	19,50

Mandataria: Mandante:
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.

PROGETTISTA:

Mandataria: Mandante:

SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO

LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

 PROGETTO
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 PAGINA

 IF1M
 0.0.E.ZZ
 RO
 Al.03.0.4.001
 A
 12 di 15

				PERDITI	DI CARIC	O DISTRIB	UITE UNIT	ARIE [mm i	H ₂ O/ml]					
C = coeff. Hazen Williams = 150 plastica	DN 25	DN 32	DN 40	DN 50	DN 65	DN 80	DN 100	DN 125	DN 150	DN 200	DN 250	DN 300		Q sul tratto
diametri interni delle tubazioni [mm]	20,4	26,0	32,6	40,8	51,4	73,6	90,0	110,2	141,0	176,2	220,4	277,6	portata sul tratto	
	129,051	39,604	13,161	4,413	1,433	0,249	0,094	0,035	0,011	0,004	0,001	0,000	30	l/min
	171,638	52,674	17,504	5,869	1,906	0,332	0,125	0,046	0,014	0,005	0,002	0,001	35	l/min
	465,230	142,773	47,446	15,909	5,166	0,899	0,338	0,126	0,038	0,013	0,004	0,001	60	l/min
	618,755	189,888	63,103	21,159	6,871	1,196	0,449	0,167	0,050	0,017	0,006	0,002	70	l/min
	985,000	302,284	100,454	33,684	10,938	1,904	0,715	0,267	0,080	0,027	0,009	0,003	90	l/min
	1.677,154	514,697	171,042	57,353	18,624	3,242	1,217	0,454	0,137	0,046	0,016	0,005	120	l/min
p = perdita di carico unitaria [mm/ml]	2.534,291	777,741	258,455	86,664	28,143	4,898	1,839	0,686	0,207	0,070	0,023	0,008	150	l/min
	3.550,927	1.089,734	362,135	121,430	39,432	6,864	2,577	0,961	0,289	0,098	0,033	0,011	180	l/min
	4.722,732	1.449,346	481,640	161,502	52,445	9,128	3,427	1,278	0,385	0,130	0,044	0,014	210	I/min
	6.046,143	1.855,484	616,606	206,758	67,141	11,686	4,387	1,637	0,493	0,166	0,056	0,018	240	I/min
	7.518,143	2.307,222	766,725	257,096	83,487	14,532	5,456	2,035	0,613	0,207	0,070	0,023	270	l/min
	9.136,123	2.803,759	931,732	312,425	101,454	17,659	6,630	2,473	0,745	0,252	0,085	0,027	300	l/min
	12.801,099	3.928,493	1.305,499	437,755	142,153	24,743	9,289	3,465	1,043	0,352	0,118	0,039	360	l/min

		PERDITE DI CARICO LOCALIZZATE - LUNGHEZZA DI TUBAZIONE EQUIVALENTE [ml]										
C = coeff. Hazen Williams = 150	DN	DN	DN	DN	DN	DN	DN	DN	DN	DN	DN	DN
plastica	25	32	40	50	65	80	100	125	150	200	250	300
curva a 45°	0,45	0,45	0,91	0,91	1,36	1,36	1,81	2,27	3,17	4,08	4,98	5,89
curva a 90°	0,91	1,36	1,81	2,27	2,72	3,17	4,53	5,44	6,34	8,15	9,97	12,23
curva a 90° a largo raggio	0,91	0,91	0,91	1,36	1,81	2,27	2,72	3,62	4,08	5,89	7,25	8,15
pezzo a T o raccordo a croce	2,27	2,72	3,62	4,53	5,44	6,80	9,06	11,33	13,59	15,86	22,65	27,18
saracinesca				0,45	0,45	0,45	0,91	0,91	1,36	1,81	2,27	2,72
valvola di non ritorno	2,27	3,17	4,08	4,98	6,34	7,25	9,97	12,53	15,70	20,39	24,92	29,45

Mandataria: Mandante: SALINI IMPREGILO S.p.A. ASTALDI S.p.A.

PROGETTISTA:

Mandataria: Mandante:

SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO

LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

LOTTO **PROGETTO**

CODIFICA

DOCUMENTO

REV. PAGINA 0.0.E.ZZ 13 di 15 IF1M RO AI.03.0.4.001 Α

			PERDITE DI CARICO LOCALIZZATE DELLE TUBAZIONI FLESSIBILI										
		[m di	H ₂ O per 100 r	ml di stendim	ento]	[m d	H₂O per 20 m	nl di stendim	ento]	[m di H ₂ O per ml di stendimento]			
	Q	rivestimento gommato					rivestimento gommato				rivestiment	o gommato	
	portata	ortata liscio		non	liscio	lis	cio	non	liscio	lis	cio	non liscio	
	sul tratto	β =	0,0017	β=	0,0021	β=	0,0017	β=	0,0021	β =	0,0017	β =	0,0021
	I/min	DN 45	DN 70	DN 45	DN 70	DN 45	DN 70	DN 45	DN 70	DN 45	DN 70	DN 45	DN 70
	30	0,23	0,03	0,3	0,0	0,05	0,01	0,06	0,01	0,00	0,00	0,00	0,00
	35	0,31	0,03	0,4	0,0	0,06	0,01	0,08	0,01	0,00	0,00	0,00	0,00
pile	60	0,92	0,10	1,1	0,1	0,18	0,02	0,23	0,02	0,01	0,00	0,01	0,00
lessi	70	1,25	0,14	1,5	0,2	0,25	0,03	0,31	0,03	0,01	0,00	0,02	0,00
one f	90	2,07	0,23	2,6	0,3	0,41	0,05	0,51	0,06	0,02	0,00	0,03	0,00
carico tubazione flessibile	120	3,69	0,40	4,6	0,5	0,74	0,08	0,91	0,10	0,04	0,00	0,05	0,00
o tul	150	5,76	0,63	7,1	0,8	1,15	0,13	1,42	0,16	0,06	0,01	0,07	0,01
caric	180	8,29	0,91	10,2	1,1	1,66	0,18	2,05	0,22	0,08	0,01	0,10	0,01
a di	210	11,29	1,24	13,9	1,5	2,26	0,25	2,79	0,31	0,11	0,01	0,14	0,02
perdita di	240	14,74	1,62	18,2	2,0	2,95	0,32	3,64	0,40	0,15	0,02	0,18	0,02
d = d	270	18,66	2,05	23,0	2,5	3,73	0,41	4,61	0,51	0,19	0,02	0,23	0,03
4	300	23,03	2,53	28,5	3,1	4,61	0,51	5,69	0,62	0,23	0,03	0,28	0,03
	360	33,17	3,64	41,0	4,5	6,63	0,73	8,19	0,90	0,33	0,04	0,41	0,04

			PERDITE DI CARICO LOCALIZZATE DELLE TUBAZIONI FLESSIBILI										
		[mm d	i H₂O per 100	ml di stendir	nento]	[mm c	di H₂O per 20	ml di stendim	ento]	[mm	ı di H₂O per m	ıl di stendime	ento]
	Q	rivestimento gommato				rivestimento gommato				rivestiment	o gommato		
	portata	lise	cio	non l	iscio	lis	cio	non	iscio	lis	cio	non	liscio
	sul tratto	β=	0,0017	β=	0,0021	β=	0,0017	β=	0,0021	β =	0,0017	β =	0,0021
	I/min	DN 45	DN 70	DN 45	DN 70	DN 45	DN 70	DN 45	DN 70	DN 45	DN 70	DN 45	DN 70
	30	230	25	285	31	46	5	57	6	2	0	3	0
	35	313	34	387	43	63	7	77	9	3	0	4	0
pile	60	921	101	1.138	125	184	20	228	25	9	1	11	1
tubazione flessibile	70	1.254	138	1.549	170	251	28	310	34	13	1	15	2
one f	90	2.073	228	2.561	281	415	46	512	56	21	2	26	3
oazic	120	3.685	405	4.552	500	737	81	910	100	37	4	46	5
o tul	150	5.758	632	7.113	781	1.152	126	1.423	156	58	6	71	8
caric	180	8.291	910	10.242	1.125	1.658	182	2.048	225	83	9	102	11
adi	210	11.286	1.239	13.941	1.531	2.257	248	2.788	306	113	12	139	15
perdita di carico	240	14.740	1.618	18.209	1.999	2.948	324	3.642	400	147	16	182	20
II.	270	18.656	2.048	23.045	2.530	3.731	410	4.609	506	187	20	230	25
ď	300	23.032	2.529	28.451	3.124	4.606	506	5.690	625	230	25	285	31
	360	33.166	3.641	40.969	4.498	6.633	728	8.194	900	332	36	410	45

Mandataria: Mandante:
SALINI IMPREGILO S.p.A. ASTALDI S.p.A.

PROGETTISTA:

Mandataria: Mandante

SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO

LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

PROGETTO IF1M

LOTTO **0.0.E.ZZ** CODIFICA **RO**

DOCUMENTO **AI.03.0.4.001**

REV.

PAGINA 14 di 15

PERDITE DI CARICO DIRAMAZIONE [T1a]

diametra nominale della tubazione	DNI	40
diametro nominale della tubazione	DN	40
portata in transito sul tratto - Q _i	l/min	120
velocità in condotta - V _i	m/s	1.41
lunghezza del tratto - L _i	ml	1.50
perdita di carico distribuita - p _{i,DIS}	mm	39.31
perdita di carico tubazione flessibile - p _{tb,DIS}	mm	910.43
curva a 45°	n.	0
curva a 90°	n.	2
curva a 90° a largo raggio	n.	0
pezzo a T o raccordo a croce	n.	1
saracinesca	n.	0
valvola di non ritorno	n.	0
lunghezza equivalente totale - L _{i,EQ}	ml	4.80
perdite di carico localizzate - p _{i,LOC}	mm	125.80
p _i	mm	1075.55
perdita di carico complessiva sul tratto	m	1.08
	bar	0.11

PERDITE DI CARICO DIRAMAZIONE [T1b]

diametro nominale della tubazione	DN	80
portata in transito sul tratto - Q _i	I/min	120
velocità in condotta - V _i	m/s	0.47
lunghezza del tratto - L _i	ml	50.00
perdita di carico distribuita - p _{i,DIS}	mm	59.80
curva a 45°	n.	0
curva a 90°	n.	2
curva a 90° a largo raggio	n.	0
pezzo a T o raccordo a croce	n.	0
saracinesca	n.	0
valvola di non ritorno	n.	0
lunghezza equivalente totale - L _{i,EQ}	ml	6.34
perdite di carico localizzate - p _{i,LOC}	mm	7.58
p,	mm	67.38
perdita di carico complessiva sul tratto	m	0.07
	bar	0.01

PERDITE DI CARICO DIRAMAZIONE [T2a]

diametro nominale della tubazione	DN	40
portata in transito sul tratto - Q _i	l/min	120
velocità in condotta - V _i	m/s	1.41
lunghezza del tratto - L _i	ml	1.50
perdita di carico distribuita - p _{i,DIS}	mm	39.31
perdita di carico tubazione flessibile - p _{tb,DIS}	mm	910.43
curva a 45°	n.	0
curva a 90°	n.	2
curva a 90° a largo raggio	n.	0
pezzo a T o raccordo a croce	n.	1
saracinesca	n.	0
valvola di non ritorno	n.	0
lunghezza equivalente totale - L _{i,EQ}	ml	4.80
perdite di carico localizzate - p _{i,LOC}	mm	125.80
p _i	mm	1075.55
perdita di carico complessiva sul tratto	m	1.08
	bar	0.11

PERDITE DI CARICO DIRAMAZIONE [T2b]

diametro nominale della tubazione	DN	65
portata in transito sul tratto - Q _i	I/min	240
velocità in condotta - V _i	m/s	1.93
lunghezza del tratto - L _i	ml	50.00
perdita di carico distribuita - p _{i,DIS}	mm	1971.61
curva a 45°	n.	0
curva a 90°	n.	2
curva a 90° a largo raggio	n.	0
pezzo a T o raccordo a croce	n.	1
saracinesca	n.	0
valvola di non ritorno	n.	0
lunghezza equivalente totale - L _{i,EQ}	ml	10.87
perdite di carico localizzate - p _{i,LOC}	mm	428.71
p _i	mm	2400.31
perdita di carico complessiva sul tratto	m	2.40
	bar	0.24

Mandataria: Mandante:

SALINI IMPREGILO S.p.A. ASTALDI S.p.A.

PROGETTISTA:

Mandataria:

SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ROCKSOIL S.p.A.

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO

LINEA FERROVIARIA NAPOLI - BARI TRATTA NAPOLI-CANCELLO

IN VARIANTE TRA LE PK 0+000 E PK 15+585, INCLUSE LE OPERE ACCESSORIE, NELL'AMBITO DEGLI INTERVENTI DI CUI AL D.L. 133/2014, CONVERTITO IN LEGGE 164 / 2014

PROGETTO

LOTTO

CODIFICA DOCUMENTO REV.

PAGINA

IF1M 0.0.E.ZZ RO AI.03.0.4.001 15 di 15 Α

PERDITE DI CARICO **DIRAMAZIONE** [T3a]

diametro nominale della tubazione	DN	40
portata in transito sul tratto - Q _i	l/min	120
velocità in condotta - V _i	m/s	1.41
lunghezza del tratto - L _i	ml	1.50
perdita di carico distribuita - p _{i,DIS}	mm	39.31
perdita di carico tubazione flessibile - p _{tb,DIS}	mm	910.43
curva a 45°	n.	0
curva a 90°	n.	2
curva a 90° a largo raggio	n.	0
pezzo a T o raccordo a croce	n.	1
saracinesca	n.	0
valvola di non ritorno	n.	0
lunghezza equivalente totale - L _{i,EQ}	ml	4.80
perdite di carico localizzate - p _{i,LOC}	mm	125.80
p _i	mm	1075.55
perdita di carico complessiva sul tratto	m	1.08
	bar	0.11

PERDITE DI CARICO **DIRAMAZIONE** [T3b]

diametro nominale della tubazione	DN	80
portata in transito sul tratto - Q _i	I/min	360
velocità in condotta - V _i	m/s	1.41
lunghezza del tratto - L _i	ml	50.00
perdita di carico distribuita - p _{i,DIS}	mm	882.95
curva a 45°	n.	0
curva a 90°	n.	2
curva a 90° a largo raggio	n.	0
pezzo a T o raccordo a croce	n.	1
saracinesca	n.	0
valvola di non ritorno	n.	0
lunghezza equivalente totale - L _{i,EQ}	ml	13.14
perdite di carico localizzate - p _{i,LOC}	mm	231.99
p _i	mm	1114.94
perdita di carico complessiva sul tratto	m	1.11
	bar	0.11

PERDITE DI CARICO TRATTO PRINCIPALE COMUNE [T3]

	bar	0.16
perdita di carico complessiva sul tratto	m	1.68
p _i	mm	1677.02
perdite di carico localizzate - p _{i,LOC}	mm	312.94
lunghezza equivalente totale - L _{i,EQ}	ml	19.50
valvola di non ritorno	n.	0
saracinesca	n.	0
pezzo a T o raccordo a croce	n.	2
curva a 90° a largo raggio	n.	0
curva a 90°	n.	5
curva a 45°	n.	0
perdita di carico distribuita - p _{i,DIS}	mm	1364.09
lunghezza del tratto - L _i	ml	85.00
velocità in condotta - V _i	m/s	1.14
portata in transito sul tratto - Q _i	mc/h	21.60
portata in transito sul tratto - Q _i	l/min	360
diametro nominale della tubazione	DN	80

PERDITE DI CARICO COMPLESSIVE [T1a+T1b+T2a+T2b+T3a+T3b+T3]

perdite di carico distribuite - p _{i,DIS} TOT	mm	7127.67
perdite di carico localizzate - p _{i,LOC} TOT	mm	1358.62
	mm	5500.00
dislivello geodetico - H _g	m	5.50
	bar	0.54
	mm	20395.68
pressione residua ai bocchelli - p _r	m	20.40
	bar	2.00
P [™]	mm	34381.97
perdita di carico complessiva del circuito	m	34.38
	bar	3.37