COMMITTENTE:

PROGETTAZIONE:

DIRE	ZIONE TECNICA		
U.O.	COORDINAMENTO NO CA	APTIVE E INGEGNERIA	DI SISTEMA

PROGETTO DEFINITIVO

VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI - OLBIA

VARIANTE DI BAULADU

RELAZIONE IDROLOGICA

SCALA:

COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV.

RR0H 01 D 13 RI I D0001 001 A

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	Emissione Esecutiva	F.Bianchi	15 MARZO 2018	MVILLANY	15 MARZO 2018	T.PAØVETTI	15 MARZO 2018	LBERARDI 15 MARZO 2018
				V				/ Suggest
								To Carlot

File:RR0H01D13RIID0001001A,doc

Sommario

1.	PREMESSA	3
2.	INQUADRAMENTO GENERALE DEL PROGETTO FERROVIARIO	3
3.	IDROLOGIA	4
3.1	1 BACINI IDROGRAFICI	5
3.2	2 PLUVIOMETRIA	6
3.3	3 REGIONALIZZAZIONE DELLE PIOGGE-METODOLOGIA VAPI	7
4.	RISULTATI DELLO STUDIO IDROLOGICO	13
4.1	1 CURVE DI POSSIBILITÀ PLUVIOMETRICA PER TEMPI DI PIOGGIA INFERIORI ALL'ORA	14
4.2	2 CURVE DI POSSIBILITÀ PLUVIOMETRICA PER TEMPI DI PIOGGIA SUPERIORI ALL'ORA	16

TALFERR RUPPO FERROVIE DELLO STATO ITALIANE ELAZIONE IDROLOGICA		VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI -OLBIA VARIANTE DI BAULADU							
RELAZIONE IDROLOGICA	COMMESSA RROH	LОТТО 01	CODIFICA D13 RI	DOCUMENTO ID 00 01 001	REV.	FOGLIO 3 di 18			

1. PREMESSA

La presente relazione riassume i risultati delle indagini sviluppate, le metodologie applicate ed i risultati dello studio idrologico dei bacini idrografici principali e secondari interferenti con il tracciato della linea ferroviaria nell'ambito del progetto definitivo di velocizzazione della linea S.Gavino – Sassari – Olbia, Variante di Bauladu (Lotto 1).

2. INQUADRAMENTO GENERALE DEL PROGETTO FERROVIARIO

L'intervento oggetto di studio si colloca nella Sardegna centro-occidentale in corrispondenza del tracciato ferroviario della linea San Gavino – Sassari – Olbia. La tratta di progetto corrispondente alla variante di Bauladu si sviluppa per una lunghezza di circa 8 km e interessa il territorio dei comuni di Bauladu, Paulilatino e Solarussa in provincia di Oristano (OR). Dal punto di vista orografico il tracciato di progetto relativo alla variante di Bauladu impegna settori di territorio posti a quote comprese tra circa 55 m s.l.m. (località Nuraghe Pranu Maiales) e 191 m s.l.m. circa in corrispondenza del rilievo di Pischina Arrubia mentre le quote progettuali variano da 55 m s.l.m. a 187 m s.l.m. circa. Dal punto di vista morfologico l'area di studio è caratterizzata, verso sud, dall'ampia valle di origine tettonica del Campidano e dalle pendici collinari dell'esteso altopiano basaltico di Abbasanta, verso nord.

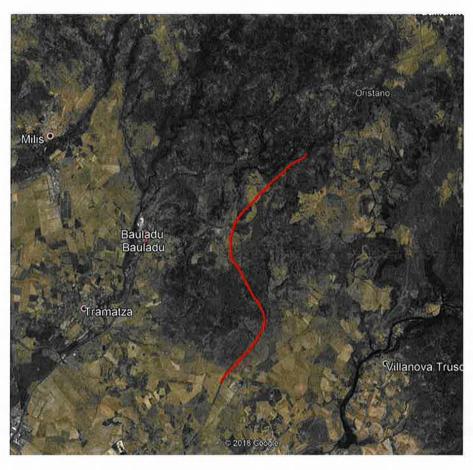
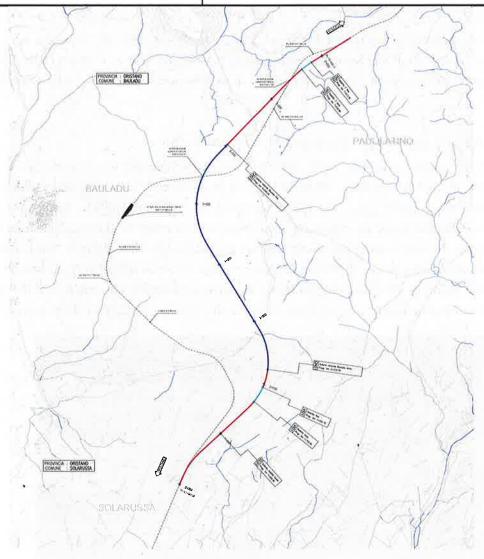



FIGURA 1- UBICAZIONE DELLA LINEA FERROVIARIA PER LA VARIANTE DI BAULADU

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	VELOCIZZ	PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI -OLBIA VARIANTE DI BAULADU							
	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO			
RELAZIONE IDROLOGICA	RR0H	01	D13 RI	ID 00 01 001	Α	4 di 18			

FIGURA 2:COROGRAFIA GENERALE

3. IDROLOGIA

Nell'ambito de seguente progetto è stato sviluppato uno studio idrologico propedeutico alla definizione delle portate di progetto per ogni corso d'acqua interferente con la linea ferroviaria di progetto e per ricavare le caratteristiche idrologiche delle aree di studio. Di seguito sono riportati i risultati della metodologia VAPI per la Regione Sardegna. I dati ottenuti sono stati utilizzati per definire le portate e le variabili idrologiche ricercate.

Lo studio idrologico ha previsto un'analisi dei bacini idrografici interferenti la nuova variante ferroviaria al fine di determinare i valori di portata al colmo di piena con tempi di ritorno pari a 20, 50, 100, 200, 300 e 500 anni ed è stato articolato nelle seguenti fasi:

- analisi conoscitiva del sistema idrografico interferente con i tracciati di progetto volto ad individuare i principali parametri morfometrici;
- analisi probabilistica dei dati di piovosità applicabili alla zona di interesse del progetto ed ai singoli bacini;

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO VELOCIZZO VARIANTE DI	AZIONE	_	GAVINO – SASS	SARI -OI	_BIA
RELAZIONE IDROLOGICA	COMMESSA RROH	LОТТО 01	CODIFICA D13 RI	DOCUMENTO ID 00 01 001	REV.	FOGLIO 5 di 18

Inoltre, sono stati individuati i principali manufatti di attraversamento della linea ferroviaria e le opere di sistemazione idraulica a protezione delle linee ferroviarie di progetto.

3.1 BACINI IDROGRAFICI

Con deliberazione in data 30.10.1990 n. 45/57, la Giunta Regionale suddivide il Bacino Unico Regionale in sette Sub-Bacini, già individuati nell'ambito del Piano per il Razionale Utilizzo delle Risorse Idriche della Sardegna (Piano Acque) redatto nel 1987.

Il territorio della regione Sardegna risulta suddiviso in sette bacini, ognuno dei quali presenta le proprie peculiarità in termini morfologici, idrologici e geografici. I corsi d'acqua e le interferenze idrauliche che ricadono sul territorio della variante di Bauladu appartengono al bacino del fiume Tirso. L'idrografia regionale è caratterizzata dalla quasi totale assenza di corsi d'acqua perenni. Infatti, i soli fiumi classificati come tali sono costituiti dal Tirso, dal Flumedosa, dal Coghinas, dal Cedrino, dal Liscia e dal Temo, unico navigabile nel tratto terminale.

La maggior parte dei corsi d'acqua, presenta caratteristiche torrentizie che, per la conformazione geomorfologica dei bacini imbriferi, presentano pendenze elevate per la maggior parte del loro percorso, con tratti vallivi, brevi che si sviluppano nei conoidi di deiezione o nelle piane alluvionali. Di conseguenza nelle parti montane si verificano intensi processi erosivi del alveo, mentre nei tratti di valle si osservano fenomeni di sovralluvionamento che danno luogo a sezioni poco incise con frequenti fenomeni di instabilità planimetrica anche per portate non particolarmente elevate.

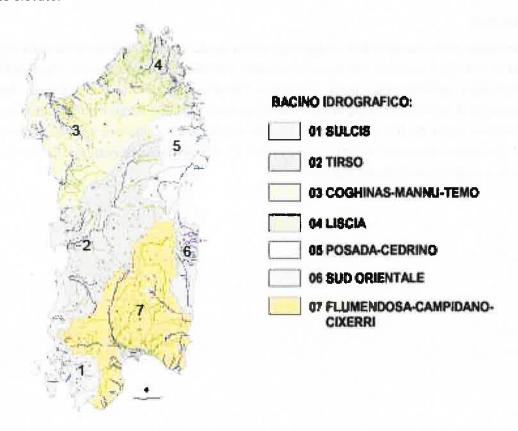


FIGURA 3-LIMITI TERRITORIALI DEI BACINI IDROGRAFICI DELLA SARDEGNA

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO SASSARI -OLBIA VARIANTE DI BAULADU	
DEL AZIONE IDDOLOGIOA	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGI	SLIO
RELAZIONE IDROLOGICA	RR0H 01 D13 RI ID 00 01 001 A 6 di	18

In particolare, l'idrografia del territorio interessato presenta un regime di tipo torrentizio dovuto principalmente alla conformazione geomorfologica dei bacini stessi, caratterizzati da pendenze elevate per larga parte del loro corso e tratti pianeggianti molto brevi.

Inoltre, il clima caratterizzante il bacino unico regionale può essere descritto come semiarido con una spiccata variabilità temporale della precipitazione ed intensità orarie elevate tipiche dei regimi pluviometrici marittimi.

Nei paragrafi successivi vengono illustrate le procedure seguite nell'applicazione del Progetto VAPI per la stima delle portate di assegnato tempo di ritorno in una sezione di chiusura di un corso d'acqua e i parametri governanti la legge di probabilità pluviometrica per la regione Sardegna.

Tale analisi è stata supportata da:

- indagini effettuate nella modellazione dei dati pluviometrici e idrometrici della regione, contenute nel Rapporto Regionale pubblicato, Valutazione delle Piene in Sardegna [Cao et al., 1991]
- indagini derivate da analisi e materiali prodotti in data successiva [Deidda et al., 1993; Deidda e Piga, 1996; Deidda et al., 1997], che costituiscono la base per l'aggiornamento del Rapporto stesso, che sarà oggetto di successive attività di ricerca dell'U.O. 1.7 del GNDCI, presso l'Università di Cagliari.

3.2 PLUVIOMETRIA

Alla variabilità temporale della precipitazione si aggiunge anche quella spaziale caratterizzata dalla forte influenza dell'orografia con le principali direzioni dei flussi di umidità indotte dalle perturbazioni atmosferiche come si evince dalla distribuzione spaziale della media giornaliera. L'applicazione del modello TCEV per determinare il valore massimo annuale di altezza di pioggia utilizza i dati provenienti da 200 stazioni pluviometriche con almeno 40 anni di osservazioni registrati tra gli anni 1922-80. Per consentire un'ulteriore verifica, inoltre, sono stati utilizzati altri 111 pluviometri con serie di dati comprese fra i 15 e 39 anni di osservazione. La distribuzione delle stazioni menzionate è proposta nella figura seguente.

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	VELOCIZZA VARIANTE DI	AZIONE	LINEA SAN	GAVINO – SAS	SARI -OI	_BIA
	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RELAZIONE IDROLOGICA	RR0H	01	D13 RI	ID 00 01 001	Α	7 di 18

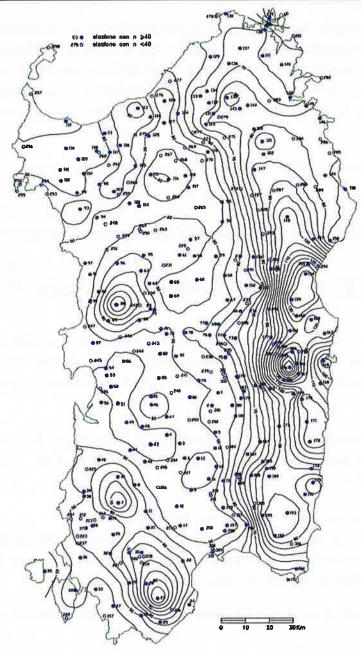


FIGURA 4-DISTRIBUZIONE DEI PLUVIOMETRI SUL TERRITORIO DELLA SARDEGNA

Gli Annali Idrologici del Compartimento di Cagliari del SIMN congiuntamente ai dati provenienti dalla digitalizzazione dei diagrammi pluviometrici dello stesso compartimento hanno permesso le elaborazioni relative agli eventi brevi ed intensi.

In particolare, è stato utilizzato un database costituito dalle massime piogge annue di durata pari a 30, 45 e 60 minuti e 3, 6, 12 e 24 ore, registrate in 46 stazioni con almeno 17 anni di osservazioni fra gli anni 1929-82.

3.3 REGIONALIZZAZIONE DELLE PIOGGE-METODOLOGIA VAPI

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO VELOCIZZ	AZIONE		GAVINO – SAS	SARI -OI	LBIA
RELAZIONE IDROLOGICA	COMMESSA RR0H	ьотто 01	CODIFICA D13 RI	DOCUMENTO ID 00 01 001	REV.	FOGLIO 8 di 18

3.3.1 DISTRIBUZIONE TCEV

La procedura VAPI (Valutazione delle Piene in Italia) ha lo scopo di fornire una procedura uniforme per l'intero territorio nazionale in merito al calcolo delle portate di piena naturali. Tale metodologia utilizza per la variabile casuale ht, indicante il valore massimo annuale di altezza di pioggia di durata oraria o sub-oraria, il modello probabilistico TCEV (Two Components Estreme Value). Questo metodo si basa sull'ipotesi secondo la quale esistono due popolazioni, fra loro indipendenti, dalle quali provengono i valori estremi di una grandezza idrologica, quale ht:

- Eventi ordinari più frequenti e caratterizzati da valori mediamente meno elevati
- Eventi eccezionali (outliers) più rari e più gravosi
- Tale funzione di distribuzione di probabilità cumulata della variabile casuale x= ht risulta essere:

$$F_X(X) = \exp\left(-\Lambda_1 exp^{-\frac{x}{\theta_1}} - \Lambda_2 exp^{-\frac{x}{\theta_2}}\right)$$

La funzione è caratterizzata da quattro parametri: $\Lambda 1$ e $\Lambda 2$ rappresentanti il numero medio annuo di eventi pluviometrici indipendenti che appartengono rispettivamente alla popolazione di eventi ordinari e alla popolazione di eventi eccezionali; $\theta 1$ e $\theta 2$ indicanti il valore medio dell'altezza di pioggia di durata t di tali categorie di eventi.

Può risultare significativa la definizione di due ulteriori parametri $\Theta_*=\Theta_2/\Theta_1$ e $\Lambda_*=\Lambda_2/\Lambda_1^{1/\Theta_*}$, in quanto si dimostra che il coefficiente d'asimmetria $\xi(ht)$ dipende unicamente da Λ_* e Θ_* , mentre il coefficiente di variazione $\gamma(ht)$ da Λ_* , Θ_* e Λ_1 .

3.3.2 STIMA REGIONALE DEI PARAMETRI CON I MASSIMI GIORNALIERI

La regionalizzazione delle altezze di pioggia h(t)k effettuata nei diversi pluviometri k = 1,2,...,n significa l'aggregazione di tali variabili in gruppi che presentino caratteristiche stocastiche comuni. Inoltre, è generalmente richiesto che tali insiemi presentino anche riferimenti geografici comuni.

Per la valutazione dei parametri Λ_* e Θ_* il programma VAPI prevede un metodo di regionalizzazione in cui individua i tre seguenti livelli:

- al primo livello, omogeneità rispetto ai parametri Λ_* e Θ_* , da cui deriva l'omogeneità rispetto al coefficiente d'asimmetria $\xi(ht)$
- al secondo livello, omogeneità rispetto ai parametri χ e , da cui deriva l'omogeneità rispetto al coefficiente di variazione $\gamma(ht)$
- al terzo livello, omogeneità rispetto ai parametri , , e , da cui dipende la media μ(t)

Sulla base dei dati pluviometrici della regione Sardegna elaborati nel progetto VAPI, si è verificato che la regione Sardegna è pluviometricamente omogenea, pertanto, il coefficiente di asimmetria $\xi(ht)$ e i parametri Λ_* e

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO VELOCIZZ	AZIONE	LINEA SAN	GAVINO – SAS	SARI -OI	-BIA
RELAZIONE IDROLOGICA	COMMESSA RROH	LОТТО 01	CODIFICA D13 RI	DOCUMENTO ID 00 01 001	REV.	FOGLIO 9 di 18

 Θ_* risultano costanti su tutto il territorio. Tali valori sono stati individuati con il metodo di massima verosimiglianza (MV) e sono risultati pari a:

$$\Lambda_* = 2.207$$

$$\Theta_* = 0.5717$$

In seguito, sono state individuate tre sottozone (SZO) ognuna delle quali presenta omogeneità rispetto al coefficiente di variazione $\gamma(ht)$ e, di conseguenza, rispetto al parametro .

Tale ipotesi è stata verificata producendo, per ognuna delle serie osservate, ulteriori 1000 serie sintetiche con lo stesso numero di dati, costruendo da tale database la curva di ripartizione teorica del coefficiente d'asimmetria campionario, determinando la probabilità di non superamento relativa al valore del coefficiente d'asimmetria osservato e verificando infine l'uniformità della distribuzione delle 200 probabilità di non superamento ottenute per le 200 stazioni.

A tale analisi è stato affiancato un confronto visivo con la distribuzione empirica dei 200 valori di asimmetria osservati e la distribuzione di riferimento, la quale è costituita da 200000 valori calcolati dalle generazioni. Per aggregare le stazioni in gruppi omogenei si sono utilizzate tecniche di cluster analysis.

Quindi, la stima dei parametri è stata effettuata, in prima istanza, utilizzando il metodo di massima verosimiglianza e in seguito si è proceduto ad affinare i risultati cambiando iterativamente i valori dei parametri, fino ad ottenere per le serie generate sinteticamente gli stessi coefficienti di variazione (CV) per ciascuna SZO.

La verifica di queste stime ha utilizzato un procedimento analogo a quello che si è impiegato al primo livello di regionalizzazione.

Infine, la delimitazione territoriale delle SZO è stata effettuata tenendo in conto anche le 111 stazioni con minor numero di dati, le quali sono state suddivise tra i tre gruppi con tecniche di analisi discriminante e si è proceduto, quindi, ad aggregare i topoieti delle stazioni appartenenti alla stessa SZO. Infine, la spezzata che costituisce il confine della zona è stata regolarizzata con una spline function.

Il risultato di tale operazione ha permesso di individuare tre sottozone in cui il valore del parametro sono risultati, rispettivamente:

1 SZO

 $\Lambda_1 = 74.50$

2 SZO

 Λ_1 = **21.20**

3 SZO

 Λ_1 = 6.68

GRUPPO FERROVIE DELLO STATO ITALIANE	VARIANTE DI	BAULADU		GAVINO – SAS		
	COMMESSA	ьотто	CODIFICA	DOCUMENTO	REV.	FOGLIO
RELAZIONE IDROLOGICA	RR0H	01	D13 RI	ID 00 01 001	Α	10 di 18

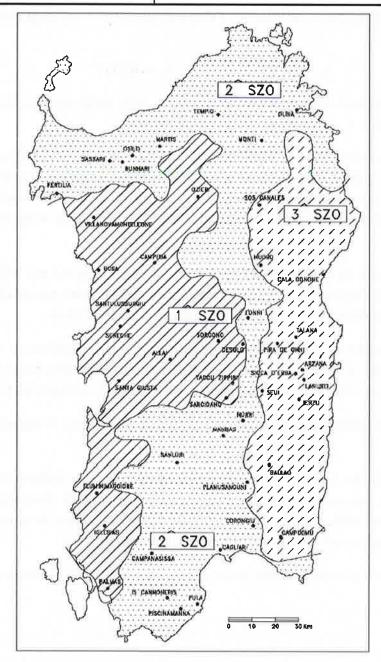


FIGURA 5-CARTA DELLA SUDDIVISIONE IN SOTTOZONE PLUVIOMETRICHE OMOGENEE

Pertanto, una volta che sono stati definiti i parametri di forma e scala della distribuzione di probabilità cumulata (PDC) per ognuna delle tre SZO è univocamente definita la relazione fra periodo di ritorno T e valore del coefficiente di crescita KT, inteso come il rapporto fra precipitazione di dato tempo di ritorno e pioggia indice:

$$T = \frac{1}{1 - F_K(K)} = \frac{1}{1 - \exp(-\Lambda_1 \cdot e^{-\eta k} - \Lambda_* \cdot \Lambda_1^{1/\theta_0} \cdot e^{(-\eta k/\theta_0)})}$$
(1)

Si riportano in Tabella 1 i parametri dell'equazione (1) propri di ciascuna delle 3 SZO della Sardegna.

PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO - SASSARI -OLBIA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE VARIANTE DI BAULADU DOCUMENTO **FOGLIO** COMMESSA LOTTO CODIFICA REV. RELAZIONE IDROLOGICA ID 00 01 001 Α 11 di 18 01 D13 RI RR0H 40 100 10 20 25 50 T (anni) 2 5 1.93 2.26 1.76 2.01 KT 0.92 1.21 1.44 1.68 (SZO 1) 2.18 2.28 2.61 KT 0.9 1.27 1.56 1.86 1.96 (SZO 2) 2.71 3.15 KT 0.86 1.36 1.74 2.15 2.28 2.57

TABELLA 1- VALORI TEORICI DEL COEFFICIENTE PROBABILISTICO DI CRESCITA KT PER LE PIOGGE GIORNALIERE IN SARDEGNA, PER ALCUNI VALORI DEL TEMPO DI RITORNO

Si riportano qui di seguito le relazioni valide per tempi di ritorno fra 2 e 1000 anni che hanno permesso il calcolo dei coefficienti di crescita riportati in Tabella 2.

1° SZO
$$K_T = 0.69319 + 0.72015 \log T + 3.1364 \cdot 10 - 2 (LogT)^2$$

2° SZO $K_T = 0.60937 + 0.91699 \log T + 3.9932 \cdot 10 - 2 (LogT)^2$ (2)
3° SZO $K_T = 0.47839 + 1.2245 \log T + 5.3321 \cdot 10 - 2 (LogT)^2$

3.3.3 PIOGGE GIORNALIERE BREVI ED INTENSE

(SZO 3)

Le piogge brevi ed intense sono state valutate con la stessa metodologia utilizzata per le piogge giornaliere per il primo e secondo livello di regionalizzazione. Come già precedentemente evidenziato, è stata confermata l'esistenza di un'unica ZO per quel che riguarda il primo livello di regionalizzazione mentre al secondo livello di regionalizzazione il territorio è stato suddiviso in tre SZO. I parametri Λ_* , Θ_* e Λ_1 sono risultati strettamente dipendenti dalla durata dell'evento. In particolare, Λ_* , Θ_* sono stati calcolati con l'algoritmo MV e sono stati regolarizzati al variare della durata, come indicati nella tabella seguente:

Durata	ta $oldsymbol{\Lambda}_*$ $oldsymbol{\Theta}_*$		Λ_1				
			SZO1	SZO2	SZO3		
30'	0.5717	1.402	12.88	11.78	10.35		
45'	0.5717	1.805	17.80	15.11	13.20		
60'	0.5717	2.207	26.55	20.85	16.55		
3 ore	0.5717	2.207	31.06	27.40	15.31		
6 ore	0.5717	2.207	47.39	29.16	12.94		
12 ore	0.5717	2.207	45.85	31.57	10.17		
24 ore	0.5717	2.207	56.29	27.12	8.07		

TABELLA 2-PARAMETRI STATISTICI DEI MASSIMI ANNUALI DELLE ALTEZZE DI PIOGGIA DI DIVERSA DURATA

Come già precedentemente effettuato, anche per le piogge brevi ed intense si sono ricavate espressioni che permettono il calcolo di KT in funzione del tempo di ritorno T. Ciò è stato fatto calcolando per ognuna delle tre SZO e per i tempi di ritorno da 2 a 1000 anni i KT per le durate da 0.5 a 24 ore. Considerando tempi di ritorno fino a 10 anni, i valori di KT, al variare della durata di pioggia d, sono adeguatamente rappresentati da un'unica espressione quale:

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI -OLBIA VARIANTE DI BAULADU			LBIA		
DEL AZIONE IDDOLOGIOA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RELAZIONE IDROLOGICA	RR0H_	01	D13 RI	ID 00 01 001	Α	12 di 18
$K_T = a_1 d^{n1}$	(1)					(3

dove i coefficienti a1 e n1 sono funzione del tempo di ritorno T. Tuttavia, al crescere di T, l'espressione monomia presenta un ginocchio molto marcato in corrispondenza della durata di pioggia pari a 1 ora, che porta a considerare tale valore come indice discriminante fra il comportamento dei gruppi contenenti rispettivamente le piogge di durata inferiore all'ora e quello corrispondente alle durati superiori l'ora. Per tale motivo, si adottano due diverse espressioni monomie valide rispettivamente per il primo gruppo menzionato e per il secondo:

$$K_T = a_{2i}d^{n2i}$$
 per d ≤ 1 ora (4a)

$$K_T = a_{2\prime\prime\prime} d^{n2\prime\prime} \qquad \text{per d} \ge 1 \text{ ora} \tag{4b}$$

I coefficienti a2' e a2", entrambi rappresentativi della pioggia oraria, hanno pari valore. Al contrario, i coefficienti n2' e n2" variano in funzione della durata dell'evento di pioggia. Si illustrano di seguito le formule utilizzate per il calcolo di tali parametri.

1° SZO
$$a2' = a2'' = 0.46378 + 1.0386 \log T; \tag{5a}$$

$$n2' = -0.18449 + 0.23032 \log T - 3.3330 \cdot 10 - 2 (\log T)^2; \tag{5b}$$

$$n2'' = -1.0563 \cdot 10 - 2 - 7.99034 \cdot 10 - 3 \log T \tag{5c}$$

$$n2' = -0.18676 + 0.24310 \log T - 3.5453 \cdot 10 - 2 (\log T)^{2};$$
(6b)

$$n2'' = -5.6593 \cdot 10 - 2 - 4.0872 \cdot 10 - 3 \log T$$
 (6c)

(6a)

3° SZO
$$a2' = a2'' = 0.41273 + 1.1370 \log T;$$
 (7a)

$$n2' = -0.19055 + 0.25937 \log T - 3.8160 \cdot 10 - 2 (\log T)^2;$$
 (7b)

$$n2'' = 1.5878 \cdot 10 - 2 + 7.6250 \cdot 10 - 3 \log T$$
 (7c)

3.3.4 LEGGI DI PROBABILITÀ PLUVIOMETRICA

a2' = a2'' = 0.44182 + 1.0817 Log T;

2° SZO

Per quel che riguarda il terzo livello di regionalizzazione, la pioggia indice viene intesa come la media del massimo annuale dell'altezza di precipitazione giornaliera $\mu[hg]$.

Tale pioggia indice è stata distribuita sul territorio utilizzando tre differenti modelli di trasposizione, per i quali sono state valutate le corrispondenti prestazioni:

- il primo modello è basato sulla mappatura spaziale della grandezza di interesse, attraverso tecniche di Kriging;
- il secondo modello identifica aree omogenee caratterizzate da correlazioni lineari tra il logaritmo della pioggia indice e la quota sul mare della stazione;
- il terzo modello utilizza modelli neurali.

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI VARIANTE DI BAULADU				SARI -O	-OLBIA	
RELAZIONE IDROLOGICA	COMMESSA RR0H	LОТТО 01	CODIFICA D13 RI	DOCUMENTO ID 00 01 001	REV.	FOGLIO 13 di 18	

Per poter calibrare i tre modelli sono state utilizzate le osservazioni delle 200 stazioni con la base dati più ampia, mentre per la fase di verifica sono state introdotte anche le osservazioni provenienti dalle 111 stazioni con un numero di dati inferiore. Dalle analisi effettuate, il modello basato sulle tecniche di Kriging si è rivelato quello con maggiori capacità interpretative. Per la sua applicazione, quindi, sono stati stimati in prima istanza i valori di $\mu[hg]$ in corrispondenza dei nodi di un reticolo disposto sull'intera regione di 1 km di lato. La stima della pioggia indice in un qualunque altro punto può dunque essere ricavata applicando una semplice interpolazione lineare fra i valori dei quattro nodi circostanti.

Il legame tra pioggia indice $\mu[h(\tau)]$ e la relativa durata τ è espresso dalla seguente espressione:

$$\mu[h(\tau)] = a_0 d^{n0} \tag{8}$$

Nel caso di siti non osservati nei quali non sono presenti i valori dei parametri a0 e n0, si è scelto di individuare relazioni generali che utilizzassero l'altezza di pioggia media giornaliera, più semplicemente calcolabile in tutto il territorio, in virtù di quanto precedentemente espresso.

Le relazioni espressione dei parametri a₀ e n₀ risultano:

$$a_0 = \mu[hg] / (0.886 24 n_0)$$
 (9a)

$$n_0 = -0.493 + 0.476 \log \mu [hg]$$
 (9b)

Quindi, dalla carta che illustra la suddivisione in SZO si seleziona la sottozona omogenea in cui ricade il bacino idrografico in esame. Utilizzando poi la carta delle isoiete si può ricavare la pioggia indice giornaliera $\mu[hg]$ (in mm) a livello della sezione di chiusura del bacino; infine, l'altezza di pioggia hT(d) con tempo di ritorno T e durata assegnata si ottiene dalla seguente espressione:

$$h_T(d) = \mu[h(\tau)]K_T(\tau) = a_0 a_2 \cdot \tau^{(n_0 + n_2)}$$
(10)

In cui a_2 e n_2 saranno pari rispettivamente a $a_{2'}$ e $n_{2'}$ per le durate inferiori all'ora, e ad $a_{2''}$ e $n_{2''}$ per le durate superiori all'ora.

4. RISULTATI DELLO STUDIO IDROLOGICO

Dalla carta della suddivisione in sottozone pluviometriche omogenee (SZO) si può evincere che la linea ferroviaria oggetto del progetto si colloca interamente nella sottozona SZO 1. Dalla carta delle isoiete leggiamo una pioggia indice giornaliera $\mu[h_g]$ pari a 50 mm. Si è proceduto dunque alla determinazione dei parametri a_0 ed n_0 della curva di crescita mediante le equazioni (9). Ne seguono i seguenti risultati:

TABELLA 3:PARAMETRI DELLA CURVA DI CRESCITA

μ _g [mm]	a _o	n _o
50.00	20.69	0.32

Successivamente, mediante le equazioni (5) si è proceduto al calcolo di $a_{2'}$ e $n_{2'}$ per le durate inferiori all'ora, e ad $a_{2''}$ e $n_{2''}$ per le durate superiori all'ora.

|--|

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			VELC	GETTO DEFI OCIZZAZION NTE DI BAULAI	E LINEA SAN	I GAVINO – SAS	SARI -OI	LBIA
RELAZIONE IDROLOGICA			COMM		CODIFICA	DOCUMENTO ID 00 01 001	REV.	FOGLIO
	5	1	1.19	-0.03979	-0.01609			
	20	1	1.82	0.058746	-0.02085			
	25	1	1.92	0.072349	-0.02161			
	50	2	2.23	0.11061	-0.02399			

5	1.19	-0.03979	-0.01609
20	1.82	0.058746	-0.02085
25	1.92	0.072349	-0.02161
50	2.23	0.11061	-0.02399
100	2.54	0.14283	-0.02637
200	2.85	0.16901	-0.02875
300	3.04	0.181523	-0.03014
500	3.27	0.194346	-0.03189

4.1 CURVE DI POSSIBILITÀ PLUVIOMETRICA PER TEMPI DI PIOGGIA INFERIORI ALL'ORA

Per tempi di pioggia inferiori all'ora i parametri a ed n caratteristici della curva di possibilità pluviometrica per i tempi di ritorno sù indicati risultano pari a:

$$a = a_0 a_{2'}$$

$$n = n_0 + n_{2'}$$

TABELLA 4:PARAMETRI DELLA CURVA DI POSSIBILITÀ PLUVIOMETRICA PER t < 1 ORA

Tr	а	n
5	24.617	0.28
20	37.556	0.37
25	39.638	0.39
50	46.107	0.43
100	52.576	0.46
200	59.046	0.48
300	62.830	0.50
500	67.597	0.51

Nelle seguenti tabelle si mostrano i dati di altezza e intensità di precipitazione ricavati mediante l'equazione (10):

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GA VARIANTE DI BAULADU			GAVINO – SASSARI -OLBIA		
DEL AZIONE IDDOLOGICA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RELAZIONE IDROLOGICA	RR0H	01	D13 RI	ID 00 01 001	Α	15 di 18

TABELLA 5: VALORI DI ALTEZZA E INTENSITÀ DI PRECIPITAZIONE

Tr = 25 anni					
t	h	i			
[h]	[mm]	[mm/h]			
0.1	16.220	162.201			
0.2	21.226	106.131			
0.4	27.777	69.443			
0.5	30.290	60.580			
1	39.638	39.638			

Tr = 50 anni					
t	h	i			
[h]	[mm]	[mm/h]			
0.1	17.276	172.763			
0.2	23.216	116.079			
0.4	31.198	77.994			
0.5	34.311	68.622			
1	46.107	46.107			

	Tr = 100 anni					
t	h	i				
[h]	[mm]	[mm/h]				
0.1	18.292	182.916				
0.2	25.135	125.677				
0.4	34.540	86.350				
0.5	38.261	76.522				
1	52.576	52.576				

Tr = 200 anni					
t	h	i			
[h]	[mm]	[mm/h]			
0.1	19.341	193.405			
0.2	27.063	135.317			
0.4	37.870	94.676			
0.5	42.196	84.392			
1	59.046	59.046			

Ne conseguono le seguenti curve di possibilità pluviometrica per tempi di ritorno pari a 25, 50, 100 e 200 anni.

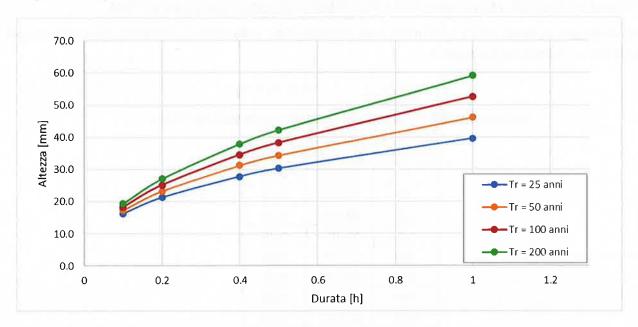


FIGURA 6: CURVE DI POSSIBILITÀ PLUVIOMETRICA_ALTEZZA DI PRECIPITAZIONE IN FUNZIONE DEL TEMPO DI PIOGGIA (t < 1 ora)

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	VELOCIZZ	PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI -OLBIA VARIANTE DI BAULADU				
RELAZIONE IDROLOGICA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV	FOGLIO
	RR0H	01	D13 RI	ID 00 01 001	Α	16 di 18

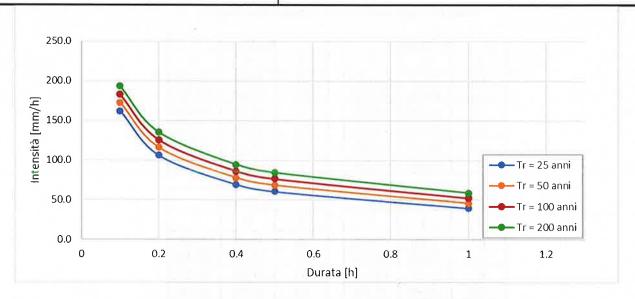


FIGURA 7:INTENSITÀ DI PIOGGIA IN FUNZIONE DEL TEMPO DI PIOGGIA (t < 1 ora)

4.2 CURVE DI POSSIBILITÀ PLUVIOMETRICA PER TEMPI DI PIOGGIA SUPERIORI ALL'ORA

Per tempi di pioggia superiori all'ora i parametri a ed n caratteristici della curva di possibilità pluviometrica per i tempi di ritorno su indicati risultano pari a:

$$a=\,a_0a_2{}^{\prime\prime}\qquad \qquad n=n_0+n_2{}^{\prime\prime}$$

TABELLA 6: PARAMETRI DELLA CURVA DI POSSIBILITÀ PLUVIOMETRICA PER t > 1 ORA

Tr	а	n
5	24.617	0.30
20	37.556	0.29
25	39.638	0.29
50	46.107	0.29
100	52.576	0.29
200	59.046	0.29
300	62.830	0.29
500	67.597	0.28

Nelle seguenti tabelle si mostrano i dati di altezza e intensità di precipitazione ricavati mediante l'equazione (10):

PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI -OLBIA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE VARIANTE DI BAULADU FOGLIO COMMESSA LOTTO CODIFICA DOCUMENTO REV. **RELAZIONE IDROLOGICA** RR0H 01 D13 RI ID 00 01 001 Α 17 di 18

TABELLA 7: VALORI DI ALTEZZA E INTENSITÀ DI PRECIPITAZIONE

A			
Tr = 25 anni			
t	h	i	
[h]	[mm]	[mm/h]	
3	54.756	18.252	
6	67.138	11.190	
10	78.021	7.802	
12	82.319	6.860	
24	100.932	4.206	

Tr = 50 anni			
t	h	i	
[h]	[mm]	[mm/h]	
3	63.527	21.176	
6	77.763	12.960	
10	90.259	9.026	
12	95.189	7.932	
24	116.521	4.855	

Tr = 100 anni			
t	h	i	
[h]	[mm]	[mm/h]	
3	72.251	24.084	
6	88.296	14.716	
10	102.360	10.236	
12	107.905	8.992	
24	131.869	5.495	

Tr = 200 anni			
t	h	i	
[h]	[mm]	[mm/h]	
3	80.929	26.976	
6	98.739	16.456	
10	114.327	11.433	
12	120.468	10.039	
24	146.979	6.124	

Ne conseguono le seguenti curve di possibilità pluviometrica per tempi di ritorno pari a 25, 50, 100 e 200 anni.

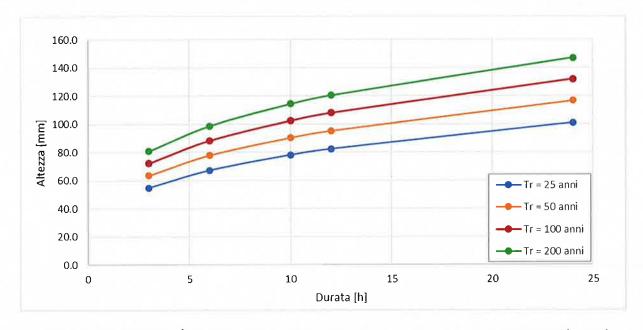


FIGURA 8: CURVE DI POSSIBILITÀ PLUVIOMETRICA_ALTEZZA DI PRECIPITAZIONE IN FUNZIONE DEL TEMPO DI PIOGGIA (t > 1 ora)

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO SASSARI -OLBIA VARIANTE DI BAULADU				
RELAZIONE IDROLOGICA	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RROH . 01 D13 RI ID 00 01 001 A 18 di 18				

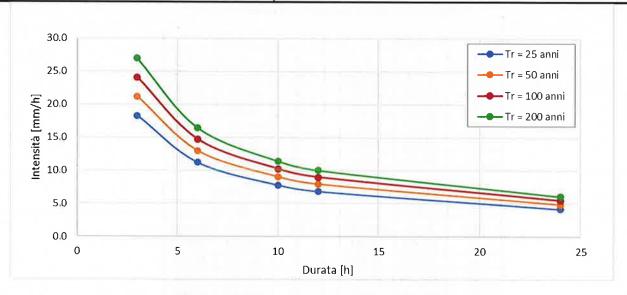


FIGURA 9: INTENSITÀ DI PIOGGIA IN FUNZIONE DEL TEMPO DI PIOGGIA (t > 1 ora)