COMMITTENTE:

PROGETTAZIONE:

U.O.	COORDINAMENTO	NO CAPTIVE E INGEGNERIA D	I SISTEMA
------	---------------	----------------------------------	-----------

PROGETTO DEFINITIVO

VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI - OLBIA

VARIANTE DI BONORVA-TORRALBA

OPERE DI SOSTEGNO

Muri di contenimento rilevato di approccio alla spalla B del VI01 – Relazione di calcolo

							S	CALA:
								-
COMMESSA	LOTTO	FASE	ENTE	TIPO DOC.	OPERA/DISCIPLINA	PROGR.	REV.	
RR0H	0 4	D	1 3	CL	000000	0 0 1	Α	

Esecutiva F.I	BIANCHI	15 MARZO 2018	A.CIAVAREEPA	15 MARZO 2018	T.PAOJETTI	15 MARZO 2018	LEERARDI BE
					/ /		MATTER 2010
-							(FARE)
							THE SE
	C0000001A do	DC0000001A.doc	2C0000001A doc	2C0000001A doc	2C0000001A doc	C0000001A doc	DC0000001A.doc

PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI -OLBIA VARIANTE DI BONORVA-TORRALBA

Muri di contenimento rilevato di approccio alla spalla B del VI01 – Relazione di calcolo COMMESSA LOTTO
RR0H 04

CODIFICA D13 CL DOCUMENTO
OC 00 00 001

REV.

FOGLIO 2 di 47

INDICE

IN	DICE	2
1.	PRE	MESSA4
	1.1	DESCRIZIONE DEL MURO
2.	NOR	MATIVA E DOCUMENTI DI RIFERIMENTO6
	2.1	NORMATIVA DI RIFERIMENTO
	2.1	DOCUMENTI DI RIFERIMENTO
3.	MAT	ERIALI
	3.1	ACCIAIO PER ARMATURA STRUTTURE IN C.A
	3.2	CALCESTRUZZO
	3.2.1	CALCESTRUZZO MAGRO E GETTO DI LIVELLAMENTO
	3.2.2	CALCESTRUZZO MURO DI SOSTEGNO
4.	INQ	JADRAMENTO GEOTECNICO8
5.	SISIV	пста9
6.	DESC	CRIZIONE DELL'OPERA
7.	CRIT	ERI DI DIMENSIONAMENTO DELLE OPERE11
	7.1	ANALISI DEI CARICHI E DELLE AZIONI SUL MURO
	7.1.1	PESO PROPRIO DEL MURO (WEIGHT_WALL)
	7.1.2	PESO DEL TERRENO A MONTE (WEIGHT_EARTH)
	7.1.3	SPINTA DEL TERRENO A MONTE (ACTIVE PRESSURE)
	7.1.4	SOVRACCARICO STRADALE (20 KPA)
	7.1.5	INCREMENTO DI SPINTA DEL TERRENO DOVUTA AL SOVRACCARICO STRADALE (20 KPA)
	7.1.6	AZIONI SISMICHE
	7.1.6.1	SPINTA DEL TERRENO IN PRESENZA DI SISMA
	7.2	COMBINAZIONI DELLE AZIONI

PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI -OLBIA VARIANTE DI BONORVA-TORRALBA

Muri di contenimento rilevato di approccio alla spalla B del VI01 – Relazione di calcolo
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RR0H
 04
 D13 CL
 OC 00 00 001
 A
 3 di 47

	7.3	VERIFICHE DI SICUREZZA NEI CONFRONTI DEGLI STATI LIMITE ULTIMI (SLU)	17
	7.3.1	STATI LIMITE ULTIMI DI TIPO GEOTECNICO (GEO)	18
	7.3.2	CAPACITÀ PORTANTE	19
	7.3.2.1	VERIFICA DELLA CAPACITÀ PORTANTE	19
	7.3.2.1.	1 Pressione di contatto di progetto	19
	7.3.2.2	CAPACITÀ PORTANTE IN CONDIZIONI DRENATE (MATERIALI GRANULARI)	20
	7.3.3	VERIFICA A SCORRIMENTO	22
	7.3.4	VERIFICA DELL'ECCENTRICITÀ DELLA FONDAZIONE	23
	7.3.5	STATI LIMITE ULTIMI DI TIPO STRUTTURALE (STR)	23
	7.4	VERIFICHE DI SICUREZZA NEI CONFRONTI DEGLI STATI LIMITE DI ESERCIZIO (SLE)	24
8.	VERI	FICHE DELL'OPERA DI SOSTEGNO	25
	8.1	SEZIONE TIPPLOGICA DI VERIFICA E DATI DI INPUT	25
	8.2	VERIFICHE DI TIPO GEOTECNICO (GEO) E DI CORPO RIGIDO (EQU)	25
	8.2.1	COMBINAZIONE STATICA	25
	8.2.2	COMBINAZIONE SISMICA	29
	8.2.2.1	VERIFICA DI STABILITÀ GLOBALE	32
	8.3	VERIFICHE DI TIPO STRUTTURALE (STR)	33
	8.3.1	VERIFICA STRUTTURALE DEL PARAMENTO	
		VERIFICHE IN CONDIZIONI SLU	
		VERIFICHE IN CONDIZIONI SLE	
	8.3.2	VERIFICA STRUTTURALE DELLA FONDAZIONE	
		VERIFICHE IN CONDIZIONI SLU	
		VERIFICHE IN CONDIZIONI SLE	
		ARMATURA MINIMA IN DIREZIONE LONGITUDINALE	
_			
9.	SCHE	MA DELLE ARMATURE ED INCIDENZA	46

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI -OLBIA VARIANTE DI BONORVA-TORRALBA							
Muri di contenimento rilevato di approccio alla spalla B del VI01 – Relazione di calcolo	COMMESSA RR0H	LΟΤΤΟ 04	CODIFICA D13 CL	DOCUMENTO OC 00 00 001	REV,	FOGLIO 4 di 47		

1. PREMESSA

La presente relazione ha per oggetto il dimensionamento del muro di sostegno alla pk 1+250 nell'ambito del progetto definitivo della tratta ferroviaria Bonorva per la velocizzazione della linea San Gavino – Sassari – Olbia.

La funzione del muro è quella di contenere il rilevato di approccio alla spalla B del viadotto VIO1.

1.1 DESCRIZIONE DEL MURO

Il muro in cemento armato a presidio del rilevato feroviario è caratterizzato da altezza pari a 6.10m e pendenza del paramento murario lato scavo pari a 1:10. La fondazione presenta uno spessore costante pari a 0.80m ed è larga 4.35m per tutto lo sviluppo del muro. Il muro di sostegno in esame è inoltre caratterizzato dalla presenza del taglione, di dimensioni 0.60mx0.60m.

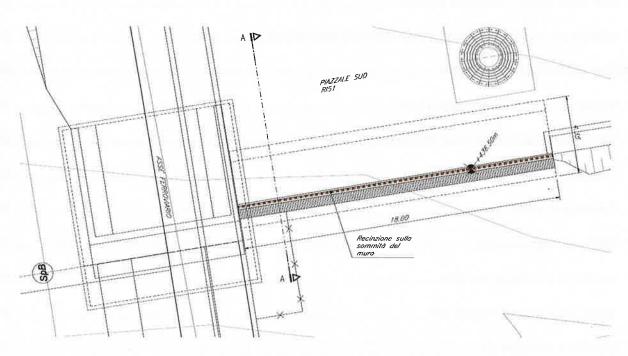


FIGURA 1.1: PLANIMETRIA

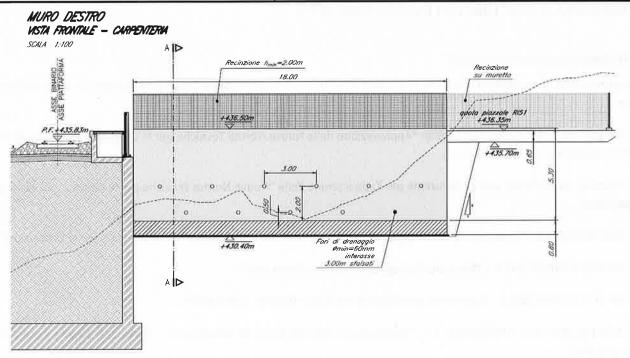
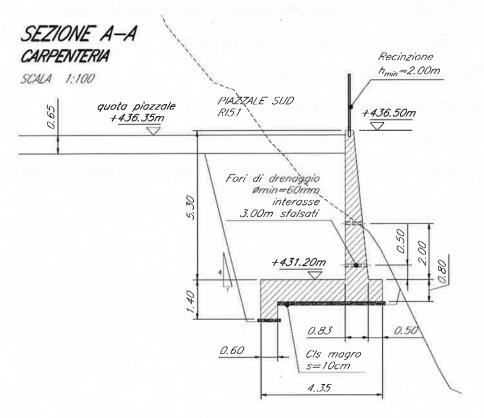



FIGURA 1.2: PROFILO LONGITUDINALE

FIGURA 1.3: SEZIONE DI CALCOLO

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI -OLBIA VARIANTE DI BONORVA-TORRALBA
Muri di contenimento rilevato di approccio alla spalla B del VI01 – Relazione di calcolo	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RROH 04 D13 CL OC 00 00 001 A 6 di 47

2. NORMATIVA E DOCUMENTI DI RIFERIMENTO

2.1 NORMATIVA DI RIFERIMENTO

Le analisi strutturali e le verifiche di sicurezza sono state effettuate in accordo con le prescrizioni contenute nelle seguenti normative:

- Rif. 1 Decreto Ministeriale del 14/01/2008: "Approvazione delle Nuove Norma Tecniche per le Costruzioni", G.U. n.29 del 04/02/20018, Supplemento Ordinario n.30;
- Rif. 2 Circolare 01/02/2009, n.617 Istruzione per l'applicazione delle "Nuove Norme Tecniche per le Costruzioni" di cui al D.M. 14/01/2008;
- Rif. 3 DM 06/05/2008 "Integrazione al DM 14/01/2008 di approvazione delle Nuove Norme Tecniche per le Costruzioni";
- Rif. 4 RFI DTC SI MA IFS 001 A "Manuale di progettazione delle opere civili";
- Rif. 5 RFI DTC SI SP IFS 001 A "Capitolato generale tecnico d'appalto delle opere civili";
- Rif. 6 UNI EN 1992-1-1: EUROCODICE 2 Progettazione delle strutture di calcestruzzo Parte 1-1: Regole generali e regole per gli edifici;
- Rif. 7 UNI EN 1991-2:2003/AC:2010: EUROCODICE 1 Azioni sulle strutture Parte 2: Carichi da traffico sui ponti.

2.1 DOCUMENTI DI RIFERIMENTO

- Rif. 8 RR0H04D13RBOC0001001A Relazione geotecnica generale di linea delle opere all'aperto;
- Rif. 9 RR0H04D13F6OC0001001A Profilo geotecnico di linea Tav 1 di 4;
- Rif. 10 RR0H04D13F6OC0001002A Profilo geotecnico di linea Tav 2 di 4;
- Rif. 11 RR0H04D13F6OC0001003A Profilo geotecnico di linea Tav 3 di 4;
- Rif. 12 RR0H04D13F6OC0001004A Profilo geotecnico di linea Tav 4 di 4;
- Rif. 13 RR0H04D13BZOC0000001A Muri di contenimento rilevato di approccio alla spalla B del VI01 Pianta, Profilo e Sezioni;
- Rif. 14 RR0H04D13TTOC0000001A Tabella materiali e Note generali.

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		AZIONE		GAVINO – SASS	SARI -OL	.BIA
Muri di contenimento rilevato di approccio alla spalla B del VI01 – Relazione di calcolo	COMMESSA RR0H	LОТТО 04	CODIFICA D13 CL	DOCUMENTO OC 00 00 001	REV.	FOGLIO 7 di 47

3. MATERIALI

In riferimento alla tabella materiali di cui al Rif. 14, si riportano nel seguito le principali caratteristiche meccaniche assunte nei calcoli (rif. punti 4.1.2.1.1, 11.2.10 e 11.3.2 delle NTC08).

3.1 ACCIAIO PER ARMATURA STRUTTURE IN C.A.

Barre ad aderenza migliorata, saldabile, tipo B450C dotato delle seguenti caratteristiche meccaniche:

•	tensione caratteristica di rottura:	$f_{tk} \ge 540 \text{ MPa}$
: = :	tensione caratteristica di snervamento:	f _{yk} ≥ 450 MPa
÷	allungamento caratteristico:	≥ 7.5 %
:	rapporto tensione di rottura/ tensione di snervamento:	$1.15 \le f_{tk}/f_{yk} < 1.35$
	3.2 CALCESTRUZZO	
	3.2.1 CALCESTRUZZO MAGRO E GETTO DI LIVELLAMENTO	
	Classe di resistenza:	C12/15
	classe di esposizione:	XO
	3.2.2 CALCESTRUZZO MURO DI SOSTEGNO	
	Classe di resistenza:	C30/37
	classe di consistenza:	S3 - S4
	classe di esposizione:	XC3
	dimensione massima dell'inerte:	D _{max} = 25 mm
	copriferro minimo:	c _{f,min} ≥ 40 mm

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI -OLBIA VARIANTE DI BONORVA-TORRALBA							
Muri di contenimento rilevato di approccio alla spalla B del VI01 – Relazione di calcolo	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RROH 04 D13 CL OC 00 00 001 A 8 di 47							

4. INQUADRAMENTO GEOTECNICO

Sulla base delle indagini disponibili è stato ricostruito l'assetto stratigrafico lungo tutto il tracciato che evidenzia la presenza di rocce del tipo Ignimbriti e Piroclastiti. Superficialmente affiorano le formazioni rocciose e localmente sono presenti depositi e coltri di alterazione delle formazioni rocciose.

Nell'ambito delle formazioni rocciose sulla base dei sondaggi e delle prove sismiche si è individuata una fascia superficiale di roccia alterata, di spessore variabile tra 3 e 13 metri circa avente caratteristiche meccaniche complessivamente inferiori rispetto alle porzioni più profonde della formazione rocciosa. Questa fascia superficiale corrispondente alla parte alta (alt) delle formazioni rocciose di substrato e sono individuata con le sigle:

In accordo con quanto riportato nella Relazione Geotecnica (Rif. 8), l'opera di sostegno, oggetto del presente studio, ricade all'interno della tratta 1 della variante Bonorva-Torralba. La stratigrafia e i parametri geotecnici di riferimento sono riportati nella seguente tabella.

TABELLA 4.1: CARATTERIZZAZIONE GEOTECNICA

Tratta	Progressive		ogressive Indagine di riferimento		RQD	Para	metri pe Criterio				(σ ₃ =0.15MPa (σ ₃ =0.60M	a per la fo		
To I	da	а	merimento		GSI σ _{cI} m _I D Ei γ [%] [%] [MPa] [-] [-] [MPa] [kN/m³]				γ [kN/m³]	φ' [°]	c' [kPa]	E _m [MPa]		
				а		10	3	19	0.5	2	18	36	4	60
1	0+000.00	1+275	S1	IPD alt	76	62	7	13.5	0.5	4400	20	52	100	1300
				IPD	95	81	7	13.5	0.5	5670	20	48	370	3400

Le coltri e i deposti di versante hanno spessori modesti per cui la fondazione del muro è prevista sul terreno litoide ed eventuali terreni sciolti di superficie andranno rimossi ed eventualmente sostituiti con calcestruzzo magro. Ai fini del dimensionamento del muro si assume prudenzialemte per il terreno di fondazione una coesione ridotta rispetto a quella che caratterizza l'unità stratigrafica e pari a 50kPa. Per il rilevato ferroviario si assumono i parametri della tabella seguente.

TABELLA 4.2: PARAMETRI GEOTECNICI CARATTERISTICI RILEVATO FERROVIARIO

UNITÀ DI	PARAMETRI GEOTECNICI								
RIFERIMENTO	γ [kN/m³]	φ′ [°]	c' [kPa]	δ [°]					
RILEVATO FERROVIARIO	20	38	0	25					

La falda è profonda e non interagisce con l'opera.

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI -OLBIA VARIANTE DI BONORVA-TORRALBA							
Muri di contenimento rilevato di approccio alla	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
spalla B del VI01 – Relazione di calcolo	RR0H	04	D13 CL	OC 00 00 001	Α	9 di 47		

5. SISMICITÀ

Le azioni sismiche vengono valutate in relazione al periodo di riferimento V_R che è ricavato, per ciascun tipo di opera, moltiplicandone la vita nominale V_N per il coefficiente d'uso C_u .

Pertanto $V_R = 75 \times 1.0 = 75 \text{ anni.}$

L'opera in esame è collocata in Sardegna.

L'azione sismica è valutata in accordo alle NTC2008 di cui al Rif. 1 assumendo in generale:

Vita nominale: V_N = 75 anni П Classe d'uso: $C_{U} = 1.0$ Coefficiente d'uso: Periodo di riferimento per l'azione sismica: $V_R = V_N \times C_U = 75 \text{ anni}$ Categoria di suolo: Α T1 Categoria topografica: SLV Stato limite da considerarsi: Tempo di ritorno: $T_R = 712$ anni

Il calcolo dei parametri sismici relativi alla Sardegna può essere condotto in accordo con l'allegato A e B delle NTC 2008, Tabella 2 di cui al Rif. 1. Il calcolo dei parametri sismici, per il tempo di ritorno di 712 anni, è ottenuto per interpolazione dei dei parametri relativi ai tempi di ritorno 475 anni e 975 anni, sulla base della relazione 2 nell'allegato A del Rif. 1.

Calcolo ag Sardegna

T _R =	712	anni	Tempo di ritorno
a _g =	0.0556	g	
F ₀ =	2.94	g	
$T_R =$	475	anni	Tempo di ritorno di riferimento 1
a _g =	0.0500	g	
F ₀ =	2.88	_	
T _R =	975	anni	Tempo di ritorno di riferimento 2
a _g =	0.0603	g	
F ₀ =	2.98	-	

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	VELOCIZZ	PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI -OLBIA VARIANTE DI BONORVA-TORRALBA					
Muri di contenimento rilevato di approccio alla spalla B del VI01 – Relazione di calcolo	COMMESSA RROH	LOTTO 04	CODIFICA	DOCUMENTO OC 00 00 001	REV.	FOGLIO 10 di 47	

6. DESCRIZIONE DELL'OPERA

La sezione del muro di sostegno, costante in lunghezza, presenta le seguenti caratteristiche:

Altezza del paramento:

5.30m;

Spessore del paramento:

0.30m;

Larghezza fondazione:

4.35m;

Spessore fondazione:

0.80m.

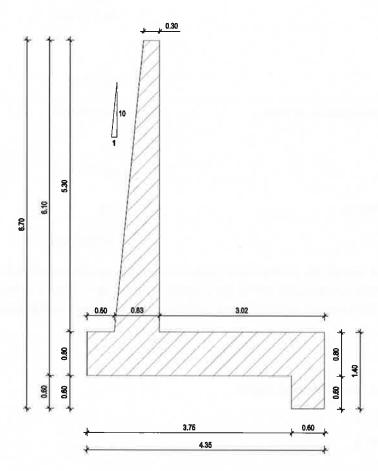


FIGURA 6.1: SEZIONE MURO DI SOSTEGNO

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI -OLBIA VARIANTE DI BONORVA-TORRALBA							
Muri di contenimento rilevato di approccio alla	COMMESSA	ьотто	CODIFICA	DOCUMENTO	REV.	FOGLIO		
spalla B del VI01 – Relazione di calcolo	RR0H	04	D13 CL	OC 00 00 001		11 di 47		

7. CRITERI DI DIMENSIONAMENTO DELLE OPERE

7.1 ANALISI DEI CARICHI E DELLE AZIONI SUL MURO

L'opera di sostegno oggetto di studio è stata dimensionata per resistere, oltre che alle spinte del terreno in fase statica e sismica di cui alla vigente normativa, anche alla spinta dovuta alla presenza di sovraccarichi accidentali agenti sulla eventuale piattaforma ferroviaria posta in sommità del rilevato a tergo del muro stesso.

Sono stati considerati i seguenti carichi nel calcolo e nella verifica del muro di sostegno:

- Peso proprio del muro;
- Peso del terreno a monte;
- Spinta del terreno a monte;
- Sovraccarico stradale;
- Azioni sismiche orizzontali e verticali;
- Spinta del terreno in presenza di sisma.

Essendo la falda al di sotto del piano di posa del muro di sostegno non è stata considerata la spinta dell'acqua né in condizioni statiche né in condizioni sismiche.

E' stata inoltre trascurata la resistenza passiva antistante la fondazione del muro di sostegno.

7.1.1 PESO PROPRIO DEL MURO (WEIGHT WALL)

Il peso proprio del muro è stato calcolato considerando un peso per unità di volume pari a γcls = 25 kN/m³.

7.1.2 PESO DEL TERRENO A MONTE (WEIGHT_EARTH)

Il peso proprio del terrapieno è stato calcolato considerando il peso per unità di volume pari a $y_t = 20 \text{ kN/m}^3$.

7.1.3 SPINTA DEL TERRENO A MONTE (ACTIVE PRESSURE)

La spinta del terreno agente sulla struttura è stata calcolata attraverso la teoria di Coulomb che fornisce il valore del coefficiente di spinta ottenuto mediante le seguenti formule:

$$K_{a} = \frac{\cos^{2}(\phi' - \alpha)}{\cos^{2}\alpha \cdot \cos(\alpha + \delta) \cdot \left[1 + \sqrt{\frac{\sin(\phi' + \delta) \cdot \sin(\phi' - \beta)}{\cos(\alpha + \delta) \cdot \cos(\alpha - \beta)}}\right]^{2}}$$

dove:

- α è l'inclinazione del paramento interno del muro rispetto alla verticale (α =0°);
- β è l'inclinazione dell'estradosso;

φ' è l'angolo d'attrito del terreno;

- δ l'angolo d'attrito terreno-struttura (considerato = 2/3 ϕ ').

La pressione attiva del terreno si ottiene quindi come:

$$\sigma_{\text{Ha}} = \sigma_{\text{V}} \cdot K_{\text{a}} - 2c! \cdot \sqrt{K_{\text{a}}}$$

e il valore della spinta è la risultante di tale pressione sull'altezza del muro:

$$S = \frac{1}{2} \cdot \sigma_{V} \cdot H \cdot K_{a} - 2c! \cdot H \cdot \sqrt{K_{a}}$$

7.1.4 SOVRACCARICO STRADALE (20 KPA)

Si assume un sovraccarico stradale pari a 20kPa.

7.1.5 INCREMENTO DI SPINTA DEL TERRENO DOVUTA AL SOVRACCARICO STRADALE (20 KPA)

L'incremento di spinta del terreno sulla struttura dovuto al sovraccarico stradale è stata calcolata attraverso la teoria di Coulomb che fornisce il valore del coefficiente di spinta (7.1.3).

7.1.6 AZIONI SISMICHE

Nell'analisi pseudostatica, l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico.

Nelle verifiche allo stato limite ultimo, i valori dei coefficienti sismici orizzontale k_h e verticale k_v possono essere valutati mediante le espressioni

$$- \qquad k_h = \beta_m \cdot \frac{a_{max}}{g};$$

$$k_{v} = \pm 0.5 \cdot k_{h}.$$

dove:

a_{max} = accelerazione orizzontale massima attesa al sito;

g = accelerazione di gravità.

 β_m = coefficiente riduttivo che dipende dalla categoria di sottosuolo e dal valore di a_g (Tab. 7.11-II NTC).

In assenza di studi specifici della risposta sismica locale, l'accelerazione massima può essere valutata con la relazione:

$$\boldsymbol{a}_{\text{max}} = \boldsymbol{S} \cdot \boldsymbol{a}_{\text{g}} = \boldsymbol{S}_{\text{S}} \cdot \boldsymbol{S}_{\text{T}} \cdot \boldsymbol{a}_{\text{g}}$$

dove:

S = coefficiente che comprende l'effetto dell'amplificazione stratigrafica (S_s) e dell'amplificazione topografica (S_t) di cui al § 3.2.3.2 delle NTC;

ag = accelerazione orizzontale massima attesa al sito su affioramento rigido.

Per la sola verifica di stabilità globale, come indicato al paragrafo 7.11.6.2.2 delle NTC, si dovrà adottare al posto di β_m il valore di β_s che dipende dalla categoria di sottosuolo e dal valore di a_g (Tabella 7.11-I NTC).

Si riassume nella seguente tabella i valori adottati nel calcolo:

TABELLA 7.1: VALORI DEI COEFFICIENTI SISMICI ORIZZONTALI E VERTICALI ADOTTATI NEL CALCOLO PER I MURI IN GRADO DI SUBIRE SPOSTAMENTI RELATIVI RISPETTO AL TERRENO

STATO LIMITE	TR	ag	Fo	S S	St	a _{max}	βm	kh	+/- k _v
SLV	712	0.0556 g	2.94	1.0	1.0	0.0556 g	0.2	0.01112	0.00556

7.1.6.1 SPINTA DEL TERRENO IN PRESENZA DI SISMA

La forza di calcolo è da considerare come la risultante delle spinte statiche e sismiche del terreno.

La forza totale di progetto agente sulla struttura di contenimento dal lato del terrapieno, Ed, è data da:

$$E_{d} = \frac{1}{2} \cdot \gamma * \cdot (1 \pm k_{v}) \cdot K \cdot H^{2}$$

dove:

- H è l'altezza del muro;
- γ* è il peso specifico del terreno;
- K è il coefficiente di spinta del terreno (statico + dinamico);
- = k_v è il coefficiente sismico verticale (definito al par. 7.1.6).

Il coefficiente di spinta del terreno è calcolato mediante la formula di Mononobe-Okabe come segue:

- per stati di spinta attiva:

Per
$$\beta \le \phi'_d - \theta$$
:

$$K = \frac{sen^{2}(\psi + \phi'_{d} - \theta)}{cos\theta \cdot sen^{2}\psi \cdot sen(\psi - \theta - \delta_{d}) \cdot \left[1 + \sqrt{\frac{sen(\phi'_{d} + \delta_{d}) \cdot sen(\phi'_{d} - \beta - \theta)}{sen(\psi - \theta - \delta_{d}) \cdot sen(\psi + \beta)}}\right]^{2}};$$

Per
$$\beta > \phi'_d - \theta$$
:

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI -OLBIA VARIANTE DI BONORVA-TORRALBA							
Muri di contenimento rilevato di approccio alla spalla B del VI01 – Relazione di calcolo	COMMESSA RR0H	LОТТО 04	CODIFICA D13 CL	DOCUMENTO OC 00 00 001	REV.	FOGLIO		

$$K = \frac{\operatorname{sen}^{2}(\psi + \varphi - \theta)}{\operatorname{cos}\theta \cdot \operatorname{sen}^{2}\psi \cdot \operatorname{sen}(\psi - \theta - \delta_{d})};$$

per stati di spinta passiva:

$$K = \frac{sen^2 \left(\psi + \phi'_d - \theta \right)}{cos\theta \cdot sen^2 \psi \cdot sen \left(\psi + \theta \right) \cdot \left[1 + \sqrt{\frac{sen\phi_{\overline{q}} \cdot sen \left(\phi'_d + \beta - \theta \right)}{sen \left(\psi + \beta \right) \cdot sen \left(\psi + \theta \right)}} \right]^2} \; .$$

Nelle precedenti equazioni sono state adottate le seguenti simbologie:

$$\varphi'_d \qquad \qquad \text{è il valore di progetto dell'angolo di resistenza a taglio del terreno cioè} \;\; \phi'_d = tan^{-1} \! \left(\frac{tan\phi}{\gamma_{\phi'}} \right);$$

ψ, β sono gli angoli di inclinazione rispetto all'orizzontale rispettivamente della parete del muro rivolta a monte e della superficie del terrapieno;

$$\delta_{\rm d} \qquad \qquad \text{è il valore di progetto dell'angolo di resistenza a taglio tra terreno e muro cio è } \delta_{\rm d}' = tan^{-l} \left(\frac{tan\delta}{\gamma_{\varphi'}}\right);$$

θ è l'angolo definito in seguito.

Se si considera il livello di falda al di sotto del muro di sostegno allora:

γ*=γ peso specifico del terreno;

$$- \tan\theta = \frac{k_h}{1 \mp k_v};$$

Se si considera che il livello di falda sia sopra la quota di imposta della fondazione allora:

$$- \qquad \gamma^* = \gamma - \gamma_w \; ;$$

$$tan\theta = \frac{\gamma_d}{\gamma - \gamma_w} \frac{k_h}{1 \mp k_v} \text{ dove } \gamma_d \text{ è il peso specifico del terreno secco.}$$

È possibile quindi calcolare il valore dell'incremento di spinta del terreno dovuta al solo sisma come differenza tra il valore della spinta in presenza di sisma e il valore della spinta del terreno in condizioni statiche:

$$\Delta S_{sis} = \frac{1}{2} \cdot \gamma * \cdot (1 \pm k_v) \cdot K \cdot H^2 - \frac{1}{2} \cdot \gamma \cdot K_{a,stat} \cdot H^2$$

Nel caso di muri di sostegno liberi di traslare o di ruotare intorno al piede, si può assumere che l'incremento di spinta dovuta al sisma agisca nello stesso punto di quella statica.

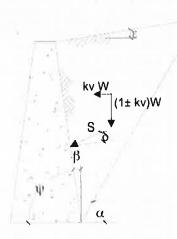


FIGURA 7.1: AZIONI SISMICHE

7.2 COMBINAZIONI DELLE AZIONI

Ai fini delle verifiche degli stati limite si riportano le combinazioni delle azioni riportate nelle NTC2008 alla quale è possibile fare riferimento per la simbologia adottata:

- Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + ...$$

- Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + ...$$

- Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili; utilizzata nella verifica a Fessurazione:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + ...$$

- Combinazione quasi permanente, generalmente impiegata per gli stati limite di esercizio (SLE) a lungo termine;

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + ...$$

- Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + ...$$

I coefficienti di amplificazione dei carichi γ e i coefficienti di combinazione ψ sono riportati nelle tabelle seguenti.

PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI -OLBIA VARIANTE DI BONORVA-TORRALBA

Muri di contenimento rilevato di approccio alla spalla B del VI01 – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RR0H	04	D13 CL	OC 00 00 001	Α	16 di 47

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO	Combinazione eccezionale	Combinazione Sismica
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1.00 1.00	1,00 1,00	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1.50	0.00 1,50	0,00 1,30	1,00 1.00	1,00 1,00
Ballast ⁽³⁾	favorevoli sfavorevoli	Υв	0.90 1,50	1,00 1.50	1.00 1,30	1.00 1.00	1,00 1.00
Carichi variabili da traffico ⁽⁴⁾	favorevoli sfavorevoli	γο	0.00 1,45	0,00 1,45	0.00 1.25	0.00 0.20 ⁽⁵⁾	0,00 0.20 ⁽⁵⁾
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0.00 1.50	0,00 1,30	0,00 1.00	0,00
Precompressione	favorevole sfavorevole	γ _P	0.90 1,00 ⁽⁶⁾	1,00 1.00 ⁽⁷⁾	1,00 1,00	1,00 1,00	1.00 1.00

⁽f) Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.

(7) 1,20 per effetti locali

FIGURA 7.2: COEFFICIENTI PARZIALI DI SICUREZZA PER LE COMBINAZIONI DI CARICO AGLI SLU, ECCEZIONALI E SISMICA (TABELLA 5.2.V NTC 2008)

Azioni		Ψο	Ψ1	Ψ2
Azioni singole	Carico sul rilevato a tergo delle spalle	0,80	0,50	0.0
da traffico	Azioni aerodinamiche generate dal transito dei convogli	08,0	0,50	0,0
	g _L 1	0,80(2)	0,80	0,0
Gruppi di	gr ₂	0,80(2)	0,80(1)	
carico	gr ₃	0,80(2)	0,80(1)	0.0
	gr ₄	1,00	1,00(1)	0,0
Azioni del vento	F _{Wk}	0,60	0,50	0,0
Azioni da	in fase di esecuzione	0,80	0,0	0,0
neve	SLU e SLE	0,0	0,0	0,0
Azioni termiche	T _k	0.60	0,60	0,50

^{(1) 0,80} se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es, carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

⁽³⁾ Quando si prevedano variazioni significative del carico dovuto al ballast, se ne dovrá tener conto esplicitamente nelle verifiche.

⁽⁴⁾ Le componenti delle azioni da traffico sono introdotte in combinazione considerando uno dei gruppi di carico gr della Tab. 5,2.IV.

⁽⁵⁾ Aliquota di carico da traffico da considerare.

^{(6) 1.30} per instabilità in strutture con precompressione esterna

⁽²⁾ Quando come azione di base venga assunta quella del vento, i coefficienti ψ_0 relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI -OLBIA VARIANTE DI BONORVA-TORRALBA

Muri di contenimento rilevato di approccio alla spalla B del VI01 – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RR0H	04	D13 CL	OC 00 00 001	Α	17 di 47

	Azioni	Ψο	Ψ1	Ψ2
	Treno di carico LM 71	0,80 ⁽³⁾	(1)	0,0
Azioni	Treno di carico SW /0	0,80(3)	0,80	0,0
singole	Treno di carico SW/2	0,0 ⁽³⁾	0,80	0,0
da	Treno scarico	1,00 ⁽³⁾	-	22
traffico	Centrifuga	(2 (3)	(2)	(2)
	Azione laterale (serpeggio)	1,00(3)	0,80	0,0

^{(1) 0,80} se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

FIGURA 7.4: ULTERIORI COEFFICIENTI DI COMBINAZIONE Ψ DELLE AZIONI (TABELLA 5.2.VII NTC 2008)

7.3 VERIFICHE DI SICUREZZA NEI CONFRONTI DEGLI STATI LIMITE ULTIMI (SLU)

Nelle verifiche di sicurezza devono essere presi in considerazione tutti i meccanismi di stato limite ultimo. In particolare per i muri di sostegno devono essere effettuate le verifiche con riferimento a cinematismi riconducibili a:

- scorrimento sul piano di posa;
- ribaltamento;
- rottura per carico limite dell'insieme fondazione-terreno;
- stabilità globale del complesso opera di sostegno-terreno;
- raggiungimento della resistenza ultima a taglio e flessione negli elementi strutturali.

In tutte le verifiche si deve ottenere che Ed < Rd

dove:

 $\text{E}_{\text{d}} \, \text{\'e} \, \text{il valore di progetto dell'azione o dell'effetto dell'azione:} \ \, E_{\text{d}} = E \Bigg[\gamma_{\text{F}} \cdot F_{\text{k}}; \frac{X_{\text{k}}}{\gamma_{\text{M}}}; a_{\text{d}} \, \Bigg].$

 $\text{R}_{\text{d}} \, \text{\`e} \, \text{il valore di progetto della resistenza del sistema geotecnico:} \, \, R_{\text{d}} = \frac{1}{\gamma_{\text{R}}} R \Bigg[\gamma_{\text{F}} \cdot F_{\text{k}}; \frac{X_{\text{k}}}{\gamma_{\text{M}}}; a_{\text{d}} \, \Bigg].$

Quindi l'effetto delle azioni e la resistenza sono espresse in funzione delle azioni di progetto $\left[\gamma_F \cdot F_k\right]$, delle caratteristiche di resistenza di progetto $\left[\frac{X_k}{\gamma_M}\right]$ e della geometria di progetto $\left[a_d\right]$.

La verifica della suddetta condizione deve essere effettuata impiegando diverse combinazioni di gruppi di coefficienti parziali, rispettivamente definiti per la azioni (A), per i parametri geotecnici (M) e per le resistenze (R).

I coefficienti parziali γ_F relativi alle azioni sono indicati in Figura 7.2.

⁽²⁾ Si usano gli stessi coefficienti w adottati per i carichi che provocano dette azioni.

⁽³⁾ Quando come azione di base venga assunta quella del vento, i coefficienti ψ_0 relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI -OLBIA VARIANTE DI BONORVA-TORRALBA							
Muri di contenimento rilevato di approccio alla spalla B del VI01 – Relazione di calcolo	COMMESSA RR0H	LOTTO 04	CODIFICA D13 CL	DOCUMENTO OC 00 00 001	REV.	FOGLIO		

I coefficienti parziali γ_M da applicare al valore caratteristico dei parametri geotecnici del terreno sono indicati nella seguente figura che riporta la Tabella 6.2.Il delle NTC.

Tabella 6.2.II - Coefficienti parziali per i parametri geotecnici del terreno

PARAMETRO	GRANDEZZA ALLA QUALE	COEFFICIENTE	(M1)	(M2)
	APPLICARE IL	PARZIALE		
	COEFFICIENTE PARZIALE	γм		
Tangente dell'angolo di resistenza al taglio	tan φ' _k	γ _{φ′}	1,0	1.25
Coesione efficace	c' _k	Yc'	1,0	1,25
Resistenza non drenata	Cuk	Yeu	1.0	1,4
Peso dell'unità di volume	γ	Ϋ́γ	1,0	1,0

l coefficienti parziali γ_R da applicare alle resistenze del sistema sono indicati nella seguente figura che riporta la Tabella 6.5.1 delle NTC.

Tabella 6.5.1 - Coefficienti parziali γ_k per le verifiche agli stati limite ultimi STR e GEO di muri di sostegno.

VERIFICA	COEFFICIENTE PARZIALE (R1)	COEFFICIENTE PARZIALE (R2)	COEFFICIENTE PARZIALE (R3)
Capacità portante della fondazione	$\gamma_{\rm R}=1.0$	$\gamma_R = 1.0$	$\gamma_R = 1.4$
Scorrimento	$\gamma_R = 1.0$	$\gamma_R = 1.0$	$\gamma_R = 1,1$
Resistenza del terreno a valle	$\gamma_{\rm R}=1.0$	$\gamma_R = 1.0$	$\gamma_{R} = 1.4$

7.3.1 STATI LIMITE ULTIMI DI TIPO GEOTECNICO (GEO)

Gli stati limite ultimi delle opere di sostegno si riferiscono allo sviluppo di meccanismi di collasso determinati dalla mobilitazione della resistenza del terreno interagente con le opere (GEO).

Per le verifiche SLU di tipo geotecnico (GEO) sono stati considerati i seguenti stati limite:

- scorrimento sul piano di posa;
- collasso per carico limite dell'insieme fondazione-terreno;
- stabilità globale del complesso opera di sostegno-terreno.

L'analisi è stata condotta secondo l'Approccio 2 (A1+M1+R3), nella quale i parametri di resistenza del terreno sono ridotti tramite i coefficienti parziali del gruppo M1, i coefficienti globali γ_R sulla resistenza del sistema sono quelli del gruppo R3 e le azioni sono amplificate con i coefficienti del gruppo A1.

Data la presenza del taglione, il coefficiente di sicurezza a scorrimento è determinato calcolando la resistenza del terreno in corrispondenza della superficie che congiunge il bordo a valle della zattera della fondazione con il piede del taglione stesso.

Per le verifiche SLU di equilibrio di corpo rigido è stato considerato lo stato limite a ribaltamento. Lo stato limite di ribaltamento non prevede la mobilitazione della resistenza del terreno di fondazione e deve essere trattato come uno stato limite di equilibrio di corpo rigido (EQU), utilizzando i coefficienti parziali sulle azioni della Figura 7.2 e adoperando i coefficienti parziali del gruppo (M2) per il calcolo delle spinte.

VELOCIZZ	VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI -OLBIA VARIANTE DI BONORVA-TORRALBA							
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO			
RR0H	04	D13 CL	OC 00 00 001	Α	19 di 47			
	VELOCIZZ. VARIANTE COMMESSA	VELOCIZZAZIONE VARIANTE DI BONO COMMESSA LOTTO	VARIANTE DI BONORVA-TORE COMMESSA LOTTO CODIFICA	VELOCIZZAZIONE LINEA SAN GAVINO – SASS VARIANTE DI BONORVA-TORRALBA COMMESSA LOTTO CODIFICA DOCUMENTO	VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI -OI VARIANTE DI BONORVA-TORRALBA COMMESSA LOTTO CODIFICA DOCUMENTO REV.			

7.3.2 CAPACITÀ PORTANTE

La capacità portante del terreno viene valutata tenendo conto dell'eccentricità e delle componenti tangenziali della risultante delle azioni sulla fondazione, della eventuale inclinazione del terreno a valle della fondazione e della eventuale inclinazione rispetto all'orizzontale del piano di appoggio.

Nel seguito si riportano le verifiche geotecniche della fondazione secondo il Rif. 1, con riferimento ai parametri caratteristici del terreno. Le verifiche sono svolte considerando l' **Approccio 2 (A1+M1+R3).** La verifica è stata condotta con il programma Spread footing.

7.3.2.1 VERIFICA DELLA CAPACITÀ PORTANTE

La capacità portante verticale della fondazione è verificata utilizzando la seguente disuguaglianza:

$$\sigma \leq \frac{q_{lim}}{\gamma_R}$$

Dove:

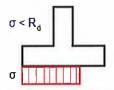
 σ è la massima pressione di contatto di progetto all'intradosso della fondazione

q_{lim} è la capacità portante di progetto del suolo di fondazione

 γ_R è il coefficiente parziale di sicurezza, che ne caso in oggetto è pari a 2.3 (R3).

7.3.2.1.1 PRESSIONE DI CONTATTO DI PROGETTO

La massima pressione di contatto di progetto all'intradosso della fondazione è calcolata come:


$$\sigma = \frac{V}{A_{eff}}$$

Dove:

è la massima forza verticale fattorizzata e opportunamente combinata allo stato limite ultimo considerato

A_{eff} è l'area effettiva della fondazione.

Quando si risolve il problema di una fondazione caricata eccentricamente, l'area effettiva della fondazione si ipotizza di forma rettangolare. In questi casi si utilizza una soluzione semplificata. Nel caso in cui vi sia un'eccentricità assiale (momento flettente agente solo in un piano) l'analisi assume una distribuzione uniforme della pressione di contatto σ applicata solo su una porzione della fondazione l_1 .

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI -OLBIA VARIANTE DI BONORVA-TORRALBA						
Muri di contenimento rilevato di approccio alla spalla B del VI01 – Relazione di calcolo		отто 04	CODIFICA D13 CL	DOCUMENTO OC 00 00 001	REV.	FOGLIO 20 di 47	

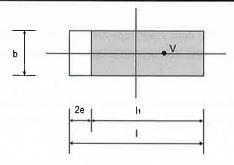


FIGURA 7.5: DETERMINAZIONE DELL'AREA EFFETTIVA NEL CASO DI ECCENTRICITÀ ASSIALE

In questo caso l'area effettiva assume la seguente espressione:

$$A_{eff} = b \cdot l_1 = b \cdot (l - 2e)$$

Se la fondazione è caricata dalla forza verticale V e dai momenti flettenti M_x ed M_y , si ha un carico eccentrico generico. Ovvero, il carico è equivalente ad un'unica forza applicata con le seguenti eccentricità:

$$e_{x} = \frac{M_{x}}{V}$$

$$M_{y}$$

$$e_y = \frac{M_y}{V}$$

La dimensione del'area effettiva discende dalla condizione che la forza V debba agire verticalmente:

$$A_{eff} = b_{eff} \cdot l_{eff} = b \cdot (l - 2e_x) \cdot (l - 2e_y)$$

7.3.2.2 CAPACITÀ PORTANTE IN CONDIZIONI DRENATE (MATERIALI GRANULARI)

Il calcolo della capacità portante del suolo di fondazione in condizioni drenate è calcolata secondo la formulazione di Brinch-Hansen. La valutazione della capacità portante delle fondazioni superficiali è stata effettuata con i criteri suggeriti da Terzaghi ed introducendo i più recenti suggerimenti per il calcolo dei coefficienti correttivi per le condizioni di carico eccentrico (metodi di calcolo di Terzaghi, Meyerhof, Hansen, De Beer).

Il valore della pressione limite di contatto sul terreno in condizioni drenate si ottiene mediante la seguente formulazione:

$$q_{\textit{lim}} = c' \cdot N_c \cdot s_c \cdot d_c \cdot i_c \cdot b_c \cdot g_c + q' \cdot N_q s_q \cdot d_q \cdot i_q \cdot b_q \cdot g_q + 0.5 \cdot B \cdot \gamma' \cdot N_\gamma \cdot s_\gamma \cdot d_\gamma \cdot i_\gamma \cdot b_\gamma \cdot g_\gamma$$

con:

 N_{γ} , N_{c} , N_{q} = fattori di capacità portante,

 s_{γ}, s_{c}, s_{q} = fattori di forma della fondazione,

i_γ,i_c,i_q = fattori correttivi che considerano l'inclinazione del carico,

 b_{y}, b_{c}, b_{q} = fattori correttivi che considerano l'inclinazione della base della fondazione,

PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI -OLBIA VARIANTE DI BONORVA-TORRALBA

Muri di contenimento rilevato di approccio alla spalla B del VI01 – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RR0H	04	D13 CL	OC 00 00 001	Α	21 di 47

g₇,g_c,g₄

= fattori correttivi che considerano l'inclinazione del piano campagna,

 d_c, d_q, d_γ

= fattori che dipendono dalla profondità del piano di posa,

ď

= coesione del suolo,

 $q' = v' \cdot D$

= carico distribuito equivalente che tiene conto l'influenza della profondità della fondazione,

ሐ'

= angolo di resistenza al taglio del suolo

D

= Profondità del piano di posa della fondazione,

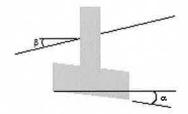
В

= Larghezza della fondazione,

L

= Lunghezza della fondazione,

α


= Pendenza del piano di posa della fondazione,

β

= Pendenza del terreno,

δ

= angolo di deviazione della forza risultante rispetto alla direzione verticale.

I coefficienti di Brinch-Hansen adottati dal programma Spread footing sono riportatidi seguito:

Fattori di capacità portante:

$$N_c = (N_q - 1) \cdot cotg(\phi')$$
 per $\phi' > 0$

$$N_c = 2 + \pi$$

per
$$\phi' = 0$$

$$N_q = tg^2 \left(45 + \frac{\phi'}{2} \right) \cdot e^{\pi \cdot tg(\phi')}$$

$$N_{\nu}=1.5\,(N_{q}-1)tg(\phi')$$

Fattori di forma della fondazione:

$$s_c = 1 + 0.2 \frac{B}{I}$$

$$s_q = 1 + \frac{B}{L} \cdot sin(\phi')$$

$$s_{v} = 1 - 0.3 \cdot \frac{B}{I}$$

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI -OLBIA VARIANTE DI BONORVA-TORRALBA							
Muri di contenimento rilevato di approccio alla spalla B del VI01 – Relazione di calcolo	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RROH 04 D13 CL OC 00 00 001 A 22 di 47							

Fattori correttivi che considerano l'inclinazione del carico:

$$i_c = i_q = i_v = (1 - tg\delta)^2$$

Fattori correttivi che considerano l'inclinazione del piano campagna:

$$g_c = 1 - \frac{2\beta}{\pi + 2}$$
$$g_q = g_y = (1 - 0.5tg\beta)^5$$

Fattori correttivi che considerano l'inclinazione della base della fondazione:

$$\begin{aligned} b_c &= b_q - \frac{\left(1 - b_q\right)}{N_c} \cdot tg(\phi') \\ b_q &= \left(1 - \alpha \cdot tg\phi'\right)^2 \\ b_y &= b_q \end{aligned}$$

Fattori che dipendono dalla profondità del piano di posa:

$$d_c = 1 + 0.1\sqrt{\frac{D}{B}}$$

$$d_q = 1 + 0.1\sqrt{\frac{D}{B} \cdot sin(2\phi')}$$

$$d_{rr} = 1$$

7.3.3 VERIFICA A SCORRIMENTO

La verifica a scorrimento (capacità portante orizzontale) della fondazione è soddisfatta se risulta:

$$H \leq \frac{R_{dh}}{\gamma_R}$$

Dove:

$$R_{dh} = V \cdot tg(\Psi_d) + a_d \cdot A_{eff} + S_{pd}$$
$$H = \sqrt{H_x^2 + H_y^2}$$

Con il seguente significato dei simboli:

 Ψ_d = angolo di resistenza al taglio tra fondazone e suolo

ad = coesione tra fondazione e suolo

A_{eff} = area effettiva della fondazione, descritta al punto 7.3.2.1.1

S_{pd} = resistenza del terreno

H_x H_y = componenti della forza orizzontale

V = massima forza verticale di progetto

γ_R = coefficiente parziale di sicurezza, che ne caso in oggetto è pari a 1.1 (R3).

La resistenza del terreno è assunta come mostrata in figura:

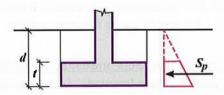


FIGURA 7.6: RESISTENZA DEL TERRENO

La restistenza del terreno S_{pd} è calcolata utilizzando la spinta a riposo. Il coefficiente di spinta a riposo è calcolato come k_0 =1-sin ϕ '.

7.3.4 VERIFICA DELL'ECCENTRICITÀ DELLA FONDAZIONE

La verifica dell'eccentricità della fondazione è effettuata considerando i seguenti casi:

Massima eccentricità nella direzione della lunghezza di base:

 $e_x \leq e_{alw}$

• Massima eccentricità nella direzione della larghezza di base:

 $e_{y} \leq e_{alw}$

Massima eccentricità totale

 $e_t \leq e_{alw}$

Il valore della massima eccentricità ammissibile e_{alw} è assunta pari ad 1/3.

Il valore dell'eccentricità totale et è dato da:

$$e_t = \sqrt{e_x^2 + e_y^2}$$

Dove:

ex = massima eccentricità nella direzione della lunghezza di base,

ey = massima eccentricità nella direzione della larghezza di base.

7.3.5 STATI LIMITE ULTIMI DI TIPO STRUTTURALE (STR)

Per le verifiche SLU di tipo strutturale (STR) sono stati considerati i seguenti stati limite:

- Raggiungimento della resistenza negli elementi strutturali.

La verifica è stata condota in accordo all' l'Approccio 1 - Combinazione 1 (A1+M1+R1), nella quale i coefficienti sui parametri di resistenza del terreno (M1) e sulla resistenza globale del sistema (R1) sono unitari, mentre le azioni permanenti e variabili

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI -OLBIA VARIANTE DI BONORVA-TORRALBA							
Muri di contenimento rilevato di approccio alla spalla B del VI01 – Relazione di calcolo	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RROH 04 D13 CL OC 00 00 001 A 24 di 47							

sono amplificate mediante i coefficienti parziali del gruppo A1 che possono essere applicati alle spinte, ai pesi e ai sovraccarichi.

In condizioni sismiche i coefficienti amplificativi delle azioni sono unitari.

7.4 VERIFICHE DI SICUREZZA NEI CONFRONTI DEGLI STATI LIMITE DI ESERCIZIO (SLE)

Sono stati analizzati anche gli stati limite di esercizio considerando le combinazioni delle azioni caratteristica, frequente, quasi permanente in accordo a quanto indicato nel § 2.5.3 delle NTC per le seguenti verifiche:

- Verifica di fessurazione delle sezioni in c.a in condizioni ambientali ordinarie (classe di esposizione XC3 Tabella 4.1.III NTC) per le combinazioni quasi permanente e frequente. Con riferimento al § 4.1.2.2.4.1 si è considerato il valore limite di apertura delle fessure pari a :
 - w₂=0.3mm per la combinazione quasi permanente;
 - w₃=0.4mm per la combinazione frequente.

Con riferimento al § C4.1.2.2.4 della Circolare 2 febbraio 2009, n. 617 le verifiche sono state condotte adottando prevalentemente il metodo tabellare che limita il valore della tensione nelle barre d'acciaio in funzione del loro diametro e della loro spaziatura.

- Verifica delle tensioni di esercizio, sono state verificate:
 - La tensione massima di compressione del calcestruzzo il paramento del muro nelle condizioni di esercizio secondo le seguenti limitazioni:
 - σ_c < 0,60 f_{ck} = 18.00MPa per la combinazione caratteristica;
 - $\sigma_c < 0.45 \; f_{ck}$ = 13.50MPa per la combinazione quasi permanente.
 - La tensione massima di compressione del calcestruzzo la fondazione del muro nelle condizioni di esercizio secondo le seguenti limitazioni:
 - σ_c < 0,60 f_{ck} = 18.00MPa per la combinazione caratteristica;
 - σ_c < 0,45 f_{ck} = 13.50MPa per la combinazione quasi permanente.
 - Tensione massima dell'acciaio in condizioni di esercizio:
 per effetto delle azioni dovute alla combinazione caratteristica la tensione massima, σ_s ,deve rispettare la
 limitazione seguente:

 $\sigma_s < 0.8 \text{ fyk} = 360 \text{ MPa}.$

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	VELOCIZZ	PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI -OLBIA VARIANTE DI BONORVA-TORRALBA							
Muri di contenimento rilevato di approccio alla spalla B del VI01 – Relazione di calcolo	COMMESSA RR0H	∟отто 04	CODIFICA	DOCUMENTO OC 00 00 001	REV.	FOGLIO 25 di 47			

8. VERIFICHE DELL'OPERA DI SOSTEGNO

Le verifiche sono state effettuate con il software di calcolo Cantilever Wall della FNEGEO5.

8.1 SEZIONE TIPPLOGICA DI VERIFICA E DATI DI INPUT Sovraccarico stradale 20kPa 6.70 6.70

FIGURA 8.1: SEZIONE TIPOLOGICA DI VERIFICA

Basic soil parameters

No.	Name	Pattern	Фо1 [°]	c _{ef} [kPa]	γ [kN/m³]	γ _{su} [kN/m³]	δ [°]
1	Rilevato ferroviario		38.00	0.00	20.00	10.00	25.00
2	IPD alt		52.00	50.00	20.00	10.00	35.00

FIGURA 8.2: CARATTERISTICHE TERRENO

8.2 VERIFICHE DI TIPO GEOTECNICO (GEO) E DI CORPO RIGIDO (EQU)

8.2.1 COMBINAZIONE STATICA

Si riportano nel seguito le azioni considerate nel calcolo e nelle verifiche e i risultati delle verifiche.

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI -OLBIA VARIANTE DI BONORVA-TORRALBA							
Muri di contenimento rilevato di approccio alla spalla B del VI01 – Relazione di calcolo	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RROH 04 D13 CL OC 00 00 001 A 26 di 47							

SCORRIMENTO SUL PIANO DI POSA (GEO) – APPROCCIO 2: A1+M1+R3

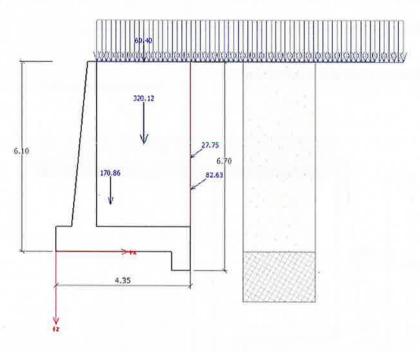


FIGURA 8.3: AZIONI AGENTI SUL MURO DI SOSTEGNO (M1)

<u>Condizioni statiche</u>	F _{hor}	App.Pt.	F _{vert}	App.Pt.	Coeff.	Sliding	N _{tot}	H _{tot}
	[kN/m]	z [m]	[kN/m]	x [m]	F	SF	[kN/m]	[kN/m
Weight - wall	0.00	-1.52	170.86	1.77	1.00	1.35	170.86	0.00
Weight - earth wedge	0.00	-3.45	320,12	2.84	1.00	1.35	320.12	0.00
Active pressure	67.76	-1.99	47.30	4.35	1.00	1.35	47.30	91.48
20 kPa	21.95	-3.01	16.97	4.35	0.00	1.50	0.00	32.93
20 kPa	0.00	-6.10	60.40	2.84	0.00	1.50	0.00	0.00
							Tot 538.28	124.40
d	4.35							
c'		kPa			M	Facerre	ain a	
φ α	52 9.1				1V = .	$F_v \cos \alpha + F_k$	SIII C	
α	9.1				H = 1	$F_{v} \sin \alpha + F_{h}$	$\cos \alpha$	
N _v	531.51	kN/m		<i></i>	1		$\bigcap F_i$	
N _h	85.13	kN/m	Г	_/	Ь.		Y <u>< F_h</u>	
H _v	19.68	kN/m	В	1+	$\frac{1}{H}$	ļα [a)	
H _h	122.84	kN/m		l _N	1		N H	
H _{res}	922.98	kN/m				*] d	-
V_R	1.1							
H _{res,d}	839.07	kN/m		(Water			N 25 W	
				[(N	$\tan \varphi_d +$	$c_d(d-2e)$	$\frac{(\mu)+F_{,e:}}{}$ > H	
H _{act}	37.70	kN/m				Y 5	———>II	
FS	22.26							

FIGURA 8.4: VERIFICA SCORRIMENTO SUL PIANO DI POSA

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	VELOCIZZ	PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI -OLBIA VARIANTE DI BONORVA-TORRALBA							
Muri di contenimento rilevato di approccio alla spalla B del VI01 – Relazione di calcolo	COMMESSA RR0H	LΟΤΤΟ 04	CODIFICA D13 CL	DOCUMENTO OC 00 00 001	REV.	FOGLIO 27 di 47			

VERIFICA DI RIBALTAMENTO (EQU) - APPROCCIO EQU+M2

Si riporta di seguito la verifica a ribaltamento:

	F _{hor}	App.Pt.	F _{vert}	App.Pt.	Coeff. Ov	erturning	M_{res}	Movr
	[kN/m]	z [m]	[kN/m]	x [m]	F	SF	[kNm/m]	[kNm/m]
Weight - wall	0.00	-1.52	170.46	1.76	0.90	1.10	270.01	0.00
Weight - earth wedge	0.00	-3.45	318.00	2.83	0.90	1.10	809.95	0.00
Active pressure	89.40	-2.00	50.26	4.33	0.90	1.10	195.86	-196.68
20 kPa	29.01	-3.02	18.11	4.33	0.00	1.50	0.00	-131.42
20 kPa	0.00	-6.10	60.00	2.83	0.00	1.50	0.00	0.00
							tot 1275.82	-328.10
							FS	3.89

FIGURA 8.5: VERIFICA DI RIBALTAMENTO

VERIFICA DI CAPACITÀ PORTANTE (GEO) – APPROCCIO 2: A1+M1+R3

Per la verifica di capacità portante si utilizza la formulazione di Brinch-Hansen.

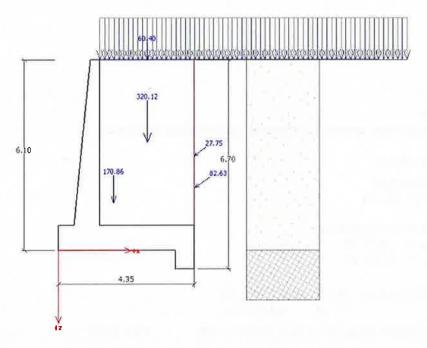


FIGURA 8.6: AZIONI AGENTI SUL MURO DI SOSTEGNO (M1)

Le azioni sollecitanti agenti sulla ciabatta di fondazione sono le seguenti:

Bearing capacity of foundation soil (Stage of construction 1)

Design load acting at the center of footing bottom

No.	Moment [kNm/m]	Norm. force [kN/m]	Shear Force [kN/m]	Eccentricity [-]	Stress [kPa]
1	-129.93	851.83	6.84	0.000	193.99

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI -OLBIA VARIANTE DI BONORVA-TORRALBA						
Muri di contenimento rilevato di approccio alla spalla B del VI01 – Relazione di calcolo	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RR0H 04 D13 CL OC 00 00 001 A 28 di 47						

Service load acting at the center of footing bottom

No.	Moment	Norm. force	Shear Force
	[kNm/m]	[kN/m]	[kN/m]
1	-95.76	622.13	3.86

Analysis of bearing capacity - partial results

= 52.000° $\phi_{\boldsymbol{d}}$ 50.000 kPa c_d = 0.000 kN/m³ γ1prum = 20.000 kN/m3 γ2prum 4.350 m b_{ef} = N_{α} 470.304 = N_c = 366.660 N_{γ} = 1201.363 $s_{\alpha} \\$ = 1.343 = 1.344 $\mathbf{s}_{\mathbf{c}}$ = 0.870 S_{γ} = 1.000 $d_{\mathbf{q}}$ d_{c} 1.000 d_{ν} = 1.000 = 0.989 ĺα = 0.989 ic = 0.982 = ba 0.680 = bc 0.679 b_{ν} = 0.680 = 1.000 g_{a} 1.000 g_c 1.000 g_{γ} = 46868.831 kPa R_d

Analysis carried out with automatic selection of the most unfavourable load cases.

Vertical bearing capacity check

Shape of contact stress: rectangle Most severe load case No. 1. (LC 1)

Parameters of slip surface below foundation:

Depth of slip surface $z_{sp} = 8.27 \text{ m}$ Length of slip surface $l_{sp} = 27.22 \text{ m}$

Design bearing capacity of found.soil $R_d = 20377.75 \text{ kPa}$ Extreme contact stress $\sigma = 195.82 \text{ kPa}$

Bearing capacity in the vertical direction is SATISFACTORY

 $FS = Rd/\sigma$

FS > 100

Verification of load eccentricity

Max. eccentricity in direction of base length Max. eccentricity in direction of base width Max. overall eccentricity $e_x = 0.000 < 0.333$ $e_t = 0.000 < 0.333$ $e_t = 0.000 < 0.333$

Eccentricity of load is SATISFACTORY

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		AZIONE		GAVINO – SASS	SARI -O	_BIA
Muri di contenimento rilevato di approccio alla spalla B del VI01 – Relazione di calcolo	COMMESSA RR0H	ьотто 04	CODIFICA D13 CL	DOCUMENTO OC 00 00 001	REV.	FOGLIO 29 di 47

Horizontal bearing capacity check

Most severe load case No. 1. (LC 1) Earth resistance: not considered

Horizontal bearing capacity R_{dh} = 1188.90 kN Extreme horizontal force H = 6.84 kN

Bearing capacity in the horizontal direction is SATISFACTORY

 $FS = Rd/\sigma$

FS > 100

La verifica a capacità portante risulta quindi soddisfatta.

8.2.2 COMBINAZIONE SISMICA

Si riportano nel seguito le azioni di calcolo e i risultati delle verifiche.

SCORRIMENTO SUL PIANO DI POSA (GEO) – APPROCCIO 2: A1+M1+R3

Si riportano di seguito le azioni che massimizzano le sollecitazioni.

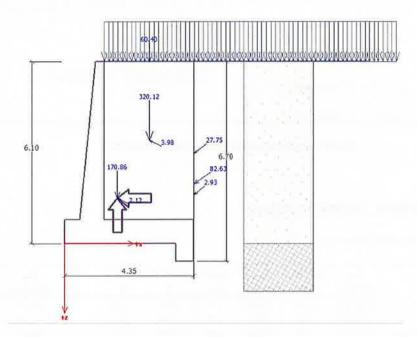


FIGURA 8.7: AZIONI AGENTI SUL MURO DI SOSTEGNO (M1)

GRUPPO FERROVIE DELLO STATO ITALIANE	VELOCIZZ	PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI -OLBIA VARIANTE DI BONORVA-TORRALBA							
Muri di contenimento rilevato di approccio alla spalla B del VI01 – Relazione di calcolo	COMMESSA RROH	ьотто 04	CODIFICA	DOCUMENTO OC 00 00 001	REV.	FOGLIO 30 di 47			

Condizioni sismiche					5			
	F _{hor}	App.Pt.	F _{vert}	App.Pt.		Sliding	N _{tot}	H _{tot}
	[kN/m]	z [m]	[kN/m]	x [m]	F	SF	[kN/m]	[kN/m]
Weight - wall	0.00	-1.52	170.86	1.77	1.00	1.00	170.86	0.00
Earthq constr.	1.90	-1.52	-0.96	1.77	1.00	1,00	-0.96	1.90
Weight - earth wedge	0.00	-3.45	320.12	2.84	1.00	1.00	320.12	0.00
Earthquake - soil wedge	3.55	-3.45	-1.79	2.84	1.00	1.00	-1.79	3.55
Active pressure	67.76	-1.99	47.30	4.35	1.00	1.00	47.30	67.76
Earthq act.pressure	2.33	-1.63	1.77	4.35	1.00	1.00	1.77	2.33
20 kPa	21.95	-3.01	16.97	4.35	0.00	0.20	0.00	4.39
20 kPa	0.00	-6.10	60.40	2.84	0.00	0.20	0.00	0.00
							Tot 537.30	79.93
d c'	4.35							
		kPa			N = F	$\cos \alpha + F_h$ s	in α	
φ	52							
α	9.1	•			H = F	$\sin \alpha + F_h c$	osα	
N _v	530.54	kN/m		1			$\int_{E} E$	
Nh	84.98	kN/m	. [-/ I	- 1 ,	_		_
H _v	12.64	kN/m	B Gent	1.	1 10	·	α	ب
H _h		kN/m	1	d			N H	
H _{res}	912.74	kN/m			- A	α		
YR	1.1	•						
H _{res,d}	829.76			8				
				(N	$\tan \varphi_d +$	$c_d(d-2e)$	$(\mu) + F_{rec}$ > H	
H _{act}	-6.05	kN/m				γ.	>H	
FS	>100							

FIGURA 8.8: VERIFICA SCORRIMENTO SUL PIANO DI POSA

VERIFICA DI RIBALTAMENTO (EQU) – APPROCCIO EQU+M2

Si riporta di seguito la verifica a ribaltamento:

	F_{hor}	App.Pt.	F_{vert}	App.Pt.	Coeff. Ov	erturning		M_{res}	Movr
	[kN/m]	z [m]	[kN/m]	x [m]	F	SF		[kNm/m]	[kNm/m]
Weight - wall	0.00	-1.52	170.46	1.76	0.90	1.10		270.01	0.00
Earthq constr.	1.89	-1.52	-0.95	1.76	0.90	1.10		-1.50	-3.16
Weight - earth wedge	0.00	-3.45	318.00	2.83	0.90	1.10		809.95	0.00
Earthquake - soil wedge	3.53	-3.45	-1.78	2.83	0.90	1.10		-4.53	-13.40
Active pressure	89.40	-2.00	50.26	4.33	0.90	1.10		195.86	-196.68
Earthq act.pressure	2.74	-1.63	1.67	4.33	0.90	1.10		6.51	-4.91
20 kPa	29.01	-3.02	18.11	4.33	0.00	1.50		0.00	-131.42
20 kPa	0.00	-6.10	60,00	2,83	0.00	1,50		0.00	0.00
							tot	1276.29	-349.56
								FS	3.65

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		AZIONE I		GAVINO – SASS RALBA	SARI -OI	_BIA
Muri di contenimento rilevato di approccio alla	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
spalla B del VI01 – Relazione di calcolo	RR0H	04	D13 CL	OC 00 00 001	Α	31 di 47

VERIFICA DI CAPACITÀ PORTANTE (GEO) - APPROCCIO 2: A1+M1+R3

Per la verifica di capacità portante si utilizza la formulazione di Brinch-Hansen.

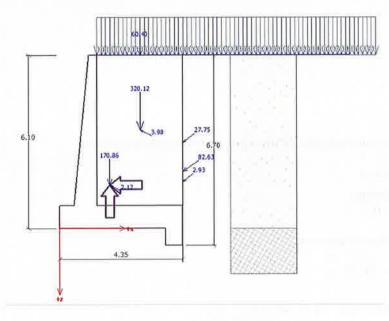


FIGURA 8.10: AZIONI AGENTI SUL MURO DI SOSTEGNO (M1)

Le azioni sollecitanti agenti sulla ciabatta di fondazione sono le seguenti:

Bearing capacity of foundation soil (Stage of construction 2)

Design load acting at the center of footing bottom

No.	Moment [kNm/m]	Norm. force [kN/m]	Shear Force [kN/m]	Eccentricity [-]	Stress [kPa]
1	-111.70	851.93	14.53	0.000	194.01

Service load acting at the center of footing bottom

No.	Moment	Norm. force	Shear Force
NO.	[kNm/m]	[kN/m]	[kN/m]
1	-77.54	622.23	11.55

Analysis of bearing capacity - partial results

φd	=	52.000	0
Cd	=	50.000	kPa
γ1prum	=	0.000	kN/m ³
γ2prum	=	20.000	kN/m ³
b _{ef}	=	4.350	m
Na	=	470.304	
N _c	=	366.660	
N_{γ}	=	1201.363	
sa	=	1.343	
Sc	=	1.344	
S_{γ}	=	0.870	
da	=	1.000	

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI -OLBIA VARIANTE DI BONORVA-TORRALBA						
Muri di contenimento rilevato di approccio alla spalla B del VI01 – Relazione di calcolo	COMMESSA LOTTO RR0H 04	CODIFICA D13 CL	DOCUMENTO OC 00 00 001	REV.	FOGLIO 32 di 47		

 d_{c} = 1.000 = 1.000 = 0.976 = 0.976 = 0.962 = 0.680 = 0.679 = 0.680 b_{γ} = 1.000 $g_{\mathbf{q}}$ 1.000 = g_c = 1.000 g_{ν} R_d = 46040.274 kPa

Analysis carried out with automatic selection of the most unfavourable load cases.

Vertical bearing capacity check

Shape of contact stress: rectangle Most severe load case No. 1. (LC 1)

Parameters of slip surface below foundation:

Depth of slip surface $z_{sp} = 8.27 \text{ m}$ Length of slip surface $l_{sp} = 27.22 \text{ m}$

Design bearing capacity of found.soil $R_d = 20017.51 \text{ kPa}$ Extreme contact stress $\sigma = 195.84 \text{ kPa}$

Bearing capacity in the vertical direction is SATISFACTORY FS = Rd/σ FS > 100

Verification of load eccentricity

 $\begin{array}{lll} \text{Max. eccentricity in direction of base length} & e_{\text{X}} = 0.000 < 0.333 \\ \text{Max. eccentricity in direction of base width} & e_{\text{V}} = 0.000 < 0.333 \\ \text{Max. overall eccentricity} & e_{\text{t}} = 0.000 < 0.333 \\ \end{array}$

Eccentricity of load is SATISFACTORY

Horizontal bearing capacity check

Most severe load case No. 1. (LC 1) Earth resistance: not considered

Horizontal bearing capacity $R_{dh} = 1189.01 \text{ kN}$ Extreme horizontal force H = 14.53 kN

Bearing capacity in the horizontal direction is SATISFACTORY FS = Rd/σ FS > 100

La verifica a capacità portante risulta quindi soddisfatta.

8.2.2.1 VERIFICA DI STABILITÀ GLOBALE

Date le elevate caratteristiche meccaniche del terreno di fondazione del muro di sostegno, la verifica di stabilità globale risulta implicitamente soddisfatta.

GRUPPO FERROVIE DELLO STATO ITALIANE		AZIONE		GAVINO – SASS RALBA	SARI -OI	_BIA
Muri di contenimento rilevato di approccio alla	COMMESSA	ьотто	CODIFICA	DOCUMENTO	REV.	FOGLIO
spalla B del VI01 – Relazione di calcolo	RR0H	04	D13 CL	OC 00 00 001	Α	33 di 47

8.3 VERIFICHE DI TIPO STRUTTURALE (STR)

Si riportano di seguito le azioni impiegate per il calcolo delle sollecitazioni da adottare per le verifiche strutturali del muro e le sollecitazioni risultanti. Il calcolo è stato eseguito considerando come sezioni di verifica la sezione di base del paramento (SEZ 1) e la sezione di incastro dello sbalzo posteriore della fondazione in corrispondenza del paramento (SEZ 2).

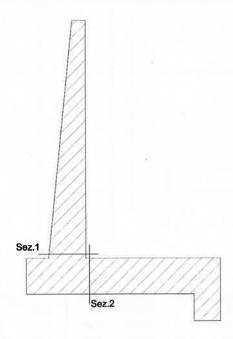
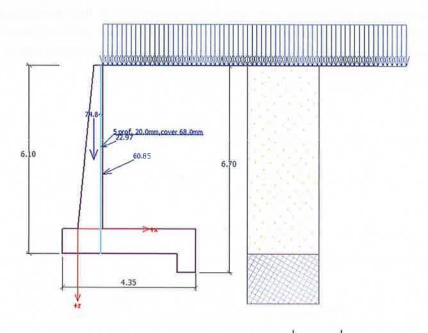


FIGURA 8.11: SEZIONI DI VERIFICA

8.3.1 VERIFICA STRUTTURALE DEL PARAMENTO


Le verifiche strutturali sono state condotte su una sezione rettangolare di dimensioni B=1.00m (larghezza unitaria) e H = 0.83m (spessore del paramento alla base) avente le seguenti armature:

- Lato terra: Φ20/200mm;
- Lato scavo: Φ18/200mm;
- Copriferro netto: 40mm + 12mm;
- Armatura di ripartizione: Φ12/200.

Si riportano di seguito le sollecitazioni in condizioni statiche e in condizioni sismiche. Per le verifiche strutturali si considera l'inviluppo delle sollecitazioni.

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI -OLBIA VARIANTE DI BONORVA-TORRALBA
Muri di contenimento rilevato di approccio alla spalla B del VI01 – Relazione di calcolo	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RROH 04 D13 CL OC 00 00 001 A 34 di 47

SOLLECITAZIONI IN CONDIZIONI STATICHE

	Fhor	App.Pt.	Fvert	App.Pt.	STRUTT	F _{hor,d}	$F_{ver,d}$
	[kN/m]	z [m]	[kN/m]	x [m]	SF	[kN/m]	[kN/m]
Weight - wall	0.00	-2:24	74.84	0.53	1.35	0.00	101.03
Active pressure	-55.15	-1.77	25.72	0.83	1.35	-74.45	34.72
20 kPa	-20.82	-2.65	9.71	0.83	1.50	-31.23	14.57

FIGURA 8.12: AZIONI AGENTI SUL PARAMENTO CONDIZIONI STATICHE

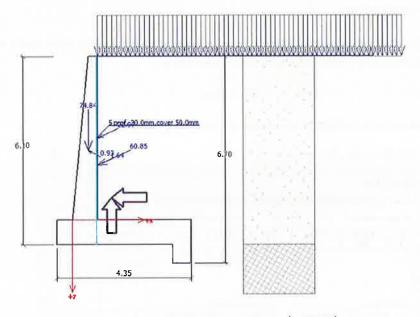

In corrispondenza della sezione 1 si ricavano le segeunti sollecitazioni massime su metro di profondità:

TABELLA 8.1: SOLLECITAZIONI IN CONDIZIONI STATICHE

TABELLA 6.1: SOLLECTI AZIONI IN CONDIZIONI STATICHE						
COMBINAZIONE	M _{Ed, max} (kNm/m)	V _{Edmax} (kN/m)				
Fondamentale	185	106				
Caratteristica	130	76				
Frequente	119	72				
Quasi permanente	78	55				

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		AZIONE		GAVINO – SASS RALBA	SARI -OI	_BIA
Muri di contenimento rilevato di approccio alla	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV:	FOGLIO
spalla B del VI01 – Relazione di calcolo	RR0H	04	D13 CL	OC 00 00 001	Α	35 di 47

SOLLECITAZIONI IN CONDIZIONI SISMICHE

	F _{hor}	App.Pt. z [m]	F _{vert} [kN/m]	App.Pt. x[m]	STRUTT SF	F _{hor,d} [kN/m]	F _{ver,d} [kN/m]
Weight - wall	0.00	-2.24	74.84	0.53	1.00	0.00	74.84
Earthq constr.	-0.83	-2.24	-0.42	0.53	1.00	-0.83	-0.42
Active pressure	-55.15	-1 .77	25.72	0.83	1.00	-55.15	25.72
Earthq act.pressure	-1.49	-1.77	0.69	0.83	1.00	-1.49	0.69
20 kPa	-20.82	-2.65	9.71	0.83	0.20	-4.16	1.94

FIGURA 8.13: AZIONI AGENTI SUL PARAMENTO CONDIZIONI SISMICHE

TABELLA 8.2: SOLLECITAZIONI IN CONDIZIONI SISMICHE

COMBINAZIONE	M _{Ed, max} (kNm/m)	V _{Edmax} (kN/m)
Sismica (+ kv)	123	74
Sismica (- kv)	123	74

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI -OLBIA VARIANTE DI BONORVA-TORRALBA						
Muri di contenimento rilevato di approccio alla spalla B del VI01 – Relazione di calcolo	COMMESSA LOTTO RR0H 04	CODIFICA D13 CL	DOCUMENTO OC 00 00 001	REV.	FOGLIO 36 di 47		

8.3.1.1 VERIFICHE IN CONDIZIONI SLU

VERIFICA DI RESISTENZA A FLESSIONE (SLU)

La verifica a flessione è stata effettuata controllando che la sollecitazione di calcolo M_{Ed} dovuta alle varie combinazioni di carico SLU/SLV sia inferiore al momento resistente ultimo della sezione M_{Rd} :

 $M_{Ed} \leq M_{Rd}$.

Il calcolo del momento resistente è stato effettuato impiegando il software "VcaSLU":

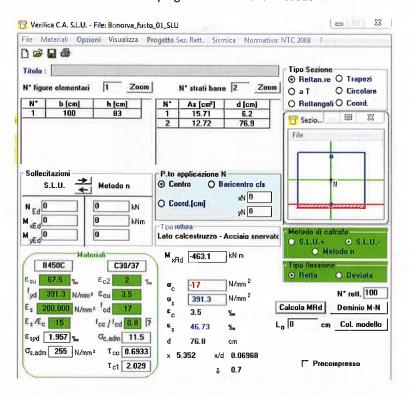


FIGURA 8.14: OUTPUT DEL SOFTWARE "VCASLU" PER IL CALCOLO DEL MOMENTO RESISTENTE

Nella tabella seguente si riporta la verifica di resistenza a flessione allo SLU con riferimento al momento resistente precedentemente calcolato.

TABELLA 8.3: VERIFICA RESISTENZA FLESSIONALE

As	M _{Ed,max} (SLU) [kNm/m]		M _{RD} [kNm/m]	FS
Ф20/200 mm	185	≤	463	2.50

La verifica di resistenza SLU a flessione risulta soddisfatta.

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINI VELOCIZZAZIONE VARIANTE DI BONG	LINEA SAN		SARI -OI	_BIA
Muri di contenimento rilevato di approccio alla spalla B del VI01 – Relazione di calcolo	COMMESSA LOTTO RROH 04	CODIFICA D13 CL	DOCUMENTO OC 00 00 001	REV ₊	FOGLIO 37 di 47

VERIFICA A TAGLIO (SLU)

Il calcolo della resistenza a taglio è stato condotto in accordo con quanto riportato al paragrafo 4.1.2.1.3.1 del DM 14/01/2008, controllando che la sollecitazioni di calcolo V_{Ed} , dovuta alle combinazioni di carico SLU, sia inferiore al taglio resistente ultimo V_{Rd} della sezione in assenza di armatura a taglio.

1) DATI GENERALI			
1,1) CARATTERISTICHE DEI MATERIAU			
- calcestruzzo	fck	30.0	MPa
	an	0.85	1.
	Ϋ́c	1.50	1.
	fcd	17.0	MPa
	f _{ctm}	2.9	MPa
- acciaio	f _{yk}	450.0	MPa
	f _{vd}	391.3	MPa
	70		
1.2) CARATTERISTICHE DELLA SEZIONE			
- altezza	h	830	mm
- larghezza minima	b _w	1000	mm
- copriferro di calcolo	c	40	mm
			∃ [[
- area cls	Ac	8.30E+05	mm ²
- altezza utile	d	790	mm
- braccio coppia interna (= 0,9 d)	z	711	mm
1,3) ARMATURA LONGITUDINALE TESA			
- armatura longitudinale 1	ф1	20	mm
	n ₁	5	-
- armatura longitudinale 2	φ ₂	0	mm
	n ₂	0	
- area armatura longitudinale tesa	A_{sl}	1571	mm²
1.4) SOLLECITAZIONI DI CALCOLO		-	-
- taglio di calcolo	V_{Ed}	0.0	kN
- compressione (+) / trazione (-)	N _{Ed}	0.0	kN
2) ELEMENTI SENZA ARMATURE TRASVERSALI	RESISTENTI A TA	AGLIO (p.to 4.1.	2.1.3.1 DM200
- parametri di calcolo	k	1.50	-
	v _{min}	0.35	-
- rapporto geometrico di armatura	ρι	1.99E-03	-
- tensione media di compressione	σ_{cp}	0.00	MPa
- taglio resistente minimo	$V_{Rd,min}$	279.1	kN
- taglio resistente	V_{Rd}	279.1	kN
VERIFICA V _{Rd} > V _{Ed}		OK	

FIGURA 8.15: CALCOLO TAGLIO RESISTENTE

Nella seguente tabella si riporta la sollecitazione V_{Ed} e la corrispondente verifica di resistenza a taglio.

TABELLA 8.4: VERIFICA RESISTENZA TAGLIO

TABLES OF VEHICLE RESISTENCE TROPE						
V _{Ed,max} (SLU) [kN/m]	, _{max} (SLU) V _{RD} [kN/m]		FS			
106	≤	279	2.63			

La verifica risulta soddisfatta.

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI -OLBIA VARIANTE DI BONORVA-TORRALBA					
Muri di contenimento rilevato di approccio alla spalla B del VI01 – Relazione di calcolo	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RROH 04 D13 CL OC 00 00 001 A 38 di 47					

8.3.1.2 VERIFICHE IN CONDIZIONI SLE

VERIFICA DELLE TENSIONI DI ESERCIZIO (SLE)

Le verifiche delle tensioni di esercizio sono state eseguite con il software "VcaSLU" v. 7.7 in funzione del momento massimo in esercizio agente per le varie condizioni. Non è stato tenuto in considerazione lo sforzo normale dovuto al peso proprio del paramento. Nelle seguente tabella si riportano la verifica tensionale condotta. Tale verifica risulta soddisfatta.

TABELLA 8.5: MOMENTO MASSIMO SOLLECITANTE IN ESERCIZIO AGENTE MSLE,MAX E RELATIVE TENSIONI DI TRAZIONE NELL'ACCIAIO E DI COMPRESSIONE NEL CALCESTRUZZO

As	MsLE [kNm/m]	Tensioni nell'acciaio e nel calcestruzzo dovute alla sollecitazione flessionale		Tensioni max ammissibili
Ф20/200 mm	130	σ _s = 116 MPa	≤	360 MPa
	(caratteristica)	σ _c = 2.00 MPa	≤	18.00 MPa
Ф20/200 mm	78	σ _s = 70 MPa	≤	360 MPa
Ψ20/200 mm	(quasi perm)	σ _c = 1.20 MPa	≤	13.50 MPa

VERIFICA A FESSURAZIONE

Il calcolo delle tensioni di trazione che insorgono nell'acciaio agli SLE per la combinazione quasi permanente è stato effettuato impiegando il software "VcaSLU" V. 7.7.

Nelle seguenti tabelle si riportano:

- le tensioni di trazione (σ_s) che insorgono nell'armatura a seguito delle sollecitazioni precedentemente descritte;
- il diametro massimo delle barre Φ_{max} ammissibile valutato in base alla tabella C4.1.II al Par. C4.1.2.2.4.6 della Circ. del 02/02/09 n 671 a partire dalla tensione di trazione insorta nell'armatura;
- la spaziatura massima delle barre s_{max} ammissibile valutata in base alla tabella C4.1.III al Par. C4.1.2.2.4.6 della Circ. del 02/02/09 n 671 a partire dalla tensione di trazione insorta nell'armatura.

TABELLA 8.6: VERIFICA A FESSURAZIONE MEDIANTE METODO INDIRETTO

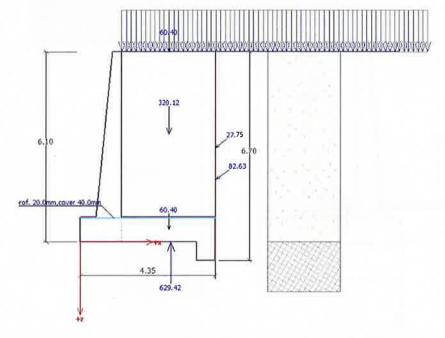
As	As [kNm/m] Tensione nell'acciaio		Tensione barre ammissibile	
Ф20/200 mm	119 (frequente)	σ _s = 106 MPa	32	300
Ф20/200 mm	78 (quasi perm)	σ _s = 70 MPa	25	200

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		AZIONE		GAVINO – SASS RALBA	SARI -OI	BIA
Muri di contenimento rilevato di approccio alla spalla B del VI01 – Relazione di calcolo	COMMESSA RR0H	LОТТО 04	CODIFICA D13 CL	DOCUMENTO OC 00 00 001	REV.	FOGLIO 39 di 47

8.3.2 VERIFICA STRUTTURALE DELLA FONDAZIONE

Le verifiche strutturali sono state condotte su una sezione rettangolare di dimensioni B=1.00m (larghezza unitaria) e H = 0.80m (spessore fondazione) avente le seguenti armature:

• Estradosso: Φ20/200 mm;


Intradosso: Φ20/200 mm;

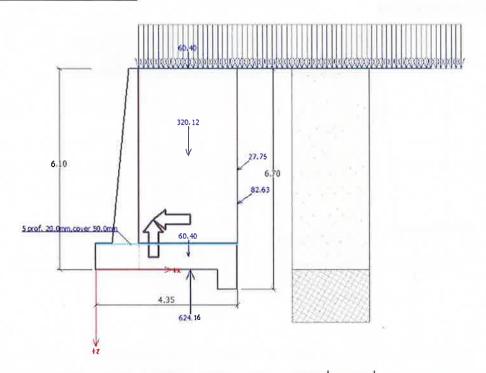
Copriferro netto: 40mm + 12mm;

Armatura di ripartizione: Φ12/200.

Si riportano di seguito le sollecitazioni in condizioni statiche e in condizioni sismiche. Per le verifiche strutturali si considera l'inviluppo delle sollecitazioni.

SOLLECITAZIONI IN CONDIZIONI STATICHE

	F _{bor}	App.Pt.	F _{vert} [kN/m]	App.Pt.	STRUTT SF	F _{hor,d} [kN/m]	F _{ver,d} [kN/m]
Weight - wall	0.00	-0.40	60.40	2.84	1.00	0.00	60.40
Weight - earth wedge	0.00	-3.45	320.12	2.84	1.00	0.00	320.12
Active pressure	-67.76	-1.99	47.30	4.35	1.00	-67.76	47.30
20 kPa	-21.95	-3.01	16.97	4.35	1.00	-21.95	16.97
Contact stress	0.00	0.00	-629.42	2.91	1.00	0.00	-629.42
Gravity surch. 3	0.00	-6.10	60.40	2.84	1.00	0.00	60.40


FIGURA 8.16: AZIONI AGENTI SULLA FONDAZIONE

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI -OLBIA VARIANTE DI BONORVA-TORRALBA						
Muri di contenimento rilevato di approccio alla spalla B del VI01 – Relazione di calcolo	COMMESSA LOTTO RROH 04	CODIFICA D13 CL	DOCUMENTO OC 00 00 001	REV.	FOGLIO 40 di 47		

TABELLA 8.7: SOLLECITAZIONI IN CONDIZIONI STATICHE

The state of the s					
COMBINAZIONE	M _{Ed, max} (kNm/m)	V _{Edmax} (kN/m)			
Fondamentale	188	64			
Caratteristica	133	45			
Frequente	122	41			
Quasi permanente	76	24			

SOLLECITAZIONI IN CONDIZIONI SISMICHE

	F _{hor} [kN/m]	App.Pt. z [m]	F _{vert} [kN/m]	App.Pt. x [m]	STRUTT SF	F _{hor,d} [kN/m]	F _{ver,d} [kN/m]
Weight - wall	0.00	-0.40	60.40	2,84	1.00	0.00	60.40
Weight - earth wedge	0.00	-3,45	320.12	2.84	1.00	0.00	320.12
Active pressure	-67.76	-1,99	47.30	4.35	1,00	-67.76	47.30
20 kPa	-21.95	-3.01	16.97	4.35	0.20	-4.39	3.39
Contact stress	0.00	0.00	-624.16	2.90	1.00	0.00	-624.16
Gravity surch. 3	0.00	-6.10	60.40	2.84	1.00	0.00	60.40

FIGURA 8.17: AZIONI AGENTI SULLA FONDAZIONE

TABELLA 8.8: SOLLECITAZIONI IN CONDIZIONI SISMICHE

COMBINAZIONE	M _{Ed, max} (kNm/m)	V _{Edmax} (kN/m)	
Sismica (+ kv)	136	46	
Sismica (- kv)	129	42	

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI -OLBIA VARIANTE DI BONORVA-TORRALBA
Muri di contenimento rilevato di approccio alla spalla B del VI01 – Relazione di calcolo	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RROH 04 D13 CL OC 00 00 001 A 42 di 47

8.3.2.1 VERIFICHE IN CONDIZIONI SLU

VERIFICA DI RESISTENZA A FLESSIONE

La verifica a flessione è stata effettuata controllando che la sollecitazione di calcolo M_{Ed} dovuta alle varie combinazioni di carico SLU/SLV sia inferiore al momento resistente ultimo della sezione M_{Rd} :

 $M_{Ed} \leq M_{Rd}$.

Il calcolo del momento resistente è stato effettuato impiegando il software "VcaSLU":

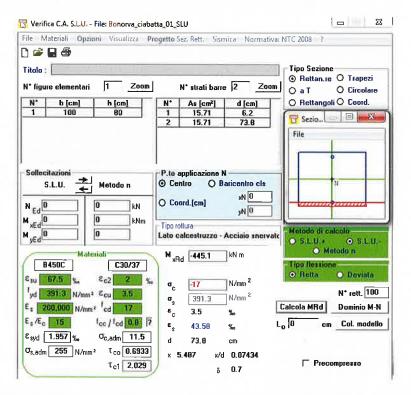


FIGURA 8.18: OUTPUT DEL SOFTWARE "VCASLU" PER IL CALCOLO DEL MOMENTO RESISTENTE

Nella tabella seguente si riporta la verifica di resistenza a flessione allo SLU con riferimento al momento resistente precedentemente calcolato.

TABELLA 8-9: VERIFICA RESISTENZA FLESSIONALE

As	M _{Ed,max} (SLU) [kNm/m]	-	M _{RD} [kNm/m]	FS
Ф20/200 mm	188	≤	445	2.36

La verifica di resistenza SLU a flessione risulta soddisfatta.

GRUPPO FERROVIE DELLO STATO ITALIANE		AZIONE		GAVINO – SASS RALBA	SARI -O	LBIA
Muri di contenimento rilevato di approccio alla spalla B del VI01 – Relazione di calcolo	COMMESSA RR0H	LОТТО 04	CODIFICA D13 CL	DOCUMENTO OC 00 00 001	REV.	FOGLIO 43 di 47

VERIFICA A TAGLIO (SLU)

Il calcolo della resistenza a taglio è stato condotto in accordo con quanto riportato al paragrafo 4.1.2.1.3.1 del DM 14/01/2008, controllando che la sollecitazioni di calcolo V_{Ed} , dovuta alle combinazioni di carico SLU, sia inferiore al taglio resistente ultimo V_{Rd} della sezione in assenza di armatura a taglio.

1) DATI GENERALI			
1.1) CARATTERISTICHE DEI MATERIAU			
- calcestruzzo	f _{ek}	30.0	MPa
	a _{cc}	0.85	
	Ϋ́c	1.50	1.
	f _{cd}	17.0	MPa
	f _{ctm}	2,9	MPa
- acciaio	f _{vk}	450.0	MPa
	f _{yd}	391.3	MPa
1.2) CARATTERISTICHE DELLA SEZIONE			-14
- altezza	h	800	mm
- larghezza minima	b _w	1000	mm
- copriferro di calcolo	c	40	mm
- area cls	A _c	8.00E+05	mm²
- altezza utile	d	760	mm
- braccio coppia interna (= 0,9 d)	Z	684	mm
1.3) ARMATURA LONGITUDINALE TESA			
- armatura longitudinale 1	фı	20	mm
	n ₁	5	ŀ
- armatura longitudinale 2	ф2	0	mm
	n ₂	0	-
- area armatura longitudinale tesa	A_{sl}	1571	mm ²
1.4) SOLLECITAZIONI DI CALCOLO			→ 2
- taglio di calcolo	V_{Ed}	0.0	kN
- compressione (+) / trazione (-)	N _{Ed}	0.0	kN
2) ELEMENTI SENZA ARMATURE TRASVERSAL	I RESISTENTI A TA	AGLIO (p.to 4.1.	2.1.3.1 DM200
- parametri di calcolo	k	1.51	4
	v _{min}	0.36	3*
- rapporto geometrico di armatura	ρ_1	2.07E-03	4
- tensione media di compressione	$\sigma_{\sf cp}$	0.00	MPa
- taglio resistente minimo	$V_{Rd,min}$	271.1	kN
- taglio resistente	V _{Rd}	271.1	kN
VERIFICA V _{Rd} > V _{Ed}		OK	

FIGURA 8.19: CALCOLO TAGLIO RESISTENTE

Nella seguente tabella si riporta la sollecitazione VEd e la corrispondente verifica di resistenza a taglio.

TABELLA 8-10: VERIFICA RESISTENZA TAGLIO

V _{Ed,max} (SLU) [kN/m]		V _{RD} [kN/m]	FS
64	≤	271	4.23

La verifica risulta soddisfatta.

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		AZIONE		GAVINO – SASS RALBA	SARI -OI	LBIA
Muri di contenimento rilevato di approccio alla spalla B del VI01 – Relazione di calcolo	COMMESSA RROH	LОТТО 04	CODIFICA D13 CL	DOCUMENTO OC 00 00 001	REV.	FOGLIO 44 di 47

8.3.2.1 VERIFICHE IN CONDIZIONI SLE

VERIFICA DELLE TENSIONI DI ESERCIZIO (SLE)

Le verifiche delle tensioni di esercizio sono state eseguite con il software "VcaSLU" v. 7.7 in funzione del momento massimo in esercizio agente per le varie condizioni. Non è stato tenuto in considerazione lo sforzo normale dovuto al peso proprio del paramento. Nelle seguente tabella si riportano la verifica tensionale condotta. Tale verifica risulta soddisfatta.

TABELLA 8-11: MOMENTO MASSIMO SOLLECITANTE IN ESERCIZIO AGENTE MSLE,MAX E RELATIVE TENSIONI DI TRAZIONE NELL'ACCIAIO E DI COMPRESSIONE NEL CALCESTRUZZO

As	M _{SLE} [kNm/m]	Tensioni nell'acciaio e nel calcestruzzo dovute alla sollecitazione flessionale		Tensioni max ammissibili
#20 /200	133	σ _s = 124 MPa	<u>≤</u>	360 MPa
Ф20/200 mm	(caratteristica)	σ _c = 2.15 MPa	≤	18.00 MPa
ф20/200 ··· ··	76	σ _s = 71 MPa	_≤	360 MPa
Ф20/200 mm	(quasi perman.)	σ _c = 1.23 MPa	4	13.50 MPa

VERIFICA A FESSURAZIONE

Il calcolo delle tensioni di trazione che insorgono nell'acciaio agli SLE per la combinazione quasi permanente è stato effettuato impiegando il software "VcaSLU" V. 7.7.

Nelle seguenti tabelle si riportano:

- le tensioni di trazione (σ_s) che insorgono nell'armatura a seguito delle sollecitazioni precedentemente descritte;
- il diametro massimo delle barre Φ_{max} ammissibile valutato in base alla tabella C4.1.II al Par. C4.1.2.2.4.6 della Circ. del 02/02/09 n 671 a partire dalla tensione di trazione insorta nell'armatura;
- la spaziatura massima delle barre s_{max} ammissibile valutata in base alla tabella C4.1.III al Par. C4.1.2.2.4.6 della Circ. del 02/02/09 n 671 a partire dalla tensione di trazione insorta nell'armatura.

TABELLA 8-12: VERIFICA A FESSURAZIONE MEDIANTE METODO INDIRETTO

As	M _{SLE} [kNm/m]	Tensione nell'acciaio	Massimo diametro delle barre ammissibile Φ _{max} [mm]	Massima spaziatura delle barre ammissibile s _{max} [mm]
Ф20/200 mm	122 (frequente)	σ _s = 113 MPa	32	300
Ф20/200 mm	76 (quasi perman.)	σ _s = 71 MPa	25	200

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	1	AZIONE		GAVINO – SASS RALBA	SARI -OI	_BIA
Muri di contenimento rilevato di approccio alla	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
spalla B del VI01 – Relazione di calcolo	RR0H	04	D13 CL	OC 00 00 001	Α	45 di 47

8.3.2.2 ARMATURA MINIMA IN DIREZIONE LONGITUDINALE

Si dispone un'armatura in direzione longitudinale pari ad almeno il 20% dell'armatura trasversale, sia inferiormente che superiormente, per l'intera lunghezza.

 $A_{s,min} = 0.2 \times 15.71 \text{ cm}^2 (\emptyset 20/200) = 3.14 \text{ cm}^2 < A_{s,long} = 5.65 \text{ cm}^2 (\emptyset 12/200)$

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DE VELOCIZZAZIO VARIANTE DI B	NE LINEA SAN		SARI -OI	_BIA
Muri di contenimento rilevato di approccio alla spalla B del VI01 – Relazione di calcolo	COMMESSA LOT		DOCUMENTO OC 00 00 001	REV.	FOGLIO 46 di 47

9. SCHEMA DELLE ARMATURE ED INCIDENZA

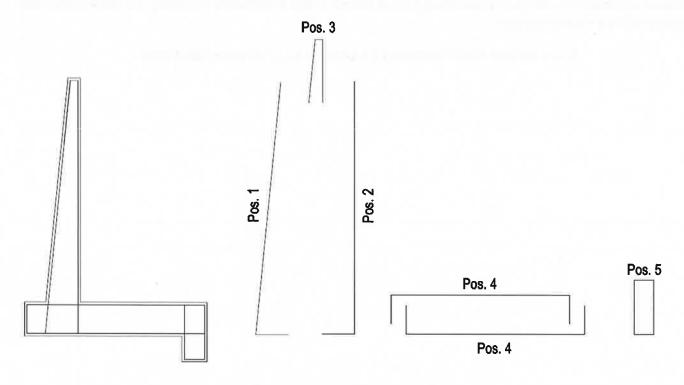


FIGURA 9.1: SCHEMA DELLE ARMATURE

Si pone inoltre un' armatura di ripartizione sia nel paramento che in fondazione pari a $\phi 12/200 \ \text{mm}$.

Si dispongono inoltre ganci $\phi 8/200$ mm nel paramento del muro di sostegno.

<u>Armature</u>							
posizione	n	ф	A (mm²)	L (m)	kg/m³	kg	10
1	5	18	1272	6.79	7850	67.77	
2	5	20	1571	6.76	7850	83.30	
3	5	20	1571	3.19	7850	39.33	
trasversale	27	12	3054	1.00	7850	23.97	
trasversale	27	12	3054	1.00	7850	23.97	
4	10	20	3142	5.58	7850	137.56	
trasversale	22	12	2488	1.00	7850	19.53	
trasversale	22	12	2488	1.00	7850	19.53	
5	5	20	1571	3.50	7850	43.21	
						458.17	
		A (m ²)	m	m ³			
Calcestruzzo		6.835	1	6.8345			
						kg/m³	
						67	
				15	%	10	
					INCIDENZA	77	kg/m³

FIGURA 9.2: CALCOLO DELL'INCIDENZA

