COMMITTENTE

DIREZIONE INVESTIMENTI

PROGETTAZIONE:

DIREZIONE TECNICA

U.O. COORDINAMENTO NO CAPTIVE E INGEGNERIA DI SISTEMA

PROGETTO DEFINITIVO

VELOCIZZAZIONE LINEA SAN GAVINO - SASSARI - OLBIA VARIANTE DI BAULADU

VIADOTTO VI02 IN C.A.P

Relazione di Calcolo Spalle e Fondazioni

					SCALA:
					-
COMMESSA	LOTTO FASE	ENTE TIPO DOC.	OPERA/DISCIPLINA	PROGR. REV	
R R 0 H	0 1 D	1 3 C L	V I 0 2 0 4	0 0 1 B	

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
В	Emissione a seguito parere CSLLPP	P.Tortolini	Novembre 2018	A. Ciavarella	Novembre 2018	T.Paoletti	Novembre 2018	L. Berardi
A	Emissione Esecutiva	P.Tortolini	Marzo 2018	A. Ciavarella	Marzo 2018	T.Paoletti	Marzo 2018	Novembre 2018
						*		BERARD
								3 7200

File: RR0H01D13CLVI0204001B.docx	n. Elab.:

VI02 - Viadotto in c.a.p

Relazione di calcolo spalle e fondazioni

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

RROH 01 D13CL VI0204001 B 2 di 134

INDICE

1	INTR	ODUZIONE	7
2	NOR	MATIVA DI RIFERIMENTO	14
3	MAT	ERIALI	15
	3.1	Calcestruzzo	15
	3.2	Acciaio da armatura ordinaria	16
	3.3	Acciaio armonico stabilizzato per trefoli	16
4	CARA	ATTERISTICHE DEI TERRENI	17
	4.1	Terreno di fondazione	17
	4.2	Terreno a tergo della spalla	17
5	ANAI	LISI DEI CARICHI	18
	5.1	Carichi da impalcato	18
	5.1.1	Pesi strutturali impalcato (G1)	18
	5.1.2	Carichi permanenti portati impalcato (G2)	18
	5.1.3	Azioni variabili da traffico ferroviario	19
	5.1.4	Vento impalcato	22
	5.1.5	Resistenze parassite appoggi impalcato	24
	5.2	Azione sismica (E)	24
5	ANAI	LISI GLOBALE SPALLA A	27
	6.1	Coefficienti di spinta del terreno	27
	6.1.1	Fase statica	27
	6.1.2	Fase sismica	27
	6.2	Carichi da spalla	28
	6.2.1	Peso proprio della struttura	29

 VI02 - Viadotto in c.a.p
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 Relazione di calcolo spalle e fondazioni
 RR0H
 01
 D13CL
 VI0204001
 B
 3 di 134

	6.2.2	Peso proprio del rinterro
	6.2.3	Peso proprio dei sovraccarichi permanenti
	6.2.4	Sovraccarichi accidentali
	6.2.5	Spinta permanente a tergo della spalla
	6.2.6	Spinta del sovraccarico permanente
	6.2.7	Spinta del sovraccarico accidentale
	6.2.8	Azioni sismiche
	6.2.9	Scarichi degli appoggi
	6.3	Azioni agenti all'intradosso della fondazione
	6.3.1	Coefficienti di combinazione
	6.3.2	Sollecitazioni combinate al baricentro della fondazione (intradosso)
7	VERI	FICHE GEOTECNICHE SPALLA A
	7.1	Sollecitazioni di calcolo
	7.2	Verifica a capacità portante
	7.3	Verifica a scorrimento
8	VERI	FICA A RIBALTAMENTO SPALLA A
	8.1	Verifica a ribaltamento in condizioni statiche
	8.2	Verifica a ribaltamento in condizioni sismiche
9	VERI	FICHE STRUTTURALI DELLA FONDAZIONE SPALLA A
	9.1	Sollecitazioni combinate intradosso fondazione
	9.2	Verifiche strutturali del plinto
	9.2.1	Verifica a flessione SLU – SLE
	9.2.2	Verifica a taglio SLU
1() VERI	FICA DEI MURI DI ELEVAZIONE SPALLA A54

1

VELOCIZZAZIONE LINEA SAN GAVINO - SASSARI - OLBIA VARIANTE DI BAULADU

VI02 - Viadotto in c.a.pCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo spalle e fondazioniRR0H01D13CLVI0204001B4 di 134

10.1	Modello di calcolo	54
10.2	Carichi applicati e combinazioni	55
•	Spinta statica	55
•	Spinta sismica	55
•	Spinta carichi permanenti	55
•	Spinta carichi accidentali	55
10.3	Verifica del muro frontale	56
10.3.	1 Verifica a flessione SLU- SLV	59
10.3.	2 Verifica a taglio SLU	61
10.3.	3 Verifica fessurazione SLE	62
10.4	Verifica del paraghiaia	63
10.4.	1 Verifica a flessione SLU	66
10.4.	2 Verifica a taglio SLU	68
10.4.	3 Verifica fessurazione SLE	69
10.5	Verifica del muro andatore	71
10.5.	1 Verifica a flessione SLU	76
10.5.	2 Verifica a taglio SLU	79
10.5.	3 Verifica fessurazione SLE	80
1 ANA	LISI GLOBALE SPALLA B	82
11.1	Coefficienti di spinta del terreno	82
11.1.	1 Fase statica	82
11.1.	2 Fase sismica	82
11.2	Carichi da spalla	83
11.2.	.1 Peso proprio della struttura	84

VI02 - Viadotto in c.a.pCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo spalle e fondazioniRR0H01D13CLVI0204001B5 di 134

	11.2.2	Peso proprio del rinterro	84
	11.2.3	Peso proprio dei sovraccarichi permanenti	84
	11.2.4	4 Sovraccarichi accidentali	84
	11.2.	Spinta permanente a tergo della spalla	85
	11.2.0	Spinta del sovraccarico permanente	85
	11.2.	7 Spinta del sovraccarico accidentale	85
	11.2.8	8 Azioni sismiche	85
	11.2.9	9 Scarichi sugli appoggi	86
1 1	1.3	Azioni agenti all'intradosso della fondazione	86
	11.3.	1 Coefficienti di combinazione	88
	11.3.2	2 Sollecitazioni combinate al baricentro della fondazione (intradosso)	90
12	VERI	FICHE GEOTECNICHE SPALLA B	91
12	2.1	Sollecitazioni di calcolo	91
12	2.2	Verifica a capacità portante	91
12	2.3	Verifica a scorrimento	94
13	VERI	FICA A RIBALTAMENTO SPALLA B	95
13	3.1	Verifica a ribaltamento in condizioni statiche	95
13	3.2	Verifica a ribaltamento in condizioni sismiche	98
14	VERI	FICHE STRUTTURALI DELLA FONDAZIONE SPALLA B	102
14	1 .1	Sollecitazioni combinate intradosso fondazione	102
14	1.2	Verifiche strutturali del plinto	102
	14.2.	1 Verifica a flessione SLU – SLE	104
	14.2.2	Verifica a taglio SLU	106
15	VERI	FICHE DELLE ELEVAZIONI SPALLA B	108

VI02 - Viadotto in c.a.pCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo spalle e fondazioniRR0H01D13CLVI0204001B6 di 134

1	5.1	Modello di calcolo	108
1	5.2	Carichi applicati e combinazioni	109
	15.2.1	Spinta statica	109
	15.2.2	Spinta sismica	109
	15.2.3	Spinta carichi permanenti	109
	15.2.4	Spinta carichi accidentali	109
1	5.3	Verifica del muro frontale	110
	15.3.1	Verifica a flessione SLU- SLV	112
	15.3.2	Verifica fessurazione SLE	116
1	5.4	Verifica del paraghiaia	117
	15.4.1	Verifica a flessione SLU	120
	15.4.2	Verifica a taglio SLU	122
	15.4.3	Verifica fessurazione SLE	123
1	5.5	Verifica del muro andatore	125
	15.5.1	Verifica a flessione SLU	129
	15.5.2	Verifica a taglio SLU	132
	15.5.3	Verifica fessurazione SLE	132
16	INCID	ENZA ARMATURE	134

VI02 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalle e fondazioni	RR0H	01	D13CL	VI0204001	В	7 di 134

1 INTRODUZIONE

La presente relazione riporta le analisi e verifiche che hanno condotto al dimensionamento delle spalle del viadotto VI02 della variante di Bauladu, nell'ambito del progetto definitivo relativo alla "Velocizzazione linea San Gavino - Sassari - Olbia".

L'opera è funzionale ad un linea ferroviaria di categoria D4, con velocità di progetto di 140 Km/h.

Il viadotto è composto da 7 campate realizzate con travi poggiate in c.a.p. di luce 25m. Le spalle sono di tipo scatolare con fondazioni dirette .

La spalla A presenta un plinto di fondazioni di dimensioni 10.5x9.6x2.5m, mentre il muro frontale ha uno spessore di 2.3m ed altezza 8.8m, infine i muri di risvolto presentano spessori variabili pari a : 0.6m - 1.5m - 2.0m. Il paraghiaia ha uno spessore di 0.5m ed altezza pari a circa 3.

La spalla B presenta un plinto di fondazioni di dimensioni 8.75x9.6x2.0m, mentre il muro frontale ha uno spessore di 1.90m ed altezza 6.5m, infine i muri di risvolto presentano spessori variabili pari a: 0.6m - 1.5m. Il paraghiaia ha uno spessore di 0.5m ed altezza pari a circa 3.

La spalla B presenta appoggi longitudinali di tipo fisso, mentre la spalla opposta (Spalla A) ha appoggi mobili.

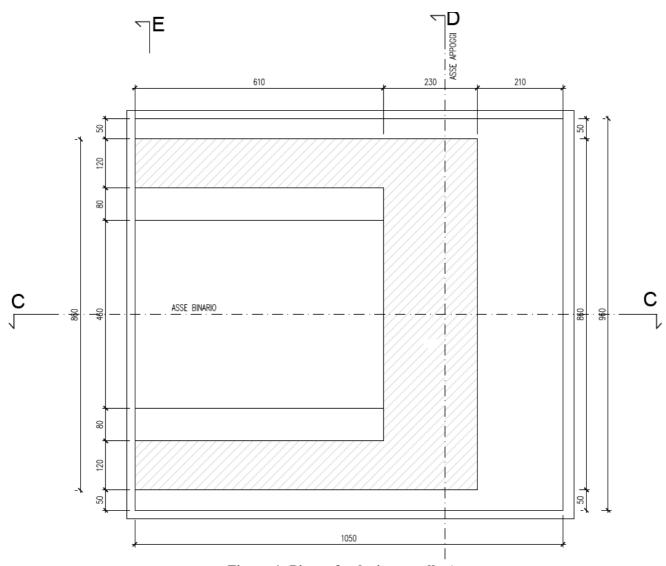


Figura 1: Pianta fondazione spalla A

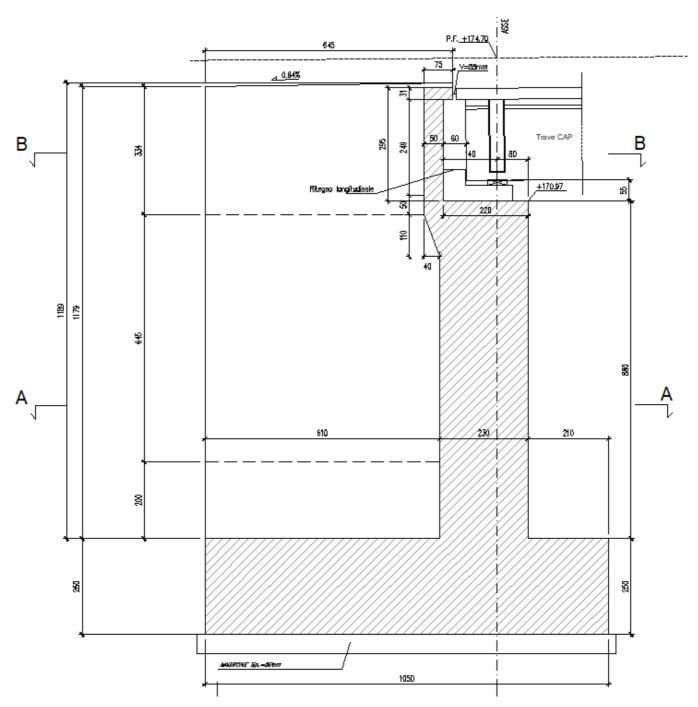


Figura 2: Sezione longitudinale spalla A

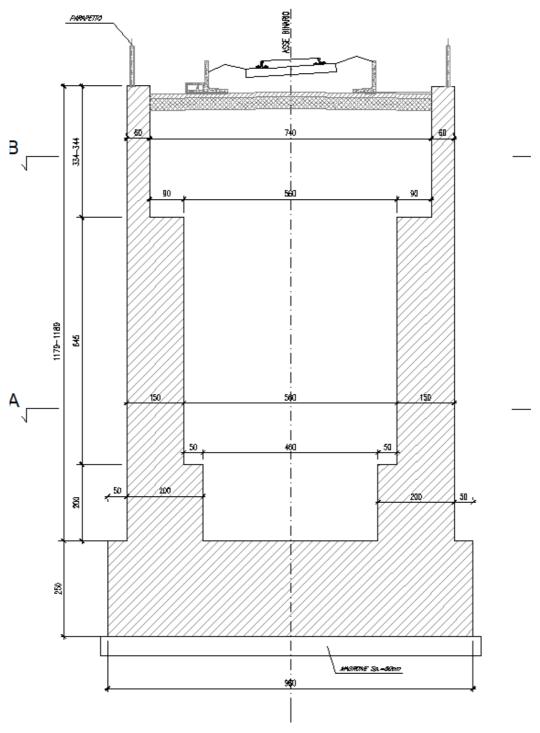


Figura 3: Sezione trasversale spalla A

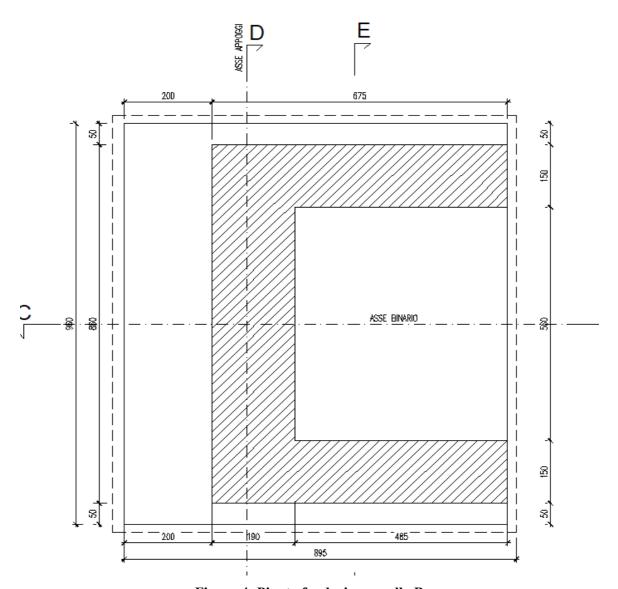


Figura 4: Pianta fondazione spalla B

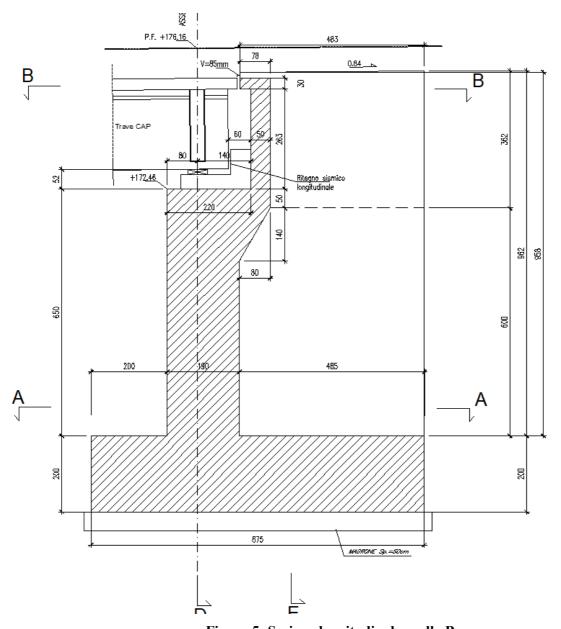


Figura 5: Sezione longitudinale spalla B

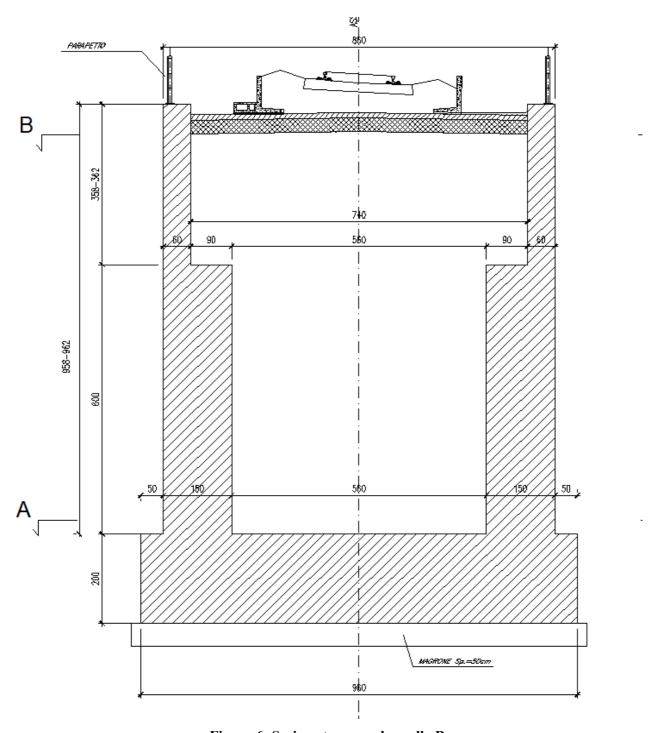


Figura 6: Sezione trasversale spalla B

VI02 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalle e fondazioni	RR0H	01	D13CL	VI0204001	В	14 di 134

2 NORMATIVA DI RIFERIMENTO

- Legge 5 novembre 1971 n. 1086: Norme per la disciplina delle opere di conglomerato cementizio armato normale e precompresso ed a struttura metallica.
- D.P.R. n. 380/2001 Testo unico delle disposizioni legislative e regolamentari in materia edilizia;
- D.M. del 14.01.2008 "Approvazione delle nuove norme tecniche per le costruzioni" (G.U. n.29 del 04.02.2008);
- Circolare del 02.02.2009 contenente le istruzioni per le l'applicazione delle "Nuove norme tecniche per le costruzioni" di cui al D.M. del 14.01.2008 (G.U. n.47 del 26.02.2009).
- RFI DTC SI PS MA IFS 001 A: "Manuale di progettazione delle opere civili Parte II sez.2 : Ponti e strutture " del 30/12/2016.
- RFI DTC SI CS MA IFS 001 A: Manuale di progettazione delle opere civili Parte II sez.3. : Corpo stradale" del 30/12/2016.
- Regolamento (UE) N.1299/2014 della Commissione del 18 novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione Europea.
- EN 1991-2 "Eurocodice 1 Azioni sulle strutture Parte 2 : carichi da traffico sui ponti"
- EN 1992-1 "Eurocodice 2 Progettazione delle strutture in calcestruzzo Parte 1-1 : Regole generali e regole per edifici"
- EN 1992-1 "Eurocodice 2 Progettazione delle strutture in calcestruzzo Parte 2: ponti di calcestruzzo Progettazione e dettagli costruttivi."
- EN 1993-1 "Eurocodice 3 Progettazione delle strutture di acciaio Parte 1-1 : Regole generali e regole per edifici"
- EN 1993-1-8 "Eurocodice 3 Progettazione delle strutture di acciaio Parte 1-8: Progettazione dei collegamenti"
- EN 1993-1-9 "Eurocodice 3 Progettazione delle strutture di acciaio Parte 1-8: Fatica"
- EN 1993-2 "Eurocodice 3 Progettazione delle strutture di acciaio Parte 2 : Ponti di acciaio"
- EN 1994-2 "Eurocodice 4 Progettazione delle strutture composte acciaio- calcestruzzo Parte 2 : Ponti"
- EN 1997-1 "Eurocodice 7 Progettazione geotecnica- Parte 1 : Regole generali."
- UNI EN 1337 Appoggi strutturali.

VI02 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalle e fondazioni	RR0H	01	D13CL	VI0204001	В	15 di 134

3 MATERIALI

3.1 Calcestruzzo

• Travi prefabbricate

Classe C45/55

Resistenza a compressione di progetto $f_{cd} = 0.85 f_{ck} / 1.5 = 25.5 Mpa$

Modulo elastico Ecm = $22000 (f_{cm}/10)^{0.3} = 36 Gpa$

Classe di esposizione = XC3

Classe di consistenza min = S4

Rapporto $a/c_{max} = 0.45$

Copriferro minimo armatura ordinaria = 35 mm

Copriferro minimo armatura pretesa = 50 mm

• Soletta d'impalcato

Classe C32/40

Resistenza a compressione di progetto $f_{cd} = 0.85 f_{ck} / 1.5 = 18.1 Mpa$

Modulo elastico Ecm = $22000 (f_{cm}/10)^{0.3} = 33 \text{ Gpa}$

Classe di esposizione = XC3

Classe di consistenza min = S4

Rapporto a/ $c_{max} = 0.55$

Copriferro minimo armatura ordinaria = 40 mm

• Getti in elevazione di pile e spalle (compresi baggioli e ritegni)

Classe C32/40

Resistenza a compressione di progetto $f_{cd} = 0.85 f_{ck} / 1.5 = 18.1 Mpa$

Modulo elastico Ecm = $22000 (f_{cm}/10)^{0.3} = 33 \text{ Gpa}$

Classe di esposizione = XC4

VI02 - Viadotto in c.a.p
Relazione di calcolo spalle e fondazioni

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RR0H	01	D13CL	VI0204001	В	16 di 134

Classe di consistenza min = S3

Rapporto $a/c_{max} = 0.50$

Copriferro minimo armatura ordinaria = 40 mm

• Getti di fondazione

Classe C25/30

Resistenza a compressione di progetto $f_{cd} = 0.85 f_{ck} / 1.5 = 14.2 \text{ Mpa}$

Modulo elastico Ecm = 22000 $(f_{cm}/10)^{0.3}$ = 31 Gpa

Classe di esposizione = XC2

Classe di consistenza min = S3

Rapporto $a/c_{max} = 0.60$

Copriferro minimo armatura ordinaria = 40 mm

• Magrone

Classe C12/15

Classe di esposizione = X0

3.2 Acciaio da armatura ordinaria

Acciaio tipo B450 C ($f_{yk} = 450 \text{ MPa}$)

Tensione di snervamento di calcolo $f_{yd} = f_{yk}/1.15 = 391$ Mpa

Modulo elastico Es = 200 Gpa

3.3 Acciaio armonico stabilizzato per trefoli

Tensione caratteristica di rottura $f_{ptk} = 1860 \text{ Mpa}$

Tensione di snervamento di calcolo $f_{p(1)k} = 1670 \text{ Mpa}$

Modulo elastico Es = 195 Gpa

VI02 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalle e fondazioni	RR0H	01	D13CL	VI0204001	В	17 di 134

4 CARATTERISTICHE DEI TERRENI

4.1 Terreno di fondazione

Con riferimento alla relazione geotecnica e al profilo geotecnico allegati al presente progetto, sono state assunti i seguenti parametri di calcolo relativi allo strato di terreno su cui sono state intestate le fondazioni delle sottostrutture.

Tratta Geotecnica: 7

Strato: Basalto alterato/Andesiti alterate (BSTalt/ ANDalt)

 γ = 24 KN/m3

 $\varphi' = 63^{\circ}$

c' = 266 Kpa

Ai fini delle verifiche geotecniche, a vantaggio di sicurezza, il contributo della coesione del terreno di fondazione viene trascurato.

4.2 Terreno a tergo della spalla

Le caratteristiche meccaniche adottate sono quelle specificate nel manuale di progettazione del corpo stradale (RFI DTC SI CS MA IFS 001 A) relativamente ai rilevati ferroviari:

 $\gamma = 20 \text{ KN/m3}$

 φ '= 38 $^{\circ}$

c' = 0 Kpa

VI02 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalle e fondazioni	RR0H	01	D13CL	VI0204001	В	18 di 134

5 ANALISI DEI CARICHI

Si riportano di seguito i carichi utilizzati per il calcolo delle sollecitazioni e le corrispondenti verifiche degli elementi strutturali dell'opera.

Sono stati adottati i seguenti pesi specifici dei materiali da costruzione:

Cemento armato : $\gamma c = 25.00 \text{ KN/m}3$

Acciaio strutturale : $\gamma s = 78.50 \text{ KN/m}3$

5.1 Carichi da impalcato

5.1.1 Pesi strutturali impalcato (G1)

Considerata la geometria dell'impalcato in oggetto per la singola campata si hanno i seguenti carichi strutturali:

Travi cap (30 kN/m/trave*) =

2*30 KN/m = 60.00 KN/m

Soletta in ca (spessore medio 28 cm) =

 $0.28 \text{ m} * 8.60 \text{m} * 25 \text{ KN/m} = \underline{60.20 \text{ KN/m}}$

120.20 KN/m

Il peso totale G1 per l'impalcato da 25m è dunque 3005 KN.

5.1.2 Carichi permanenti portati impalcato (G2)

Il peso proprio della sovrastruttura ferroviaria (armamento, ballast, impermeabilizzazione, etc..) viene valutato tramite un peso di volume a pari a 20 kN/m³ (ponte in curva) applicato ad un'altezza convenzionale di 0.8m.

Sovrastruttura ferroviaria

0.8 m * 3.7 m * 20 KN/m = 59.2 KN/m

Muretti per marciapiedi FFP

2* 0.3 m * 1.4 m * 25 KN/m 3 = 21 KN/m

Grigliato marciapiede FFP (50 kg/m2 compresi i profili di supporto)

2* 2.0 m * 0.5 KN/m2 = 2.0 KN/m

Barriere parapetto

2* 2.5 KN/m = 5.0 KN/m

Canalette portacavi (2.0 KN/m)

2.0 KN/m

89.20 KN/m

Il peso totale G2 per l'impalcato da 25m è dunque 2230 KN.

^{*} compresi i trasversi di collegamento delle travi in cap

5.1.3 Azioni variabili da traffico ferroviario

Di seguito sono illustrati i modelli di traffico adottati per il calcolo delle sollecitazioni.

Traffico normale: Treno LM71

Questo treno di carico schematizza gli effetti statici prodotti dal traffico ferroviario normale e risulta articolato come da figura seguente:

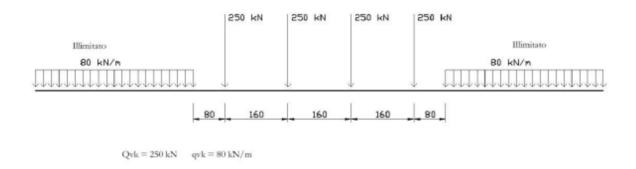


Figura 5.2.1 - Treno di carico LM71

Per questo modello è prevista un'eccentricità di applicazione del carico rispetto all'asse teorico del binario pari a s/18 (s = 1435 mm, scartamento):

 $e_{LM71} = 80 \text{ mm}$

I valori caratteristici del carco LM71 summenzionati devono essere incrementati per il coefficiente di adattamento α = 1.1

Traffico pesante: Treno SW/2

Questo treno di carico schematizza gli effetti statici prodotti dal traffico ferroviario pesante e risulta articolato come da figura seguente:

FOGLIO 20 di 134

VI02 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	
Relazione di calcolo spalle e fondazioni	RR0H	01	D13CL	VI0204001	В	

Fig. 5.2.2 Treno di carico SW

	Qwk (KN/m)	A (m)	C(m)
SW/2	150	25.00	7.00

Traffico scarico

Il "treno scarico" è rappresentato da un carico uniformemente distribuito pari a 10 KN/m.

Effetti dinamici

Si considera una linea con manutenzione standard

$$\Phi_3 = \frac{2.16}{\sqrt{L_0} - 0.2} + 0.73 \qquad \text{con la limitazione} \qquad 1.0 \le \Phi_3 \le 2.0$$

con la lunghezza Lø valutata secondo la Tabella 2.5.1.4.2.5.3-1 del manuale di progettazione Ponti RFI

• Travi principali - campata da 25m $L_{\Phi} = L_{c} = 22.8 \text{ m}$

 $\Phi 3 = 1.20$

• Soletta impalcato - luce netta $1.5 \text{ m L}_{\Phi} = \text{L}_{c} = 1.5 \text{ m}$

 $\Phi 3 = 2.84$

Frenatura/ avviamento

I valori caratteristici considerati sono calcolati secondo:

Avviamento Q1a,k = 33 KN/m * L \leq 1000 KN (modelli LM71 SW/0 SW/2)

Frenatura $Q1b,k = 20 \text{ KN/m} * L \le 6000 \text{ KN}$ (modelli LM71 SW/0)

Frenatura Q1b,k = 35 KN/m * L (modelli SW/2)

VI02 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalle e fondazioni	RR0H	01	D13CL	VI0204001	В	21 di 134

I valori caratteristici devono essere moltiplicati al coefficiente α .

• LM71 (α =1.1):

Campata [m]	Avviamento Q1a,k [KN]	Frenatura Q1b,k [KN]
25	908	550

• SW/2 (α =1.0):

Campata (m)	Avviamento Q1a,k [KN]	Frenatura Q1b,k [KN]
25	825	700

Serpeggio

Si considera una forza orizzontale concentrata agente sulla sommità della rotaia più alta di intensità pari a Qsk=100KN. A tale carico si applica il coefficiente di adattamento α , menzionato in precedenza.

[KN]	LM71 (α=1.1)	SW2 (α=1.0)
Azione serpeggio	110	100

Forza centrifuga

Il valore caratteristico della forza centrifuga è valutato secondo le seguenti espressioni:

$$Q_{tk} = \frac{v^{2}}{g \cdot r} (f \cdot Q_{vk}) = \frac{V^{2}}{127 \cdot r} (f \cdot Q_{vk})$$
 (5.2.9.a)

$$q_{tk} = \frac{v^2}{g \cdot r} (f \cdot q_{vk}) = \frac{V^2}{127 \cdot r} (f \cdot q_{vk})$$
 (5.2.9.b)

dove:

 Q_{tk} - q_{tk} = valore caratteristico della forza centrifuga [kN - kN/m];

 Q_{vk} - q_{vk} = valore caratteristico dei carichi verticali [kN - kN/m];

v = velocità di progetto espressa in m/s;

V = velocità di progetto espressa in km/h;

f = fattore di riduzione (definito in seguito);

g = accelerazione di gravità in m/s²;

r = è il raggio di curvatura in m.

VI02 - Viadotto in c.a.p
Relazione di calcolo spalle e fondazioni

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RR0H	01	D13CL	VI0204001	В	22 di 134

$$f = \left[1 - \frac{V - 120}{1000} \left(\frac{814}{V} + 1,75\right) \cdot \left(1 - \sqrt{\frac{2,88}{L_f}}\right)\right]$$
 (5.2.10)

Raggio di curvatura r = 1750 m

Velocità di progetto V = 140 km/h (LM71)

V = 100 km/h (SW/2)

Calcolo del coefficiente V²/ 127r

• LM71: 0.09

• SW/2: 0.05

In definitiva, dunque, la forza centrifuga ha intensità pari a (f = 1):

9% del carico verticale LM71

5% del carico verticale SW/2 (tale valore si assume anche per il "treno scarico")

Essa si considera agente verso l'esterno della curva, applicata alla quota di 1.8m dal piano del ferro.

Ai fini della massimizzazione degli effetti dei carichi ferroviari sulle strutture oggetto di studio, sono stati presi in esame i seguenti gruppi di carico:

	Carco verticale	Frenatura/avviamento*	Forza centrifuga	Serpeggio
LM71 gr1	1	0.5	1	1
LM71 gr3	1	1	0.5	0.5
SW/2 gr1	1	0.5	1	1
SW/2 gr3	1	1	0.5	0.5
treno scarico gr2	1	0	1	1

^{*} Si considera l'azione (frenatura/avviamento) con intensità più alta.

5.1.4 *Vento impalcato*

L'azione del vento è schematizzata come una pressione statica la cui intensità è data da:

$$p = qb *ce *cp * cd$$

dove

VI02 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalle e fondazioni	RR0H	01	D13CL	VI0204001	В	23 di 134

qb pressione cinetica di riferimento

ce coefficiente di esposizione

cp coefficiente di forma (1.4 prima trave 0.2 travi successive)

cd coefficiente dinamico (=1)

Per l'opera in studio si ha:

• Velocità di riferimento del vento:

vb = 28 m/s (Sardegna orientale con altitudine <750 m slm)

• Pressione cinetica di riferimento (ρ = 1.25kg/m3):

$$qb = 0.5*\rho*vb^2 = 490 \text{ N/m2} = 0.49 \text{ KN/m2}$$

• Coefficiente di esposizione :

$$ce = kr^2 * ct * ln (z/zo)*[7+ct ln (z/zo)] = 2.81$$

kr = 0.19 e zo= 0.05m (II cat. esposizione del sito, Zona 6, Rugosità D)

ct = 1 (coefficiente di topografia)

z = 15 m (quota media impalcato dal pc)

In definitiva la pressione del vento vale:

$$p = 0.49 \text{ KN/m2} * 2.62 * 1.4 * 1 = 1.80 \text{ KN/m2}$$

(trave direttamente investita)

$$p = 0.49 \text{ KN/m2} * 2.62 * 0.2 * 1 = 0.26 \text{ KN/m2}$$

(travi successive)

La pressione del vento si applica ad una superficie convenzionale del treno caratterizzata da un'altezza di 4m a partire dal piano del ferro oltre alla superficie dell'impalcato direttamente investita.

Nel caso in esame si ha:

H impalcato	3.18 m
H treno	4 m
H trave	2.1 m

La forza orizzontale al metro lineare applicata sull'impalcato è dunque pari a:

VI02 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalle e fondazioni	RR0H	01	D13CL	VI0204001	В	24 di 134

$$F_{vento} = 1.80 \text{ KN/m}^* (4+3.18)m + 0.26 \text{KN/m} * 2.1m = 13.47 \text{ KN/m}$$

Ponte carico

$$F_{vento*} = 1.93 \text{ KN/m* } 3.18 \text{ m} + 0.26 \text{KN/m} * 2.8 \text{m} = 6.86 \text{ KN/m}$$

Ponte scarico

Si fa notare che nel calcolo delle sollecitazioni sull'impalcato si tiene conto del fatto che è presente un'eccentricità verticale tra il centro di applicazione della forza orizzontale dovuta al vento e l'impalcato, pertanto nel modello di calcolo all'azione orizzontale viene associato un momento torcente corrispondente alla summenzionata eccentricità.

5.1.5 Resistenze parassite appoggi impalcato

L'entità di tale forza (Fa), diretta secondo l'asse del viadotto, vale per travi in semplice appoggio:

Spalle Fa = f(Vg + Vq)

Pile
$$Fa = f(0.2*Vg + Vq)$$

dove

Vg Reazione verticale massima associata ai carichi permanenti,

Vq Reazione verticale massima associata ai carichi mobili dinamicizzati.

5.2 Azione sismica (E)

La regione Sardegna ricade in zona sismica di IV categoria, i dati definenti lo spetto sismico sono riportati nella tabella 2 relativa alla pericolosità sismica del territorio nazionale contenuta nelle NTC2008.

TABELLA 2: Valori di a_g, F₀, T_C* per le isole, con l'esclusione della Sicilia, Ischia, Procida e Capri.

	Т	R=30		1	Γ _R =5()	1	Γ _R =72	2	Т	_R =10	1	Т	_R =14	0	Т	R=20	1	Т	_R =47	5	Т	_R =97	5	Т	_R =24	75
Isole	ag	F _o	T _C *	ag	F.	T _C *	ag	F _o	T _c *	ag	F _o	T _C *	ag	F.	T _C *	ag	F。	T _C *	ag	F _o	T_c^*	ag	F.	T _c *	ag	F.	T _C *
Arcipelago Toscano, Isole Egadi, Pantelleria, Sardegna, Lampedusa, Linosa, Ponza, Palmarola, Zannone	0,186	2,61	0,273	0,235	2,67	0,296	0,274	2,70	0,303	0,314	2,73	0,307	0,351	2,78	0,313	0,393	2,82	0,322	0,500	2,88	0,340	0,603	2,98	0,372	0,747	3,09	0,401

Per i viadotti in esame si assumono le seguenti caratteristiche dell'opera :

Vita utile
$$Vu = 75$$
 anni

VI02 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalle e fondazioni	RR0H	01	D13CL	VI0204001	В	25 di 134

Classe d'uso II (Cu = 1.0)

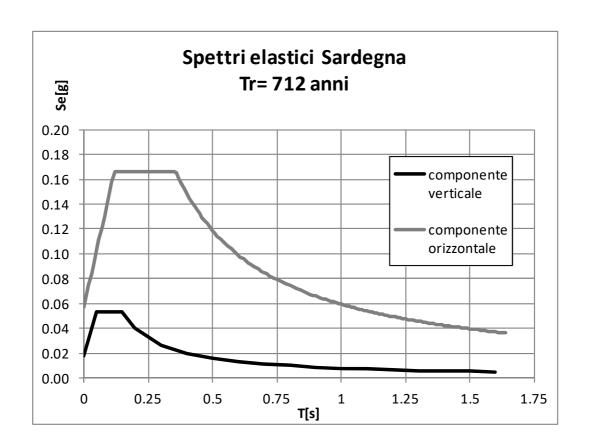
Pertanto l'azione sismica allo stato limite ultimo (salvaguardia della vita SLV) è caratterizzata da un tempo di ritorno di Tr = 712 anni.

I parametri ottenuti per interpolazione da quelli della tabella 2 sono i seguenti:

SLV	Tr = 712 anni
ag [g]	0.057
Fo	2.936
T*c [s]	0.358

Considerate le caratteristiche dei terreni di fondazione (vedasi relazione geotecnica) e quelle topografiche si assume una categoria di sottosuolo "A" ($S_S = 1.0$) ed un coefficiente topografico T1 ($S_T = 1.0$).

In definitiva dunque le due componenti degli spettri sismici per lo SLV sono i seguenti :


SLV	componente Orizz.	Componente Vert.
ag [g]	0.057	0.018
Fo,v	2.936	0.943
Tb [s]	0.119	0.05
Tc [s]	0.358	0.15
Tc [s]	10.827	1.00
η	1	1

VI02 - Viadotto in c.a.p

Relazione di calcolo spalle e fondazioni

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RR0H	01	D13CL	VI0204001	В	26 di 134

VI02 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalle e fondazioni	RR0H	01	D13CL	VI0204001	В	27 di 134

6 ANALISI GLOBALE SPALLA A

6.1 Coefficienti di spinta del terreno

6.1.1 Fase statica

La spalla in favore di sicurezza viene considerata quale rigida ai fini della valutazione della spinta orizzontale della terra. La forza statica è stata dunque valutata attraverso il coefficiente di spinta a riposo calcolata con la relazione:

$$K_0=1-sen(\varphi')$$

Nel caso in esame tale coefficiente vale: $K_0=1-sen(38^\circ)=0.384$.

La risultante della spinta è posta ad 1/3 dal basso rispetto all'altezza totale H.

6.1.2 Fase sismica

La sovra spinta sismica del terreno a tergo della spalla viene calcolata secondo la teoria di Wood:

$$\Delta S = \frac{a_s}{g} \cdot S_s \cdot S_T \cdot \gamma_T H^2$$

essa agisce alla quota 1/2 dell'altezza della spalla (H)

Il metodo prevede l'individuazione di un coefficiente sismico orizzontale k_h ed uno verticale k_v , valutati secondo le seguenti espressioni:

$$k_h = \beta_m \cdot S_T \cdot S_S \cdot a_g / g$$

$$k_v=0.5 \cdot k_h$$

Nel caso in esame si assume $\beta_m = 1$ (strutture rigide).

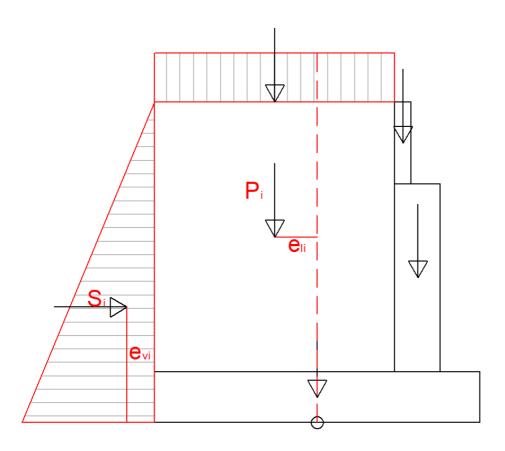
Sulla base delle NTC08, il valore dell'accelerazione al suolo amplificata dai terreni presenti al di sotto della fondazione risulta pari a:

$$PGA = 0.057 g$$

Risulta dunque:

$$k_h = \beta_m * PGA/g = \beta_m * S_T * PGA/g = 1 * 1.0 * 0.057 = 0.57$$

$$k_v = \pm 0.028$$



6.2 Carichi da spalla

Si adotta la seguente simbologia:

dimensione dell'elemento in direzione longitudinale [m]dimensione dell'elemento in direzione trasversale b_t [m]h altezza dell'elemento [m] V/A volume/area dell'elemento $[m^3 m^2]$ P peso dell'elemento/sovraccarico [KN] e_l e_t e_v eccentricità del carico rispetto al baricentro della fondazione rispettivamente longitudinale, trasversale e verticale [m]

• m_l, m_t contributo del carico in termini di momento longitudinale e trasversale [kNm]

VI02 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalle e fondazioni	RR0H	01	D13CL	VI0204001	В	29 di 134

6.2.1 Peso proprio della struttura

ELEMENTI	b _l [m]	b _t [m]	h [m]	V [m ³]	P [kN]	e _l [m]	e _t [m]	e _v [m]	m _i [kN m]	mt [kN m]
Muro Paraghiaia	0.5	8.6	2.95	12.7	317	-0.10	0.00	10.00	-32	0
Muro frontale	1.9	8.6	7	114.4	2860	1.47	0.00	5.50	4203	0
Muro andatore SX	4.85	1.5	9.9	72.0	1801	-1.90	-4.00	7.10	-3421	-7202
Muro andatore DX	4.85	1.5	9.9	72.0	1801	-1.90	4.00	7.10	-3421	7202
Fondazione	8.75	9.6	2	168.0	4200	0.00	0.00	1.00	0	0

6.2.2 **Peso proprio del rinterro**

	b _l [m]	b _t [m]	h [m]	V [m ³]	P [kN]	e _i [m]	e _t [m]	e _v [m]	m _i [kN m]	mt [kN m]
Rinterro	4.85	5.60	9.90	268.9	5378	-2.20	0.00	6.90	-11831	0

6.2.3 Peso proprio dei sovraccarichi permanenti

Per il peso della massicciata ferroviaria (comprensiva di armamento) si assume uno spessore equivalente di 0.8m e peso per unità di volume pari a 20 KN/m3.

	bl[m]	bt [m]	h [m]	qp[kN/m3]	P [kN]	el [m]	et [m]	ev [m]	ml [kN m]
sovrastruttura ferroviaria	4.85	7.40	0.80	20.00	574	-2.20	0.00	11.60	-1263

6.2.4 Sovraccarichi accidentali

Si assume un carico da traffico pari a 50 kPa, applicato uniformemente su una striscia di terreno larga 2.75 min asse al binario.

	b _i [m]	b _t [m]	h [m]	q _v [kN/m2]	P [kN]	e _i [m]	e _t [m]	e _v [m]	m _i [kN m]	m _t [kN m]
Accidentali	4.85	2.75	-	50.00	667	-2.20	0.00	11.60	-1467	0

6.2.5 Spinta permanente a tergo della spalla

La spinta del terreno F_1 [kN] presenta una distribuzione triangolare sull'altezza H del paramento di larghezza b, con risultante orizzontale espressa dalla formula F_1 = 0.5 k_0 γ_{terr} H² B, applicata ad una quota pari a H/3.

γ [kN/m3]	φ' [°]	K0	H [m]	b [m]	F1 [kN]	ev [m]	ml [kN m]
20.0	38.00	0.384	11.90	8.60	4681	3.97	18567

6.2.6 Spinta del sovraccarico permanente

La spinta del sovraccarico permanente F_2 [kN] presenta una distribuzione rettangolare sull'altezza H del paramento di larghezza b, con risultante orizzontale espressa dalla formula F_2 = k_0 q_p B H, applicata ad una quota pari a H/2.

q [kN/mq]	K ₀	H [m]	b [m]	F2 [kN]	e _v [m]	m₁ [kN m]
16.00	16.00	0.384	11.90	8.60	629	5.95

6.2.7 Spinta del sovraccarico accidentale

La spinta del sovraccarico accidentale F_{qa} [kN] presenta una distribuzione rettangolare sull'altezza H del paramento di larghezza b, con risultante orizzontale espressa dalla formula F_{qa} = k_0 q_a B H, applicata ad una quota pari a H/2.

q [kN/mq]	K_0	H [m]	b [m]	F2 [kN]	e _v [m]	m₁ [kN m]
50.00	0.384	11.90	8.60	1967	5.95	11702

6.2.8 Azioni sismiche

Incremento della spinta del terreno in fase sismica

L'incremento della spinta del terreno in fase sismica secondo la formulazione di Wood vale:

VI02 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalle e fondazioni	RR0H	01	D13CL	VI0204001	В	31 di 134

a/g	S	βm	γ [kN/m ³]	H [m]	b [m]	ΔE _d [kN]	e _v [m]	m _i [kN m]
0.057	1	1.00	20.0	11.90	8.6	1388	5.95	8261

Forza inerziale delle masse

Nella tabella che segue si riportano le forze d'inerzia dei vari elementi che costituiscono la struttura.

		Direzione or	izzontale		Direzione ve	erticale	
	P [kN]	E.I. [kN]	e _v [m]	mı [kN m]	E.I. [kN]	e: [m]	mı [kN m]
Muro Paraghiaia	317	18	10.00	181	9	-0.10	-1
Muro frontale	2860	163	5.50	896	81	1.47	120
Muro andatore SX	1801	103	7.10	729	51	-1.90	-98
Muro andatore DX	1801	103	7.10	729	51	-1.90	-98
Fondazione	4200	239	1.00	239	120	0.00	0
Terreno di rinterro	5378	307	6.90	2115	153	-2.20	-337

6.2.9 Scarichi degli appoggi

Gli scarichi dell'impalcato sugli appoggi in fase statica ed in fase sismica allo SLV sono desunti dall'analisi strutturale dell'impalcato, a cui si rimanda per maggiori dettagli.

6.3 Azioni agenti all'intradosso della fondazione

La tabella riassume i carichi elementari riportati al baricentro della fondazione.

VI02 - Viadotto in c.a.pCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo spalle e fondazioniRR0H01D13CLVI0204001B32 di 134

	N [kN]	MI [kNm]	Mt [kNm]	FI [kN]	Ft [kN]	
Peso proprio	10978	-2670	0	0	0	
Peso rinterro	5378	-11831	0	0	0	
sovrastruttura ferroviaria	574	-1263	0	0	0	Ϋ́
peso accidentali traffico	667	-1467	0	0	0	STATICA
Spinta terreno (K0)	0	18567	0	4681	0	ST
Spinta sovraccarico sovrastruttura (K0)	0	3745	0	629	0	
Spinta acc. Traffico (K0)	0	11702	0	1967	0	
Incremento spinta sismica terreno	0	8261	0	1388	0	4
Effetti inerziali struttura long.	0	4889	0	932	0	Ĭ Į
Effetti inerziali struttura trasv.	0	0	4889	0	932	SISMICA
Effetti inerziali verticali (+)	466	-413	0	0	0	O)
G1	1505	2972	0	0	0	
G2	1114	2201	-1	0	0	
LM 71 gruppo 1	1838	3445	1870	0	242	TO
SW/2 gruppo 1	2017	3832	2021	0	243	-CA
LM 71 gruppo 3	1838	3521	911	0	123	PAI
SW/2 gruppo 3	2017	3908	1026	0	121	<u>⊠</u>
Resistenza parassita vincoli	0	3058	0	284	0	/O
Vento	0	-80	1663	0	184	AZIONI DA IMPALCATO
Sisma long	0	0	0	0	0	AZI
Sisma trasv	0	0	1616	0	149	
Sisma vert	47	93	0	0	0	

VI02 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalle e fondazioni	RR0H	01	D13CL	VI0204001	В	33 di 134

6.3.1 *Coefficienti di combinazione*

AZIONI DA SPALLA

	Peso proprio	Peso rinterro	sovrastruttura ferroviaria	peso accidentali traffico	Spinta terreno (K0)	Spinta sovraccarico sovrastruttura (K0)	Spinta acc. Traffico (K0)	Incremento spinta sismica terreno	Effetti inerziali struttura long.	Effetti inerziali struttura trasv.	Effetti inerziali verticali (+)
SLE1	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	0.00	0.00	0.00
SLE2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	0.00	0.00
SLE3	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	0.00	0.00
SLE4	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	0.00	0.00
SLE5	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	0.00	0.00
SLU1	1.35	1.35	1.50	0.00	1.35	1.35	0.00	0.00	0.00	0.00	0.00
SLU2	1.35	1.35	1.50	1.45	1.35	1.35	1.45	0.00	0.00	0.00	0.00
SLU3	1.35	1.35	1.50	1.45	1.35	1.35	1.45	0.00	0.00	0.00	0.00
SLU4	1.35	1.35	1.50	1.45	1.35	1.35	1.45	0.00	0.00	0.00	0.00
SLU5	1.35	1.35	1.50	1.45	1.35	1.35	1.45	0.00	0.00	0.00	0.00
SLV1	1.00	1.00	1.00	0.20	1.00	1.00	0.20	1.00	1.00	0.30	0.30
SLV2	1.00	1.00	1.00	0.20	1.00	1.00	0.20	1.00	1.00	0.30	-0.30
SLV3	1.00	1.00	1.00	0.20	1.00	1.00	0.20	1.00	0.30	1.00	0.30
SLV4	1.00	1.00	1.00	0.20	1.00	1.00	0.20	1.00	0.30	1.00	-0.30

 VI02 - Viadotto in c.a.p
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 Relazione di calcolo spalle e fondazioni
 RR0H
 01
 D13CL
 VI0204001
 B
 34 di 134

AZIONI DA IMPALCATO

	61	62	LM 71 gruppo 1	SW/2 gruppo 1	LM 71 gruppo 3	SW/2 gruppo 3	Resistenza parassita vincoli	Vento	Sisma long	Sisma trasv	Sisma vert
SLE1	1.00	1.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00
SLE2	1.00	1.00	1.00	0.00	0.00	0.00	1.00	0.60	0.00	0.00	0.00
SLE3	1.00	1.00	0.00	1.00	0.00	0.00	1.00	0.60	0.00	0.00	0.00
SLE4	1.00	1.00	0.00	0.00	1.00	0.00	1.00	0.60	0.00	0.00	0.00
SLE5	1.00	1.00	0.00	0.00	0.00	1.00	1.00	0.60	0.00	0.00	0.00
SLU1	1.35	1.50	0.00	0.00	0.00	0.00	0.00	1.50	0.00	0.00	0.00
SLU2	1.35	1.50	1.45	0.00	0.00	0.00	1.20	0.90	0.00	0.00	0.00
SLU3	1.35	1.50	0.00	1.45	0.00	0.00	1.20	0.90	0.00	0.00	0.00
SLU4	1.35	1.50	0.00	0.00	1.45	0.00	1.20	0.90	0.00	0.00	0.00
SLU5	1.35	1.50	0.00	0.00	0.00	1.45	1.20	0.90	0.00	0.00	0.00
SLV1	1.00	1.00	0.00	0.00	0.20	0.00	1.00	0.00	1.00	0.30	0.30
SLV2	1.00	1.00	0.00	0.00	0.20	0.00	1.00	0.00	1.00	0.30	-0.30
SLV3	1.00	1.00	0.20	0.00	0.00	0.00	1.00	0.00	0.30	1.00	0.30
SLV4	1.00	1.00	0.20	0.00	0.00	0.00	1.00	0.00	0.30	1.00	-0.30

VI02 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalle e fondazioni	RR0H	01	D13CL	VI0204001	В	35 di 134

6.3.2 Sollecitazioni combinate al baricentro della fondazione (intradosso)

	N [kN]	MI [kNm]	Mt [kNm]	FI [kN]	Ft [kN]
SLE1	20216	10173	1662	5310	184
SLE2	22054	28409	2868	7561	352
SLE3	22233	28797	3018	7561	353
SLE4	22054	28485	1908	7561	233
SLE5	22233	28873	2023	7561	231
SLU1	26644	15843	2494	7168	276
SLU2	30276	39395	4208	10361	517
SLU3	30536	39957	4427	10361	518
SLU4	30276	39505	2816	10361	344
SLU5	30536	40067	2983	10361	341
SLV1	20204	30582	2133	8308	349
SLV2	19896	30774	2133	8308	349
SLV3	20204	27145	6879	7656	1130
SLV4	19896	27337	6879	7656	1130

VI02 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalle e fondazioni	RR0H	01	D13CL	VI0204001	В	36 di 134

7 VERIFICHE GEOTECNICHE SPALLA A

7.1 Sollecitazioni di calcolo

La tabella seguente riassume le sollecitazioni combinate all'intradosso della fondazione e le dimensioni "efficaci" della fondazione.

	N	MI	Mt	FI	Ft	B'	L'
	[kN]	[kNm]	[kNm]	[kN]	[kN]	[m]	[m]
SLU1	26644	15843	2494	7168	276	7.56	9.41
SLU2	30276	39395	4208	10361	517	7.56	9.41
SLU3	30536	39957	4427	10361	518	7.56	9.41
SLU4	30276	39505	2816	10361	344	7.56	9.41
SLU5	30536	40067	2983	10361	341	7.56	9.41
SLV1	20204	30582	2133	8308	349	7.56	9.41
SLV2	19896	30774	2133	8308	349	7.56	9.41
SLV3	20204	27145	6879	7656	1130	7.56	9.41
SLV4	19896	27337	6879	7656	1130	7.56	9.41

Le verifiche sono state condotte secondo l'approccio 2 (A1-M1-R3), a cui corrispondono i seguenti fattori di sicurezza sulle resistenza e sulle caratteristiche del terreno di fondazione:

(R3)	Capacità portante	Scorrimento
γr	2.3	1.1

Parametri geotecnici (M1)				
c (MPa)	0			
φ (°)	63			

7.2 Verifica a capacità portante

La verifica a capacità portante è definita dalla relazione:

$$q_{lim}\!/\gamma_r\,\geq q_{es}$$

Il valore del carico limite del terreno di fondazione è stato determinato con la formula di Terzaghi, opportunamente modificata tramite fattori correttivi:

$$q_{lim} = c N_c s_c i_c d_c b_c g_c z_c + q N_q s_q i_q d_q b_q g_q z_q + N_\gamma \gamma (B'/2) s_\gamma i_\gamma d_\gamma b_\gamma g_\gamma z_\gamma$$

VI02 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalle e fondazioni	RR0H	01	D13CL	VI0204001	В	37 di 134

c' = coesione efficace;

 γ = peso per unità di volume del terreno di fondazione;

B' = larghezza fondazione equivalente con carico centrato;

 $N_c N_q N_\gamma$ = Fattori di capacità portante;

 $s_c s_q s_\gamma = fattori di forma;$

 $i_c i_q i_\gamma$ = fattori di inclinazione del carico;

 $d_c d_q d_\gamma$ = fattori di profondità del piano d'appoggio;

 $b_c b_q b_{\gamma}$ = fattori di inclinazione base della fondazione;

 $g_c g_q g_{\gamma}$ = fattori di inclinazione del piano di campagna;

 $z_c z_q z_\gamma$ = fattori in fase sismica (Paolucci-Pecker 1977).

La pressione massima agente è stata determinata come segue:

$$q_{es} = N/B'L'$$

N = azione normale alla fondazione

B', L' = dimensioni della fondazione equivalente con carico centrato: B'=B-2e_{trasv}, L'=L-2e_{long}.

La tabella seguente esplicita i parametri impiegati per il calcolo della capacità portante della fondazione.

	q	Nq						γ	Nγ					
	[kPa]	[kPa]	s q	i q	d q	b q	g q	[kN/m3]	[kPa]	sγ	iγ	dγ	bγ	gγ
SLU1	48.00	8261	2.39	0.61	1.01	1.00	1.00	24.00	32430	2.39	0.45	1.00	1.00	1.00
SLU2	48.00	8261	2.39	0.52	1.01	1.00	1.00	24.00	32430	2.39	0.34	1.00	1.00	1.00
SLU3	48.00	8261	2.39	0.52	1.01	1.00	1.00	24.00	32430	2.39	0.35	1.00	1.00	1.00
SLU4	48.00	8261	2.39	0.52	1.01	1.00	1.00	24.00	32430	2.39	0.34	1.00	1.00	1.00
SLU5	48.00	8261	2.39	0.52	1.01	1.00	1.00	24.00	32430	2.39	0.35	1.00	1.00	1.00
SLV1	48.00	8261	2.39	0.44	1.01	1.00	1.00	24.00	32430	2.39	0.26	1.00	1.00	1.00
SLV2	48.00	8261	2.39	0.43	1.01	1.00	1.00	24.00	32430	2.39	0.25	1.00	1.00	1.00
SLV3	48.00	8261	2.39	0.47	1.01	1.00	1.00	24.00	32430	2.39	0.29	1.00	1.00	1.00
SLV4	48.00	8261	2.39	0.47	1.01	1.00	1.00	24.00	32430	2.39	0.28	1.00	1.00	1.00

VI02 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalle e fondazioni	RR0H	01	D13CL	VI0204001	В	38 di 134

A vantaggio di sicurezza si trascura il contributo del terreno di ricoprimento, l'affondamento della fondazione è dunque pari al suo spessore.

Si assume una quota di falda posta a -8.0m dal piano di fondazione.

La tabella riassume i risultati delle verifiche:

		Capacità portante	
	qrd [kPa]	qed [kPa]	FS=qrd/qed [-]
SLU1	1630745	374	>100
SLU2	1266292	425	>100
SLU3	1279691	429	>100
SLU4	1267297	425	>100
SLU5	1280717	429	>100
SLV1	941105	284	>100
SLV2	917226	280	>100
SLV3	1053824	284	>100
SLV4	1030021	280	>100

7.3 Verifica a scorrimento

La verifica a scorrimento è definita dalla relazione:

$$S_{rd} = S_d/\gamma_r \ge S_{ed}$$

L'azione resistente è stata calcolata tramite la relazione:

$$S_d = N \tan (\varphi) + c' B' L'$$

N = azione normale alla fondazione

c' = coesione efficace (assunto nullo)

B', L' = dimensioni della fondazione equivalente con carico centrato

S_{ed} = azione orizzontale agente sulla fondazione;

VI02 - Viadotto in c.a.pCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo spalle e fondazioniRR0H01D13CLVI0204001B39 di 134

	Scorrimento						
	Srd [kN]	Sed [kN]	FS=Srd/Sed [-]				
SLU1	47539	7174	6.63				
SLU2	54019	10374	5.21				
SLU3	54482	10374	5.25				
SLU4	54019	10367	5.21				
SLU5	54482	10367	5.26				
SLV1	36048	8315	4.33				
SLV2	35498	8315	4.27				
SLV3	36048	7739	4.66				
SLV4	35498	7739	4.59				

VI02 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalle e fondazioni	RR0H	01	D13CL	VI0204001	В	40 di 134

8 VERIFICA A RIBALTAMENTO SPALLA A

Lo stato limite di ribaltamento deve essere trattato come uno stato limite di equilibrio di un corpo rigido (EQU) adoperando i coefficienti parziali del gruppo M2 per il calcolo delle spinte.

Parametri geotecnici ridotti (M2)						
γ _{terr} [KN/m3]	20					
c (MPa)						
ф	32					

8.1 Verifica a ribaltamento in condizioni statiche

Di seguito si riportano i calcoli delle azioni agenti sulla spalla in termini di forze orizzontali e verticali e momenti valutati rispetto al piede di valle del plinto di fondazione, dove:

Fl = forza orizzontale agente in direzione longitudinale

ez = eccentricità della forza Fl rispetto al piede di valle di intradosso del piano di fondazione,

M = F1 * ez,

N = azione verticale

ex = eccentricità delle forze verticali rispetto al piede di valle della fondazione.

Spinte									
Azione	FI	ez	М						
, =.00	[kN]	[m]	[kNm]						
Spinta del terreno (statica)	8265	4.77	-39397						
Incremento spinta per sovraccarico sovrastruttura	925	7.15	-6612						
Incremento spinta per carichi accidentali	2890	7.15	-20663						

 VI02 - Viadotto in c.a.p
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 Relazione di calcolo spalle e fondazioni
 RR0H
 01
 D13CL
 VI0204001
 B
 41 di 134

Azioni peso proprio spalla e rinterro										
Elemento	N [kN]	ex [m]	M [kNm]							
Muro Paraghiaia	317	4.65	1411							
Muro frontale	4352	3.25	14143							
Muro andatore SX	2699	7.45	20109							
Muro andatore DX	2699	7.45	20109							
Fondazione	6300	5.25	33075							
Terreno di rinterro	8062	7.45	60060							
sovrastruttura ferroviaria	722	7.45	5381							
Accidentali	839	7.45	6249							

Azione da impalcato: forze longitudinali										
Azione	N [kN]	ex [m]	M [KNm]							
G1	1505	2.90	4364							
G2	1114	2.90	3232							
LM 71 gruppo 1	1838	2.90	5330							
SW/2 gruppo 1	2017	2.90	5849							
LM 71 gruppo 3	752	2.90	2182							
SW/2 gruppo 3	557	2.90	1616							
Resistenza parassita vincoli	0	2.90	0							

Azione da impalcato: forze verticali									
Azione	FI [kN]	ez [m]	M [KNm]						
G1	0	9.80	0						
G2	0	9.80	0						
LM 71 gruppo 1	0	9.80	0						
SW/2 gruppo 1	0	9.80	0						
LM 71 gruppo 3	0	9.80	0						
SW/2 gruppo 3	0	9.80	0						
Resistenza parassita vincoli	-284	9.80	-2786						

Le azioni elementari sono state combinate secondo i seguenti coefficienti:

VI02 - Viadotto in c.a.pCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo spalle e fondazioniRR0H01D13CLVI0204001B42 di 134

AZIONI DA SPALLA

		Spinta del terreno	Incremento spinta per sovraccarico sovrastruttura	Incremento spinta per carichi accidentali	Muro Paraghiaia	Muro frontale	Muro andatore SX	Muro andatore DX	Fondazione	Terreno di rinterro	sovrastruttura ferroviaria	Accidentali
	0	1.10	1.10	0.00	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.00
	1	1.10	1.10	1.50	0.90	0.90	0.90	0.90	0.90	0.90	0.90	1.50
EQU	2	1.10	1.10	1.50	0.90	0.90	0.90	0.90	0.90	0.90	0.90	1.50
	3	1.10	1.10	1.50	0.90	0.90	0.90	0.90	0.90	0.90	0.90	1.50
	4	1.10	1.10	1.50	0.90	0.90	0.90	0.90	0.90	0.90	0.90	1.50

AZIONI DA IMPALCATO

		61	62	LM 71 gruppo 1	SW/2 gruppo 1	LM 71 gruppo 3	SW/2 gruppo 3	Resistenza parassita vincoli
	0	0.90	0.90	0.00	0.00	0.00	0.00	0.00
	1	0.90	0.90	1.50	0.00	0.00	0.00	1.00
EQU	2	0.00	0.00	0.00	1.50	0.00	0.00	1.00
	3	0.00	0.00	0.00	0.00	1.50	0.00	1.00
	4	0.00	0.00	0.00	0.00	0.00	1.50	1.00

La tabella seguente riassume gli esiti delle verifiche.

VI02 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalle e fondazioni	RR0H	01	D13CL	VI0204001	В	43 di 134

Ribaltamento (Statica)	M stab [KNm]	M destab [KNm]	$FS = M_{stab}/M_{destab}$ [-]
EQU0	89709	-30011	2.99
EQU1	104006	-54260	1.92
EQU2	97949	-54260	1.81
EQU3	92448	-54260	1.70
EQU4	91599	-54260	1.69

8.2 Verifica a ribaltamento in condizioni sismiche

Alle azioni precedentemente menzionate (statica) si aggiungono, l'incremento di spinta sismica del terreno a tergo della spalla, le azioni inerziali e le reazioni sismiche degli appoggi dell'impalcato.

	FI	ez	M
	[kN]	[m]	[kNm]
Incremento spinta sismica	-1388	5.95	-8261

AZIONI INERZIALI	Fv [kN]	ex [m]	M [kNm]	FI [kN]	ev [m]	M [kNm]
Muro paraghiaia	9.0	4.45	40	-18	10.00	-181
Muro frontale	81.5	2.95	240	-163	5.50	-896
Muro andatore SX	51.3	6.30	323	-103	7.10	-729
Muro andatore DX	51.3	6.30	323	-103	7.10	-729
Fondazione	119.7	5.25	628	-239	1.00	-239
Terreno di rinterro	153.3	6.30	966	-307	6.90	-2115
Azioni inerziali complessive			2521			-4889

Azioni sismiche da impalcato	Fv [kN]	ex [m]	M [KNm]	Fl [kN]	ev [m]	M [KNm]
Sisma long	0	2.9	0	0	9.8	0
Sisma vert	47	2.9	137	0	8.9	0

Le azioni elementari sono state combinate attraverso i seguenti coefficienti di combinazione:

VI02 - Viadotto in c.a.pCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo spalle e fondazioniRR0H01D13CLVI0204001B44 di 134

AZIONI DA SPALLA

		Spinta del terreno	Incremento spinta per sovraccarico sovrastruttura	Incremento spinta per carichi accidentali	Incremento spinta sismica	Inerzia orizzontale spalla e rinterro (kh)	Inerzia verticale spalla e rinterro (kv +)	Muro Paraghiaia	Muro frontale	Muro andatore SX	Muro andatore DX	Fondazione	Terreno di rinterro	sovrastruttura ferroviaria	Accidentali
	1	1.00	1.00	1.00	0.00	1.00	0.30	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
	2	1.00	1.00	1.00	0.20	1.00	0.30	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.20
EQU SISMA (x+0.3z)	3	1.00	1.00	1.00	0.20	1.00	0.30	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.20
	4	1.00	1.00	1.00	0.20	1.00	0.30	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.20
	5	1.00	1.00	1.00	0.20	1.00	0.30	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.20
	6	1.00	1.00	1.00	0.00	0.30	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
	7	1.00	1.00	1.00	1.00	0.30	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.20
EQU SISMA (0.3x+z)	8	1.00	1.00	1.00	1.00	0.30	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.20
	9	1.00	1.00	1.00	1.00	0.30	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.20
	10	1.00	1.00	1.00	1.00	0.30	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.20
	11	1.00	1.00	1.00	0.00	1.00	-0.30	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
	12	1.00	1.00	1.00	1.00	1.00	-0.30	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.20
EQU SISMA (x-0.3z)	13	1.00	1.00	1.00	1.00	1.00	-0.30	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.20
	14	1.00	1.00	1.00	1.00	1.00	-0.30	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.20
	15	1.00	1.00	1.00	1.00	1.00	-0.30	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.20
	16	1.00	1.00	1.00	0.00	0.30	-1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
	17	1.00	1.00	1.00	1.00	0.30	-1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.20
EQU SISMA (0.3x-z)	18	1.00	1.00	1.00	1.00	0.30	-1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.20
	19	1.00	1.00	1.00	1.00	0.30	-1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.20
	20	1.00	1.00	1.00	1.00	0.30	-1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.20

Relazione di calcolo spalle e fondazioni

VELOCIZZAZIONE LINEA SAN GAVINO - SASSARI - OLBIA

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

RR0H 01 D13CL VI0204001 B 45 di 134

AZIONI DA IMPALCATO

		61	62	LM 71 gruppo 1	SW/2 gruppo 1	LM 71 gruppo 3	SW/2 gruppo 3	Resistenza parassita vincoli	Sisma long	Sisma vert
	1	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
EQU SISMA (x+0.3z)	2	1.00	0.20	1.00	1.00	0.20	0.00	0.00	0.00	1.00
	3	1.00	0.00	1.00	1.00	0.00	0.20	0.00	0.00	1.00
	4	1.00	0.00	1.00	1.00	0.00	0.00	0.20	0.00	1.00
	5	1.00	0.00	1.00	1.00	0.00	0.00	0.00	0.20	1.00
	6	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	7	1.00	0.00	1.00	1.00	0.20	0.00	0.00	0.00	1.00
EQU SISMA (0.3x+z)	8	1.00	0.00	1.00	1.00	0.00	0.20	0.00	0.00	1.00
	9	1.00	0.00	1.00	1.00	0.00	0.00	0.20	0.00	1.00
	10	0.00	0.00	1.00	1.00	0.00	0.00	0.00	0.20	1.00
	11	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	12	1.00	0.00	1.00	1.00	0.20	0.00	0.00	0.00	1.00
EQU SISMA (x-0.3z)	13	1.00	0.00	1.00	1.00	0.00	0.20	0.00	0.00	1.00
	14	1.00	0.00	1.00	1.00	0.00	0.00	0.20	0.00	1.00
	15	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	16	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	17	1.00	0.00	1.00	1.00	0.20	0.00	0.00	0.00	1.00
EQU SISMA (0.3x-z)	18	1.00	0.00	1.00	1.00	0.00	0.20	0.00	0.00	1.00
		1.00	0.00	1.00	1.00	0.00	0.00	0.20	0.00	1.00
	20	0.00	0.00	1.00	1.00	0.00	0.00	0.00	0.20	1.00

VI02 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalle e fondazioni	RR0H	01	D13CL	VI0204001	В	46 di 134

La tabella seguente riassume gli esiti delle verifiche.

Ribaltamento (sismica)		M stab [KNm]	M destab [KNm]	FS = M _{stab} /M _{destab} [-]
	1	100433	-46481	2.16
	2	110440	-48133	2.29
EQU SISMA (x+0.3z)	3	109681	-48133	2.28
	4	109358	-48690	2.25
	5	109358	-48133	2.27
	6	102198	-43059	2.37
	7	111559	-51319	2.17
EQU SISMA (0.3x+z)	8	111446	-51319	2.17
· · ·	9	111123	-51877	2.14
	10	106759	-51319	2.08
	11	98920	-46481	2.13
	12	108281	-54742	1.98
EQU SISMA (x-0.3z)	13	108168	-54742	1.98
	14	107845	-55299	1.95
	15	99761	-54742	1.82
	16	97156	-43059	2.26
	17	106517	-51319	2.08
EQU SISMA (0.3x-z)	18	106403	-51319	2.07
, , , , , , , , , , , , , , , , , , ,	19	106080	-51877	2.04
	20	101716	-51319	1.98

VI02 - Viadotto in c.a.pCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo spalle e fondazioniRR0H01D13CLVI0204001B47 di 134

VELOCIZZAZIONE LINEA SAN	GAVINO - SASSARI - OLBIA
VARIANTE DI RAIII ADII	

VI02 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalle e fondazioni	RR0H	01	D13CL	VI0204001	В	48 di 134

9 VERIFICHE STRUTTURALI DELLA FONDAZIONE SPALLA A

9.1 Sollecitazioni combinate intradosso fondazione

La tabella seguente riporta i carichi combinati agenti sul piano di fondazione (vedi figura sottostante).

combo	N	MI	Mt IsNm1	F	Ft
	[kN]	[kNm]	kNm]	[kN]	[kN]
SLE1	20216	10173	1662	5310	184
SLE2	22054	28409	2868	7561	352
SLE3	22233	28797	3018	7561	353
SLE4	22054	28485	1908	7561	233
SLE5	22233	28873	2023	7561	231
SLU1	26644	15843	2494	7168	276
SLU2	30276	39395	4208	10361	517
SLU3	30536	39957	4427	10361	518
SLU4	30276	39505	2816	10361	344
SLU5	30536	40067	2983	10361	341
SLV1	20204	30582	2133	8308	349
SLV2	19896	30774	2133	8308	349
SLV3	20204	27145	6879	7656	1130
SLV4	19896	27337	6879	7656	1130

9.2 Verifiche strutturali del plinto

La verifica dell'armatura viene eseguita con riferimento alla parte di plinto aggettante dal muro frontale della spalla.

Nella tabella sono riportate le pressioni del terreno esercitate sul plinto di fondazione nelle combinazioni prese in esame (SLE_rara, SLU e SLV), direzione longitudinale.

Si indicano i seguenti termini:

$$e_{long} = \frac{M_{long}}{N}$$

Se
$$e_{long} < B_{long} / 6$$

$$q_{max} = \frac{N}{B_{long} * B_{trasv} * \left(1 + \frac{6 * e_{long}}{B_{long}}\right)}$$

VI02 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalle e fondazioni	RR0H	01	D13CL	VI0204001	В	49 di 134

$$q_{min} = \frac{N}{B_{long} * B_{trasv} * \left(1 - \frac{6 * \epsilon_{long}}{B_{long}}\right)}$$

Se
$$e_{long} \ge B_{long} / 6$$

$$q_{min} = \frac{2 * N}{3 * u * B_{trass}}$$

$$q_{min} = \mathbf{0}$$

$$u = \frac{B_{long}}{2} - \epsilon_{long}$$

combo	e_long [m]	qmax [kPa]	qmin [kPa]
SLE1	0.50	324	158
SLE2	1.29	494	31
SLE3	1.30	500	30
SLE4	1.29	495	30
SLE5	1.30	500	29
SLU1	0.59	447	188
SLU2	1.30	682	39
SLU3	1.31	690	37
SLU4	1.30	683	38
SLU5	1.31	691	36
SLV1	1.51	490	0
SLV2	1.55	489	0
SLV3	1.34	462	19
SLV4	1.37	460	14

Lo schema di calcolo è quello di mensola, L=2.0. All'azione della pressione del terreno si sottrae quella legata al peso della fondazione, ignorando, a vantaggio di sicurezza, il contributo del peso del terreno di ricoprimento.

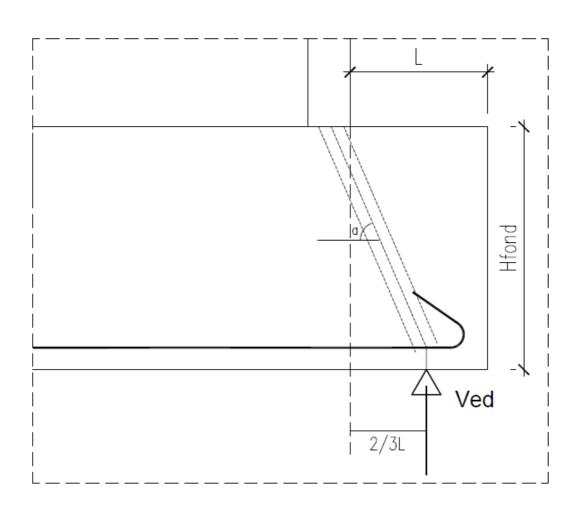
VI02 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalle e fondazioni	RR0H	01	D13CL	VI0204001	В	50 di 134

combo	Med [kNm/m]	Ved [KN/m]
SLE1	573	509
SLE2	1060	783
SLE3	1071	792
SLE4	1061	784
SLE5	1073	793
SLU1	932	734
SLU2	1462	1117
SLU3	1479	1130
SLU4	1464	1118
SLU5	1481	1132
SLV1	1209	538
SLV2	1207	532
SLV3	992	723
SLV4	988	718

I valori massimi risultano:

max	M ed [kNm/m]	V ed [KN/m]
SLE	996	820
SLU-SLV	1362	1104

9.2.1 *Verifica a flessione SLU – SLE*


Il plinto viene armato con una maglia inferiore costituita da barre φ 32 passo 15cm (longitudinale) e barre φ 26 passo 20cm (trasversale); mentre la maglia superiore è costituita da barre φ 24 passo 20cm in entrambe le direzioni.

Essendo la mensola molto tozza (luce / spessore <1), si procede alla verifica dell'armatura di flessione mediante un modello tirante puntone, schematizzando la forza sollecitante applicata a 2/3 della lunghezza della mensola del plinto.

VI02 - Viadotto in c.a.p Relazione di calcolo spalle e fondazioni

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RR0H	01	D13CL	VI0204001	В	51 di 134

tg a = (Hfond - c)/
$$(2/3L +0.2sp_{muro frontale}) = 1.12$$

a = 53.4 ° (angolo di inclinazione puntone compresso)

Verifica dell'armatura tesa

Il tiro sull'armatura vale:

$$Tslu = Ved, slu / tga = 1010 KN/m$$

$$Tsle = Ved, sle / tga = 708 KN/m$$

La tensione massima sull'armatura è (barre \phi 32 /15cm):

$$\sigma slu = Tslu / Asl = 188 Mpa$$

$$\sigma$$
sle = Tsle / Asl = 132 Mpa

VI02 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalle e fondazioni	RR0H	01	D13CL	VI0204001	В	52 di 134

La tensione sulla barra allo SLU è minore di quella di calcolo dell'acciaio (fyd = 391 MPa) pertanto la verifica è soddisfatta.

Allo SLE si procede alla verifica a fessurazione :

(secondo circ. n.617 §C.4.1.2.2.4)

i	(Becondo en e. 11.017 ge. 1.1.2.2.1)				
Commenti:	INPUT				
interasse barre	interasse	150 mm			
diametro medio barre	Φ (barre)	32 mm			
baricentro della barra dal lembo sezione	x barra	80 mm			
altezza efficace	hc,eff	200 -			
classe cls	cls C	25 MPa			
tensione max barra	σs	132 MPa			
(0.6 carichi brevi; 0.4 lunga durata)	kt	0.6 -			
(0.8 barre ad. migliorata; 1.6 liscie)	k1	0.8 -			
(0.5 per flessione; 1 trazione)	k2	0.5 -			
(fisso)	k3	3.4 -			
(fisso)	k4	0.425 -			

OUTPUT				
diff. def. armature-cls				
ε sm -ε cm 3.84E-04 -				
distanza max fessure				
s r, max 4.21E+02 mm				
ampiezza f	essure:			
wk 0.16 mm				
w_LIMITE	0.20 mm			
Sez. verificata				

Verifica del puntone di calcestruzzo

Lo sforzo nella biella compressa vale:

P slu= Ved, slu / sen a = 1517 KN/m

La resistenza della biella compressa vale

Prd = 0.4 b d fcd = 10829 KN /m > Pslu

La verifica è soddisfatta.

9.2.2 Verifica a taglio SLU

L'armatura a taglio del plinto è costituita da spille/cavallotti chiusi \(\phi \) 16 passo 20x50cm .

Resistenza dell'armatura:

$$VRds = Asw/s * fyd * 0.9d cotg \theta = 1712 KN/m$$

con

$$cotg \theta = 1$$

VI02 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalle e fondazioni	RR0H	01	D13CL	VI0204001	В	53 di 134

Resistenza della biella compressa:

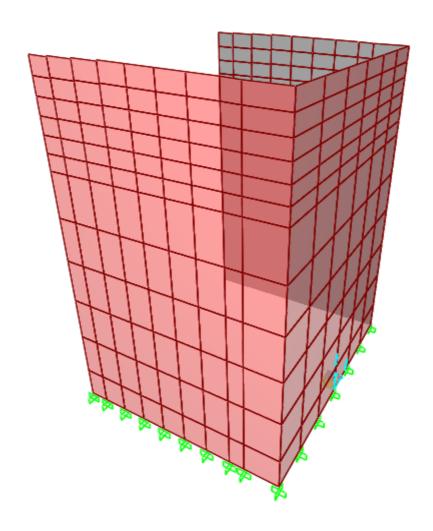
$$VRdc = 0.9 d * bw * \alpha c * f'cd * (cotg a + cotg \theta) / (1 + cotg^2 \theta) = 15428 KN/m$$

con

 $\alpha c = 1$

 $\cot \alpha = 1$

 $\cot \theta = 1$


VRd = min (VRds; VRdc) = 1712 KN/m > VEd

10 VERIFICA DEI MURI DI ELEVAZIONE SPALLA A

10.1 Modello di calcolo

Le analisi sono state condotte con il programma di calcolo agli EF SAP2000. Il modello rappresenta i muri di elevazione della spalla considerati incastrati alla base.

10.2 Carichi applicati e combinazioni

Per le azioni generali e le loro combinazioni si rimanda ai paragrafi precedenti; ai fini delle verifiche condotte in questa sezione, si esplicitano le azioni relative alle spinte del terreno che interessano le strutture di elevazione della spalla.

• Spinta statica

	γ [kN/m ³]	K ₀	H [m]	S [kN/m]
Spinta del terreno	20.0	0.384	11.8	535

• Spinta sismica

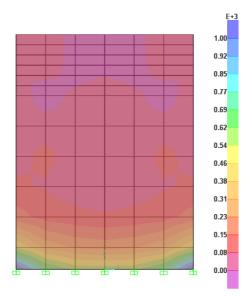
L'incremento della spinta del terreno in fase sismica viene calcolato secondo la formulazione di Wood.

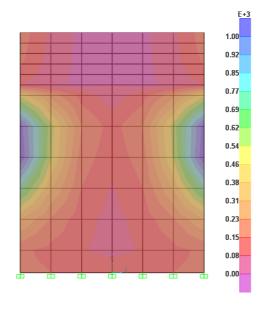
	γ [kN/m³]	a/g [-]	S	βm	H [m]	ΔSae [kN/m]
Spinta del rinterro (+)	20.0	0.057	1.0	1.0	11.8	159

• Spinta carichi permanenti

	q [kN/mq]	K ₀	H [m]	S _p [kN/m]
spinta sovraccarico sovrastruttura	20.00	0.384	11.8	91

Spinta carichi accidentali


	q [kN/mq]	K ₀	H [m]	Sa [kN/m]
Incremento spinta per carichi accidentali q1	50.0	0.384	9.5	227

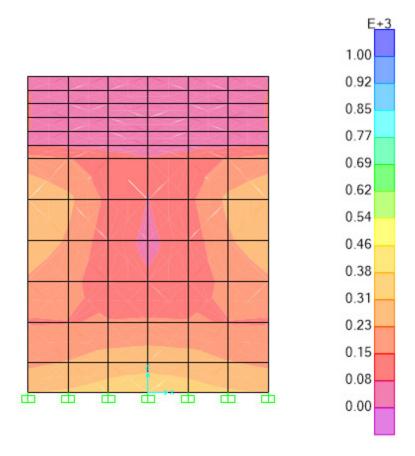

10.3 Verifica del muro frontale

Le sollecitazioni massime sono riportate nelle seguenti figure.

<u>SLU</u>

(M22 = 850kN m/m)

(M11=1000 kN m/m)



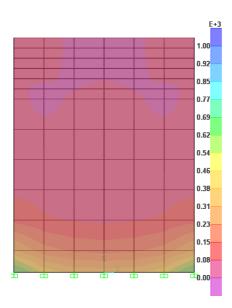
FOGLIO

57 di 134

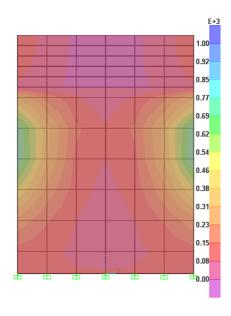
 VI02 - Viadotto in c.a.p
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.

 Relazione di calcolo spalle e fondazioni
 RR0H
 01
 D13CL
 VI0204001
 B

(Vmax = 330 kN)



VELOCIZZAZIONE LINEA SAN GAVINO - SASSARI - OLBIA


COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RR0H	01	D13CL	VI0204001	В	58 di 134

SLE

Relazione di calcolo spalle e fondazioni

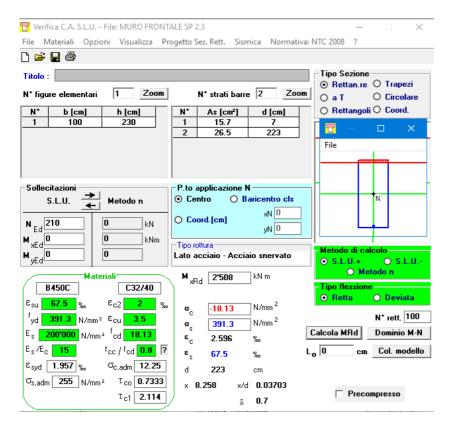
(M22=660 kN m)

(M11=720 kN m)

10.3.1 Verifica a flessione SLU- SLV

Armatura verticale

La sezione resistente presenta la seguente geometria e armatura.


- Dimensioni BxH=(100cmx230cm)
- ø 26 mm/20 cm (lato monte) + ø 20mm/20 cm (lato valle)

Le sollecitazioni più gravose sono le seguenti :

Med = 850 kN m

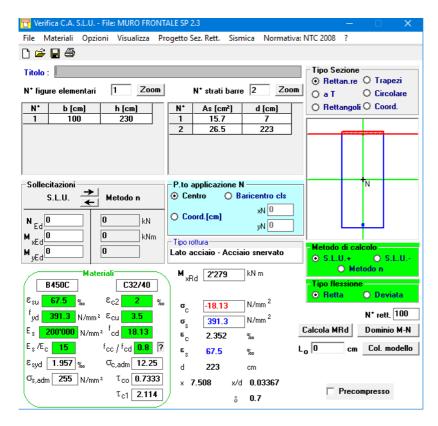
Ned = 210 kN

Il momento resistente della sezione vale:

Mrd (Ned) = 2508 KNm/m > Med

La verifica è soddisfatta

Armatura orizzontale


La sezione resistente presenta la seguente geometria e armatura.

- Dimensioni BxH=(100cmx190cm)
- ø 26 mm/20 cm (lato monte) ø 20mm/20 cm (lato valle)

Le sollecitazioni più gravose sono le seguenti :

Med = 1000 kN m

Il momento resistente della sezione vale:

Mrd = 2279 KNm/m > Med

La verifica è soddisfatta

10.3.2 Verifica a taglio SLU

Il taglio massimo agente vale :

Ved = 330 kN/m

Verifca a taglio per sezioni non armate a taglio (L	D.M. 14/01	/2008)	
Classe cls	f _{ck}	32.0	N/mm ²
coeff. parziale	γс	1.5	
resistenza di calcolo	f_{cd}	18	N/mm2
larghezza membratura resistene	b_w	1000	mm
altezza membratura resistene	Н	2300	mm
altezza utille	d	2070	mm
area della sezione	A_{TOT}	2070000	mm^2
diametro ferro longitudinale	øl	26	mm
area armatura	Α	530.9	mm^2
	strato	1	
	passo	200	mm
	n _f /strato	5	
area armatura totale	Al	2655	mm^2
percentuale di armatura	rl	0.0013	
sforzo assiale dovuto ai carichi o precompressione	N	0	N
	s_cp	0.00	N/mm ²
	k	1.31	
	V_{min}	0.30	
	V_{Rd1}	521	kN
	V_{Rd2}	615	kN
taglio resistente	V_{Rd}	615	kN

VRd = 615 kN/m > VEd

La verifica è soddisfatta

10.3.3 Verifica fessurazione SLE

Per le opere sotto binario deve risultare che l'ampiezza massima delle fessure sia inferiore a (strutture a contatto con il terreno):

w1 = 0.20 mm.

Si procede al calcolo dell'apertura delle fessure prendendo in esame la combinazione SLE che fornisce la massima tensione di trazione sull'armatura

Armatura verticale (ø 26mm/20 cm)

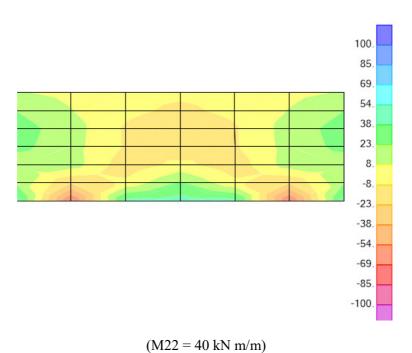
 $\sigma s = 97 \text{ MPa}$

note	INPUT		
altezza sezione	h sez	2300	mm
copriferro	copriferro	70	mm
diametro medio barre	Φ (barre)	26	mm
numero barre al m	n.barre	5	-
classe cls	cls C	32	MPa
posizione asse neutro (Da programma VCA SLU)	x AN	430	mm
tensione max barre (Da programma VCA SLU)	σs	97	MPa
(0.6 carichi brevi; 0.4 lunga durata)	kt	0.6	-
(0.8 barre ad. migliorata; 1.6 liscie)	k1	0.8	-
(0.5 per flessione; 1 trazione)	k2	0.5	-
	k3	3.4	-
	k4	0.425	-

OUTPUT				
diff. def. armature-cls				
ε sm -ε cm 2.83E-04 -				
distanza max fessure				
s r, max	4.85E+02 mm			
ampiezza f	fessure:			
wk 0.14 mm				
LIMITE	0.20 mm			
Se	z. verificata			

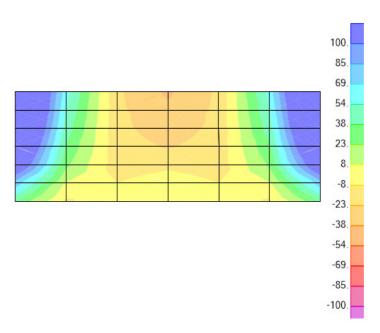
Armatura orizzontale (ø 26mm/20 cm)

 $\sigma s = 129 \text{ MPa}$

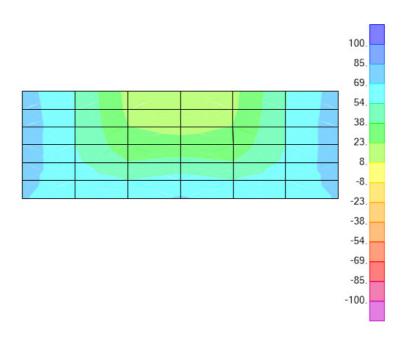

note		INPUT	
altezza sezione	h sez	2300	mm
copriferro	copriferro	70	mm
diametro medio barre	Φ (barre)	26	mm
numero barre al m	n.barre	5	-
classe cls	cls C	32	MPa
posizione asse neutro (Da programma VCA SLU)	x AN	430	mm
tensione max barre (Da programma VCA SLU)	σs	129	MPa
(0.6 carichi brevi; 0.4 lunga durata)	kt	0.6	-
(0.8 barre ad. migliorata; 1.6 liscie)	k1	0.8	-
(0.5 per flessione; 1 trazione)	k2	0.5	-
	k3	3.4	-
	k4	0.425	-

	OUTPUT				
diff. def. armature-cls					
ε sm -ε cm 3.76E-04 -					
distanza max fessure					
s r, max	4.85E+02 mm				
ampiezza fessure:					
wk	0.18 mm				
LIMITE	0.20 mm				
Se	ez. verificata				

10.4 Verifica del paraghiaia


Le sollecitazioni massime sono riportate nelle seguenti figure.

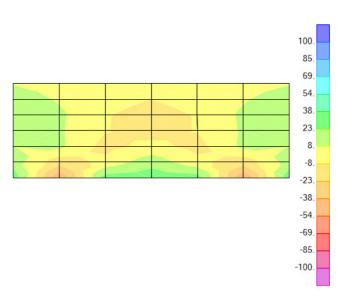
<u>SLU</u>



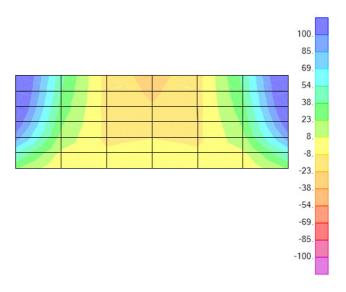
VI02 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalle e fondazioni	RR0H	01	D13CL	VI0204001	В	64 di 134

(M11=130 kN m/m)

(Vmax = 70 kN/m)



VELOCIZZAZIONE LINEA SAN GAVINO - SASSARI - OLBIA


COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
RR0H	01	D13CL	VI0204001	В	65 di 134	

SLE

Relazione di calcolo spalle e fondazioni

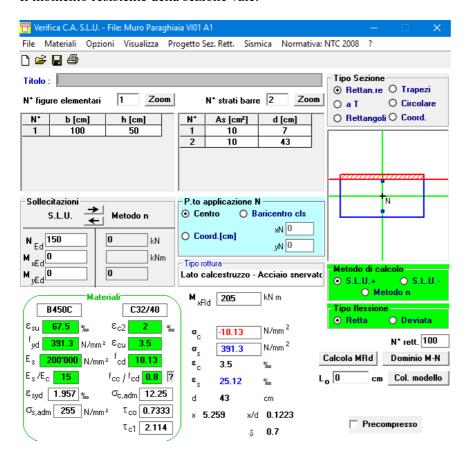
(M22=30 kN m/m)

(M11=110 kN m/m)

10.4.1 Verifica a flessione SLU

Armatura verticale

La sezione resistente presenta la seguente geometria e armatura.


- Dimensioni BxH=(100cmx50cm)
- ø 16 mm/20 cm (lato monte) e ø 16 mm/20 cm (lato valle)

Le sollecitazioni più gravose sono le seguenti :

Med = 40 kN m/m

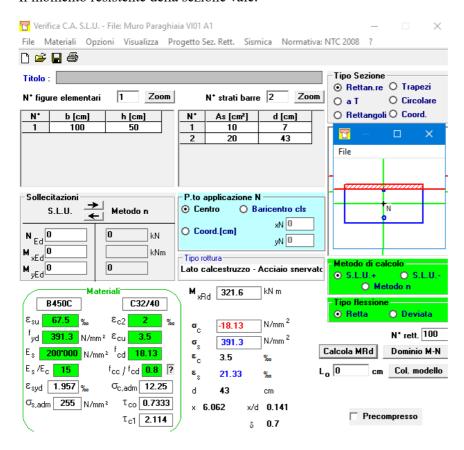
Ned = 150 kN/m

Il momento resistente della sezione vale:

Mrd (Ned) = 205 KNm/m > Med

La verifica è soddisfatta

Armatura orizzontale


La sezione resistente presenta la seguente geometria e armatura.

- Dimensioni BxH = (100 cmx 50 cm)
- ø 16mm/10 cm (lato monte) ø 16 mm/20 cm

Le sollecitazioni più gravose sono le seguenti :

Med = 130 kN m/m

Il momento resistente della sezione vale:

Mrd (Ned) = 321 KNm/m > Med

La verifica è soddisfatta

10.4.2 Verifica a taglio SLU

Il taglio massimo agente vale:

Ved = 70 kN/m

Verifica a taglio per sezioni non armate a taglio (D.M. 14/01/2008)

Ventica a taglio per sezioni non armate a taglio (D.	VI. 14/U1/Z	008)	
Clas se cls	f _{ck}	32.0	N/mm ²
coeff. parziale	•c	1.5	
resistenza di calcolo	f_{cd}	18	N/mm2
larghezza membratura resistene	b_w	1000	mm
altezza membratura resistene	Н	500	mm
altezza utille	d	450	mm
area della sezione	A_{TOT}	450000	mm^2
diametro ferro longitudinale	øl	20	mm
area armatura	Α	314.2	mm^2
	strato	1	
	passo	100	mm
	n _f /strato	10	
area armatura totale	Al	3142	mm^2
percentuale di armatura	rl	0.0070	
sforzo assiale dovuto ai carichi o precompressione	N	0	N
	s_cp	0.00	N/mm ²
	k	1.67	
	v_{\min}	0.43	
	V_{Rd1}	253	kN
	V_{Rd2}	192	kN
taglio resistente	V_{Rd}	253	kN

Vrd>Ved La verifica è soddisfatta.

10.4.3 Verifica fessurazione SLE

Per le opere sotto binario deve risultare in combinazione di carico SLE rara che l'ampiezza massima delle fessure sia inferiore a (strutture a contatto con il terreno):

w1 = 0.20 mm.

Si procede al calcolo dell'apertura delle fessure prendendo in esame la combinazione SLE che fornisce la massima tensione di trazione sull'armatura.

Armatura verticale (ø 16mm/20 cm)

 $\sigma s = 39 \text{ MPa}$

note	INPUT		
altezza sezione	h sez	500	mm
copriferro	copriferro	70	mm
diametro medio barre	Φ (barre)	16	mm
numero barre al m	n.barre	5	-
classe cls	cls C	32	MPa
posizione asse neutro (Da programma VCA SLU)	x AN	128	mm
tensione max barre (Da programma VCA SLU)	σs	39	MPa
(0.6 carichi brevi; 0.4 lunga durata)	kt	0.6	-
(0.8 barre ad. migliorata; 1.6 liscie)	k1	0.8	-
(0.5 per flessione; 1 trazione)	k2	0.5	-
	k3	3.4	-
	k4	0.425	-

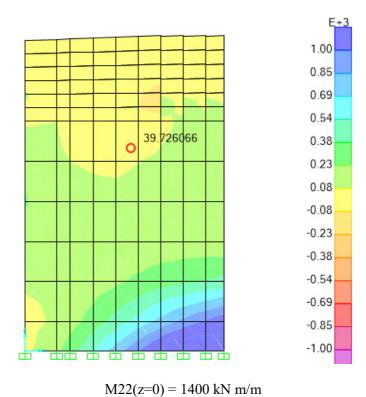
	OLITALIT		
	OUTPUT		
diff. def. armature-cls			
ε sm -ε cm	1.14E-04 -		
distanza max fessure			
s r, max	5.46E+02 mm		
ampiezza fessure:			
wk	0.062 mm		
LIMITE	0.20 mm		
Se	z. verificata		

Armatura orizzontale (ø 16mm/10 cm)

 $\sigma s = 143 \text{ MPa}$

note	INPUT	
altezza sezione	h sez	500 mm
copriferro	copriferro	70 mm
diametro medio barre	Φ (barre)	16 mm
numero barre al m	n.barre	10 -
classe cls	cls C	32 MPa
posizione asse neutro (Da programma VCA SLU)	x AN	128 mm
tensione max barre (Da programma VCA SLU)	σs	143 MPa
(0.6 carichi brevi; 0.4 lunga durata)	kt	0.6 -
(0.8 barre ad. migliorata; 1.6 liscie)	k1	0.8 -
(0.5 per flessione; 1 trazione)	k2	0.5 -
	k3	3.4 -
	k4	0.425 -

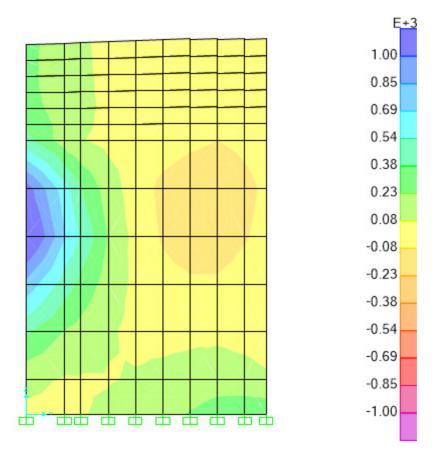
	OUTPUT			
diff. def. armature-cls				
ε sm -ε cn	r 4.17E-04 -			
distanza max fessure				
s r, max	3.79E+02 mm			
ampiezza fessure:				
wk	0.158 mm			
LIMITE	0.20 mm			
Sez. verificata				



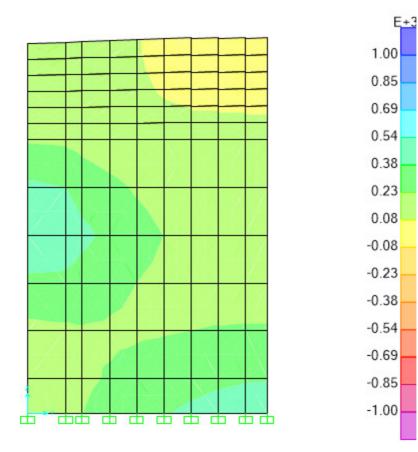
VI02 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalle e fondazioni	RR0H	01	D13CL	VI0204001	В	71 di 134

10.5 Verifica del muro andatore

Le sollecitazioni massime sono riportate nelle seguenti figure

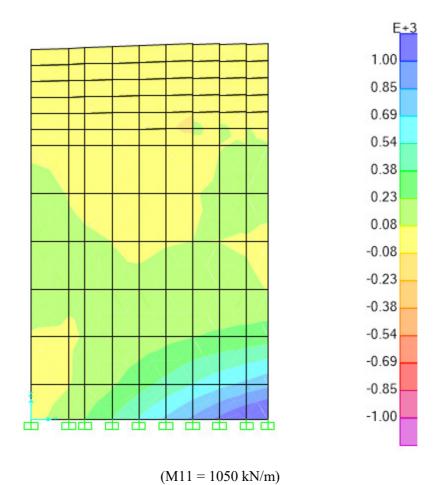

<u>SLU</u>

M22(z=2m) = 500 kN m/m


VI02 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalle e fondazioni	RR0H	01	D13CL	VI0204001	В	72 di 134

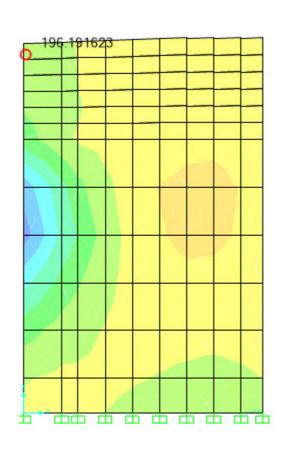
(M11 = 1100 kN m/m)

VI02 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalle e fondazioni	RR0H	01	D13CL	VI0204001	В	73 di 134


(Vmax = 450 kN/m)

FOGLIO

74 di 134


SLE



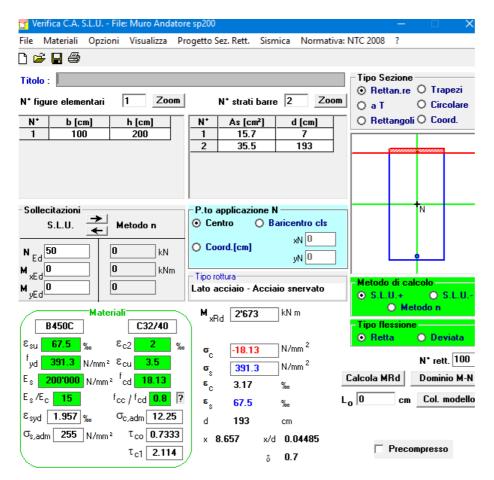
VI02 - Viadotto in c.a.pCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo spalle e fondazioniRR0H01D13CLVI0204001B75 di 134

(M22 = 620 kN/m)

10.5.1 Verifica a flessione SLU

Armatura verticale – muro andatore inferiore (z=0)

La sezione resistente presenta la seguente geometria e armatura.


- Dimensioni BxH=(100cmx200cm) base muro
- ø 26 mm/15 cm (lato monte) ø 20mm/20 cm

Le sollecitazioni più gravose sono le seguenti :

Med = 1400 kN m/m

Ned = 50 kN/m/m

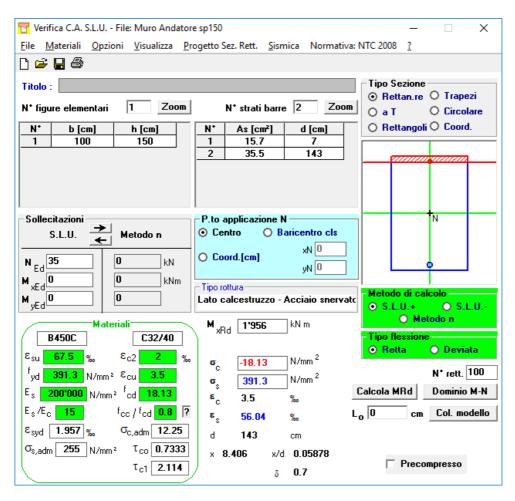
Il momento resistente della sezione vale:

Mrd (Ned) = 2673 KNm/m > Med

La verifica è soddisfatta

Armatura verticale – muro andatore superiore (z=2m)

La sezione resistente presenta la seguente geometria e armatura.


- Dimensioni BxH=(100cmx150cm)
- ø 26 mm/15 cm (lato monte) ø 20mm/20 cm

Le sollecitazioni più gravose sono le seguenti:

Med = 500 kN m/m

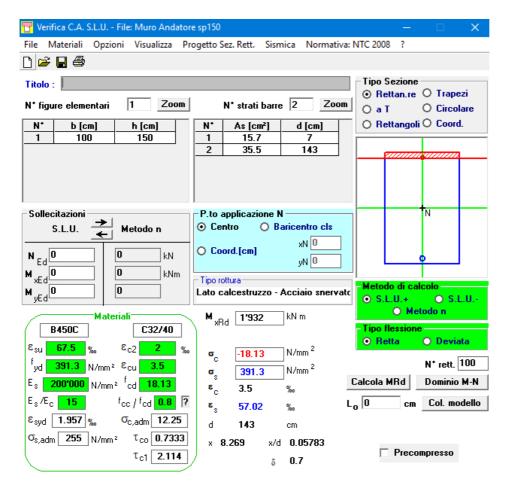
Ned = 35 kN/m/m

Il momento resistente della sezione vale:

Mrd (Ned) = 1956 KNm/m > Med

La verifica è soddisfatta

Armatura orizzontale


La sezione resistente presenta la seguente geometria e armatura.

- Dimensioni BxH=(100cmx150cm) sezione a mezz'altezza del muro
- ø 26 mm/15 cm (lato monte) ø 20mm/20 cm

Le sollecitazioni più gravose sono le seguenti :

Med = 1100 kN m/m

Il momento resistente della sezione vale:

Mrd (Ned) = 1932 KNm/m > Med

La verifica è soddisfatta

10.5.2 Verifica a taglio SLU

Il taglio massimo agente vale:

Ved=410 kN/m

Verifica a taglio per sezioni non armate a taglio (D.M. 14/01	1/2008)	
Classe cls	f_{ck}	32.0	N/mm ²
coeff. parziale	γс	1.5	
resistenza di calcolo	f_{cd}	18	N/mm2
larghezza membratura resistene	b _w	1000	mm
altezza membratura resistene	Н	1500	mm
altezza utille	d	1350	mm
area della sezione	A_{TOT}	1350000	mm^2
diametro ferro longitudinale	øl	26	mm
area armatura	Α	530.9	mm^2
	strato	1	
	passo	150	mm
	n _f /strato	7	
area armatura totale	Al	3540	mm^2
percentuale di armatura	rl	0.0026	
sforzo assiale dovuto ai carichi o precompressione	N	0	N
	s_{cp}	0.00	N/mm ²
	k	1.38	
	V_{min}	0.32	
	V_{Rd1}	456	kN
	V_{Rd2}	436	kN
taglio resistente	V_{Rd}	456	kN

Vrd>Ved Verifica soddisfatta

10.5.3 Verifica fessurazione SLE

Per le opere sotto binario deve risultare in combinazione di carico SLE rara che l'ampiezza massima delle fessure sia inferiore a (strutture a contatto con il terreno):

w1 = 0.20 mm.

Si procede al calcolo dell'apertura delle fessure prendendo in esame la combinazione SLE che fornisce la massima tensione di trazione sull'armatura.

Armatura verticale (ø 26 mm/15 cm)

 $\sigma s = 136 \text{ MPa}$

note	INPUT		
altezza sezione	h sez	2000	mm
copriferro	copriferro	70	mm
diametro medio barre	Φ (barre)	26	mm
numero barre al m	n.barre	6.67	-
classe cls	cls C	32	MPa
posizione asse neutro (Da programma VCA SLU)	x AN	434	mm
tensione max barre (Da programma VCA SLU)	σs	136	MPa
(0.6 carichi brevi; 0.4 lunga durata)	kt	0.6	-
(0.8 barre ad. migliorata; 1.6 liscie)	k1	0.8	-
(0.5 per flessione; 1 trazione)	k2	0.5	-
	k3	3.4	-
	k4	0.425	-

OUTPUT							
diff. def. armature-cls ε sm -ε cm 3.96E-04 -							
							distanza max fessure s r, max 4.12E+02 mm
ampiezza f	essure:						
wk	0.163 mm						
LIMITE 0.20 mm							
Se	z. verificata						

Armatura orizzontale (ø 26 mm/15 cm)

 $\sigma s = 163 \text{ MPa}$

note	INPUT				
altezza sezione	h sez	sez 1500 mm			
copriferro	copriferro	70 mı	m		
diametro medio barre	Φ (barre)	26 mi	m		
numero barre al m	n.barre	6.67 -			
classe cls	cls C	32 MI	Pa		
posizione asse neutro (Da programma VCA SLU)	x AN	325 mi	m		
tensione max barre (Da programma VCA SLU)	σs	163 MI	Pa		
(0.6 carichi brevi; 0.4 lunga durata)	kt	0.6 -			
(0.8 barre ad. migliorata; 1.6 liscie)	k1	0.8 -			
(0.5 per flessione; 1 trazione)	k2	0.5 -			
	k3	3.4 -			
	k4	0.425 -			

	OUTPUT							
diff. def. armature-cls ε sm -ε cm 4.75E-04 - distanza max fessure s r, max 4.12E+02 mm								
							ampiezza	fessure:
							wk	0.196 mm
							LIMITE	0.20 mm
Sez. verificata								

VI02 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalle e fondazioni	RR0H	01	D13CL	VI0204001	В	82 di 134

11 ANALISI GLOBALE SPALLA B

11.1 Coefficienti di spinta del terreno

11.1.1 Fase statica

La spalla in favore di sicurezza viene considerata quale rigida ai fini della valutazione della spinta orizzontale della terra. La forza statica è stata dunque valutata attraverso il coefficiente di spinta a riposo calcolata con la relazione:

$$K_0=1-sen(\varphi')$$

Nel caso in esame tale coefficiente vale: $K_0=1-sen(38^\circ)=0.384$.

La risultante della spinta è posta ad 1/3 dal basso rispetto all'altezza totale H.

11.1.2 Fase sismica

La sovra spinta sismica del terreno a tergo della spalla viene calcolata secondo la teoria di Wood:

$$\Delta S = \frac{a_s}{g} \cdot S_s \cdot S_T \cdot \gamma_T H^2$$

essa agisce alla quota 1/2 dell'altezza della spalla (H)

Il metodo prevede l'individuazione di un coefficiente sismico orizzontale k_h ed uno verticale k_v , valutati secondo le seguenti espressioni:

$$k_h\!\!=\!\!\beta_m\!\!\cdot\!\!S_T\!\!\cdot\!\!S_S\!\!\cdot\!\!a_g\!/g$$

$$k_v=0.5 \cdot k_h$$

Nel caso in esame si assume $\beta_m = 1$ (strutture rigide).

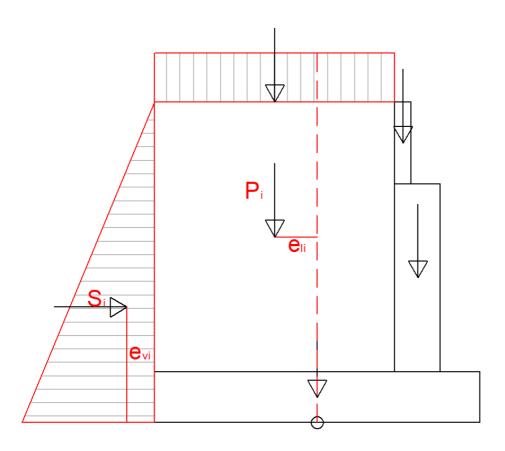
Sulla base delle NTC08, il valore dell'accelerazione al suolo amplificata dai terreni presenti al di sotto della fondazione risulta pari a:

$$PGA = 0.057 g$$

Risulta dunque:

$$k_h = \beta_m * PGA/g = \beta_m * S_T * PGA/g = 1 * 1.0 * 0.057 = 0.57$$

$$k_v = \pm 0.028$$



11.2 Carichi da spalla

Si adotta la seguente simbologia:

dimensione dell'elemento in direzione longitudinale [m]dimensione dell'elemento in direzione trasversale b_t [m]h altezza dell'elemento [m] V/A volume/area dell'elemento $[m^3 m^2]$ P peso dell'elemento/sovraccarico [KN] e_l e_t e_v eccentricità del carico rispetto al baricentro della fondazione rispettivamente longitudinale, trasversale e verticale [m]

• m_l, m_t contributo del carico in termini di momento longitudinale e trasversale [kNm]

VI02 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalle e fondazioni	RR0H	01	D13CL	VI0204001	В	84 di 134

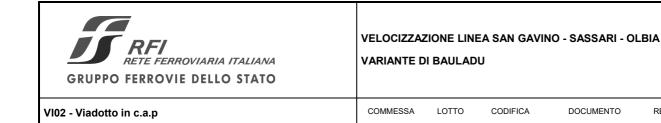
11.2.1 Peso proprio della struttura

ELEMENTI	b _l [m]	b _t [m]	h [m]	V [m³]	P [kN]	e _i [m]	et [m]	e _v [m]	mı [kN m]	mt [kN m]
Muro Paraghiaia	0.50	8.60	2.90	12.5	312	-0.10	0.00	9.96	-31	0
Muro frontale	1.90	8.60	7.00	114.4	2860	1.47	0.00	5.50	4203	0
Muro andatore SX	4.85	1.50	9.70	70.6	1764	-1.90	-4.00	6.85	-3352	-7057
Muro andatore DX	4.95	1.50	9.70	72.0	1801	-1.90	4.00	6.85	-3421	7202
Fondazione	8.75	9.60	2.00	168.0	4200	0.00	0.00	1.00	0	0

11.2.2 Peso proprio del rinterro

	b _l [m]	b _t [m]	h [m]	V [m ³]	P [kN]	e _i [m]	e _t [m]	e _v [m]	m _i [kN m]	mt [kN m]
Rinterro	4.85	5.60	9.70	263.5	5269	-1.90	0.00	6.85	-10011	0

11.2.3 Peso proprio dei sovraccarichi permanenti


Per il peso della massicciata ferroviaria (comprensiva di armamento) si assume uno spessore equivalente di 0.8m e peso per unità di volume pari a 20 KN/m3.

	bl[m]	bt [m]	h [m]	qp[kN/m3]	P [kN]	el [m]	et [m]	ev [m]	ml [kN m]
sovrastruttura ferroviaria	4.85	5.60	9.70	263.5	5269	-1.90	0.00	6.85	-10011

11.2.4 Sovraccarichi accidentali

Si assume un carico da traffico pari a 50 kPa, applicato uniformemente su una striscia di terreno larga 2.75 min asse al binario.

	b _l [m]	b _t [m]	h [m]	q _v [kN/m2]	P [kN]	e _i [m]	e _t [m]	e _v [m]	mı [kN m]	mt [kN m]
Accidentali	4.85	2.75	-	50.00	667	-1.90	0.00	11.60	-1267	0

11.2.5 Spinta permanente a tergo della spalla

Relazione di calcolo spalle e fondazioni

La spinta del terreno F_1 [kN] presenta una distribuzione triangolare sull'altezza H del paramento di larghezza b, con risultante orizzontale espressa dalla formula F_1 = 0.5 k_0 γ_{terr} H² B, applicata ad una quota pari a H/3.

RR0H

01

D13CL

REV.

В

VI0204001

FOGLIO

85 di 134

γ [kN/m3]	φ' [°]	K0	H [m]	b [m]	F1 [kN]	ev [m]	ml [kN m]
20.0	38.00	0.384	11.70	8.60	4525	3.90	17646

11.2.6 Spinta del sovraccarico permanente

La spinta del sovraccarico permanente F_2 [kN] presenta una distribuzione rettangolare sull'altezza H del paramento di larghezza b, con risultante orizzontale espressa dalla formula F_2 = k_0 q_p B H, applicata ad una quota pari a H/2.

q [kN/mq]	K ₀	H [m]	b [m]	F2 [kN]	e _v [m]	mı [kN m]
16.00	0.384	11.70	8.60	619	5.85	3620

11.2.7 Spinta del sovraccarico accidentale

La spinta del sovraccarico accidentale F_{qa} [kN] presenta una distribuzione rettangolare sull'altezza H del paramento di larghezza b, con risultante orizzontale espressa dalla formula F_{qa} = k_0 q_a B H, applicata ad una quota pari a H/2.

q [kN/mq]	K ₀	H [m]	b [m]	Fqa [kN]	e _v [m]	m _i [kN m]
50.00	0.384	11.70	8.60	1934	5.85	11312

11.2.8 Azioni sismiche

Incremento della spinta del terreno in fase sismica

L'incremento della spinta del terreno in fase sismica secondo la formulazione di Wood vale:

a/g	S	βm	γ [kN/m ³]	H [m]	b [m]	ΔE _d [kN]	e _v [m]	m _i [kN m]
0.057	1	1.00	20.0	11.70	8.6	1342	5.85	7851

VI02 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalle e fondazioni	RR0H	01	D13CL	VI0204001	В	86 di 134

Forza inerziale delle masse

Nella tabella che segue si riportano le forze d'inerzia dei vari elementi che costituiscono la struttura.

		Direzione orizzontale			Direzione ve	erticale	
	P [kN]	E.I. [kN]	e _v [m]	m _i [kN m]	E.I. [kN]	e _i [m]	mı [kN m]
Muro Paraghiaia	312	18	9.96	177	9	-0.10	-1
Muro frontale	2655	151	5.25	795	76	1.47	111
Muro andatore SX	1782	102	6.70	681	51	-2.00	-102
Muro andatore DX	1782	102	6.70	681	51	-2.00	-102
Fondazione	4200	239	1.00	239	120	0.00	0
Terreno di rinterro	5269	300	6.85	2686	150	-1.90	-381

11.2.9 Scarichi sugli appoggi

Gli scarichi dell'impalcato sugli appoggi in fase statica ed in fase sismica allo SLV sono desunti dall'analisi strutturale dell'impalcato, a cui si rimanda per maggiori dettagli.

11.3 Azioni agenti all'intradosso della fondazione

La tabella riassume i carichi elementari riportati al baricentro della fondazione.

 VI02 - Viadotto in c.a.p
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 Relazione di calcolo spalle e fondazioni
 RR0H
 01
 D13CL
 VI0204001
 B
 87 di 134

	N [kN]	MI [kNm]	Mt [kNm]	FI [kN]	Ft [kN]	
Peso proprio	10936	-2601	146	0	0	
Peso rinterro	5269	-10011	0	0	0	
sovrastruttura ferroviaria	574	-1080	0	0	0	CA
peso accidentali traffico	667	-1267	0	0	0	STATICA
Spinta terreno (K0)	0	17646	0	4525	0	ST,
Spinta sovraccarico sovrastruttura (K0)	0	3620	0	619	0	
Spinta acc. Traffico (K0)	0	11312	0	1934	0	
Incremento spinta sismica terreno	0	7851	0	1342	0	-
Effetti inerziali struttura long.	0	5258	0	912	0	C
Effetti inerziali struttura trasv.	0	0	5258	0	912	SISMICA
Effetti inerziali verticali (+)	456	-474	0	0	0	S
G1	1505	2408	0	0	0	
G2	1114	1783	-1	0	0	
LM 71 gruppo 1	1838	-1096	1388	-454	242	TO
SW/2 gruppo 1	2017	-449	1538	-413	243	.cA
LM 71 gruppo 3	1838	-5132	642	-907	123	PAI
SW/2 gruppo 3	2017	-4115	765	-825	121	∑
Resistenza parassita vincoli	0	2530	0	284	0	DA
Vento	0	0	1309	0	184	AZIONI DA IMPALCATO
Sisma long	0	1329	0	149	0	AZI
Sisma trasv	0	0	664	0	75	
Sisma vert	24	38	0	0	0	

VI02 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalle e fondazioni	RR0H	01	D13CL	VI0204001	В	88 di 134

11.3.1 Coefficienti di combinazione

AZIONI DA SPALLA

	Peso proprio	Peso rinterro	sovrastruttura ferroviaria	peso accidentali traffico	Spinta terreno (K0)	Spinta sovraccarico sovrastruttura (K0)	Spinta acc. Traffico (K0)	Incremento spinta sismica terreno	Effetti inerziali struttura long.	Effetti inerziali struttura trasv.	Effetti inerziali verticali (+)
SLE1	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	0.00	0.00	0.00
SLE2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	0.00	0.00
SLE3	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	0.00	0.00
SLE4	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	0.00	0.00
SLE5	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	0.00	0.00
SLU1	1.35	1.35	1.50	0.00	1.35	1.35	0.00	0.00	0.00	0.00	0.00
SLU2	1.35	1.35	1.50	1.45	1.35	1.35	1.45	0.00	0.00	0.00	0.00
SLU3	1.35	1.35	1.50	1.45	1.35	1.35	1.45	0.00	0.00	0.00	0.00
SLU4	1.35	1.35	1.50	1.45	1.35	1.35	1.45	0.00	0.00	0.00	0.00
SLU5	1.35	1.35	1.50	1.45	1.35	1.35	1.45	0.00	0.00	0.00	0.00
SLV1	1.00	1.00	1.00	0.20	1.00	1.00	0.20	1.00	1.00	0.30	0.30
SLV2	1.00	1.00	1.00	0.20	1.00	1.00	0.20	1.00	1.00	0.30	-0.30
SLV3	1.00	1.00	1.00	0.20	1.00	1.00	0.20	1.00	0.30	1.00	0.30
SLV4	1.00	1.00	1.00	0.20	1.00	1.00	0.20	1.00	0.30	1.00	-0.30

 VI02 - Viadotto in c.a.p
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 Relazione di calcolo spalle e fondazioni
 RR0H
 01
 D13CL
 VI0204001
 B
 89 di 134

AZIONI DA IMPALCATO

				-	1210111		LCATO				
	G1	62	LM 71 gruppo 1	SW/2 gruppo 1	LM 71 gruppo 3	SW/2 gruppo 3	Resistenza parassita vincoli	Vento	Sisma long	Sisma trasv	Sisma vert
SLE1	1.00	1.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00
SLE2	1.00	1.00	1.00	0.00	0.00	0.00	1.00	0.60	0.00	0.00	0.00
SLE3	1.00	1.00	0.00	1.00	0.00	0.00	1.00	0.60	0.00	0.00	0.00
SLE4	1.00	1.00	0.00	0.00	1.00	0.00	1.00	0.60	0.00	0.00	0.00
SLE5	1.00	1.00	0.00	0.00	0.00	1.00	1.00	0.60	0.00	0.00	0.00
SLU1	1.35	1.50	0.00	0.00	0.00	0.00	0.00	1.50	0.00	0.00	0.00
SLU2	1.35	1.50	1.45	0.00	0.00	0.00	1.20	0.90	0.00	0.00	0.00
SLU3	1.35	1.50	0.00	1.45	0.00	0.00	1.20	0.90	0.00	0.00	0.00
SLU4	1.35	1.50	0.00	0.00	1.45	0.00	1.20	0.90	0.00	0.00	0.00
SLU5	1.35	1.50	0.00	0.00	0.00	1.45	1.20	0.90	0.00	0.00	0.00
SLV1	1.00	1.00	0.00	0.00	0.20	0.00	1.00	0.00	1.00	0.30	0.30
SLV2	1.00	1.00	0.00	0.00	0.20	0.00	1.00	0.00	1.00	0.30	-0.30
SLV3	1.00	1.00	0.20	0.00	0.00	0.00	1.00	0.00	0.30	1.00	0.30
SLV4	1.00	1.00	0.20	0.00	0.00	0.00	1.00	0.00	0.30	1.00	-0.30

VI02 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalle e fondazioni	RR0H	01	D13CL	VI0204001	В	90 di 134

11.3.2 Sollecitazioni combinate al baricentro della fondazione (intradosso)

	N	MI	Mt	FI	Ft
	[kN]	[kNm]	[kNm]	[kN]	[kN]
SLE1	20065	10498	1454	5143	184
SLE2	21903	23243	2318	6908	352
SLE3	22082	23891	2468	6948	353
SLE4	21903	19208	1572	6454	233
SLE5	22082	20224	1696	6536	231
SLU1	26441	15988	2159	6944	276
SLU2	30073	31999	3386	9431	517
SLU3	30333	32938	3604	9490	518
SLU4	30073	26148	2305	8773	344
SLU5	30333	27621	2483	8892	341
SLV1	20043	29584	2050	8036	321
SLV2	19756	29846	2050	8036	321
SLV3	20043	25781	6345	7384	1035
SLV4	19756	26042	6345	7384	1035

VI02 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalle e fondazioni	RR0H	01	D13CL	VI0204001	В	91 di 134

12 VERIFICHE GEOTECNICHE SPALLA B

12.1 Sollecitazioni di calcolo

La tabella seguente riassume le sollecitazioni combinate all'intradosso della fondazione e le dimensioni "efficaci" della fondazione.

	N	MI	Mt	FI	Ft	B'	L'
	[kN]	[kNm]	[kNm]	[kN]	[kN]	[m]	[m]
SLU1	26441	15988	2159	6944	276	7,54	9,44
SLU2	30073	31999	3386	9431	517	7,54	9,44
SLU3	30333	32938	3604	9490	518	7,54	9,44
SLU4	30073	26148	2305	8773	344	7,54	9,44
SLU5	30333	27621	2483	8892	341	7,54	9,44
SLV1	20043	29584	2050	8036	321	7,54	9,44
SLV2	19756	29846	2050	8036	321	7,54	9,44
SLV3	20043	25781	6345	7384	1035	7,54	9,44
SLV4	19756	26042	6345	7384	1035	7,54	9,44

Le verifiche sono state condotte secondo l'approccio 2 (A1-M1-R3), a cui corrispondono i seguenti fattori di sicurezza sulle resistenza e sulle caratteristiche del terreno di fondazione:

(R3)	Capacità portante	Scorrimento
γr	2.3	1.1

Parametri geotecnici (M1)	
c (MPa)	0
φ (°)	63

12.2 Verifica a capacità portante

La verifica a capacità portante è definita dalla relazione:

$$q_{lim}\!/\gamma_r\,\geq q_{es}$$

Il valore del carico limite del terreno di fondazione è stato determinato con la formula di Terzaghi, opportunamente modificata tramite fattori correttivi:

$$q_{lim} = c \ N_c s_c i_c d_c b_c g_c z_c + q \ N_q s_q i_q d_q b_q g_q z_q + N_\gamma \gamma \ (B'/2) \ s_\gamma i_\gamma d_\gamma b_\gamma g_\gamma z_\gamma$$

VI02 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalle e fondazioni	RR0H	01	D13CL	VI0204001	В	92 di 134

c' = coesione efficace;

 γ = peso per unità di volume del terreno di fondazione;

B' = larghezza fondazione equivalente con carico centrato;

 $N_c N_q N_\gamma$ = Fattori di capacità portante;

 $s_c s_q s_\gamma = fattori di forma;$

 $i_c i_q i_\gamma$ = fattori di inclinazione del carico;

 $d_c d_q d_\gamma$ = fattori di profondità del piano d'appoggio;

 $b_c b_q b_{\gamma}$ = fattori di inclinazione base della fondazione;

 $g_c g_q g_{\gamma}$ = fattori di inclinazione del piano di campagna;

 $z_c z_q z_\gamma$ = fattori in fase sismica (Paolucci-Pecker 1977).

La pressione massima agente è stata determinata come segue:

$$q_{es} = N/B'L'$$

N = azione normale alla fondazione

B', L' = dimensioni della fondazione equivalente con carico centrato: B'=B-2e_{trasv}, L'=L-2e_{long}.

La tabella seguente esplicita i parametri impiegati per il calcolo della capacità portante della fondazione.

	q	Nq						γ	Nγ					
	[kPa]	[kPa]	s q	i q	d q	b q	g q	[kN/m3]	[kPa]	sγ	iγ	dγ	bγ	дγ
SLU1	48,00	8261	2,39	0,62	1,01	1,00	1,00	24,00	32430	2,39	0,46	1,00	1,00	1,00
SLU2	48,00	8261	2,39	0,56	1,01	1,00	1,00	24,00	32430	2,39	0,38	1,00	1,00	1,00
SLU3	48,00	8261	2,39	0,56	1,01	1,00	1,00	24,00	32430	2,39	0,38	1,00	1,00	1,00
SLU4	48,00	8261	2,39	0,58	1,01	1,00	1,00	24,00	32430	2,39	0,41	1,00	1,00	1,00
SLU5	48,00	8261	2,39	0,58	1,01	1,00	1,00	24,00	32430	2,39	0,41	1,00	1,00	1,00
SLV1	48,00	8261	2,39	0,45	1,01	1,00	1,00	24,00	32430	2,39	0,27	1,00	1,00	1,00
SLV2	48,00	8261	2,39	0,44	1,01	1,00	1,00	24,00	32430	2,39	0,26	1,00	1,00	1,00
SLV3	48,00	8261	2,39	0,49	1,01	1,00	1,00	24,00	32430	2,39	0,30	1,00	1,00	1,00
SLV4	48,00	8261	2,39	0,48	1,01	1,00	1,00	24,00	32430	2,39	0,30	1,00	1,00	1,00

VI02 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalle e fondazioni	RR0H	01	D13CL	VI0204001	В	93 di 134

A vantaggio di sicurezza si trascura il contributo del terreno di ricoprimento, l'affondamento della fondazione è dunque pari al suo spessore.

Si assume una quota di falda posta a -7m dal piano di fondazione.

La tabella riassume i risultati delle verifiche:

		Capacità portante					
	qrd [kPa]	qed [kPa]	FS =qrd/qed [-]				
SLU1	1406546	372	>100				
SLU2	1186169	423	>100				
SLU3	1189218	426	>100				
SLU4	1278407	423	>100				
SLU5	1272369	426	>100				
SLV1	833895	282	>100				
SLV2	815034	278	>100				
SLV3	933123	282	>100				
SLV4	914404	278	>100				

VI02 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalle e fondazioni	RR0H	01	D13CL	VI0204001	В	94 di 134

12.3 Verifica a scorrimento

La verifica a scorrimento è definita dalla relazione:

$$S_{rd} = S_d/\gamma_r \ge S_{ed}$$

L'azione resistente è stata calcolata tramite la relazione:

$$S_d = N \tan (\varphi) + c' B' L'$$

N = azione normale alla fondazione

c' = coesione efficace (assunto nullo)

B', L' = dimensioni della fondazione equivalente con carico centrato

S_{ed} = azione orizzontale agente sulla fondazione;

		Scorrimento	
	Srd	Sed	FS=Srd/Sed
	[kN]	[kN]	[-]
SLU1	47176	6949	6.79
SLU2	53657	9445	5.68
SLU3	54120	9504	5.69
SLU4	53657	8780	6.11
SLU5	54120	8899	6.08
SLV1	35761	8043	4.45
SLV2	35248	8043	4.38
SLV3	35761	7456	4.80
SLV4	35248	7456	4.73

VI02 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalle e fondazioni	RR0H	01	D13CL	VI0204001	В	95 di 134

13 VERIFICA A RIBALTAMENTO SPALLA B

Lo stato limite di ribaltamento deve essere trattato come uno stato limite di equilibrio di un corpo rigido (EQU) adoperando i coefficienti parziali del gruppo M2 per il calcolo delle spinte.

Parametri geotecnici ridotti (M2)				
c (MPa)	0			
ф	32			

13.1 Verifica a ribaltamento in condizioni statiche

Di seguito si riportano i calcolo delle azioni agenti sulla spalla in termini di forze orizzontali e verticali e momenti valutati rispetto al piede di valle del plinto di fondazione, dove:

Fl = forza orizzontale agente in direzione longitudinale

ez = eccentricità della forza Fl rispetto al piede di valle di intradosso del piano di fondazione,

M = F1 * ez,

N = azione verticale

ex = eccentricità delle forze verticali rispetto al piede di valle della fondazione.

Spinte			
Azione	FI [kN]	ez [m]	M [kNm]
Spinta del terreno (statica)	5533	3.90	-21578
Incremento spinta per sovraccarico sovrastruttura	757	5.85	-4426
Incremento spinta per carichi accidentali	2364	5.85	-13832

 VI02 - Viadotto in c.a.p
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 Relazione di calcolo spalle e fondazioni
 RR0H
 01
 D13CL
 VI0204001
 B
 96 di 134

Azioni peso proprio spalla e rinterro								
Elemento	N [kN]	ex [m]	M [kNm]					
Muro Paraghiaia	312	4.45	1387					
Muro frontale	2860	2.90	8293					
Muro andatore SX	1764	6.28	11079					
Muro andatore DX	1801	6.28	11308					
Fondazione	4200	4.38	18375					
Terreno di rinterro	5269	6.28	33090					
sovrastruttura ferroviaria	574	6.28	3606					
Accidentali	667	6.28	4188					

Azione da impalcato: carichi verticali									
Azione	N [kN]	ex [m]	M [KNm]						
G1	1505	2.80	4213						
G2	1114	2.80	3120						
LM 71 gruppo 1	1838	2.80	5146						
SW/2 gruppo 1	2017	2.80	5648						
LM 71 gruppo 3	752	2.80	2107						
SW/2 gruppo 3	557	2.80	1560						
Resistenza parassita vincoli	0	2.80	0						

Azione da impalcato: forze longitudinali									
Azione	FI [kN]	ez [m]	M [KNm]						
G1	0	9.40	0						
G2	0	9.40	0						
LM 71 gruppo 1	-454	9.40	-4264						
SW/2 gruppo 1	-413	9.40	-3882						
LM 71 gruppo 3	-907	9.40	-8526						
SW/2 gruppo 3	-825	9.40	-7755						
Resistenza parassita vincoli	-284	9.40	-2672						

VI02 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalle e fondazioni	RR0H	01	D13CL	VI0204001	В	97 di 134

Le azioni elementari sono state combinate secondo i seguenti coefficienti:

AZIONI DA SPALLA

		Spinta del terreno	Incremento spinta per sovraccarico sovrastruttura	Incremento spinta per carichi accidentali	Muro Paraghiaia	Muro frontale	Muro andatore SX	Muro andatore DX	Fondazione	Terreno di rinterro	sovrastruttura ferroviaria	Accidentali
	0	1.10	1.10	0.00	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.00
	1	1.10	1.10	1.50	0.90	0.90	0.90	0.90	0.90	0.90	0.90	1.50
EQU	2	1.10	1.10	1.50	0.90	0.90	0.90	0.90	0.90	0.90	0.90	1.50
	3	1.10	1.10	1.50	0.90	0.90	0.90	0.90	0.90	0.90	0.90	1.50
	4	1.10	1.10	1.50	0.90	0.90	0.90	0.90	0.90	0.90	0.90	1.50

AZIONI DA IMPALCATO

		61	62	LM 71 gruppo 1	SW/2 gruppo 1	LM 71 gruppo 3	SW/2 gruppo 3	Resistenza parassita vincoli
	0	0.90	0.90	0.00	0.00	0.00	0.00	0.00
	1	0.90	0.90	1.50	0.00	0.00	0.00	1.00
EQU	2	0.00	0.00	0.00	1.50	0.00	0.00	1.00
	3	0.00	0.00	0.00	0.00	1.50	0.00	1.00
	4	0.00	0.00	0.00	0.00	0.00	1.50	1.00

VI02 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalle e fondazioni	RR0H	01	D13CL	VI0204001	В	98 di 134

I risultati delle verifiche sono riassunti nella tabella seguente.

Ribaltamento (Statica)	Mstab [KNm]	Mdestab [KNm]	FS = M _{stab} /M _{destab} [-]
EQU0	85024	-28605	2.97
EQU1	99026	-58421	1.70
EQU2	93177	-57849	1.61
EQU3	87866	-64814	1.36
EQU4	87046	-63658	1.37

13.2 Verifica a ribaltamento in condizioni sismiche

Alle azioni precedentemente menzionate (statica) si aggiungono, l'incremento di spinta sismica del terreno a tergo della spalla, le azioni inerziali e le reazioni sismiche degli appoggi dell'impalcato.

	FI	ez	M
	[kN]	[m]	[kNm]
Incremento spinta sismica	-1342	5.85	-7851

AZIONI INERZIALI	Fv [kN]	ex [m]	M [kNm]	FI [kN]	ev [m]	M [kNm]
Muro paraghiaia	8.9	4.45	40	-18	9.96	-177
Muro frontale	81.5	2.90	236	-163	5.25	-856
Muro andatore SX	50.3	6.28	316	-101	6.70	-674
Muro andatore DX	51.3	6.28	322	-103	6.70	-688
Fondazione	119.7	4.38	524	-239	1.00	-239
Terreno di rinterro	150.2	6.28	943	-300	6.85	-2057
Azioni inerziali complessive			2381			-4691

Azioni sismiche da impalcato	Fv [kN]	ex [m]	M [KNm]	Fl [kN]	ev [m]	M [KNm]
Sisma long	0	2.8	0	-149	9.4	-1404
Sisma vert	24	2.8	66	0	8.9	0

Le azioni elementari sono state combinate attraverso i seguenti coefficienti di combinazione:

VI02 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalle e fondazioni	RR0H	01	D13CL	VI0204001	В	99 di 134

AZIONI DA SPALLA

		Spinta del terreno	Incremento spinta per sovraccarico sovrastruttura	Incremento spinta per carichi accidentali	Incremento spinta sismica	Inerzia orizzontale spalla e rinterro (kh)	Inerzia verticale spalla e rinterro (kv +)	Muro Paraghiaia	Muro frontale	Muro andatore SX	Muro andatore DX	Fondazione	Terreno di rinterro	sovrastruttura ferroviaria	Accidentali
	1	1.00	1.00	1.00	0.00	1.00	0.30	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
	2	1.00	1.00	1.00	0.20	1.00	0.30	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.20
EQU SISMA (x+0.3z)	3	1.00	1.00	1.00	0.20	1.00	0.30	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.20
	4	1.00	1.00	1.00	0.20	1.00	0.30	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.20
	5	1.00	1.00	1.00	0.20	1.00	0.30	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.20
	6	1.00	1.00	1.00	0.00	0.30	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
	7	1.00	1.00	1.00	1.00	0.30	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.20
EQU SISMA (0.3x+z)	8	1.00	1.00	1.00	1.00	0.30	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.20
	9	1.00	1.00	1.00	1.00	0.30	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.20
	10	1.00	1.00	1.00	1.00	0.30	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.20
	11	1.00	1.00	1.00	0.00	1.00	-0.30	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
	12	1.00	1.00	1.00	1.00	1.00	-0.30	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.20
EQU SISMA (x-0.3z)	13	1.00	1.00	1.00	1.00	1.00	-0.30	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.20
	14	1.00	1.00	1.00	1.00	1.00	-0.30	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.20
	15	1.00	1.00	1.00	1.00	1.00	-0.30	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.20
	16	1.00	1.00	1.00	0.00	0.30	-1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
	17	1.00	1.00	1.00	1.00	0.30	-1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.20
EQU SISMA (0.3x-z)	18	1.00	1.00	1.00	1.00	0.30	-1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.20
	19	1.00	1.00	1.00	1.00	0.30	-1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.20
	20	1.00	1.00	1.00	1.00	0.30	-1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.20

Relazione di calcolo spalle e fondazioni

VELOCIZZAZIONE LINEA SAN GAVINO - SASSARI - OLBIA

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

RR0H 01 D13CL VI0204001 B 100 di 134

AZIONI DA IMPALCATO

		61	62	LM 71 gruppo 1	SW/2 gruppo 1	LM 71 gruppo 3	SW/2 gruppo 3	Resistenza parassita vincoli	Sisma long	Sisma vert
	1	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2	1.00	0.20	1.00	1.00	0.20	0.00	0.00	0.00	1.00
EQU SISMA (x+0.3z)	3	1.00	0.00	1.00	1.00	0.00	0.20	0.00	0.00	1.00
	4	1.00	0.00	1.00	1.00	0.00	0.00	0.20	0.00	1.00
	5	1.00	0.00	1.00	1.00	0.00	0.00	0.00	0.20	1.00
	6	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	7	1.00	0.00	1.00	1.00	0.20	0.00	0.00	0.00	1.00
EQU SISMA (0.3x+z)	8	1.00	0.00	1.00	1.00	0.00	0.20	0.00	0.00	1.00
	9	1.00	0.00	1.00	1.00	0.00	0.00	0.20	0.00	1.00
	10	0.00	0.00	1.00	1.00	0.00	0.00	0.00	0.20	1.00
	11	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	12	1.00	0.00	1.00	1.00	0.20	0.00	0.00	0.00	1.00
EQU SISMA (x-0.3z)	13	1.00	0.00	1.00	1.00	0.00	0.20	0.00	0.00	1.00
	14	1.00	0.00	1.00	1.00	0.00	0.00	0.20	0.00	1.00
	15	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	16	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	17	1.00	0.00	1.00	1.00	0.20	0.00	0.00	0.00	1.00
EQU SISMA (0.3x-z)	18	1.00	0.00	1.00	1.00	0.00	0.20	0.00	0.00	1.00
	19	1.00	0.00	1.00	1.00	0.00	0.00	0.20	0.00	1.00
	20	0.00	0.00	1.00	1.00	0.00	0.00	0.00	0.20	1.00

La tabella seguente riassume gli esiti delle verifiche indicano il fattore di sicurezza FS quale rapporto tra momenti stabilizzanti e momenti destabilizzanti.

Ribaltamento (sismica)		M stab [KNm]	M destab [KNm]	FS=Mstab/Mdest [-]
	1	95185	-44528	2.14
	2	104808	-55949	1.87
EQU SISMA (x+0.3z)	3	104075	-55795	1.87
	4	103763	-54778	1.89
	5	103763	-54525	1.90
	6	96852	-41244	2.35
EQU SISMA (0.3x+z)	7	105850	-58946	1.80
	8	105741	-58792	1.80
	9	105429	-57776	1.82
	10	101216	-57522	1.76
	11	93757	-44528	2.11
	12	102755	-62230	1.65
EQU SISMA (x-0.3z)	13	102646	-62076	1.65
	14	102334	-61059	1.68
	15	94595	-52379	1.81
	16	92091	-41244	2.23
	17	101089	-58946	1.71
EQU SISMA (0.3x-z)	18	100980	-58792	1.72
,	19	100668	-57776	1.74
	20	96454	-57522	1.68

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
RR0H	01	D13CL	VI0204001	В	102 di 134	

14 VERIFICHE STRUTTURALI DELLA FONDAZIONE SPALLA B

14.1 Sollecitazioni combinate intradosso fondazione

Relazione di calcolo spalle e fondazioni

La tabella seguente riporta i carichi combinati agenti sul piano di fondazione (vedi figura sottostante).

combo	N [kN]	MI [kNm]	Mt kNm]	F [kN]	Ft [kN]
SLE1	20065	10498	1454	5143	184
SLE2	21903	23243	2318	6908	352
SLE3	22082	23891	2468	6948	353
SLE4	21903	19208	1572	6454	233
SLE5	22082	20224	1696	6536	231
SLU1	26441	15988	2159	6944	276
SLU2	30073	31999	3386	9431	517
SLU3	30333	32938	3604	9490	518
SLU4	30073	26148	2305	8773	344
SLU5	30333	27621	2483	8892	341
SLV1	20043	29584	2050	8036	321
SLV2	19756	29846	2050	8036	321
SLV3	20043	25781	6345	7384	1035
SLV4	19756	26042	6345	7384	1035

14.2 Verifiche strutturali del plinto

La verifica dell'armatura viene eseguita con riferimento alla parte di plinto aggettante dal muro frontale della spalla.

Nella tabella sono riportate le pressioni del terreno esercitate sul plinto di fondazione nelle combinazioni prese in esame (SLE_rara, SLU e SLV) per la direzione longitudinale.

VI02 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalle e fondazioni	RR0H	01	D13CL	VI0204001	В	103 di 134

combo	e_long [m]	qmax [kPa]	qmin [kPa]
SLE1	0.52	325	153
SLE2	0.79	402	119
SLE3	0.81	409	116
SLE4	0.62	371	150
SLE5	0.66	381	144
SLU1	0.35	390	240
SLU2	0.80	554	162
SLU3	0.82	564	158
SLU4	0.62	509	207
SLU5	0.66	524	199
SLV1	1.15	427	51
SLV2	1.18	425	45
SLV3	0.97	398	79
SLV4	1.00	396	74

Lo schema di calcolo è quello di mensola (L=2.0m).

All'azione della pressione del terreno si sottrae quella legata al peso della fondazione, ignorando, a vantaggio di sicurezza, il contributo del peso del terreno di ricoprimento.

combo	Med [kNm/m]	Ved [KN/m]
SLE1	575	510
SLE2	847	640
SLE3	863	652
SLE4	777	592
SLE5	799	609
SLU1	802	645
SLU2	1167	918
SLU3	1190	935
SLU4	1064	849
SLU5	1097	873
SLV1	911	667
SLV2	908	664
SLV3	844	623
SLV4	842	619

I valori massimi risultano:

max	M ed [kNm/m]	V ed [KN/m]
SLE	863	652
SLU-SLV	1190	935

14.2.1 *Verifica a flessione SLU – SLE*

Il plinto viene armato con una maglia inferiore costituita da barre φ32 passo 15cm (longitudinale) e barre φ 26 passo 20cm (trasversale); mentre la maglia superiore è costituita da barre φ 24 passo 20cm in entrambe le direzioni.

Essendo la mensola molto tozza (luce / spessore <=1), si procede alla verifica dell'armatura di flessione mediante un modello tirante puntone, schematizzando la forza sollecitante applicata a 2/3 della lunghezza della mensola del plinto.

VI02 - Viadotto in c.a.p
Relazione di calcolo spalle e fondazioni

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RR0H	01	D13CL	VI0204001	В	105 di 134

tg a = (Hfond - c)/(
$$2/3L +0.2sp_{muro\ frontale}$$
) = 1.12

a = 48.2 ° (angolo di inclinazione puntone compresso)

• Verifica dell'armatura tesa

Il tiro sull'armatura vale:

$$Tslu = Ved, slu / tga = 835 KN/m$$

$$Tsle = Ved, sle / tga = 582 KN/m$$

La tensione massima sull'armatura è (barre \phi 32 /15cm):

$$\sigma slu = Tslu / Asl = 156 Mpa$$

$$\sigma$$
sle = Tsle / Asl = 109 Mpa

VI02 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalle e fondazioni	RR0H	01	D13CL	VI0204001	В	106 di 134

La tensione sulla barra allo SLU è minore di quella di calcolo dell'acciaio (fyd = 391 MPa) pertanto la verifica è soddisfatta.

Allo SLE si procede alla verifica a fessurazione :

(secondo circ. n.617 §C.4.1.2.2.4)

Commenti:	INPUT		
interasse barre	interasse	150 mm	
diametro medio barre	Φ (barre)	32 mm	
baricentro della barra dal lembo sezione	x barra	80 mm	
altezza efficace	hc,eff	200 -	
classe cls	cls C	25 MPa	
tensione max barra	σς	109 MPa	
(0.6 carichi brevi; 0.4 lunga durata)	kt	0.6 -	
(0.8 barre ad. migliorata; 1.6 liscie)	k1	0.8 -	
(0.5 per flessione; 1 trazione)	k2	0.5 -	
(fisso)	k3	3.4 -	
(fisso)	k4	0.425 -	

	OUTPUT		
diff. def. armature-cls			
	3.17E-04 -		
distanza max fessure			
s r, max	4.21E+02 mm		
ampiezza fessure:			
wk	0.13 mm		
w_LIMITE	0.20 mm		
Sez. verificata			

Verifica del puntone di calcestruzzo

Lo sforzo nella biella compressa vale:

P slu= Ved, slu / sen a = 1254 KN/m

La resistenza della biella compressa vale

Prd = 0.4 b d fcd = 10829 KN /m > Pslu

La verifica è soddisfatta.

14.2.2 Verifica a taglio SLU

L'armatura a taglio del plinto è costituita da spille/cavallotti chiusi \(\phi \) 16 passo 20x50cm .

Resistenza dell'armatura:

$$VRds = Asw/s * fyd * 0.9d cotg \theta = 1358 KN/m$$

con

$$cotg \theta = 1$$

VI02 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalle e fondazioni	RR0H	01	D13CL	VI0204001	В	107 di 134

Resistenza della biella compressa:

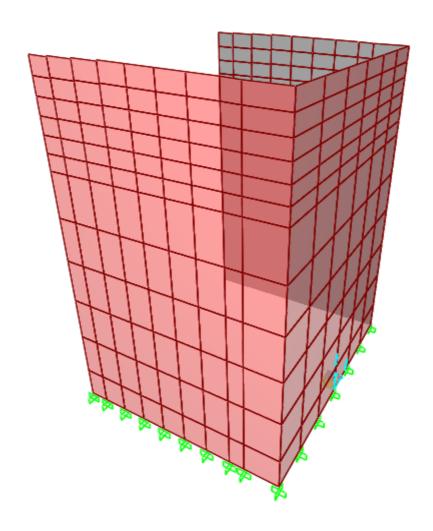
$$VRdc = 0.9 d * bw * \alpha c * f'cd * (cotg a + cotg \theta) / (1 + cotg^2 \theta) = 12240 KN/m$$

con

 $\alpha c = 1$

 $\cot \alpha = 1$

 $\cot \theta = 1$


VRd = min (VRds; VRdc) = 1358 KN/m > VEd

15 VERIFICHE DELLE ELEVAZIONI SPALLA B

15.1 Modello di calcolo

Le analisi sono state condotte con il programma di calcolo agli EF SAP2000. Il modello rappresenta i muri di elevazione della spalla considerati incastrati alla base.

15.2 Carichi applicati e combinazioni

Per le azioni generali e le loro combinazioni si rimanda ai paragrafi precedenti, ai fini delle verifiche condotte in questa sezione, si esplicitano le azioni derivanti dalle spinte del terreno che interessano le strutture di elevazione della spalla.

15.2.1 *Spinta statica*

	γ [kN/m³]	φ' [°]	K ₀	H [m]	S [kN/m]
Spinta del terreno	20.0	38.00	0.384	9.0	311

15.2.2 Spinta sismica

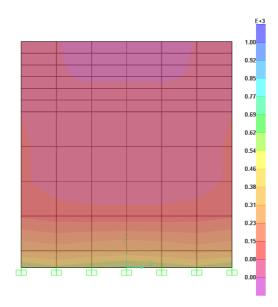
L'incremento della spinta del terreno in fase sismica viene calcolato secondo la formulazione di Wood.

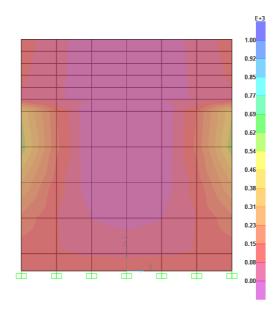
	γ [kN/m ³]	a/g [-]	S	H [m]	ΔE _d [kN/m]
Spinta sismica	20.0	0.057	1	9.0	92

15.2.3 Spinta carichi permanenti

	q [kN/mq]	K_0	H [m]	S _{qp} [kN/m]
spinta sovraccarico sovrastruttura	20.0	0.384	9.0	69

15.2.4 Spinta carichi accidentali

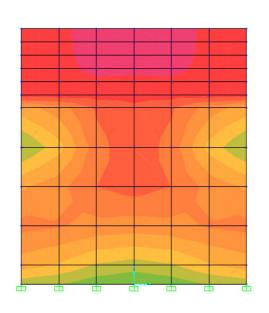

	q [kN/mq]	K ₀	H [m]	S _{qa} [kN]
Spinta carichi accidentali	50.00	0.384	9.0	172

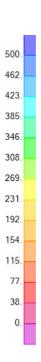

15.3 Verifica del muro frontale

Le sollecitazioni massime sono riportate nelle seguenti figure

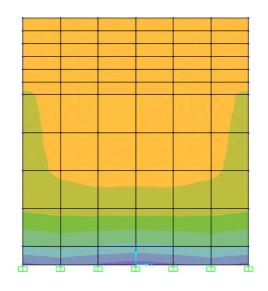
<u>SLU</u>

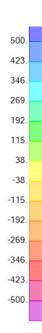
(M22 = 580kN m)




(M11=600 kN m)

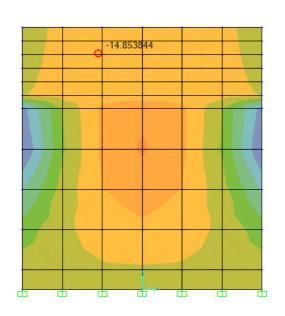
VI02 - Viadotto in c.a.p	
Relazione di calcolo spalle e fondazioni	

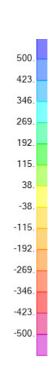

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RR0H	01	D13CL	VI0204001	В	111 di 134



(Vmax = 310 kN)

SLE





(M22=460 kN m)

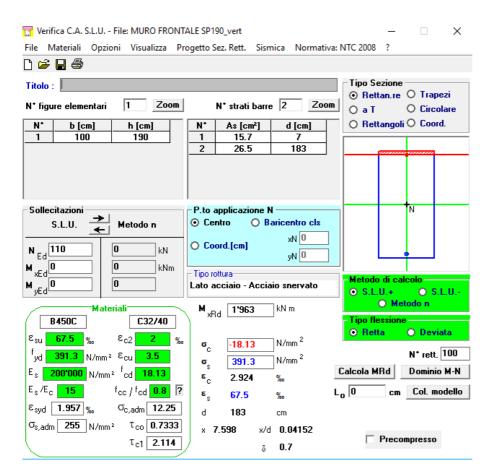
VI02 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalle e fondazioni	RR0H	01	D13CL	VI0204001	В	112 di 134

(M11=420 kN m)

15.3.1 Verifica a flessione SLU-SLV

Armatura verticale

La sezione resistente presenta la seguente geometria e armatura.


- Dimensioni BxH=(100cmx190cm)
- ø 26 mm/20 cm (lato monte) ø 20mm/20 cm (lato valle)

Le sollecitazioni più gravose sono le seguenti :

Med = 580 kN m

Ned = 310 kN

Mrd (Ned) = 1931 KNm/m > Med

La verifica è soddisfatta

Armatura orizzontale


La sezione resistente presenta la seguente geometria e armatura.

- Dimensioni BxH=(100cmx190cm)
- ø 26 mm/20 cm (lato monte) ø 20mm/20 cm (lato valle)

Le sollecitazioni più gravose alla base del muro fontale sono le seguenti :

Med = 600 kN m

Mrd = 1866 KNm/m > Med

La verifica è soddisfatta

RR0H

01

D13CL

REV.

VI0204001

FOGLIO

115 di 134

Verifica a taglio SLU

Il taglio massimo agente vale:

Relazione di calcolo spalle e fondazioni

Ved = 310 kN /m

Verifca a taglio per sezioni non armate a taglio (D.M	<i>1</i> 1. 14/01/20	008)	
Classe cls	f _{ck}	32.0	N/mm ²
coeff. parziale	•c	1.5	
resisten <i>z</i> a di calcolo	f_cd	18	N/mm2
larghezza membratura resistene	b _w	1000	mm
altezza membratura resistene	Н	1900	mm
altezza utille	d	1710	mm
area della sezione	A_{TOT}	1710000	mm ²
diametro ferro longitudinale	øl	26	mm
area armatura	Α	530.9	mm^2
	strato	1	
	passo	200	mm
	n _f /strato	5	
area armatura totale	Al	2655	mm^2
percentuale di armatura	rl	0.0016	
sforzo assiale dovuto ai carichi o precompressione	N	0	N
	s_cp	0.00	N/mm ²
	k	1.34	
	v_{min}	0.31	
	V_{Rd1}	470	kN
	V_{Rd2}	526	kN
taglio resistente	V_{Rd}	526	kN

VRd > VEdLa verifica è soddisfatta

15.3.2 Verifica fessurazione SLE

Per le opere sotto binario deve risultare che l'ampiezza massima delle fessure sia inferiore a (strutture a contatto con il terreno):

w1 = 0.20 mm.

Si procede al calcolo dell'apertura delle fessure prendendo in esame la combinazione SLE che fornisce la massima tensione di trazione sull'armatura

Armatura verticale (Φ26/20cm)

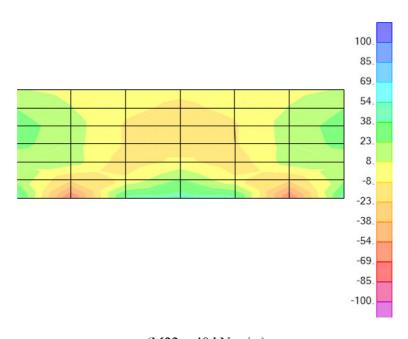
 $\sigma s = 140 \text{ MPa}$

note		INPUT
altezza sezione	h sez	1900 mm
copriferro	copriferro	70 mm
diametro medio barre	Φ (barre)	20 mm
numero barre al m	n.barre	5 -
classe cls	cls C	32 MPa
posizione asse neutro (Da programma VCA SLU)	x AN	326 mm
tensione max barre (Da programma VCA SLU)	σs	85 MPa
(0.6 carichi brevi; 0.4 lunga durata)	kt	0.6 -
(0.8 barre ad. migliorata; 1.6 liscie)	k1	0.8 -
(0.5 per flessione; 1 trazione)	k2	0.5 -
	k3	3.4 -
	k4	0.425 -

	OUTPUT		
diff. def.	armature-cls		
ε sm -ε cn	r 2.48E-04 -		
distanza max fessure			
s r, max	5.83E+02 mm		
ampiezza fessure:			
wk	0.14 mm		
LIMITE	0.20 mm		
S	ez. verificata		

Armatura orizzontale (Ф26/20cm)

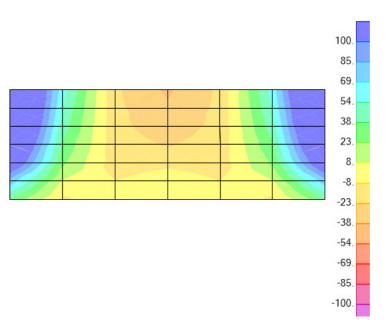
 $\sigma s = 91 \text{ MPa}$

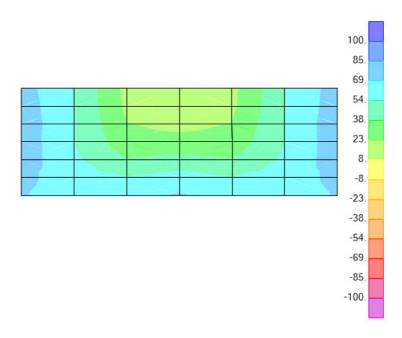

note		INPUT	
altezza sezione	h sez	1900	mm
copriferro	copriferro	70	mm
diametro medio barre	Φ (barre)	20	mm
numero barre al m	n.barre	5	-
classe cls	cls C	32	MPa
posizione asse neutro (Da programma VCA SLU)	x AN	326	mm
tensione max barre (Da programma VCA SLU)	σs	91	MPa
(0.6 carichi brevi; 0.4 lunga durata)	kt	0.6	-
(0.8 barre ad. migliorata; 1.6 liscie)	k1	0.8	-
(0.5 per flessione; 1 trazione)	k2	0.5	-
	k3	3.4	-
	k4	0.425	-

	OUTPUT		
diff. def.	armature-cls		
ε sm -ε cn	ε sm -ε cm 2.65E-04 -		
distanza r	nax fessure		
s r, max	5.83E+02 mm		
ampiezza fessure:			
wk	0.15 mm		
LIMITE	0.20 mm		
S	ez. verificata		

15.4 Verifica del paraghiaia

Le sollecitazioni massime sono riportate nelle seguenti figure.

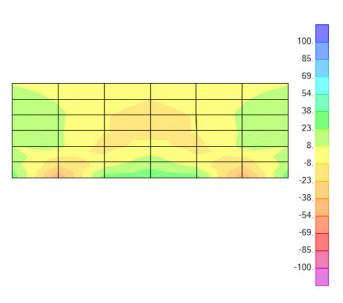

<u>SLU</u>


(M22 = 40 kN m/m)

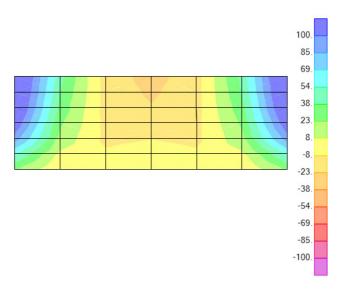
VI02 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalle e fondazioni	RR0H	01	D13CL	VI0204001	В	118 di 134

(M11=130 kN m/m)

(Vmax = 70 kN/m)



VELOCIZZAZIONE LINEA SAN GAVINO - SASSARI - OLBIA


COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
RR0H	01	D13CL	VI0204001	В	119 di 134	

SLE

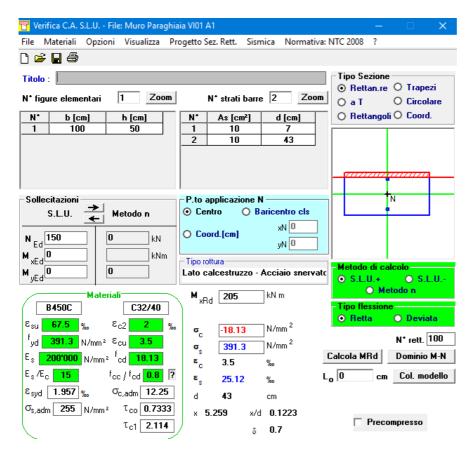
Relazione di calcolo spalle e fondazioni

(M22=30 kN m/m)

(M11=110 kN m/m)

15.4.1 Verifica a flessione SLU

Armatura verticale


La sezione resistente presenta la seguente geometria e armatura.

- Dimensioni BxH=(100cmx50cm)
- ø 16 mm/20 cm (lato monte) e ø 16 mm/20 cm (lato valle)

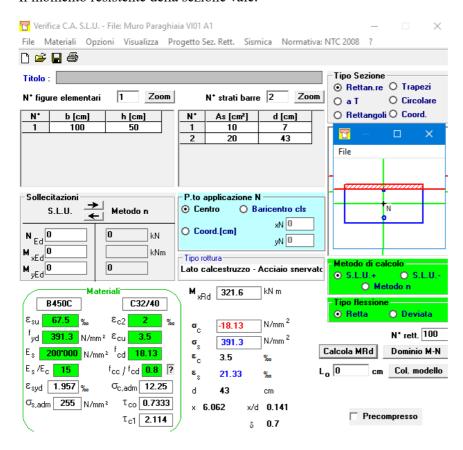
Le sollecitazioni più gravose sono le seguenti :

Med = 40 kN m/m

Ned = 150 kN/m

Mrd (Ned) = 205 KNm/m > Med

La verifica è soddisfatta


Armatura orizzontale

La sezione resistente presenta la seguente geometria e armatura.

- Dimensioni BxH = (100cmx50cm)
- ø 16mm/10 cm (lato monte) ø 16 mm/20 cm

Le sollecitazioni più gravose sono le seguenti :

Med = 130 kN m/m

Mrd (Ned) = 321 KNm/m > Med

La verifica è soddisfatta

15.4.2 Verifica a taglio SLU

Il taglio massimo agente vale:

Ved = 70 kN/m

Verifica a taglio per sezioni non armate a taglio (D.M. 14/01/2008)

vennica a tagno per sezioni mon armate a tagno (D.)	/enfica a taglio per sezioni non armate a taglio (D.M. 14/01/2008)							
Clas se cls	f _{ck}	32.0	N/mm ²					
coeff. parziale	•c	1.5						
resistenza di calcolo	f_{cd}	18	N/mm2					
larghezza membratura resistene	b_w	1000	mm					
altezza membratura resistene	Н	500	mm					
altezza utille	d	450	mm					
area della sezione	A_{TOT}	450000	mm^2					
diametro ferro longitudinale	øl	20	mm					
area armatura	Α	314.2	mm^2					
	strato	1						
	passo	100	mm					
	n _f /strato	10						
area armatura totale	Al	3142	mm^2					
percentuale di armatura	rl	0.0070						
sforzo assiale dovuto ai carichi o precompressione	N	0	N					
	s_cp	0.00	N/mm ²					
	k	1.67						
	v_{\min}	0.43						
	V_{Rd1}	253	kN					
	V_{Rd2}	192	kN					
taglio resistente	V_{Rd}	253	kN					

Vrd>Ved La verifica è soddisfatta.

15.4.3 Verifica fessurazione SLE

Per le opere sotto binario deve risultare in combinazione di carico SLE rara che l'ampiezza massima delle fessure sia inferiore a (strutture a contatto con il terreno):

w1 = 0.20 mm.

Si procede al calcolo dell'apertura delle fessure prendendo in esame la combinazione SLE che fornisce la massima tensione di trazione sull'armatura.

Armatura verticale (ø 16/20 cm)

 $\sigma s = 39 \text{ MPa}$

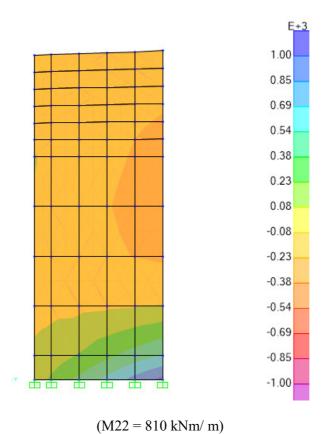
note	INPUT		
altezza sezione	h sez	500	mm
copriferro	copriferro	70	mm
diametro medio barre	Φ (barre)	16	mm
numero barre al m	n.barre	5	-
classe cls	cls C	32	MPa
posizione asse neutro (Da programma VCA SLU)	x AN	128	mm
tensione max barre (Da programma VCA SLU)	σs	39	MPa
(0.6 carichi brevi; 0.4 lunga durata)	kt	0.6	-
(0.8 barre ad. migliorata; 1.6 liscie)	k1	0.8	-
(0.5 per flessione; 1 trazione)	k2	0.5	-
	k3	3.4	-
	k4	0.425	-

	OUTPUT			
diff. def. a	rmature-cls			
ε sm -ε cm 1.14E-04 -				
distanza m	ax fessure			
s r, max	5.46E+02 mm			
ampiezza f	essure:			
wk	0.062 mm			
LIMITE	0.20 mm			
Sez. verificata				

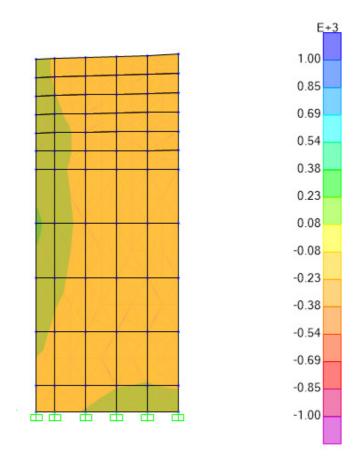
Armatura orizzontale (ø 16/10 cm)

 $\sigma s = 143 \text{ MPa}$

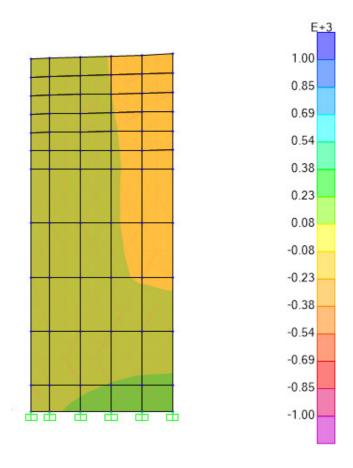
note		INPUT
altezza sezione	h sez	500 mm
copriferro	copriferro	70 mm
diametro medio barre	Φ (barre)	16 mm
numero barre al m	n.barre	10 -
classe cls	cls C	32 MPa
posizione asse neutro (Da programma VCA SLU)	x AN	128 mm
tensione max barre (Da programma VCA SLU)	σs	143 MPa
(0.6 carichi brevi; 0.4 lunga durata)	kt	0.6 -
(0.8 barre ad. migliorata; 1.6 liscie)	k1	0.8 -
(0.5 per flessione; 1 trazione)	k2	0.5 -
	k3	3.4 -
	k4	0.425 -


OUTPUT				
diff. def. a	armature-cls			
ε sm -ε cm 4.17E-04 -				
distanza r	nax fessure			
s r, max	3.79E+02 mm			
ampiezza	fessure:			
wk	0.158 mm			
LIMITE	0.20 mm			
	ez. verificata			

15.5 Verifica del muro andatore


Le sollecitazioni massime sono riportate nelle seguenti figure

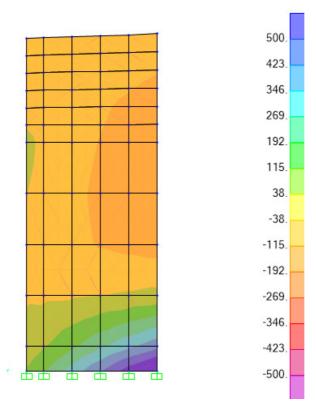
<u>SLU</u>


VI02 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalle e fondazioni	RR0H	01	D13CL	VI0204001	В	126 di 134

(M11 = 250 kNm/m)

VI02 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalle e fondazioni	RR0H	01	D13CL	VI0204001	В	127 di 134

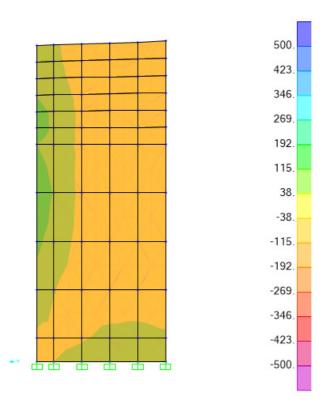
(Vmax = 310 kN/m)



VELOCIZZAZIONE LINEA SAN GAVINO - SASSARI - OLBIA

OMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
RR0H	01	D13CL	VI0204001	В	128 di 134	

SLE


Relazione di calcolo spalle e fondazioni

(M22 = 550 kNm/m)

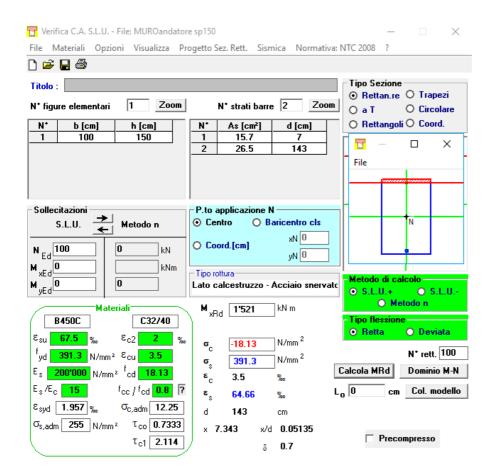
VI02 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalle e fondazioni	RR0H	01	D13CL	VI0204001	В	129 di 134

(M11 = 200 kNm/m)

15.5.1 Verifica a flessione SLU

Armatura verticale

La sezione resistente presenta la seguente geometria e armatura.


- Dimensioni BxH=(100cmx150cm)
- ø 26 mm/20 cm (lato monte) ø 20mm/20 cm

Le sollecitazioni più gravose alla base del muro andatore sono le seguenti :

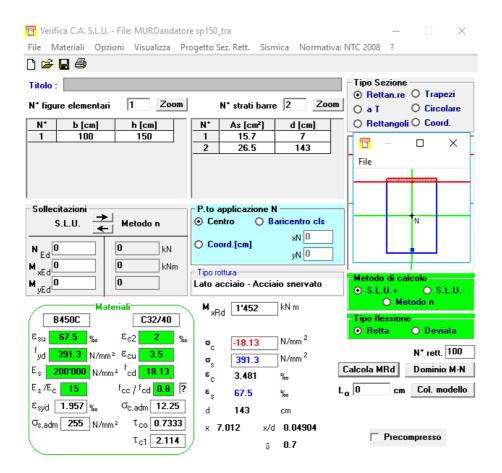
Med = 810 kN m

Ned = 100 kN/m

Mrd (Ned) = 1521 KNm/m > Med

La verifica è soddisfatta

Armatura orizzontale


La sezione resistente presenta la seguente geometria e armatura.

- Dimensioni BxH=(100cmx150cm)
- ø 20 mm/20 cm (lato monte) ø 20mm/20 cm

Le sollecitazioni più gravose alla base del muro andatore sono le seguenti :

Med = 570 kN m

Mrd (Ned) = 1452 KNm/m > Med

La verifica è soddisfatta

15.5.2 Verifica a taglio SLU

Il taglio massimo agente vale:

Ved=310 kN/m

Verifica a taglio per sezioni non armate a taglio (D.M. 14/01/2008)

VI. 14/01/2	000)	
f _{ck}	32.0	N/mm ²
С	1.5	
f_{cd}	18	N/mm2
b_w	1000	mm
Н	1500	mm
d	1350	mm
A_{TOT}	1350000	mm ²
øl	26	mm
Α	530.9	mm^2
strato	1	
passo	200	mm
n _f /strato	10	
Al	5309	mm^2
rl	0.0039	
N	0	N
s_cp	0.00	N/mm ²
k	1.38	
V_{\min}	0.32	
V_{Rd1}	522	kN
V_{Rd2}	436	kN
V_{Rd}	522	kN
	f _{ck} c f _{cd} b _w H d A _{TOT} ØI A strato passo n _f /strato AI rl N s _{cp} k v _{min} V _{Rd1} V _{Rd2}	$\begin{array}{cccc} & & 1.5 \\ f_{col} & & 18 \\ & b_w & 1000 \\ H & 1500 \\ d & 1350 \\ A_{TOT} & 1350000 \\ \hline \emptyset I & 26 \\ A & 530.9 \\ strato & 1 \\ passo & 200 \\ n_f/strato & 10 \\ AI & 5309 \\ rI & 0.0039 \\ N & 0 \\ s_{cp} & 0.00 \\ k & 1.38 \\ V_{min} & 0.32 \\ \hline V_{Rd1} & 522 \\ V_{Rd2} & 436 \\ \end{array}$

Vrd>Ved Verifica soddisfatta

15.5.3 Verifica fessurazione SLE

Per le opere sotto binario deve risultare in combinazione di carico SLE rara che l'ampiezza massima delle fessure sia inferiore a (strutture a contatto con il terreno):

w1 = 0.20 mm.

Si procede al calcolo dell'apertura delle fessure prendendo in esame la combinazione SLE che fornisce la massima tensione di trazione sull'armatura.

Armatura verticale (Φ26/20cm)

 $\sigma s = 141 \text{ MPa}$

note	INPUT		
altezza sezione	h sez	1500	mm
copriferro	copriferro	70	mm
diametro medio barre	Φ (barre)	26	mm
numero barre al m	n.barre	5	-
classe cls	cls C	32	MPa
posizione asse neutro (Da programma VCA SLU)	x AN	311	mm
tensione max barre (Da programma VCA SLU)	σs	141	MPa
(0.6 carichi brevi; 0.4 lunga durata)	kt	0.6	-
(0.8 barre ad. migliorata; 1.6 liscie)	k1	0.8	-
(0.5 per flessione; 1 trazione)	k2	0.5	-
	k3	3.4	-
	k4	0.425	-

OUTPUT			
diff. def. armature-cls			
ε sm -ε cm	4.11E-04 -		
distanza max fessure			
s r, max	4.85E+02 mm		
ampiezza fessure:			
wk	0.199 mm		
LIMITE	0.20 mm		
Sez. verificata			

Armatura orizzontale (Φ20/20cm)

 $\sigma s = 94 \text{ MPa}$

note		INPUT	
altezza sezione	h sez	1500	mm
copriferro	copriferro	70	mm
diametro medio barre	Φ (barre)	20	mm
numero barre al m	n.barre	5	-
classe cls	cls C	32	MPa
posizione asse neutro (Da programma VCA SLU)	x AN	311	mm
tensione max barre (Da programma VCA SLU)	σs	94	MPa
(0.6 carichi brevi; 0.4 lunga durata)	kt	222	-
(0.8 barre ad. migliorata; 1.6 liscie)	k1	0.8	-
(0.5 per flessione; 1 trazione)	k2	0.5	-
	k3	3.4	-
	k4	0.425	-

OUTPUT			
diff. def. armature-cls			
ε sm -ε cm	2.74E-04 -		
distanza max fessure			
s r, max	5.83E+02 mm		
ampiezza fessure:			
wk	0.160 mm		
LIMITE	0.20 mm		
Sez. verificata			

16 INCIDENZA ARMATURE

• Elevazione: 120 Kg/m3

Fondazione: 90 Kg/m3